Contact Potential Difference Probe A Non-Contact Lubricant Film Sensor

Precision Machining Research Consortium
Industrial Advisory Board
Georgia Institute of Technology
29 October 1997

Daisuke Yano Terry H. Thomas

Advisor: Dr. Steven Danyluk

Objective

Development of a non-contact sensor for wear, corrosion, and lubrication monitoring.

(building on prior work of Danyluk group)

Contact Potential Difference (CPD) Sensor

New application of a **Kelvin Probe**

Measures electrical field between surfaces

Non-Lubricated Hard Disk

Partial Lubrication

Result - Sample Raw Data

Lubricant Thickness = 20 nm

Probe Height = 0.2 mm

Radial Position: 43 mm

Result

Conclusion/Future Work

CPD probe demonstrated its ability to detect and relate a nano-meter thick lubricant

Future work includes applying this technology to a real-time lubricant condition monitor to a computer hard disk drive