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Abstract—Propagation of optical beams through a photonic
crystal (PC) is analyzed and modeled. It is shown that the prop-
agation effects for beams with slow spatial variations can be
effectively modeled by diffraction behavior obtained directly from
band structure. In particular, we present here an approximate
model based on defining an effective index for the PC that can be
used to analyze the propagation of optical beams inside the PC
using the well-known analytic formulas for wave propagation in
bulk media. The model presented here allows for considerable
reduction in computation time and complexity. It also allows us to
obtain more intuitive and design-oriented information about beam
propagation effects inside PCs. We apply this model to several
practical cases and show that its results agree very well with direct
(time-consuming) numerical simulations.

Index Terms—Diffraction, effective index, periodic structures,
photonic crystals (PCs), propagation.

I. INTRODUCTION

PHOTONIC crystals [1], [2] have inspired a lot of research
recently due to their ability to control the propagation

of electromagnetic waves. The majority of investigations on
photonic crystals (PCs) have been devoted to their photonic
bandgap (PBG) and possible applications arising from that, such
as suppressing spontaneous emission [1], realizing waveguides
and bends [3]–[5], and microscale cavities [6]. Propagation of
waves in a one-dimensional (multilayer) photonic crystal has
been investigated in applications like pulse compression [7],
[8] and spatial beam shaping [9]. Only recently, the propa-
gation of electromagnetic waves with frequencies outside the
PBG in two-dimensional photonic crystals has been proposed
for exploiting other capabilities of photonic crystals for new
applications [10]–[12]. An example is the superprism effect
that has been proposed [13] based on the anomalous dispersion
of photonic crystals and implemented in planar structures [14],
[15]. Some issues about efficiency of wavelength demulti-
plexers based on the superprism effect have been discussed
in [16]–[18]. Another possible application of the dispersion
properties of PCs out of the PBG is beam coupling to planar
structures [19] in which a photonic crystal structure is used
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to make the coupling of an optical beam to a planar structure
possible. Furthermore, beam-collimation for guiding [20]–[24]
and for controlling the behavior of beams generated by sources
inside the photonic crystal has been proposed. Another ap-
plication is based on heterostructure photonic crystals [25] in
which PCs are considered as media with partially controllable
properties and waveguiding is made possible by combining
appropriate regions of different photonic crystals.

In applications involving propagation of light beams through
PCs, the actual beam shapes and the corresponding propagation
effects in large PC structures should be considered. To analyze
the propagation effects, we need to monitor the propagation over
a large area of the structure, which needs a huge amount of com-
putation using conventional direct electromagnetic wave simu-
lators like finite-difference time domain (FDTD) [26], time-do-
main beam propagation method (TD-BPM) [27], and multiple
scattering technique [28]. Spectral methods based on modal ex-
pansion of the field are advantageous for the analysis of these
structures [29], but an approximate method which gives insight
into the beam propagation process will be helpful to avoid a
mass of computations for each particular case. To the best of
our knowledge, there has been no report on such an approximate
technique. In this paper, we investigate these propagation effects
inside PCs using modal expansion and derive a simple (approx-
imate) effective index model for the range of beams which are
mainly used in the applications mentioned above. We show that
an effective index model only requires numerical simulation for
the calculation of band structure, which is typically performed
by analyzing only a unit cell of the PC. After finding the effec-
tive index, the propagation of electromagnetic waves inside the
PC can be analyzed using the well-known analytic formulas for
bulk media. Thus, the effective index model proposed here re-
duces the computation time for the analysis of electromagnetic
wave propagation inside PCs by several orders of magnitude.
Using this model, we also explain how diffraction control de-
vices can be implemented by designing proper PC structures.

In Section II, we briefly review the anomalous dispersion
properties of PCs outside the PBG. The proposed approach for
the approximate analysis of beam propagation inside PCs is ex-
plained in Section III, and the effective index model is derived in
Section IV. The applications of the effective index model to sev-
eral practical applications of the PCs are discussed in Section V.
The validity of the model and its possible extensions are dis-
cussed in Section VI. Final conclusions are made in Section VII.
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Fig. 1. (a) Square lattice PC of air-holes in Si. Constant frequency contours with TE polarization are shown in the (b) first band and (c) second band for ��� �
0.40.

II. ANOMALOUS DISPERSION IN PHOTONIC CRYSTALS

Unlike the dispersion in nondispersive bulk materials, the
wavenumber-frequency relation in photonic crystals is not
linear even when the PC is made of linear nondispersive di-
electrics. The reason is obvious because the frequency (or ) of
each PC mode has to be periodic in wavevector (or ) domain
[30]. Moreover, unlike material dispersion, which typically
introduces small perturbation to linear dispersion (i.e., ,
with being the speed of light in the material), the modal dis-
persion caused by nonhomogeneity of the PC structure usually
results in much stronger nonlinearity in the dispersion behavior.
Due to their large permittivity contrast, the PCs are highly
dispersive with the effect being stronger at higher frequencies.

Fig. 1(a) shows a typical two-dimensional (2-D) PC of air
cylinders with radius and period in Si 11.4 . The
first two bands of the band structure of the PC in Fig. 1(a) for

0.4 are shown in Fig. 1(b) and (c), respectively, in the
form of constant frequency contours in the 2-D -space. As
can be seen in Fig. 1(b) and (c), the periodicity of the band
structure imposes some deviations from normal bulk band struc-
ture (i.e., circular constant frequency contours in the form of

) especially at the edges of the Bril-
louin zone. If we concentrate on the second band [Fig. 1(c)],
it is seen that at relatively small values of and (for ex-
ample, ), the constant frequency contours are
considerably different from the bulk (circular) dispersion be-
havior. These regions are the regions with large anomalous dis-
persion properties in the photonic crystals. Of these properties,
for example, we can consider the flat (horizontal) regions of the
band structure, specified by in Fig. 1(c). As shown before,
such points in the band structure correspond to photonic crystal
modes propagating in -direction with very small diffraction in-
side the structure [22], [23].

III. APPROXIMATE ANALYSIS OF BEAM PROPAGATION

INSIDE PCS

To analyze the propagation of a finite-size beam in space, the
best way is to make use of its analogy with the well-developed

time-domain pulse propagation [31]. The analogy relates space
and spatial frequency of a finite-size beam to time and temporal
frequency, respectively, of a pulse in time-domain. In this view,
the variation of beam shape during propagation is mainly due to
changes either in the amplitude or in the phase of the spectral
content of the beam. For example, spectral phase is responsible
for beam shape variations during propagation in a lossless bulk
material where the spectral content amplitude of the beam is
conserved.

In this paper, we investigate the effect of propagation on the
spatial shape of the optical beams. Thus, spectrum throughout
this paper refers to the spatial spectrum of the beam under con-
sideration, unless otherwise stated. The relation between the
spatial content (i.e., ) and spectral content of an op-
tical beam profile in one dimension is obtained by spatial
Fourier transformation

(1)

For this paper, we limit our discussion to propagation in 2-D
problems, and monitor the beam profile along some lines in-
side the structure. Assume is the spectral representation
of a monochromatic beam at position , where is the spatial
frequency corresponding to the spatial coordinate normal to the
propagation direction in a 2-D structure. Since the propagation
is a linear process, its effect on the spectrum of a beam propa-
gating from an arbitrary plane 1 to another plane 2 can be mod-
eled simply by a transfer function as

(2)

If the excitation is relatively narrow-band around in
domain, and the propagation characteristics of the structure (i.e.,
the band structure in the PC case) are smooth in the excitation
bandwidth, the function can be approximately represented
by the first three terms of its Taylor expansion

(3)

Here we assume the medium to be lossless resulting in unity
amplitude for . The effect of each of these three terms
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on the propagation of a beam can be separately studied. The
zeroth-order term is simply a constant phase change in the re-
sulting beam and can be neglected since it does not have any
effect on the beam shape. The first-order spectral phase term (in-
volving ) adds a linear phase (i.e., ) to the beam
spectrum that results in a shift in space. This term is actually
responsible for the drift of the beam from its original coordi-
nate. The second-order spectral phase term (involving ) adds
chirping to the beam spectrum, resulting in broadening of the
beam in space [31]. Again it is worth noting that this term is
constant for each temporal frequency in different directions in
ordinary homogeneous isotropic media, and decreases as the
frequency is increased. We limit our treatment of beam prop-
agation effects to these terms and consider higher order effects
as perturbations to this model.

To investigate the effects of beam propagation through PCs,
two basic questions arise. First, what happens when an ordinary
light beam from a homogeneous medium gets to an interface
with a photonic crystal (i.e., analysis of transmission through
the interface)? Second, having an initial field profile inside the
photonic crystal, how does propagation through the PC affect it
(i.e., analysis of beam propagation)? In the following section,
we will address these questions.

IV. EFFECTIVE INDEX MODEL FOR THE ANALYSIS OF BEAM

PROPAGATION IN PHOTONIC CRYSTALS

Since we intend to develop an approximate model for beam
propagation inside the PCs, we first clarify the assumptions of
the model. The first assumption is that the beam has a relatively
narrow spectral content in the sense that the Taylor approxima-
tion in (3) acceptably represents the behavior of the PC structure
in the spectral range that the beam has appreciable content. The
second assumption is that we are working in single-mode re-
gion of the PC. It means that for each plane-wave component
of the incident beam at the interface, only a single mode of the
PC is excited. These assumptions are usually satisfied in prac-
tical applications of the dispersion properties of PCs. Actually,
for applications like superprism-based PC demultiplexer, beam
collimating, and self-focusing, the required beam properties for
proper operation of the device are more restrictive than our two
assumptions here [18].

For the analysis of beam propagation in a two-dimensional
PC, we use the geometry shown in Fig. 2. The polarization of
the beam is assumed to be TE (electric field normal to the PC
periodicity plane). A similar model can be developed for TM
polarization. In addition, the interface of the PC and the inci-
dent medium is assumed to be parallel to one of the periodicity
directions of the photonic crystal (for example, in Fig. 2 period-
icities are in and directions, and the interface is along the
direction). Using Bloch theorem, a mode of this photonic crystal
can be represented as

(4)

where and are reciprocal lattice vectors corresponding
to lattice periodicity directions and , respectively. The ini-
tial field profile along the direction in the homogeneous inci-

Fig. 2. Definition of various parameters when an optical beam is incident
from a homogeneous region to a photonic crystal. ��� �� are the general
Cartesian coordinates with �-axis parallel to the interface, and ��� �� are the
lattice directions of the photonic crystal with � being along the interface and �
(in general) at an angle � with respect to the interface. Coordinates ��� �� are
defined for each point of the band structure with � representing the direction of
propagation (normal to the constant frequency contour or along the direction
of group velocity, shown with the dashed arrow) and � being perpendicular to
the direction of propagation. � and � are reciprocal lattice vectors of the
photonic crystal [32] corresponding to � and � lattice vectors, respectively. In
the text, beam profile along planes parallel to the boundary (as shown in this
figure) is analyzed.

dent medium at the interface (represented by ) can be ex-
pressed as a spatial Fourier integral over wavevectors along the
boundary, i.e.,

(5)

Using (5), an incident beam can be considered as the superpo-
sition of infinite number of plane waves. Note that in a 2-D
propagation plane in the incident homogeneous bulk medium,
a plane wave can be characterized by only one component of its
wavevector (since ). For each plane-wave compo-
nent in the incident medium (i.e., each ), we can find a cor-
responding transmission coefficient that relates the plane wave
to its corresponding PC mode excited inside the PC. Note that
we have assumed that only a single propagating PC mode is ex-
cited for each incident plane-wave component . The
excitation of a PC mode by this incident plane-wave component
can be represented as

(6)

where the right-hand side represents the excited PC mode.
In (6), is the amplitude transmission coefficient corre-
sponding to the incident plane-wave component represented
by . Note that in this representation, we have considered
only a single propagating PC mode (following our initial
assumptions). Moreover, evanescent components have been
deliberately dropped since we are only interested in propa-
gating behavior of the beam rather than its behavior close to the
interface. Nevertheless, the evanescent modes are taken into
account in calculating the transmission coefficient from
the incident medium to the PC region. At a single value of ,
we may rewrite (6) as

(7)
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Fig. 3. Beam profile for a Gaussian beam normally incident on a square lattice
PC (air holes in Si, ��� � ���) at different propagation lengths inside the PC.
The incident beam used in the simulation was a Gaussian beam with beamwidth
(full-width at half-maximum) of ��� (TE polarization at ��� � ���).

where and
. We also define . By combining (5) and

(7) and using the linearity of the beam propagation, we can get

(8)

where represents the beam shape inside the PC at the
interface. When the spectral bandwidth of the input beam is rel-
atively small, the transmission coefficient is almost constant in
the spectral range of the input beam resulting in

(9)

where represents the center spatial frequency of the beam.
Using the fact that , we obtain

(10)

for the beam inside the PC right at the interface.
For beams with a narrow spectral content, the (spatial) spec-

tral bandwidth of is smaller than . Therefore, the orig-
inal beam profile inside the PC region is modulated by a high-
frequency pattern due to terms in (10). However, the
envelope of the beam, which determines the large-scale beam
profile that we are interested in, has the same features as the
original incident beam .

In Fig. 3, the results for the exact simulation of the proper-
ties of a Gaussian beam incident on a square lattice photonic
crystal at different propagation lengths inside the PC region are
shown. These simulations were performed using a combination
of plane-wave expansion and mode-matching techniques. It can

be observed from Fig. 3 that the envelope of the beam inside the
PC even after large propagation lengths still remains Gaussian.
The high-frequency modulation of the beam profile is also clear
in Fig. 3.

After addressing the transmission properties at the boundary,
we now consider the propagation of the beam inside the PC.
We assume, as shown in Fig. 2, that the input beam excites PC
modes around point in the band structure. We define and as
the coordinates in directions tangent and normal to the constant
frequency contour at point (Fig. 2). Thus, the direction of
group velocity (or wave propagation) at point is along the
direction.

Assume we have an initial distribution along
(i.e., a line parallel to the -axis) inside the PC. Note that and
are the general coordinate variables and that and are parallel
to the interface but and are not necessarily parallel. We can
expand this distribution over photonic crystal modes as

(11)
where reciprocal lattice vectors [32],

(12)

are used in the last equality in (11). The spatial Fourier transform
of the field distribution can be calculated as

(13a)



1526 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH 2005

which can be simplified as

(13b)

or

(14)

Note that is a function of [i.e., )] which re-
flects the effect of the PC band structure in the actual beam
shape during the propagation inside the PC. We now assume that
the spectral content of the beam profile is bandlimited around

and express the beam profile as a baseband portion
(which will be called envelope from now on, since it contains
the information that defines the envelope of the beam) multi-
plied by . In order to calculate the envelope of the
beam, we must filter out the high-frequency variations [as de-
scribed by terms in (10) and graphically shown in
Fig. 3]. We also need to shift the spectrum of the filtered beam
by to exclude the term. Starting with
the beam spectrum given in (14) and assuming that the inci-
dent beam (or the envelope inside the PC) is bandlimited to the
interval of , we can elimi-
nate all terms with in (14) to filter out the high-frequency
portions. The resulting spectrum is

(15)

for . The envelope
of the beam at point 1 inside the PC, denoted as , is then
calculated by shifting the by . The result is

(16)

for . Now if we consider the
same beam at the plane , we have

(17)

for . If (with
being an integer), then

(18)

which means that the effect of propagation from to
can be represented as a phase change in spectral do-

main similar to plane-wave-type propagation with propagation
constant . Thus, the main effect of propagation in PCs on the
beam envelope is the phase variations of PC modes from initial
plane to the observation plane.

Based on (18), we can write the propagation transfer function
of the structure from to plane as

(19)

where is related to through the dispersion re-
lation of the structure at the constant temporal frequency of the
beam. The relation is exactly the same if we monitor the prop-
agation in a bulk medium. Based on this similarity, we extend
the relation for a beam propagating in the bulk medium along
the direction (Fig. 2) to the photonic crystal case, and write
the propagation relation for the beam propagating along the di-
rection as

(20)

where is the coordinate axis normal to as shown in Fig. 2.
Now, we can approximate the transfer function by the first three
terms of its Taylor expansion

(21a)

where we have

(21b)

(21c)

(21d)

Note that the linear term coefficient in (21-c) is zero because
of the particular choice of the coordinates with being
in the direction of propagation. The chirp parameter [31] is
defined as

(22)

The chirp parameter is essentially responsible for broad-
ening of the beam during propagation. If we define

, then the angle of group velocity
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direction (i.e., normal to the constant frequency contour) with
respect to the normal to the interface of the PC and the incident
medium (see Fig. 2) can be written as

(23)

where is the angle of group velocity for , as shown in
Fig. 2. Since , due to the definition of the direction
of group velocity, it is found that

(24)

Therefore

(25)

which suggests that the diffraction property of the medium de-
pends basically on the local value of (or equivalently,
the curvature of the constant frequency contour) in the 2-D
-plane. For a bulk homogeneous medium with refractive index

and free-space wavevector , direct calculations result in

(26)

We use this relation to define effective diffraction index of
the PC medium (this can be similarly extended to any other
medium) as

(27)

Noting that and
( is the component parallel to the interface in the incident bulk
medium with index , as shown in Fig. 2), (27) can be rewritten
as

(28)

in which subscript “0” is used to emphasize that these values
are local values calculated at the point for which Taylor expan-
sion is written (i.e., at ). Note that both magnitude
and sign of are important. The magnitude determines how
much phase chirp is added to the beam, and the sign is either
positive (positive chirp, as in ordinary dielectric media) or neg-
ative (negative chirp). The negative chirp has no counterpart in
conventional wave propagation in a bulk dielectric medium and
can be used to compensate for the effect of ordinary diffrac-
tion. If the assumptions for the above derivation are satisfied,
the effective index model can be used for describing all the
properties (for example diffraction) of beam propagation inside
PCs using only the beam envelope. This provides better under-
standing of wave propagation phenomena in PCs and eliminates

the need for long direct numerical electromagnetic simulations.
The concept of effective index defined in (27)–(28) is different
from other effective indexes defined previously such as phase
refractive index and group velocity effective index [30]. Phase
refractive index defined by the phase velocity of the main Bloch
component of the PC mode does not carry much physical infor-
mation in strongly modulated media [30], and group velocity ef-
fective index, defined for a certain direction, describes how fast
energy is transferred in that direction [30]. The effective index
defined in this paper deals with diffraction of optical beams and
is defined using the curvature of bands at a certain frequency
(considering PC modes in the vicinity of the excitation point).
The usefulness of such definition lies in its ability to describe
the behavior of the envelope of the optical beam as it propa-
gates through the periodic structure, a concept that has imme-
diate application in modeling and design of photonic devices
made based on dispersion properties of PCs outside the PBG.

V. APPLICATIONS OF THE EFFECTIVE INDEX MODEL

A. Propagation of Gaussian Beams in PCs

As the first example, we consider here the propagation of a
Gaussian beam [33] inside a PC. Fig. 3 shows the exact sim-
ulation (using modal approach based on plane-wave expansion
and mode matching) of the beam profile inside the PC at dif-
ferent propagation lengths for an incident Gaussian beam with
beamwidth 20 with its waist located at the interface in air.
Fig. 3 shows that the beam inside the PC has a Gaussian en-
velope with high-frequency modulations due to the periodic PC
structure. In practical applications, we are more interested in the
beam envelope than its high-frequency modulation. The effec-
tive index model is helpful in analyzing such cases.

Fig. 4 shows the beam profile inside the PC at different
propagation lengths for an incident Gaussian beam calculated
using the exact simulations and using the effective index model.
Figs. 4(a)–(c) correspond to different incident beam waists
(10 20 , and 50 , respectively). The PC structure is a 2-D
square lattice of air-holes in Si with hole radius of

0.40 , where 0.3 is the lattice period. Fig. 4 shows
that the beam envelope in all cases is successfully calculated
from the effective index model, and in all these cases, the
Gaussian feature of the beam envelope is preserved during
propagation inside the PC. Fig. 4(d) shows the variation of the
Gaussian beamwidth with the propagation length inside the
PC. Fig. 4 shows that the large scale parameters of the beam
obtained by direct simulations are in agreement with those
obtained by fitting Gaussian beam characteristics into the data
from the direct simulations (to make sure that Gaussian beam
approximation is valid everywhere inside the PC) as well as
those obtained from the simplified effective index model.

B. Diffraction Compensation in PCs

We have shown that for propagation through a PC the diffrac-
tion behavior is governed by the dispersion of the PC. Note
that we can modify the photonic band structure of the PC by
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Fig. 4. Beam profiles (normal to the direction of propagation) for propagation of a Gaussian beam through a square lattice photonic crystal (air-holes in Si,
��� � ��� at normalized temporal frequency � � ��� � ���) for different propagation lengths ��� inside the PC. The polarization of the beam is TE, and the
initial beamwidths (at � � �) are (a) 10�, (b) 20�, and (c) 50�. Solid lines are the results of exact simulations using plane-wave expansion technique, and dotted
lines are those calculated from the effective index model. In (d) the beamwidth variation with propagation length inside the PC for the beam parameters as in (c) is
shown.

changing its properties (e.g., lattice type, size of the holes, shape
of the holes, etc.) or by choosing the proper point on the band
structure to have the desired features. Thereby, the diffraction
properties of the beam propagation in photonic crystals (as long
as they satisfy the corresponding assumptions) can be controlled
by designing the PC structure using the effective index model.

Fig. 5 shows the results for the propagation of a TE polarized
Gaussian beam 0.30 through a two-stage PC composed
of two square lattices of air-holes in Si with 0.40 and

0.35 with the same lattice constant [shown in Fig. 5(a)].
The first PC region has a positive effective index. Thus, the prop-
agation through the first PC region adds a quadratic phase to the
signal, which results in broadening of the beam. The resulting
beam then enters into the second PC region, which is designed to
have a negative effective index. As a result, the quadratic phase
term in the second region after some propagation length cancels
that introduced by propagation through the first region. The vari-
ations of the beamwidth of the Gaussian beam in the first and the
second PC regions are shown in Fig. 5(b) and (c), respectively.
As seen in Fig. 5, the original beamwidth is retrieved at
using the propagation in the second PC. Further propagation in
the second region adds more quadratic phase, which broadens
the beam again. This effect has been observed earlier, and was
attributed to the negative refraction of the photonic crystal [34],
but as we have shown here, it is related to the negative curva-

ture of the bands of the PC and can occur in both positive and
negative refraction regions.

VI. DISCUSSION

The steps that must be taken to find the effective index for a
PC at a specific frequency and a specific direction of propaga-
tion (i.e., a specific point in the -space) are as follows. At first
the band structure must be calculated in the form of constant fre-
quency contours. In this paper, we used 2-D simulations (based
on plane-wave expansion method) to calculate the band struc-
ture of a 2-D PC. For a three-dimensional (3-D) PC or a slab
of 2-D PC with finite thickness, 3-D simulations must be used.
However, the rest of the steps to find the effective index of the
PC are the same in all cases. In the second step, the operation
point in the PC band structure (as described by the temporal fre-
quency and the propagation direction (coordinates in -space)
must be found. In the third step, the effective index at the oper-
ating point can be calculated using (27) or (28). The temporal
and spatial bandwidth of the incident signal must be taken into
account in justifying the conditions for which the model is valid.

The results shown in previous sections suggest that the ef-
fective index model is a powerful tool for the analysis of beam
propagation in PCs. For successful application of this model, the
assumptions behind the derivation of the effective index must
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Fig. 5. Beamwidth variations for a Gaussian beam propagating in a two
stage photonic crystal structure. (a) Schematics of beam variations inside the
structure. (b) Beamwidth in a square lattice of air-holes in Si �� �� � 0.40�,
and (c) beamwidth of resulting beam from (a) in a square lattice of air-holes in
Si �� �� � 0.35�. The initial width of the Gaussian beam entering region 1 at
� � � is 20�� ��� � 0.30, and TE polarization is considered.

be carefully validated. The errors in using this model can come
from the following sources.

A. Higher Order Spectral Phase Terms in the Taylor Expansion
of the Transfer Function (21a)

These terms come into the picture when the variation of the
band structure in the operation region (as defined by the spatial
and temporal frequency content of the incident beam) is so rapid

that the higher order spectral phase terms in the Taylor expan-
sion cannot be neglected.

Qualitatively, the effect of third-order and fourth-order spec-
tral phase terms can be included similar to time-domain effects
[31]. The effect of third-order spectral phase can be consid-
ered as a quadratic chirp. For the case of a Gaussian beam, this
quadratic chirp results in a nonsymmetric beam profile with os-
cillations on one side [31]. Quantitatively, these effects can be
directly included in the propagation transfer function. As an ex-
ample, the equally spaced side-lobes for the beam propagating
in a square lattice reported previously [22] can be easily mod-
eled by approximating the band structure using a combination
of second-order and fourth-order spectral phase terms.

B. Cutoff

Cutoff occurs when part of the beam spectrum does not go
through the PC structure because of the absence of a corre-
sponding propagating mode inside the PC. In other words, some
incident spatial frequencies are suppressed due to their inability
to excite propagating PC modes. The effect of cutoff can be
easily understood from a Fourier-domain point of view. Some
parts of the spatial frequency content of the beam are filtered out,
and as a result, the beam profile will be symmetrically or non-
symmetrically broadened (depending on what part of the spatial
frequency domain is cut).

C. Transmission Nonuniformity

Unlike (9) and (10), if the transmission coefficient from the
incident medium to the PC region varies considerably within the
incident beam spectrum, the transmission coefficients (
in (8)) for different incident plane-wave components (or dif-
ferent incident spatial frequencies) are not equal, and the corre-
sponding effect should be taken into account. This may include
both magnitude and phase of the transmission coefficient.

The effect of transmission nonuniformity according to (8) ap-
pears as a direct filtering of the input beam spectrum. In other
words, the input beam from the incident medium is transferred
into the PC by a filtering process defined by the transmission co-
efficient . Once this coefficient is calculated for different
incident angles, the effect can be readily included. In the basic
case described before, this value is assumed to be slowly varying
in the spatial bandwidth of the incident beam and the net effect
was considered as a constant multiplication factor independent
of spatial frequency. We can integrate the effect of cutoff and
transmission nonuniformity into a single input transfer function

. The propagation transfer function can easily be calcu-
lated from the band structure using its Taylor expansion terms
(as before) , where is the propagation length. The
overall transfer function governs
the resulting beam profile in the spectral domain. Note that in
cases B and C, the effective index model can still be used for the
analysis of the propagation of the excited PC modes through the
PC.

D. Multimode Excitation Inside the PC

When some plane-wave components of the incident beam ex-
cite more than one PC mode with comparable strength, the ef-
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fective index model cannot be used directly. The reason is that
this model cannot provide any information about the relative
strengths of different modes excited in the structure. Neverthe-
less, if we find the coupling coefficient of incident beam to these
modes, the behavior can be modeled by considering the propa-
gation of each beam separately (with its corresponding effective
index). The beam profile at each point can be obtained by super-
position of these beams.

As an example, consider the propagation of an optical beam
through a 2-D square lattice photonic crystal of air-holes (with
normalized radius 0.30) in silicon 11.4 . The
incident beam is Gaussian with TE polarization at normal
angle to the PC region. The incident region is assumed to
have 11.4, and normalized frequency of operation is

0.3. Fig. 6(a) shows contours of absolute value
of the effective index for this PC calculated from (27). The
constant frequency contour corresponding to the frequency
of operation and the wavevector representing the excited PC
mode (dashed arrow) are also plotted in Fig. 6(a). It can be
seen from Fig. 6(a) that the effective index for 0.3 at
normal incidence (the geometry of the structure is the same
as that introduced in Fig. 2 for which normal incidence cor-
responds to 0) is 0.4. To investigate the accuracy
of this value for the effective index, we directly simulated the
propagation of Gaussian beams with different beamwidths
(thus different spatial bandwidths) and extracted the value of
the effective index for each case by curve fitting. Fig. 6(b)
shows the variation of calculated effective index (from direct
simulations) versus the incident beamwidth. The calculated
effective index clearly approximates the theoretical value
predicted by effective index model as larger beamwidths (or
equivalently, beams with narrower spatial spectrum) are used.
The difference between the actual effective index and that
calculated using our effective index model becomes larger as
the incident beam waists become smaller, and the difference
is more than 10% for beam waists less than 4 for this special
case. In Fig. 6(c) the variations of beamwidth inside the PC
region versus the propagation length are shown for different
incident beam waists and compared with that of a Gaussian
beam propagating in an ordinary bulk medium. It is clearly
observed from Fig. 6(c) that the propagation behavior deviates
more from its ideal Gaussian case as the incident beam waist
becomes smaller. The reason is that for smaller beamwidths the
beam has larger spatial frequency content and is affected more
by limited spatial bandwidth of the PC 0.4 at the
operation frequency 0.3 , referred to as cutoff, as well
as by the presence of higher order terms of spectral phase due
to variation of the effective index with the spatial frequency.
Fig. 6(c) also suggests that for this special case, the effective
index model has good accuracy for incident beam waists of at
least 4 .

The limitation obtained using Fig. 6 cannot be generalized
to all PCs and all applications. The reason is that the propaga-
tion properties of PCs (cutoff, allowed spatial bandwidth, ef-
fective index variation, etc.) depend strongly on the PC struc-
ture, the temporal frequency of operation (i.e., ), and the ac-
tual operation region in the band structure (i.e., the spatial fre-
quency range of operation). For most practical applications of

Fig. 6. A 2-D square lattice PC with ��� � 0.3, and TE polarization is
considered. (a) Contours of absolute value of the effective index calculated using
(27) marked with their corresponding values; the constant temporal frequency
contour for� � 0.3 is also shown in this figure. The dashed arrow corresponds
to the PC mode with � � 0.3 and normal incidence, which is associated with
an effective index of � � 0.4. (b) Effective indexes for different incident
beamwidths calculated using direct simulation for propagation of a Gaussian
beam. (c) Variations of beamwidth versus propagation length for different values
of the incident beam waist are compared with that of a Gaussian beam in an
ordinary bulk medium.

dispersion properties of PCs (superprism demultiplexing, self-
focusing, diffraction control, etc.), the optical beam size is much
larger than the wavelength, for which the effective index model
can be used with good accuracy.

It is important to note that the assumptions for the validity of
the effective index model are usually satisfied in practical ap-
plications of the dispersion properties of PCs. For example, in
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designing a demultiplexer using superprism effect [16], the in-
cident beam must have a small divergence angle (i.e., small spa-
tial frequency content) to avoid very large structures [16], [18].
Furthermore, the beams at different wavelengths inside the PC
must have minimal crosstalk, which requires single-mode PC
excitation as well as relatively smooth band structure behavior.
Similar arguments hold for the case of diffraction-controlling
PC devices. The details of the design and optimization of su-
perprism-based demultiplexers using the effective index model
have been published before [18], and thus not included in Sec-
tion V of this paper.

Another issue to be considered is that although the majority of
the considerations in this paper were on two-dimensional pho-
tonic crystals, we can use exactly the same method to analyze
the beam propagation behavior for a three-dimensional photonic
crystal (or a slab of 2-D PC). Also, by calculating the two-di-
mensional band structure of a one-dimensional PC, we can find
its effect on a two-dimensional beam profile.

VII. CONCLUSION

To conclude, using the analogy between beam propagation
in space-domain and pulse propagation in the time-domain,
a simple model is provided to describe the beam propagation
through a photonic crystal. Based on this model, the diffraction
properties of a photonic crystal can be directly extracted from its
band structure eliminating the need to run elaborate simulations
such as FDTD or BPM. In addition, the simplified model for
diffraction gives insight into what an optical beam undergoes
while it propagates through a photonic crystal structure, and
makes the design of such structures much easier. The effective
index model is a powerful tool for studying beam propagation
effects inside PCs. Using this model we showed that PCs can
be used to control diffraction of optical beams. Diffraction
compensation and diffraction-free propagation can be achieved
by appropriately designing the PC structure through the choice
of lattice type, the geometry of holes in a unit cell, and the
excitation point in the band structure.

We also discussed the assumptions that must be satisfied for
the validity of the effective index model. For practical applica-
tions of dispersion in PCs, these assumptions are usually valid
and the results using this model agree very well with the accu-
rate numerical simulations.
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