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SUMMARY 

Capacitors have been widely used in diverse areas owing to their strengths such as 

high power and fast charge/discharge capability. However, their lack of high energy 

density has been considered a significant disadvantage that limits their use in energy 

storage systems. In an effort to conquer the intrinsic weakness, many research efforts have 

been dedicated to improving the energy density of capacitors by developing new dielectric 

materials and improving conventional dielectrics via proper modification. In this study, 

three different approaches were investigated to enhance the electrical properties of thin 

film capacitors. First, self-assembled monolayers (SAMs) of phosphonic acids were 

prepared on a hybrid sol-gel dielectric, 2-cyanoethlytrimethoxysilane (CNETMS), to 

provide a higher energy barrier to the dielectric. With the help of monolayers, leakage 

currents were reduced and higher energy densities were obtained. Second, thin films of 

metal oxides including titanium dioxide (TiO2) and zirconium dioxide (ZrO2) were 

introduced as charge blocking layers into the CNETMS capacitor structure by atomic layer 

deposition (ALD). TiO2 exhibited a large contribution to the high permittivity of the 

multilayer structure and in turn to the high energy density. Lastly, barium titanate (BaTiO3) 

nanoparticles were coated with ZrO2 to form core-shell nanoparticles to smooth the 

transition between local electric fields applied to the BaTiO3 nanoparticles and the host 

matrix. The breakdown strength increased with the coating but the rough surface of the 

coating must be addressed to achieve improved performance in the other electrical 

characteristics. 
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

1.1 Fundamentals of Dielectric Materials and Capacitors 

Dielectric materials are defined as insulators that are capable of polarization 

according to an electric field. No charge carriers actually travel through a dielectric 

material when an electric field is applied but dielectric polarization occurs where electric 

charges shift from their equilibrium positions. As shown in Figure 1.1, positive charges 

shift towards the direction of the electric field and negative charges towards the opposite 

direction, which creates an internal electric field. Therefore, the overall field within the 

dielectric itself is reduced from the applied field as expressed in Equation 1. 

 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐸𝐸 − 𝐸𝐸𝑝𝑝 (1) 

, where 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 is the net electric field in the presence of the dielectric material, 𝐸𝐸 is the 

applied external electric field and 𝐸𝐸𝑝𝑝 is the electric field induced by polarization in the 

dielectric material. The induced polarization charge density, 𝜎𝜎𝑝𝑝, is from the bound charges 

in the dielectric, which brings about 𝐸𝐸𝑝𝑝.On the other hand, the free charge density, 𝜎𝜎𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒, 

accumulated on the conducting plates is related to the applied external electric field, 𝐸𝐸. 

Equation 2 describes the relationship between the net electric field and the two charge 

densities. 

 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐸𝐸 − 𝐸𝐸𝑝𝑝 =
𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜀𝜀0

−
𝜎𝜎𝑝𝑝
𝜀𝜀0

 (2) 



 2 

, where 𝜀𝜀0 is the permittivity of free space whose value is 8.85×10−12 F m-1 The 

proportionality of the induced polarization charge density to the net electric field can be 

written as Equation 3. 

 𝜎𝜎𝑝𝑝 = 𝜒𝜒𝑒𝑒𝜀𝜀0𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 (3) 

, where 𝜒𝜒𝑒𝑒 is the electric susceptibility of the dielectric material. The relative permittivity 

of the dielectric materials can be expressed in Equation 4. 

 𝜀𝜀𝑟𝑟 = 𝜒𝜒𝑒𝑒 + 1 (4) 

Combining Equation 2, Equation 3 and Equation 4 gives the proportionality between 

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐸𝐸 as expressed in Equation 5. 

Figure 1.1. A schematic of polarization in a dielectric material upon application of an 
external electric field. 
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 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 =
𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜀𝜀𝑟𝑟𝜀𝜀0

=
𝐸𝐸
𝜀𝜀𝑟𝑟

 (5) 

Depending on the source of polarization, dielectric polarization can be explained by 

one of four mechanisms, as illustrated in Figure 1.2. Electronic polarization, or atomic 

polarization, occurs as the center of charge of the electrons with respect to the nucleus is 

shifted by an applied electric field. This type of polarization is present only while an electric 

field is being applied then dissipates when the field is removed. 

For a material that has an ionic structure with cations and anions, ionic polarization 

occurs. Each ionic bond is composed of a cation and an anion and possesses individual 

dipole moments but the net dipole moment throughout the material is summed to zero. 

Upon application of an electric field, the ionic bonds stretch resulting in an increase in the 

individual constituent dipole moments inducing a net dipole moment. 

Figure 1.2. Polarization mechanisms in dielectric materials: (a) electronic, (b) ionic, 
(c) orientation and (d) interface polarizations. 
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Orientation polarization, or dipolar polarization, is caused by molecular dipoles that 

can freely rotate in a dielectric material. These dipoles are randomly oriented and exhibit 

no net polarization in the absence of an applied electric field. However, they become 

aligned to some extent according to the direction of an electric field applied and display 

non-zero polarization.  

Interface polarization, or space charge polarization, is produced by the movement of 

charge carriers in the presence of an electric field. Alignment of the charge carriers under 

the applied field creates a net dipole that is not zero across the material. This kind of 

polarization can occur around any interfaces or grain boundaries. 

Dielectric relaxation refers to a phenomenon where there is a delay in dielectric 

polarization in response to an alternating electric field. It concerns the movement of 

molecular dipoles or charge carriers as they require longer times to polarize than the 

frequency of the field. Hence, orientation and interface polarizations accompany dielectric 

relaxation. On the other hand, electronic and ionic polarizations involve the vibration of 

electrons, atoms and ions to bring about dielectric resonance. The application of an 

alternating electric field with a high frequency that is similar to the frequency of the 

electronic, atomic or ionic vibration causes the resonant behavior.  

The dielectric constant is a quantity with real and imaginary parts as expressed by 

Equation 6. 

 𝜀𝜀∗ = 𝜀𝜀′ − 𝑗𝑗𝑗𝑗" (6) 
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The real part corresponds to the refractive characteristic of a dielectric material, whereas 

the imaginary part describes its absorptive characteristics. Energy from an electric field is 

partially absorbed in the form of heat through the movement of dipoles in a dielectric 

material when polarization lags behind the applied field. This thermal energy tends to 

randomize the orientation of dipoles giving rise to dielectric loss. In relaxation and 

resonance regimes, dielectric loss becomes particularly large. Figure 1.3 illustrates the real 

and imaginary parts of the dielectric constant with regard to the frequency of an electric 

field.1 Although the dielectric constant is a complex number, the term “dielectric constant” 

often refers to the ratio of the real part of the dielectric constant to that of free space. The 

value is also called relative permittivity as expressed in Equation 4. 

A capacitor is composed of two conductors that are not in contact with each other 

and separated either by air or a non-conductor such as a dielectric material. When an 

electric field is applied to a capacitor, one of the two conductors accumulates positive 

charges on its surface, which brings about negative charges on the other conductor. 

Capacitance represents the amount of charge induced per unit of an applied field and its 

Figure 1.3. The frequency dependence of the real and imaginary parts of a dielectric 
constant and the corresponding polarization mechanisms. Reproduced with 
permission1 copyright 2018 John Wiley and Sons. 
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unit is Farad, F, which is equivalent to the quotient of Coulombs and Volts (C/V). In an 

ideal capacitor, capacitance is constant and given by Equation 7. Capacitance can be 

expressed by Equation 8 for a capacitor with varying capacitance. 

 𝐶𝐶 =
𝑄𝑄
𝑉𝑉

 (7) 

 
𝐶𝐶 =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (8) 

For a parallel plate capacitor, capacitance is proportional to the area of the metal 

plates and inversely proportional of the separation distance between the plates as expressed 

in Equation 9. 

 𝐶𝐶 = 𝜀𝜀𝑟𝑟𝜀𝜀0
𝐴𝐴
𝑑𝑑

 (9) 

, where 𝜀𝜀𝑟𝑟 is the relative permittivity of the material in between the metal plates, 𝜀𝜀0 is the 

permittivity of free space, 𝐴𝐴 is the area of the metal plates and 𝑑𝑑 is the separation distance 

between the plates. 

1.2 Applications of Capacitors 

1.2.1 Energy Storage 

Capacitors are widely used in a diverse array of areas due to their electric 

characteristics. First, energy storage is one of their main applications. When an electric 

field is applied to a capacitor that is connected to a charging circuit, it can store energy 
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with non-zero dipole moments by changing the orientation of dipoles inside it. Then, it 

releases the stored energy when it is disconnected from the circuit. Demand for energy 

storage systems that are more efficient and capable of storing greater amounts of energy is 

increasing in parallel with the growing global need to both save energy and improve energy 

conversion. Capacitors as well as batteries and fuel cells have been essential to the effort 

to develop advanced energy storage devices. Despite their clear advantage of high power 

density, the low energy density of capacitors compared to batteries has limited their more 

widespread use. Figure 1.4 is a Ragone plot that compares different sorts of energy storage 

systems in terms of energy density and power density.2 When compared to batteries, 

conventional capacitors have the advantage of larger power densities with the tradeoff of 

having energy densities more than two orders of magnitude lower than those of batteries. 

Figure 1.4. A Ragone plot comparing different energy storage systems in terms of 
energy density and power density. The dotted lines represent times required for 
charge/discharge. Reproduced with permission2 copyright 2008 Springer Nature. 
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In addition to power and energy aspects, capacitors have additional advantages and 

disadvantages including the capability of fast charging and discharging and long cycle life 

with the downside of larger leakage currents compared to batteries. The different electric 

properties of capacitors and batteries are summarized in Table 1.1. 

 

Table 1.1. A comparison of capacitors and batteries in terms of power density, energy 
density, life cycle and charge/discharge speed. 

 

 

1.2.2 Defense Applications 

Capacitors are well known for their capability of high pulsed power where 

instantaneous release of energy over a short period of time with high power is required. 

This characteristic has led them to be utilized for weapons in the field of defense such as 

electrothermo-chemical (ETC) guns and electromagnetic railguns.3 ETC guns take 

advantage of plasma in lieu of traditional chemical ignitors for the burning of propellants 

with high energy in a controlled way. Electrical energy dissipated from capacitors 

generates the high-energy density plasma that is highly effective in the ignition of 

propellant charges. For capacitors to be suitable for such weapons, one of the key 

Capacitors  Batteries 

High Power density Low 

Low Energy density High 

Long Life cycle Short 

Fast Charge/discharge speed Slow 
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requirements is to be able to operate over hundreds of charge and discharge cycles before 

reaching the maximum working temperature of the capacitors as well as shock resistance 

and small dimensions. Microsecond or sub-microsecond discharge capacitors are used to 

create pulses where fast turn-on or turn-off is needed.4-5 

Electromagnetic railguns convert electromagnetic energy into kinetic energy to 

launch projectiles at a very high velocity by accelerating it along a pair of conductive rails.6 

A bank of capacitors inside a railgun supplies current pulses to a launcher. Energy is 

initially dissipated from the capacitor bank in the resistive ohmic losses. Subsequently, it 

is stored by the circuit inductance then transferred into the kinetic energy of the accelerated 

projectile. The shape of the acceleration curve is determined by the shape of the current 

pulse, which corresponds to the resulting acceleration profile of the projectile.7 

1.2.3 Medical Applications 

Medical applications call for capacitors particularly in implantable medical devices 

and diagnostic imaging equipment. A defibrillator is a medical device implanted inside the 

body for synchronous depolarization of the cardiac muscle by delivering electrical current 

directly to the heart or indirectly through the chest wall when the natural electrical sequence 

of the heart is not possible. It is used in the treatment of cardiac arrhythmias caused by 

ventricular fibrillation or pulseless ventricular tachycardia. Figure 1.5 illustrates the basic 

principles of a defibrillator circuit.8 
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As an example of a medical imaging device, a capacitive micromachined ultrasonic 

transducer (CMUT) is a parallel plate capacitor that is comprised of a fixed bottom 

electrode and a clamped metalized membrane held above a void. When there are incoming 

ultrasound waves while a DC voltage is applied, they can be detected by measuring the 

variation in capacitance of a CMUT device. Also, when an AC voltage is applied with a 

superimposed DC voltage, ultrasound waves can be generated.9-10 CMUTs have 

advantages over conventionally used piezoelectric materials for medical imaging by 

possessing a wider bandwidth, better integration with electronics and easier fabrication of 

large arrays.11 

Figure 1.5. The basic operating principle of a defibrillator circuit during charging 
and discharging. Adapted with permission8 copyright 2018 Elsevier. 
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1.2.4 Sensors 

Capacitors also play a key role in various types of sensors. Capacitors with a catalytic 

metal electrode can detect a change in the work function of the metal caused by a dipole 

layer created at the metal-insulator interface. This device is the basic principal behind many 

sensitive gas sensors. In addition to being very sensitive to low gas concentrations, they 

can be economically mass-produced via microelectronic fabrication techniques. Hydrogen-

sensitive metal-oxide-semiconductor (MOS) capacitors monitor hydrogen and moieties 

that include hydrogen in commercial applications owing to their high sensitivity and 

specificity to hydrogen.12 The dielectric layer in a MOS capacitor can also be the catalytic 

material that measures gas response. Furthermore, the species of gas being generated, 

operation temperature and pressure of the environment dictate the type of dielectric-based 

capacitors to use in sensors. Silicon carbide (SiC) and group-III nitrides (AlN, GaN and 

AlGaN) have good thermal stability and a wide band gap. Hence, they are promising 

candidates for use in hydrogen sensors for harsh environments with elevated 

temperatures.13-16 Silicon carbide in particular offers great potential for hydrogen sensors 

since it has a wide band gap, chemical inertness and stability as well as well-established 

film growth and fabrication processes.15, 17 

1.3 Dielectric Film Capacitors for Energy Storage 

A dielectric film capacitor is equivalent to a parallel plate capacitor whose 

capacitance is dependent on the geometry and permittivity of the dielectric material used 

as expressed in Equation 9 above. In a capacitor where a positive charge of +𝑞𝑞 is held on 

one plate and a negative charge −𝑞𝑞 is held on the opposite plate, the work required to 
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migrate an infinitesimal amount of charge 𝑑𝑑𝑑𝑑 between the two plates against the potential 

difference 𝑉𝑉 is defined as 𝑑𝑑𝑑𝑑, which is calculated by Equation 10. 

 𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑞𝑞
𝐶𝐶
𝑑𝑑𝑑𝑑 (10) 

From this, the overall work done on the capacitor with a charge of Q is described by 

Equation 11. 

 
𝑊𝑊 = �

𝑞𝑞
𝐶𝐶

𝑄𝑄

0
𝑑𝑑𝑑𝑑 =

𝑄𝑄2

2𝐶𝐶
 (11) 

Given 𝐶𝐶 = 𝑄𝑄/𝑉𝑉 as in Equation 7, 

 
𝑊𝑊 =

𝑄𝑄2

2𝐶𝐶
=

1
2
𝐶𝐶𝑉𝑉2 (12) 

Since the amount of energy that is stored in a capacitor is equal to the work done on the 

capacitor, 

 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑊𝑊 =
1
2
𝐶𝐶𝑉𝑉2 (13) 

Combining Equation 9 and Equation 13 results in the stored energy determined by the 

area and thickness of a capacitor. 
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 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
2
𝐶𝐶𝑉𝑉2 =

1
2
𝜀𝜀𝑟𝑟𝜀𝜀0

𝐴𝐴
𝑑𝑑
𝑉𝑉2 (14) 

Subsequently, the energy density is calculated by dividing the amount of stored energy by 

the volume of the capacitor. 

 𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

=
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴 ∙ 𝑑𝑑

=
1
2
𝜀𝜀𝑟𝑟𝜀𝜀0(

𝑉𝑉
𝑑𝑑

)2 (15) 

The maximum energy density for a capacitor is determined by the maximum value of the 

electric field, 𝑉𝑉, in Equation 15. The breakdown strength of a dielectric material, 𝐸𝐸𝐵𝐵, is 

the maximum field per unit thickness that the dielectric can withstand before a capacitor 

containing it stops functioning. Hence, 

 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 =
1
2
𝜀𝜀𝑟𝑟𝜀𝜀0𝐸𝐸𝐵𝐵2 (16) 

According to Equation 16, the maximum energy density of a capacitor is proportional to 

relative permittivity of the dielectric material used in the capacitor and to the square of the 

breakdown strength of the dielectric. However, it should be noted that many dielectric 

materials experience a non-linear change in permittivity as an applied field increases. 

Therefore, Equation 16 is typically accurate over a small range of voltages. 

When an applied field is not constant but fluctuates with over time, the stored energy 

also changes with time. The power, 𝑃𝑃, for such systems is determined by Equation 17. 
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𝑃𝑃 =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑
𝑑𝑑𝑑𝑑
�

1
2
𝐶𝐶𝑉𝑉2(𝑡𝑡)� = 𝐶𝐶𝐶𝐶(𝑡𝑡)

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

 (17) 

For a fluctuating field, 𝑉𝑉(𝑡𝑡), 

 
𝑉𝑉(𝑡𝑡) =

𝑄𝑄(𝑡𝑡)
𝐶𝐶

 (18) 

 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=
1
𝐶𝐶
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=
𝐼𝐼(𝑡𝑡)
𝐶𝐶

 (19) 

Therefore, 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝐶𝐶(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑉𝑉(𝑡𝑡)𝐼𝐼(𝑡𝑡) = 𝐼𝐼2(𝑡𝑡)𝑅𝑅(𝑡𝑡) =
𝑉𝑉2(𝑡𝑡)
𝑅𝑅(𝑡𝑡)

 (20) 

In a RC circuit where resistivity is fixed and known, 

 
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑊𝑊 = � 𝐼𝐼2(𝑡𝑡)𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡

0
=

1
𝑅𝑅
� 𝑉𝑉2(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0
 (21) 

Kirchhoff’s current law defines the relationship between the current through a capacitor 

and the current through a resistor in a RC circuit as below. 

 
𝐼𝐼𝑉𝑉 + 𝐼𝐼𝑅𝑅 = 𝐶𝐶

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑉𝑉
𝑅𝑅

= 0 (22) 
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Then, the time-dependent voltage across the capacitor can be calculated using Equation 

23. 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0𝑒𝑒
− 𝑡𝑡
𝑅𝑅𝑅𝑅 (23) 

, where 𝑉𝑉0 is the initial voltage. The stored energy can be expressed by combining 

Equation 21 and Equation 23. 

 
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 =

𝑉𝑉02

𝑅𝑅
� 𝑒𝑒−

2𝑡𝑡
𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑

𝑡𝑡

0
 (24) 

1.3.1 Characteristic Parameters and Measurements 

1.3.1.1 Leakage Current 

Leakage in a capacitor refers to the phenomenon where charge carriers, such as 

electrons and holes, tunnel across a dielectric layer. Dielectric materials in most real-world 

applications are not ideal insulators and do not provide perfect insulation due to defects 

within their structure which typically allow a small amount of current to leak through a 

capacitor when an electric field is applied. As a result, the capacitor loses part of its charge 

and the field between the electrodes of the capacitor decreases. Leakage current depends 

on the applied voltage as well as thickness and temperature of the dielectric in a capacitor. 

1.3.1.2 Frequency Dependence of Dielectric Permittivity and Loss 

In general, dielectric materials exhibit responses to an applied electric field that are 

dependent on the frequency of the field. This is due to the fact that the dipoles in the 
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materials do not change their orientations instantaneously upon the application of an 

electric field. As described in section 1.1, there are different mechanisms of dielectric 

polarization that contribute to the permittivity and dielectric loss of a dielectric material, 

each of which shows a different frequency dependence. Therefore, permittivity is often 

represented as a complex function of the frequency of the electric field. Both the real part 

of the permittivity and the imaginary part, which is the dielectric loss, depend on the 

frequency of the field. 

1.3.1.3 Breakdown Strength and Weibull Modulus 

Dielectric breakdown refers to the phenomenon where current flows through a 

dielectric layer due to an electric field applied to it that exceeds a critical voltage. Dielectric 

breakdown occurs when the electron density in the conduction band significantly rises due 

to an applied electric field resulting in a rapid increase in conductivity. It brings about 

permanent damage to the dielectric material and consequently the capacitor ceases to 

function since the dielectric material is no longer insulating and incapable of separating 

charges. That is, short circuiting across the dielectric occurs during breakdown. Dielectric 

breakdown can be explained by three mechanisms. First, intrinsic breakdown concerns 

lattice ionization and a resulting increase in the electron temperature. Since the process is 

electronic, it occurs rapidly (usually less than a millisecond). It does not depend on the 

geometry of the dielectric but rather on the material itself as well as the applied field. 

Second, thermal breakdown is induced by current flowing through defects in a dielectric 

that lead to heat dissipation. As a result, ionic defect concentration increases and 

conductivity also increases leading to the failure of the dielectric. This mechanism is 

affected by the geometry of the dielectric and the rate of application of an electric field. 
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Lastly, avalanche breakdown is triggered by electrons with high energy due to an applied 

field exciting additional electrons leading to an increase in conductivity. Charges build up 

gradually but the breakdown process can occur rapidly. 

Breakdown strength is a measure of an electric field above which dielectric 

breakdown occurs and the units are MV m-1 or V µm-1. Typically, breakdown strength is 

measured on multiple devices across the area of a sample since dielectric thin films tend to 

have compositional irregularities resulting from the fabrication process. Then, the 

distribution of the measured values is expressed as the Weibull modulus. This parameter 

is derived from the Weibull distribution that is commonly used to describe the failure of a 

material by dielectric breakdown or mechanical fracture. The Weibull distribution for 

dielectric breakdown strength can be expressed by Equation 25. 

 
𝐹𝐹(𝑉𝑉) = 1 − 𝑒𝑒−(𝑉𝑉𝑉𝑉0

)𝑚𝑚  (25) 

, where 𝑉𝑉 is an applied electric field, 𝐹𝐹(𝑉𝑉) is the fraction of devices that fail at or below a 

given value of the electric field, 𝑉𝑉0 is the characteristic value of the electric field at which 

63% of devices have failed and 𝑚𝑚 is the Weibull modulus. The Weibull modulus is a 

constant that governs the distribution of the values of breakdown strength with regard to 

the applied electric field. A higher Weibull modulus indicates more a more consistent 

breakdown behavior across the area of a sample. 

1.3.1.4 Energy Density 
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Energy density of a capacitor can be measured by two different methods. The first 

approach involves a hysteresis loop of polarization induced by an applied electric field. 

When a dielectric material is subjected to an electric field, dielectric polarization occurs in 

response to the field. Once the field is removed, the amount of dipole moment that is 

originally generated does not fully dissipate in most cases. This leads to the formation of a 

hysteresis loop from a curve of the polarization with regard to the electric field. The shape 

of this hysteresis loop depends on the ferroelectricity of the material. Figure 1.6 illustrates 

hysteresis loops for normal ferroelectrics, relaxor ferroelectrics and antiferroelectrics.18 

The energy density discharged from a dielectric material can be calculated using its 

polarization response illustrated in Figure 1.7 and by Equation 26.19 

, where 𝑈𝑈𝑒𝑒 is the discharge energy density of a dielectric, 𝐸𝐸 is the applied electric field, 𝑃𝑃 

is the induced polarization, 𝑃𝑃𝑚𝑚 is the maximum polarization and 𝑃𝑃𝑟𝑟 is the remnant 

 
𝑈𝑈𝑒𝑒 = � 𝐸𝐸𝐸𝐸𝐸𝐸

𝑃𝑃𝑚𝑚

𝑃𝑃𝑟𝑟
  (26) 

Figure 1.6. Polarization hysteresis loops for normal ferroelectrics, relaxor 
ferroelectrics and antiferroelectrics. Reproduced with permission18 copyright 2012 
American Chemical Society.  
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polarization.20 In Figure 1.7, the integrated area under the charge curve represents the 

charge energy density. The discharge energy density is the area under the discharge curve. 

The energy extraction efficiency is the ratio of the discharge energy density to the charge 

energy density including the energy loss as expressed in Equation 27. 

 𝜂𝜂 =
𝑈𝑈𝑒𝑒
𝑈𝑈0

=
𝑈𝑈𝑒𝑒

𝑈𝑈0 + 𝑈𝑈𝑙𝑙
  (27) 

, where 𝜂𝜂 is the energy extraction efficiency, 𝑈𝑈𝑒𝑒 is the discharge energy density, 𝑈𝑈0 is the 

charge energy density and 𝑈𝑈𝑙𝑙 is the energy loss due to remnant polarization. As shown in 

Figure 1.6, relaxor ferroelectrics and antiferroelectrics have small remnant polarization 

and as a result a good efficiency when it comes to charging and discharging energy making 

them great candidates for energy storage systems.21 A modified Sawyer-Tower circuit as 

Figure 1.7. Discharge energy density (blue area), hysteresis loss (red area) and energy 
extraction efficiency from a polarization-electric field (P-E) loop. Adapted with 
permission19 copyright 2018 Springer Nature. 
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shown in Figure 1.8 is used to obtain a polarization-electric field (P-E) curve.22-23 After an 

electric field is applied to a capacitor, the charged energy is discharged through a high-

voltage switch to a resistor, 𝑅𝑅𝐿𝐿. Intrinsic losses in dielectric materials can be expressed as 

an equivalent series resistor (ESR). The total discharged energy, 𝑈𝑈𝑒𝑒, is calculated by 

Equation 28. 

 𝑈𝑈𝑒𝑒 = 𝑈𝑈0
𝑅𝑅𝐿𝐿

𝑅𝑅𝐿𝐿 + 𝐸𝐸𝐸𝐸𝐸𝐸
  (28) 

, where 𝑈𝑈0 is the charged energy, 𝑅𝑅𝐿𝐿 is the load resistor and 𝐸𝐸𝐸𝐸𝐸𝐸 is the equivalent series 

resistor that corresponds to the dielectric losses. Although the discharged energy is 

essentially smaller than the charged energy, both energies become close when 𝑅𝑅𝐿𝐿 ≫ 𝐸𝐸𝐸𝐸𝐸𝐸.22 

Figure 1.8. A schematic of a circuit for P-E measurements. Adapted with permission22 
copyright 2018 Springer Nature. 
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Another method of measuring the energy density of a capacitor is by a charge-

discharge (C-D) circuit. In this system, a capacitor is charged to a specific electric field 

with a rapid voltage pulse and held for a short amount of time before the application of the 

field is released. Typically, the energy discharge is on the order of a few milliseconds. The 

applied voltage is increased progressively until dielectric breakdown of the device occurs 

to measure the maximum energy density. Figure 1.9 illustrates a typical set-up for C-D 

measurements.24 The discharge energy density can be calculated using Equation 29 and 

known values of the resistances, 𝑅𝑅1 and 𝑅𝑅2 (𝑅𝑅1 ≫ 𝑅𝑅2), in the measurement system. 

Figure 1.9. A setup to measure energy density by the charge-discharge (C-D) method. 
Reproduced with permission24 copyright 2009 American Chemical Society. 
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(29) 

1.3.2 Current State of the Art 

There are a variety of polymers that are typically used as dielectrics since they 

possess the advantages of low dielectric loss, high breakdown strength and good 

mechanical stability.25-27 Despite these strengths, their low relative permittivity, mostly 

below 10, and low energy density limit their use in energy storage applications.28 

Therefore, there have been many studies that have tried to overcome these limitations by 

developing ferroelectric copolymers, embedding ferroelectric ceramics in polymers and 

constructing inorganic/organic hybrid dielectric materials. Table 1.2 shows the most 

common dielectric polymers and their electrical properties.29 

1.3.2.1 Polyvinylidene Fluoride (PVDF) and Its Copolymers 

Polyvinylidene fluoride (PVDF) is a ferroelectric polymer that is well known for its 

mechanical strength, high chemical corrosion resistance and heat resistance.30-32 Its 

dielectric constant is 12, which is higher than conventional dielectric polymers such as 

polypropylene (PP), polyethylene terephthalate (PET) and polycarbonate (PC) that have 

dielectric constant is 12, which is higher than conventional dielectric polymers such as 
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Table 1.2. Electrical properties of common dielectric polymer films including 
polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC) and 
polyvinylidene fluoride (PVDF). Adapted with permission29 copyright 2001 IEEE. 

 

polypropylene (PP), polyethylene terephthalate (PET) and polycarbonate (PC) that have 

dielectric constants near 3. It is possible to improve the properties of the dielectric even 

further by forming copolymers with PVDF. Polyvinylidene fluoride trifluoroethylene 

[P(VDF-TrFE)] is a copolymer of PVDF that displays a higher crystallinity than PVDF as 

it can be crystallized into the β phase, whereas PVDF normally forms the α phase.33 The 

chemical structure of P(VDF-TrFE) is shown in Figure 1.10.34 Both PVDF and P(VDF-

TrFE) show relatively high electric displacement over 0.1 C m-2 compared to other 

polymers with low dielectric constants that exhibits near 0.01 C m-2 of electric 

displacement. Despite these advantages, the improvement in energy density is not as 

significant with high energy loss stemming from the high dissipation of the polar 

vinylidene fluoride groups.35-36 P(VDF-TrFE) typically shows a large ferroelectric 

hysteresis loop implying that only a small amount of energy can be discharged despite a 

large amount of energy stored by charging.37-38 

Polymer film 𝜀𝜀𝑟𝑟 
Maximum 

temperature 
(°C) 

Breakdown 
strength 

(MV m-1) 

Energy 
Density 
(J cm-3) 

Dissipation 
factor (%)  
at 1 kHz 

Polypropylene 
(PP) 2.2 105 640 1 - 1.2 <0.02 

Polyester 
(PET) 3.3 125 570 1 - 1.5 <0.5 

Polycarbonate 
(PC) 2.8 125 528 0.5 - 1 <0.15 

Polyvinylidene 
fluoride (PVDF) 12 125 590 2.4 <1.8 
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Introduction of bulky groups including chlorotrifluoroethylene (CTFE), 

hexafluoropropylene (HFP) and chlorofluoroethylene (CFE) as defects in the molecular 

structure of PVDF and P(VDF-TrFE) has proven effective in reducing the polarization 

hysteresis. These bulky additives effectively divide large ferroelectric domains of PVDF 

or P(VDF-TrFE) into nanoscale domains leading to lower hysteresis and subsequently 

higher energy density.39-42 According to Zhang et al., P(VDF-TrFE- CTFE) and P(VDF-

TrFE-CFE) show polarization behaviors of relaxor ferroelectrics with significantly reduced 

hysteresis as illustrated in Figure 1.11.43-46 Table 1.3 compares the electric properties of 

several PVDF-based polymers.47 

 

 

 

 

Figure 1.10. The chemical structure of poly(vinylidene fluoride-trifluoroethylene) 
[P(VDF-TrFE)]. Adapted with permission34 copyright 2011 Elsevier. 
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Table 1.3. Electrical properties of PVDF-based dielectric polymers. Adapted with 
permission47 copyright 2010 IEEE. 
 

Polymer film 𝜀𝜀𝑟𝑟 Breakdown strength 
(MV m-1) 

Energy Density 
(J cm-3) 

P(VDF-CTFE) 13 620 25 

P(VDF-HFP) 15 700 25 

P(VDF-TrFE-CFE) 52 400 10 

 

Figure 1.11. The polarization hysteresis of P(VDF-TrFE) (dotted black) and 
poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-
CFE)] (solid green). Reproduced with permission46 copyright 2006 AIP Publishing. 
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1.3.2.2 Ferroelectric Ceramic/Polymer Composites 

Ferroelectric ceramics such barium titanate (BaTiO3), barium strontium titanate 

(BaSrTiO3) and lead zirconate titanate (PbZrTiO) have been actively researched for 

incorporation into polymer dielectrics as filler materials that provide high permittivity.48-55 

When nanoparticle ferroelectric fillers are embedded in a polymer matrix, the large 

interfacial area may promote exchange coupling and enhance polarization in the 

nanocomposite.56-57 In addition, the use of nanoparticles can reduce the formation of 

macroscopic inhomogeneity in the composite.20 The dielectric properties of 

nanocomposites depend on various factors including the filler/matrix ratio and the 

anisotropy of fillers. A major challenge in nanocomposites consisting of ferroelectric 

nanoparticles and a polymer host is that a large difference in permittivity between the fillers 

and the polymer brings about a significant concentration of local electric fields in the 

polymer facilitating the breakdown of the composite. Also, the lack of good dispersion of 

the filler nanoparticles can harm the overall uniformity of composites leading to a 

degradation in electrical performance. Therefore, a careful design of the nanostructure must 

be undertaken to maximize the benefits conferred by both the fillers and the matrix while 

minimizing the disadvantages. Xie et al. studied the dielectric properties of 

BaTiO3/polyimide nanocomposites. BaTiO3 nanoparticles with an average diameter of 100 

nm were well dispersed in the polymer host.58 The dielectric constant of the composite 

could be controlled by varying the volumetric content of BaTiO3. For example, the 

dielectric constant increased with increasing BaTiO3 content. When 50 vol% of BaTiO3 

was used, the dielectric constant of the nanocomposite was 35, approximately 10 times of 

that of pure polyimide. Furthermore, the composite exhibited good stability in terms of 
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dielectric constant and loss over a broad range of temperatures and frequencies. The effects 

of surface modification on BaTiO3 nanoparticles for a ferroelectric-polymer composite 

were investigated by Yu et al..59 The surface of BaTiO3 nanoparticles was modified with 

polyvinylpyrrolidone (PVP) to form a nanocomposite film as shown in Figure 1.12. The 

electrical performance of BaTiO3 such as breakdown strength and relative permittivity 

were improved. With 55 vol% BaTiO3, the relative permittivity of the nanocomposite was 

as high as 77 at 1 kHz. The breakdown strength of the nanocomposite was measured to be 

336 V m-1 with 10 vol% BaTiO3. 

1.3.2.3 Inorganic/Organic Hybrid Dielectrics 

Although ferroelectric/polymer composites possess advantages including easy 

processability, low cost and tunable dielectric properties, they still suffer from a significant 

Figure 1.12. Polyvinylpyrrolidone (PVP)-modified BaTiO3 nanoparticles embedded 
in PVDF via a solution casting process. Reproduced with permission59 copyright 2013 
John Wiley and Sons. 
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amount of dielectric loss with high ceramic loading required to realize a large dielectric 

constant. In an effort to overcome this challenge, there have been studies to utilize 

inorganic hybrid dielectric materials in lieu of polymers. Chon et al. investigated BaTiO3 

nanoparticles embedded in a diethyl 3-(trimethoxysilyl)propyl phosphonate (TMSP) host 

as shown in Figure 1.13.60 TMSP was first synthesized from a reaction of 

chloropropyltrimethoxysilane (CTMS) and 3-triethyl phosphate (TEP). Subsequently, the 

as-synthesized TMSP was attached to the surface of the BaTiO3 nanoparticles to promote 

their dispersion in the matrix composed of 3-(trimethoxysilyl)-propylmethacrylate 

(ATMS) and 4,40-(hexafluoroisopropyldene)-diphenol (FBPA). As a result, a dielectric 

constant as high as 62 was obtained from films with TMSP-modified BaTiO3 nanoparticles, 

which is 13% higher than bare BaTiO3 nanoparticles embedded in the matrix. This is 

attributed to improved dispersion of the nanoparticles. In addition, not only BaTiO3 but 

also halogenated bisphenol contributed to the high dielectric constant. 

A combination of multiple dielectric layers is one route to construct hybrid dielectric 

materials. Azizi et al. demonstrated improved electrical properties in a dielectric structure 

consisting of polyetherimide (PEI) films with hexagonal boron nitride (h-BN) films grown 

by chemical vapor deposition (CVD) and transferred onto PEI films as illustrated in Figure 

1.14.61 The h-BN-coated PEI films exhibited energy extraction efficiencies over 90 % with 

energy densities of 1.2 J cc−3 near the glass transition temperature of PEI at which neat PEI 

mostly fails. Furthermore, improved cycle lifetime and dielectric stability were obtained 

over 55,000 charge-discharge cycles at high temperatures owing to the excellent thermal 

insulation of h-BN. 
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Figure 1.13. A schematic detailing the formation of the sol-gel hybrid dielectric 
containing 3-(trimethoxysilyl)-propylmethacrylate (ATMS), fluorinated aromatic 
bisphenol A (FBPA) and silane terminated BaTiO3 nanoparticles. Reproduced with 
permission60 copyright 2010 American Chemical Society. 
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Figure 1.14. An illustration of the formation of the polymer films involving the 
transfer of the hexagonal boron nitride (h-BN) films grown by chemical vapor 
deposition (CVD). Reproduced with permission61 copyright 2017 John Wiley and 
Sons. 
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CHAPTER 2. ENHANCEMENTS OF A SILICA-BASED HYBRID 

SOL-GEL DIELECTRIC WITH ORGANIC BARRIER LAYERS 

2.1 2-Cyanoethlytrimethoxysilane (CNETMS) as a Dielectric with High Energy 

Density 

2.1.1 Fabrication of CNETMS via a Sol-Gel Process 

Sol-gel processes involve a solution of molecules that form a network resembling a 

gel produced by the formation of covalent bonds between them. Sols, dispersions of 

colloidal particles with diameters of 1 - 100 nm, are formed by suspending the desired solid 

particles in a liquid. They are casted on a target substrate by various deposition techniques 

such as spinning, dipping or coating. The casted particles are subsequently polymerized 

into a gel by partial evaporation of the solvent or with help of an initiator. The final product 

is obtained after heating the gel at high temperatures. The resulting gel is a rigid network 

that possesses polymeric chains that are longer than a micrometer and sub-micrometer 

pores.62 A gel consists of one or more of the following morphologies: highly ordered 

lamellas, completely disordered covalent polymeric networks, mostly disordered polymer 

networks formed via physical aggregation and particular disordered structures.63 

Sol-gel processing is widely used to fabricate metal oxides including titanium 

dioxide (TiO2) and silicon dioxide (SiO2). Metal alkoxides, nitrates and chlorides are 

common sol-gel precursors from which simultaneous hydrolysis and polycondensation 

occur to form an interconnected 3D network.64-65 Figure 2.1 is a schematic illustration of 

the sol-gel process leading to the formation of silica.66 Sol-gel methods are attractive for 
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fabricating dielectric films since the reaction conditions are simple and processing is 

performed in solution.60, 67 

2-Cyanoethlytrimethoxysilane (CNETMS) is an organic/inorganic hybrid sol-gel 

material that has a structure similar to silane but with three cyano groups attached to the 

ethyl carbon chains as shown in Figure 2.2 (a).68 The cyano groups reorient themselves 

when an external electric field is applied leading to dipole moments in CNETMS films as 

shown in Figure 2.2 (b).68-69 A spectrum of CNETMS obtained from Fourier transform 

infrared (FT-IR) measurements as illustrated in Figure 2.3 includes the stretching 

vibrations of the cyano groups near 2250 cm-1.68 In addition, the Si-O-Si and C-H bonds 

in the hybrid network display vibrations with IR absorption in the range of 1000 - 1200 

cm-1 and 2900 cm-1, respectively.70 Cross-sectional transmission electron microscopy 

Figure 2.1. The formation of silica via sol-gel processes. Reproduced with 
permission66 copyright 2015 Bentham Science Publishers. 

r. 
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Figure 2.3. An FT-IR spectrum of CNETMS. Reproduced with permission68 
copyright 2013 American Chemical Society. 

Figure 2.2. (a) The chemical structure of 2-cyanoethlytrimethoxysilane (CNETMS) 
(b) A schematic of the CNETMS network showing how the cyano groups reorient 
under an applied electric field. Adapted with permission68 copyright 2013 American 
Chemical Society. 
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(TEM) images in Figure 2.4 show a dense morphology with pores of 1 nm or less in 

diameter.68 This indicates that the film is porous enough for the cyano groups to change 

their orientation under externally applied electric fields. 

2.1.2 Electrical Performance of CNETMS 

Previous work by Kim et al. showed that the relative permittivity of CNETMS is 

approximately 20 at 1 kHz, which is 4 - 10 times larger than conventional polymeric 

dielectrics.68 Several film thicknesses were tested to compare their electrical properties. As 

a result, the thinnest film with 1.3 μm displayed the highest performance in terms of 

discharge energy density, energy extraction efficiency and breakdown strength. For the 1.3 

μm film, the maximum discharge energy density of 7 J cm-3 at 300 V μm-1 with an energy 

extraction efficiency up to 90% was observed as shown in Figure 2.5.68 In P-E 

measurements, a linear dielectric behavior with narrow hysteresis loops up to 300 V μm-1 

Figure 2.4. Cross-sectional TEM images of CNETMS exhibiting dense morphologies 
with pore diameters of 1 nm or less. Reproduced with permission68 copyright 2013 
American Chemical Society. 
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was observed. This implies that the large relative permittivity and high energy density of 

the CNETMS films stem from the orientation polarization of the cyano groups. A high 

breakdown strength, roughly 650 V μm-1, is another advantage of CNETMS as well. 

 

2.2 The Theory of Charge Blocking Layers 

The development of nanoscale electronic devices calls for sophisticated designs of 

multiple thin layers of a few nanometers fabricated in a well-controlled manner. Along 

with the size of devices becoming increasingly smaller, the unintended electrical 

conduction in insulators has arisen as a major challenge. Charge migration across the 

insulating region can occur by two mechanisms. First, when charge carriers gain enough 

thermal energy, they can overcome the potential barrier between a metal and an insulator 

and flow into the conduction band of the insulator. This phenomenon of field enhanced 

thermionic emission is called Schottky emission, where the emission current density is a 

Figure 2.5. The maximum discharge energy densities and energy extraction 
efficiencies for CNETMS films with thicknesses of 3.5 μm and 1.3 μm. Reproduced 
with permission68 copyright 2013 American Chemical Society. 
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function of the applied field, the work function and the temperature of the metal in contact 

with the insulator.71-72 Schottky emission governs the behavior of emission current when 

the applied electric fields are relatively low. However, for higher applied fields, charge 

carriers start to tunnel through the barrier by a phenomenon known as Fowler-Nordheim 

tunneling while Schottky emission still contributes to the overall emission current. Fowler-

Nordheim tunneling becomes the prevailing emission mechanism at even higher electric 

fields, which is called the cold field electron emission (CFE) regime. It is not only the 

applied electric field but also the thickness of the barrier that affects the tunneling of charge 

carriers since the barrier can be physically thin enough to allow for electrical tunneling.73 

Carefully engineered barrier layers can suppress the direct tunneling of electrical 

charges. There are various factors to consider when constructing these tunneling barrier 

layers, also known as charge blocking layers, such as material composition and geometry 

in order to maximize their blocking effect. Joyce et al. demonstrated how these charge 

blocking layers can retard the tunneling current in a capacitor using DNA-

hexadecyltrimethylammonium chloride (CTMA)-ceramic-hybrid-based dielectrics with a 

suggested energy band diagram with regard to the lowest unoccupied molecular orbital 

(LUMO) and the highest occupied molecular orbital (HOMO) levels of the dielectric layer 

as illustrated in Figure 2.6.74 The work function of the electrode on the electron side, 𝑊𝑊𝑓𝑓𝑓𝑓, 

is lifted upon the application of a positive bias field to the electrode. As a result, the barrier 

height that is equivalent to the energy gap between 𝑊𝑊𝑓𝑓𝑓𝑓 and the LUMO level of the 

dielectric decreases. Higher applied fields further reduce the barrier height and 

subsequently allow electrons to flow into the dielectric layer. The barrier height can be 

raised by inserting an electron blocking layer (EBL) between the dielectric and the 
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electrode which provides a higher LUMO level and prevents the injection of electrons into 

the dielectric when high electric fields are applied. In a similar manner, the applied positive 

bias field also narrows the energy gap between the work function of the electrode on the 

hole side, 𝑊𝑊𝑓𝑓ℎ, and the HOMO level of the dielectric. The reduced barrier height on the 

hole side facilitates the flow of holes into the dielectric layer as higher fields are applied. 

A hole blocking layer (HBL) between the dielectric and the electrode on the hole side can 

increase the barrier height between the HOMO level of the dielectric layer and 𝑊𝑊𝑓𝑓ℎ and 

block the flow of holes coming into the dielectric upon the application of high fields. 

Organic materials have been extensively studied for use in barrier layers since they 

have low intrinsic electrical conductivity and they can form monolayers and multilayers of 

a few nanometers.75 Monolayers of hydrocarbon polar compounds with long chains can be 

produced on various polar surfaces by adsorption from their organic solutions. The 

Figure 2.6. A band diagram with an electron blocking layer and a hole blocking layer 
embedded between a dielectric layer and conducting electrodes. Reproduced with 
permission74 copyright 2016 John Wiley and Sons. 
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monolayers have a structure closely packed with molecular chains that have a 

perpendicular orientation to the surface they are adsorbed onto.76-79 Monolayers of fatty 

acids with different chain lengths have been studied to examine their tunneling mechanism 

and it was discovered that the length of the fatty acids played a role in deciding the height 

of a barrier layer at low temperatures as longer chains resulted in lower conductivity.80-81 

Vuillaume et al. investigated monolayers of octadecyltrichlorosilane (OTS) formed on the 

native oxide layer of silicon wafers . These materials yielded leakage currents of roughly 

10-8 A cm-2.82 They also studied the effect of self-assembled monolayers (SAMs) with 

different alkyl chain lengths and demonstrated that leakage current could be reduced even 

with SAMs of only 2 nm thicknesses by controlling the layer organization as well as 

packing density leading to conductivities close to that of the bulk material.83 Furthermore, 

the effect of various SAM functionalization with three different alkyltrichlorosilane end 

groups (-CH3, -CH=CH2, -COOH) was examined, all of which displayed leakage current 

densities in the range of 10-5 - 10-8 A cm-2.84-85 

2.3 Self-Assembled Monolayers (SAMs) of Phosphonic Acids for Charge Blocking 

2.3.1 Fundamentals of SAMs 

A self-assembled monolayer (SAM) is a layer formed on a solid surface with a 

thickness of one molecule. It occurs as an organic molecule adsorbs onto a surface of other 

materials to form an ordered domain.75 It is composed of head groups and tail groups 

containing functional groups as represented in Figure 2.7.86 Initially, the head groups 

anchor onto a surface of a substrate via chemisorption between the molecules and the 
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surface. Disordered groups of molecules form a two-dimensional coverage on the surface 

of the substrate. Subsequently, a more ordered, more closely packed three-dimensional 

monolayer that is either crystalline or semi-crystalline occurs over an immersion time 

ranging from seconds to hours.87 There are well known head groups and surfaces of 

particular metals or semiconductors with which they can stably bond. For example, Si-O 

bonds are created between organosilanes and hydroxylated surfaces, and S-Au bonds form 

when thiols bond to gold. Backbones, or spacers, connect the head groups and tail groups. 

Molecular orientation and the thickness of a monolayer are determined by the backbones, 

which in turn can impact the electronic properties of the overall structure.88 While the head 

groups go through chemisorption at the surface of the substrate, the tail groups that 

compose the outer surface of the monolayer start to slowly organize farther away from the 

surface. The overall molecules can then form chemical bonds not only with the substrate 

but also with each other. Functional tail groups can be used to tailor different surface 

properties. Commonly used tail groups include carboxyl, hydroxyl and porphyrin. 

One of the most common methods to form a self-assembled monolayer is called T-

BAG (tethering by aggregation and growth) developed by Hanson et al..89 A concentration 

Figure 2.7. A schematic illustration of a self-assembled monolayer (SAM) containing 
the head groups and the tail groups. Adapted with permission86 copyright 2010 Royal 
Society of Chemistry. 
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of a targeted molecule below the critical micelle concentration (CMC) is first dissolved in 

a solvent. A substrate with a solid surface on which the self-assembled monolayer will 

form is then immersed vertically in the as-prepared solution. The solvent is left to evaporate 

slowly in a reverse process to that of Langmuir-Blodgett films where a monolayer forms 

at the solid-gas interface. However, self-assembled monolayers are held together by 

stronger covalent bonds (chemisorption) whereas Langmuir-Blodgett films are only held 

together by physisorption.90-91 Figure 2.8 illustrates the overview of the T-BAG method to 

form a self-assembled monolayer.89 

For the surface modification of silicon, phosphonic acids and silane-based 

molecules are widely used owing to their head groups being compatible with the chemical 

nature of silicon substrates.92-94 Phosphonic acids are preferred because they are more 

stable in humid conditions and less likely to aggregate.95-96 Organic self-assembled 

monolayers can suppress the tunneling of charge carriers through a dielectric layer when 

introduced between the dielectric layer and electrode. Boulas et al. studied the effect of n-

alkyltrichlorosilane [CH3(CH2)n-1SiCl3] SAMs with different chain lengths (n = 12, 16, 

Figure 2.8. The method of tethering by aggregation and growth (T-BAG) to form a 
SAM. Adapted with permission89 copyright 2003 American Chemical Society. 
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18).83 In all cases, the SAMs served as large energy barriers and effectively blocked charge 

carrier tunneling as long as they were densely packed and highly ordered. The chain length 

did not affect their performance in terms of leakage current and DC conductivity. 

2.3.2 Experimental Details 

CNETMS films were produced via a sol-gel reaction. The solution for the reaction 

was composed of CNETMS (Gelest), methanol (VWR Chemicals) and 0.1 N hydrochloric 

acid (Fluka Analytical) with a mass ratio of 2:1:1. It was stirred at room temperature for 

24 hours prior to spin-casting. After being filtered through a polymer filter with a pore size 

of 0.1 μm (Whatman Anotop) to remove large aggregates, the solution was deposited as 

films onto ITO-coated glass substrates using a spin coater (PWM32, Headway Research). 

Each sample was cut into a square with side lengths of approximately 2.5 mm and washed 

by sonication in acetone and isopropyl alcohol for 10 minutes each before coating. For 

control samples, neat CNETMS films were casted at 5,000 rpm for 30 seconds. The as-

spun films were kept at room temperature for 24 hours to help form a gel network while 

avoiding rapid solvent evaporation. This step is called aging, or syneresis, during which 

polycondensation and local solution reprecipitation of the gel network can occur leading 

to improved strength and regularity of the gel.62 After aging, the films are dried at 130 °C 

for 3 hours. The average thickness of the films was 1.3 μm. Subsequently, dip coating to 

form octadecylphosphonic acid (ODPA) (Alfa Aesar) monolayers was conducted as 

follows. Samples immersed in a 1 mM ODPA methanol solution were subjected to a strong 

vacuum. This method required only 15 minutes to completely evaporate the dip coating 

solution as the vacuum accelerates the evaporation of the solution. These samples were 

divided into 3 groups after the dip coating process. The first went through no heat treatment 
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and was immediately rinsed by sonication in methanol for 10 minutes and dried with 

nitrogen. The other two groups were heat treated at 140 °C for 60 hours with one group 

heated under ambient atmosphere and the other group heated in a controlled low humidity 

environment. Atomic force microscopy (AFM) (Dimension 3100, Veeco) and FT-IR 

(FTS7000, Agilent) were used for film characterization.  

For electrical measurements, aluminum was deposited on the as-prepared samples 

through a shadow mask to form circular devices at a rate of 3 Å s-1 using a thermal 

evaporator (PVD75, Kurt J. Lesker). The area of each device is 0.25 mm2 with a thickness 

of 480 nm. The overall schematic of the capacitor structure is summarized in Figure 2.9. 

ITO was exposed after scratching off a portion of the CNETMS and ODPA layers to be 

utilized as the bottom electrode for electrical measurements. 2-probe systems were used 

for electrical measurements of the capacitor structures. Relative permittivity and loss 

tangent measurements were performed over frequencies ranging from 100 Hz to 1 MHz at 

1 Vrms in a glove box using a probe station (H100, Signatone) and an LCR meter (4284A, 

Figure 2.9. A schematic of the capacitor showing each layer: Al (top electrode), ODPA 
(charge blocking monolayer), CNETMS (dielectric) and ITO (bottom electrode) on a 
glass substrate. 
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Agilent). Leakage current was tested with the same setup in a voltage range from -100 V 

to +100 V. Breakdown strengths, Weibull moduli and maximum discharge energy densities 

by charge-discharge (C-D) were measured by a probe station (H100, Signatone) and a 

power supply (610E, Trek). For breakdown strength measurements, an external voltage 

was applied between the aluminum and the ITO electrodes with values from 0 to 1500 V 

with a ramp rate of 1 V per 0.1 second. If a measured current is greater than a set value, a 

device is considered to have passed the breakdown point and the onset voltage is recorded. 

For this experiment, 1.5 mA was set as the threshold current. In total, 20 devices were 

measured to determine the average breakdown strength and Weibull modulus (calculated 

based on 18 excluding the maximum and the minimum values). C-D measurements were 

performed using different electric fields starting from 50 V with incremental changes of 50 

V until there was no significant increase in the discharge energy density or it started 

decreasing, indicating the onset of device breakdown. 

2.3.3 Results and Discussion 

Figure 2.10 shows a set of microscopic images taken with AFM of a neat CNETMS 

film as well as samples from the three groups of CNETMS/ODPA films prepared under 

different heating and atmospheric conditions including no heat treatment, heat treatment 

under ambient atmosphere and heat treatment in a humidity-controlled environment. The 

CNETMS layer possessed a uniform surface with a roughness as low as 0.132 nm. In 

contrast, the films of CNETMS/ODPA showed higher surface roughnesses independent 
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Figure 2.10. AFM images of (a) neat CNETMS, (b) CNETMS/ODPA with no heat 
treatment (c) CNETMS/ODPA with heat treatment in a humidity-controlled (low 
humidity) environment and (d) CNETMS/ODPA with heat treatment in the ambient 
atmosphere. 
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of the heating condition. Only a minor increase in surface roughness to 0.245 nm is 

observed on films that were not heat treated. In contrast, AFM images of the heat treated 

samples exhibited less uniform surface heights. The surface roughnesses for the films 

heated in a low humidity environment and those heated under ambient humidity conditions 

are 0.346 nm and 0.492 nm, respectively. Given the increase in the surface roughness for 

both low and high humidity environments, it can be inferred that the ODPA monolayer 

formed in both cases after heat treatment. However, it is not clear if the relatively low 

surface roughness of the films without heat treatment stems from a uniform monolayer of 

ODPA generated on top of the CNETMS layer or if it is simply because the surface is only 

covered with small islands of ODPA thus leading to no significant change in surface 

roughness. Furthermore, it is possible that with heat treatment more than a single 

monolayer of ODPA was partially formed on the surface of CNETMS resulting in the 

higher surface roughnesses. 

FT-IR spectroscopy was also utilized to see how each heat treatment condition 

affected the alignment of the monolayers. Theoretically, as molecules within the 

monolayers become better aligned, the intensity of the absorbance will be stronger in 

specific regions of the spectrum for ODPA such as the P-O and P=O stretching region 

(~1300 - 1000 cm-1) and C-H stretching region (~2950 - 2850 cm-1). Figure 2.11 compares 

the FT-IR spectra for samples subjected to different heating conditions. Neat CNETMS 

films were initially measured prior to dip coating. ODPA monolayers were then fabricated 

on the same set of samples, which was again measured with FT-IR. Absorbance signal 

intensity before dip coating was subtracted from the signal intensity after the formation of 

the monolayers to observe any changes. Peaks appear for all three of the samples in the 
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region between 1240 cm-1 and 1160 cm-1, which represent P-O and P=O bonds. However, 

no clear peaks in the C-H stretching region were observed despite the presence of C-H 

bonds in the 18-carbon chain of ODPA. Since the expected thickness of an ODPA 

monolayer is only 2 nm97 whereas the underlying CNETMS layer is approximately 1.3 μm 

thick, the dependence of heating conditions on signal intensity is not clear but it can still 

be observed that the samples with ODPA that had the heat treatment exhibited peaks of 

greater intensities in the P-O and P=O stretching region. Therefore, it is suggested that the 

monolayers subjected to heat treatment are more well aligned than the one without heat 

treatment. 

Leakage current was tested in neat CNETMS and CNETMS with an ODPA layer 

formed under the three different heating conditions. As shown in Figure 2.12, having a 

monolayer of ODPA formed with or without heat treatment or regardless of humidity while 

heating led to nearly an order of magnitude reduction in leakage currents from the 

CNETMS layer. All three treatment conditions have a similar mixed impact at lower 

Figure 2.11. FT-IR spectra of ODPA with no heat treatment (black), ODPA with heat 
treatment in a humidity-controlled environment (red) and ODPA with heat treatment 
in ambient atmosphere (blue): (a) P-O and P=O stretching region (b) C-H stretching 
region. 
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voltages. As the field increases, the sample that was not heat treated showed a faster 

increase in leakage current. Therefore, it is suggested that heat treatment helped to form 

more stable ODPA monolayers and ultimately contributed to reduced leakage currents 

under high fields (i.e. large bias voltages). 

Figure 2.13 summarizes the breakdown strengths and Weibull moduli for neat 

CNETMS, CNETMS with ODPA without heat treatment, CNETMS with ODPA heated in 

a humidity-controlled environment and CNETMS with ODPA heated under ambient 

atmosphere. Breakdown strengths were greatly improved after heat treatment, regardless 

of the humidity. Weibull modulus is a measure that represents how evenly distributed the 

breakdown strength values are across a sample as previously discussed.24 Hence, the 

Figure 2.12. Leakage currents measured for neat CNETMS (black), CNETMS/ODPA 
with no heat treatment (red), CNETMS/ODPA with heat treatment in a humidity-
controlled environment (green) and CNETMS/ODPA with heat treatment under 
ambient atmosphere (blue). 
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greater the Weibull modulus, the more reliable the sample performance is. Weibull moduli 

also increased for films that underwent heat treatment after the formation of the monolayer. 

Based on these results, the heat treatment clearly helped to form more reliable monolayers 

throughout the whole device area of the samples. In addition, low humidity did not show 

enhancements in breakdown strength or device reliability. 

Measurement of maximum discharge energy density was performed using a charge-

discharge (C-D) system. Five devices on each film were measured and the ones that 

reached the highest maximum discharge energy densities are represented by solid lines 

with the open squares representing the maximum discharge energy densities at the 

corresponding voltages of the other four devices in Figure 2.14. It was found that all of the 

Figure 2.13. Breakdown strengths (black bars) and Weibull moduli (red bars) for neat 
CNETMS, CNETMS/ODPA with no heat treatment, CNETMS/ODPA with heat 
treatment in a humidity-controlled environment and CNETMS/ODPA with heat 
treatment under ambient atmosphere. 
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samples with ODPA are capable of achieving higher maximum discharge energy densities. 

The films without heat treatment could also reach high discharge energy densities 

comparable to those that were heat treated. However, the distribution of the results of 

several devices measured is significantly broader for the sample with no heat treatment. 

This suggests that the lack of a post-dip-coating heat treatment cannot ensure the stability 

of the ODPA layer throughout the overall sample area.  

According to Hanson et al., the formation of ODPA monolayers on mica was highly 

influenced by heat treatment after dip coating. It is claimed that samples that were heated 

at 140 °C for 2 days showed a clear distinction from those without any heat treatment. In 

order for the monolayers to form a stable network on the surface of mica, they should not 

Figure 2.14. Maximum discharge energy densities from C-D measurements for neat 
CNETMS (black), CNETMS/ODPA with no heat treatment (red), CNETMS/ODPA 
with heat treatment in a humidity-controlled environment (green) and CNETMS/ 
ODPA with heat treatment under ambient atmosphere (blue). The closed circles 
represent the highest energy densities for each condition and the open squares 
represent the other four devices to show the distributions. 
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be rinsed before an extended heat treatment. Islands of ODPA were formed on the samples 

without heat treatment instead of a uniform monolayer.89 Angst et al. also studied the effect 

of heat treatment on monolayers composed of octadecyltrichlorosilane (OTS).98 Heat 

treatment at 150 °C enhanced crosslinking of the organosilane molecules and helped form 

covalent bonds to the surface of the substrate. It should be noted that thermal energy from 

heat treatment may cause chain disordering in SAMs.99-100 However, the disorder is 

temporary only while a monolayer is being heated and the order/disorder transitions are 

reversible. Therefore, it is possible that the molecular motion caused by the thermal energy 

may help the molecules of SAMs become more flexible and form a well-ordered layer upon 

cooling. 

The humidity during heat treatment was claimed to be a factor in the stability of 

monolayers in a publication by Vega et al..101 They prepared ODPA monolayers on the 

surface of SiO2. FT-IR analysis revealed a difference in the intensity of absorbance peaks 

under different degrees of humidity. Films that were heated in a humidity-controlled 

environment (i.e. low humidity) resulted in sharper peaks. This indicates that the alignment 

of molecules in the monolayers is better defined. This was supported by calculations of the 

thermodynamic potential of the bidentate biding between ODPA and SiO2. These 

calculations showed that bidentate binding potential becomes lower than that of the 

monodentate binding in low humidity conditions, leading to more stable ODPA monolayer 

formation. However, humidity did not play a noticeable role in the current study. It is 

possible that the long duration of the heat treatment provided enough time for the ODPA 

molecules to adsorb onto the surface of CNETMS regardless of the humidity. 
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2.4 Conclusions 

Overall, dip coating of an ODPA monolayer, whether it is followed by heat treatment 

or not, resulted in improved device performance when compared to neat CNETMS. Even 

with no heat treatment, samples with ODPA exhibited lower leakage currents and higher 

maximum discharge energy densities although with greater variation between samples. 

This is likely due to the lack of an ordered monolayer. In contrast, the samples subjected 

to heat treatment at 140 °C for 60 hours demonstrated more reliable improvements 

including increased breakdown strengths and Weibull moduli measured throughout the 

whole area of the films. Samples heated in a humidity controlled environment showed 

slightly higher values than those heated under ambient atmosphere only in the maximum 

discharge energy densities. The long heat treatment may have allowed the ODPA 

molecules to sufficiently adsorb onto the surface of CNETMS independently of humidity 

and reduced the impact of moisture on the alignment of the monolayer. It should be noted 

that AFM analysis of the samples reveals that the surfaces of both films are not as smooth 

as a neat CNETMS layer or one without heat treatment. Since the samples were heated 

immediately after the dip coating process for an extended period of time and then rinsed, 

it is possible that there are residual molecules of ODPA that are not directly attached to the 

surface of CNETMS but rather are lying on top of the monolayer leading to the formation 

of multilayer regions. Nonetheless, the more reliable improvements in the electrical 

performance of these samples suggest that having the surface of CNETMS completely 

covered, even if by multilayers, contributes more to blocking external charges than an 

incomplete monolayer that only partially covers the surface of the underlying sol-gel layer. 
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CHAPTER 3. INCORPORATION OF METAL OXIDES BY 

ATOMIC LAYER DEPOSITION (ALD) 

3.1 Introduction 

3.1.1 Fundamentals of Atomic Layer Deposition (ALD) 

Atomic layer deposition, or ALD, is a fabrication technique that is capable of forming 

thin films using a series of self-limiting surface adsorption reactions.102 Precursors are 

gaseous species used to form a film of a desired material by reacting with the surface of a 

substrate one by one. This is considered a cycle, and through multiple repeated deposition 

cycles a thin film with a uniform thickness forms. Although ALD is a kind of chemical 

vapor deposition (CVD), it is different from general CVD processes in that no more than 

one precursor is present in the reaction chamber at the same time. In most cases, ALD takes 

advantage of two precursors and two half-reactions. Each half-reaction involves surface 

adsorption of each precursor. ALD consists of the following four steps that are also 

depicted in Figure 3.1.103  

1) The first precursor is pulsed into the reaction chamber and reacts with 

adsorption sites on the surface of the substrate. 

2) Excess precursors that have not reacted with the surface and reaction by-

products are removed by a purge or an evacuation of the chamber. 

3) The second precursor is pulsed into the chamber and reacts with the first 

precursor that is already adsorbed onto the surface of the substrate.  
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4) The chamber is purged or evacuated again in order to remove precursors 

that are not bound to the surface. 

In a pulse of one of the precursors, the reaction is self-limiting as the reactive sites 

on the surface of the substrate become occupied by the precursor and once all of the sites 

are consumed the reaction terminates. Hence, the amount of a material that can be deposited 

through one cycle of ALD including all of the steps mentioned above is determined by the 

interaction between the precursors and the surface. Growth per cycle (GPC) indicates the 

Figure 3.1. A schematic illustration of a cycle of atomic layer deposition (ALD) with 
the following four steps: 1) a pulse of the first precursor, 2) purge, 3) a pulse of the 
second precursor, or a reactant, and 4) purge. Reproduced with permission103 
copyright 2009 Elsevier. 
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thickness of a material deposited on the surface by each cycle. The number of ALD cycles 

performed is controlled to achieve a desired thickness when the value of GPC is known. 

There are several advantages to using ALD. First, the thickness of deposited 

materials only depends on the number of cycles so it can be easily controlled. In addition, 

it is capable of conformal coating. Large substrates with a high aspect ratio can be deposited 

with great uniformity and scalability since no uniform flux of precursors is required as in 

CVD. Low temperature, excellent adhesion and low residual stresses are additional benefits 

of ALD. These advantages are beneficial for microelectronics used in integrated circuit 

manufacturing.104 Furthermore, challenging and sensitive substrates such as biomaterials 

and plastics can be used owing to the gentle deposition process. Finally, high density, low 

impurity level and a wide range of film materials make ALD attractive.105 

However, ALD has disadvantages that limit its use. Low deposition rate compared 

to other fabrication techniques such as CVD, sputtering and evaporation is one of them. 

Depending on substrates and deposition temperatures, one cycle can take from a few 

seconds up to longer than a minute and normally deposits no more than 1 Å. Also, excess 

precursors and by-products must be removed in each cycle. In addition, not every material 

is suitable for ALD. For example, silicon and germanium cannot be grown cost effectively 

by ALD. Finally, ALD process can be limited by activation energy, reactivity and 

availability of precursors. 

The process of ALD can be performed either by thermally reacting precursors or 

activating them with a plasma. The latter is called plasma-enhanced ALD (PE-ALD). The 

main difference between thermal ALD and PE-ALD occurs in step (3) mentioned above. 
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As depicted in Figure 3.2, in thermal ALD, the second precursor enters the chamber and 

reacts with the terminal groups of the first precursor molecules that are already 

chemisorbed to the surface of the substrate at an elevated temperature.106 Then, by-products 

created from the reaction are purged while the target deposition material remains on the 

surface of the substrate. Materials that can be used as the second precursor include H2O, 

H2O2, O2 and O3 but H2O is most commonly used. In contrast, PE-ALD utilizes O2 plasma 

that generates a flux of O* radicals to react with terminal groups of the molecules of the 

first precursor. It has several advantages over thermal ALD in that it can be performed at 

lower temperatures, often as low as room temperature, and it requires shorter purge 

times.107 Also, enhanced reactivity induced by the generation of radical species can lead to 

Figure 3.2. A schematic comparison of thermal ALD and plasma-enhanced ALD (PE-
ALD). In thermal ALD, the second precursor, typically H2O, thermally reacts with 
the first precursor, whereas PE-ALD uses O2 plasma to generate O* radicals to react 
with the first precursor. Reproduced with permission106 copyright 2011 AIP 
Publishing. 



 56 

improved film quality and a greater array of compatible reactions.108 However, PE-ALD 

has some drawbacks that limit its use. First, the equipment to implement PE-ALD is more 

complex and expensive than thermal ALD since it involves a system that generates plasma. 

Also, the conformality of a resulting thin film on non-planar substrates can heavily depend 

on process parameters including the choice of radicals.106, 109 Furthermore, plasma can 

damage the top surface of the substrate by leading to unwanted oxidation and 

nitridation.110-112 

3.1.2 Titanium Dioxide (TiO2) and Its ALD Precursors 

Titanium dioxide (TiO2), or titania, is commonly used in numerous fields due to its 

unique properties. First, its large relative permittivity makes it a promising candidate for 

gate insulators in metal-oxide-semiconductor field-effect transistor (MOSFET) structures 

as shown in Figure 3.3. As MOSFET size has reduced, it has been necessary to find 

alternative dielectric materials in place of silicon dioxide (SiO2).113 A significant increase 

in leakage current results from the reduced thickness of SiO2 since its relative permittivity 

Figure 3.3. A structure of metal-oxide-semiconductor field-effect transistor 
(MOSFET). 
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is only 3.9. As SiO2 becomes thinner than 2 nm, it allows direct tunneling of charge carriers 

through the interfacial potential barrier of a MOSFET. This brings about a significant 

reduction in device performance.114 Therefore, dielectric materials possessing higher 

relative permittivities than SiO2 are now of interest as alternative gate insulators. One such 

alternative is TiO2. Due to its high relative permittivity, it is effective in reducing leakage 

current at smaller gate thicknesses. There have been many studies performed on the 

application of TiO2 for a gate oxide where it exhibits a higher breakdown voltage and a 

lower leakage current when used in MOS structures.115-116 

In addition, TiO2 is corrosion resistant. The maximum oxidation state of titanium is 

Ti4+ and its ionic oxidation state in TiO2 is Ti4+ which is bound to O2- by strong ionic 

bonds.117-118 This indicates that TiO2 cannot be readily oxidized, which makes it a good 

material for corrosion protection as it does not readily undergo any chemical reactions. 

Stainless steel and nickel alloys coated with TiO2 showed improvement in corrosion 

resistance when compared to uncoated materials.119-120 

Finally, TiO2 has a very high refractive index, which makes it widely used in thin 

film optics. The refractive index of TiO2 can differ depending on its crystalline structure 

and deposition processes but for rutile, the most thermodynamically stable phase, it is 2.90 

at 589 nm and for anatase it is 2.49 at the same wavelength.121 Thin films of TiO2 have 

been used for optical applications, protective layers on lenses and solar energy converters 

due to their high refractive indices and low extinction coefficients.122-123 

TiO2 has three crystalline forms which are rutile, anatase and brookite as well as 

amorphous. Rutile is the most commonly found crystalline phase of TiO2 in nature. It is 
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tetragonal and has the highest relative permittivity among the crystalline phases of TiO2, 

which makes it a great candidate for low temperature co-fired ceramics (LTCC) and hybrid 

dielectric composites where fillers with high relative permittivities are required.124-126 

Anatase is a tetragonal phase that forms mostly at low temperatures. It can be used for 

photocatalysts and organic light emitting diodes (OLED) due to its high electron 

mobility.127-128 Brookite is a rare phase that is an orthorhombic crystalline structure. It is 

often found as a by-product of the precipitation of TiO2 at low temperatures under acidic 

conditions.129 For brookite, the (210) surface is commonly obtained. This facet is calculated 

to be more reactive than the (101) surface of anatase by density functional theory (DFT) 

and it can be useful in catalytic and photocatalytic applications.130 The relative permittivity 

of TiO2 depends on its phase. Rutile typically has a very relative permittivity around 170 

along the c axis and around 90 along the a axis, while anatase and brookite exhibit roughly 

40 and 78, respectively.131-133 It is worth noting that amorphous films of TiO2 have been 

found to exhibit a dielectric constant of 33 when deposited with no bias and no annealing 

step and up to 105 - 117 when deposited with a bias then annealed at 600 °C.134 

The commonly used precursors for TiO2 include alkylamides such as 

tetrakis(dimethylamino)titanium (TDMAT) and tetrakis(diethylamino)titanium (TDEAT) 

as well as alkoxides including titanium tetrakis(isopropoxide) (TTIP) and titanium 

methoxide. The alkylamide precursors have the advantage of a low binding energy in the 

Ti-N which makes the amide compounds highly reactive towards H2O and enables the 

growth of thin films of TiO2 at temperatures as low as 100 °C. Furthermore, by-products 

created by the ALD process using amide precursors are less corrosive than the HCl 

generated when TiCl4 and H2O are used thus extending the lifetime of a reactor.135 The 
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most common alkylamide is TDMAT due to its high decomposition rate but TDEAT and 

TEMAT are also widely used for ALD.136-138 However, the main disadvantage of TDMAT 

is that its decomposition starts at relatively low temperatures around 140 °C; whereas 

TDEAT is thermally stable up to 220 °C.139 Alkoxides including TTIP and titanium 

methoxide are also commonly used precursors for ALD processes to deposit TiO2. TTIP 

in particular has a strong reactivity towards H2O even at temperatures below 100 °C. 

However, the decomposition of TTIP starts around 250 °C, which limits its use at higher 

deposition temperatures. There are several other TiO2 ALD precursors with different 

ligands as shown in Figure 3.4.128 

Thin films of TiO2 can be grown by ALD in amorphous or crystalline phases 

including rutile, anatase and brookite. They can consist of a pure structure with one single 

phase or a mixture of multiple phases. The crystal structure of deposited films is determined 

by the deposition temperature, precursors, substrates as well as post-deposition annealing 

treatments. Generally, amorphous films are grown at low deposition temperatures, while 

anatase is produced at intermediate temperatures and anatase/rutile or pure rutile films are 

obtained at high temperatures. 

3.1.3 Zirconium Dioxide (ZrO2) and Its ALD precursors 

Zirconium dioxide (ZrO2), or zirconia, is a hard ceramic that is widely used in 

different areas including dentistry, protective coatings, insulation and semiconductors 

owing to its outstanding mechanical and electrical properties.140-142 Its high relative 

permittivity and wide band gap make it suitable for MOS devices in gate stack, dynamic 

access memory devices and optical applications.143-146 In many cases, ZrO2 is stabilized by  
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Figure 3.4. ALD precursors of TiO2 with different ligands. Reproduced with 
permission128 copyright 2017 IOP Publishing. 
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dopants such as yttrium oxide (Y2O3, or yttria) and cerium oxide (CeO2, or ceria) in order 

to prevent disruptive phase transformations caused by a change in temperature.147 

Stabilized ZrO2 has been used in oxygen sensors owing to the oxygen ion vacancies 

established during the stabilization and enhanced mobility of oxygen ions as a result.148 

The high oxygen mobility has also enabled its use as a solid electrolyte in electrochemical 

applications.149 

ZrO2 has three crystalline structures, monoclinic, tetragonal and cubic, as shown in 

Figure 3.5.150 At room temperature, the monoclinic phase is stable and as the temperature 

increases it transforms into the tetragonal structure before finally converting to the cubic 

fluorite structure at high temperatures.151 The cubic phase shows the highest density, 

whereas the monoclinic phase exhibits the lowest density.152 The relative permittivities of 

the monoclinic, tetragonal and cubic are reported to be 37, 47 and 20, respectively.153 As 

mentioned above, phase stabilization is often performed on ZrO2 to stabilize the desired 

Figure 3.5. The crystalline structures of ZrO2: (a) cubic (b) tetragonal (c) monoclinic. 
Reproduced with permission150 copyright 2004 John Wiley and Sons. 
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phase which is otherwise not stable at a given temperature. This is usually done to stabilize 

the tetragonal or cubic phases at ambient pressure and low temperatures.154 

Figure 3.6 illustrates examples of ALD precursors for ZrO2.155 Zirconium 

tetrachloride (ZrCl4) is a commonly used precursor. It can be used over a wide range of 

deposition temperatures from 180 °C to 600 °C and exhibits a repeatable growth per cycle 

at optimized temperatures depending on each equipment setup.156-158 However, it has 

disadvantages including halide contamination and slow growth on H-terminated silicon 

surfaces.104, 159-161 The alkoxides of zirconium including zirconium tert-butoxide 

(Zr[OC(CH3)3]4) have also been used as ALD precursors. Both water and oxygen can be 

used as the oxidizer, but higher deposition temperatures are required for the oxygen-

mediated process. Despite its conformal and uniform deposition, it has the drawback of not 

being self-limiting as zirconium tert-butoxide can decompose. Alkylamides such as 

Figure 3.6. ALD precursors for ZrO2: (a) halides (b) alkoxides (c) β-diketonates (d) 
organometallic compounds (f) amido complexes. Adapted with permission155 
copyright 2004 John Wiley and Sons. 
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tetrakis(dimethylamido)zirconium (Zr(NMe2)4), tetrakis(diethylamido)zirconium 

(Zr(NEt2)4) and tetrakis(ethylmethylamido)zirconium (Zr(NEtMe)4) are also considered 

promising precursors due to their volatility and reactivity. With water or oxygen as the 

oxygen source, they are able to form conformal ZrO2 films at very low deposition 

temperatures below 100 °C, allowing for a wider window of deposition temperatures. They 

have been used for PE-ALD as well where oxygen plasma is applied to reduce the impurity 

content.162-163 

3.2 Atomic Layer Deposited TiO2 and ZrO2 as Charge Blocking Layers 

3.2.1 Experimental Details 

CNETMS films were produced via a sol-gel reaction in a similar way as described 

in Chapter 2. They were spin-cast on ITO-coated glass substrates each of which was cut 

into a square whose width is 2.5 mm. A spin coater was used for the fabrication of the sol-

gel films with a spin speed of 5,000 rpm for 30 seconds. The as-spun films were kept at 

room temperature for 24 hours to age then dried at 130 °C for 3 hours. 

The layers of TiO2 and ZrO2 were prepared on top of the CNETMS films using ALD 

(Fiji, Cambridge Nanotech). Tetrakis(dimethylamido)titanium(IV) (TDMAT) and 

tetrakis(dimethylamido)zirconium(IV) (TDMAZ) precursors were reacted with H2O to 

produce TiO2 and ZrO2, respectively. The chamber temperature was maintained at 100 °C 

and 100 cycles were performed for the fabrication of each oxide layer. 

Film characterization was performed using several analysis tools. For depth 

profiling, X-ray photoelectron spectroscopy (XPS) (K-Alpha, Thermo Scientific) was used 
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to estimate the thicknesses of the oxide layers. Each etching was done for 20 seconds 

separated from each other by 30 seconds of delay. An ion energy of 1,000 eV was used 

with low current. Grazing incidence X-ray diffraction (GIXRD) (Xpert Pro MRD, 

Panalytical) was also used to investigate the crystalline structures of the oxide layers. 

For electrical measurements, circular electrodes made of aluminum were deposited 

on the as-prepared samples using a thermal evaporator (PVD75, Kurt J. Lesker) through a 

shadow mask at a deposition rate of 3 Å s-1. The thickness of the electrodes was 480 nm 

and the area of each device is 0.25 mm2. Figure 3.7 illustrates the structure of a sample 

including the top electrode, the bottom electrode, CNETMS and either TiO2 or ZrO2 

prepared for the electrical measurements. 2-probe systems were used for electric 

measurements of the capacitor structures. Frequency-dependent permittivity and loss 

tangent were measured in a frequency range from 100 Hz to 1 MHz at 1 Vrms in a glove 

box using an LCR meter (4284A, Agilent) and a probe station (H100, Signatone) equipped 

with a micromanipulator. The same setup of equipment was used to measure leakage 

current in a voltage range from -100 V to +100 V. Breakdown strength was measured using 

a high voltage power supply (610E, Trek) with a probe station (H100, Signatone). 

Electrical fields were applied at a ramp rate of 10 V s-1 until a surge of leakage current 

occurred, indicating the onset of dielectric breakdown. Approximately 20 devices with an 

electrode area of 0.25 mm2 were tested per film in order to calculate an average breakdown 

strength and a Weibull modulus. The characteristics of energy density were obtained by C-

D and P-E methods. In the C-D equipment, different electric fields were applied starting 

from 100 V with an interval of 50 V until a significant amount of noise was detected and 

the energy density started to decrease as a result. In the P-E method, the measurement 
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equipment (PK-CPE1406, Poly-K) created a unipolar sine waveform with a frequency of 

100 Hz at applied voltages from 100 V. P-E loops were obtained at each applied field from 

the measurements. The measurements continued until there was noticeable widening of the 

loops and a decrease in the energy density as in the C-D measurements. 

3.2.2 Results and Discussion 

Since it is hard to measure layer thickness on a CNETMS film via ellipsometry due 

to the lack of an established model, it was necessary to estimate the etch rate for TiO2 and 

ZrO2 on a CNETMS film by assuming that it is comparable to that on a Si wafer. Through 

a combination of ellipsometry and XPS depth profiling, one can obtain the film thickness 

and etch time, respectively yielding an estimated etch rate to be applied to the 

CNETMS/TiO2 and CNETMS/ZrO2 systems. By knowing this etch rate, one can determine 

the thickness of TiO2 and ZrO2 on CNETMS. More specifically, XPS was utilized to 

investigate the interfaces between the CNETMS and the oxide layers. In Figure 3.8, results 

from depth profile using XPS are shown. The atomic compositions are presented in Figure 

Figure 3.7. A schematic structure of the as-fabricated capacitor device containing 
ITO as a bottom electrode, CNETMS as a dielectric, TiO2 or ZrO2 as a charge 
blocking layer and Al as a top electrode. 
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Figure 3.8. The atomic compositions of the films with (a) TiO2 and (b) ZrO2 on Si 
wafers. The etch rates can be determined using the etch times at which no Ti or Zr is 
detected and the thicknesses of the layers is determined by ellipsometry. 

(a) 

(b) 
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3.8 (a) for a film of TiO2 deposited on a Si wafer by 100 ALD cycles whose thickness is 

measured to be 6.57 nm by ellipsometry. After an etch time of 185 s, no atomic Ti is 

detected corresponding to the thickness and an etch rate of approximately 0.036 nm s-1. In 

a similar way, the atomic compositions of the sample with ZrO2 formed by 100 ALD cycles 

on a Si wafer is shown in Figure 3.8 (b) with a measured layer thickness of 13.33 nm. The 

atomic composition of Zr disappears after an etch time of 80 s and the etch rate is 

determined to be 0.167 nm s-1 as a result. The atomic compositions of TiO2 and ZrO2 

deposited on CNETMS with regard to etch time and thickness are displayed in Figure 3.9 

(a) and (b), respectively. For TiO2, the atomic composition of Ti starts to decrease at an 

etch time of 20 s and crosses over with that of Si near an etch time of 50 s. The atomic 

composition of O and C also coincide with those of Ti and Si at the same position. At an 

etch time of 120 s, there is no signal for atomic Ti and assuming that this point is the 

interface between the TiO2 layer and CNETMS layer, the thickness of TiO2 can be 

estimated as 4.26 nm by using the etch rate of TiO2 on silicon already measured. A similar 

method is applied ZrO2 as shown in Figure 3.9 (b). The atomic composition of Zr becomes 

0 at an etch time of 82 s and the thickness of the ZrO2 layer is calculated to be 13.66 nm. 

Relative permittivities and loss tangents with respect to frequency in the range from 

100 Hz to 1 MHz are plotted in Figure 3.10. When there are two layers that a dielectric 

structure is composed of, the relative permittivity of the combined dielectric can be 

determined by their thicknesses and permittivities. The trends of the relative permittivity 

and loss tangent for CNETMS with ZrO2 are not significantly different from those of neat 

CNETMS except for in the high frequency area. This is due to the fact that ZrO2 has a 

similar relative permittivity as CNETMS so adding ZrO2 to the dielectric layer did not have  
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(a) 

Figure 3.9. The atomic compositions of the films with (a) TiO2 and (b) ZrO2 on  
CNEMTS layers. The thicknesses of the oxides can be estimated with the help of the 
etch rates calculated from Figure 3.8. 

(b) 
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Figure 3.10. (a) Relative permittivities and (b) loss tangents of neat CNETMS (black), 
CNETMS/ZrO2 (blue) and CNETMS/TiO2 (red). 

(a) 

(b) 
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a big impact on the overall permittivity. Also, the layer of ZrO2 is much thinner than the 

CNETMS layer leading to a minimal impact on the relative permittivity of the combined 

structure. In contrast, the presence ofTiO2 has a significant impact on both the permittivity 

and loss tangent. As previously reported, the relative permittivity and loss tangent for TiO2 

are uniquely dependent on the measurement frequency. For films approximately 0.5 µm 

thick, the relative permittivity is high at very low frequencies then it starts to decrease at 

slightly higher frequencies and saturates in the kHz range. This trend applies to both rutile 

and anatase. On the other hand, the loss tangent shows somewhat different tendencies for 

rutile and anatase. The film with the rutile phase displays a greater loss tangent that 

constantly decreases towards the MHz regime. However, for anatase when it is as thin as 

0.4 µm, the loss tangent tends to decrease in the kHz range then slightly increase at 

frequencies between 100 kHz and 1 MHz. The trends in the relative permittivity and loss 

tangent obtained from CNETMS with TiO2 are similar to the mixed results of neat 

CNETMS and anatase TiO2. Even though the thickness of the layer of TiO2 is small 

compared to CNETMS, its relative permittivity is a lot larger than that of CNETMS 

allowing it to impact the overall dielectric response over a wide range of frequencies. 

Figure 3.11 shows the XRD spectra of the CNETMS/TiO2 and CNETMS/ZrO2 films 

obtained from GIXRD. All of the peaks detected can also be found in the XRD spectrum 

of neat CNETMS. Despite the lack of the characteristic peaks of the crystalline phases of 

TiO2, the change in relative permittivity of CNETMS/TiO2 implies that there is an ordered 

phase of TiO2 that provides a high permittivity. The work by Lenza et al. showed that the 

sol-gel network of SiO2 containing TiO2 could result in no XRD peaks from crystalline 
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TiO2 depending on the sol-gel process due to no distinct TiO2 domains.164 Therefore, it is 

suggested that the majority of TiO2 exists inside the network of CNETMS filling the pores 

in a non-crystalline phase and there is also a layer of crystalline TiO2 on the surface of 

CNETMS that is too thin to be detectable by XRD but thick enough to provide the high 

permittivity. It is not clear if the same configuration is expected for CNETMS/ZrO2. Since 

the relative permittivity of ZrO2 is similar to that of CNETMS as mentioned above, there 

is no noticeable difference in the overall permittivity. 

Leakage currents were measured as shown in Figure 3.12. For positive voltages up 

to approximately 80 V µm-1, the samples containing both metal oxides had lower saturated 

leakage currents than neat CNETMS. This directly supports the fact that the oxide layers 

Figure 3.11. Grazing incidence X-ray diffraction (GIXRD) peaks for CNETMS/ZrO2 
and CNETMS/TiO2. The dashed lines represent the peaks observed in neat 
CNETMS. 
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act as charge blocking layers, resulting in reduced leakage currents caused by external 

charge carriers that infiltrate the dielectric layer. However, at negative voltages, the trend 

is not as clear. Since the charge blocking layers are deposited between CNETMS and Al, 

the electron side electrode, they mainly serve as electron blocking layers as explained by 

Joyce et al..74 Therefore, the charge blocking layers tend to be more effective when positive 

bias voltages are applied on the electron side electrode. 

Figure 3.13 summarizes results from the P-E measurements on CNETMS, CNETMS 

with TiO2 and CNETMS with ZrO2. Before breakdown, neat CNETMS shows a maximum 

discharge energy density of 43.1 J cm-3 at 692.3 V µm-1 with an extraction efficiency of 

76.4 %. Compared to neat CNETMS, the samples with either oxide show improvements in 

the maximum discharge energy density. CNETMS with ZrO2 follows a similar trend as 

Figure 3.12. Leakage currents measured on neat CNETMS (black), CNETMS/ZrO2 
(blue) and CNETMS/TiO2 (red). 
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neat CNETMS but it could withstand higher voltages than CNETMS owing to the presence 

of ZrO2 as a charge blocking layer. This enables a higher maximum discharge energy 

density for CNETMS with ZrO2, 58.9 J cm-3 achieved at 807.7 V µm-1 with an extraction 

efficiency of 83.5 %. For CNETMS with TiO2, the increase in energy density starts from 

low voltages due to the increase in its relative permittivity induced by the high permittivity 

of TiO2. Furthermore, TiO2 as a charge blocking layer enables the capacitor device to 

postpone breakdown until even higher voltages than CNETMS with ZrO2. As a result, the 

sample with TiO2 displays the highest maximum discharge energy density of 87.7 J cm-3 

at 923.1 V µm-1 with an extraction efficiency of 91.0 %. 

Figure 3.13. The maximum discharge energy densities (closed circles) and energy 
extraction efficiencies (open circles) measured via the P-E method on neat CNETMS 
(black), CNETMS/ZrO2 (blue) and CNETMS/TiO2 (red). 



 74 

The maximum discharge energy density measured by the C-D method is shown in 

Figure 3.14 As in the P-E measurements, CNETMS with TiO2 exhibits the highest 

maximum discharge energy density, 78.5 J cm-3, which is a 60.0 % improvement over neat 

CNETMS, 49.4 J cm-3. Having ZrO2 on top of CNETMS helps to increase the maximum 

discharge energy density relative to neat CNETMS by 31.2 % up to 64.8 J cm-3. Though 

this improvement is not as significant as for TiO2. The increase in the energy density with 

TiO2 at lower voltages can be explained in a similar fashion as in P-E due to the 

contribution from the high relative permittivity of TiO2. 

Breakdown strengths and Weibull moduli for neat CNETMS, CNETMS/TiO2 and 

CNETMS/ZrO2 are represented in Figure 3.15. The Weibull modulus indicates how evenly 

the breakdown strengths are distributed across a film as explained in Chapter 1. Therefore, 

Figure 3.14. The maximum discharge energy densities measured via the C-D method 
on neat CNETMS (black), CNETMS/ZrO2 (blue) and CNETMS/TiO2 (red). 



 75 

the higher the Weibull modulus, the more reliable a sample’s performance characteristics 

are. With charge blocking layers made of TiO2 and ZrO2, CNETMS exhibits both higher 

breakdown strengths and Weibull moduli. The increase is due to the successful blockage 

of external charge carriers by the oxide layers which allows the capacitor structures to 

withstand higher voltages before breakdown. CNETMS/TiO2 does not exhibit 

improvements in breakdown strength or Weibull modulus as much as CNETMS/ZrO2. This 

may result from TiO2 partially infiltrating the CNETMS network and behaving as defects 

in the structure where the applied field is accumulated for significantly longer than the 

other measurements. Conversely, the increase in the breakdown strength for 

CNETMS/ZrO2 suggests that there may be no ZrO2 domains in the layer of CNETMS as 

in CNETMS/TiO2. Given that the pore size in CNETMS is typically not greater than 1 nm, 

Figure 3.15. Breakdown strengths (black) and Weibull moduli (red) measured on neat 
CNETMS, CNETMS/ZrO2 and CNETMS/TiO2. 
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TiO2 may be small enough to infiltrate the network, whereas ZrO2 is not. Figure 3.16 

shows the probability of failure for each sample. As the applied field increases, the 

probability of failure increases and eventually reaches 100%. The sample with ZrO2 has 

higher breakdown strengths at a given probability than neat CNETMS, which supports the 

increased breakdown strengths. Also, the slopes of the increasing probabilities are steeper 

for the samples with ZrO2. This implies that the distribution of breakdown strengths for 

those samples is more even when compared to neat CNETMS ultimately leading to a 

capacitor structure more resistant to breakdown. 

 

  

Figure 3.16. Probabilities of failure measured on neat CNETMS (black), 
CNETMS/ZrO2 (blue) and CNETMS/TiO2 (red). 



 77 

3.3 Combinations of ALD Metal Oxides and Phosphonic Acids 

3.3.1 Experimental details 

Self-assembled monolayers of hydroxyundecylphosphonic acid (HUPA) and 

dodecylphosphonic acid (DDPA) (Alfa Aesar) were prepared on top of the as-fabricated 

samples of CNETMS, CNETMS/TiO2 and CNETMS/ZrO2. The chemical structures of 

HUPA and DDPA are shown in Figure 3.17. Phosphonic acids with similar carbon chain 

lengths were chosen to investigate the effect of the end groups. Each phosphonic acid was 

dissolved in methanol to create solutions with a molar concentration of 1 mM. 

Subsequently, a dip coating process was performed at room temperature for 1 hour in the 

solutions. Then, the films were dried in vacuum at 140 °C for 48 hours. 

After the formation of the monolayers, Al was sputtered as a top electrode in a similar 

way as previously described. The as-fabricated capacitor structures were tested for electric 

performance such as frequency-dependent relative permittivity and loss tangent, energy 

density by C-D and P-E, leakage current and dielectric breakdown strength all in the same 

manner as described above. 

Figure 3.17. Chemical structures of (a) hydroxyundecylphosphonic acid (HUPA) and 
(b) dodecylphosphonic acid (DDPA). 



 78 

3.3.2 Results and Discussion 

Figure 3.18, Figure 3.19 and Figure 3.20 show the frequency-dependent relative 

permittivities and loss tangents for each sample. Having HUPA or DDPA on top of the 

layer of CNETMS did not have a significant impact on permittivities or loss tangents since 

the monolayers are expected to be only a few nanometers thick, which is a minor 

contribution to the overall thickness. The samples of ZrO2 with either HUPA or DDPA 

produce the same as neat CNETMS or CNETMS/ZrO2. However, when the phosphonic 

acids were deposited on the samples with TiO2, the high permittivity and the oscillating 

trend of loss tangent with regard to frequency found in CNETMS/TiO2 completely 

vanished. Instead, relative permittivities and loss tangents for CNETMS with TiO2 and 

either of the phosphonic acids are close to those of neat CNETMS. This suggests that the 

very thin layer of TiO2 on the surface of CNETMS is completely consumed to form the 

phosphonic acid monolayers and leading to a reduced permittivity. Figure 3.21 illustrates 

the possible binding modes between phosphonic acids and the surfaces of TiO2, indicating 

that the phosphonic acid molecules bind to TiO2 surfaces through Ti-O-P bonds by the 

condensation of P-OH and surface Ti-OH groups and from the binding of the phosphoryl 

oxygen to surface Ti atoms.165 

Leakage currents were measured for each sample to assess their ability to block 

charges. Figure 3.22 compares the samples with only phosphonic acids, DDPA and 

HUPA, with neat CNETMS. Using the phosphonic acids helps reduce the leakage currents 

as much as or more than the oxides. DDPA in particular displays the lowered leakage 
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Figure 3.18. (a) Relative permittivities and (b) loss tangents for CNEMTS (black), 
CNETMS/HUPA (blue) and CNETMS/DDPA (red). 

(a) 

(b) 
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Figure 3.19. (a) Relative permittivities and (b) loss tangents for CNETMS/ZrO2 
(black) and when it is combined with HUPA (blue) or DDPA (red). 

(a) 

(b) 
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Figure 3.20. (a) Relative permittivities and (b) loss tangents for CNETMS/TiO2 
(black) and when it is combined with HUPA (blue) or DDPA (red). 

(a) 

(b) 
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Figure 3.21. Different binding modes between phosphonic acid and the surface of 
TiO2: (1) monodentate, (2) (3) bridging bidentate, (4) bridging tridentate and (5) 
chelating bidentate. Adapted with permission165 copyright 2008 American Chemical 
Society. 

Figure 3.22. Leakage currents for CNETMS (black), CNETMS/HUPA (blue) and 
CNETMS/DDPA (red). 
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current by almost one order of magnitude than the neat CNETMS. In Figure 3.23 and 

Figure 3.24, when either of the phosphonic acids is used along with TiO2, the decrease in 

the leakage currents is greater than when TiO2 is used alone but not as great as 

CNETMS/DDPA. For combinations of CNETMS, ZrO2 and the phosphonic acids, the 

difference is not as pronounced as for CNETMS/TiO2 with either of the phosphonic acids. 

The effect of each phosphonic acid and the combinations of the oxides/phosphonic 

acids on the energy densities was also investigated. The maximum discharge energy 

densities measured with C-D on the samples with phosphonic acids only in Figure 3.25 

show that there is no significant improvement from the phosphonic acids compared to the 

neat CNETMS. Figure 3.26 and Figure 3.27 exhibit the maximum discharge energy 

densities from C-D measurements when the phosphonic acids were used along with either  

Figure 3.23. Leakage currents for CNETMS/ZrO2 (black), CNETMS/ZrO2/HUPA 
(blue) and CNETMS/ZrO2/DDPA (red). 
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Figure 3.24. Leakage currents for CNETMS/TiO2 (black), CNETMS/TiO2/HUPA 
(blue) and CNETMS/TiO2/DDPA (red). 

Figure 3.25. The maximum discharge energy densities measured on CNETMS 
(black), CNETMS/HUPA (blue) and CNETMS/DDPA (red) by the C-D method. 
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Figure 3.26. The maximum discharge energy densities measured on CNETMS/ZrO2 
(black), CNETMS/ZrO2/HUPA (blue) and CNETMS/ZrO2/DDPA (red) by the C-D 
method. 

Figure 3.27. The maximum discharge energy densities measured on CNETMS/TiO2, 
(black), CNETMS/TiO2/HUPA (blue) and CNETMS/TiO2/DDPA (red) by the C-D 
method. 
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of the oxides. The addition of the phosphonic acids to the oxides on CNETMS does not 

improve the energy densities. In particular for the samples including TiO2, the phosphonic 

acids consumed the crystalline phase of TiO2 that confers the high permittivity and in turn 

the higher energy density even at low voltages. 

The maximum discharge energy densities measured by the P-E method resulted in a 

similar trend. As shown in Figure 3.28, the phosphonic acids are not as effective in 

enhancing energy density as the oxides. Although the oxides exhibit higher energy 

densities and higher energy extraction efficiencies, the phosphonic acids enable the 

CNETMS layer to withstand higher voltages in the P-E measurements leading to higher 

energy densities than neat CNETMS. In Figure 3.29 and Figure 3.30, when the 

Figure 3.28. The maximum discharge energy densities (closed circles) and energy 
extraction efficiencies (open circles) measured on CNETMS (black), 
CNETMS/HUPA (blue) and CNETMS/DDPA (red) by the P-E method. 
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phosphonic acids are combined with the oxides, the improvements are not as significant as 

when only the oxides are used. The decrease in the energy density at low electric fields for 

coupled with the phosphonic acids is consistent with the results from the C-D 

measurements. 

Unlike the energy densities, there is a merit to combining the two kinds of charge 

blocking layers when evaluating the breakdown strengths and Weibull moduli. As shown 

in Figure 3.31, the addition of the phosphonic acids to the oxides tends to improve the 

breakdown strength and Weibull modulus for both oxide formulations. TiO2 combined 

with DDPA exhibits the highest values for both. This suggests that it is helpful to have 

more than one charge blocking layer against the accumulated electric fields for an extended 

period even though the phosphonic acids eliminate part of the oxides and decrease the 

overall permittivity. The probabilities of failure for the phosphonic acids and the different 

combinations are shown in Figure 3.32, Figure 3.33 and Figure 3.34. 

CNETMS/TiO2/DDPA displays the steepest slope with the highest Weibull modulus. 

  



 88 

 

Figure 3.29. The maximum discharge energy densities (closed circles) and energy 
extraction efficiencies (open circles) measured on CNETMS/ZrO2 (black), 
CNETMS/ZrO2/HUPA (blue) and CNETMS/ZrO2/DDPA (red) by the P-E method. 

Figure 3.30. The maximum discharge energy densities (closed circles) and energy 
extraction efficiencies (open circles) measured on CNETMS/TiO2, (black), 
CNETMS/TiO2/HUPA (blue) and CNETMS/TiO2/DDPA (red) by the P-E method. 
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Figure 3.31. Breakdown strengths (black bars) and Weibull moduli (red bars) for 
CNETMS with the phosphonic acids and the oxides. 

Figure 3.32. Probabilities of failure for CNETMS (black), CNETMS/HUPA (blue) 
and CNETMS/DDPA (red). 



 90 

 

Figure 3.33. Probabilities of failure for CNETMS/ZrO2 (black),  CNETMS/ZrO2/ 
HUPA (blue) and CNETMS/ZrO2/DDPA (red). 

Figure 3.34. Probabilities of failure for CNETMS/TiO2 (black),  CNETMS/TiO2/ 
HUPA (blue) and CNETMS/TiO2/DDPA (red). 
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3.4 Conclusions 

ALD is a useful fabrication technique that is capable of conformally coating thin 

films of a few nanometers. The nanoscale layers of TiO2 and ZrO2 were prepared with 

ALD on CNETMS as charge blocking layers. It is suggested that part of the TiO2 layer 

infiltrates into the sol-gel network of CNETMS while still producing a thin layer of TiO2 

on the surface of CNETMS. This unique structure affected the electrical characteristics of 

CNETMS/TiO2 in that the combined permittivity and in turn the energy density increased 

significantly, whereas the breakdown strength did not exhibit any noticeable improvement. 

In contrast, ZrO2 did not seem to permeate into the CNETMS layer, forming only a layer 

on the surface. Although CNETMS could withstand higher electric fields with help of 

ZrO2, the overall permittivity did not get change due to the relative permittivity of ZrO2 

being similar to that of CNETMS. When combined with the phosphonic acids DDPA and 

HUPA, the crystalline layer of TiO2 responsible for the high permittivity is consumed. As 

a result, it was not as beneficial in terms of permittivities or energy densities, whereas the 

extra charge blocking layer composed of the phosphonic acids helped reduce the leakage 

currents and increasing the device reliability with higher breakdown strengths. For ZrO2, 

there was no significant impact on leakage current and permittivity by the phosphonic 

acids, whereas in the P-E and breakdown strength measurements for the samples with the 

phosphonic acids could tolerate higher applied voltages. 
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CHAPTER 4. CORE-SHELL NANOPARTICLES WITH BARIUM 

TITANATE AND ZIRCONIA AS A DIELECTRIC FOR ENERGY 

STORAGE 

4.1 Barium Titanate (BaTiO3) Nanoparticles Embedded in Dielectric Polymers 

4.1.1 BaTiO3 and Its Dielectric Properties 

Metal oxides with high relative permittivities are of interest for energy storage 

applications and barium titanate (BaTiO3), or BT, is one of the most attractive candidates. 

The relative permittivity of BaTiO3 depends heavily on its crystalline structure with the 

tetragonal phase being as high as 7,000.166 BaTiO3 possesses a perovskite structure where 

the Ti4+ cation in the center is surrounded by six O2- anions in an octahedral coordination 

with eight Ba2+ cations at the corners in a tetragonal coordination. Figure 4.1 illustrates the 

cubic and the tetragonal structures of BaTiO3.167 At temperatures higher than the Curie 

temperature (Tc), BaTiO3 takes on the cubic structure which has no net molecular dipole 

moment. In contrast, for the tetragonal phase that is observed below Tc, the centers of Ba2+ 

and Ti4+ cations do not coincide that of O2- anions. This leads to the generation of a 

permanent net dipole moment in this phase. Despite the high permittivity, it is hard to 

fabricate dielectric films exclusively composed of BaTiO3 for energy storage involving 

high applied electric fields because such films cannot withstand physical stresses well and 

can easily cracks.168 Also, the breakdown strength of BaTiO3 is so low that it is not suitable 

for high voltage applications.169-170 Therefore, many studies have focused on dielectric 

materials that can incorporate BaTiO3 nanoparticles in order to maximize its advantages 
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while minimizing the impact of its drawbacks.24, 171-172 For this purpose, BaTiO3 

nanoparticles are normally dispersed in another dielectric material leading to the formation 

of a tough matrix. Most often, dielectric polymers are used as they offer high breakdown 

strengths and easy processability. There are several factors that dictate the overall 

performance of the combined dielectric structure. First, properties depend on the 

volumetric ratio of BaTiO3 to the host matrix. As the amount of BaTiO3 increases, the 

relative permittivity of the mixture increases while its breakdown strength decreases. Given 

this tradeoff, it is important to find the optimal ratio in each structure depending on the 

properties of the BaTiO3 nanoparticles and the matrix material that is used. Also, the degree 

of dispersion of BaTiO3 nanoparticles greatly influences the electrical performance of a 

capacitor. If the nanoparticles are aggregated, they tend to provide a path for external 

charge carriers to travel more easily across the dielectric layer when an electric field is 

applied. Kim et al. reported on the surface modification of BaTiO3 nanoparticles to 

Figure 4.1. The tetragonal and cubic structures of BaTiO3: the green, blue and red 
spheres represent Ba, Ti and O atoms, respectively. In the tetragonal structure, there 
are two different O sites (O1, O2). Adapted with permission167 copyright 2011 
Elsevier. 

Ba 
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improve their incorporation into various polymer matrices.24 Figure 4.2 depicts their 

overall scheme for improving the electrical performance of dielectric structures using 

BaTiO3 nanoparticles modified by pentafluorobenzylphosphonic acid (PFBPA) and a 

PVDF-based copolymer. They were able to attach PFBPA molecules onto the surface of 

the nanoparticles and to prevent them from aggregating together. 

4.1.2 The Importance of Core-Shell Nanoparticles Containing BaTiO3 

When an external field is applied to a dielectric layer that is composed of materials 

with different relative permittivities, the amount of field induced in each material is related 

to their relative permittivities. In other words, a material with a higher permittivity expels 

the electric field lines more than one with a lower permittivity. As a result, a material that 

Figure 4.2. A schematic of a nanocomposite with pentafluorobenzylphosphonic-acid 
(PFBPA)-modified BaTiO3 nanoparticles embedded in a poly(vinylidene fluoride-
hexafluoropropylene) [P(VDF-HFP)] matrix to form a capacitor structure.  
Reproduced with permission24 copyright 2009 American Chemical Society. 
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has a lower permittivity is subject to a much higher local electric field than the one that has 

a higher permittivity. BaTiO3 has a much higher relative permittivity than the polymer 

dielectrics that are used as a host matrix. Therefore, the polymer matrix encapsulating 

BaTiO3 nanoparticles breaks down more easily than the polymer by itself as a result of this 

strong local electric field concentration.173-174 In order to prevent this phenomenon, a core-

shell nanoparticle is suggested as represented in Figure 4.3. If a BaTiO3 nanoparticle can 

be wrapped in a shell of a dielectric material whose relative permittivity is in between that 

of BaTiO3 and the polymer host, there will be a gradient of relative permittivities. The shell 

serves as a buffer layer that smooths out the electric field concentration across the interface 

between BaTiO3 and the polymer matrix. As a result, the breakdown of the overall 

dielectric layer will be reduced. Shells made of metal oxides such as TiO2 and SiO2 have 

been used as buffer layers in several studies.59, 175-176 ZrO2 is a candidate of interest as its 

relative permittivity is approximately 25, which is greater than that of most dielectric 

polymers yet lower than that of tetragonal BaTiO3.177-178 In addition, ZrO2 is known to 

Figure 4.3. A suggested structure containing BaTiO3 as a high-permittivity filler, 
ZrO2 as a buffer layer and [P(VDF-HFP)] as a polymer host. 



 96 

form nanoparticles as well as shell layers on other particles through the use of appropriate 

precursors. Several studies have shown that it is possible to synthesize ZrO2 nanoparticles 

or shells using zirconium oxychloride (ZrOCl2∙8H2O) or zirconium sulfate (Zr(SO4)2∙H2O) 

as precursors.179-181 Siddiquia et al. demonstrated sol-gel reactions to form ZrO2 

nanoparticles using ZrOCl2∙8H2O and Zr(SO4)2∙H2O with benzyl alcohol as a solvent and 

sodium lauryl sulfate as a surfactant as shown in Figure 4.4.179 Along with ZrO2 as the 

shell material, poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] was selected 

as the polymer host since it has a relative permittivity of approximately 10, which is higher 

than many other conventional polymers, and its breakdown strength is as large as 380 V 

µm-1.181 This choice of shell layer and matrix polymer provides for a much more gradual 

transition of permittivities within a dielectric material. 
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Figure 4.4. A schematic of ZrO2 nanoparticle formation via sol-gel reactions with 
ZrOCl2∙8H2O and Zr(SO4)2∙H2O. Benzyl alcohol is a solvent and sodium lauryl sulfate 
is used as a surfactant to control the particle size. Reproduced with permission179 
copyright 2012 SciELO. 
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4.2 Experimental Details 

4.2.1 Materials and Preliminary Trials for the Core-Shell Formation 

Reactions to fabricate a core-shell nanoparticle structure composed of a BaTiO3 core 

and an outer ZrO2 shell layer were investigated. BaTiO3 nanoparticles (Sigma-Aldrich) 

whose diameters ranged from 50 nm to 100 nm were used as the core material and 

ZrOCl2∙8H2O (Alfa Aesar) was used as a precursor for ZrO2 formation. Initially, 0.05 g of 

BaTiO3 nanoparticles was stirred with 0.4 g of ZrOCl2∙8H2O in 250 ml of deionized (DI) 

water. After letting the system react for 6 hours at room temperature, the solution was 

centrifuged at 11,000 rpm for 10 minutes. After the liquid was decanted and DI water was 

added., the solution was sonicated to redisperse the particles after that. This process of 

washing was repeated 5 times and the resulting particles were dried for 24 hours under 

vacuum at 100 °C. Transmission electron microscopy (TEM) was used to take nanoscale 

microscopic images of the obtained particles as shown in Figure 4.5. The square shaped 

particles seem to be bare BaTiO3 nanoparticles since their size is consistent with the 

information from the manufacturer and their shape is regular throughout the images.  

However, there is no evident contrast which would imply the presence of two different 

materials. If uniform layers of ZrO2 were deposited on the surface of the BaTiO3 

nanoparticles, there would be thin layers on the periphery of the nanoparticles showing a 

distinctive contrast in intensity. Therefore, it is suggested that the proper reaction of core-

shell fabrication did not occur. Also, it appears that no pure ZrO2 nanoparticles formed on 

their own independent of the BaTiO3 particles. 
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Figure 4.5. TEM images from the first trial showing no evidence of the formation of 
ZrO2. 
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Since too little powder was achieved for additional analyses from the first trial, the 

reaction recipe was doubled to 0.1 g of BaTiO3 nanoparticles and 0.8 g of ZrOCl2∙8H2O in 

500 ml of DI water in the second attempt. To further help the reaction proceed, the solution 

was heated to 100 °C and allowed to react for 96 hours. The solution was purified through 

the same washing and drying processes as the first trial. The solid particles obtained were 

used in FT-IR and TEM analyses. FT-IR spectra of neat BaTiO3 nanoparticles and the 

particles obtained from the second trial are shown in Figure 4.6. Overlapped with peaks of 

BaTiO3, extra peaks are also shown at wavenumbers around 1000 cm-1, 1370 cm-1 and 

3260 cm-1. The first two peaks are consistent with reported ZrO2 absorption peaks while 

the last peak corresponds to hydroxyl groups on the surfaces.182 This suggests the formation 

Figure 4.6. A comparison of the FT-IR spectra before and after the reaction in the 
second attempt. The peaks at 1000 cm-1 and 1370 cm-1 correspond to ZrO2 and the 
peak at 3260 cm-1 represents hydroxyl groups on the surfaces. 
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of ZrO2 in the form of either uniform shells on the surface of BaTiO3 nanoparticles or 

distinct nanoparticles. Figure 4.7 shows the particles resulting from the second trial under 

TEM. A distinctive contrast is evident, suggesting that the sample contains a coating 

material surrounding BaTiO3. Since ZrOCl2∙8H2O is completely soluble in DI water, none 

of it is expected to be left in the final product. Hence, ZrO2 is likely to have formed as a 

result of the reaction. However, it does not seem to have formed uniform shells on the 

BaTiO3 nanoparticles. The darker areas represent BaTiO3 nanoparticles and it is mostly in 

the form of chunks with multiple particles aggregated together and covered in the lighter 

component that is ZrO2. In addition, stand-alone ZrO2 particles are observed. Therefore, it 

is suggested that the formation of ZrO2 occurred independently of the BaTiO3 

nanoparticles. In fact, the obtained particles were in a form of paper-like fibers. Based on 

a study by Liu et al. where ZrOCl2∙8H2O created ZrO2 nanoparticles and the particles were 

fiber-like, it is likely that the majority of the product from the second trial is ZrO2 

nanoparticles.180 
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Figure 4.7. TEM images from the second attempt. Some coating is observed on the 
BaTiO3 nanoparticles. However, it is not uniform and the BaTiO3 nanoparticles seem 
aggregated. 
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4.2.2 Factors Impacting the Formation of Uniform ZrO2 Shells 

After two preliminary trials, several factors that were considered likely to affect the 

final product were examined. These included the predispersion of BaTiO3 and 

ZrOCl2∙∙8H2O, the solvent for the reaction, the aging time, the amount of ZrOCl2∙8H2O, 

the reaction temperature, the amount of ammonium hydroxide (NH4OH) (VWR 

Chemicals) used as a catalyst and the hydroxylation of the surface of BaTiO3 nanoparticles. 

Table 4.1 describes a series of reaction batches with their experimental conditions. Not 

every batch will be discussed in detail but it is worth comparing TEM images of the 

products achieved by systematically varying each of the parameters mentioned above. 

Once the optimal set of conditions was determined, the several reactions were performed 

to produce sufficient amounts of core-shell nanoparticles to deposit films for capacitor 

devices. The powder was annealed for 4 hours at either 400 °C or 650 °C. 

Table 4.1. Experimental factors considered for optimizing the formation of the ZrO2 
coating. 

Factors Conditions 

Aging 

∙ None 
∙ 3 h 
∙ 6 h 
∙ 48 h 

Dispersion of 
BaTiO3 nanoparticles 

before the reaction 

∙ Sonication/vortex mixing 45 min 
∙ Ball milling 24 h 
∙ Sonication/vortex mixing 45 min + Stirring 6 h 

Solvent for dispersion of 
BaTiO3 nanoparticles 

∙ 75 ml ethanol + 25 ml water 
∙ 100 ml water 
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(Continued) 

Surface treatment of 
BaTiO3 nanoparticles 

before the reaction 

∙ None 
∙ Hydrogen peroxide (H2O2) 

Amount of 
ZrOCl2∙8H2O used 

∙ 0.18 g 
∙ 0.09 g 

Amount of 
NH4OH solution used 

∙ 25 ml 
∙ 35 ml 
∙ 50 ml 

pH of NH4OH solution ∙ 12.8 as obtained 
∙ 10.6 after diluted with water 

 

4.2.3 Fabrication of Capacitors for Electrical Measurements 

Three solutions for spin coating were made: BaTiO3 nanoparticles obtained from the 

optimized reaction and annealed at 400 °C, BaTiO3 nanoparticles obtained from the 

reaction and annealed at 650 °C and neat BaTiO3 subjected to no shell treatment. 0.2 g of 

each of the BaTiO3 powder samples was dissolved in 4.5 ml of dimethylformamide (DMF) 

(DriSolv) and stirred at room temperature for 48 hours. The process was followed by the 

addition of 0.34 g of P(VDF-HFP) to the solution and stirred for an additional 48 hours 

before film casting. Dielectric films were produced using a spin coater on ITO-coated glass 

in a similar manner as described in the previous chapters. Coating was performed at a spin 

speed of 1,200 rpm for 30 seconds. The films were dried at 80 °C under ambient conditions 

for 15 minutes immediately after coating. Subsequently, they were baked at 120 °C for 24 
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hours in vacuum. The thickness of the films was measured using ellipsometry, yielding 

thicknesses of approximately 2.5 µm. 

The fabrication of capacitors and measurement of their electrical properties were 

conducted using the same techniques as discussed in the previous chapters. The Al 

electrode was deposited on top of the films by thermal evaporation through a shadow mask 

to achieve circular devices with a capacitor structure whose area is 0.25 mm2. They were 

tested for breakdown strength, Weibull modulus and energy density by the C-D method. 

4.3 Results and Discussion 

4.3.1 Effects of the Reaction Conditions 

In the first batch, 25 ml of NH4OH catalyst was added dropwise over one hour to the 

reaction solution of BaTiO3 and ZrOCl2∙8H2O dispersed in a mixture of 75 ml of ethanol 

and 25 ml of water. The solution was not allowed to age during which the solution is 

refluxed at an elevated temperature. Instead, it was washed and dried immediately after the 

addition of NH4OH. TEM images of the particles obtained from the first batch are shown 

in Figure 4.8. Given the lack of contrast among the particles in the images, there is very 

little material observed apart from the bare BaTiO3 nanoparticles. This indicates that aging 

is an essential step to start the reaction to form ZrO2. 

Nanoparticles tend to aggregate easily in a solvent if they are not properly dispersed. 

In an effort to find the optimal method to disperse the BaTiO3 nanoparticles, ball milling 

was performed for 24 hours. Figure 4.9 shows the TEM images of the nanoparticles that  

 



 106 

  

Figure 4.8. TEM images of the product without aging. The ZrO2 coating is barely 
observed. 
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Figure 4.9. TEM images of BaTiO3 nanoparticles with ZrO2 coating after 24 hours of 
ball milling and 48 hours of aging. The BaTiO3 nanoparticles are fragmented and 
aggregated in chunks of ZrO2. 
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were obtained from the ball milling process before the reaction with aging for 48 hours 

after the reaction. It is clear that the BaTiO3 nanoparticles after ball milling were 

fragmented into much smaller particles that lack the regularity in shape and size of the 

pristine particles. Furthermore, the formation of ZrO2 occurred in a form of large 

agglomerations encompassing several BaTiO3. Therefore, it was decided that ball milling 

should not be done since it did not result in improved dispersion of BaTiO3 nanoparticles 

but rather damaged the regularity of the BaTiO3 nanoparticles. In addition, 48 hours of 

aging seems to be too much given that there are excessive amounts of ZrO2 formed. 

The solvent to disperse BaTiO3 nanoparticles was changed from a mixture of 75 ml 

of ethanol and 25 ml water to 100 ml of water since the dispersion after the processes of 

sonication and vortex mixing seemed greatly improved in pure water. 

Surface modification of BaTiO3 nanoparticles was considered to ensure that the 

formation of ZrO2 on the surface of the nanoparticles was preferred over the formation of 

stand-alone ZrO2 nanoparticles. For this process, 1 g of BaTiO3 nanoparticles was added 

to 400 ml of hydrogen peroxide (H2O2) and the solution was refluxed at 106 °C for 4 hours. 

Subsequently, the solid particles from the solution were washed 3 - 5 times then dried at 

100 °C for 24 hours. Figure 4.10 shows the FT-IR spectrum of bare BaTiO3 nanoparticles 

and that of the surface-modified BaTiO3 nanoparticles with hydroxyl groups on the surface. 

Both samples were thoroughly dried before the measurements to remove any residual 

water. At wavelengths around 3500 cm-1, there is a broad but noticeable peak that 

corresponds to the hydroxyl groups generated on the surface of the BaTiO3 nanoparticles. 
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Figure 4.11 and Figure 4.12 compare the results from a reaction that was performed 

on bare BaTiO3 nanoparticles and a reaction performed on BaTiO3-OH nanoparticles. 

When the bare BaTiO3 batch was used for the reaction; fully and partially encapsulated 

particles as well as bare particles are observed. This suggests that there are not enough 

hydroxyl groups on the surface of the BaTiO3 nanoparticles to serve as reaction sites. In 

contrast, after treating BaTiO3 with H2O2 to produce sufficient hydroxyl groups on the 

surface of the nanoparticles, only particles fully encapsulated with ZrO2 were observed. It 

should be noted that the thickness and shape of the coating are not perfectly uniform. 

Therefore, it was decided that the surface modification of the BaTiO3 nanoparticles was 

necessary before the formation of ZrO2 to ensure there are sufficient reaction sites on the 

surface of BaTiO3. 

Figure 4.10. FT-IR spectra before and after the H2O2 treatment on the surface of 
BaTiO3 nanoparticles. The broad peak around 3500 cm-1 corresponds to the hydroxyl 
groups formed. 
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Figure 4.11. TEM images of a batch using bare BaTiO3 nanoparticles. The coating is 
not uniform and some particles are only partially coated, suggesting a lack of 
hydroxyl groups on the surface. 
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Figure 4.12. TEM images of the product after the formation of ZrO2 using the H2O2-
treated BaTiO3 nanoparticles. Every particle is fully encapsulated with ZrO2. 
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Other parameters such as the amount of precursor and catalyst (and catalyst 

concentration) used were further tuned to achieve the optimal condition for the formation 

of ZrO2. The uniformity as well as the thickness of the ZrO2 coating can be affected by the 

amount of NH4OH. The BaTiO3 nanoparticles may not be uniformly coated if too little 

NH4OH is used and runs out in the middle of the formation of ZrO2, whereas an excess 

amount of it may cause undesired residual coating of ZrO2 leading to irregular shells and 

aggregation. Also, a dilution of NH4OH was considered by mixing 1 ml of the source 

NH4OH with 100 ml of water, which dropped the pH from 12.8 to 10.6. NH4OH was added 

dropwise to the reaction solution composed of BaTiO3 and ZrOCl2∙8H2O while stirring. If 

too many molecules of NH4OH are added at once to the solution, it may affect the quality 

of the coating as multiple molecules of NH4OH can initiate the formation of ZrO2 at the 

same time at surface reaction sites that are close to each other resulting in chunks of BaTiO3 

nanoparticles coated in a connected network of ZrO2 instead of individually-coated 

particles. In Figure 4.13 and Figure 4.14, TEM images summarize the results using 50 ml 

of undiluted NH4OH and 25 ml of the diluted NH4OH solution. In the latter case, the 

coating appears to be more uniform and produces more individually-coated particles than 

when higher amounts and concentrations of NH4OH were used. It is worth noting that the 

weights of the final products obtained in both cases did not change, suggesting that there 

was no shortage of the catalyst even when the smaller amount of NH4OH was used. 

The amount of ZrOCl2∙8H2O to be used for the reaction was initially 0.18 g based on 

calculations assuming the size of each BaTiO3 nanoparticle to be 100 nm. The total surface 

area in 1 g of the BaTiO3 nanoparticles can be estimated using the known density of 

BaTiO3. After setting the target thickness of ZrO2 coating for 10 nm, the density of ZrO2  
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Figure 4.13. TEM images of the product obtained using 50 ml of undiluted NH4OH. 
The thicknesses of the coating are not perfectly uniform. 
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Figure 4.14. TEM images of the product obtained using 25 ml of the diluted NH4OH 
solution show more uniform coating. 
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and the weight fraction of ZrO2 in ZrOCl2∙8H2O were used to calculate the weight of 

ZrOCl2∙8H2O needed for the reaction. Finally, the calculated weight of ZrOCl2∙8H2O was 

doubled assuming that not every molecule of ZrOCl2∙8H2O will participate in the formation 

of ZrO2 on the surface of the BaTiO3 nanoparticles, hence there should be at least one 

equivalents in excess. Since using 0.18 g of ZrOCl2∙8H2O as estimated did not result in the 

desired thin and uniform coating, reducing it by half was considered. Figure 4.15 and 

Figure 4.16 show TEM images of the BaTiO3 nanoparticles obtained from 0.18 g of 

ZrOCl2∙8H2O and those of particles obtained from the reduced amount of ZrOCl2∙8H2O 

(0.09 g). With the reduced amount of precursor, the nanoparticles seem to have more 

uniform coatings with more controlled thicknesses. A slightly higher variation in thickness 

is observed when the original precursor amount was used. In fact, the weight of the final 

product collected after washing and drying was also reduced from 0.14 g to 0.11 g, which 

may indicate that the excessive coating of ZrO2 was trimmed down to a more uniform 

thickness. 

After considering the various factors that may affect the quality of the ZrO2 coating 

as mentioned above, the recipe to form the core-shell nanoparticles of BaTiO3/ZrO2 was 

determined as follows. 0.1 g of BaTiO3 nanoparticles pretreated with H2O2 to provide 

hydroxyl groups on the surface was dispersed in 100 ml of water by 15 minutes of 

sonication followed by 15 minutes of vortex mixing and an additional 15 minutes of 

sonication. Subsequently, 0.09 g of ZrOCl2∙8H2O dissolved in 100 ml of water was added 

to the dispersion. 1 ml of NH4OH was diluted with 100 ml of water then 25 ml of the 

diluted solution was added dropwise to the reaction solution of BaTiO3-OH and 

ZrOCl2∙8H2O for 1 hour. After the addition of the catalyst, the solution was refluxed at 110  
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Figure 4.15. TEM images of the BaTiO3 nanoparticles obtained from 0.18 g of 
ZrOCl2∙8H2O exhibit some excessive coating. 
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Figure 4.16. TEM images of the BaTiO3 nanoparticles obtained from 0.09 g of 
ZrOCl2∙8H2O display more uniform coating. 
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°C for 3 hours. In order to wash the final product, the solution was centrifuged at 11,000 

rpm for 10 minutes and the liquid was decanted, followed by redispersing the leftover 

powder in water. This washing step was repeated 5 times before finally drying the final 

product at 110 °C for 24 hours. Figure 4.17 shows TEM images of the product obtained 

from the fixed reaction recipe. Individual nanoparticle is well encapsulated in a uniform 

shell of ZrO2. 

When using ZrOCl2∙8H2O for the formation of ZrO2, Zr(OH)4 tends to form rather 

than ZrO2.183 Therefore, annealing of the obtained particles is required to convert the metal 

hydroxide coating into the desired ZrO2 coating. It has been reported that annealing 

Zr(OH)4 at 400 °C results in the monoclinic phase of ZrO2, whereas annealing at 600−700 

°C tends to produce the tetragonal phase as expressed in Figure 4.18. 

In order to investigate the effect of annealing temperature, the nanoparticles obtained 

from the reaction above were annealed at both 400 °C or 650 C°. In Figure 4.19, FT-IR 

spectra of bare BaTiO3, BaTiO3 with Zr(OH)4 that was not annealed, BaTiO3 with ZrO2 

annealed at 400 °C and BaTiO3 with ZrO2 annealed at 650 °C are shown. Only the sample 

that was not annealed exhibits a peak around 3200−3500 cm-1, suggesting the 

transformation from Zr(OH)4 to ZrO2 when annealed. It is also clear that the characteristic 

peak of BaTiO3 around 1500 cm-1 is not as sharp after the reaction. However, no difference 

between the annealing temperatures was observed in the FT-IR spectra. 
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Figure 4.17. TEM images of BaTiO3 nanoparticles with a uniform ZrO2 shell obtained 
from the final recipe. 
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Figure 4.18. A schematic representation of the synthesis of ZrO2 using ZrOCl2∙8H2O 
via precipitation followed by annealing at different temperatures to obtain the 
tetragonal and monoclinic structures. Adapted with permission183 copyright 2006 
American Chemical Society. 

Figure 4.19. FT-IR spectra of bare BaTiO3, BaTiO3 after the reaction without 
annealing, BaTiO3 after the reaction and annealing at 400 °C and 650 °C. 
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4.3.2 Electrical Performance of ZrO2-Coated BaTiO3 

Frequency-dependent relative permittivities and loss tangents were measured as 

shown in Figure 4.20. Compared to a film composed of bare BaTiO3 nanoparticles, there 

is a slight decrease in the relative permittivity for the films with BaTiO3-ZrO2 

nanoparticles. This is due to the fact that the relative permittivity of ZrO2 is lower than that 

of BaTiO3. Each of the solutions made for film casting included the same weight, 0.2 g, of 

either bare BaTiO3 nanoparticles or the ZrO2-coated nanoparticles. The combined 

permittivity of the sample with bare BaTiO3 and P(VDF-HFP) is determined by the high 

relative permittivity of BaTiO3 around 80 and that of P(VDF-HFP) to be approximately 

10. On the other hand, for samples with BaTiO3-ZrO2 nanoparticles, the relative 

permittivity of ZrO2, which is smaller than that of BaTiO3, contributes to the overall 

permittivity by replacing a portion of BaTiO3 with ZrO2. 

Breakdown strengths and Weibull moduli were tested for films composed of bare 

BaTiO3 and ZrO2-coated BaTiO3 annealed at 400 °C and ZrO2-coated BaTiO3 annealed at 

650 °C as summarized in Figure 4.21. A slight increase in breakdown strength is observed 

for BaTiO3-ZrO2 annealed at 400 °C when compared to bare BaTiO3. There was no 

discernible improvement in the breakdown strength for BaTiO3-ZrO2 annealed at 650 °C. 

This is likely due to the different crystalline phases of ZrO2 that result from the different 

annealing temperatures. As mentioned above, the tetragonal structure is expected after 

annealing ZrO2 at 400 °C whereas the monoclinic structure is dominant when annealed at 

650 °C. The relative permittivities of the tetragonal and the monoclinic structures are 

known to be 47 and 20, respectively.153 Since both are smaller than the relative permittivity 
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Figure 4.20. (a) Relative permittivities and (b) loss tangents of BaTiO3, BaTiO3-ZrO2 
annealed at 400 °C and BaTiO3-ZrO2 annealed at 650 °C. 

(a) 

(b) 
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of BaTiO3 and greater than that of P(VDF-HFP), they are both candidates for a dielectric 

buffer shell. It is not clear how exactly the crystalline phase or the relative permittivity of 

the shell of ZrO2 affects the breakdown strength in the combined capacitor structure. 

However, it can be suggested that having a coating material with a permittivity closer to 

the midpoint between that of BaTiO3 and that of the polymer matrix seems more helpful 

since it should offer a more uniform gradient of permittivity throughout the layer of ZrO2. 

Despite the increase in the breakdown strength from 400 °C-annealed BaTiO3-ZrO2, the 

Weibull moduli decreased for the films with the ZrO2-coated nanoparticles annealed at 

either of the temperatures. This appears to stem from the rough surfaces of the ZrO2-coated 

BaTiO3 nanoparticles. Bare BaTiO3 nanoparticles have regular shapes with smooth 

Figure 4.21. Breakdown strengths and Weibull moduli of BaTiO3, BaTiO3-ZrO2 
annealed at 400 °C and BaTiO3-ZrO2 annealed at 650 °C. 
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surfaces but the formation of ZrO2 on their surface tends to increase the surface roughness 

of the particles. This also implies that each of the ZrO2-coated nanoparticles has a different 

shape and size resulting in a variation of the surfaces. Since the Weibull modulus indicates 

the degree of device reliability across the area of a sample, the variation caused by ZrO2 is 

likely to reduce the modulus for the BaTiO3-ZrO2 nanoparticles. The probability of failure 

is summarized in Figure 4.22 with bare BaTiO3 displaying the steepest slope corresponds 

to the highest Weibull modulus. 

Figure 4.22. The probability of failure of BaTiO3, BaTiO3-ZrO2 annealed at 400 °C 
and BaTiO3-ZrO2 annealed at 650 °C. 
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The maximum discharge energy densities were measured by the C-D method as 

shown in Figure 4.23. No significant difference was observed among films composed of 

neat BaTiO3, 400 °C-annealed BaTiO3-ZrO2 and 650 °C-annealed BaTiO3-ZrO2 

nanoparticles. The energy density of a capacitor depends on the permittivity of a dielectric 

in the system as well as its breakdown strength. There was a decrease in the permittivity of 

ZrO2-coated BaTiO3 while annealing at 400 °C helped improve the breakdown strength. 

These two changes may cancel out leading to a miniscule contribution to the energy 

density. However, it is more likely that the expected energy density of the nanocomposite 

with 15 vol% BaTiO3 in P(VDF-HFP) is low enough that a noticeable different can be 

expected simply by coating the BaTiO3 nanoparticles with a thin layer of ZrO2.  

Figure 4.23. The maximum discharge energy density of BaTiO3, BaTiO3-ZrO2 
annealed at 400 °C and BaTiO3-ZrO2 annealed at 650 °C measured by the C-D 
method. 
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4.4 Conclusions 

The need for a dielectric buffer layer for BaTiO3 nanoparticles stems from the large 

difference in the relative permittivity between BaTiO3 and P(VDF-HFP). After 

investigating the potential factors that may affect the formation of ZrO2, an optimal recipe 

was determined and BaTiO3-ZrO2 core-shell nanoparticles were successfully prepared. The 

crystalline structure of ZrO2 depends on the annealing temperature as the monoclinic phase 

is expected at 400 °C while the tetragonal phase is dominant at 650 °C. A small decrease 

in the permittivity was observed due to a portion of BaTiO3 being replaced with ZrO2. The 

breakdown strength was slightly increased for ZrO2-coated BaTiO3 nanoparticles annealed 

at 400 °C even though the irregularity of the ZrO2 surface coating reduced the Weibull 

modulus. No significant improvement in energy density was observed as the contribution 

from the coating is expected to be small. 
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CHAPTER 5. CONCLUSIONS AND OUTLOOK 

5.1 Current Work in Perspective 

Dielectric materials in thin film capacitors were modified in three different ways in 

order to improve their electrical properties including leakage current, energy density and 

breakdown strength. First, the incorporation of ODPA monolayers on top of CNETMS was 

performed using dip coating and post heat treatments. The formation of ODPA monolayers 

on CNETMS helped improve the breakdown strength. Furthermore, device reliability 

increased after heat treatment but no further improvement was observed by utilizing the 

low humidity condition for the heat treatment. Kim et al. previously reported performance 

of capacitors based on CNETMS and phosphonic acids with different alkyl chain lengths 

including propylphosphonic acid (PPA), octylphosphonic acid (OPA) and ODPA.184 

Among the three phosphonic acids, OPA exhibited the most improved maximum discharge 

energy density around 40 J cm-3, whereas ODPA did not show any improvement. In 

breakdown strength measurements, only PPA displayed an improvement of around 10% 

compared to neat CNETMS although the Weibull moduli increased for all of the samples 

with the addition of phosphonic acids. It should be noted that the formation of the SAMs 

in their research did not include the post-dip-coating heat treatment. The lack of an 

additional heat treatment step where the SAMS could be stabilized might have contributed 

to the poor performance of ODPA which contains the longest alkyl chain. Figure 5.1 

compares the maximum discharge energy densities of the samples with OPA and ODPA 

from their research and that of the sample with ODPA after the heat treatment in a low 

humidity condition from this study, all of which were measured by the P-E method. The 
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added heat treatment in this study enabled a 60% improvement in the energy density with 

ODPA when compared to their work similarly using ODPA but lacking heat treatment. 

Despite the increase, the energy density is still not as high as the sample with OPA, 

suggesting that the optimal alkyl chain length remains to be determined. But it is clear that 

additional heat treatment will be beneficial for all cases. 

ALD was used to fabricate nanoscale barrier layers of TiO2 and ZrO2 on CNETMS 

films. The layer of TiO2 exhibited unique properties due to its high relative permittivity, 

resulting in higher energy density than neat CNETMS even at low applied electric fields. 

ZrO2 did not contribute to an improved permittivity of the overall device as its permittivity 

is similar enough to that of CNETMS. When they were combined with self-assembled 

Figure 5.1. The maximum discharge energy densities of CNETMS with OPA (black) 
and ODPA (blue) from the study by Kim et al. and ODPA from this study (red) 
measured by the P-E method.184 
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monolayers of DDPA and HUPA, the breakdown strength showed a noticeable increase. 

However, TiO2 lost its contribution to the overall permittivity, suggesting that a very thin 

layer of TiO2 was deposited on the top surface of CNETMS in addition to the formation of 

TiO2 domains within the CNETMS layer. The electrical performance seemed to be affected 

by both aspects. Pan et al. previously reported values of maximum discharge energy 

density around 70 J cm-3 using bismuth ferrite strontium titanate (BFSTO) dielectrics.19 

Nano-regions of BFSTO were obtained after introducing strontium titanate to micro-

domains of bismuth ferrite as shown in Figure 5.2. The key to achieving such a high energy 

density was to transform a normal ferroelectric to a relaxor ferroelectric. The relative 

permittivity of the material could reach up to 300 at 1 kHz, which contributed to the high 

energy density. Figure 5.3 compares the BFSTO, CNETMS and CNETMS/TiO2 with 

respect to energy densities and breakdown strengths. CNETMS displays a higher 

breakdown strength and it could be further improved by the incorporation of TiO2.  

Figure 5.2. Pure bismuth ferrite (BFO) and its normal ferroelectric hysteresis loop 
(left) and bismuth ferrite strontium titanate (BFSTO) formed by the incorporation of 
STO and its relaxor ferroelectric hysteresis loop (right). Adapted with permission19 
copyright 2018 Springer Nature. 
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Figure 5.3. (a) The maximum discharge energy densities of CNETMS (black) and 
CNETMS/TiO2 (blue) from this study and BFSTO from the study by Pan et al. (red) 
(b) Breakdown strengths (black bars) and Weibull moduli (red bars) of CNETMS 
and CNETMS/TiO2 from this study and BFSTO from the study by Pan et al..19 

(b) 

(a) 
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However, the Weibull modulus for BFSTO is higher than that of neat CNETMS or 

CNETMS/TiO2, indicating that there is still room for improvement in device reliability in 

capacitor systems using CNETMS. Also, achieving an even higher overall permittivity than 

CNETMS/TiO2 will result in a higher energy density at a given applied field, which could 

lead to a curve of energy densities in terms of applied electric fields closer to that of 

BFSTO. Therefore, other dielectric materials that can further improve permittivity, energy 

density and device reliability when incorporated in CNETMS should be addressed for 

additional improvements. 

BaTiO3 is a dielectric material with a large relative permittivity but low breakdown 

strength. BaTiO3 can be used for capacitors in the form of nanoparticles when incorporated 

into a polymer matrix with a high breakdown strength. However, the large gap in 

permittivity between the BaTiO3 nanoparticles and the polymeric host causes electric field 

concentrations to form which result in the faster breakdown of the overall dielectric. In 

order to mitigate this problem, a buffer layer of ZrO2 was considered. The fabrication of 

uniform ZrO2 shells on the surface of the BaTiO3 nanoparticles was optimized using its 

precursor ZrOCl2∙8H2O. The coating of ZrO2 provided BaTiO3 with a higher breakdown 

strength but the device reliability was compromised to a small degree due to the rough 

particle surface after coating. To take full advantage of the core-shell structure, more 

optimization is necessary with respect to particle surface smoothness and dispersion 

uniformity. Kim et al. studied the electrical properties of capacitors made of 

nanocomposites composed of BaTiO3 nanoparticles embedded in a P(VDF-HFP) host.24 

Pentafluorobenzylphosphonic acid (PFBPA) was used as a surface modifier to facilitate 

the dispersion of BaTiO3 nanoparticles. The breakdown strength measured for 15 vol% 
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BaTiO3 was 300 V µm-1, a value higher than those of the capacitors with neat BaTiO3 and 

ZrO2-coated BaTiO3 studied in this research. The lower breakdown strengths are due to the 

lack of sufficient dispersion of BaTiO3 nanoparticles in the polymer matrix. Therefore, 

further studies are necessary to realize adequate dispersion of BaTiO3 nanoparticles after 

the ZrO2 coating process for capacitors to attain a higher breakdown strength as well as a 

higher energy density. 

5.2 Considerations and Outlook 

CNETMS-based capacitor systems can be further improved by optimizing the charge 

blocking layers embedded in the structure. The effect of the heat treatment on the 

orientation, conformation and order of phosphonic acids should be more thoroughly 

studied by characterization techniques such as near-edge X-ray absorption fine structure 

(NEXAFS) spectroscopy and solid state nuclear magnetic resonance (SSNMR) 

spectroscopy. The orientation of SAMs can be examined with the help of the peaks for C-

H and C-C σ* bonds in NEXAFS spectra collected at different angles of incidence.185 As 

SAMs become more ordered, the change in the peak intensities becomes more evident with 

changing incidence angles. SSNMR is a useful characterization tool to determine the 

conformations of SAMs as it shows the relative amounts of trans and gauche conformations 

found in the alkyl chains of the SAMs.98 Once the effect of heat treatment is more 

thoroughly inspected with these techniques, the impact of the alkyl chain length of 

phosphonic acids should also be addressed since OPA displayed improved electrical 

properties as compared to ODPA when no heat treatment was used. 
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For charge blocking layers prepared by ALD, various parameters of the ALD process 

such as temperature and pulse time should be explored to study their effects on the 

morphology of resulting films and in turn their electrical properties. Plasma-enhanced ALD 

can result in different crystalline structures, which also makes it of interest. Other metal 

oxides that are available for ALD such as HfO2 and SrTiO3 should be considered to study 

their effects as charge blocking layers for CNETMS. 

The coating of BaTiO3 nanoparticles can be performed with other materials with 

relative permittivities that are between that of BaTiO3 and the polymer matrix used in a 

capacitor system. TiO2 can have an intermediate permittivity depending on its crystalline 

structure and it has been used for core-shell nanoparticles in many studies.186-188 In 

addition, the size of BaTiO3 nanoparticles should also be addressed to investigate its 

relationship to the electrical performance when the BaTiO3 nanoparticles are coated in 

shells and embedded in polymer hosts. Most commercially available BaTiO3 nanoparticles 

range from 50 nm to 500 nm in diameter but it is also possible to synthesize BaTiO3 

nanoparticles using barium and titanium alkoxides to obtain samples in the sub-10 nm size 

range.189 Therefore, the performance of a capacitor composed of BaTiO3 nanoparticles and 

a polymer matrix can be further improved by optimizing the size of the nanoparticles, the 

material and quality of the coating and the choice of polymer host. 

There has been much work dedicated to achieving higher energy densities in 

capacitors to enable their use in a wider range of applications including energy storage. 

Progress is ongoing with several reports of high energy density devices, but several 

technical challenges remain, which limits the use of capacitors at comparable levels to 

batteries. Long-time reliability is one key factor dictating the practical application of 
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capacitors for every day users. In high voltage applications, the intrinsic long cycle life of 

capacitors can be compromised. This may require significant research into the development 

of dielectric materials with improved properties, the fabrication of efficient capacitor 

structures and sophisticated performance testing. Once every aspect and hang-up 

concerning the use of capacitors in energy storage devices is fully understood, they will be 

able to offer solutions to the current real-world challenge of efficient energy conversion 

and storage. 
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