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ABSTRACT

Recently, the development of FT-NMR spectroscopy has resulted in easy
access to several useful parameters for the study of carbohydrate conformations
in solution. These include 13c-lH spin-spin coupling constants and both 1§ and
13¢ spin-lattice relaxation times (Ty). Use of these parameters for a com-
parison of the cello- and xylo-oligosaccharide linkage conforﬁations in solu-

tions has been the central aim of this work.

13c-NMR spectra were assigned for the xylo— and cello-oligosaccharides up
to the pentamer and tetramer, respectively. Both model compounds and peak
intensity variations were used to make assignments. 13C—T1 relaxation times
were determined and assigned to the specific monomer units based on the devel-
oped assignments. This process revealed a clear pattern of relaxation times
showing that the terminal units relax more slowly than the internal units. This
was interpreted as evidence for a fast internal reorientation at the glycoéidic

linkage in both types of compounds.

Having established that the linkage conformation is a time average in solu-
tion, a comparison was made between the average conformations in both types of
molecules. !3c-lH coupling constants were used to compare the dihedral angle x
between xylobiose, cellobiose, and related model compounds. By this method the
average value for yx in xylobiose was determined to be farther removed from the
2-fold helix by 25-60°. Complimentary 1H—T1 relaxation measurements of the
linkage anomeric protons show the Hl‘ to Hy distance to be 0.1-0.2 A greater in
xylobiose. These data are interpreted in terms of a more staggered and open

linkage for the xylo-oligosaccharides.




The comparison of average linkage conformations shows by inference that
steric hindrance, from the glucose Cg hydroxymethylene in the cello-oligomers,
is the determining factor in the linkage conformation. A correlation between
the C4 chemical shift and the presence of the aglycone Cg was established in

support of this.

The existence of an intramolecular hydrogen bond from O3H to O5” has long
been postulated for both types of systems. Hydroxyl proton chemical shift and
coupling patterns show a weak and isolated bond in cellobiose in DMSO-dg- In

xylobiose the bond had some association with solvent.
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COMPOUND DESIGNATIONS

The following is a list of compound designations and abbreviations used in
this thesis. Because the different sections of the thesis were written non-
sequentially, the designations were not made consistent from section to section.
Designations for each section are listed below. 1In some sections thé different
anomers of the reducing disaccharides are distinguished by using a letter after
the number, while in other sections only one anomer is designated. The specific
meaning of the designation is given in each section at the first mention of the

compound.

In numbering the atoms of the di- and oligo-saccharides the convention was
used that places an additional prime on each successive ring removed from the
reducing end. Thus," thé ring at the reducing end is not primed, the next ring
has one prime, and so forth, to the terminal ring that has n-1 primes, where n

is the number of rings.




Arabinose

Compound Name?@

Arabinoside; Benzyl, B-
Arabinoside; Benzyl, 3,4-isopropylidene

Arabinoside; Benzyl, 3,4~isopropylidene,2-Tosyl
Arabinoside; Benzyl,”2-tosyl

Cellobiose

Cellobioside; Methyl B-
Cellobioside; Methyl B8-(dg)

Cellobiose
Cellobioside
Cellobiose;

Cellotriose

Glucose

Octaacetate
Heptaacetate; Methyl B-
1,5 Anhydro

Glucoside; Methyl 8-
Glucoside; Methyl 8- (d4)
Glucoside; Pentaacetate
Glucoside; Tetraacetate, Bromide

Lactose

Lactoside; Methyl

Mannose; Glucosyl

Riboside;
Riboside;
Riboside;
Riboside;

Benzyl,
Benzyl,
Benzyl,
Benzyl,
Riboside; Benzyl,
Riboside; Benzyl,

B_

xii

(epi-cellobiose)

2,3-Anhydro -

2,3-Anhydro,
2,3-Anhydro,
2,3-Anhydro,
2,3-Anhydro,
2,3-Anhydro,

4-Glucosyl

4—Methyl

4-Xylosyl

4-Xylosyl Acetate
4-Xylosyl TriMethyl

Securidebiose (Xylose, Glucosyl)
Securidebioside; Benzyl B-

Xylobiose

Xylobioside; Benzyl B-
Xylobioside; Methyl B-
Xylobiose; 2', 3', 4'-methyl
Xylobiose Hexaacetate
Xylobioside Pentaacetate; Benzyl 8-
Xylobioside Pentaacetate; Methyl B-
Xylobiose Triacetate; 2', 3', 4'-Methyl

Abbreviation

c2
MBC2
MBCZ-dS

1,5 ANC2

MBG

MBL

GM

Ben 2,3 ANGR

Ben 2,3 ANXR

GX

X2

Compound Numbers

by Section

2b

w N

O

3¢ 4d

43
16
17
18
19

13,b 26
2 21
44
27
23

43,b 42
45
34
14

loa,b

113,P



Compound Name?2

Xylose

Xyloside; Methyl 8-
Xyloside; Methyl B- (dz)
Xyloside; Methyl o-

Xylose Tetraacetate

Xylose Triacetate; Bromide
Xylose Trimethyl

Xylotriose

xiii

Compound Numbers
by Section

Abbreviation 2b 3¢ 44
4 ©3a,b 4
MBX 8 3¢ 28
46

MaX 3d
33
13
35

‘9

8Compounds are alphabetized by the root name. All linkages are B-1,4-linked and all
functional groups are attached to the carbon through the hydroxyl oxygen, except

bromine.

bAlso used in Appendices 1I, III, IV, and V.
CAlso used in Appendices VI, VII, VIII, and IX.
dAlso used in Appendices X, XI, XII, and XIII.




Abbreviations

AT
CP/MAS
CSA

. CW

DD

D20
DMSO-dg
f.i.d.
FT

HZ

IR
MHz
NMR

Designations

Cg or C-6
1901y

2§ or lH
03He . .057
Hl'—H4

Cl or 1C

_dn

xiv

ABBREVIATIONS, DESIGNATIONS, AND SYMBOLS

Acquisition time

Cross polarization/magic angle spinning
Chemical shift anisotropy

Continuous wave

Dipole~dipole

Deuterium oxide

Deuterated dimethyl sulfoxide

Free induction decay

Fourier transform

Hertz

Inversion recovery

Megahertz .

Nuclear magnetic resonance

Proton NMR

Carbon-13 NMR

Nuclear Overhauser effect (enhancement)
Nonreducing end

Reducing end

Scalar coupling

Spin lattice relaxation time

Proton spin lattice relaxation time
Carbon-13 spin lattice relaxation time
Spin-spin relaxation time

Thin layer chromatography

Width at half height

Weight to volume ratio

Carbon atom number 6

Coupling between 13¢ and lH atoms

Isotope of hydrogen

Intramolecular hydrogen bond

Distance between Hyr and Hy

Chair conformer

Number (n) of substituted deuterium atoms




Symbols

F(t)

F(w)

—-X V-

Coefficient in Karplus equation
Coefficient in Karplus equation

Coefficient in Karplus equation

K2 Y2 Y2
H C
Linear regression error

Energy of nucleus in magnetic field with
magnetic quantum number m

Change in energy Ej

Larmor frequency

Larmor frequenc& at H,

Larmor frequency of rgference

Larmor frequeqcy of signal of interest

Instrumental line broadening

~Sinusoidal function in time domain

Sinusoidai function in frequency domain
Planck's constant

Planck's constant divided by 2w

Strong magnetic field vector

Magnitude of H,

Detecting magnetic field vector
Effective magnetic field

Local magnetic field vector

Magnitude of spin-decoupling field
Spin quantum numbér

Quantum mechanical operator for spin I
Spin quantum number for nucleus S

Spin-spin coupling constant over k bonds




xvi

iJij Spin-spin coupling constant over i bonds between
nuclei i and j

| iJ(CiHi) Spin-spin coupling constant between C; and Hj
3JCOCH Spin-spin coupling constant for COCH system
Ji(w) Spectral density function
K YH4
K;(T) Correlation function‘
m . molol coﬁcentration

magnetic quantum number

m Total magnetizatipn vector

M, Total magnetization at time O

M Total magnetization at time t

Mzi Z-magnetization at time O

My, My, M, Components of total magnetization in lab
coordinate system

Myrs Myv, M, Components of total magnetization in rotating
coordinate system

Mo . Equilibrium magnetization

n Number of nuclei in the magnetically
equivalent set

N Number of attached nuclei

NT; Normalized T| relaxation time

ﬁfl Average of normalized T; relaxation times

; Nuclear angular momentum

p Magnitude of nuclear angular momentum

ry Distance from relaxing nucleus to other spins i

rij Distance between nuclei i and j

rcy Distance between carbon and proton nuclei

ry'-4 Distance from proton 1' to proton 4




r1s

xvii

Distance from nuclei I and S
Mean squared end to end distance
Relaxation rate

Carbon relaxation rate

Total spin-lattice relaxation rate
Second order contributions to line width
Variancg

Time

Trans-gauche conformation at Ce

Duration of pulse (pulse width)

Spin-lattice relaxation time

Dipole-dipole spin lattice relaxation time
Measured spin-lattice relaxation time
Spin-spin relaxation time

Coordinate in lab coordinate system
Coordinate Iin rotating coordinate system
Coordinate in lab coordinate system
Coordinate in rotating coordinate system
Function related to spherical harmonics
Complex conjugate of Yji

Coordinate in lab coordinate system

Coordinate in rotating coordinate system

(Moo-Mz)/z Mo

Angstroms
Anomer with axial hydroxyl in Cl1 conformation
Pulse angle

Anomer with equatorial hydroxyl in C1
conformation




YH
Yc
Y1

H(l) or H®

TC4

Teff

TIS

xviii

Linear regression constant

Dihedral angle for C-0 bond of hydroxyl group
Chemical shift

Chemical shift between nuclei 1 and j
Change in chemical shift

Gyromagnetic ratio

Proton gyromagnetic ratio

Carbon—-13 magnetic ratio
Gyromagnetic ratio of nucleus I
Hamiltonian for spin-spin coupling
Nuclear Overhauser enhancement
Dihedral angle for system H4”C)~0C,
Generalized dihedral angle

Dihedral angle for system C1°0C4Hy
Sum

Shielding factor

Bridge angle at glycosidic linkage
Correlation time

Rotational correlation time for vector to
nucleus i

Effective rotational correlation time for
isotropic rotation

Motional correlation time for internuclear
vector IS

Motional correlation time for C-H vector.

Angle between internuclear vector IS and
the z-axis.

Nuclear magnetic moment

Nuclear Bohr magneton




Note:

xix

Frequency of resonance a
Irradiating frequency

Width at half maximum intensit§
Change in V1/2

Linear regression weighting factor
Angular frequency

Angular frequency for nucleus I

Refer to keys in the various appendices for definition of specific
symbols used within that appendix.
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FOREWARD

The continuing interest in studying.the structure and properties of cellu-
lose and other structural polysaccharides attests to the importance of these
materials both biologically and commercially. Controversies pertaining to the
parallel or antiparallel packing of cellulose chains, chain folding in native
cellulose, the mechanism of cellulose deposition into the fiber, and the
inherent flexibility of the B~1,4-glycosidic linkage still persist. Some of the
mystery about the structural polysaccharides, and cellulose in particular, stems
from the ability to study these materials under only limited conditions.
Cellulose has been studied under the constraints of the crystalline state, in
strongly reacting solvents, or as a derivative. Generally, these studies pro- !
vide only limited information and must be extrapolated to answer the specific
questions posed. Alternatively, the glycosidic linkage has been modeled in an
attempt to predict some overall property of the material. Inevitably the
results are restricted to the limitations of the model and the simplifying
assumptions made therein. While much has been learned from the many studies to
date, an incomplete picture of the,structurai polysaccharides still exists at

all levels.

A complete understanding of the structural polysaccharides will require a
thorough knowledge of these materials over at least four levels of structure:
monomerlcomposition and sequence, intermonomer linkage conformation and dynamics,
overall molecular conformation, and molecular association.> This thesis is con-
cerned with only one of these areas, the conformation and dynamics of the inter-
monomer linkage. Thus, a more complete description of the B-1,4-1linkage
prevalent in cellulose and the hemicelluloses, is the goal of this work.
Specifically, this study focuses on the properties of the linkage in the xylo-

and cello-oligosaccharides.
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Recent innovations in NMR and vibrational spectroscopy provide an opportunity
to study the conformation and dynamics of the glycosidic linkage directly. In
this thesis these techniques have been used to investigate some of the factors
that affect the B-1,4-linkage of the cello- and xylo-oligosaccharides and
related compounds, in solution. Specifically, differences in the conformation
and linkage dynamics that exist between those structures that do and do not con-
tain a Cg hydroxymethyl were studied. The major factors that lead to these dif-

ferences, Cg steric hindrance and intermonomer hydrogen bonding, were explored.

The thesis is organized into 5 sections. The first section discusses the
importance and properties of the B—l,4—1iﬁked carbohydrates and the methods of
conformational analysis that have been applied, including recent NMR work con-
cerning the B-1,4-glycosidic linkage. Following this are the objectives of the
thesis and an outline of the experimental approach. Studies concerning what the
dynamics and conformation of the linkage are, are presented in the second sec-
tion. This is followed in the third section by an investigation of the impor-
tant factors that determine the characteristics of the linkage. This section
opens with a general discussion of the factors that might be important, followed
by a description of the work on the effects of Cg steric hindrance and inter-
monomer hydrogen bonding. The final part contains a discussion of some solid
state NMR work relating to the effects of the crystalline lattice on the
linkage. Section IV contains the experimental program used to acquire and
characterize the compounds investigated. Included are the detailed 13c-nMr
assignments of both the derivatives and final compounds. Section V contains a

summary of the conclusions reached and suggestions for possible future work.
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SUMMARY

This thesis has been concerned with comparisoh of the glycosidic linkage con-
formations of the cello- and xylo-oligosaccharides in solution. These compounds are
oligomeric constituents of cellulose and the xylans - important structural poly-
saccharides common to the higher plants. They differ structurally only by a pendant
C6>hydroxymethylene group which is present on each ring of the cello-oligo-

saccharides.

The comparison has a two—-fold purpose. First, it provides information which
relates to the different observable properties of these two classes of compoun&s.
Second, it provides an opportunity to determine the influence of the hydroxymethy-
lene carbon at Cg in determining linkage conformation and to compare its relative
importance to other structural features such as the O3H...05” intramolecular
hydrogen-bond, possible for both systems. This comparison was primarily based on
the various parameters of nuclear magnetic resonance (NMR) spectroscopy which are

sensitive to structure and conformation.

The first question to be answered concerned the dynamics of the linkage. Is
the linkage rigid so that individual molecules remain in a single conformation or is
it dynamic with molecules changing from one conformation to another? If the second
and more likely possibility is true then at what rate does the transition occur?

The answers to these questions are important because they determine if the obéerved

conformation is a time average or if it represents a discrete conformation.

The NMR parameter most useful in determining rates of motion in oligomeric
systems is the 13C spin-lattice relaxation time (13C-T1). In this study it was
observed that the terminal units of the tri- and tetrasaccharides relaxed more

slowly that the internal units for both types of oligomers. This was interpreted as




-2

evidence for a dynamic linkage with rates of reorientation that are fast on the NMR

time scale.

Having determined that the linkage is dynamic the next question was what 1is the
average linkage conformation and how does the conformation differ between the two
types of species? For the B-1,4-glycosidic linkage the relevant pafameters are the
dihedral angles ¢ and x, the bridge angle T, and the internuclear distance between
Hy“ and Hy- Knowledge of ¢ and x and either of the latter two parameters would
completely define the linkage conformation. All of thé above parameters are

obtainable by NMR in principle.

In this work the emphasis has been on comparing the linkage conformation of the
xylo— and cello-oligosaccharides rather than obtaining absolute values. The NMR
parameters used were the 13¢ - 1§ across linkage coupling constants to give ¥, and
ly - Ty values to give the linkage interproton distances. The value of yx was found
to be 25-60°C greater in xylobiose. Likewise, the Hj--H,; distance was determined to
be 0.1-0.2 A.greater in xylobiose. These values show that the average linkage con-
formation is more staggered in the xylo-oligosaccharides. By inference it is
expected that this occurs because of a wider range of linkage conformations for the
xylose containing oligomers which could be associated with a more open and

accessible linkage.

The next question to be answered is what factors determine the average linkage
conformation in the two classes of compounds? The effect of the obvious factor, the
Ce hydroxymethyl group, was surveyed by comparing the chemical shifts of the
linkage carbons in a number of model disaccharides. A correlation was found for the
relative chemical shift of C4 and the presence or absence of the pendant Cg on the

aglycone. From this evidence, and the observed differences between average linkage
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conformations, it was concluded that the pendant Cg is the dominant factor in deter-
mining the linkage conformation. Other factors, such as the potential O3H...Og,

intramolecular hydrogen bond are at best of secondary importance.

The presence or absence of the intramolecular hydrogen bond, though not a pri-
mary factor in determining thélconformation, still is an indication of the accessi-
bility of the area near the linkage in the two types of compounds. In all
ﬁrobability the bond only exists because sterically restricted rotation gt the
linkage prevents the solvent molecules from interacting with the atoms participating
in the intramolecular hydrogen bond. 14 chemical shift temperature coefficients
and lH-1lH coupling constants for the hydroxyl protons were used to identify and
characterize the intramolecular hydrogen bond in DMSO-dg solution. It was found
that a weak, but isolated, intramolecular hydrogen bond exists in the cello-
oligosaccharides. Iﬁ the xylo-oligosaccharides the hydrogen bond was found to be
very weak and partially associated with a solvent molecule. Again, this wés
interpreted as a more open linkage in the xylose containing oligomers. A similar
conclusion was reached by comparing the chemical shifts of xylobiose and cellobiose

in the solvents DMSO-dg and D5O.

The final factor considered in this study, which might affect the linkage con-
formation, was the effect of the crystal lattice. By comparing the chemical shifts
of solid and dissolved cellobiose and methyl B-cellobioside, it was observed that
the linkage conformation is different in the two states. It is speculated that the

difference is related to a relaxation of the bridge angle T of about 3° in solution.

The above questions concerning the dynamics, structure, and important factors
that affect linkage conformation form the main topics of discussion in the thesis.

Preceding this discussion is a section containing background information. The
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final topic in the thesis is the assignment of the 13c-NMR spectra of the cello- and
xylo-oligosaccharide compounds. This work was a necessary prerequisite for much of
the work on linkage dynamics and structure. The major approach used was comparison
of spectral intensities from different members of the oligomeric series. . Some com-

parison fo model compounds was also utilized. This work is discussed in Section IV.




SECTION I - PROGRESS AND DIRECTION IN THE

STUDY OF THE B-1,4-GLYCOSIDIC LINKAGE
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BACKGROUND
INTRODUCTION

The set of polysaccharides distinguished by the presence of the B-1,4-linkage
contains some of the most important natural products in existence. This class of
compounds includes many of the structural plant and animal organic polymers. Up to
84% of some wood species consists of polysaccharides containing the B-1,4-linkage
(1). Also included among this class are numerous articles of commerce. This group
includes, gums, pectic substances, and the modified cellulosics, used as resins and
rheology modifiers in many industries. Of major commercial importance is cellulose,
a primary material of the housing, textile, and paper industries. Because of the
ubiquity-and the importance of the B-1,4-linked polysaccharides to industry, agri-
culture, and biology, many studies have been made relating the properties of these
materials to their structure. Despite this concentrated effort, much remains to be
learned about what factors control their properties. Particularly lacking is our
knowledge of factors other than the composition and the properties of the consti-

tuent monosaccharides.

Of critical importance to the paper industry is the chemistry of cellulose and
the hemicelluloses. Cellulose is the B~1,4-linked homopolymer of glucose. It makes
up approximately 437 of the dry extractive free wood in both softwoods and hard-

- woods. Hemicelluloses make up between 28 and 357 of the wood in these two groups,
respectively (1). Much of this is represented by the B-1,4-linked glucomannans and
xylans. These are nearly always found modified with side groups: &4-O-methyl glu-
curonic acids, galactose and arabinose sugars, and acetate groups. For each of
these types of materials the B-1,4-linkage is of primary importance in determining

~its structure and properties.
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The polysaccharides containing the B-1,4-linkage can be classified in another
manner; into hexosans and pentosans. Hexosans are distinguished as predominantly
containing 6 carbon monosaccharides, each of which possesses a pendant hydroxymethyl
group (Cg) attached at Cg in-the pyranose form. Pentosans are the 5 carbon equiva-
lent without a pendant Cg. Cellulose and the glucomannans are both hexosans, while

xylan is a pentosan.

Figure 1 illustrates the primary structure of cellulose‘and xylan. The glyco-
sidic linkage, outlined in bold print, is identical within 2 bonds of thé linkage
oxygen*- The élucomannans also contain the identical linkage structure within 2
bonds, although in this case inversion of cdnfiguration at Cyp of mannose probably

impacts the linkage conformation.**

O CHoOH OH
. 0 o
- 0 OH
_~0 OH
0\ OH 0"
0 0
B CHyOH OH CHaOH
CELLULOSE
oH OH
0 .
0 N4
- OH
0 0
OH
XYLAK

Figure 1. Cellulose and xylan primary structure. The B-1,4-linkages
are highlighted.

% . . .

**Referred to as isomorphic in later discussions.
Galactouronogalactan, found in reaction wood, has a nonidentical B-1,4-linkage
because of the inverted configuration at C, in galactose.
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The properties of the B-1,4-1linked hexosans and pentosans are to a large extent
determined by the interactions at the iinkage. Cpnformational analysis, using
several techniques, has been performed on many of the B-1,4-linked polysaccharides
or related models. Most of this work involves extrapolation, from polysaccharide
dilute solution studies or theoretical model building, to characterize the allowed
conformations and important interactions at the linkage. An exception. are the x-ray
diffraction studies which have determined the conformation of several B-1,4-linked
disaccharides in the crystalline state (2,3,4,5). More recently, some work has
appeared, using optical rotation (6) and 13c-1lyg coupling constantsiacross the
linkage (ZJ§J2),.to determine the average conformation in solution of methyl B-

cellobioside (MBC2).

This thesis describes application of several newly available NMR techniques to
investigate the average conformation, and the factors which determine that confor-
mation, for solutions of several B-1,4-linked oligoéaccharides. In particulér, the
differences between thé hexqsans and pentosans are emphasized. It is hoped that an
improved description of the factors that control the glycosidic linkage confor-
mations will make it possible to better predict and control the properties of the

parent polysaccharides.

Before continuing, a brief review of past conforﬁational studies concerning the
B~1,4-1linked polysaccharides and related compounds will be given. This will be pre-
ceded by a brief discussion of the properties of the pertinent polysaccharides and
the conformation of the constituent mono— and oligomeric species that make up these

polysaccharides.




SURVEY OF PROPERTIES

Despite the common structure of the linkage, the properties of the different
B-1,4-1inked polysaccharides are considerably diffefént. Cellulose is insoluble in
water, dilute alkali, or dilute acid, at room temperature. It is commonly found as
a semicrystalline solid of at least four distinct crystalline polymorphs. The
cellooligosaccharides, the B-1,4-1linked oligomer constituents of cellulose, rapidly
become nearly insoluble beyond a chain length of 4 units (10). The properties of
cellulose have been extensively studied, as evidenced by the large volume of litera-

ture concerning it (11).

In contrast to cellulose, xylan is wgll known for its ease of extraction in
dilﬁte alkali (12). While the acidic side groups are important in determining the
solubility of xylan, the linkage also is certainly important. Evidence from intrin-
sic vistésity and light scattering measurements indicates that side groups,
occurring at average intervais of 10 units in biréh xylan, do not effecF the overall
conformation of tﬁe molecule in solution (13). Furthermore, the xylooligosacchari- .

des are easily soluble up to at least a DP of 6 in water (l4).

Most in-situ differences in reactivity, relative to cellulose, are related to
increased accessibility, resulting from the substituted structure of native xylan.
Removal of the acetate side groups will lead to an ordered structure for both xylan
and glucomannan (l). Yundt prepared the first polymer single érystal from xylan in
this manner (15). X-ray diffraction studies indicate that xylan crystallizes in a
unit cell containing a three—-fold helical axis along the chain direction, in
contrast to the nearly two-fold symmetry in cellulose (16). This illustfates that
both the side groups, and the characteristics of the linkage, are important in

determining the properties of the xylans.
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Intermediate in properties are the glucomannans. In situ they are closely
associated with cellulose. They are soluble in moderate strength alkali when iso-
lated aslholocellulose (1). Again, side groups contribute significantly to these
properties. 1Isolated glucomannans are often crystalline. iﬁtrinsic viscésity
measurement; show that the dissolved glucomannans are more similér in overall con-
figuration to cellulose than to xylan. This is related to its isomorphic linkage*
and the presence of a steric interaction between Co and Ce which does not arise in
xylan. Furthermore, the overall configuration was shown not to be dependent on the

type or length of the side groups, within limits (17).

A common property of the B-1,4-linked bolysaccharides is a tendency for molecu-
lar association. This is a factor in many phenomena including the insolubility of
cellulose in most solvents, the adsorption of glucomannan unto the cellulose fibers
in kraft pulping (1), formation of gel-like networks-in the use of plant and bac-
terial gums (18), and liquid crystal formation in certain cellulose derivatives
(19). This property also interferes with the study of many of these materials. For
example, cellulose cannot be studied in theta solvents énd determination of the
molecular weight of xanthan gum (20) and xylan (13) is complicated by the inability
to prevent interactions between molecules in solution. Molecular association
results partly from the steric regularity imparted on the individual molecular

chains by the properties of the B-1,4-linkage (18).
CARBOHYDRATE CONFORMATIONAL ANALYSIS

Fundamental Considerations

The properties of cellulose and the hemicelluloses are closely related to their

allowed conformations in the environment of interest. The concern of this thesis is.

*Equivalent configuration.
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an explanation of the factors that control conformation at the level of the indivi-
dual B-1,4-linkage- Before proceeding, a brief-review of carbohydrate confor-
mational analysis will be given. No -effort will be made to be exhaustive; the
reader is referred to several recent publications for a mo£e complete review

(_1_1_’_2_1—2 )‘

Monosaccharides

Carbohydrate conformational analysis exists at several different levels
extending from Fischer's elucidation of the stereochemistry of the simple sugars
(25) to the configurational statistics of the polysaccharides in solution (26).
Work at the monosaccharide level has been tﬁe starting point for most carbohydrate
solution conférmation work. The emphasis has been on which chair conformation‘is
the most stable for a particular monosaccharide. Empirical rules for the deter-
mination of the most favqred conformation have been established for the pyranose
sugars (21). Fufther study has been concerned with how the chair form differs from
ideaiity, the equilibria that exist between chair forms, and how the equilibria are

affected by solvent, mutorotation, substitution, and temperature (gg).

The chair conformation has long been accepted as the thermodynamically most
stable form for the pyranose ring (23). Calculations estimating the relative free
energies 1n water have been made by empirically considering nonbonded interaction
energies and the anomeric effect. Aqueous solution conformations of the various
aldopyranoses have been studied by NMR spectroscopy (23,27). The results agree
favorably with the empirical calculations (28). Table I lists the favored confor-
mations determined for each aldopyranose studied (gg).. The most stable conformation
for the majority of the aldohexopyraﬁoses is Cl. This is a result of‘relieving a
syn—-diaxial interactioh, between the 5-(hydroxymethyl) group and the l-hydroxy
group, that would be present in the 1C conformer of the B-forms, and a favorable

anomeric effect for the o-anomers Qgg).




-12~-

TABLE I

FAVORED CONFORMATIONS OF D-ALDOPYRANOSES IN AQUEOUS SOLUTION@

Conformation - Estimated Free-
By Summation of Energies,
Interaction By NMR kcal. mole~l

Aldopyranose Energies Spectroscopy Cl 1C
o~D-Allose Cc1 C1 3.9 5.35
B-D-Allose Cl C1 2.95 6.05
o-D-Altrose 1C z C1 1C 2 C1 3.65 3.85
B-D-Altrose Cl Cl 3.35 5.35
a-D-Galactose Cl Cl 2.85 6.3
B-D-Galactose Cl Cl 2.5 7.75
oa~-D-Glucose Cl ’ C1 2.4 6.55
B-D-Glucose Cl1 Cl 2.05 8.0
o~D-Gulose - . Cl 4.0 4.75
B-D-Gulose C1 o 3.05 5.45
o~-D-Idose 1C £ C1 1C z C1 4.35 3.85
B-D-Idose - Cl 4.05 5.35
a~-D-Mannose Cl Cl1 2.5 5.55
B-D-Mannose Cl Cl 2.95 7.65
o-D-Talose C1 Cl 3.55 5.9
g-D-Talose - Cl 4.0 8.0
o—-D-Arabinose 1C 1C 3.2 2.05
B-D—~Arabinose - ' 1c 2 C1 2.9 2.4
o-D-Lyxose 1C 2 C1 1C z C1 2.05 2.6
B-D-Lyxose c1 C1 2.5 3.55
oa-D-Ribose 1C z C1 1C z C1 3.45 3.55
B-D-Ribose 1C z C1 1C 2 C1 2.5 3.1
a-D-Xylose Cl Cl 1.95 - 3.6
B-D-Xylose Cl Cl 1.6 3.9

8From Reference (23).

The aldopentopyranoses and the ketopyranoses, thch are not included in Table
I, tend to favor either the Cl or 1C conformer; depending on the extent of diaxial
interactions between the hydroxyl groups (23). Furanose forms have also been

studied; they tend to rapidiy interconvert between envelope and twist forms (3lx32)°*

Studies on the low temperatures NMR of B-D-ribopyranose tetraacetate in
acetone-dg (29) have indicated that the aldo-pyranosides actually rapidly

interconvert between the chair forms. At room temperature the time averaged

*The process is referred to as pseudorotation.
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spectrum favors the major conformer. By comparing the coupling constants of the
individual conformers at low temperatu;e, with the time averaged coupling constants
obtained at room temperature, an equilibrium constant for conformer interconversion
can be obtained (23). In principle, chemicai shift averaging could be used in an
analogous way. In this case a similar study using chemical shifts was shown to give
erratic results (29). Figure 2 shows the chair conformer equilibrium calculated for
the eight aldopentopyranose tetraacetates (23). It can be noted that in every case,

except a-D—xylopyranoside, there will be a significant amount of each chair form

present.

OAe

a-p-riho K = 3.4 E 7 p-o-ribo X - 0.74

OAc

OAc

a-p-Jyzo K= 2.5 . . ’ B-p-lyxo K = 0.63

e —

Figure 2. Chair conformer equilibria for the pentose acetates (23).

(4
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The equilibrium constant that describes the chair conformer equilibrium has
been determined for various other substituted aldopyranosides and in different
solvents. The eqﬁilibrium can be significantly altered by changing the substi-
tuents, particularly the aglycone (23). Solvent changes may also affect the

equilibrium but usually to a smaller extent (23).

l4-NMR studies indicate that the chair conformation is maintained in the glu-
cose containing disaccharides; both a and B linked (1+1,1+é,1—3,1—4 and 1-6). This
is based on the similarity, in both chemical shift and coupling constant, with the
corresponding glucose (a or B) spectrum (24). This relationship is also found in
the spectra of the common cellulose and amyldse derivatives (24,30). Therefore, the
Cl conformer is thought to exist as the predominant fofm for the glucopyranose ring
in the oligo- and polysaccharides. This is also true in DMSO (gl)o Similar results

would be ‘expected for the xylo-series.

A related area, that has indirectly provided numerous observations concerning
carbohydrate conformational effects, are the studies focusing on the complex for-
mation between the sugars and electrolytes. Dorman and Roberts (32) have shown that
the NMR spectra and the conformation of carbohydrates are affected by pH. Gaillard
and Thompson (33) have shown that iodine copplexes with the xylans in a manner simi-
lar to its effect on starch. Angyal and coworkers (éimzixignll)’ in numerous publi-
cations, have used NMR to show that carbohydrates complex with some cations if their
hydroxyl groups are arranged in an axial-equitorial-axial arrangement. They show
that complex formation can cause a shift from one chair conformer to another.

Atalla and Williams (38) have shown that ethylene glycol can also form a complex
with divalent cations, illustrating that additional conformational factors, beyond

those described by Angyal, may be involved in the carbohydrates.
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O0ligosaccharides

Monosaccharide conformational analysis predicts that Cl will be the dominant
ring structure for the B—lya—linked oligomers of gluco-, xylo—, and mannopyranose.
Therefore, the most important undefined element in the conformation of these oligo-
mers, and the polysaccharides containing them, is the conformation of the glycosidic
linkage. Three parameters of fundamental importance are used to describe the
linkage conformation. Figure 3 depicts these: T is the C;“-0-C, bridge angle, ¢
is the torsional angle betﬁeen Hy-C;“-0-C4, and x is the torsional angle between
H,=C4~0-Cy~ (39). Along with the bond lengths and bond angles, these parameters

completely describe the linkage conformation.*

Figure 3. The dihedral angles ¢ and x, as well as the
bond angle T, of the B-1,4-glycosidic linkage.

Several factors combine to determine the allowed and preferred glycosidic
linkage conformations. These include nonbonded steric factors (Van der Waals
interactions), intramolecular (interresidue) hydrogen bonds, solvent modulated

dipole-dipole interactions, torsional strain, and the anomeric effect (égﬁﬁglil)'**

Calculations considering steric interactions only indicate that cellobiose has

‘a highly'restricted linkage (39). The rigidity associated with the B-1,4-linkage in

* An alternative approach, often used in polysaccharide configurational statistics,
is to describe a virtual bond; the linear bond segment between successive linkage
oxygens (40). S

**While the mechanism is still under study, it is generally accepted that a oc-anti

bonding orbital, intersects with the ring oxygen lone pair, to create the anomeric

effect (ﬁlaﬁgaigh)’ The specific influence on the rotamer states about the ano-
meric bond (¢) to the aglycone, arising from the anomeric effect, is often

referred to as the exo—-anomeric effect Q&g).
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cellulose and the related hexosans has been attributed to a steric interaction be-
tween Cy and the pendant Cg on adjacent rings (17). An intramolecular hydrogen-bond
(03H...05~) is known to exist in crystalline cellobiose (2,3). Evidence also has
been given for its existence in DMSO solution (43). Perez and Marchessault (41)
have studied the x-ray derived structures for a numbervof 1,4-1inked systems and
have concluded that the exo-anomeric effect functions to restrict the allowed values
of ¢. Together, these factors combine to determine the allowed linkage confor-
mations in the oligomer. 1In the polymer, long range effects must also be considered

since their sum could act to modify the conformation at a specific linkage.

The most definitive work on oligosaccharide conformations has been done in the
solid state where the technique of x-ray crystallography is applicable. The crystal
structures of B-cellobiose (2,3), methyl B-cellobioside-methanol (4), a-lactose
monohydrate (5), B-cellobiose octaacetate (44), B-xylobiose hexaacetate (45), B-
cellotriose undecaacetate (46), and aldotriuronic acid trihydrate (47,48)* have all
been determined. Unit cell dimensions have also been proposed for cellotetraose
(52329321)' The hexose containing sugars exhibit a limited range of linkage confor-

mations (41). The angle ¢ varies only slightly, whereas x adopts a wide range of

values. Typical values are given in Table II. -

The underivatized B8-1,4-linked glucans all are observed to contain an intra-
molecular hydrogen-bond from O3H to Og5” (O3H...05°). Removal of this possibility in

the acetylated derivatives only slightly affects ¢ but has a greater impact on ¥.

Aldotriuronic acid, the 4-O-methyl glucuronic acid derivative of xylobiose

substituted at 27, contains a lower value for the bridge valence angle (1) than the

fg—(Afgfmethyl-a—D—glucopyranosyluronic acid)-(1-2)-0-
B~-O-xylopyranosyl-(1-4)-D-xylopyranose trihydrate.
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other oligomers in Table II. This was attributed to an absence of the backbone
OgH...05° intramolecular hydrogen-bond in its crystal structure. The authors
(51332) indicate that the linkage is more flexible in the xylobiose moiety because

of the absence of the intramolécular hydrogen-bond.

TABLE 1148

TYPICAL ¢, x, T VALUES IN THE SOLID
B-1,4-LINKED SUGARS

Compound ¢b xb T Reference
B-cellobiose 45 -14 116.1 (2)
Methyl B-cellobioside 31 -38 115.8 (4)
Cellobiose octaacetate 44 ) 16 116.8 (44)
Cellotriose octaacetate 46 12 115.5 (46)

(reducing-end) ‘
Cellotriose octaacetate 24 -20 117.0 (46)
(non-reducing end) :
f-lactose monohydrate 27 -24 117.1 (5)¢
B-xylobiose hexaacetate 20 -15 117.9 (45)
Aldotriuronic acid tri- 30 35 113.8 (47)
hydrated d -

8part of table from Ref. (41).

b(¢, x)- O defined according to Ref. (41) and (45).

€Value calculated from crystal structure torsional angles assuming tetra-
hedral symmetry.

dReferring to the B-1,4-linkage.

The first step in determining the solution conformation of the disaccharides
has often been to assume that the solid state conformation is maintained. Jeffrey
(52) points out that this is a reasonable assumption in polar solvents, in which
intramolecular hydrogen-bonding to the solvent will replace that. found in the

crystal. Differences may arise if intermolecular hydrogen-bonds occur (or break)

that are not in the crystal.

Many authors have employed computer modeling to predict the preferred
conformation(s) in solution starting from the crystal structure atomic coordinates.

Table 111 summarizes these results.
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TABLE III

CALCULATED ¢, x VALUES INDICATING PREFERRED
CONFORMATIONS IN SOME g-1,4-LINKED DISACCHARIDES

Compound ) X %a Reference
Cellobiose +40 -8 (39)
0 -33
Cellobiose 51 0 60 (53)
-10 -29 34
Cellobiose 30 25 77 (54)
30 180 20
Xylobiose 63 25 (55)
15 70
-18 ~37
Xylobiose 80 ‘ -8 (39)

3percentage of molecules in this conformation based on
relative energies.

All of these calculations employ a force field that considers nonbonded
interactions (39,55). Some utilize additional potential functions such as those
assoclated with bond deformations, torsional deformations, valence angle defor-
mations, and hydrogen bonding (53,54). In general, these results closely correspond

to the crystal structure data.

Melberg and Rasmusseﬁ (ég), in the most recent work, have used an energy mini-
mization technique which uses no fixed internal coordinates. 1In cellobiose they
find 6 local minima on the ¢, x map, of which 2 will be present in 947 of the mole-
cules. They estimate that conversion between tﬁe 2 predominant conformations is
fast on the NMR time scale. They further estimate that the glycosidic angle
C17-04-C4 (1) is 113.4° for the conformation of lowest energy. This is much less
than.that obtained from the crystal structure. The saddle point conformation be-

tween the two lowest conformations is given as (¢, x) = (26,-23). This should be
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close to the average solution conformation which might be observed by NMR (El)'

They calculate the average distance between H;” and Hy to be 2.28A. The three least
populated conformations are near the antiparallel® conforﬁation, (¢, x) = (30, -180),
suggested by Rees and Smith, and are only of minor importance. All the major cello-
biose conformations have an 03...05” distance that would allow an intramolecular
hydrogen bond. If these results are extended to cellulose they predict that cellu-

lose should exist as an extended chain polymer in solution.

The calculations on xylobiose are generally not as complete as those for cello-
biose because of the need to use afomic coordinates from either xylose or cellobiose
as a starting point (39,55). The calculated energy minima suggést a more
staggered** conformation on average; a greater H;” to H, distance is expected. The
lowest energy conformation predicted by Sandarajan and Rao, (¢, x) = (63,25),
corresponds to a 3-fold left-handed helical structure for xylan. The 03...05'.
distance is about 3.2R so that any intramolecular hydrogen bond, if present at all,
is weak. These authors suggest that the helical structure in xylan is stabilized
mainly by Van der Waals forces. The& suggest that the major difference between
xylobiose and cellobiose is that in the latter, the CH9OH group restricts freedom of

rotation at the linkage.

Direct investigations of the solution properties of the cellooligosaccharides
have been made by Goring and coworkers (56,57). They measured intrinsic viscosities
and diffusion coefficients for the series up to cellohexaose. Using the

Einstein-Simha viscosity equation to calculate axial ratios they concluded that the

* The Cy~“-H1” and C4-Hy4 vectors are nearly antiparallel as opposed to the more
likely case, near (¢, x) = (0,0), where they are parallel. The H;” ....H; distance
is much greater for the antiparallel conformation.

*Cl'-Hl’ and C4-H4 vectors not near parallel.
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cellooligosaccharides are fully extended in solution. They extended these measure-
ments from 25°-70°C and concluded that these molecules were extended over the entire
temperature range. They conclude that the'unusually large decrease in intrinsic
viscosity with increasing temperature*, observed both in the oligomers and in cellu-
lose and its derivatives, results from dehydration of the extended molecule.
However, others have suggested that the decrease in intrinsic viscosity is asso-
ciated with increased linkage flexibility, resulting in a reduction in overall
dimensions of the molecule toward a random coil (§§)§2).** In this regard, Swenson
(22).measured the intrinsic viscosity of low-DP cellulose fractions in cadoxene. He

found the cellulose chain to be inflexible up to DP 31.

Polysaccharide Conformational Analysis

Experimental studies, on both the macroscopic hydrodynamic properties of the
polysaccharides and direct x-ray diffraction measurements on the solid, when com—
bined with suitable theory, allow inferences to be made concerning the individual
linkage conformations. A related approach combines polymer configurational

statistics***

with an estimate of the linkage conformation in an attempt to simu-
late the observed hydrodynamic parameters. After suitable refinements a good fit is

then used to justify the resulting estimate of the linkage conformation.

Each of tﬁese approaches requires an extrapolation over several orders of
magnitude, from polysaccharide to disaccharide to make definitive statements con-
cerning the linkage conformation in the smaller molecules. Goring (12) points out
that theories developed for random coiling high polymers are not readily applicable

to extrapolation into the low molecular weight region. Factors such as frictional

Large negative temperature coefficients of the intrinsic viscosity are unusual
for polymers. ’

The viscosity of xylan also has a lérge negative temperature dependence (22).
In dealing with polymer conformations the terms configuration and conformation
are often used interchangeably in the literature.

* %k
k%%
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effects with the solvent and higher energy local conformations can become important
in the polymer. Brandt (60) proposed that high energy monosaccharide conformations,
such as flexible boat and twist forms, are necessafy to fully explain the negative
coefficient of viscosity in cellulose. This illustrates the concept that the
overall energetics of the polymer conformation can compensate for localized
increases in energy. Therefore, measurements of overall polymer dimensions do not

always relate directly to linkage flexibility.

A more specific problem occurs in the studyvof the hydrodynamics of cellulose.
It is not possible to achieve a theta-solvent condition for cellulose in any of the
common cellulose solvents. This severely 1imits the accuracy of any configurational
analysis based on light scattering or intrinsic viscosity data. More accurate
measurements are possible with cellulose derivatives soluble in organic solvents;
but in this case, the factors affecting the linkage conformation are different by

definition.

Despite the difficulties in relating the hydrodynamics of polysaccharides to
1ocol linkage conformations, much has been learned by studies of this type. Swenson
and coworkers (17) have determined tﬁe Pofod—Kratky persistence 1engths* for cellu-
lose, a number of cellulose derivatives and related polysaccharides, including;
cellulose in cadoxene and alkaline ferric tartrate solvents, galactomannan triace-
tate from guar, glucomannan triacetate from orchid salep tubes, and xylans from
spruce and birch. They used intrinsic viscosity data and molecular weight values
from a number of different investigators. They conclude that the main chain con-
figuration is similar for all of the hexosans and more rigid than for xylan. This

is attributed to the nonbonded interaction between the Cp and Cg groups on adjacent

*The persistance length is defined as the mean length of projection of an infinitely
long chain, along the direction of its first link (QL).
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rings of the hexosans. In a separate study (gg), Swenson determined that cellulose
maintains an extended conformation in the DMSO/PF solvent system. In contrast,
earlier work by Lebel and Goring (13), using intrinsic viscosity data, suggested

that birch xylan is configurationally* similar to cellulose.

Extension of the conformational energy mapping approach to predict the obsérved
solution properties of a polysaccharide is pos;ible using the techniques of sta-
tistical thermodynamics. Brandt and Goebel (63) give an excellent summary of the
techniques of the configurational statistics approach. As indicated previously,
Brandt anﬂ coworkers (60) have used this approach to reproduce the experimentally
determined?o2 for cellulose chains using a'small percentage of flexible monomer
units. A similar study by Yathindra and Rao (64) compares the calculated charac-
teristic ratios** (Cn) for xylan, mannan, and cellulose and shows that the C, for
xylan is the least. This indicates that xylan is the more flexible polymer. They
calculate that cellulose does not become a random coil below a DP of 2000 (65).

The same authors (66) find that consideration of nonbonded interactions only, gives
good agreement between calculated C,; values and an experimentally derived value.
Morris and coworkers (67) modeled the behavior of B-1,4-linked polysaccharide
polyelectolytes at low ionic strength and came to similar conclusions. On the other
‘hand, Brandt and Goebel (63) warn against drawing conclusions concerning linkage |
flexibility based on chain extensions or characteristic ratios. They calculate,

from the configurational entropy, that cellulose skeletal segments are slightly more

* Synonymous with conformation in this context.
The characteristic ratio is often taken as a measure of relative linkage flexibi-

2 2
lity. It is given by C,=<r,> where <r,> is the mean squared end to end distance,

nL2
n is the number of monomer units (DP), and L is the length of the monomer. Theory
shows that C, is a constant for random coils (61).
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flexible than those of amylose, yet cellulose chains of equivalent length are 10
times more extended in solution because of the configurational differences of the
éwo linkages.

X-ray measurements theoretically provide a direct means of investigating the
linkage conformation as it exists in the polymer. In practice, the diffraction pat-
tern does not contain sufficient information to compute a crystal structure without
resorting to numerous assumptions. Enough information is available to compute the
unit cell constants and symmetry. These values can be combined with model calcula-
tions to predict various parameters associated with the helical secondary structures
commonly found in the B-1,4-linked polysaccharides. Marchessault and Settineri (16)
used this approach to estimate the H;~ to H, distance in xylan as 2.4A. They pre-
dict that a weak intramolecular hydrogen bénd exists between 03 and Og~”. Recently,
a set of detailed n, h* maps, relating dihedral angles to the x-ray dérived helical
parameters, have been published (68). Sarko and Woodcock (69) have extended the
analysis one step further by calculating a minimum packing energy for a cellulose
crystal consistent with the x-ray data. They conciude that cellulose 1 is a
parallel chain structure with the Og atoms in the tg** conformation. Calculated ¢,
x values of 25° and -26°, respectively, were given. These are similar to the values
found in cellobiose (see Table I1). They also predict that both 05...05“ and 0y~-...
Og iﬁtramolecular hydrogen'bonds exist in the crystal. The same type of analysis
applied to the Cellulose II x-ray pattern leads to a prediction of antiparallel
chain packing (70), a conclusion that is difficult to reconcile with the mechanisms
of converting to the cellulose IT structure.

The several approaches to polysaccharide conformational analysis mentioned,

often have lead to conflicting results. Despite this, several conclusions have

*n is the number of residues per turn of the helix and h is the projection of the

monomer length along the helical axis.
**This refers to the dihedral angles 0-5,C-5,C-6,0-6, and C-4,C-5,C-6,0-6
tg refers to the trans-gauche conformation (41).
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emerged. Persistence length determinations on cellulose derivatives and on cellu-
lose in cadoxene have shown it to be a very rigid polymer. Measurements on other B-
linked hexosans indicate that they have similar rigidities. Studies on xylan show
that its persistence length is only about 1/2 that of cellulose indicating that it
is a more flexible polymer (17). The flexibility of cellulose and amylose, on the
other hand, are thought to be almost equal. The differences in their unperturbed
dimensions are attributed to the geometrical differences of the linkage (63). The
differences in flexibility between xylan and cellulose are thought by many to be a

result of the absence of Cg in the xylans.

One of the major inconsistencies remaining is the inability of most models to
explain the large neggtive temperatue coefficient of intrinsic viscosity found for
;he B-1,4-1linked polysaccharides in solution. This property is unique among high
polymers. Three different explanations have been offered in the literature:
Dehydration of the solvent (57), increasedllinkage flexibility (59), and increased
flexibility combined with a small percentage of nonchair ring forms (63), as the
temperature increases. Complete resolution of this problem will require an accurate
appraisal of the factors that affect linkage flexibility. The importance of non-
bonded interactions and the existence of intramolecular hydrogen bonds must be
determined. Recent spectroscopic advances offer the possibility to directly answer

some of these questions.
NEW TECHNIQUES FOR THE DIRECT OBSERVATION OF THE GLYCOSIDIC LINKAGE

Until recently no direct method has existed to explore the dynamic character of
the glycosidic linkage in solution. Several relatively recent advances have
occurred in both NMR and vibrational spectroscopy to reverse this situation. An

improved theory relating optical rotation to linkage conformation also has been
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developed (6,7). Of particular importance has been the development of Fourier

transform NMR.

Because of recent instrumental and theoretical innovations, NMR spectroscopy
is rapidly becoming the most powerful tool available for conformational and con-
figurational analysis. A variety of parameters related to the phenomena of magnetic
resonance exist to explore molecular structure. These include chemical shifts,
coupling éonstants, relaxation times, nuclear Overhauser enhancements (NOE), and
line shape; Each of these parameters 1is dependent on molecular structure as one of
its contributing factors. All have been used for .conformational and configurational
analysis either in proton magnetic resonance (1H—NMR) or carbon-13 magnetic reso-
nance (13C—NMR). A brief overview of the use of NMR for probing carbohydrate mole-

cular structure will follow.

NMR has been used as a major tool in the study of oligosaccharide con;,
figurations as illustrated by these few examples. Kamerling and coworkers (72) have
determined the configuration of the glycosidic linkage of several disaccharides by
observing the chemical shift of éhe anomeric proton for their methylated derivati-
ves. Minnikin (73) has done a similar study and has shown that the chemical shift
of the anomeric proton, at the nonreducing end, is affected by the anomer present
at the reducing end. More recently, Seymour and others (74,75,76) have extended

this type of work toward polysaccharide sequence analysis.

Many other types of studies, beyond configurational studies, are approachable
by means of NMR. Relaxation time measurements have been used to probe the inter-
action between cellulose and water in cellulose accessibility studies (11).‘
Relaxation measurements have been used to study rotational barriers in hindered

methyligroups in polycyclic compounds (78). This type of work should be directly
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applicable to the study of the effect of 2-substitution on the linkage conformation
in methyl glycosides. Recent work has appeared along these directions for methyl 8-

cellobioside.

Numerous cohformational studies involving small molecules have been reported,
usually with the employment of coupling constants in a Karplus type* relationship.
Horton and coworkers (79) used vicinal and geminal lH-NMR coupling to study car-
bohydrate ring conformers. Several éuthors (§gt§l) have shown that !3c-1m coupling
approximates a Karplus relationship and suggest that these measurements may be use-
ful in studying torsional angles at a glycosidic linkage. Many other examples of

the use of NMR in conformational analysis are available in the literature (82).

Several recent advancements in available NMR techniques have made these studies
in conformational analysis more routine. Fourier-transform (FT) methods have
replaced continuous wave (CW) methods as the most productive NMR technique. This
allows a rapid pulsing of all the excitable frequencies at much higher power inputs.
This replaces the much longer scanning of frequencies, at a very low power, employed
in the CW method. After pulsing, a period of‘free—induction decay (f.i.d.) is moni-
tored as a function of time. The final signal is a result of the exponential
relaxation of each resonance back to its preexcitation distribution. The f.i.d.
signal is then analyzed by Fourier analysis so that the typical NMR spectrum of
absorbance vs. frequency is obtained. The time for pulsing and monitoring the
signal is only a few seconds; thus allowing the process to be repeated many times in
a signal averaging technique. This rapid acquisition of data at much higher powers
drastically increases the sensitivity of the method (83,84,85). Additionally, it

provides information concerning molecular dynamics that could not be obtained easily

*A relationship between the dihedral angle and the assoclated vicinal coupling
constant. The relationship depends on the specific atomic system.
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by older techniques (83). Most important, FT-NMR has made 13c-NMR a routine labora-
tory procedure. This is most advantageous for the analysis of carbohydrates which

often have intractable lH-NMR spectra at low fields.

Improvements in magnetic field strength, brought on by the development of
superconducting magnets, have also lead to vast improveménts in lH-NMR spectroscopy
of carbohydrates (86). The effect of higher field strength is to separate closely
spaced lines arising from different nuclei without altering the coupling constants.
This results in improved resolution and a more nearly first order spectrum which is
easier to analyze. DeBruyn and coworkers (§1), using a 300 megahertz (MHz) spectro-
meter, have obtained and assigned the !H-NMR spectrum of the D-glucopyranosyl-(1-X)-
D—glucopyranoées (X=1,2,3,4, and 6). Hall (88), cémbining a high field instrument
with advanced pulse techniques, has correlated the 14-NMR and !3c-NMR spectra of
cellobiose. This later technique, referred to as two-dimensional NMR (2D NMR)
offers exciting new possibilities for the complete analysis of complicated car-
bohydrate NMR spectra and the extraction of the wealth of conformational information

contained within (§§E).

In recent years several specific examples have appeared of the use of 13c-1y
coupling to measure the glycosidic linkage angles of disaccharides. This work is an
extension of the early work by Lemieux (80,89). Lémieux used cyclonucleosides of
well defined geometry to develop a Karplus type relationship for a 3JCNCH system.*
He also found that 3JC0CH systems fit closely on this curve. Recently a 3JCOCH

Karplus curve developed entirely from monosaccharide data was published (8,81).

13¢c-1y coupling constants across the glycosidic linkage have been published for

maltose, (7,90) cyclohexamylose (8,90) cellobiose (7), methyl B-cellobioside-dg (8),

*The notation 3JCNCH refers to a coupling over three bonds containing a carbon-
nitrogen-carbon-hydrogen system of atoms. The coupling is between the outer atoms
(C and H).
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and for the corresponding peracetates (9,90,91). The 3JCOCH for the peracetates

of gentiobiose, nigerose, and laminarabiose have also been published (9,91). Values
for maltose and the cellobiose related disaccharides are given in Table IV along
with predicted ¢, x values. These can be compared to the solid state values given

earlier (see Table II for references).

The values obtained have several sources of uncertainty but nevertheless fit
reasonably well with data from the solid state. The value of x 1s inherently easier

to obtain because of the better resolution of the C;” signal in the 13¢c-nMr

spectrum. From this data Perlin and colleagues (8,90) claim that methyl
B-cellobioside does not change significantl& from its solid state conformation but
that maltose does. Furthermore, in comparing maltose to its acetate, they argue
that the interresidue hydrogen bond is not a major factor in determining the maltose
conformation in water. The use of !3C-enriched material enables the sign of + to be
determined by employing 13¢-13¢ vicinal coupling (9,91). This resulted in an

excellent agreement with the x value for cellobiose octaacetate in the solid state.

Rees (6,71,92) has developed a method to compare the solution conformation of a
disaccharide with its crystal structure by comparing experimental optical rotations
with those derived from the crystal structure data. He uses an additivity rela-
tionship to compute the calculated rotations. From this approach he concludes that
maltose changes conformation upon dissolving in D90. Cellobiose appears to retain
its crystal conformation in solution. TIts conformation appears not to be greatly
affected by temperature or solvent (6). This is in good agreement with conclusions
drawn from the coupling constant data. From the same work methyl B-cellobioside is
predicted to change conformation upon dissolving in D70. This is in contrast to the

findings of Perlin.



TABLE IV

¢, & VALUES DERIVED FROM 3Jcocy DATA2

3Jc4ocl‘ul‘
a,B—Cellobiose
a-Cellobiose octaacetate
Methyl B-cellobioside-dg

Methyl B-cellobioside
heptaacetate~dg

a,B-Maltose

Methyl B-maltoside
B-Maltose octaacetate
a—Mal;ose heptaacetate

Cyclohexaamylose-d,

AIn Hertz.
bThis was only an approximate value.
CThe nondeuterated compound.
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Another new approach that utilizes NMR to investigate glycosidic linkage con-
formations in solution involyes the measurement of proton spin lattice relaxation
times (lH—Tl) of the linkage protons. The relaxation mechanism involves a l/rij6
dependence where Tij is the distances between the observed proton and all others in
its vicinitfo Hall and coworkers (93,94,95,96) have shown that the glycosidic
linkage proton at C;” of a disaccharide relaxes more rapidly than the equivalent
anomeric proton on the reducing end. This results from an interring contribution
from Hy to its relaxation rate. Recently a valué of 2.1 to 2.2 R for the H{” to Hy4
distance in cellobiose was reported using this technique (53). The same authors
report some 13c-NMR T} measurements for methyl B-cellobioside that indicate that Cg
experiences a more hindered rotation than Cg~; suggesting>that steric interactions

with the linkage are important (97).

Recently a report has appeared that uses 13c-NMR chemical shift data to esti-
mate a X value of 0-5° for chitobiose (B-1,4-linked disaccharide containing 2-amino
2-deoxy glucose) in D90 (98). While this value is very speculative it illustrates .

the versatility of NMR in approaching problems concerning the conformation.

Yet another technique, useful for conformational analysis, is vibrational
spectroscopy. Infrared spectroscopy of solid cellulose (99,100,101), xylan (102),
and the corresponding oligosaccharides (99,100) have proven the existence of the
03..:05” intramolecular hydrogen bond in these molecules. The rapidly developing
technique of laser Raman spectroscopy has significant advantages for this type of

study.

The Raman effect is particularly sensitive to the carbohydrate skeletal vibra-
tions. These vibrations are the most sensitive to conformational factors and least
sensitive to intermolecular disturbances. Another advantage of both types of vibra-

tional spectroscopy is the short time scale at which the scattering process occurs.
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The time is short enough so that spectra averaged over all available conformations
are not obtained. Rather, spectral contributions are observed from each.conformer
present. This theoretically allows the determination of preferred conformations in
situations where one conformer is favored over another, as in a crystal. Finally,
in Raman the solution spectrg can easily be obtained in an aqueous environment since

water has only a weak Raman signal.

A significant amount of effort has been spent on the assignment of the Raman
bands to specific vibrational modes for the solid monosaccharides and inositols

using normal coordinate analysis (NCA) (103,104,105,106,107). Extension of this

work to cellulose has lead to the conclusion that cellulose 1 and II reside in dif-
ferent linkage conformations in the crystal and that this results in increased

susceptability to hydrolysis for the latter (108,109).

The NCA method also has been applied in the analysis of the solid state Raman
spectravof the cello- and xylo-oligosaccharides, maltose, and lactose (110,111).
The region from 300-400 em™! is particularly sensitive to conformational affects.
It was concluded that changes in the linkage conformation account for the spectral
differences between methfl B-cellobioside and cellobiose and that these confor-
mations are related to those present in cellulose I and II. Use of a structure

derived from the cellobiose crystal gave a reasonable fit to the xylobiose spectrum

suggesting that xylobiose has a similar crystal conformation.

Recently, studies have appeared giving the aqueous solution spectra of sucrose
and glucose (112,113). Specific bands at 600 em™! and 374 cm”! were assigned to the
linkage 0~-C-0 and C-0-C bending modes. Studies on the equivalent peaks for cello-
biose, in different solvents, might be useful in detecting changes in linkage con-

formation. Changes in the frequency and intensity of the CHy bending vibration of

glucose and sucrose, as a function of concentration, were interpreted in terms of
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the interaction between sugar molecules and sugar and solute. This has utility in

studying molecular association of carbohydrates in water and other solvents.
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APPROACH TO THE PROBLEM
OBJECTIVE

The objective of the thesis was to determine what differences exist in solution
in the dynamics and conformation of the linkage in the B-1,4-1linked oligosaccharides
related fo cellulose and xylan. The relétive importance of factors,.such‘és steric
hindrance and intramolecular hydrogen-bonding (03...05”) on linkage flexibility,
could then se assessed. In this way a more thorough unde;standing of the rela-

tionship between linkage structure and éolution properties might be developed.

HYPOTHESIS

The structural difference between the aldopentoses and the aldohexoses — the
hydroxymethyl group at Cg — is of primary importance to the phenomenological dif-
ferences observed for the B-1,4-linked oligo- and polysaccharides containing these
monomers. Other backbone structural factors, such as intramolecular hydrogen
bonding, are of secondary importance. The combination of these factors leads to
measurable differences in linkage conformation which can be related to differences
in solution characteristics and reactivity. Thus, the xylo-oligosaccharides are
more soluble and exhibit faster rates of hydrolysis, relative to the cello-
oligosaccharides, because of a more flexible and accessible glycosidic linkage, due

to the absence of Cg.-
APPROACH

While the hypothesis developed above could be inferred from the available

evidence, these effects had not been measured directly. NMR spectroscopy can
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theoretically be applied to the direct observation of these effects. The approach
taken was to apply several recent developments in NMR to explore and compare the
glycosidic linkage conformation and dynamics in the xylo—- and cello-oligosaccharides

in solution.

The glycosidic linkage angles ¢ and x can be estimated for the disaccharides
using 13¢-18 vicinal coupling across the linkage. The relative H;“ to H; distance -
can be determined using proton spin lattice (IH—TI) relaxation measurements.
Investigation of the dynamics of the linkage in the tri- and tetrasaccharides can
be accomplished using carbon-13 spin latticevrelaxation (13C-T1) measurements. This

requires complete assignment of the 13c-NMR spectra.

Interpretation of the results, in view of the known structures of the compounds
investigated, can then be used to assess the importance of the available steric
constraints on linkage conformation. This can be supplemented by correlatipg the
relative chemical shifts for the linkage carbons for a series of disaccharides to
the presence or absence of a reducing-end Cq. Determination of the existence of
intramolecular hydrogen-bonds in DMSO-dg solutions of both oligomer series can be
made using pertinent monosaccharide and disaccharide derivatives as models. Using
the appropriate models the presence of these interresidue bonds can be determined
by means of the effect of temperature\pn hydroxyl proton chemical shifts and by
interpretation of vicinal coupling with the ring protons. Solid state NMR can be
employed to study the effect of lattice forces on linkage conformation for cellu-
lose, cellobliose, and methyl B-cellobioside. The relative importance of these fac-

tors on linkage conformation and flexibility may then be assessed.
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SECTION II - DYNAMICS AND CONFORMATION.OF THE

B-1,4-GLYCOSIDIC LINKAGE
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EVIDENCE FROM CARBON-13 SPIN-LATTICE RELAXATION TIMES FOR
A DYNAMIC LINKAGE IN THE CELLO- AND XYLO-OLIGOSACCHARIDES

INTRODUCTION

Linear polysaccharides and their derivatives containing the R-1,4-linkage (e.g.
cellulose, mannan) are found to exist in rigid "rod-like" conformations with per-
sistence lengths extending up to 10-13 monomer units (1,2,3). Conformational energy
calculations using disaccharide models, the so-called ¢, x map, predict that the
number of allowed conformations are severely restricted in cellulose (ﬁjé). The
restriction is eased in the pentosans (xylan) because of the absence of the Cg
hydroxymethyl groups (6,7). The crystalline xylans are thought to form three—fold
helices (8), in comparison to the near two-fold helices in crystalline cellulose
(9). On this basis, the linkage in a B-1,4-linked xylan is said to be more flexible

than that in cellulose, meaning that it can adopt a more staggered conformation®.

X-ray diffraction studies on the crystalline polysaccharides, as well as hydro-
dynamic studies on dissolved polysaccharides, give indications of the types of
linkage conformations possible along the chain but do not indicate if the geometry
of a particular linkage is dynamic or static. 1In cellobiose, the solution confor-
mation, determined by optical rotation (10), has been shown to be the same as in the
solid state.”* While it most certainly is true that a dynamic state exists in which
the solution conformations oscillate in the neighborhood of the known solid state ¢,

X values, no direct experimental verification of this exists. Rees and Thom (12)

* The linkage protons (H;~“ and Hy) are twisted further away from their minimum

. separation value which defines a two-fold helix.
*The solution conformation of methyl B-cellobioside determined by NMR (11) and
optical rotation is similar to that of crystalline cellobiose.
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have shown that the optical rotation is a function of both temperature and solvent
for cellobiose solutions indicating that multiple linkage conformations are

possible.

Melberg and Rasmﬁssen (13) have receﬁtly used an empirical force-field calcula;
tion to evaluate the possible linkage conforﬁationsAfor cellobiose. They fiﬁd thét
six local minima are present; two of these in 947% of the isolated molecules. A
major advantaée of their approach is that the most favorable path for conformational
conversion can be investigated. An energy barrier of approximately 0.7 Kcal/mole‘is
found between the two most populated minima. - From this value they predict that the
rate of conformational conversion is fast on the NMR time scale and similar to the

overall rate of molecular tumbling.

For rapidly rotatinglmolecules theory predicts that if internal reorientations
are faster than overall molecular tumbling, then, in principle it is possible to
detect the internal motions by relaxation studies (14). Woessner's (15) model of
internal reorientation, superimposed on overall molecular. tumbling, predicts an
increase in the relaxation time of the reorienting group in the case of intramolecu-
lar dipole-dipole relaxation. This suggests that the measurement of 13¢ spin—
lattice (T;) relaxation times might provide a method to prove the, dynamics of the

B-1,4 glycosidic linkage.

Allerhand and Doddrell (lé) have used 13C—T1 measurements to separate and
assign the terminal galactose signals from those of the adjacent internal galactose
in stachyose. 1In this case the galactose units are joined by a flexible o-1,6-

linkage. Neszmelyi, et al. (17) calculated the average NT},” (designated NT)

*Average of the normalized spin-lattice relaxation times for each carbon within the
pyranose ring system. Normalization refers to multiplying each carbon by the
number of attached protons. 1In an isotropically rotating system all normalized
relaxation times will be equal within experimental error for each monomer unit.
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values for the carbons of each monosaccharide unit in the steroidal oligosaccharide
k-strophanoside. They showed that the average value increases toward the terminal
B-1,6-1inked glucose unit. This allowed them to sequence the sugar units of the
oligosaccharide side chain. Czarniecki and Thornton (18) investigated the
B-1,4-1linkage in the oligosaccharide, N—acetylneﬁraminyl lactose® as well as in lac-
tose. They showed that the terminal glucose carbons in NeuNAc-Lac have a larger
value of ﬁfi indicating that, in this case of a nonlinear oligosaccharide, the

linkage is flexible. No difference was observed in the two rings of lactose.

In another type of study using relaxation times, Froix and Nelson (19) have
measured the 1H—Tl and Ty as a function of temperature for a dry cellulose. The
data suggest that in amorphous cellulose there is a partially hindered rotation at

the linkage.

The present paper uses 13C—T1 measurements to verify experimentally that the
geometry of the B-1l,4-linkage is dynamic in the aqueous cello- and xylo-

oligosaccharides. Measurements were made up to the tetramer.

EXPERIMENTAL

Commercial samples of glucose, xylose, and cellobiose were used. The
cellotriose, cellotetraose, xylotriose, and xylotetraose were obtained from other
laboratories (see Appendix X). Their 13¢c-NMR spectra have been previously assigned
(20). Xylobiose was synthesized from a Koenigs-Knoer condensation of 2,3,4 tri-O0-
acetyl—-oa-D-xylopyranosyl bromide and benzyl 2,3 anhydro-B-D-ribopyranoside, as
described elsewhere (21). Prior to use, an aqueous solution of the xylobiose was

treated with IR-120 ion—exchange resin (acid form) to minimize the effects of

*NeuNAc~-Lac [NeuNAc—-(2-3)-B=galactose—(1-4)-glucose]
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paramagnetic impurities. Samples were dissolved in NMR tubes (5 mm) using D10
(99.8%) without prior exchange. The concentrations used were dictated by considera-
tions of soiubility and available spectrometer time. The different concentrations

represent no difficulty since internal comparison of relaxation times was the goal.

13¢c-NnMR spectra were measured at 25.05 MHz on a Jeol FX-100 FT-NMR spectrometer
equipped with a Jeol sample temperature controller (+ 1°C) and an internal deuterium
lock. Spectra weré obtained under conditions of complete proton noise decoupling.
Relaxation measurements were by the inversion-recovery (IR) method (22) over a 2000
Hz band width with 8K data points collected in the time domain. The. pulse repeti-

tion time (T) was 4-5 Ty over 10 t values (180°-t-90°-T),.

T; values were determined using an exponentially weighted least squares fit to
the semilogarithmic plot of In ((My—M)/2 Mo)* against t. Peak heights were used
for M, and M. Individual Tllvalues for specific carbons were rejected for use in
the calculation of ﬁfl valués for the following reasons:

a) large variance from the least squares fit;

b) nonideal behavior determined by a large residual magnetizatlon of the
least squares value for (M o M¢)/2M, at t = 0;

c¢) coincidence with a larger signal, -except in the cases resulting from
coincidence of both a— and B-anomer signals for carbons remote from the
anomeric carbon, or coincidence of equivalent carbons on the ‘internal rings
of the tetrasaccharides.

All samples were run at least twice. Comparisoﬁ of Ty values between individual rings

in a single oligosaccharide was consistent in all cases, thodgh the results varied

by 10-15% on an absolute basié (up to 407% for cellotetraose) for different runs.

NOE (nuclear Overhauser enhancement) Qalues were obtained by the gated

decoupling technique (23). The values were consistent with those in the literature,

*Mo is the equilibrium z—magnetization; My the z-magnetization after time interval
t. Refer to Appendix I for a more detailed discussion.
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(24) indicating that only the dipole¥dipole mechanism for relaxation is operative.
NOE determinations were not made on the trisaccharides and above because of low

signal to noise.

Raman spectra were obtained at room temperature on a Jobin Yvon Ramonor HG2S
spectrometer interfaced to a Tracor Northern TN-1500 computer. The spectrometer
operated in the single monochromater mode; signal averaging was employed. The
exciting source was the 4880 A line of a Coherent Radiation Laboratories model 52 -
Argon ion laser. The solid state NMR spectra were obtained on a modified Jeol

FX-60Q spectrometer equipped with CP/MAS capabilities (see Acknowledgments).

RESULTS

T} Analysis

For molecules the size of small oligosaccharides the predominant relaxation
mechanism is expected to result from !3C-lH dipole-dipole (DD) interactions. For
protonated carbons of isotropically rotating molecules the spin-lattice relaxation
time (DD) is given by (14)

2 2 -6
1/TiPD = N #2 vy Yo rcuTR (1)

where rgy is the carbon-hydrogen internuclear distance, N the number of directly
attached protons, and Tgp the motional correlation time of the C-H vector. For equal

internuclear distances this reduces to
NT;PD o 1/TpR, (2)

so that longer NTlDD values indicate shorter correlation times, i.e., more rapid
motion (18). In the limit of isotropic rotation the NTlDD will be constant. For
anisotropic rotation more than one correlation time is required, complicating the

analysis (15).
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Berry et al. (24) have shown that methyl B-cellobioside (MBC2), by virtue of
nearly equivalent NT; values (except-OCH3), appears to tumble isotropically because
all of the C-H bonds are axially oriented. In contrast, a-lactose and methyl B-
lactoside (MBL), each of which contains at least one equatorially disposed C-H
bond, exhibit anisotropic tumbling. From these results they suggest that all oligo-
mers of B-D-glucopyranose (or by inference, any monosaccharide with every C-H vector
oriented in the same direction) will exhibit apparent isotropic tumbling despite an
anisotropic rotation about the principal axis of the molecule. These authors

further show that the a- and B-anomers of lactose tumble at similar rates.

In the case of apparent isotropic rotation, comparison of ﬁT& values should
provide a sensitive indicator of the relative mobilities of the individual mono-
saccharide units of a linear oligosaccharide. As previously discussed, if the rate
of internal reorientation is faster than the rate of overall tumbling, then, the ﬁfl
values for the individual monosaccharides should reflect their difference in mobili-
ties (14). Berry et al. (24) observed no difference in the NT; values for the two
rings of lactose, MBC2, or MBL implying that the rings tumble at the same effective
rafe in these disaccharides. They suggest that the linkage is rigid. However, the
possibility exists that the internal reorientation is not observed because of the
nearly equal size.of the individual monomer units. If the internal reorientation is
fast then in the trisaccharides the terminal units should appear to rotate relative
to the rest of the molecule since'the latter possess more inertia. Therefore, the
ﬁTi values should differ between the terminal and central rings. The difference
between ﬁfl values should increase in the tetrasaccharide since the difference in

inertia should increase between the terminal unit and the remainder of the molecule.

-Mono— and Disaccharides

Table I contains the results of the Ty determinations for the mono- and

8-1,4-1inked disaccharides of glucose and xylose. Since the results were obtained




TABLE 1

13¢ SPIN-LATTICE RELAXATION TIMES (SEC) FOR GLUCO- AND
XYLO- MONO- AND B8-1,4-LINKED DISACCHARIDES IN D70

Resonance?
CompoundP(%,W/V) 1 2' 3’ 4! 5 6' 1 2 3 4 5 -6
Glucose (26.8) 0.80 0.74 0.7F 0.71 0.71 0.41
- 0.69 0.71 0.72 - 0.74 0.40
Xylose (25.8) 1.56 1.5 1.60 1.64 0.88¢
1.48 1.69 1.57 1.65 0.78
Cellobiose (10.1) 0.47 0.47 0.47 0.46  0.47 0.24 0.49  0.54 0.50 0.45 0.45 0.24
0.39  0.48 0.49 0.46 0.49 0.24
Xylobiose (13.5) 0.78 0.75 0.80 0.79  0.42 0.87 0.744 0.704 0.79 0.40

0.61 0.78¢ 0.83¢ 0.80 0.34

d4g-anomer given on the top row. The assignments were based on the literature; gluclose (26), xylose (26),
cellobiose (26), and xylobiose (20). - ._—

bconditions: gluclose: 32°C. 350 pulses; xylose: 36°C, 300 pulses; cellobiose: 31.5°C, 1750 pulses;
xylobiose: 36°C, 1750 pulses. .

ClLarge variance from the semilogarithmic least squares plot, value not used in NT; calculation.

dThese values can be interchanged.

" €These values can be interchanged.

fTo get the NT} value multiply by 2 for C5 and Cg xylose and glucose, respectively. The g-C) value is
not used to calculate NT|. Values given are plus or minus 1 standard deviation. NR refers to the non-
reducing end-group for both anomers combined. :

_ £
NT}

0.75+0.05
0.74%0.04

1.59%0.04
1.62¢0.06

0.485%0.03
0.48%0.01

0.47%0.01(NR)

0.78+0.06
0.79%0.03

0.79%0.03(NR)

...817_
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under conditions of unequal microviscosities® no attempt at comparison of the abso-
lute values is made. In agreement with earlier work (35,32) the NT; values for
individual carbons are nearly equal within experimental error for each anomer, indi-
cating isotropic and equal rates of rotation. Slight deviations from this generali-
zation are found; for example, the NT; value for Cg in glucose is high as a result
of either a very slight rotation about the C5-Cg bond or a slight error in the T)

value.

The disaccharides algo appear to rotate isotroplcally as evidenced by the close
agreement of the‘ﬁfl values for each ring. The T; value for a-C; is an exception;
in all cases it is significantly less than fhe avérage NT; value of the remaining
carbons. This has been related to the direction éf the a—-C; C-H bond which lies

nearly parallel to the long axis of the molecule (24).

Tri- and Tetrasaccharides

The resolution of individual signalsrfor carbons on the terminal units of the
oligosaccharides is a necessafy condition for the comparison of ﬁfl'valuesf Heyraud
et al. (27) have reported 22 separate signals in the 13c-NMR spectra of both
.cellotriose and cellotetraose. Spectra of comparable resolution were obtained in
this study allowing the determination of individual T values for most of the ter-
minal carbons. Figure 1 gives the spectrum of xylotetraose; 18 separate peaks are
observed illustrating the resolution of the terminal carbon resonances in the
xylooligosaccharides. Assignments for the cello- and xylooligosaccharide spectra

are based on variations in peak height and were given elsewhere (20).

Figures 2, 3, and 4 summarize the T; data for the f-1,4-linked tri- and tetra-

saccharides of glucose and xylose. Using the existing literature assignments

*Differences in molecular environment which will affect the overall rate of tumbling
and hence the absolute value of Tj.
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XYLOTETRAOSE

Figure 1.

1 L
110 100 90 80 70 60 50
PPM

¢

13c-NMR spectrum of xylotetraose in Dy0 (6.2%, w/v) at 35°C using a 2000
Hz spectrum width, 8192 K data points in the time domain, 5000 pulses,
and 2.1 sec between pulses. Assignments(20): 102.7 ppm (1"), 102.5
(1",1'), 97.3 (B-1), 92.8 (a-1), 77.4 (a-4), 77.2 (4", &', B-4), 76.4
3"'), 74.8 (B-2)*, 74.7 (B-3)*, 74.5 (3", 3'), 73.6 (2"'), 73.5 (2",
2y, 72.2 (o=2)*, 71.8 (a=3)*, 70.0 (4"'), 66.1 (5"' ), 63.8 (5", B-5),
and 59.7 (o-5) where * indicates the assignment is speculative.
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NT,=0.36 0.01 NT,=0.30%0.0! NT,=0.36%0.04

0.18

cellotriose

NT:1=0.34%0.01 OH

NTi=0.425%0.03 NT,=0.355% 0.0l OH NT120.45%0.02

xylotriose

NT1=0.41%0.04 OH

Figure 2. 13C—T1 (sec) for cellotriose (10.78%Z (w/v), 36°1 C) and xylotriose
(11.71% (w/v), 34.5°C) in D50 using 3500 pulses and a delay of 2.1 sec,
for cellotriose, and 6750 pulses and a delay of 2.2 sec for xylotriose.
Each data set represents 10 data points. Legend a: value not used in
the calculation of NT; because of a possible error in the T; value due to
either poor S/N or close proximity to another peak (see text for explana-
tion for a-C; signal). b: coincident with a larger signal. «c:
assignments can be reversed with nearby signal.




NT120.46£0.01

Figure 3.

NTi20.49%0.07

NTy=0.3920.02
A\

cellotetraose

NTy =0.4720.05 OH

13C—T1 (sec) for cellotetraose (7.75%, w/v) in D90 at 59°C using 4500
pulses, a delay of 3.0 sec between pulse sequences, and 10 data points.
Legend a: value not used in the calculation of NT; because of larger
error in the T| value due to poor S/N or close proximity to a larger peak
(see text for explanation for o-C; signal). b: coincident with a larger
signal. c¢: assignments can be reversed, the average of the two values
used to calculate NT; for rings B and C.

_Zg_




NTi= 0.42%20.01

Figure 4.

NTi=0.3120.01 NT120.42%0.02
A

_Eg_

xylotetraose

OH

NTi=0.41%20.04

13C—T1 (sec) for xylotetraose (6.20%, w/v) in D70 at 35°C using 4000

‘pulses, a delay of 2.1 sec between pulse sequences, and 10 data points.
Legend a: value not used in the calculation of NT; because the close

proximity to a larger peak (see text for explanation for o-Cj signal), b:
coincident with a larger signal, c: assignments can be reversed with

nearby signal.
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results in a separation of T; values so that the ﬁfl of the terminal units are
significantly different. Clearly, in view of the previous discussion concerning
internal reorientation, the B-1,4-linkage appears to possess a rapid internal motion

at the linkage.

It should be emphasized that in the tetrasaccharides most of the internal car-
bons are coincident so that specific Ty values for individual carbons are not
available. Nevertheless, on the basis of the disaccharide results it is expected
that the T; values are nearly identical for equivalent carbons on the internal
rings, and therefore, the use of the values given here to calculate ﬁTi seems

reasonable.

Corroborating Evidence

Comparison of the Raman spectra of crystalline and dissolved (10.1%, W/V; D50)
cellobiose reveals a significant increase in the width at half height (whh) for the
low frequency peaks common to each spectrum. For example, the peak at 570 em™! has
a whh of 10-13 em™! in the solid in comparison to 52‘cm_1 in D70. Comparable
results are observed for xylobiose. This region of the spectrum is comprised of
conformationally dependent heavy atom bending motions (29). In contrast to NMR, the
time scale of the Raman effect is very short, so that, instead of a time average,
all conformations are represented in the spectrum. Thus from the Raman data, it can
be inferred that many conformations are present in cellobiose or xylobiose in solu-
tion, however, it cannot be concluded directly from this data alone that there is a

shift between conformations for individual molecules.

Similar conclusions can be reached by inference from comparisons of the solid-
state NMR spectra of amorphoué cellulose and crystalline cellulose I (30) with the

DMSO-dg solution spectrum of a low-DP cellulose (20). Comparisons show that in the
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spectrum of amorphous cellulose the individual signals afe significantly shifted and
broadened® from those in the cellulose I spectrum. Additionally, the solution
spectrum closely parallels that of amorphous cellulose. The peak broadening in the
amorphous cellulose spectrum probably results from a large number of linkage confor-
mations, whereas, the crystalline cellulose spectrum represents at most a few
linkage conformations (30). The similarity of the solution and amorphous cellulose
spectra suggests that the large number of linkage conformations persists in

solution.

DISCUSSION

Most previous data, as well as the new evi&ence from solid-state NMR and Raman
spectroscopy, point toward the existence of multiple linkage conformations in the
dissolved ceilo— and xylooligosaccharides. The average of these confo;mations is
expected to be similar to the solid—state'conformation determined by diffraction
methods (10,11). Nevertheless, experimental verification that the B-1,4-linkage
exists in a dynamic state has not been previously obtained. The evidence given in
the present paper rectifies this; it is clearly shown by the nonequivalence of ﬁfl
values that the tri- and tetrasaccharides possess a dynamic linkage. furthermore,
it can be inferred that all B-1,4-linkages in solubilized oligomers are dynamic
including that of the disaccharide in which the ﬁ?l values are equivalent. Clearly,
conformational studies based on NMR must be discussed in terms of time average

conformations.

Comparisons of the data in Fig. 2-4 suggest several significant points. First,
the difference in ﬁfl values between terminal and internal monomer units increases

slightly with increasing chain length. This parallels the difference in size of the

*Particularly the Cy4 signal.
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two segments of the molecule, namely, the terminal unit and the remainder of the
molecule. Secondly, even though the xylooligosaccharides are expected to be more
flexible, the difference oflﬁfl values between the terminal and internal units is
similar to that of the cellooligosaccharides. Apparently the rate of reorientation
is similar in the two oligosaccharide series despite the probability that the xylo-
oligosaccharides possess more available linkage conformations (ﬁgg). Finally, the
rate of reorientation must be as fast or faster than the rate of overall anisotropic
rotation. This is in agreement with the theoretical prediction of Melberg and

Rasmussen (13).

Other additional features of the data‘can also be discussed. First, there is
no difference between the'ﬁfl values for the two terminal units, with respect to the
internal units, within experimental error. This is despite the expeétation that the
linkages have different properties in the cellooligosaccharides (31,32). This is a
further indication that the rate of internal reorientation is similar at all
B-1,4-1inkages. 1t is possible that slight differences are masked because of the
1érger errors associated with the smaller signals of the reducing-end and the T,

measurement in general (~10%).

Secondly, the anisotropic character of the overall rotation is observed in all
the compounds studied with two or more monomer units. In each case the NT; value of
a-C] is significantly less than the value found for any other carbon in the mole-
cule. This is related to the nearly parallel orientation of the a-C; C-H bond with

respect to the long axis of the molecule, the major rotational axis (24).

Finally, a note of caution should be made toward the over-extension of the use

of the present T data in calculating correlation times. The applicability of the
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Woessner® treatment (15) is questionable in the present case (33). Furtherm&fe,
molecules of this size that interact strongly with both the solvent and other like
molecules possess correlation times neaf the extreme narrowing limit. Therefore,
the simplifying assumptions often employed become tenuous (34). While the increase
in'ﬁfl values for the higher-oligosaccharide terminal units supports the contention
that Tp is less than the Larmor frequency we were unable to confirm this with
accurate NOE measurements. The relatively low concentrations used resulted in low
signal to noise producing large errors in the measurement. Larger sample sizes

could alleviate this problem.

In conclusion the following points can be made concerning the g-1,4-linkage in
the linear oligosaccharides of glucose and xylose: a) the linkage is dynamic with
an interﬁal reorientation as fast as or faster than the overall rate of tumbling, b)
the internal reorientation is superimposed on an anisotropic rotationm about the long
axis of the molecule, and c) discussions of the NMR-determined linkage conformation

in solution should be in terms of a time average.

*Method of calculating correlation times from relaxation rates by assuming a speci-
fic model for molecular reorientation. Refer to Appendix I for details.
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A COMPARISON, USING NMR,  OF THE LINKAGE CONFORMATIONS
OF XYLOBIOSE AND CELLOBIOSE IN SOLUTION

INTRODUCTION

The properties of the B-1,4-linked hemicelluloses, cellulosics, and related
oligomers, are significantly related to the conformation of the linkage.
Hydrodynamic studies on the dissolved polymer (1,2,3), x-ray diffraction analyses on
the solid (4,5), and model studies that account for various interactions at the
linkage (6,7), all have been utilized to investigate its conformation and inherent
flexibility. Cellulose™ and xylan** are characterized as rodlike random coiling
polymers with an extremely limited set of available conformations (6,7). The xylose
containing structures are generally considered to have a linkage of greater confor-
mational freedom (flexibility), by virtue of the absence of the Cq hydroxymethyl

group (2,8), though no direct evidence pertaining to this has been published.

Figure 1 depicts the structures and dihedral angle nomenclature for the model
disaccharides B-xylobiose (1) and B-cellobiose (2). The only primary structural
difference is the absence of Cg in both rings of xylobiose. A complete confor-
mational description results from a knowledge of the linkage dihedral angles, § and
X, and the bridge oxygen bond angle T; assuming that the geometry of the monomer

. . . kkk
units 1s invariant.

* Defined here as the poly-(B-1,4-glucopyranose); an aldohexopyranose. Cellobiose

will be used as a model for the cellulose linkage throughout much of this report.
Defined here as the linear poly~(B8-1,4-xylopyranose); an aldopentopyranose. In
nature, xylan 1s always found with some type of side chain. Xylobiose
(8-1,4-xylopyranosyl-D-xylopyranose) is used as a representative model.

This 1s a reasonable assumption on the "average" since the monomers are known to
be predominantly in the Cl conformation (9). Local ring "breathing" motions are
of course occurring all the time but they are minor so that the average can be
accepted as the Cl conformation.

k%

fhX
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. Hy

Figure 1. Depiction of B-xylobiose (R=H) and B-cellobiose
(R-CHy0H) with the linkage angles ¢, x, and T
defined. The ¢, x value of 0° is assigned to the
conformation in which the Cy+-Hj: bond is cis to
04~C4 and C4-Hy is cis to Cy”-01° for ¢ and Y,
respectively. The positive sense of ¢ and x are
defined by the Newman projections shown in the
figure. This definition is the same as that used
by Leung and Marchessault (3,10). The angle T is
the Cy--04-C4 bond angle. The nonreducing end
is primed to facilitate discussions concerning
the higher oligomers.

Most previous efforts to determine the conformation of the B-1,4~-1linkage have
involved a large extrapolation from the physical property measured or have been
limited by the assumptions of the model. The exceptions are the x~ray diffraction
studies of several related disaccharides (lljlg)lgjli) and the corresponding aceta-
tes (10,15). The results for the angles ¢ x, and T are summarized in Table I.
These studies, in terms of.determining the preferred linkage conformatidn, are

limited by the constraints of lattice packing.
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TABLE I

¢, x DETERMINED BY X-RAY DIFFRACTION METHODS

¢ X T Reference
B-Cellobiose ‘ 45 -14 116.1 1)
Methyl B-cellobioside 25 -38 115.8 (12)
B-Lactose monohydrate 27 =24 117.1 (13)
Aldotriuronic acid trihydrate? 30 35 113.8 (14%)
Cellobiose octa-acetate 44 16 116.8 (15)
B-Xylobiose hexa-acetate 20 -15 117.9 (10)

80-(4-0-methyl-a-D-glucopyranosyluronic acid)-(1-2)-0-B-D-xylopyranosyl-
(1-4)-xylopyranose trihydrate. Values given are for the B-1,4-linkage.
Until recently, the relatively unconstrained conformation of the linkage in
solution has not been amenable to study by direct methods*. A less constrained
linkage is of more general utility in understanding the local factors that affect
its conformation and flexibility. The properties of the dissolved sugars are also

more directly related to their rheology and organic chemistry.

Recent developments in NMR have made it possible to investigate directly the
linkage conformation of model oligosaccharides in solution. Perlin and coworkers
(létlltlﬁnlg) have measured interresidue 13c-lu coupling in maltose, cyclohexamy-
lose, cellobiose (2), methyl 8—ce110biosidé—d8 (1), and their peracetates. Three-
bond coupling constants across the linkage 3J(C1Hi) were determined by analysis of
the fine structure of the proton coupled 13c-nMr spectrum at natural abundance.

Values of 4.2 Hz and 4.3 Hz were obtained for 3J(C4H1‘) and 3J(C1'H4) in compound 7,

*In a polar medium, such as water, the dissolved state is still far from ideal. 1In
the concentrated solutions often required for spectroscopic studies association may
play a role in determining the linkage conformation. 1In dilute solution the
solvent can have a significant effect.
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respectively. These values translate to (¢, x) values of +25-30° each, using an
empirical Karplus relationship for the 33 ¢c-0-c-H system. Other workers have
measured both interresidue !3¢-lH and 13¢c-13¢ coupling using 13¢c selective enrich-
ment for cellobiose octaacetate (20,21). A value of 5.5 Hz was obtained for
3J(C1'H4). This was related to a x value of about +!5°. The 13¢c-13C coupling

constant, 3J(C1’C5), allowed a determination of the sign.

Hall and coworkers (21,22) have taken an alternate approach which measures the
proton to proton (H}“-Hg) interresidue distance. They measure the contribution of
Hy to the spin-lattice relaxation time (T;) of Hj”. Since the relaxation of H}” is
dominated by the dipole-dipole mechanism ail/rij6 dependence exists. A value of

° g
2.1-2.2A for the H;” to Hy distance in cellobiose has been reported (Z).*

In this work we use the NMR techniques discussed above to compare the
B-1,4-1linkage conformation in solution of the xylose- and glucose—containing
disaccharides. Emphasis is given to the disaccharides 1 and 2 and their methyl-g-
glycosides in Dy0. Some measurements were also obtained in DMSO-dg. Raney nickel
deuteration of the hydroxylated skeletal carbons was used in some instances to
simplify the spectrum (l§ngﬁmgij' This approach has the potential to allow a direct

determination of the effect of the Cg hydroxymethyl group on the linkage structure.

RESULTS AND DISCUSSION

Proton Spin Lattice Relaxation to Measure the H;i” to H4 Distance

As a means of comparing the Hj;“ to H4 distance in the disaccharides 1 and 2
thelr proton spin-lattice (1H—T1) relaxation times were measured. 1H—Tl relaxation

times were measured on degassed samples to ensure that relaxation due to oxygen,

which is paramagnetic, did not occur (26). The temperature was controlled by means

*This value was reported as a personal communication in Ref. (7).
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of a Jeol Model NM 5471 temperature controller. Samples were run consecutively to

provide a check and to guard against fluctuations in temperature.

Table II gives the average 1H—Tl relaxation times for the anomeric protons of
1 and 2 at several temperatures. Values are averaged over all samples and include
both resonances of the nonreducing end doublet (H;”) and in most cases the upfield
resonance of the reducing end doublet (Hj). At the lower temperatures the downfield
peak of the H; signal is partially obscured by the solvent (HOD) peak. The T
values for the individual lines are given in Appendix 3. Figures 2 and 3 show the

31°C lH-NMR spectra of 1 and 2, respectively. The anomeric protons are labeled.

TABLE I1I

AVERAGE 1H—T1 VALUES FOR CELLOBIOSE AND XYLOBIOSE

Ti(sec)

Compound Temp. (°C) H] H{™ Rl‘/Rlb
Cellobiose (2) 31 0.83 0.38 2.2
~ 74.5 2.14 1.14 - 1.9
c 33 0.84 0.36 2.3
c 42 1.1 0.52 2.1
Xylobiose (L)a 31 1.12 0.61 1.8
74.5 2.42 1.57 1.5

4Combines two determinations at 31°C and 31.5°C, respectively.
le‘/Rl is the ratio of the relaxation rates (R). R = 1/Tj.
CValues from Hall (22).
In the disaccharides, the proton spin lattice relaxation should result entirely

from the dipole-dipole (DD) mechanism (22,27). Equation 1 gives the relaxation time

for dipole-dipole relaxation™ (22).

*Refer to Appendix I for details.
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HOD p—dioxane

H|'

E};}

~-H,
L 1 1 1 ! I 1
6 5 4 3 2 1
PPM
Figure 2. lH-NMR spectrum of xylobiose in Dy0 at 31°C.
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L ! 1 1 ! !
6 5 4 3 2
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Figure 3. lH-NMR spectrum of cellobiose in D,0 at- 31°C.
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2 2 6 ' o
I/Tl 1 = ){2 Y1 Ysﬁ(rls . TIS) (1)
where Yy is the magnetogyric ratio, W is Planck's constant over 2w, r is the distance
between nuclei I and S, and Tyg is the motional correlation time for the vector be-
tween nuclei T and S. S and I refer to the donor and relaxing nuclei, respectively.
Equation 1 is strictly valid only in the motional narrowing region; a reasonable

approximation for moderately sized organic molecules.

Contributions to the relaxation of nucleus I can be both intra- and inter-
molecular. At low concentrations and in the presence of a deuterated solvent (D,0)
only the intramolecular interactions are important. Equation 1 then simplifies to:

4 -6
(R)p = #2 v y T (r15 11g) (2)
S

where R is the relaxation rate of nucleus I and is the reciprocal of its relaxation
time. 1In using this equation, it will be assumed that only intramolecular protons

are significant contributors to the DD relaxation mechanism of nucleus I.

For isotropically rotating molecules,* exhibiting only intramolecular DD
relaxation, the ratio of relaxation rates is simply related to the ratio of the

interproton distances. This is given by the expression (22);

6

S
= (3)
(Rpd1, : (r1,5)7°

The summations on the right would include each proton distance for which an

interacting proton S is close enough to contribute significantly to the relaxation

* TIS is a constant for all T and S.
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of nucleus I. For the anomeric protons the ratio R;“/R; (Table III) is then a
measure of the ratio of the relative distances from the nonreducing end (NRE) and

*
reducing end (RE) anomeric protons to all intramolecular protons that contribute to

their relaxation. Because of the position of the NRE anomeric proton, its relaxa-—

tion will include contributions from RE protons, most notably Hy.

It is noteworthy that the R;“/R; ratio of 1 is less than 2.1. Hall (22)
reported a number of these values. The only value less than 2.1 was for gentiobiose
which is a-1,6 linked.* This linkage is expected to be considerably more flexibdle

than the B-1,4-linkage of 1 or 2.

To apply this simplified picture to the analysis of the interring proton
distance (r;“_,;) for compounds 1 and 2 requires some estimation of the proton to
anomeric proton distances in the two pyranose rings. Table I1I gives the distances
reported for crystalline 2, methyl B-cellobioside (3), glucose (5), and methyl
B-xyloside (g)** (11,12,28,29). Values measured from a Drieding model, assuming a
nonstrained Cl conformation, are also included. Only distances of less than 3.5 A

are given because of the rapidly diminishing importance of more distant protons due

to the sixth power dependence.

Several significant points can be made from the data in Table III. First,
except for interring contributions, the relaxation of the anomeric protoms will be
predominantly via the 1,3 diaxial interactions with H3 and Hg. The only other
significant intraring contribution would come from the vicinal proton Hp. The
contribution of Hy should be 10-15% of that of H3 and Hg combined and would be simi-

lar for both rings.***

*  Gentiobiose has a value of 1.7 at 65°C.

* It was not possible to calculate reasonable values from the published fractional
atomic coordinate data for aldotriuronic acid trihydrate (14).
**Refers to both rings in the disaccharide in this case.
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Another point is the variatioﬁ in intraring proton distances in the various
crystal structures; including a significant difference between the two rings in com-
pound 2. These variations result from strain applied to the individual 6—membefed
rings as they are forced to accommodate the crystalline lattice. In solution these
strains would be largely absent. In addition, the chair structure in solution is a
more dynamic structure so that the values calculated from the Drieding model are

probably more realistic.

In the Drieding model the shorter distance for H;-Hg; relative to Hj;-Hj,
results from the shorter C-0 bond distances. In the nonreducing ring of
crystalline 2 this distinction is lost because of a flattening of the ring. This

represents a strain on the ring that probably is not present in solution.

Finally, in 2 the only significant interring contribution to the relaxation of
H;” would come from H4 and Hg,. The gauche proton at Hg could contribute signifi-
cantly to the relaxation of Hj, only if there are specific significant deviations
from the 2-fold helix and if it remains in the tg conformation. In the crystalline
2 conformation the expected contribution would be approximately'ZOZ of the total
interring contribution. 1In solution the contribution would be less because of many

contributions to the average conformation for which the Hi” to Hg distance exceeds

3 A

If it is assummed that the geometry of both disaccharide pyranose rings 1is the

same in solution and that the molecules rotate isotropically, then the relationship

R
(1 - E%’) is directly related to the interring contribution to the relaxation of
Hi”. These values are given in Table IV. Since the contribution from Hg is small

an estimate of ry”_; can be made.
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TABLE IV

INTERRING CONTRIBUTION TO THE RELAXATION
OF 17 AND r{“_ 4.

Temp., Interring Contribution to
Compound °C the Relaxation of 17 (%) r1Co4, A
Cellobiose (g) 31 54 2.1
74.5 47 2.2
Xylobiose (1) 31 44 2.2
74.5 33 2.4

For the reasons stated above the values calculated from the Dreiding model will
be used in the analysis below. Equation (4) shows the expansion of Eq. (3) for

which only the 1,3 diaxal contributions and the H;” to H; contribution are included.

6 6 6
Rl’ _ l/rl‘—3 + l/rla_sa + l/rl‘—[; (4)
Ry 1/5?_3 + I/YES
1
R, - R 6 1 6 6
Rl =,,(2°£1'8) + (2.30)° + LA (s)
1

2.486 + 2.300

Using the Ry~“/R; value of 2.2 determined for cellobiose at 31°C‘resu1ts in a
calculated ry“_,; distance of 2.1 A. This is slightly less than that obtained for
crystalline 2 and agrees with the average distance suggested by Hall.* Furthermore,
it is close to the distance expected from the 2-fold helix. Since the B-1,4 linkage
in 2 is dynamic and is predicted to have major conformations on both sides of the

two fold helix line this value seems reasonable. Inclusion of the contributions

*This approach may indeed be how Hall came to his estimate.
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from Hy, Hy”, and H61* changes the result by less than 1%. Table IV also gives the
r1“.4 distance calculated from the R;“/R} ratio for 1 and 2 for each of the con-

ditions studied assuming the Dreiding model intraring distances remain the same.

The above analysis 1is based on a number of simplifications and assumptions
which have been discussed above and in a previous thesis (30). Certainly, the
values for r]}“_4 can only be considered estimates. This 1is particularly true if the
1,3 diaxial distances are not equivalent in each ring. Surprisingly, despite the
many reservations involved, including the inherent error [~10% (26)] of the relaxa-
tion measurement, entirely reasonable though probably low estimates are obtained for
the interring proton distance. Furthermore, the results are consisgent with the
intuitive picture of more available conformations in ! and 2, particularly at higher
temperature. The fact that the values do not significantly deviate from the 2-fold
helix distance (2.0-2.1 A), with increasing temperature, can be explained by assuming
that the two major conformations on both sides of the linkage became more equally
populated. This counters an increase in the number of minor conformations tending
to increase r;”“—4. Conformations removed significantly from the 2-fold helix, such
as those with x = 180 (7), do not significantly become populated in view of the
small H)“ to H4 distance. Relaxation of the average bond angle T from 116° toward

109 A would also contribute slightly (0.1 A) to a shorter rj~“_4 distance.

The estimates for ry;“_; in Table IV are probably lower than the actual values.
Melberg and Rasmussen have calculated a weighted average distance of 2.28 A for 2 in
Hp0 (7). The reasons for this discrepancy are the neglect of the contribution from

H6a in compound 2 and more importantly the inaccuracy of the assumption of isotropic

rotation. The later assumption is known to be slightly in error on the basis of

*Assuming an average value of 3.0 A.
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nonequivalent carbon relaxa;ion times (27,31). As the molecule rotates»in solu-
tion, the intgrior protons will exhibit a longer correlation time and hence a
shorter Ty. This would increase the R;“/R; ratio so that the apparent interring
contribution to the relaxation of H)~“ is greater than it actually is. On the other
hand, molecular association, leading to intermolecular relaxation, would most affect
the relaxation of H; which is on the exterior or the molecule. This would result in
a small apparent interring contribution. Since molecular interactions” seem ﬁo be
more prevalent in 2 than 1, on the basis of the smaller T; values fo? 2 at equiva-
lent concentrations, it is probable that intermolecular relaxation 1s not as signi-
ficant as the anisotropic rotation on the Rl'/Rl ratio. The overall effect is to

give a low r;~_; distance.

More accurate methods of determining r;~“_,; are available. Complete deuteration
of the disaccharide, except in positions H]” and H,, would eliminate ail contribu-
tions to the relaxation of H;” except for H4. Using this approach, an independent
measure of T ;“_; could then be obtained from the carbon spectrum allowing a more
accurate determination of rj~“_;. Another method would be to directly use selective
relaxation measurements (32). Finally, homonuclear NOE measurements at high field
could also be used if the H, proton is sufficiently resolved (32). Each of these
methods still would be in error due to the inherent error of the relaxation and NOE

measurements, but would give more accurate absolute estimates. ’

Interresidue Carbon-Proton Coupling Constants A3J) to Estimate ¢ and x.
General Analysis
In an attempt to determine the relative ¢ and x values of xylobiose (1) and

cellobiose (%) in solution, a series of proton coupled carbon spectra were obtained

*This is a dynamic situation in which D70 would predominantly interact with OD, so
that the effective distance from Hy to a proton on an adjacent molecule would be
large.




-74—

using the technique of gated decoupling. This method retains the enhancement due to
the nuclear Overhauser effect. This was essential for several of the samples

available only in small amounts. The detailed results and a discussioﬂ of the tech-
nique used are given in Appendixes IV and V. Appendix V also contains representative

examples of the spectra obtained.

Analysis of a 25.05 MHz coupled 13C-NMR spectrum is not always straightforward
because of second order effects. Much of the discussion below will be directed
toward the limitations that must accordingly be applied to the data interpretation.
Nevertheless, much still can be inferred from the data given below involving the
relative linkage conformations of 1 and 2, though confirmatory work at higher fields

is recommended.

Table V gives the width at half height (“1/2) of the Cy” and C; peaks of com-
pounds 1, 2, 3, xylose (4), glucose (5), methyl B-xylobioside (6), and methyl
B-cellobioside-dg (7) in Dy0. Figures 4-10 show the spectral region containing Cy~

and C; for compound 1-7.

TABLE V

WIDTH AT HALF HEIGHT FOR C; AND C;~- IN THE PROTON COUPLED
SPECTRA OF COMPOUNDS 1-7 AT 25.05 MHz IN D50

V1/2
Compound of] C1”
B-Xylose (4) ©19.8 -
Methyl B-Xylobioside (6) 1b 20.5
B-Xylobiose (1) 20.3 20.4
B-Glucose (5) 9.4 _—
Methyl B-Cellobioside (3) I I
" Methyl B-Cellobioside-dg (7) 13.9-15.2 7.9-9,248
B—Cellobiose (2) 8.8-9.8 10.7-10.9

38A value of approximately 9.3 Hz is obtained from Fig. 2 Ref. (16).
bIndeterminant due to peak overlap or low signal to noise.
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Figure 4. .IH—coupled 13c-nMR spectrum of xylobiose in D90 - downfield region.
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Figure 5.

1H—-coupled 13c-nMr spectrum of cellobiose in Dy0 - downfield region.
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Figure 6. 1H—coupled 13c-NMR spectrum of methyl B-cellobioside in Dy0. Inserts
are: a) downfield C1”, Cp, b) C4, and ¢) upfield OCHjy, Ce¢> Cg” regions.

L
10.2 Hz CIHS
| | | | 5.5 H2 gty 13,3Hz
2,7 Hz CiHs,

Figure 7. 1H-coupled Lc-nmr spectrum of xylose in Dy0 - downfield region.
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I )

Figure 8. 1H—coupled 13c-NMR spectrum of glucose-in D90 - downfield region.

METHYL B-XYLOBIOSIDE

hiadindl NHN‘\J WMW*M*W«WMM\ k‘“ﬂ’ v '“WJ AM AR AR o

110 100 90 80 70 60 50
PPM

Figure 9. lH—coupled (a) and lu- -decoupled (b) !3c-NMR spectra of methyl
B-xylobioside in D,O.
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10Hz

1H—coupled 13C—NMRspectrum of methyl B-cellobioside —-dg in D70 -

Figure 10.
downfield region. I is due to an isomerization or decomposition

product.

Compound 3 was deuterated by heating it over Raney nickel in D90 to form 7

(24). The 13c-NMR proton decoupled and coupled spectra of 7 are given in Fig. ll.
Both spectra essentially agree with those given by Perlin and coworkers (18) for the

same material. The structure listed was confirmed by them on the basis of enzymatic

hydrolysis and 13¢-NMR (18).

Additional compounds studied included: lactose, 4-0-B-D-glucosyl-D-mannose,

4-0-B-D-glucosyl-D-xylose, maltose, methyl B-xyloside (8), and methyl B-glucoside

(9), as well as the Raney nickel deuterated versions of 8 and 9. The results for

these compounds are tabulated in Appendix V. They are essentially in agreement with

the discussion below and will not be specifically covered in the main discussion,

except as they aid the discussion for compounds 1-7.
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110 100 90 80 70 60 50
; PPM

Figure 11. 1H—decoupled (a) and 1H—coupled (b) 13c-NMR spectra of methyl
B-cellobioside -dg in Dy0. Assignments are given on (a).

The values given in Table V represent the average vi/2 values for both signals
of the CjH or C;“H doublet, unlesé one half of the doublet isonerlapped by'another
resonance. The spectrum of 3 is given for reference only, since the C)” and C;
signals overlap; making it impossible to obtain a value for Vi/2 for the anomeric
carbons of this compound; This is one df the advantages of using its deuterated
analog 7. The deuterium at Cz"in 7 imparts a slight upfield shift to C;~,
separating the two peaks to the extent that V1/2 can be measured. This subtle
change can be seen by comparing Fig. 6 and iO. The coupled spectra in Fig. 5, 6, 8,
and 10 are essentially the same as those in the literature (16,18,19). However,
minor differences related to resolution, field strength (2nd order‘effects), and

conditions under which the spectra were taken can be noted.

i
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The coupling patterns associated with the anomeric carbons of compounds 1-7
have several common elements. All the anomeric protons are doublets, exclusive of
fine structure, on the basis of 1JCH couplings of 155-170 Hz. The values measured

for 1J in the present study are given in Appendix V.

Figure 12 illustrates the important coupling constants contributing to the fine
structure of C; in B-xylose and B-glucose. The contributions from Hy and H,; have
been determined to be less than 1 Hz (16) for glucose. This is expected in view of
the distance from C; (3 and 4 bonds, respectively) and on the basis of the geometry
of the Cl conformation. The coupling to Hs (3J(C1H5)) has been megsured from
B-D-glucose-2,3,4,6,6 -d5 as 2.0-2.2 Hz (18). Similarly, the coupling to H,
(2J(ClH2)) has been measured from B—glucose—5,6,6'-d3 as -5.5 Hz (lltii)" The value
obtained for 2J(CIHZ) from Fig. 9 is + 5.6 Hz;* in close agreement with the litera-
ture. An indication of the coupling to Hg is also present as a shoulder on the

major peaks.

Figure 12. B-xylose (top) and B-glucose (bottom) with multiple bond C;H coupling
constants listed.

*The sign cannot be determined for 25 by simple first order analysis. The + or -
designation will be left out in the remainder of this discussion but should be
understood to be implied.




-81-

Similar values to those in glucose would be expected for xylose; the values
determined in the present study being 5.5 Hz for 2J(CIH2) and 2.7 Hz for 3J(C1H5a).
These values were measured directly from Fig. 7 and represent apparent coupling
constants. An additional coupling of 10.2 Hz is evident. It can be attributéd to
the Hg equatorial proton (Hse)’ which is present in xylo-related structures but
absent in gluco-related structures. Again, this is an apparent coupling constant
since some small second order effects would be expected for xylose (see below). A
large value for 3J(C1H5e) is expected on the basis of its 180° dihedral angle with
Ci in the Cl conformation of xylose. The Karplus relationship given by Perlin for
the C-0-C-H system predicts a value of 6.5 Hz at 180°, which, on the basis of these
results seems low. The second order effects expected do not suggest the existence
of such a large differenge between the two results. The first order analysis of the

C1” peak in B-Xylose is given in Fig. 7.

For the disaccharide l and 2 an additional contribution to the fine structure
of the C;~ doublet is expected due to the 3 bond coupling with Hj across the linkage
(3J(C1’H4)). Perlin (18) has givenla value of 4.3 Hz for compound 7 for this
coupling constant; obtained using a second order analysis. Table VI summarizes the
directly measured coupling constant to C;” and C; for the compounds studied in this

work.

The value of 3J(C1‘H4) can be related to the dihedral angle y depicted in Fig.
1. Perlin (18) has published a Karplus relationship based on empirical measurements
of coupling constants found in systems containing the C-0-C-H structure. This is
given as Fig. 13. The authors point out that this is not strictly valid for all
C-0-C-H systems because the attached atoms to the nucleus of interest (C;” or Cj)
are not the same in all instances. Nevertheless, they have used this relationship

to estimate values of (%) 25-30° for x and ¢ in compound 7.
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TABLE VI
APPARENT COUPLING CONSTANT MEASURED DIRECTLY IN Dy0

Apparent Coupling Constants (Hz)@,d
Compound Cy Cy»

161.3(162.)
~5.6(-5.5)b
(< 1)
(2.0-2.2)(2.2)

B-Glucose (2)

161.9(160.5)
~5.5b
(< 1)
2.7
10.2

B-Xylose (4)

_MBC2-dg (7) 162.0 162.8(162,1)
(4.3)€

B—Cellobiose (%) 161.6 162.0
-5.4-5,9b

162.3 161.6
-50 7b
2.8

10.3

B-Xylobiose (1)

8Values in brackets are literature values (17,18,34).

Coupling

ly

23(CyHy)

gJ(C1H3)
J(C1H5)

Ly(cin)
23(CqHy)
35(cyH3)
3J(C1H5a)
33(c)H52)

bSign is assumed to be negative to correspond to earlier work (ll,}}).

CDerived by second order analysis. Not measured directly.
Based on distance between 2 resolved peaks.

. 7: - M M M o o
ol _/H
T
i X )
= °f 9 i
\;_J 4t "o‘
I .
8 3 -
. r Y
K \o
=" 2} 8 1
0 N /|A Y

0 30 60 90 i20 150 180

DIHEDRAL ANGLE

Karplus type relationship for the 3JC—O—C—H system.
Ref. (18).

Figure 13.

Taken from
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In the methyl glycosides 3, 6, 7, 8 and 3 a complex contribution to the fine
structure of C; arises from the O-methyl protons. Because of this the Cj peak in

the methyl glycosides cannot be used in the present analysis.

A direct first order analysis to determine the contribution of 3J(C1'H4) to the
observed value for vj/p for C;~ in 1, 2, 3, 6, or 7 would merely involve taking the
difference of (v1/2)c,- and (v1/2)c; of an appropriate model. For 1 and 2 an
appropriate model would be C; of the reducing end of C; in the related mono-
saccharide. For the methylated glycosides the C; of the related monosaccharide must
be used. The basis for this analysis is that in the limit of first order coupling,
the peak width at half height is simply reléted to the sum of all the coupling
constants plus any natural or instrumental line broadening:

vijg =L J; +F C®
i .
In this equation F represents broadening due to several factors, including the
natural line width (related to Tp; see Appendix I), slight dispersion of nearly
degenerate signals arising from both o- and B-anomers, and to any instrumental
broadening due to inhomogeneities or fluctuations in the magnetic field. It is
always a positive quantity; For rapidly rotating molecules, broadening due to

instrumental factors usuélly dominates.*

If it is assumed that the coupling from the protons within the pyranose ring is

the same for both C; and C;”, and that the instrumental broadening is equal, then

*This broadening can be estimated by measuring vi/2 of the narrowest line in the
1
spectrum and subtracting out the contribution from Ty (VI/Z 7552) and any known .

coupling constants. Ty equals T; in the region of motional narrowing. In the glu-
copyranoses either half of the a-Cj signal is appropriate since they appear without
fine structure except for a small coupling of about 2.0 Hz to Hg. In the spectra
reported here a~Cy has a V1/2 of 3.2-3.6 Hz suggesting an instrumental broadening
of 1.0-1.6 Hz.
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evaluation of the interring contribution to the coupling of Cy~ (3J(C1’H4)) merely

requires taking the difference of the vy/2 values for C;” and Cj.
(vi/2)cy- = (viyadgy = 39(C17Hy) (7)

In a similar way the coupling at C, can theoretically be used to measure

3J(C4H1’) which is related by the Karplus relationship (Fig. 13) to 0.

(“1/2)C4 = (vi72)gy- = 3JC40H1' (8)

Again, C4” can be in the nonreducing ring, or in an appropriate model compound.

Severe overlap of peaks for the appropriate C4” model is a problem at 25 MHz.

The assumption that within ring coupling constants are a constant appears to be
a valid one for both disaccharide rings or the rings of an appropriate mono-
saccharide, as is evident from the data in Table VI. This is further evidence that

the average C; conformation dominates in these systems and remains a constant.

Table VII contains the results of the simple first order analysis applied to
C1” and C; in compounds 1, 2, 6, and 7. The model compound used for comparison is
indicated in the table. The published results for MBC2-dg are also given (18). The
corresponding average X values based on the Karplus relationship in Fig. 13 are
listed. Possible x values greater than 90° are omitted as being physically

improbable.

As expected, the results indicate that the disaccharides containing xylose are
more staggered from the two fold helical structure than are the glucose-related
disaccharides. This agrees with the expectation that 1 and 6 possess a more
flexible linkage because of the absence of steric crowding imposed by the Cg

hydroxymethyl in 2, 3, and 7. Furthermore, it is in agreement with the 1H—-Tl result
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that the ry“_, proton to proton distance is greater in ] than 2 and with the fact
that the intramolecular hydrogen bond (03H....05’) is weaker in ] than 2 (35).
However, the discrepancy between the x values for cellobiose and MBC2-dg suggests
that the first order analysis is not entirely accurate and that complicating factors
must temper the conclusions drawn. It is suggested here that a x value of jﬁb° is
unlikely for 2 and does not agree with the 1H—T1 data. On the basis of nearly equal
13¢ chemical shifts for the linkage carbons of 2 and 3 it is expected that both com-
pounds have the same average conformation in solution. Further remarks on the ori-

gins and the effect of second order factors on the Avy/p value in 2 will be given

later.
TABLE VII
FIRST ORDER ANALYSIS
ACROSS LINKAGE COUPLING CONSTANTS TO Cy~ IN COMPOUNDS
1, 2, 6, AND 7 AND CORRESPONDING y VALUES
Compound 33¢ 1 “OCHy (Hz) X Model
B-Xylobiose (1) 0.5 C; B-Xylose
' 0.1 +75-85° Cy B-Xylobiose
Methyl B-xylobioside (6) 0.6 +70-80° C) B-Xylose
B-Cellobiose (2) 1.4 | C, B-Glucose
1.0-2.0¢ +60-70° C; B-Cellobiose
MBC2-dg (7) . 3.1-4.4 +25-60° g-D-glucose-2,3,4,6",
6-dsg
4.3b 2nd Order analysis
4.5b +25-30° lst Order analysis

8Using a value of 4.8 Hz for vj/p from Fig. 2 Ref. 18.
bLiterature values (18).
CA value of 1.0-2.0 Hp was also found by Perlin et al. (16).

Proton coupled 13c-nMR spectra were also obtained from compounds 1-7 in

DMSO-dg. Deuterium exchanged materials were not used and, therefore, coupling to
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the hydroxyl protons must be considered. Table VIII gives the v/ values for Cj~

or C; in l, 2, i, 2, and lactose. A comparison to the D70 results is also shown.

TABLE VITII

COMPARISON OF v/, VALUES IN DMSO-dg AND D50

\)1/2(Hz)
DMSO-dg D90
Cy Cy- Cy C- Avy/o®

B-Xylose 18.8 19.8 -1.0
g-Xylobiose 19.4 20.3 -0.9

19.6 20.4 -0.8
8-Glucose 11.0 | 9.4 +1.6
g-Cellobiose 10.7 9.4b +1.3

12.1 10.8
B-Lactose 10.6

11.1

¥1/2pms0 T V1/2p,0.
bAverage value.

Additional contributions to the coupling to C;~ should be small in the
disaccharides in DMSO-dg. Both OH,~ and OH3 (via intramolecular H-Bond) should be
weak because of rapid proton exchange and because of the number of bonds that
separates them from C;~ (3+ and 2+, respectively). 1Instrumental and viscosity-
related contributions to line broadening in DMSO-dg were also small (K1 Hz) since
comparable line widths were obtained for peaks exhibiting equivalent coupling.*v For
C; the two-bond coupling with OH; is expected to be significant and probably contri-

butes to line broadening (36).

In the glucose-containing molecules vi/2 increases for both C;~ and Cy. The

increase in vy/2 of C; - for 2, when compared to v)/7 for glucose in D20, corresponds

*The proton coupled 0-CH3 peak was compared in a series of methyl glycosides for D50
and DMS0-d6 golutions. The additional broadening ranged from 0.1-1.2 Hz.
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to a vy/p value of 2.7 Hz which is more nearly like that in MBC2-dg. It is
suggested that this represents a reduction in the second order factors that;affect
vi/2 for C;~ in 2 in D20.‘ In contrast, the xylose containing compounds show
decrease in vy/y for both C; and Cy“. This may represent an increased contribution
from second order fagtors in DMSO-dg, particularly for Cy for which the coupling to

OH would be expected to increase V1/2. ‘

Of course other factors might also be operating to affect vy/p of C;“ and C; in
DMSO-dg. Changes in either the linkage conformation or the chain conformation are
also possible so that comparisons between v)/9 in the two solvents are complicated.
In particular, 3J(Clv H4) cannot be reliably determined using vj/p values obtained
in the two different solvents. Similarly, in DMSO-dg the contribution of OH; to the
Vi/2 of C; precludes the use of any possible model containing a reducing end to
calculate 3J(clocme) in DMSO-dg itself. Synthesis of a methyl B-glycoside using
CD30D or the use of deuterium exchanged materials should allow this determination to

be made.

Information on the dihedral angle ¢ is theoretically obtained in analogous
manner to that of x by comparing vj/p of C4 and C4”. 1In pfactice, severe overlap of
either component of the doublet® with either C¢» Cg5, or Cy makes it difficult to
find a suitable model at the magnetic fields used in this study. Additionally, the
nondegeneracy of the C4 resonance for the a- and B-anomers of any reducing sugars
negates the use of that peak. Use of the methyl glycosides could avoid this

problem, but in most cases the accidental overlap would still prohibit their use.

Width at half height values (Vl/z) for the C4 peak in 2, g, and 7 in D50 are

given in Table IX. Also given are Avj/p values calculated using vj/; equal to 7.7

*C4fdoub1et for the monosaccharides.
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Hz for methyl B—D—glucose-3,6,6'—d3 (£§) as a model. The Avl/z value of 4.2 Hz,
obtained by Perlin (18) using a second orderlanalysis, is also listed for com-—
parison. The low values (1.7-2.0 Hz) for Avl/z in MBC2-dg suggest that severe
second order broadening 1is present in the spectrum of the model compound and that
the simple measurement of Avl/z can be misleading. The value obtained by Perlin
takes into consideration these second orderleffécts and thus should be reliable.
The only significant long range coupling constant to C4; expected in methyl
B—D—glucose—3,6,6'—d3 is 2J(C4H5) equal to (-)3.5-4.0 Hz. The much higher measured
value of 7.7 Hz suggests a second order effect. As discussed below, such a
broadening should be anticipated because of the clqse proximity of the Hy and Hg
peaks in the glucose lg-NMR spectrum. Table X tabulates the known long-range

coupling constants to C4.

TABLE IX

WIDTH AT HALF HEIGHT FOR C, IN THE PROTON COUPLED SPECTRA
OF SEVERAL METHYL-B-DISACCHARIDES AT 25.05 MHz IN D50

V1/2 Avy/a
MBC2 11.6
12.72
MBC2-dg 9.5 1.7-1.9b,¢
9.62 1.8-2.0b>¢
¢
MBX2 , 12.0-12.5

8From Fig. 3 in Ref. (18).

bRelative to methyl-B~D-glucoside-3,6,6'-d3 which has a
V1/2 value of 7.6-7.9 (18). )

CCompare this to the value obtained for 3J(C4H5) of 4.2
Hz by 2nd order analysis.

A more suitable reference might be the C4 peak in compounds § and 2. However,
the C4 peak will be overlapped by the Cg or Cg peaks at the fields utilized in this

work. At higher fields this should not be a problem. Measurements on C; in DMSO-dg
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are given in Appendix V. They cannot be used for determination of @ because of the
absence of a suitable reference. Deuterium exchange of the hydroxyls, so that
coupling to OH4” is not a factor, might render the nonreducing end C4 as a suitable

reference at higher fields where second order effects became less important.

TABLE X

INDIRECT COUPLING CONSTANTS (Hz) TO
C4 IN GLUCOSE RELATED COMPOUNDSP

Compound J . ‘ Compound
MBC2 147b>¢ 1y
B—Giucose 4.5b 2J(C4H3)
MBC2-dg and methyl B- . (-)3.0-3.5P 2J(C4H5)

glucose-3,6,6'-d3

B-Glucose <1a,b 33(c4Hy)

aBy stereochemical arguments, not actually measured.
bsee Ref. (18) and (33).
CMeasured directly in this work.

Second Order Effects

Complications to the simple first order analysis to determine Av)/) are collec-
tively known as second order effects. Second order effects can both broaden or
narrow™ the overall carbon peak for which v1/2 is measured. To accommodate the
potential for second order effects Eq. 6 must be modified:

\)1/2 = ZJi +F_‘¥_'_S. (9)
i

S represents the contribution from second order factors.

At least three types of second order effects have been identified which might

alter vy/7 for a proton coupled carbon peak (exclusive of 1J). They are tabulated

*Line narrowing, the more unusual manifestation of a second order proceés, is called
deceptive simplicity.
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below with a brief explanation. Each of these has relevance to the results pre-

sented above.

1) Jones and coworkers (37) have shown that overlap between the 13¢ satellite.reso—
nance associated with the directly bonded proton, and a signal arising from a
proton coupled over more than one bond to the carbon, will lead to second order
effects. Lines can be broadened or narrowed. This situation arises if the

following condition is met in the ly spectrum:

2 * AS

: =1 + 0.38 (10)
JegHy

with the effect being greatest for direct overlap. In this equation AS is the
chemical shift in Hertz between the directly attached proton and another proton
coupled to the carbon over more than one bond. The effect becomes less impor-
tant at high field because of dispersion of the individual resonances. This

will be termed the "Jones" effect in the discussion below.

2) When the signals from two strongly coupled‘protons are close in proximity to one
another then second order effects arise in both the 1H—spectrum and the 13¢
spectrum. Two cases are possible. Both cases occur if the following is not true,

o

== >>1 (11

4 v
JAB
where vj is the location of protons A and B in frequency units and Jpp is the

coupling constant between the two protons. Again, the problem is reduced at

high field as| VA"Vd increases. The two cases are:

a) Both protons A and B are coupled to the carbon in question. This is called

the ordinary second order effect.
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b) Only one proton is indirectly coupled to the carbon in question. The second
proton has a OHz indirect coupling to the carbon, but exerts an effect on
its apparent coupling constant through the coupled proton. This is referred

to as virtual coupling.

It was previously mentioned that there was an inconsistency in tﬁe value for
3J(C1’H4) obtained from cellobiose and possibly also MBC2-dg. This can easily be
seen by comparing the C;~ vj/p value for 2 (Table V) to the theoretical value
obtained by summing the coupling constants, including the small coupling to 2H2 in
MBC2—d8.* Several such comparisons are given in Table XI. The measured value for
Cl; in Cellobiose (10.7-10.9 Hz) 1is considerably less than that predicted by

Eq. (6) (13.0-13.6).**

Perlin and coworkers rejected the use of the measured C;~ value of cellobiose
(16,18) because the calculated Qalue for Avy/p was too low, suggesting that yx is on
the order of +60°. Their explanation was that overlap of the Cj” peak for the a-
and B-anomers interfered with the measurement of vi/p. However, the fact that the
a~Cy1~ and B-Cy~ peaks are not perfectly degenerate should give a line broadening.
Since a significant line narrowing is obse;ved, their reason for not using the v1/2

value 1is invalid.

It is.instructive to explore other possible reasons why the measured V1/2 value

*k%k

for C;“ in cellobiuse is not useful. At both 90 and 100 MHz the 13c-satellite

. J(13¢;luy)

Given by-——~7§:§r—-— )

*% If the predicted C|~ value (ca. 13.3 Hz) is used, rather than the measured value,
then Av)/; is approximately 4.0 Hz when the measured C; value (ca. 9.3 Hz) is
used. This is evidence that the C; vy, value is not greatly affected by 2nd
order effects {S in Equation (9)]. The same conclusion is reached by summing the

***coupling constants.

90 MHz was used by Perlin while 100 MHz was used in this study.
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peak for H;” will fall in the middle of the proton envelope of peaks between 3 and 4
ppm. Table XII gives the l1H-NMR chemical shifts for the protons coupled to C;~ and
C; (38). Also included are the critical regions for which the Jones effect might be
expected to operate as a function of magnetic field strength. For C);“ the protons
Hg” and H, are well within this region at both 90 and 100 MHz. H,; is particularly
suspect because it is near the center of the critical region. This suggests that
the measured V1/2 values are decepti&ely simple; that is, there are several outer
combination bands which are weak in intensity and that do not contribute to the

observed signal.

Because the Hj proton is farther downfield the critical region for the "Jones"
effect for C; is also moved downfield. Only Hg is within this region and then only
on the fringe. Since Hg is only weakly coupled, it is not expected that the effect
would be very large for Cj; so that, the measured vj/p is close to what is expected

based on Equation (6).

This analysis coincides precisely with what is observed in Table XI. The
measured C|~” signal is much narrower than expected, while the C) signal is about

what is predicted when instrumental broadening is included.

Because of the uncertainty in the C}~ vj/; measurement in cellobiose, the value
for 3J(C1’H4) obtained in this and the previous study was obtained from MBC2-dg.
The original reason for this was to simplify the C;” peak by removing the large
coupling to Hp. A further factor was that the C; and C;“ peaks would be further
apart in the spectrum of MBC2-dg than in the MBC2 spectrum because of the B-
deuterium isotope effect (18,39). 1In fact, the observed separation was slightly
greater in this study (25 MHz) than in the previous one (18) (22.6 MHz) allowing a

more accurate determination of vj/p for C;“. 1Indeed, a slightly lower value was

obtained for vj/o in this study.
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TABLE XI

SUMMATION OF COUPLING CONSTANTS CONTRIBUTING TO Cy OR C;~
FINE STRUCTURE IN SEVERAL GLUCOSE CONTAINING COMPOUNDS

Coupling? Coupling
Constants System
C1~ Cellobiose 5.6 Ci” Hp~
2.1 C1” Hg”
4.3 Cy~ Hy
PredictedP 12.0
Measured "10.7-10.9
Cy Cellobiose 5.6 Cy Hy
2.1 . Cl HS
PredictedP 7.7
Measured . 8.8-9.8
C1” MBC2-dg 0.9¢ c;” 2H,
2.1 Cy” Hg~”
4.3 Ci Hg
PredictedP 7.3
Measured 7.9-9.2
Cl'B—D—glucose—2,3,4,6',6?d5 0.9¢ Cy 2H2
. 2.1 Cl HS
Predicted 3.0
Measured 4.8

dAbsolute values are used.
bpoes not include additional broadening due to field inhomogeneity,
a, B peak overlap, or residual small couplings such as CI'H3 or

C1’2H2. Peak broadening due to instrumental factors has been
estimated to be between 1.0-1.6 Hz for the data generated in this
work. ‘Slightly higher values are observed in the literature data (18).

1

CThe coupling to 2H2 is given by J(ZHIX)= 5T

.« J(H;X).

In the previous work it was recognized that virtual coupling could be a factor
in the analysis of the C;“ coupling in the MBC2-dg spectrum. This could result from
the strong coupling between H; and Hg (9.5 Hz) and their close proximity (3-6 Hz).

This is despite the fact that Hg does not directly couple to C;“. Perlin simulated
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the spectrum using an ABMRX spin system and found that a value for 3J(C1‘H4) of 4.3
Hz closely reproduced the observed C;“ peak shape. This compared to a Av)/p value
of 4.5 Hz measured directly from the spectra. In the present study the value

obtained was 3.1-4.4 Hz by direct measurement.

TABLE XII

14 CHEMICAL SHIFTS AND CRITICAL REGION
FOR JONES EFFECT IN CELLOBIOSE

Proton 8a
Hl’ 4051
Hp~ 3.32
Hg~ - 3.50
HQ 3.065
H2 3029
HS 3058

CRITICAL REGION FOR JONES EFFECT
AND AFFECTED PROTONS

MHz - Cy~ Protons Cy Protons
90 3.27-3.96 Hy“,Hg~ ,Hy 3.43-4.12 Hg

100 .3.39-4.01 Hg”,Hy 3.55-4.17 Hg
360 4.20-4.37 ' 4.36~4.53

4From Ref. (22).

Compensation for the Jones effect was not explicitly considered in the earlier
work. The chemical shifts for H;“, Hg5”, and H; should all be close toAthose in
cellobiose suggesting thatAdgceptive simpiicity may again be a factor. Therefore,
the actual value for 3J01’OCH4 could be larger than 4.3 Hz, representing a x value
closer to 0°. If 3.1 Hz is taken as a lower limit* for 3JC1‘OCH4 then x could range

from (*) 0-50° on the basis of this work.

*Much lower values for Avl/z do not seem feasible on the basis of structure.
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The wide spread in the Y value obtained from the present work should not be
interpreted to mean that this approach is. without merit. Table XII also shows the
critical regions for the Jones effect at 360 MHz* for Cy” and C; in cellobiose. 1In"
this case none of the coupled protons would be close to the critical region and the
Jones effect would not be a’factor. Second order effects related to the strong
couplings between protons would also be reduéed or eliminated. In addition, the C;
and Cy~ peaks for MBC2-dg would be completely separated. Therefore, by simply
operating at a higher field it should be possible to directly apply a first order

analysis to 2.

Since we are really interested in compéring.the relative x values in compounds
1 and 2, it is also necessary to consider the accuracy of Avy/) for compound 1. The
lack of specific assignments in thé 3-4 ppm region of the 1H—spectrum makes it dif-
ficult to predict the likelihood of second order effects operating in the spectrum.
It has already been mentionéd that the apparent value for 3J(C1H5e) is larger than
predicted on the basis of Fig. 13. This suggests an ordinary second order contribu-
tion to both C;“ and C;, as well as a virtual coupling contribution to Ci” because
of coupling between Hy, and the Hg protons. It ig likely that none of these contri-
butions affect the results significantly. This follows from the large separation
expected between Hse, H5a, and H4 in 1 based on the 1H—spectra of B-xylose and
methyl B-xyloside (see below) (40), and the small difference already noted.for simi-

lar second order effects in compound 7.

Of greater concern is the possibility of a Jones effect causing either decep-
tive simplicity in the C;~“ signal or broadening of the C; signal, or both. It has
already been mentioned that the Ci peak of both 1l and 4 is narrowed in DMS0-dg,

relative to D90, in contrast to what is expected. Table XIII tabulates the expected

*Corresponding to the 90 MHz 13C—spectrum.



-96-

proton chemical shifts for 1l in Dy0. These estimates are based on the assigned
spectra of 4 and 8 (40), and on the known shifts caused by substitution of the glu-
copyranosyl unit for a proton in comparing 2 and 5 (38,41). Also given are the
estimated critical regions for the Jones effect. In B-xylose the strongly coupled
H5e proton is well within this region for Cj but not C;”. In xylobiose it shbuld be
only at the extreme downfield edge of this region. No strongly coupled signals are
expected to be in the middle of the critical region where the effect is greatest.
For Cy~ both Hg and HS; are on the periphery of the region of interest. Since both
are apparently weakly coupled to C;“ this should not affect v1/2 for that signal.
This suggests that any error due to second order effects resides in the broadening
of the Cy signal. Since the C;| signals are nearly identical in compounds 1l and 4 it
is suggested that errors due to mixing of the 13c-satellite signals with strongly
coupled proton signals are small. Therefore, a value of x of % 75-85° is probably
reasonable though probably slightly larger than the actual average value. Still, it
is reasonable to tentatively state on the basis of these coupling constant deter-
minations, that the x value is greater in ] than in 2. Further work at higher

fields should be able to clear up the tentative nature of this conclusion.

Before leaving the subject of the second order corrections to the observed
coupling constants it 1is necessary to consider the large apparent error in the
measured Avj/j corresponds to 3J(C4H1’), which can be related to @ on the basis of
Fig. 13. Using a second order analysis Perlin and coworkers obtained 4.2 Hz for
3J(C4H1’). If measured vj/p values are used than Avy/p is only 1.7-2.0 Hz, (see

Table IX) considerably less than 4.2 H,.

The reason for this large difference is related to the extremely‘strong
coupling between H4 and Hg in both compound 1 and the reference compound methyl

B-D-glucoside-3,6,6 -dj (10). The published chemical shifts for H, and Hg in 9 are
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different by only 0.08 ppm (41). The coupling constant is 9.4 Hz (41). This system
is strongly coupled and might be expected to show significant broadening. Indeed,
v1/2 for 10 is 7.7 Hz whereas.zJ(C4H5) i{s only -3.0 to -3.5 Hz by second order anal-
ysis. The method of Perlin accounts for this so that the published value for ¢

should be accurate.

To briefly summarize, on the basis of first order analysis average x values of
+ 0~-50° and t 75-80° are estimated for methyl B-cellobioside-dg and xylobiose,
respectively. Consideration of second order effects, which apparently are signifi-
cant at the magnetic fields used for this and earlier studies, imparts some uncer-
tainty to these values. However, the basic.conclusion that the average x value is
greater in ] than 7, and by inference 2, remains unchanged. A value for ¢ of *

25-30° in 7 is judged to be accurate. No comparable value for 1 was obtained.
SUMMARY

From 1H—Tl measurements on compounds 1 and 2 in D90 we have concluded that the
average distance between H)“ and H,; (rj-4) is 0.1-0.2 A greater in 1. Absolute
values of 2.2 A and 2.1 A were obtained for 1l and 2, respectively. After con-
sideration of the limitations of the technique it was concluded that these values
are slightly less thén the actual values. Melberg (7) has calculated an average

value of 2.28 R for 2.

Measurements of the across linkage coupling constants, 3J(Cl’H4) and 3J(C4H1'),
were made to compare the relative values of ¢ and x in ] and 2. On the basis of
first order analysis, x was estimated to be * 75-85° in 1 and * 0-50° in 7. The
linkage conformation of 7 is thdught to be the same as that of 2 from optical rota-
tion studies (42) and from measurements of 13c_NMR chemical shifts (43). Melberg

(7) calculates the average x value to be close to +25-30° for 2. Consideration of
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possible second order effects on the fine structure of the C;“ and C; signals shows

that the actual values are less certain but that yx is larger in compound i.

Peflin (18) gives a value of # 25-30° for ¢ in 7. No reliable experimental
value was obtained from this work but the above value was judged to be reliable. On
the basis of the exo-anomeric effect (44) it is expected that the value in 1l is not
greatly different. The ranges proposed for ¢ and x in l and % aré'thus consistent

with the lH-T; data.

These studies represent an attempt at a direct experimental comparison of the
solution conformations of L‘and 2. All previous work has involved eighéf calculated
structures, extrapolation from x-ray analysis of the solids, or inference from poiy—
saccharide solution studies. The conclusions drawn from this earlier work, that i
should have a more staggered and flexible conformation because of the absence of

steric hindrance from Cg, have been experimentally substantiated.

Because of the uncertainty in the ¢ and x values,” as well as the H}“ to Hy”
distances, it is not possible to construct specific average structures from this
work. Nevertheless, it is possible to mentally construct a comparison. The average
confofmation of 1 consists of a greater .degree of departure from the ng-fold heli-
cal structure™® than is found in 2. Both molecules possess conformational minima on
either side of thé two-fold helix line (7). The linkage conforﬁation is dynamic
with interconversion being rapid on the NMR time scale (7,31). The average distance
between 05“ and 03 will be greater in ! than in 2 becausé of the greater amount of
time spent in conformations far removed from the 2-fold helix in l. The average

bridge angle T is calculated to be about 113.4° in 2 which represents a considerable

*Uncertainty due to second order .effects, uncertain accuracy of modified Kurplus
relationship, and inability to distinguish between positive and negative values.
**(¢,x)=0,0; Hi” and Hy parallel and at a minimum separation.
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relaxation from the value of 116° in the crystal (7). A similar relaxation of T is

expected for 1.
EXPERIMENTAL

All NMR spectra were recorded on a Jeol FX-100 FT spectrometef (99.61 MHz 1H,
25.05 MHz l3C). Tempefature control was obtained with a Jeol supplied NM 5471 model
temperature controller stable to * 0.5°C and calibrated to * 2.0°C. The 5-mm dual

probe (IH/13C) was used for all 1H—T1 and 13C-gated decoupling work.

1H—Tl measurements usea the standard inversion-recovery pulse sequence. An
interval of at least 5 times the longest cafbohydrate T, was employed. T; values
were obtained from signal intensities using a weighted least squares linear
regression program provided by Jeol. Both the‘xylobiose and cellobiose samples were
dissolved at 5% (w/v) in D90 (99.8%) in constricted NMR tubes (527-PP Wilmad Glass
Co.) and given 4 freeze—puﬁp—thaw cycles prior tp sealing. The xylobiose had been
treated with a cationic ion-exchange resin (IR-120, acid form) to remove any resi-

dual paramagnetic impurities from its synthesis.

All coupled 13c-NMR spectra were obtained~using gatéd decoupling in wﬁich the
decoupler is cycled on prior to acquisition to maintain the NOE eghancement and
cycled off during acquisition to give a éoupled spectrum. Most coupled 13c-NMR
spectra were obtained at ambient temperatures. All measurements of V) /2 were by

hand using expanded spectra.

Each compound was characterized by its 13c-NMR spectrum. Literature assign-
ments were used when available. Xylobiose (1), methyl B-xylobioside (Q) and methyl
B-cellobioside (z) were synthesized. Details are given élsewhere (44). Deuteration

of 3, methyl B-glucoside, and methyl B-xyloside was done by refluxing in D,0 over
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Raney nickel (24). Progress of the reaction was monitored by 13C-NMR. All other

compounds were purchased and used as is.
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SECTION III - IMPORTANT INTERACTIONS AFFECTING
THE GLYCOSIDIC LINKAGE CONFORMATION

IN B-1-4-LINKED CARBOHYDRATES
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INTRODUCTION: FACTORS THAT DETERMINE THE GLYCOSIDIC LINKAGE CONFORMATION

The most favorable conformations of the glycosidic linkage are determined by a
number of intra- and intermolecular interactions. In this section, several of fhese
important factors will be investigated experimentally. Prior to discussing the
results of this work, a brief general discussion of these interactions will be

given.

In the classical semiempirical approach often used to calculate the preferred
linkage conformations, it is customary to identify the important molecular interac-—
tions and model them using an appropriate potential function. In practice, one or
more interactions is neglected, either to simplify the computational effort or
because it is difficult to adequately describe the interaction mathematically. The
neglected factors are usually estimated to be of less importance than the other

factors (1,2,3).
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The interactions that have been identified as being a factor in determining the
linkage conformation are: Van der Waals attraction and repulsion,* intrinsic tor-
sional barriers, bond and torsional strain, dipole~dipole interactions, intramolecu-
lar hydrogen bonding, and intermolecular effects of various types. The relative
importance of each depends on the molecular configuration and the surrounding

environment.

Intramolecular Van der Waals interactions have generally been considered to be
the dominant factor in determining the linkage conformation of the isolated molecule
for B-1-4-linked carbohydrates. Thus, it has been shown by considering hard
sphere** interactions only that severe steric constraints are présent in cellobiose

that restrict the possible number of conformations to a small percentage of the

*The Van der Waals interaction is one of several nonbonded interactions to be con-
sidered. 1In it, the attractive force arises from the polarizability of the indivi-
dual atoms which results in an induced dipole. This force, which is also termed
the London dispersion force, is always present between two atoms. The repulsive
force, which operates only at very short range, is due to steric overlap of the
electron clouds of closely approaching ‘atoms. Though the Van der Waals interaction
is often modeled as an interaction between hard spheres, it is instructive to con-
sider what actually happens using a simple classical argument. As two atoms
approach, their electron clouds change shape in accordance with their polarizabi-
lity. As they further approach, the repulsive force becomes dominant and the
electron clouds of both atoms become compressed. This compression results in an
increased electron density near the nucleus.

In terms of NMR, this compression increases the shielding constant which results in
an upfield shift of the NMR signal for either a 13¢ or 1H nuclei. This is termed
the steric compression shift. This differs from the change in the shielding
constant which might result from conformational factors that affect hybridization
of the atom. For instance, if the valence angle of an atom is altered by a confor-
mational change, then this will change the hybridization of the electron cloud
which in turn also alters the shielding constant. As the s—-character increases
(sp3 » sp2?), corresponding to an increase in the valence angle above 109°, the
nucleus becomes more shielded with a resulting upfield shift. At an adjacent atom,
the effect would be reversed because electrons will be withdrawn from the nucleus
to compensate for the decrease in electron density in the bond between the atoms.
Thus, the neighboring nuclei would become less shielded with a resulting downfield
shift of its NMR signal. Examples of both of these phenomena will be given below.

**Each atom is assigned its Van der Waal radii and is considered incompressible.
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total conformational map.* The dominant steric interactions involve overlap of the
linkage protons and overlap of Cg with either the Cpr hydroxyl or Hy:. By utilizing
a potential function to model the Van der Waals interaction, it was further shown
that energy minima should exist on both sides of the 2-fold helix line (l1). In this
work, comparisons of linkage conformations and various spectral parameters, in com-
pounds with and without Cg, have been made to assess the effect of Cg steric

hindrance on linkage structure.

The primary intrinsic torsional barrier present arises from the anomeric effect
(see Section I). It has been shown using quantum-mechanical calculations (4),
correlation of known crystal structures (5), and spectroscopic methods (6,7) that
the dihedral angle ¢ has a conformational preference largely determined by the ano-
meric effect. This is often termed the exo—anomeric effect. This recently has been

estimated to be between 2-3 Kcal/mole (4,6).

The dihedral angle yx is not restricted by this interaction. It has been shown
in a number of compounds that X possesses a wider range of possible values than ¢
(4,5,6,7). Lemieux (6) proposes that this effect is most important in solution when
crystal forces are not operating to force the linkage into a specific conformation.
In this study, no specific work was done concerning the contribution of the anomeric

effect to the linkage conformation.

The effects of bond and torsional angle strain are generally not considered in
most model calculations because of their complexity, though in a recent report,
Melberg and Rasmussen have included them (3). The magnitude of these effects is

generally considered to be small (1) 1In this work, these strains are considered to

*The common method of plotting "allowed" linkage conformations (¢, x) on the so-
called ¢, x map. See Ref. (1) for an example.
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result from, rather than to control it, conformational change. As such, conclusions
concerning the effect of a change in the bridge angle T in going from the crystal to

solution, on the chemical shift of the linkage carbons, have been made.

Intramolecular dipole-dipole interactions are generally neglected in attempts
to model the linkage because they are generally weak in these systems. The overall

effect is modulated by the solvent (g). It is not considered in the study.

The possibility of an intramolecular hydrogen bond between 03 and Osg: has been
postulated by many authors (132) to be a factor in determining the linkage confor-
mation. This bond is known to exist in the crystals of both cellobiose and xylo-
biose from x~-ray diffraction and vibrational spectroscopic studies (8,9,10). The
boﬁd has also been postulated to exist in the DMSO solution of cellobiose (1l1).

Rees and Scott (12) have suggested that this hydrogen bond is only a secoﬁdéry fac;
tor in determining the conformation in solution, if it exists at all (12). The

presence of the intramolecular hydrogen bond in the DM50-dg solutions of cellobiose,
methyl B-cellobioside, and.xylobiose has been confirmed in this work. From analysis
of the lH-NMR spectra of these systems, a description of the bond geometry is given,

and inferences are made relative to its importance in determining the conformation.

In the crystal, the effect of intermolecular interactions is certainly an
important factor in determining the overall conformation of the molecule. The large
decrease in free energy accompanying lattice formation could dominate and override
many of the other factors discussed above. In solution, interaction with the
solvent shoJld be much less dominant (l). These factors are briefly considered

below by considering the effects of solvation and phase on the linkage carbon chemi-

cal shiftse.
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THE EFFECT OF Cg ON THE LINKAGE CONFORMATION

It has been postulated that the steric hindrance, created by the introduction
of the Cg hydroxymethyl group on the reduéiﬁg?énd anhydropyranose ring, is the
single most important factor in determininé“the average conformation of the
B-1,4-1linked oligomers based on glucose (1,2,3). In the oligomers based on xylose,
the absence of this group allows a greater conformational freedom resulting in a
different average conformation. In this case, other interactioﬁé?such as the ano-
meric effect, combined with the remaining steric factors, funct;oq?io limit the

allowed set of conformations (1).

The steric cféWdiﬁg'éssociated with ég}can readily be seen using space filling
models. Refer to Fig. 1 in which a model of cellobiose is compared to a model of
xylobiose. Cg is identified by the arrow. As the reducing end group rotates, rela-
tive to the nonreducing group, Cg interacts sterically with both the Cyp+ hydroxyl
and Hyr. In the absence of Cg, a much greater breadth of conformations are

available at the linkage.

In the present work, the effect of Cg steric hindrance on the linkage confor-
mation has been explored in several ways. First, by determining the relative con-
formations of xylobiose and cellobiose, the effect of Cg on linkage conformation is
obtained by inferénce. For instance, in Section II, it was shown that both cello-
biose and xylobiose.possess a dynamic linkage. Using i3C iong range proton coupling
constants and 1H;Ti data, it was concluded that xylobiose possesses a more

staggered* linkage conformation. Therefore, since the major difference between the

*Further removed from the 2-fold helix line.
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Figure 1. Comparison of the structures of cellobiose (left) and xylobiose (right)
using space filling models. Both front and back views are shown. The
reducing end is down in each case. The impact of Ce (arrows) on steric
crowding is readily apparent.
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two is the absence of the Cg groups, it is readily inferred that Cg is of primary

importance in determining the linkage conformation in cellobiose.”*

In a similar way, the absence of a strong intramolecular hydrogen bond in
xylose or securidebiose (see Part III this section); in comparison to cellobiose,
can be inferred to mean that Cg i1s a primary factor in determining the charac-
teristics of the intramolecular hydrogen bond. To carry this further, it also can
be inferred that the hydrogen bond is at best of secondary importance, since only a
weak bond is present in xylobiose even though the conformationslare available for a

bond of greater strength (4).

A second approach in assessing the effect of Cg on linkage conformation was to
measure a characteristic spectroscopic property of the linkage in model compounds
that do and do not contain the Cg group. It turns out that the differences of the
linkage C4 chemical shift with an appropriate monosaccharide model correlates with

the presence or absence of this group.

The approach utilized was to compare this shift differential in several xflo—
and cello-oligosaccharides and in some related disaccharide models. The contrasts
between the spectra** of the xylo- and cello-oligosaccharides suggest significant
differences between the two series in the constraints on the linkage. While the
chemiéal shift of C4 differs only slightly between glucose and xylose (5), indi-
cating that presence of a hydroxymethyl group (Cq) at Cs in glucose has a relatively
small effect, the Qifference between the linkage C, chemical shifts of the xylo- and

kkk

cello-oligosaccharides is ~1.8 ppm in D5O0. Such a large difference would not be

*A model shows that Cgt 1s too distant from the linkage to be a significant steric
**factor in the cellobiose linkage.
Refer to Section IV.
***In dimethyl sulfoxide-dg the differences becomes 5.2 ppm.
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expected on the basis of the effect of more replacement of a xylosyl by a glucosyl
residue, as those two substituents, which differ only by the absence of Cg for xylo-
syl, would be perceived (g) as nearly equivalent by the C4 atom. It appears most
likely that this difference is a manifestation of significant differences in the
average conformation, or in the solvation environment, of the B-(1+4) linkages in
the two, homologous, oligosaccharidé series. Differences in average linkage-
conformation or in accessibility to the linkage may explain diffgrences in reac-

tivity and solubility of the two types of oligosaccharides.

Colson et al. (7), in comparing the chemical shifts of the linkage C; and C4
atoms in maltotriose with those of the cyclbamyloses, found downfield shifts of 1.8
and 4.0 ppm, respéctively, for these atoms in the (more constrained) cycloamyloses.
The comparable shifts for the cello-oligosaccharides relative to the xylo-

oligosaccharides are downfield by 0.7 and 1.8 ppm.

The greéter constraints at the linkage for the cello-oligosaccharides appear to
result from the presence of Cg. The role of Cq is further suggested by the pattern
of chemical shifts of the disaccharides, recorded in Table I. The chemical shifts
of the linkage C; atom of xylobiose and cellobiose, relative to those of the
appropriate monosaccharides, are compared with data for several other B-(l1+4)-linked
disaccharides. Both mannobiose and 4-0-B-D-glucosyl-D-mannose, whicﬁ possess
reducing-end Cg groﬁps similarly constituted to that of cellobiose, have chemical
shifts, relative to the respective monosaccharides, comparable with that of cello-
biose. 1In contrast, the chemical shifts of C4 for 4-0-B-D-galactosyl-D-xylose and
4-0-8-D-glycosyl-D-xylose, which do not have a Cg atom in the reducing ring, are
nearly identical to that for xyiobiose. This pattern is also found in the methyl

disaccharides and the acetates.
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TABLE I
CHEMICAL SHIFTS OF THE LINKAGE C, ATOM FOR

SEVERAL BR(1+4)-LINKED DISACCHARIDES

Chemical-Shift

Chemical Change Relative
Shift of C4 to Monosaccharide
B-Xylobiose 77.3 7.1
4-0-B-D-Galactosyl-D-xylose 77.78 7.5
4-0-8-D-Glucosyl-D-xylose 77.4 7.2
B-Cellobiose 79.5 8.9
f-Mannobiose 77.5 9.9
4-0-B-D~-Glucosyl-B-D-mannose 77.3 9.7
B-Xylose 70.2b
B-Glucose 70.6P
B-Mannose ' 67.6

3Relative to external Me,Si(8).
bsee Ref. (5). \
Since a substituent effect is not operating and in view of the large magnitude
of this shift in DMSO-dg, it is virtually certain that a linkage conformational
change is the cause of this shift differential.® The actual relationship of linkage

conformation to C4 chemical shift is not well understood.

The final approach used to investigate the steric effect of Cy was to measure a
property of the hydroxymethyl group itself. To do this, a comparison was made be-
tween the 13C—T1 values for Cg and Cgr in cellobiose. 1In the presené'work, the
values were identical and very 1ow\indicating that neither 6-carbon undergoes rapid
internal rotation. A slightly lower value was observgd for the reducing end Cqg for
methyl B-cellobioside and methyl B-lactosides by Hall et al. (10). This is indica-
tive of a longer correlation time and hence a slightly greater barrier to internal

rotation for Cg based on the overall low T; values for both groups;

*I1t is not related to steric compression since this would reverse the order, i.e.,
cellobiose would have a C; shifted farther upfield than xylobiose. A recent study
comparing chitobiose to cellobiose does claim that steric compression is a factor
in the Cjr shift (9).
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SUMMARY

Evidence has been found to show that the reducing end Cg hydroxymethyl group is
a primary factor in determining the B-1,4-linkage conformation of glucose-containing
polymers. Thus, the major difference between the conformations of cellobiose and

xylobiose are related to the steric restrictions imparted by this group.
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1H-NMR SPECTRA OF SEVERAL B-1,4-LINKED DISACCHARIDES UNDER CONDITIONS OF
SLOW EXCHANGE: NEW EVIDENCE FOR AN INTRAMOLECULAR HYDROGEN-BOND

INTRODUCTION

Studies to determine the most likely conformations of the glycosidic linkage in
the B-1-4-linked di- and oligosaccharides have often considered the presence of an
intramoleculér hydrogen—bond between the adjacent rings (1,2,3). The most likely
intramolecular H-bond Qould occur between the hydroxyl at C3 and the ring oxygen in
a contiguous unit (O3H....05:+) as illustrated in Fig. 1. X-ray diffraction studies
clearly show that this bond exists in crystalline B-cellobiose (la) (4,5).

Crystalline methyl B-cellobioside (2) similérly contains this bond with the added par-
ticipation of the hydroxyl at Cgr, in a bifurcated arrangement (6). The vibrational

spectra of the solid cello-oligosaccharides (7) and of xylan (8) also exhibit evi-

dence of an intramolecular H-bond.

OH

Figure 1. Structure of B-cellobiose illustrating the O3H...05: intramolecular
hydrogen—-bond and the linkage dihedral angles ¢ and x. In the number
system used in this paper, the B ring is primed.
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In solution, the O3H....0g: intramolecular H-bond has been proposed by Casu et
al. for cellobiose in DMSO (2). They cite the downfield (>5 ppm)* location of the
0ot'H and O3H resonances in the lH-NMR spectrum of maltose as being indicative of an
intramolecular H-bond.** By analogy, the appearance of a nonanomeric hydroxyl at
5.18 ppm (38°C)*** in cellobiose was taken as evidence for an intramolecular H-bond.
On the basis of chemical shift (9) and hydrogen-deuterium exchange equilibria (11)

it was proposed that this H-bond is weak.

The lH-NMR of 2 in DMS0-dg contains two nonanomeric hydroxyls downfield of 5
ppm. From spin-decoupling experiments and a comparison with the spectrum of methyl
B-glucoside (4c), one of these resonances can be éssigned to OoH. Based on this
observation, Michell (12) questioned the validity of using the downfield location of

a nonanomeric hydroxyl as the criterion for an intramolecular H-bond in cellobiose.

An O3H....05: intramolecular H-bond has also been proposed, on the basis of
computer studies,‘as a stabilizing factor in xylan (1,2). 'The proposed bond is
calculated to be longer and weaker than that proposed for cellulose. No evidence
for this bond exists for a dissolved xylan or xylobiose (5). Raman and IR evidence

for the bond in solid xylobiose has been found (22).

Because of the uncertainty in the evidence for interring intramolecular H-bonds
in solutions of the B-1,4-1linked disaccharides, a reinvestigation of their existence
was pursued as part of broader study concerning the dynamics and structure of the

linkage. The present work re-evaluates the hydroxyl proton NMR assignments using

All chemical shifts are given relative to internal TMS using the § scale.
**The exchange of the hydroxyl protons in acid-free DMSO- -dg 1s slowed so that
individual resonances can be observed (10).

*k Hydroxyl proton resonances in DMSO are temperature sensitive requiring the chemi-
cal shift value to be referenced to a temperature.
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comparisons to model compounds and spin-decoupling of the spectra at higher tem-
peratures. Evaluation of the chemical shift temperature behavior and coupling
constants of the hydroxyl proton resonances is used as an indication of intramolecu-
lar H-bonding (Li). In particular, the existence of intramolecular hydrogen-bonds
in xylobiose, cellobiose, and related compounds was investigated. This was a part
of a more extensive study to better describe the structure of the B-1,4-linkage in

these types of compounds.

The remainder of the discussion is organized into two parts. The results sec-
tion contains the assignment methods and results leading to a complete description
of the hydroxyl region in the ly-NMR spectré of methyl B-cellobioside, cellobiose,
xylobiose, and related compounds in DMSO-dg. Included is a discussion involving the
response to temperature of the hydroxyl proton signals. Emphasis is given to the
assignment of the OHj hydroxyl which is thought to participate in the intramolecular

H-bond.

In the first part a brief introduction into the existing literature assignments
of the pertinent monosaccharides is given for clarification. Supplemental material
can be found in the appendices. Representative spectra are given in Appendix VI,
while the detailed assignments for the hydroxyl regions are compiled in Appendix
VII. Appendix VII contains a complete description of the spin decoupling work

applied to the spectrum of methyl B-cellobioside.

This is followed by a discussion section in which the unique characteristics of
the OHj signal are discussed and related to that hydroxyls participation in the
intramolecular H-bond. 1In this.part the differences between the O3H signal in the

cellobiose and xylobiose type structures are emphasized.
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RESULTS

Assignments

Monosaccharides

Assignment of the 1H-NMR hydroxyl regions in the disaccharides 1 and 2 is aided
by comparisons to monosaccharide model compounds. In particular, xylose (3a,b),
glucose (4a,b), methyl B-xyloside (3¢c), methyl a-xyloside (3d), and methyl B-
glucoside (4c), which are depicted in Fig. 2, served as useful models for the
disaccharides studied. Assignments based on the literature (9,14) or spin-
decoupling are given in Table I fo? 56°C. Figures 3 and 4 show the spectra of 4a,b
and 4c¢; each at three different temperatureé. A major feature of these spectra is

the upfield shift of the hydroxyl proton peaks Qith increasing temperature.




-122-

R3
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R4
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OH R,
] |
OH
For: R3-H For: R3-CH20H
lila : Ry =OH iVa : Ry=0H
Illb : Ry = OH IVb : Ry = OH
e : R1 -OCH3 Ve : R1 = OCH4

Hid : Ry = OCH4 ~IVd : Ry =0CHg

OH

For: Ry, Rg=OH For: Ry Rg=OH For: Rg Rg= CH,0H

Rg Rg ™ CH,OH

Ia:R1ﬂOH Va : Ry =0OH , Xa : Rq, R4, Ry = OH
b : Rz-OH Vb : R2=0H Xb : Rz,R4,R7-OH
it : Ry= OCH4 Via: Ry =OH, Rg = CH,O0H  Xia: R4, Ry, Rg=OH

Figure 2.

Vib: Rz = OH, Rs = CHon Xilb : Rz, Rs, Ra = OH
Viia: Ry = OCH4
Viib: Ry = OBn

Compounds used in this study. If no group is given for R; it is a pro-
ton. The compounds are: la,b cellobiose, 2 methyl B-cellobioside, 3a,b
xylose, 3c methyl B-xyloside, 3d, methyl a-xyloside, 4a,b glucose, 4¢c,
methyl B-glucoside, 4d, methyl B-glucoside, 2a,b xylobiose, 6a,b securide-
biose, 7a methyl B-xylobioside, Rb benzyl B-xylobioside, lggihvlactose,
and llg,b, 4 0-(B-D-glucopyranosyl)-O-mannopyranose.



-123-

*(6) nsep Aq adoud1a3yal B wWoij D,8E 10 ST uaa1d anjea ayL
‘2ous1a3aa Kiepuodoss e se (wdd 06°7) Sp-OSWd [BA3IULBD

243 Bulsn GRI 1PUADIUT O SATIB[PI 21B $3IITYS [TV -saanjeiadwe] 201y3l 3sea] IB 13A0 101ABYyaq danjeaad

*aa13BINOads sjuswuldissy,

‘93ewtxoadde Ajuo anyea {pa1pnis aanjeaadws] 3noydnoay3l syead jo xa1dwod e JO 31edp

‘apisouealdoon]3-0 jAyjsw S1 pH,

-we3 33TYs [BOTWSYD Byl Jo SIsA[RUE UOTISS21821 B WO} PaUTRIQO DB SIJTYS Byl 2°QEE PUE ‘qEY 1044
0,95 38 papiodal jou ei3ldoads woij aq Aew sanjea 3uridnod ayr -zH ut HOOHpc fayeds ¢ uo 331ys 1eoTWAUD,

8€°¢
$Gy %04
(6°$)0€E Y

p69°Y

p69° ¥

(7°9)08"%

92°¢
16°% LTy 6%
9Ty "9z
p09°¥ pl 9 0Ly
(7)Y pl 9"y $6w
QLY pl9'%"  (6°S)M%'Y
(1°9)10°9 (§°9)9¢°9 |
q e p

SR

q?.96 IV SHAIYVHIOVSONOW TV HAHS ¥Od

ce°¢e

00w

7Ly
0Ly

(L*%)08°Y

*no
98"y XA 1l
1%
p79°Y p79° Y H%
(I'v0sv  pv9'% nto
vTYy pv9w HZO0
(§°%)56°S ($79)€€°9 nlo
q e
€

e(HOOHp )y SI4IHS TVOIWIHO NOLO¥A DIWEWONV ANV TAXO¥AAH

1 371dVL




°(Gz1 °d 99s) paufrjop 91e AI-] suoiday

*0.6°%L Pue ‘1¢ ‘vg 3B Ip-0SHA UT (q‘®y) °s0dn[8 jo BIID3dS WHN-H ZHW 001 °¢ 2ind1g
uidd
0 { 4 € |4 S 9 4
I 1 | 0 1 v ] T T Li | ¥ ¥ T T
ve
' e ﬂlllJ
& LS j
n
9.5vL
as0on|n




-oTEds 3jo 21 syead 0CH TenpTsal pue a{-0 UL °D.S°%L PuB
‘copc ‘g 38 9p-0SWA UT (D%) opysoonyS-¢ TAyisw jo e13dads WEN-H ZHW 00T ‘v 2Ind1a

wdd

-
-
=

SvS

-125-

2.5'¥vL

apisouesAdoan|o—g 1AYIB N




-126-

A discussion of the hydroxyl proton signals common to the g-1,4-1linked gluco-
and xylobioses studied is facilitated by reference to Fig. 3 and 4. To assist the

discussion, the spectra have been divided into four regions.*

Region I: The furthest downfield signals result from the anomeric hydroxyls of
a reducing sugar. Equatorial hydroxyls are found from 6=6.10 - 6.70 ppm
(J=6.5Hz) while axial hydroxyls are located at 6=5.90 -6.30 ppm (J=4.0 - 4.5)
over the temperature range studied.

Region IT: This group of signals is located on the downfield side of the major
hydroxyl and anomeric-proton complex (Fig. 3 and 4). The largest signal in the
hydroxyl region of the spectrum is located in this region between 4.60 - 4.80
ppm at 56°C. This peak consists of the coincident O4H, O3H, and OyH doublets
of the B-anomer as well as the O4H doublet of the a-anomers of glucose and
xylose. For the B-glycosides (Fig. 4) the OyH signal is shifted downfield by
approximately 0.10 ppm. Spin-decoupling has been used to confirm this assign-
ment (12). Another signal in this region results from C;H of 3b and 4b. This
resonance, which appears as an apparent triplet, is easily distinguished by its
temperature insensitivity and resistance to Dy0 addition.

Region II1: This region contains the remaining signals from the hydroxyl pro-
tons and the anomeric protons of the glycosides. For 4c (Fig. 4) this region
simply contains the OgH triplet and the C)H doublet. This latter peak is
shifted upfield by 0.23 ppm from its position in 4a. For a reducing sugar
(Fig. 3), this region is further complicated by the presence of O9H and O3H
signals for the o-anomer and the location of the B-C;H signal closer to the OgH
signal. Perlin (14) has used spin-decoupling to assign the peaks in this
region for a-glucose.

Region IV: The remainder of the carbohydrate protons are found from 2.9-4.0
ppm. These comprise all the methine and methylene protons (skeletal) and, in
general, are not considered here except for the purpose of spin-decoupling.
Several attempts have been made at assignments in this region for the D50 solu-
tions of 3b and 4b (léﬁllllgllg)' In general, the skeletal proton signals are
shifted downfield in D70 relative to DMSO-dg but remain in the same relative
positions with respect to each other.
Methyl B-Cellobioside (2)
Figure 5 shows the l§-NMR spectrum of methyl B-cellobioside in DMSO-dg at room
temperature (a) and at 56°C (b). Spectrum (a) is identical to that given by Michell
(12) and illustrates the location of the two hydroxyl protons in region IT, down-

field of 5 ppm (as overlapping doublets) . Spectrum (b) shows the effect of tem

perature in improving resolution by eliminating the overlap of several peaks.

*Some of the following discussion is given in the literature (9,14,15). 1t is
repeated here to clarify the logic presented later in assigning the disaccharides.
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Figure 5. 100 MHz lH-NMR spectra of methyl B-cellobioside (2) in DMSO~dg at room
temperature (a) and 56°C (b).
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The overall spectrum can best be discussed in terms of the four regions men-
tioned above. As expected, region I is empty verifying the absence of a reducing--
end. The nonanomeric methine, methylene, methoxyl, and residual H90 protons are
contained in region IV from 2.9 to 3.9 ppm. Regions II and III, downfield of 4.0
ppm, contain all the hydroxyl protons and the two anomeric methine-protons. These

two regions will be the concern of this section.

Table II 1lists the center of the coupled peaks in regions IT and III for methyl
B-cellobioside at 31 and 56°C. Integration shows that there are nine separate pro-
ton signals here; based on the structure, seven hydroxyl and two anomeric-proton
signals are expected. Assignment of the prdtons, 03:H, O4+H, OgtH, OgH, Cy+H, and
CiH is straightforward; it is based on comparisons with the spectra of 4e (Fig. 6)
and cellobiose, addition of D90, and spin-decoupling (12,20). These assignments are

given in the table.

Only three peaks remain to be accounted for in the 56°C spectrum; the downfield
doublets at 5.04 and 4.94 ppm and the singlet at 4.58 ppm. The hydroxyls
corresponding to these peaks must be O9+H, O9H, and OqH. Assignment of these
remaining signals will determine if the location of a nonanomeric hydroxyl downfield
of 5 ppm, at room temﬁerature, is a result of the barticipation in an intramolecular

H-bond (9).

Previous spin-decoupling experiments, verified in this study, show that at
least one of the downfield doublets is attached at a 2-carbon (12). This is
illustrated in Fig. 7a with the decoupler set at 3.00 ppm. In this case, the
anomeric-proton doublets, as well as the two downfield doublets, are simultaneously
decoupled. This shows that at least one of the downfield doublets is coupled to the
same protons as are the anomeric protons. At this point, the possibility of the C3H

proton being near the location of the decoupler cannot be excluded.
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TABLE II

DOWNFIELD SIGNALS IN THE lH-NMR OF
METHYL B-CELLOBIOSIDE IN DMSO-dg

Chemical Shiftd (3Jgcon)©

Assignment Integration® 31°C 56°C
04 H 1 5.20 5.04(4.5)
0oH 1 5.12(4.8) 4,94(4.8)

03+H, O4H 2 4.98 4.78(4.2)
03H 1 4.65 4.58(2.8)

OgH, Og'H 2 4,57(5.6) 4.42(5.4)
Cy'H 1 4.24(7.3) 4,28(7.5)
CiH ) 1 4,09(7.7) 4,10(7.5)
OMe 3.36 3.40

3See Ref. (12).

bpownfield of internal TMS using DMSO-ds5 as the intermediate
reference (2.50 ppm). The center of the complex (doublets
except for OgH, OgtH, and O3H) is given.

CCoupling in Hz; for O3H this is the width at half height
(whh). For CjrH and CyH the value for 3JHICCH2 is given.

Figure 7b illustrates the case with the decoupler set at 3.40 ppm.* In this
case, no peaks are decoupled in the downfield region except that the singlet at 4.58
ppm (56°C) is sharpened. Clearly, this hydroxyl** is not coupled to the same proton
as the anomeric protons.- By the process of elimination, this'peak-must be assigned
to O3H which is contrary to the previous assignment based on maltose (9). The two
downfield doublets at 5.04 and 4.94 ppm (56°C) now must be assigned to 0O9:H and OjH.
The differentiation of these two peaks is made on the basis of comparisons with 4e

and the reassigned spectrum of 1 (see later). Table II tabulates the assignments

for methyl B;cellobioside.

*Highfield NMR studies indicate that C3H is downfield (3.65 ppm) in cellobiose in
D20 (17,21).
**Addition of D90 diminishes this peak showing it is due to an exchangeable proton.

-
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Figure 7. 100 MHz spin-decoupled spectra of methyl B-cellobioside with the
decoupler set at 3.00 ppm (a) and 3.40 ppm (b). The arrows illustrate
the downfield signals affected by the decoupler.

(*)
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Cellobiose (1)

Except for the effects of the methyl group, it can be anticipated that the
spectra of la and 2 will be similar. The similarities should include a broadened
singlet near 4.58 ppm (56°C) corresponding to O3H. The significant differences
expected involve the Og9H and CjH signals in regions 1I and III; these signals being
nearer the position predicted from the spectrum of 4a rather than Qg.* In region
I, the anomeric hydroxyls should be observed, while in region IV, the methoxyl peak

should be absent.

A further difference will be the spectrum of the a-anomer (lk) which will be
superimposed on the spectrum of la. Contributions from 1b should reinforce those
from la for the nonreducing end and should-approximate those of ﬁk for protons from
the reducing end. One exception to this is the O3H signal for 1lb, which, on the
basis of the shift observed in methyl B8-cellobioside, is expeéted to move upfield
from its location in 4b. This would place this signal in the complex of peaks made

up of the OgH, Og+H, Cj+H, B-CiH, and a-OyH signals.™*

The close correspondence expected on the basis of the above discussion can be
observed in Fig. 8 which gives the spectrum of 1 at 55°C. As expected, the most
obvious difference is the disappearance of the doublet at 4.94 ppm corresponding to
0oH and the presence of the anomeric hydroxyls in region I. A singlet is observed
at 4.54 ppm which compares favorably with thé one found in 2 (Fig. 5b). The size of
the singlet indicates that this peak only results from the B-anomer. Spih—
decoupling confirms that the singlet is not coupled to CoH or CorH and by deduction

must represent O3H of la.

*In general, the disaccharide hydroxyl signals remote from the linkage are all
shifted downfield relative to the monosaccharide. The shift is nearly the same
for each hydroxyl.

**The prefix o or B refers to the peak found only in the a-anomer or B-anomer. If
no prefix is given and both anomers are present, the signals results from both.
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Table III tabulates the assignments for the cellobiose spectrum at 32 and 56°C.
At the lower temperature the B-03H singlet is hidden under the 6-hydroxyl pfotoﬁ
signals which may explain why it was not previously mentioned (9). Figure 9
illustrates this with the 32°C spectrum. An important point to emphasize is that
the O3H signal, unlike the.signals of the other hydroxyls, appears as a singlet in

the spectra of both 1 and 2.

TABLE III

CHEMICAL SHIFTS2 (3Jgcon)P AND ASSIGNMENTS FOR HYDROXYL
REGION SIGNALS IN DMSO-dg SOLUTIONS OF CELLOBIOSEC

32°C | 56°cd

Assignment a B a B
0H 6.28(4.5) 6.62(6.5)  6.13(4.5) | 6.45(6.6)
0,H 450 4.94e 4.33f 4.72(4.7)
03H 4.40% 4.60 4.33% 4.54(3.0)
OgH 4.54¢8 4.374
09 'H 5.18(4.2) 5.03(4.1)

0418, 04H 4.94¢ 4.78
0g 'H 4.54@ 4.374
CiH 4.91€ 4.28 4.91 _ 4.30d
CyH 4,24 | | 4224 4.304 4.304

8Relative to internal TMS using DMSO-ds5 (2.50 ppm) as a secondary reference.

b1n Hz, for B-O3H the number given is the whh. value.

CConcentration of 4.1% (W/V).

dpetermined from a linear regression analysis using at least four data points. All
regressions have a correlation coefficient of -0.998 or better.

€Part of a complex of peaks in this region, value only approximate.

fpresumed to be part of the complex of signals in this region on the basis of
integration and comparison to monosaccharides. For the a-03H signal the 32°C value
is estimated using the chemical shift temperature coefficient of the B-0O3H signal
with the assumption that the 56°C value is correct.




-135-

OH

OH

/v\\_J 36°C

- CHOH OH

o
o OH
OH - OH
OH
(o]
i OM

CH,0H

DMSO—d5

(ﬁ—O3H | '
a mq\\\J ’ |
- Impurity
L

1 1 1 1 1 Y 1- I 1

— -
0

[ ]9
F 3
W
N

Figure 9. A comparison of the 100 MHz l4-NMR spectra of cellobiose (a) and
xylobiose (b).
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Xylobiose and Related Disaccharides

Figure 2 gives the structures for the disaccharides used in this study which
contain a xylopyranose moiety as ring A (see Fig. 2). 1In some of these disaccha-
rides, the absence of a hydroxy-methyl group (Cg) results in a simplification of
region IIT in the ly-NMR spectrum. This is illustrated in the spectrum of 5 pre-
sented in Fig. 9b where it is observed that the absence of the OgH and Og:H signals
simplifies the spectrum.A Further differences from the low temperature spectrum of 1
(Fig. 9a) are the absence of the.ddwnfield AOublet iq region II and the appearance

of an isolated singlet at 4.69 ppm (36°C).

Table IV lists the assignments for xylobiose and securidebiose (Q)* at}56°C.
The aséignments given are based on integration, comparison to models (see Table I),
and spin-decoupling. Except for the 0O3H and 05'H signals, the assignments are
straightforward. 1In general, the peaks not perturbed by the linkage are shifted
about 0.12 ppm downfield relative to xylose. This is analogous to the difference

between cellobiose and glucose,**

The temperature sensitive broadened-singlet at 4.56 ppm (56°C) can be spin-
decoupled by irradiating at 3.50 ppm. It is the only downfield peak affected, indi-
cating that it is not 09+'H or B-OoH. Signals resulting from these peaks are
expected to be decoupled simultaneously with the C;+H and 3~C;H proton signals. The
O3vH,'04'H, and a-OoH signals all can be assigned by comparison to xylose because of
their distance from the linkage. By elimination, this requires the near-singlet to
be assigned to 8-045H or a-OqH. Direct comparison to cellobiose would suggest that

this 1s the O3H signal from the B-anomer.

*
4 0-(B-D-glucopyranosyl)-D-xylopyranose.

*For 1, the value is 0.11 * 0.04 ppm calculated by averaging the shift, relative to
glucose, for each hydroxyl signal more than two carbons from the linkage.

*
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TABLE IV

CHEMICAL SHIFT2 (3Jycoq)P OF THE HYDROXYL AND ANOMERIC PROTONS
AT 56°C FOR SEVERAL DISACCHARIDES RELATED TO XYLOBIOSE

5¢ Qd 7a®
Assignment a B a B
01H 6.06(4.8)  6.43(6.6) 6.10(4.6)  6.44(6.6)
0,H 4.35 4.76-4.78%  4.38f 4.76f 4.92(5.1)
03H 4.56(2.4)  4.76-4.87F  4.61 4.76f 4.76F
0y 1H, O3+H, O4H 4.76-4.78f 4.76f 4.76f
0g 'H : 4.38f |
CH 4.88 4.23f 4.88 .32 4.06
CyH 4.23f | 4.25 4.26
OMe : 3.36

8Relative to internal TMS using DMSO-dg (2.50) ppm) as a secondary reference.
Values obtained from a regression analysis over at least three points.

bIn Hz.

€6.0%Z (W/V).

d7.7%2 (w/vy.

€At 57°C; 7.8% using microprobe.

fvalues only approximate, part of a complex of peaks.

However, several factors disagree with this conclusion. Assuming the singlet
results froﬁ B—03H, then at lower temperatures a second signal, for a;O3H, would be
expected in the vicinity of oa-0oH (4.44 ppm, 36°C). This assumes that each of the
3—hydroxy1 signals shifts upfield, relative to'xylose, in a similar way as occurs
‘for cellobiose, relative to glucose. Thus a normalizéa shift of 0.18Mppm is

observed for the O3H signal in La.* No signal fitting these criteria is observed in

the spectrum of 5. Secondly, no signal corresponding to the near-singlet found in 3 ‘

*This includes the usual downfield shift of 0.11 ppm observed for hydroxyl protons
remote from the linkage, which is added to the observed upfield shift of 0.07 ppm
for the B-O3H signal, to get 0.18 ppm. (Tables I and III).
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is observed in region III of methyl B-xylobioside (7a) or benzyl B-xylobioside (7b)
as shown in Fig. 10. From these observations, it is necessary to assign the

broadened-singlet to O3H of a-xylobiose.

As noted above, the overall shift of the hydroxyl signals of xylobiose, rela-
tive to those of xylose, is 0.12 % 0.01 ppm.* Considering this a normalized upfield
shift of only 0.06 ppm is calculated for o-O3H in 3 at 56°C.** This is in com-
parison to a shift of 0.18 ppm for the B-0O3H signal of l.*** Using the normalized
upfield shift observed for a-O3H in 5, it is predicted that the signal for B-O3H
rests in the large complex of peaks centered at 4.75 ppm (56°C) in region II. This
assignment is in accord with the integral. Again, it should be emphasized thag the
03H signal is observed as a singlet in contrast to the other hydroxyl signals. In

this case, a slight coupling of 2.3 Hz (36°C) is observed.

In 1, the downfield doublet (5.03 ppm, 56°C), originally thought to be an
intramolecularly H-bonded O3H (9), has been reassigned to 09'H in the present paper.
This represents a shift of 0.42 ppm downfield relative to the same peak in glucose.
This is approximately 0.31 ppm more than the average shift experienced by the |
hydroxyls remote from the linkage, and results from the presence of the nonprimed
glucose ring. In 2, a second downfield hydroxyl, OpH (4.94 ppm, 56°C), is observed
which is shifted 0.34 ppm relative £o glucose (0.23 ppm if the averége shift rela-
tive to glucose is excluded). An analogous signal is also found in both methyl

B-glucoside and methyl B-xyloside.

*Averaged over all hydroxyls not within 2-carbons of the linkage.

**The actual shift, relative to the xylose spectrum, is downfield by 0.06 ppm.
This is 0.06 ppm less than the average observed for the other hydroxyl protons.
It is significant that the OHj shift is only slightly different from the other

hydroxyl protons in 5 but significantly different in 1.

***This includes the usual downfield shift of 0.11 ppm observed for hydroxyl protons

remote from the linkage, which is added to the observed upfield shift of 0.07 ppm
for the B-O3H signal, to get 0.18 ppm (Tables I and III).
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BENZYL (—XYLOBIOSIDE
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METHYL B-XYLOBIOSIDE
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Figure 10. 100 MHz lH-NMR spectra of methyl B-xylobioside (7¢) (a) and benzyl B-

xylobioside (7b) (b) at room temperature. Note the absence of a singlet
near 4.70 ppm.
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For 53, no downfield doublet is present (Fig. 9b) but for 7a and Zp*, one is
observed (Fig. 10). For Ja, this is easily assigned to OjH by comparison to methyl
B-xyloside. Integration of the large complex at 4.77 ppm (56°C) in 5 indicates that
the O9+'H signal must be included. This represents no unusual shift from xylose and
is evidence that the presence of the aglycon has no significant effect on the 05:H

signal in the case of xylobiose.

Spectra of & at 36, 51, and 67.5°C are shown in Fig. 11. The downfield portion
of the 36°C spectrum is identical to that of 3 except that the a-07H signal is
overlapped by the triplet from OgH of the glucopyranosyl ring. As in 5, the Op'H
signal is found in the large hydroxyl compléx at 4.76 ppm (56°C) indicating that the
presence of the xylopyranose unit is not a factor in its chemical shift. Also, a
broadened singlet is present, which, by analogy to 3, can be assigned to O3H of the
a-anomer. It is shifted upfield by 0.02 ppm, relative to xylose, after correcting
the overall shift of the disaccharide.** This value is much less than the shift

observed for 1 and slightly less than that observed for 5.

Trisaccharides
1H-NMR spectra of the cello-oligosaccharides up to cellopentaose have been pre-
viously published (12). At that time, it was noted that two nonanomeric hydroxyls

appear downfield of 5 ppm in the higher oligomers. Assignments were not made.

Figure 12 shows spectra of cellotriose (8) (a) and xylotriose (9) (b) in

DMSO-dg. Table V lists and partiaily assigns the downfield resonances observed.

*The spectra of benzyl 2,3-anhydro-4-0-(B-D-xylopyranosyl)-D-ribopyranoside and
benzyl 2,3-anhydro-4-0-(B-D-glucopyranosyl)-D-ribopyranoside also contain a down-
field doublet. 1In this case, it probably is 09:H and definitely is not O9H. This
indicates that the benzyl group may affect the shift of 0p+'H even though it is an
entire ring away. From this evidence, the downfield signal in 7b cannot readily
be assigned to OjH. ‘

**The average shift for hydroxyls attached more than 2-carbons from the linkage is
0.13 * 0.02 in 6.
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XYLOTRIOSE

CELLOTROISE

DMSO—d5
\ Impurity
A A L 1 1 Il 1 I bl Il 1 Il 1 )l - |
T [ S 4 3 2 | 0
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Figure 12. 100 MHz lH-NMR spectra of cellotriose (a) (8) and xylotriose (b) (9) in
DMSO-dg . ~ : -
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Comparison with earlier results reveals a close correspondence to the disaccharide

spectra.

TABLE V

HYDROXYL AND ANOMERIC PROTON SIGNALS
IN CELLOTRIOSE AND XYLOTRIOSE?2

Assignment CellotrioseP Xylotriose®
B-O1H ' 6.57 _ 6.60
a-0H & 6.26 6.23

0, H T 5.32

0yH ' 5.16

Large Complexd 4,94 4.95
Singlet® 4.69 4.72
a-0oH 4.53
OgH, OgtH, OguHE 4.54

Cy+H, CyvH, B-CH 4.32 4.21

3Relative to internal TMS using DMSO-dg as secondary
reference.

bat 36°C in microprobe.

CAt room temperature in microprobe.

doyuH, 04vH, B-0oH in cellotriose, in the higher cello-
oligosaccharides this peak gets smaller with increasing
chain length (12). For xylotriose: O3nH, O4nH, Og+H,
B‘O3H, B—Ozﬂ, Osz.

,eB—O3H and O3'H in cellotriose; a-03H in xylotriose.
Probably contributions from a-O3H and a-O9H also.

In agreement with the literature, an additional downfield resonance at 5.32 ppm
(36°C) is observed for 8. It can be speculated that this results from Osz* on the

central ring. The resonance at 5.16 ppm (36°C), which corresponds to Oy:H in

*In the higher oligomers, each additional ring is designated with an additional
prime. Therefore, 09'H indicates the hydroxyl in the center ring of the tri-
saccharide.
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cellobiose, can be assigned to Oy+'H. This assignment is further subsfaﬁtiated in
the literature where it is observed that the 5.32 ppm signal steadily increases in
intensity as the number of monomer units 1ncrééses (12). Since the linkage appears
to affect the 2-hydroxyl chemical shift differently in each ring, it can be inferred
that the linkages are nonequivalent in some respect. Linkage nonequivalence in
cellotriose has been previously demonstrated concerning their unequal rates of

hydrolysis (23).

The singlets previously observed and assigned to 03H:ln 1l and 5 also appear in
the trisaccharides. 1In 9, a small broadened-singlet at 4.72 ppm (room temperature)
is present. Its intensity is further veriflcation of its assignment to o-O3H in 5.
If the signal resulted from the B-anomer, a contribution from the internal 03:H
should also be observed in the spectrum of 9. 1In the spectrum of 8 (Fig. 12a), a
sharp peak partially obscured by the 6-hydroxyls is found; it appears in a manner

similar to that observed in the 32°C spectrum of ] (Fig. 9a). It is shifted

slightly downfield in the trisaccharide.

Temperature Dependence

The temperature dependence of the hydroxyl or amino-proton chemlcal shift has
previously been used to differentiate between inter- and intramolecular H-bonded
systems (13). 1In the study by St. Jacques and co-workers, involving maltose, amy-
lose, and the cyclodextrins, it wagvdemonstrated thét as the temperature increases
the O3H signgl shifts upfield at alewgr rate than the other hydroxyl sigﬁalsﬂ This
hydroxyl is thought to be involQed in an intramolecular H-bond with 0,°H 4
(O3H....02') (Lz). Classically, a reduced temperatufe dependence has been
interpreted in terms of'a H-bonded system in which the hydroxyl proton is shielded

from the solvent (24).
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Cellobiose and Related Disaccharides

The chemical shift dependence on temperature for the hydroxyl region protons in
DMSO-dg solutions of 4, 4c, 1, and 2 are given in Table VI. The literature data for
maltose is also given for comparison (Lg)., From the table, it can be noted that all
the hydroxyl proton signals are shifting rapidly upfield with increasing tem-
perature. The anomeric protons, as well as the remainder_of the skeletal protons,

are shifted slightly downfield relative to the solvent resonance.
TABLE VI

CHEMICAL SHIFT TEMPERATURE COEFFICIENTS2 FOR THE HYDROXYL
AND ANOMERIC PROTONS IN SOME GLUCOSE CONTAINING SUGARS

Monosaccharides

B 4 a . 4°
0,H -0.67 -0.59
0,H -0.74b -0.80
03H -0.74b -0.80 -0.67D
04H -0.74b -0.67P
0gH -0.74 . -0.70
CiH 0.07 0.05 0.10

Disaccharides _

B 1c « 2 ﬂ . Maltosed
0oH -0.82 -0.78 -0.74
O3H -00 24 —0028 "0044
OZ'H —0-62 -0-67 . _0-65
031H, 04tH ~0.68 -0.81 -0.74
OgH, OgH -0.64 -0.64 -0.74
C H , 0.08 0.06
Cy 'H 0412

30btained from a linear regression analysis over a range of 29°-91°C; minimum
correlation coefficient - 0.996. 1In Hz/°C.

bpeaks coincident.

CFor cellobiose this is an average over six different concentrations. Largest
standard deviation (o) is * 0.03 Hz/°C except for the OgH signal with a ¢ =
+ 0.06 Hz/°C.

dFrom Ref. (13). Data given at 200 MHz and converted to 100 MHz (99.61).
Signals resulting from different anomers were not differentiated.
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With one exception, the rate of change for all hydroxyl signals is -0.58 to
-0.82 Hz/°C. The exception is the aisaccharide 04H signal which moves upfield at
-0.24 to -0.28 Hz/°C for the B-1,4-linked disaccharides and -0.44 Hz/°C for
a-1,4-1inked maltose. Clearly, O3H in 1 and 2 is not H-bonded in a manner similar
to the other hydroxyls. Apparently, a temperature dependent equilibrium involving
H-bonding to the solvent is not a major factor. Therefore, the H-bond in which O3H
participates must be intramolecular and most certainly is the one previously pro-
posed (03H....05+). 1In comparison to maltose, this H-bond is more isolated from

disruption by the solvent.

In addition to being a singlet and its Aifferent chemical shift relative to the
equivalent monosaccharide signal, its reduced temperature dependence provides yet
another feature which distinguishes this signal from the other hydroxyl signals.
These properties must be a direct result of its participation in an intramolecular
H-bond with the ring oxygen on the adjacent ring. It is reasonable to expect that
other molecules capable of possessing a similar intramolecular H-bond will also

exhibit a resonance with similar qualities.

The disaccharides lactose (10)* and 4 0-(B-D-glucosyl)-D-mannopyranose (l1) are
isomorphic with l within 2 bonds of the linkage and would be expected to have the
O3He...05” bond in solution. This bond has been found in crystalline a-lactose
(25). Figures 13 and 14 contain the 1 g-NMR spectra éf 10 and 11 at three different
temperatures. Each spectrum contains a singlet with a temperature dependence com-—

parable to 1. 1In the case of lactose, the singlet is located at 4.54 ppm (56°C)

just as in cellobiose.** By analogy, it can be assigned to B-O3H. For 11 the

*4.g—(B—D—galactosyl)—D—glucopyranose.
**A similar signal has also been observed in 1,5 anhydrocellobiotol.
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LACTOSE

M 54.0°C J

408 l

J&dﬂ ' . 33.0 R
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Figure 13. 100 MHz lH-NMR spectra of lactose (1Qa,b) in DMSO-dg at 33.0, 40.8, and
54.0°C. At 56°C the B-O4H signal is located at 4.54 ppm with a tem-
perature coefficient of -0.22 Hz/°C by linear regression analysis.

4-0Q~(J-D-GLUCOSYL)-D-MANNOSE
M‘/ 72.0°C
[ ¥ W
OMSO—dy
L/\ impurity
55.9
4
M DA\\J\ Jk 35.0
_L 1 L 5 1 1 1 i U 1 i L 1 1 1 J
7 [ ] 4 3 2 [ [}
ppm ‘

Figure 14. 100 MHz lH-NMR spectra of 4-0-(B-D-glucopyranosyl)-D-mannopyranose
(L1a,b) in DMSO-dg at 35.0, 55.5, and 72.0°C. At 56°C the 0-04H signal
is located at 4.34 ppm with a temperature coefficient of -0.27 Hz/°C by
linear regression analysis.



-148-

singlet is found at 4.34 ppm and can be assigned to a-0O3H since the a-anomer domina-

tes the spectra presented.*

Disaccharides Related to Xylobiose

Previously, it was shown that the spectra of 5 and 6 contain isolated near-
singlets assignable to O3H. The temperature dependence of the singlet is similar to
the other hydroxyls since it remains isolated over a wide temperature range (Fig.
11). The temperature dependence of the identifiable hydroxyl resonances for 2 and 6
are given in Table VII. The temperature coefficient of the O3H signal for the a-
anomer is -0.60 Hz/°C; only slightly less than that of the other hydroxyls, except
a-0yH. As in cellobiose, O,H is observed to.have a large temperature coefficient.
The other hydroxyls exhibit the same general trend as observed in the disaccharides
related to cellobiose. The results observed with 5 and 6 are consistent with con-

siderable H-bonding of O3H with the solvent.

TABLE VII

CHEMICAL SHIFT TEMPERATURE COEFFICIENTS2? FOR THE HYDROXYL
AND ANOMERIC PROTONS IN XYLOBIOSE AND SECURIDEBIOSE

b

B 5 a . B 6 a
0;H -0.64 ~-0.59 -0.66 -0.63
0,H c -0.78 c
04H , c | -0.60 c -0.60
0p'H, 03°H, 04'H -0.65 . -0.70
OgH - -0.70
Cy+'H, CyH 0.13

8In Hz/°C; see Footnote (a) Table VI.

Averaged over three concentrations with a maximum ¢ = * 0.05 Hz/°C.

€Included in the largest peak (0y'H, Og:H, 041H) and presumed to have a similar
temperature coefficient.

*These solutions are not necessarily at equilibrium. In general, the ratio of
anomers changes significantly with time.
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DISCUSSION

Criteria for the O3He..<05' 1ptramolecular Hydrogen-Bond

Previous literature reports have indicated that the normal chemical shift range
for non;nomeric hydroxyl protons H-bonded to DMSO is 4-5 ppm. It was proposed,
based on comparisons to maltose, that signals of this type found downfield of 5 ppm
resulted from intramolecularly H-bonded hydroxyls (9). Several examples can be
found of this criterion having been used in the literature to identify intramolecu-
lar H-bonded protons <ln§;2322)? The present paper has demonstrated, using com-
parison to model compounds and spin-decoupling, that the intramolecularly H-bonded
O3H is not downfield of 5 ppm in several disaccharides. On the contrary, the reso-
nance found in cellobiose at 5.18 ppm (32°C) has been assigned to OZ'H. The O3H
resonance is found at 4.60 ppm (32°C) in B-cellobiose. Clearly, the criteria pre-
viously utilized for signals exhibiting the properties of intramolecular H-bonded
protons in carbohydrates are invalid. Nevertheless, the conclusion that ] contains

an intramolecular H-bond in DMSO-dg remains firm, as discussed below.

Temperature Behavior

The data given above for cellobiose-related disacchgrides demonstrates that
the resonance assigned to O3H has sevéral characteristics distinct from tﬂe other
hydroxyl signals. First, the sigﬂal exists as a broadened singlet. At higher tem-
peratures, this becomes more obvious since the signai is no longer overlapped by
other signals (Fig. 6 and 8). All of the other nonoverlapped hydroxyls observed
have éouplings of at least 4.0 Hz.?* Secondly, the chemical shift.temperature co-
efficient of the O3H signal is considerably less than that observed for the other

hydroxyls.

*1f paramagnetic or acidic impurities are present, the signals no longer exhibit
this coupling but rather appear as very broad peaks.
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The behavior of a H-bonded system as a function of temperature is complex (24).
For a hydroxyl H-bonded to the solvent, the shift of the hydroxyl signal upfield
with increasing temperature 1s primarily related to the shift to the right of the

following equilibrium.

S)H3 H3
RO¢eHoeooO= ROH + O=

\CH, Hy
This results from the increase in thermal energy. The proton in the freé hydroxyl
has a greater electron density and would be expected to be more shielded. In
contrast, for a H-bonded proton protected from the solvent, the shift upfield is

related to a weakening of the H-bond (24).
OslooooH 00003 —‘Q’*“-"—> 05'0-0.91‘10.03

Obviously, this is also a factor for the solvated proton but in the latter case, it
must be the only factor. For protons prevented from forming any type of H-bond, a

slight downfield shift is expected because of the thermal weakening of the OH bond.

On this basis, the resonance of the solvent-protected proton is expected to
have a much lower temperature coefficient, similar to that previously observed in
maltose-(Lg). For 1, 2, 10, and 11, this is observed in the present study. Each of
these molecules has a B-1,4-linkage and contains an aglycon with a hydroxymethyl
group attached to CS; The temperature dependence of the O3H signal is only 29-42%
of the other hydroxyls which exhibit a nearly uniform and large dependence on;tem—
perature. This compares to a-l,4-linked maltose where the ratio is 59-68%. This is
a cleaf indication that the O3H signal results froﬁ'a hydroxyl that is shielded from

interacting with the solvent, i.e., intramolecularly hydrogen-bonded.

The data for the disaccharides 2 and g are tabulated in Tables IV and VII. For

the a-anomer, the dependence on temperature of the O3H signal is only‘slightly less
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than that of the other hydroxyls. Apparently, the solvent participates in the H-

bond to O3H for these compounds.

Vicinal Coupling-Singlets

The measureable spin-spin coupling value (3JHCOH) for the isolated hydroxyls
were given in Tables I-IV. Over the temperature range studied, these values are
nearly constant.* This was previously shown to be true for cyclohexamylose and was
interpreted in terms of a dominant local conformation for the hydroxyl (LZ)' For
the O3H....09'H intramolecular H-bond in cyclohexamylose a value of 2.5 Hz was
observed for 3J(O3H,C3H). The same authors used a Karplus type relationship (gl) to

estimate a value of +110° for the dihedral angle
3Jucoy = 10-4 cosZy - 1.5 cosy + 0.2 A (1)

(x) in amylose-** The proposed conformation for O3H in amylose is illustrated in
Fig. 15 (13). For linkage dihedral angles (¢, x) near those of crystalline methyl B-

maltopyranoside, it was shown that this value of x gives nearly a linear H-bond.

For the disaccharides containing a hexose as an aglycdn, a slightly broadened
singlet was observed for O3H. In Fig. 7b, the sharpening of the O3H singlet, rela-
tive to that observed in Fig. 5, clearly indicates a nonzero coupling constant. |
Measurement of width at half height gives a value of 3.0 (% 0.1) Hz, about twice that
of the decoupled peak in Fig. 7b. Though an accurate measurement can't be made, a
coupling of between 1-2 Hz can be estimated. Whatever the valﬁe, it certainly is

less than that observed in maltose.

*At very high temperatures or if impurities that catalyze proton exchange are
present, this will not be true. In the case of 0y+H in cellobiose, this is par-
ticularly the case, even when no decrease in J is observed for the other hydroxyl
signals.

**1 = 2.0 Hz.
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Figure 15. The proposed conformation of O3H in amylose as depicted in Ref. (13).
In this paper the dihedral angle, %, is defined as the clockwise rota-
tion of the hydroxyl proton relative to the vicinal ring carbon. This
is the negative of the definition of y in Ref. (Ll)'

Values of 3JHC0H in this range correspond to a value of approximately 90° for

X In this range of dihedral angles, the modified Karplus equation is somewhat

insensitive so that only an approximate value for x can be expected (28,29).

Nevertheless, for the known crystalline conformations of | and 2 (éﬁéié)’ any X

value in the vicinity of 90° gives nearly a linear intramolecular H-bond, as

expected. Therefore, the reduced coupling of O3H to CqH is a further manifestation

of the presence of the O3H....0g5: intramolecular H-bond in DMSO-dg solutions of 1,

2, and related disaccharides.

Figures 9b and 11 illustrate the appearance of the OéH signal in 5 and 6,
respectively. In this case, a broadened singlet to a very weak doublet (2.4 Hz) is
observed. Again, this contrasts sharply with thé much larger couplings of the ano-
meric hydroxyls. As in cellobiose, the O3H signal represents a different confor-
mation from that exhibited by the other hydroxyls. For a coupling contrast of 2.4

Hz values for x of * 113° and * 57° are obtained using the modified Karplus equation
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(1). This assumes only one dominant conformation.* The positive values are
required to orient the proton toward Og:. For either of these values to be involved
in a near linear intramolecular H-bond, thé linkage conformation must be somewha;
more removed from the 2-fold helix conformation (¢=0,y=0) than in the cellobiose-

related disaccharides.**

The fact that the O3H conformation is dissimilar indicates that a weak interac-
tion with Og5+ is involved. A bifurcated H-bond might be proposed in which the
solvent participates. Such a bond would exhibit both a strong temperature depen—
dence and an orientation toward the adjacent ring oxygen. Figure 16 depicts'a
possible arrangement. Because of the flexisle nature of the linkage, this is only
one of a number of probable arrangements. The one depicted in Fig. 16 agrees with
the prediction that the O3H....05: bond in the xylans in less significant than that

of cellobiose (3,8).

H.C CH
3\5/ 3

I
0]
[
v on
HO o~ \\\\() OH
HO 0 (0]

OH

Figure 16. A depiction of a possible bifurcated hydrogen-bond in B-xylobiose (za).

*Recent evidence indicates that the linkage is flexible (3,30) so that no dominant
conformation is expected if a linear H-bond is maintained. Therefore, a range of
x values between these limits is probable.

**Work in this lab concerning 13¢-1y coupling constants across the linkage and 1H--T1
relaxation times agree with this. It can be shown that the average absolute value
for x is greater in 5 than in l. This results from greater freedom for movement

of the aglycon past Hj+ because of the absence of the hydroxymethyl group attached

to C5 (4,31). To maintain a linear intramolecular H-bond, values of x nearer to
+113° are required for this linkage conformation.
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Relative Chemical Shifts

In comparing the relative chemical shifts of the disaccharides to the corres-
ponding monosaccharides, it was observed that there is a general downfield shift of
the hydroxyl protons in the disaccharides (0.11-0.13 ppm). This is probably related
to interaction with the solvent and suggests that solvent is more tightly bound to
the disaccharide, resulting in a stronger hydrogen bond with the hydroxyls. This is

expected because of the lower mobility of the larger molecules.

Exceptions to the above generalization are the hydroxyl protons in close proxi-
mity to the linkage (03H and 09+'H in 1 and g). In cellobiose and MBC2 the 04H
signal is actually shifted upfield (0.07 ppﬁ) rela;ive to the same signal in glu-
cose.” This suggests that the 3-hydroxyl proton is more closely associated with
solvent in glucose then in the disaccharides. This is analogous to the effect of
temperature noted above and agrees with the description of an intramolecular

hydrogen-bond without any significant participation of the solvent.

The signal from 09'H is éhifted éven further downfield than ﬁhe remaining
hydroxyls. This may suggest that its interaction with the solvent is increased,
however, the impact of steric crowding from the linkag; and a possiblé intramolecu-
lar H-bond with OHg must also be considered. Further discussion on this point is

given in Appendix IX.

In the case of xylobiose and related compounds the only exceptions to the above
generalization are the OqH signals. They are shifted downfield slightly less than
the other hydroxyls. This is consistent with an intramolecular hydrogen bond that

has a significant participation from the solvent, as described above.

*Giving a normalized upfield shift of 0.18 ppm.
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Weak vs. Strong Intramolecular Bonds: Impact'gglgg

The IR spectra of theAsolid cellooligosaccharides contain several temperature
sensiﬁive bands in the OH stretch region; 3100-3560 cm~!. On the basis of their
relative insensitivity to temperature, the bands on the high frequency side of this
region are attributed to‘intramolecularly H-bonded hydroxyls (7,32,33). As the tem-
perature increases, the peaks representing H-bonded hydroxyls shift to larger wave
numbersf' Since a OH-stretch band at higher frequencies represents a weaker H—bond,*
it can be inferfed; with caution, that the intramolecular H-bond in the solid cello-

dextrins is a weak H-bond (34).

‘In general, the participation in a H-bond leads to deshielding of a proton
signal in the.NMR spectrum; the amount of deshielding being related to the strength
of the H-bond. This is supported by the simultanebus H-bond weakening and upfield
‘movement of the hydroxyl signal with increasing temperature. 1In thg original study
inVolviﬁg intfamolecular'H-bpnds in dissélved cellobiose, the 1y-NMR signal assigned
to O3H was downfield of its location in glucose (9). 1In the present study, the O3H
signais for la and g'are shown to shift upfield relative to the‘mpnosaccharide
signal (Tables I, II, and III). The more recent result is in agreement with the

expectations from IR and is in general indicative of a weak H-bond.

In 5 and 6, the upfield shift of the O3H signal, relative to xylose, is small.
Therefore, the criteria outiined above indicate that the OgH H-bond in 2 is

stronger** than that in 1. The H-bond involves the solvent in 5, while in 1, it is

only intramolecular. Apparently; the solvent can participate in a stronger H-bond.

The characteristics of the intramolecular H-bond in cellobiose result from

linkage geometrical constraints which act to restrict the allowed 03 - Og+ distance

The hydrogen- bonded proton is more closely associated with the hydroxyl oxygen.
**The hydrogen-bonded proton is less closely associated with the hydroxyl oxygen.
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to values near 2.8 A (1) Such constraints are not as severe for compounds such as
xylobiose, with the result that the solvent can penetrate close éo the 3-hydroxyl
proton. Continuing with this logic, it can be assumed that the intramolecular H-
bond in ] is weaker than a potential H-bond with the solvent. 1In 5, the O3H....05¢
bond is just as capable of forming as in ] but does so only marginally. Therefore,
in ] it appears that the intramolecular H-bond forms as a consequence of the allowed
linkage conformations and does not act to promote the linkage conformations except
in a minor way.* Rather, it is the presence of the hydroxymethyl group that
restricts the available linkage conformations relative to 35 (1,35). For 1, the
allowed set of linkage conformations pfeven;s access by the DMSO-dg molecules to

03Ho**
SUMMARY

The 'H-NMR spectra of a series of B-1,4-linked disaccharides have been studied
over a range of temperatufes and under conditions of slow proton-exchange (DMSO-dg)-.
The disaccharides which contain a 6-hydroxymethyl group, such as cellobiose and
methyl B-cellobioside, were found to contain a hydroxyl-proton with a chemical shift
that is relatively insensitive to temperature. Furthermore, the resonance of this
proton appears as a singlet while all other hydroxyl-protons exhibit large couplings
with the adjacent skeletal protons. The temperature-insensitive singlet has been
assigned to the 3-hydroxyl proton (0O3H) of the reducing-end in cellobiose on the
basis of homonuclear decoupling experimentso This assignment represents a departure

from earlier studies. The unusual characteristics of this proton have been

*The conformation is restricted to only a small percentage of all the possible ¢, ¥
values (1). Within this small domain, the establishment of a stable intramolecu-
lar H-bond is a factor in promoting conformational stability but it is not a fac-
tor in restricting the linkage to the few conformations available.

**In HyO0, this restriction may not be as severe. It has not been determined if the
O3H....05+ bond survives in Hy0 for 1 or 5. 1In the latter case, it is unlikely.
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interpreted in terms of an intramolecular hydrogen-bond (03H....051) that results
from the constraint om the rotational freedom of the linkage arising from the

reducing—end»6—hydroxymethy1 groupe.

For the disaccharides which do not contain a 6-hydroxymethyl group at the
reducing-end, xylobiose and securidebiose, a temperature—sensitive signal is
assigned to OgH. The signal appears as a broadened singlet. This is interpreted in
terms of strong hydrogen-bonding to the solvent in conjunction with a weak intra-

molecular interaction with the ring oxygen on the adjacent ring.

EXPERIMENTAL

Spectrum Acqﬁisition

The lH-NMR spectra were recorded on a Jeol FX-100 FT spectrometer (99.61 MHz)
supplied with homonuclear decéupling capabilities. Either the'5 mm or 1 mm dual
probes were used. Spectra were accumulated for 10-50 pulses using 8K of data
points. Temperature control was obtained with a Jeol supplied.NM 5471 model tem-—
perature controller stable to * 0.5°C and calibrated to * 2.0°C. All chemical
shifts are referenced to TMS using the DMSO-d5 central line as a secondary reference
[2.50 ppm, (13)]. 1In the variable temperature studies, the shift of the DMSO-dj

signal relative to TMS changes by no more than * 0.01 ppm relative to internal TMS.

Solutions were prepared using 99.5%7 DMSO-dg thafvhad been stored over A-4 mole-
cular sieves to reduce residual water. Sample concentrations ranged from 3.6 - 7.9%
(w/v). Over this concentration range, no significant changes in hydroxyl proton
chemical shifts were observed for spectra of the same compound. Previous authors
also report a concentration independence at these values (9). Water was added up to
6% without a complete loss of the hydroxyl resonances in an 8.8% solution of 1l in

DMSO-dg. Under these conditions, the B-0O4H singlet could still be observed.
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Several samples required pretreatment with IR-120 cation exchange resin (acid-form)
before individual hydroxyl signals could be observed. A similar dependence of the

hydroxyl signal resolution on sample purity has been observed by others (l4).

Both the chemical shift temperature coefficients and their extrapolation to
56°C were calculated using a linear regression analysis program over at least three
temperatures. In all cases, a correlation coefficient greater than 0.99 was
obtained. Coupling constants were measured directly. from the computer output of

signal location. All coupling constants reported are apparent coupling constants.

Compound Acquisition

All compounds were characterized via their 13c-NMR spectra which are being
reported separately (36). Corrected melting points were obtained if enough
crystalline sample was available; except for methyl B-xylobioside, they agree with

the literature.

The following compounds were purchased and used without further purification:
cellobiose (la,b), xylose (3a,b), methyl B-xylopyranoside (3c), methyl a-
xylopyranoside (3d), glucose (4a,b), and lactose (10). Cellotriose (8), xylotrioée
(g), and 4-0-(B-D-glucopyranosyl)-D-mannopyranose (ll) were obtained as gifts as
discussed in Appendix X. Xylobiose (5a,b) and securidebiose (ga,b)* were synthe-
sized via a Koenigs-Knorr condensation using benzyl 1,3—anhydro-B—D—ribopyranoside
and the appropriate acetyl bromide. A slight.modification was used of the procedure
" given by Aspinall (37,38). Methyl B-cellobioside (2) was prepared using known pro-
cedures from cellobiose octaacetéte via a Koenigs-Knorr condensation of the‘bromide
with methanol (39); mp. 175-178°C. Literature mp. 170.5-174°C (39), mp. 193°C (40).

Methyl B-xylobioside (La) was prepared starting from xylobiose hexaacetate using the

*4f97(B—D—glucopyranosyl)—D—xylopyranose.
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same procedures: mp. 174-177.5°C. Literature mp. 103-104°C (41), mp. 148.5-149°C
(42). The different melting points probably represent different polymorphs (42);
the 13c-NMR spectrum is consistent with the proposed structure (36). Benzyl B-

xylobioside (7b) was isolated as a syrup in one of the intermediate steps to 5.
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INTERMOLECULAR EFFECTS ON THE LINKAGE CONFORMATION IN
CELLOBIOSE, METHYL B-CELLOBIOSIDE, AND XYLOBIOSE
The solid state NMR spectra of cellobiose and methyl B-cellobioside were
obtained using the CP/MAS techniquec* The spectra were recorded on a modified Jeol
FX-60Q system (1). The cellobiose was purchased and the methyl B-cellobioside was
synthesized (see Section IV). X-ray diffraction showed each sample to be

crystalline.

The spectra are shown in Fig. 1 and 2. Table 1 tabulates the chemical shifts
for the solids and compares them to the shifts in D70. Assignments are given for

the Cy, Cy+, C4, C¢, and Cgr signals.

From the table, a consistent downfield shift can be noted for all the assigned
carbons. Most of the shifts are about the same order ofvmagnitude as a solvent
shift (1-3 ppm). This shift is primarily related to the hydrogen bonding pattern of
the crystal, though small changes in the conformation of the anhydroglucose rings

is probably also a factor.

0f greater significance is the large downfield shift for C4. The magnitude of
this shift is 5.2-5.4 ppm for the two compounds. This is significantly greater than
for any other carbon. Furthermore, the location of the C, signal in D,0 is about
the same as it is for amorphous cellulose, but still upfield from where it is in

crystalline cellulose I or 11** 1,2,3).

The conclusion that arises by comparing the solid and solution C, shifts is

that the glycosidic linkage conformation is probably significantly different in the

*Spectra recorded at Colorado State University by the group of Dr. G. E. Maciel
(1). CP/MAS refers to cross polarization/magic angle spinning.
**87-90 ppm.
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CELLOBIOSE
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Figure 1."Solid state 13C-NMR spectrum of cellobiose. Chemical shifts are given
adjacent to each resonance.

Methyl g Cellobioside

106,48

1056.83
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Figure 2. Solid state 13c-NMR spectrum of methyl B-cellobioside. Chemical shifts
are given adjacent to each resonance.
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two states. Furthermore, the conformation is also probably significantly different:
from that of either polymorph of cellulose. The differences are too great to be

related to instrumental effects (4).

If can be speculated that two important factors are- -involved. First, in com-
paring crystalliné cellulose to crystalline disaccharide to dissolved disaccharide,
the chemical shift change is much greater for C; than for Cy:. From the exo-
anomeric effect, it would be expected that x would change more than ¢ over this
transition. Since the C; carbon is part of the C; to O, (linkage oxygen) bond,
which is the bond central to x, it is reasonable that a greater change should result

for C4 (5,6).

Secondly, the large upfield shift in C, probably reflects a change in hybridi-
zation at the bridge oxygen. From x-ray diffraction work 1 has been determined to
be 116.1 in crystalline B-cellobiose and 115.8 in crystalline methyl B-cellobioside,
respectively (7,8). However, the bridge angle for B—cellobiéside has been calcu-
lated to be 113.4 in the isolated molecule using an empirical force field (9). This
shoﬁld be more typical of tﬁe solution value. Thus, in going from the crystal to
éolution, théfbridge angle T relaxes about 3°. This is equivalent to developing more
sp3 character at the linkage oxygen, meaning that the electrons will be less closely
associated with fhe oxygen nucleus and will act to increase tﬁe electron density at

the linkage carbons. Therefore, the C4 carbon would be expected to shift upfield

going from the solid to the dissolved states of the disaccharide.

It should be emphasized that the downfield.shift in the crystalline disaccha-
. rides is not related to steric compression of linkage protons. Steric shifts are
always upfield. Besides, the Hj: to H, distance is known to be 2.2 A in cfystalline

B-cellobiose. This is greater than the maximum distance possible, 2.0 A, for
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overlap of these protons if they are considered as hard spheres (10).. Therefore,
steric compression is not expected to be a significant factor in determining the

chemical shifts of the linkage carbons.

To summarize, the effect of the crystal lattice is to significantly change the
linkage conformation for Soth methyl B-cellobioside and B-cellobiose, relative to
the average solution conformation. This change is related to either a ch;nge in the
dihedral angle yx, a change in the bridge angle 1, or both. Since the angle x has
been determined to be similar™ in the.crystalline and dissolved states (Section 2,
Part 2) (11), it is probable that this shift is primarily caused by an increase in T

upon crystallization.

The effect of solvent on the 13C-NMR chemical shifts of cellobiose and xylo-
biose was also studieduto'fry to determine if there is a conformational difference
in the two solvents. ‘Table II compares the spectra in DMSO-dg and D,0 for both

disaccharides.

In going from D50 to DMSO-Dg , ﬁearly every signal is shifted upfield from —0.3'
to -1.8 ppm in xylobiose.** The C4 signal is included in this group with an upfield
shift of -1.8 ppm. For cellobiose, it is also observed that nearly every signal is
either stationary br moves upfield (+ 0.1 to -0.9 ppm), with one exception. C,
shifts downfield by 1.2 ppm in going from D90 to DMSO. Heyraud and coworkers (12)
have suggested that this is related primarily to the degree of solvation, but also
at least partly to a conformational change. It is suggested here that the major

difference is that DMSO-dg can penetrate close to the linkage in xylobiose where it

* The magnitude of the effect of small changes on the chemical shift of C4 is not
known.

**The reducing end anomeric carbon is an exception. It shows no significant change.
Because of the higher acidity of this signal, the'DMSO—d6 is still able to
interact with it strongly.
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may interact either with the weak intramolecular hydrogen bond (Part III) or with
the bridge oxygen itself. 1In cellobiose, there is no penetration to the vicinity of
the linkage by the DMSO—d6.' And, since the solvent can't interact with the Cj
hydroxyl, because of the protected intramolecular hydrogen bond, it can only remo-
tely affect the chemical shift at C4.* The fact that the C; shift is as large as it

is may further reflect a change in the linkage conformation.

*Cl’ is still shifted upfield because of the interaction of the solvent at 09-H.
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SECTION IV - PREPARATION AND CHARACTERIZATION

OF MATERIALS
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PREPARATION OF MATERIALS

INTRODUCTION

The objective of this work has been to compare the solution conformations of
the xylo-oligosaccharides and the cello-oligosaccharides. Special emphasis has been
given to the respective disaccharides and in some cases the B-methyl anomers of
those disaccharides. 1In the latter case this was primarily to avoid complications
arising from mutarotation of the reducing end group. Specific disaccharide models

containing the 8-1;4— linkage have also been used for comparison purposes.

Fortunately, the major technique utilized in this work, NMR spectroscopy, did
not require large quantities of material. Use of the Jeol 13¢/1H dual nuclei
microprobe further reduced the sample requirements. Therefore, despite having only
limited available quantities of the cello- and xylo-oligosaccharides, it was
possible to do much of the spectroscopic work without further synthesis or isola-
tion. Exceptions to this were xylobiose (1) and 4—0—(B-D—glucosyl)—D—xylopyraqose
(1)* which were obtained via a multistep synthesis featuring a silver oxide pro-
moted Koenigs-Knorr condensation reaction. Early attempts to isolate L from birch-
wood failed to provide a sufficient quantity of material. In addition, methyl'
B-xylobioside (%Q) and methyl B—cellobiqside (21) were synthesized via a
Koenigs—Knorr condensation with methanol using mercury salts as the acid acceptor.
The deuterated analog, methyl-f-~cellobioside-3, 63,6b,2',3‘,4’,65,65,fd8, was pre-
paréd using a recently developed catalytic C-deuteration reaction using Raney nickel

(L.

*Securidebiose.
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Characterization of the final compounds, as well as their synthetic inter-
mediates, was primarily by 13c-NMR spectroscopy. Melting points (m.p.), thin layer
chromatography (t.l.c.), and conversion to an acetate of known physical properties
were also used. Comparison of these results to literature values, or to data from
identical compounds concurrently prepared and extensively characterized elsewhere in
this laboratory (2), sufficed to prove the authenticity of the synthesized

compounds .

Details of the synthetic procedures and the physical constants obtained are
given in Appendix X. The general synthetic‘schemes are outlined below. Ll3C-NMR
spectra of the intermediates and the acetates are reproduced in Appendix XI and XII
while the spectra of the final underivatized products are shown in Appendix XIII.
Detailed spectral assignments are given below in parts 2 and 3 of this section.
Included are the 13C-NMR assignments of 27,37 ,4"-tri-O-methyl xylobiose (40) and
intermediates leading up to it. These were kindly made available as an aid in

assigning the derivative spectra (2).
SYNTHESIS OF XYLOBIOSE (L) AND SECURIDEBIOSE (Z)

Disaccharide Formation

Figure 1 depicts the reaction scheme leading to xylobiose from two mono-—
saccharide intermediates: Benzyl 2,3-anhydro-B-D-ribopyranoside (l5) and
2,3,4-tri-O-acetyl-a-D-xylopyranosyl bromide (13). The key steps of this reaction
scheme are the modified Koenigs-Knorr condensation to give 6 and the selective
opening of the 2,3-epoxide bond to provide the xylo—configuration in the inter-
. mediate 3. This reaction schemeAwas first proposed by Aspinall and Ross (3).
Slight modifications recently have been utilized by others to prepare the methylated

xylo-oligosaccharides (4), xylobiose hexa-acetate (5) and to study the lH-NMR of the
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Figure 1.

Synthetic scheme for the preparation of xylobiose (1), securidebiose (7),
and their acetates.
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epoxide intermediates (6). For the synthesis of 1, 2,3,4,6-tetra-0-acetyl-a~-D-

glucopyranosyl bromide (Li) was substituted for 13.

~~

The modified Koenigs—-Knorr condensation was effected using silver oxide as the
acid acceptor. The resulting acetate syrup was deacetylated directly with methano-

lic sodium methoxide to compound 5. Yields up to 31% were achieved.

The opening of the epoxide ring to form 3 was accomplished by reacting 3 in
aqueous sodium hydroxide (2N) at a temperature close to boiling. This produced a
hard yellow syrup that would not crystallize. It has been reported, using gas-—
liquid chromatography (g.l.c.), that the ring opening is not entirely selective for
the xylo configuration. Up to 10% of the arabino configuration was detected by_
g.l.c. (2). 13c-NMR of the syrup did not reveal significant amounts of this con-‘

taminant so no further purification was required.

Subsequent reaction to form ! was by hydrogenation over palladium on carbon
(Pd/C) catalyst. The resulting syrup was isolated as the acetone powder. 13c-NMR
of 1 and its peracetate (2) confirmed the structure. Presence of the arabino-

impurity prevented crystallization of 1l or its acetate.

Preparation of Monosaccharide Intermediates

The epoxide intermediate (l3) was prepared from arabinose .using a 5-step
synthetic sequence as shown in Fig. 2. Established literature procedures were used

throughout (7,8).

The a-bromides 13 and 14 were prepared from the acetates using established

" literature techniques (9). This also is depicted in Fig. 2.
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Figure 2. Synthetic schemes for the monosaccharide intermediates 13-15.
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PREPARATION OF METHYL B-XYLOBIOSIDE (Eg) AND METHYL B-CELLOBIOSIDE (21)

K

Figure 3 depicts the synthetic scheme for preparing 20 and 21. The procedure
is patterned after standard iiterature methods (10,11). The reaction pro;eeds from
the disaccharide to thela-acetate. The a-acetate is then brominated and used in a
Koenigs—Knorr condensation, employing mercury salts (yellow HgO, HgBry) as the acid

acceptor. The crystalline product was then deacetylated with sodium methoxide.
C-DEUTERATION OF METHYL GLYCOSIDES

Exchange of the backbone protons. with deuterium occurs over deuterated Raney
nickel for all carbons possessing a free hydroxyl (1). To avoid excessive side
reactions a nonreducing sugar must be used. The idealized reaction is illuétrated

in Fig. 4.

In actual practice some inversion of configuration occurs at all carbons
possessing a free hydroxyl as a side reaction. The isomerization is a minimum for
the glucopyranose configuration because it provides the lowest energy form of the
Cl conformer. By careful monitoring of the reaction by 13c_nMr* the isomerization
can be minimized. For the methyl B-glycosides substitution at Cy is sterically hin-
dered by the methyl group so that complete exchange of Hy cannot be achieved without
isomerization. Methyl B-cellobioside, methyl B-glucoside, and methyl B-xylosidé

were deuterated using this approach.

*Deuteration of a carbon essentially destroys its 13cnmr signal due to slow relaxa-
tion and indirect coupling to 2y,
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Figure 3. Synthetic scheme for the methyl B-disaccharides.
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13c-NMR ASSIGNMENTS OF SYNTHETIC INTERMEDIATES
AND RELATED ACETATES

INTRODUCTION

13c-NMR is rapidly becoming the preferred technique for characterization of
carbohydrates and their derivatives. The simple 1 to 1 correspondence, between the
number of carbons in the expected product and the number of peaks in the spectrum,
often make it possible to merely count the signals to verify the structure. Further
assessment on the basis of chemical shift, peak intensity, and correlation to model
compounds then can substantiate the initial assignment. It is particularly useful

for following the progress of a reaction scheme.

This technique was used extensively throughout this work to monitor progress
toward the synthesis of compounds 1, 7, 20, and gi. In so doing, a considerable
amount of information was obtained concerning the effect of various functional
groups on the chemical shift of the backbone carbons in the B-1,4-linked disacchari-
des.® The correlations developed were helpful in verifying the 13c-NMR spectral

%k
In

assignments of 1, 7, 20, and 21, which had not yet appeared in the literature.
the development of these correlations use was made of the 13¢c-NMR spectra of a

number of model compounds synthesized concurrently within these laboratories (see

Acknowledgments) (2).
ADVANTAGE OF 13c-NMR

The benefits of 13C-NMR for carbohydrates are basically derived from three fac-

tors. First, the large chemical shift range (200 ppm) of the carbon spectrum

*Refer to Ref.l for a recent review on this subject.
**The primary method of assignment for ] was by peak intensities of the oligosaccha-
rides as well as comparison to xylose and cellobiose as models (See Part IIT).
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assures ﬁhat little overlap of peaks will occur. Even if ﬁeaks do overlap the peak
heights generally indicate this, providing no unusual relaxation mechanisms are
involved. Secondly, the decoupled spectrum commonly obtained is not complicated by
difficult-to-analyze coupling patterns; This is the reason for the 1 to 1
correspondence usually observed. If couplipg information is required it can be
easily obtained using gated decoupling or off-resonance techniques. Finally, the
observed chemical shifts in a series of similar compounds remain approximately
constant for those carbons that are several bonds removed from the point of dissimi-
larity (%). Therefore, provided a sufficient data base exists, the assignment of a
spectrum often merely involves a comparison with the spectra of several similar com-—

pounds.

13c-NMR SPECTRAL ASSIGNMENTS OF THE DERIVATIVES RELATED TO
XYLOBIOSE (L) AND SECURIDEBIOSE (Z).

The work reported below includes the analysis of the 13c-nmr spectra of most of
thé derivatives obtained during the synthesis of 1 and 7, as well as a number of
model compounds. Figure 1 gives the structure and designation for each compound
studied. Nearly complete spectral assignments have been obtained by internal com-
parison as well as comparison to similar acetylated and underivatized sugars. Where
assignments were not complete a l:1 correspondence was observed for the backbone
carbon signals (55-110 ppm) and the number of signals expected on tﬁe basis of the
structure. From these assignments observations concerning the effect of acetyla-
tion, benzylation, and O-methylation, on the chemical shift of 8-1,4-1linked car-
bohydrate ring carbons have been made. The location and identification of the

- functional group 13¢ resonances are also discussed.

Functional Groups
In Tables I and II are tabulated the chemical shifts for all functional group

signals in the spectra of the compounds studied. Pertinent model compounds are also
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presented for comparison. Reference to literature assignments of these or similar
compounds are given in the tables. Table II1 summarizes the chemical shift ranges

found for the functional groups.

Because of differing solubilities it was necessary to obtain the data in a
number of different solvents. The effects of solvent dielectric constant and/or
direct interaction with the sample make it difficult to make specific comparisons of
chemical shifts (11). Nevertheless, all the functional group signals still fall
within relatively narrow regions. These regions are diagnostic for the derivative
and provide a simple method for determining the progress or success of derivatiza-
tion. A number of derivatives common to carbohydrate synthesis are represented.

They are discussed below.

Acetyl Groups

The carbonyl carbon peaks fall within the narrow range of 168.6-171.0 ppm.
This is in the middle of the range for ester carbonyls reported.in the literature
(12,13). Signals above 170 ppm were only observed in the peracetates of the cello-
oligosaccharides (sée Table II and Appendix XII) in acetoné—d6- In B-glucose
penta—acetate this was not observed, nor was it observed in gﬁ. This suggests that
the downfield shift is related to the linkage of the cello-oligosaccharide peraceta-

*
tes.

In general, the number of carbonyl carbons does not equal the number of acetate
groups in the molecule. Several factors are responsible for this. Because of the
small chemical shift range involved it is probable that several peaks are dege-

. nerate. For most substituents this would be manifest in peaks that are approximate

*This is not a steric compression shift which would cause upfield movement of the
signals (3).




Compound

16
17
18

19

15

28
30
33
34b
c

355

36

So lvent

DHSO-dg

cnCly

Acetone~dg

CDCl4

CDCl4

D20
D,0

Acetone-dg

Acetone-dg

Acetone-dg

CDCl3

CH30 Qi3-C-
58.2
58.1
20.6(1)
20.5(1)
58.1,58.8
60.6
56.5

TABLE T

MONOSACCHARIDE DERIVATIVES FUNCTIONAL

CH3-@-s-

GROUP CHEMICAL SHIFTS?

)
CHy-9-5-
or O
~CHp-6 ~CH -8 c-¢C
68.3P 127.1-138.0
(4)
69.8b 127.9-137.1
(4)
70.2 128.1-145.5
(11-12)
69.4P 127.8-145.2(8)
70.0 127.9-137.0 51.9(2)
(4)
70.2 127.6-137.0 49.5
(s) 51.3

cHyC-

168.9-169.8
(4)

168.9-169.8
(4)

CH3 CH3 CH3 CH3  Ref.

109.2

109.3

8A11 relative to (CH3),Si at O ppm except for those in DO which are externally referenced to (CHj),5i using p~dioxane at 67.4 ppm as a
secondary reference.
entative assignment; could be exchanged with nearby signal within 2 ppm.

€See Ref. 2 for spectrum.

-%81~



-185-

0

ERLERER £

IS

(£)S°691-0°691

(9)L°0L1-2°691

(L) 0LT-6°891
(LY 0L1-6"891

(7)%7°691-9°891

(£)8°691-7°691
(7)L°691-T7°691
(€)8°691-7°691

-2-€HD

0

(A
19 £
[AXAY
0°2¢

s
6°16
0°2¢
1°1¢

(7)s°8€1-%°8C1

(7)Y Le1-6°L21

(e LeT-£76T1
()7 LeT-¢£ 6T1

(%) 8e1-7°8C1
(M) Le1-6°LT1
(7)e°8¢1-0°821

(ML LeT-1"621
(€)8°LET-9"LT1

?-Wo

q9°0¢L

nm.mc

£TL
q9°0L
£°69
q0°T¢L

TTL
q9°69

S|N:MV

(1)L°02
(1)9°0z
(Tw-oz

(€)L°07
(e)s-oz
(2)80C

(1807
(s€)s-0c

(1)eoz

(2)2°07
(roz

9°0C

()80t
(T)s°0z

(1)8°027
(£)9°02

-o0-tw

eSIAIRS TVOIWAHD dN0¥D

11 378Vl

TYNOILONNS SIAILVAI¥YIA IAI¥VHOOVS1A

‘wnajdads 103 g 3douU2193aa I[NSUO),
-wdd Z utyltm jeudis Lqiesu yiim palBueydxe 2q pInod {jusuwudisse 3ATIBIUILq

st .9 ou 31 1°0L 03 .7 a0 $°19 =_9) yiis padusiazai £11ir1311qiE 212M 0lq u1 soydues

q(T)L°65 g8 LS
(2)%°09°%°86

2709
1°09°6°8¢

1°86

oftun

*juasaad

c1s7(tHD) o031 pasuaaajzay,

9p-0SKa -

9p-su03a oy
9p-auoiaoy

9p-auojaay

-

£

£1000

ola
ola

9p-0SKHa

ola
ola

9p-suo3asy
9p-0SKd
9p-auo3aay
ola
9p-0SKa

9p-auoiaoy

JuaAaios

59 e0Y
>96€

oLt

eLT

14

A

1c
07

qQz

punodno)




-186-

multiples in intensity. Because of the long relaxation time of the carbonyl carbons
this approximate relationship in peak heights is not maintained. Another con-
sequence of this is that the carbonyl carbons give very small peaks. Indeed, if

care is not taken these peaks can easily be lost.

TABLE III

FUNCTIONAL GROUP CHARACTERISTIC CHEMICAL SHIFT RANGES

Group Chemical Shift Range (PPM)
Acetyl 20.1-20.8 (CH3) 168.6-171.0 (C=0)
Methoxyl 56.1-60.6
Benzyl 68-72.3 (cnz)' 127-138.5 (@)
Tosyl ' 21-22 (CHjy) 127-146 (@)
2,3-anhydro 49.5-53.5
3,4-0-isopropylidene 25.9-27.8 (CH3) 109-110(C)

The acetate methyl groups also resonate within a narrow range from 20.1 to 20.8
ppm. This is well within the values reported in the literature (12). Again, it is
not possible to directly determine the number of acetate substituents by counting the
acetyl methyl peéks. This is a result of the methyl carbon not being strongly

affected by the ring position to which it is attached.

The acetyl methyl carbon chemical shifts are affected by steric crowding. This
can be seen in Tables I and I1 by comparing the acetylated monosaccharides, which
only have one acetyl methyl peak,‘to the disacchérides which have at least two types
of such peaks. The ratio of peak heights represent the approximate ratio of steric-
ally hindered to nonhindered acetate groups. The more hindered acetyl groups are
shifted slightly downfield. This is also true for the cello-oligosaccharides (see

Appendix XII).
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Methoxyl Groups

Methoxyl carbons are found in the region from 56.1 to 60.6 ppm in the deriva-
tives listed in Tables I and II; well within the reported range (13). In general,
interpretation of this region may be complicated by the presence of methylene car-
bons from the carbohydrate backbone; particularly from 58-61 ppm. These two types
of peaks can usually be distinguished by off-resonance decoupling or Ty ‘measure-
ments. In the latter case, the methoxyl carbons generally have T;'s longer than the
ring carbons because they freely rotate. The methylene carbons, with two attached

protons, have T;'s approximately 1/2 those of the ring methine carbons.

Aromatic Carbons
Two types of aromatic groups were utilized in the derivatives prepared: benzyl
and p-toluene sulfonate. Each gives a characteristic pattern in the 13¢c-nMr

spectrum.

The presence of a benzyl group is easily confirmed by 13c_-NMR. Tables I and II
show that all the benzylated compéunds show a characteristic aromatic pattern from
127 to 138.5 ppm. From correlations concerning the substitution of aromatic rings
it can be calculated that the directly substituted carbon would have a resonance at
approximately 137 ppm. Because this carbon has no directly attached proton it has a
low intensity. The remaining aromatic carbons should show little change from ben-
zene Qi). For each benzylated derivative studied 3 or 4 peaks were observed that

closely follow this pattern.

For the two derivatives containing the 2-0-tosyl group, 18 and 19, the aromatic
- region was observed to contain additional signals. One of these signals is observed
as a weak line at about 145.5 ppm. This is characteristic of the carbon directly
bonded to a sulfonate group (14). Ihis easily allows the two types of aromatic

groups to be distinguished.



-188-

Assignment of the benzylic carbon is complicated by the presence of the car-
bohydrate ring-carbons. Compounds 15 and 16 have well resolved peaks at 70.0 and
70.2 ppm, respectively, that can be identified as a methylene. carbon on the basis of
their off-resonance spectra. The ring methylene (CS) can be assigned to the peak at
62.1 ppm in 15 by comparison with 3, and literature values for the aldo-pentoses
(4). Therefore, the peaks near 76 ppm are assigned to the benzylic carbon. 1In each
of the other benzylated compounds there is at least one peak in the region from 68
to 72.3 ppm that can be assigned .to the benzylic carbon. The location is somewhat
affected by the solvent with the signal being at lower field in D30. In some cases

the assignment can be confirmed by off-resonance techniques.

The methyl group from the 2-0-tosyl group is observed at about 21.5 ppm in both
18 and 19. This is at slightly lower field than for the acetyl methyl group. It
'agrees well with the methyl group in toluene (15). It also is diagnostic for the

tosyl group.

Epoxides

Formation of an epoxide ring results in a characteristic shift of the directly
bonded carbons to the region of 49.5 to 53.5 ppm. This falls in the middle of the
region given for epoxides in the literature (13). This region is devoid of any car-
bohydrate peaks or other functional groups and thus is quite characteristic. The
methanol carbon appears in this region which may complicate the interpretation if

this solvent is present as an impurity.

Assignment of the C) and C3 signals for the derivatives containing the 2,3
anhydro—-ribopyranoside configuration are given in Tables IV and V. It is based on
the effect of substitution at Cy. Comparison of compounds 15 and 36 shows that one

of the signals shifts upfield. This is consistent with the anticipated affect of
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methylation at C4; an upfield B-substituent effect (13). In compounds 6 and 37 the
addition of an acetyl group on the adjacent ring has the opposite effect of shifting
one of the signals downfield. Again, because of its closer proximity to the adja-

cent ring this signal has been assigned to Cj.

TABLE 1V '
MONOSACCHARIDES

SKELETAL - CARBON CHEMICAL SHIFTS2

Compound Solvent 1 2 3 4 5 6 Ref.
36 D,0 93.4  69.5  69.5 69.5 63.4 (6)d
16 DMSO-dg 98.8  68.1P  69.0P  68.5P  63.2
17 CDC14 96.9  69.9b 75.9D " 72.9b 0.0
18 Acetone-dg - 96.4  80.1 74,56 73.1b 59,1
19 CDCly 95.8  78.2  67.2 69.5>  62.0
15 CDC13 93.6  51.9  51.9 61.7b  62.1b
33a CDC13 89.4  69.4  69.4 68.8 60.7 (7)d
33b Acetone-dg  92.2  69.6D 71,1 68.5 62.9 (7)d
34a CDC13 89.2  69.4b  70.0 68. 1 70.0>  61.6  (8)d
34b Acetone-dg  91.8  70.5  72.8D  68.0 72.8b  61.7  (8,9)
35a¢ Acetone-dg  91.0  83.2b  83.0b ° 80.7 59.6

" 36¢ CDC13 94.1  51.3  49.5 71.0 59.0

aChemical shift relative to (CH3)4Si. B-arabinose (43b) was relative to external

(CH3)4S1i with p-dioxane at 67.4 ppm used as a secondary reference.
bTentative assignment; can be interchanged with 51gnal within 2 ppm.
CRefer to reference 2 for spectrum.
dvalues from the literature.
Isopropylidene Group

Compounds 17 and 18 contain the isopropylidene group. This group has two sets

of signals diagnostic to the group. The methyl carbons appear between 25.9 and 27.8
ppm in agreement with the literature (13). The quaternary carbon appears at 109.2
ppm which is different than the literature value reported (13). It is a relatively
" weak signal as a result of a long relaxation time related to the absence of attached

protons. The location of both of these groups is far removed from the skeletal car-

bons and thus is very diagnostic for this functional group.
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Skeletal Carbons

In the previous discussion it was pointed out that each of the derivatives pre-
pared had the correct number of skeletal carbons within the region from 55-110 ppm.*
To determine the site of substitution it is also necessary to consider the ring-
carbon assignments. By comparing a series of similar compounds it is possible to
develop the detailed assignménts necessary to aésign the majority of the ring-
carbons. The rationale involved in using closely similar models has beeﬁ applied in

numerous instances (3,12,16).

A number of the skeletal carbon assignments are tentative because of their
close proximity within a narrow region (68.6—74.0 ppm). This is particularly true
for the derivatives containing the arabino-configuration and the peracetates. In
the case of B-arabinose carbons Cy, C3, and Cs all resonate at 69.5 ppm. 1In the
acetates the effect of acetyl substitution is to give a variable and complex upfield
shift to most of the backbone carbons. This compresses the signalsAinto a narrow
region. Recent work has appeared in the literature that aﬁtempts to correlate the
effect of the acetyl group on the skeletal carboﬁ shifts for the xylo- (7) and
gluco-configurations (§¥2). Appeﬂdix XII contains the spectra and chemical shifts
of the a—cello—oligosaccharides thru célldhexaose peracetate. The variation in
peak intensities should be useful in assigning the spectra of the disaccharide

acetates.

Fortunately, there are a number of skeletal carbons that are easily assigned in
both the xylopyranose (Cj, C4, Cg) and the glucopyranose (Cy, C4, Cg) configurations
(3). Observation of the effect of functional groups on these signals make it

" possible to determine accurately the substituent effect of a number of functional

:

*With Cy and Cq of the 2,3 anhydro- ribopyranoside being considered as functional
group carbons. .
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groups on skeletal protons-* This is a result of the additive nature of most . .

substituent affects on 13C-NMR spectra.

Tables IV and V give the skeletal carbon assignments for each of the deriva-
tives prepared as well as several model compounds (2). Appendix XI contains the
spectra. The assignments for the end-products, 1 and 1, are based on several fac-
tors including comparisons with the other derivatives, and with xylose, glucose,
cellobiose, and their oligosaccharides. In making these comparisons the assumption
is used that substitution at one carbon has little effect on the chemical shift of

carbons several bonds away.

Methylation

In the methylated compounds 35, 37, 39, and 40 a consistent 8-11 ppm
deshielding is expected, based on earlier work with methylated glucoses (13). These
compounds are all methylated on the xylosyl ring at carbons 2', 3', and 4'. If
assignments are made such that C3” is the furthest downfield and C4” the furghest
upfield then a consistent 8-11.3 ppm deshielding is observed. Any other assignment
order for the three methylated carbons would not be consistent with the known
effects of methyl groups on carbohydrate chemical shifts. The consistency of these

data helps verify the assignments of carbons 2' and 3' for 1.

Compound 36, which is methylated only at the 4 position, is indicative of the
effect of methylation on carbons adjacent to the site of substitution. Comparing
compounds 15 and 36 shows that the carbons adjacent to C4 are shifted upfield by
~-2.4 and -3.1 ppm. Cy, which is two bonds removed from the site of methylation is
_only slightly shifted. Comparison of the methylated disaccharides (37, 39, 40) to

the appropriate nonmethylated compound (3, 1, 1).

*This is not true for acetylation for which the effect of substitution is complex.
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substantiates the upfield shift of a B-carbon. However, in this case the effect of
differént solvents complicates the analysis. These observations are consistent with

the literature (13).

Acetylation

It was previously mentioned that the substituent effects of acetylation are
complex (7,8,9,12,17). A detailed analysis is not given here. It can be stated
that the spectra reported in Tables IV and V are reflective of the general upfield
shift commonly observed for total acetylation. The assignments given are generally:
in agreement with the literature. However, the literature assignments are in some

cases not well substantiated. Refer to Appendix XII for a more detailed analysis on

the effects of acetylation.

Effect of Benzyl, Tosyl, Epoxy, and Isopropylidene Groups‘

Substitution of a benzyl group at Cl produces a pronounced downfield shift from
+ 5.4 to 5.7 ppm. In Tabieé IV and V this can be seen by comparing compounds 1, 7,
and 16 to compounds 3, 9, and 43b, respectively. Slight upfield shifts from -1.2 to

-1.4 ppm are observed for Cs.

The éffect of epoxide formation on carbons adjacent to the epoxide group can
also be determined for Tables IV and V. Comparison of derivatives 5, 11 and 16 to
derivativés 3, 9, 16, respectively, shows that the adjacent carbons (1 and 4) are
shifted upfield by -5.2 to -8.5 ppm by the presence of an epoxide functionally at Cy
and C3. Cs which is two bonds removed from the epoxide is also shifted upfield from

-1 to -4.3 ppm. This long range effect of the epoxide group probably reflects the

. shift out of the chair conformation.

The effect of tosylation at C is determined by comparing compounds 16 and 17

to compounds 19 and 18, respectively. The C) carbon is shifted about 10 ppm
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downfield while the adjacent carbons are shifted slightly upfield by -0.2 to -3.0 ppm.
Change of solvents and uncertainty in some of the assignments makes the comparison

less certain.

The 3,4,-0-isopropylidene group shifts C3 downfield from 6.9 to 7.3 ppm and C4
downfield from 3.6 to 4.4 ppm. This comes from comparing compounds 16 and 18 to
compounds 17 and 19, respectively. All of the other carbons within the ring are
also shifted, though the results are variable. This is due to the change in confor-
mation brought about by the derivatization and by the uncertain effect of the tosyl

group on the conformation.

Table VI summarizes the substituent effects discussed above. A general trend

of downfield a—substituent effects and upfield B-substituent effects is noted.

TABLE VI

SUBSTITUENT EFFECTS2>P OF VARIOUS FUNCTIONAL GROUPS

x 8
Acetyl | ~ Variable 0 to -4.0 ppm
Methoxyl 7.3 to 11.3 -0.5 to -3.3
Benzyl 5.4 to 5.7 -1.2 to -1l.4
Tosyl 10 to 11 0 to -3.0
2,3-Anhydro - -5.2 to -8.5
3,4jgfisopfopylidene 3.6 to 7.3 Variable

8g-refers to directly bonded carbon, B to the adjacent
carbon. ] .
bNegative shifts are upfield.
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ASSIGNMENT OF METHYL B-XYLOBIOSIDE PENTAACETATE (%g)
METHYL B-CELLOBIOSIDE HEPTAACETATE (%2)

The 13c-NMR spectra of g% and 23 are given in Appendix XI. The assignments are
given in Table VII. Also included for comparison are the assignments for the

disaccharides (see Part III) and the disaccharide peracetates.

For both %% and 22 the spectra are consistent with the proposed structure. In
both cases a methoxyl group is observed near 57 ppm and the acetyl functional groups
are present (Table II). The general upfield shift of all the ring carbons is also
noted. Assignment of Cp, C3, Cp~”, and C3” is difficult because of their close
proximity and the variable acetyl substituent effect. The ass{gnments given are

consistent with the literature assignments for 2b and 27b.

ASSIGNMENT OF C-DEUTERATED DERIVATIVES

Raney nickel deuteration with D90 was used to prepare the C-deuterated
derivatives; methyl B-cellobioside-3,6,,6,2",3',4",6',,6",-dg (44), methyl
B-glucoside-3,4,6,,6,-d4 (45) and methyl B-xyloside-3,4-dy (46). 1In this reaction
exchange occurs at each carbon with a free hydroxyl (18). The;e compounds are

illustrated in Fig. 2.

Since deuteration does not occur at the same rate for all carbons the actual
product is a mixture of deuterated isomers. Furthermore, some inversion of con-

figuration occurs to give various epimers.

To limit the extent of epimerization but ensure sufficient deuterium exchange,
it is convenient to follow tﬁe progress of reaction by 13c-NMR. This takes advan-
tage of the relaxation mechanism for the 13c-nuclei. After exchange of the attached
proton for deuterium, the signal is essentially lost because it is easily saturated

and cannot relax back to the ground state.




8 TABLE VII

CHEMICAL SHIFTS2 OF METHYL B-XYLOBIOSIDE PENTAACETATE (22), METHYL
B-CELLOBIOSIDE HEPTAACETATE (23), AND RELATED COMPOUNDS

Compound  Solvent 1 2 3 4 5 6 1” 2° 3” 4 57 6" oM, Ref.
20 D90 104.7  73.7 74.7 77.3  63.8 102.7 737 76.5  70.1  66.1 58.1 (5)
22 CDCl4 101.5  70.1P 72.3 76.7  62.5 : 99.3 70.3> 70.9® 68.0 61.2 56.2
2b Cpcly 92.4  70.2° 72.2° 74.3  63.5 99.7 70.6> 70.9® 8.6 61.8 o8
21 D,0 103.9  73.7 75.2 79.7  75.7  61.0 103.4 7640  76.4  70.3 76.8  61.5 s8.1 (10)
23 CDCl 101.4  71.7° 72.6P 76.4  73.0> 61.9 100.7 716> 72,7 67.9 72.0P 56.9  (10)
27b CDCl 3 91.6  70.4P,d  72.4b,d 75,9 736 61.7 100.6 7l.6> 72.9» 67.9 72,0 61.7 (8)¢
27a CDCly 89.0  69.4 69.4 76.0 70.8 61.5 100.9 71.7  73.0 67.9 72.0 6l.7 (8)<(9)

3Chemical shifts relative to internal (CH3)4Si or in D90 to Cq' = 61.5 ppm for 21 and C; = 70.1 for 20 as arbitrary settings.
brentative assignment; could be exchanged with nearby signal within 2 ppm.

CAssignment taken from the literature.

dReversed from literature.

-961-
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Figure 2. Deuterated carbohydrates.

Figure 3 illustrates the progress of the reaction to form 44. The bottom
~ spectrum (a) is the starting product while spectra (b-d) follow the progress of the
reaction over time. It is expected that those carbons without free hydroxyls will

maintain their signéls while those with a free hydroxyl will be lost. This is what
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PPM

Figure 3. Formation of 44 followed by 13c_NMR; a) starting material 21 b) 2.25
hours, ¢) 6.5 hours, and d) 8.25 hours. Refer to Fig. 31 in Appendix V
for assignments.
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occurs in (a-d) as the signals for Cl, Ci17, C4 C5”, and Csg remain.* Théy are
shifted slightly (<0.2 ppm) upfield due to the B-substituent effect for deuterium
(6). Also present in spectrum (d) are a broad residual Cg signal, 'several small

signals due to epimers, and either Cy~ or C,.

The critical question is which 2-carbon (Cy” at 74.0 and Cy at 73.7 ppm) ﬁés
been exchanged, éince this determines the 13c-lg coupling pattern near the linkage
(see Section IT1, Part II). Comparison with the spectrum of the starting material
tentativély suggests that Cyo” has been exchanged and the Cy signal remains. This is
also what is expected from the reaction to form 45 and 46 which showed that exchange

at Cy is sterically hindered by the methyl group (10,18).

Hamer and coworkers (10) provided fqrther proof of the assignﬁent of the signal
at 73.6 ppm in Fig. 3d to Cy by enzymati;ally hydrolyzing 44. A majof pfoduct was
methyl B-glucoside-3, 6,, 6p-d3. The spectrum given in Fig. 3d is essentially:'the "
same as that given in the literature. On this basis 44 has been assigneq the struct

ture in Fig. 2

*This is one method by which the nearby signals C5', C3‘and Cs, C53 have been
assigned (10). The earlier assignments had been incorrect (19,20).
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13c_NMR ASSIGNMENTS OF THE B-1,4-
LINKED CARBOHYDRATES

Analysis of the 13C—T1 data required the complete assignment of the xylo- and
cello-oligosaccharides. Small amounts of each of these compounds were available in
the lab or were obtained with the cooperation of others. Spectral assignments, as
explained below, were made by reference to model compounds and with regard to

variations in signal intensity. The spectra are shown in Appendix XIII.

Assignment of the 13c-NMR spectra of all of the other di- and trisaccharides,
obtained or synthesized in the course of this work, follow in Tables VI and V. The

spectra are also found in Appendix XIII.
13Cc-NMR SPECTRA OF THE XYLO- AND CELLO-OLIGOSACCHARIDES*

Introduction

Assignment of the 13C—ﬁMR spectra of various oligosaccharides has proven useful
for evaluating the composition, configuration, and sequence of soluble
polysaccharides (1-3). The usual method of assignment involves comparison of the
spectrum of the oligosaccharide with those of the constituent monosaccharidesA(iji)

or closely related disaccharides (2,6).

For homologous oligosaccharides, it is also possible to use the variation of
peak intensities with chain length to aid in assignment (L)o The similarity of chemi-
cal shifts for equivalent carbon atoms of the internal residues may be used to

distinguish peaks associated with them from those assigned to terminal groups.

*This section has appeared in the literature in Carbohydrate Research
84:137-46(1980).
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Signals from carbon atoms several bonds removed from the linkage in a disaccharide
should become relatively less intense. in the spectrum of the corresponding oligo-
saccharide whereas carbon atoms close to the linkage should appear more intense. In
this way, lines of similar chemical shift may be differentiated on the basis of peak

intensities, as this feature can be related to proximity to the glycosidic linkage.

In a study of factors that affect the B-(1+4) linkage-conformation of the xylo-
and cello-oligosaccharides, it was necessary to obtain and assign their 13c-NMR
spectra. The xylo-oligosaccharides were studied up to xylopentaose, and the
cello-oligosaccharides up to cellotetraose. The spectra of these compounds have
been considered oﬁ:;he basis of the corresponding mono- and disaccharides, as well
as on the basis of variations in peak intensity. Intensity variations have been
used to verify some of the previous assignménts of cellobiose (5) in the case of the
cello-oligosaccharides, and to assist in developing assignments for the previously
unassigned xylobiose.* Manifestations of differences in linkage-conformation or
solvation between the xylo- and cello-oligosaccharides have also been explored from

these 13C-NMR assignments.

Results and Discussion

The spectral assignments for the celio—oligosaccharides in D90 and-a low-d.p.
cellulose in dimethyl sulfoxide-dg are given in fable I. 1In order to avoid
coﬁtaminating“our meager supply of the cello-oligomers with.a reference material, we
chose to.set C-1 of the nbnreducing end-group to the value of the equivalent carbon
atom of cellobiose.- A clqse correspondence of peak locations is observgd throughout

- the series from biose to tetraose, permitting ready assignment of the triose and

*Refer to Section IV for correlation to the spectra of several related
derivatives. Also see Ref. (7).
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tetraose spectra. The assignments agree in general with those made by Inoue and
Chujo6 on cello-oligosaccharide fractions having d.p. 3.7 and 5.3, the exceptions
being C-3 and C-5. Several different groups (8-10) have recently presented evidence
to support reversal of the earlier assignments of C-3 and C~5. The new assignments

have been adopted in the present study.

Examination of the assignments listed in Table I, as well as the line spectra
displayed in Fig. 1, reveals that differences from the chemical shifts of cellobiose
are 0.2 ppm or less for the equivalent carbon atoms of the cello-oligosaccharides.
The largest variations are at C-1, C-2, andlC—A of the internal residues. These
small changes may be a result of the influence of an additional substituent many
bonds away (the next glucosyl ring) or may result from the effects of slight dif-
ferences in linkage-conformation or solvation between the exterior and interior
linkages. The influence of linkage conformation was suggested by Colson et al. a1
to explain the relatively large changes noted when the C-1 and C-4 chemical shifts

of the malto-oligosaccharides were compared with those of the cycloamyloses.

The speétra shown in Fig. 1 also illustrate the diffe?ences in peak inten-
sities that appear within the cello-oligomer series. The variations in intensity
are related to the location of a carbon atom on the reducing end-group, on the
internal residues, or on the nonreducing end-group. This relation follows from the
equivalence or near equivalence of chemical shifts for carbon atoms that occupy the
same positions relative to the glycosidic linkage. The variation in environment is
illustrated in Fig. 2, where the carbon atoms at position 2 are taken as represen-
tative. 1In the disaccharide there are two types (a and b), whereas four types
' (a,b,b"', and b") exist in the tetra-saccharide. However, those marked b,b', and b"
are essentially equivalent with respect to their position relative to a glycosidic

linkage. The C-2 atom of the reducing group, in contrast, has an environment that
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differs considerably. The intensities would approximate a 1:2:1 or 3:1 pattern,
depending on whether or not b" can be resolved from b and b', which are expected to
be coincident. Assignments of peaks that are slightly shifted in the internal resi-

dues are based on these variations in intensity.
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Figure 1. Comparison of 13c-NMR spectra of cellobiose, ~triose, and -tetraose.

o' | 9
&/o\@\ /#/0\&
[}
Figure 2. An illustration of the nearly equivalent carbon atoms of a homologous
oligosaccharide.

The lowest-field peak of cellobiosé, the C~1' resonance at 103.4 ppm, is repre-
sentative of the difference expected between b" and b' in Fig. 2. 1In the spectra of
the higher oligomers, two peaks are observed in this region, at 103.2 and 103.4 ppm.
Because the peak at 103.2 ppm increases in intensity, relative to the 103.4-ppm

peak, as the number of pyranose residues increases, it may be assigned to the
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internal-linkage carbon atoms (C-1), and the 103.4 ppm peak may be assigned to the
nonreducing, terminal group. The spectrum of a low-d.p. cellulose (Fig. 3) showsv;
small, downfield shoulder corresponding to C-1 of the nonreducing end-group.
Following a similar analysis, the less-intense of the pairs of lines centered at
73.9 and 79.4 ppm may be assigned to C-2 and C-4 of the oligomer terminal-groups,

respectively.

[

DL

|
no - 100 90 80 - 70 60 50

Yoy

Figure 3. The 13¢c-n.m.r. spectrum of a low-d.p.cellulose.

In a reciﬁrocal manner, the spectra of the higher cello-oligosaccharides (Fig.
1) may be used to confirm some of the assignments for cellobiose. An obvious
example cofrésponding to the difference between a and b in Fig. 2 is the assignment
of the 61.5 ppm resonance to C-6 of the nonreducing end-group; this peak declines
steadily in the spectra of the highef oligomers. The 61.0 ppm peak, which
corresponds to C—6vof the internal resiéues and reducing-end groups, increases, as
- expected, in the higher cello-oligosaccharides. Thus,.thé differences in position
of the C-6 atoms, relative to the glycosidic linkage, appear to result in the

éhanges observed in chemical shift.
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A pattern of variation similar to the one reported here suggests the assignment
of the peak at 75.1 ppm to C-2 in B-cellobiose.* While previous authors (4-6) have
reported two peaks in this region and have viewed the 75.1 ppm peak a coincidence of
signals for C-2 and either C-3 or C-5, three.distinct peaks are resolved in the pre-
sent report, the others appearing at 74.8 and 75.6 ppm. As the 75.1 ppm peak decli-
nes steadily, relative to the other two peaks, with increasing chain-length, the
latter must contain contributions from carbon atoms on internal residues; differen-

tiation of C-3 and C-5 is not possible on the basis of these spectra.

The spectrum of a low d.p. cellulose fraction in dimethyl sulfoxide-dg is shown
in Fig. 3. The appearance of the spectrum is similar to that reported by Gagnaire,
Mancier, and Vincendon (Lgtlg) for a degraded cellulose of d.p. 10. In the present
work, several reducing-end-group peaks were also observed. The assignments for the

low d.p. cellulose are consistent with those of the cello-oligosaccharides.

Previous reports (6) have sugges;ed that the intensities of the C-1 peaks may
be used to estimate the number-average d.p. for oligosaccharides of low molecular
weight. Comparison of these intensities for cellotriose, cellotetraose, and the low
d.p. cellulose suggests that this correlation is not generally true under all con-
ditions. The spectrum of cellotriose, in particular, shows a significant difference
in the intensity for C-1 in the nonreducing group and the internal residue,
suggesting that the two carbon atoms possibly have different nuclear Overhauser
enhancements or that, with the present degree of resolution of these signals, the

peak heights are not a true indication of peak intensity.

*See note added in Proof, p. 204
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The 13c-NMR spectra of the xylo-oligosaccharides are graphically depicted in
Fig. 4 with the correspondingiassignments in Table II. Assignments for xylobiose
have been developed from comparisons with assignments.for xylose (8,13,14) and
cellobiose. Again, as in the cello-oligosaccharides, intensity variations confirm
these assignments. For example, changes in the intensities of the lines at 66.1,
63.9; and 59.8 ppm support assignment of the 63.9 ppm line to C-5 of B-xylobiose and

the internal C-5 resonances of the higher oligomers.

100 Pentoose

20 J | | I 1 I J 1
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Figure 4. Comparison of the 13¢-NMR spectra of xylobiose, -triose, -tetraose,
and -pentaose.
For the xylo-oligosaccharides, the chemical shifts are reported relative to
C-1' of the nonreducing group of xylobiose. In comparing the series xylobiose-

xylopentaose, the shifts of C-2 and C-5 do not vary by more than 0.2 ppm from the
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values anticipated from the spectrum of xylobiose. C-1 and C-4, next to the glyco-
sidic linkage, vary to a slightly greater extent, suggesting that slightly different
conformations might exist at the interior linkages Q;LLL). Internal C-3 atoms
undergo upfield shifts of the same order of magnitude, indicating the sensitivity to
conformational change at the linkage. As for the cello-oligosaccharides, the small
shifts may also arise from the substitution in the internal residues of a mono-

saccharide group for a proton.

TABLE II

13C-NMR CHEMICAL SHIFTS2 OF THE XYLO-OLIGOSACCHARIDES IN DoO SOLUTION

Compound Residue or Group c-1 Cc-2 C-3 C-4 c-5

Xylobiose Reducing end-group a  92.8 72.3b  71.9®  77.5 59.8
, B 97.3  74.9¢  74.9¢  77.3  63.9

Nonreducing end-group 102.7 73.7 76.5 70.1 66.1

Xylotriose Reducing end-group a 92.8 72.2b 71.8P 77.2 59.7
B 97.3 74.8 74.8 77.2 63.8

Internal residues 102.5 73.6 74.5 77.2 63.8

Nonreducing end-group 102.7 73.6 76.5 70.0 66.1

Xylotetraose Reducing end-group a 92.8 72.2b 71.8P 77.2 59.7
B 97.3 74.7 74.7 77.2 63.8

Internal residues 102.5 73.5 74.5 77.2 63.8

Nonreducing end-group 102.7 73.5 76.4 70.0 66.1

Xylopentaose Reducing end-group o 92.8 72.2b 71.8b 77.2 59.7
B 97.3 74.7 74.7 772 63.8

Internal residues 102.7 73.5 74.5 772 63.8

Nonreducing end-group sd 73.5 76.4 70.0 66.1

4Chemical shifts in ppm relative to Me,;Si by setting the shift of the terminal, non-
reducing C-1 atom equal to the value observed in xylobiose. The spectrum of xylo-
biose is referenced to dilute 1l,4-dioxane given a value of 67.4 ppm

bThese resonances may be exchanged.

CThese resonances are slightly resolved in xylobiose.

dA shoulder on the 102.5-ppm peak. ‘

The contrasts between the spectra of the xylo- and cello-oligosaccharides
suggest significant differences between the two series in the constraints on the

linkage. While the chemical shift of C-4 differs only slightly between glucose and
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xylose (18), indicating that presence of a hydroxymethyl group (C-6) at C-5 in glu-
cose has a relatively small effect, the difference between the linkage C-4 chemical
shifts of the xylo—- and cello-oligosaccharides is ~ 1.8 ppm in DZO.* Such a large
difference would not be expected on.the basis of the effeét of mere replacement of a
xylosyl by a glucosyl residue, as those two substituents, which differ only by the
absence of C-6 for xylose, would be perceived (3) as nearly equivalent by the C-4
atom. It appears most likely that this difference is a manifestation of significant
differences in the average conformation, or in the solvation environment, of the
B-(1+4) linkages in the two, homologous, oligosaccharide series. Such an interpre-

tation is consistent with model studies of the linkage conformation of the

disaccharide (15). Différences in average linkage-conformation or in accessibility |

to the linkage mayAexplain differences in reactivity and solubility of the two types

of oligosaccharide.

Colson et al. (11), in comparing the chemical shifts of the iinkage C-1 and
C-4 atoms in maltotriose with those of the cycloamyloses, found downfield shifts of
1.8 and 4.0 ppm, respectively, for these atoms in the (more constrained) cycloamylo-
ses. - The comparable shifts for the cello;oligosacchariAes relative to the xylo-

~oligosaccharides are downfield by 0.7 and 1.8 ppm.

The greater constraiﬁts at the linkage for the cello—oligosaccharides appear to
result from the presence of C-6. The role of C-6 is suggested by the p;tternrof the
chemical shifts of the disaccharides, recorded in Table III. The chemical shifts of
the linkage C-4 atom of xylobiose and cellobiose, relative to those of the
appropriate monééaccharides,‘are compared with data for several other B-(l1+4)-linked

disaccharides. Both mannobiose and 4-0-8-D-glucosyl-D-mannose, which possess

*1n dimethyl sulfoxide-dg, -the difference becomes 5.2 pPpme.
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reducing-end C-6 groups constituted similarly to that of cellobiose, have chemical
shifts, relative to the resﬁective monosaccharides, comparable with that of cello-
biose. In contrast, the chemical shifts of C-4 for 4-0-B8-D-galactosyl-D-xylose
(17) and 4-0-8-D-glucosyl-D-xylose, which do not have a C-6 atom in the reducing

ring, are nearly identical to that for xylobiose.
TABLE III
CHEMICAL SHIFTS OF THE LINKAGE C-4 ATOM FOR SEVERAL B-(1+4)-LINKED DISACCHARIDES

Chemical Shift Change
Relative to

‘ Compound Chemical Shift of C-4 Monosaccharide
B-Xylobiose 77.3 7.1
4-0-B8-D-Galactosyl-D-xylose 77.78 7.5
4-0-8-D-Glucosyl-D-xylose 77.4C 7.2
B-Cellobiose 79.5 8.9
B-Mannobiose ‘ 77.5¢ 9.9
4-0-B-D-Glucosyl-B-D—mannose 77.3¢ 9.7
B-Xylose 70.2P
B-Glucose 70.6P
B-Mannose 67.6P

8Relative (17) to external Me,Si.
bsee Ref. (18).
CSee following discussion.

Summary

Internally consistent assignments have been developed for the 13c-NMR spectra
of the xylo- and cello~oligosaccharides. Variations of peak intensity with chain
length made it possible to distinguish between the resonances of terminal groups and

internal monosaccharide residues. These intensity variations also permitted verifi-

cations of previously published assignments for cellobiose.
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While differences between the chemical shifts of equivalent carbon atoms on
internal residues and terminal groups are slight, larger changes are observed for
the linkage carbon atoms (C-1 and C-4). This difference may result from variations
in linkage conformation aléng the chain. VA more significant observation is the dif-
ference between the chemical shifts of C-4 for xylobiose and cellobiose. Comparison
with several disaccharide-models sugéests that the absence 6f C-6 at the reducing
end makes the linkage more accessible to the solvent and probably allows a much
wider range of conformations for the glycosidic linkage. Thus the B-(1+4) linkage
appears to be more flexible in the xylo-oligosaccharides than in the cello-oligo-

saccharides.

Experimental
Spectra - 13c-NMR spectra were recorded with a Jeol FX-100 NMR spectrometer opera-

ting at 25.05 MH; in the noise-decoupled mode. Spectra were accumulated for 50,000-
100,000 pulses for the triosés, tetraoses, mannose disaccharides, aﬁd xylopentaose
by using a 5000-Hz spectral width and a l-sec pulse—-interval, and 8192 data-points.
All spectra were recorded at room temﬁerature, except for cellotetraose (44°) and
low d.p. cellulose (75°). A Jeol microprobe was used to obtain the spectra of the
trioses, tetraoses, xylopenéaose, mannobiose, énd of 4-0—B—D—glucoéyl—D—mannose,
because of the limited‘amount of sample available. Concentratidns.of 2-8 mg in 75
L of D90 were used. The spectra of cellobiose, xylobiose, and 4-0-8-D-gluco-
syl—D—xyiose were recorded with a 5-mm probe at equivalent concentrations with in-.
ternal 1,4-dioxane at 67.4 ppm as a reference. All other chemical shifts were
referenced to the value of the internal C;” of the relevant disaccharide or C; of
mannose. This calibration procedure was used to avoid potential contamination of

the .small amounts of available sample with any internal reference. The spectrum of
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low d.p. cellulose was recorded by using a 10-mm probe with dimethyl sulfoxide-dg as

the solvent.

Samples - The xylo-oligosaccharides were obtained from the collection of car-
bohydrates available at The Institute of Paper Chemistry, as were the mannose-
containing disaccharides. The cello-oligosaccharides were prepared by acid hydroly-
sis of cellulose, followed by column chromatography on carbon-celite (16). The low
d.p. cellulose was obtained from the methanol-treated filtrate of phosphoric acid-
hydrolyzed, Whatman CF-1 cellulose powder. Xylobiose and 4-0-B-D-glucosyl-D-xylose
were synthesized (Section 4, Part 1I). Cellobiose was purchased (Matheson, Colemen,

and Bell).
13_C-NMR ASSIGNMENTS OF SEVERAL DI- AND TRISACCHARIDES IN D,0 AND DMSO-dg.

Tables IV and V tabulate the 13C-NMR chemical shift data for all the
disaccharides encountered in this work. Table IV reports assignments in D90 while
Table V gives the assignments in DMSO-dg. The spectrum of aldotriuronic acid is
also given as are those of several model compounds. The assignments given are baseq
on the model compounds, internal comparisons, and spectral intensity variations.

The assignments are consistent with the literature assignments of the same or simi-

lar compounds, unless indicated.

It is useful to compare chemical shift values in the two solvents, D0 and
DMSO-dg, for several reasons. First, the shifts, particularly at the linkage, are
indicative of interaction with the solvent. Different carbons are affected to dif-
ferent extents by a change in solvent. (See Section 3, Part 2). Secondly, the
relative order of shifts is not always the same in the two solvents. This caﬁ be
seen by comparing the C3” and C4; signals for xylobiose (1) in the two tables. 1In

D90 the C4 signal is furthest downfield while in DMSO-dg, C3“ is further downfield.
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Other examples are also evident by comparing the two tables. This information is
essential for analysis of the goupled-13C—NMR spectra and for any selective

decoupling work that might be ﬁsed to ‘assign the ly—NMR spectra.




TABLE 1V

13c-NMR CHEMICAL SHIFTS® OF MONO- AND DISACCHARIDES IN D0

Compoundf 1 2 3 4 5 6 1 2' 3 4 5 6' oM, Re f.
41a 92.9  72.2 73.6 70.1  61.7 (8)
41b 97.3  74.8 76.5 70.0  65.9 (®)
28 104.8  73.9 76.7 70.1  66.0 58.2 (8,21)
la 92.8 72.3b  71.9b 77.5 59.8 102.7  73.7 76.5 70.1  66.1 -
1b 97.3  74.9 74.9 77.3  63.9 102.7 73.7  76.5 70.1  66.1 (8
7a 92.7 72.1>  71.8> 77.4 59.5 101.9 73.6 70.3 76.7  61.5
7b 97.2  74.7 74.7 77.3  63.7 101.9 73.6 76.3 70.3  76.6 61.5
20 104.7  73.7 74.7 77.3  63.8 102.7 73.7  76.5 70.1  66.1 58.1 (21)
42a 92.8 72.2b 735 70.4  72.1P  61.4 (8)
42b 96.6 74.9  76.5  70.3 76.6  61.5 (®)
30 104.0  74.1 76.8 70.6  76.8 61.8 58.1 (8,19)¢
26a 92.6 72.2® 72.3®> 79.7 70.9 6.0 103.4 740 76.4 70.3 76.8 61.5 (G,19)
26b 96.6  74.8 75.1 79.5  75.6 61.1 103.4  74.0  76.4 70.3  76.8 (;,19)
21 103.9  73.7 75.2 79.7  75.7 61.0 103.4 74.0 76.4° 70.3 76.8 61.5 58.1 22
e o 94.5 710> 69.7> 77.7 71.8> 61.1> 103.4 74.0 76.3 70.3 76.7 61.5P (8,23)

8 94.4 71.5% 72,50 77.3  75.7®  e1.1P  103.4  76.3  70.3 76.7  61.5P (8,23)
Mannobiose a  94.7 71.2%> 69.9® 77.8 71.8> 1.5 101.1 71.5 73.8® 67.7 77.3 62.0P (8,23)
8 9.6 71.5% 72.7®  77.5  75.7®  61.5b  101.1  71.5 73.8® 6€7.7 77.3 62.0b (8,23)
AX3e a 92.8 72.5b  71.85 . 77.0P 9.8 102.4 82.38 75.2P  70.3 65.8 T(28)
g 97.3 74.86 74.8> 77.0b 63.8 102.4 92.38 75.2b  70.3  65.8 (28
(4MG)® 98.6 71.8 73.1 77.86  70.3 174.5 60.9

3Referenced to external (CH3),Si using p-dioxane (67.4 ppm) as a secondary reference, except GM which had C,, arbitrarily set
at 70.3 ppm and mannobiose which had Cg arbitrarily set at 61.5 ppm.

Tentative assigoment. Can be changed with another signal within 2 ppm.

CTaken directly from the reference indicated.

d4—0-( B8-D-glucosyl)~D-mannopyranose.

€Aldotriuronic acid = 4-0-(2'-0-(4-0-methyl-qa-D-glucuronysl)-g-D-xylopyranosyl)-D-xylopyranose. &4 MG refers to the
4—0-methyl-glucuronic acid group.

fRefers to Fig. 1 Part II of this section.

8Given as 78.5 ppm in reference 21.

-91¢-
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SECTION V

CONCLUDING REMARKS
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CONCLUSIONS

The primary goal of this.thesis work has been a direct experimentai comparison
of the glycosidic linkages of the cello- and xylo-oligosaccharides. Secondary to
this has been an attempt to demonstrate the general usefulness of NMR spectroscopy
in studying carbohydrates and polysaccharides; and in ﬁarticular in exploring the
conformationallaspects of their chemistry. 1In a sénse, both goals have been
achieved - if only partly - since significant steps have been made in both cases

along a complex and lengthy path.

‘The usefﬁlness of NMR has b;en amply demonstrated in this work and during the
time‘éf this work in the general literature. At the‘time fhis theéis work began the
application of NMR, and particularly 13C-NMR, to carbohydrate conformational
problems was just beginning. In the ensuing years-the number of examples of this
type of work has grown rapidly - as indicated by.reference to any recent issue’ of

Carbohydrate Research. Almost every recent study of carbohydrate structure and con-

formation, particularly of polysaccharides, has utilized 13c-NMR. In this work NMR
has been sﬁccessfully employed to explore linkage confofmation, linkage dynamics,
the existence of intramolecular hydrogen bonds, the differences in structure
resulting from different physical states, the effect of steric hindrance of the
linkage, and to identify intermediate synthetic species. Thus, the usefulness of
NMR for carbohydrate and polysaccharide research appears to  have been amply

demonstrated.

The primary goal of directly comparing linkage conformations of the compounds
of interest also has been achieved and is best illustrated by mentally constructing
‘a description .of what aspects of the linkage conformation have been verified. It

should be emphasized that the results obtained are in agreement with the prevailing
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view found in the literature, which largely has resulted from extrapolation from

polysaccharide studies or computer modeling of the linkage.

The B-1,4-linked xylo- and cello-oligosaccharides are essentially rigid mole-
cules with highly restricted and protected linkages between the adjacent monomer
units. Nevertheless, motion at the linkage 1s fast on the NMR time scale, even if
it is only between a relatively small set of available conformations. This dynamic
linkage state has been demonstrated éxperimentally by showing that the terminal
monomer units have longer 13C-T1 relaxation times. This is in agreement with model
calculations on cellobiose where it is predicted that motion of the linkage will be

rapid even though restricted to a small percentage of the possible dihedral angles

(.

A comparisén of the average linkage conformation of the xylo- and cello-
oligosaccharides shows the xylo-oligomers to be more staggered.* This is in
agreement with a nﬁmber of previous investigators who have conducted modeling and
polysaccharide studies (2,3,4). In this work it was shown that the dihedral angle ¥
is 25-60° greater in xylobiose while the H]” to H4; distance is 0.1-0.2 A greater,
also. These values were obtained by 13¢c-14 across linkage coupling and anomeric
proton 1H—Tl relaxation measurements, respectively. Therefore, even though .both
types of molecules have conformations on either side of the 2-fold helix line, the
xylo—-oligosaccharides appear to spend a far greater amount of time in conformations

significantly removed from the linkage. The result of this is a more open and

accessible linkage for the xylo-oligomers.

The dominant factor in determining the average linkage conformation appears to

be steric (4,5,6). Specifically, the presence of the Cg hydroxymethylene group acts

*Removed from the 2-fold helical structure.
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to severely inhibit the number of populated linkage conformations in the cello-
oligosaccharides. This has beeq demonstrated in this work by comparing the C4 chem—
ical shifts of compounds with and without a Cg hydroxymethylene group on the agly-
cone. The presence of Cg results in a consistent downfield shift of the C; signal

which can only be related to conformational differences.

The existence of the intramolecular hydrogen bond located between O3H and Og-
on adjacent rings has been verified in DMSO—dé solutions of both cellobiose and
xylobiose. This bond, which is known to exist in the solid state (7), is expected
to be less pronounced in xylobiose. Measurements of 1§ chemical shift temperature
coefficients and 'H-1H coupling constants, from the ring pfoton to the O3H proton,
confirm this. The intramolécular hydrogen boﬁd is more isolated in cellobiose. In
xylopiose some participation of a solvent molecule in the bond is probable. This
différence correlates well with ghe observed differences in linkage conformation.
It probably re;ults>from, rather than is a cause of, the greater steric hindrance
associated with the Cg group. However, it may be an additional facto£ in the re-

duced reactivity of the C3 hydroxyl ih the cello-oligosaccharides.

Finally, a comparison can be drawn between the linkage conformation of the
above compoﬁnds in the solid dissolved states. Comparison of the 13c-nMr spectra of
cellobiose and methyl B-cellobioside as a solid and in solutig;'show significant
chemical shift differences. These have been related to a relaxation in the bridge
angle T to about 113°C. This agrees with the average calculation of Melberg (1) and
shows that crystailization results in a significant conformational change, at least

for the cello-oligosaccharides.

This picture of the xylo— and cello-oligosaccharide solution conformations,

while being somewhat short of a quantitative description, appears to fit all the
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available data. It is hoped that this verification of previous predictions can: be
incorporated into ever more accurate models or experimental elucidations of the
structure of these important compounds. Furthermore, it is hoped that this example
of the use of NMR techniques further stimulates the application of this rapidly
improving discipline to the elucidation of carbohydrate and natural product struc-

ture.
SUGGESTIONS FOR FUTURE WORK

Continuation of this work could evolve along three possible directions. First,
the incorporation of the improved description of the glycosidic linkage into a con-
figurational statistics approach to describe cellulose and hemicellulose structures
is feasible. The experimental support for previous concepts of linkage confor-
mation, developed in this work, should result in a higher degree of confidence in
this type of study. Second, a continuation of the NMR techniques applied in this
thesis to new systems, or by using the more powerful high field instruments, would
be appropriate. Finally, the use of the newer NMR instrumentation combined wifh the
many new pulse sequences developed since the inception of this work opens up
numerous new experimental approaches not formerly envisioned. Below I have provided

a few specific examples related to each of these areas.

1. Use the improved glycosidic linkage description provided by Melberg and
Rasmussen (1) to model cellulose in a configurational statistics approach.
Incorporate a function to account for the linkage dynamics to give a more

realistic simulation.

2. Use the 13C—Tl values to calculate effectivé correlation times. Accurate

work would require obtaining T; values at different field strengths.




-225-

Extend the T; and 13¢c-1y coupling studies to determine the effects of con-
centration, temperature, and derivatization on linkage dynamics and average
conformation. Possibly determine the effect of molecular association by

this technique (8,9).

Use specific 13¢ and 24 derivatives to get more accurate across—linkage
coupling constants. Specifically, try to use 13¢-13¢ coupling to determine

T (10)-

Use higher‘fields to remove second order effects and peak overlap to deter-
mine ¢ and x more accurately in cellobiose and xylobiose. Apply second

order analysis.

Using an external lock search for evidence for a cellobiose intramolecular

hydrogen bond in Hy0 at low temperature (ll).

Use a model system such as the inositols to study hydroxyl group orien-

tation in DMSO-dg (12).

Apply higher fields and special pulse techniques for 2-dimensional NMR of
the higher oligosaccharides (13). Use high field l14-NMR to make an NOE

distance map of the ring protons of the disaccharides (14).
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APPENDIX I
NMR THEORY AND TECHNIQUES
INIkODUCTION

The following discussion is meant to briefly introduce and summarize the
various NMR theories and techniques necessary to the understanding of the thesis.

For a complete discussion the reader is referred to the references discussed below.

Tﬁe fieid of NMR spectroscopy has been the subject of numerous texts and
reviews. Introductions to the subject are found in most physical chemistry or
spectroscopy texts- (1). More comélete discussions are available concerning the
following: applicatioﬁs of H-NMR* to organic chemistry (Zti); applications of
13c-NMR to organic chemistry (ﬁjégé));‘inte;mediate level texts and monographs |
introducing advanced topics (Z)§32319)ll); pulsed and Fourier transform techniques
(LQLL_5; NMR of other nuciei (14); speciélized topics including relaxation theory
(LQLLQLLZ), the nuclear Overhauser effect (NOE) (18), solid-state NMR (19), and
spin~spin coupling theory (20), and advanced treatises on genefal theory and tech-
niques (&lt&g)' In addition to the texts mentioned, numerous reviews are available
which focus oﬁ specialized topics. The reviews By Netzel and Miknis (23) on relaxa-
tion theory .and Breitpaier, Spohn, and Berger (24) concerning applications of 13¢

spin-lattice relaxation times to studies on the mobility of organic molecules in

solution are especially pertinent to the following discussion.
NUCLEAR PRECESSION

Nuclear magnetic resonance (NMR) spectroscopy is basically a form of absorption
spectrometry in which electromagnetic radiation in the radio-frequency region is

*Also designated PMR.
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absorbed at a characteristic frequency by a nucleus in a magnetic field. Nuclei
>
possessing an angular momentum p ({i.e. ly, 13¢, lé4n, 15N, 23Na, 2741, 31p, others)*

>
have a magnetic moment u given by

>

>
u=Yp : (1)

*%

where y is the gyromagnetic ratio. Such a nucleus experiences m orientations

. >
(energy levels) with respect to a static magnetic field depicted by the vector Hg.

The number of orientations is given by the relationship
m = 2T+1 (2)

For a nucleus with I = 1/2 (i.e. 1H,13¢)*** only two orientations are possible in
the magnetic field. A quantum mechanical treatment shows that these orientations

are represented by energles Ep where
Ep = YHmH, 3

Substitution of the two possible values for m gives the energy AE associated with a

transition between the two orientations;
AE = VMHO 4)

Combining Eq. 4 with Planck's equation, relating the change in energy between quan-

tum states to the irradiation frequency (AE = hf), results in the Larmor equation

f = (Y/2n) Hye (5)

*A11 nuclei possessing a spin quantum number 1¢ 0; p = AI1.
**n 1s also termed the magnetic quantum number; m = I, I-1, I-2....-I.
***The remainder of the discussion focuses on spin 1/2 nuclei.
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This equation states that the frequency of irradiation necessary to induce a tran-

sition between energy levels is proportional to the magnetic field.”*

_)
Physically the spin 1/2 nucleus precesses about the magnetic field vector H,
with two possible orientations. The frequency of the precession is the Larmor fre-

quency f. Transitions between the two orientations can be induced by a small mag-

*

> >
netic field H; that is frequency f about Ho.* The latter requirement ensures that

N ‘
H; is in phase with the precessing nucleus. Figure 1 depicts the nuclear precession
>

> :
and the directions of Hy and Hj. By convention Hj is taken in the z-direction of a

cartesian coordinate system.

Figure 1. Nuclear precession.

>

For 1H-NMR a field (Hy) of 23,490 gauss re?gires a frequency (f,) of 100 MHz

*
since Y = 26, 753 rad./sec gauss. For
25.15 MHz at this Hg,.

C Y = 6,728 rad./sec gauss and f, is

..)
**The field H; lies in the x direction but can be resolved into two counter rotating
components one of which rotates in phase with the precessing nucleus.
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Figure 2 depicts the situation for an assembly of nuclei with the same Larmor
-)
frequency. The total magnetization of this system is given by M, and lies entirely

in the z-direction because the spins are not in phase.

Figure 2. Equilibrium magnetization.

Nuclear Induction

A simplified description of the NMR process will result by allowing the x,y,z
Cartesian coordinate system to rotate about the z-axis at the Larmor frequency f;
the 'so-called' rotating coordinate described by the coordinates x*, y~, z”.* 1In
this system the perturbing field ;1 lies in the x"-direction. The action of ;1 is
to rotate ﬁo in the y“z” plane as depicted in Fig. 3. As a result of ﬁl the nuclei
initially precess in phase so that immediately after the perturbation the magnetiza-

>
tion M has components in the y~ and z~ directions but not in the x~ direction.

<>
If Hy is of sufficient power and duration (pulsed NMR) the angle of rotation a
about the x -axis can be adjusted to 90° so that all the magnetization is in the
>
' y'—direction (Fig. 3c). 1In pulsed NMR a is dependent on both H; and the duration of

the pulse tps and is given by the relation

*2 and z' are coincident in the two systems.
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a = YH1tp (radians) . (6)

The pulse duration, also termed the pulse width, is typically in microseconds (us).

yA z y2
a b c
MO Mz | ____ Mo
Ho ' = ': o
y Wiy’ My=Mo
X x f x f<
f < / >
VA
Hy 1

Figure 3. Motion of the magnetization vector My in a rotating
coordinate system under the influence of the field
Hy: a) equilibrium, b) deflection through angle a,
c) deflection by 90°.
The component of transverse magnetization My‘ induces an alternating potential
in a receiver coil placed in either the x or y direction; this potential constitutes

the detected signal. It should be emphasized that it's a magnetization in the xy

(or the edﬁivalent x"y") plane ‘and not Mz that induces. the detectable signal.

INSTRUMENTATION

The phenomengn of NﬁR can bg investigated in many ways. The method familiar to
most chemisté is the continuous waye (CW) technique in which either the magnetic
field Eo or the radio frequency field ﬁl is varied while the other remains fixed.
The most common method is to fix Eo énd tp vary the r.f. field. For most experi-

ments the r.f. field is swept slowly across the region of interest. Most continuous

wave methods utilize a weak perturbing field (ca. 10~4 gauss).

An alternate method utilizes short bursts of relatively high r.f. power (10-400
gauss) at a discrete frequency vg. It can be shown by Fourier analysis that a short

intense pulse, with a rapid rise and fall (square wave), contains frequencies over
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the approximate range
Vo 1/tp. (7)

Equation 7 shows that the shorter the pﬁlse the greater the range of excited fre-
quencies. Essentially all the nuclei of interest can be excited simultaneously.
This is the basis of the class of techniques referred to collectively as pulsed
methods. Various types of pulses can be employed in concert, which results in an
increased versatility of the NMR technique, particularly in regard to dynamic

measurements.

In the pulse method the observation of the nuclear spin-system occurs while the
r.f. is turned off. For this reéson pulsed methods are sometimes called free-
precession techniques since the decay of the magnetization My‘ is studied in the
absence of the perturbing field. Figure 4a illustrates the establishment and decay

of My~ in response to a 90° pulse; the resulting induced signal which would be

y
-recorded is given in 4b. The envelope of the trace is proportional to My’ as a
function of time and is termed the free induction decay (f.i.d.). My‘ is observed

to decrease exponentially. The spacing of the peaks is related to the Larmor fre-

quency f of the effected nucleus.

If several nuclei with different Larmor frequencies and/or relaxation-times are
present in the sample then the resulting f.i.d. is too complicated to analyze by
inspection. Figure 5a is the actual f.i.d. for the 13C-NMR spectrum of ethyl ben-
zene. The technique of Fourier analysis has recently been applied to the analysis
of pulsed NMR data; the resulting diécipline is called Fourier transform NMR
(FT-NMR) (Z§)° It is well known that for many continuous functions a relationship
exists between the time and frequency domains as expressed by the Fourier transform

F(w) of f(t);
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o0
F(w) = [ f(t)e 1lWtge (8)
00
In the case of FT-NMR F(w) is equivalent to My‘(w); the frequency spectrum of the

magnetization. This is equivalent to the conventional NMR spectrum obtained by CW

methods as shown in Fig. 5b.

ﬂ Mﬂn\ .

L

Figure 4. Depection of the establishment and decay of My’ for a slightly
of f resonance 90° pulse: a) Orientation of M_,” immediately
before the pulse, immediately after the pulse, and at a time t
after the pulse; b) time behavior of events in the x 'y plane
depicting the pulse and subsequent f.i.d.

Most new spectrometers utilize pulse methods combined with a computerized
variation of Eq. 8 to obtain the conventional NMR spectrum. Two major advantages
are realized from the use of FT—NMﬁ err continuous wave methods: a) Measurements
in the timé domain allow the study of time dependent phenomena such as relaxation

~times on a routine basis; b) in contrast  to CW. - methods, a single spectrum can be

obtained in a few seconds® so that signal averaging is much more efficient.** The

*This depénds on the observed frequency domain (window), the number of data points
sampled in the f.i.d., and possibly the relaxation time T;.
*The S/N increases in proportion to (n)1/2 where n is the number of pulses.
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latter advantage is particularly useful in the measurement of NMR spectra for less

sensitive and/or rare nuclei such as carbon-13.

Figure 5. The 13c-nMr spectrum of 907 ethyl benzene in acetone - dg:
a) free induction decay; b) frequency domain spectrum re-
sulting from Fourier transformation of the data.

NMR PARAMETERS™®

Figure 6 gives as an example the lH-NMR spectrum of ethanol under conditions of
slow exchange. The spectrum illustrates the NMR parameters familiar to most

chemists: chemical shift, spin-spin coupling, and peak intensity.

The chemical shift results from a reduction of the magnetic field at each

nucleus due to the surrounding electrons. The motion of the electrons results in a

*The discussion in this section focuses on small molecules in solution for which
magnetic dipole interactions and chemical shift anisotropy effects, both present
in solids or many dissolved polymers, are averaged to zero.
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>
weak magnetic field that opposes H,. The resultant effective field Hgeg is given by

Hyep - wo(170) (9)

where ¢ is the shielding factor and has a value of approximately 1073 for protons.*
Because of the shielding by the electrons each type of nucleus experiences a

slightly different Hog¢ and therefore resonates at a characteristic frequency. This
is observed in the ethanol spectrum where the three types of nuclei are at different

frequencies.

- - - 1] ) - o]
DMSO
CH3
chemical shift
spin=spin coupling
peak intensity
OH CH2 'MS
CH,CH,OH Ll
1 1 i H 1 1 I3 e

1

20 10 O

J T n I I D S

80 70 60 50 40 3.0
(a)

Figure 6. lH-NMR spectrum of ethanol in DMSO.

The chemical shift is commonly measured in the dimensionless unit &§ (given in
parts per million; ppm) so that spectra taken at different magnetic fields are com-
parable. 6 is defined by the equation

fs—fr

§ = —L x 106 (10)
fl'_'

where f is the Larmor frequency of the reference (r) or sample (s) proton, respec-—
tively. For lH-NMR the chemical shift of the methyl protons in tetramethylsilane

(TMS) is taken as O ppm by convention. From a combination of Eq. 5 and 9 it can be

*For all other nuclei o > 107> so that the frequency range of chemical shifts is
greater. 13C, for example extends approximately over a range of 200 ppm.




-238-

shown that a large shielding factor results in a lower resonant frequency at a

>

H,. The protons in TMS are highly shielded and therefore resonate at a relatively
low frequency. Most organic compounds have protons resonating at higher frequencies

than TMS corresponding to § values between 0-100 ppm. In general the greater the

electron density around a nucleus the smaller will be its chemical shift.”*

In Fig. 6 the three tyﬁes of ethanol protons are observed to have a fine struc-
ture rather than being single lines. The methyl group, for example, is observed as
a triplet. The splitting of the signal results from spin-spin coupling; an interac-
tion between nuclear spins mediated by the intervening bonding electrons. Figure 7
illustrates the action of electrons in oriehting the nuclear spins. Because of the
electron mediated spin—-spin coupling the energy of transition between orientations

is dependent on the orientation of nearby nuclei.

47‘1

Figure 7. Electron mediated spin-spin coupling a) antiparallel
(lower energy) orientation of nuclear spins; b)
parallel orientation of nuclear spins. The nuclear
spins are denoted by boldface arrows.
Spin-spin coupling is generally treated quantum—mechanically. This approach

involves the addition of the term H  to the Hamiltonian describing the spin system.

The form of H ™ is

60
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1
g = Ziqyt Jig I Ty (11)

where I is the quantum mechanical operator for the angular momentum of the spins i
and j and Jij is the coupling constant in Hertz (hz). The equation emphasizes that
spin-spin coupling is dependent only on the relative orientations of the nuclear

>
spins and not on their orientations relative to H,.

Spin-spin coupling can occur between any nuclei possessing a magnetic moment.
Both lH-14 and 13c-lH couplings are widely used in organic chemistry. Equation 12
illustrates a commonly used notation which denotes which nuclei are coupled and the

" number of -intervening bonds.
3Jucon = 5-07 Hz (12)

The value given is for the coupling between the hydroxyl proton and the methylene
protons in ethanol dissolved in DMSO. A simple first order treatment” allows this
value to be read directly from the spectrum (Fig. 6); it is equal to the peak
spacing in Hertz. The first order treatment also makes it possible to apply the n+l
rule which applies for spin 1/2 nuclei. This rule states that a set of nucleil
coupled to a second set of n nuclei will be split into n+l lines as a result of the

coupling.

The theory of spin-spin coupling is complex and incomplete. The important
parameters include hybridization, electron density at the nucleus, electronegativity
of substituents, and dihedral bond-angle geometry. Because of the theoretical

complexity an empirical approach is generally.ﬁsed to .estimate coupling constants.

*A first order analysis is applicable if two conditions exist: a) fp-fp>>Jap where
A and B are the two sets of coupled nuclei; b) all nuclei in sets A or B must be
magnetically equivalent. Nuclei are magnetically equivalent when each nucleus in
the set has the same chemical shift and is coupled equally to all other nuclei in
the molecule.
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Karplus (26) has proposed on both theoretical and empirical grounds that a
relationship exists between vicinal coupling constants and the dihedral angle. For

an Hy—C,-Cy-Hy system the relationship has the form
3 =
JH,C,CLHy, = A + B Cos & + C Cos 2 ¢ (13)

where A, B, and C are empirically determined constants and ¢ is the dihedral angle
between the Hy;-C, and Hp-Cy bonds. Coupling in other vicinal systems exhibits a
similar dependence on geometry which can be empirically determined if a set of com-
pounds with well defined and different geometries are available. 1In general, the
use of "Karplus" type equations should be undertaken with care since many factors

can affect the observed dependence of 37 on 9.

The final parameter illustrated in Fig. 6 is the signal intensity. 1In general
an integration of the area under the individual multiplets will be proportional to
the number of magnetically equivalent nuclei associated with that particular signal.
In the ethanol spectrum the methyl signal is approximately three times the intensity
of the hydroxyl signal and 3/2 times the methylene signal. It should be noted that
exchange* or saturation effects can result in exceptions to the above generaliza-
tion. Saturation effects are particularly critical in FT-NMR of 13C—nuclei if the

spin-systems are not allowed to fully relax between pulses.

In addition to the three commonly used parameters discussed above, three addi-
tional parameters have become increasingly important and accessible since the
availability of the newer generation of NMR spectrometers, based on pulse tech-
niques, has increased. These parameters are, the spin-lattice relaxatioﬁ time (Ty);

the spin-spin relaxation time (T9); and the nuclear Overhauser enhancement (NOE).

*The rapid interchange of two or more nuclei.
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-The time dependence present in the data resulting from pulsed techniques provides a
more direct approach to the measurement of T; and Ty, in most cases. Measurements
of the NOE are generally approached by double resonance techniques which also are
most easily pursued using the pulse techniques. A discussion of these parameters

will follow after a brief digression to discuss the advantages of 13c-NMR.

ADVANTAGES OF l3¢c-NMr

The carbon-13 nucleus occurs in nature with a natural abundance of 1.11% and

has a sensitivity of 1.59 x 1072

relative to the proton. Because of this the obser-
vation of l3c-NMr was limited to enriched samples until the arrival of FT-NMR. With
the signal averaging techniques now available the acquisition of 13c_NMR spectra has

become routine in most instances.

The use of !3C-NMR spectra for the study of organic molecules has several

advantages over lH-NMR. These are listed below:

1) Since carbon-13 is a rare nucleus the probability of spin-spin coupling be-
tween 13¢-13C nuclei is minimal and can be_ignéred in nonenriched samples.

2) 13¢ spectra are generally observed under 1H—decoupled conditions so that
each carbon in the molecule is'generally represented by a single line.

3) The large range for the chemical shift results in improved resolution at
lower fields, relative to ly-NMR.

4) 1In general, the relative chemical shifts are controlled by the same factors
important in lH-NMR so that. relative peak positions generally correlate

well for the two techniques.
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5) Carbon atoms are usually not located at the periﬁhery of the molecule so that
interpretation of chemical shifts, coupling constants, and relaxation times are
less complicated by intermolecular effects.

6) 13¢-1y coupling constants can be readily obtained in the 13C-spectrum using
gated decoupling techniques; formerly these data were obtained from hard to

measure !3C-satellite signals in the 1H—spectrum.

Figure 8 illustrates several of these points by comparing the 14- and 13c-NMR
spectra of cellobiose in DMSO-dg- It is readily seen that the decoﬁpled
13C-spéctrum is more easily interpreted than the lH-spectrum; each carbon is
represented by a single line.* 1In the specgrum shown there are 15 separate lines,
each of which can be assigned to a specific carbon. This is in contrast to the
1H—spectrum which requires much higher fields and Specialized techniques (27) for a

complete and unambiguous assignment.

RELAXATION TIMES AND THE NOE

Bulk Magnetization - Bloch's equations**

Early in the development of NMR theory Bloch (28) developed a series of equations
+
which describe the time dependent behavior of the bulk magnetization M.

>
In the absence of saturation effects M obeys the equation

> >

>
dM/dt = y MxH (14)

>
This equation describes the torque exerted on the M by the effective magnetic field

>
Hj. 1In the rotating coordinate system Bloch equations in component form are

*The nonreducing end carbon signals are coincident in the o- and B-anomer as are the
C¢ carbons on the reducing end. Eighteen separate signals have been obtained using
a smaller observation window.
**The relaxation equations can alsoc be developed in terms of the probabilities for
transition between energy levels.
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Figure 8. Comparison of the 13c-NMR and !H-NMR spectra for éellobiose in DMSO-dg.
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dMy-/dt =y [My” Hy = (w/Y)My~] (15)
dMy-/de = ¥ [Mz” Hy - My“Ho + (w/Y)My”] (16)
dM,~/dt = -y My~ H) (17)

where ﬁl is in the x“direction.

For completeness an additional term must be added to each equation to describe
relaxation effects. These additional terms describe the first order processes that
result in the return of M to its equilibrium value in the absence of any perturbing

field.*

The resulting equations take the form

dMyee/de = v My Ho~(w/Y) My~] - M2 /Ty (18)
dMy-/dt = v [MyoH =My Ho + (w/YMyg”] - My” /Ty (19)
sz‘/dt = =Y MY‘HI—(MZ _Mo)/Tl (20)

where Ty and Ty are the time constants for spin-lattice and spin-spin relaxation,
respectively. T; and Ty are also termed the longitudinal and transverse relaxation

times since they describe the relaxation of M parallel and perpendicular to the

. + .
field Hy,** The mechanisms of relaxation will be described later.

Equations 18-20 can be solved to give the time dependent behavior of ﬁ***Aunder

a variety of conditions. Of particular interest is the case of free precession for

*The probability of a spontaneous transition between energy levels is 10725 gec-1
while the probability for induced transitions is 10710 gec."1 (22). On this
basis coupling with a radiation field is negligible and relaxation (return to
equilibrium) must occur by a coupling of the spin system to the lattice or another
spin. )
*Tz describes the decay of My” and My” to 0 which occurs from a loss of phase
coherence in the spin system. T; describes the increase of M,” back to the
***equilibrium value M,.

The decay of My»

*

is proportional to the f.i.d.
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which Hy=0; Eq. 20 then becomes
dM;*/dt = -(M;"-M,) /Ty ' - (21)
IntegraFion of Eq. 21 gives Mz"as a function of time;
Mpo o= Mg+ (M, Mg)e t/T) (22)

where Mz’1 is the value of Mé‘ at time 0. The physical picture described by Eq. 22
is that immediately after a pulse the nuclear spin system returns exponentially to
its equilibriuﬁ value ﬁo by interacting with the lattice. The process is quan-
titatively described by the time constant T}. At equilibrium ﬁo lies entirely in

the z -direction. (See Fig. 4).

Transverse relaxation is described by T9 in a similar manner. This time
constant describes the processes that allow the nuclear spins to come into
équilibrium with eéch other rather than the lattice. 1In the absence of other line
broadening factors the uncertainty principle indicates that the line width of the

NMR signal is related to the relaxation time. T, is often defined as

where vi/2 is the width at half maximum intensity (whh) of the signal. Fof solids
and viscous polymer solutions T, often can be measured direétly from the NMR
spectrum. For rapidly tumbling molecules inhomogeneities in the magnetic field

contribute to line broadening so that Ty must be measured by pulse techniques.
RELAXATION MECHANISMS

General
As a molecule moves about in space the motion of the individual nuclei creates

a fluctuating local magnetic field. Individual spin systems can interact with this
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fluctuating field, resulting in the relaxation of the spin system so that it comes
into equilibrium with the lattice. It can be shown that processes with a Fourier
component at the Larmor frequencey are most efficient in promoting the relaxation.
Important processes which might lead to a fluctuating local magnetic field with com-
ponents at the Larmor frequency include: molecular reorientation (tumbling),
translational diffusion, reorientation of molecular magnetic moments, chemical
exchange, énd relaxation of a distant spin. Equally important for the relaxation
process is the interaction energy which couples the spin system to the fluctuating
field. The molecular motions and their coupling to the spin system can be
classified into distinct mechanisms of relaxation: dipole-dipole (DD), spin-
rotation (SR), chemical shift anisotropy (CSA), scalar coupling (8C), and quadrupo-
lar. Each of these will be discussed with emphasis on the dipole-dipole mechanism.
For most moderate sized organic molecules the DD mechanism is the only significant

contributor to nuclear relaxation.

Before proceeding to a discussion of the relaxation mechanisms it is important
to illustrate how a combination of relaxation processes is treated. For spin-
lattice relaxation the rate of relaxation Ry is defined as the reciprocal of the

relaxation time;
R; = 1/T4 (24)
The relaxation rates are additive so that
R;T = ryDD + gySR + R,CSA 4 g,SC (25)

where RlT is the total relaxation rate while the other relaxation rates are for the
specific mechanisms. RlT is obtained directly from the measured relaxation time.
Individual contributions to the relaxation rate are determined by measurements of Tj

as a function of temperature and magnetic field strength and by determining the NOE.
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Molecular Reorientation

For molecules moving in solution a broad spectrum of molecular motions exists.
To calculate the effect of the motion on the relaxation rate it is necessary to know
the distribution of molecular motions as a function of frequency. To assist in the
calculation it is helpful to define a parameter Tc, the rotational correlation time,
which is réughly defined as the average time between éollisions for a molecule in
some state of motion.* The molecular motions can be expressed on a quantitative

basis using the correlation function Ki(T)** where

K1 (T) = Kj(o) exp (-|T|/T.) (26)
and
Ko (0) = 12/15 =6 (27)
K;(0) = 2/15 ™6 (28)
Ko(0) = 8/15 r~6 (29)

The motional frequencies and intensities can be obtained from K;(T) by a Fourier
transformation to yield Jj(w), the spectral density function. The transformation

has the form
400
Ji(w) = f Ki(T) exp ({wT)dT (30)

which is analogous to the calculation of an NMR frequency spectrum from a f.i.d. If
Eq. 27-29 are substituted into Eq. 30 the subsequent integration yields the

equations

Jow) = 24/(15 £8) « [To/(1 + w2 T2 ] (31)

*For molecular reorientation it also can be interpreted as the time constant for
the loss of phase coherence of a system of rotating particles.

**Ki(T) = Y5 (t) Yi*(t+T) where Y; (i=0,1,2) are functions related to the spherical
harmonics and Yi* is its complex conjugate. :
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Ji(w) = 4/(15 £8) o [T./(1 + w? T 2)] (32)
Jp(w) = 16/(15 £0) o [T./(1 + w2 T,2)] (33)

These are the spectral density functions commonly used to relate molecular reorien-

tational motions to T; and Tjp.

Figure 9 is a plot of J;(w) vs. w for different values of T.. The graph shows
how the correlation time effects the distribution of molecular motions. Values of
T. fitting the relationship wy, T, ~1 produce the most efficient relaxation since the
spectral density* at the Larﬁor frequency is greatest for this value. At modest

magnetic fields most organic molecules have correlation times for which

w, To K1 (34)

(o]

This condition is referred to as the extreme narrowing condition;** it often leads to

a simplification of the relaxation equations.

J(w)

Figure 9. Spectral density J(w) as a function of the frequency
for different values of the correlation time in the
case of rotational correlation.

:Eistribution of molecular motions.
Correlation times that are less than the reciprocal of the Larmor angular fre-
quency are sald to exceed the motional narrowing limit. It is this realm of
correlation times for which T;=T;. Short correlation times correspond to rapid
molecular reorientation. :
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Dipole;Dipole (DD) Relaxation

Let us assume a molecule has fwo nuclei labeled I and S each of which possess a
magnetic homent; During the NMR experiﬁent the magnetic field at nucleus I will
contain a contribution ﬁLoc‘resulting from the magnetic moment of nucleus S.* The

magnitude of Hygc is given by

Broc = * ((¥s Is W)/r315) (3 cos? 67g-1) - ©(35)

Qhere rig is fhe distance between nuclei, 81g is the angle between the internuclear
vector and the z-axis and Ig is thé spin quantum number for spin S. As the molecule
tumbles 01g. varies résulting in a fluctuating field at nucleus I. For rapid
tumbling tﬁe average value of Hygc 1is 0.%* As ﬁLOC fluctuates at nucleus I any com-
ponent at the Larmor frequency of I can cause a change in its spin-state. As this
procesé continues thé ensemble of I nuclei in the sample eventually returns to its
equilibrium distribution of spin states estaBlished by ﬁo' The rate of spin-lattice
-relaxation'depends~oﬁ the intensity of'ﬁLOC and its rate of fluctuation. -

Theoretically the relaxation rate is given by (13)

RyPD = 1/1,DD - YZI'yﬁs k2 1g (Ig + 1) {(1/12) J, (wyp - wg) + (3/2)J; (wy)

+ (3/4) Jg (wp + ws)} : (36)

where wy and wg are the angular Larmor frequencies of spins I and S, respectively.
An equation of identical form describes the'dipole—dipole relaxation of spin S. The
spin-spin relaxation rate is-deééribed By é similar equation with the addition of é
specﬁral density component at low frequency. Substitution oflthe spectral density

Eq. (31)-(33) ‘into Eq. (36) yields the result

This is in addition to the fields Ho and Hl'
*In solids or viscous dissolved polymers HLOC does not average to 0 resultlng in
very strong direct dipole-dipolée coupling which produces line broadening.
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RlDD = (ZYIZ YZS Ig (Ig + I)MZ/IS r136) . [Tc/(l + wI'wS)z TCZ +
3 To/(1 + wdg T2.) + 6 T./(1 + (up + wg)? T2))] (37)

which is valid for rotational motion and intramolecular relaxation.

Figure 10 is aAplot of Eq. (37) which shows TIDD as a function of T, and mag-
netic field strength.* A plot of TZDD vs. To 1s also included. Figure 10 illus-
trates that Ty and T are equal and linearly related to 1/T. at short correlation

times.** Under the extreme narrowing condition (qu 34), Eq. (37) simplifies to
R;PD = 1/7;PD = (4/3) ¥2; ¥2g h2Ig (Ig + 1) r7b15 T, (38)

which for spin 1/2 nuclei further reduces to

R;PD = 1/1)PD = y2; v25 #2 rbrg p_ (39)

Equation (39) indicates that if either T, or ryg is known from another measurement
the unknown parameter can be calculated from measurements of TlDD. This suggests
that relaxation time determinations should be useful in conformatiopal or dynamic
measurements. The equation also shows that in the motional narrowing limit an

DD

increase in temperature or decrease in concentration, will result in a longer T;

since these changes should produce more rapid molecular rotations.

Figure 10 illustrates that the shortest TIDD values occur for correlation times
near the reciprocal of the Larmor frequency.*** Since w, is different for different
magnetic field strengths the minimum TlDD value is a function of ﬁo' At even longer

correlation times TlDD increases since the relaxation process is less efficient

+
*Recall that the Larmor frequency depends on Hg,.
%% .
Rapid rotation.
***At 23 XG f, is 108 HZ for !H-nuclei so that Tc is approximately 1078 sec: this

corresponds to the condition w,T,~1.
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because of a smaller spectral density at the Larmor frequency. This latter case is
common in solids or viscous polymers for which molecular reorientation is slow.
These materials generally have long TIDD values. As the temperatufe or con-
centration is changed these materials will exhibit changes in T;DPD opposite to the

change expected for small molecules.

-of
10 52 kG/ ,, 14

- r T

2 0-2

g)' 10 r

o

o, L

e

g 1074

W T2
10.6 1 1 1 1 1 ,I 1

10" 102 107 108 103
T. (SEC)

Figure 10. Dipolar spin-lattice and spin-spin relaxation times
as a function of the molecular rotational correlation
times at various magnetic fields.
Figure 10 shows that TZDD steadily decreases with increasing correlation times
which is consistent with the importance of low-frequency motions for the Ty process.

Both viscous polymers and solids have very short Ty values which contribute to line-

broadening in the NMR signal of these materials [see Eq. (23)].

For a 13C—nucleus Eq. (39) can be modified to include the interactions between
all spins so that
RyDD = 1/T\PD = y2¢ y2y #2 3 r;~b Tey (40)
i
where rj is the distance from the relaxing nucleus to every other spin 1/2 nucleus
and T

ci is the rotational correlation time for the vector connecting each of the i

nuclei to the relaxing nucleus. The assumptions implicit in Eq. (40) can be restated;



-252-

the spins are within the same molecule, the correlation time is for molecular
reorientation, all pertinent nuclei are of 1/2 spin, and the extreme narrowing con-
dition applies. Under the further constraint of isotropic rotation Eq. 40 simpli-

fies to

T ri (41)

RlDD = 1/T1DD = YZC YZH MZ Tceff .

where Tceff* is the effective correlation time for all spin interactions. For most
13c-nuclei** this further reduces to
RlDD = l/TIDD =N Y2C Y2H MZ 6 Teff 42)

since in nonenriched molecules the r~6 dependence usually causes only directly

bonded protons to be important in DD relaxation. 1In Eq. 42 N refers to the number

of directiy bonded protons.
For the proton, Eq. 39 reduces to
RiPD = /7DD = yhy K2 Tops T ry6 (43)

for the case of isotropic rotation. For anisotropic rotation the above equations

must be modified by the inclusion of additional cﬁrrelation times.

In concentrated solutions TlDD calculations can be complicated by inter-
molecular relaxation effects. This case is difficult to treat theoretically since

translational motions must also be considered. A particular type of intermolecular

*To simplify the notation Tg¢f is used in the remainder of this appendix.

**13C—T1 studies are simplified relative to 1H—T1 studies because of; 1) interac-—
tions with other 13C-nuclei are negligible; 2) 13C—signals in 1H—decéupled spectra
usually appear as one line so that only one time constant describes ‘the
relaxation; and 3) 13¢ is usually internal to the molecule so that intermolecular
relaxation is less likely.
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dipole~dipole relaxation occurs when paramagnetic materials are present. In this
case spin S in Eq. 3§vis an unpaired electron. Since_the magnetic moment of the
electron is approximately thrge orders of magﬁitude greater than that of the proton
a ve;y efficient relaxation pathway is provided. Because of this, paramagnetic
impurities, such as oxygen or some transition metal ions, must be removed whenever
intermolecular relaxation interactions are likely or when long intramolecular

relaxation times are being studied.

The dipole-dipole coupling interaction between a proton and a 13¢-nucleus also
produces a nuclear Overhauser enhancement (NOE) for the 13c-nucleus. The enhance-
ment (n) is manifested by an increase in the 13C—signal intensity under 1H—decoupled

conditions. The theoretical maximum enhancement, given by
n+1=1.988, ‘ (44)

is expected when nuclear-nuclear dipole-dipole interactions contribute exclusively
to the relaxation of the 13C-nucleus. Because of the dependence of the NOE on DD
interactions measurements of n will indicate the percentage of the relaxation time

that results from this mechanism according to the equation

1.988

7,PD - 7T | (45)

TlT is the measured relaxation time. Equation 45 is only valid for the extreme

narrowing condition.

Spin-Rotation (SR) Relaxation

A molecﬁle‘may ha&e an induced magnetic moment because of the modulation of the
magnitude and direction of the molecular angular momentum by rotation of the mole-
cule. 'As the moleéule or molecular segment rotates faster significant fluctuating

local magnetic fields can result leading to relaxation of the nearby nuclei. This
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mechanism is applicable to small rapidly tumbling molecules or molecular segments
such as a;tached methyl groups. The mechanism is particularly prevalent in nonpro-
tonated carbons within small molecules. The mechanism is most important at elevated
temperatures and is differentiated from the DD mechanism by an increase in the
relaxation rate with increasing temperature. The pertinent correlation time Tg

measures the persistance of the molecular angular momentum.

Chemical Shift Anisotropy (CSA) - Relaxation

The chemical shift of a nucleus is in general an anisotropic quantity described
by the tensor g. In liquids the Brownian motion averages the shift over all orien-
tations so that a scalar chemical shift is 6bserved- Nevertheless, a fluctuating
local magnetic field is produced at the nucleus which can have components at the
Larmor frequency. Relaxation via the CSA mechanism is known to be field dependent
and thus can be detected by measurements at two magnetic field strengths under the
extreme narrowing condition. At 23 KG no molecule has been found which is predomi-
nantly relaxed by the CSA mechanism. The mechanism is most likely to occur in
molecules such as benzene which exhibit directional shielding. The pertinent corre-

lation time i1s the same as for the dipole-dipole mechanism.

Scalar Coupling (SC) Relaxation

When two nuclei are spin-spin coupled a rapid relaxation of one nucleus can
create a fluctuating local magnetic field at the other nucleus. This is only impor-
tant for 13C-nuclei coupled to quadrupolar nuclei such as 35¢ and 79Br which relax
rapidly via quadrupolar rglaxation.* The relevant correlation time is equal to the
relaxation time of the quadrupolar nucleus. This mechanism is particularly impor-

tant in reducing Ty with a resultant broadening of the signal.**

*A similar effect is achieved by. the modulation of spin-spin coupling created by
rapid chemical exchange.
**24 reduces the intensity of an attached 13c—nucleus NMR signal by coupling with it

and indirectly by eliminating the efficient 13¢-14 DD mechanism. SC relaxation is
not a factor.
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Quadrupolar” Relaxation

Nuclei with spin quantum numbers greater than 1/2 have an electric quadruﬁole
moment Q resulting from a nonspherical charge distribution. Molecular reorientation
. of a quadrupolar nucleus produces a fluctuating field at the nucleus. Nuclei such
as 2H relax rapidly by the quadrupolar mechanism with the relaxation time being a

function of Q and TC‘-

Summary-Relaxation Theory

The relaxation times, T; and T, can be related to molecular geometry and dyna-
mics through their dependence on interatomic distances and molecular motion. The
resulting equations make the measurement of‘Tl and T, a powerful tool for probing
the conformation and dynamics of dissolved organicvmolecules. The major mechanism
of relaxation for intermediate sized organic molecules is the nuclear-nuclear
dipole-dipole interaction; the other mechanisms only become important in special
cases. In the motional narrowing limit the molecular motion can be simply described

for DD relaxation; for isotropic rotation only one correlation time is required.
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APPENDIX II
CARBON-13 SPIN LATTICE RELAXATION DATA
INTRODUCTION

This appendix presents the tabulated 13C—T1 data collected for the cello- and
xylo-oligosaccharides and related compounds. In addition, the rationale behind the
technique is briefly presented along with an explanation of the methods of measure-
ment. Several preliminary runs are discussed to highlight potential sources of

error-
DIPOLE-DIPOLE RELAXATION: RELEVANCE

0f the several mechanismsvfor relaxation of an NMR spin-system the dipole-

dipole mechanism is the only significant contributor to relaxation in molecules the
sizé of small oligosaccharides. For this type of mechanism the spin-lattic relaxa-
tion time (T;) is given by (1):

1/11P0 = #2y2ov2y T r 8¢y, Tem; (6)

i

provided that the motional narrowing limit is not exceeded.® 1In this equation vg¢
and yg are the magnetogyric ratios for the appropriate nuclei, rgy is the distance
from the relaxing carbon nuclei to e#ch contributing proton nuclei, and Tgy is the
rotational-correlation time for each carbon—hydrogén interaction. For an isotropi-
cally rotating molecule in which no nonbonded C-H interactions are important this

expression reduces to

*The region of motional narrowing represents rotational correlation times of about 5
x 1079 sec. and smaller and is distinguished by frequency independent relaxation
times. See Appendix I for further explanation.
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1/T1DD = NR2y2.y2ur=6CHT, £¢ (2)

where N is the number of directly.attached protons, TIDD is the dipolar spin-lattice
relaxation time, and Toff is the effective rotational correlation time. Tggf is the

same for all carbons and protons in the molecule.

The nuclear Overhauser effect (NOE), n, defined as the change in total 13¢
intensity upon irradiation of the proton-resonances, is a measure of the extent of
the dipole-dipole relaxation mechanism. A theoretical enhancement of 1.988 is

expected if only the nuclear-nuclear dipole-dipole mechanism is involved.

Most intermediate size molecules (MW>50,<1000) in solution have rotational
correlation times less than the motional narrowing limit. For this rate of rotation
the effect on Ty of various changes in molecular enviromment can be estimated from
Eq. (1). For instance, iﬁcreasing the temperature or decreasing the concentration,
either of which is expected to increase molecular mobility, will result in greater
T; values. Likewise; free internal rotation will lead to longer T} values as is
found with freely rotating methyl groups. A freely jointed chain, such as the side
chain on cholesterol or the carbon backbone of an extended alkane, exhibits grad-
ually increasing T; values toward the end of the chain. On ;he other hand, factors
that contribute to increased Tcy values, such as greater molecular size (inertia) or
hydrogen bonding functional groups which act to increase intermolecular interactions

(microviscosity), will result in lower T; values.

Carbohydrates with an extensive ability to interact with the solvent have T
‘values significantly lower than those of molecules of equivalent size but with fewer
intermolecular interactions. Hall et al. (g) report relaxation times on the order
of 1 sec for monosaccharides and 0.2 sec for disaccharides at concentrations of 1
molar in D90 at 35°C. This is compared to relaxation times of several seconds in

molecules of similar size but without the hydrogen-bonding functional groups (3).
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From the above considerations it should be apparent that 13¢ Ty's should be
ideally suited to study the dynamics of motion of moderate size molecules, at least
on a qualitative basis. For example, the study of segmental motion of freely
jointed chains can be‘extended to the study of segmental motion in oligosaccharides.
in this respect the group of atoms comprising the monosaccharide sub-units are anal-
ogous to the single methylene and methine units in a freely jointed chain of an
extended alkane. At the triséccharide level, or higher, the terminal units would be
expected to have longer relaxation times than the internal units if the glycosidic
linkage allows some degree of motional freedom. Allerhand and Doddrell (i) used
this criteria to assign lines to the terminal galactose residue in the tetra-
saccharide stachyose. The present study has employed the variation of relaxation
times among adjacent monosaccharides in the xylo- and cello-oligosaccharides to
compare the flexibility of the glycosidic linkages in and between these types of
molecules. 1In addition, indications of the degree of anisotropic rotation at the

mono—, di-, tri-, and tetrasaccharide level have been studied.

MEASUREMENT: INVERSION RECOVERY

The most common method for relaxation time measurement is the inversion-

recovery (IR) technique. This method is characterized by the following pulse

sequence:
(180° -t-90° -T), (3)

Here t is the delay between the inverting 180° pulse and a 90° observation pulse.
The waiting time T, between the n pulses, is critical and should be 3-5 T; so that
all spins are fully relaxed after each puise.' Cbmmonly, the experiment is performed
by measuring the individual peak heights for a series of delay times. Figure 1

depicts the process diagramatically, while Fig. 2 illustrates a typical IR data set.
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The relaxation of the z—magneétization component for each spin can be described

by a first-order differential equation:
dM,/dt = - (M, - Mo)/ T) (4)

where My, and M, are the equilibrium z-magnetization and z-magnetization measured
after t, respectively. This is equivalent to Eq. (21) in Appendix I. The relaxa-
tion time for each individual spin is given by Tl. M, is measured by applying a

long delay time (bottom spectrum in Fig. 2). Integrating Eq. (4) produces
Mo - M, = 2M, e"t/T} (5)

where the initial condition that M, = - M, after the inverting pulse has been
applied. Rearrangement of Eq. (5) results in a linear equation which can be plotted

to yield Ty:

In Z = In [(Ms - M)/ M) = -t/Ty (6)
Where Z = Mo - M;)/ M.
CALCULATION OF T,

The Jeol FX-100 system contains a weighted linear regression program that uses
peak intensity and delay time data to calculate T; in a modification of Eq. (6).

This involves minimizing the error in the linearized equation resulting from Eq.

(6):
{[ln Z - (£/T;) - 8] w}2 = E (7)

where B is a constant and w a weighting factor related to Z. The method of least
squares is used to determine the values of T; and B resulting in a minimum value of

E. Equation (6) can be rewritten in the form,
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In Z = ~(t/T)) + B (8)
from which it is seen that B = In Z at t=o.

B is thus a measure of the validity of the first order relaxation model
described by Eq. (4); ideally B = 0 in this model. A second indicator of error

involves the variance (S2) in the data given by:

- 2
52 = Z[ln zlogs in 2] (9)

where (ln Z),,g 1s obtained from the actual data while in 1ln Z is calculated from
Eq. (8) for the N data points. Only ln Z values less than 80% of 1n Z, are used in

the calculation of Ty

The relaxation data tables contained later in this appendix record the value
of B = 1n Z, as well as an indication of relative variance for each T; value
obtained. These tables indicate which T; values were not used to calculate average
ring Ty values Gﬁfl) in Section‘Z of the thesis. The criteria for rejection are

listed below for quick reference.

l. Unusually large values of B or S2 relative to other values in the data set.

2. Uncertainty in the assignment.

3. Peak is degenerate with a larger peak that is not in an equivalent environ-
ment relative to the glycosidic linkage.

4. The a-C; value is not used because its value is dependent on its orien-

tation relative to the major axis of the molecule.
SOURCES OF ERROR

Relaxation time measurements contain several potential sources of systematic

error if care is not taken (5). Of particular concern is the time between pulses,
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which should be 3-5 T; to avoid signal deterioration, and the need for a uniform and
strong pulse throughout the‘observatioﬁ window. The pulse interval requirement is
easily met if the longest relaxation time ‘can be estimated. The uniformity of the
pulse is a function of the instrument design and should not be a problem with the

Several other sources of error resulting from the sample or experimental set-up
are possible. Included in this category are the use of peak heights rather than
peak area, inaccuracies resulting from low signal to noise ratios at low con-
centration, variability in resolution resulting in inaccuracies for closely spaced
peaks, and systematic errors that can result if a non-180° pulse is used. Except
for the inaccuracies observed for closely spaced peaks these problems are relatively

unimportant, leading to only a slight variability in the data.

Two additional sources of error, which are potentially more detrimental, are
long-term temperature variations and paramagnetic impurities. Over the time period
of the experiment any temperature change could lead to large errors since relaxation
times are ‘a strong function of temperature (6). To minimize this problem the Jeol

Fx-100 is equipped with a temperéture controller stable to * 1°C.

Paramagnetic impurities provide aAhighly efficient relaxation mechanism which
can mask dipole-dipole relaxation times. Some of the transition metal ions and oxy-
gen have this property. Bock and Hall (6) have shown that removal of oxygen by
nitrogen purging does not significantiy affect carbohydrate 13¢—relaxation times.
Proton Tl's'may be expected to be more significantly affected by virtue of being on
the exterior of the molecule. For 13C—T1 studies freeze—pump—thaw degassing has
been used when comparisons between samples are made, as suggested in the literature

(7). Preferential binding of Gd*3 at the reducing-end does lead to systematic
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reductions in relaxation times near the site of binding (8), illustrating the need to

remove any paramagnetic impurity that binds at a specific site.

Table 1 compares the 13C—T1 values obtained under a variety of conditions for
the linkage carbon (C-17) in cellobiose and methyl B-cellobioside. Comparison of
examples 1-5 with example 6 illustrate the effect of concentration. Higher con-
centrations give lower relaxation times. Comparison of examples 6 and 7 show the
effect of temperature. An 11°C increase in temperature produced a 61% increase in

Ty. The effects of purging with Ny or using a non-180° pulse are small.

TABLE I

13c-T; RELAXATION TIMES FOR THE C-1" OF CELLOBIOSE
IN D,0 UNDER DIFFERENT CONDITIONS

Example Concentration, % Temp., °C Comment T}, sec
1 25.48 35 0.32.
2 25.48 35 Repeat of 1 0.31
3 25.48 35 N, purge 0.33
4 25.48 35 Non 90° pulse 0.33
5 25.48 35 Fewer data
points 0.35
6 10.07 35 0.54
7 10.07 46 0.87

NUCLEAR OVERHAUSER ENHANCEMENT (NOE)

In Appendix I it was shown that the percentage of relaxation occurring by the
dipole~-dipole (DD) mechanism could be determined by NOE measurements. If the DD
mechanism is the only one operative then an enhancement of 1.988 is expected for a

decoupled carbon spectrum relative to the proton—coupled spectrum.

NOE measurements were‘made by comparing peak heights between successively
obtained proton gated-decoupled and proton decoupled carbon spectra. The gated-

decoupled spectra were obtained by applying the decoupler only during signal
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acquisition; in this manner the spectrum contains no proton—carbon coupling as in
the decoupled spectrum while the NOE is destroyed by the absence of decoupling

between pulses.

NOE measurement suffers from severél error sources. The FX-100 data system is
only equipped to give standardized peak height measurements. Electronic integration
of two separate standardized spectra cannot be performed. The error involvea can‘
be estimated by manually integrating aﬁd comparing the decoupled and gated decoupled
spectra. A more serious concern is the effect of long term temperature instability
which tends to give fluctuations in the data when sequential decoupled and gated
decoupled spectra are recorded. Freeman (2) has designed a pulse sequence which
simultaneously collec;s the decqppled and gated decoupled spectra. Unfortunately,

this is not available on our instrument.

Table II summarizes the results of several NOE determinations. It also in-
cludes some of the available literatgre data. Hall and coworkers (2) have measured
the NOE for several mono- and disaccharides. 1In all cases they observed 1007 of the
theoretical enhancement for proton decoupling, indicating that the nuclear-nuclear
dipole—-dipole mechanism is the only one operating. They used a pulse sequence which
allows a simultaneous accumulation of the gated decoupled and decoupled épectra.

This effectively minimizes errors from long term temperature drifts.

The data collected in the present study for the cellodextrins suppbrt the con-
élusion that the only relaxation mechanism present is nuclear-nuclear dipole-dipole
relaxation. The larger deviation in these data, compared to the literature data,
reflects the use of peak heighté rather than peak areas and the effects of long term

temperature drifts.
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The results for xylobiose and xylotriose show only 84 and 877 of theoretical
enhancement. The reasons for these low values may be several. It is possible that
these values result from the same systematic errors mentioned above or that an inert
paramagnetic material is present in low concentration. This would function to
suppress the NOE. The latter possibiiity can result from an electron—nuclear
dipole-dipole relaxation mechanism that acts to decrease the observed relaxation
times by a nonspecific intermolecular interaction. Equation (10) gives the amount

of reduction in the observed relaxation for this situation:
n'" / n =T/ T DD (10)

In this equation n' and T} are the observed NOE and relaxation time, respectively,
and n is the maximum enhancement possible. TlDD is the nuclear—nuclear dipole-

dipole relaxation time.

TABLE II

NUCLEAR OVERHAUSER ENHANCEMENTS

Run Sample® % NOEP oC¢ High Low Peaks

1 c2 110 8 118 83 18
2 Cc2 96 5 104 88 17
3 Cc3 97 7 109 87 21
4 X3 87 6 99 80 18
5 X2 " 84 6 96 76 14
d MBC2 100 1 103 97 13
d Lactose 99 2 102 97 18

3A11 samples were run at 35°C using a comparison
of a completely decoupled spectrum and a gated
decoupled spectrum. Normalized peak heights were
measured. C2 =1 m cellobiose, C3 = 0.23 m cello-
triose, X3 = 0.32 m xylotriose, and X2 = 0.55 m
xylobiose.
bpercent of the theoretical enhancement, 1.988
averaged over all peaks.
CStandard deviation.
dFrom Ref. ).
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While either of the above error sources may be present in this case, the
contribution from other intramolecular relaxation mechanisms 1s almost certainly
nonexistent. If the error is due to an inert paramagnetic material, which does not
bind specifically at one site, then comparisons of relative T; data among carbons

of the same molecﬁle will not be affected.*

At low signal to noise values NOE determinations become‘more difficult because
of the long accumulations required. Because of this difficulty in obtaining
accurate NOE values no further work was done on the higher oligosaccharides

investigated in this thesis.
TABLES

The remainder of this appendix contains the 13C—T1 relaxation data for the car-
bohydrates studied. Tables IV-XV give the assignments, relaxation times, and errors
for each peak. Tables XVI-XXV contain the average.Tl values for the individuai rings
for each molecule studied. The number of carbons ;sed to determine the average is
also given. Table XXVI compares the Ty ring averages for the tri- and tetrasaccha-
rides using the student t-test to compare means. In almost every case the average
Ty for the terminal rings differs from that for the internal rings at a confidence

level of 90%. 1In most cases confidence intervals were 99.0%Z or above.

Table III contains a key to the abbreviations used in Tables IV-XXV.

*Preparation of the xylobiose sample included a final treatment with IR-120 to
remove paramagnetic cations.
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TABLE III

KEY TO TERMINOLOGY USED IN TABLES IV-XXV
Explanation

Reducing-end ring of the B-anomer.
Reducing-end ring of the a-anomer.

Remaining rings in the oligosaccharide lettered sequentially.
The terminal ring is given the letter furthest from A.

The number of spectra accumulated to determine the relaxation
time.

The same as B in Eq. (7). The‘vaiué of In Z [see Eq. (6)] at
time = 0.

The number of relaxation times included in the ring average.

The average of the relaxation times for that ring. Each

relaxation time is multiplied by n, the number of attached protons.

Time between pulses.

The variance between (In Z),pgerved and (In Z)calculated See
Eq- (9).

The longitudinal relaxation time in seconds.

The a-anomer. In the carbon number system used an a refers
specifically to the a-anomer. TIf no anomer designation is given
then the peaks for each anomer are coincident.

B-anomer.

Standard deviation;



Cellotetraose — 7.75% (W/V)

Run?

Assignment

1"'
1", 1 1]
g-1
a-1¢
o4

B4

4'd

4nd

5"'

3"'
5",5', B-5¢
g-3
3",3
g-2

2|||
2",2!
-3, a-2
o~5

4"

6"'

6

6",6'

l 1n Z'J g

4Conditions:

Shiftb

103.3

103.1
96.6
92.7
79.8
79.6h
79.5
79.4
76.8
76.5
75.7
75.2
75.0
74.9
74.0
73.8
72.2
71.0
70.4
61.6
61.1
61.0

59°C: Run 31:
pulses PR = 3.0 sec, 7 data; Run 33:
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TABLE IV

31
Tl 1n Z2°
0.60 108
0.51 88
0.61 3g
0.37 28*
0.55 108
0.52 5g*
0.45 58
0.50 118%
0.62 98
0.58 68
0.54 128*
0.52 68
0.51 78
0.49f 5g*
0.62 108
0.50 88
0.59 48
0.64f ~  118*
0.62 68*
0.35 118*
0.24 78
0.22 5
7.3%2.9

32

Tl 1n Z,O
0.54 6
0.44 4
0.71 10

0.43 168*%
0.61 6
0.62 11
0.45 6
0.39 5
0.60 7
0.60 7
0.44 5
0.65 11
0.45 6
0.58 10
0.57 6
0.44 6
0.66 9
0.70 9
0.64 5
0.28 6
0.22 1
0.22 5

7.1%3.1

0.46
0.41
0.47
0.32
0.41
0.38f
0.36
0.37
0.47
0.45
0.37
0.44
0.39
0.57
0.45
0.42
0.50
0.53f

.0.46

0.22

0.20¢

4.4%2.9

5000 pulses, PR = 2.3 sec., 10 data; Run 32: 4500
4500 pulses, PR = 3.0 sec, 10 data, poor S/N.

Referenced to earlier cellotetraose spectrum by setting C,"' to the equivalent

value.

Ca-Cy; value is not used in the calculation of average NT; because of its unusually
low value resulting from the orientation of the CH vector parallel to the major

axis of rotation (g).

dAssignments can be interchanged; the average of these values was used in calcu-

lating the ‘NT; average.

€Not used in calculating the NT; average because of coincidence with another signal.
fNot used in calculation of average NT; values because of an unusually large error
as determined by 1ln Z,r or s2,

852 values greater than 0.0020;*
in the data set for that sample.

h79.7 ppm in run 31.

1Shoulder on another peak.

indicates a 52 value much larger than the others
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TABLE V
Xylotetraose - 6.20% (W/V)
Run@
27
Assignment ShiftD Ty In Z7,
1 102.7 0.40 3
1",1" 102.5 0.31 1
-1 97.3 0.40 -4
a~1¢ 92.8 0.28 -38
o~b 77 .4 0.40 68
4"4 ", B-4© 77.2 0.31 1
3 76.4h 0.43 4
g-2d 74.8 0.44 4
g-3d 74.7 0.42 3
3,30 74.5 0.31 1
2 73.6 0.31¢ -5
2", 2! 73.5 0.31 1
a-2€ : 72.2 0.45 3
a-3d 71.8 0.37 -3
4" 70.0 0.43 3
51t 66.1 0.21 2
5",5',B-5¢ 63.8 0.16 2
a-5 59.7 0.24f 118*
3.3+2.4

B AN ER
o

28

Tl 1n Z’O
0.36 -3
0.31 1
0.42 -4
0.27 _58*
0.40 5
0.32 2
0.39 0.2
0.40 1
0.39 3
0.31 1
0.32€ -2
0.31 3
0.41 -3g*
0.41 18*
0.40 0.7
0.23 7
0.16 2
0.18 -48

2.7%1

aConditions: Runs 27 and 28: 35°C, 4000 pulses, PR = 2.1 sec,

10 data points.
b-gSee Table IV b-g.
h76.5 ppm in Run 28.




Cellotriose - 10.78% (W/V)

Run?@

Assignment

1"
1'
B-1
o-1¢
o-4

6'

[—1n z’;T“E o
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AConditions:
8 data points.

TABLE VI
16
ShiftP T,
103.4 0.35
103.2 0.31
96.6 0.40
92.7 0.25
79.6 0.36
79.5 0.314
79.4 0.29
76.9 0.37
76.4 0.35
75.7 0.32
75.2 0.35
75.0 0.31
74.8 0.33
74.0 0.35
73.0° 0.30
72.1f 0.33
71.0 - 0.34
70.4 0.37
61.5 0.18
61.0 g
60.9 0.15

36°C, 3500 pulses; Run 16:

(1]

\J\JL{B'—*U"\JO\UIJ-\U‘IJ-\\DU'I#'—'UIOU"\J

5.6%2.1

5.8%2.5

10 data points; Run 17:

breferenced to earlier cellotriose spectrum by setting C4m to the
equivalent value.

CSee Table IV c.
dgee Table IV e.

€52 yalues greater than 0.0020.
£72.2 ppm in run 17.
€Shoulder on another peak.
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TABLE VII
Xylotriose - 11.71% (W/V)
Run@

18 26

Assignment Shiftb T} In 27, T, In 24
" 102.7 0.40 -4 0.40 -38
1" 102.5 0.36 -1 © 0.36 -18
-1 97.3 0.50 4 0.48 -18
a-1€ 92.8 0.31 -5 0.32 -28
A 77.4 0.37 -4 0.29 -38
47e g4y 77.3 0.36 -3 0.36 -2
3" 76.5 0.41 -5 0.45 -18
g-3d 74.9 0.46 2 0.44 -2
g-2d 74.8 0.43 0 0.44 1
3° 74.60 0.37 -3 0.35 -2
2" 73.6 0.39¢ -2 - 0.408 -38*
2° 73.5 0.39¢ 5 0.37¢ 18
a-22 72.2 0.47 4 0.46 1
a-3d 71.8 0.45 -18 0.43f -18
4" 70.0 0.43 3 0.45 -18
5 66.1 0.23 3 0.20 -28
5°e,g-5¢ 63.9h 0.21 7 0.17 ~38
a=5 59.7 0.23 48 0.19 -18

M z7%[ % o 3.3%1.7 1.7£0.8

AConditions: 6750 pulses, 10 data points; Run 18: 35°C, PR = 2.1 sec;
Run 28: 34.5°C, PR = 2.2 sec.

b-gsee Table IV, b-g.

h74.5 ppm and 63.8 ppm, respectively, in Run 26.
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TABLE VIII

Methyl B-Cellobioside - 16.65%

Run
. _ 5

Assignment ~ Shift Ty In 27,
1 103.9 0.64 14¢
17 103.4 0.62 16¢
4 79.6 0.54 11¢
5° 76.8 0.61 15¢
3~ 76.4 0.59 13¢
5 75.6 0.64 17¢
3 75.2 0.58 12¢
27 74.0 0.61 16¢
2 73.7 0.62 15¢
4 70.3 0.58 13¢
6° 61.5 0.34 19¢c*
6 61.0 0.33 : 18¢*
OCH3 58.0 1.34 14¢

[Tnz75] 14.8+2.3

3Conditions: Run 5: 35°C, 1000 pulses, PR = 5 sec,
8 data points.

breferenced to C4+ of cellobiose. Assignments based
on the literature (19).

CSee g in Table IV.
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TABLE IX
Cellobiose - 10.07% (W/V)
Run?@
7 25
Assignment Shiftb T, In 27, T, In Z7,
17 103.4 0.54 8 0.47 0.4
g-1 96.6 0.61 9 0.49 -4
a-1¢ 92.6 0.43 6 0.39 0
(!—4 7907 0056 9e 0046 _1
B-4 79.5f 0.58 11e* 0.45 -0.5
5” 76.8 0.60 12 0.47 -1
3 76.4 0.56 7e 0.47 -2
B-5 75.6 0.61 12¢€ 0.45 -2
8-3 75.1 0.63 11 0.50 1
8-2 74.7 0.61 10e* 0.54 4
27 74.0 0.54 ge 0.47 -1
a-3d 72.2 0.60 8 0.49 -1
a_ze 7201 0°53 7e 0048 —004
-5 70.9 0.59 9e 0.49 2
4’ 7003 0058 9e 0046 —3
-6 61.5 0.30 9 0.24 1
B-6 61.0 0.27 8 0.24 1
a-6 60.9 0.31 14 0.24 5
| InZ %o 9.3+2.1 1.7%1.4

3Conditions: Run 7: 35°C, 1000 pulses, PR = 5 sec, 8 data points;
Run 25: 31.5°C, 1750 pulses, PR = 2.3 sec, 10 data points.

bSee Table VIII 8 b.

c-dsee Table IV ¢ and d.

€See Table 1V g.

£79.6 ppm in Run 7.
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TABLE X
Cellobiose
Run?

‘ . A 11 35
Assignment Shiftb Ty In Z7, T) In Z27,
1” 103.4 0.32 4 0.67 17

B-1 96.6 0.35 2 0.73 178*
a-1¢ 92.6 0.26. 1 0.48 108*
a-4 79.7 0.32 3 0.69 168*
B-4 79.6h 0.34 7 0.72 20
57 76.8 0.33 2 0.74 21
3” 76.4 0.34 5 0.74 21
B-5 75.6 0.34 4 0.71 19
B-3 75.1 0.34 3 0.74 188
B-2 . 74,7 © 0.35 5 0.61 108
2° 74.0 0.32 2 0.70 18
a-3d 72.2 0.35 4 0.74© 148*
a-2© 72.1 0.33 4 - 0.69¢ 138
a-5 70.9 0.34 4 0.82f 198*
4 70.3 0.34 5 0.69 17
6 61.5h 0.18 7 0.31 11
B-6 61.0 0.17 4 0.32 12
o—6 60.9h 0.16 4 0.31 108
InZg] %o 3.9%1.6 15.743.9

8Conditions: Run 11: 25.48% (W/V) in D50, 35°C, 800 pulses, PR =
2.3 sec, 10 data points (saturated solution); Run 35: 5.00%
(W/V) in D0, 31°C, 1000 pulses, PR = 7.0 sec, 10 data points.
Low S/N gives a large error.

b-dgee Table IX b-d.

€-€See Table IV e-g.

h79.5, 71.0, 61.4 and 60.8 ppm in Run 35.



Xylobiose - 13.52% (W/V)

Run?@

Assignment

1°
g-1
o-1¢
o—4
B-4
3-
g-2d
g-3d
5-
a-2d
a-3d
4°
5-
B-5
o-5

4Conditions:
points; Run 20:
decoupler off; Run 21:

Shifthb

102.7
97.3
92.8h
77.5
77.3
76.5
74.86N
74.77
73.6
72.2
71.8
70.0
66.1
63.9
59.8

Run 19:

b-ggee Table X b-g.
N92.9 ppm in Run 19; 74.84 in Run 20.

1Not included in average for
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35.5°C,
35.5°C, 2000 pulses, PR = 4.0 sec,

36°C, 1750 pulses, PR = 4.2 sec,

TABLE XI
19 20 21
Ty In 27, Ty 1n 27, T, in 27
0.66 0 0.70 4 0.78 9
0.74 1 0.78 6 0.87 12
0.80f 121 0.54f 58* 0.61 10
0.65 1 0.71 7 0.80 12
0.62 1 0.72 9 0.79 13
0.62 -2 0.75 7 0.80 11
- ' - 0.70 3 0.74 6
0.628:3 -2 0.72 5 0.70 4
0-59 —4 0074 6 0075 9
0.66 1 0.78 8 0.78 9
0.64 -0.4 0.80 9 0.83 15
0.62 -4 0.76 88 0.79 10
0.35 2 0.42f 108* 0.42 10
0.33 2 0.41f 128% 0.40 11
0.31f -48% 0.37 7 0.38 9
1.gitl.4 7.1%2.4 10,02
1500 pulses, PR = 2.1 sec (too short), 10 data

1n Zovl .

10 data points, noise
10 data points.




Xylobiose - 7.25%

Run@

Assignment

rin Z'OT t o

4Conditions: Run

-7.0 sec, 10 data points, sample pu

nitrogen.

-279-

TABLE

Shiftb

102.7
97.3
92.8
77.5
77.3
76.5
74 .84
74.77
73.6
72.2
71.8
70.0
66.1
63.9
59.8

24

b~dgee Table IV b-d.

€gee f Table 1IV.
fSee g Table IV.

XI1
24
Ty 1In 27,
0.93 12
0.98 11£f
0.78. 14£
0.97 15f
0.85 of
0.86 9
0.81 5
0.88 of
0.92 . 12f
0.97 15f
0.98 13
0.99 14f
0.52¢ 13£*
0.46 13£*
0.51¢ 15£*
11.8%3.1

31.5°C, 1750 pulses, PR

rged with




Xylobiose - 5.007

Run?

Assignment
1”
g-1
a-1¢
a~4
B-4
3 b
3;2 d
g 3d
9°
o-2d
a-33
e
5°
B-5
a-5

' 1n Z'J.i o

aConditions:

room temperature,
1500 pulses, PR = 7.5 sec,

Shift

102.7
97.3
92.8
77.5h
77.3
76.5
78.84
74,770
73.6
72.2
71.8
70.0
66.1h0
63.9h
59.7

Run 34:

280-

TABLE XIII
34 36
Ty In 27, T, 1n 27,
1.01 188 0.88 12
1.05 178* 0.99 14
0.72 128 0.62 48
0.78¢ 128 0.70e>f 18*
0.93 168 0.79 108
1.00 188 0.84 9
0.88 88 0.91 12
1.02 14 0.89 12
0.96 178 0.96 13
1.09f 158*% 0.93 128
1.01 178* 0.91 118
1.06 208 0.77 3
0.43 108 0.42 8
0.40 58 0.39 5
0.45% 128% 0.37f 5g*
14.1%4.2 8.7%4.1

37

Tl ln Z‘O
0.84 9
1.07 14

0.74 128

0.93 168
0.90 14
0.90 13
0.98 17
0.98 16
0.95 15

0.96 138*
1.06 15
0.92 12
0.48 15

0.45 108
0.49 18
13.9%2

31°C, 1500 pulses, PR = 8.0 sec, 10 data points; Run 36:
0 sec, 8 data points; Run 37:

1500 pulses, PR = 10.
10 data points.

bReferenced to B-C; in the earlier xylobiose spectra.
C-8See Table IV c-g.
hy7.4, 74.60, 66.0, and 63.8 ppm, respectively, for Runs 36 and 37.

Each has a low S/N.

31.5°C,




Glucose

Run?

Assignment

B-1
o-1¢
B-5
-3
-2
a-3
a-2d
a-5d
a-4d
p-44
B-6
a~6

|1nz7] o

4Conditions:

Shiftb

96.7
92.9
76.6
76.6
75.0
73.6
72.3
72.2
70.5
70.4
61.6
61.5

Run 15:
data points; Run 29:
data points,
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TABLE XIV
15 29 30
T, In 27, T, in 27, Ty in 27,
1.08 1 0.84 10 0.80 5
1.04 3 0.78 8 0.69 -2
1.04 2 0.81 9 0.71 -1
1.06 1 0.60f -11h 0.71 -1
1.04 1 0.81 11 0.74 4
0.95 3 0.78 7 0.72 -2
0.91 7 0.78¢e>1 8 0.71 1
1.00 0.4 - 0.74 4
0.65¢>f 31h - 0.548>f  —p08%,h
0.98 1 0.7785] 8 0.71 2
0.55 1 0.43 9 0.41 4
0.58 2 0.29€ -19h 0.40 0
9.ph%l.9 g.7h*l.2 2.40*1-6

5000 Hz observation window; Run 30: 26

18.10% (W/V) in D50, 36°C, 2000 pulsés, PR = 5.0 sec, 10
26.81% (W/V) in D90, 31.5°C, 350 pulses, PR = 8.0 sec, 10

.81% (W/V) in D0, 32°C, 350

pulses, PR = 6.0 sec, 10 data points, 2000 Hz observation window.
breferenced to B-Cy as given by Perkins et al. (LL).'
to internal TMS using p—-dioxane (67.4 ppm) as a secondary reference. The assign-—
ments agree with those in the literature (L%LL§)°
C~E8See Table IV c-~g.

bUnusually large value, not included inl InZ gy
1Two signals not resolved.

Their reference is relative
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TABLE XV
Xylose - 25.83% (W/V)
Run?
22 ' 23 _
Assignment Shiftb T, In 27, T, In 27,
B-1 97.3 1.58 9 1.56 5
o-1¢ 92.9 1.40 9 1.48 8
B-3 76.5 - 1.55 9 1.60 7
o~2 72.2 1.54 9 1.69 11
a4 70.1 1.54 9 1.65 12
8—4 7000 1-49 9 1-64 12
B-S 6509 0-86 9 1a64 11e
11 0.78 7€

o-5 61.7 0.86

B EX 9.610.8 8.42.8

4Conditions: Run 22: 35°C, 400 pulses, PR = 6.0 sec., (too short)
10 data points; Run 23: 36°C, 300 pulses, PR = 8.5 sec., 10 data
points.

bReference to the B-C; signal of xylobiose which was set with respect
to internal TMS using p-dioxane at 67.4 ppm. The assignments are
given in the literature (12,13).

CSee Table IV c.

dsee Table 1v f.

€See Table 1V g.




Cellotetraose-~ Run 31

Ring

A
Az
B,C
D
Cellotetraose — Run 32
1

A
Ajp
B,C
D

Cellotetraose — Run 332
Ay
Ay
B,C
D

Aygsed in text.

Xylotetraose — Run 272
Ring
A
Ay
B,C
D

Xylotetraose- Run 28

o w P >

Aysed in text.
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TABLE XVI

0.60
0.61
0.44
0.58

TABLE XVII

0.42
0.41
0.31
0.42

0.10
0.10
0.01
0.04

0.02
0.04
0.004
0.01

0.02
0.02
0.01
0.04

- X% oo

o, 3o S VE YOV

S uUnww

S~ oW




Cellotetriose— Run 162

Cellotetriose -~ Run 17

Ay
Aj
B
C

AUsed in text.

Xylotetriose — Run 18

Ring

Xylotetriose~ Run 268
Ay
Ay
B
C

dysed in text.
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TABLE XVIII

0.38
0.33
0.31
0.36

TABLE XIX

0.45
0.41
0.355
0.425

0.02
0.04
0.01
0.03

[« 0NV, I S VO

N W

SN s Ww

SN ww




Methyl B-cellobioside

Ring

A
B

Hal1l2 (1 molar, 35°C)

Cellobiose — Run

Celiobiose - Run

Cellobiose - Run

Cellobiose - Run

Aygsed in text.

258

11

35

A
B
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-TABLE XX

TABLE XXI

0.485
0.48
0.47

0.34
0.33
0.335

0.69
0.655
0.69

0.05
0.04

N O

w w =NV Bk )]

N



Xylobiose - Run 19

Xylobiose - Run 20

Xylobiose - Run 212

Xylobiose - Run 24

ased in text.

Xylobiose - Run 34

Xylobiose - Run 36

Xylobiose - Run 37
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TABLE XXII
Ring NT, o
B 0.64 0.04
Ay 0.73 0.03
B 0.74 0.03
Ay 0.79 0.03
B 0.79 0.03
A, 0.97 0.01
B 0.925 0.05

TABLE XXIII

Ring NT, o
A 0.95 0.11
Ay 0.955 0.08
B 0.98 0.07
Ay 0.87 0.09
A, 0.92 0.01
B 0.85 0.07
Aq 0.97 0.07

B 0.91 0.05

Eo Y ] R W

w

[y

w &~




Glucose - Run 15

Glucose - Run 29

Glucose - Run 302

8yged in text.

Xylose - Run 22

Xylose - Run 232

3Used in text.
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TABLE XXIV

TABLE XXV

S o

w

&~
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- APPENDIX ITI

PROTON SPIN LATTICE RELAXATION (lH-T):
SUMMARY OF DATA

SUMMARY

In the text an equation (1) was developed relating the ratio of relaxation
rates for the anomeric protons to the distance between H{” and H, (ry;-°_4) in

xylobiose (1) and cellobiose (g).

)
Rl' L r1’s
S
= ! (1)
Ry r r 6
1s

This equation contains within it several assumptions; including, exclusively dipole-
dipole (DD) relaxation, correlation times in the region of motional narrowing, and
isotropic rotation. 1In general, it has been shown that these assumptions are valid
for compounds | and 2 (lxg)‘ Also implied is the absence of cross relaxation.*
Evidence for this is given in Tables I and II which contain the relaxation times for
the individual peaks of the anomeric proton doublets for all the T; measurements
made on 1 and 2. Except for the effect of the overlapping solvent peak (HOD) on the
downfield resonance of H; at 31°C all values are within 10% for signals arising from

the same proton. This indicates that cross relaxation is not a factor.

A second class of assumptions inherent to the use of Eq. (1) involves the use
of specific and unmeasured values for the distance ryg. Values obtained from a

Dreiding model were compared to those derived from crystallography for the solid,

* . . . . .
Nonequivalent relaxation times for different peaks arising from the same proton.
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and when used, produced entirely reasonable estimates for ri“_4- Despite this close
correspondence, it would be useful to investigate the accuracy of the data indepen-
dent of the specific proton-to-proton distances measured above. This is particu-
larly necessary in view of the r~6 dependence on distance. An alternate approach is
to compare the 1H—Tl and 13C—Tl values and to show that an approximate estimate of
r1“_4 can be obtained independently of any specific value for the several proton to
proton distances involved. 1In so doing, confidence is gained in the values obtained

both for the 13C—Tl and 1H-Tl measurements. o0

The relationship for the DD spin lattice relaxation rate for both 13¢ and Y is
the same except that the magnetogyric ratio of the 13c-nucleus is involved in the
former. Assuming isotropic rotation, the relaxation rates for H;~“, H; and all singly

protonated carbons are given by Eq. (2)-(4).

-6
Rl = K Teff ) L r1g (2)
intra
-6 -6
Rj# =R Tegr ( 2 r7g+ I r1yg) (3)
intra inter
-6
Re = C Tefe TcH (4)
In these equations K is given by,
K = ®2 YHA (5)
while C is given by,

In Eq. (2) only intraring contributions to R; are considered while in Eq. (3)

additional contributions from infer—ring (rl’_4 predominantly) protons are present.
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Because of the close proximity of the directly bonded proton it is the only
significant factor in the relaxation of a singly protonated 13¢ nucleus. The
assumption that the rotation is isotropic infers that all singly bonded carbon
nuclei relax at the same rate. This 1s approximately true for 1 and % so that an

average 13C—T1 value can be used.

Subtraction of Eq. (2) from Eq. (3) gives

-6
Ri“ - Ry = K Tgge-11°4 (7)

if the intraring contributions are assumed to be equal. Dividing Eq. (7) into Eq.

(4) eliminates the correlation time.

2 6.
2 2R, 42 67
Ri“ - Ry Yo T cu

Rearrangement of Eq. (8) gives the ratio of r;“_4 to rcy in terms of the carbon and

proton relaxation times and independent of any specific proton to proton distance

9 1/6 1/6

M I B W .2 W (9)
2 Ry - (1-R1/R{%)

4 - TCH

1.58 (Rf)l/6 rcH = 1724 (10)

The average value for rpoy from the carbohydrate crystallographic studies is 1.05 A.
This value should not change in solution. Table III gives average values for Rj,
R;“, Rc, and Rg. The Rp values (See Appendix II) came from Tables I and II.
Substitution of these values into Eq. (8) gives an estimate of 1.7 A for ry”-_4 for

both compounds. This is independent of any unmeasured proton to proton distance.
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Given the many assumptions made in the derivation of Eq. (8) it is not a bad esti-
mate and indicates the reasonableness of the measured 13C and !H relaxation times.
On the other hand, Eq. (10) is not very sensitive to the ratio of Rc/Ry“ because of

the 1/6 dependence and can't be used to compare ry~-_; for 1 and 2.

TABLE III

AVERAGE VALUES FOR Ry, R;~, R. AND Rg¢
FOR XYLOBIOSE AND CELLOBIOSE

Ry 1- Ry . Re 1/6

Temp.(°C) Ry” 17 Ry Re LS R¢ R¢
Cellobiose 31 0.45 0.55  2.64 1.42  0.54  0.98 1.00
Xylobiose 31 0.54 0.46 1.64  0.95  0.58 1.26 1.04

SOURCES OF ERROR

Tables I and IT contain the results for all the 1H—Tl measurements made on
degassed samples of 1 and 2. Sources of potential error in the measurement of
relaxation times were covered in Appendix ITI. In the case of 1§ relaxation the
location of most of the hydrogen nuclei are on the periphery of the molecule which
makes it imperative that paramagnetic species be removed. This is necessary to
eliminate any contribution from eleétron—proton DD rglaxation. To avoid paramagne-
tic contributions in the present work the samples were subject to 4 freeze—puﬁp—thaw
cycles to remove dissolved oxygen. The tubes were then immediately éealed.
Paramagnetic ions which might be present in compound ] from the Koenigs—Knorr or
catalytic hydrogenation steps were removed by treatment with an ion-exchange resin.

Purchased cellobiose was used without further purification.

Errors related to instrumental operation also occasionally occurred; primarily
due to poor resolution from improper set-up, field-frequency instabilities, or loss

of lock. Runs containing these types of errors are indicated in Tables I and II and
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were not included in the final values used to get average R; and R;“ values. The
final values are given in Table IV along with those from the literature for com-
parison Qz). Data were rejected for use if the signal-to-noise-ratio was low, if a
poor baseline was observed, or if poor peak resolution was obtained. In each case
rejected data had a ratio of Ra—I/RB-l* of less than 1.8. Hall (3) reports that
this ratio is constant and between 1.8 and 2.0 for all B—l,4—1inkéd disaccharides
and glucose. All the data used to calculate the average R)“/R; values at 31°C had
values of 1.8-2.0. The o-H; peak is particularly sensitive to problems with signal
to noise or resolution because of its low intensity which makes it a good indicator
of low quality data.

TABLE 1V

RATIO OF lH-T; FOR REDUCING END
AND LINKAGE ANOMERIC PROTONS

Compound Run Tenp. H Hy~ H1 Hp” Av.
Cellobiose 25 31 1.01 0.46 2.2
26 31 0.845 0.39 2.2
27 31 0.89 0.385 2.3
28 31 0.81 0.38 2.1
29 31 0.79 0.36 2.2
2.2%0.1

Hall 33 0.84 0.36 2.3
Hall 42 1.1 0.52 2.1
37 74.5 2,06 1.11 1.9
39 74.5 2.21 1.16 1.9

1.9
Xylobiose 31 AMB 1.02 0.545 1.9
21 31 1.205 0.705 1.7
34 31.5 1.03 0.51 2.0

) 1.85%0.2

35 74.5 2.42 1.565 1.5

1.5

'KE“?T?E“SHIy 1 peak of the H;~ doublet is usable due to overlap by the Hob peak.
All other values are averages for both peaks of the doublet.

Figure 1 shows a typical stack plot obtained in the 1H—Tl measurement of cello-

biose.

*Ra—l refers to the relaxation rate for H; of the a-anomer; Rs—l refers to the B-
anomers
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APPENDIX IV

GATED DECOUPLING TO OBTAIN PROTON
COUPLED !3C-NMR SPECTRA WITH NOE
Measurements of natural—-abundance proton coupled 13C—NMR'spectra can simply be

made using a modern FT-NMR spectrometer. If the measurement must be made at low con-
centrations or with limited sample this can often involve very long (several days)
acquisition times to obtain a reasonable signal to noise ratio. For this reason it
is customary to use a gated decoupling technique which maintains the NOE advantage
of regular decoupled 13c-NMR but provides a fully coupled spectrum. The NOE repre-
sents a potential 3-fold increase in the carbon signal as a result of proton

decoupling (see Appendix II).

The pulsé sequence used is shown in Fig. 1. The top portion (a) of the figure
shows the duty cycle of the 13¢ detecting pulse. It is turned on and off fn the
same manner as the regular decoupled experiment except that a slightly longer inter-
val between pulses is maintained to allow the NOE to build up. The receiver is

turned on shortly after the pulse to acquire the signal (AT).
W PI AT P1 AT P1 AT P1
N, AW
v v

Figure 1. a) Duty cycle of the detecting pulse. AT is the acquisition time and
PI the pulse interval. b) Duty cycle of the decoupler.

B)
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The middle diagram (b) depicts the duty cycle of the decoupler. In a standard
decoupled 13¢c-NMR experiment the decoupler is left on continuously. For gated
decoupling it is only on from the completion of acquisition to just prior to the
detecting pulse (PI). In this wéyithé NOE builds up in the usual way. During the

\

actual acquisition the decoupler is off so that coupling is observed between the 13¢

and !H nuclei (L).

The theory of the gated decoupling technique is given elsewhere (2).
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APPENDIX V

13c-1H COUPLING CONSTANT DATA

This appendix tabulates the data concerning 13¢-1y coupling constants for the

B-1,4-1linked carbohydrates and related monosaccharide models. Part A contains the

data in tabulated form.

assignments.

TABULATED DATA

Key:

Table
Table
Table
Table
Table
Table
Table

Table

V1/2
J

I

I°

II.

I1I.

Ivl

VI.

VII.

VIII.

Part B gives representative spectra with partial

Refer to footnotes for additional information.

= width at half height.
coupling constant.
indeterminant in present spectra.

Comparison of V1/2

Comparison
Comparison
Comparison

Comparison

of

of

of

of

Vi1/2
V1/2
vVi1/2

V1/2

for Cy“ and C; in D,O.

for C{~ and C; in DMSO-dg.

for linkage and nonlinkage C4 carbons in D,0.

for linkage and nonlinkage C, carbons in DMSO-dg.

in DMSO—d6 and DZO.

One bond coupling constants in D,O0.

One bond coupling constants in DMSO-dg.

Apparent long range coupling constants.
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TABLE VIII

Apparent Long Range Coupling Constants

Compound Solvent 23 33
B—-Glucose D,0 5.6
<2
4.6
a-Glucose D90 5.63/5.4
B—Xylose D50 5.5
2.7
10.2
5.1
3.4-4.4
a-Xylose D»0 2.8
5.8
3.9
2.7
B-Xylobiose D50 5.7
' 2.8
10.3
4.8
B_Cellobiose DzO 504_509
<2
B-Cellobiose D50 5.92
3a
methyl B-cellobioside D50 6.5
6.3

8possibly part of a complex pattern.
bassumed coupling system.

System

C,Hy
CyHs
CoH3




-311-

Xylose

A L,

] 1 ] 1
110 ' 100 %0 80
PPM

Figure 1. Proton decoupled (a) and proton coupled (b) !3C-NMR spectra of xylose in
Dy0. Assignment of the decoupled spectrum is as follows: 97.3 (8-C;),
92.9 (a-C;), 76.5 (a=C3), 74.8 (B-Cy), 73.6 (a~C3), 72.2 (a-Cy), 70.1
(a=C4), 70.0 (8-C,), 65.9 (B-Cs), and 61.7 (a-C5). Full scale is 2000

Hz.
[
10.2 Hz CyHg, 13,312
5.5 Hz C1H2
2.7 Hz (g,

Figure 2. Expansion of C; region of Fig. l. Detailed first order analysis of the
downfield B-C; signal is given on the figure. Full scale is 333.3 Hz.




-312-

W

Figure 3. Expansion of the region from 55-80 ppm in Fig. 1. Full scale is 666.5 Hz.

e

L

1 1 - | ] 1
pL 120 100 80 60 40 20
(]

Figure 4. Proton decoupled (a) and proton coupled (b) 13c-NMR spectra of xylose in
DMSO-d6. Full scale is 4000 Hz. Inset is the Cl region expanded 2X.
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o oo ]

1 A
140 120 100 80 60 40 20
PPM

[

Figure 5. Proton decoupled (a) and proton coupled (b) 13c-nNMr spectra of methyl
B~xyloside in DM50-dg. Assignment of (a) is as follows: 104.7 (cp,
76.6 (C3), 73.3 (CZ)’ 69.7 (C4), 65.7 (CS) and 56.0 (OCH3)‘ Full scale
is 4000 Hz.

40Kz

WAVALL I

Figure 6. Expansion of Fig. 5. Inset is the Cy region. Full scale is 1000 Hz.
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Methy! a_—Xonsldq-Pd,,-

a

i e

-
b

1o 100 90 ' 0 70 60 )
L4}

Figure 7. Proton decoupled (a) and proton coupled (b) 13c-NMR spectra of methyl
B-xyloside-3,4~d9 in D9O. Assignments are shown. Significant
isomerization is apparent with at least 4 isomers indicated in the Cg and
OCH3 regions. A small residual Cj signal also is present illustrating"
the difficulty in exchanging this carbon. Full scale is 2000 Hz.

GLUCOSE

RSN B W 1 W 1111

A 1
1o 100 ] ) 70 %0 —

- . } L]

Figure 8. Proton decoupled (a) and proton coupled (b) 13C-NMR spectra of glucose in
Dy0. Assignment of (a) is as follows 96.6 (B-C;), 92.8 (a-Cy), 76.6
(B-C5), 76.5 (B-C3), 74.9 (B-Cy), 73.5 (a-C3), 72.2 (a—Cy or a-Cg), 72.1
(a-Cy9 or a-C3), 70.4 (a-C4), 70.3 (B-C4), 61.5 (B-Cg), 61.4 (a—Cg).
Full scale is 2000 Hz.




-315-

| I
11.4H2

. _ W\

Figure 9. Expansion of the C; region of Fig. 8. Full scale is 285.6 Hz.

20Hz

FAVIV.VAVRY .

Figure 10. Expansion of upfield proton of Fig. 8. Full scale is 500 Hz.
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J | w,wj A e l \ L‘LMLLL |

[ P
| 1 ! 1 1

1 1 ) | 1 1
B— 120 100 80 5 %
PPM

Proton decoupled (a) and proton coupled (b) 13c-NMR spectra of glucose
in DMSO-dg. Full scale is 4000 Hz. 1Insets are the C) and C4 regions at

1000 Hz full scale.

Methyl p—Glucoside
a I LIJ¥J_J___~,Nk~

|
/

—

];J
5

Figure 11,

C_____r—_-_:
—
i

b ] |

1 1 1 1 1 1 1
140 120 100 80 60 40 20
PPM

L

Proton decoupled (a) and proton coupled (b) 13c-NMR spectra of methyl
R-glucoside in DMSO-dg. Assignments are as follows 103.9 (Cy), 76.8 (Cjs
or C3) 76.7 (Cs or C3), 73.5 (Cy), 70.2 (C4), 61.2 (Cq), and 56.1
(OCH3). Full scale is 4000 Hz.

Figure 12.
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OCH,
METHYL B-GLUCOSIDE-d,

1

a J \

S S

I 1 1 1 |
110 100 90 80 70 60 50

PPM

l

Figure 13. Proton decoupled (a) and proton coupled (b) !3¢c-NMR spectra of methyl

B—glucoside—3,4—6,6'—d4 in DyO. Assignments are shown. Only partial
. exchange was achieved. Full scale is 2000 Hz.

Xylobiose p—-dioxane

_

- | e
S ity

<
U ——

Figure 14. Proton decoupled (a) and proton coupled (b) 13c-NMrR spectra of xylobiose

in Dy0. Assignments are given in the experimental section. Full scale
is 3002 Hz. p-Dioxane is present as a reference at 67.4 ppm.
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20H2

-
-
b
~
2
i
-l

Figure 15. Expansion of C;“, C; region of Fig. 14. Full scale is 500 Hz.

L__J
30hz

e il | . I\ ”J‘\)t\/\,«/‘ﬁlr{\r

Figure 16. Expansion of upfield region of Fig. 14. Full scale is 750 Hz.
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L e 2

| T

Figure 17.  Proton decoupled (a) and proton coupled (b) 13¢c-NMR spectra of xylobiose
in DMSO-d¢g. Note the relative change in position of the C4 signal from
Fig. 14. Full scale is 2000 Hz.

Figure 18. Expansion of the Cy“, C; region of a coupled 13c-NMR spectrum of
: . xylobiose - -in DMSO—de. .Full scale is 750 Hz.
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Figure 19.
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METHYL g-XYLOBIOSIDE

Wy R gttt b

L
110 100 90

Proton coupled (a) and proton decoupled (b) spectra of methyl B-xylo-
bioside in DMSO-dg. Full scale is 5000 Hz. The top spectrum is 51,600
pulses while the bottom spectrum is 40,000 pulses. The inset is an
expansion of the Cy, C;“ region with full scale of 625 Hz.

'y

s

Proton coupled (a) and proton decoupled (b) 13c-NMR spectrum of methyl
B-xylobioside in Dy0. Assignments are as follows 104.7 (Cy), 102.7
(C,7), 77.3 (C4), 76.5 (C3°), 74.7 (C3), 73.7 (Cy and Cyp°), 70.1 (C4°),
66.1 (C5-), 63.8 (C5), and 58.1 (OCH3). These assignments agree with
the recent literature assignments for this compound (}). Full scale is

2000 Hz. J
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Securidebioside

80Hz

1 { 1 L
100 90 80 70 60 50 40 -

PPM

Figure 21. Proton coupled spectrum of 4-0-(8- D-glucopyranosyl)-D-xylopyranose in
DMSO- -dg. Full scale is 2000 Hz.

Cellobiose

o L M

e ‘ W0

1 [} 1 1 1 .
110 100 90 80 70 ) 60
T pem

Figure 22. Proton coupled (a) and decoupled (b) 13C-NMR spectra of cellobiose in
Dy0. Assignments are given in the experimental section. Full scale is

2000 Hz.
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Figure 23.
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Full scale is 750 Hz.

L__J
30Kz

o

!

Expansion of the downfield (C1”, Cy, C4) region of a coupled 13c-NMR
spectrum of cellobiose in Dy0.

\

Figure 24. &Expansion of the upfield region of the proton coupled 13C-NMR spectrum

of cellobiose in D,0.

Full scale is 750 Hz.
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PPM
Figure 25. Proton coupled spectrum of cellobiose in DMSO-dg. Full scale is 3000
Hz.

[ —
30Hz

U'n\‘l . ' ) ) + M

Figure 26.

Expansion of downfield portion of Fig. 25. Full écale is 750-Hz.
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MeOH

Figure 27.

a)

1
110 100 90 80 70 60 50

Proton decoupled (a) and proton coupled (b) !3C-NMR spectra of methyl
B-cellobioside in D90. Assignments are as follows: 103.9 (Cl), 103.4
(C17), 79.7 (C4), 768 (C57), 76.4 (C37), 75.7 (Cs), 75.2 (C3),
74.0(C9”), 73.7 (Cy), 70.3 (C47),61.5 (Cg~), 61.0 (Cg), and 58.1 (OCH3).
These agree with those in the literature (1). Full scale is 2000 Hz.

b) c) :
4 , OCH,
1 L
1 1 20Hz
OCH,
1 I [} J 1 1 ).
1o 100 [ R} n 60 )
Figure 28. Repeat of Fig. 27b. Insets are the C;“, C; region, downfield C, signal,

and the OCHj region, as indicated. Full scale is 500 Hz for each.
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lidhoruemaigbseibrabnsd W g

Figure 29. . Proton coupled spectrum of methyl B-cellobioside in DMSO-dg. Full scale
is 5000 Hz.

Figure 30. Expansion of Fig. 29 to 1663 Hz full scale.
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H i “H,

141’

1
110 100 90 80 70 60 50
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Figure 31. Proton decoupled (a) and coupled (b) 13c-NMR spectra of methyl
B-cellobioside~dg. Assignments are shown on the figure. The spectrum
is similar to one in the literature (L). Some isomerization is
indicated. Full scale is 2000 Hz.

-
10Kz

Figure 32. Downfield (Cy, C1”) region of Fig. 31. Full scale is 250 Hz.
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13,342

YT JWI’IV/ V[

Figure 33. Central region of Fig. 31. Full scale is 333 Hz.

204z

‘ w)\n V\ .
m««wﬂmﬂw — Mol

! L 1 1 i
110 100 90 80 70 60 .50

PPM

=

Figure 34. Another proton coupled spectrum of compound 7. Full scale is 2000 Hz.
Inset are the downfield Ci» C;” complex, the upfield Cys Cy” complex,
and the downfield C4 signal from left to right. Full scale for the
insets is 500 Hz.
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4-0-(p-D~Glucopyranosy!)-D-Mannopyranose

el

1 1 1 1 1 ; i )
100 90 80 70 60 50 40

PPH

Figure 35. Proton coupled (a) and proton decoupled (b) 13¢c-NMR spectra of
4-0-(B-D-glucopyranosyl)-D-mannopyranose in DMSO-dg. Note that the
o—anomer is dominant. Full scale is 2000 Hz.

Lactose

Wy
! A { !
100 90 80 70 60 50 40

PPM

Figure 36. Proton decoupled (a) and coupled (b) spectra of lactose in DMSO-dg-.
Full scale is 2000 Hz. Inset is the downfield C;” signal at 500 Hz
full scale.
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MALTOSE

P

1 1 1 L !
100 90 80 70 60 50 m)

PPM

Figure 37. Proton decoupled (a) and coupled (b) spectra of maltose in DMSO-d

6.
Full scale is 2000 Hz.

20Kz

!

Figure 38. Expansion of the downfield portion of Fig. 37. Full scale is 500 Hz.
The downfield C, signal is also shown.
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APPENDIX VI

REPRESENTATIVE lH-NMR SPECTRA OF SEVERAL B-1,4~LINKED
CARBOHYDRATES AND USEFUL MODELS
The following is a collection of representative 1H—I‘iMR spectra of the car-
bohydrates studied in this thesis. Many additional spectra in DMSO-dg were obtained
at other temperatures. The results are tabulated in the Appendix VII. The spectra
in D90 are presented for purposes of comparison. The letters designating individual
peaks in the DMSO-dg spectra are used in the following Appendix in which the chemi-
cal shift of each peak, at different temperatures, is tabulated. Table I lists the

spectra for easy reference.
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TABLE I
Figure Compounds Comments

1 Glucose

2 Methyl B-glucoside 56°C

3 Xylose
4 Methyl B-xyloside

5 Methyl a-xyloside

6 Methyl B-cellobioside 56°C

7 Methyl B-cellobioside D50

8 Cellobiose 55°C

9 Cellobiose

10 Cellobiose 64°C
11 Cellobiose D50

12 Cellobiose Integrated
13 Cellotriose

14 Cellotetraose : D,0

15 Lactose

16 Lactose , 66.5°C
17 Glucosyl - Mannose 55.5°C
18 Glucosyl - Mannose D,0

19 Mannobiose D50

20 1,5 anhydrocellobiotol

21 Maltose

22 Starch 51°C
23 Xylobiose 77.5°C
24 Xylobiose

25 Xylobiose D50

26 Xylotriose D50

27 Xylotriose D90, expanded
28 Xylotetraose D50

29 Aldotriuronic Acid
30 Aldotriuronic Acid Dy0

31 Securidebiose 51°C
32 Securidebiose 67.5°C
33 Methyl B-xylobioside
34 Benzyl B-xylobioside
35 Benzyl 2,3 anydro-4-0-(B-D-xylopyranosyl)-

D-ribopyranoside
36 Benzyl 2,3 anydro-4-0-(B-D-glucopyranosyl)-
D-ribopyranoside

37 Benzyl 2,3 anhydro-D-ribopyranoside

38 Sophorose
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Glucose
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Figure 1. Glucose.
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Figure 2. Methyl B-glucoside; 56°C.
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Xylose
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Figure 3. Xylose.

Methy! 8-Xylopyranoside

Figure 4. Methyl B-xyloside..
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Nethy! a-Xylopyranoside

-

ppm
Figure 5. Methyl a-xyloside.

56°C

S

Dl".‘!SO—d5

—\

Ambient

7 3 [ a3 z i
ppm

Figure 6. Methyl f-cellobioside, 56°C.

5
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Figure 7. Methyl B-~cellobioside, D;0.
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Figure 8. Cellobiose, 55°C.
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Cellobiose

OMS0-dg
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ppm
Figure 9. Cellobiose.
q DMSO- d
Cellobiose
8-mu
L 1 1 I 1 A L ] J
9 8 7 6 5 4 3 2 0
ppm
Figure 10. Cellobiose, 64°C.
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Figure 11. Cellobiose, D50.

Cellobiose
L
1 L 1 1 1 L | 1 L ]
9 8 7 6 5 4 3 2 ] 0
ppm

Figure 12. Cellobiose, integrated.
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Cellotriose [A

OMSO0-d,

Impurity

ppm

Figure 13. Cellotriose.

Cellotetraose

Figure l4. Cellotetraose, D50.
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Figure 15. Lactose.

LACTOSE
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1 1 L.

ppm
Figure 16. Lactose, 66.5°C.
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4-0-(8-D-Glucosyh-D-Mannose

DMSO°d,
impurity
! 1 1 1 1 - . 1 1 1 -l e
T 6 5 q 3 2
ppm

Figure 17. Glucosyl - Mannose, 55.5°C.

4-0-(8-D-Glucosy!)-D-Mannose

Figure 18. Glucosyl - Mannose, D50.
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Mannobiose_

Figure 19. Mannobiose, D50.

: o4, |
4
impurity

1.5 Anhydro-Cellobiotol }J

~}
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ppm

Figure 20. 1,5 anhydrocellobiotol.
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Maltose

DMSO-d,

Impurity

Impurity

1 1 1 | ] 1 1 L L X1 /] ] 1 J
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ppm
Figure 21. Maltose.
DMSO-d,
Starch
l Impurity
1 1 1 e L l L i L 1 L L 1 L e
7 6 5 4 3 2 | o)
ppm

Figure 22. Starch, 51°C.
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Xylobiose

OMSO-dy

Impurity

ppm

Figure 23. Xylobiose, 77.5°C.

Xylobiose
OMSO-dy
tmpurity
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7 6 S 4 2 | 0

ppm

Figure 24. Xylobiose.
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Xylobiose |

impurity

-

Figure 25. Xylobiose, D5O0.

Xylotriose

Figure 26. Xylotriose, DZO'
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Xylotriose

Figure 27. Xylotriose, D70, expanded.

Xylotetraose

Figure 28. Xylotetraose, D30.

|
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Aldotriuronic Acid
DMSO-dg

oL

Figure 29. Aldotriuronic Acid.

Aldotriuronic Acid

_ Y

Figure 30. Aldotriuronic Acid, D5yO.
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Figure 31. Securidebiose, 51°C.
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Figure 32. Securidebiose, 67.5°C.
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Methyl 8-Xylobioside ‘ ﬁ
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Figure 33. Methyl B-xylobioside.
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Figure 34. Benzyl B-xylobioside.
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DMSO-dy

L L 1 1 i 1 A { {

ppm
Figure 35. Benzyl 2,3 anhydro-4-0-(B-D-xylopyranosyl)-D-ribopyranoside.

DMSO-dy
L e L 1 L 1 AL 1 i ] J
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ppm

Figure 36. Benzyl 2,3 anhydro—-4-0(B-D-glycopyranosyl)-D-ribopyranoside.




-351-

HO

Figure 37. Benzyl 2,3 anhydro-D-ribopyranoside.

Sophorose

—

JO\U

Figure 38. Sophorose.
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APPENDIX VII
COMPILATIONS OF THE l!H-NMR CHEMICAL SHIFT, COUPLING-
CONSTANT, AND CHEMICAL SHIFT TEMPERATURE COEFFICIENT
DATA OF THE CARBOHYDRATES STUDIED
The following tables contain the chemical shift, apparent coupling constant,

and temperature coefficient data for those compounds in which the DMSO-dg spectra
were studied as a function of temperature. The temperature coefficient and extrapo-
lated chemical shift data (to 56°C) were calculated using a least squares linear
regression analysis. 1In most cases the center of a spin-spin coupled signal set was
used. All shifts are relative to TMS using the DMSO-dg central peak (2.50 ppm) as

an intermediate reference. The letter designations of the individual signals are

defined in the previous Appendix.

For the most part the values included in the chemical shift tables are taken
directly ffom the NMR computer listings. Occasionally it was necessary to measure a
signal's location manually. When signals with different temperature coefficients
overlapped it was often difficult to get accurate measurements of the individual
signals. The results in the tables represent the best estimate. Such cases are
marked in the table. The high degree of linearity in the temperature coefficients
suggest that the estimates are reasonable. A key and a list of the compounds con-

tained in the tables is given below.




Key:

TC
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Compound

Glucose
MBG
Xylose

- MBX

MaX

MBC2
Cellobiose
Lactose

GM .

1,5 ANC2
Xylobiose

GX

Ben. 2,3 ANXR
Ben. 2,3 ANGR

apparent coupling constant (Hz).

.measured by hand.

Tables

1,15
2,16

3,17 -

4,18

5,19

6,20
7,21,22,23,24,25,26
8,27

9,28

10,19
11,30,31,32
12,33

13,34

14,35

present as a distinct peak but chemical shift was not measured.

estimate, exact position obscured by other peaks.

set of coupled signals have coalesced into one broad signal.

chemical shift temperature coefficient (Hz/°C).

correlation coefficient from linear regression

number of data points used in the linear regression.

Note:

chemical shifts are given in ppm.

Temperatures are in degrees centigrade.
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TABLE I

GLUCOSE 9.7%¢

Chemical Shift (J)

Designation °C 34 518 56 74 340
A 6.54 643 6.40 6.27 6.60
B 6.48(6°5) ¢ 37(6:6)  (T43(6.5) 751 (6:5)  glsq
c 6.16 6.07 p p 6.20
D 6.12(4°1) g 02(4-1) 5.88 6.16
E - 4.95 o P
F 4.90 4.91 p 4.92
G 4.85 4.86 p p
H 4.80 4.66 485
; 4 7e(8e3)  125(3.0)  4.62(C) 4.48(C) Lo
J - 4.62(E)

K 4.69 4.58% -~ 4.58 4.43(C) 4.76
L 4.36(E) p

M 4.31 p

N 4.61 4.49 4.29(E) 4.68
0 4.56C4:6) 4 44(4-4) 4.23(E) 4.63
P 4.48 4.35(E)

9 4.43 4.29(E) 4.27(E) 4.13(E) 4.50
R 4.36(E) ' 4.43
S 4.33 4.32(E) 4.36

T 4.26 4.27(E) 4.,29(E) 4,26
U 4.19 | 4.21 4.23(E) 4.19

4Recorded several weeks earlier, B-anomer predominates.

b4.3% HyO added.

CThree additional samples at 2.0, 5.4, and 9.97% exhibit shifts for A of
6.57 ppm each.

Assignments:

B—Olﬂ

G—OIH

G—CIH

B-O3H,a—04H 8-09H, a—04H.
B-0oH, a-04H.

=1

Q—Ozﬂ
a—O3H
OgH

B-CyH

HOoZHMWwmmAo »
CHNOXARAHOOW

v e W v v e v ow ow

7230}
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TABLE 1II

METHYL B-GLUCOPYRANOSIDE

15.1%

Chemical Shift (J)

4.85(C)

A 5.00
B 4.96
c
D
E
F 4.47
G 4.41
H 4.06
I 3.99
OMe 3.38
Assignments:
A,B = 02H
C,D = O3H,04H
E,F,G = OgH
H,I = C{H

54.5

4.84
4.78
4.72
4.69
4.38
4.32
4.26
4.07
4.00(7'2)

3.38 .

(3.8)

(5.9)

(4.5).

56

4.82
4.77
4.70
4.67
4.36
4.30
4.24
4.08
4.00
3.38

(44)

(3.0)

(5.9)

(7.2)

74

4.68
4,64
4.59
4.56
4.25
4.19
4.13
4.09
4.02
3.39

(4.4)

(3.8)

(5.9)

(7.2)
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TABLE 11T
XYLOSE
8.6%
Chemical Shift (J)
Designation °C 34.2 54 74.5
A 6.52 6.37 6.24
B 6.45(6°3)  6.31(6-3) ¢ 17
C 6.10 5.98,, .-
D 6.06(4'8) 5.93(4‘5) 5.81
E
F 4.86 4.87
G 4.81 _
H 4.80(C) 4.67(C) 4.49%(C)
I
J 4.66 4.52 4.40%
K 46208 1) 4 agae1) g (3:9)
L 4.44 4.28 4.14
M 4.38¢6°3)  4.00(E) 4.08(6+8)
N 4.27 4.32%
0 4.20 4.22(E) 4.25:
P 4.13 4.16 4.18
Assignments:
A,B = B-0jH
C,D = (I-Olﬂ
E,F,G = o~CiH
H,I = B-0oH,B-04H,04H
J,K = a-03H
L,M = a-0,H -
N,0,P = B-CH




-357-

TABLE IV
METHYL B-XYLOPYRANOSIDE
17.9%
Chemical Shift (J)
Designation °C 34 54.5 74
A 5.00 4.83 4.69
B 4.95(4°5) 4.78(4’7) 4.65‘4°3)
C 4.90(C) 4.76* 4.65%
D 4.72(E) 4.60(E)
E 4.85(C) 4.72(E) 4.60(E)
F 4.68% 4.55
G 4.02 4.04 4.06
H 3.95(7'0) 3.97(7'0) 3.99(7‘0)
OMe 3.34 3.35 3.35
Assignments:
A,B = OzH
C,D,E,F = O3H,04H
G,H = C]_H
TABLE V

METHYL o—XYLOPYRANOSIDE

15.9%
_ Chemical Shift (J)
Designation °C 30 56
A 4.83 4.70%
B 4.69 4.55:
C 4.64 4.47
D 4.58¢%+ ) 4.41:
E 4.49 4.51
F 4.46 4.47%
OMe 3.25 3.26%
Assignments:
A = 04H
B = 03H
C ,D = OzH
E,F = CiH
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Chemical Shift (J)

4.81

56

5.06
5.01
4.96
4.91

(4.5)
(4.7)

4.76(4'2)

4.58(2.8)2

4.47
4.42
4.37
4.31
4.24
4.14
4.07
3.40

(7.5)

(7.5)

TABLE VI
METHYL B-CELLOBIOSIDE
3.6%
Designation °C 31
A 5.22
B 5.17(4'7)
C 5.15
D 5.10(4'8)
E 4.98(C)
F
G 4.65(E)
H - 4.65(E)
1 4.57
J 4.52
K 4.29 '
L 4.21(7'3)
M 4.13
N 4.06(7'7)
OMe 3.36
a8 = yhh
Assignments:
A,B = 0y°H
C,D = OoH
E,F = 03°H,04“H ~
G = 03H
H,1,J = OgH,0¢"H
K,L = C|“H
M,N = CyH

63

5.00
4.96(4°1)

4.88
4.84
4.73
4.71(3‘4)
4.56(3.4)
4.42
4.36
P

4.32
4.25
4.15
4.07
3.40

(4.6)

(7.1)

(7.6)
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°C

6.65
6.58
6.30
6.26
5.21
5.16

4.94(E)

4.89
4.60
4.63

4.54(E)

4.32
4.29
4.25
4.21
3.66
3.26
3.12
3.32

32

(6.5)
(4.5)

(4.2)

6.57

44

6.51(6‘6)

6. 24
6.19
5.13
5.09(3:9)
4.94

(4.7)

4.89
4.85(43)

4.80
4.57

4.45(E)
4.32
4.30
4.25
4.23
3.67
3.27
3.13
3.27

TABLE VII
CELLOBIOSEA
4.170
Chemical Shift (J)
55 67 76
 6.49 6.41 6.36
6.43(6'6) 6.35(6'6) 6.29(6'4)
6.16 6.09 6.04
6.1284°3) g 05(4:3) 5 gq(4:6)
5.04 4.98 4.93
5.014°1) 494400, gq(3:8)
4.91
4.81 4.72 4.63(C)
4.76(4: 1) 4.69(3-6) ‘
4.74 464 4.57
4.69(4:7)  4.604+8) 4 55(4-8)
2'22(3.0)6 4:5203 pve 4493 55e
4.38(E) 4.31(E)
4.32(E)
4.26
4.24 4.25
3.68 3.68 3.69
3.28 3.30 3.31
3.15 3.14(E) 3.17
3.20 3.14(E) 3.09

90

6.27
6.20
5.95
5.91
4.84
4.80

(6.5)
(4.5)

(3.3)

4.94
4.90
4.55(C)
4.46(E)

4.46(E)

3.70

3.32
3.18
3.01

3Temperature coefficients are given for samples at other concentrations and with Hy0
and D0 added.
bThe estimated location of the OgH, Og~“H peak.

region.
CWhh .
Assignments:
A,B = B-0yH
C,D = G‘OIH
E,F = 09°H
G,H,I = a~CyH
J,K = 03°H,04°H

!
U2z
Bon

o

B-Ozﬂ
8—03H

OgH,0¢“H and others

Usually the largest peak in this

CyH,Cy"H
major back bone

signals.
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TABLE VIII

LACTOSE 9.6%

Chemical Shift (J)

°c 333

6.63

6.57
6.29

(6.1)

(4.6)

6.25

5.04
4.93
4.89(4-0)

4.72(0)

4.59
4.49
4.44
4.20

40.8 54 66.5 78
6.58 6.49 6.41 6.34
6.52(6'5) 6.43(6°5) 6.34(6°4) 6.27(6°4)
6.24 6.16 6.08 6.02
6.20(4'4) 6.11 6.04(4'6) 5.97(4'6)

4.95 4.96
4.91 4.92
4.86 4.88
4.98(2.6)P 4.91 4.83 4.75(E)
4.87 4.75 4.65 4.56
4.82%°8) 4 7004:8) 4 g0 (4eT) 405
4.68 ' 4.36(E)
4.63 4o42
4.57 4.54 4.51 4.49
4.43 4.34. 4.26 4.20
4.39 4.29 4.22
4.23

Agpectrum has poor resolution.
bActually two peaks resolved in this spectrum at 5.00 at 4.97 ppm.
ClLargest peaks in the region.

Assignments:
A,B = B'OIH
C,D = a-0yH
E,F,G = a-CyH
I1,J = B-05H
M= B—O3H
N,0 = OgH,0q"H
P = 3-CyH or Cy-H
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TABLE IX

'Aﬁgf(B—D—CLUCOPYRANOSYL)—D—MANNOPYRANOSE

6.1%

Chemical Shift (J)

Designation °C 36

OYZIICMRGHITOAMMPO OW P

6.31
6.26(4"%)

6.16(E)
6.07(E)

5.20
5.16(4+2)

4.91(E)

(8.4)

4.91(E)

4.55
4.39
" 4.26(E)

4.21(e) 7%

55.4

6.20
6.15
6.00
5.91
5.07
5.03
4.92
4.87
4.80
4.76

(4.5)
(8.6)
(4.2)
(4.6)

(4.1)

4.35

4.20
464 9.0)

3Coupling to CoH is nearly O Hz.

Speculative.
Assignments:
A,B = a-0H
C,D = 8—01H
E,F = 05°H
G,H = G"Clﬂa
1,J = 03°H,04"H
K = 0yH,0¢”H
L = G-O3H
M,N = C;“H
P,Q = B-C Ha>b

7

6.09
6.09
5.89
5.80
4.96
4.92

4.88

4.62

4.29

4.57

2

(4.3)

(8.6)
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TABLE X

1,5 ANHYDROCELLOBIOTOL

Chemical Shift (J)

Designation@ °C 36 45 59.5

5.23
4.95
4.63 4.61 4.56
4.60
4.55
4.28
4.21

QO EHOOwW >

30nly singlets are observed because of poor
resolution. '

Assignments:

02“H
04°H,04°H
03H
0gH,0¢“H,09H
Ci-H

o O
QHEOWE >
]
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TABLE XI

XYLOBIOSE2 6.0%

Chemical Shift (J)

T ¥ 57 6.5 7775
6.60 6.54 6.45 6.39 6.32
6.53(0:3)  £.48(0:3)  "35(6.6)  "50(6.6) [ "55(6.5)
6.20 6.15 6.08 6.01 5.95
6.162°8)  6.11(4:2) ¢ 03(4-8) g 57046 S7gn(4.7)

p p 4.91 p

— p 4.88 4.87

—_ P 4.86 4.84
6,93, . 4.84 4.75(E) 4.67(E) 4.58(E)
4.89¢%" 4.82 4.70(E) 4.64(E) 4.54(E)

p - 4.79(E) 4.74(E) 4.67(E)
4.82(E) P ' 4.70(E) 4.64(E)
4.69(2.35)b 4.63 4.54 4.50 AAA
4.54 4.47 p
4.47¢0°7) 440070 4 a5 4.13(E)
4.30 4.31 4.35(E)
4.24 4,24 4.26 4.27 4.28
4.18 4.19 - 4.21 4.21 4.23

8Temperature coefficient data are also given for less well resolved samples
at other concentrations.
bResolved into two peaks at 4.70 and 4.68 ppm.

" Assignments: ~
A,B = g-0H
C,D = a—0;H
E,F,G = a-CH
H,1,J,K = 0o-,03°H,04°H, g-0oH, B-04H
L = a-03H
M,N = a-09H
0,Q,R = B"ClH’Cl’H




Designation

ZICRUHIZTOMEAE OO ® P>

[+

-364-

TABLE XII

SECURIDEBIOSE

7.7%

Chemical Shift (J)

°c

2ygsed center of

36

6.61
6.55(6+4)
6.22

6.17(46)

4.90

4.73
4.52(E)
4.31
4.29
h.24
4.21

51

6.50
6.44
6.12
6.08
P
P

(6.6)

(4.6)

4.80
hobh
4.42(E)
P
4.30
4.25
4.23

large complex of peaks.

Assignments:
) A,B = B_OIH
C,D = G—OIH
E,F,G = a-CyH
H = 0,°H,03°H,04°H, B-0,H, B-03H
I = a-03H
J = 0g”H,009H
K,L,M,N = 8-CyH,Cy{"H

67.5

6.41
6.33
6.02
5.98
4.91
4.88
P
4.68

4.3Q(E)
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TABLE XIII

BENZYL 2,3-ANHYDRO-4-0-(B-D-XYLOPYRANOSYL)-D-RIBOPYRANOSIDE

7.0%

Chemical Shift (J)

Designation °C  34.5
A 5.06
B 5.024+3)
cb,c 4.94
D P
Eb 4.90
F L]
b VSRS
‘Hb .
T
Jb 4.31
Kb 4.24(6-8)
agpeculative.

b13{emain when D90 is added.
c ~
JH]_’HZ - 0-

Assignments:
A,B = OZ’Ha
C = C1H
D,E = 03°H,04°H
F,G,H,I = 0-CHy-0@
J,K = CI'H

47

4.83

4.68
4.61
4.49
4.32
4.25

(11.8)

(9.1)

70

4.79
4.75
4.93
4.72(E)
4.69(E)

4.69
4.63
4.51
4.34
4.28

(11.8)

(6.8)




-366-

TABLE X1V
BENZYL 2,3—ANHYDRO—4fQE(B—D—GLUCOPYRANOSYL)-D—RIBOPYRANOSIDE
5.1%
Chemical Shift (J)
Designation  °C 35 70.5
A 5.04 4.78(E)
B 5.00 4.74(E)
ca,b 4,93 4.93
D P
E 4.88 4.63(E)
F 4.80 . 4.82(E)
G 4.68¢12:1) 4.70(E)
H 4.61 4.63(E)
I 4.48¢832) 4.51
J 4.48(E)
K 4.42 4.20(E)
L P
M P 4.36
N 4.26 4029(7°2)
8Speculative.
3JH1HZ: 0.
Assignments:
A,B = 0y°H
C = C].H
D,E = 03°H,04°H
F,G,H,I = 0-CHy-0§
J,K,L = 0g4“H
M,N = C;“H
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TABLE XV-XXXV
TEMPERATURE COEFFICIENT LINEAR REGRESSIONS

Data

Assignment Designation TC Corr. Shiftb Points
TABLE XV - GLUCOSE - 9.7%
B—OlH A,B -0.67 -0.99 6.36 4
a~0{H c,D -0.59 -1 6.01. 2
B—OZH,B—O3H,B—04H,a—O4H H,I -0.74 -0.99 4.61 4
a—O3H N,O _0180 ""0-99 4-41 3
O6H P,Q,R -0074 —0099 4.26 . 4
B—CIH s,T,U +0.07 +0.97 4.27 3
TABLE XVI - METHYL BR-GLUCOPYRANOSIDE - 15.17%
02H A,B -0.80 -0.99 4.80 4
03H,04H c,D -0.67 -0.99 4,70 4
O6H E,F,G -0.70 -0.99 4.31 4
ClH H,I +0.10 +0.99 4.04 4
TABLE XVII - XYLOSE - 8.6%
B-0;H A,B -0.69 ~0.99 6.33 3
a-0H Cc,D -0.60 -1 5.95 2
B—OZH,B-03H,O4H H,1 -0.77 -0.99 4.64 3
C!—O3H J,K —0064 -0-99' 4- 50 3
a-0oH L,M -0.74 -0.99 - 4.24 3
B-CiH N,O,P +0.12 -0.99 4.23 3
TABLE XVIII - METHYL BR-XYLOPYRANOSIDE - 17.97%
0oH A,B -0.77 -0.99 4.80 3
OaHa - C,D —0'65 ’ _0099 [4074 3
03Ha E,F _0075 "0099 4-71 3
CiH G,H +0.10 +0.99 4.00 3

aAssignhents‘not certain.
bsgeoc by extrapolation.
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(Cont'd.)

Assignment Designation

TABLE XIX - METHYL a-XYLOPYRANOSIDE - 15.97%

04H
03H
0oH
CiH

o0 =mp
g

TABLE XX - METHYL B~CELLOBIOSIDE - 3.6%

09°H
)
03°H,04“H
04H
OgH,0¢ “H
Cy-H
CyH

v v e
O W

e

BARITOROQP

-

=

TABLE XXI - CELLOBIOSE - 4.1%

B‘OIH

G-OIH

09-H

G‘CIH

043°H,04“H

B-0-H

g-04H
a-09H,0¢H,0¢ “H] a-04H
CiH,Cy~H )

nEx<co0o0oZCrGomO >

™
O

8A slower moving signal also is present.
bOnly peak T.

TC

"0- 50

-0.54

_0065
+0.04

. _0067

-0.78
~0.81
-0.28
~0.64
+0.12
+0.06

-0.66
-0.62
-0.62
+0.08
-0.69
-0.84
-0.24
-0.65
+0.11
+0.06
+0.11
+0.11
-0.54

Corr.

-0.99
-0.99
-0.99
-0.99
-0.99
+0.99
+0.95

-0.99
-0.99
-0.99
+1

-0.99
~-0.99
-0.99
-0.99
-0.98
+0.98
+0.99
+0.99
-0.99

Shift

4.70
4,55
b.b44
4.49

5.03

4.93 -

4.78
4.58
4.41
4.28
4.10

6.45
6.13
5.03
4.91
4.78
4.69
4.54
4.37

3.20

Data
Points

NN

WWwwwwww

STV E SOV NN O
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(Cont'd.)

Assignment Designation TC Corr. Shift

TABLE XXII - CELLOBIOSE - 6.8%

g-0H A,B -0.62 -0.99 6.45
a-0H c,D - - -
0-“H E,F -0.60 -0.99 5.03
(!—CIH G,H,I - - -
043°H,04“H J,K -0.68 -0.99 4,78
B—OZH L,M -0.77 -0.99 4.72
B-03H N -0.24 -0.99 4.54
OgH,0¢"H, a—03H P -0.58 -0.99 - 4.39
T - - —
Hy0 - " =0.52 ~0.99 3.221
TABLE XXIII - CELLOBIOSE - 7.2%
B-0H A,B -0.63 -0.99 6.45
a-01H c,D -0.58 -0.99 6.13
0,“H E,F -0.60 -0.99 5.02
a-C1H G,H,1 +0.09 +0.99 4.90
03-°H,04"H J,K -0.67 -0.99 4.78
8-09H L,M -0.80 -0.99 4.693
g-03H N -0.25 -0.99 4.53
See above P -0.65 -0.99 4.38
T +0.08 +1 4.23
Hy0 -0.55 -0.99 3.21
aM only.

TABLE XXIV - CELLOBIOSE - 7.2%2, with D0 added

8-01H A,B -0.67 ~0.99 6.50
a-01H C,D -0.57 - -0.99 6.17
09°H E,F -0.67 -0.99 5.08P
a-CiH G,H,1 +0.09 +0.99 4.90
04°H,04°H _ J,K -0.41 -0.98 4.79¢
8~09H | L,M -0.85 -0.99 4.744
8-03H N -0.23 -0.97 4.57
See above P -0.74 -0.99 4.45
T +0.11 +0.99 4.23
Ho0/HOD ~0.68 -0.99 3.37

45olvent contains 4% D0 added.
bE only.
€K only.
dm only.

Data
Points

F I N RN

[« 3N SR - R« (S, I S B ON Be e e )

nmmunmunnesPrwwdswon
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(Cont'd.)

Assignment Designation

TABLE XXV - CELLOBIOSE - 8.8%

B-OlH
a—Olﬁ
02’H
G—CIH
03°H,04“H
B-Ozﬂ
B—O3H
See above

THYZ200GQQE o0 p

M only.

TC

"0~61

-0.54 -

-0.60
+0.06
-0.65
-0.78
-0.22
~0.64
+0.14

' "0052

TABLE XXVI - CELLOBIOSE - 8.8%, with Hp0 added?

8‘01H
o—-0H
0-°H
G‘Clﬂ
043-H,04“H
g-07H
B-03H
See above

wZraomay

-0.65
-0.59
-0.64
-0.06
-0.70
-0.82
-0.28
-0.56

Corr.

-0.99
-0.99
-0.99
+1

~-0.99
-0.99
-0.99
-0.99
+1

-0.99

-0.99
-0.99
~-0.99
+1

-0.99
-0.99
-0.99
-0.99

Shift

6.47
6.13
5.02
4.91
4.71
4.692
4.54
4.37
4.23
3.23

6.46
6.14
5.03
4.95
4.79
4.71P

~4.55

4.40

Data
Points

AUV MO &

82-4% Hp0 added; the B-O3H singlet is still observed with up to 6% Hy0. It shifts

slightly downfield. (4.56 ppm, 56°C).
by only.
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(Cont'd.)

Assignment Designation

TABLE XXVII - LACTOSE - 9.67

B~0H A,B
a~01H c,D
o~C1H E,F,G
H
B~0oHa 1,J
K,L
g~04H M
OgH,0¢ “H NP

8Assignments made on basis of chemical shift
cellobiose.
PThis is not the céntral OgH or Og~“H signal.

TABLE XXVIII - 4-0-(B-D-GLUCOPYRANOSYL)-D-MANNOPYRANOSE - 6.17%

G*Olﬂ
g~0H
09-H

a~-C ]_H
03°H,04°H
OgH,0¢“H
o~03H
C-H
B-C1H

YRCAHQOEO >

AEstimates

TABLE XXIX - 1,5 ANHYDROCELLOBIOTOL - 3.0%

03H c

TC

-0.66
-0.60
+0.09
-0.63
-0.82
-0.81
-0.22
-0.64

and TC which are analogous to that

_Oo 55
_Oo 78
-0.66

-0.74

-0.27

_0028

Corr.

-0.99
-0.99
+1

-0.99
-0.99
-0.99
-0.99
-0.99

-0.99
—0099
—009.9
_0099

—0099

—0- 99

Shift

6.45
6.13
4.90
4.89
4.71
4.54
4.54
4.33

6.17
5.96
5.05
4.902
4.77
4.408
4.34
4.243
4.602

4.57

Data
"Points

(S IV, B N R I L, |

[
-5
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(Cont'd.)

.Assignment _ Designation TC

TABLE XXX - XYLOBIOSE - 6.0%

B-01H A,B -0.67
G—OIH C,D ~-0.62
a-CyH E,F,G

03°H,04°H H,123 -0.82
0,°H, BO3H Ja -0.58
B-0,H Ka -0.42
G—O3H L -0-60
a~0oH M,N - -0.75
g-CyH,Cy“H qQ,R .. +0.14

8Values are approximate because of signal overlap.
apparent.

TABLE XXXI - XYLOBIOSE - 6.8%2 .

-0 H A,B -0.58
a-01H c,D -0.54
a~-CH E,F,G

H,1 -0.62.
See abhove 1.K
a-03H L -0.58
a-0oH . M,N -0.77
B-CIH,CI‘H Q,R +0.10
8Resolution poor.
bEstimate, only resolved at room temperature.
TABLE XXXII - XYLOBIOSE - 5.1%2
-0 H A,B -0.68
a—01H c,D -0.61
a-C1H E,F,G

H,I -0-67
See above J.K
a-04H L -0.63
a-0oH M,N -0.84
B-CyH,Cy - qQ,R -0.15

8Resolution poor.
bEstimate, only resolved at room temperature.

Corr.

-0.99
-0.99
-0.99
-0.99
-0.99
~-0.99
-1

+0.98

A slower moving

—0.99
-0.98

—0099
-0.99

-0.99

-0.99
-0.99

_0099
~-0.99

—0098

Shift

6.43
6.06
4.88
4.74
4.80
4.74
4.54
4.35
4.24

signal is

6.43
6.07
4.88
4.77
4.77b
4.56
4.34
4.24

6.43
6.06
4.88
4.76
4.76P
4.57
4.34
4.24

Data
Points

w1
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(Cont'd).

Assignment - Designation TC

TABLE XXXTII - SECURIDEBIOSE - 7.7%

B-0yH A,B " ~0.66
G—Olﬂ C,D . -0.63
G—ClH } E’F,G
05°H,03°H,04“H, B-0oH,

BEO3H 3554 2 H -0.70
o~-03H 1 -0.60
o~09H,0¢ “H J -0.70
CI'H ) K,L

CiH M,N +0.13

Corr.

"0099
-0.99

_0-99

-1
-0.99

+1

Shift

6.44
"6.07
4.88

4.76

4.61
4.38
4.32
4.25

Data
Points

w

TABLE XXXIV - BENZYL 2,3-ANHYDRO-4-0-(B8-D-XYLOPYRANOSYL)-D-RIBOPYRANOSIDE - 7.0%

0,°H A,B ~ -0.76
CiH c
03°H,04“H E -0.59

—0-99

_0099

4.88
4.93
4.77

3

3

TABLE XXXV - BENZYL 2,3—ANHYDRO—4jQ—(B—D-GLUCOPYRANOSYL)-D-RIBOPYRANOSIDE - 5.1%

07°H A,B -0.73
CyH c

03°H,04“H E -0.70
0g“H J,K,L -0.62

-1

-1

-1

4.87
4.93
4.73
4.29

2 .

2
2
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APPENDIX VIII

REPRESENTATIVE HOMO- AND HETERONUCLEAR DECOUPLED SPECTRA
DISCUSSION

Assignments for the ly-NMR spectra présented in the two preceding éﬁpendices
are based on comparisons to model coﬁpounds, intensity measurements, and spin
decoupling. The latter technique has the advantagé that it is instrumentally based
and that in many cases the resulting assignments are unequivocal. This appendix
briefly introduces the rationale of the technique followed by a discussion of the

decoupled spectra pertinent to the assignments previously made.

Spin decéupling is basically a method by which the apparent spin-spin interac-
tion betweeﬁ coupled nuclei can be modified by appiying a second rf field at a
specific frequency. For the case of first order spectra (§pg > 7Jap), if one of a
set of coupled nuclei is irradiated with a strong rf field, then, the effects on the
spectrum of its interaction with other members of the set are reduced or removed.
This is illustrated in the spectrum of ethyl benzene in Fig. l. 1In this case, the
CHy quartet (b) is collapsed Fo a near singlet by applying a strong rf field to the

center of the CHj triplet (c).

Spin decoupling is only one of a class of double resonance techniques. The
theory for nuciear magnetic double resonance has been reviewed (1,2). Recently
several new techniques, homo— and heteronuclear two—dimensional (2D) NMR (1), which
utilize specific pulse sequences and 2D Fourier trénsformation, have been developed
to identify coupled systems in ly_NMR. These techniques have recently been used to

give a more definitive assignment of the cellobiose skeletal protons in D30 (4).

The spin decoupled spectra in this appendix were all obtained with a Jeol

FX-100 FT-NMR utilizing the homonuclear gated decoupling module equipped with




CH—CH,

N

CH,
-3  CH,

|

Figure 1.

(a) The 1000 Hz lH-NMR spectrum of 1% ethyl benzene in CDCl3; (b) expan-l
sion of (a) in the upfield region (250 Hz full scale); (c) spin decoupled
spectrum resulting from irradiation (*) at the central peak of the CHj

triplet.

_SLS_
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variable irradiatioﬁhﬁowéf}v The degoupling fréquéncy can be set éo“i 0.2 Hz. fhe
irradiation power was controlled so that complete decoupling waé ;chieved (vHy /2w >
2J) (5) without excessive irradiation of the nearby signals. This necessitates that
the coupled systems under étudy are separated by more than the min;mum f?gquency
width of the irradiating signal (approxigately 15 Hz) that is nece;sary to achieve

complete decoupling.*

In the speqt;a that féllow emphasis is given té those cases which assist in ;he
aééignment of the hydroxy-proton signais observed as singlets (éection IT1I; part
IIIB. Prioriﬁo this the decoupled‘spectra of glucose and xylose.in DMéO-d6 are pre-
sented to illustrate the power of ghe iechnique. The results duplicate those of
Perlin (é)d This is'fbilowed by a series of decoupled spectra for methyl B-
"ceilobioside, which, after one assumption, allow cgapiete assignment of the hydroxy-
proton region. This group of spectra contain some examples of selective hetero-

nuclear decoupling, i.e., observation of the !3C-NMR spectrum while ifradiating at a

specific point in the 1H—spectrum.

Below is a list of compounds studied by spin-decoupling as well as a key to the

. symbols used on the spectra.

" SPECTRA

* - Location of irradiating signal

Impurity

-
1

S - Solvent

A - Region of spectrum affected by decoupling

‘ 2 u u
*For Av = 15 Hz; Hy = —- Av where y = 7= ™ e Hyp = 3.5 x 10-3 gauss for a conven-

tional spectrometer.
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List
Compound . Figure
Glucose 2-4
Xylose 5-6
MBX 7
MBC2 8-23
c2 24-26
Lactose 27
GM ‘ 28
X2 29-30
GX 31

Discussion of the Spin-Decoupled Spectra

Starting with the accepted assignments of B-0H énd a-01H (7) it is possible,
with the assistance of the peak intensigies, to assign the rest of the downfield
signals in the spectrum, either directly or by deduction. For example, irradiation
of the anomeric hydroxyl signals identifies the a-C;H and B-CyH signals.
Simultaneous decoupling of these signals with the 05H signals verifies the assign-
ments of the latter. Decoupling of the small doublet at 4.52 ppm without a simulta-
neous decoupling of the anomeric protons indicates that this signal is either a-O3H
or a-04H. Since the o-O4H signal is far from the anomeric center it should be
nearly coincident with the B-O4H signal; hence the 4.52 ppm signal is a-O3H. The
- OgH signal, expected to be a triplet, is anp§cipated to be in the vicinity- of the
B-CyH signal on the basis of peak intensities. The complex signal is significantly
simplified by irradiation at 3.59 ppm corresponding to the collapse of a triplet.
Finally, by the process of elimination, and in accord with the peak intensities the
B-O3H, B-O4H, and o-O4H signals must be included as part of the large doublet at
4.70 ppm. Indications of the relative order .of the stronglj coupled skeletal pro-—-
tons are consistent with the spectral assignments obtained at higher field in D50

(8)-
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Glucose

Figure 2. (a) lH-NMR spectrum of glucose at 40.5°C in DMSO-dg (9.7%); (b)
Irradiation of the a-0;H signal (6.09 ppm) causes collapse of the a-CiH
signal (4.81 ppm) to a doublet; (c) Irradiation of the B-0;H signal
(6.47 ppm) causes changes near 4.25 ppm (B-CjH).




Glucose

1 ] | ] ) ] ] [ | Lo ] A
7 6 - S q 3 2 |
ppm
Figure 3. (a) Irradiation at BQCIH (4.29 ppm) causes collapse of the B-01H signal

to a singlet plus minor changes in the upfield portion of the spectrum;

(b) Irradiation at 3.04 ppm (a-CoH, B-OoH) causes collapse of the a-CiH
signal (4.91 ppm) as a doublet, collapse of the large doublet at 4.70 ppm
(8-09H, B-O03H, 8-04H) and changes near 4.30 ppm (B-O;H, a-0oH). No
change occurs at 4.52 ppm (a-04H). Clearly, both C, protons are in this
region but not a-C3H; (¢) Irradiation at 3.37 ppm (a-CoH) causes collapse
of the a-0OgH signal (4.52 ppm) and no other changes.

~6L8-
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Glucose

NE
(@

Figure 4. (a) Irradiation at 3.59 ppm (CgH) causes collapse of the OgH triplet
(4.36 ppm) with some residual effect on the a-O3H signal (4.52 ppm); (b)

Irradiation at 2.93 ppm with similar effects to those observed in Fig.

2b; (c) normal spectrum.
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-

Figure 5.

(a) lH-NMR spectrum of xylose at 34°C in DMSO-dg; the inset is an expan-
sion of the large signal at 4.8! ppm showing it consists of several
signals; (b) Irradiation at B-C;H (4.20 ppm) causing collapse of the
B-01H doublet (6.48 ppm) and some changes near -2.97 ppm; (c) Irradiation
at B-01H (6.49 ppm) causing the B-CyH apparent triplet to collapse to a
doublet; (d) Irradiation at 2.94 ppm (B-CoH) causing a simultaneous
change in the B-C;H and B-OoH (large complex at 4.80 ppm) signals. The
downfield portion of the C(S)HZ signal (an AB pattern with eight peaks)
1s also decoupled indicating that C4H is in this region. The o-0oH

signal (4.41 ppm) is partially collapsed.




Xylose
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b
a
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T 1] S 4 3 2 i 0
Pbm
Figure 6. (a) Irradiation of one of the Cs H signals (3.64 ppm) results in no large
(b)

effects in the hydroxyl region and a small change near 2.97 ppm;
Irradiation at 3.33 ppm decouples the a-O3H signal (4.64 ppm) and the

large complex (4.80 ppm). The B-O;H signal is not affected; (c) At 3.1l
ppm the irradiation decouples the a-OgH signal (4.41 ppm) and the large

complex; (d) The normal spectrum.
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Methyl 8-Xylopyranoside
7
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Figure 7. (a) The lH-NMR spectrum of methyl B-xylopyranoside in DMSO-dg (17.9%) at

34.2°C.; (b) Irradiation at CyH (3.98 ppm) causes a change near 2.92 ppm
but none in the hydroxyl region; (c) Irradiation at 2.90 ppm (CoH)
results in a simultaneous decoupling at 3.98 and 4.98 ppm indicating that
these signals represent protons coupled to the same proton. The large
doublet at 4.90 ppm is partially affected; (d) Irradiation at 3.21 ppm
decouples the large signal at 4.90 ppm. Neither the C{H signal or the
4.98 ppm signal are affected proving that the latter results from OjH.



Methyl g8-Celiobioside

OiMie H,0
FIGURE IRRADIATING SIGNAL (PPM)
0 B0
1) 404
10 424
1" 407
12 283
13 470
" 480
15 1
16 149
17 4.41
10 187
891 VW 7 9N 18 B B 12 N

L { 1 A 1 i .

Figure 8:

4
& 5 4 3
ppm

The lH-NMR spectrum of methyl B-cellobioside at 56°C in DMSO-dg (3.6%).
Points of irradiation in the subsequent spectra are indicated by numbers.

~¥8t~



Methyl g-Cellobioside
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Figure 9. Irradiation at 5.04 ppm (091H) causes a change near 2.95 ppm (Cy1H).
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Methyl g-Cellobioside
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Figure 10. Irradiation at 4.94 ppm (09H) causes a change near 2.95 ppm (CpH).
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Methyl g-Cellobioside
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Figure 11. TIrradiation near 4.24 ppm (Cy'H) causes a change near 2.95 ppm (Cy'H).
s No other changes occur in the hydroxyl region.
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Methy! g-Cellobioside

ppm:

Figure 13. 1Irradiation near 2.95 ppm (CoH, C,'H) causes a collapse of all the
doublets in the hydroxyl region.
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Methy! g-Celiobioside
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Figure 14. TIrradiation at 4.78 ppm (03'H, 04'H) produces no change in the hydroxyl
region and a small sharpening of the signals near 3.05 ppm.
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Maethyl s-Cellobioside

Figure 15. 1Irradiation of the singlet at 4.58 ppm causes no significant change in
the spectrum. This is expected since by definition this peak is only
" weakly coupled to another proton.
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Methyl g-Celiobioside

~F

Ppm

Figure 16. Irradiation at 3.14 ppm causes a collapse of the large doublet at 4.78
ppm with only a slight change of the anomeric proton doublets. This
proves that the large doublet does not result from either 09'H or OoH.
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Maethyl g-Cellobioside
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Figure 17. Irradiation at 3.40 causes a sharpening of the singlet at 4.58 ppm. No
other hydroxyl signals are affected. On the basis of the logic pre-
viously developed the singlet can be assigned to O4qH at this point.
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Methyl g-Cellobioside
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Figure 18. 1Irradiation at 4.41 ppm (OgH, Og'H) produces a change around 3.69 ppm.
The OjH intensity is also affected.
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Methy! g-Cellobioside
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Figure 19. 1Irradiation near 3.67 ppm causes collapse of the triplet at 4.42 ppme.

The Hy0 signal as well as the upfield skeletal ‘proton region are also
affected.
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Figure 20. (a) The completely proton decoupled 13c-NMR spectrum of methyl B-

cellobioside in DMSO-dg (3.6%) at 56°C; (b,c,d) Selective heteronuclear
decoupled spectra* with the irradiating frequency placed in the ly-NMR
spectrum at approximately 3.14, 3.30, and 3.40 ppm; respectively. 1In
spectra (b) and (c) only the Cj, C;', Cg, Cq' and OCH3 signals appear
coupled. In spectrum (d) the OCH3 peak is decoupled which is expected
since the methyl protons resonate at 3.40 ppm. It can be noted that the
Cy and Cy' signals show increased 13c-lH coupling as the irradiating

' frequency moved further from 3.00 ppm.

*In 13c-NMR specific heteronuclear decoupling, a carbon coupled to the irradiated
proton should appear as a sharp singlet, in contrast to the other carbons which

exhibit

3c-1n couplings.




Methyl g-Cellobioside
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Figure 21l. Selective heteronuclear decoupled spectrum with the decoupler set near
4.36 ppm (downfield of C;'H) in the ly-spectrum. The carbon signal at
103.4 ppm (C;') is most intense.



Methyl g-Cellobioside
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Figure 22. Selective heteronuclear decoqued spectrum with the decoupler set near
3.70 ppm (CgH,, CgHy) in the ‘H-spectrum. The most intense signal is
the Cg region. Additionally, the C; signal is sharpened indicating the

CiH is upfield of Cy'H.
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Methyl s-Cellobioside
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Figure 23.
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Selective heteronuclear decoupled spectra with the decoupler set near
(a) 3.18 ppm and (b) 4.28 ppm (C;'H) in the 1H—spectrum. Spectrum (a)
is similar to that in Fig. 20b. Spectrum (b) verifies that the proton
resonating at 4.28 ppm is coupled to the 103.4 ppm peak in the carbon
spectrum. - The proton doublet centered at 4.10 ppm can be assigned, by
analogy to methyl—B-glucogyranoside, to CyH. Therefore, all the assign-
ments can be made. The 13C-NMR assignments agree with those in the

literature (10).



Cellobiose
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Figure 24. The 1H—I\fMR spectrum of cellobiose in DMSO-d
sweep width).

6 (6:8%) at 63°C (1000 H,
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Cellobiose

4.53 ppm (B-O3H). No other hydroxyl signals are significantly affected.
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ppm
) Figure 25. Irradiation near 3.37 ppm resulting in the enhancement of the singlet at

-10%-



Celiobiose

-20%-

Figure 26. Irradiation near 3.00 ppm resulting in the collapse of doublets at 4.98

(0,'H) 4.74 (05'H, 04'H), and 4.67 ppm (B-05H). The CiH, Cy'H region is
also affected.




LACTOSE
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Figure 27. (a) The lH-NMR spectrum of lactose in DMSO-dg (4.67%) at 42.5°C, (b)

Irradiation at 3.66 ppm causing a change near 4.41 ppm (OgH), (c) Irra-
diation at 2.98 ppm causing changes at 4.84 ppm (B-05H), changes near
the C;'H, CiH region are obscured by a spurious signal symmetrical about
the midpoint with the irradiating frequency, (d) Irradiation at 3.50 ppm
causes an enhancement of the singlet at 4.57 ppm. These results are
consistent with the assignment of the singlet to B-O3H.
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Figure 28. <(a) The lH-NMR spectrum of 4-0-(B8-D-glucopyranosyl)-D mannopyranose in

DMSO-dg (6.1%) at 49°C, (b) Irradiation at 6.20 ppm (a-OjH) causes
decoupling of the doublet at 4.90 ppm (o-CjH) (C) Irradiation at 3.1l
ppm causing collapse of the doublets at 5.07 (0y'H) and 4.80 ppm (O3'H,
04'H) as well as near the CyH region. The singlet assigned to a-O3H is
not affected. These results indicate that the o-anomer predominates in
this compound and are consistent with the assignment of a-O3H.




Xylobiose
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Figure 29. The lH-NMR spectrum of xylobiose in DMSO-dg (6.0%) at 35.5°C. The inset

is an expansion of the nonanomeric hydroxyl region. Note that the
singlet at 4.69 ppm is actually a weak doublet.
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Xylobiose .
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Figure 30: (a) Same as Fig. 29, (b) Irradiation at 3.32 ppm causes an enhancement

of the singlet at 4.69 ppm (a—O3H), and a partial collapse of the
doublet at 4.50 ppm (a-OyH), (c) Irradiation at 3.09 ppm affects the CjH
and C{'H signals at 4.24 ppm as well as the large doublet at 4.91 ppm
(OZ'H, 05'H, 04'H). The doublet at 4.50 ppm is partially collapsed.
Irradiation near 3.20 ppm completely collapses it, (d) Irradiatiomn at-

- 3.46 ppm results in a sharpening of the singlet at 4.69 ppm with no

change in the CyH;, C;'H region.
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(a) A poorly resolved !H-NMR spectrum of securidebiose® in DMSO-d

(7.7%) at 34.5°C., (b) Irradiation at 3.08 ppm sharpens the C;'H, CiH
signals at 4.21-4.31 ppm, (c) Irradiation at 6.60 ppm collapses the C;H,
Ci'H signals to a doublet, (d) Irradiation at 3.40 ppm partially shar-
pens the broadened singlet at 4.74 ppm. This is consistent with the

results for xylobiose.

Figure 31.
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"Again, the simultaneous use of peak intensities and spin decoupling allows
complete assignment of the spectrum. Using the anomeric hydroxyl signals as a
starting point (Z), the B~-C;H signal can be assigned. The intensities of the
signals at 4.41 and 4.64 ppm indicate that these result from the a—~anomer. By the
process of elimination the large complex must consist of the B-OoH, B-O03H, B-04H,
a-CyH, and o-O4H signals. This exactly parallels the glucose assignments. A pre-
liminary assignment of the 4.41 ppm signél to o-09H is based on the location of the
o-CoH signal (3.11 ppm) which decouples it. This is near the a-CoH signal in glu-
cose. An unequivocal assignment could be made at a higher temperature‘where the
a-CyH and a—OZHlsignals would decouple simultaneously (7). The relative order of
the skeletal protons agrees with that observed at higher fields for xylose in D50

(392_) °

It should be pointed out that the singlet at 4.58 ppm is not affected:in any of
the spectra in Fig. 9-14. The doublets centered at 4.10 and 4.28 ppm are the ano-
meric protons on the basis of their resistance to D0 and their temperature indepen-
dence. The doublets at 5.04 and 4.94 ppm are simultaneously decoupled.with the
anomeric protons. By analogy with glucose, xylose, and methyl B-xylopyranoside it
can be assumed that the large doublet centered at 4.78 ppm results from O3'H and
04'H. Therefore, if it can be shown that the singlet at 4.58 ppm can be sharpened
by irradiation at a location that does not cause simultaneous decoupling of one of
the anomeric protons, then, by thé process of elimination, the downfield doublets

must be assigned to 0y'H and 09H and the singlet to O3H.

The OgH and Og+H signals are expected to be nearly coincident triplets. The
decoupling results in Fig. 18 and 19 support their assignment to the 4.42 ppm signal
but do not prove it. Specific heteronuclear decoupling unequivocally proves the

assignments.
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The above discussion verifies the assignment of the 4.58 ppm singlet to O3H in
methyl B-cellobioside (56°C.). Only one assumption is required; i.e., the large
doublet at 4.78 ppm contains contriﬁutions from O3'H and O4'H but not O3H. . This is
reasonable based on the monosaccharide spectra and the exbectation that the
B-I,A—gly;osidic linkage will have a larger impact on Q3H than eitﬁer 03'H or 04'H.
Differentiation of the downfield doublets, between OjH and 0,'H is not possible
through‘decoupling experiments at léw magnetic field strengths; However, the
spectra of cellobiose and the methyl B-glycosides support the assignments given.for

0oH and 0,1H.

The results depicted in Fig. 24-26 are completely analogous to those found for

methyl-B-cellobioside..

The results presented in Fig. 29-30 are consistent with the assignment of the
singlet at 4.69 ppm to an O3H proton. Assignment to the a-anomer is based on the

intensity and a comparison to the methyl B-xylobioside spectrum.
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_APPENDIX IX

LOCAL CONFORMATION AT 0O9'H

Earlier, it was shown that the downfield doublet at 5.03 ppm (56°C) in 1
(cellobiose) can be assigned to 0, H. For the methyl B-glycosides another doublet
assigned to O9H is found at 4.94 ppm (56°C,_g). In both cases, the doublet is
shifted downfield from its location in the monosaccharide. Contrasted to this are
the disaccharides 3 and g in which the 09+H signal is not shifted from its location
in-B-xylose. The reason for thié difference must be related to the presence of the
glycosidic group. Since xylose and glucose differ only at Cs, six bonds removed
from 091H, this effect must be related to the steric environment created by the

.aglycon around O9:H.

Figure 1 compares the steric environment around O9+'H for the three situations
discussed above. With a xylopyranosyl group as the aglycon, a steric environment
relatively free of steric hindrance is present. When a methyl or glucopyranosyl
group is the aglycon, a sterically hindered environment exists. 1In the latter case,
it is the presence of the hydroxymethyl group attached to Cg that creates the

hindrance.

Radar has previously discussed the probable orientations of the hydroxyl group
in cyclohexanols and simple alcohols (3,4). Three possible conformations, relatéd
by 120° rotations of x, are depicted in Fig. 2 for a hydroxyl proton. For secondary
alcohols, a preference for the rotamers with x = 60° was found, though all three
noneclipsed rotamers are populated. As larger substituents are added, the propor-
tion of conformation II (x = 180°) is decreased but with a compensating constriction
of the dihedral angles observed in conformations I and III. This results in an
increase in the coupling constant. It was also shown that the hydro#yl proton chem-

ical shift was both a function of H-bond strength and rotamer conformation.
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XYLOBIOSE

CELLOBIOSE

Figure 1. Computer drawings depicting the role of the hydroxymethyl group
at. Cg and the O~methyl group in effecting the conformation of
09+H and OoH respectively. The drawings were generated using
the crystal structure data in Ref. (1) and (2). The confor-
mations depicted here are not necessarily observed in solution.

Figure 2. The noneclipsed rotamers populated by the hydroxyl protons in simple
secondary alcohols (4).
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The effect of 1,3-trans-diequitorial interactions between adjacent hydroxyls
was previously used to predict that in amyiose the preferred rotamer has a value of
x = 110° (5). For this dihedral angle, it was shown that nearly a linear intra-
molecular H-bond with 09+ occurs. It was argued that the alternate choice of yx = 60°
is destablized by a 1,3-trans—-diequitorial interaction with the bridge oxygen.
Furthermore, on the basis of the independence of the coupling constant on tem—
perature, it was argued that no other rotamers are significantly populated. It can
be pointed out that a value for x of 110° represents a nearly eclipsed conformation

and does not correspond to any of the rotamers, I-III, in Fig. 2.*

Table I gives the 3JHCOH values for the isolated hydroxyl signals observed in
this study. Over the temperature range studied, these values are constant, with the
exception of 0O9'H, indicating that one rotamer is predominant. A value of 5.18 Hz
has been observed for neat methanol in which nearly free rotation between confor-
mers I-II1 is known (4). Most of the values in Table I depart from this
significantly; further indicating that rotapion of the hydroxyl 1is restricted for
carbohydrates dissolved in DMSO-dg. ~This should be expected for a hydroxyl par-
ticipating in a strong donor H-bond to DMSO since, in general, a movement between

rotamers would involve moving two large groups (DMSO, the sugar) past one another.**

The steric interactions present for O09+H or O9H are illustrated in Fig. 3 for

disaccharides 1, 2, and 5. For 1, the value of 3JHC0H for B-OoH is 4.8 Hz but for

*A value of x = 110° is favored for the OjH....09: intramolecular H-bond in
a-1,4-1inked glucans on the basis of the formation of a nearly linear H-bond (5).
Since the temperature dependence of 04H is intermediate, between that found in 1

and the hydroxyls that freely associate with the solvent, it appears likely that
in this case, the solvent partially H-bonds to O4H. From this, it follows that
the intramolecular H-bond is not necessarily linear and that the value of x = 110°
must remain speculative. '

**The lifetime of the H-bond should be longer than a single rotamer lifetime since
the energy of H-bond formation (3-10 Kcal/mole) is greater than that of rotation
(1 Kcal/mole) (4,6)-
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02'H, the value is 4.1 Hz. Clearly, the presence of the aglycon affects the rotamer
distribution of the Oy'H group relative to B-OgH. For the methyl B-glycosides
3JHCOH is 4.4-4.6% for OoH indicating that the distribution of rotamers is also

perturbed by the methyl group.

TABLE I

3JHC0H VALUES FOR ISOLATED HYDROXYL SIGNALS IN SEVERAL
GLUCOSE OR XYLOSE CONTAINING CARBOHYDRATES?A

B"OIH G—OIH B-OzH (1—02H a—O3H 02 'H
1b,c,d 6.5(0.1) 4.5(0.2) 4.8(0.1) 4.1(0.1)
2 4.7(0.1) 4.3(0.3)
3 6.5 4.7(0.3)€ ‘ 6.6 4.1
3¢ 4,6
3d 5.9
4f 6.5 4.1¢ 4.5
4e 4.4 ,

5 6.5(0.1) 4.6(0.3) 6.8(0.2)

6 6.5(0.1) 4.7(0.2)

7A8 . 5.1(0.1)

9 6.1 '

10 6.4(0.2) 4.5(0.1) 4.8(0.1)

11 8.5 4.4(0.1) 5.2

8Standard deviations (o) are given is parentheses. Results are an average over all
available samples and temperatures in which the hydroxyl is isolated. If no o is
given, it is less than 0.1 Hz.

An average over four samples.

€In some samples the 09'H signal shows a steady decrease of 3JHCOH with increasing
temperature. These values are not included.

dThe coincident signals 03'H, O4'H show a sharp coupling of 4.1 Hz (56°C).

€In mixtures of acetone-dg and DMSO-dg a small long range coupling to CoH has been
reported (7).

fThe large peak comprising B-09H, B-03H, and B-O4H shows a sharp splitting of 4.3 Hz
(34°C).

g8Averaged over two concentrations.

Radar has shown that the chemical shift of a H-bonded hydroxyl is affected by
both the H-bond strength and the distribution of rotameric conformations (3).

Apparently, both of these factors are operative in determining the relative chemical

*For 2 , the value is 4.7 Hz.
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shift of Op'H in 1 compared to 3. 1In the latter case, the shift is no different
from that in xylose or glucose. 1In l and %, it is shifted downfield partly as a
result of a different distribution of hydroxyl rotamers. Since the only structural
difference between 1 and 3 is the presence of the hydroxymethyl group, it is prob-
able that this group either sterically hinders or promotes specific rotameric con-

formations of 09:H.

.\

'\605

A
111209
S/
tront view side view
Non-Bonded Interactions for O,H
X{DEGREES) INTERACTION
0 1,2 aclipsed (C5- H)
60 1,3 trans di-equitorial (0 ;)
120 1,2 eclipsed {Cy ')
180 1,3 di-axial {Cy-H, C3- H)
-120 1,2 eclipsed (C31
- 60 1,3 trans di-equitorial (03-)

Figure 3. TIllustration of the nonbonded interactions present for
six 09:'H rotamers related by 60° rotations. The front
view represents a projection unto the plane containing
Ci1r, Cyr, Hyr, and H3r. The side view represents a
projection unto the perpendicular plane containing Cgp:
and Hpr. The latter view illustrates that the distan-
ces 09'H - Cy+ (X = 120°) and O09'H - 01+ (X = 60°) are
nearly equivalent. The drawings are not to scale.

Several facts indicate that the action of the hydroxymethyl group is to promote
a specific ihteraction with 09'H leading to an increase in the rotamer corresponding
to approximately y = 120°. Modelé show that this would ailéw the formation of a weak
intramolecular H-bond with Og(01H....0g). This rotamer represents a neariy

eclipsed conformation with Cyr, not unlike that proposed for O3H in maltose (5).

The O9'1H....0q bond has been previously proposed (3.
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One of the facts supporting this is the slightly reduced temperature dependence
of the 09+'H chemical shift relative to the OjH shift. The O)H temperature coef-
ficient is slightly higher than that of the other hydroxyl signals (Tables VI and
VII in Section 3, Part 3), in both reducing sugars and methyl B-glycosides. The
0y +H temperature coefficient in 1 and 2 is slightly reduced, indicating that it is
slightly less available to H~bond to the solvent. The second fact is that the value
for 3JHCOH of the 07+H signal is observed to decrease with temperature while for the
other hydroxyl signals it does not.* This indicates that a shift in rotamer distri-
bution occurs, probably with the resﬁlt that the weak intramolecular H-bond is

disruptéd,

While it is tempting to further speculate on the'existence of specific rota-
mers, it should be remembered that; values for x from Eq. (1) (Section 3, Part 3)
are only approximate (9), and that the effect of 1,3 trans-diequitorial interactions
involving adjacent hydroxyl groups has not been thoroughly studied (5). A possible
approach to this could involve the study of hydroxyl coupling-constants and their

variation with temperature using the inositols as models.

*This is partially related to sample purity. The reduction of 3JHC0H for 09:H does
not occur in all samples but when it does occur, this hydroxyl is affected first.
If slightly acidic conditions prevail, then all hydroxyl signals eventually broaden
and J decreases. i
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APPENDIX X
PROCEDURES
GENERAL PROCEDURES

NMR spectra were obtained on a Jeol FX-100 spectrometer operating at 25.05 MHz
(13¢) or 99.60 MHz (lH). Magnetic field stabilization was achieved using the inter-
nal deuterium lock feature. Ambient probe temperatures (micro, 5SMM, 1OMM) were used
unless otherwise noted. In most cases, (CH3)4Si was used as an internal standard in

organic solvents and p-dioxane (67.4 ppm) in D3O0.

Melting points were determined on a calibrated Thomas—Hoover capillary appara-
tus. - Thin layer chromatography (TLC) used silica gel G coated onto microscope
slides. Methanolic sulfuric acid (5:1, v/v) spray with charring was used for detec—
tion. Paper chromatography used Whatman No. 1 filter paper. Detection was with

silver nitrate in acetone followed by caustic and sodium thiosulfate washing.

Solvents were purified using conventional distillation methods when necessary.
Chloroform was extracted twice with water in a separatory funnel to remove ethanol.
It was dried with calcium chloride, filtered, and refluxed over.calcium sulfate
using a Vigreux column. The fraction boiling from 59-60°C was collected and stored
in the dark. Dry acetone was prepared by storing over Drierite. Dry benzene was
prepared by refluxing over phosphorus pentoxide and then collecting the 75-79°C
fraction using a Vigreux column. Solvent stripping was done under vacuum using a

common laboratory rotary evaporator.
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MONOSACCHARIDE DERIVATIVES

Benzyl B-D-arabinopyranoside (Lﬁ)

Arabinosé (75.0 g, Matheson-Coleman-Bell) and benzyl alcohol (375 mL) were
placed in a flask and stirred (30 minutes) in an ice—salt bath. Acetyl chloride
(37.5 mL) was then added dropwise over a 1 hour (h) period, taking care not to let
the temperature go over 60°F. The mixture was stirred for 12 h until it formed a
gel. It was monitored by TLC using chloroform—méthanol (3:1, vol.). Ethfl ether
(750 mL) was added and the mixture was allowed to stand, with occasional stirring, 4
hours in an ice-salt bath to promote crystallization. The ﬁixture was filtered and
the residue was dried overnight in vacuo (50°C) to yield crystalline 16 (80.5 g,

67%); m.p. 169.5-172°C. Literature (1); m.p. 169-171°C.

Benzyl 3,4-isopropylidene B-D-arabinopyranoside (17)

Dry aéetone (18 mL), 2,2-dimethoxypropane (18 mL), and compoﬁnd 16 (5.2 g)
were mixed in a flask with p—toluene sulfonic acid (180 mg). The mixture was gently
heated (70°C) with continuouslstirring until all solids were dissolved. A drying
tube was used to exclude moisture. The mixture was allowed to stand for 1 h atlroom
temperature and then neutralized with excess potassium carbonate. TL& with
chloroform—ethylacetate (4:1, vol.) was used to monitor the reaction. The slurry
was filtered and evaporated in vacuo to a pale yellow syrup. The syrup was
dissolved in ethyl ether (15 mL), filtered to remove unreacted 16, and reduced to a
syrup in vacuo. Seeding affected crystallization as large rectangular crystals.
Recrystallization from a minimum of ethyl ether, to which low boiling petroleum
ether was added until cloudy, afforded crystalline 17 (5.0 g 82%); m.ﬁ. 57-58°C.

Literature (1) m.p.. 55-58°C.
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Benzyl 2-O-tosyl-3,4-0-isopropylidene-B-D-arabinopyranoside (Lg)

Compound 17 (23.0 g) was crushed and added in a flask to pyridine (96 mL) con-
taining p-toluene sulfonyl chloride (27.5 g). The mixture waé held at 50° (ca. 6
h) until TLC indicated it was complete. TLC monitoring was with chloroform-
ethyl aéetate (4:1, vol.). The cooled solution was extracted with chloroform (240
mL). The chloroform layer was then washed with successive portions of aqueous
sulfuric acid (2N, 120 mL) until the top layer remained acidic after vigorous shaking
and then with water (120 mL) until the top 1éyer was neutral. The chloroférm solu-
tion was then dried over calcium sulfate, filtered, and evaporated in vacuo to a

thick brown syrup. Crystallization from ethanol water (90% vol.) produced 18 (28.9

gm, 81%); m.p. 91.5-93.5°C. Literature (1), m.p. 96°C.

Benzyl 2-O-tosyl-B-D-arabinopyranoside (19)

Compound 18 (16.0 g) was added to aqueous ethanol (80% vol.; 112 mL) containing
Amberlite IR-120 ion exchange resin (HY, 7.7 g) and refluxed (ca. 8 h). The reac-
tion was monitored by TLC using ethanol-ethyl acetate (4:1, vol.) with additional
IR-120 being added when needed. The solution was filtered while hot and evaporated
in vacuo until near dryness. A granular white pfecipitate formed. The precipitate
was filtered, washed with water, and dried in a vacuum oven. Recrystallization from
isopropyl e;her—ethyl acetate (20:1, vol.) gave crystalline 19 (14.0 g. 96%); m.p.

123-125°C. Literature (1); m.p. 123.5-124.5°C.

Benzyl 2,3-anhydro-B-D-ribopyranoside (15)

Compound 19 (8.5 g) was dissolved in methanolic sodium methoxide (0.5N, 67 mL)
and held at 50°C (ca. 6 h) with continuous stirring. The cool solution was allowed
to stand for 4 h and was then evaporated in vacuo to about 20 mL volume. The solu-
tion was neutralized by adding suifuric acid dropwise. After standing for several

days a few drops of water were added to promote crystallization. The resulting
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crystalline material was filtered, washed with water, and dried in vacuo (4.5 gm.

90%); m.p. 66-74°C. Literature (1); m.p. 76-77°C.

2,3,4-tri-0-acetyl-a-B-xylopyranosyl Bromide (13)

B-D-xylopyranose tetraacefate (70 g, student preparation) was mixed with
1,2-dichloroethane (130 mL) in a stirred Erlenmeyer flask. Hydrogen bromide in ace-
tic acid (41%, vol., 77 mL) was added slowly. The mixture was stoppered and allowed
to stand quiessently for several hours. The reaction was monitored by t.l.c. with
chloroform-ethyl acetate (2:1, vol.). Aftér 4 h additional hydrogen bromide was
added. After 7 h additional chloroform (350 mL) was added. The mixture was slowly
poufed into ice-water (3L) with vigorous stirring, and the chloroform layer |
separated. The water layer waé washed several times with additional chloroform.

The combined chloroform fractions were dried ov;r calcium chloride, filtgred, and
reduced 121!é£22 just until crystals began to form. The syrup was allowed to
crystallize overnight in the refrigerator. The product was recrystallized twice
from isopropyl ether (51.3 gm. 64%); m.p. 85-100°C. The product was dissolved in
dry chloroform and stored in the refrigerator until completely used in subsequent
reactions. 1In earlier reactions the product was taken up in dry benzene. No

further characterization was attempted.

2,3,4,6-tetra-0-acetyl-a-D-glucopyranosyl Bromide (Li)

a, B~-D-Glucose pentaacetate (37.7 g, Pfanstiel) was mixed with 1,2-dichloro-
ethane (105 mL) and hydrogen bromide in acetic acid (32%, vol., 120 mL). Workup was
identical to that of 13 except that sodium bicarbonate in water was used to wash the
combined chloroform layer. After two recrystallizations the final product was
obtained (29.5 g, 697%); m.p. 88~90°C. Literature (g); m.p. 88-89°C. Without
further characterization, the product was dissolved in dry chloroform for subsequent

reaction.
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DISACCHARIDE DERIVATIVES

Benzyl 2,3—anhydr0jgf(2',3',4'trijgfacetyl—xylbpyranosyl)—B—D-ribopyranoside (6)

Benzyl 2,3-anhydro—-B-D-ribopyranoside (10 g) was stirred at room temperature
(ca. 24 h) with silver oxide (33.7 g), 10-20 mesh drierite (62.5 g), and dry

chloroform (162 mL) to ensure removal of all water from the system.

In earlier reactions dry benzene had been used. Molecular sieves (20 g, Linde
A-4) were then added to ensure complete removal of water. The flask was fitted with
a drying tube to exclude moisture and covered to exclude light. Todine (3.75 g)
and the bromide (L;);vin dry chloroform (38 g in 250 mL), were then added; the bro-
mide was added dropwiserver several hours. The reaction was continued (ca. 6 days)
until the bromide concentration was no longer decreasing as indicated by TLC. The
TLC solven; was chloroform—ethylacetate (4:1, vol.). The reaction was terminated
by filtering through a bed of celite, washing the celité with chloroform and washing
the liquor with aqueous sodium thiosulfate (0.5 m, 100 mL). The filtrate was dried
in vacuo to a pale yellow syrup. TLC indicated at least 3 components. Crystals

would not form even when seeded.

Benzyl 2,3-anhydro—4—9f(B—D—xylopyfanosy1—D—xylopyranoside (3

Pale yellow syrup 6 (40 g) was mixed with methanol (100 mL) and methanolic
sodium methoxide (0.5N, 8 mL). The mixture was heated on a steam bath for approxi-
mately 5 minutes. The reaction was monitored by TLC with chloroform—ethylacetate
(4:1, vol.). Additional cycles of methoxide addition followed by heating were used
until TLC iﬁdicated the reaction was complete. The mixture was refrigerated until
crystallization was complete. The crystélline mass was filtered, washed with cold
methanol, and dried in vacuo (5.0 g, 31% based on 15); m.p. 198-201°C. Re?rystalli—
zation 6f a portion from methanol gave white needle like crystals; m.p. 200-203°C.

Literature (1) m.p. 202.5-203°C.
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Benzyl B-D—xylobioside (3)

Compound 3 (1.5 g) was dissolved in aqueous sodium hydroxide (ég, 150 mL) and
heated to near reflux temperature. The flask was fitted with a reflux condenser,
magnetic-stirrer, énd facilities to continuously bubble nitrogen into the solution.
The reaction was stopped after 7 h, cooled, and poured slowly, with vigorous
stirring, into a slurry of Amberlite IR-120 ion exchange resin (180 mL, acid form).
The mixture was filtered, washed with hot water, and evaporated in vacuo to a hard
syrup (1.5 g, 95%) which did not crystallize. 13c-nMR épectroscopy in D70 con-

firmed in to be 3.

Xylobiose (1)

Benzyl B-xylobiose syrup (2.7 g) was dissolved in an ethanol-water (50:50, 250
mL) mixture and mixed with 107 palladium on carbén catalyst (1.7 g). The mixture
was attached to a hydrogenation device for atmospheric hydrogenation. The system
was evacuated and then filled with hydrogen. As the hydrogen was used up the mer-
cury level in the attached buret changed. Hydrogen was then reintroduced as needed.
THe slurry was stirred in this device until no additional hydrogen was taken up (7
days). The reaction was monitored by TLC with chloroform-methanol (4:1 vol.).
The slurry was filtered through celite, washed with hot water (50 mL) and hot ethanol
(50 mL), and evaporated in vacuo to a syrup. The syrup was redissolved twice in
ethanol followed by evaporation to a gummy precipitate. Acetone was added to this
followed by mechanical workiﬂg with a stirring rod to producé a white granular powder
which was vacﬁum dried (1.8 g, 887%). Paper chromatography with ethylacetate—
pyridine-water (8:2:1, vol.) showed the material to be xylobiose with a slight
impurity presumed to be the arabino analog (1). A sharp melting point was not
obtained. A portion of ! was dissolved in H70 and treated with Ambe?lite IR~120 ion

exchange resin (acid form) to remove any transition metal ions. The solution was
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filtered, evaporated in vacuo, and recovered as the acetone powder in the same

manner as above.

Benzyl 2,3-anhydro-4-0-(2',3',4',6'-tetra-0-acetyl-B-D-glucopyranosyl)-B-D-ribo-—
BzriﬁSéi@g (L%)

Compound 15 (5.0 g) was combined with dry chloroform (81 mL), 10-20 mesh
Drierite (31 g), A-4 molecular sieves (10 g), and freshly prepared silver oxide
(16.7 g). Todine (1.8 g) was added after 24 hours of stirring in the dark. The
glucosyl bromide 14 (30 g) in dry chloroform (160 mL) was then added slowly.
Reaction procedures and work-up were the same as for compound 6. A light yellow

syrup showing 4 spotsAby TLC was obtained (30 g).

Benzyl 2,3-anhydro-4-0-(B8-D-glucopyranosyl)-B-D-ribopyranoside (11)

The syrup (12) from the Koenigs—Knorr condensation was deacetylated with metha-
nolic sodium methoxide in a manner similar to 5. The resulting syrup was frac-
tionated on a silica-gel column with chloroform/methanol (4:1). TFour fractions
resulted which were characterized by 13c_NMR. The fractions corresponding to 11
were evaporated in vacuo to a syrup which rapidly crystallized. Recrystallizatién
was from water; mp. 139-141°C. The crystals were needle-like in appearance [l.5 g,

17% (based on Lz)].

Benzyl 4-0-(8-D-glucopyranosyl)-B-D-xylopyranose (9)

Compound 11 (970 mg) was reacted in aqueous sodium hydroxide (2N, 100 mL) at
near boiling (77°C, 6 hours) under a nitrogen atmosphere with stirring. The solu-
tion was cooled, deionized with Amberlite IR-120 resin, filtered, with subsequent
washing of the resin with hot water, and evaporated to a hard brown syrup

(approximately 1 g, ca. 100%).
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4-0-B~D-glucosyl-D-xylose (Securidebiose) (7)

Syrupy éompoundvg (1 g) was mixed witﬁ 10%Z palladium-on-carbon catalyst (500
mg) in a water/methanol (50:50 v/v, 80 mL)-éolvenﬁ and hydrogenated at atmospheric
pressure for 4 days. .The resulting slﬁrry was filtered through celite, tﬁe celite
washed with hot methanol and hot water, deionized with IR-120 resin, and evaporated
‘to a syrup. Powdered 7 was obtained by macérating under acetone. -Compound 1 was
first precipitated by succéssively adding and evaporating ethanol from the syrup.

Powdered 7 (600 mg, 77%) did not give a sharp melting point.

METHYL-B-CELLOBIOSIDE SYNTHESIS

Cellobiose Octaacetate (%1)

Compouﬁd 27 was prepared by reacting cellobiose (2 g, Matheson-Coleman—~Bell)
with sodium acetate (2.4 g) and acetic anhydride (37 mL) at reflux with stirring
(3.5 h). The mixture was cooled and poured into ice-water (350 mL) with vigorous
stirring. Crystals formed overnight, were filtered, washed with water, and evap-
orated in vacuo (3.3 g, yield 83%). The product was recrystallized from ethanol;

m.p. 190-193. Literature (3) m.p. 192°C.

Hepta-O-acetyl-a-cellobiosyl Bromide (25)

The bromide was prepared by reacting 27 (3.1 g) with HBr (32% in acetic acid,
18 mL) in a stoppered flask on a shaker for 1.5 hours. The mixture was immediately
poured into ice-water (166 mL) with vigorous stirring. Chloroform (30 mL) was imme-
diately added, the chloroform layer separated, and the residual water washed with
chloroform. The combined chloroform layers were washed successively Qith cold water
and aqueous sodium bicarbonate (100 mL, saturated). The chloroform layer was dried
over calcium chloride, evaporated in vacuo to a syrup, and was treated with petroleum

ether (low boiling) until turbid. A crystalline material formed which was filtered,

washed with petroleum ether, and dried in vacuo (Z.S-g, 78%); m.p. 195-198°C.
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Methyl B-cellobioside Heptaacetate (23)

Compound 25 (2.1 g) was mixed with dry chloroform (20 mL) and dfopped over a 1
hour period into a 3-necked flask containing 10-20 mesh Drierite (4 g), mercuric
oxide (700 mg, yellow), mercuric bromide (40 g), dry chloroform (10 mL), and metha-
nol (0.6 mL). The contents had been equilibrated for 1 hour prior to addi;ion of
the 25. The mixture was stirred for 15 hours at room temperature, filtered through
celite, and washed Qith additional chloroform. The filtrate was evaporated in vacuo
to a syrup. The syrup was dissolved in methanol from which crystals formed upon
refrigeration. These were filtered, washed with cold methanol, and dried in vacuo

(750 mg, 38%); m.p. 181-185°C. 13c-NMR confirmed the assignment of this compound.

Methyl-B-cellobioside (21)

Methyl-B8-cellobioside was formed from 23 (350 mg) by treating a methanol solu-
tion of 23 with methanolic sodium methoxide (0.5N, 5 mL) over a steam bath. The
reaction waé monitored by TLC using chloroform—methanol (4:1, vol.). The mi#ture
was refrigerated with crystals forming after several days. The crystals were
filtered, washed with cold methanol, and dried in vacuo (225 mg, 100%Z); m.p.

175-178. Literature (3) m.p. 170.5-174.
METHYL B-XYLOBIOSIDE SYNTHESIS

The synthesis of methyl B-xylobioside from xylobiose was essentially the same
as the synthesis of methyl B-cellobioside (gL) from cellobiose. Refer to the

description of the synthetic sequence for 21 for details.

Xylobiose Hexaacetate (2)

The procedure used was essentially that of Whistler (4). Synthetically pre-
pared xylobiose (1.8 g)-was combined with acetic acid (1.8 ,mL), acetic anhydride

(10 mL), and sodium acetate (1.8 g) and heated on a steam bath for about 1 hour.
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TLC with chloroform—ethylacetate (4:1, vol.) was used to monitor the reaction.

After cooling, the reaction mixture was poured into ice water (75 mL) with vigorous
stirring. This resulted in a syrup which formed on standing. The syrup was taken up
in chloroform. The chloroform solution was washed with saturated sodium bicarbonate
solution followed by water until the wash was neutral. The chloroform solution was
dried over calcium chloride, filtered, and reduced to a syrup (3.7 g). The syrup

was crystallized from ethanol (1.5 g, 44%); m.p. 144-149. Literature (4) m.p.

155.5-156°C. 13C-NMR indicated a minor impurity.

Penta-O-acetyl-a-xylobiosyl Bromide (24)

Compound 2 (l.4 g) was dissolved in dry chloroform (14 mL) to which hydrogen
bromide in acetic acid (5 mL, 42%) was slowly added. The mixture was kept at 0°C.
for 2 hours. The mixture was poured into ice water and worked up in the same manner

as 25. The resulting syrup (1.2 g) did not crystallize.

Methyl B-xylobioside Pentaacetate (22)

Compound 24 (1.2 g) in chloroform (20 mL) was élowly added to a stirredAslurry
containing chloroform (20 mL), 10-20 mesh Drierite, mercuric»oxide (1.1 g, yellow),
and mercuric bromide (100 mg). The mixture was allowed to react overnight and then
worked up in the same manner as for 23. The resulting syrupy product (1.3 g) was

deacetylated immediately;

Methyl B-xylobioside (20)

" The syrup (1.3 g) obtained in the synthesis of 22 was dissolved in methanol
(10 mL) and deacetylated on a steam bath with methanolic sodium methoxide (5 mL,
0.5N). The clear solution was refrigerated several days without producing crystals,
filtered, and evaporated ig_&gggg to a syrup. The syrup would not crystallize. It

was redissolved in water and treated with Amberlite IR-120 ion-exchange resin until
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neutral. The solution was filtered and reduced again to a syrup in vacuo. 13c-NMR
was consistent with 20 buf with several impurities. TLC using chloroform—

methanol (3:1, vol.) indicated at least 3 components. The syrup (0.5 g) was
treated at 0°C. with acetic anhydride-pyridine (50:50) to reform the acetate (2£)°
The mixture was dissolved in ice water, taken up in chloroform, and washed with
dilute sulfuric acid‘and water to remove excess pyridine. The chloroform was dried
and reduced to a syrup (1.8 g). TLC in chloroform-ethyl acetate (4:1, vol.)

showed two components. The syrup was fractionated by passing over a silica-gel
column using chloroform—ethylacetate (4:1) as the solvent. A middle fraction was
collected, reduced to a syrup, and shown to be the acetate gglby 13c-NMR. Some
crystalg formed in the syrup. The major impurity was determined to be methyl B-

xyloside triacetate by 13c-NMR.

The acetate syrup was deacetylated in the same manner as before. The resulting
syrup crystallized. Successive recrystallization from ethanol gave an NMR pure pro-
duct (26.4 mg) m.p. 174-177.5. Literature (4,5) m.p. 103-104°C. and 148.5-149°C.,

suggesting several polymorphs may exist.
PREPARATION OF C-DEUTERATED COMPOUNDS

Backbone deuperation of the hydroxylated carbons were affected using the Raﬁey
nickel procedures described by Koch and Stuart (5). Pure compounds are not obtained
because of a tendency to invert configuration; particularly at C4; Also, only par-
tial exchange occurs at some carbons, notably Cp, because of steric hindrance. The

reactions are conveniently monitored by 13c-NMR. The major products are described

below.

Methyl B-xyloside-3,4-dp (29)

Methyl B-xylopyranoside (28) (1.0 g, Pfanstiehl) was dissolved in D70 (20 mL)

and allowed to stand in a vacuum oven (40°C.) overnight until a dried film was
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obtained. This material was mixed with Dy0 (60 mL) and deuterated Raney—nigkel (20
mL settled volume) and refluxed for 12 hours. Samples were periodically taken for
TLC and NMR analysis. The cooled mixture was filtered through celite, washgd

with water, and evaporated in vacuo to a syrup. 13C-NMR confirms that the major

product is methyl-g-xylopyranoside-2,4-ds.

Methyl B-glucoside-3,4,6,6',-d, (gl)

Methyl B-glucoside (30) (1.5 g) was treated in an identical manner as for 28
for 20 hours. The filtrate was treated with Amberlite IR-120 ioh—exchange.fo remove
any transition metal ion impurities. A clear white syrup resulted. The assignment

was confirmed by 13c-NMR.

Methyl-B-cellobioside-3 ,6a,6b,2' 53,4 ’6'8’ 6'b—d8 (2%)

MBC2-dg was prepared by refluxing 21 (200 mg) in D50 (50 mL) with deuterated
Raney—nickél. Progress of the reaction was followed by 13c-NMR. When the reaction
was complete (11 hours) the mixture was filtered through celite, the celite was
washed with water, the combined filtrates deionized with Amberlite IR-120, and the
filtrate evaporated to a syrup in vacuo. The syrup would not crystallize from
methanol. It was used directly for NMR experiments. The NMR spectrum was nearly

identical to that in the literature (7).
MISCELLANEOUS COMPOUNDS

A number of éompounds were obtained in small quantities from other investiga-
tors. The compounds and their source are indicated below. In each case the 13c-NMR

spectrum was consistent with the proposed structure.

The xylo-oligosaccharides were obtained from Dr. K. P. Carlson (IPC) as were

samples of cellotetraose. The former had come from the laboratory of Professor T.
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E. Timell (SUNY-Syracuse). The latter was obtained by Carlson from cellulose acid
hydrolysis and carbon-celite column chromatography (8). Cellotriose was obtained
from Professors A. J. Michell (Division of Forest Products, C.S.I.R.0., South
Melbourne, Australia) and R. Brown, Jr. (Virginia PolytechniclInstitute). The
cello-oligosaccharide peracetates were obtained from Dr. L. Schroeder (IPC).
Mannobiose and 4-0-B-D-glucosyl-D-mannopyranose were obtained from Dr. N. S.
Thompson,(I?Q)e A sample bf 1,5 anhydrocelloﬁiotol was obtained with the aid of

Dr. T. Wylie (9).
CATALYSTS AND REAGENTS

Hydrogen Bromide in Acetic Acid

Prepared by bubbling HBr gas through a series of vessels containing neat acetic

acid. Composition was monitored by observing changing sample weight.

Methanolic Sodium Methoxide (0.5N)

Sodium metal (11 g) was slowly added to methanol (l1L). Care was taken to

avoid excessive generation of heat.

Silver Oxide

A hot caustic solution (46 g sodium hydroxide in 14.75 mL water) was slowly
poured into a hot solution-of silver nitrate (200 g in 1920 mL water) with vigorous
stirring in minimal light. The slurry was filtered, washed 5 times with water (1L),
once with acetone (500 mL), and once with low boiling petroleum ether (500 mL). The
product was placed in a covered dish to egclude light and dried in vacuo. The pro-

duct was stored in the dark.

Palladium on Carbon Catalyst (10%)

Sufficient catalyst was obtained from Dr. R. Niebauer (IPC) (10).
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Deuterated Raney Nickel

Nickel~aluminum alloy (75 g; 50:50) was slowly added to an aqueous caustic
solution (95 g sodium hydroxide in 25 mL H70) with occasional stirring. A 2-liter
flask was used to allow for some foaming. Care was taken to avoid boiling of the
mixture though the slurry was allowed to. get hot to the touch. The slurry was
allowed to stand overnight. After standing the slurry was heated on a steam bath
for 2 hours. The aqueous phase was decanted and replaced with 1-2L of water. This
was repeated about 20 times until the wash water was neutral. Care must be taken
not to allow the solid material to dry because of its pyrophoric nature. The slurry

was stirred under water in a tightly capped bottle in the refrigerator.

Prior to deuteration, the necessary amount of catalyst was placed in a sintered
glass filter. The excess water was drawn off the top and then replaced with
deuterium oxide (98%). The process was repeated 5-6 times so that replacement of

the water with D0 is about complete.
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APPENDIX XI

13c-NMR SPECTRA OF DERIVATIVES PREPARED IN ROUTE TO XYLOBIOSE (1), SECURIDEBIOSE
(1), METHYL B-XYLOBIOSIDE (zg), AND METHYL B-CELLOBIOSIDE (%L)

This appendix contains the decoupled 13¢-NMR spectra (25.05 MHZ) of the deriva-
tives obtained in route to compounds 1, 7, 20, and 21. Refer to Section 4, Part I

for the general synthétic scheme and Section 4, Part I1 for detailed assignments.

Key
I = impurity
S = solvent



PEAK NUMBER PR ASSIGNMENT

1 138.0 Aromatic
2 128.0 Aromatic
3 127.2 Aromatic
4 127.1 Aromatic
5 98.8 c-1 Y
6 69.0  C-2, C-3, C-4 or Bn CHy OBn
7 68.5 Cc-2, C-3, -4 or Bn CHy O
8 68.3 C-2, C-3, C-4 or Bn CHy O
9 68.1 €-2, C-3, C-4 or Bn CHy
10 63.2 -5 OH
11 42.0 Solvent
12 4l.1 Solvent
13 Wb Solvent
14 o Solvent
15 39.7 Solvent
16 39.4 Solvent
17 9.0 Solvent
18 38.8 Solvent
19 38.6 Solvent
20 8.0 Solvent
21 37.8 Solvent
22 36.9 Solvent
23 0.0 TMS

1 1 ) | ) L 1 1 ] L

Figure 1. Benzyl B-D-arabinopyranoside (16) in DMSO

ppm

—d6o

4 %




ASSIGNMENT

PEAK NUMBER PPM
1 137.1 Aromatic O OBn
2 128.5 Aromatic
3 127.9 Aromatic O
4 109.2 Acetal Carbon
5 96.9 c-1 R O
6 78.3 Solvent
7 77.0 Solvent R
8 75.9 C-3 or C-4 .
9 75.8 Solvent where R is methyl
10 72.9 C-3 or C-4
11 69.9 C-2 or Bn CHp
12 69.8 C-2 or Bn CH2
13 0.0 c-5
14 27.8 Methyl
15 25.9 Methyl
16 0.0 TMS
1 1 i 1 I 1 | | 1 L
200 180 160 140 120 100 80 60 40 20
ppm
Figure 2. Benzyl 3,4~0 - isopropylidene - B-D-arabinopyranoside (17) in CDClj3.
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OBn
PEAK NUMBER PPM ASSTGNMENT OR
1 145.5 Aromatic A O
2 137.6 Aromatic
3 134.1 Atomat ic O
“ 130.3 Aromatic R
5 128.7 Aromatic .
6 128.5 Aromatic : R
7 128.1 Aromatic where R s p - toluenesulphonate
8 109.3 Acetal , .
9 96.4 c-1 where R’ is methyl
10 80.1 c-2, C-3, or C-4
11l 74.5 c-2, C-3, or C-4
12 73.1 c-2, C-3, or C-4
13 70.2 Bn CHy
14 59.1 c-5
15 31.3 Solvent
16 30.3 Solvent
T 17 29.7 Solvent ;
18 28.9 Solvent
19 28.2 Solvent
20 27.8 Methyl
21 26.2 Methyl
22 21.4 Methyl
23 6.5 Carbonyl toldback

~9¢y-

! 1 1 I e
200 180 160 140 120 100 80 60 40
ppm

Figure 3. Benzyl 2-0-p-tosylsulfonsyl - 3, 4-0-isopropylidene -
B—O-arabinopyranoside (18) in acetone -dg-



PEAK NUMBER

PPM

145.2
129.8
129.6

128.4
128.3
127.9

127.8
78.2
78.1
77.0
75.7

69.6

69.4

67.2

62.0
21.6

Aromatic
Aromatic
Aromatic

Aromatic
Aromatic
Aromatic

Aromatic
c-1
c-2

Solvent
Solvent
Solvent

MWWAWQ WWM

HO
OH

.

OBn

where R is p-toluenesulphonate

=l

I
200

Figure 4.
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180 160 140

Benzyl 2-0 - p-tosylsulfonsyl - B-D-arabinopyranoside (19) in CnClj3.
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ppm
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OBn

HO
PEAK NUMBER PPM ASSIGNMENT O
i 137.0 Aromatic
2 128.4 Aromatic
3 128.0 Aromatic
4 127.9 Aromatic
5 93.6 c-1
[} 78.4 Solvent
7 77.1 Solvent
8 75.8 Solvent
9 70.0 Bn CH2
10 62.1 c-5
11 61.7 c-4
12 51.9 C-2 and (-3
13 0.0 ™S
1 1 1 | 1 | A ] 1 ]
200 180 160 140 120 100 80 60 40. 20

Figure 5. Benzyl 2,3-anhydro - B-D-ribopyranoside (15) in CDCl3.

ppm

1%




PEAX NUMBER PPM ASS1GNMENT OR
1 169.8 Carbonyl
2 . 169.2 Carbonyl . OR O .
3 138.4 Aromatic OR OBn
4 128.8 Aromatic
5 128.4 Aromatic
[ 128.2 Aromatic o} o
7 101.2 c-1' O
8 95.5 c-1 .
5 1703 ©6a2', €e3' or o4 where R is acetate
10 71.8 c-2', C<3' or C-4
11 71.5 c-2', C~3"' or C-4
12 : 70.6 C-4' or Ba CH,
13 69.6 C-4' or Bn CHy
14 62,7 c-5"
15 59.6 c-5
16 53.4 c-3
17 51.9 c-2
18 32.0 Solvent
19 31.3 Solvent
20 30.5 Solvent
21 29.8 Solvent
22 29.0 Solvent
23 28.2 Solvent
24 27 .4 Solvent
25 20.6 Methyl
26 6.4 Carbonyl foldback
27 .0 TMS

W%Wwf (M

! L L L l L
200 180 160 140 120 100 - 80 60 40 20
ppm

Figure 6. Benzyl 2,3-anhydro-4-0-(2',3',4' tri-O-acetyl-B-xylopyranosyl) -
B-D-ribopyranoside (6) in acetone -dg-.
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OH

HO ?
OH OBn
PEAK NUMBER PPM ASSIGNMENT
1 137.4 Aromatic ) O
2 128.1 Aromatic
3 127.6 Aromatic O
4 " 127.5 Aromatic
5 103.5 c-1'
6 94.2 c-1
7 76.5 c-3'
8 72.9 c-2'
9 69.8 C-4' or C-4
10 69.3 Bn CH, and C-4' or C-4
11 65.6 c-5'
12 58.8 c-5 ,
13 52.0 C-3 w &
14 51.1 C-2 4 -7
15 41,9 Solvent
16 41,1 Solvent |
17 40.3 Solvent -y
18 3%.4 Solvent o
i
19 38.5 Solvent
20 37.7 Solvent
21 36.9 Solvent
22 0.0 T™S
. |
L 4 l. 1 | | J 1 L 1 | |
200 180 160 140 120 100 . 80 60 40 20 o)

ppm

Figure 7. Benzyl 2,3-anhydro-4-0 -(B-D-xylopyranosyl)-g~D-ribopyranoside (5) in

DMSO _d6 o
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Figure 9. Benzyl 2,3-anhydro-4-0-(B-D-glucopyranosyl)-B-D-ribopyranoside (11) in

Dzo.




PEAK NUMBER PPM | _ASSIGNMENT
1 137.8 Aromatic
2 128,0 Aromatic OH
3 127.4 Aromatic
4 102.7 c-1' HO O
5 101.8 c-1 OMH OBn
6 76.1 Cc-3' or C-4 OH
7 75.3 ¢-3" or C-t o) O
8 74.1 ¢-2, c-2' or C-3
9 73.1 c-2, C-2' or C-3 OH
10 72.4 c-2, €-2' or C-3
1 69.6 Bn CHy
12 69.4 c-4'
13 - 65.7 c-5'
14 63.1 c-5
15 56.0
16 41,8 Solvent
17 41.0 Solvent
18 40.2 Solvent |
19 39.3 Solvent g
20 38.4 Solvent w
21 7.6 Solvent |
22 36.8 Solvent
23 18.4
24 0.0 ™S

| t ! 1 l ] 1 1 :
200 180 160 140 120 100 80 60 40 - 20 - 0

ppm

Figure 10. Benzyl xylobioside (3) in DMSO-dg.
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Figure 11. Benzyl xylobioside (3) in D50.
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Figure 12. Benzyl 4-0-(B-D-glucopyranosyl)-D-xylopyranose (9) in D,0.
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PEAK NUMBER i ASSIGNMENT OR

169.8 Carbonyl O
169.4 Carbonyl O
169.2 Carbonyl OR OR
100.6 c-1' O OR
92.7 c-1

75.4 C-4 O OR
72.6 c-2, c-2', ¢-3 or C-3'

71.9 c-2, ¢c-2", ¢~3 or Cc-3' H

71.3 -2, €-2'. C-3 or C-3' where R is acetate
70.6 ¢-2, c-2', C-3 or C-3'

69.4 c-4'

63.9 Cc-5 or C-5'

62.5 c-5 or C-5'

32.0 Solvent

31.3 Solvent

30.5 Solvent

29.8 Solvent

29,0 Solvent

28,2 Sulvent

27.% Salveat

20,8 Methyl

20.6 Methyl

6.4 Carbonyl foldback

0.0 ™S

!
200

N
o
O}

i ] | 1 ]
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ppm

Figure 13. B-xylobiose hexaacetate (2b) in acetone-d6.
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‘Figure 14. Methyl B-xylobioside pentaacetate (gﬂg’) in CDC1j.
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Figure 15. Methyl B-cellobioside heptaacetate (23) in CDC13.
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APPENDIX XII

13¢_NMR SPECTRA AND ASSIGNMENTS OF THE CELLO-OLIGOSACCHARIDE
PERACETATES AND RELATED COMPOUNDS

During the course of this work the decoupled 13c-NMR spectra of the cello-
oligosaccharide peracetates, up to the hexamer, were recorded in acetone—dg. The
spectra are shown in Fig. 1 to 5. It was hoped that variations in signal intensity
from the dimer to the hexamer would be beneficial in assigning signals to the ter-
minal and internal anhydroglucose residues, as well as to the individual carbon
atoms of the disaccharide. If specific assignments could be made, then the spectrum
of B-xylobiose hexaacetate might also be assigned with confidence, using the acetyl

substitute effects derived from the data.

Assignments for the mono— and disaccharides are listed in Table I and assign-
ments for the oligosaccharides in Table II. Several assignments are also given from
the literature for Ref. (1,2,3). The assignments given here are consistent, in rela-

tive order, with recent literature assignments.

One problem with comparing this work to the literature is that different
solvents [acetone-dg here, CDClj in the literature (1,2,3)] were used, with the
consequence that the appearance of the spectra are slightly different. For example,
the oligosaccharide signals at about 69.8 and 70.3 ppm in acetone-dg appear as one

signal in CDClj at 69.4 ppm.

Assignment of the oligosaccharide signals to the internal and terminal units is
straightforward on the basis of peak intensities for the spectra shown. Signals
that steadily increase in intensity with increasing chain length are indicated in
Table 11 and are assigned to the internal unifs. Unfortunately, assignment of

signals to the individual Cy, C3, and Cg carbons is still not feasible. This 1is
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because of the close proximity of signals in the region from 69.8 to 73.5 ppm. If
these assignments could be made with confidence, by spin decoupling or other
methods, then it might be possible to determine the specific acetyl substituent

effects in the cello-oligosaccharides.

Key

wn
1]

solvent

R = reference
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Figure 1.
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13c-NMr spectrum of a-cellobiose octaacetate in acetone-dg-.




Figure 2. 13c-NMR spectrum of a-cellotriose peracetate in

acetone—d6.
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Figure 3. 13c-NMR spectrum of a-cellotetraose pefacetate in acetone-dg.




Figure 4.

13c-NMr spectrum of a-cellopentaose peracetate in acetone-dg.
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Figure 5. 13c-NMR spectrum of a-cellohexaose peracetate in acetone-dg.
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Compound
B-X1Acd
B-X2AC

B-GlAC

B-G2AC

3Relative to internal (CHy), Si.

Assignment tentative, can be exchanged with nearby signal.
CSpectrum taken from
dNomenclature: XIAC =
C2AC =

13c-NMR ASSTIGNMENTS? FOR THE ACETYLATED B-ANOMERS OF XYLOSE, GLUCOSE, XYLOBIOSE,

Solvent
Acetone-dg
Acetone-dg

Acetone-dg

CDC14

1

92.2

92.7

92.1

91.6

2
69.60
70.6b

71.1b

70.4b,d

the literature.

xylose tetraacetate, X2AC = xylobiose hexaacetate, GlAC = glucose pentaacetate and
cellobiose octaacetate.

3
71.1b
72.6b

73.0°

72.4b,d

TABLE T

5 6 1 2! 3 4
62.9
63.9 100.6 71.3b 71.6 69.4
73.0°>  62.3
73.6>  61.7 100.7 71.6P 72.9®  67.9

AND CELLOBIOSE

5'

62.5

72.0b

6'

Utille

61.7

Capon
Gagnaire

ne

-96%-




TABLE TI

13c-NMR ASSIGNMENTS® OF THE CELLO-OLIGOSACCHARIDE PERACETATES IN ACETONE-dg

.Compound Unit Solvent 1 2 3 4 5 6
aG1ACC»d CDCl4 89.1 69.3b 69.9P 68.0 69.9P 61.
aC2AC Reducing Acetone-dg 89.3 .70.2P 69.8P 76.6 71.5P 62.
terminal 101.2 72.3b 73.5P 68.8 72.3b 62.
aC2AC Reducing " 89.4 70.3b 69.9P 76.7 71.6P 62.
Internal 101.2 72.5P 73.2b 76.9 73.4b 63.
terminal ‘ 101.2 72.3b 73.5b 68.7 72.3b 62.
aC4AC Reducing " - 89.4 70.3b 69.9b 76.7 71.6b 62.
Internal 101.2 72.5b% 77.3bx 76.9% 73.3bx 63.
terminal 101.2 72.3b 73.5b 68.7 72.3b 62.
aC5AC Reducing " 89.4 70.3b 69.7b 76.7 71.6b 62.
Internal 101.0 72.5bx 73.3bx 77.0X 73.3bx 63.
terminal 101.0 73.5b 68.8 72.3b 62.3
aC6AC Reducing " 89.3 70.2P 69.8P 76.7 71.5b 62.
Internal 101.0 72.5b 73.1b 76.9 73.3b 63.
terminal 101.0 72.4P5¢ 733 68.7 72.4b,¢ 2.
8Relative to internal (CH3)481. In some cases acetone-dg at 29.7 ppm was used as a secondary

reference to avoid contamination of the sample.
bAssignment tentative; can be exchanged with nearby signal of similar intensity.
CSee Ref. 1.
dNomenclature: Gl-glucose, C2-cellobiose, C3-cellotriose, etc.
€observed as shoulder on a larger signal.
£X refers to signal that is relatively more intense in this spectrum than in the one above.

w O W

-LSY-
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APPENDIX XIII

13c-NMR SPECTRA OF THE XYLO- AND CELLO-OLIGOSACHARIDES
AND RELATED CARBOHYDRATES

This appendix contains the decoupled 13c-NMR spectra (25.05 MHZ) of the xylo-
and cello-oligosaccharides, and related compounds. Refer to Section 4, Part III for
detailed assignments. Spectra of esparto-xylan and maltose are also included. All

spectra are at ambient temperature unless otherwise noted.

I = impurity

w
1l

solvent

o
]

dioxane




Xylose

3 1 1 1 | 1
110 100 90 80 70 60
PPR

Figure 1. Xylose in D,0.
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Figure 2. Xylobiose in D50.
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Figure 3.
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Xylobiose in DMSO-dg .
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Figure 4. Xylotriose in D50.




Figure 5.

Xylotetraose in D50.
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Figure 6.

Xylopentaose in D5y0.



Figure 7.

Expansion of Fig. 6.
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Figure 8. Esparto xylan in D50 at 58°C. Refer to the literature for more in-depth
assignments (1,2). The spectrum is consistent with primarily a B-1,4-
linked xylan containing some B-1,3-linked side chains.
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Figure 9. Methyl B-xyloside in DMSO0-dg-.
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METHYL B—XYLOBlOSIDE

-69%-

Mﬁ‘f‘]"h‘ ‘M“‘W'Ml"wdk\lh MW*{‘ /"*#-%“-*"."\I‘W\N)T~ %W'Q»W*M\"’J 'J Jv M r“l .v‘thJ. l'\. ) WA \ 'J'\u PR Ry SR O M;
3 1 1 1 | 1 1
110 100 90 80 70 60 50
PPM

Figure 10. Methyl B-xylobioside in D,0.
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ALDOTRIURONIC ACID
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Figure 11. Aldotriuronic acid in Dy0.
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Figure 13. Glucose in Dy0.
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CELLOBIOSE

Figure 14. Cellobiose in D5O0.
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Figure 15.

Cellobiose 'in DMSO-dg.
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70

PPM

Cellotriose in D»0.
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Figure 18. Cellotetraose in D70 at 54°C with expanded Cy» C4, and Cg regions.
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Figure 20. Methyl B-glucoside in DMSO-dg.
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Figure 21. Methyl B-cellobioside in D50.
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Figure 22. 1,5 Anhydrocellobiotol in DMSO-dg .
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Lactose in DMSO—d6.
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Figure 24. 4-0-(B-D-glucopyranosyl)-D-mannopyranose in D70,
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Figure 25. Mannobiose in D50.
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Figure 26. Maltose in DMSO-dg at 63°C.
the literature (2).
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