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THE INSTITUTE OF PAPER CHEMISTRY

Appleton, Wisconsin

THEORY, USE AND CALIBRATION OF
BURSTING STRENGTH TESTERS

SUMMARY

A review is given of the literature on the theory, use, and calibration

of bursting strength testers for the last seventy years. The most widely used

instruments for testing paperboard in the United States, the Mullen and Cady

testers, have received the most attention in this review. A bibliography of the

78 most pertinent references are appended.
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INTRODUCTION

In preparing this review, extensive use was made of the IPC biblio-

graphic series on paper testing (1-4). These were supplemented by a search of

the Abstract Bulletin of The Institute of Paper Chemistry for the more recent

period through June 1971. Inasmuch as the literature is quite extensive and

dates over sixty or more years, no claim is made for completeness, although it is

believed the survey has included all of the more important recent articles.

;.' .- Primary attention has been focused on the more widely used instruments

for testing paperboard in the United States such as the various models of the

Mullen tester made by the B. F. Perkins Division, Standard International Corpor-

ation, and the Cady testers made by the E. J. Cady Company. References in the

foreign literature have been included where pertinent; however, it was deemed to

be beyond the scope of this review to catalog the many types of bursting strength

testers developed in this country and abroad over the past seventy or more years.

The invention of the Mullen tester by J. W. Mullen dates back to 1887.

In 1907 a bursting strength specification was introduced into what is now the

Uniform Freight Classification. An interesting account of this development

has been written by Bettendorf (5).

A number of types of bursting strength testers are described in the

; ` literature, many of which are primarily of historical interest such as the Webb

and Eddy testers (6,7). Additional references to these and other testers may be

found in the bibliographies cited above. Many instruments for measurement of

bursting strength have also been devised in Europe and elsewhere such as the

Schopper-Dalen, Lhomargy, Lorentzen and Wettres, Stalybridge England air burst,

and Frank testers. Comparisons of Mullen and Schopper-Dalen instruments have

[t,
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been made by Sleber (8), Oliver (9), Underhay (10), Thoden (11), Michalik (12),

and Mltltelu (13). Hailer (14) has compared Frank and Mullen bursting strength

testers having hydraulic clamping devices.

Instruments which are widely employed for testing the bursting strength

of paperboard in the United States are the Model A and AH Mullen testers and to a

lesser extent the Cady instruments. The Model A Mullen testers are available with

hand clamping and Model AH with hydraulic clamping. A redesigned Cady tester is

available which automatically clamps the sample and starts the burst cycle (15).
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SPECIFICATIONS AND METHODS

*~: ~ Bursting strength specifications for corrugated and solid fiberboard

are contained in the Common Carrier Classifications. These include the following:

a. Uniform Freight Classification for railroad shipment

b. National Motor Freight Classification for motor carrier shipment

c. Coordinated Freight Classification for motor carrier shipments

which originate and terminate in New England

d. Official Express Classification for Railroad Express Agency

shipment

The various classification documents specify similar bursting strength

test procedures. For example, Rule 41 of the Uniform Freight Classification

specifies the following bursting strength test procedure to be carried out after

conditioning the board to equilibrium at 50% R.H., 73°F.:

Bursting Test Procedure

"Note 1. (a) Minimum test per square inch referred to in this rule,

in separate descriptions of articles, or in descriptions of package numbers,

except in the case of triple wall board, means the bursting strength of material

in pounds per square inch, measured by tests made with the Cady or Mullen tester.

The diaphragm used in this tester shall be such that a pressure of 23 to 30

pounds will distend it to a height of 3/8 inch above the diaphragm plate. A

motor-driven tester of the jumbo type operating at a constant speed of approxi-

mately 120 revolutions per minute shall be used.

"(b) In applying Cady or Mullen tests, a specimen of the board shall

be clamped firmly in the machine to prevent slippage. If board slips during
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tests, the results must be disregarded. In testing corrugated board, double-pop

tests may be disregarded.

"(c) Six bursts must be made on unscored areas, 3 from each side of

the board. Only one burst is permitted to fall below minimum test required.

Board failing to pass foregoing test will be accepted if in a retest consisting 

of 24 bursts, 12 from each side of board, not over 4 bursts fall below the minimum

test required. When individual bursts in a series are invalidated for reasons

described under Paragraph (b), and disregarded, additional bursts shall be made

until the total number of valid bursts required to complete the series (6 or 24,

as the case may be) has been secured."

While Rule 41 specifies a diaphragm pressure tolerance and test speed,

no procedures for determining compliance are prescribed. Other instrumental ;.

variables such as indicator calibration, platen condition, etc., which affect '-".

test results are not mentioned. The clamping pressure to be used is left to the H

discretion of the operator except that tests where visible slippage occur must 

be disregarded.

TAPPI Methods T 807 and T 810 describe procedures for evaluating the

bursting strength of paperboard and corrugated board (including solid fiber-

board), respectively. They differ primarily with regard to clamping pressure. ,

Method T 807 specifies a clamping pressure of 100 p.s.i., whereas T 810 specifies

that the clamping pressure should be sufficient to prevent slippage. ASTM Methods

D2529 and D2738 correspond to the TAPPI methods mentioned above,

The literature concerned with the theory of the bursting strength test

and the effects of instrumental variables on bursting strength are briefly re-

viewed in the following section.
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THEORY OF BURSTING STRENGTH TEST

The bursting strength test involves application of increasing pressure

through a rubber diaphragm to a circular area of the specimen which is firmly

clamped around the periphery of the test area. The maximum pressure when the

specimen ruptures is termed the bursting strength and includes the pressure con-

tribution of the diaphragm in addition to that caused by the test specimen.

l;'i ~ Thus, the bursting strength specimen corresponds to a clamped circular

plate exposed to a lateral pressure. A comprehensive treatment of the behavior

of such plates has been made by Timoshenko, et al. (16). As pressure is applied

',. to the specimen, bending and shear stresses are induced in the specimen as well

as direct tension stresses due to stretching in the middle plane of the specimen.

Reference (16) indicates that, for thin sheets.at relatively large deflections,

the bending and shear stresses are small in comparison with the direct tension

stresses and may be neglected. Hence, as developed in later pages, bursting

strength is primarily dependent on the tensile strengths and stretches.of the

sheet in the machine- and cross-directions.

Theoretical relationships between bursting strength and other proper-

ties of paper and paperboard have received much attention. However, due to the

various simplifying assumptions inherent in most of the treatments, the theoret-

ical results are most applicable to thin papers and less applicable to heavier

paperboards and corrugated boards.

In 1924 Carson (17) suggested that an equation for the stress in the

walls of a spherical pressure vessel could be used to relate bursting strength

to tensile strength and stretch. The equation (taken from Marks Mechanical

Engineering Handbook) is as follows:

s-
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PR = 2T (1)

where

P = bursting strength

R = radius of curvature of the specimen at rupture

T = tensile strength

In Equation (1) the radius of curvature is related to the stretch of

the specimen by the following expression (18,19)

(e/100) + 1 = (R/r) arc sin r/R (2) 

where ;

e = breaking strain 

R = radius of curvature

r = radius of orifice

Thus, the equation used by Carson indicates that bursting strength

should be primarily related to tensile strength and stretch of the sheet.

Several years later, in 1930, Carson and Worthington (18,19) carried

out extensive tests in which the deflection of the bulge at failure was

measured. Analysis of the results in terms of Equations (1) and (2) indicated

that the bursting strength of machine-made paper is fairly well related to M.D.

tensile strength and stretch. [Note: This conclusion pertains to conventional

machine-made papers where the M.D. stretch is normally less than the C.D. stretch.]

Campbell (20) found that the shape of the bulge prior to rupture was

approximately sphericaland deduced that approximately equal strains are induced

in all directions in the plane of the sheet for both handsheets and machine-made

papers. Later unpublished work at the IPC indicated that the sphericity of the

in I
IP
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bulged specimen is a reasonable approximation within a few percent when analyzed

in terms of vertical displacement of the specimen at a few selected points.

Clemens (21) also indicated that the specimen assumes the form of a

!; sphere. Thus, there is good evidence that both isotropic and anisotropic speci-

mens are distorted to a bulged shape which is essentially symmetrical with respect

to the central axis of the specimen. Campbell (20) also observed that the PR/2T

ratio of Carson and Worthington (18,19) varied over a considerable range (0.98 to

i* 2.19) for handsheets with isotropic properties in the plane of the sheet.

Strachan (22) disagreed with the derivation of Equation (1); however,

Van den Akker (23) indicated that Strachan incorrectly analyzed the forces in the

(! Bursting strength test. Bierett and Schulze (24) developed the following formula

for converting test results for one size of upper clamp opening to another:

i.^~'a P /P = imn n= I (3)im n n(m

where

P = bursting strength

F= area of opening of upper clamp

and m and n denote the two clamp conditions

(: *Bierett suggested that x should equal 2 for homogeneous materials but found

It values near 1.7 for various papers.

i'1 Other mathematical treatments have been carried out by Roberts (25),

ii Cunane (26), and Yamaguchi (27).

7'*'? ~ Van den Akker (23) derived a more general expression which, after

i;! various simplifying assumptions were made, takes the form shown below:

fo
1>, 
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P =(2 v;e T)/r (4)

where

P = bursting strength 

e = extension at rupture in tension of the specimen in its
least extensible direction, i.e., breaking strain 

r = radius of the orifice

T= "average" of the M.D. and C.D. tensile strengths

Thus,'as an approximation, bursting strength is proportional to the

product of the "average" tensile strength and the square root of the breaking

strain in the least extensible direction. This is normally the machine-direction.

While T is defined as the "average" of the M.D. and C.D. tensile strengths

Van den Akker pointed out that this should be regarded as an approximation for a

number of reasons as follows:

1. As the pressure is increased in the bursting strength test nearly

equal strains in all directions are induced in the specimen. Assuming failure

occurs when the stretch in the least extensible direction is exceeded (normally

the M.D.), the strain in the cross-direction at that instant will be less than

the breaking stretch. Referring to Fig. 1 where M.D. and C.D. tensile load-

elongation curves for conventional machine-made papers are shown, this means

that the cross-direction tensile force at rupture in a burst test would be less

than its maximum value in a tensile test - i.e., T f rather than T . Defining
-cf -c

T as the "average" of the M.D. and C.D. tensile strengths does not take this

effect into account.

2. The above does not necessarily mean that the average tensile

strength (T + T )/2 is greater than the average of T and T The bursting
-m -c -m -cf

I
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strength test involves biaxial stresses, whereas the tensile tests involve only

uniaxial stresses. While lateral contractions of the specimen can occur in the

tensile test they are not permitted in the bursting strength test. As a result

the force in a given direction to induce a given strain in the bursting strength

test will be greater than the force required to induce that strain in the uni-

axial tensile test. Thus, while the ultimate strength in the direction of

greater stretch is not fully achieved in the bursting strength test the force in

that direction will be greater than would be expected from the uniaxial tensile

curve.

11
i
I.

:?

0
C

Tm

I Tf

ELONGATION

Figure 1. Tensile Load-Elongation Curves for Conventional Machine-Made Papers

3. Other factors such as edge and span effects also can lead to dis-

crepancies between tensile and bursting strength tests.
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In addition to the above the analysis neglected the pressure contri-

bution of the diaphragm and considered only tension stresses --i.e., bending and

shear stresses were assumed to be negligible. This latter assumption is appro-

priate for thin papers but results in error in the case of thicker paperboards

and corrugated boards.

Despite these approximations, Equation (4) is generally accepted as a

reasonable approximation for paper and predictions of bursting strength of paper

based on the equation have been in good agreement with experiment.

Sommer (28) in 1941 derived an expression similar to that obtained by

Carson. Winkler (29) indicated that the Sommer relationship was useful so long

as the height of the distended bulge does not exceed approximately 0.4 times the

radius of the orifice. .Vollmer (30) derived an expression which was similar to 

that obtained by Van den Akker. i

Further analyses relating bursting strength to tensile properties have

been made by Fujiwara (31) and Bohmer (32). These analyses attempt to specify

more precisely the effect of the machine- and cross-machine direction tensile

strengths and elongations.

Fujiwara (31) assumed that the stress strain curve is approximately

described by a parabola of the form

T =Ae0 5 (5) 

where-

T = tensile strength 

e = tensile elongation

A = constant 

U)
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-i| Following Van den Akker's approach but with this added assumption, Fujiwara ob-

tained the following expression

of P = K[T + T (e /e )']/R( ) (6)
nm c m c m

"; ~where

4i P = bursting strength
~

iig ~T , T = M.D. and C.D. tensile strengths
-m -e

m e e = breaking strain in M.D. and C.D. directions

R(e ) = radius of curvature at moment of burst, -m
K = constant

|4.^ ~Fujiwara also showed an expression for R(e ) and B8hmer (32) expanded

hi ~the expression in a Maclaurin series to obtain the following equation for aniso-

tropic sheets

)1.5
P = K[T + T (em/ec)05] ./r(l + e )1

where r is the radius of the orifice and the other symbols are defined as in

Equation (6).

It was concluded that a proper balance of tensile and elongation values
'.

in the M.D. and C.D. directions is an important factor affecting bursting strength.

It also may be remarked that the above assumption of a parabolic relation for the

tensile stress-strain'curve may be adequate for machine-made papers or boards

having the usual M.D.:C.D. ratio of properties. Specially made papers such as

i- 3 ^ extensible papers have much more complex stress-strain curves and the parabolic

expression would not be suitable for such papers.

.3,
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EFFECTS OF INSTRUMENTAL VARIABLES

INDICATOR CALIBRATION

Correct calibration of the indicating mechanism is both an

and controversial subject. Maximum reading Bourdon tube pressure gag

been almost universally used to the present - primarily because of th

cost. However, with such gages the inertia of the moving parts affec

observed readings. The application of electronic pressure transducer

with suitable indicators has, however, received attention in the lite

a system based on this approach is commercially available.

Page 13
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Deadweight gage testers are generally used to calibrate the higher

capacity Bourdon gages. Much thought and effort has been applied to devise

procedures to simulate test rates in the bursting strength test during cali-

bration so as to take into account the inertial effects mentioned above. Typical

pressure vs. time curves obtained in (a) a bursting strength test and (b) gage

calibration on a deadweight tester are shown in Fig. 2 (33). Figure 2A shows

that in a bursting strength test the pressure rises at an increasing rate until

the specimen ruptures. Just prior to rupture the rate may be approximately con-

stant (34). After rupture there is a sudden decrease in pressure. Using the

deadweight tester, Fig. 2B shows that the rate of pressure increase decreases

as the final pressure is approached. This difference in behavior makes it

difficult to account for gage inertial effects such as pointer overthrow in

deadweight gage calibration.

Comments on the effect of the mass of the gage needle and gage cali-

bration may be found in References (10,35). Carson and Worthington (19)

I4 

ii

I '. .'. . ' 
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Time, )'. ; ;:. iu1tcvals

A - Bursting Strength Test on Corrugated Board

Time, 0.2 sec. intervals

B - Deadweight Tester Gage Calibration

Figure 2. Pressure-Time Curves for Bursting Strength Test on
Corrugated Board and Deadweight Tester Gage
Calibration [Rcf. (33)]

iI
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indicated that the gage should be calibrated in the same position in which it is

to be used and recommended that a valve be used so as to permit applying pressure

at about the rate prevailing during test. Clark (36-38), in a number of articles,

discussed the need for taking into account gage inertia.

A detailed treatment of many of the factors involved in gage calibra-

tion may be found in the work by McKee, et al. (33). A special recording

pressure apparatus was used to check rate of response, needle throw, etc. It

was concluded that if the gage is properly adjusted, it has sufficient response

to correctly indicate the pressure at moment of rupture. The two main gage

types are described and gage adjustments to correct for various types of error

are discussed [see also Tuck and Mason (34)]. Several different methods of

using deadweight gage testers were investigated. The authors (33) recommended

insertion of a needle valve on the deadweight tester in the line to the gage.

This permits control of the "average" rate of pressure increase in gage calibra-

tion, however the final pressure is still approached asymptotically. It was

recommended that "the setting of the needle valve should be such that at the

higher ranges of the gages the travel of the needle will approximate the rate

encountered during a bursting strength determination which falls within the

same range" - i.e., the maximum rate near or at rupture of the specimen.

Figure 3 shows that as a consequence the rate of loading is lower -at the lower

pressures for a given gage; however, the authors (33) pointed out this approxi-

mates the conditions encountered in a bursting strength determination. Tuck

and Mason (34) have shown that the rate of pressure increase at burst increases

nearly linearly with the bursting strength level.
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Time, 0.2 sec. intervals,

Figure 3 Pressure-Time (Curves Showing Typical CalibratLon Data
for a 300-lb. Gage [Ref (33)]

Tuck and Mason (3~1) measured tne expanslbllity of various gages and'-4

found variations from 0.6 x 10- 3 to 6.4 x l - 3 cc./p.s i.g. The gage expansl-

blllty had a marked effect on the rate of straining during test and hence, some

influence on the test result A theoretical analysis was made of the dynamic

errors arising from (1) friction, (2) vibration, and (3) gage needle overthrow.

it was concluded that the cumulative dynamic error was near 2/ - mainly due to

overthrow A dynamlL method of Kage calibration was suggested and a complete

description of the meh'.oa rmla' r fourill ini .3 later paper (39) Essentially, the

method involved (1) coupLing a deadweight tester to the bul.tlng strength tester,

(2) clamping a metal plate ovei the leste/ orifLc ,Il (3) usLng the tester

pump to apply pressure to LLft the weights applied on the deadweigh-l tester. A

i Fsolenoid vIlvC Ls ,l';e LO release thC pressure when the deadweight piston rises

free of a spring lroerted in the system,. Corrections for switching time and for

vibratory effects are requlrea.

it
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As another means for simulating the rate of pressure rise during test

during calibration, Francis (40) suggested a modification of the technique de-

scribed in Reference (33). In brief, a two-step opening operation of the needle

valve was proposed. The degree of initial opening of the valve depends on the

applied pressure. Then, as the gage needle approaches the final pressure, the

needle valve is quickly opened so as to result in a faster rate of pressure in-

crease in the final stages. While considerable skill is required of the

operator, he indicated that trained operators should obtain agreement within

+ 0.5 p.s.i.

Carson and Worthington (41h) also measured gage expansibilities and

suggested use of an apparatus constant which was primarily dependent on the sum

of gage expansion and the compression of air "during the midhalf pressure change."

Johansson and Jordansson (42) reported data on gage expansibilities both before

and after evacuation to 99.5% vacuum. Marked differences in gage expansibility

were obtained - apparently due to small amounts of air in the gages before the

abovementioned evacuation. Evacuation reduced the gage expansion values to

values lower than specified by the TAPPI method for paper bursting strength

(T 403 m-53). Other authors discussing Bourdon gage calibration include Lhomme

(43), Molieres (44), and Hailer (45).

In 1954, Brauns, et al. (46) used a strain gaged diaphragm-type

transducer coupled to a high-speed Brown potentiometer to investigate the cali-

bration of Bourdon tube bursting strength gages. The equipment was used to

evaluate the tendency for pointer overthrow to allow more accurate calibration

of Bourdon gages. Using the same apparatus, Johansson and Jordansson (42) re-

ported results indicating the Bourdon-type gages gave higher results than the

electronic indicator used. Decreasing the gage needle friction below 4 g.cm.

I
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was shown to increase the difference between gage and electronic indicator.

Francis (40) discussed application of a metal diaphragm device utilizing a capac-

itance measurement to determine displacement of the metal diaphragm at failure

of the specimen. He commented that as the dilatancy of the diaphragm was reduced

the readings from the device approached the gage reading. D'Altan (47), using a

piezoelectric pressure transducer coupled to an oscilloscope reported fairly good

agreement in pressure between Bourdon gage and pressure transducer readings.

Quite recently, Maltenfort, et al. (48) summarized results obtained using a

Statham pressure transducer connected to a suitable recorder. Among other

things they concluded that "conventional Mullen gages overstate 'true' bursting

pressures, due to pointer override, by as much as 6% on otherwise well-maintained

and calibrated equipment." It was noted that the test repeatability was about

the same for the two indicator systems. Despite the differences in results be-

tween indicator systems, they saw no reason to change the conventional test

procedures or instruments or to attempt to redefine combined board specifications

in Rule 41. The electronic indicator system was recommended, however, for use in

referee situations.

CLAMPING PRESSURE AND PLATENS

The initial clamping pressure applied to the specimen is one of the

more important test variables. Doughty (49), as early as 1910, reported that

the bursting strength of paper decreased as the clamping pressure was increased

and became sensibly constant at high torques (pressures). Using a Mullen tester

for paper, Carson and Worthington (19) indicated that clamping forces ranging

from 350 to 800 lb. were required to avoid slippage depending on the paper being

tested. A clamping force of 1000 lb. was recommended. Further information on

1%. 
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the effects of clamping pressure on the bursting strength of paper and paperboard

may be found in References (33,40,44,50-53).

For paper and paperboard the tendency for.bursting strength to increase

at low clamping pressures appears to be related to the amount of stretch which

the specimen undergoes in the clamps (33). It may be explained in terms of the

equation suggested by Carson (see Theoretical section). Assuming the actual

tensile stress in the specimen at failure is constant, Carson's formula indi-

cates the bursting strength should be inversely proportional to the radius of

curvature. At lower clamping pressures the specimen stretches to a greater

extent in the clamp area, causing a decrease in the radius of curvature and,

hence, an increase in bursting strength.

While the bursting strength of paper and paperboards are affected by

clamping pressure, the effect becomes small at high clamping pressures. As a

result, the specification of a high. clamping pressure tends to minimize varia-

tions in bursting strength due to this cause.

The bursting strength of corrugated board is markedly affected by

clamping pressure (33,45,53-56) and the selection of suitable clamping pressures

is a controversial problem. If the pressure is too low, slippage occurs and

such results must be disregarded according to Rule 41. If the pressure is too

high, the flutes under the platens are crushed and significantly lower results

are obtained. To date no numerical level of clamping pressure is specified in

the TAPPI method for corrugated board (T 810 su-6 6), Rule 41, etc.

Despite the regulatory disadvantages of high clamping pressures, McGee

(54) recently suggested a clamping pressure of 50 p.s.i. be employed for corru-

gated board which may be sufficient to cause crushing of the flutes for many

I



Page 20
Report One

Fourdrinier Kraft Board Institute, Inc.
Project 2694-7

corrugated board constructions. Hood (55) has also noted that lack of clamping

pressure control may result in large differences in test results on corrugated

board between laboratories and suggested that T 810 su-6 6 be revised to incor-

porate a minimum clamping pressure of 113 p.s.i. equivalent to approximately

1130 lb. clamp force. He commented that this change would bring the United

States "in line with the testing procedures of other countries."

Various means for measuring clamping pressure have been employed over

the years. With the older screw-type clamps, torque wrenches were sometimes

employed (49,55,56). McKee, et al. (33) devised a mechanical strain indicator

attachment for the Model A Mullen tester and the same principle has been used

with Model C Mullen testers. More recently, pneumatic and hydraulic clamping

systems have been made available. With regard to the latter, Hood (55) has

noted the desirability of including a check valve in the hydraulic system so as

to "lock" the upper platen in place after application of the initial clamping

pressure. If there is no check valve in the clamping pressure system and too

low an initial clamping pressure is used, the force exerted in the specimen

during test may be sufficient to cause an upward displacement of the upper

platen during test causing erroneous test results. By inserting a check

valve in the hydraulic clamping system, the oil is prevented from flowing

back out of the clamping cyclinder during test. Consequently, the pressure

exerted by the specimen on the upper clamp cannot displace the upper platen

upwards. This gives essentially the same action as occurs in testers with

hand clamps. A check valve is incorporated in current models of the Model AH

Mullen tester.
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Closely associated with the matter of clamping pressure is the condition

of the clamping surfaces. If the platens are warped so as to concentrate the

clamping pressure around the orifice, less stretch will occur in the clamped area

and readings will be lowered (33,40,51,53,57). Conversely, if the clamping pres-

sure is concentrated near the outer perimeter of the clamps, higher readings will

usually be obtained. Uniformity is usually checked by clamping soft pencil car-

bon with a sheet of smooth paper or filter paper to obtain a pressure pattern.

This technique will detect extremely unsatisfactory clamping conditions; however,

as Francis (40) noted, many patterns are of intermediate quality and caution must

be exercised in accepting such patterns.

The presence of oily or waxy substances on the platens is also known to

affect test results. It may be conjectured that such substances affect the co-

efficient of friction between platen and 'specimen and, hence, affect the amount

of stretch taking place in the clamps.. Changes in smoothness of the platens may

also affect test readings for much the same reason.

Many years ago bursting strength testers were equipped with rubber

platens. Snyder (58,59) compared metal clamps with various surfaces with rubber

clamps and concluded that the all-metal clamps resulted in superior clamping and

permanence. Although this conclusion was questioned by Abrams (60), Carson and

Worthington (18,19) confirmed Snyder's results and recommended metal clamps.

This recommendation was followed by the manufacturer and metal clamps have been

in almost universal use for many years.

As would be expected based on theory (see Theoretical section) the

radius of the orifice affects the test results. Information on the effect of

orifice size may be found in References (19,24,60). The greater the radius,

b.i-: ��-.··r�-i·I
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the greater will be the radius of curvature at'rupture and, hence, the lower the

0A bursting strength. Furthermore, the extent to which the edges of the orifice

have been relieved of sharpness affects the test results (19,37).

AIR

The presence of air in the hydraulic system affects the rate of loading

of the test specimen as noted by Carson and Worthington (19) and others. Based

on the literature, its effect on test results appears to vary depending apparently

on its location in the hydraulic system. For example, Clark (36) reported higher

results with increasing quantities of air in the system. McKee, et al. (33) indi-

cated if the air is located in such positions in the hydraulic'system that appre-

ciable flow of the fluid is required to transmit pressure to the gage - e.g., in

':- the gage lines --lower test results are obtained. On the other hand, the presence

of air under the diaphragm may have little or no effect on the test readings.
i?

In this connection Tuck and Mason (34) noted that the percentage of

fluid flowing into the gage at the moment of failure may range from about 4 to

32% of the total flow - depending on the gage expansibility, Thus, an appre-

ciable flow of the fluid into the gage occurs and any air present will act to

reduce the rate of straining of the specimen. They also indicated that a

small but significant decrease in bursting strength occurs when air is intro-

duced.

Pitman (61) introduced air in various amounts in the gage line. He

concluded that small amounts of air produce widely erratic results. Larger

amounts of air yield somewhat reduced test values and progressively retard the

the time to failure. Francis (40) commented on the importance of removing all

air from the instrument.
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DIAPHRAGM PRESSURE

The observed bursting strength includes. the pressure exerted by the

rubber diaphragm in addition to that caused by the test specimen. Thus, the

pressure required to distend the diaphragm is both a significant and variable 

factor in the bursting strength test - particularly in the case of testers for 0

paperboard such as the Model A and AH Mullen testers, Cady tester, etc. I

In 1925 Abrams (60) observed that when a new diaphragm was substituted ,'i

for one which had been in use for a considerable period of time, an increase in

bursting strength of 14% was obtained. Quinn (53) commented on the need for 

diaphragm standardization. 

McKee, et al. (33) cited results showing diaphragm contributions at 

rupture of about 13 and 26 p.s.i.g. for diaphragms exhibiting pressures of 26

and 51 p.s.i.g. at 1.8 cm. distention, respectively, using linerboard as'the test

material. They also noted that the caliper of diaphragms varied greatly and was

not a reliable indication of the corresponding diaphragm pressure at 1.8 cm. dis-

tention. A diaphragm pressure specification of 40-45 p.s.i.g. at 1.8 cm. dis-

tention was suggested as a means for minimizing variations in bursting strength

results due to differences in strength between diaphragms. Francis (40) confirmed

the usefulness of this procedure but extended the allowable range to 40-50 p.s.i.g.

at 1.8 cm. He commented that diaphragms passing this test were "invariably satis-

factory while diaphragms not passing the test proved unsatisfactory."

When diaphragm specifications were introduced into Rule 41 the dis-

tention level was set at 3/8 inch with an allowable pressure range of 23-30

p.s.i.g. There appears to be no published information relating this tolerance to

I
I



|j Page 24 Fourdrinier Kraft Board Institute, Inc.
Report One Project 2694-7

bursting strength variations. However, unpublished work at the IPC sponsored by

the FKBI in cooperation with B. F. Perkins suggest that the 23 to 30 p.s.i.g.

tolerance may permit about 2 p.s.i.g. differences in bursting strength of kraft

linerboard.

Variations in diaphragm characteristics also affect results obtained

on the Cady instrument though there is little orno information in the literature.

In one unpublished study at the IPC some years ago it was found that a diaphragm

exhibiting a pressure of 41 p.s.i.g. at full extension contributed about 6% at a

bursting strength level of 200 p.s.i., whereas a diaphragm exhibiting a pressure

l, of 24 p.s.i. contributed about 2%.

Y'^j ~In Europe, diaphragms from several different sources are apparently

available. Windaus and Herrmann (62) compared four different types using a

,t ~ Model AH Mullen tester. The four types were as follows:

1. thin diaphragms of the British Calibration Service

l;:[~~ ~(thickness 0.4 mm.);

~'I~ ~ 2. thick diaphragms of the British Calibration Service

(thickness 1.0 mm.);

3. diaphragms from Firma Frank, Weinheim (reinforced

@p^~~ ~center, maximum thickness 2.47 mm.); and

44. B. F. Perkins diaphragms (reinforced center, maximum

,> thickness 2.40 mm.).

Using aluminum foil as the test media, they concluded that differences 

in type of diaphragm may cause variations of up to 100% in test data under un-'| ~ favorable conditions. It was also observed that diaphragms from different lots

j|I *made by the same supplier could also vary appreciably in quality.

I
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Takishima and Arai (63) have also commented on the need for diaphragm 

standardization in the case of the various instruments used for testing paper- 
i',

boards. 

In the case of instruments for evaluating the bursting strength of 

papers, a number of investigators have discussed the effect of the diaphragm

(18,19,41,64,65). Reference (41) indicates that the diaphragm error can be mini- ,i

mized by "(1) selecting the rubber diaphragm material no thicker than is

necessary for the range of papers to be tested,. (2) bringing the diaphragm as l

close as practicable to the paper,,and (3) installing it with adequate slack."

RATE OF LOADING I

The earliest bursting strength testers were hand-operated and it was

quickly found that bursting strength values could be varied slightly by increas-

ing or decreasing the speed of operation of the hand wheel. A number of refer-

ences in the early literature to this effect may be found in the first mentioned

bibliography (1). Motor driven bursting strength testers were introduced to

minimize the variation resulting from differences in pumping speed.

Underhay (66) has reported variations in test results of from 6.2 to

9.6% when increasing the rate of loading from 75 to 225 r.p.m. Carson and

Worthington (18,19) indicated that the bursting strength of paper increases some-

what as the rate increases. McKee, et al. (33), using a Model A Mullen tester

found that "...in the normal range of testing, it requires a variation of 30 to

35 cc./min. to produce approximately a 1% change in the test results." An un-

published study at the IPC on the Cady tester some years ago indicated that a

change in pumping rate of 20 cc./min. could cause a 1% change in test results.

I I
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Lhomme (43) obtained a limited amount of data on test rate. Thompson

.t ~ (67) has also shown that changes in test rate have only a slight effect on the

bursting strength of paper. Hailer (45), using board testers made by Karl Frank

GmbH. and B. F. Perkins, indicated that the effect of test rate is very small.

Francis (40) presented a limited comparison which indicated that little or no

decrease in test results for paper occurred with decrease in pumping rate if

i ~ the gage was calibrated for the lower pumping rate.

To summarize briefly, the evidence in the literature indicates that

pumping rate exerts a small effect on the bursting strength for either paper or

board testers. It may be noted, however, that Carson and Worthington (41)

<j ~ pointed out that the volume change during test is absorbed in several parts of

s ~the system such as the gage, compression of any air in the system, and initial

1j distention of the diaphragm in addition to the test specimen. They commented

41 that "it is the relation of the last mentioned part to the whole that determines
*'

the effective test rate for a given rate of displacement of liquid in the pres-

sure chamber."

HYDRAULIC FLUID

Glycerin is commonly used as the hydraulic fluid because it is com-

patible with the natural rubber diaphragms employed for bursting strength tests.

It is, however, a relatively viscous fluid and complicates the removal of air

from the tester. Carson and Worthington (18,19) carried out tests comparing

the effect of the following fluids on the bursting strength of paper: glycerin,

ethylene glycol, and water. Essentially the same test results were obtained

2I ~ with all three fluids. During World War II experiments were carried out in

i:· Great Britain to substitute a dextrose liquor for glycerin due to shortage of
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the latter fluid (68). Results obtained with the substitute fluid were comparable

to those obtained with glycerin.

Because of the difficulties in removing air when glycerin is used, Tuck

and Mason (34) recommended using ethylene glycol. It may be noted that the TAPPI

method for paper bursting strength recommends the use of purified 96% glycerin but

also permits the use of purified ethylene glycol.

IT

I

� I

aI

-- -- �� I



Page 28 Fourdrlnler Kraft Board Institute, Inc.
Report One Project 2694-7

VARIABILITY AND STANDARDIZATION

Numerous studies of bursting strength variability have been made. A

recent comprehensive study by Randall and Lashof (69) analyzed results from more

than 175 laboratories using several models of bursting strength testers (includ-

ing Perkins' Model A testers). An excellent survey of the literature in this

area is also included and is not repeated here. They confirmed the well-known

fact that Perkins' Model A instruments give appreciably higher test results than

the Model C. For Model C instruments they reported values of repeatability

(within laboratory), comparability (between materials), and reproducibility (be-

tween laboratories) of 5.4, 9.5, and 14.3%.

Many investigators have considered the use of aluminum foil as a test

24 media for checking calibration (63,69-74). However, in the opinion of some

recent investigators, aluminum foils are of doubtful value for this purpose be-

cause testers may agree on foil yet differ on papers and vice versa. This

apparently occurs because the stress-strain characteristics of the foil and its

2j compressibility, surface characteristics, etc., are markedly different from that

of paper.

Statistical control chart procedures using various paper and paperboard

i, materials as reference standards have been used by a number of laboratories in

i~ ~the industry for checking instrument calibration for many years. One of the

Iti earliest published discussions concerning the application of this approach to

)'- bursting strength testers for board may be found in an article by Odlum (75).

Procedures followed in initiating control charts are mentioned and the merits

of random and stratified sampling plans are discussed. The latter was deemed to

I
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be preferable to better allow for cross-direction variations. Procedures in use

at the IPC in 1955 are discussed in Reference (76). Knight (77) described appli-

cation of control chart techniques on a Perkins' board Mullen tester. Certain

fluctuations in test results were apparently traceable to uncontrolled fluctu-

ations in temperature in the test atmosphere. Reid and Chase (78) discussed the

application of control chart procedures to board Mullen testers using 42-lb.

kraft liner as the standard sample. They indicated that it appeared to give more

satisfactory results than either aluminum foil or pouncing paper. Forty speci-

mens were tested on a given tester every other day. Corrective actions were re-

quired if (a) an average fell outside two-sigma limits, or (b) two successive

averages fell outside a one-sigma limit.

In general, most investigators indicate that the control chart pro-

cedure is a valuable way of checking the adjustment and calibration of bursting

strength testers. It should also be mentioned that the National Bureau of

Standards in conjunction with FKBI conducts a collaborative reference program

using 26, 42, and 69-lb. liners as the test media.
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DOUBLE-POPS

When making bursting strength determinations on corrugated board, it

is occasionally possible to audibly detect more than a single rupture of the

test specimen. This is normally referred to as a "double-pop" or "double-burst"

and is caused by the two facings rupturing at different times. Generally, a

lower bursting strength value is obtained when an audible double-pop occurs.

TAPPI, ASTM, and Rule 41 test procedures allow disregarding readings where

audible double-pops occur. In Reference (33) it was concluded, based on pressure

vs. time recordings, that the two facings of corrugated board rarely break

simultaneously even when the ear does not detect a double-pop, In general, the

pressure builds up an increasing rate until the firsttrupture is obtained, de-

creases momentarily, and then rises again to a second peak. The two (or more)

peaks were often of similar magnitude and, either might be greater in magnitude

than the other. Audibility appeared to be related to the time interval between

ruptures - i.e., for small time intervals between ruptures it appeared that

double-pops could not be audibly detected.

Hailer (45) commented that double-pops increase with decreasing pumping
i:

rates which is in accord with the above. Casey (56) commented that the incident

of double-pops did not appear to be influenced by clamping pressure; however,

unpublished work at the IPC has suggested fewer double-pops are detected at high

clamping pressures. Maltenfort, et al. (48) have recently indicated that the

use of an electronic pressure recording system may be helpful in distinguishing

between "good" bursts and double-pops.

I
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MAINTENANCE AND CALIBRATION

As mentioned previously, the appropriate TAPPI or ASTM methods specify

various instrumental tolerances and procedures for instrument adjustment and

calibration. The following discussion repeats some of the information contained

in the methods but also contains supplementary information from Ref. (33) intended

to facilitate instrument calibration.

CLAMPING PRESSURE

One model of the tester which employs a disk-shaped diaphragm is equipped

with hydraulic clamping devices to measure the initial clamping pressure. For

these testers the clamping pressure gage should be checked at periodic intervals

using a deadweight tester. The piston on the hydraulic clamp testers has an area

of 5 sq. in.; therefore, the total clamping force is obtained by multiplying the

gage reading by the piston area. For example, a clamping pressure gage reading

of 200 p.s.i. corresponds to a clamping force of 1000 lb. The area of the upper

platen is 10 sq. in., hence the initial clamping pressure on the specimen would

be 100 p.s.i. for a clamping pressure gage reading of 200 p.s.i.

In equation form this would be as follows:

P = P (A /A )
cp g c p

P = P/2
cp g

(8)

(9)

where

P = clamping pressure on specimen

= clamp ing pressure gage reading
P = clamping pressure gage reading
-S

;

"·
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A = clamping pressure piston area (5 in. 2 )

A = platen area (10 in.2)
-p

The diameter of the upper clamping platen of the instrument using the

hat-shaped diaphragm is 88.9 mm. (3.50 in.). This results in a clamping area of

approximately 54 cm.2 (8.4 in. 2).

Clamping pressures for testers with disk-shaped diaphragms not equipped

with the hydraulic device may be determined using an attachment to the tester as

described in Reference (33), or by means of a torque wrench such as described in

Reference (56). The attachment described in Reference (33) is schematically

illustrated in Fig. 4.

The clamping force is applied by means of the conventional handwheel

and screw assembly. This force strains the heavy arm of Yoke A of the Mullen

tester (see Fig. 4), and the resulting strain is employed to indicate the clamp-

ing pressure. A length of steel keystock (B) is bolted to the upper part of the

yoke, as shown, and serves to transmit the 'deflection to a dial strain gage.

Another auxiliary member (C) is welded to a split ring (D) and serves to support

an adjustable foot (E); E, in turn, engages the anvil of the strain gage. This

arrangement amplifies the deflection or strain and results in a substantial

displacement on the gage when a specimen is subjected to normal clamping pressures.

The deflection gage is calibrated by straining the yoke with known loads

and recording the corresponding deflection. A similar calibration would be re-

quired for the torque wrench approach. Strains of the necessary magnitude and

direction are obtained by loading the arm with deadweights through a proving

lever, as shown in Fig. 5 [Ref. (33)], or by using a suitable force measuring

II
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Figure 4, Schematic Drawing of Clamping Pressure Attachment
for Jumbo Mullen Tester [Ref. (33)]
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instrument. It is important to strain the yoke in the direction actually

stressed when in use because Yoke A is not symmetrical in cross section.' The

force can be conveniently transmitted to the yoke by removing the upper specimen

clamp and inserting a steel ball, such as used in a ball bearing assembly,'between

the lever arm and the slight hollow at the end of the screw assembly through which

the specimen is clamped (see Fig. 5). Caution: The bursting strength tester

must be rigidly clamped to a secure mounting during the actual calibration

operation to prevent the tester from tipping over.

The calibration data give the total force required to deflect the yoke

the indicated amount. For actual use, this total force is more conveniently ex-

pressed in terms of the clamping pressure, which is simply the total force divided

by the effective specimen clamping area.

PLATEN CONDITION

Platen condition may be checked by placing a sheet of smooth paper over

the lower platen and then placing a sheet of soft pencil carbon paper face down

on the top of the paper. The upper platen is then held so that no rotation takes

place while the screw clamp is tightened. When the clamp is raised and the paper

removed, a print of the platen contact will be found on the paper. Rotate the

clamp and repeat the operation. If the platens are in good condition, a uni-

form print of the entire platen surface will be obtained (see Fig. 6A, Satis-

factory). Frequently, it will be found that the lower platen has been strained

so that only the central portion will print (see Fig. 6B, Unsatisfactory). If

this occurs, it is advisable to replace the lower platen or reface or lap the

surface until a uniform print is made. If the print is heavy on one side, the

platens are not coming together parallel. This may be remedied by loosening the

I
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Allen set screw in the center of the yoke assembly which contacts the cylinder,

rotating the cylinder in the proper direction, and relocklng the set screw. In

some cases, it may be necessary to loosen the cylinder nut before the cylinder

can be rotated.

It is important to note that many patterns will be of intermediate

quality - neither as extreme as Fig. 6B, nor as uniform as Fig. 6A. Thus,

platen patterns are, at best, a crude means for judging platen condition nor do

they provide information regarding the relative smoothness of the platens. For

these reasons considerable judgment is required and caution should be exercised

in accepting a given pattern as being satisfactory.

If the platens become contaminated with wax or other substances that

may change the coefficient of friction, they should be thoroughly cleaned with

an appropriate solvent such as acetone, carbon tetrachloride, etc.

Lateral alignment of the platens should be checked to make sure that

the hole in the upper platen is concentric with the hole in the lower platen.

This may be done by clamping the upper platen against the lower platen and

observing the concentricity. If the two platen holes are not concentric, adjust-

ment should be made by the addition of shims between the cylinder and the yoke

assembly.

DIAPHRAGM INSERTION

The characteristics of diaphragms used in the tester may influence

the readings obtained. When disk-shaped diaphragms are to be changed, make sure

that the control lever has been thrown into reverse and has returned automat-

Ically to neutral. Pressure is applied by means of the handwheel or hydraulic
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system to enable easy removal of the diaphragm nut by means of a special spanner

wrench. Before the diaphragm nut has been completely removed, remove the clamp

pressure and take off the demountable tripod. The diaphragm nut and lower platen

may then be removed easily. Before inserting a new diaphragm, fill the chamber

with air-free glycerin to the top of the saucerlike depression so that it is even

with the clamping ridges and the inner valley between ridges is filled. These

ridges must be kept clean and dry to minimize capillary leakage past them. If

glycerin spills, wash the ridges with alcohol and wipe dry. A new diaphragm is

then carefully placed on the surface of the fluid with the flat side down and

the reinforced side up. To minimize the trapping of air, it has been found best

to "roll" (see Fig. 7) the diaphragm into place, starting from the rear of the

surface and rolling it forward so that no air is trapped. The lower platen may

then be laid on the diaphragm so that the small hole in the platen fits over the

*·i pin at the rear of the cup. The diaphragm nut may then be replaced and screwed

down tight. The tightening of the diaphragm nut may be facilitated if the de-

mountable tripod is replaced and a clamping pressure of 100 p.s.i. is applied.

Glycerin is then added, preferably by means of a glycerin gun, until the dia-

phragm is flush with, but not above the surface of, the lower platen. If a

glycerin gun is not available, it will be necessary to add glycerin through

the filling reservoir which has been capped by a knurled nut. While removing

this nut and before adding glycerin, press gently upon the diaphragm to keep

the fluid level with the top. Gradually diminish the pressure to compensate

for the fluid added, taking care that no air is trapped while filling. It is

well to add slightly more glycerin than necessary and then bleed it out until

the diaphragm is flush with the top surface of the lower platen.
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The diaphragm height may be checked by means of a U-shaped gage con-

structed so that, its inner height is 9.53 mm. (3/8 in.), and of sufficient width

to completely clear the diaphragm as it comes up (see Fig. 8).

.375"

1.50

Figure 8. Diaphragm Height Gage (After Ref. (33)]

Adjust the diaphragm so that its top surface is level with the top

surface of the lower platen. Then operate the tester until the surface of the

diaphragm just contacts the lower surface of the height gage. At this point the

diaphragm pressure should be between 23 and 30 p.s.i.g.

An alternative method which may reduce operator error is to mount a

microswitch in a jig which is placed over the diaphragm. When the diaphragm is

distended to 3/8 inch, it operates the microswitch which actuates a solenoid

halting the piston.

If the pressure is below 23 p.s.l.g., the diaphragm should be discarded.

If it is above 30 p.s.i.g. for a new diaphragm, the pressure required to extend

the diaphragm 3/8 inch can sometimes be brought within the desired range by

¾, -

I

i

i



Fourdrlnler Kraft Board Institute, Inc. Page 41
Project 2694-7 Report One

flexing the diaphragm with repeated extension cycles. However, the tester ,

should not be used for bursting strength tests during this period. Alternatively, 

application of a small amount of dry lubricant to the top surface of the dia- 

phragm may reduce the pressure to within the specified tolerance. If it is not t

possible to bring the maximum pressure down to 30 p.s.i., another diaphragm should 

be tried. The thickness of the diaphragm rubber does not serve as a reliable

means for the selection of proper diaphragms.

PUMPING SPEED

The pumping speed of the tester may be checked by attaching a 50-cc.

buret in place of one of the gages by means of a rubber tube (see Fig. 9). The

buret should be held in the vertical position and a small amount of glycerin

should be introduced to bring the glycerin level to one of the lower divisions.

Using a stopwatch, start the tester and obtain the time for a given number of

divisions. If this is repeated a number of times, an average can be obtained.

Care should be taken that enough time is allowed between trials to permit the

glycerin to drain from the buret, otherwise abnormally high apparent pumping

speeds will be obtained It has been observed in speed of loading tests that,

with an operating pumping speed of 180 cc./mln. as a reference point, a change

of approximately 35 cc./mln. may result in a 1% change in bursting strength.

AIR

The complete absence of air in the tester is very important, since

glycerin flow through the gage lines must be kept at a minimum. Frequently, it

has been observed that, when two carefully calibrated gages are connected to the

tester so that pressure is applied simultaneously, there may be a difference in

the individual readings. This difference may be caused by the presence of air

I
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in the gage lines. As the pressure increases

glycerin to flow. Because there is glycerin

sistance to pressure transfer, the glycerin m

than into another, thereby transmitting the p

the other. This will cause lower readings in

·- .·~.^; · :2^·~-'' ¾ VP
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the air is compressed, permitting 

flow with attendant frictional re- 

ay flow more readily into one gage

ressure to one gage rather than to

the second gage. 

Air is best removed by pumping clean, air-free glycerin through the

hydraulic system. Glycerin may be freed of air by placing it in a sturdy vessel -

and evacuating the system. A high vacuum level (low absolute pressure) appears

desirable (42). Air bubbles will be seen to form. When the vapor pressure of

glycerin has been reached, the glycerin will tend to foam. At this point, the

glycerin can be considered free of air and ready for use. The gages are removed

from the tester and the tester is tipped forward, as shown in Fig. 10. While in

this position, the gage valves are opened and the piston engaged with the motor

running. Running the tester in this position will push the glycerin and any air

present in the manifold line out of the tester. As soon as the glycerin stops

flowing, the gage valves are shut off tightly and the tester tipped back to its

normal position. If there are no gage valves, carefully fit a pipe plug, taking

care that no air is trapped. The diaphragm is then removed and glycerin added

through the opening while retracting the piston, taking care that no air is in-

troduced. The diaphragm is then temporarily replaced and the tester tipped on

end, as shown in Fig. 11, so that the piston is in the vertical position. The

plug at the topmost part of the glycerin chamber is then removed and the piston

again run forward to expel glycerin and any air which may have been trapped in

the piston and cylinder assembly. The plug is then replaced, the tester set

down, the diaphragm removed, and the chamber is again filled with glycerin while

retracting the piston. If care has been taken, all air should now be out of

I
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the tester. [Note: Before tipping hydraulic clamp testers on end or side, the

vent in the hydraulic oil reservoir should be plugged.]

GAGE CALIBRATION

Two types of pressure indicating gages are commonly used on bursting

strength testers: The "release-button" or lever maximum indicating gages and

"lazy-hand" indicating gages.. Gages of each type are illustrated in Fig. 12-14;

gages of either type made by other manufacturers may differ in detail from those

illustrated. In the Ashton release-button gage (Fig. 12), the Bourdon tube (A)

has an "L"-shaped lever (B) attached to it which engages pin (D) on the gear

sector (G) so that the sector may be pulled in only one direction. When the pres-

sure is released, the lever (B) no longer contacts the pin (D) and the gear sector

(G) remains in the maximum position until returned to zero by means of the push

button (C) on the side of the gage housing. The adjustment (F) regulates the limit 

to which the push button (C) may be moved in so that the needle is returned to

zero and not beyond. The gear sector (G), in turn, engages a central pinion (H)

to which the gage needle (not shown) is attached. A tension spring (I) presses

against the pinion shaft (H) to introduce sufficient friction to prevent the

needle from "overrunning" when it is released by the lever (B). E and J are

calibration adjustments for the gear sector and lever, respectively.

Another style of maximum reading gage in current use is the Star-Martin

lever-return type shown in Fig. 13. This gage incorporates some of the main

features of both the release-button and lazy-hand type gages. The Bourdon tube

(A) is directly linked by arm (B) to the sector (C). This sector has a stiff

wire arm (D) attached which is bent downward to engage gear sector (E) so that

the gear sector may be pulled in only one direction. When the pressure is
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released the wire arm (D) no longer contacts gear sector (E) and the latter re-

mains in the maximum position until returned to zero by means of the lever (F) on

the side of the gage housing. The adjustment (G) regulates the limit to which

the lever (F) may move the gear sector (E) so that the gage needle is returned to

zero and not beyond. The gear sector (E), in turn, engages a control pinion (H)

to which the gage needle, not shown, is attached. A tension spring (I) presses

against the pinion shaft (H) to introduce sufficient friction to prevent the

needle from overrunning when the pressure to the gage is abruptly released. An-

other tension spring (J) presses against the gear sector pinion shaft (K) to in-

troduce sufficient friction to prevent the gear sector (E) from overrunning when

it is released by the wire arm (D). (L) and (M) are the two calibration adjust-

ments for the gage, (L) for the lever arm adjustment, and (M) for the angle of

pull on the gear sector. Set screw (N) is the adjustment for the gear sector (E)

friction, whereas the adjustment to the tension spring (I) is made by bending

sufficiently to obtain the correct pressure.

This type of gage is generally equipped with a means of bleeding air

out of the Bourdon tube. A capillary tube (0) is inside Bourdon tube (A) and

exits at set screw (P) near the gage base. The capillary tube (0), being open

at its end inside the Bourdon tube (A), allows air and glycerin to be removed

from the gage by loosening set screw (P) and forcing fresh glycerin,through the

gage nipple (Q) into the Bourdon tube. When all air has been removed, tighten-

ing of set screw (P) again seals the system.

In the Clapp lazy-hand gage, as shown in Fig. 14, the Bourdon tube (A)

is directly linked by the arm (B) to the gear sector (C). In this type of gage,

the central pinion may rotate in either direction as the pressure in the Bourdon

tube varies. The maximum gage reading is indicated by means of an auxiliary



Fo~urdr~nier Kraft Board Institute, Inc. Page 51 < !- 1
Fourdrlnler Kraft Board Institute, Inc. Page 51 
Project 2694-7 Report One

lazy-hand which is pushed to its maximum position by a pin (G) on the gage needle.

A knob extending through the center of the gage glass is turned to return the lazy-

hand to its starting position. The lazy-hand is attached to this knob by means

of a wire clip which may be bent to increase or decrease the friction which holds

the hand at its maximum position. There is danger with this type of arrangement

that the lazy-hand, because of its inertia, may coast beyond the maximum position.

On the other hand, if the friction holding the lazy-hand is too great, the energy

required to move the indicating assembly may become excessive. The Clapp gage

has a needle adjustment (F), as indicated in the figure, which may be used for ad-

justing the needle to zero. D is the pinion which carries the needle. E and I

are the two calibration adjustments for the gage.

All air in the gage Bourdon tube must be removed and replaced by glyc-

erin to minimize flow of liquid through the gage manifold. This may be accomplished

most easily by evacuating the gage, as shown in Fig. 15. A vacuum pump is connected

to a small vessel about 1/3 filled with glycerin. Two tubes are inserted into the

vessel, one extending almost to the bottom and the other extending just inside the

stopper. The latter is connected to the vacuum pump, whereas the tube extending

to the bottom is connected to the gage Bourdon tube. The vacuum pump is turned on

and the vessel tipped just enough to uncover the tube connected to the gage. This

will insure a minimum of back pressure while drawing the air from the gage. A

high vacuum level (low absolute pressure) is desirable (42). Evacuation is con-

tinued for several minutes after the glycerin in the vessel appears to "boll."

The vessel is then tipped until the tube leading to the gage is well immersed

in the glycerin and air then is slowly admitted into the vessel. This will force

glycerin into the gage Bourdon tube. If the air has been completely removed from

the Bourdon tube, a minimum of glycerin will be pushed out of it upon reevacuating

the system.
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As mentioned previously, some gages are available with a bleeder mounted

inside the Bourdon tube which may be used to bleed off the air instead of re-

moving it by the vacuum procedure described.

Several devices have been used to calibrate gages for the bursting

strength tester. Of these devices, only the deadweight tester appears to have

the accuracy and range needed for calibrating gages used in testing paperboard and

box materials. Because there are a number of models available, only a general

description of the fundamental requirements will be given. The deadweight tester

shall consist of a glycerin system (so that no oil can possibly be transferred to

the bursting strength tester through the gage) so arranged that the gage to be

calibrated may be attached without leakage, with a piston or plunger of known area

fitted to a carefully lapped cylinder in such a manner that friction is at a mini-

mum and leakage of glycerin past the piston is at a minimum, and a glycerin reser-

voir such that additional glycerin may be introduced into the system when needed.

Calibrated weights shall be provided which may be placed on the piston to transmit

known pressures in pounds per square inch.

Because the rate of pressure application in a bursting strength tester

is approximately logarithmic in form, it is difficult to duplicate this rate of

pressure increase with a deadweight tester. Investigations have shown that the

loading rate at the moment of burst has the greatest influence on bursting

strength values. Therefore, it has been found advisable to adjust the rate of

loading during calibration of the gage in such a manner that the gage needle will

travel at approximately the same rate during calibration as it does during the

later stage of a bursting strength determination (before rupture occurs). This

loading speed may be reproducibly controlled by introducing a needle valve be-

tween the glycerin system of the deadweight tester and the gage to be calibrated

1
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(Fig. 16 and 17). This needle valve may be of 1/4-inch pipe size fitted with a

short nipple to screw into the deadweight tester and may be of brass, bronze, or

stainless steel. It may be adjusted so that, when the gage needle is at zero

and the full scale load is suddenly applied, the needle moves at the same speed

as on the bursting strength tester prior to rupture. If a stopwatch is available,

the valve may be adjusted until the needle moves through the scale range in approxi-

mately, 0.75 sec.

The following calibration procedure is recommended for all gages used

with bursting strength testers;

1. Check the deadweight tester to make sure that its fluid system is

free of air. This can be done conveniently by raising the piston off its seat by

means of the crank while the gage valve is closed. Press down firmly on the

piston. The piston should feel solid - that is, there should be only negligible

movement. If the piston feels "spongy" - that is, there is appreciable movement -

the tester probably contains air. Air may be removed by pumping air-free glycerin

through the tester.

2. Connect the gage to the deadweight tester (a gage should always be

connected in such a manner that it is calibrated in the same position as it is to

be used) and, after opening the gage valve, repeat the preceding step. If air is

now detected, it may be in the gage. As mentioned previously, the air may be re-

moved from the Bourdon tube by attaching the gage to a source of vacuum through

a trap filled with glycerin or whatever fluid is used in the gage, or by using

the bleeder tube in gages so equipped.
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3. The torque friction of'the gage needle should be checked for uni-

formity. As the result of considerable study of this point, The Institute.of

Paper Chemistry has adopted the following method (see Fig. 18) for the checking

of release-type gages:

2 Grams 2 Grams

Figure 18. Method of Checking Torque Friction [Ref. (33)]

The desired spring tension is one which requires a 4 gram-centimeter

torque on the needle to move it. This may be measured by means of a hook weigh-

ing 2 grams which is hung on the gage needle at a distance of 2 centimeters from-

the handshaft. The friction torque is checked with the gage in a vertical posi-

tion and the needle in a horizontal position. The hook is attached at the

specified location and the case of the gage is gently tapped. If the needle

just moves in a smooth manner, the needle friction torque is considered satis-

factory. Sometimes it maybe found that there are tight and loose spots where

the gage needle will either stop or move rapidly. To eliminate this erratic

movement, it is necessary to dismantle the gage, careful;/ clean the parts,

and polish all hearing surfaces, including the spring that bears against the

handshaft. When this is done, it should be possible to obtain uniform

friction throughout the entire movement of the needle.
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:|V~ t4. Connect the gage to the deadweight tester through a needle valve.

Both the deadweight tester and the gage should be free.of air as determined by

Points 1 and 2 above. Adjust the needle valve so that the gage hand moves slowly

5Cr across the gage when calibrating weights corresponding to the full capacity of

the gage are on the piston. The movement of the gage hand is observed. The gage

G, ~ hand should move smoothly; otherwise, the gage should be disassembled, cleaned

and adjusted.

5. Adjust the needle valve until the gage hand moves to full-scale

,i ~ reading in about three-fourths of a second. Then proceed to calibrate the gage,

selecting weights to cover the complete scale of the gage. The weights are

added to the piston and given a spin so that friction is minimized. The piston

should be about an inch above its lowest position. The gage hand should be re-

turned to zero after each determination. With the weights spinning, the gage

valve is opened and the gage reading recorded. It is recommended that a graph

of the deviations of the observed gage readings from the applied pressure be

plotted against the applied pressure. The graphic presentation facilitates the

detection of calibration errors and the identification of the cause of such

errors.

6. The deviation of the observed readings from the applied pressure

should not exceed 0.5% of the full-scale pressure as prescribed in TAPPI Methods

T 807 and T 810. If the deviations exceed these limitations, the gage must be

adjusted. For research work, a tolerance of 0.5% of the applied pressure, or

1/2-scale division, whichever is greater, is recommended. The tolerance lines

may be plotted on the same graph paper as the gage calibration to determine

when the gage needs adjustment.

I
I
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7. Detection and correction of different types of gage errors (see

Fig. 19):

A. If the gage consistently reads an equal number of pounds high

or low (Fig. 19, Type A), remove the needle by means of a needle puller

and replace it in its correct position. This is done most easily by

placing weights equal to about one-half scale readings on the dead-

weight piston, opening the valve, and then placing the needle to give

this value on the gage. When the needle is in its correct position,

set it firmly by means of the punch in the deadweight kit.

B. If the gage shows increasing or decreasing errors (Fig. 19,

Type B), it indicates that the leverage through the gear sector is

incorrect and must be changed. Remove the gage needle and the dial.

The adjustable arm on the gear sector which rotates the handshaft can

be moved in or out by loosening the clamping screws. Shortening the

arm will increase the scale spread, whereas lengthening the arm will

decrease the spread.

C. For the Ashton-type gage, the calibration line may generally

be straightened by changing the length of the connection between the

Bourdon tube and the gear sector. If the curve exhibits a maximum

value (Fig. 19, Type C), the connection should be lengthened; if the

curve exhibits a minimum value (Fig. 19, Type C'), the connection

should be shortened. If this type of gage error cannot be eliminated

by changing the length of the connection, the bearing surface of the

link is probably worn so that it is no longer a straight edge, and

the part should be resurfaced or replaced. In the Clapp or
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Star-Martin gages, the gear sector assembly may be rotated to obtain -&

the correct line of pull.

D. Erratic variations along the scale (Fig. 19, Type E) may be the ' '

result of a faulty gear train. 

a. Check the needle shaft to see if it is bent. Careless i ,'

removal of the gage needle may bend this shaft and cause errors.

b. The sector shaft in rare cases may be bent.

c. Dirt or burs in the gear sector or needle pinion are a i

common cause for the errors of inconsistent magnitude illustrated 

in Fig. 19, Type E. The dirt or burs may be removed by brushing

with a toothbrush dipped in a solvent such as kerosene or carbon

tetrachloride.

d. The linkage screws may be loose. If so, they should be

tightened.

e. The Bourdon tube may be strained beyond its permissible

pressure range. It is better to obtain a replacement Bourdon tube,

inasmuch as it is seldom possible to correct a Bourdon tube

strained beyond its elastic limit.

f. The spring tension on the pointer shaft may be uneven.

The parts should be polished and adjusted to give the proper

torque (.-gram centimeters).

g. The bearing face of the L-shaped lever may be uneven. 

This should be straight and smooth.

If the gage is out of calibration and requires adjustment, it is

possible for any number of the above types of errors to be present.
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For example, in the multiple-type error illustrated in Fig. 19,

Type D, corrections of Type A, B, and C will be required. 

As alternatives to the above procedure for gage calibration, the methods

suggested in References (39,40) may be used.
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