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Abstract

Multi-dimensional packet classification is increasingly important for applications ranging
from fire-walls to traffic accounting. Fast link speeds, the desire to classify with fine granularity,
and the need for agility in a dynamic environment all pose significant challenges for packet
classification. We propose an approach that is capable of handling a changing set of classification
rules that span multiple fields. Our approach is based on extracting a relatively small set of
bits that uniquely identify the packets satisfying each rule. Changes to the rule set are handled
in-line via a fast update mode that adds to the rule table, while a background process performs
reoptimization of the full rule table less frequently. The classification process can be efficiently
implemented using pipelined hardware and supports high packet arrival rate.

1 Introduction

Packet classification refers to the task of determining which rule(s) from a rule set are matched for
a packet, based on the contents of the packet headers. For example, standard IP routing requires
packet classification using the destination address field of the IP packet, with the rules stated as
address prefixes. A rule matches a packet if the destination address agrees with the address prefix.
Multiple rules may match; the rule with the longest prefix “wins”.

Research efforts in recent years have resulted in algorithms able to classify packets for IP
routing at high speeds [13, 18, 5]. Thus, interest has turned to more general packet classification
problems [9, 7, 15, 19, 6, 11, 16], referred to as multi-dimensional packet classification, where
the rules span multiple fields. Multi-dimensional packet classification is increasingly important
for applications ranging from fire-walls to traffic accounting. For example, an intrusion detection
database will contain rules to describe packet headers that indicate a potential attack. Depending
on the type of attack, different packet header fields will be relevant. For example, a SYN-flood
attack may require examining destination IP address, TCP port number and TCP flags field.

The packet classification problem [9] can be formally defined based on the structure of a rule
and the definition of what it means for a packet to match a rule. Packet classification algorithms
are typically evaluated on the following criteria:

e Speed of classification. To keep up with line rates, classifiers must be capable of handling
as many packets per second as the link can deliver.

e Size of rule tables supported. A survey of real classifiers circa 1999 found fairly small
rule tables [7]. However, the support of new applications and different degrees of QoS on
a per flow basis changes the scenario. Classification on a per flow basis can increase the
rule set enormously to thousands of rules. Pre-processing time for data structures, memory



requirements, and lookup speed will generally all grow with the size of the rule table, and
will eventually limit the practical size of the rule table.

e Ease of updates. Any scheme can handle modifications to the rule table via complete recom-
putation of the lookup data structures, however such an approach will typically severely limit
the frequency of updates. Alternatives that support incremental modification are desirable
for applications with frequent changes.

e Generality. A spectrum of rule types exist, including simple prefixes, non-contiguous masks,
operators (range, less than, greater than) and wild-cards. A more general approach supports
a larger set of rule types.

The focus of this paper is multi-dimensional packet classification with relatively large tables
(up to 8000 rules) that may change relatively frequently (about 20% increase in size of rule table)
and must classify at high speeds (up to OC192 or 31.25 million packets per second). Our approach
takes inspiration from two observations. First, the size and cost of content-addressable memories
(CAMs) have improved steadily over time to become viable to consider for hardware implementation
of packet classifiers'!. Second, packet classification can be viewed as an instance of the feature
selection problem [4, 3, 10] that has been studied extensively in the database, artificial intelligence
and theory communities.

Our approach is based on extracting a relatively small set of bits that uniquely identify the
packets satisfying each rule. Changes to the rule set are handled in-line via a fast update mode
that adds to the rule table, while a background process performs reoptimization of the full rule table
less frequently. The classification process can be efficiently implemented using pipelined hardware
and supports high packet arrival rate.

The remainder of the paper is organized as follows. The next section describes our packet clas-
sification architecture and the algorithms that build and maintain classification rules in necessary
data structures. In Section 3 we sketch the design of a hardware implementation. We evaluate the
performance of the approach using both analysis and simulation in Section 4. Section 5 describes
related work. Finally, we present concluding remarks in Section 6.

2 Architecture and Algorithms

2.1 Overview

One of the key observations made by Gupta and McKeown in their study of real life packet classifi-
cation rule sets [7] is that the number of distinct values for a particular field in a rule set is far less
than its allocated space of values. For example, the transport protocol field across all rules in a rule
set contains very few distinct values (e.g. IPPROTO_TCP, IPPROTO_UDP, IPPROTO_ICMP)
whereas its allocated space of 8 bits can have 256 values. This observation holds when we extend
the scope from a field to a more general collection of bits called “chunk”. The authors take advan-
tage of this observation and encode the N distinct values in a particular chunk using [log N bits.
While this code is an optimal one, it requires pre-computation of the map from given values in rules
to assigned codes. On the data path, complex logic is needed to figure out the correct encoding of
a random value in packet. Further, when the rule set changes (either addition or deletion of rules),
this encoding is no longer valid and cannot be corrected easily.

!Though the price of a CAM depends on vendor and exact specifications, it roughly costs less than $5.00 per 1024
words, with 64-bit words [1].



Our solution is based on key insights from previous work on “feature selection” in database,
artificial intelligence and theory communities [4, 3, 10]. The main idea of our algorithm is to select
a subset of bit positions? such that the bits extracted from these positions represent the entire data
set. In particular, if our data set comprises of M bit vectors each of size k bits, we hope to select
a subset [ out of k bit positions such that the bits in these [ positions for all M bit vectors best
represent the entire data set. Figure 1 illustrates this idea. While the number [ of representative bit
locations is certainly higher than the optimal [log N bits, we have a simpler bit extraction function
(a bit mask operation) on the data path. Any modifications to the rule set can be performed easily
by addition or deletion of representative bits. However, as always with any vector projection, the
process of reduction of k£ bit vectors to [ dimensional space leads to collisions. Our goal in this
process is to minimize these collisions, ideally to none. As we shall see in our description of our
algorithms and evaluation using real-life packet traces that our scheme works well in practice.

k—bits

M (= " ) bit vectors

1 bits

Figure 1: Selection of | representative bit locations for k-bit wide vectors

2.2 Architecture

Our proposed packet classification system is shown in Figure 2. The architecture can be divided into
two main components: control and classification. The classification process operates on the data
path and identifies what to do with a packet when it arrives. The outcome of the classification is
an action ID, obtained from a table that contains all classification rules. The rule table is built and
updated by the control process. Updates are necessary when the rule set changes, which happens
on a considerably slower time scale than the packet arrival rate. Since the classification path is
critical for our system, we have designed it to keep the operations at a minimum. However, the
control path, which is executed as a background process, does include complex operations.

The classification process starts with the arrival of a new packet as shown in the right side of
Figure 2. It includes a lookup stage and a verification stage. In the lookup stage, a bit mask (#)
is applied to the packet to extract a lookup key. A lookup algorithm uses this key to identify a
rule that matches this packet. As explained earlier, collisions may occur in our design. Thus the
lookup stage might identify a bucket of rules instead of a single rule. In this case, the verification
stage determines which rule within the bucket is the one that matches this particular packet. Once
a rule is identified, it contains an action to be performed on the packet. Since the execution of this

*We use the words “bit positions” and “bit locations” interchangeably.
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Figure 2: Architecture of our packet classification system

action is independent of classification, we do not include it in our fast path. However it is handled
by subsequent stages in the overall system. Thus, the action identification is the end of one run
through the classification process and the classifier returns to process the next packet.

The control process handles creation and modification® of the rule table used for lookups (the
“refined rule table”), as well as construction of the bit mask used to extract a lookup key from
a packet. The refined rule table is constructed by processing the original rule table using a bit
selection algorithm. The algorithm produces a bit mask used to extract a lookup key. The same
bit mask is applied to all rules in the original rule table to produce the (smaller) refined rule table.

An important characteristic of this control process are the two modes of operation: off-line-
processing and fast update. The off-line-processing mode updates the rule table by reconstructing
the table from scratch. On the other hand, the fast update mode is designed to add rules quickly
so that the rule is available as soon as possible.

In the fast update mode, the policy engine adds a new rule by using the current bit mask.
This addition could create collisions in the refined rule table and hence the bit mask may lose its
optimality. Though the system can still operate under these less optimal conditions, it reconstructs
the bit mask once in a while, in order to preserve optimality. The tradeoff between optimality and
processing requirements is controlled by frequency of reconstruction of the bit mask.

In summary, this architecture is based on a variable bit mask coupled with a fast update policy
to achieve high classification rates on data path, while reflecting any changes in the set of rules very
quickly. Specific algorithms proposed for this architecture are presented in the following subsection.

3Addition of new rules and deletion of old rules is triggered by some policy implemented by “policy engine”
module.



2.3 Bit selection algorithm

The algorithm to construct the bit mask starts with the entire set of classification rules, each of
size k bits. At each iteration, we select a new bit, such that the original set of rules is divided into
two subsets; one subset of rules with a zero in that chosen bit location, while the other subset of
rules had a one in the same location. The choice of bit location is based on maximizing the division
of the sets of rules from the previous stage.

A pseudo code description of the algorithm to select bits is shown in Figure 3. The set of rules
R is an input to this algorithm, along with two parameters: number of bits [ to be selected and
maximum number of collisions ¢ allowed. While the first parameter [ determines the maximum
depth of the decision tree (also referred to as “set division tree”, since each decision leads to a
smaller set of possible matching rules), the second parameter ¢ determines the maximum number
of rules at a leaf node. In the pseudo code, r; denotes the i** rule and b; denotes the Gt bit
position. Zj, and O, denote subsets of rules that have 0 and 1 respectively at bit position b;. The
algorithm proceeds in a greedy fashion selecting the best bit position at every level of depth d in
the set division tree. 4,, Qq,, ... {24; represent subsets of rules associated with internal nodes
at depth d. Each outstanding bit position b; is assigned a weight based on the extent to which
the sets €2y, would be pruned, if we were to select b; for division at the current level of depth
d. Qg; N Zp, and Qg; N Op, denote the children of €24, if we were to select b; for division. The
extent of division is measured in terms of difference in cardinality of these children. Thus lower the
sum > d; [1Q4; N 2| = [Q4; N Obi”2’ greater is the division. So the greedy algorithm picks the bit
position that minimizes this metric in every level of decision tree. The algorithm terminates when
either we have selected the required number of bit positions or the number of rules in leaf node is
below the acceptable number of collisions.

Bit Position
RuleIndex |1 2 3 4 5 6 7 8
71 10 0 01 0 1 1
T9 10 0 01 1 0 O
T3 0 1.1 011 0 1
T4 11 0 1 1 1 0 O

Table 1: Example rule set to illustrate algorithm to construct Bit Mask

Table 1 contains a simple set of M = 4 rules that have k£ = 8 bits each. We select bit mask
for this rule set using the algorithm described in this section. An illustration of how the rule set
is divided as the algorithm proceeds is shown in Figure 4(a). In the example, bit 2 divides the
original set S with four rules {ry,rs, 73,74} into two subsets: Sy:{ri,r2} and Si:{rs3, 74}, containing
0 and 1 respectively in bit location: 2. Next, bit 8 divides these two sets Sy and S; further into
two subsets each. Finally, we have four subsets Spo:{r2}, So1:{r1}, S10:{ra}, S11:{r3}, each of them
with just one rule. Thus the bit locations 2 and 8 are representative of the entire of rules. Figure
4(b) describes the search tree used in the greedy algorithm to select bits. In the search tree, a
pair (S5, $%) denote two subsets of S (root), if we were to select bit b; for division. We follow
similar notation for the second level of division. At every iteration, we list all possible divisions
of subsets and choose the best one based on a weight function. This weight function maximizes
the set division at that level. In the example, in the first iteration, the choice of (53, S%?) gave the
best weight as it divided the set S gave exactly into half. Once a branch is chosen, we pursue in



SelectBits(RuleSet R, NumBits !, MaxCollisions c)

{
/* R has M rules, each of which is k bits wide */
/* This algorithm attempts to select ! bits such that the number of collisions is less than ¢ */
Q « {ri,r2,...,7am}; /* Q includes all rules from R */
K « {b1,b2,...,bx}; /* K is a set of all bit locations */
for each bit location b; € K do
{
2y, «+ {r;j | r; has a zero at bit location b; };
Oy, < {r;j | r; has a one at bit location b; };
/* Note that Vb;, Zp, N Obi = ¢ and Zp, U Obi =0 */
L« ¢; /* L is set of bits that are selected so far */
d < 0; /* d is current depth of set division tree */
Qo < Q; /* Qo is root of set division tree */
divideFlag < (|Qo| > ¢); /* divideFlag indicates whether to proceed with set division or not */
while ((divideFlag) && (d < 1)) do
{
/* Choose the next bit location */
for each bit location b; € K — £ do
{
Wy, < 0; /* Wy, represents the weight of bit location b; in this iteration */
for each node Qq; at depth d do
Wy, < Ws, + [leJ N Zy, | |Qd n Ob |]
}
L+ L U {bmin}; /* where W, _, is minimum of all weights in this iteration */
for each node Qq; at depth d do
add Qq; N 2y, and Qq4; N Oy, as children;
d « d + 1; /* Extending the tree one step deeper */
IV Qq; |Q4;] < c then /* all nodes Qq4; at depth d have less elements than ¢ */
divideFlag < FALSE;
} /* end of while */
return £; /* Return the set of selected bits */
}
Figure 3: Pseudo code of algorithm to select bits
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that direction, ignoring the rest of the options. Here the siblings (S§, S1), (S§,5%), ... (S§,S%)
are not considered any more. In the second iteration, the choice of (Sg ,Sgis, S1o ,Slis) was the
best because it divided the sets (S2,S5?) equally. Thus, the bit selection algorithm uses a greedy
approach. Several observations can be made from this example. First, the order of bit selection is
not important as S%(’)S is same as ng. Second, the minimum number of bits required to identify the
rules uniquely is equal to the depth of the tree at which all leaves have singleton sets. Third and

last, the size of the search tree is too large (exponential in size) to be able to explore all possibilities.

2.4 Discussion

Though the description in previous section assumes that all rules contain only binary digits 0 and 1,
we can extend our bit selection algorithm to fit a more general case that uses wild cards. The rules
follow ternary notation (1,0, *) and certain modifications are necessary to this algorithm. When a
set is partitioned, a rule with a wild card at the chosen bit location is replicated in both children.
The metric that measures the extent of partition is now a weighted average of two parts: first, that
computes the evenness of division of each set, second, that keeps the average cardinality of children
low. While the first part ensures that the children are almost the same size, the second part avoids
bit locations with wild cards, since they lead to duplication of rules. An extensive evaluation of
these modifications to our algorithm is part of our future plan.

3 Suggestions for implementation in hardware

Figure 5 shows a hardware implementation of the data path for our packet classification system.
The first stage is the bit extraction from the packet header. This is implemented as a cross bar
which selects the relevant bits and generates a key for the lookup stage. This key generation is
accomplished in one clock cycle. The lookup stage is implemented using Content Addressable
Memory (CAM). The CAM matches the key against all its entries and returns a MatchID. This
lookup is also performed in one clock cycle. The MatchID points to a block of memory in the
SRAM where the complete rule is stored. The comparator stage compares the header of the
received packet against the retrieved rule. In the case when there are collisions, the comparator
sequentially compares the retrieved set of rules. This linear search takes, at most, ¢ cycles where ¢
is the maximum number of collisions. Hence, on average, this pipelined implementation can process
one packet every c cycles. On a 125 MHz system with maximum number of collisions ¢ = 4, this
system can obtain a throughput of 31.25 million packets per second. In the following sections, we
assume that our system operates with M (= 2™ say) rules for classification. Each rule is k bits
wide and our bit selection algorithm selects [ representative bits.

3.1 Bit Extraction

The bit extraction module is essentially a k x [ multiplexor which selects the relevant [ bits among
the k bit header fields. This can be easily implemented in hardware as crossbar switch with k£ inputs
and [ outputs. The [ bit output is the key that is used in the lookup stage. The implementation
of a crossbar has two elements. First is the switching matrix that requires k& x [ switches. For
example, a 256 x 64 multiplexor requires 16 K switches and can be implemented with current VLSI
technologies. The second element is the control logic that manages the crossbar. This crossbar
needs to be reconfigured only when the bit mask changes. Since the reconfiguration of the switch
is a low frequency event off the fast path, this leads to a crossbar implementation that is simple
and real-estate efficient.
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Figure 5: An illustration of the hardware implementation of the packet classifier

As an alternative design, when more delay can be tolerated through the system, this multiplexor
can be implemented as a simple bit shifter. Such a system can generate the key in (k + ) clock
cycles. This value comes from the fact there are at least k shift operations and [ store operations.
However this design limits the packet processing capability to one packet every (k+1) clock cycles.

3.2 Lookup

The next step in the fast path is the lookup stage. The lookup in our algorithm is to match the
input key [ bit string against the refined rule table. Such fixed length string comparisons can be
implemented in hardware using Content Addressable Memory (CAM) which allow fast and parallel
comparisons. CAMs, which were once expensive, are becoming increasingly ubiquitous and cheaper.
Commercial CAMs of sizes 64K words x 128 bits/word are available today [12, 14].

The refined table is stored in a binary CAM. Each entry in the CAM has two parts: first part
is an [ bit vector obtained by extracting / bits from a rule and second part is a Match ID (z bits in
width) of the bucket containing the corresponding rule. The CAM required in our implementation
is M words long and [ + x bits wide. The key obtained from the bit extraction is used in the
CAM lookup. The lookup is a one cycle operation and the result is a success or failure with the
appropriate MatchID. For buckets of size 1, CAM lookup returns the MatchID associated with the
rule. On the other hand, if the buckets are of size greater than 1, the MatchID returns an identifier
of the bucket and the verification stage has to continue the classification further.

3.3 Verification

The purpose of verification is to confirm if the lookup stage is correct, and to classify further if
buckets have more than one rule in them. We use the MatchID obtained from lookup stage to locate



the candidate rule(s) that could potentially match the packet in consideration. The candidate
rule(s) accessed from memory can be compared with & bits in the packet either in sequence or
in parallel. Sequential comparison needs one k-bit-wide comparator. The candidate rule(s) are
searched in sequence, hence this takes as many as ¢ cycles. In cases where c¢ is a small value, a
group of ¢ such comparators can be provided for faster parallel comparison. As an alternative to
comparator logic, the candidate rules could be stored in another CAM prefixed with the MatchID
of the bucket. However, this would require a CAM with large width to store an entire rule along
with the bucket ID as a prefix. Though this option is good in terms of clock cycles, it is not cost
effective.

3.4 Bit Selection Algorithm

Since the bit selection algorithm does not fall in the fast path, it can be executed without the need for
a hard deadline. Hence it can be run off-line on a separate processor or a multi-processor, preferably
with spare cpu cycles and capable of executing mathematical operations (e.g. set intersection)
efficiently. Though the execution of the bit selection algorithm does not have any direct effect on
the fast path, its frequency of execution determines the optimality of refined rule table. Therefore
it is imperative to choose good time-out period that controls the frequency of optimization.

4 Evaluation

We evaluate the packet classification system both analytically and through simulations. We start
with a mathematical analysis that assumes each rule is equally likely. The simulation results
described in the second half of this section evaluate the different parameters of our classifier system
under rule sets taken from packet traces.

4.1 Mathematical Analysis

We derive statistical results that are based on the assumption that each rule (k-bit vector) in the
given set of M (= 2™ say) rules (bit vectors) follows a uniform random distribution. In other words,
each bit has equal probability of being zero or one. This assumption represents an ideal case.

The goal of this analysis is to determine how large | must be so that [ bits are sufficient to
search the rule set. As we mentioned in section 2, dimensionality reduction leads to collisions. Our
goal is to minimize these collisions, ideally to none, by selecting the right set of [ bits. We derive
the probability that there exists an [ bit vector that uniquely identifies each original k bit vector.
The higher the probability, the better are the chances to find a right set of [ bits.

We use some basic results from combinatorics in this analysis. Given [ bit locations (i.e. the
bit locations are fixed), the probability that any set of 2™ bit patterns, each of size k bits, has no
collision at all is given by:

! (k=1), 2™ ! _ m
po_ (22m) x (2 ] ) _ (22m) x 2(Ic 1)x2

2k 2k
(3m) (3m)
The denominator represents the total number of ways to construct a set of 2™ bit patterns,
each of size k bits. The numerator represents the number of ways to construct good sets (without

collision in [ bits). To construct a good set, we first fill in the given I bit locations from the 2!
vector space, and the rest of (k — [) bits in any order.




Given [ bit locations, the probability that in any set of 2 bit patterns, each of size k bits, has
one or more collisions is given by: P, =1 — P,
The probability that all chosen subsets of [ bit locations (out of a possible k bit locations),
k
results in at least one collision is: Pc(l). The exponent represents the number of ways to select [
bit locations from a possible k locations. The probability that there is at least one subset of [ bit

locations, such that there is no collision at all is given by:

T 2! o] (1)
p=1-P—1_n-pg®=1- [1_ (3m) X(zik) hx2 ]

As detailed in Appendix A the probability P can be approximated as
Pl gl@m—1-1)x(F)]

Note that the exponent of the second term [(2m — 1 — 1) X (’l“)] is negative for [ > (2m — 1) and

(]lc) is a very large value when [ is close to k/2. From the above expression, we can observe that P
is close to 1 as [ > (2m —1).

4.2 Simulation Results

In this section, we present results of experiments to study the bit selection algorithm and classifica-
tion. All the algorithms for bit selection and classification are written in C' and executed on a 440
MHz Sun UltraSPARC-ITi running the SunOS 5.7 operating system. The timing measurements are
gathered using a Solaris nanosecond resolution timer?.

The rule sets used in all our experiments are constructed from real packet traces collected
at an access router providing service to residential users. Due to the unavailability of rule sets
of the magnitude and dimensions that we are interested in this work, we had to work our way
backwards from the packet traces to generate the rule sets. Specifically, our approach was to fix
the protocol headers and fields that we are interested in, and examine every packet in the trace
to collect information on valid protocol headers/fields. The rules, thus generated, were as random
as the packets in a trace can be, but were certainly more correlated to each other than those that
can be constructed using a pseudo-random algorithm. By default, each rule comprises of five fields:
[ip sre,ip dst,ip proto,xport sport, zport dport]. The following experiments include both a study of
the bit selection algorithm as well as the performance of our classifier (as implemented in software)
on a stream of packets.

In our first set of experiments, we started with rule sets of different sizes varying from 128 rules
to 8015 rules. For each rule set, our bit selection algorithm constructed a bit mask to classify rules
as a function of the maximum number of collisions (c¢ as defined in section 2) that are acceptable.
The first observation to be made in Figure 6 is the importance of allowing collisions: the larger
the number of collisions allowed, the fewer bits are needed. If collisions are not allowed at all, the
rules need to be uniquely identified, hence the number of bits needed is quite large. For example,
a rule set of 1024 rules needs 23 bits to operate with no collisions. On the other hand, if one more
collision is allowed this number drops to 18. Further, 4, 8, and 16 collisions need 15, 12, and 8 bits
respectively. Note that while the number of bits decreases rapidly as number of collisions increase,
this increase is less once the number of collisions is relatively large. This indicates that there is no
advantage in designing the hardware to handle a very large number of collisions.

“Please see gethrtime(3c) manual page on SunOS 5.5+
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Figure 6: Study of bit selection algorithm

The second observation in this figure is the effect of the size of the rule set. As expected, the
number of bits required is more for a large rule set. But this difference becomes almost constant
if the number of collisions is relatively large. Hence we can say that the effect of the maximum
number of collisions is fairly independent of the size of the rule set.
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Figure 7 evaluates the statistical variation of the number of bits needed, by conducting ex-
periments on five different sample rule sets. Our sample rule sets (each of size 6144 rules) are
generated from different portions of the the packet trace. The relative variation in the results of
these experiments is fairly flat indicating that the actual rules in these rule sets certainly have an
effect on the bit selection algorithm, but the effect (at least in rules inferred from a packet trace)
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is fairly minimal.
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An interesting property of this algorithm is that the number of bits needed to identify the
rule set is fairly independent on the number of fields the rule is comprised of. In this next set of
experiments, we have kept the size of the rule set constant at 2048 rules, while the length of rules
has been varied across the rule sets. We start with rules that have only one field [ip src] = 32
bits, and increment the length of the rule by adding successive fields [ip dst](32 bits), [ip proto](8
bits), [zport sport](16 bits), [xport dport](16 bits), in that order. The algorithm selects different
bits if the length of the rule set is different, but since it still needs to distinguish the same number
of rules, it does not necessarily require more bits as illustrated by the flat trend in the Figure 8.

We observe that there is a significant difference between the maximum number of collisions the
system can handle versus the number of collisions that actually happen during operation. Figure 9
measures this difference for several sizes of rule sets.

The results indicate that a large number of rules can be added without reaching the maximum
number of collisions. This helps in keeping the frequency of re-optimization of classification rule
set low.

Number of | Random Addition Restricted Addition
Original of New Rules of New Rules

Rules Number | Percentage | Number | Percentage
128 230.5 180.08 60.3 47.11
256 248.7 97.15 54.5 21.29
512 542.6 105.98 130.3 25.45
1024 8665.8 846.26 550.4 53.75
2048 11951.2 583.55 397.8 19.42

Table 2: Addition of new rules to the rule table
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Figure 9: Variation of actual number of collisions

A significant number of random rules can be added to an existing rule set because the actually
number of rules is very small compared to the total possible number of rules that is determined by
the length of the chosen bit mask®. However, as illustrated in Table 2, the correlation between the
original rules and the new rules certainly has an effect on rule addition. It is highly likely that a
new rule does not conflict with the current one if there is no correlation (as indicated by the random
addition columns). However, if the new rule is highly correlated to the existing ones, the collisions
happen more frequently (restricted addition columns). This is the case when the rules come from
the same trace. Even in the highly correlated case, the rule set can be increased by about 20% in
size before it needs to be re-optimized.

Figure 10 shows the processing time required to construct the refined rule table. The computa-
tion required to build a collision free table is large, since the algorithm must go to the lowest depth
of the tree. However as more collisions are allowed, the algorithm can stop at higher depth levels,
hence there is an exponential reduction in the number of nodes to be explored in the search tree.
This translates to the sharp exponential decrease in processing time shown in the figure for all rule
set sizes. Obviously, the larger the rule set, the larger the processing time required.

The classification time for packets along the data path, as implemented in software, is evaluated
in Table 3. In this experiment we have used rule tables of different sizes from 128 rules to 7168
rules. We have kept the size of each rule constant at 5 fields (104 bits). The average classification
time taken for 100,000 randomly generated packets is listed in the right column. For a rule set of
size 1024 rules, it takes about 967 nano-seconds to classify a single packet. This corresponds to
a throughput of about 1 million packets per second. This classification in software is performed
as a traversal of the set division tree constructed during bit selection. However, when this lookup
is actually implemented in a CAM as suggested in Section 3, the system can handle up to 31.25
million packets per second along the data path.

5 A bit mask of length I can potentially handle 2' rules.
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Figure 10: Variation of processing time of bit selection algorithm

Number of | Avg. Classification Time

Rules (nanoseconds)
128 714

256 798

512 843

1024 967
2048 1100
3072 1212
4096 1304
5120 1435
6144 1229
7168 1598

Table 3: Variation of average packet classification time vs. number of rules
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5 Related Work

Recent advances in non-best effort services, such as QoS, accounting, intrusion detection, clearly
indicate a need to distinguish and classify traffic into different flows for suitable processing. This
increase in emphasis has led to a variety of proposals for packet classification, especially to solve the
multi-dimensional version. In their exhaustive survey [9] of current research in packet classification,
Gupta and McKeown examine both hardware and software solutions to this problem. The taxonomy
suggested in this survey categorizes different solutions into four groups:

e Simple techniques like linear search, caching and those that use basic data structures like
hierarchical trees, set-pruning tries [17]

e Geometry based approaches such as grid-of-tries [16], area-based quad-tree [2], fat inverted
segment tree [6]

e Heuristic based solutions such as recursive flow classification [7], hierarchical cuttings [8],
tuple-space search [15]

e Finally, those solutions that are designed with special hardware such as Ternary CAMs and
FPGAs [11]

Our work presented in this paper falls into the third category of solutions based on heuristics,
yet focused on being amenable to a hardware implementation. Though we highlight the solutions
in third group briefly next, we encourage the reader to refer this survey for a comparative study of
various approaches.

Gupta and McKeown develop a multi-stage algorithm called Recursive Flow Classification
(RFC) [7]. RFC recursively reduces the S bits of the packet header to T bits of classifier ID,
by essentially extracting the unique values of fields and representing those values using fewer bits
than in the original headers. They use heuristics to determine the number of phases of recursion and
ways to combine packet header fields in each phase. The basic RFC algorithm has two limitations.
First, the space and pre-processing time become problematic for large rule tables. Second, the
scheme does not support incremental updates and therefore is suitable only if the rule set changes
relatively slowly.

Srinivasan et. al. propose an interesting scheme called Tuple Space Search algorithm [15] that
builds on hash tables. The algorithm constructs d-tuple for every d-dimension rule such that the
i*" component is equal to the prefix length in i*” dimension of the rule. Two rules are mapped on to
the same tuple if the prefixes in every dimension are fixed and equal in length. All the rules that are
mapped on to a single tuple are entered into a hash table associated with that tuple. A classification
operation is broken into exact match operations on each of the hash tables. Incremental updates
are very simple and require only one insertion operation in the correct hash table. This solution
works very well for multiple dimensions if the number of tuples is small on an average. However
the number of tuples could be very large in the worst case, with practically no benefit in transition
to tuple space from original space of rules. This scheme works only for prefix specification, thus
limiting the generality of the rules. Thirdly, the time taken for a search along each hash table is
non-deterministic since there are variable number of entries in hash tables.

Hierarchical Intelligent Cuttings (HiCuts) [8] and Modular Approach by Woo [19] bear a strong
similarity to our work. These three schemes, including ours, use a decision tree to narrow down
from a large original set of rules at its root to a small set of possible matching rules (filter bucket)
at a leaf. This is followed by a search phase within the filter bucket for the exact matching rule.
The decision tree is constructed while pre-processing the original set of rules. However there are
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subtle differences between these three schemes. The local decision in HiCuts at an internal node is
based on equal sized cuts along a dimension. While in Woo’s modular approach and our work, it
is based on a clever selection of bit(s) irrespective of dimensions. In our work, the bit selected to
make a local decision is the same for all internal nodes at the same level of depth. The optimization
strategy used in our decision tree construction examines all internal nodes at a level together to
select the best bit position. On the other hand, in both HiCuts and Woo’s modular approach,
the local decision (i.e. dimension to cut, selected bit) at an internal node is different from that of
other internal nodes at the same level. While their scheme leads to a decision tree with a short
overall depth, it has certain disadvantages. Since the local decision at a node affects the local
decision at a child node, it requires a sequential examination and hence a linear traversal of the
decision tree. Such a sequence cannot be pipelined well, unless we incorporate multiple levels of
look-ahead. Also since the length of the path to a leaf is variable, it takes variable amount of time
for each classification operation, thus limiting the maximum speed of classification. Though our
scheme results in decision trees of longer overall depth, we have the advantage of parallel execution
of decisions, each corresponding to a level of depth in decision tree. Since each local decision in our
scheme is to examine a bit position, we can leverage CAM technology to perform the decision tree
traversal in a single clock cycle.

6 Conclusions

For a variety of applications, classifying packets requires matching in multiple dimensions (fields)
of the packet headers. The problem of multi-dimensional packet classification becomes even more
complex when the set of these rules change with time. We observed a simple analogy of the
classification problem with classical feature selection problem, thus realizing a hash function to
extract bits from a packet using a mask. We have presented a hardware-friendly framework and
algorithms based on bit selection. Our approach has been backed by a mathematical analysis and
a practical study using a trace of packets. Our framework for classification includes modules for
optimization of rule set, bit extraction, lookup and variation in rule set. Finally, we proposed ways
to implement various modules of our architecture and algorithms efficiently in hardware.

A Approximating P

Recall that the function we are interested in is:

(2272) « 9(k—l)x2™
(30)

Remark: A quick look at the value of the function f(I) at the boundaries gives:

fi)y=1-

(%)
] , where m<I<k, and m,k are constants.

ok—m)x2m | (m)
f(m):1_ll_W‘| and f(k)=1

2m

Breaking this function f(I) into parts and examining the behavior separately:
F0 =1-[1- g
(22;) w 9(k—l)x2™

(3n)

where ¢(l) =
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Simplifying the expression for g(I), we get:
24 (2F —2m)l x 2™ o
90 = Gramyixam * 2k x2

2L (28 —1)... (2" —2m 4 1) m
= 2(k—l)><2
0= @) -

o) = = [1'(1‘2‘1’)1 ). 22[1)]><2<Mx2m
20xzm " T (1= By (1= 2)... (1 - L)

e )
1— (2m;;2.2m)

In the above step, we use the approximation that:(1 — z1).(1 — z9)... (1 —z,) = 1 — 3! ; when
Vi, 1 <i<mn, z; << 1 under the assumption that 2™ << 2! and 2™ << 2k,

Again, using an approximation that 8:;;) = (1 -z +vy), when z,y << 1, and an assumption

that 22m << 2!, 22™ << 2F we get:

~

(1 (r-12m (2" - 1).2m)
2.20 2.2k

=i T - )

Assuming that 22 >> 2™ and 2¥ >> 2!, we get:

22m 2m—1—1
g(l)z1—2(l+1) ~ 1 — 2@m=i=1)

Substituting this approximate value of ¢g(I) back in f(I), we obtain:

Note that the exponent of the second term [(2m — 1 — 1) X (]lc)] is negative for [ > (2m —1) and
(7) is a very large value when I is close to k/2. From the above expression, we can observe that

f(l)is close to 1 as I > (2m — 1).
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