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ABSTRACT
We present a novel approach to player modeling based on a convolu-
tional neural net trained on game event logs. We test our approach
and a hybrid extension over two distinct games, a clone of Super
Mario Bros. and Gwario, a human computation version of Super
Mario Bros.: �e Lost Levels. We demonstrate high accuracy in pre-
dicting a variety of measures of player experience across these two
games. Further we present evidence that our technique derives
quality design knowledge and demonstrate the ability to build a
more general model.

CCS CONCEPTS
•Human-centered computing→ HCI theory, concepts and mod-
els; •Applied computing→ Computer Games;
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1 INTRODUCTION
Player modeling is the �eld associated with the problem of learn-
ing to predict player experience. A common machine learning
approach involves a designer picking out a set of super-features to
summarize the player’s performance (e.g. total enemies killed, total
number of deaths, etc), writing code to pull these values from game
logs (timestamped records of bu�on presses and in-game events
occurrences. from a particular playthrough), and mapping these
features to player experience measures (e.g. fun, challenge, etc).
�is mapping is then used to predict on novel player experiences.
Despite successful experimental applications, player modeling goes
unused in most modern games, with game companies preferring to
model players in aggregate with player analytics [2, 3]. A di�culty
in adopting player modeling systems is acquiring accurate accounts
of player experience. �e most common approach is to forgo col-
lecting data, and rely on some theory or categorization of player
experience. �is represents an additional burden on designers.

One reason that designers choose not to pursue player modeling
might be the di�culty in designing appropriate super features
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to summarize player experience. For example, a particular game
might log when an enemy of a particular type is killed. One could
imagine using a single super-feature that treated all enemy types
equally (e.g. # enemies killed), one super-feature for each enemy
type, or super-features that split the enemies according to some
characteristic (e.g. # �ying enemies killed and # ground enemies
killed). In addition, with the recent diversi�cation of the video
game industry, techniques must account for larger variability in a
player preferences[10]. Old assumptions can now only be used for
speci�c demographics. A novel technique that could learn super-
features to track without access to the game engine could a�ord
more developers access to player modeling.

In this paper we present techniques to automatically rank player
experiences from game event logs and level structure information
based on self-reported rankings. We examine the applications of
a convolutional neural net (CNN), for its ability to learn a “set of
features” to track automatically, cu�ing back on designer authoring
burden. While CNNs are typically applied to images, we �nd them
appropriate to this task as they perform well in domains where
local structure has high-predictive value (e.g. killing an enemy
impacting a player’s perception of a level’s di�culty). We evalu-
ate this technique in two games, a Super Mario Bros. clone and a
related platformer. We demonstrate that this technique, along with
a complementary prior technique [9], can accurately predict player
experience. �e primary contribution presented in this paper is
an approach to model players automatically from game event logs
based on pairwise rankings.

�e rest of this paper is organized as follows. We begin with a de-
scription of prior related work. In section 3 we discuss the speci�cs
of our neural network architecture. In section 4 we overview the
three evaluations we ran: two evaluations on two distinct games
(sections 5 and 6) and an evaluation on potential generalizability
of the system (section 7). In total we present a novel approach to
player modeling that cuts back on designer burden and shows great
success in conjunction with prior methods.

2 RELATEDWORK
Yannakakis et al. [21] describe player modeling as “the study of com-
putational means for the modeling of player cognitive, behavioral,
and a�ective states which are based on data (or theories)”. Most
commonly player modeling is applied to the problem of player
customization, adjusting elements such as di�culty to tailor an
individual user experience [4][3][16][1]. While many varied ap-
proaches have made use of the term player modeling, we focus
on the body of work to learn a model to predict a player’s subjec-
tive experience based on data from prior players. �us we identify
the primary characteristics that di�er between player modeling
approaches (outside of the games they are implemented in) as: (1)
the set of game data used to make the subjective experience pre-
diction, (2) the kind of subjective experience (or arti�cial [9, 18])
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Figure 1: A visualization of our presented convolutional neural network architecture. A single CNN layer empowers this
model that scans 3-step sequences of events from each pair of game logs and makes predictions on which presented game log
would be ranked higher according to self reports.

data collected, and (3) the machine learning approach used to learn
a mapping between game variables and predicted subjective expe-
rience. We identify a set of prior player modeling work relevant to
this paper and describe how our work di�ers from each.

Drachen et al. [6] created a player modeling system in the game
Tomb Raider: Underworld trained on a set of hand-de�ned vari-
ables (times help command used, level completion time, and num-
ber/cause of death) extracted from game event logs, which are �les
that represent the sequence of actions taken and events that oc-
curred during play. �ey make use of self organizing maps [17], a
type of arti�cial neural network as the basis of their model. Rather
than train their model to predict subjective player experience, they
use their model to categorize di�erent styles of player experience
based on their chosen variables. We di�er from Drachen et al. in
our use of a CNN to automatically learn what sequences of events
are predictive, the use of a deep neural network architecture (CNN),
and training on self-reports.

Summerville et al. [16] take a novel approach to player modeling
in Super Mario Bros. �ey extract the path a player takes through
the level from gameplay footage and use this path and the level
architecture to train a long-short term memory recurrent neural
network (LSTM RNN) to generate new levels that are more likely
to a�ord similar player paths. While this work more cleanly �ts
into the �eld of experience-driven procedural content generation
[22], the LSTM RNN does learn an implicit model for predicting
player experience. In addition, this work parallels our own in its
use of a deep neural network architecture and not requiring a set
of hand-de�ned variables.

Shaker et al. [13] present a general player modeling system ap-
plied to Super Mario Bros. and a �rst person shooter game called
Sauerbraten. �ey hand de�ne a wide set of super-features sum-
marizing game log events (e.g. total enemies killed), but make use
of an unsupervised approach to pick from this set. �ey make
use of a model based on an arti�cial neural network architecture
constructed via an evolutionary process, and predict player expe-
rience based on self reports. �is work is the most similar to our
own, but we di�er in training directly on game event logs without

Figure 2: Example of the game log matrix and their cor-
responding ticks. �e third row records when the player
stomps on a Goomba.

hand de�ned super-features and utilizing a deep neural network
architecture (CNN).

�ere are two prior, relevant applications of CNNs to games
outside of the �eld of player modeling. Guzdial et al. [9] proposes
a technique for level modeling using a computer agent that plays
through the levels. �ey have shown that CNNs can independently
determine what parts of a level determine player enjoyment, e�ec-
tively selecting its own features. We utilize the Guzdial et al. system
in a “hybrid” approach in conjunction with our novel log-based
method. Mnih et al. [12] have further shown that CNNs can capture
player strategies and behaviors.

3 SYSTEM OVERVIEW
In this section we overview our technique to learn a predictive
model of player experience from game log and level structure. We
begin by describing our general approach for learning features from
low-level logs via a convolutional neural net approach, then extend
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Figure 3: Example of the level matrix. Each block or enemy
has a unique identi�er.

it in a hybrid system with a previous process [9]. Our approach
requires the following steps. First we acquire player rankings across
the set of subjective experience measures we wish to model (e.g.
di�culty, engagement, etc). We make use of rankings rather than
ratings, due to the greater consistency of rankings [20].

3.1 Log Network
�is subsection describes our “log” network, the convolutional
neural net (CNN) approach based entirely on game logs as input.
Given that we make use of a neural network architecture all game
logs must be of the same shape. We therefore format all information
as a matrix.

We present an illustration of our game log matrix in Figure 2.
�e rows of the matrix correspond to di�erent events in the logs
and columns corresponding to the number of time steps (called
“ticks” in games) needed to complete the level. Since CNNs require
a �xed input dimension and completion time varies among players,
the tick numbers are normalized to �t within the prede�ned size.
Our CNN architecture is trained on two game logs (representing
two di�erent levels a single player played) and set as it’s target the
ranking the player reported across a particular feature (e.g. “level 1
was more fun than level 2”). In this fashion a unique CNN is trained
for each feature present in the self-reported rankings. For clarity to
the readers we note there may be di�erent rankings for the same
levels (level 1 is more fun than level 2. level 2 is more frustrating
than level 1), thus it is insu�cient to make a prediction of player
experience solely on level information. We hypothesize that the
di�erent events the player experienced in each level might account
for any variation in rankings.

We present an example of our game log representation in Figure
2. Suppose a game has E unique game events, and a player took T
ticks. �e game log maps to an E ×T Matrix. Each column contains
1’s and 0’s, signifying the presence or absence, respectively, of an
event type that tick. A game log is transformed from a sequence of
events and the timesteps at which they occur by taking each event

and timestep pair and se�ing the value of that event row to 1 for
that timestep. �us the matrix has 1’s representing an event (row)
occurred at time (column) with 0’s at all other indexes.

A�er transforming each player’s game logs into a matrix there
are 2-dimensional matrices with a consistent T value (given that
the same events occur across all levels), but di�ering values of E
(as players will take varying amounts of time to �nish the level).
A deep neural network requires that all input be of a consistent
size. We experimented with a set of di�erent techniques to get a
consistent size including cu�ing all logs o� a�er a given amount
of time, and se�ing all matrices E values to the maximum possible
time (leaving most matrices to have many columns of 0’s at the
end). However, we found the most success with normalizing all
matrices to the same E value of 1000 time steps (a value slightly
lower than the lowest actual completion time in the dataset). We
anticipate that this was successful as most events occurred across
several frames, and therefore this allowed the CNN to capture more
interactions between events.

We now discuss our CNN architecture, visualized in Figure 1.
As with other neural networks, training is composed of gradient
descent and backpropagation. �e core component of the CNN, the
convolution layer, scans subregions of the input to �nd pa�erns.
A �lter is a �x-sized “picture frame”, that moves across the input,
creating the subregions. �ese techniques were originally used
to analyze images. For a facial recognition task, the �lter looks
for eyes, mouths, etc. by comparing the relationships between
nearby pixels. [11][5] We �nd CNNs to be appropriate for the task
of learning a model of player experience from events due to their
relational awareness in other contexts.

We connect the convolution layer to a max-pooling layer, a
dropout layer, and a fully connected layer for prediction. �e max
pooling layer reduces the dimensionality of the input, and focuses
in on the parts of the trace that help determine preference. A�er
training, we can examine this layer to �nd what the player �nds
challenging, enjoyable, etc. To reduce over��ing, the dropout layer
randomly disables some of its nodes, and its connections. It has
also been shown to help nodes specialize into capturing di�erent
aspects of the input. [15]

Since the CNN can capture relational information, we make
use of a �lter that captures four columns at a time, representing a
sequence of four actions. In a level, we would expect blocks close
to each other in space to be related to one another in some way.
In a player log, a sequence of logs may represent some high level
action like stomping on an enemy.

Our �rst technique takes only log matrices as its input, feeds
it through the CNN architecture as discussed above, and predicts
solely on the events that occur to the player. Two players may play
through the same levels and rank them opposite of one another.
While the level technique would feed the same information in and
have contradicting datapoints, the log matrix would have unique
inputs, speci�c to each player’s playthrough.

3.2 Hybrid Network
Our second technique is a hybrid of our system and the Guzdial
et al. system, with both neural network architectures combining
into a �nal fully connected layer. �is “hybrid” therefore represents
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a combination of log and level information, with the ability to
make decisions based on both individual systems. We see this as an
extension of previous techniques by integrating our log information.
We describe the level information approach brie�y here but for more
detail see [9].

For levels, we make use of a similar matrix representation. Each
level can be broken up into its underlying grid system, where a
grid space can only be occupied by one object at a time. As seen
in Figure 3, each unique foreground object, whether it be blocks,
collectibles, or enemies, is mapped to a unique identifying number.
�e location in the matrix corresponds to its position in the level.

�e log and level matrices go through their own convolution,
max-pooling, and dropout layers. �ey are then connected together
by a fully-connected layer to be used for prediction.

4 EVALUATION OVERVIEW
We ran a total of three evaluations of our system. We applied our
system on two games, a Super Mario Bros. clone called In�nite
Mario [19] and a Mario-derivative focused on performing human
computation Gwario [14]. We note that in Gwario, the player must
collect speci�c sets of items as opposed to only �nding the end of
the level (i.e. the player’s objectives are di�erent). We make use
of two separate games in our evaluation in order to demonstrate
the generalizability of our model, and focus on Mario-like games
due to the popularity of Mario as a baseline. We ran a �nal third
evaluation to further address the question of generalizability.

For the two game evaluations we drew on preexisting datasets
from human subject studies of each game. Given that we did not
run any novel human subject study for this paper, certain elements
were out of our control, notably the size of the subject pool and the
ranking questions that were asked. �erefore the two datasets di�er
in length and both asked each individual player to rank the play
experiences according to slightly di�erent subjective experience
measures. �erefore the In�nite Mario dataset has rankings on
the measures of fun, frustration, challenge, creativity, design, and
style as it was primarily interested in questions of judging player
experience on speci�c levels. �e Gwario dataset on the other hand
has rankings for frustration, challenge, and fun/engagement as it
focused explicitly on player experience.

In addition to the two techniques that we test, we also include
results from a baseline. Guzdial et al. [9] made use of a CNN-based
approach to predict an aggregate player score of a Mario level
based on the level architecture, as shown in Figure 3, and a small
set of hand-de�ned variables (e.g. number of deaths to enemies,
number of deaths to gaps, number of enemies killed, and time to
complete a level divided by its width). We include it as our baseline
as it represents an approach that foregrounds the level in making
decisions about player experience. Further, as it is a component
part of our “hybrid” approach, if it beats out that extension of our
system that would demonstrate a failure of our log-based CNN
approach for player modeling.

5 SUPER MARIO BROS. EVALUATION
For our �rst evaluation we applied our system to a clone of Super
Mario Bros. called “In�nite Mario”. We drew on a dataset from a
study previously conducted in the game engine, which we describe

brie�y below but for more detail see [7]. Ultimately we ran a ten
cross-fold analysis on the engine between the three experimental
systems. In the following subsections we discuss the evaluation
setup (including a description of the game), discuss the results
of our ten cross-fold analysis, and give examples of the learned
features of our CNN.

5.1 SMB Evaluation Setup
Super Mario Bros. is a 2D platformer game originally created for
the Nintendo Entertainment System. �e player controls a single
character and tries to get past enemies and reach the end of the
level, only being able to run right and le�, jump, and shoot �reballs
(with a power-up). An open source copy called In�nite Mario was
used so that logs could be extracted.

We adapted the dataset used by Guzdial et al. in [8]. Seventy-
�ve players were asked to play Level 1-1 from the original Super
Mario Bros, and then two other levels from a pool of 15 arti�cially
generated levels. A�er, players were asked to rank the three levels
based on fun, frustration, challenge, level design, and creativity of
the levels.

For each player, we took permutations of two level logs, and
labeled the pair with a classi�cation of ”Level 1 was more X” or
”Level 2 was more X” where X was fun, frustating, challenging, well
designed, or creative. �is resulted in 6 data points per person, or
450 data points. By adding the reverse of the reported ranking into
the dataset, we have guaranteed that half the dataset is of class 1,
and the other half class 2. �erefore, we would anticipate a pure
random system to perform at around 50% accuracy.

5.2 SMB Results
We report results over the �ve categories in tables 1 and 2. In the
tables we use “Log” to indicate our system, “Level” to indicate the
prior system largely reliant on level structure [9], and “Hybrid” to
indicate the combined architecture of the two prior systems. In
addition to accuracy, we report the coe�cient of determination,
a measure of predictability of the label, based on the input data.
We use the Wilcox test to evaluate statistical signi�cance in output
between pairs of systems.

For the challenge and frustration categories we found nearly
identical results, with our hybrid system signi�cantly more accurate
than the level system and the level system more accurate than our
log system (p < 0.05). �us we ended up with a total ordering
of hybrid>level>log. However, we note that all systems beat the
absolute baseline of 50% for the prediction task.

�e creativity category stood out as while our hybrid system was
still signi�cantly more accurate (p < 0.01) than either of the other
two systems, our log system was signi�cantly more accurate than
the level system (p < 0.01). We further note that creativity provided
the lowest overall models in terms of their predictive quality, with
none of the systems reaching R2 values above 0. �is indicates that
the mean of the testing data does a be�er job of “explaining” the
data than the predictions.

�e Design and fun categories o�er similar results, with both
representing a small variation in the hybrid>level>log total order.
For design, both level and hybrid were found to have signi�cantly
more accurate results than log (p < 0.01), but the Wilcoxon-Mann
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Table 1: Mean and median accuracies across 10 folds. Mario

Challenge Creativity Design Frustration Fun
mean median mean median mean median mean median mean median

Level 74.44% 74.44% 53.33% 54.44% 77.56% 76.67% 76.22% 77.78% 63.33% 62.22%
Log 65.78% 64.44% 64.67% 64.44% 75.11% 73.33% 69.33% 68.89% 64.89% 65.56%
Hybrid 83.11% 82.22% 71.33% 70.00% 81.11% 80.00% 81.55% 83.33% 81.56% 81.11%

Table 2: Mean and median R2 across 10 folds. Mario

Challenge Creativity Design Frustration Fun
mean median mean median mean median mean median mean median

Level 0.068 0.045 -0.478 -0.376 0.197 0.193 0.110 0.216 -0.355 -0.392
Log -0.254 -0.285 -0.274 -0.251 0.098 0.135 -0.084 -0.054 -0.308 -0.347
Hybrid 0.399 0.324 -0.065 -0.007 0.308 0.281 0.31 0.338 0.267 0.235

Figure 4: Maximally activated visualizations of four of the
eight �lters for challenge.

Whitney U paired test was unable to �nd any such ordering between
hybrid and level. Similarly, with fun the hybrid system was found
to have signi�cantly more accurate results than the level and log
systems (p < 0.01), but no ordering was found between level and
log.

In all cases but design, the hybrid system performs signi�cantly
be�er than either of its two constituent systems. �is suggests
that the two constituent systems (log and level) o�er complimen-
tary information towards making predictions of player experience,
rather than one being strictly be�er than the other. In addition,
these results demonstrate that some types of information are more
predictive to certain measures of player experience. For example,
the creativity labels were predicted more accurately given access
to logs of events, suggesting players re�ected on the comparative
experiences when deciding on this ranking.

5.3 SMB Learned Actions
One of the strengths of CNNs is in their ability to learn useful
features from training data. To evaluate the CNN’s ability to extract
useful super-features from raw game logs, we visualize the pairs of
comparative event sequences that maximally activate the learned
�lters our “log” CNN trained to predict. We visualize four of the

Figure 5: Maximally activated visualizations of four of the
eight �lters for frustration.

Figure 6: Maximally activated visualizations of four of the
eight �lters for fun.

eight trained �lters for our CNN trained on the challenge (Figure
4), frustration (Figure 5), and fun datasets (Figure 6).

Figure 4 presents visualizations of four of the eight trained �lters
for the challenge labels. Figure 4(a) demonstrates two sequence
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Figure 7: Comparison of Gwario to Super Mario Bros.: Lost
Levels, on which it is based.

pairs where one game log includes the player restarting the level
where the other game log section has the same player standing
still as “large mario”. �e other visualized �lters largely involve
comparisons of progress. For example, Figure 4(d) compares a
sequence where the player jumps forwards versus a sequence where
the player is standing still.

Figure 5 presents visualizations of four of the eight trained �lters
for the frustration labels. In this case two of the visualized �lters
demonstrate e�ects of the normalization described in our system
overview. Figure 5(b) includes two level restarting events back
to back in one of the two features. Given that the normalization
process “squishes” the game event logs, this means in the original
playthrough the player died twice in a row in quick enough suc-
cession that the normalization process removed the intervening
events. Figure 5(c) instead demonstrates multiple, contradictory
events co-occurring, which is caused by the “squishing” from nor-
malization. �us in the top sequence the player is jumping back
and forth as Mario, while in the bo�om sequence the player goes
from “�re mario” takes damage and becomes “large mario”, before
taking more damage and a�empting to get away as “small mario”.

Figure 6 contains the four visualizations of the maximally ac-
tivated �lters for the fun labels. We bring special a�ention to
6(c), which compares a player activating a ?-block versus a player
squishing an enemy then launching into a ?-block as a particu-
larly illustrative example of an intuitive, comparatively more fun
moment.

We do not empirically validate the maximally activated �lters,
but note that in general they tend to match our intuition. Frustration
and fun are highly impacted by how quickly the player dies, and
all three are dependent on relative rates of progress.

6 GWARIO EVALUATION
For our second evaluation we applied out system to Gwario, a game
with a purpose (or GWAP), adaption of the Japanese sequel to Super
Mario Bros., Super Mario Bros.: �e Lost Levels. GWAPs are games
that outsource work in the form of a game. In this instance, the
player may take the same actions, but in addition to �nding the end
of a level, the player a�empts to collect items that answer a human
computation question. We give an example of the transformation
of a level from Super Mario Bros.: Lost Levels to Gwario in Figure
7. Note that the coins have been replaced with items the player
collects to answer a human computation question, which gives

Table 3: Mean and median accuracy across 10 folds for the
Gwario dataset.

Challenge Frustration Fun
mean mdn mean mdn mean mdn

Level 52.7% 59.1% 43.6% 45.5% 49.1% 50.0%
Log 75.5% 77.3% 78.2% 77.3% 66.4% 68.2%
Hybrid 78.2% 81.8% 80.9% 81.8% 76.4% 77.3%

Table 4: Mean and median R2 across 10 folds for the Gwario
dataset.

Challenge Frustration Fun
mean mdn mean mdn mean mdn

Level -0.674 -0.670 -0.942 -1.021 -0.821 -0.700
Log 0.1323 0.245 0.225 0.224 -0.115 0.134
Hybrid 0.364 0.448 0.457 0.553 0.241 0.354

coins a greater importance over the default game. We wish to see
whether this technique could be generalized across games, at least
to similar games.

6.1 Gwario Evaluation Setup
We draw on the dataset from the study conducted in Siu et al in [14].
Players were asked to play two levels from a pool of four adapted
from Super Mario Bros.: �e Lost Levels, and rank them based on
challenge, fun, and frustration. We note that 58 players took part in
the study, resulting in 116 data points. As in the previous evaluation
we split the dataset into 10 cross-folds.

One di�erence between Gwario and Super Mario Bros. was that
the two had di�erent events, which meant slightly di�erent matri-
ces. Notably, Gwario includes piranha plants, an enemy type hidden
in pipes (with two associated events, player deaths to piranha plants
and piranha plants killing the player), and In�nite Mario included
cannons that shot unique “bullet bill” enemies (with two associated
events). �e levels of Gwario, based on the sequel to Super Mario
Bros., were also signi�cantly longer and more challenging than the
levels from the �rst study. In addition, while the Gwario levels had
been adapted from Super Mario Bros.: �e Lost Levels, they were
still designed by a human expert, as opposed to the majority of the
levels from the �rst study, where were automatically generated.

6.2 Gwario Results
We report results over the three categories in tables 3 and 4. In the
tables we use “Log” to indicate our system, “Level” to indicate the
Guzdial et al. system reliant on level structure [9], and “Hybrid”
to indicate the combined architecture of the two prior systems. As
in the �rst evaluation we report the coe�cient of determination,
a measure of predictability of the label, based on the input data.
We use the Wilcox test to evaluate statistical signi�cance in output
between pairs of systems.

For both the challenge and frustration categories we �nd that
both our log and hybrid system perform very similarly as can be
seen in both the accuracy and R2 values. In addition, we are unable
to reject the null hypothesis that the two systems output comes
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Figure 8: Maximally activated visualizations of four of the
eight �lters for challenge.

Figure 9: Maximally activated visualizations of four of the
eight �lters for frustration.

from the same distribution (unable to say they aren’t signi�cantly
di�erent). However both the hybrid and log systems output is
signi�cantly more accurate than the level systems predictions (p <
0.05).

Fun di�ers from challenge and frustration in that the log and
hybrid predictions di�ered signi�cantly. �at is that the hybrid sys-
tem output was signi�cantly more accurate than both other systems
and the log system’s output was signi�cantly more accurate than
the level system. �is is re�ected in both the accuracy and R2 val-
ues, and from the relatively similar performance of the log-system,
seems to arise more from comparative di�culty in predicting Fun
for our log system and therefore for the hybrid system as well.

We �nd overall that these results suggest that the player logs
were much more predictive than the level information for the pro-
fessionally designed Gwario levels, perhaps due to greater variation
and size. However, given the success of the hybrid approach, this
indicates that both the log and level systems contributed to the pre-
dictive power, suggesting they again represented complimentary
approaches.

Figure 10: Maximally activated visualizations of four of the
eight �lters for fun.

6.3 Gwario Learned Actions
In this section, we visualize the patches of comparative event se-
quences that maximally activate the learned �lters our “log” CNN
trained to predict. We visualize four of the eight trained �lters for
our CNN trained on the challenge (Figure 8), frustration (Figure 9
and fun categories (Figure 10).

Figure 8 represents the four sequence pairs that maximally ac-
tivated four of the eight trained �lters of our CNN. Overall the
sequence pairs match our intuition, with two focusing on defeating
enemies as opposed to making progress (Figures 8a and 8c), and
one focused on making progress versus not (Figure 8b). We note in
particular Figure 8d, which highlights the player collecting a coin
versus making forward progress. �is is important for the system
to learn given the added role coins play in Gwario.

Figure 9 covers the maximally activating sequence pairs �lters
for the frustration category. All of the sequence pairs seem to focus
on one sequence making signi�cantly more progress than the other.
Figures 9a and 9b both include one sequence of the player making
great progress while in the other sequence the player barely moves,
if at all. Figure 9d compares forward progress against the player
moving backwards, and Figure 9c involves di�erent qualities of
forward progress.

Figure 10 covers the fun category �lters. Overall the sequence
pairs seem focused on collecting things, and “unleashing” the shells
of green koopas, an enemy type. Unleashing the shells �ts our
intuition of a fun moment as the Gwario levels tend to have long
rows of enemies and knocking a shell into them will defeat them
all without the player having to put in additional e�ort.

We �nd the visualizations of the sequence pairs that maximally
activated �lters for Gwario to match our intuition as designers. �is
makes sense given the relative performance of the log system in
this evaluation in comparison to the �rst.

7 GENERALIZATION EVALUATION
We have thus far demonstrated that our systems can perform rea-
sonably accurately across two distinct, but similar games. However,
each of these games required completely retraining our system.
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Table 5: Average accuracies from training on on the entirety of one dataset and predicting on the other.

Train Mario; Test Gwario Train Gwario; Test Mario
Challenge Frustration Fun Challenge Frustration Fun

Level 49.12% 51.75% 49.12% 51.78% 47.55% 49.11%
Log 44.74% 50.00% 46.49% 53.11% 48.67% 53.33%
Hybrid 59.65% 48.25% 46.49% 51.11% 47.55% 52.89%

Table 6: Mean and median accuracies across 10 folds with a
dataset made of equal halves of the two datasets.

Challenge Frustration Fun
mean mdn mean mdn mean mdn

Level 63.6% 63.6% 61.4% 59.1% 55.0% 54.6%
Log 62.3% 59.1% 63.6% 65.9% 61.8% 59.1%
Hybrid 71.4% 70.5% 71.8% 72.7% 58.6% 56.8%

Ideally we would be able to create a more general game player mod-
eling system, at least across games of the same genre, in order to
cut back on training time and present player experience predictions
for games without training data. In this section we present the
results of an evaluation to address the issue of generalizability. We
note that the only major alteration of our system to this evaluation
was the inclusion of the full set of events from both games for our
game matrix.

Given that two games that we ran our individual evaluations on,
Super Mario Bros. and Gwario, represent very similar games (one a
variation on the sequel of the other), we �rst demonstrate that the
system still recognizes them as two di�erent games. In particular,
we ran a simple evaluation where we trained on the entirety of one
game’s dataset and tested on the other for the three categories of
player experience that the two games shared. We present these
results in Table 5. All of the average accuracies are close to the
naive baseline of 50% for the task, suggesting that a system trained
on one game made predictions no be�er than random. �us we can
conclude with some certainty that these two games di�er to some
extent, suggesting that a generalizability evaluation can be run.

For our generalizability evaluation we composed a dataset made
of half Gwario and half Super Mario Bros. data, selected randomly
from each dataset. We then split this new “mixed” dataset into
ten folds, with each fold containing data half from each game. We
then ran a similar evaluation as above, and report the average and
median accuracies in Table 6. We note that while there is a drop of
about 10% from the average accuracies we saw when each system
was trained on each individual game, the accuracies are above the
random baseline of 50%. �is suggests that it is possible to apply
these techniques more generally across di�erent, if similar, games.
If we could determine a universal set of event log types, it may be
result in higher accuracies. We discuss this in our Future Work.

8 DISCUSSION
We present results of our approach applied to two separate games.
We �nd that our log approach, especially in combination with
a prior level-focused approach, performs with high accuracy on

predicting various categories of user experience. In this section
we identify the most important takeaways. Notably we discuss
implications in terms of our sequence modeling log CNN and the
potential of our hybrid approach.

We �nd that our game-log based CNN can aid in the prediction
of player experience, and given the visualizations of maximally acti-
vating sequence pairs, appears to learn intuitive design knowledge.
We note that its performance seemed to re�ect designer expecta-
tions across di�erent tasks. For example, it performed less well
when predicting how well “designed” a player thought a level was,
a term that brings to mind notions of level architecture. Further, it
has the potential to aid designers in revealing new facets of player
experience. For example, it’s relatively superior performance at
the task of prediction player “creativity” tags, suggests that play-
ers might re�ect more on the events they experienced than level
architecture when asked how “creative” a level was.

Our hybrid approach represents a technique that, without any
designer-de�ned super-features, can reach accuracies of roughly
80%. While there is clearly more to be done (roughly 20% more), we
contend that this represents a successful �rst a�empt at a game-log
based system to automatically predict player experience.

9 FUTUREWORK
We propose analyzing player actions for modeling player experi-
ence based on sequences of frames. �ese sequences appear to
encode high-level actions in response to challenges in the level,
which are then correlated with player preference. Since level struc-
tures were represented as an image and player movements were a
series of frame data, we believe it would be feasible to pass in raw
video playthroughs.
Since we used the native logging systems for In�nite Mario Bros.
and Gwario, when we examined the mixed models, there was not
a perfect one to one mapping of logs types. Gwario distinguished
between red and green koopas whereas In�nite Mario Bros. grouped
them together. �e a�ack pa�erns of green koopa shells and red
koopa shells are di�erent, so when the model trained on Mario
and tested on Gwario, it would not distinguish between the two.
If we passed in directly from video, the network may distinguish
between these if needed.
Another limitation of our technique is that it requires designer-
authored logging systems to record player movements. By directly
analyzing video, it may be possible for a neural network to deter-
mine its own set of logs and then log playthroughs. �e question
of whether our techniques can generalize across genres is another
direction for research. It would be interesting to analyze how a
player utilizes terrain in turn-based strategy games, where level



Deep Convolutional Player Modeling on Log and Level Data , ,

structure also plays an important role in player actions. Since ter-
rain design is so vital to this genre, it would be worthwhile to see if
the CNN could generate new designs. From there we could look at
pa�erns between platformers and turn-based strategy games. We
would also like to examine a level generator that takes input from
the preference learners. In a controlled test, we would like to verify
that the CNN-LOG positively in�uences a level generator towards
designs that the player enjoys. Since this technique captures block
arrangements as well as how the player reacts to them, it may be
able to design new arrangements to elicit speci�c reactions from
the player.

10 CONCLUSIONS
We present a novel approach to player modeling that shows high ac-
curacy with a low designer authoring burden. We test our approach
over two distinct games, a clone of Super Mario Bros. and Gwario,
a human computation version of the sequel to Mario. We demon-
strate high accuracy over these two games, and demonstrate the
ability to build a more general model that accounts for variations
between the two. Our work relies on a convolutional neural net
(CNN) to read in a matrix of player actions called a game log and
make predictions on relative player experience. We present A novel
technique that learns what elements of player experience to track
without access to the game engine and can potentially a�ord more
developers access to player modeling by lowering design burden.
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