
LOCALIZING EMBEDDINGS FOR RECOMMENDATION
SYSTEMS USING BINARY PAIRWISE COMPARISONS

A Thesis
Presented to

The Academic Faculty

by

Matthew R. O’Shaughnessy

In Partial Fulfillment
of the Requirements for the Degree

Bachelor of Science in Electrical Engineering, Research Option, in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2016

LOCALIZING EMBEDDINGS FOR RECOMMENDATION
SYSTEMS USING BINARY PAIRWISE COMPARISONS

Approved by:

Professor Mark Davenport, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Justin Romberg
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 5 May 2016

TABLE OF CONTENTS

LIST OF FIGURES . v

I INTRODUCTION . 1

II BACKGROUND . 3

III ALGORITHMS . 6

3.1 Localizing users . 6

3.2 Localizing items . 8

3.2.1 Deriving the optimization problem 8

3.2.2 Making the item localization problem convex 10

3.3 Summary: a vectorized form for localizing users and items 12

3.4 The primal and dual optimization problems 13

3.4.1 The primal . 13

3.4.2 The dual and the dual optimization problem 13

3.5 Iteratively localizing the entire embedding 15

IV IMPLEMENTATION . 16

4.1 Optimization methods . 16

4.1.1 Gradient descent using the primal 16

4.1.2 Stochastic gradient descent using the primal 17

4.1.3 Coordinate descent using the dual 17

4.1.4 Newton-Raphson method . 18

4.2 Choosing comparisons to combine for item localization 19

V EXPERIMENTS AND RESULTS 20

5.1 Localizing a new user . 20

5.1.1 Localization accuracy with varying number of comparisons . 21

5.1.2 Localization accuracy with a noisy a priori embedding 22

5.2 Localizing a new item . 23

5.2.1 Localization accuracy with varying number of comparisons . 23

iii

5.2.2 Localization accuracy with a noisy a priori embedding 24

5.3 Improving the accuracy of a noisy embedding 25

5.3.1 Improving the accuracy of a noise-contaminated embedding . 25

5.3.2 Improving the accuracy of a noise-contaminated embedding in
higher dimensionalities . 27

5.4 Generating an embedding with no a priori knowledge 27

5.4.1 Generating an embedding from only a list of comparisons . . 28

5.4.2 Distribution of errors in a generated embedding 29

VI CONCLUSION . 31

REFERENCES . 33

iv

LIST OF FIGURES

1 Feasible region induced by three linear constraints. Each linear con-
straint results from one binary pairwise comparison. 7

2 Objective function in R2 for (a) comparisons where the item to localize
is the “preferred” item (q̂ = qi) and (b) comparisons where the item
to localize is the “less preferred” item (q̂ = qj). The combination of
both types of constraints results in a highly non-convex feasible region,
as shown in (c-d). 9

3 Linear constraint generated by the combination of two quadratic con-
straints. Gray shading represents the feasible regions resulting from
each of the two binary pairwise comparisons involving the item to lo-
calize; blue shading represents the feasible region resulting from the
resulting linear combination. 11

4 New user recovery error measured in terms of percent of binary com-
parisons violated and `2 reconstruction error as a function of the total
number of comparisons available for the system. Percent binary com-
parisons violated refers to the number of comparisons involving the
new user. For both metrics, the comparisons were generated uniformly
from 100 items and 100 users, and the “ground truth” embedding was
generated on [−1, 1] in each dimension. 21

5 New user recovery error measured in terms of percent of comparisons
violated and `2 recovery error for a new user localized using an em-
bedding contaminated with four different levels of noise. For both
metrics, the comparisons were generated uniformly from 100 users and
100 items, and the “ground truth” embedding was generated on [−1, 1]
in d = 20 dimensions. 22

6 New item recovery error measured in terms of percent of binary com-
parisons violated and `2 reconstruction error as a function of the total
number of comparisons available for the system. Percent binary com-
parisons violated refers to the number of comparisons involving the
new user. For both metrics, the comparisons were generated uniformly
from 100 items and 100 users, and the “ground truth” embedding was
generated on [−1, 1] in each dimension. Note that the scale on the
y-axis of the first plot is extremely small! 24

v

7 New item recovery error measured in terms of percent of comparisons
violated and `2 recovery error for a new user localized using an em-
bedding contaminated with four different levels of noise. For both
metrics, the comparisons were generated uniformly from 100 users and
100 items, and the “ground truth” embedding was generated on [−1, 1]
in d = 20 dimensions. 25

8 Noisy embedding recovery error measured in terms of percent of all
comparisons violated and mean `2 recovery error for an embedding
contaminated with three different levels of noise. For both metrics, the
comparisons were generated uniformly from 100 users and 100 items,
and the “ground truth” embedding was generated on [−1, 1] in d = 2
dimensions. Three trials were performed at each noise level. 26

9 Noisy embedding recovery error measured in terms of percent of all
comparisons violated and mean `2 recovery error for an embedding
contaminated with three different levels of noise. For both metrics, the
comparisons were generated uniformly from 100 users and 100 items,
and the “ground truth” embedding was generated on [−1, 1] in d di-
mensions. Three trials were performed for each dimensionality. 27

10 Recovery error for a generated embedding measured in terms of per-
cent of all comparisons violated and mean `2 recovery error, using the
Procrustes distance to ignore the effects of a shift, scale, or rotation
from the initial embedding. For both metrics, the comparisons were
generated uniformly from 100 users and 100 items, and the “ground
truth” embedding was generated on [−1, 1] in d dimensions. 29

11 Distribution of errors for users and items in a generated embedding
measured in terms of `2 recovery error, using the Procrustes distance
to ignore the effects of a shift, scale, or rotation from the initial em-
bedding. The comparisons were generated uniformly from 100 users
and 100 items, and the “ground truth” embedding was generated on
[−1, 1] in d = 20 dimensions. Darker colors represent a higher number
of errors in that bin. 30

vi

CHAPTER I

INTRODUCTION

Collaborative filtering systems use data from “user” ratings of various “items” to build

a model of user preferences to a group of items. Applications are numerous: in the

famous Netflix problem, users represent watchers of the service, and items represent

movies or TV shows; in other consumer applications, users represent customers and

items represent products. The collaborative filtering problem seeks to use this model

to predict items a user may like. Similarly, given an item, the model can be used to

predict users that may like the item.

One model used for consumer preference applications is the ideal point model of

preference, in which users and items are placed in an embedding in Rn such that

the distance between an item and user represents a user’s preference for that item.

Collaborative filtering seeks to create and use information from such an embedding

to inform an estimate of a new user’s preferences.

In this work, we consider the case where our a priori knowledge of user preferences

is only informed by an embedding of users and items and a collection of binary

pairwise comparisons of the form “user u prefers item i to item j.” We show we can

accurately localize new users in this embedding using only the collection of binary

pairwise comparisons by solving a simple quadratic program. We extend this method

to allow us to localize new items by solving a similar optimization problem. For

both cases, we consider practical implementation details to enable our algorithm to

perform the localization both accurately and computationally efficiently even as the

size and dimensionality of the dataset grow large.

Further, we extend this method for localizing new points to an iterative method

1

for using binary pairwise comparisons to increase the accuracy of a given noisy em-

bedding, and show that we can achieve a significant reduction in mean-squared error

given a sufficient number of comparisons, even in high dimensionalities. In the ex-

treme case, where no a priori estimate of the embedding is known and our only

knowledge of the embedding is given by the list of binary pairwise comparisons, we

show that we can accurately recover the entire embedding.

2

CHAPTER II

BACKGROUND

The collaborative filtering problem is to estimate a user’s preference—typically for a

product where preference data is easily available, such as movies or music–given prior

measurements, or ratings, from the user. Using collaborative filtering, connections

between the preferences of users and features of items are used to calculate an esti-

mated preference for a specific user. We use the ideal point model, which represents

user preferences in the same space as item features; for example, in the movie classi-

fication scenario, each item (e.g., movie or book) might be represented with a vector

of values representing how well it conforms to traits of a certain genre, mood, length,

or critical reception. This set of values lives in a highly dimensional space, and the

distance between it and another item represents the items’ similarity. Psychology

research indicates that obtaining the type of pairwise comparisons we consider in this

work may be a more accurate method for measuring consumer preference [5].

By considering a known configuration of existing users and items and a set of

binary pairwise comparisons involving a new point, we can form a convex optimiza-

tion problem to allow us to determine a new user or item’s position. Stating the

problem as a convex optimization problem (similar in form to the optimization prob-

lem used in support vector machines [2]) allows us to take advantage of well-studied

algorithms for convex optimization. To use the given binary pairwise comparisons to

estimate the “true” point that satisfies all comparisons (or, when using noisy a priori

data, minimizing the `1-norm of the violations), we first seek to formulate the core

optimization problem, which is derived in Chapter III.

In this work, we consider several optimization algorithms. Here, we briefly review

3

the algorithms implemented; the update rules are derived separately for the opti-

mization problem of interest in Section III. The optimization problem may be solved

directly with these algorithms, or may be solved using a widely-available software

package such as CVX or MATLAB’s quadprog [4].

The gradient descent algorithm finds the minimum of a cost function by repeatedly

calculating the gradient and taking a step in the direction of most negative gradient.

By performing this operation iteratively, the algorithm eventually converges on the

global (because the cost function is convex) minimum. The step size parameter, which

controls the time to convergence and the possible instability (is this the right word?)

of the solution must be well-selected for accurate and quick convergence. There are

several variants of the gradient descent algorithm that provide subtle performance

benefits. Stochastic gradient descent reduces the required computation by only cal-

culating an approximation of the gradient at each iteration. Line search can provide

faster convergence by evaluating several choices of the step size parameter at each

iteration, selecting the step size that results in the best improvement in cost.

Another algorithm for solving this optimization problem, the Newton-Raphson

method, exploits the second derivative of the objective function to automatically select

the step size at each iteration. While this requires more computation (recalculation of

the Hessian matrix) at each iteration, it may significantly reduce the total number of

iterations required for the algorithm to converge to the minimum of the cost function.

To calculate the Hessian matrix, the objective function of the optimization problem

must be smooth, forcing us to use the logistic function as an approximation of the

hinge-loss function in our optimization problem. The Lagrangian dual, an equivalent

formulation of the optimization problem that may be more computationally efficient

to solve in some cases, is derived by using a vector of Lagrange multipliers to bring

the constraints into the objective function [1].

Characteristics of the dataset (which may be highly application dependent) may

4

have a significant impact on selecting of the most efficient algorithm for solving the

optimization problem and finding the true preference point. A significant aspect of

this work is in developing “rules of thumb” for selecting an appropriate algorithm

and parameters based on the dataset or application.

5

CHAPTER III

ALGORITHMS

In this section, we present the mathematical formulation of the optimization problems

used to localize points in the embedding. Derivations of the strategies and data

structures used for efficient implementation are presented in the following chapter.

First, we derive separate optimization problems for localizing users and items.

Then, we show that we can express both optimization problems equivalently in a

vectorized form using only different constants.

We denote the kth user as xk and the kth item as qk (both in Rn). Each binary

pairwise comparison of the form “user xm prefers item qi to item qj” is denoted

‖xm−qi‖2 ≤ ‖xm−qj‖2. Thus, each binary pairwise comparison can be represented

by the triple of indices (m, i, j).

3.1 Localizing users

To localize a user in an existing embedding of items and users, we minimize the

total magnitude of comparison violations plus an `2-norm term for regularization.

A vector of slack variables, ξ, is used to allow the optimal value to violate one or

more comparisons in the case where the comparisons or embedding is noisy. The

vector c ∈ RK contain weights for each comparison that control the trade-off between

the contributions of the regularization term and each comparison violation to the

objective function. Each binary pairwise comparison is treated as a linear constraint.

The optimization problem is:

6

Figure 1: Feasible region induced by three linear constraints. Each linear constraint
results from one binary pairwise comparison.

minimize
x, ξ

1
2
‖x− xo‖22 +

∑
k∈T

ckξk

subject to ‖x− qi‖22 ≤ ‖x− qj‖22 + ξk

ξk ≥ 0

(1)

The regularization term 1
2
‖x − xo‖22 serves two purposes: (1) it prevents the op-

timal solution from going to infinity if the set of comparisons does not result in

hyperplanes completely bounding the feasible region, resulting in an unbounded so-

lution; and (2) it prevents drastic movement of the estimate of x in cases where a

small number of comparisons results in a very large feasible region.

To see that the problem is a standard quadratic program with linear constraints,

we equivalently write the optimization problem in standard form as:

7

minimize
x, ξ

1
2
‖x− xo‖22 +

∑
k∈T

ckξk

subject to (qj − qi)Tx+
‖qi‖22 − ‖qj‖22

2
+ ξk ≤ 0

− ξk ≤ 0

(2)

In this form, it is apparent that each constraint resulting from a binary pairwise

comparison is linear, defining a hyperplane such that one side of the space split by

the hyperplane is the region in Rn where the “true” user lies. Figure (1) shows a

geometric interpretation of the feasible region created by several comparisons.

Finally, we “vectorize” the optimization problem by enumerating entries of (qj −

qi) as the columns of matrix A and the scalar entries 1
2
(‖qi‖22 − ‖qj‖22) as entries of

the column vector b. Thus, the optimization problem takes its final form as:

minimize
x, ξ

1
2
‖x− xo‖22 + cTξ

subject to Ax+ b+ ξ ≤ 0

− ξ ≤ 0

(3)

where the inequality sign in both constraints is applied element-wise.

3.2 Localizing items

3.2.1 Deriving the optimization problem

The optimization problem for localizing items is set up in the same way, minimizing

the sum of comparison violations plus a regularization term and using a vector of

slack variables to allow the solution to violate some comparisons:

8

minimize
q̂, ξ

1

2
‖q̂ − qo‖22 +

∑
k∈T

ckξk

subject to ‖xm − q̂‖22 ≤ ‖xm − qj‖22 + ξk

‖xn − qi‖22 ≤ ‖xn − q̂‖22 + ξk

ξk ≥ 0

(4)

Here, the comparisons creating constraints are divided into two groups: those for

which the item to localize q̂ represents the more preferred item (q̂ = qi), and those

for which the item to localize q̂ represents the less preferred item (q̂ = qj).

(a) Constraint resulting in convex
feasible region

(b) Constraint resulting in
non-convex feasible region

(c) Feasible region resulting from
multiple constraints

(d) Non-convex objective function
resulting from many constraints

Figure 2: Objective function in R2 for (a) comparisons where the item to localize is
the “preferred” item (q̂ = qi) and (b) comparisons where the item to localize is the
“less preferred” item (q̂ = qj). The combination of both types of constraints results
in a highly non-convex feasible region, as shown in (c-d).

9

The feasible region resulting from these two types of comparison is illustrated in R2

in Figure 2. Comparisons where the item to be localized is the “more preferred” item

(q̂ = qi) can be interpreted as a upper bound on the distance from the user; therefore,

they create a convex feasible region as in subfigure (a). In contrast, comparisons where

the item to be localized is the “less preferred” item (q̂ = qj) can be interpreted as

an lower bound on the distance from the user; therefore, they create a non-convex

feasible region as in subfigure (b). When multiple comparisons of these two types are

combined (subfigure (c)), the resulting objective function is non-convex (subfigure

(d)).

3.2.2 Making the item localization problem convex

To make this problem convex, we can strategically combine comparisons, creating a

single linear constraint by adding two comparisons. Given two comparisons:


‖x1 − q1,i‖22 ≤ ‖x1 − q1,j‖22

‖x2 − q2,i‖22 ≤ ‖x2 − q2,j‖22
(5)

We can add them if q̂ = q1,j = q2,i or q̂ = q1,i = q2,j, leading to two cases:
‖x1 − q̂‖22 ≤

c︷ ︸︸ ︷
‖x1 − q1,j‖22

+ ‖x2 − q2,i‖22︸ ︷︷ ︸
d

≤ ‖x2 − q̂‖22
(6)



c︷ ︸︸ ︷
‖x1 − q1,i‖22 ≤ ‖x1 − q̂‖22

+ ‖x2 − q̂‖22 ≤ ‖x2 − q2,j‖22︸ ︷︷ ︸
d

(7)

For each inequality, the side not containing the item to localize is a constant,

which we denote c and d. The second case can be written as the first with the order

of the comparisons switched; therefore, henceforth we consider only the first case.

Expanding, we note that combining the comparisons results in the cancellation of the

quadratic term ‖q̂‖22, simplifying the computationally intractable quadratic constraint

into a linear one. Simplifying yields:

10

−2xT1 q̂ + ‖x1‖22 + d ≤ −2x2q̂ + ‖x2‖22 + c

⇒ q̂T (x2 − x1) <
1

2

(
c− d+ ‖x2‖22 − ‖x1‖22

)
(8)

Figure 3: Linear constraint generated by the combination of two quadratic con-
straints. Gray shading represents the feasible regions resulting from each of the two
binary pairwise comparisons involving the item to localize; blue shading represents
the feasible region resulting from the resulting linear combination.

This form yields additional geometric intuition of the linear constraint created. As

with constraints in the user localization problem in Equation 2, the constraints define

hyperplanes in Rn. Figure 3 shows a geometric interpretation of the two types of

quadratic constraints resulting in a non-convex optimization problem and the linear

constraint induced by a combination of the two quadratic constraints.

More discussion of methods for choosing the best comparisons to combine is in

the following chapter.

Finally, we “vectorize” the problem into the same format as the optimization

problem for localizing users (2), by enumerating entries of (x2 − x1) as the rows of

11

A and the scalar entries 1
2

(c− d+ ‖x2‖22 − ‖x1‖22) as the entries of column vector b.

Thus, the optimization problem for localizing items takes its final form as:

minimize
q̂, ξ

1
2
‖q̂ − qo‖22 + cTξ

subject to Aq̂ + b+ ξ ≤ 0

− ξ ≤ 0

(9)

Note that this is the same form as the optimization problem formulated for local-

izing users. Therefore, although the most accurate and fastest method for solving the

optimization problem for localizing users and items may differ, we can use identical

implementations of each method by simply using a different A and b.

3.3 Summary: a vectorized form for localizing users and
items

Given an embedding of items and users in Rn, we can localize any item or user using

only comparisons of the form ‖xu − qi‖2 ≤ ‖xu − qj‖2 by solving the optimization

problem:

minimize
p̂, ξ

1
2
‖p̂− po‖22 + cTξ

subject to Ap̂+ b+ ξ ≤ 0

− ξ ≤ 0

(10)

where p is the point (item or user) to localize, p̂ is the localized point, po is the

previous estimate of p, and c is the vector of constants that controls the relative

influence of each comparison. A and b are defined by the comparisons involving

point being located. Here, Ak denotes the kth column of the matrix A ∈ RK×d and

bk denotes the kth element of the column vector b.

12

User Localization Item Localization

Ak (qj − qi) (x1 − x2)

bk
1
2
(‖qi‖22 − ‖qj‖22)

+1
2

(c− d+ ‖x2‖22 − ‖x1‖22)

where c = ‖x2 − q2,j‖22, d = ‖x2 − q2,i‖22

3.4 The primal and dual optimization problems

3.4.1 The primal

The Lagrangian function resulting from Equation 10, which brings the constraints

into the objective function, is:

L(p̂, ξ,α,β) =
1

2
(p̂−po)T (p̂−po)+

∑
k

ckξk+
∑
k

αk(bk−ATk p̂−ξk)−
∑
k

βkξk (11)

where α and β are vectors of the Lagrange multipliers.

The primal function is then:

LP (p̂) = max
α,β:αk≥0

L(p̂, ξ,α,β) (12)

where each αi is constrained to be positive to ensure each inequality constraint in

Equation 10 is satisfied.

The primal optimization problem, which encompasses the original optimization

problem in (10) but is unconstrained, is:

min
p̂,ξ

max
α,β:αi≥0

L(p̂, ξ,α,β) (13)

3.4.2 The dual and the dual optimization problem

The Lagrangian dual is:

LD(α,β) = min
p̂,ξ

L(p̂, ξ,α,β) (14)

And the dual optimization problem is:

max
α,β:αk,βk≥0

LD(α,β) (15)

13

The primal and dual optimization problems have zero duality gap (share the same

solution) when the KKT conditions are met. In Equation 15, αk, βk ≥ 0 holds because

of the nonnegative KKT condition. We use the remaining KKT conditions to derive

LD(α,β), starting with the condition that the gradient of the Lagrangian function

with respect to each of the primal variables (p̂ and ξk) must be zero:

∇p̂ L(x, ξ,α,β) = p̂− po −
∑
k

αkak = 0 (16)

∇ξk L(x, ξ,α,β) = ck − αk − βk = 0 (17)

Thus, p̂ =
∑

k βk + po. Plugging this in to (11), we obtain:

L(p̂, ξ,α,β) =
1

2

(∑
k

αkak

)T (∑
k

αkak

)
+
∑
k

ckξk

−
∑
k

βkξk +
∑
k

αk

(
bk − aTk

(∑
k′

αk′ak′ + po

)
− ξk

)
(18)

= −1

2

∑
k,k′

αkαk′a
T
kak′ +

∑
k

αk
(
bk − aTk po

)
(19)

While βk has been eliminated from the dual function, to enforce (17) we must add

the constraint that 0 ≤ αk ≤ ck. Adding this as the constraint, we obtain the dual

optimization problem:

max
α

− 1

2

∑
k,k′

αkαk′a
T
kak′ +

∑
k

αk
(
bk − aTk po

)
subject to 0 ≤ αk ≤ ck

(20)

Defining the matrix G with entries Gij = ATi Aj, we can equivalently write:

max
α

− 1
2
αTGα+ bTα

subject to 0 ≤ αk ≤ ck

(21)

14

3.5 Iteratively localizing the entire embedding

Using the localization procedures derived above, we can determine the location of a

new point in an embedding of items and users given only a list of binary pairwise

comparisons. However, our localization procedures can also be used to increase the

accuracy of an existing item or user in an embedding. When presented with a noisy

embedding, we can iterate through each point and use the localization procedure

to improve its accuracy. Because the localization procedure for each point depends

on the accuracy of the other points in the embedding, the update in each step can

dramatically improve the accuracy of updates in future iterations.

Require: noisy embedding, list of comparisons

for ` = 1 . . . numIters do

for i = 1 . . . nUsers do

xi ← localize (xi) using comparisons involving xi

end for

for i = 1 . . . nItems do

combine comparisons involving qi

qi ← localize (qi) using combined comparisons

end for

end for

15

CHAPTER IV

IMPLEMENTATION

In this the previous chapter, we derived an optimization problem for localizing points

in a noisy embedding. For localizing items, we demonstrated a method of combining

comparisons to make the problem convex. In this chapter, we present efficient meth-

ods for calculating the solution to the optimization problem, combining comparisons,

and iteratively increasing the accuracy of a noisy embedding.

4.1 Optimization methods

In this section, we derive several well-known optimization methods for solving the

localization problem for items and users. In the experiments section, each method

is compared in terms of accuracy and speed of convergence for both item and user

localization.

4.1.1 Gradient descent using the primal

To optimize the primal, we use the hinge loss function, f(x) = max (0, x), which

penalizes positive values proportionally to their magnitude but does not penalize

negative values. In the context of this problem, positive values of bk − ATk p indicate

comparison k is violated, while a negative value indicates that comparison k was

satisfied.

min
p

1
2
‖p− po‖22 +

∑
k

ck max
(
0, bk − ATk p

)
(22)

In gradient descent, we iteratively step towards the minimum of the objective

function. Each step is taken in the direction of the objective function’s negative

gradient evaluated at the current estimate.

Each iteration takes the form:

16

p(`+1) = p(`) − η`∇` (23)

The gradient is calculated as:

∇` = p(`) −
∑

k:aT
k p

(`)<bk

ckak (24)

where Ak is the kth column of A. The ks that satisfy ATk p
(`) < bk correspond to

the comparisons that are violated.

The step size η` is a function of the iteration number; in the experiments presented

in chapter 5 we use η` = η/`.

4.1.2 Stochastic gradient descent using the primal

Rather than use every k at each iteration, in stochastic gradient descent we pick

certain ks to update, increasing the speed of each iteration. The ks to update in each

iteration can be chosen arbitrarily or according to some rule.

4.1.3 Coordinate descent using the dual

In coordinate descent, we iterate through the dual variables αk to optimize the dual

optimization problem. At each iteration, we solve a simpler version of the opti-

mization problem by minimizing in only one dimension, allowing us to calculate the

optimal step size.

The value of the objective function after taking a step of size d in dimension k is

− 1

2
(α+ dek)

TG(α+ dek) + bT (α+ dek) (25)

At each step, maximizing the dual objective function with the constraint 0 ≤

αk + d ≤ ck gives us the optimal step size d. Thus, each iteration consists of the

updates

17

d(`) =
bk − aTk p(`)

aTkak

α
(`+1)
k = min(max(α

(`)
k + d(`), 0), ck)

p(`+1) = p(`) + (α
(`+1)
k − α(`)

k)ak

(26)

4.1.4 Newton-Raphson method

The Newton-Raphson method automatically selects the step size parameter in the

gradient descent update rule of Equation 23 by using the second derivative of the

objective function. To take the second derivative, we must ensure that the objective

function is differentiable. Because we constrain ξ ≥ 0, the `1 penalization term acts as

the hinge-loss function `(t) = max(0, t). To make this term differentiable at t = 0 and

allow us to apply the Newton-Raphson method, we use the smooth approximation of

the hinge-loss function g(t) = log(1 + et).

Applying this to the objective function in the vectorized optimization problem of

Eq. 10, we obtain

minimize
p̂, ξ

1
2
‖p̂− po‖22 + log(1 + exp(bk − Akx))

subject to Ap̂+ b+ ξ ≤ 0

− ξ ≤ 0

(27)

where entries of the vector b and columns of the matrixA are as defined in Table 1.

The Hessian matrix is:

H(x) = I +
∑
k

aka
T
k g(bk − aTkx)(1− g(bk − aTkx)) (28)

The optimal step is given by H(x(`−1))−1∇(x(`−1)), so each iteration for the

Newton-Raphson method is the update:

x(`) = x(`−1) −H(x(`−1))−1∇(x(`−1)) (29)

18

4.2 Choosing comparisons to combine for item localization

As discussed in Section II, we can combine two comparisons, ‖x1−q1,i‖22 ≤ ‖x1−q1,j‖22

and ‖x2 − q2,i‖22 ≤ ‖x2 − q2,j‖22 to form a valid constraint if q̂ = q1,j = q2,i or if

q̂ = q1,i = q2,j. Using synthetically generated data, application of this rule typically

gives us many times more convex constraints from combined comparisons than we

had quadratic constraints from the original comparisons. However, most of these

combined comparisons result in hyperplanes that are very far from the feasible region.

Thus, the majority of combined comparisons do not contribute new information and

only increase the computational cost of solving the optimization problem, suggesting

that we can potentially dramatically reduce the number of combinations of binary

pairwise comparisons we require. To reduce the computational cost, we select only

a random subset of combinations to use as constraints in the optimization problem;

this simplification had very little impact on localization accuracy in our experiments.

19

CHAPTER V

EXPERIMENTS AND RESULTS

5.1 Localizing a new user

First, we demonstrate the first typical application of localizing a new user. In these

experiments, we have a priori knowledge of an existing embedding of users and items,

and use our list of binary pairwise comparisons to estimate the preferences (modeled

by a point in the embedding) of a new user.

In each experiment, a “ground truth” embedding of many items and users was

generated. Comparisons were generated by randomly selecting a user xk and two

items q1 and q2. Providing q1 6= q2. q1 and q2 were then selected such that ‖x −

qi‖2 < ‖x − qj‖2, and the triple of indices (k, i, j) representing the comparison was

added to the list of comparisons.

In some experiments, noise was added to the comparisons. We model two types

of noise in the comparisons:

1. Noise in selection of preferred item. We represent this type of error by adding

a noise term ε when selecting which item is the preferred item qi. Thus, q1

is selected as qi if ‖x − qi‖2 + ε < ‖x − qj‖2, where ε is a random variable.

This type of noise is more likely to “flip” a comparison where ‖x − qi‖2 and

‖x− qj‖2 have similar magnitudes.

2. Noise in storage of comparison. We represent this type of error by flipping the

more preferred item qi and the less preferred item qj with probability Perr.

This type of noise is equally likely to “flip” any comparison, regardless of the

relative values of ‖x− qi‖2 and ‖x− qj‖2.

20

We use two metrics for the accuracy of the reconstruction. First, we use the

`2 reconstruction error : the distance between the localized user and the ground-

truth point comparisons were generated from. This gives us an exact metric for the

localization error, but is highly dependent on the number of comparisons involving

the user localized; with a small amount of comparisons involving the user to localize,

there is not enough information to accurately reconstruct the user. A second metric,

number of comparisons violated, gives us a sense of how accurately the user is localized

based only on the information we have available. In the following experiments, we

use both metrics, representing the number of comparisons violated as a percentage of

the total comparisons involving the user to localize we have available.

5.1.1 Localization accuracy with varying number of comparisons

In the first experiment, we demonstrate the accuracy with which we can localize a

new user based on the number of binary pairwise comparisons we have available.

Figure 4: New user recovery error measured in terms of percent of binary comparisons
violated and `2 reconstruction error as a function of the total number of comparisons
available for the system. Percent binary comparisons violated refers to the number
of comparisons involving the new user. For both metrics, the comparisons were gen-
erated uniformly from 100 items and 100 users, and the “ground truth” embedding
was generated on [−1, 1] in each dimension.

As shown in Figure 4, a small number of comparisons involving the new user

21

results in a high reconstruction error, while after a certain point a large number

of comparisons does not result in significant accuracy improvements. Note that in

these experiments, the comparisons are generated randomly: a significantly smaller

number of comparisons would be necessary to achieve similar performance if they

were selected intelligently.

The dimensionality of the space has a large impact on the `2 recovery error. This

is expected; in the space spanning [−1, 1] in each of d dimensions, the maximum

possible error is
√
d2d. Figure 4 does not normalize for the dimensionality.

5.1.2 Localization accuracy with a noisy a priori embedding

In this section, we show that we can accurately localize a new user even if the em-

bedding we are given a priori is noisy. For this experiment, the comparisons were

generated from the noise-free ground-truth embedding, but our knowledge of the

item locations the binary pairwise comparisons refer to are contaminated with noise

of standard deviation σ in each dimension.

Figure 5: New user recovery error measured in terms of percent of comparisons vio-
lated and `2 recovery error for a new user localized using an embedding contaminated
with four different levels of noise. For both metrics, the comparisons were generated
uniformly from 100 users and 100 items, and the “ground truth” embedding was
generated on [−1, 1] in d = 20 dimensions.

Figure 5 shows that even small amounts of noise have a significant detrimental

22

effect on the accuracy with which we can localize a new user. Because the noise

added to the embedding may make many of the comparisons conflict with each other,

significant error is observed in both the portion of comparisons violated and the `2

reconstruction metric.

This result motivates our work to improve the accuracy of a noisy embedding

by iteratively localizing every point in an embedding. Results that improve on the

performance in this experiment are shown in subsequent sections.

5.2 Localizing a new item

Next, we test our method of combining binary pairwise comparisons to create linear

constraints for localizing a new item given an existing embedding of users and items

and a list of binary pairwise comparisons involving the new item. Because the binary

pairwise comparisons result in quadratic constraints when localizing an item, we use

the convex relaxation described in previous chapters to combine them to form linear

constraints.

5.2.1 Localization accuracy with varying number of comparisons

In this experiment, we show that by using our method for combining binary pair-

wise constraints, we can localize a new item into an existing embedding with similar

accuracy as the new user localization problem.

Figure 6 parallels Figure 4 and demonstrates that we can accurately localize an

item with approximately the same accuracy as we can localize a new user.

23

Figure 6: New item recovery error measured in terms of percent of binary comparisons
violated and `2 reconstruction error as a function of the total number of comparisons
available for the system. Percent binary comparisons violated refers to the number
of comparisons involving the new user. For both metrics, the comparisons were gen-
erated uniformly from 100 items and 100 users, and the “ground truth” embedding
was generated on [−1, 1] in each dimension. Note that the scale on the y-axis of the
first plot is extremely small!

5.2.2 Localization accuracy with a noisy a priori embedding

Here, we show that we can also accurately localize a new item even if the embedding

we are given a priori contains noise. As in the similar experiment for localizing a new

user given a noisy embedding, the comparisons were generated from the noise-free

ground truth embedding, but our knowledge of the users and items they refer to is

contaminated with noise of standard deviation σ in each dimension.

We conclude that using our method for combining comparisons, we can localize

new items with the same method we use for localizing new users, with approximately

the same accuracy. This result holds for both a noise-free and noisy a priori embed-

ding of users and items.

24

Figure 7: New item recovery error measured in terms of percent of comparisons vio-
lated and `2 recovery error for a new user localized using an embedding contaminated
with four different levels of noise. For both metrics, the comparisons were generated
uniformly from 100 users and 100 items, and the “ground truth” embedding was
generated on [−1, 1] in d = 20 dimensions.

5.3 Improving the accuracy of a noisy embedding

In many applications, we may have a rough estimate of the embedding of users and

items. In the previous sections, we have shown that we can localize a new user or

item to extremely high accuracy if our embedding is not noisy and we have a sufficient

number of comparisons involving the new user. Further, we have shown that we can

localize a new user or item even if the a priori embedding is contaminated with noise.

In this section, we show that we can improve the performance in the noisy case

by iteratively localizing each user and item in the embedding. Not only does this

result in significantly improved performance when localizing a new user or item, it

also results in a much more accurate embedding, up to a scale, shift, and rotation.

5.3.1 Improving the accuracy of a noise-contaminated embedding

In this experiment, we generate an a priori embedding of users and items, which we

call the ground truth embedding. Then, we contaminate every point in the embedding

with additive Gaussian noise of standard deviation σ.

25

Figure 8: Noisy embedding recovery error measured in terms of percent of all compar-
isons violated and mean `2 recovery error for an embedding contaminated with three
different levels of noise. For both metrics, the comparisons were generated uniformly
from 100 users and 100 items, and the “ground truth” embedding was generated on
[−1, 1] in d = 2 dimensions. Three trials were performed at each noise level.

Once again, we measure localization accuracy with both the total number of com-

parisons violated and the mean `2 reconstruction error of each point in the embedding.

Here, the comparisons violated are expressed as the portion of all binary pairwise

comparisons we are given, not only the comparisons involving the user or item we are

localizing at that iteration.

As shown in Figure 8 (in R2), even relatively high levels of noise converge to a

small mean-square error within just a few cycles through the data.

In this experiment, there are 100 users and 100 items, so each cycle consists

of 200 iterations. Interestingly, while the first iteration through each user results

in significant improvement, the first iteration through each item shows the most

dramatic improvement. After the first cycle, improvement is more gradual.

26

Figure 9: Noisy embedding recovery error measured in terms of percent of all compar-
isons violated and mean `2 recovery error for an embedding contaminated with three
different levels of noise. For both metrics, the comparisons were generated uniformly
from 100 users and 100 items, and the “ground truth” embedding was generated on
[−1, 1] in d dimensions. Three trials were performed for each dimensionality.

5.3.2 Improving the accuracy of a noise-contaminated embedding in higher
dimensionalities

In this experiment, we extend the results of the previous section, which showed we

could significantly improve the accuracy of a noisy embedding in R2, to higher di-

mensionalities.

Figure 9 demonstrates that our algorithm also improves the accuracy of a noisy

embedding in higher dimensionalities, although higher dimensionalities suffer a perfor-

mance penalty in both the portion of comparisons violated and the `2 reconstruction

error.

5.4 Generating an embedding with no a priori knowledge

In the previous section, we demonstrated good results localizing a noisy embedding

even when it was corrupted by enough noise to make the original embedding vio-

late 35% of the binary pairwise comparisons. In this section, we show that even

more impressively, we can obtain similar results when we have no a priori knowledge

of the embedding, generating an embedding using only the list of binary pairwise

27

comparisons.

In some applications, we may have no knowledge of the a priori embedding and

be presented with only a list of binary pairwise comparisons. Here, we show that our

algorithm can construct a embedding that satisfies most or all comparisons with no

a priori knowledge of the embedding.

5.4.1 Generating an embedding from only a list of comparisons

In this experiment, we again create a “ground truth” embedding of users and items

distributed uniformly randomly on [−1, 1] in each dimension. Using this, we generate

a list of binary pairwise comparisons, then initialize the reconstructed embedding to

a random set of points and use only the list of comparisons to attempt to recreate

the embedding. As in the previous experiments, we measure the accuracy of our re-

construction with a shift, scale, and rotation invariant mean error between each point

and its actual value and the number of comparisons the reconstructed embedding

violates.

Figure 10 shows that even with a random initial embedding (approximately 50% of

comparisons violated), we can generate an embedding with only a modest error. While

the mean `2 recovery error in Figure 10(b) shows increasing error as the dimensionality

increases, the error expressed in terms of the number of comparisons violated does not

continue to increase as the dimensionality grows large, suggesting that the only error

increasing the dimensionality results in is due to the increasing vastness of Euclidean

dimensional space. This result is particularly encouraging because many applications

require highly dimensional embeddings to achieve good results.

28

Figure 10: Recovery error for a generated embedding measured in terms of percent
of all comparisons violated and mean `2 recovery error, using the Procrustes distance
to ignore the effects of a shift, scale, or rotation from the initial embedding. For both
metrics, the comparisons were generated uniformly from 100 users and 100 items, and
the “ground truth” embedding was generated on [−1, 1] in d dimensions.

5.4.2 Distribution of errors in a generated embedding

In this experiment, shown in Figure 11, we demonstrate the distribution of the number

of violations and `2 reconstruction error at each iteration is approximately normally

distributed with a relatively small variance. This experiment demonstrates that the

mean error shown in the previous experiments is shared relatively evenly between all

points in the embedding, rather than being concentrated in a few outliers.

A relatively uniform error distribution is encouraging, suggesting that the limit

to achieving better performance may be in the number of iterations through each

point in the embedding or the number of useful comparisons present rather than a

fundamental limitation of the algorithm. In contrast, if the mean error was caused

primarily by a few points with large errors, we may have fallen into a local minimum

that may be difficult to get out of.

29

Figure 11: Distribution of errors for users and items in a generated embedding mea-
sured in terms of `2 recovery error, using the Procrustes distance to ignore the effects
of a shift, scale, or rotation from the initial embedding. The comparisons were gener-
ated uniformly from 100 users and 100 items, and the “ground truth” embedding was
generated on [−1, 1] in d = 20 dimensions. Darker colors represent a higher number
of errors in that bin.

30

CHAPTER VI

CONCLUSION

In this work, we considered an embedding of users and items that is useful in the

context of a recommendation system following the ideal point model. We showed

we can accurately localize new users and items using only a list of binary pairwise

comparisons, and that even if the embedding contains a moderate level of noise, we

can still localize a new user or item accurately.

Next, we extended our method for localizing a single point in the embedding

to iteratively localizing every user and item and showed that we can use this to

significantly reduce the average error of a noisy embedding. In the degenerate case,

when we have no a priori knowledge of the embedding, we show that we can generate

an accurate embedding using only the binary pairwise comparisons.

Experiments with synthetic data showed these results extend well to higher dimen-

sionalities, suggesting that this method will apply well to recommendation systems

in practice (such as predicting user preference in the MovieLens dataset) where em-

beddings must live in high dimensionalities to achieve acceptable performance.

There are several directions for future work:

• Clever selection of initial embedding : The experiments presented in Chapter V

show significant accuracy increase in the second cycle through each point in the

embedding, suggesting that a more clever choice of initial embedding may result

in faster convergence time. Further, we show that when performing multiple

tests with the same parameters but a different random seed results in differ-

ing performance. This suggests that the initial embedding plays a role in the

accuracy we are able to achieve at “convergence.”

31

• Automatic selection of the c parameter : The c parameter in the optimization

problem of Equation 10, which controls the trade-off between the regularization

and violations terms in the objective function, should be adapted to the con-

fidence we have in each point in the embedding. One possibility for selecting

this is by using sensitivity analysis, which is a measure of the sensitivity of the

localized point to changes in the constraints. Geometrically, this corresponds

calculating how the size of the feasible region responds to slight changes in the

positions of other users and items.

• Testing with data from application domains : The MovieLens dataset is a pop-

ular metric for recommendation system applications. The MovieLens 100k

dataset contains approximately 1000 users and 1400 items with 100k total rat-

ings; the MovieLens 1M and 10M datasets contain many more ratings. Using

these datasets will give us an avenue to compare this algorithm against other

methods, such as 1-bit matrix completion.

• Random perturbations and parallelization: Although accuracy improvement af-

ter several cycles through the data is minimal, experiments have shown that

adding small perturbations to every point in the embedding after each cycle

may allow for accuracy improvements even after many cycles through the data

(from an optimization perspective, our localization procedure is performing a

block coordinate descent, and perturbations allow us to escape from local min-

ima). In addition, each iteration may be performed in parallel, resulting in

potential performance gains. Although each iteration currently depends on the

updated value from every previous iteration, with a large number of iterations

the effect of not considering the improvement from several previous iterations

will be minimal. Using this simplification, the algorithm is “embarrassingly

parallel,” and parallel execution can result in a large speedup.

32

REFERENCES

[1] Boyd, S. and Vandenberghe, L., Convex Optimization. Cambridge University
Press, 2004.

[2] Davenport, M. A., “Lost without a compass: Nonmetric triangulation and
landmark multidimensional scaling,” in Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2013 IEEE 5th International Workshop on,
pp. 13–16, Dec 2013.

[3] Grant, M. and Boyd, S., “Graph implementations for nonsmooth convex pro-
grams,” in Recent Advances in Learning and Control (Blondel, V., Boyd,
S., and Kimura, H., eds.), Lecture Notes in Control and Information Sci-
ences, pp. 95–110, Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/
graph_dcp.html.

[4] Grant, M. and Boyd, S., “CVX: Matlab software for disciplined convex pro-
gramming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.

[5] Maydeu-Olivares, A. and Böckenholt, U., “Modeling preference data,”
The SAGE handbook of quantitative methods in psychology, pp. 264–282, 2009.

33

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

Localizing Embeddings for Recommendation Systems using Binary Pairwise
Comparisons

Matthew R. O’Shaughnessy

33 Pages

Directed by Professor Mark Davenport

Recommendation systems predict the preferences of users (who may be, for

example, customers of an online shopping website or moviegoers), to various items

(for example, consumer products or movies). One way this information is modeled is

the ideal point model of preference, in which items and users live in an n-dimensional

Euclidean space where each dimension represents an attribute and a small distance

between an item and user indicates the user has a preference for that item. We

seek to determine an embedding of many items and users given only binary pairwise

comparisons of the form “user x prefers item qi to item qj .” First, we present an

optimization-based framework for localizing new items and users given an existing

embedding. We demonstrate that user localization can be formulated as a simple

constrained quadratic program. Further, we show that although item localization

produces a quadratically-constrained quadratic program which is difficult to solve,

we can make the problem more computationally tractable by strategically combining

comparisons to make the quadratic constraints into linear constraints. Finally, we

show that by iteratively applying this localization method to every item and user,

we can recover an embedding that agrees with almost every comparison, allowing

us to iteratively improve the accuracy of a noisy embedding or even create an em-

bedding using no a priori knowledge apart from the list of pairwise comparisons.

Throughout, we present implementation details and optimization algorithms which

make the recommendation system computationally efficient even with large datasets

and dimensionalities.

	List of Figures
	Chapter 1 — Introduction
	Chapter 2 — Background
	Chapter 3 — Algorithms
	Localizing users
	Localizing items
	Deriving the optimization problem
	Making the item localization problem convex

	Summary: a vectorized form for localizing users and items
	The primal and dual optimization problems
	The primal
	The dual and the dual optimization problem

	Iteratively localizing the entire embedding

	Chapter 4 — Implementation
	Optimization methods
	Gradient descent using the primal
	Stochastic gradient descent using the primal
	Coordinate descent using the dual
	Newton-Raphson method

	Choosing comparisons to combine for item localization

	Chapter 5 — Experiments and Results
	Localizing a new user
	Localization accuracy with varying number of comparisons
	Localization accuracy with a noisy a priori embedding

	Localizing a new item
	Localization accuracy with varying number of comparisons
	Localization accuracy with a noisy a priori embedding

	Improving the accuracy of a noisy embedding
	Improving the accuracy of a noise-contaminated embedding
	Improving the accuracy of a noise-contaminated embedding in higher dimensionalities

	Generating an embedding with no a priori knowledge
	Generating an embedding from only a list of comparisons
	Distribution of errors in a generated embedding

	Chapter 6 — Conclusion
	References

