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SUMMARY

Erdős and Pósa proved in 1965 that cycles satisfy an approximate packing-covering

duality. Finding analogous approximate dualities for other families of graphs has since

become a highly active area of research due in part to its algorithmic applications. In this

thesis we investigate the Erdős-Pósa property of various families of constrained cycles and

paths by developing new structural tools for undirected group-labelled graphs.

Our first result is a refinement of the flat wall theorem of Robertson and Seymour to

undirected group-labelled graphs. This structure theorem is then used to prove the Erdős-

Pósa property ofA-paths of length 0 modulo p for a fixed odd prime p, answering a question

of Bruhn and Ulmer. Further, we obtain a characterization of the abelian groups Γ and

elements ℓ ∈ Γ for which A-paths of weight ℓ satisfy the Erdős-Pósa property. These

results are from joint work with Robin Thomas.

We extend our structural tools to graphs labelled by multiple abelian groups and con-

sider the Erdős-Pósa property of cycles whose weights avoid a fixed finite subset in each

group. We find three types of topological obstructions and show that they are the only ob-

structions to the Erdős-Pósa property of such cycles. This is a far-reaching generalization

of a theorem of Reed that Escher walls are the only obstructions to the Erdős-Pósa property

of odd cycles. Consequently, we obtain a characterization of the sets of allowable weights

in this setting for which the Erdős-Pósa property holds for such cycles, unifying a large

number of results in this area into a general framework. As a special case, we characterize

the integer pairs (ℓ, z) for which cycles of length ℓ mod z satisfy the Erdős-Pósa property.

This resolves a question of Dejter and Neumann-Lara from 1987. Further, our description

of the obstructions allows us to obtain an analogous characterization of the Erdős-Pósa

property of cycles in graphs embeddable on a fixed compact orientable surface. This is

joint work with Pascal Gollin, Kevin Hendrey, O-joung Kwon, and Sang-il Oum.
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CHAPTER 1

INTRODUCTION

1.1 Erdős-Pósa property

Erdős and Pósa [16] showed that cycles satisfy an approximate packing-covering duality;

that is, there exists a function f(k) = O(k log k) such that in every graph, either there are

k vertex-disjoint cycles or there is a set of at most f(k) vertices intersecting every cycle.

This result has generated extensive activity on whether various families of graphs satisfy a

similar approximate duality, often referred to as the Erdős-Pósa property.

Let F be a family of graphs. An F-packing of size k is a set of k vertex-disjoint graphs

in F , and a half-integral F-packing of size k is a multiset of 2k graphs in F such that every

vertex occurs in at most two graphs in the multiset. In a graph G, a vertex set Z ⊆ V (G) is

an F-hitting set if G− Z does not contain a subgraph in F .

We say that F satisfies the (half-integral) Erdős-Pósa property if there exists a function

f : N → N such that in every graph G, either there is a (half-integral) F-packing of size k

or there is an F-hitting set of size at most f(k).

A beautiful result of Robertson and Seymour [31], obtained as a corollary of the grid mi-

nor theorem (see Theorem 2.6.1), says that for a fixed graphH , the family ofH-expansions

(graphs which contain H as a minor) satisfies the Erdős-Pósa property if and only if H is

planar. Since cycles are exactly the minimal graphs which contain K3 as a minor, this

implies Erdős and Pósa’s original result as a special case.

In many cases, obstructions to the Erdős-Pósa property are of topological nature as we

will see throughout. Besides their mathematical interest, the Erdős-Pósa property has many

algorithmic applications, for example in approximation algorithms and fixed-parameter

tractability of the corresponding maximum packing or minimum cover problems (e.g. [25]).
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In this thesis we investigate the Erdős-Pósa property of various families of constrained

cycles and paths, unifying many known results in the literature and answering some open

problems.

1.2 Cycles

1.2.1 Background

One type of constraint often studied is a modularity condition on the cycle lengths. For

example, Thomassen [37] showed that for every positive integer z, the Erdős-Pósa property

holds for cycles of length 0 modulo z. On the other hand, Lovász and Schrijver (see [37])

found a class of graphs, so called Escher walls (see Figure 1.1(a)), which demonstrate that

such a duality does not hold for odd cycles. Escher walls are certain types of projective

planar grids in which a cycle has odd length if and only if it is a one-sided closed curve in

the projective-planar embedding. It is well-known that no two one-sided closed curves in

the projective plane are disjoint, hence Escher walls do not contain two vertex-disjoint odd

cycles, but they can require arbitrarily many vertices to intersect every odd cycle.

Reed [30] showed that large Escher walls are contained in every graph that contains nei-

ther many vertex-disjoint odd cycles nor a small odd cycle hitting set, yielding a structural

characterization of the graphs failing to satisfy this approximate duality for odd cycles. But

since Escher walls contain large half-integral packings of odd cycles, Reed concluded that

the half-integral Erdős-Pósa property holds for odd cycles.

Escher walls can be modified to give infinitely many pairs (ℓ, z) for which the Erdős-

Pósa property fails for cycles of length ℓ modulo z. This was essentially shown by Dejter

and Neumann-Lara [13], who then asked to find all pairs (ℓ, z) of integers for which an

analogue of the Erdős-Pósa theorem does hold for cycles of length ℓ modulo z.

Question 1 (Question 4 in [13]). For which pairs of positive integers (ℓ, z) does the family

of cycles of length ℓ mod z satisfy the Erdős-Pósa property?
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Note that the half-integral Erdős-Pósa property does hold for all pairs (ℓ, z) (see [20]).

Other types of constraints for cycles have been considered. Given a vertex set S, an S-

cycle is a cycle containing a vertex in S. Kakimura, Kawarabayashi, and Marx [26] showed

that the Erdős-Pósa property holds for S-cycles. Birmelé, Bondy, and Reed [2] showed that

it also holds for long cycles, defined as cycles of length at least L for some fixed positive

integer L. Bruhn, Joos, and Schaudt [5] combined these results to show the Erdős-Pósa

property of long S-cycles. Note that there cannot be an extension of their result to odd S-

cycles due to Escher walls, but they are not the only obstructions, see Figure 1.1(b). Again,

the half-integral Erdős-Pósa property holds for odd S-cycles, as shown by Kakimura and

Kawarabayashi [24].

Given a family S of sets, an S-cycle is a cycle containing at least one vertex from each

member of S. Huynh, Joos, and Wollan [23] proved an analogue of the Erdős-Pósa theorem

for (S1, S2)-cycles. An extension of their result to (S1, S2, S3)-cycles fails, and a third type

of obstruction appears in this setting, see Figure 1.1(c). Again, the half-integral Erdős-Pósa

property holds for all finite families S (see [20]).

1.2.2 Some of our results

We consider a unified approach to deal with a large number of such constraints in a common

setting. For an abelian group Γ, a Γ-labelled graph is a pair (G, γ) of a graph G and a Γ-

labelling γ : E(G) → Γ. The weight of (G, γ) (or the γ-value of G) is defined to be the

sum of γ(e) over all edges e of G. We say that (G, γ) is Γ-nonzero (or that G is γ-nonzero)

if its weight (or its γ-value) is a non-identity element of Γ.

Modularity constraints on cycles (say modulo z) can be naturally encoded in the setting

of Z/zZ-labelled graphs, where each edge is labelled (the congruence class) 1 + zZ and

the target cycles have values exactly ℓ + zZ. Moreover, S-cycles can be encoded as Z-

nonzero cycles with respect to the Z-labelling which assigns the label 1 to edges incident

with vertices in S and 0 to all other edges. Using multiple abelian groups, we may encode

3



(a) An Escher Wall, the obstruction for odd cycles. We refer to
the arrangement of the red paths around the wall as ‘crossing’.

(b) An obstruction for odd S-cycles, where vertices in S are
shown in red. We refer to the arrangement of the blue dotted
paths around the wall as ‘nested’, and of the red dashed paths as
‘in series’.

(c) An obstruction for (S1, S2, S3)-cycles, where vertices in S1,
S2, and S3 are shown in red, blue, and orange colors respectively.

Figure 1.1: Obstructions for Erdős-Pósa type results for con-
strained cycles. Dashed or dotted lines represent paths of odd
length and solid lines represent paths of even length.
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cycles satisfying multiple properties simultaneously (e.g. odd S-cycles).

In joint work with Thomas [36], we proved a structure theorem (Theorem 3.1.1) which

refines the flat wall theorem (Theorem 2.6.2) of Robertson and Seymour [33] to Γ-labelled

graphs. This is analogous to a result of Huynh, Joos, and Wollan [23] who proved a flat

wall theorem for a directed model of group-labelled graphs. An easy consequence of our

structure theorem is the following Erdős-Pósa result for Γ-nonzero cycles:

Theorem 1.2.1. Let Γ be an abelian group. Then the family of Γ-nonzero cycles satisfies

the half-integral Erdős-Pósa property. Moreover, if Γ has no element of order two, then the

family of Γ-nonzero cycles satisfies the Erdős-Pósa property.

This strengthens a result of Wollan [39] that Γ-nonzero cycles satisfy the Erdős-Pósa

property if and only if Γ has no element of order two. Furthermore, our structure theorem

implies that if Γ has an element of order two, then the only obstruction to the Erdős-Pósa

property of Γ-nonzero cycles is an analogue of the Escher wall labelled by a fixed element

of order two. In this sense, Theorem 3.1.1 generalizes Reed’s result for odd cycles.

In joint work with Gollin, Hendrey, Kwon, and Oum [19], we extended Theorem 1.2.1

by considering graphs labelled by multiple abelian groups Γ1, . . . ,Γm and considering

more general forms of the set A ⊆ Γ :=
∏m

j=1 Γj of ‘allowable’ values for the cycles,

beyond a ‘Γ-nonzero’ constraint. Namely, we give a characterization of the sets A ⊆ Γ

for which the allowable cycles (cycles with weights in A) satisfy the Erdős-Pósa property,

under the assumption that A is the set of all elements of Γ avoiding a fixed finite set of ele-

ments of each Γi (see Theorems 1.2.3 and 1.2.4). This is derived as a corollary of our main

result (Theorem 3.3.2) which characterize the obstructions to the Erdős-Pósa property of

allowable cycles in this setting. This is a far-reaching generalization of Reed’s result that

Escher walls are the only obstructions to the Erdős-Pósa property of odd cycles.

As one consequence, we obtain a characterization of the integer pairs (ℓ, z) for which

the family of cycles of length ℓ mod z satisfies the Erdős-Pósa property, completely resolv-

ing Question 1.

5



Theorem 1.2.2. Let ℓ and z be integers with z ≥ 2, and let pa11 · · · pann be the prime factor-

ization of z with pi < pi+1 for all i ∈ [n− 1]. The following statements are equivalent.

• Cycles of length ℓ mod z satisfy the Erdős-Pósa property.

• Both of the following conditions are satisfied.

1. If p1 = 2, then ℓ ≡ 0 (mod pa11 ).

2. There do not exist distinct i1, i2, i3 ∈ [n] such that ℓ ̸≡ 0 (mod p
aij
ij

) for each j ∈ [3].

Furthermore, our results allow us to combine different types of constraints to obtain

corresponding characterizations, for example on when S-cycles of length ℓ mod z satisfy

the Erdős-Pósa property (see Corollary 3.4.2).

Let us now give a loose description of the obstructions. Each obstruction consists of

a wall, in which every cycle has value zero in every group, together with a collection of

sets of paths arranged around the boundary of the wall, so that each set of paths is ‘nested’,

‘crossing’, or ‘in series’ (see Figure 1.1 for examples). Moreover, this collection of sets is

minimally sufficient to find allowable cycles, in that every allowable cycle contains at least

one path from each of these sets, and every cycle which contains exactly one path from

each set is allowable. Additionally, every allowable cycle must contain an odd number of

paths from each set that is not in series. Finally, one of the following conditions must be

satisfied:

• the number of crossing sets of paths is odd (see for example Figure 1.1(a)),

• at least one but not all sets are arranged in series (see for example Figure 1.1(b)), or

• at least three sets of these paths are arranged in series (see for example Figure 1.1(c)).

As we show in Subsection 3.3.3, these obstructions do not contain a packing of more

than two allowable cycles.
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The conditions on the set A of allowable values which avoid these obstructions can

be characterized as follows. Consider a product of m abelian groups Γ =
∏

i∈[m] Γi. If

g = (gi : i ∈ [m]) ∈ Γ, then we write πi(g) to denote gi ∈ Γi.

Theorem 1.2.3. For every pair of positive integersm and ω, there is a function fm,ω : N → N

satisfying the following property. Let Γ =
∏

i∈[m] Γi be a product of m abelian groups, and

for each i ∈ [m], let Ωi be a subset of Γi with |Ωi| ≤ ω. Let A be the set of all elements

g ∈ Γ such that πi(g) ∈ Γi \ Ωi for all i ∈ [m], and suppose that

(1) for all a ∈ A, we have ⟨2a⟩ ∩ A ̸= ∅,

(2) for all a, b, c ∈ Γ with ⟨a, b, c⟩ ∩ A ̸= ∅, we have (⟨a, b⟩ ∪ ⟨b, c⟩ ∪ ⟨a, c⟩) ∩ A ̸= ∅.

Then the family of Γ-labelled cycles with weights in A satisfies the Erdős-Pósa property.

Conversely, we have the following negative result.

Theorem 1.2.4. Let A be a nonempty subset of an abelian group Γ such that A does not

satisfy at least one of the following properties:

(1) for all a ∈ A, we have ⟨2a⟩ ∩ A ̸= ∅,

(2) for all a, b, c ∈ Γ with ⟨a, b, c⟩ ∩ A ̸= ∅, we have (⟨a, b⟩ ∪ ⟨b, c⟩ ∪ ⟨a, c⟩) ∩ A ̸= ∅.

Then the family of Γ-labelled cycles with weights in A does not satisfy the Erdős-Pósa

property.

Note that for fixed m and ω, Theorem 1.2.3 produces a single function fm,ω which

does not depend on the specific abelian groups considered. These theorems completely

characterize when such a duality holds in the setting where the set of allowable cycles are

those whose values avoid a fixed finite subset of each abelian group. Considering addi-

tional restrictions on the structure of the graphs or group labellings, we further strengthen

Theorem 1.2.3 by observing that, when checking conditions (1) and (2), we may ignore
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any group Γi for which every large subwall of G contains a γi-nonzero cycle (see Theo-

rem 3.4.1). This strengthening allows us to encode a wider variety of properties of cycles.

For example, for fixed integers p, ℓ and given a subgraph H of tree-width at most p in a

graph G, consider the cycles containing at least ℓ edges not contained in H . Such cycles

can be represented with the Z-labelling which assigns value 1 to edges not in H and 0 to

all edges in H . If H has no edges, then these are exactly the cycles of length at least ℓ.

Observe that for finite abelian groups Γ, Theorems 1.2.3 and 1.2.4 give a complete

characterization of the sets A ⊆ Γ for which the allowable cycles satisfy the Erdős-Pósa

property without any additional assumptions (take Γ = Γ1 and Ω1 = Γ \ A). On the other

hand, if Γ is infinite, then A must also be infinite, as we prove in subsection 3.4.4.

Theorem 1.2.5. Let A be a nonempty finite subset of an infinite abelian group Γ. For

integers s ≥ 2 and t ≥ 1, there is a graph G with a Γ-labelling γ such that

• for every set of s cycles of G whose γ-values are in A, there is a vertex that belongs

to all of the s cycles and

• there is no hitting set of size at most t for the set of all cycles of G whose γ-values

are in A.

Another consequence of our characterization of the obstructions is an application to

graphs of bounded orientable genus (for example, planar graphs). Since large Escher Walls

are not embeddable in any fixed compact orientable surface, if we restrict to graphs embed-

dable on a fixed compact orientable surface, then we obtain a different characterization of

the Erdős-Pósa property. For example, odd cycles do satisfy the Erdős-Pósa property when

restricted to planar graphs (see [17, 27] for related work). In Subsection 3.4.3, we give

a characterization analogous to Theorems 1.2.3 and 1.2.4 for graphs that are embeddable

in a fixed compact orientable surface. Additionally, we obtain the following analogue of

Theorem 1.2.2 for planar graphs.
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Theorem 1.2.6. Let ℓ and z be integers with z ≥ 2, let pa11 · · · pann be the prime factorization

of z with pi < pi+1 for all i ∈ [n− 1], and let S be a compact orientable surface. The

following statements are equivalent.

• There is a function f : N → N such that for every integer k, every graph embeddable

in S contains k vertex-disjoint cycles of length ℓ modulo z or a set of at most f(k)

vertices hitting all such cycles.

• Both of the following conditions are satisfied.

1. If p1 = 2, then either ℓ ≡ 0 (mod pa11 ) or ℓ ≡ 0 (mod z/pa11 ).

2. There do not exist distinct i1, i2, i3 ∈ [n] such that ℓ ̸≡ 0 (mod p
aij
ij

) for each j ∈ [3].

For graphs embedded in a compact orientable surface, our results allow us to derive an

Erdős-Pósa type theorem for the cycles whose Z2-homology class is in a fixed set of allow-

able values. This result complements an analogous half-integral Erdős-Pósa type theorem

for graphs embedded in an arbitrary compact surface (see [20, Corollary 8.10]). We discuss

this in more detail in Subsection 3.4.3.

Let us take a moment to highlight the differences between our results and the work of

Huynh, Joos, and Wollan [23], who considered group labellings of orientations of edges

in a graph, where the two orientations of each edge are assigned labels that are inverse

to each other. For a graph imbued with two such labellings, they considered cycles with

nonzero value in each coordinate and obtained a refinement of the flat wall theorem which

proves the half-integral Erdős-Pósa property of such cycles. They also provide additional

conditions which are sufficient to derive the (integral) Erdős-Pósa property of such cycles.

There is no general translation between the labellings of edges which we use and the

labellings of orientations of edges which they considered, but many interesting proper-

ties (except modularity constraints on the cycle lengths with modulus greater than 2) can

be encoded in either setting. As an example, they apply their result to obtain canonical

obstructions to an Erdős-Pósa type result for odd cycles intersecting a prescribed set S,
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and our structural theorem gives the same result. Whereas their result applies to arbitrary

groups, dealing with nonabelian groups is more complicated in our setting, and it is unclear

how to extend our result to nonabelian groups. However, we do not only consider the cycles

that are nonzero in each coordinate, and we are able to consider any finite number of group

labellings, rather than just two.

1.3 A-paths

1.3.1 Background

Let A be a vertex set. An A-path is a nontrivial path whose intersection with A is exactly

its endpoints. A classical result of Gallai [18], which generalizes the Tutte-Berge formula

for matchings to A-paths, shows that for every graph G and every positive integer k, either

G contains k vertex-disjoint A-paths or there is a set of at most 2k− 2 vertices intersecting

every A-path. Mader [28] showed that the same conclusion holds more generally for S-

paths, where S is a partition ofA and an S-path is anA-path whose endpoints are in distinct

parts of S.

This was further generalized by Chudnovsky et al. [9] to directed group-labelled

graphs. Let Γ be a group with additive operation and identity 0, where Γ may be non-

abelian. A directed Γ-labelled graph is a pair (G⃗, γ) where G⃗ is an orientation of an

undirected graph G and γ : E(G) → Γ is a Γ-labelling of G. The weight of a walk

W = v0e1v1 . . . vm−1emvm in G is defined to be γ(W ) = γ(e1, v1) + · · · + γ(em, vm),

where for an edge e = uv oriented from u to v, γ(e, v) = γ(e) and γ(e, u) = −γ(e). We

say that W is Γ-nonzero if γ(W ) ̸= 0.

Theorem 1.3.1 (Theorem 1.1 in [9]). Let Γ be a group and let (G⃗, γ) be a directed Γ-

labelled graph with A ⊆ V (G). Then for all positive integers k, either (G⃗, γ) contains k

vertex-disjoint Γ-nonzero A-paths or there is a set of at most 2k − 2 vertices intersecting

every Γ-nonzero A-path.

10



With suitable choices of Γ and γ, one immediately obtains the results of Gallai and

Mader, and many more. In the setting of undirected group-labelled graphs, Wollan [40]

showed that Γ-nonzero A-paths in undirected Γ-labelled graphs also satisfy the Erdős-Pósa

property, albeit with a worse bound f(k) = O(k4) (Theorem 1.1 in [40]). In particular, for

all positive integers m, A-paths of length ̸= 0 mod m satisfy the Erdős-Pósa property.

1.3.2 Our results

Here we address the opposite problem of packing A-paths of weight 0, which we call Γ-

zero A-paths. This was first investigated by Bruhn, Heinlein, and Joos who showed that

evenA-paths satisfy the Erdős-Pósa property (Theorem 7 in [4]), whereasA-paths of length

0 mod m do not satisfy the Erdős-Pósa property for all composite m > 4 (Proposition 8

in [4]). Interestingly, the composite number 4 does not adhere to this trend, as shown by

Bruhn and Ulmer:

Theorem 1.3.2 (Theorem 1 in [6]). A-paths of length 0 modulo 4 satisfy the Erdős-Pósa

property.

In the same paper, they asked whether the Erdős-Pósa property holds for A-paths of

length 0 mod p when p is an odd prime (Problem 22 in [6]). We provide an affirmative

answer to their question:

Theorem 1.3.3. Let p be an odd prime. Then A-paths of length 0 modulo p satisfy the

Erdős-Pósa property.

Using Theorem 1.3.3, we characterize the abelian groups Γ and elements ℓ ∈ Γ for

which A-paths of weight ℓ in undirected Γ-labelled graphs satisfy the Erdős-Pósa property:

Theorem 1.3.4. Let Γ be an abelian group and let ℓ ∈ Γ. Then, in undirected Γ-labelled

graphs, A-paths of weight ℓ satisfy the Erdős-Pósa property if and only if

• Γ ∼= (Z/2Z)k where k ∈ N and ℓ = 0,
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• Γ ∼= Z/4Z and ℓ ∈ {0, 2}, or

• Γ ∼= Z/pZ where p is prime (and ℓ ∈ Γ is arbitrary).

We also prove the following characterization for Γ-zero A-paths in directed group-

labelled graphs:

Theorem 1.3.5. Let Γ be a group. Then, in directed Γ-labelled graphs, Γ-zero A-paths

satisfy the Erdős-Pósa property if and only if Γ is finite.

We remark that the “if” part of Theorem 1.3.5 was proved independently by Böltz [3].

We nevertheless provide the proof since it is short and Theorem 1.3.5 is used in our proof

of Theorem 1.3.4. Besides, at the time of this writing, [3] is only available in German.

1.4 Organization

Our proofs follow a well-established approach in the area, developing several new tools

along the way. This approach involves the use of tangles (see subsection 2.3) introduced

by Robertson and Seymour in their graph minors project. If F is any family of connected

graphs, then a graph which does not have a large F-packing nor a small F-hitting set

admits a large tangle oriented towards the members of F in the graph (see Lemmas 2.3.1,

5.1.1, 6.1.1). Using the grid minor theorem (Theorem 2.6.1), we obtain a large wall and

we look for paths attaching to the boundary of the wall as in Figure 1.1 to produce certain

desired configurations.

The preliminary definitions and lemmas are given in Chapter 2. In Chapter 3, we give

the statements of our main results in full technical detail, sketch their proofs, and discuss

their applications. In Chapter 4, we prove our first structural result, Theorem 3.1.1, which

refines the flat wall theorem to undirected group-labelled graphs. In Chapter 5, we use

Theorem 3.1.1 to prove Theorem 1.3.3, that the Erdős-Pósa property holds for A-paths of

length 0 mod p for every odd prime p. In Chapter 6, we prove our main structural result,
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Theorem 3.3.2, characterizing the obstructions to the Erdős-Pósa property of allowable

cycles.
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CHAPTER 2

PRELIMINARIES

2.1 Basic notation and terminology

All graphs and group-labelled graphs are assumed to be undirected and may have parallel

edges but no loops. A graph is simple if it has no parallel edges. We denote set differences

with the notation S − T = {s ∈ S : s ̸∈ T}. For a graph G, let V ̸=2(G) denote the set

of vertices of G whose degree is not equal to 2. Unless explicitly stated otherwise, we

say disjoint to mean vertex-disjoint whenever applicable. For a set G of graphs, we denote

by
⋃
G the union of the graphs in G. By slight abuse of notation, we say two sets G1 and G2

of graphs are disjoint if the graphs
⋃
G1 and

⋃
G2 are (vertex-)disjoint.

Let G be a graph and let A,B ⊆ V (G). The subgraph induced by A in G is denoted

G[A]. We write G− A to denote G[V (G)− A] and if H is a graph, then we write G−H

to denote G− V (H). For a positive integer k, we say that G is k-connected if |V (G)| > k

and G−X is connected for all X ⊆ V (G) with |X| < k.

An A-path is a nontrivial path in G such that both endpoints are in A and no internal

vertex is in A. An A-B-path is a (possibly trivial) path in G such that one endpoint is in

A, the other endpoint is in B, and the path is internally disjoint from A ∪ B. If A or B are

singletons, sayA = {a},B = {b}, or both, then we also refer to such a path as an a-B-path,

A-b-path, or a-b-path respectively. IfH1, H2 are subgraphs ofG, we also writeH1-H2-path

to mean a V (H1)-V (H2)-path. If T is a tree and u, v ∈ V (T ), then the unique u-v-path

in T is denoted uTv. Given a sequence of such paths v0T1v1, v1T2v2, . . . , vn−1Tnvn, the

concatenation of these paths in their given order is denoted v0T1v1T2v2 . . . vn−1Tnvn. The

last vertex vn may be omitted in this notation (e.g. v0T1v1T2) if Tn is a path, vn is an

endpoint of Tn, and the direction of traversal is obvious from context.
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An A-bridge of G is either a subgraph consisting of an edge in G with both endpoints

in A, or a connected component H of G−A together with the vertices of A adjacent to H

and the edges of G with one endpoint in A and the other in V (H). The attachments of an

A-bridge are the vertices of the A-bridge that are also in A.

2.2 Group-labelled graphs

Let (G, γ) be a Γ-labelled graph. The weight of (G, γ) and the γ-value of G are both

defined as
∑

e∈E(H) γ(e). A Γ-labelled subgraph of (G, γ) is a Γ-labelled graph (H, γ|H)

where H is a subgraph of G and γ|H is the Γ-labelling of H obtained by restricting γ to

E(H). When it is understood that H is a subgraph of G, we simply write (H, γ) to denote

(H, γ|H). If (G, γ) does not contain a Γ-nonzero cycle as a (Γ-labelled) subgraph, then we

say that (G, γ) is Γ-bipartite, or that G is γ-bipartite.

Let g ∈ Γ be an element such that 2g = 0 (that is, either g = 0 or g has order two).

Given a vertex v ∈ V (G), define a new Γ-labelling γ′ of G where

γ′(e) =

 γ(e) + g if e is incident with v

γ(e) if e is not incident with v

We call this operation shifting at v by g. Since 2g = 0, this preserves the weights of cycles

and also of paths which do not contain v as an endpoint. We say that (G, γ1) and (G, γ2) are

shift-equivalent if one can be obtained from the other by a sequence of shifting operations.

Let 0 denote the Γ-labelling that labels all edges 0. Clearly, if (G, γ) is shift-equivalent

to (G,0), then (G, γ) is Γ-bipartite. If G is 3-connected, then the converse also holds as

we now show. First we need the following lemma.

Lemma 2.2.1. Let Γ be an abelian group and let (G, γ) be a Γ-labelled graph such that

2γ(e) = 0 for all e ∈ E(G). If (G, γ) is Γ-bipartite, then (G, γ) is shift-equivalent to

(G,0).
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Proof. We proceed by induction on |E(G)|. If |E(G)| = 0 then there is nothing to prove.

Otherwise let e = uv ∈ E(G). Then (G − e, γ) is also Γ-bipartite so there is a sequence

of shift operations in (G, γ) resulting in a Γ-labelling γ′ such that γ′(f) = 0 for all f ∈

E(G)− e. If e is a bridge in G, then we obtain (G,0) by possibly shifting by γ′(e) at each

vertex in one side of the bridge e (here we use the assumption that 2γ(e) = 0). Otherwise,

e belongs to a cycle. But since shift operations preserve weights of cycles and (G, γ) is

Γ-bipartite, it follows that γ′ = 0.

Recall that graphs are assumed to have no loops; a cycle that is not simple consists of

two parallel edges.

Lemma 2.2.2. Let Γ be an abelian group and let (G, γ) be a Γ-labelled graph such that G

is 3-connected and (G, γ) has no simple Γ-nonzero cycle. Then (G, γ) is Γ-bipartite and

shift-equivalent to (G,0).

Proof. Let e = uv be an edge of G. Since G is 3-connected, G contains two internally

disjoint u-v-paths P1 and P2, each with at least 3 vertices. Since the three simple cycles in

P1∪P2∪{e} are Γ-zero, we have γ(e) = −γ(P1) = −γ(P2) and, hence, 2γ(e) = 0. If there

is an edge e′ parallel to e, then γ(e′) = γ(e) since otherwise either P1 ∪ {e} or P1 ∪ {e′}

would be a simple Γ-nonzero cycle. Thus (G, γ) is Γ-bipartite, and since 2γ(e) = 0 for all

e ∈ E(G), it follows from Lemma 2.2.1 that (G, γ) is shift-equivalent to (G,0).

We reiterate that shifting in (undirected) group-labelled graphs can only be done by

elements g ∈ Γ such that 2g = 0. In particular, in Lemma 2.2.2, if Γ has no element of

order two, then the conclusion is that in fact γ = 0.

The next two lemmas show how 3-connectivity can be used to find a Γ-nonzero path.

Lemma 2.2.3. Let Γ be an abelian group, (G, γ) a Γ-labelled graph, and let C be a cycle

in G. Let w1, w2, w3 be three distinct vertices on C and, for each i ∈ [3], let Qi denote the

wj-wk-path in C that is disjoint from wi, where {j, k} = [3]− {i}.
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(a) If 2γ(Q1) ̸= 0, then for some j ∈ {2, 3}, the two w1-wj-paths in C have different

weights.

(b) If C is Γ-nonzero, then for some distinct pair i, j ∈ [3], the two wi-wj-paths in C

have different weights.

Proof. If the two w1-w2-paths in C have the same weight, then γ(Q3) = γ(Q1)+γ(Q2). If

the twow1-w3-paths inC also have the same weight, then γ(Q2) = γ(Q1)+γ(Q3). Adding

the two equalities gives 2γ(Q1) = 0, proving (a). If, in addition, the two w2-w3-paths in

C have the same weight, then γ(Q1) = γ(Q2) + γ(Q3). Adding the three equalities gives

γ(Q1) + γ(Q2) + γ(Q3) = 0, proving (b).

Lemma 2.2.4. Let Γ be an abelian group and let (G, γ) be a Γ-labelled graph. Let C be

a Γ-nonzero cycle, let A ⊆ V (G), and let P1, P2, P3 be three disjoint A-V (C)-paths in

(G, γ). Then C ∪ P1 ∪ P2 ∪ P3 contains a Γ-nonzero A-path.

Proof. Let wi denote the endpoint of Pi in C for each i ∈ [3], and define Qi as in Lemma

2.2.3. If |A∩V (C)| ≥ 2, then at least one of theA-paths in C is Γ-nonzero. IfA∩V (C) =

∅, then the conclusion follows immediately from Lemma 2.2.3(b). So we may assume

|A ∩ V (C)| = 1 and, without loss of generality, that w3 ∈ A ∩ V (C) (i.e. P3 is a trivial

path). Suppose that every A-path in C ∪ P1 ∪ P2 is Γ-zero. Considering the three A-paths

in C ∪ P1 ∪ P2 containing Q3, we deduce that γ(P2) = γ(Q1) and γ(P1) = γ(Q2). But

this implies 0 = γ(P1) + γ(Q3) + γ(P2) = γ(Q2) + γ(Q3) + γ(Q1) = γ(C) ̸= 0, a

contradiction.

The definitions of Erdős-Pósa property extend in the obvious way to families of group-

labelled graphs. The family of Γ-nonzero A-paths satisfy the Erdős-Pósa property, as

shown by Wollan [40]:

Theorem 2.2.5 (Wollan [40] Theorem 1.1). Let k be a positive integer, let Γ be an abelian

group, let (G, γ) be a Γ-labelled graph, and let A ⊆ V (G). Then G contains k disjoint γ-
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nonzero A-paths or a vertex set of size at most f2.2.5(k) := 50k4 − 4 hitting all γ-nonzero

A-paths.

We remark that the theorem stated in [40] gives the bound |X| ≤ 50k4 rather than

|X| ≤ 50k4 − 4, but this difference is clearly negligible in the proof in [40]. The modified

bound will be convenient in some of our calculations.

If Γ is the product
∏

i∈[m] Γi of m abelian groups for a positive integer m, then we

denote by γi the composition of γ with the projection to Γi. For a subset I ⊆ [m] we

denote by ΓI be the subgroup of Γ of all g ∈ Γ with πi(g) = 0 for all i ∈ [m] \ I . For a

Γ-labelled graph (G, γ) and a subgroup Λ of Γ, Γ/Λ = {g + Λ : g ∈ Γ} denotes the

quotient group and the induced (Γ/Λ)-labelling of (G, γ) is the Γ/Λ-labelling λ defined

by λ(e) := γ(e) + Λ for all edges e ∈ E(G).

2.3 Tangles

A separation in a graph G is an ordered pair of subgraphs (C,D) such that C and D are

edge-disjoint and C ∪ D = G. The order of a separation (C,D) is |V (C) ∩ V (D)|. A

separation of order at most k is a k-separation. A tangle T of order k is a set of (k − 1)-

separations of G such that

(T1) for every (k − 1)-separation (C,D), either (C,D) ∈ T or (D,C) ∈ T ,

(T2) V (C) ̸= V (G) for all (C,D) ∈ T , and

(T3) C1 ∪ C2 ∪ C3 ̸= G for all (C1, D1), (C2, D2), (C3, D3) ∈ T .

Given (C,D) ∈ T , we say that C and D are the two sides of (C,D); C is the T -small side

and D is the T -large side of (C,D).

Tangles can be thought of as an orientation of all small order separations so that they

point to some “highly-connected” part of the graph in a consistent manner. For example,

it is well-known that a connected graph on at least 2 vertices has a tree-decomposition

into blocks (maximal subgraphs that are either 2-connected or isomorphic to K2). For each
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blockB, there is a tangle of order 2 consisting of all 1-separations (C,D) such thatB ⊆ D.

Examples of higher order tangles associated with large Kt-models and with large walls are

given in sections 2.5 and 2.6 respectively.

Here, we describe another class of high order tangles which arise from counterexamples

to the Erdős-Pósa property. Suppose f : N → N is not a (half-integral) Erdős-Pósa function

for a family F of Γ-labelled graphs. Let us say that ((G, γ), k) is a minimal counterexample

to f being a (half-integral) Erdős-Pósa function for F if (G, γ) does not contain a (half-

integral) F-packing of size k nor an F-hitting set of size at most f(k), and moreover k is

minimum among all such ((G, γ), k).

A standard argument appearing in various forms [6, 30, 37, 39] shows that, if F is a

family of connected Γ-labelled graphs that does not satisfy the Erdős-Pósa property, then

a minimal counterexample admits a tangle T of large order such that no T -small side of a

separation in T contains a Γ-labelled subgraph in F . Recall that if (G, γ) is a Γ-labelled

graph and H is a subgraph of G, then (H, γ) denotes the Γ-labelled subgraph (H, γ|H) of

(G, γ).

Lemma 2.3.1. Let Γ be an abelian group and let F be a family of connected Γ-labelled

graphs. Let f : N → N be a function, and suppose t is a positive integer such that

t ≤ f(k) − 2f(k − 1) and t ≤ f(k)/3. If ((G, γ), k) is a minimal counterexample to f

being a (half-integral) Erdős-Pósa function for F , then G admits a tangle T of order t+ 1

such that for each (C,D) ∈ T , (C, γ) does not contain a Γ-labelled subgraph in F and

(D − C, γ) contains a Γ-labelled subgraph in F .

Proof. Let (C,D) be a t-separation in G. We first show that exactly one of (C, γ) and

(D, γ) contains a Γ-labelled subgraph in F . If neither side contains a Γ-labelled subgraph

in F , then V (C ∩ D) is an F-hitting set of size at most t ≤ f(k), a contradiction. Next

suppose that both sides contain a Γ-labelled subgraph in F . Then neither (C − D, γ)

nor (D − C, γ) contains a (half-integral) F-packing of size k − 1. By minimality of k,

(C − D, γ) and (D − C, γ) contain F-hitting sets X and Y respectively, each of size at
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most f(k − 1). Since every Γ-labelled graph in F is connected, every Γ-labelled subgraph

of (G−X − Y, γ) in F intersects C ∩D. Thus Z := X ∪ Y ∪ V (C ∩D) is an F-hitting

set with |Z| ≤ 2f(k − 1) + t ≤ f(k), a contradiction.

Let T be the set of t-separations (C,D) of G such that (C, γ) does not contain a Γ-

labelled subgraph in F . Note that (D − C, γ) contains a Γ-labelled subgraph in F since

otherwise V (C ∩D) would again be a small hitting set.

It remains to show that T is a tangle. Clearly, T satisfies (T1) and (T2). To see (T3),

suppose there exist (C1, D1), (C2, D2), (C3, D3) ∈ T such thatC1∪C2∪C3 = G. Since no

(Ci, γ) contains a Γ-labelled subgraph in F and every Γ-labelled graph in F is connected,

every Γ-labelled subgraph of (G, γ) in F intersects V (Cj ∩ Dj) for some j ∈ [3]. But

this implies that Z := V (C1 ∩D1) ∪ V (C2 ∩D2) ∪ V (C3 ∩D3) is an F-hitting set with

|Z| ≤ 3t ≤ f(k), a contradiction.

Let T be a tangle of order k in a graph G. Given a positive integer k′ ≤ k, the set T ′

of (k′ − 1)-separations (C,D) in G such that (C,D) ∈ T is a tangle of order k′, called the

truncation of T to order k′. If X ⊆ V (G) is a set of fewer than k vertices, then there is a

tangle of order k − |X| in G −X , consisting of the (k − |X| − 1)-separations of G −X

which can be written as (C −X,D −X) for some (C,D) ∈ T . We denote this tangle by

T −X .

2.4 3-blocks

Due to the 3-connectivity condition that arises naturally in undirected group-labelled graphs

(e.g. Lemmas 2.2.2–2.2.4), we will need to work with 3-blocks of graphs. The decomposi-

tion of 2-connected graphs into a tree structure of 3-connected components was first given

by Tutte [38]. Here, we use a definition of 3-blocks adapted from the terminology of k-

blocks studied in [29, 7, 8].

Let G be a graph. A separation (C,D) of G properly separates two vertices u and v

if V (C − D) and V (D − C) each contain one of {u, v}. A vertex set U ⊆ V (G) is 2-
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inseparable in G if no two vertices of U are properly separated by a 2-separation in G (that

is, for every 2-separation (C,D) of G, we have either U ⊆ V (C) or U ⊆ V (D)). A 2-

inseparable set U is maximal if there does not exist a 2-inseparable set properly containing

U . Observe that if U is a maximal 2-inseparable set, then every U -bridge of G has at most

2 attachments.

Let (G, γ) be a Γ-labelled graph. A 3-block of (G, γ) is a Γ-labelled graph (B, γB)

obtained from a maximal 2-inseparable set U = V (B) of G as follows: For each u, v ∈ U

and α ∈ Γ, if there exists a U -path in (G, γ) with endpoints u, v and weight α, then add a

new (possibly parallel) edge uv with label α. Note that B may not be a subgraph of G. For

example, if G is a subdivision of a simple 3-connected graph H , then V (H) is a maximal

2-inseparable set inG, and the corresponding 3-block is (H, γH) where for each e ∈ E(H),

γH(e) is the weight of the path in (G, γ) corresponding to e. Also observe that if |U | ≥ 4,

then B is a 3-connected graph.

The following proposition is immediate from the definition of 3-blocks of Γ-labelled

graphs.

Proposition 2.4.1. Let Γ be an abelian group and let (B, γB) be a 3-block of a Γ-labelled

graph (G, γ). For each subgraph PB of (B, γB) that is either a simple cycle or a path,

there exists a cycle or a path P respectively in (G, γ) with weight equal to the weight of PB

such that V (P ) ∩ V (B) = V (PB), and the order of the vertices in V (PB) appearing in P

is the same as the order appearing in PB.

We will primarily be concerned with a particular 3-block associated with a given tangle.

Lemma 2.4.2. Let T be a tangle of order 3 in a graph G. Then there is a unique maximal

2-inseparable set U that is contained in every T -large side (that is, we have U ⊆ V (D)

for all (C,D) ∈ T ). Moreover, we have |U | ≥ 4.

Proof. IfU1 andU2 are distinct maximal 2-inseparable sets ofG, then there is a 2-separation
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of G properly separating a vertex in U1 and a vertex in U2. It follows from (T1) that there

is at most one maximal 2-inseparable set of G contained in every T -large side.

We now show that such a maximal 2-inseparable set exists. Let us say that a 2-

separation (C,D) of G is good if (C,D) ∈ T and, if |V (C ∩ D)| = 2, then there is a

path in C connecting the two vertices of V (C ∩ D). Let us also say that a 2-separation

(C,D) is tight if it is good and there does not exist a good separation (C ′, D′) ∈ T such

that C ⊆ C ′ and D′ ⊊ D. Let U ⊆ V (G) be the set of vertices which belong to the

intersection V (C ∩D) of some tight separation (C,D) ∈ T . We claim that U is a maximal

2-inseparable set contained in every T -large side, and that |U | ≥ 4.

Let us first show that |U | ≥ 3. Suppose |U | ≤ 2. Let (C,D) ∈ T be a separation

such that V (C ∩ D) ⊆ U and, subject to this condition, D is minimal. Note that the first

condition is satisfied by the separation (GU , G) ∈ T where GU denotes the subgraph of G

with vertex set U and no edges. Now by (T2), V (D−C) is nonempty, and it follows from

(T3) and the minimality of D that D−C is connected. Let v ∈ V (D−C). The separation

(G[{v}], G) is good but not tight (since v ̸∈ U ), so there is a tight separation (Cv, Dv) ∈ T

such that V (Cv ∩ Dv) ⊆ U and v ∈ V (Cv − Dv). Since D − C is connected and D is

minimal, this implies that D ⊆ Cv, hence G = C ∪D = C ∪ Cv, contradicting (T3). We

thus have |U | ≥ 3.

Next we show that U is contained in every T -large side. Suppose to the contrary that

there exists (C,D) ∈ T such that u ∈ V (C − D) for some u ∈ U . By the definition

of U , there is a tight separation (Cu, Du) ∈ T such that u ∈ V (Cu ∩ Du). Consider the

separation (C ∪ Cu, D ∩Du). Since the orders of (C,D) and (Cu, Du) are each at most 2,

and since u ∈ V (C −D), the order of (C ∪ Cu, D ∩Du) is at most 3. If its order is equal

to 3, then the orders of (C,D) and (Cu, Du) are both 2, V (C ∩ D) ⊆ V (Du − Cu), and

V (Cu ∩Du) − {u} ⊆ V (D − C) (see Figure 2.1a). Since V (C ∩D) ∩ V (Cu) is empty,

this contradicts the assumption that (Cu, Du) is good.

We may thus assume that (C ∪Cu, D ∩Du) is a 2-separation. It follows from (T1) and
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Figure 2.1: Since (Cu, Du) is good, if |V (Cu∩Du)| = 2, then there
is a path in Cu connecting the two vertices of V (Cu ∩Du). In (b),
(C ∪ Cu, D ∩ Du) is not good, so there is a 1-separation (C ′, D′)
with V (C ′ ∩D′) = {u′} which violates the tightness of (Cu, Du).

(T3) that (C ∪ Cu, D ∩Du) ∈ T . Note that Cu ⊆ C ∪ Cu and, since u ∈ V (Du −D), we

haveD∩Du ⊊ Du. By the assumption that (Cu, Du) is tight, we have that (C∪Cu, D∩Du)

is not good; that is, |V ((C∪Cu)∩(D∩Du))| = 2 and every V ((C∪Cu)∩(D∩Du))-bridge

of C ∪ Cu has at most one attachment (see Figure (2.1b) for one possible configuration).

But this implies that there is a 1-separation (C ′, D′) ∈ T such that Cu ⊆ C ′, V (C ′∩D′) ⊆

V ((C ∪ Cu) ∩ (D ∩ Du)), and D′ ⊆ Du − {u} ⊊ Du, contradicting the tightness of

(Cu, Du).

Hence, U is contained in every T -large side. Note that this also implies that U is 2-

inseparable. To see that U is a maximal 2-inseparable set, let u′ ∈ V (G) − U . Then the

separation (G[{u′}], G) is good but not tight, so there exists a tight separation (C,D) ∈ T

such that u′ ⊆ V (C −D), D ⊊ G, and V (C ∩D) ⊆ U . Since |U | ≥ 3 and U is contained

in V (D), this implies that (C,D) properly separates u′ from a vertex in U . We conclude

that U is the unique maximal 2-inseparable set that is contained in every T -large side.

It remains to show that |U | ≥ 4. We have already shown |U | ≥ 3, so suppose |U | = 3

and write U = {u1, u2, u3}. For i ∈ [3], consider the separation (Ci, Di) ∈ T such that

V (Ci ∩Di) = U − {ui} and, subject to this condition, Ci is maximal. Since U ⊆ Di for

all i ∈ [3], every U -bridge of G (which has at most two attachments in U ) is contained in

Ci for some i ∈ [3]. This implies that C1 ∪ C2 ∪ C3 = G, contradicting (T3).
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Lemma 2.4.3. Let T be a tangle of order k ≥ 3 in a graph G, and let X ⊆ V (G) with

|X| ≤ k − 3. Then there is a unique maximal 2-inseparable set U of G − X such that

U ∪X is not contained in any T -small side. Moreover, we have |U | ≥ 4.

Proof. Let TX denote the tangle of order 3 in G−X that is a truncation of T −X (which

has order k−|X| ≥ 3). Let U be the unique maximal 2-inseparable set ofG−X contained

in every TX-large side, given by Lemma 2.4.2. If U ′ is a maximal 2-inseparable set G−X

distinct from U , then there is a 2-separation (CX , DX) ∈ TX such that U ⊆ V (CX), so

U ′∪X is contained inG[V (CX)∪X], which forms the T -small side of a (k−1)-separation

in G.

Now suppose that U ∪ X is contained in a T -small side. Let (C,D) ∈ T such that

U ∪X ⊆ V (C) and, subject to this condition, D is minimal. Then D−X is connected by

(T3). Since U is a maximal 2-inseparable set of G−X and U ∪X ⊆ V (C), it follows that

D −X is contained in a U -bridge H of G−X . Note that H has at most two attachments

in U . Hence, H forms the TX-small side of a 2-separation in G − X , which implies that

G[V (H)∪X] forms the T -small side of a (k−1)-separation in T . SinceD ⊆ G[V (H)∪X],

we have G = C ∪D = C ∪G[V (H) ∪X], contradicting (T3). Therefore, U is the unique

maximal 2-inseparable set of G−X such that U ∪X is not contained in any T -small side.

Finally, note that |U | ≥ 4 by Lemma 2.4.2.

Let (G, γ) be a Γ-labelled graph. Let T be a tangle of order k ≥ 3 in G and let

X ⊆ V (G) with |X| ≤ k − 3. The T -large 3-block of (G −X, γ) is the 3-block (B, γB)

of (G −X, γ) obtained from the unique maximal 2-inseparable set U of G −X such that

U ∪ X is not contained in any T -small side, as given by Lemma 2.4.3. Note that B is

3-connected, since |U | ≥ 4 by Lemma 2.4.3.
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2.5 Km-models

Let v1, . . . , vm denote the vertices of the complete graph Km. A Km-model µ consists of

a collection of disjoint trees µ(vi) for i ∈ [m] and edges µ(vivj) for distinct i, j ∈ [m]

such that µ(vivj) has one endpoint in µ(vi) and the other in µ(vj). It is easy to see that a

graph G contains a Km-model if and only if Km can be obtained from G by a sequence of

vertex deletions, edge deletions, and edge contractions; the trees µ(vi) correspond to the

subgraphs of G that were contracted to form the vertex vi of Km.

Let U ⊆ {v1, . . . , vm}. Then µ[U ] denotes the graph defined by

µ[U ] =
⋃
vi∈U

µ(vi) ∪
⋃

vi,vj∈U

µ(vivj).

If we are given U explicitly, say U = {vi1 , . . . , vik}, then we simply write µ[vi1 , . . . , vik ].

When there is no room for ambiguity, we also write µ to refer to the subgraph µ[V (Km)] =

µ[{v1, . . . , vm}]. The K|U |-submodel π of µ restricted to U is the K|U |-model of the com-

plete graph on the vertex set U , given by π(vi) = µ(vi) and π(vivj) = µ(vivj) for all

vi, vj ∈ U . If n ≤ m and η is a Kn-model such that each tree of η contains some tree of µ,

then we say that η is an enlargement of µ. Note that a submodel of µ is also an enlargement

of µ.

We now describe a tangle associated with aKm-model. Consider an (m−1)-separation

(C,D) in a graph G containing a Km-model µ. Then there is exactly one side of (C,D)

that intersects every tree µ(vi) of µ. Indeed, since µ(v1), . . . , µ(vm) are disjoint trees and

|V (C ∩ D)| ≤ m − 1, there is a tree µ(vi) disjoint from C ∩ D; assume without loss of

generality that µ(vi) ⊆ D−C. Since every other tree µ(vj) is adjacent to µ(vi) by the edge

µ(vivj) ∈ E(G), D is the unique side of (C,D) intersecting every tree of µ. The set of

all such (m − 1)-separations satisfies properties (T1) and (T2). Note however that it may

violate (T3) if m ≥ 3 (for example, consider K3).

Define k = ⌈2m
3
⌉ and let Tµ be the set of (k − 1)-separations (C,D) in G such that D
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intersects every tree of µ. It is straightforward to verify that Tµ satisfies (T3) (see [33]),

hence Tµ is a tangle of order k. We call Tµ the tangle induced by µ. If η is a submodel or

an enlargement of µ, then Tη is a truncation of Tµ.

Let (G, γ) be a Γ-labelled graph. We say that a Km-model µ in G is Γ-bipartite if

for every choice of four distinct indices i, j, k, l ∈ [m], we have that (µ[vi, vj, vk, vl], γ)

is a Γ-bipartite Γ-labelled graph. Oppositely, if for every choice of four distinct indices

i, j, k, l ∈ [m], (µ[vi, vj, vk, vl], γ) contains a Γ-nonzero cycle, then we say that µ is Γ-odd.

Remark 2.5.1. For directed group-labelled graphs, the definition of Γ-bipartite (resp. Γ-

odd) Km-models in [23] only require that for every three distinct indices i, j, k ∈ [m],

(µ[vi, vj, vk], γ) is Γ-bipartite (resp. not Γ-bipartite). However, the property we actually

want of a Γ-bipartite Km-model µ is for (µ[V (Km)], γ), as a Γ-labelled graph, to be Γ-

bipartite. And in contrast to the directed setting, the above condition does not suffice for

undirected group-labelled graphs. For example, let Γ = Z/3Z, G = Km, γ(e) = 1 for

all e ∈ E(G), and let µ be a Km-model in G. Then every triangle in G is Γ-zero, so

(µ[vi, vj, vk], γ) is Γ-bipartite for all distinct i, j, k ∈ [m], but (µ(V (Km)), γ) is clearly not

Γ-bipartite for m ≥ 4. We will show in Lemma 4.1.3 that our definition of Γ-bipartite

Km-models does give this desired property.

2.6 Walls

Let r, s ≥ 2 be integers. An r × s-grid is a graph with vertex set [r]× [s] and edge set

{(i, j)(i′, j′) : |i− i′|+ |j − j′| = 1} .

An elementary r×s-wall is the subgraph of an (r+1)× (2s+2)-grid obtained by deleting

the edges

{
(2i− 1, 2j)(2i, 2j) : i ∈

[
⌈ r
2
⌉
]
, j ∈ [s+ 1]

}
∪
{
(2i, 2j−1)(2i+1, 2j−1) : i ∈

[
⌈ r−1

2
⌉
]
, j ∈ [s+1]

}
,
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then deleting the two vertices of degree 1. An elementary r-wall W is an elementary r× r-

wall. We say that an r × s-wall is a wall of order min{r + 1, s + 1}. Figure 2.2 shows an

elementary 6× 5-wall.

Figure 2.2: A 6 × 5-wall with a 3-column-slice highlighted in red
and a 3-row-slice highlighted in blue. The column-boundary of the
red 3-column-slice is indicated by the solid vertices.

Let W be an elementary r×s-wall. There is a set of r+1 disjoint paths called the rows

of W such that each path has vertex set {(i′, j′) ∈ V (W ) : i′ = i} for some i ∈ [r+1]. Let

RW
i , i ∈ [r+1], denote the i-th row from top to bottom of some fixed planar embedding of

W . Then there is a unique set of s+ 1 disjoint RW
1 -RW

r+1-paths in W called the columns of

W . The i-th column from left to right is denoted by CW
i . For (i, j) ∈ [r]× [s], the (i, j)-th

brick is the facial cycle of length 6 contained in the union RW
i ∪RW

i+1 ∪ CW
j ∪ CW

j+1. Note

that the order of the i-th vertical/rows may be reversed depending on the orientation of the

embedding.

The perimeter of W is the cycle in the union RW
1 ∪ RW

r+1 ∪ CW
1 ∪ CW

s+1. The corners

of W are the four vertices that are endpoints of RW
1 or RW

r+1 (equivalently, the endpoints of

CW
1 or CW

s+1).

An r × s-wall or r-wall is a subdivision of an elementary r × s-wall or r-wall respec-

tively. The nails or the branch vertices of an r-wall W are the vertices corresponding to

those of the elementary r-wall before subdivision, and the set of nails of W is denoted by

either NW or b(W ). The top nails are the nails on the first row that are not corners. All

other terminology on elementary walls in the preceding paragraphs extend to walls in the

obvious way. Note that, given a wall W , there may be many possible choices for its nails
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of degree 2. If this choice is not explicitly described, it is assumed implicitly that a choice

of nails accompanies each wall. Other definitions which depend on the choice of nails are

assumed to be with respect to this implicit choice.

Let r′ ≤ r and s′ ≤ s. An r′ × s′-subwall of an r × s-wall W is an r′ × s′-wall W ′

that is a subgraph of W such that each horizontal and column of W ′ is a subpath of some

horizontal and column of W respectively. If, in addition, the set of indices i such that RW
i

contains a row of W ′ and the set of indices j such that CW
j contains a column of W ′ both

form contiguous subsets of [r+1] and [s+1] respectively, then we say thatW ′ is a compact

subwall of W . A subwall W ′ is k-contained in W if RW
i and CW

j are disjoint from W ′ for

all i, j ≤ k and for all i > r − k + 1 and j > s − k + 1. If W ′ is 1-contained in W , then

there is a unique choice of nails of W ′ such that they have degree 3 in W . We call these the

nails of W ′ with respect to W .

For an integer c ≥ 3, we call a subwall W ′ of a wall W a c-column-slice of W if

• the set of nails of W ′ is exactly NW ∩ V (W ′),

• there is a column of W ′ that is a column of W , and

• W ′ has exactly c columns, see Figure 2.2 for an example.

Similarly, for an integer r ≥ 3, we call a subwall W ′ of a wall W an r-row-slice of W if

• the set of nails of W ′ is exactly NW ∩ V (W ′),

• there is a row of W ′ that is a row of W , and

• W ′ has exactly r rows.

Note that in an r-row-slice W ′ of W , depending on the location, the first column of W ′

may be in the last column of W by the definition of a wall.

Let W be a wall in a graph G. The column-boundary of W is the set of all endvertices

of rows of W . A W -handle is a nontrivial W -path in G whose endvertices are in the

column-boundary of W .
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Let W be a (c, r)-wall and let W ′ be a c′-column-slice of W for some 3 ≤ c′ ≤ c. For

a path P whose endvertices are nails of W , the row-extension of P to W ′ in W is a W ′-

handle containing P that is contained in the union of P and the rows of W . We can easily

observe that if such a W ′-handle exists, then it is unique. Note that the row-extension of

a W -handle to W ′ always exists. For a set P of disjoint W -handles, we define the row-

extension of P to W ′ in W to be the set of row-extensions of the paths in P to W ′ in W .

Note that these W ′-handles are disjoint.

Let W be an r-wall contained in a graph G. If (C,D) is an r-separation in G, then

exactly one side of (C,D) contains a row of W , and the set of r-separations (C,D) such

that D contains a row forms a tangle TW of order r + 1 [33], called the tangle induced by

W . A tangle T in G dominates the wall W if TW is a truncation of T . If W ′ is a subwall

of W , then TW ′ is a truncation of TW (that is, TW dominates W ′).

Let W be an r-wall contained in a graph G and let P be a V ̸=2(W )-path in W with

endpoints x, y ∈ NW . Suppose there is an x-y-path R in G such that R is internally

disjoint from W − P , and let W ′ be the wall obtained from W by replacing P with R.

Then we say that W ′ is a local rerouting of W . Note that if W ′ is a local rerouting of W ,

then TW ′ = TW .

The following fundamental result of Robertson and Seymour is also known as the grid

minor theorem:

Theorem 2.6.1 (Robertson, Seymour, and Thomas [34]). There exists a function f2.6.1 : N → N

such that if g ≥ 3 is an integer and T is a tangle in a graph G of order at least f2.6.1(g),

then T dominates a g-wall W in G.

A Γ-labelled wall (W, γ) is facially Γ-odd if every brick is a Γ-nonzero cycle. We say

that (W, γ) is strongly Γ-bipartite if it is shift-equivalent to (W, γ′) such that every b(W )-

path in (W, γ′) is Γ-zero. Note that this definition depends on the choice of the nails of W .

This is a slightly stronger condition than just requiring (W, γ) as a Γ-labelled graph to be

Γ-bipartite, but the difference is superficial; if (W, γ) is a Γ-bipartite r-wall with r ≥ 3,
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then by Lemma 2.2.2, the (r − 2)-wall 1-contained in (W, γ) with the choice of nails with

respect to W is strongly Γ-bipartite.

2.6.1 Flat walls

Let (C,D) be a separation of order k ≤ 3 such that there is a vertex v ∈ V (D − C) and k

paths from v to C ∩D pairwise disjoint except at v. Let H be the graph obtained from C

by adding an edge between each nonadjacent pair of vertices in C ∩D. Then we say that

H is an elementary reduction of G with respect to (C,D). Let X ⊆ V (G). If a graph H

can be obtained from G by a sequence of elementary reductions with respect to separations

(C,D) for which X ⊆ V (C), then we say that H is an X-reduction of G.

Let W be a wall in a graph G and let O denote the perimeter of W . Suppose there is a

separation (C,D) of G such that V (C ∩D) ⊆ V (O), V (W ) ⊆ V (D), and the nails of W

are in C. If there is a V (C ∩D)-reduction of D that can be embedded on a closed disk ∆

so that V (C ∩D) lies on the boundary of ∆ and the order of V (C ∩D) along the boundary

of ∆ agrees with the order along O, then we say that the wall W is flat in G and that the

separation (C,D) certifies that W is flat. Note that a subwall of a flat wall is flat, and a

local rerouting of a flat wall is also flat.

We can now state the flat wall theorem [32, 10].

Theorem 2.6.2 (Theorem 2.2 in [10]). Then there exists a function f2.6.2 : N × N → N

such that if a graph G contains an f2.6.2(r, t)-wall W , then one of the following outcomes

hold:

1. G contains a Kt-model µ such that Tµ is a truncation of TW .

2. There exists Z ⊆ V (G) with |Z| ≤ t − 5 and an r-subwall W ′ of W that is disjoint

from Z and flat in G− Z.
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2.7 Linkages and handlebars

Let G be a graph and let A,B ⊆ V (G). A linkage is a set of disjoint paths. An A-linkage

is a linkage of A-paths and an A-B-linkage is a linkage of A-B-paths.

For a set G of graphs, we denote by
⋃
G the union of the graphs in G. By slight abuse

of notation, we say two sets G1 and G2 of graphs are disjoint if the graphs
⋃

G1 and
⋃

G2

are disjoint.

Let (X,≺) be a linearly ordered set. We say two disjoint subsets {x1, x2} and {y1, y2}

of X of size 2 with x1 ≺ x2 and y1 ≺ y2 are

• in series if either x2 ≺ y1 or y2 ≺ x1;

• nested if either x1 ≺ y1 ≺ y2 ≺ x2 or y1 ≺ x1 ≺ x2 ≺ y2; and

• crossing otherwise.

A set S ⊆
(
X
2

)
of pairwise disjoint sets is in series, nested, or crossing, respectively, if its

elements are pairwise in series, nested, or crossing, respectively, and S is called pure if it

is in series, nested, or crossing. If P is an X-linkage, then it is in series, nested, crossing,

and pure if the set

{{x, y} : {x, y} is the set of endpoints of a path in P}

is in series, nested, crossing, and pure respectively.

A straightforward argument shows the following lemma (see also [23, Lemma 25]).

Lemma 2.7.1. Let t be a positive integer, let (X,≺) be a linearly ordered set, and let S ⊆
(
X
2

)
be a set of pairwise disjoint sets. If S has size greater than t3, then S contains a pure subset

of size greater than t.

Proof. First consider the partial order ≺1 on S such that for {a, b}, {c, d} ∈ S with a ≺ b

and c ≺ d we have {a, b} ≺1 {c, d} if b ≺ c. By Dilworth’s Theorem [15], S contains
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either a chain of size greater than t with respect to ≺1 or an antichain of size greater

than t2 with respect to ≺1. In the first case we have a subset that is in series, so sup-

pose instead that there is some S ′ ⊆ S of size greater than t2 that is an antichain with

respect to ≺1. Let ≺2 be the partial order on S ′ such that for {a, b}, {c, d} ∈ S with a ≺ b

and c ≺ d we have {a, b} ≺2 {c, d} if a ≺ c and b ≺ d. Again by Dilworth’s Theorem,

there is some S ′′ ⊆ S ′ of size greater than t such that S ′′ is either a chain or an antichain

with respect to ≺2, and hence either crossing or nested, respectively.

Let (W, γ) be a Γ-labelled wall in (G, γ) with the set N of top nails. A linkage of

(W, γ) is an N -linkage in G − (W − N). Note that this definition depends on the choice

of the top nails of W , which may be implicit. A linkage of (W, γ) is pure if it is pure with

respect to a linear ordering of N given by the top row of (W, γ). A linkage P of (W, γ)

is Γ-odd if (W ∪ P, γ) contains a Γ-nonzero cycle containing P for all P ∈ P . If (W, γ)

is strongly Γ-bipartite and P is a Γ-odd linkage of (W, γ), then (G, γ) is shift-equivalent

to (G, γ′) such that every b(W )-path Q in W satisfies γ′(Q) = 0 and every path P in P

satisfies γ′(P ) ̸= 0.

Let W be an r×c-wall. Let ≺W be the linear order on the column-boundary of W such

that v ≺W w if at least one of the following holds.

• v is in the first column and w is in the last column.

• Both v and w are in the first column and the index of the row containing v is lower

than the index of the row containing w.

• Both v and w are in the last column and the index of the row containing v is higher

than the index of the row containing w.

A set P of W -handles is pure, nested, in series, or crossing, respectively, if the set of

sets of endvertices of all the paths in P is pure, nested, in series, or crossing, respectively,

with respect to ≺W . We call a set P of disjoint W -handles a W -handlebar if P is pure and
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there are two paths A and B in CW
1 ∪ CW

c such that each W -handle in P is a V (A)-V (B)-

path. Observe that if P is a W -handlebar in series having at least two W -handles, then all

the endvertices of W -handles in P are in CW
i for some i ∈ {1, c}.

Two W -handlebars P1 and P2 are non-mixing if for each i ∈ [2] there are (not neces-

sarily disjoint) paths Ai and Bi in CW
1 ∪ CW

c such that Pi is a set of V (Ai)-V (Bi)-paths

and A1 ∪B1 and A2 ∪B2 are disjoint.
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CHAPTER 3

STATEMENTS OF MAIN RESULTS AND APPLICATIONS

3.1 Flat wall theorem for undirected group-labelled graphs

Recall the flat wall theorem (Theorem 2.6.2) which says that, given a large wall, either

there is a large piece of the wall that is almost flat, or there is a large Kt-model that is

highly connected to the wall. Our structure theorem imposes additional conditions on the

weights of cycles in the Kt-model or the flat wall.

Theorem 3.1.1. Let Γ be an abelian group and let r, t ≥ 1 be integers. Then there exist

integers g(r, t) and h(r, t), where h(r, t) ≤ g(r, t) − 3, such that if a Γ-labelled graph

(G, γ) contains a wall (W, γ) of size at least g(r, t), then one of the following outcomes

hold:

(1) There is a Γ-odd Kt-model µ in G such that Tµ is a truncation of TW .

(2) There exists Z ⊆ V (G) with |Z| ≤ h(r, t) and a flat 50r12-wall (W0, γ) in (G−Z, γ)

such that TW0 is a truncation of TW and either

(a) (W0, γ) is facially Γ-odd, or

(b) (W0, γ) is strongly Γ-bipartite and there is a pure Γ-odd linkage of (W0, γ) of

size r.

(3) There exists Z ⊆ V (G) with |Z| ≤ h(r, t) such that the TW -large 3-block of (G −

Z, γ) is Γ-bipartite.

3.1.1 Proof outline of Theorem 3.1.1

The proof of Theorem 3.1.1 follows the proof outline of Huynh, Joos, and Wollan [23]

for directed group-labelled graphs. We proceed first by applying the flat wall theorem

34



(Theorem 2.6.2) to obtain one of its two outcomes. If there is a large Km-model π in G

such that Tπ is a truncation of TW , then by Ramsey’s theorem for 4-uniform hypergraphs,

we obtain a large submodel µ of π that is either Γ-odd or Γ-bipartite. The first case satisfies

outcome (1) of Theorem 3.1.1. In the second case, we show that the Γ-labelled subgraph

(µ, γ) is Γ-bipartite (see also Remark 2.5.1). We then look to enlarge µ to a Γ-odd Kt-

model by choosing a vertex si in each tree µ(vi) and finding many disjoint Γ-nonzero

S-paths, where S = {s1, . . . , st}. With an appropriate choice of such paths, we obtain

a Γ-odd enlargement of µ whose trees contain the union of a pair of trees µ(vi) and the

Γ-nonzero S-path connecting them (see Figure 4.3 in section 4.1).

Finding the appropriate S-paths, however, seems to be considerably more difficult in

undirected group-labelled graphs compared to the directed setting. The main obstacle is

that Lemma 2.2.2 requires 3-connectivity for a Γ-bipartite graph to be shift-equivalent to

the labelling 0, whereas the directed analog of Lemma 2.2.2 (which is essentially equivalent

to Lemma 2.2.1) does not require any connectivity assumptions. This means that, in the

Γ-bipartite graph (µ, γ), we can only guarantee that paths between branching vertices of µ

(defined in section 4.1) are Γ-zero. This requires us to choose the vertices si more carefully

and keep track of how each si branches to the other trees of µ throughout the proof.

In the second outcome of the flat wall theorem, we also employ a Ramsey-type argu-

ment to the given wall (W, γ) to obtain a smaller wall (W0, γ) that is either facially Γ-odd

or Γ-bipartite. The first case satisfies outcome (2)-(a) of Theorem 3.1.1. In the second case,

we find many disjoint Γ-nonzero N0-paths outside of the wall W0, where N0 is the set of

top nails of W0, and apply Lemma 2.7.1 to obtain a pure Γ-odd linkage of (W0, γ). In this

part, the 3-connectivity condition adds only minor obstacles.

In both outcomes, if the desired Γ-nonzero S-paths or N0-paths do not exist, then we

show that outcome (3) of Theorem 3.1.1 is satisfied using Theorem 2.2.5.
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3.1.2 Proof outline of Theorem 1.2.1

Theorem 1.2.1 follows readily from Theorem 3.1.1 and the tools presented in chapter 2.

Although Theorem 1.2.1 is implied by Theorem 3.3.2, we nevertheless sketch the proof

here as a simple demonstration of our proof techniques.

Let Γ be an abelian group and consider a minimal counterexample (G, γ) to the family

of Γ-nonzero cycles satisfying the Erdős-Pósa property. Then (G, γ) admits a large tangle

T such that no Γ-nonzero cycle is contained in the small side of a separation in T , as we

saw in Lemma 2.3.1. By Theorem 2.6.1, there is a large wall (W, γ) such that TW is a

truncation of T . We then apply Theorem 3.1.1 to (W, γ) to obtain one of its outcomes.

It is not difficult to see that there is a large packing of Γ-nonzero cycles in outcomes

(1) and (2)(a), and in outcome (2)(b) in the cases where the pure Γ-odd linkage is either

in series or nested. Now suppose the linkage is crossing. If Γ does not have an element

of order two, then again it is not difficult to see that there is a large packing of Γ-nonzero

cycles. If Γ has an element g of order two, then every path in the linkage could have weight

g (this is essentially an Escher wall) and we may not have a large packing, but we do have

a large half-integral packing of Γ-nonzero cycles. Finally, outcome (3) implies that there

is a small hitting set for the Γ-nonzero cycles, contradicting the definition of a minimal

counterexample.

This proof sketch essentially shows that a large Escher wall is the only obstruction to

the Erdős-Pósa property of Γ-nonzero cycles. In Chapter 6 we will proceed in a similar

manner to characterize the obstructions in a more general setting.

3.2 A-paths

Our main result on A-paths is Theorem 1.3.3, that for every odd prime p, the family of A-

paths of length 0 mod p satisfies the Erdős-Pósa property. This is proved in Chapter 5 using

Theorem 3.1.1. Here, we derive a characterization of the abelian groups Γ and elements ℓ ∈
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Γ for which the family of A-paths of weight ℓ satisfies the Erdős-Pósa property, assuming

Theorem 1.3.3.

We begin with a straightforward corollary of Theorem 1.3.1. Given two vertex set A,B

of a graph G, an A-B-A-path is either an A-path containing a vertex in B, or a trivial path

{a} where a ∈ A ∩B.

Corollary 3.2.1. Let G be a graph and let A,B ⊆ V (G). Then for all positive integers

k, either G contains k disjoint A-B-A-paths or there is a set of at most 2k − 2 vertices

intersecting every A-B-A-path.

Proof. Since each vertex inA∩B forms a trivialA-B-A-path, we may assume without loss

of generality that A∩B = ∅. Let Γ be the free group generated by |E(G)| elements. Let G⃗

be an arbitrary orientation of G. Label each edge e incident to B with a distinct generator

γ(e) of Γ, and label all other edges 0. Then A-B-A-paths in G correspond exactly to

Γ-nonzero A-paths in (G⃗, γ).

3.2.1 A-paths of a fixed weight in infinite groups

We first take care of the infinite case by showing that if Γ is infinite, then for all ℓ ∈ Γ,

the Erdős-Pósa property does not hold for A-paths of weight ℓ in either model of group-

labelling. The following construction also implies that the Erdős-Pósa function for Γ-zero

A-paths necessarily grows with the order of the group Γ.

Lemma 3.2.2. Let Γ be an infinite group and let ℓ ∈ Γ. Then A-paths of weight ℓ do not

satisfy the Erdős-Pósa property in both models of group-labelling.

Proof. Let n be a positive integer and let Hn denote the n × n-grid with vertex set {vi,j :

i, j ∈ [n]} and edge set {vi,jvi′,j′ : |i− i′|+ |j− j′| = 1}. Let Gn denote the graph obtained

from Hn by adding 2n new vertices u1, . . . , un, w1, . . . , wn and adding the edges uiv1,i and

vn,iwi for each i ∈ [n].
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Since Γ is infinite, there exists a sequence of elements g1, g2, · · · ∈ Γ such that gk ̸∈

{gj, ℓ−gj, gj±ℓ, gj±2ℓ} for all j < k. For the directed model, orient the edges uiv1,i from

ui to v1,i, orient the edges vn,iwi from vn,i to wi, and orient the remaining edges arbitrarily

to obtain an orientation G⃗ of G. Define the Γ-labelling

γn(e) =


ℓ− gi if e = uiv1,i for i ∈ [n]

gn+1−i if e = vn,iwi for i ∈ [n]

0 otherwise

and define A = {u1, . . . , un, w1, . . . , wn} (see Figure 3.1 (a)). In both (Gn, γn) and

(G⃗n, γn), it follows from our choice of g1, g2, . . . that if an A-path has both endpoints in

{ui}, both endpoints in {wi}, or endpoints ui and wn+1−j where i ̸= j, then it cannot have

weight ℓ. So A-paths of weight ℓ are exactly the A-paths with endpoints ui and wn+1−i for

some i ∈ [n], and clearly no two such paths are disjoint. On the other hand, no vertex set

of size less than n intersects all such paths. Therefore, A-paths of weight ℓ do not satisfy

the Erdős-Pósa property.

g1

ℓ− g1

g2

ℓ− g2

g3

ℓ− g3 g4

ℓ− g4

g5

ℓ− g5

g6

ℓ− g6

(a) (G⃗6, γ6)

g1 −g1−g2

g1 −g1−g2

g1 −g1−g2

g1 −g1−g2

g1 −g1−g2

g1 −g1−g2g2 g2 g2 g2 g2

(b) (G6, γ
′
6).

ℓ− g 0

ℓ− g 0

ℓ− g 0

ℓ− g 0

ℓ− g 0

ℓ− g 0g g g g g

(c) (G6, γ
′′
6 ).

Figure 3.1: The black vertices constituteA and all unlabelled edges
have weight 0.

3.2.2 Γ-zero A-paths in directed Γ-labelled graphs

An A-tree is a tree whose intersection with A is exactly its set of leaves. Let ℓ(T ) denote

the number of leaves of a tree T . Our proof of Theorem 1.3.5 applies the so-called frame
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argument expounded in [4].

Lemma 3.2.3. Let Γ be a finite group and let k be a positive integer. If (T⃗ , γ) is a directed

Γ-labelled graph where T is a subcubic A-tree with ℓ(T ) ≥ (2k − 1)|Γ| + 1, then (T⃗ , γ)

contains k disjoint zero A-paths.

Proof. We proceed by induction on k. Let k = 1. Choose an interal vertex v of T and let

P1, . . . , P|Γ|+1 be distinct {v}-A-paths in T . Then γ(Pi) = γ(Pj) for some i ̸= j, and the

symmetric difference of Pi and Pj is a zero A-path. This proves the base case.

Let k > 1 and assume that the statement holds for all k′ < k. Fix a leaf a of T . For a

vertex v of degree 3, let T ′
1 denote the connected component of T − v containing a, and let

T1 denote the maximal A-tree contained in T ′
1. Let T2 = T − T ′

1, which is also an A-tree,

and note that ℓ(T1) + ℓ(T2) = ℓ(T ).

Now choose v to be a vertex of degree 3 that is farthest from a subject to the condition

that ℓ(T2) ≥ |Γ|+1. Then ℓ(T2) ≤ 2|Γ| by our choice of v, so ℓ(T1) ≥ 2((k−1)−1)|Γ|+

1. By the inductive hypothesis, (T⃗1, γ) contains k − 1 disjoint zero A-paths and (T⃗2, γ)

contains a zero A-path, yielding k disjoint zero A-paths in (T⃗ , γ).

Theorem 3.2.4. Let Γ be a finite group and let k be a positive integer. Then every directed

Γ-labelled graph (G⃗, γ) has either k disjoint zero A-paths or a vertex set X ⊆ V (G) with

|X| < 6(k − 1)|Γ| such that (G⃗−X, γ) has no zero A-path.

Proof. Let F be an inclusion-wise maximal forest in G such that each connected compo-

nent of F is a subcubic A-tree that contains a zero A-path. Then we may assume that F

has at most k − 1 connected components. Let X denote the set of vertices of degree 1 or 3

in F .

Suppose (G⃗−X, γ) contains a zeroA-path P . Then P intersects F−X since otherwise

F ∪ P violates the maximality of F . Let P ′ be a subpath of P such that |V (P ′) ∩ A| =

1 = |V (P ′)∩ V (F −X)|. Then the vertex in V (P ′)∩ V (F −X) has degree 2 in F by the

definition of X , so F ∪ P ′ again violates the maximality of F .
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Therefore, (G⃗ − X, γ) does not contain a zero A-path. To show the upper bound on

|X|, let T1, . . . , Tc denote the connected components of F and let ki be the largest integer

such that ℓ(Ti) ≥ (2ki − 1)|Γ| + 1. Then ℓ(Ti) ≤ (2ki + 1)|Γ| and Ti contains ki disjoint

zero A-paths by Lemma 3.2.3, so we may assume that
∑c

i=1 ki ≤ k− 1. Since a nontrivial

subcubic tree T has exactly ℓ(T )− 2 vertices of degree 3, we have

|X| =
c∑

i=1

(2ℓ(Ti)− 2) ≤
c∑

i=1

(2(2ki + 1)|Γ| − 2) < 4(k − 1)|Γ|+ 2c|Γ| ≤ 6(k − 1)|Γ|.

Theorem 1.3.5. Let Γ be a group. Then, in directed Γ-labelled graphs, Γ-zero A-paths

satisfy the Erdős-Pósa property if and only if Γ is finite.

Proof. The proof follows immediately from Lemma 3.2.2 and Theorem 3.2.4

3.2.3 Γ-zero A-paths in undirected Γ-labelled graphs

Here we give the undirected analog of Theorem 1.3.5, using Theorem 1.3.3.

Theorem 3.2.5. Let Γ be an abelian group. Then, in undirected Γ-labelled graphs, zero A-

paths satisfy the Erdős-Pósa property if and only if Γ ∼= (Z/2Z)k for some positive integer

k or Γ ∼= Z/mZ where m is either equal to 4 or a prime.

Proof. We may assume that Γ is finite by Lemma 3.2.2. If Γ ∼= (Z/2Z)k for some positive

integer k, then every element of Γ has order two, so the two models of Γ-labelled graphs

are equivalent and Γ-zero A-paths satisfy the Erdős-Pósa property by Theorem 3.2.4. If

Γ ∼= Z/4Z or Γ ∼= Z/pZ for an odd prime p, then Γ-zero A-paths satisfy the Erdős-Pósa

property by Theorem 1.3.2 and Theorem 1.3.3 respectively.

Now suppose Γ is a finite abelian group not isomorphic to any of the above groups.

Claim 3.2.5.1. There exist nonzero elements g1, g2 ∈ Γ such that the order of ⟨g2⟩ + g1 in

the quotient group Γ/⟨g2⟩ is greater than two.
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Proof. First suppose |Γ| is not a power of 2. Then there is a prime q1 > 2 dividing |Γ|. If Γ

is cyclic, then since Γ ̸∼= Z/q1Z, we may choose a generator g1 of Γ and let g2 = q1g1 ̸= 0.

If Γ is not cyclic, we may choose g1, g2 such that g1 has order q1, g2 has prime order, and

the two subgroups ⟨g1⟩ and ⟨g2⟩ are distinct. It is easy to see that these choices of g1, g2

satisfy the claim.

Now suppose |Γ| is a power of 2. If Γ is cyclic, then it has an element g1 of order

8 (since Γ ̸∼= Z/2Z,Z/4Z) and we may choose g2 = 4g1. If Γ is not cyclic, then since

Γ ̸∼= (Z/2Z)k, it contains a subgroup H isomorphic to (Z/4Z) × (Z/2Z) and we may

choose g1 and g2 so that H = ⟨g1, g2⟩ and g1 has order 4. These choices again satisfy the

claim.

Let q2 be the order of g2 and let q1 > 2 be the order of ⟨g2⟩ + g1 in Γ/⟨g2⟩. Let Gn be

the graph obtained from the n× n-grid as in Lemma 3.2.2. Define the Γ-labelling

γ′n(e) =



g1 if e is incident to ui for some i ∈ [n]

−g1 − g2 if e is incident to wi for some i ∈ [n]

g2 if e = v1,iv1,i+1 for some i ∈ [n− 1]

0 otherwise

and let A = {u1, . . . , un, w1, . . . , wn} (see Figure 3.1 (b)). Then every Γ-zero A-path in

(Gn, γ
′
n) has one endpoint in {ui : i ∈ [n]} and one endpoint in {vi : i ∈ [n]}, since every

other A-path P has its weight in the coset ⟨g2⟩ + 2g1 or ⟨g2⟩ − 2g1, neither of which are

zero in Γ/⟨g2⟩ (since q1 > 2). Moreover, such a path contains an edge of the form v1,iv1,i+1

for some i ∈ [n− 1] since otherwise its weight would be equal to −g2 ̸= 0.

Clearly, any two such paths intersect, so there does not exist two disjoint zero A-paths.

On the other hand, the smallest size of a vertex set intersecting every zero A-path can

be made arbitrarily large for with large enough n. Therefore, zero A-paths in Γ-labelled

graphs do not satisfy the Erdős-Pósa property.
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3.2.4 A-paths of a fixed weight in undirected group-labelled graphs

Let p be a prime. A p-group is a group in which the order of every element is a power of p.

We will use the following well-known fact about p-groups.

Theorem 3.2.6 (Theorem 12.5.2 in [21]). A finite p-group which contains only one sub-

group of order p is either cyclic or a generalized quaternion group.

Note that generalized quaternion groups are nonabelian. We now prove Theorem 1.3.4.

Theorem 1.3.4. Let Γ be an abelian group and let ℓ ∈ Γ. Then, in undirected Γ-labelled

graphs, A-paths of weight ℓ satisfy the Erdős-Pósa property if and only if

• Γ ∼= (Z/2Z)k where k ∈ N and ℓ = 0,

• Γ ∼= Z/4Z and ℓ ∈ {0, 2}, or

• Γ ∼= Z/pZ where p is prime (and ℓ ∈ Γ is arbitrary).

Proof. We may assume that Γ is finite by Lemma 3.2.2. If ℓ = 0, we can apply Theorem

3.2.5, so we may also assume ℓ ̸= 0.

Suppose there exists a nonzero element g ∈ Γ such that ℓ ̸∈ ⟨g⟩. Let Gn be the graph

obtained from the n× n-grid as before. Define the Γ-labelling

γ′′n(e) =


ℓ− g if e is incident to ui for some i ∈ [n]

g if e = v1,iv1,i+1 for some i ∈ [n− 1]

0 otherwise

and let A = {u1, . . . , un, w1, . . . , wn} (see Figure 3.1 (c)). It follows from our choice of g

that every A-path of weight ℓ has one endpoint in each {ui : i ∈ [n]} and {wi : i ∈ [n]}

and uses edge of the form v1,iv1,i+1. Therefore, A-paths of weight ℓ do not satisfy the

Erdős-Pósa property.
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So we may assume that ℓ ∈ ⟨g⟩ for all nonzero g ∈ Γ. This implies that the order of ℓ

in Γ is prime; if its order is equal to mn where m,n > 1 are integers, then ℓ ̸∈ ⟨mℓ⟩. Let p

denote the order of ℓ in Γ. Then Γ is a p-group; if there is a distinct prime q dividing |Γ|,

then for every element g ∈ Γ of order q we have ℓ ̸∈ ⟨g⟩. Similarly, if Γ′ is a subgroup of

Γ with |Γ′| = p and Γ′ ̸= ⟨ℓ⟩, then for any nonzero g ∈ Γ′ we have ℓ ̸∈ ⟨g⟩.

Thus, Γ is a p-group and ⟨ℓ⟩ is the unique subgroup of order p. By Theorem 3.2.6 (and

since Γ is abelian), Γ ∼= Z/paZ for some a ∈ N. First, if Γ ∼= Z/2Z and ℓ = 1, then

A-paths of weight ℓ are exactly the Γ-nonzero A-paths. Since the two models of group-

labelling are equivalent for Γ ∼= Z/2Z, these A-paths satisfy the Erdős-Pósa property by

Theorem 1.3.1. Otherwise, we have a ≥ 2 in which case ℓ ∈ ⟨pa−1⟩ − {0}, or p > 2 (or

both). In all cases (except Γ ∼= Z/2Z), there exists g ∈ Γ such that ℓ = 2g.

Now we claim that the Erdős-Pósa property holds for A-paths of weight ℓ = 2g if and

only if it holds for Γ-zeroA-paths. Indeed, given a Γ-labelled graph (G, γ) withA ⊆ V (G),

define a new Γ-labelling γ′ : E(G) → Γ where γ′(e) = γ(e) − g if e is incident with A

and γ′(e) = γ(e) otherwise. Then A-paths of weight ℓ in (G, γ) correspond exactly to the

Γ-zero A-paths in (G, γ′).

It then follows from Theorem 3.2.5 that, if Γ ̸∼= Z/2Z and ℓ ̸= 0, thenA-paths of weight

ℓ ̸= 0 satisfy the Erdős-Pósa property if and only if Γ ∼= Z/4Z and ℓ = 2, or Γ ∼= Z/pZ for

some odd prime p. This completes the proof of Theorem 1.3.4.

We pose the following problem of determining the directed analog of Theorem 1.3.4.

Note that, in directed group-labelled graphs, reversing the direction of traversal of a walk

W inverts its weight γ(W ).

Problem 1. Characterize the groups Γ and elements ℓ ∈ Γ such that, in directed Γ-labelled

graphs, A-paths of weight in {ℓ,−ℓ} satisfy the Erdős-Pósa property.

It suffices to consider finite groups by Lemma 3.2.2 and nonzero ℓ by Theorem 1.3.5.

If Γ ∼= Z/3Z and ℓ ̸= 0, then the problem is equivalent to nonzero A-paths since Γ =
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{0, 1,−1}. The counterexample in Figure 3.1 (c) can also be adapted to the directed setting

in the natural way to show that the Erdős-Pósa property does not hold if there exists g ∈ Γ

such that ℓ ̸∈ ⟨g⟩. It would therefore suffice to deal with the two outcomes of Theorem

3.2.6.

3.3 Cycles

3.3.1 Obstructions to the Erdős-Pósa property of cycles

Let Γ be an abelian group and let A ⊆ Γ. We now describe a class of obstructions for the

Erdős-Pósa property of allowable cycles (cycles with weights in A) in Γ-labelled graphs.

Definition 3.3.1. For positive integers κ and θ, an abelian group Γ, andA ⊆ Γ, let C(κ, θ,Γ, A)

be the class of all Γ-labelled graphs (G, γ) having a wall W of order at least θ and a

nonempty family (Pi : i ∈ [t]) of disjoint non-mixing W -handlebars each of size at least κ

such that

(1) G is the union of W and
⋃
{
⋃
Pi : i ∈ [t]},

(2) every NW -path in W is γ-zero,

(3)
∑

i∈[t] γ(Pi) ∈ A for any family (Pi : i ∈ [t]) such that Pi ∈ Pi for all i ∈ [t],

(4) for each i ∈ [t], we have ⟨γ(P ) : P ∈
⋃

j∈[t]\{i}Pj⟩ ∩ A = ∅,

(5) if f :
⋃

j∈[t] Pj → Z is a function satisfying
∑

j∈[t]
∑

P∈Pj
f(P )γ(P ) ∈ A, then for

each i ∈ [t], either Pi is in series or
∑

P∈Pi
f(P ) is odd, and

(6) at least one of the following properties holds.

(a) The number of crossing W -handlebars in (Pi : i ∈ [t]) is odd.

(b) At least one but not all W -handlebars in (Pi : i ∈ [t]) are in series.

(c) At least three W -handlebars in (Pi : i ∈ [t]) are in series.
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The Γ-labelled graphs in C(κ, θ,Γ, A) are obstructions to the Erdős-Pósa property of

allowable cycles in the following sense. They admit a large half-integral packing of allow-

able cycles (see Theorem 3.3.2 (iii)), which certifies that there is no small hitting set for the

allowable cycles. On the other hand, they do not admit a packing of three disjoint allowable

cycles, as we will show in Subsection 3.3.3. Hence, these graphs form counterexamples to

the Erdős-Pósa property for the allowable cycles.

Our main theorem is that they are the only obstructions, under the additional assumption

that Γ =
∏

j∈[m] Γj is a product of a finite number of abelian groups and that A is the set of

all elements of Γ avoiding a fixed finite set of elements from each Γj .

Recall that for a product Γ =
∏

j∈[m] Γj of m abelian groups and for a subset J ⊆ [m],

we denote by ΓJ the subgroup consisting of all g ∈ Γ with πj(g) = 0 for all j ∈ [m] \ J .

Theorem 3.3.2. For every two positive integersm and ω, there is a function fm,ω : N3 → Z

satisfying the following property. Let Γ =
∏

j∈[m] Γj be a product of m abelian groups,

and for every j ∈ [m], let Ωj be a subset of Γj with |Ωj| ≤ ω. For each j ∈ [m], let Aj :=

π−1
j (Γj \ Ωj) ⊆ Γ and A :=

⋂
j∈[m]Aj . Let G be a graph with a Γ-labelling γ and let O

be the set of all cycles of G whose γ-value is in A. Then for every three positive integers k,

κ, and θ, there exists a Γ-labelling γ′ of G that is shifting equivalent to γ such that at least

one of the following statements is true.

(i) There are k disjoint cycles in O.

(ii) There is a hitting set for O of size at most fm,ω(k, κ, θ).

(iii) There is a subgraphH ofG such that for some J ⊆ [m] and for the (Γ/ΓJ)-labelling γ′′

induced by the restriction of γ′ toH , we have (H, γ′′) ∈ C(κ, θ,Γ/ΓJ , A+ΓJ), andH

contains a half-integral packing of κ cycles in O.
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3.3.2 Proof outline

Applying similar arguments as in Subsection 3.1.2, we will obtain a large wall W which,

after possibly shifting the labelling, satisfies the following properties for some set Z ⊆ [m]

of coordinates:

• every NW -path is γj-zero for all j ∈ Z,

• every large subwall contains a γj-nonzero cycle for all j ∈ [m] \ Z.

We repeatedly apply Theorem 2.2.5 to obtain a collection ofW -handlebars that is sufficient

to generate a value that is allowable with respect to the coordinates in Z. These handlebars

will be restricted so that for each coordinate j ∈ Z, the γj-values of the handles within a

handlebar are either all equal or all distinct. We then restrict these handlebars so that they

become pairwise non-mixing, and further throw away any handlebar that is unnecessary

to generate a value that is allowable with respect to the coordinates in Z. Using the outer

columns of the wall, we combine handles within each handlebar to form a set of handlebars

for a subwall of W which now satisfies property (3) of Definition 3.3.1. Since we already

threw away all unnecessary handlebars, property (4) is also satisfied. Each new handlebar

whose handles contain an even number of handles in P will now be in series, which allows

us to do this in such a way that we additionally satisfy property (5).

Following the approach from [20], we find a half-integral packing of cycles in O of

size κ, and since we assumed that statement (iii) fails, we can conclude that property (6)

fails. This means either that each handlebar is in series and there are at most two of them,

or that no handlebar is in series and the number of crossing handlebars is even. In the first

case, it is not hard to find a packing of k cycles whose values are allowable with respect

to the coordinates in Z, and techniques from [20] enable us to deal with the coordinates

in [m] \ Z easily and obtain a packing of k cycles in O (see Subsection 6.1.4). In the

second case, we iteratively combine pairs of ‘adjacent’ handlebars to obtain one handlebar

for a subwall ofW , where each new handle contains exactly one handle of each constituent
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handlebar. This will form a nested handlebar, enabling us once again to find a packing of

k cycles in O. Thus, we have the desired contradiction in each case.

3.3.3 The obstructions have no packing of three allowable cycles

We now demonstrate that the graphs described in Definition 3.3.1 do not contain three

disjoint allowable cycles.

Proposition 3.3.3. Let κ and θ be positive integers, let Γ be an abelian group, and letA ⊆ Γ.

If (G, γ) ∈ C(κ, θ,Γ, A), then G has no three disjoint cycles whose γ-values are in A, and

if G has two disjoint cycles whose γ-values are in A, then (G, γ) satisfies property (6)(b).

Proof. Let W be the wall and let P = (Pi : i ∈ [t]) be the family of W -handlebars de-

scribed in Definition 3.3.1, and let o := 3 if property (6)(b) holds and let o := 2 otherwise.

Suppose that G has a set O = {Oi : i ∈ [o]} of o disjoint cycles whose γ-values are in A.

Suppose first that property (6)(a) or (b) holds. Let n be the number of nested W -

handlebars in P, let x be the number of crossing W -handlebars in P, and let s be the num-

ber of W -handlebars in P that are in series. Note that n+ x ≥ 1 because property (6)(a)

or (b) holds. By rearranging indicies, we may assume that Pi is nested for all i ∈ [n],

crossing for all i ∈ [n+ x] \ [n], and in series for all i ∈ [n+ x+ s] \ [n+ x].

Consider the complex closed unit discD := {z ∈ C : |z| ≤ 1} and let S be the complex

unit circle {z ∈ C : |z| = 1}. Let ξ := eiπ/(x+n) and for α, β ∈ [0, 2(x+ n)], let arc(α, β)

be the open arc {ξγ : α < γ < β} in S. We now form a surface in which G embeds by

carefully selecting a pair of closed arcs in S to paste together for each nested and crossing

handlebar in P. For each j ∈ [n+x], let Pj be aW -handle in Pj and let {vℓ : ℓ ∈ [2n+2x]}

be the set of endvertices of paths in {Pj : j ∈ [n+x]}, where vℓ ≺W vk if and only if k < ℓ.

Let f and g be injective maps from [n + x] to [2n + 2x] such that for all j ∈ [n + x], the

endvertices of Pj are vf(j) and vg(j), and f(j) < g(j).

Let ∼ be the equivalence relation on S obtained by taking the transitive closure with

respect to the following properties;
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• ξf(j)+α ∼ ξg(j)+1−α for each j ∈ [n] and each α ∈ [0, 1],

• ξf(j)+α ∼ ξg(j)+α for each j ∈ [n+ x] \ [n] and each α ∈ [0, 1].

Finally, let S be the surface D/ ∼. If |z| < 1, then in D/ ∼, z is not identified with any

other points of D and therefore we write z to denote the equivalence class {z} in S when

|z| < 1 for convenience. LetD∗ := {z ∈ S : z ∈ C, |z| < 1}, and let S∗ be the complement

of D∗ in S.

There is an embedding ϕ of G in S such that

(i) W ∪
⋃
{
⋃

Pj : j ∈ [n+ x+ s] \ [n+ x]} is embedded in D∗,

(ii) for each j ∈ [n+ x] and each P ∈ Pj , the subset of D corresponding to ϕ(P ) is the

union of two curves of positive length, each of which intersects S exactly once, at

equivalent points in the arcs arc(f(j), f(j) + 1) and arc(g(j), g(j) + 1), and

(iii) for each j ∈ [n+ x+ s] \ [n+ x], there is a component of S \ ϕ(G) whose boundary

in S contains ϕ(
⋃

Pj).

For each j ∈ [o] and k ∈ [2n+ 2x], let Xj,k be the set of points in arc(k, k + 1) cor-

responding to points in ϕ(Oj) ∩ S∗ and let Xj :=
⋃

k∈[2n+2x]Xj,k. By (ii), Xj,k is a finite

set. Note that the elements of {Xi : i ∈ [o]} are pairwise disjoint since O is a set of disjoint

cycles. Also, property (5) implies that for each j ∈ [o] and k ∈ [2n+ 2x], |Xj,k| is odd.

This implies that for all k ∈ [2n+ 2x], |X1,k ∪X2,k| (and hence |X1 ∪X2|) is even.

Let {zj : j ∈ [|X1 ∪X2|]} be the enumeration ofX1 ∪X2 such that if zj = ξα and zk = ξβ

for some j, k ∈ [|X1∪X2|] and α, β ∈ R with 0 < α < β < 2n+ 2x, then j < k. For j ∈ [2],

let Mj be the subset of D corresponding to ϕ(Oj). Each component of M1 ∪M2 is a

curve C which separates D and contains exactly two points in X1 ∪X2. It follows that

each component of D \ C contains an even number of points in X1 ∪X2, and hence C

contains exactly one point in Z1 := {z2j−1 : j ∈ [1
2
|X1 ∪ X2|]} and exactly one point

in Z2 := {z2j : j ∈ [1
2
|X1 ∪X2|]}. We therefore have |X1 ∩ Z1| = |X1 ∩ Z2|.
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Let j ∈ [n+ x] and k, ℓ ∈ [|X1 ∪X2|] be such that zk and zℓ are equivalent and are

in arc(f(j), f(j) + 1) and arc(g(j), g(j) + 1) respectively. For each a ∈ [g(j)− 1] \ [f(j)]

we have that |X1,a ∪X2,a| is even. For each a, b ∈ [|X1 ∪X2|] such that za ∈ X1,f(j) ∪

X2,f(j)\{zk} and zb is the point inX1,g(j) ∪X2,g(j) equivalent to za, we have that |{za, zb} ∩ arc(zk, zℓ)|

is even if and only if j ∈ [n]. Therefore, if j ∈ [n], then ℓ− k is odd and |(X1,f(j) ∪

X1,g(j)) ∩ Z1| = |(X1,f(j) ∪X1,g(j)) ∩ Z2|, and if j ∈ [n+ x] \ [n], then ℓ− k is even and

|(X1,f(j) ∪X1,g(j)) ∩ Z1| − |(X1,f(j) ∪X1,g(j)) ∩ Z2| is congruent to 2 modulo 4. Now,

0 = |X1 ∩ Z1| − |X1 ∩ Z2|

=
n+x∑
j=1

(
|X1,f(j) ∪X1,g(j) ∩ Z1| − |X1,f(j) ∪X1,g(j) ∩ Z2|

)
=

n+x∑
j=n+1

(
|X1,f(j) ∪X1,g(j) ∩ Z1| − |X1,f(j) ∪X1,g(j) ∩ Z2|

)

and therefore x is even. Hence, we may assume that property (6)(b) holds, and so o = 3.

For a set O′ of disjoint cycles in G, we define an auxiliary multigraph H(O′) whose

vertex set is the set of all components of S \
⋃
{ϕ(O) : O ∈ O′} where for each O ∈ O′,

there is an edge eO between the components that contain O in their boundary. We remark

that if there is only one component whose boundary contains O, then eO is a loop.

Claim. If O′ is a subset of O of size at least 2, then the graph H(O′) has no loop.

Proof. Without loss of generality, we may assume that {O1, O2} ⊆ O′, and it is suffi-

cient to prove the claim when {O1, O2} = O′. Recall that |Xj,k| is odd for each j ∈ [2]

and k ∈ [2n+ 2x]. Hence, |X1 ∪X2| is even. For all j ∈ [n] and α ∈ [0, 1], let Aj,α :=

arc(f(j) + α, g(j) + 1− α) and note thatAj,α \ {ξk : k ∈ [2(n+ x)]} is the disjoint union

arc(f(j) + α, f(j) + 1)∪arc(g(j), g(j) + 1− α)∪
⋃

{arc(k, k+1): k ∈ [g(j)−1]\[f(j)]}.
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Observe that |(X1 ∪X2) ∩ Aj,α| is even, because

|(X1 ∪X2) ∩ arc(f(j) + α, f(j) + 1)| = |(X1 ∪X2) ∩ arc(g(j), g(j) + 1− α)|.

Similarly, for all j ∈ [n+ x] \ [n] and α ∈ [0, 1], if ξf(j)+α /∈ X1 ∪X2, then

|(X1 ∪X2) ∩ arc(f(j) + α, g(j) + α)| ≡ 0 (mod 2),

because

|Xk ∩ (arc(f(j) + α, f(j) + 1) ∪ arc(g(j), g(j) + α))| = |Xk,f(j)|

for each k ∈ [2]. It follows that we can 2-colour the components of S∗ \ ϕ(O1 ∪O2) such

that every point in ϕ(O1 ∪ O2) ∩ S∗ is on the boundary of two components of different

colours. Now consider a curve C in S \ ϕ(O1 ∪O2) between two points in S∗ whose inte-

rior is entirely inD∗. LetX be the set of points inD corresponding to points in ϕ(O1 ∪O2)

and let Y be the set of points in D corresponding to points in C. Now each component

of X contains exactly two points in X1 ∪X2, so each component of S \ Y contains an

even number of points in X1 ∪X2. It follows that the endpoints of C are in components

of S∗ \ ϕ(O1 ∪O2) with the same colour. Now for every component Z of S \ ϕ(O1 ∪O2),

the components of S∗ \ ϕ(O1 ∪O2) contained in Z all have the same colour. Therefore,

H(O′) is 2-colourable, and hence contains no loop.

By property (6)(b), we have that s ≥ 1. By property (4) and (iii), there is a component

of S \ ϕ(
⋃

O) whose boundary intersects each of ϕ(O1), ϕ(O2), and ϕ(O3), which means

that some vertex of H(O) is incident with all three edges. If two edges of H(O) are

parallel, say eO1 and eO2 , then H({O1, O3}) has a loop, contradicting the claim. It follows

that H(O) is isomorphic to the star K1,3.

Without loss of generality, there are points z1 ∈ X1,1 and z2 ∈ X2,1 such that X3,1 ⊆
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arc(z1, z2). Since |X3,1| is odd, there are points za, zb ∈ X1,1 ∪X2,1 such that arc(za, zb)∩

(X1∪X2) is empty and arc(za, zb) ∩X3 is odd. It follows that each of the two components

of S \ ϕ(
⋃

O) whose boundary contains ϕ(O3) also contains either ϕ(O1) or ϕ(O2) in its

boundary, contradicting that H(O) is isomorphic to K1,3.

We conclude that neither property (6)(a) nor property (6)(b) holds. Hence, property (6)(c)

holds and n = x = 0. Let G′ be a graph obtained from G by adding for each i ∈ [3] a ver-

tex vi with neighbourhood V (
⋃

Pi) ∪ {vj : j ∈ [3] \ {i}}. Note that G′ is a planar graph.

Since W is connected, there is a V (O1)-V (O2)-path P in W that contains some edge e.

Note also that for each i ∈ [2] and j ∈ [3], the cycleOi contains a path in Pj by property (4).

Now

G′[{v1, v2, v3} ∪ V (O1 ∪O2 ∪ P )]/(E(O1 ∪O2 ∪ P ) \ {e})

is isomorphic to K5, a contradiction.

3.4 Applications and discussion

3.4.1 Characterization of the Erdős-Pósa property

In this subsection we derive Theorems 1.2.3 and 1.2.4. The following result directly implies

Theorem 1.2.3.

Theorem 3.4.1. For every three positive integersm, ω, and θ, there is a function fm,ω,θ : N → N

satisfying the following property. Let Γ =
∏

i∈[m] Γi be a product of m abelian groups

and let m′ ∈ {0} ∪ [m]. For every i ∈ [m], let Ωi be a subset of Γi with |Ωi| ≤ ω and

let Ai be the set of all elements g ∈ Γ such that πi(g) ∈ Γi \ Ωi. Let A :=
⋂

i∈[m]Ai and

let A′ :=
⋂

i∈[m′]Ai. Suppose that

(1) ⟨2a⟩ ∩ A′ ̸= ∅ for all a ∈ A′ and

(2) for all a, b, c ∈ Γ, if ⟨a, b, c⟩ ∩ A′ ̸= ∅, then (⟨a, b⟩ ∪ ⟨b, c⟩ ∪ ⟨a, c⟩) ∩ A′ ̸= ∅.
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Let G be a graph with a Γ-labelling γ such that for each i ∈ [m] \ [m′], every wall in G of

order at least θ contains a cycle whose γi-value is nonzero.1 Let O be the set of all cycles

of G whose γ-value is in A. Then for all k ∈ N there exists either a set of k disjoint cycles

in O, or a hitting set for O of size at most fm,ω,θ(k).

Proof. We set fm,ω,θ(k) := fm,ω(k, k, θ) for the function fm,ω as in Theorem 3.3.2.

Assume for a contradiction that there exists neither a set of k disjoint cycles in O,

nor a hitting set for O of size at most fm,ω,θ(k). Then by Theorem 3.3.2 there exists a

Γ-labelling γ′ of G that is shifting equivalent to γ and a subgraph H of G such that for

some J ⊆ [m] and for the (Γ/ΓJ)-labelling γ′′ induced by the restriction of γ′ to H , we

have (H, γ′′) ∈ C(κ, θ,Γ/ΓJ , A+ ΓJ). Let W be a wall of order θ, t be a positive integer,

and (Pi : i ∈ [t]) be a family of pairwise disjoint non-mixing W -handlebars with H =

W ∪
⋃
{
⋃

Pi : i ∈ [t]} as in Definition 3.3.1.

Since by Definition 3.3.1(2) every cycle inW is γ′′-zero, we conclude that [m] \ [m′] ⊆ J .

By property (1) and Definition 3.3.1(5), we obtain that Pi is in series for each i ∈ [t]. In

particular, Definition 3.3.1(6)(b) and (6)(a) do not hold. By property (2), Definition 3.3.1(3)

and (4), we obtain that Definition 3.3.1(6)(c) does not hold as well, contradicting that (H, γ′′) ∈

C(κ, θ,Γ/ΓJ , A+ ΓJ).

As a consequence of Proposition 3.3.3, we now straightforwardly obtain Theorem 1.2.4.

Theorem 1.2.4. Let A be a nonempty subset of an abelian group Γ such that A does not

satisfy at least one of the following properties:

(1) for all a ∈ A, we have ⟨2a⟩ ∩ A ̸= ∅,

(2) for all a, b, c ∈ Γ with ⟨a, b, c⟩ ∩ A ̸= ∅, we have (⟨a, b⟩ ∪ ⟨b, c⟩ ∪ ⟨a, c⟩) ∩ A ̸= ∅.

Then the family of Γ-labelled cycles with weights in A does not satisfy the Erdős-Pósa

property.
1Instead, we could restrict to Γ-labelled graphs such that for each i ∈ [m] \ [m′], every subgraph of G of

tree-width at least θ contains a cycle whose γi-value is nonzero.
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Proof. First, suppose that for some a ∈ A we have that ⟨2a⟩ ∩ A = ∅. Let G be a graph

consisting of a wall W of order at least t+ 1 and a crossing W -handlebar P of size t+ 1

such that each row ofW contains at most one vertex of
⋃
P . Defining γ such that γ(e) = 0

for all e ∈ E(W ) and γ(P ) = a for all P ∈ P yields that (G, γ) ∈ C(t+ 1, t+ 1,Γ, A).

It now follows from Proposition 3.3.3 that there are no two disjoint cycles in O. Now

consider a set T ⊆ V (G) of size at most t. Note that there is some W -handle P ∈ P such

that for the two rows RW
i and RW

j which intersect P and for some column CW
k we have

that P ∪RW
i ∪RW

j ∪ CW
k is disjoint from T and contains a cycle in O. Hence, T is not a

hitting set for O as desired.

Now suppose that there are a1, a2, a3 ∈ Γ forming a counterexample to property (2).

By possibly replacing ai with another element of ⟨ai⟩ for each i ∈ [3], we may assume

that (a1 + a2 + a3) ∈ A. Let G be a graph consisting of a wall W of order at least t+ 2

and a set P = {Pi : i ∈ [3]} of three pairwise disjoint non-mixing W -handlebars each of

size t+ 1 and each in series. Defining γ such that γ(e) = 0 for all e ∈ E(W ) and γ(P ) = ai

for all i ∈ [3] and P ∈ Pi yields that (G, γ) ∈ C(t+ 1, t+ 2,Γ, A). It now follows from

Proposition 3.3.3 that there are no two disjoint cycles in O. Now consider a set T ⊆ V (G)

of size at most t. Note that there are two columns CW
ℓ1

, CW
ℓ2

of W and for each i ∈ [3],

there is a W -handle Pi ∈ Pi such that for the two rows RW
ji

and RW
ki

that intersect Pi, we

have that
⋃
{Pi ∪RW

ji
∪RW

ki
: i ∈ [3]} ∪ CW

ℓ1
∪ CW

ℓ2
is disjoint from T and contains a cycle

in O. Hence, T is not a hitting set for O as desired.

3.4.2 S-cycles of length ℓ modulo z

We now prove a generalization of Theorem 1.2.2 which additionally allows us to recover

many known Erdős-Pósa type results, as discussed in the introduction.

Corollary 3.4.2. Let ℓ, z, t, and L be integers with z ≥ 1 and t ≥ 0, and let pa11 · · · pann be

the prime factorization of z with pi < pi+1 for all i ∈ [n− 1]. The following statements are

equivalent.
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• There is a function f : N → N such that for every graphGwith a family S of t subsets

of V (G) and every positive integer k, eitherG contains k disjoint S-cycles of length ℓ

modulo z and of length at least L or a set of at most f(k) vertices hitting all such

cycles.

• All of the following conditions are satisfied.

(1) t ≤ 2.

(2) If p1 = 2, then ℓ ≡ 0 (mod pa11 ).

(3) There do not exist 3− t distinct i ∈ [n] for which ℓ ̸≡ 0 (mod paii ).

Proof. Letm := t+ 2, ω := max{L, z}, θ := 3, andm′ := t+ 1. For all i ∈ [t+ 2] \ {t+ 1},

let Γi := Z and Γt+1 := Zz. Let Γ :=
∏

i∈[m] Γi. For each i ∈ [t], let Ωi := {0}. Let Ωt+1 =

Zz \ {ℓ} and Ωt+2 := [L− 1]. For each i ∈ [m], let Ai be the set of all g ∈ Γ such

that πi(g) ∈ Γi \ Ωi. Let A :=
⋂

i∈[m]Ai and A′ :=
⋂

i∈[m′]Ai. For any graph G together

with a family S = (Si : i ∈ [t]) of subsets of V (G), we define a Γ-labelling γG,S as follows.

For each i ∈ [t], let γi(e) = 1 if e ∈ E(H) is incident with Si and γi(e) = 0 otherwise, and

let γi(e) := 1 for all e ∈ E(H) and each i ∈ [m] \ [t]. Let γG,S be the Γ-labelling of G for

which πi ◦ γG,S = γi for all i ∈ [m]. Let OG,S be the set of all S-cycles in G of length ℓ

modulo z and of length at least L. Then the γG,S-value of a cycle of G is in A if and only

if it is in OG,S .

Suppose that conditions (1), (2), and (3) are satisfied and let f := fm,ω,θ. To apply

Theorem 3.4.1, we verify that the two properties in Theorem 3.4.1 are satisfied for the

subset A′ of Γ.

Let g ∈ A′. By condition (2), gcd(2ℓ, z) = gcd(ℓ, z), which implies that ⟨2ℓ⟩ = ⟨ℓ⟩

in Zz. Let x be a nonzero integer such that ℓ ≡ x(2ℓ) (mod z). Now for all i ∈ [t], we

have that xπi(g) ̸= 0 since πi(g) ̸= 0. We conclude that ⟨2g⟩ ∩ A′ ̸= ∅.

Let g1, g2, g3 ∈ Γ be such that ⟨g1, g2, g3⟩ ∩ A′ ̸= ∅. Then there exist integers x1, x2, x3

such that
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• x1πi(g1) + x2πi(g2) + x3πi(g3) ̸= 0 for all i ∈ [t] and

• x1πt+1(g1) + x2πt+1(g2) + x3πt+1(g3) = ℓ.

Let I ⊆ [n] denote the set of indices i ∈ [n] such that ℓ ̸≡ 0 (mod paii ). Note that for

each i ∈ I , we have that gcd(ℓ, paii ) ≥ gcd(πt+1(g1), πt+1(g2), πt+1(g3), p
ai
i ), and so there

exists di ∈ {g1, g2, g3} such that gcd(ℓ, paii ) ≥ gcd(πt+1(di), p
ai
i ). For each i ∈ I , let qi :=∏

j∈[n]\{i} p
aj
j and let yi be an integer such that (yiqi)πt+1(di) ≡ ℓ (mod paii ). Let

ĝ :=
∑
i∈I

(yiqi)di.

Note that for every g ∈ Γ, we have that πt+1(ĝ + zg) = ℓ. LetK be an integer that is greater

than |πi(g)| for all i ∈ [t] and g ∈ {g1, g2, g3, ĝ}. For i ∈ [t], let ci ∈ {g1, g2, g3} such

that πi(ci) ̸= 0. Such an element exists because x1πi(g1) + x2πi(g2) + x3πi(g3) ̸= 0. By

conditions (1) and (3), we have that {cj : j ∈ [t]} ∪ {dj : j ∈ I} is a subset of {g1, g2, g3}

of size at most 2, and by construction we have that

ĝ +
∑
i∈[t]

(Kiz)ci ∈ ⟨{ci : i ∈ [t]} ∪ {di : i ∈ I}⟩ ∩ A′.

Therefore, both properties of Theorem 3.4.1 are satisfied. Let G be a graph and let S =

(Si : i ∈ [t]) be a family of subsets of V (G) and let γ := γG,S and O := OG,S as defined

above. Note that since the γm-value of every edge of G is positive, every wall in G con-

tains a cycle whose γm-value is nonzero. Now applying Theorem 3.4.1, we conclude that

either G contains k disjoint cycles in O or a hitting set for O of size at most f(k).

Now suppose that f is a function as in the first statement. Let I ⊆ [n] denote the set

of indices i ∈ [n] such that ℓ ̸≡ 0 (mod paii ). Let G be a graph consisting of a wall W of

order at least f(2) + 2 together with a set P = {Pi : i ∈ I} ∪ {Qi : i ∈ [t]} of size |I|+ t

of pairwise disjoint non-mixing W -handlebars, each of size at least f(2) + 1 such that

1. every NW -path in W has length (|L|+ 1)z
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2. for all i ∈ [t], every W -handle in Qi has length 2z,

3. for all i ∈ I , every W -handle in Pi has length congruent to ℓ modulo paii and con-

gruent to 0 modulo pajj for all j ∈ [n] \ I ,

4. for every P ∈ P, if 1 ∈ I , p1 = 2 and P = P1, then P is crossing and disjoint from

the first column of W , and P is in series and disjoint from the last column of W ,

otherwise.

For each i ∈ [t], let Si := V (
⋃
Qi) \ V (W ), let S := (Si : i ∈ [t]). Let γ be the (Γ/Γ{m})-

labelling induced by γG,S and let O := OG,S as defined above. Note that a cycle of G

is in O if and only if its γ-value is in A + Γ/Γ{m}. Note that for C(f(3) + 1, f(3) +

2,Γ/Γ{m}, A + Γ{m}), we have that (G, γ) satisfies properties (1)–(5) of Definition 3.3.1.

In particular, every cycle of G which contains exactly one W -handle from each P ∈ P

is in O. Consider a set T ⊆ V (G) of size at most f(3). Now there are two columns

C and C ′ of W and for each P ∈ P there is a W -handle PP ∈ P such that for the two

rows RP and R′
P which intersect P we have that

⋃
{PP ∪RP ∪R′

P : P ∈ P} ∪ C ∪ C ′ is

disjoint from T and contains a cycle in O. By the definition of f , we have that G con-

tains three disjoint cycles in O. Hence, for the (Γ/Γ{m})-labelling γ′ induced by γ, we

have that (G, γ′) /∈ C(f(2) + 1, f(3) + 2,Γ/Γ{m}, A+ Γ{m}) by Proposition 3.3.3. Now

if p1 = 2, then since property (6)(a) is not satisfied, we have that 1 /∈ I . Therefore, condi-

tion (2) holds. Now every W -handlebar in P is in series, and so given that property (6)(c)

is not satisfied, we have that conditions (1) and (3) hold, as desired.

3.4.3 Restriction to graphs embeddable in orientable surfaces

In this subsection, we study the implications of Theorem 3.3.2 when restricting to the class

of graphs embeddable in a fixed orientable surface.

Proposition 3.4.3. Let Γ be an abelian group, let A ⊆ Γ and let κ ≥ 2 and θ be positive

integers. The following statements are equivalent.
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(i) Every graph in C(κ, θ,Γ, A) satisfies property (6)(a).

(ii) Every graph in C(κ, θ,Γ, A) is non-planar.

(iii) For every X ⊆ Γ such that
∑

g∈X g ∈ A and ⟨Y ⟩ ∩ A = ∅ for every Y ⊊ X , we

have |X| ≤ 2 and if |X| = 2, then ⟨2X⟩ ∩ A ̸= ∅.

Proof. It is easy to see that a wall together with a crossing handlebar of size at least 2 forms

a non-planar graph, and hence that statement (i) implies statement (ii).

Now suppose that statement (iii) holds, and consider some (G, γ) ∈ C(κ, θ,Γ, A). LetW

be the wall and let P = (Pi : i ∈ [t]) be the family of W -handlebars described in Defini-

tion 3.3.1. Let (Pi : i ∈ [t]) be a family such that Pi ∈ Pi for all i ∈ [t], and let X =

{γ(Pi) : i ∈ [t]}. By property (4), for every Y ⊊ X we have that ⟨Y ⟩ ∩ A = ∅, so |X| ≤ 2

and ⟨2X⟩ ∩ A ̸= ∅. NowG does not satisfy property (6)(c) since this would require |X| ≥ 3,

so in particular at least one W -handlebar in P is not in series. Hence, ⟨2X⟩ ∩ A = ∅ by

property (5) and so |X| = 1. We conclude that G satisfies property (6)(a), and therefore

statement (i) holds.

Now suppose that X ⊆ Γ is a counterexample to the statement (iii). If |X| ≥ 3, then

it is easy to see that C(κ, θ,Γ, A) contains some (G, γ) where (Px : x ∈ X) is the fam-

ily of W -handlebars, each of which is in series, with γ(P ) = x for all P ∈ Px, and G is

planar. Otherwise, letX = {x1, x2}, where ⟨2x1, 2x2⟩ ∩ A = ∅. If ⟨2x1, x2⟩ ∩ A = ∅, then

set (g1, g2) := (x1, x2) and otherwise let a and b be integers such that ax2 + 2b(x1 + x2) ∈ A

and set (g1, g2) := (ax2, 2b(x1 + x2)). Observe that {g1, g2} is a counterexample to the

statement (iii) with ⟨2g1, g2⟩ ∩ A = ∅. Now it is easy to see that C(κ, θ,Γ, A) contains

some (G, γ) where (P1,P2) is the family of W -handlebars with P1 nested, P2 in series,

and γ(P ) = gi for all P ∈ Pi. As before, G is planar. Therefore, statement (ii) implies

statement (iii).

If every graph in C(κ, θ,Γ, A) is non-planar, then no Γ-labelled planar graph contains

any of them, so restricting the class of graphs in Theorem 3.3.2 to planar graphs yields an
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Erdős-Pósa type result. In fact, it is not hard to see that for sufficiently large κ and θ every

graph in C(κ, θ,Γ, A) which satisfies property (6)(a) contains a large Escher wall. It is

known that large Escher walls are not embeddable on any fixed compact orientable surface

(see for example [1]). Thus we obtain the following corollary.

Corollary 3.4.4. For every pair of positive integers m and ω and every compact ori-

entable surface S, there is a function f : N → N satisfying the following property. Let

Γ =
∏

i∈[m] Γi be a product of m abelian groups, and for each i ∈ [m], let Ωi be a subset

of Γi with |Ωi| ≤ ω. Let A be the set of all elements g ∈ Γ such that πi(g) ∈ Γi \ Ωi for all

i ∈ [m]. Suppose that

for every X ⊆ Γ, if
∑

g∈X g ∈ A, then there are some integer y ≤ 2 and a

subset Y of X of size y such that ⟨yY ⟩ ∩ A ̸= ∅.

Let G be a Γ-labelled graph embeddable in S with Γ-labelling γ and let O be the set of all

cycles of G whose γ-value is in A. Then for all k ∈ N there exists either a set of k disjoint

cycles in O, or a hitting set for O of size at most f(k).

Corollary 3.4.5. Let A be a nonempty subset of an abelian group Γ such that A does not

satisfy the following property:

(1) for every X ⊆ Γ, if
∑

g∈X g ∈ A, then there are some integer y ≤ 2 and a subset Y

of X of size y such that ⟨yY ⟩ ∩ A ̸= ∅.

For every positive integer t, there is a planar graph G with a Γ-labelling γ such that for

the set O of cycles of G with values in A, there are no three disjoint cycles in O and there

is no hitting set for O of size at most t.

Proof. Let X ⊆ Γ be a counterexample to (1) of minimum size. If |X| ≥ 3, then A does

not satisfy the second property in Theorem 1.2.4, and the graph constructed in the proof of

Theorem 1.2.4 is planar. Hence we may assume thatX = {x1, x2} for some pair of distinct

58



elements of Γ (since property (1) is trivially satisfied by subsets of Γ of size at most 1). As

in the proof of Proposition 3.4.3, we may assume that ⟨2x1, x2⟩ ∩ A = ∅.

LetG be a graph consisting of a wallW of order at least t+ 2 and a pair P = {Pi : i ∈ [2]}

of disjoint non-mixing W -handlebars each of size t+ 1, such that P1 is nested and P2 is

in series. Defining γ such that γ(e) = 0 for all e ∈ E(W ) and γ(P ) = xi for all i ∈ [2]

and P ∈ Pi yields that (G, γ) ∈ C(t+ 1, t+ 2,Γ, A). It now follows from Proposition 3.3.3

that there are no three disjoint cycles in O. Now consider a set T ⊆ V (G) of size at

most t. Note that there are two columns CW
ℓ1

, CW
ℓ2

of W and for each i ∈ [2], there is

a W -handle Pi ∈ Pi such that for the two rows RW
ji

and RW
ki

that intersect Pi, we have

that
⋃
{Pi ∪RW

ji
∪RW

ki
: i ∈ [3]} ∪ CW

ℓ1
∪ CW

ℓ2
is disjoint from T and contains a cycle in O.

Hence, T is not a hitting set for O as desired.

For example, cycles that are either odd or of length 16 modulo 30 satisfy an Erdős-Pósa

type theorem when restricted to planar graphs, whereas the cycles that are either odd or of

length 106 modulo 210 do not, and neither do cycles of length 1 modulo 6.

We will now derive the exact characterization of when cycles of length ℓ modulo z

satisfy an Erdős-Pósa type result in planar graphs.

Theorem 1.2.6. Let ℓ and z be integers with z ≥ 2, let pa11 · · · pann be the prime factorization

of z with pi < pi+1 for all i ∈ [n− 1], and let S be a compact orientable surface. The

following statements are equivalent.

• There is a function f : N → N such that for every integer k, every graph embeddable

in S contains k vertex-disjoint cycles of length ℓ modulo z or a set of at most f(k)

vertices hitting all such cycles.

• Both of the following conditions are satisfied.

1. If p1 = 2, then either ℓ ≡ 0 (mod pa11 ) or ℓ ≡ 0 (mod z/pa11 ).

2. There do not exist distinct i1, i2, i3 ∈ [n] such that ℓ ̸≡ 0 (mod p
aij
ij

) for each j ∈ [3].
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Proof. First suppose that the second statement holds. By Theorem 1.2.2, we may as-

sume that p1 = 2, ℓ ̸≡ 0 (mod pa11 ), and ℓ ≡ 0 (mod z/pa11 ). Then ℓ = q2t−1(z/pa11 )

for some t ∈ [a1] and some odd integer q. Let Γ := Zz and let A := {ℓ}. Let X be a

subset of Γ such that
∑

g∈X g = ℓ. Let Γ′ be the subgroup of Γ generated by 2t together

with {z/paii : i ∈ [n] \ {1}}, and note that ℓ /∈ Γ′. In particular there is some x ∈ X \ Γ′.

Note that x · (z/2a1) = q′2t
′−1 for some t′ ∈ [t] and some odd integer q′. In particular,

Y := {x} is a subset of X of size 1 such that ℓ ∈ ⟨Y ⟩. The first statement now follows

from Corollary 3.4.4.

Suppose instead that the second statement does not hold, and let Γ := Zz and A :=

{ℓ} ⊆ Γ. Let J ⊆ [n] be the set of indices such that ℓ ̸≡ 0 (mod p
aj
j ), and let (bj : j ∈ J)

be a family of integers such that for the setX := {bj(z/p
aj
j ) : j ∈ J} we have that

∑
g∈X g = ℓ.

Now if |J | ≥ 3, then X has no subset Y of size at most 2 such that ℓ ∈ ⟨Y ⟩. Otherwise

we have that {2} ⊊ {pj : j ∈ J}, from which it follows that |X| = 2 and ℓ /∈ ⟨2X⟩. Now

Corollary 3.4.5 implies that the first statement does not hold.

When considering surface embeddings of graphs, it is also natural to consider the ho-

mology classes of cycles. For graphs embedded in a fixed compact surface, Huynh, Joos,

and Wollan obtained a half-integral Erdős-Pósa result for the non-null-homologous cycles

of the embedding [23, Theorem 6], and an integral Erdős-Pósa result for these cycles when

the surface is orientable [23, Corollary 41]. They did this by considering a different type of

group labelling, where the two orientations of each edge are assigned labels that are inverse

to each other.

Since in our setting we do not distinguish between the two orientations of an edge, we

are unable to directly apply our results to homology classes in the first homology group

with coefficients in Z. However orientations can be ignored when considering the first

homology group with coefficients in Z2, and so our results are applicable. Note that for a

closed orientable surface, the set of simple closed curves homologous to zero for the Z2-

homology is exactly the same as for the Z-homology. This follows the universal coefficient
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theorem (see [22]), which allows us to relate the Z-homology with the Z2-homology by

taking all coefficients modulo 2. We then apply a classical result which states that no simple

closed curve has Z-homology class kh for any integer k ≥ 2 and any nonzero element h of

the Z-homology (see for example [35]).

The following elementary observation allows us to encode the Z2-homology classes of

cycles in our group labelling setting (see [20, Proposition 3.5] for a proof). A graph H

is called even if every vertex of H has even degree. For a graph G, let C(G) denote the

cycle space of G over Z2, which is the vector space of all even subgraphs H of G with the

symmetric difference as the operation.

Observation 3.4.6. Let G be a graph, let Γ be an abelian group, and let ϕ : C(G) → Γ be

a group homomorphism. Then there is a Γ-labelling γ of G such that γ(H) = ϕ(H) for

every even subgraph H of G.

We also need the following lemma.

Lemma 3.4.7 ([14, Lemma B.6]). Let S be a compact surface, and let C be a finite set of

disjoint circles in S. Assume that

• S \
⋃

C has a component D0 whose closure in S meets every circle in C, and

• no circle in C bounds a disk in S that is disjoint from D0.

Then |C| is at most the Euler characteristic of S.

We now obtain a strengthening of the integral Erdős-Pósa result of Huynh, Joos, and

Wollan for graphs embedded in a fixed orientable surface [23, Corollary 41].

Corollary 3.4.8. Let S be a compact orientable surface with Z2-homology group Γ and

let A be a set of Z2-homology classes of S. There exists a function f : N → N such that

for all k ∈ N and every graph G embedded in S there exists either k disjoint cycles whose

Z2-homology classes are in A, or a hitting set for these cycles of size at most f(k).
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Proof. We will apply Theorem 3.3.2 withm := 1, ω := |Γ \ A|, Γ1 := Γ, and Ω1 := Γ \ A.

Let κ and θ be integers such that κ is greater than the Euler characteristic of S and no graph

containing a wall W of order θ and a crossing W -handlebar of size κ is embeddable in S,

and let f(k) := f1,ω(k, κ, θ). Let G be a graph embedded in S, and let γ be a Γ-labelling

of G such that γ(H) is the Z2-homology class of H for every even subgraph H of G

(see Observation 3.4.6). Assume for a contradiction that there are neither k disjoint cycles

whose Z2-homology classes are in A, nor a hitting set for these cycles of size at most f(k).

By Theorem 3.3.2, for some γ′ that is shifting-equivalent to γ there is a subgraph H of G

such that for some J ⊆ [1] and for the (Γ/ΓJ)-labelling γ′′ induced by the restriction of γ′

to H , we have (H, γ′′) ∈ C(κ, θ,Γ/ΓJ , A+ ΓJ). Note that by properties (3) and (4) of

Definition 3.3.1, we have that Γ/ΓJ is not the trivial group, and hence J = ∅. Let W be the

wall in H and let P be the family W -handlebars in H described in Definition 3.3.1. By our

choice of κ and θ, we have that P contains no crossing W -handlebar, so by property (6)

some W -handlebar P in P is in series. Consider the set S of cycles in the union of the first

and last column of W together with
⋃

P , and note that |S| = κ. Hence by Lemma 3.4.7

there is a cycle O in S whose image in S bounds a disc, and hence γ(O) = γ′(O) = 0.

But now by property (2) for the P ∈ P contained in O we have γ′(P ) = 0, contradicting

properties (3) and (4).

3.4.4 A negative result for finite allowable subsets of infinite groups

In this subsection, we show that when the set of allowable values of cycles is a nonempty

finite subset of an infinite abelian group, then the Erdős-Pósa property fails for the allow-

able cycles. In fact, we show that a (1/n)-integral analogue of the Erdős-Pósa theorem fails

for every positive integer n.

Theorem 3.4.9. Let A be a nonempty finite subset of an infinite abelian group Γ. For

integers s ≥ 2 and t ≥ 1, there is a graph G with a Γ-labelling γ such that

• for every set of s cycles of G whose γ-values are in A, there is a vertex that belongs
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to all of the s cycles and

• there is no hitting set of size at most t for the set O of all cycles of G whose γ-values

are in A.

Proof. Let α ∈ A. We claim that there is an infinite set {gi : i ∈ N} of elements of Γ such

that for all integers k′ with 0 ≤ k′ ≤ s(t+ 1) and for all distinct finite subsets S1, S2 ⊆ N,

we have

k′α +
∑
i∈S1

gi −
∑
j∈S2

gj ̸∈ A. (3.1)

Indeed, if Γ has an element g′ of infinite order, then we may choose a sufficiently large mul-

tiple g of g′ so that no nonzero element of ⟨g⟩ is in the finite set {α′−k′α : α′ ∈ A, 0 ≤ k′ ≤

s(t+1)}. Then {2ig : i ∈ N} satisfies (3.1). Otherwise, if every element of Γ has finite or-

der, then we may sequentially choose an arbitrary element gi ̸∈ ⟨A ∪ {gj : 1 ≤ j ≤ i− 1}⟩

for all i ∈ N. This proves the claim.

We will construct a graph by constructing s(t+ 1) edge-disjoint cycles with the prop-

erty that any set of s of them share a common vertex but no vertex is contained in more

than s of them.

Let V be the set of subsets of [s(t+ 1)] of size s, let W := [s(t+ 1)]× [
(
s(t+1)−1

s−1

)
]

and let G be the complete bipartite graph with bipartition (V,W ). For each i ∈ [s(t+ 1)],

let Oi be a cycle of G whose vertex set is exactly the union of {i} × [
(
s(t+1)−1

s−1

)
] and the

set of vertices in V which contain i. Let ei be an arbitrary edge of Oi. Observe that

E(Oi) ∩ E(Oj) = ∅ for distinct i, j. Let γ be a Γ-labelling of G assigning each edge

in E(G) \ {ei : i ∈ [s(t+ 1)]} a distinct value in {gi : i ∈ N}, and for each i ∈ [s(t+ 1)]

assigning ei the value α− γ(Oi − ei). Each vertex of G is contained in at most s cycles in

{Oi : i ∈ [s(t+1)]}, so every hitting set for {Oi : i ∈ [s(t+1)]} has size at least t+ 1, and

by construction for every set of s cycles in {Oi : i ∈ [s(t+1)]}, there is a vertex that belongs

to all of the s cycles. We will finish the proof by showing that O = {Oi : i ∈ [s(t+ 1)]}.
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By definition, we have γ(Oi) = α ∈ A for each i ∈ [s(t + 1)]. Now suppose

that O ∈ O. Let I := {i ∈ [s(t+ 1)] : ei ∈ E(O)}, let F := E(O) \ {ei : i ∈ I}, and let

F ′ :=
⋃

i∈I(E(Oi) \ {ei}). Then

γ(O) =
∑
i∈I

(α− γ(Oi − ei)) +
∑
e∈F

γ(e) = |I|α +
∑
e∈F

γ(e)−
∑
e∈F ′

γ(e),

so by (3.1), we have F = F ′. Since O is a cycle and cycles in {Oi : i ∈ [s(t+ 1)]} are

edge-disjoint, we deduce that |I| = 1 and O = Oi for some i ∈ [s(t+ 1)]. Hence, O =

{Oi : i ∈ [s(t+ 1)]}.

3.4.5 Open problems

We now discuss some interesting directions for future research in this area.

Problem 2. Let Γ be an abelian group. Characterize the subsets A of Γ for which there is

a function f : N → N such that for every positive integer k, every Γ-labelled graph (G, γ)

either contains k disjoint cycles whose γ-value is in A or a hitting set for those cycles of

size at most f(k).

As seen in Theorem 3.4.9, for an infinite group such a set A needs to be infinite as well.

This problem is already interesting for the group Z.

As a surprising negative result, for every positive integer t, there exists a Z-labelled

graph (G, γ) with no two disjoint cycles with γ-value at least 0 and no hitting set for these

cycles of size at most t. Let G be the graph with vertex set {vi : i ∈ [4t+ 4]}, where

each vertex with an even index 2i is adjacent to all vertices with odd indices j for which

j ≤ 2i+ 1. Let γ be the Z-labelling of G which assigns value t+ 3 to the edge v2iv2i+1

for all i ∈ [2t+ 1] and value −1− t to all other edges. In every cycle of this graph, both

edges incident to the vertex of highest index in the cycle and both edges incident to the

vertex of lowest index in the cycle have value −1− t, so there are at least two more edges

of value −1− t than of value t+ 3. From this it is easy to verify that the construction
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satisfies the desired properties, assuming t ≥ 2. This construction can easily be adapted to

apply to cycles of γ-value at least L for any integer L. This is in contrast to the case of

cycles of length at least L, where Thomassen [37] showed that an Erdős-Posa result holds.

Thus we also present the following variant of Problem 2.

Problem 3. Characterize the subsets A of N for which there is a function f : N → N such

that for every positive integer k, every graph G either contains k disjoint cycles whose

lengths are in A or a hitting set for these cycles of size at most f(k).

The construction presented above can also be adapted to show that a (1/n)-integral

analogue of the Erdős-Pósa theorem fails for cycles of non-negative value in Z-labelled

graphs for every positive integer n. Interestingly, we know of no natural example where a

half-integral analogue of the Erdős-Pósa theorem fails but some fractional analogue of the

Erdős-Pósa theorem holds. In fact, we conjecture the following.

Conjecture 3.4.10. Let Γ be an abelian group, let A ⊆ Γ, let s ≥ 3 be an integer and

let f : N → N be a function such that for every Γ-labelled graph (G, γ) and every positive

integer k, either G contains k cycles whose γ-values are in A such that no subset of s

of these cycles share a common vertex, or there is a hitting set for these cycles of size at

most f(k). Then there is a function f ′ : N → N such that for every Γ-labelled graph (G, γ)

and every positive integer k, either G contains k cycles whose γ-values are in A such that

three of these cycles share a common vertex, or there is a hitting set for these cycles of size

at most f ′(k).

If we allow ourselves to restrict the class of Γ-labelled graphs considered, then there

are examples for which this conjecture fails. However, we know of no counterexample if

we only allow ourselves to restrict the class of graphs considered, but do not restrict the

Γ-labellings of these graphs.
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CHAPTER 4

FLAT WALL THEOREM FOR UNDIRECTED GROUP-LABELLED GRAPHS

This chapter is dedicated to proving Theorem 3.1.1. We will separately deal with the two

outcomes of the flat wall theorem (Theorem 2.6.1).

4.1 Large Kt-model

In this section we consider the case where G contains a large Kt-model. As discussed

in section 3.1, we need some additional definitions and lemmas related to the trees of a

Kt-model.

Let T be a tree and let U ⊆ V (T ). Then the smallest subtree of T containing all vertices

in U is the U -subtree of T . For example, if |U | = 2, say U = {u, v}, then U -subtree of T

is the path uTv. Suppose T is a tree in a graph G and F ⊆ E(G) is such that each edge in

F has exactly one endpoint in T and no two edges of F share an endpoint outside of T (so

that T ∪F is a tree). Then the F -extension of T is the V (F )-subtree of T ∪F , where V (F )

is the set of endpoints of the edges in F . For n ∈ N, an n-star is a graph isomorphic to a

subdivision of K1,n. If n ≥ 3, the center of an n-star is the unique vertex of degree greater

than 2 and a leg is a path from its center to a leaf.

Let µ be a Km-model in a Γ-labelled graph (G, γ) where V (Km) = {v1, . . . , vm}. For

distinct i, j ∈ [m], let us denote the two endpoints of the edge µ(vivj) in the trees µ(vi)

and µ(vj) by µ(vivj)i and µ(vivj)j respectively. Fix i ∈ [m] and let d ∈ N. We say that a

vertex s ∈ V (µ(vi)) is d-central if no connected component of µ(vi)− s contains µ(vivj)i

for at least m − 1 − d distinct indices j ∈ [m] − {i}. In other words, if e ∈ E(µ(vi)) is

incident to s, then the connected component of µ(vi)− e containing s contains µ(vivj)i for

more than d indices j ∈ [m]− {i}.

It is easy to see that a d-central vertex always exists if d < m−1
2

: start from an arbitrary
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vertex s in µ(vi) and, as long as the current vertex is not d-central, move towards the

(unique) component T of µ(vi) − s for which there are at least m − 1 − d > m−1
2

indices

j such that µ(vivj)i ∈ V (T ). Since d < m−1
2

, this process cannot backtrack and must end

eventually.

Let Cd
i denote the set of d-central vertices in µ(vi). The vertices of Cd

i form a subtree in

µ(vi): if s′, s′′ are distinct vertices in Cd
i and s is in the interior of the path s′µ(vi)s′′, then

each connected component T of µ(vi)− s is contained in a connected component of either

µ(vi)−s′ or µ(vi)−s′′, so there are less thanm−1−d indices j such that µ(vivj)i ∈ V (T ).

Let u ∈ V (µ(vi)) and let j1, j2, j3 ∈ [m]−{i} be distinct. If the {µ(vivj1), µ(vivj2), µ(vivj3)}-

extension of µ(vi) is a 3-star centered at u, then we say that u branches to {µ(vj1), µ(vj2), µ(vj3)},

or simply to {vj1 , vj2 , vj3} if there is no ambiguity of the model. If Y ⊆ [m]− {i}, we say

that u branches avoiding Y if there exist j1, j2, j3 ∈ [m]−{i}− Y such that u branches to

{vj1 , vj2 , vj3}. We say that a vertex u ∈ V (µ(vi)) is d-branching if u branches avoiding Y

for all Y ⊆ [m]−{i} with |Y | ≤ d. If u is 0-branching, we simply say that u is branching.

The set of branching vertices of a Km-model µ is denoted b(µ). The following proposition

is immediate.

Proposition 4.1.1. Let µ be a Km-model with m ≥ 4. Then the union of all b(µ)-paths

in µ is a subdivision of a 3-connected graph H where V (H) = b(µ) and the edges of H

correspond to the b(µ)-paths in µ.

If m ≥ 4, then clearly each tree µ(vi) contains a branching vertex. If d ≥ 1 however,

then a d-branching vertex need not always exist. For example, µ(vi) could be a path with

each vertex incident to only a few edges of the form µ(vivj). The following lemma shows

that this is essentially the only obstruction:

Lemma 4.1.2. Let 0 < d < m−1
2

be an integer and suppose µ(vi) does not contain a

d-branching vertex. Then

1. the Cd
i -subtree of µ(vi) is a path R, and
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2. for each s ∈ Cd
i , there are at most 3d indices j ∈ [m] − {i} such that the (possibly

trivial) µ(vivj)i-Cd
i -path in µ(vi) ends at s. In particular, at least m−1−6d of these

paths end at an internal vertex of R.

Proof. Suppose that the Cd
i -subtree of µ(vi) is not a path. Then there exists a vertex u ∈ Cd

i

that is adjacent in µ(vi) to at least three vertices in Cd
i , say s1, s2, and s3. For each k ∈ [3],

since sk is d-central, there are more than d indices j ∈ [m]−{i} such that µ(vivj)i ∈ V (Tk),

where Tk is the connected component of µ(vi)−u containing sk. Thus, for all Y ⊆ [m]−{i}

with |Y | ≤ d, there is an index jk ̸∈ Y such that µ(vivjk)i ∈ V (Tk). This implies that u is

d-branching and proves the first statement of the lemma.

Now let s ∈ Cd
i . For each connected component T of µ(vi)− s not containing a vertex

in Cd
i , there are at most d indices j ∈ [m]−{i} such that µ(vivj)i ∈ V (T ), since otherwise

the neighbour of s in T would be d-central. Let J denote the set of indices j ∈ [m] − {i}

such that the µ(vivj)i-Cd
i -path in µ(vi) ends at s. The second statement of the lemma asserts

that |J | ≤ 3d.

Suppose |J | ≥ 3d + 1. We show that s must then be d-branching. Let Y ⊆ [m] − {i}

with |Y | ≤ d and let c denote the number of indices j ∈ J − Y such that s = µ(vivj)i.

Note that |J − Y | ≥ 2d+ 1.

If c ≥ 3, then clearly s branches avoiding Y , so we may assume c ∈ {0, 1, 2}. Then

there are at least 2d−c+1 indices j ∈ J−Y such that µ(vivj)i is contained in a connected

component of µ(vi) − s not containing a vertex in Cd
i . But each such component contains

µ(vivj)i for at most d indices j ∈ J − Y , so there are at least 3 − c distinct connected

components of µ(vi)− s containing µ(vivj)i for some j ∈ J −Y . These 3− c components

together with the c edges on s imply that s branches avoiding Y . Hence s is d-branching

and this proves the second statement of the lemma.

We now show, as discussed in Remark 2.5.1, that if µ is a Γ-bipartiteKm-model,m ≥ 4,

then (µ, γ) is a Γ-bipartite Γ-labelled graph.
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Lemma 4.1.3. Let m ≥ 4 and let µ be a Γ-bipartite Km-model in a Γ-labelled graph

(G, γ). Then (µ[V (Km)], γ) is a Γ-bipartite Γ-labelled graph.

Proof. Write V (Km) = {v1, . . . , vm}. Let us first prove the following claim.

Claim 4.1.3.1. If P is a b(µ)-path in µ, then 2γ(P ) = 0.

Proof. If m = 4, then µ[V (Km)] is Γ-bipartite by definition and the claim follows by

Proposition 4.1.1 and Lemma 2.2.2.

So suppose m ≥ 5 and let P be a b(µ)-path in µ with endpoints u and w. First suppose

that u and w are in different trees of µ, say in µ(v1) and µ(v2) respectively. Since u

is branching, there are two indices in [m] − {1, 2}, say 3 and 4, such that u branches

to {v2, v3, v4}. Thus u is also a branching vertex in the K4-submodel η of µ restricted

to {v1, v2, v3, v4}. Since the claim holds for m = 4, if w is also branching in η, then

2γ(P ) = 0 as desired. Otherwise, sincew is branching in µ but not in η, there exists another

index in [m]− {1, 2, 3, 4}, say 5, such that w branches to both {v1, v3, v5} and {v1, v4, v5}.

Furthermore, u must branch to at least one of {v2, v3, v5} or {v2, v4, v5}. Without loss of

generality, assume that u branches to {v2, v3, v5}. Then u and w are both branching in the

K4-submodel of µ restricted to {v1, v2, v3, v5}, so 2γ(P ) = 0. See Figure 4.1a.

So we may assume that u and w are in the same tree, say µ(v1). Since u and w are both

branching in µ, there are four indices in [m]− {1}, say 2, 3, 4, and 5, such that u branches

to both {v2, v3, v4} and {v2, v3, v5} and w branches to both {v2, v4, v5} and {v3, v4, v5}.

For the rest of the proof of this claim, we only consider theK5-submodel of µ restricted

to {v1, . . . , v5}. For notational convenience we simply assume that µ is a K5-model.

Let η be the K4-submodel of µ restricted to {v2, v3, v4, v5} and, for i ∈ {2, 3, 4, 5}, let

xi be the unique vertex in µ(vi) that is branching in η. Let Qij denote the unique xi-xj-path

in µ[vi, vj] for i, j ∈ {2, 3, 4, 5}. Note that 2γ(Qij) = 0 by the m = 4 case of the claim.

Let Pi denote the u-xi-path in µ[v1, vi] for i ∈ {2, 3} and let yi be the closest vertex to

u on Pi such that yi ∈ V (µ(vi)) and yi is branching in µ. Similarly, for j ∈ {4, 5}, let Pj
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P2P3
P4 P5

(b)

Figure 4.1: A b(µ)-path P in a K5-model µ. Each ellipse indicates
a tree µ(vi).

denote the w-xj-path in µ[v1, vj] and let yj be the closest vertex to w on Pj such that yj ∈

V (µ(vj)) and yj is branching in µ. Note that 2γ(uP2y2) = 2γ(uP3y3) = 2γ(wP4y4) =

2γ(wP5y5) = 0 since these are b(µ)-paths with endpoints in different trees.

Suppose y2 ∈ V (Q24 ∪ Q25). Then y2 branches to {v1, v4, v5}, so it is a branching

vertex in the K4-submodel π of µ restricted to {v1, v2, v4, v5}. Since w is also branching in

π, we have 2γ(y2P2uPw) = 0 by the m = 4 case. But as previously noted, we also have

2γ(uP2y2) = 0, which implies 2γ(P ) = 0. Therefore we may assume that y2 ∈ V (Q23)−

x2 and, by symmetry, y3 ∈ V (Q23)−x3. Similarly, we may assume that yj ∈ V (Q45)−xj

for j ∈ {4, 5}. See Figure 4.1b.

Since the two cycles P ∪ P4 ∪Q24 ∪ P2 and P ∪ P4 ∪Q34 ∪ P3 are in µ[v1, v2, v3, v4],

they are both Γ-zero, and so γ(Q24) + γ(P2) = γ(Q34) + γ(P3). But P2 ∪Q24 ∪Q34 ∪ P3

is also a cycle in µ[v1, v2, v3, v4], so γ(P2) + γ(Q24) + γ(Q34) + γ(P3) = 0, which gives

0 = 2γ(P2) + 2γ(Q24) = 2γ(P2) since 2γ(Q24) = 0. By symmetry, we have 2γ(P2) =

2γ(P4) = 0. Now since P ∪ P4 ∪ Q24 ∪ P2 is a Γ-zero cycle, it follows that 2γ(P ) =

2γ(P ) + 2γ(P2) + 2γ(Q24) + 2γ(P4) = 0. This completes the proof of the claim. ■

Now suppose µ[V (Km)] contains a Γ-nonzero cycle and choose such a cycle C min-
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imizing the number ℓ of edges of the form µ(vivj). Then ℓ ≥ 5 by the definition of a

Γ-bipartite Km-model. Let µ(vi1), µ(vi2), and µ(vi3) be three consecutive trees visited by

C in that order. Then µ[vi1 , vi3 ] contains a V (C)-path Q that is not an edge of C, and the

two cycles C1, C2 in C ∪ Q distinct from C both contain less than ℓ edges of the form

µ(vivj). Hence γ(C1) = γ(C2) = 0 by minimality of ℓ. Moreover, the two vertices in

V (C) ∩ V (Q) are clearly branching in µ, so Q is a concatenation of b(µ)-paths in µ, and

hence 2γ(Q) = 0 by the Claim. We thus have 0 = γ(C1)+γ(C2) = γ(C)+2γ(Q) = γ(C),

a contradiction. This completes the proof of the lemma.

Next we prove two technical lemmas which will be used in the proof of Lemma 4.1.6.

Lemma 4.1.4. Let Γ be an abelian group and let (G, γ) be a Γ-labelled graph. Let P be

a Γ-nonzero path in (G, γ) with endpoints s1, s2. Let s′1, s
′
2 ∈ V (G) − V (P ) and for each

i ∈ [2], let Qi be a path from s′i to (V (P )−{s1, s2}) such that Q1 is disjoint from Q2. Then

there is a Γ-nonzero {s1, s2, s′1, s′2}-path in P ∪Q1 ∪Q2 with different endpoints than P .

Proof. Note that P ∪ Q1 ∪ Q2 is a tree with four leaves {s1, s2, s′1, s′2} and two vertices

of degree 3, say x1 and x2 where xi is the endpoint of Qi in V (P ) for each i ∈ [2].

Let us assume without loss of generality that s1, x1, x2, s2 occur in this order on P . If

the four {s1, s2}-{s′1, s′2}-paths in P ∪ Q1 ∪ Q2 are all Γ-zero, then for each i ∈ [2]

we have γ(s1Pxi) = γ(xiPs2) = −γ(Qi), which gives 2γ(Qi) = −γ(P ) ̸= 0. Then

γ(x1Px2) = γ(x1Ps2) − γ(x2Ps2) = −γ(Q1) + γ(Q2), but this implies that the s′1-s′2-

path s′1Q1x1Px2Q2s
′
2 has weight γ(Q1)+(−γ(Q1)+γ(Q2))+γ(Q2) = 2γ(Q2) ̸= 0.

In the following lemma, we use the notation arising in the proof of Lemma 4.1.6.

Lemma 4.1.5. Let Γ be an abelian group. Let (G′, γ′) be a Γ-labelled graph and let

s1, s2, s
′
j11
, s′

j12
, s′

j21
, s′

j22
be six distinct vertices in V (G′). Let (Q1

1, Q
1
2, Q

2
1, Q

2
2, Q, P1) be a

tuple of six paths in (G′, γ′) satisfying the following properties (see Figure 4.2):

1. For each i, k ∈ [2], Qi
k is an si-s′jik-path.
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j11

s′
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s′
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s′
j22
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Q1
2
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1
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2

Figure 4.2: The tree T = Q1
1∪Q1

2∪Q2
1∪Q2

2∪Q. The dashed lines
indicate some possible V (T )-subpaths P of P1.

2. Q is a Γ-zero s1-s2-path.

3. The five paths Q1
1, Q

1
2, Q

2
1, Q

2
2, Q are disjoint except that for each i ∈ [2], the vertex

si belongs to exactly three paths Qi
1, Q

i
2, Q.

4. P1 is a Γ-nonzero s1-s2-path.

Then the union of the six pathsQ1
1, Q

1
2, Q

2
1, Q

2
2, Q, P1 contains a Γ-nonzero {s′

j11
, s′

j12
, s′

j21
, s′

j22
}-

path.

Proof. Let S ′′ = {s′
j11
, s′

j12
, s′

j21
, s′

j22
} and let T = Q1

1 ∪ Q1
2 ∪ Q2

1 ∪ Q2
2 ∪ Q. Suppose there

does not exist a Γ-nonzero S ′′-path in T ∪ P1. Then the edges of P1 can be partitioned

into a sequence of maximal paths contained in T and V (T )-paths not contained in T . Let

P be a subpath of P1 that is a V (T )-path not contained in T . Let u and v denote the two

endpoints of P .

Suppose that u and v both lie in Q. If γ′(uQv) ̸= γ′(P ), then we get a Γ-nonzero

S ′′-path say from s′
j11

to s′
j21

by rerouting the path s′
j11
Ts′

j21
along P , a contradiction. On the

other hand, if γ′(uQv) = γ′(P ), then we can reroute Q through P and still satisfy the five

conditions of the lemma, while only reducing the union of the six paths. Therefore, we

may assume that u and v do not both lie in Q. Similarly, we may assume that u and v do

not both lie in any one path Qi
k.

Next suppose that u and v are in Qi
1 ∪ Qi

2 for some i ∈ [2]. Assume without loss of

generality that u ∈ V (Qi
1)−si and v ∈ V (Qi

2)−si. Since there is no Γ-nonzero S ′′-path in
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T ∪ P , by Lemma 2.2.3(a), we have 2γ′(P ) = 2γ′(uQi
1si) = 2γ′(vQi

2si) = 0. Moreover,

we have γ′(P ) = γ′(uTv), since otherwise there is a Γ-nonzero s′
ji1

-s′
ji2

-path in T ∪ P .

Similarly, if one endpoint of P is in Qi
k and the other is in Q, or if one endpoint is in Q1

k

and the other is in Q2
ℓ , then 2γ′(P ) = 2γ′(uTsi) = 2γ′(vTsi) = 0 for each i ∈ [2] (since

γ′(Q) = 0), and γ′(P ) = γ′(uTv). Thus, if U denotes the set consisting of every vertex

that is an endpoint of a subpath of P1 that is a V (T )-path not contained in T , then for all

u ∈ U , we have 2γ′(uTsi) = 0 for each i ∈ [2]. This then implies that every path R in T

with both endpoints in U ∪ {s1, s2} satisfies 2γ′(R) = 0.

Now let (s1 = u1, u2, . . . , un = s2) denote the sequence of vertices in U ∪{s1, s2} that

occur on P1 in this order. Let W = u1Tu2Tu3 . . . un−1Tun, which is a walk from s1 to s2

contained in T . We have shown above that γ(uiTui+1) = γ(uiP1ui+1) and 2γ(uiTui+1) =

0 for all i ∈ [n− 1]. The first equality implies that γ(W ) :=
∑n−1

i=1 γ(uiTui+1) = γ(P1) ̸=

0, whereas the second equality implies that γ(W ) = γ(s1Ts2) = γ(Q) = 0, a contradic-

tion.

Let R4(n,m) denote the Ramsey numbers for 4-uniform hypergraphs. In other words,

if r ≥ R4(n,m), then for every red-blue colouring of the hyperedges of the complete 4-

uniform hypergraph on r vertices, there is either a red complete hypergraph on n vertices

or a blue complete hypergraph on m vertices.

We now prove the main lemma of this section.

Lemma 4.1.6. Let Γ be an abelian group and let t ≥ 2 be an integer. Let (G, γ) be a

Γ-labelled graph containing a KR4(t,m(t))-model π where m(t) = 50(150t4)4 + 1 + 300t4.

Then either there is a Γ-odd Kt model in (G, γ) that is an enlargement of π, or there

exists X ⊆ V (G) with |X| < 50(150t4)4 such that the Tπ-large 3-block of (G − X, γ) is

Γ-bipartite.

Proof. Let H be the complete 4-uniform hypergraph on the vertex set ofKR4(t,m(t)). Colour

a hyperedge {w, x, y, z} of H red if π[w, x, y, z] contains a Γ-nonzero cycle and blue if
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π[w, x, y, z] is Γ-bipartite. Then there is either a Γ-oddKt-submodel or a Γ-bipartiteKm(t)-

submodel of π. In the first case we are done (since submodels of π are also enlargements

of π), so we assume the existence of a Γ-bipartite Km(t)-model µ that is an enlargement of

π. Write V (Km(t)) = {v1, . . . , vm(t)}. By Lemma 4.1.3, (µ, γ) is a Γ-bipartite Γ-labelled

graph and we may assume by Lemma 2.2.2 and Proposition 4.1.1 that, after possibly shift-

ing,

every b(µ)-path in (µ, γ) is Γ-zero. (∗)

For each i = 1, 2, . . . , 50(150t4)4, sequentially in this order, pick a vertex si ∈ µ(vi) as

follows. If µ(vi) has a 50t4-branching vertex, then define si to be such a vertex. Otherwise,

by Lemma 4.1.2, the C50t4

i -subtree of µ(vi) is a path R and there are at least 50(150t4)4

indices j ∈ [m(t)] − {i} such that the µ(vivj)i-R-path in µ(vi) ends at an internal vertex

of R. Pick one such index j such that

j ̸∈ {κ(i′) : i′ < i and κ(i′) was previously defined},

and define κ(i) = j. Such an index j always exists as long as i ≤ 50(150t4)4. Define si to

be the (internal) vertex of R such that the µ(vivκ(i))i-R-path in µ(vi) ends at si. Note that

si is branching in µ as it is an internal vertex of R.

Define S = {si : i ∈ [50(150t4)4]}. Since each si is branching in µ, we have S ⊆ b(µ).

By Theorem 2.2.5, either there exist 150t4 disjoint Γ-nonzero S-paths in (G, γ) or there

exists X ⊆ V (G) with |X| ≤ 50(150t4)4 − 3 such that (G − X, γ) does not contain a

Γ-nonzero S-path.

Claim 4.1.6.1. If X ⊆ V (G), |X| ≤ 50(150t4)4 − 3, and (G − X, γ) does not contain a

Γ-nonzero S-path, then the Tπ-large 3-block (B, γB) of (G−X, γ) is Γ-bipartite.

Proof. Since |S| = 50(150t4)4, there are three vertices of S, say s1, s2, s3 without loss of

generality, such that X is disjoint from µ(v1) ∪ µ(v2) ∪ µ(v3). Note that for each i ∈ [3],
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µ(vi) intersects V (B) by the definition of Tπ. For i ∈ [3], define xi ∈ V (µ(vi)) to be si if

si ∈ V (B) and, otherwise, a closest vertex to si in µ(vi) that is in V (B).

Now suppose that (B, γB) contains a simple Γ-nonzero cycle CB. Since B is 3-

connected, there exist three disjoint V (CB)-{x1, x2, x3}-paths P ′
1, P

′
2, P

′
3 in B. Apply-

ing Proposition 2.4.1, we obtain a Γ-nonzero cycle C of (G − X, γ) corresponding to

CB and three disjoint V (CB)-{x1, x2, x3}-paths P1, P2, P3 in (G−X, γ) corresponding to

P ′
1, P

′
2, P

′
3 respectively. Since X is disjoint from µ(vi) for each i ∈ [3], the three paths

xiµ(vi)si together with C ∪ P1 ∪ P2 ∪ P3 gives three disjoint V (C)-{s1, s2, s3}-paths in

(G − X, γ). By Lemma 2.2.4, there exists a Γ-nonzero S-path, a contradiction. Thus

(B, γB) has no simple Γ-nonzero cycle and by Lemma 2.2.2, (B, γB) is Γ-bipartite. ■

So we may assume that there exist 150t4 disjoint Γ-nonzero S-paths in (G, γ). Let

P = {P1, . . . , P150t4} be a set of 150t4 disjoint Γ-nonzero S-paths minimizing the number

of edges in ∪P not in a tree µ(vi) of µ; that is, we minimize

∣∣∣(⋃150t4

j=1 E(Pj)
)
−
(⋃m(t)

j=1 E(µ(vj))
)∣∣∣ .

By relabelling indices in [50(150t4)4] and updating κ accordingly, we may assume that Pi

has endpoints s2i−1 and s2i for all i ∈ [150t4]. Note that |S| = 50(150t4)4 and |P| = 150t4.

Claim 4.1.6.2. There are at most |P| indices j such that 2|P| < j ≤ |S| (i.e. sj is not an

endpoint of a path in P) and µ(vj) intersects a path in P .

Proof. Suppose there are more than |P| indices j such that j > 2|P| and µ(vj) intersects a

path in P . For each such index j, pick a closest vertex xj to sj in µ(vj) such that xj is in a

path in P . Then there exist two such indices j1 and j2 such that xj1 and xj2 belong to one

path P of P . For each i ∈ [2], let Qi = sjiµ(vji)xji . Then each Qi is disjoint from every

path in P − {P}, and every S-path contained in P ∪ Q1 ∪ Q2 distinct from P has fewer

edges not in a tree of µ than P . But by Lemma 4.1.4, P ∪ Q1 ∪ Q2 contains a Γ-nonzero

S-path P ′ distinct from P , so (P − {P}) ∪ {P ′} contradicts our choice of P . ■
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By relabelling among indices j with 2|P| < j ≤ |S| and updating κ accordingly, we

may assume that no path in P contains a vertex in µ(vj) for all j with 3|P| < j ≤ |S|.

We now construct a minor G′ of G as follows. Let J ′ = {j : 3|P| < j ≤ |S|} and

for each j ∈ J ′, contract the tree µ(vj) into a single vertex s′j and delete all loops. Let

S ′ = {s′j : j ∈ J ′}.

Define a Γ-labelling γ′ ofG′ as follows. Let e = x′y′ ∈ E(G′). If e is not incident to S ′,

then define γ′(e) = γ(e). If x′ = s′j and y′ ̸∈ S ′, then let x be the endpoint of e inG in µ(vj)

and define γ′(e) = γ(e)+γ(xµ(vj)sj). Similarly, if x′ = s′j and y′ = s′k, then let x and y be

the corresponding endpoints of e inG and define γ′(e) = γ(e)+γ(xµ(vj)sj)+γ(yµ(vk)sk).

Then each S ′-path P ′ in (G′, γ′) with endpoints s′j and s′k corresponds to an sj-sk-path P

in (G, γ) of the same weight, obtained by extending the endpoints of P ′ in G along µ(vj)

and µ(vk) to sj and sk respectively.

Let µ′ be the resulting Km(t)-model in G′ obtained from µ. In other words, µ′(vi) =

µ(vi) for i ̸∈ J ′, µ′(vj) = {s′j} for j ∈ J ′, and µ′(vivj) = µ(vivj) for all i, j ∈ [m(t)].

Note that for i ̸∈ J ′, the d-central and d-branching vertices in µ(vi) and µ′(vi) are the same.

Claim 4.1.6.3. There exist t disjoint Γ-nonzero S ′-paths in (G′, γ′).

Proof. Suppose not. By Theorem 2.2.5, there exists Y ⊆ V (G′) with |Y | ≤ 50t4 − 4 such

that (G′ − Y, γ′) does not contain a Γ-nonzero S ′-path. Recall that no path in P intersects

µ(vj) for j ∈ J ′, so the paths in P are unaffected by the minor operations used to obtain

G′. We may thus consider P also as a linkage in (G′, γ′) whose paths are disjoint from S ′.

Since |Y | < 50t4 and |P| = 150t4, there are more than 100t4 paths Pi that are disjoint

from Y − S ′. Among these paths there are more than 50t4 paths Pi such that Y is also

disjoint from µ′(v2i−1) ∪ µ′(v2i). Among these, there is a path Pi such that Y is also

disjoint from µ′(vκ(2i−1)) ∪ µ′(vκ(2i)), where we define µ′(vκ(i)) = ∅ if κ is not defined on

i. By relabelling the paths in P and updating the indices in [2|P|] and κ accordingly, we

may assume that Y is disjoint from P1 ∪ µ′(v1) ∪ µ′(v2) ∪ µ′(vκ(1)) ∪ µ′(vκ(2)).
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Let Y ′ ⊆ [m(t)] − {1} be the set of indices j such that either µ′(vj) contains a vertex

in Y or j is equal to the index κ(2), if defined. Then |Y ′| ≤ |Y |+ 1 ≤ 50t4 − 3.

Define j11 , j
1
2 , j

1
3 as follows.

Case 1: s1 is 50t4-branching in µ′.

By the definition of a 50t4-branching vertex, there exist j11 , j
1
2 , j

1
3 ∈ [m(t)]−{1}−Y ′

such that s1 branches to {µ′(v
j11
), µ′(v

j12
), µ′(v

j13
)} in µ′.

Case 2: s1 is not 50t4-branching in µ′.

By Lemma 4.1.2, the C50t4

1 -subtree of µ′(v1) is a path R. By definition, s1 is an

internal vertex of R and the µ′(v1vκ(1))1-R-path in µ′(v1) ends at s1. Since s1 is

an internal vertex of R, there are exactly two connected components R1 and R2 of

µ′(v1)−s1 containing a vertex in C50t4

1 , and for each k ∈ [2], there are more than 50t4

indices j such that µ′(v1vj)1 ∈ V (Rk) (by the definition of a 50t4-central vertex).

Choose one such index j1k ̸∈ Y ′ for each k ∈ [2] and define j13 = κ(1). Then s1

branches to {µ′(v
j11
), µ′(v

j12
), µ′(v

j13
)}.

We choose j21 , j
2
2 , j

2
3 in a similar manner for µ′(v2) with the additional condition that j2k ̸∈

{j11 , j12 , j13}.

Case 1: s2 is 50t4-branching in µ′.

Since |Y ′| ≤ 50t4 − 3, we may choose j21 , j
2
2 , j

2
3 ∈ [m(t)]−{2}− (Y ′ ∪{j11 , j12 , j13})

such that s2 branches to {µ′(v
j21
), µ′(v

j22
), µ′(v

j23
)} in µ′.

Case 2: s2 is not 50t4-branching in µ′.

The C50t4

2 -subtree of µ′(v2) is a path R and s2 is an internal vertex of R. Let R1

and R2 denote the two connected components of µ′(v2) − s2 containing a vertex in

C50t4

2 . Then for each k ∈ [2], there are more than 50t4 indices j such that µ′(v2vj)2 ∈

V (Rk), and since |Y ′| ≤ 50t4 − 3, we may choose one such index j2k ̸∈ Y ′ ∪

{j11 , j12 , j13}. Define j23 = κ(2).
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Note that µ′(vjik) is disjoint from Y for all i ∈ [2] and k ∈ [3]. For i ∈ [2], let Ti

denote the
{
µ′(vivji1

), µ′(vivji2
), µ′(vivji3

)
}

-extension of µ′(vi). Then Ti is a 3-star centered

at si. We modify Ti by extending its legs if necessary so that its leaves are in S ′ by the

following procedure. For each i ∈ [2] and k ∈ [3], if jik ̸∈ J ′, then choose a new ℓik ∈

J ′ − {j11 , j12 , j13 , j21 , j22 , j23} so that the ℓik are distinct and Y is disjoint from each µ′(vℓik).

Extend the leg in Ti ending with µ′(vivjik) through µ′(vjik) and through the edge µ′(vjikvℓik).

Since µ′(vjik) is disjoint from Y , Ti is still disjoint from Y . Redefine jik to be ℓik.

After this procedure, {s′
j11
, s′

j12
, s′

j13
} and {s′

j21
, s′

j22
, s′

j23
} are the leaves of T1 and T2 re-

spectively, the six leaves are in S ′ − Y ′ and distinct, and T1 is disjoint from T2. For each

i ∈ [2] and k ∈ [3], let Qi
k denote the path from si to s′

jik
in Ti. Now consider the unique

path Q from s1 to s2 in µ′[v1, v2]. Then for each i ∈ [2], at least two of the paths Qi
1, Q

i
2, Q

i
3

intersect Q only at si. Without loss of generality, assume that Qi
1, Q

i
2 intersect Q only at si.

Note that γ′(Q) = γ(Q) = 0 by (∗). Hence, the five paths (Q1
1, Q

1
2, Q

2
1, Q

2
2, Q) satisfy the

first three conditions of Lemma 4.1.5.

Recall that P1 (considered as a path in (G′, γ′)) is a Γ-nonzero path from s1 to s2 in

(G′ − Y, γ′) disjoint from S ′. We thus have a tuple of paths (Q1
1, Q

1
2, Q

2
1, Q

2
2, Q, P1) in

(G′ − Y, γ′) satisfying the four conditions of Lemma 4.1.5, from which it follows that

there is a Γ-nonzero {s′
j11
, s′

j12
, s′

j21
, s′

j22
}-path (hence a Γ-nonzero S ′-path) in (G′ − Y, γ′), a

contradiction. This completes the proof of the claim. ■

Let Q′ = {Q′
1, . . . , Q

′
t} be a set of t disjoint Γ-nonzero S ′-paths in (G′, γ′) minimizing

the number of edges in ∪Q′ not contained in a tree µ′(vk) of µ′; that is, we minimize

∣∣∣(⋃t
i=1E(Q

′
i)
)
−
(⋃[m(t)]

k=1 E(µ′(vk))
)∣∣∣ .

Let j1, . . . , j2t ∈ J ′ be the indices such that Q′
i has endpoints s′j2i−1

and s′j2i . Since each Q′
i

is an S ′-path, no path in Q′ contains a vertex s′j with j ∈ J ′ − {j1, . . . , j2t}.

Claim 4.1.6.4. There are at most 3t indices k ̸∈ J ′ such that µ′(vk) intersects a path in Q′.
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Proof. Suppose there are more than 3t indices k ̸∈ J ′ such that µ′(vk) intersects a path in

Q′. Choose 3t + 1 such indices k1, . . . , k3t+1. Let ℓ1, . . . , ℓ3t+1 ∈ J ′ − {j1, . . . , j2t} be

distinct. For each i ∈ [3t + 1], let xki ∈ V (µ′(vki)) be a closest vertex to s′ℓi in µ′[vki , vℓi ]

such that xki is in a path in Q′. Then there is a path Q′ in Q′ containing at least four of

the vertices xki , say xk1 , xk2 , xk3 , xk4 . Let us assume without loss of generality that the

vertices xk1 , xk2 , xk3 , xk4 occur in this order on Q′. Define R2 = xk2µ
′[vk2 , vℓ2 ]s

′
ℓ2

and

R3 = xk3µ
′[vk3 , vℓ3 ]s

′
ℓ3

. Note that R2 and R3 are disjoint from every path in Q′ − {Q′},

and every S ′-path in Q′ ∪ R2 ∪ R3 distinct from Q′ contains fewer edges not contained in

a tree µ′(vk) than Q′. But by Lemma 4.1.4, Q′ ∪R2 ∪R3 contains a Γ-nonzero S ′-path Q′′

distinct from Q′, so (Q− {Q′}) ∪ {Q′′} contradicts our choice of Q′. ■

We now use Q′ to construct a Γ-odd Kt-model in (G, γ) that is an enlargement of µ.

Recall that each S ′-pathQ′
i ∈ Q′ corresponds to an S-pathQi in (G, γ) of the same weight,

obtained by extending the endpoints of Q′
i in G along µ(vj2i−1

) and µ(vj2i) to sj2i−1
and sj2i

respectively. Note in particular that Qi is disjoint from µ(vjk) for all k ∈ [2t]−{2i−1, 2i},

and that Qi ∩ µ(vj2i−1
) and Qi ∩ µ(vj2i) are (possibly trivial) paths.

Let Q = {Q1, . . . , Qt}. For simplicity of notation, we relabel the indices in [50(150t4)4]

so that Qi has endpoints s2i−1 and s2i (we will not need P for the remainder of the

proof). After this relabelling, we have that for each i ∈ [t], Qi is disjoint from µ(vj)

for j ∈ [2t]− {2i− 1, 2i}, and that Qi ∩ µ(v2i−1) and Qi ∩ µ(v2i) are paths. Furthermore,

by Claim 4.1.6.4, we may assume that for all j > 5t, µ(vj) does not intersect a path in Q .

To construct the Γ-odd Kt-model, first define L = ∅. For each j = 1, . . . , 2t, sequen-

tially, choose an index ℓj ̸∈ [5t] as follows.

Case 1: sj is 50t4-branching in µ.

Since Q⌈j/2⌉ ∩ µ(vj) is a path, we may choose ℓj ̸∈ L ∪ [5t] such that the sj-µ(vℓj)-

path in µ[vj, vℓj ] is internally disjoint from Q⌈j/2⌉. Add ℓj to L.

Case 2: sj is not 50t4-branching in µ.
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η(wi)

Qi

s2i−1

s2i

µ(vℓ2i−1
)

µ(vℓ2i)

η(wj)

Qj

s2j−1

s2j

µ(vℓ2j−1
)

µ(vℓ2j)

η(wk)

Qk

s2k−1

s2k

µ(vℓ2k−1
)

µ(vℓ2k)

Figure 4.3: Three trees of the Γ-odd Kt-model η. Each ellipse
represents a tree of µ and each rectangle represents a tree of η.
The three dashed lines indicate the edges η(wiwj), η(wiwk), and
η(wjwk).

By Lemma 4.1.2, the C50t4

j -subtree of µ(vj) is a path and sj is an internal vertex of

this path. Then there is a connected component T of µ(vj) − sj containing a vertex

in C50t4

j such that T is disjoint from Q⌈j/2⌉ (since Q⌈j/2⌉∩µ(vj) is a path). Moreover,

there are more than 50t4 indices k such that µ(vjvk)j ∈ V (T ). Choose one such

index ℓj such that ℓj ̸∈ L ∪ [5t], and add ℓj to L.

Define a Kt-model η as follows. Let {w1, . . . , wt} denote the vertices of Kt. For each

i ∈ [t], define the tree

η(wi) = µ(vℓ2i−1
) ∪ µ(vℓ2i−1

v2i−1) ∪ µ(v2i−1) ∪Qi ∪ µ(v2i) ∪ µ(v2ivℓ2i) ∪ µ(vℓ2i).

Note that the path from µ(vℓ2i−1
) to µ(vℓ2i) in η(wi) contains Qi as a subpath. For i < j,

define the edges of η as η(wiwj) = µ(vℓ2ivℓ2j−1
). Clearly, η is a Kt-model that is an

enlargement of µ and hence of π.

To show that η is Γ-odd, we show in fact that the cycle contained in any three trees

of η is Γ-nonzero. See Figure 4.3. Let 1 ≤ i < j < k ≤ t and let C be the unique
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cycle in η[wi, wj, wk]. Note that C contains the edges {η(wiwj), η(wiwk), η(wjwk)} =

{µ(vℓ2ivℓ2j−1
), µ(vℓ2ivℓ2k−1

), µ(vℓ2jvℓ2k−1
)}, so we have C ∩ η(wi) ⊆ µ(vℓ2i) and C ∩

η(wk) ⊆ µ(vℓ2k−1
). Moreover, C is the internally disjoint union ofQj (which is Γ-nonzero)

and the s2j−1-s2j-path in µ through

µ(v2j−1), µ(vℓ2j−1
), µ(vℓ2i), µ(vℓ2k−1

), µ(vℓ2j), µ(v2j)

in this order. By (∗), we have γ(E(C)− E(Qj)) = 0. Hence, γ(C) = γ(Qj) ̸= 0 and η is

a Γ-odd Kt-model that is an enlargement of π.

4.2 Large flat wall

In this section we deal with the second outcome of the flat wall theorem.

Lemma 4.2.1. Let t ≥ 4 be an integer and let Γ be an abelian group. Let (G, γ) be a

Γ-labelled graph containing a flat (t+ 2)2-wall (W, γ). Then there is a flat t-wall (W1, γ)

with certifying separation (C1, D1) such that TW1 is a truncation of TW and either

(i) (W1, γ) is facially Γ-odd, or

(ii) the 3-block of (D1, γ) containing the degree 3 vertices of (W1, γ) is Γ-bipartite.

Proof. Let (W2, γ) denote the t-subwall of (W, γ) contained in the union of the ((t+2)i−

t)-th rows and columns of (W, γ), i ∈ [t + 1]. Note that (W2, γ) is flat and 1-contained in

(W, γ) since (t+2)(t+1)− t < (t+2)2. For i, j ∈ [t+1], letRW2
i and CW2

j denote the i-th

row and the j-th column of W2 respectively, and for i, j ∈ [t] let Bi,j denote the (i, j)-th

brick of W2. Then the union of the t+3 rows and columns of W intersecting Bi,j contains

a (t + 2)-subwall of W , which 1-contains a flat t-subwall Wi,j of W . Let (Ci,j, Di,j) be

a certifying separation for Wi,j minimizing |V (Di,j)|. Then Di,j is disjoint from Di′,j′ for

(i, j) ̸= (i′, j′).
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If for some i, j ∈ [t], the 3-block of (Di,j, γ) containing the degree 3 vertices of

(Wi,j, γ) is Γ-bipartite, then (Wi,j, γ) and (Ci,j, Di,j) satisfies outcome (ii). So we may

assume that the 3-block of (Di,j, γ) containing the degree 3 vertices of (Wi,j, γ) contains a

Γ-nonzero cycle Oi,j for all i, j ∈ [t].

For i, j ∈ [t], let Pi,j denote the subpath of CW2
j+1 that is a RW2

i -RW2
i+1-path. Let Hi,j be

the union of Di,j , Pi,j , and the subpaths of rows of W that are Wi,j-Pi,j-paths. Then there

are three disjoint paths from the interior of Pi,j to Oi,j in Hi,j , so by Lemma 2.2.3(b), there

is a path Ri,j in Hi,j having the same endpoints as Pi,j such that γ(Pi,j) ̸= γ(Ri,j). Note

that replacing Pi,j with Ri,j yields a local rerouting of (W2, γ).

We then obtain a facially Γ-odd t-wall (W1, γ) from (W2, γ) by a sequence of local

reroutings where, for each (i, j) ∈ [t]2 in lexicographic order, we replace Pi,j with Ri,j if

necessary to make the (i, j)-th brick Γ-nonzero.

Lemma 4.2.2. Let r ≥ 4 be an integer and let Γ be an abelian group. Let (G, γ) be a

Γ-labelled graph containing a flat (150r12 + 2)2-wall (W, γ). Then one of the following

outcomes hold:

(1) There is a flat 50r12-wall (W1, γ) such that TW1 is a truncation of TW and either

(i) (W1, γ) is facially Γ-odd, or

(ii) (W1, γ) is strongly Γ-bipartite and there is a pure Γ-odd linkage of (W1, γ) of

size r.

(2) There existsZ ⊆ V (G) with |Z| < 50r12 such that the TW -large 3-block of (G−Z, γ)

is Γ-bipartite.

Proof. Applying Lemma 4.2.1 with t = 150r12, we obtain a flat 150r12-wall (W0, γ) with

top nails N0 and certifying separation (C0, D0) satisfying the conclusion of Lemma 4.2.1.

If (W0, γ) is facially Γ-odd, then outcome (1)-(i) is satisfied by taking a compact 50r12-

subwall. So we may assume that the 3-block (B0, γ0) of (D0, γ) containing the vertices
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of degree 3 in (W0, γ) is Γ-bipartite. Since W0 is a 150r12-wall and r ≥ 4, we have

|V (B0)| ≥ 4, hence B0 is 3-connected. By Lemma 2.2.2, we may assume by possibly

shifting in (G, γ) that

every V (B0)-path in (D0, γ) is Γ-zero. (†)

Also note that given any 1-contained subwallW ′ ofW0 with the choice of nails with respect

toW0, its branch vertices all have degree 3 inW0, so b(W ′) ⊆ V (B0) and every b(W ′)-path

in (D0, γ) is Γ-zero by (†).

Since (W0, γ) is a flat 150r12-wall, it 50r12-contains a flat 50r12-subwall (W1, γ). Let

N1 denote its top nails with respect to (W0, γ) and let (C1, D1) be a certifying separation for

(W1, γ) such that |V (D1)| is minimized. Note that D1 ⊆ D0 and hence, by (†), every path

in (D1, γ) between branch vertices of (W1, γ) is Γ-zero. In particular, (W1, γ) is strongly

Γ-bipartite.

If there exist r3 disjoint Γ-nonzeroN1-paths in (G−(V (D1)−N1), γ), then by Lemma

2.7.1, there is a pure linkage P of (W1, γ) whose paths are Γ-nonzero. Since every N1-path

in (D1, γ) is Γ-zero, P is Γ-odd and outcome (1)-(ii) is satisfied. So by Theorem 2.2.5, we

may assume that there exists Z ⊆ V (G− (V (D1)−N1)) with |Z| ≤ 50r12 − 3 such that

(G− (V (D1)−N1)− Z, γ) does not contain a Γ-nonzero N1-path.

Since |Z| ≤ 50r12 − 3 and W1 is 50r12-contained in W0, there are two columns of W0,

one to the left of W1 and one to the right, and two rows of W0, one above W1 and one

below, such that the four paths are all disjoint from Z and not contained in the perimeter of

W0. Let O denote the unique cycle in the union of these four paths. See Figure 4.4. Since

W1 is a 50r12-wall, there are two disjoint V (O)-N1-paths P1 and P2 that are subpaths of

columns of W0 disjoint from Z. Note that γ(P1) = γ(P2) = 0 since the endpoints of each

Pi have degree 3 in W0.

Let W ◦ denote the compact subwall of W0 whose perimeter is O, and let (C◦, D◦)
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W0 W1W ◦ O

P1 P2

Figure 4.4: W0 is a flat 150r12-wall which 50r12-contains a com-
pact 50r12-subwall W1. The cycle O (highlighted in grey) around
W1 is disjoint from Z and forms the perimeter of a compact sub-
wallW ◦ ofW0. The two V (O)-N1-paths P1 and P2 are also disjoint
from Z.

be a certifying separation for W ◦ in G minimizing |V (C◦ ∩ D◦) − V (B0)|. Note that

W1 ⊆ W ◦ ⊆ D◦ ⊆ D0 and V (C◦ ∩D◦) ⊆ V (O). We claim that V (C◦ ∩D◦) ⊆ V (B0).

Suppose otherwise and let v ∈ V (C◦ ∩ D◦) − V (B0). Then v is contained in the interior

of a V (B0)-bridge B of D0 with two attachments, say a1, a2 ∈ V (B0) ∩ V (O). But then

(C◦ − (B−{a1, a2}), D◦ ∪B) is also a certifying separation for W ◦ with fewer vertices in

V (C◦ ∩D◦)− V (B0), contradicting our choice of (C◦, D◦). It follows from (†) that every

V (C◦ ∩D◦)-path in (D◦, γ) is Γ-zero.

We now show that outcome (2) is satisfied. Let (B, γB) be the TW1-large 3-block of

(G−Z, γ). Note thatB is 3-connected and contains all vertices of degree 3 inW1. Suppose

contrary to outcome (2) that (B, γB) contains a simple Γ-nonzero cycle S ′ (using Lemma

2.2.2), and let S be a Γ-nonzero cycle in (G − Z, γ) corresponding to S ′ as given by

Proposition 2.4.1.

We claim that S ̸⊆ D◦. Otherwise, there exist three disjoint V (C◦ ∩ D◦)-V (S)-paths

in D◦, since S is 3-connected to b(W1) which is in turn highly connected to V (C◦ ∩D◦).

By Lemma 2.2.4, we obtain a Γ-nonzero V (C◦ ∩D◦)-path in (D◦, γ), a contradiction.

We also claim that S ̸⊆ C◦. Otherwise, there exist three disjoint V (C◦ ∩ D◦)-V (S)-

paths in (C◦ − Z, γ) (since there are three disjoint paths from S to b(W1) which must go
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through V (C◦ ∩D◦)). By Lemma 2.2.4, there exists a Γ-nonzero V (C◦ ∩D◦)-path in C◦.

Extending the endpoints of this path along O ∪ P1 ∪ P2, we obtain a Γ-nonzero N1-path in

(G− (V (D1)−N1)− Z, γ), a contradiction.

Therefore, S intersects both C◦−D◦ and D◦−C◦, so the edges of S can be partitioned

into V (C◦ ∩ D◦)-paths, each contained in either C◦ or D◦. Those in D◦ are all Γ-zero

by (†), so C◦ contains a Γ-nonzero V (C◦ ∩D◦)-path. This similarly gives a contradictory

Γ-nonzero N1-path in (G− (V (D1)−N1)− Z, γ), and therefore outcome (2) holds.

4.3 Proof of Theorem 3.1.1

The proof of Theorem 3.1.1, restated below, now follows readily from Lemma 4.1.6 and

Lemma 4.2.2.

Theorem 3.1.1. Let Γ be an abelian group and let r, t ≥ 1 be integers. Then there exist

integers g(r, t) and h(r, t), where h(r, t) ≤ g(r, t) − 3, such that if a Γ-labelled graph

(G, γ) contains a wall (W, γ) of size at least g(r, t), then one of the following outcomes

hold:

(1) There is a Γ-odd Kt-model µ in G such that Tµ is a truncation of TW .

(2) There exists Z ⊆ V (G) with |Z| ≤ h(r, t) and a flat 50r12-wall (W0, γ) in (G−Z, γ)

such that TW0 is a truncation of TW and either

(a) (W0, γ) is facially Γ-odd, or

(b) (W0, γ) is strongly Γ-bipartite and there is a pure Γ-odd linkage of (W0, γ) of

size r.

(3) There exists Z ⊆ V (G) with |Z| ≤ h(r, t) such that the TW -large 3-block of (G −

Z, γ) is Γ-bipartite.

Proof. Let r′ = (150r12+2)2 and t′ = R4(t,m(t)) where m(t) = 50(150t4)4+1+300t4.

Let g : N×N → N be a function such that g(r, t) ≥ f2.6.2(r
′, t′) where f2.6.2 is the function

85



from Theorem 2.6.2, and let h(r, t) = t′ + 50(150t4)4 + 50r12. Note that we may assume

g(r, t) ≥ h(r, t) + 3.

Suppose (G, γ) contains an g(r, t)-wall W . By Theorem 2.6.2, either (G, γ) contains a

Kt′-model π such that Tπ is a truncation of TW or there exists X ⊆ V (G) with |X| ≤ t′−5

and an r′-subwall W ′ of W that is disjoint from X and flat in G−X .

Suppose we are in the first case, that there is a KR4(t,m(t))-model π such that Tπ is a

truncation of TW . By Lemma 4.1.6, either there is a Γ-odd Kt-model µ in G such that Tµ

is a truncation of Tπ (hence of TW ), or there exists Y ⊆ V (G) with |Y | < 50(150t4)4 such

that the Tπ-large 3-block of (G − Y, γ) is Γ-bipartite. Since Tπ is a truncation of TW , this

3-block is also TW -large. The first outcome satisfies (1). The second outcome satisfies (3)

with Z = Y .

Now suppose we are in the second case, that there exists X ⊆ V (G) with |X| ≤ t′ − 5

and a flat (150r12 + 2)2-wall (W ′, γ) in (G − X, γ) such that TW ′ is a truncation of TW .

If there exists Y ⊆ V (G − X) with |Y | < 50r12 such that the TW ′-large 3-block of

(G − X − Y, γ) is Γ-bipartite, then this 3-block is also TW -large, so (3) is satisfied with

Z = X ∪ Y . Otherwise, by Lemma 4.2.2, there is a flat 50r12-wall (W1, γ) such that TW1

is a truncation of TW and either (W1, γ) is facially Γ-odd or (W1, γ) is strongly Γ-bipartite

and there is pure Γ-odd linkage of (W1, γ) of size r. These two outcomes satisfy (2)-(a)

and (2)-(b) respectively.
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CHAPTER 5

A-PATHS OF LENGTH ZERO MODULO A PRIME

In this chapter we prove Theorem 1.3.3, that for every odd prime p, the family of A-paths

of length 0 mod p satisfies the Erdős-Pósa property.

5.1 Preliminary results

We will need the following variant of Lemma 2.3.1 for A-paths.

Lemma 5.1.1 (Lemma 8 in [6]). Let t be a positive integer and let f : N → N be function

such that f(k) ≥ 2f(k − 1) + 3t + 10 and let ((G, γ), k) be a minimal counterexample

to f being an Erdős-Pósa function for the family of Γ-zero A-paths. Then G − A admits

a tangle T of order t such that for each (C,D) ∈ T , G[A ∪ C] does not contain a Γ-zero

A-path and G[A ∪ (D − C)] contains a Γ-zero A-path.

Let µ be a Kt-model in a graph G. We say that a linkage P nicely links to µ if each path

in P has exactly one endpoint in µ, has no internal vertex in µ[V (Kt)], and each tree of µ

intersects at most one path of P . The following lemma allows us to find a large linkage

that nicely links to a large submodel of a given Kt-model. We use the formulation in [6],

but we remark that the lemma also follows from the proof of (5.3) in [32].

Lemma 5.1.2 (Lemma 10 in [6]; see also (5.3) in [32]). Let ℓ, t ∈ N with t ≥ 3ℓ. Let G

be a graph with A ⊆ V (G), and let µ be a Kt-model in G disjoint from A. Then there is a

Kt−2ℓ-submodel η of µ such that either there is an A-η-linkage of size ℓ that nicely links to

η, or there exists X ⊆ V (G) with |X| < 2ℓ separating A from η.

Let W be a wall with top nails N in a graph G. We say that a linkage P nicely links to

W if each path in P is contained in G− (W −N), has exactly one endpoint in N , and has

87



no internal vertex in N . The next lemma allows us to find a large linkage that nicely links

to a large subwall of a given wall.

Lemma 5.1.3 (Lemma 12 in [6]). Let r, t ∈ N with r ≥ t. Let G be a graph with A ⊆

V (G), and let W be a wall of size at least 4tr in G disjoint from A. Then W has an r-

subwall W1 such that either there are t disjoint A-W1-paths that nicely link to W1 or there

exists X ⊆ V (G) with |X| < 3t2 separating A from W1.

5.2 Γ-nonzero A-cycle-chains

In this section we deal with outcomes (1) and (2) of Theorem 3.1.1.

Let l be a positive integer. A cycle-chain of length l is a tuple of paths (P,Q1, . . . , Ql)

consisting of a core path P and l disjoint V (P )-paths Qi such that the V (Qi)-subpaths

Pi of P are disjoint from each other. A cycle-chain in a Γ-labelled graph is Γ-nonzero if

γ(Pi) ̸= γ(Qi) for all i ∈ [l]. An A-cycle-chain is a cycle-chain (P,Q1, . . . , Ql) such that

P is an A-path and Qi is disjoint from A for all i ∈ [l].

Let C = (P,Q1, . . . , Ql) be a Γ-nonzero A-cycle-chain in a Γ-labelled graph where

Γ = Z/pZ and p is prime. If l is large enough, then C contains A-paths of all possible

weights since every nonzero element of Γ is a generator. The optimal bound can be obtained

from the Cauchy-Davenport Theorem [12] which states that if X, Y ⊆ Z/pZ and p is

prime, then |X + Y | ≥ min(|X|+ |Y | − 1, p).

Proposition 5.2.1. Let Γ = Z/pZ where p is prime. Then a Γ-nonzero A-cycle-chain of

length p− 1 contains a Γ-zero A-path.

Proof. Let (P,Q1, . . . , Qp−1) be a Γ-nonzero A-cycle-chain. Let Pi denote the V (Qi)-

subpath of P and let αi = γ(Qi) − γ(Pi) ̸= 0. By the Cauchy-Davenport Theorem,

{0, α1}+ {0, α2}+ · · ·+ {0, αp−1} = Z/pZ, hence there is a rerouting of P through some

of the paths Qi to obtain an A-path of any desired weight.
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Note that Proposition 5.2.1 does not hold for cycle-chains of length p− 2 (consider the

case γ(P ) = 1 = αi for all i ∈ [p − 2]). The condition that p is prime is also necessary;

if Γ has a nontrivial proper subgroup Γ′, γ(P ) ̸∈ Γ′, and γ(Qi)− γ(Pi) ∈ Γ′ − {0} for all

i, then the weight of every A-path in P ∪ Q1 ∪ · · · ∪ Qk is in the coset Γ′ + γ(P ), hence

nonzero.

Let us now show how to find a large packing of Γ-nonzero A-cycle-chains (hence of

Γ-zero A-paths).

Throughout this subsection, we fix an odd prime p, fix Γ = Z/pZ (hence Γ has no

element of order two), and assume the existence of a Γ-labelled graph (G, γ) and a large

tangle T of (G− A, γ) such that

(a) there does not exist X ⊆ V (G) with |X| < 108k2 intersecting every Γ-zero A-path,

and

(b) for all (C,D) ∈ T , (G[A∪C], γ) does not contain a Γ-zero A-path and (G[A∪ (D−

C)], γ) contains a Γ-zero A-path.

Lemma 5.2.2. Let l ∈ N and let µ be a Γ-odd K5l+1-model. Then there is a Γ-nonzero

cycle-chain C of length l contained in µ whose core path is a µ(v1)-µ(v5l+1)-path. More-

over, the cycles in C are disjoint from µ(v1) ∪ µ(v5l+1).

Proof. We first prove the lemma for l = 1. Since µ is Γ-odd, there is a Γ-nonzero cycleC in

µ[v2, v3, v4, v5], and sinceC intersects at least three of the trees in {µ(v2), µ(v3), µ(v4), µ(v5)},

we may assume without loss of generality that C intersects µ(v2), µ(v3), and µ(v4). For

each i ∈ {2, 3, 4}, let Pi denote the unique µ(v6)-C-path in µ[vi, v6] and let wi denote the

endpoint of Pi in C. Since C is a Γ-nonzero cycle, without loss of generality, we may

assume that the w3-w4-path in C that is disjoint from w2 is Γ-nonzero. Let R denote the

unique µ(v1)-C-path in µ[v1, v2]. Then, by Lemma 2.2.3(a) and by the assumption that Γ

has no element of order two, there is a j ∈ {3, 4} such that the two µ(v1)-µ(v6)-paths in

R ∪C ∪ Pj have different weights. This gives the desired Γ-nonzero cycle-chain of length
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1 whose core path is a µ(v1)-µ(v6)-path and whose cycle C is disjoint from µ(v1) ∪ µ(v6)

(as C is contained in µ[v2, v3, v4, v5]).

Now for l > 1, we apply the l = 1 case to the K6-submodel

µi := µ[v5(i−1)+1, v5(i−1)+2, . . . , v5(i−1)+6]

for each i ∈ [l] to obtain a Γ-nonzero cycle-chain Ci of length 1 contained in µi whose core

path is a µ(v5(i−1)+1)-µ(v5i+1)-path and whose cycle is disjoint from µ(v5(i−1)+1)∪µ(v5i+1).

Note that the core path is internally disjoint from µ(v5(i−1)+1) ∪ µ(v5i+1). Hence, for each

i ∈ [l − 1], the unique path in µ(v5i+1) between the endpoints of the core paths of Ci and

Ci+1 in µ(v5i+1) is internally disjoint from every Cj , j ∈ [l]. By connecting consecutive

cycle-chains in the trees µ(v5i+1), i ∈ [l−1], we obtain a Γ-nonzero cycle-chain of length l

contained in µ whose core path is a µ(v1)-µ(v5l+1)-path and whose cycles are disjoint from

µ(v1) ∪ µ(v5l+1).

Lemma 5.2.3. Let µ be a Γ-odd K5kp-model in (G, γ) disjoint from A such that Tµ is a

truncation of T . Then there exist k disjoint Γ-zero A-paths.

Proof. We apply Lemma 5.1.2 with ℓ = 2k and t = 5kp to obtain a Kk(5p−4)-submodel η

of µ such that either there is an A-η-linkage of size 2k that nicely links to η or there exists

X ⊆ V (G) with |X| < 4k separating A from η. Note that the order of Tη is greater than

4k.

Suppose the latter outcome holds. Then there exists a separation (C,D) of G with

V (C ∩ D) = X such that A ⊆ V (C) and V (η) ⊆ V (D). Then (C − A,D) is a 4k-

separation in G − A and, since V (η) ⊆ V (D), we have (C − A,D) ∈ Tη ⊆ T . By (b),

every Γ-zero A-path intersects D − C and, since A ⊆ V (C), it follows that X intersects

all Γ-zero A-paths, contradicting (a).

So there exists an A-η-linkage P = {P1, . . . , P2k} of size 2k that nicely links to η.

Assume without loss of generality that Pi has an endpoint in η(vi). Then there exist k
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disjoint K5p−4-submodels ηi of η such that ηi contains η(v2i−1) and η(v2i). By Lemma

5.2.2, there is a Γ-nonzero cycle-chain of length p− 1 in ηi whose core path is a η(v2i−1)-

η(v2i)-path. Extending the core path through η(v2i−1) ∪ η(v2i) ∪ P2i−1 ∪ P2i, we obtain

k disjoint Γ-nonzero A-cycle-chains, each of length p − 1. The lemma now follows from

Proposition 5.2.1.

Lemma 5.2.4. Let (W, γ) be a facially Γ-odd 3l×2-wall and let RW
i denote the i-th row of

W for each i ∈ [3l+1]. Then there is a Γ-nonzero cycle-chain C of length l in (W, γ) whose

core path is a RW
1 -RW

3l+1-path. Moreover, the cycles in C are disjoint from RW
1 ∪RW

3l+1.

Proof. We first prove the lemma for l = 1. Let (W, γ) be a facially Γ-odd 3 × 2-wall.

Let Bi,j denote the (i, j)-th brick of W for i ∈ [3] and j ∈ [2]. We assume without loss of

generality that the wall is oriented in such a way thatB2,1 shares an edge withB1,1 andB1,2.

Let w1, w2, and w3 denote the three vertices onB2,1 that have degree 3 inB1,2∪B2,1∪B2,2.

SinceW is facially Γ-odd, by Lemma 2.2.3(b), there is a distinct pair i, j ∈ [3] such that the

two wi-wj-paths inB2,1 have different lengths. In each of the three possible cases, it is easy

to see that there is a Γ-nonzero cycle-chain of length 1 whose core path is a RW
1 -RW

4 -path

and whose cycle is B2,1 (see Figure 5.1).

Now for l > 1, let Wi be the 3× 2-subwall of W whose first and last row is RW
3i−2 and

RW
3i+1 respectively. We apply the l = 1 case of the lemma to each Wi to obtain a Γ-nonzero

cycle-chain of length 1 whose core path is a RW
3i−2-R

W
3i+1-path and whose cycle is disjoint

from RW
3i−2 ∪ RW

3i+1. Connecting consecutive cycle-chains in RW
3i+1, i ∈ [l − 1], we obtain

the desired Γ-nonzero cycle-chain of length l.

Lemma 5.2.5. Let (W, γ) be a facially Γ-odd wall of size at least 2592k3p in (G, γ) disjoint

from A ⊆ V (G) such that TW is a truncation of T . Then there exist k disjoint Γ-zero A-

paths.

Proof. Let t = 6k and r = 108k2p. Note that r ≥ max{3(p− 1), 3t2} and 2592k3p = 4tr.

By Lemma 5.1.3, there exists an r-subwall W1 of W such that either there exist t disjoint

91



B′
2,1 B′

2,2

B′
1,2

Figure 5.1: The three black vertices are w1, w2, and w3. Since B2,1

is a Γ-nonzero cycle, at least one of these three cycle-chains is Γ-
nonzero.

A-W1-paths that nicely link to W1 or there exists X ⊆ V (G) with |X| < 3t2 separating A

from W1.

Suppose the latter case holds. Then there exists a separation (C,D) of G with X =

V (C ∩D) such that A ⊆ V (C) and V (W1) ⊆ V (D). Since |X| < 3t2 and W1 has size at

least 3t2, it follows that (C − A,D) ∈ TW1 ⊆ T , which implies that every Γ-zero A-path

intersects D−C by (b). But since A ⊆ C, X intersects every Γ-zero A-path, violating (a).

So there exists an A-W1-linkage P of size 6k that nicely links to W1. Since |P| = 6k,

there exist 2k paths P ′ = {P1, . . . , P2k} ⊆ P and 2k disjoint compact r × 2-subwalls

U1, . . . , U2k of W1 such that each Ui contains the endpoint of exactly one path in P ′, say

Pi. Assume without loss of generality that U1, . . . , U2k are positioned from left to right.

Let R1 and R2 denote the first and (3
2
(p− 1) + 1)-th row of W1 respectively.

Recalling that r > 3
2
(p − 1), we apply Lemma 5.2.4 to each Ui to obtain a Γ-nonzero

cycle-chain of length 1
2
(p − 1) whose core path is a R1-R2-path that is internally disjoint

from R1 ∪ R2 and whose cycles are disjoint from R1 ∪ R2. It follows that P2i−1 ∪ P2i ∪

U2i−1 ∪ U2i ∪ R2 contains a Γ-nonzero A-cycle-chain of length p − 1 for each i ∈ [k].

Therefore, there exist k disjoint Γ-zero A-paths by Proposition 5.2.1.

Lemma 5.2.6. Let (W, γ) be a strongly Γ-bipartite wall and let L be a pure Γ-odd linkage

of (W, γ) with |L| = 3l. Then there is a Γ-nonzero cycle-chain of length l contained in

RW
1 ∪ (∪L) whose core path is a subpath of RW

1 . Moreover, if L is nested or crossing, then

the core path intersects exactly one endpoint of each path in L.

Proof. Since Γ has no element of order two and (W, γ) is strongly Γ-bipartite, every b(W )-
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path in (W, γ) is Γ-zero and every path in L is Γ-nonzero.

If L is in series, then the conclusion is trivial as RW
1 ∪ (∪L) itself is a Γ-nonzero cycle-

chain with core path RW
1 . So we assume that L is nested or crossing. Let L1, . . . , L3l

denote the paths of L and let xi and yi denote the left and right endpoint of Li, i ∈ [3l].

Then there exist disjoint subpaths Rx and Ry of RW
1 such that {x1, . . . , x3l} ⊆ V (Rx) and

{y1, . . . , y3l} ⊆ V (Ry). We may assume that xi is positioned to the left of xj for i < j.

First consider the case l = 1. We claim that there exist i, j ∈ [3], i < j, such that

γ(Li) ̸= −γ(Lj). Indeed, otherwise we have γ(L1) = −γ(L2) = γ(L3) = −γ(L1), which

gives 2γ(L1) = 0, a contradiction as Γ has no element of order two. Now choose such

1 ≤ i < j ≤ 3 with γ(Li) ̸= −γ(Lj). Then (xiRxxj, xiLiyiRyyjLjxj) is a Γ-nonzero

cycle-chain of length 1 whose core path xiRxxj is a subpath of RW
1 intersecting exactly

one endpoint of each path in L.

Now for l > 1, we apply the l = 1 case above to obtain a Γ-nonzero cycle-chain of

length 1 contained in

x3i−2Rxx3i ∪ L3i−2 ∪ L3i−1 ∪ L3i ∪ y3i−2Ryy3i

for each i ∈ [l]. Connecting consecutive cycle-chains along Rx, we obtain the desired

Γ-nonzero cycle-chain of length l.

Lemma 5.2.7. Let (W, γ) be a Γ-bipartite wall of size at least 2664k3p with a pure Γ-odd

linkage L with |L| ≥ 18kp such that W and the paths in L are disjoint from A ⊆ V (G)

and such that TW is a truncation of T . Then there exist k disjoint Γ-zero A-paths.

Proof. Let W ′ be a 36kp-contained compact 2592k3p-subwall of W and define t = 6k and

r = 108k2p. Note that r ≥ max{36kp, 3t2} and 2592k3p = 4tr. By Lemma 5.1.3, there

exists a compact r-subwall W1 of W ′ such that either there exist t disjoint A-W1-paths that

nicely link to W1 or there exists X ⊆ V (G) with |X| < 3t2 separating A from W1. The

latter case is impossible as before, so we may assume that there exists an A-W1-linkage P1
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with |P1| = 6k that nicely links to W1.

Since W1 is 36kp-contained in W , we may extend the endpoints of the paths of L

through W to obtain a pure linkage L1 of W1 with |L1| = 18kp. Note that L1 is also

Γ-odd.

We first modify the paths in P1 and L1 so that they become disjoint from each other, at

the cost of losing a few paths in L1. Let H denote the union of all paths in P1 and in L1.

Claim 5.2.7.1. There is an A-W1-linkage P2 in H with |P2| = 6k that nicely links to W1

and a subset L2 ⊆ L1 with |L2| = 18k(p − 1) such that each path in P2 is disjoint from

each path in L2.

Proof. Let P2 be an A-W1-linkage in H of size 6k that nicely links to W1 minimizing the

number of edges not in a path in L1. Suppose L ∈ L1 intersects a path in P2. Let x be

an endpoint of L and let y be the closest vertex to x on L such that y is in some path in

P2, say P ′. If P ′ does not have an endpoint in V (L), then rerouting P ′ through L to x, we

obtain another A-W1-linkage in H of size 6k that nicely links to W1 using strictly fewer

edges not in a path in L1, a contradiction. Therefore, every path L ∈ L1 intersecting a path

in P2 contains an endpoint of a path in P2, and the number of such paths in L1 is at most

|P2| = 6k. We may then take a subset L2 ⊆ L1 with |L2| = 18k(p − 1) ≤ 18kp − 6k

excluding the paths that intersect P2. ■

Let R denote the top row of W1 and let v1, . . . , v6k denote the top nails, from left

to right, that are endpoints of a path in P2. Let R1 = v1Rv2k, R2 = v2k+1Rv4k, and

R3 = v4k+1Rv6k. Then each path in L2 is disjoint from at least one of R1, R2, or R3, so

there exists m ∈ {1, 2, 3} such that there are 6k(p − 1) paths in L2 that are disjoint from

Rm. We fix such m ∈ {1, 2, 3}.

Let P3 = {P1, . . . , P2k} be the set of 2k paths in P2 containing an endpoint in Rm. We

relabel the vertices v1, . . . , v6k so that vi is an endpoint of Pi for i ∈ [2k] and vi is to the

left of vj for i < j.
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Let L3 = {L1, . . . , L6k(p−1)} be a set of 6k(p − 1) paths in L2 disjoint from Rm. For

i ∈ [6k(p − 1)], let xi and yi denote the left and right endpoint of Li on R respectively.

Assume without loss of generality that xi is to the left of xj for i < j. Then, up to

reorientation of the wall, we may assume that the following hold:

1. If L3 is in series, then there is a subpathR′ ofR containing {x1, y1, . . . , xk(p−1), yk(p−1)}

such that R′ is disjoint from Rm.

2. If L3 is crossing or nested, then the two (disjoint) subpaths Rx = x1Rx3k(p−1) and

Ry = y1Ry3k(p−1) are disjoint from Rm.

First suppose L3 is in series. Then R′ ∪ {L1, . . . , Lk(p−1)} is a Γ-nonzero cycle-chain

of length k(p− 1) which can be partitioned into k disjoint Γ-nonzero cycle-chains, each of

length p − 1, and each of whose core path is a subpath of R′. By linking the endpoints of

the k cycle-chains to the endpoints of P3 through the W1, we obtain k disjoint Γ-nonzero

A-cycle-chains each of length p − 1 and hence k disjoint Γ-zero A-paths by Proposition

5.2.1.

Let us assume now that L3 is crossing or nested. By Lemma 5.2.6, there is a Γ-nonzero

cycle-chain of length k(p− 1) contained in R ∪ {L1, . . . , L3k(p−1)} whose core path is Rx

or Ry. Say Rx. Again we partition into k disjoint Γ-nonzero cycle-chains, each of length

p−1, and each of whose core path is a subpath of Rx. Linking the endpoints to P3 through

W1, we obtain k disjoint Γ-nonzeroA-cycle-chains each of length p−1 and hence k disjoint

Γ-zero A-paths by Proposition 5.2.1.

5.3 Γ-bipartite 3-block

In this section we deal with outcome (3) of Theorem 3.1.1. Let us first sketch the proof, as

it is more involved than the previous section.
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5.3.1 Proof outline

Let (B, γ) be a Γ-bipartite 3-block of (G − A, γ). Since (B, γ) is Γ-bipartite and 3-

connected, we may assume that every V (B)-path in (G − A, γ) has weight 0 by Lemma

2.2.2. Thus, the weight of an A-path containing vertices in V (B) is determined only by its

A-V (B)-subpaths.

The goal is to find two large A-V (B)-linkages P and Q such that every path in P has

weight ℓ and every path in Q has weight −ℓ for some ℓ ∈ Γ, and such that they can be

linked in (B, γ) to obtain many disjoint Γ-zero A-paths. The main obstacle is that the

edges of the 3-block (B, γ) are not necessarily edges in the original graph (G, γ); rather,

they are “virtual” edges representing V (B)-bridges of (G, γ) with two attachments. Since

the vertices in A may be adjacent to vertices in V (B)-bridges not necessarily in V (B), it

is not immediately clear how the ends of such A-V (B)-paths can be linked to yield the

desired Γ-zero A-paths (see Figure 5.2). To aid with this step, we use a large wall W in

(B, γ) as an intermediary structure and find two linkages of weight ℓ and −ℓ respectively

that nicely link to a subwall of W .

This then raises the natural question of whether an approximate version of Menger’s

theorem holds for paths of weight ℓ. In other words, given disjoint vertex sets A,U of a

Γ-labelled graph, can we find either many disjoint A-U -paths of weight ℓ or a small vertex

set hitting all such paths? This is false in general as easily seen from the constructions in

Figure 3.1 (b) and (c). Nonetheless, we show in Lemma 5.3.1 that this is true under the

additional assumption that U is contained in a Γ-bipartite 3-block of (G−A, γ). This result

is used in Lemma 5.3.2 to find paths of weight ℓ that nicely link to some large subwall of a

given wall in a Γ-bipartite 3-block of (G − A, γ). In Lemma 5.3.3, we apply the strategy

discussed above using Lemma 5.3.2.
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5.3.2 Menger type theorems for paths of weight ℓ

We remark that the results in this subsection apply to all abelian groups Γ, and that Lemmas

5.3.1 and 5.3.2 do not assume the existence of a large tangle.

Given U ⊆ V (B), we define the initial segment of an A-U -path to be its A-V (B)-

subpath. The end segments of anA-path going through V (B) are its twoA-V (B)-subpaths.

Lemma 5.3.1. Let Γ be an abelian group with ℓ ∈ Γ, let t be a positive integer, let (G, γ)

be a Γ-labelled graph with A ⊆ V (G), and let (B, γ) be a 3-block of (G−A, γ) such that

(B, γ) is Γ-bipartite. Let U ⊆ V (B). If there does not exist X ⊆ V (G) with |X| < 12t

intersecting all A-U -paths of weight ℓ, then there exist t disjoint A-U -paths of weight ℓ in

(G, γ).

Proof. Since (B, γ) is a Γ-bipartite 3-block of (G− A, γ), Lemma 2.2.2 gives a sequence

of shifting operations of (G, γ), only shifting at vertices in V (G − A), resulting in a Γ-

labelling γ′ of G such that every V (B)-path in (G − A, γ′) has weight 0. Note that the

weights of A-paths are unchanged by such shifting operations. So we may assume without

loss of generality that, after possibly shifting, every V (B)-path in (G−A, γ) has weight 0.

Let Bℓ be the unlabelled graph obtained from (the graph) B by adding the vertex set A

and, for each a ∈ A and b ∈ V (B), adding an edge ab if there is an A-V (B)-path of weight

ℓ with endpoints a and b in (G, γ). Then for each A-U -path of weight ℓ in (G, γ), there is

a corresponding A-U -path in Bℓ with the same endpoints and same sequence of vertices in

V (B).

The converse does not necessarily hold: Let b1b2 ∈ E(B), a ∈ A, and suppose P is an

A-U -path in Bℓ with a, b1, b2 as its first three vertices in this order. Let R denote the union

of all V (B)-bridges of G− A whose sets of attachments in B are equal to {b1, b2}. If

• there does not exist an a-b2-path of weight ℓ going through b1 in (G[R + a], γ), and

• there does not exist an a-b1-path with weight ℓ in (G, γ) that is internally disjoint

from A ∪ V (B) ∪ V (R),

97



A a

b1 b2
ℓ −ℓ

0

Figure 5.2: The black filled vertices are in Bℓ and the highlighted
curves represent edges of Bℓ. If a is not adjacent to another V (B)-
bridge of G − A attaching to b1, then an A-U -path in Bℓ starting
with the vertices a, b1, b2 does not have a corresponding path of
weight ℓ in (G, γ), and is improper.

then there does not exist a corresponding A-U -path of weight ℓ in (G, γ) with the same

endpoints and same sequence of vertices in V (B) as P . See Figure 5.2. In this case, let us

call the A-U -path P in Bℓ improper. Otherwise, there clearly exists a corresponding A-U -

path of weight ℓ in (G, γ) and we call P proper. If a ∈ A, b1 ∈ U , and ab1 ∈ E(Bℓ), then

we also call the path ab1 proper and it (by the definition of Bℓ) also has a corresponding

A-U -path of weight ℓ in (G, γ). In all cases, we call b1 the first attachment and b2, if it

exists, the second attachment of P .

Note that the definition of proper and improper A-U -paths in Bℓ depend only on their

first and second attachments. Moreover, if two A-U -paths in Bℓ have the same endpoint in

A and same first attachment but distinct second attachments, then at least one of the two

paths is proper.

Given a linkage P of proper A-U -paths in Bℓ, let A(P) and U(P) denote the sets of

vertices in A and U respectively that are endpoints of a path in P , and let FP denote the set

of vertices in V (B) that are first attachments of A-U -paths in Bℓ − A(P). In other words,

FP is the set of vertices in V (B) that are adjacent to A− A(P) in Bℓ.

Let P be a (cardinality-wise) maximum linkage of properA-U -paths inBℓ. If |P| ≥ 2t,

then the corresponding 2t A-U -paths of weight ℓ in (G, γ) are disjoint except possibly in

their initial segments. But since the initial segment of such a path can intersect at most one
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other, there is a subset of P of t disjoint A-U -paths of weight ℓ in (G, γ), as desired. So we

may assume that |P| < 2t.

By Corollary 3.2.1, either there are 4t disjoint U -FP-U -paths in Bℓ − A or there exists

Y ⊆ V (Bℓ)− A with |Y | < 8t such that Bℓ − A− Y does not contain a U -FP-U -path.

Case 1: There exist 4t disjoint U -FP-U -paths in Bℓ − A.

Let us choose linkages P and Q such that

(i) P is a maximum linkage of proper A-U -paths in Bℓ,

(ii) Q is a linkage of 4t U -FP-U -paths in Bℓ − A, and

(iii) subject to (i) and (ii), the number of edges in (∪P) ∪ (∪Q) is minimum.

First suppose there existsQ ∈ Q that is disjoint from ∪P . Let b ∈ V (Q)∩FP and let

a ∈ A−A(P) be adjacent to b inBℓ. ThenQ+a+ab contains a properA-U -path by

the definition of improper paths, and moreover this path is disjoint from ∪P since Q

is disjoint from ∪P . This contradicts the maximality of P and we may thus assume

that every path in Q intersects a path in P .

Since |P| < 2t and |Q| = 4t, we can choose a subset Q′ = {Q′
1, . . . , Q

′
2t} of Q with

|Q′| = 2t such that no path in Q′ contains a vertex in U(P). For each i ∈ [2t], let ui

be an endpoint of Q′
i and let zi be the closest vertex to ui on Q′

i that is contained in a

path in P .

Since |P| < 2t and |Q′| = 2t, there exist distinct i, j ∈ [2t] such that zi, zj ∈ V (P )

for some P ∈ P . Let a and u denote the two endpoints of P in A and U respectively,

and assume without loss of generality that a, zi, zj, u occur in this order on P . Then

P ′ := aPzjQ
′
juj is a proper A-U -path since P is proper and P and P ′ have the same

first and second attachments. See Figure 5.3. Moreover, P ′ is disjoint from each path

in P − P by our choice of zj . But since Q′
j does not contain a vertex in U(P), P ′

uses strictly fewer edges that are not in ∪Q than P .
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i

ui uj

U

P

Figure 5.3: Lemma 5.3.1, Case 1. The highlighted path is a proper
A-U -path using fewer edges not in ∪Q, contradicting the choice of
P and Q.

Since P is a maximum linkage of proper A-U -paths in Bℓ, so is P ′ := P − P + P ′.

Since A(P) = A(P ′) (hence FP = FP ′), P ′ and Q also satisfy (i) and (ii). But

(∪P ′) ∪ (∪Q) has fewer edges than (∪P) ∪ (∪Q), contradicting (iii).

Case 2: There exists Y ⊆ V (Bℓ)−A with |Y | < 8t such thatBℓ−A−Y does not contain

a U -FP-U -path.

LetH denote the graphBℓ−A−Y . SinceH does not contain a U -FP-U -path, for all

b1 ∈ FP−Y , there exists a 1-separation (Cb1 , Db1) inH such that b1 ∈ V (Cb1 −Db1)

and U − Y ⊆ V (Db1).

Claim 5.3.1.1. Let a ∈ A − A(P), b1 ∈ FP − Y , and suppose that there exists an

improperA-U -pathQ contained inH+a+ab1. Let b2 denote the second attachment

of Q. Then there exists a proper A-U -path in H + a+ ab1 if and only if b1b2 is not a

cut-edge in H separating b1 from U − Y .

Proof. If b1b2 is a cut-edge in H separating b1 from U − Y , then any a-U -path in

H + a + ab1 must start with the vertices a, b1, b2 in this order, and any such path

is improper since it has the same first and second attachments as Q. Conversely, if

b1b2 is not such a cut-edge, then there exists a b1-U -path in H avoiding the edge b1b2.

Combining this path with the edge ab1 gives a proper A-U -path in H + a+ ab1. See
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b′1

b′2

U − Y

A
Y

C

D

Figure 5.4: Lemma 5.3.1, Case 2. If there is an improper A-U -
path using a, b1, b2 such that b1b2 is a cut-edge, then the edge ab1 is
deleted in H ′. Otherwise, as with a′, b′1, b

′
2 in the figure, there is a

proper A-U -path obtained by rerouting within C, and the edge a′b′1
remains in H ′.

Figure 5.4. ■

Let H ′ be the graph obtained from Bℓ −A(P)− Y by deleting the edge ab1 for each

a ∈ A− A(P) and b1 ∈ FP such that:

There is an improper A-U -path in H + a+ ab1 with second attachment b2

such that b1b2 is a cut-edge in H separating b1 from U − Y .

We now show that the problem reduces to Menger’s theorem on H ′.

Claim 5.3.1.2. Let Q′ = {Q′
1, . . . , Q

′
k} be a linkage of A-U -paths in H ′. Then there

is a linkage Q = {Q1, . . . , Qk} of proper A-U -paths in Bℓ−A(P)−Y such that Q′
i

and Qi have the same endpoints for all i ∈ [k].

Proof. Let a1, . . . , ak denote the endpoints of Q′
1, . . . , Q

′
k respectively in A−A(P).

For each i ∈ [k], define an A-U -path Qi in Bℓ − A(P) − Y as follows. If Q′
i is

proper, then set Qi = Q′
i. If Q′

i is improper, let bi1 and bi2 denote the first and second

attachments of Q′
i respectively and let zi denote the unique vertex in V (Cbi1

∩Dbi1
).

Then zi is a cut-vertex separating bi1 from U − Y in H , so zi ∈ V (Q′
i). Also, bi1b

i
2 is

not a cut-edge in H separating bi1 from U − Y since otherwise the edge aibi1 would

have been deleted in H ′.

101



It follows that there exists a bi1-z
i-path Ri in Cbi1

avoiding the edge bi1b
i
2. Define Qi to

be the A-U -path aibi1Riz
iQ′

i. Then Qi is proper, contained in Bℓ − A(P) − Y , and

Qi has the same endpoints as Q′
i. Moreover, since Qi was obtained by modifying Q′

i

only inside Cbi1
(which is separated by the cut-vertex zi from U in H), it follows that

Q := {Q1, . . . , Qk} is a linkage of proper A-U -paths in Bℓ − A(P)− Y . ■

If H ′ contains 2t disjoint A-U -paths, then we obtain 2t disjoint proper A-U -paths in

Bℓ − A(P) − Y (hence in Bℓ), contradicting the assumption that P is a maximum

such linkage. Thus, by Menger’s theorem, there exists Z ⊆ V (H ′) with |Z| < 2t

such that H ′ − Z does not contain an A-U -path.

Claim 5.3.1.3. (G− A(P)− Y − Z, γ) does not contain an A-U -path of weight ℓ.

Proof. Suppose Q is an A-U -path of weight ℓ in (G− A(P)− Y − Z, γ), and let a

denote the endpoint of Q in A − A(P). Then Q corresponds to a proper A-U -path

Q′ in Bℓ −A(P)− Y −Z with the same endpoints and same sequence of vertices in

V (B). Let b1 denote the vertex succeeding a in Q′.

Since H ′ − Z does not contain an A-U -path, the edge ab1 must have been deleted in

H ′. By the definition of H ′, there exists an improper A-U -path in H + a+ ab1 with

second attachment say b2 such that b1b2 is a cut-edge in H separating b1 from U −Y .

But by Claim 5.3.1.1, there does not exist a proper A-U -path in Bℓ − A(P) − Y

starting with the edge ab1, contradicting the existence of Q′. ■

Thus X := A(P) ∪ Y ∪ Z ⊆ V (G) is a hitting set for A-U -paths of weight ℓ in

(G, γ) with |X| ≤ |P| + |Y | + |Z| < 2t + 8t + 2t = 12t. This completes the proof

of the lemma.

We next prove a generalization of Lemma 5.1.3 for paths of weight ℓ that nicely link to

a wall in a Γ-bipartite 3-block.
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Lemma 5.3.2. Let Γ be an abelian group with ℓ ∈ Γ, let r, t be positive integers with

r ≥ 12t, and let T = 3(36t)2. Let (G, γ) be a Γ-labelled graph with A ⊆ V (G) and

let (B, γ) be a Γ-bipartite 3-block of (G − A, γ). Let W be an s-wall in G − A where

s ≥ (2r + 1)(2T + 1) such that W is 1-contained in a wall W ′ and b(W ) ⊆ V (B) where

b(W ) is the set of branch vertices of W with respect to W ′. Suppose in addition that there

does not exist X ⊆ V (G) with |X| < 12T intersecting all A-b(W )-paths of weight ℓ in

(G, γ). ThenW contains a compact r-subwallW1 such that there are t disjointA-W1-paths

of weight ℓ that nicely link to W1.

Proof. By Lemma 5.3.1, there exist T disjoint A-b(W )-paths of weight ℓ in (G, γ). Let P

be a linkage of T such paths minimizing the number of edges in ∪P − E(W ).

Claim 5.3.2.1. There are at most T b(W )-paths Q in W such that Q intersects ∪P and

neither endpoint of Q is in ∪P .

Proof. LetQ be a b(W )-path inW with endpointsw1, w2 ̸∈ V (∪P) and let P = x0x1 . . . xm

be a path in P with x0 ∈ A and xm ∈ b(W ) such that Q ∩ P ̸= ∅. We may choose P and

xi ∈ V (Q ∩ P ) such that w1Qxi − xi does not intersect ∪P .

Suppose x0Pxi intersects W −Q. Then xi ∈ V (B); otherwise, there is a 2-separation

(C,D) of G−A such that xi ∈ V (C−D), b(W ) ⊆ V (D), and V (C ∩D) = {u, v} where

u, v ∈ V (Q) and xi ∈ uQv. But both x0Pxi and xiPxm intersect W − Q and, therefore,

they both contain one of {u, v}. Since one of u or v is in w1Qxi − xi, this contradicts

the assumption that w1Qxi − xi does not intersect ∪P . Now xi ∈ V (B) implies that

γ(w1Qxi) = γ(xiPxm) = 0 since (B, γ) is Γ-bipartite. Thus P ′ := x0PxiQw1 is an

A-b(W )-path of weight ℓ disjoint from ∪P − P with fewer edges not in W , contradicting

the minimality of P .

Therefore, we may assume that x0Pxi does not intersect W −Q. In other words, Q is

the first b(W )-path in W that P intersects. Since |P| = T , there are at most T such paths

Q. ■
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Let W (P) denote the vertices of b(W ) that are endpoints of a path in P . Let S ⊆ b(W )

be the vertex set obtained from W (P) by adding, for each b(W )-path Q in W whose

interior intersects ∪P , one endpoint of Q. We have |S| ≤ 2T by Claim 5.3.2.1.

Since W is a wall of size at least (2r + 1)(2T + 1), there are 2r + 1 consecutive rows

and 2r + 1 consecutive columns of W that are all disjoint from S and hence from ∪P . Let

W0 denote the compact 2r-subwall of W contained in the union of these 2r + 1 rows and

columns of W . Let W1 denote the compact r-subwall of W0 disjoint from the first r rows

and columns of W0. Let N1 denote the set of top nails of W1 and let H denote the graph

G− (V (W1)−N1).

Claim 5.3.2.2. There does not exist Y ⊆ V (H) with |Y | < 12t intersecting allA-N1-paths

of weight ℓ in (H, γ).

Proof. Suppose to the contrary that Y is such a hitting set. Since r ≥ 12t, there exists a

row RW and a column CW of W intersecting W0 and disjoint from W1 and Y . There also

exists a column CW
∗ of W containing a vertex in N that is disjoint from Y .

Since |P| = T = 3(36t)2 > 2(36t)2 + 12t, there exists P ′ ⊆ P with |P ′| = 2(36t)2

such that each path in P ′ is disjoint from Y . Then there exists P ′′ ⊆ P ′ with |P ′′| = 36t

such that the vertices of W (P ′′) either lie in distinct rows or in distinct columns of W .

Suppose the vertices of W (P ′′) lie in distinct rows (resp. columns) of W . Since |Y | <

12t, there are 24t distinct rows (resp. columns) Q1, . . . , Q24t of W , in this order in W and

disjoint from Y , such that Qi contains a vertex wi in W (P ′′). Let Pi denote the path in P ′′

containing wi as an endpoint and let ai denote the endpoint of Pi in A.

Let yi denote the vertex in Pi ∩ Qi that is closest to CW (resp. RW ) on the wi-CW -

subpath (resp. the wi-RW -subpath) of Qi. If yi ∈ V (B), then γ(aiPiyi) = ℓ and we obtain

an A-N1-path of weight ℓ in (H − Y, γ) in aiPiyi ∪Qi ∪CW ∪RW ∪CW
∗ , a contradiction.

So we may assume that yi ̸∈ V (B) for all i ∈ [24t]. Then there is a 2-separation

(Ci, Di) of G − A with yi ∈ V (Ci − Di), V (B) ⊆ V (Di), and V (Ci ∩ Di) = {xi, zi}

where xi, zi ∈ V (Qi)∩ V (B). Assume without loss of generality that wi, xi, yi, zi occur in
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Figure 5.5: The highlighted path is an A-N1-path of weight ℓ in
(H − Y, γ) as described in the proof of Claim 5.3.2.2. At least one
such path is disjoint from Y .

this order on Qi (where possibly wi = xi and zi ∈ CW ). Then the A-V (B)-subpath of Pi

is contained in G[Ci + ai] and ends at xi. Let P ′
i = aiPixiQiwi.

Recall that W is 1-contained in a wall W ′. For i ∈ [24t], let Q′
i denote the rows (resp.

columns) of W ′ containing Qi. For i ∈ [12t], let Ri be the A-CW -path (resp. A-RW -path)

obtained from P ′
2i−1 by continuing along Q′

2i−1 to the first or last column (resp. row) of

W ′, using it to reach Q′
2i, then going back along Q′

2i to CW (resp. RW ). See Figure 5.5.

Then γ(Ri) = ℓ and R1, . . . , R12t are disjoint. Since |Y | < 12t, some Ri is disjoint

from Y and we thus obtain a contradictory A-N1-path of weight ℓ in (H − Y, γ) in Ri ∪

CW ∪RW ∪ CW
∗ . This completes the proof of the claim. ■

Let (H ′, γ′) be the Γ-labelled graph obtained from (H, γ) by adding an edge between

each pair of vertices in N1 with label 0. Let (B′, γ′) be the 3-block of (H ′, γ′) containing

N1. Then (B′, γ′) is Γ-bipartite: if C is a simple Γ-nonzero cycle in (B′, γ′), then there are

three disjoint V (C)-N1-paths which give a Γ-nonzero N1-path in H by Lemma 2.2.4. But

since N1 ⊆ V (B), this contradicts the assumption that (B, γ) is Γ-bipartite.

Applying Lemma 5.3.1 to (H ′, γ′) and N1, we obtain t disjoint A-W1-paths that nicely

link to W1, completing the proof of the lemma.

For each positive integer k, let BR(k) denote the smallest integer b such that any red-
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blue coloring of the edges of Kb,b contains either a red Kk,k or a blue Kk,k. These are

called the Bipartite Ramsey numbers and it is known that BR(k) ≤ (1 + o(1))2k+1 log k

(see [11]). We further define the following parameters:

t = t(k) = 16BR(k)

T = T (k) = 3(36t)2

r0 = r0(k) = 12t

ri = ri(k) = (2ri−1 + 1)(2T + 1) + 2t for i ≥ 1.

Lemma 5.3.3. Let Γ be a finite abelian group and let k be a positive integer. Then there

exists an integer β(k, |Γ|) such that the following holds: If (G, γ) is a Γ-labelled graph

with A ⊆ V (G) such that

(I) there does not exist Y ⊆ V (G) with |Y | < 12T (k)|Γ| intersecting every Γ-zero

A-path.

(II) (G−A, γ) contains an β(k, |Γ|)-wall W ′ inducing a tangle T = TW ′ in G−A such

that the T -large 3-block (B, γ) of (G− A, γ) is Γ-bipartite, and

(III) if (C,D) ∈ T , then (G[A ∪ C], γ) does not contain a Γ-zero A-path and (G[A ∪

(D − C)], γ) contains a Γ-zero A-path,

then (G, γ) contains k disjoint Γ-zero A-paths.

Proof. Define s = s(k, |Γ|) = r|Γ|+1. We show that β(k, |Γ|) = s + 2 suffices. Suppose

G − A contains an (s + 2)-wall W ′ with T = TW ′ satisfying (II) and (III). Since (B, γ)

is the T -large 3-block of (G − A, γ), every vertex of degree 3 in W ′ is in V (B). Let W

be the s-wall that is 1-contained in W ′ with the natural choice of corners and nails, so that

b(W ) ⊆ V (B).

Since (B, γ) is Γ-bipartite, we may assume by Lemma 2.2.2 that, after possibly shifting,

every V (B)-path in (G−A, γ) has weight zero. Let P be a Γ-zero A-path in (G, γ). Then
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P intersects V (B) in at least two vertices, since otherwise there would be a 3-separation

(C,D) ∈ T such that P ⊆ G[A ∪ C], violating (III). In particular, P contains two disjoint

end segments whose weights are ℓ and −ℓ for some ℓ ∈ Γ.

Claim 5.3.3.1. Let ℓ ∈ Γ and let W ∗ be a compact r-subwall of W such that r ≥ 12T . Let

X ⊆ V (G) with |X| < 12T . If (G−X, γ) does not contain an A-b(W ∗)-path of weight ℓ,

then (G−X, γ) does not contain a Γ-zero A-path whose end segments have weights ±ℓ.

Proof. Suppose P is a Γ-zero A-path in (G − X, γ) whose end segments have weights

±ℓ, and let B(P ) = V (P ) ∩ V (B). If there exist two disjoint B(P )-b(W ∗)-paths in

G−A−X , then the union of these two paths and P contains an A-b(W ∗)-path of weight ℓ

in (G−X, γ) and we are done. Otherwise, there exists a 1-separation (C,D) in G−A−X

with B(P ) ⊆ V (C) and b(W ∗)−X ⊆ V (D).

Consider the 12T -separation (G[C ∪ (X −A)], G[D ∪ (X −A)]) in G−A. Since W ∗

has size r ≥ 12T and b(W ∗) ⊆ V (G[D ∪ (X − A)]), we have (G[C ∪ (X − A)], G[D ∪

(X − A)]) ∈ TW ∗ ⊆ T . But P ⊆ G[A ∪ C ∪X], violating (III). ■

Claim 5.3.3.2. LetW ◦ be a compact r-subwall ofW such that r ≥ ri for some i ≥ 1. Then

there exists ℓ ∈ Γ such that, for any choice of ℓ◦ ∈ {ℓ,−ℓ}, there is a compact t-contained

ri−1-subwall W ◦
1 of W ◦ such that there are t disjoint A-W ◦

1 -paths of weight ℓ◦ that nicely

link to W ◦
1 .

Proof. Let W ◦
0 be a t-contained (2ri−1 + 1)(2T + 1)-subwall of W ◦. The size of W ◦

0 is

clearly greater than 12T . Suppose that for every ℓ ∈ Γ, there exists Xℓ ⊆ V (G) with

|Xℓ| < 12T such that either Xℓ intersects every A-b(W ◦
0 )-path of weight ℓ or Xℓ intersects

every A-b(W ◦
0 )-path of weight −ℓ. Then by Claim 5.3.3.1 (applied to W ◦

0 , ℓ, and Xℓ for

every ℓ ∈ Γ), Y := ∪ℓ∈ΓXℓ intersects every Γ-zero A-path and |Y | < 12T |Γ|, violating (I).

So there exists ℓ ∈ Γ for which such a set Xℓ does not exist.

Let ℓ◦ ∈ {ℓ,−ℓ}. We have shown above that there does not exist X ⊆ V (G) with

|X| < 12T intersecting every A-b(W ◦
0 )-path of weight ℓ◦. By Lemma 5.3.2 (applied to
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W ◦
0 , ℓ◦, r, and t), we obtain a compact ri−1-subwall W ◦

1 of W ◦
0 such that there are t disjoint

A-W ◦
1 -paths of weight ℓ◦ that nicely link to W ◦

1 . ■

We apply Claim 5.3.3.2 repeatedly starting with W to obtain a sequence of elements

ℓ1, . . . , ℓ|Γ|+1, subwalls W ⊇ W1 ⊇ · · · ⊇ W|Γ|+1, and linkages P1, . . . ,P|Γ|+1 such that Pi

is a set of t disjoint A-Wi-paths of weight ℓi that nicely links to Wi. We have ℓi = ℓj for

some i < j and, since we are free to choose either ℓj or −ℓj at the j-th iteration of Claim

5.3.3.2, we may assume that ℓj = −ℓi for some i < j. We can then extend the linkages Pi

and Pj through Wi and Wj respectively so that they link nicely to W|Γ|+1 (since W|Γ|+1 is

t-contained in each of the previous walls). Note that W|Γ|+1 has size r0 = 12t.

Renaming, we have thus obtained a 12t-wall W∗ and two linkages P and Q of A-W∗-

paths of weight ℓ and −ℓ respectively that nicely link to W∗, with |P| = |Q| = t. For

an A-W∗-linkage R, let A(R) and W∗(R) denote the set of endpoints of R in A and W∗

respectively.

Recall that t = 16BR(k) where BR(k) is the bipartite Ramsey number. The 16BR(k)

paths of P (resp. Q) contain a set P1 ⊆ P (resp. Q1 ⊆ Q) with |P1| = |Q1| = 8BR(k)

such that no B-bridge of (G−A, γ) contains the initial segments of two paths in P1 (resp.

Q1).

Now take an arbitrary subset P2 ⊆ P1 with |P2| = 4BR(k). Then the interior of the

initial segment of each path in P2 intersects at most one path in Q1, so there is a subset

Q2 ⊆ Q1 with |Q2| = 4BR(k) such that no path in Q2 intersects the interiors of initial

segments of paths in P2. Similarly, take a subset Q3 ⊆ Q2 with |Q3| = 2BR(k) and

choose a subset P3 ⊆ P2 with |P3| = 2BR(k) such that no path in P3 intersects the

interiors of initial segments of paths in Q3.

We may then choose P4 ⊆ P3 and Q4 ⊆ Q3 with |P4| = |Q4| = BR(k) such that each

vertex in A belongs to at most one path in P4 ∪Q4. Note that every A(P4)-A(Q4)-path in

(∪P4) ∪ (∪Q4) ∪W∗ is the union of an initial segment of a path in P4 (which has weight

ℓ), an initial segment of a path in Q4 (which has weight −ℓ), and a V (B)-path (which has
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weight 0). Hence every A(P4)-A(Q4)-path in (∪P4) ∪ (∪Q4) ∪W∗ is a Γ-zero A-path.

If there exist linkages P5 ⊆ P4 and Q5 ⊆ Q4 with |P5| = |Q5| = k such that the paths

in P5 ∪ Q5 are disjoint, then we obtain k disjoint Γ-zero A-paths by linking W∗(P5) to

W∗(Q5) through W∗. Otherwise, by the definition of BR(k), there exist linkages P5 ⊆ P4

and Q5 ⊆ Q4 with |P5| = |Q5| = k such that every path in P5 intersects every path of Q5.

Let H = (∪P5) ∪ (∪Q5).

Since H ⊆ (∪P4) ∪ (∪Q4) ∪W∗, every A(P5)-A(Q5)-path in H is an A(P4)-A(Q4)-

path in (∪P4) ∪ (∪Q4) ∪ W∗, hence a Γ-zero A-path. If there does not exist k disjoint

A(P5)-A(Q5)-paths in H , then by Menger’s theorem there exists Z ⊆ V (H) with |Z| < k

separatingA(P5) fromA(Q5) inH . But this is a contradiction since such a set Z is disjoint

from at least one path in P5 and at least one path in Q5, and since these two paths intersect,

their union contains an A(P5)-A(Q5)-path, hence a Γ-zero A-path.

5.4 Proof of Theorem 1.3.3

We are now ready to prove Theorem 1.3.3.

Theorem 5.4.1 (Theorem 1.3.3 restated). Let p be an odd prime and let Γ = Z/pZ. Then

Γ-zero A-paths satisfy the Erdős-Pósa property.

Proof. For each positive integer k define r∗ = r∗(k) = 18kp and t∗ = t∗(k) = 5kp. Let

f2.6.1, g, h, β be the functions given by Theorem 2.6.1, Theorem 3.1.1, and Lemma 5.3.3.

Define φ(k) = g(r∗, t∗) + h(r∗, t∗) + β(k, p). Let f : N → N be a function such that

f(k) ≥ 2f(k − 1) + 3f2.6.1(φ(k)) + 10 and f(k) ≥ h(r∗, t∗) + 12T (k)p + 108k2, where

T (k) is the function appearing in condition (I) of Lemma 5.3.3.

Let ((G, γ), k) with A ⊆ V (G) be a minimal counterexample to f being an Erdős-Pósa

function for Γ-zero A-paths. That is, (G, γ) does not contain k disjoint Γ-zero A-paths,

there does not exist X ⊆ V (G) with |X| ≤ f(k) intersecting every Γ-zero A-path, and

subject to these two conditions, k is minimum.
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By Lemma 5.1.1, G − A admits a tangle T of order f2.6.1(φ(k)) such that for each

(C,D) ∈ T , G[A∪C] does not contain a Γ-zero A-path and G[A∪ (D−C)] contains a Γ-

zeroA-path. By Theorem 2.6.1,G−A contains a φ(k)-wallW such that TW is a truncation

of T . We apply Theorem 3.1.1 to (W, γ), r∗, and t∗ and obtain one of its outcomes.

In outcomes (1) and (2), note that conditions (a) and (b) of section 5.2 are satisfied. In

outcome (1), we have a Γ-odd K5kp-model µ in (G − A, γ) such that Tµ is a truncation

of TW . Lemma 5.2.3 implies that (G, γ) contains k disjoint Γ-zero A-paths. In outcome

(2), we have a 50r12∗ -wall (W0, γ) in (G− A, γ) such that TW0 is a truncation of TW . Note

that 50r12∗ ≥ 2664k3p. In outcome (2)-(a), (W0, γ) is facially Γ-odd and by Lemma 5.2.5,

(G, γ) contains k disjoint Γ-zero A-paths. In outcome (2)-(b), (W0, γ) is a Γ-bipartite wall

with a pure Γ-odd linkage of (W0, γ) of size r∗ = 18kp, and by Lemma 5.2.7, (G, γ)

again contains k disjoint Γ-zero A-paths. In all cases, we obtain k disjoint Γ-zero A-paths,

contradicting the assumption that ((G, γ), k) is a minimal counterexample.

Therefore outcome (3) holds and there exists Z ⊆ V (G − A) with |Z| ≤ h(r∗, t∗)

such that the T -large 3-block of (G − A − Z, γ) is Γ-bipartite. Since W has size φ(k) =

g(r∗, t∗) + h(r∗, t∗) + β(k, p), there is a β(k, p)-subwall W1 of W in (G− A− Z, γ).

Then (G − Z, γ) and W1 satisfy the three hypotheses of Lemma 5.3.3. Indeed, since

TW1 is a truncation of T , the T -large 3-block of (G − A − Z, γ) is also TW1-large, so

hypothesis (II) holds. Similarly, every separation in TW1 is also in T , so (III) holds as well.

Furthermore, since f(k) ≥ h(r∗, t∗) + 12T (k)p and (G, γ) does not contain a hitting set

of size less than f(k), (G − Z, γ) does not contain a hitting set Y with |Y | < 12T (k)p,

satisfying hypothesis (I). By Lemma 5.3.3, (G− Z, γ) contains k disjoint Γ-zero A-paths,

a contradiction.
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CHAPTER 6

OBSTRUCTIONS TO THE ERDŐS-PÓSA PROPERTY OF ALLOWABLE

CYCLES

6.1 Preliminaries

First we collect several tools from Gollin et al. [20].

6.1.1 Packing functions

Let G be a graph and let ν be a function from the set of subgraphs of G to the set of

non-negative integers. For subgraphs H,H ′ ⊆ G, we say

• ν is monotone if ν(H) ≤ ν(H ′) whenever H is a subgraph of H ′,

• ν is additive if ν(H ∪H ′) = ν(H) + ν(H ′) whenever H and H ′ are disjoint, and

• ν is a packing function for G if it is monotone and additive.

Now let ν be a packing function for a graphG. For a subgraphH ⊆ G, we say a set T ⊆ V (H)

is a ν-hitting set forH if ν(H − T ) = 0. We define τν(H) as the size of a smallest ν-hitting

set of H . Note that in the traditional sense of the word, a ν-hitting set of G is a hitting set

for the minimal subgraphs H ⊆ G for which ν(H) ≥ 1.

Lemma 6.1.1 (Gollin et al. [20, Lemma 4.1]). Let ν be a packing function for a graph G

and let T ⊆ V (G) be a minimum ν-hitting set for G of size t. Let TT be the set of all

separations (A,B) of G of order less than t/6 such that |B ∩ T | > 5t/6. If τν(H) ≤ t/12

whenever H is a subgraph of G with ν(H) < ν(G), then TT is a tangle of order ⌈t/6⌉.
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6.1.2 Cleaning the wall

We will need the following notation. Let Γ =
∏

j∈[m] Γj be a product of m abelian groups

and let (G, γ) be a Γ-labelled graph. Given a subset Z ⊆ [m] and an integer ℓ, we say that

a wall W in G is (γ, Z, ℓ)-clean if

(1) every NW -path in W is γj-zero for all j ∈ Z and

(2) W has no ℓ-subwall that is γj-bipartite for all j ∈ [m] \ Z.

We write N≥3 to denote the set of integers greater than or equal to 3.

Lemma 6.1.2 (Gollin et al. [20, Lemma 5.1]). Let Γ =
∏

j∈[m] Γj be a product ofm abelian

groups, let (G, γ) be a Γ-labelled graph, let ψ : {0} ∪ [m+ 1] → N≥3 be a function, and

let W be a wall of order ψ(0) + 2 in G. Then there exist a Γ-labelling γ′ of G shifting-

equivalent to γ, a subset Z of [m], and a (γ′, Z, ψ(|Z|+ 1) + 2)-clean ψ(|Z|)-wall that is

dominated by TW .

6.1.3 Collecting handles

Lemma 6.1.3 (Gollin et al. [20, Lemma 4.3]). Let u, k be positive integers such that f2.2.5(k) <

u− 2. Let Γ be an abelian group, let (G, γ) be a Γ-labelled graph, and let ν be a packing

function for G such that

• every minimal subgraph H of G with ν(H) ≥ 1 is a γ-nonzero cycle,

• τν(H) ≤ 3u for every subgraph H of G with ν(H) < ν(G), and

• τν(G) ≥ u.

Let T ⊆ V (G) be a minimum ν-hitting set for G and let N ⊆ V (G) such that for ev-

ery S ⊆ V (G) of size less than u, there is a component of G− S containing a vertex of N

and at least 4u vertices of T . Then G contains k disjoint γ-nonzero N -paths.
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A corridor of a graph G is a V ̸=2(G)-path of length at least 1.

Lemma 6.1.4 (Gollin et al. [20, Lemma 6.1]). There exist functions w6.1.4 : N2 → N and

f6.1.4 : N → N satisfying the following. Let k, t, and c be positive integers with c ≥ 3, let Γ

be an abelian group, and let (G, γ) be a Γ-labelled graph. Let W be a wall in G of order

at least w6.1.4(k, c) such that all corridors of W are γ-zero. For each i ∈ [t− 1], let Pi be

a set of 4k W -handles in G such that the paths in
⋃

i∈[t−1]Pi are disjoint. If G contains at

least f6.1.4(k) disjoint γ-nonzero V̸=2(W )-paths, then there exist a c-column-slice W ′ of W

and a set Qi of k disjoint W ′-handles for each i ∈ [t] such that

(i) for each i ∈ [t− 1], the set Qi is a subset of the row-extension of Pi to W ′ in W ,

(ii) the paths in
⋃

i∈[t] Qi are disjoint, and

(iii) the paths in Qt are γ-nonzero.

6.1.4 Finding allowable cycles

A clean wall can help us to build cycles whose values will be allowable, as the following

lemma demonstrates.

Lemma 6.1.5 (Gollin et al. [20, Lemma 8.1]). There exist functions c6.1.5, r6.1.5 : N4 → N

satisfying the following. Let t, ℓ,m, and ω be positive integers with ℓ ≥ 3, let Γ =
∏

j∈[m] Γj

be a product ofm abelian groups, for each j ∈ [m] let Ωj be a subset of Γj of size at most ω,

and let (G, γ) be a Γ-labelled graph. Let Z be a subset of [m] and let W be a (γ, Z, ℓ)-

clean r × c-wall with c ≥ c6.1.5(t, ℓ,m, ω) and r ≥ r6.1.5(t, ℓ,m, ω). Then for every set P

of at most t disjoint W -handles such that γj (
⋃
P) /∈ Ωj for all j ∈ Z, there is a cycle O

in W ∪
⋃

P such that γj(O) /∈ Ωj for all j ∈ [m].

6.2 Handling handlebars

Recall that two sets G1 and G2 of graphs are said to be disjoint if
⋃
G1 and

⋃
G2 are disjoint.

First we show that given a family of pairwise disjoint sets of W -handles, we can throw
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away some W -handles from each set to obtain a family of pairwise disjoint non-mixing

W -handlebars.

Lemma 6.2.1. There is a function f6.2.1 : N2 → N satisfying the following property. Let t, θ,

c, and r be positive integers with r ≥ 3 and c ≥ 3, letW be a r×c-wall, and let (Pi : i ∈ [t])

be a family of pairwise disjoint sets of f6.2.1(t, θ)W -handles. If the W -handles in
⋃t

i=1Pi

are disjoint, then there exists a family (P∗
i : i ∈ [t]) of pairwise non-mixing W -handlebars

such that P∗
i ⊆ Pi and |P∗

i | ≥ θ for all i ∈ [t].

Proof. Let

f6.2.1(t, θ) :=


max{3((2t− 1)θ − 1)3 + 1, 30f6.2.1(t− 1, θ)} if t > 1,

3(θ − 1)3 + 1 if t = 1.

We proceed by induction on t. If t = 1, then there is a subset P ′ ⊆ P1 of size (θ − 1)3 + 1

whose paths all have the same number of endvertices in CW
1 . The result then follows from

Lemma 2.7.1.

Suppose t ≥ 2. By the above argument, there is a W -handlebar P ′ = {P ′
j : j ∈

[(2t − 1)θ]} ⊆ Pt of size (2t− 1)θ. For each j ∈ [(2t− 1)θ], let vj and wj be the

endvertices of P ′
j with vj ≺W wj . Without loss of generality, we may assume that for

all j, j′ ∈ [(2t− 1)θ] with j < j′, we have vj ≺W vj′ . For each x ∈ [2t− 1], let Ax be

the subpath of CW
1 ∪ CW

c from v1+(x−1)θ to vxθ, and let Bx be the subpath of CW
1 ∪ CW

c

from w1+(x−1)θ to wxθ. Note that for distinct x and y in [2t− 1], we have that Ax ∪Bx

andAy ∪By are disjoint. Hence, for each i ∈ [t− 1], there are at most two integers x ∈ [2t− 1]

such thatAx ∪Bx contains more than a third of the endvertices of paths in Pi. Hence, there

exists x ∈ [2t− 1] such that Ax ∪ Bx contains at most a third of the endvertices of paths

in Pi for all i ∈ [t− 1]. For every i ∈ [t− 1], let P ′
i ⊆ Pi of size at least 10f6.2.1(t− 1, θ)

such that Ax ∪Bx and
⋃

P ′
i are disjoint.

Since the graphH := CW
1 ∪ CW

c − V (Ax ∪Bx) has at most four components and 10 =
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(
4
1

)
+
(
4
2

)
, for each i ∈ [t− 1], there is a subset P ′′

i ⊆ P ′
i of size f6.2.1(t− 1, θ) such that for

every pair of W -handles P, P ′ ∈ P ′′
i , each component of H contains the same number of

endvertices of P and P ′. By the induction hypothesis, there is a family (P∗
i : i ∈ [t − 1])

of pairwise non-mixing W -handlebars such that P∗
i ⊆ P ′′

i and |P∗
i | ≥ θ for each i ∈

[t − 1]. Together with P∗
t := {P ′

j : j ∈ [xθ] \ [(x− 1)θ]}, these W -handlebars satisfy the

lemma.

The paths of a W -handlebar P can be pieced together through the outer columns of W

to form a W ∗-handlebar P∗ for some column-slice W ∗ of W such that each path in P∗

contains exactly d paths of P for any desired d, provided that P and W are large enough.

The following lemma shows that this can be done simultaneously to a family of pairwise

disjoint non-mixing W -handlebars so that the resulting family of W ∗-handlebars is also

pairwise disjoint and non-mixing.

Lemma 6.2.2. Let t, c, r, and θ be positive integers with c ≥ 5 and r ≥ 3, and let di be

a positive integer for each i ∈ [t]. Let W be a r × c-wall in a graph G and let W ∗ be

a (c − 2)-column-slice of W containing CW
2 and CW

c−1. Let (Pi : i ∈ [t]) be a family of

pairwise disjoint non-mixing W -handlebars with |Pi| ≥ θdi for all i ∈ [t]. Then there is

a family (P∗
i : i ∈ [t]) of pairwise disjoint non-mixing W ∗-handlebars each of size θ such

that for each i ∈ [t] and Q ∈ P∗
i , there is a set {Pj,Q ∈ Pi : j ∈ [di]} of size di such that

di⋃
j=1

Pj,Q ⊆ Q ⊆ W ∪
di⋃
j=1

Pj,Q.

Moreover, for each i ∈ [t], if di is even, then P∗
i is in series and if di is odd, then P∗

i is of

the same type as Pi.

Proof. For each i ∈ [t], let Pi =: {Pi,x : x ∈ [θdi]} such that if x, y ∈ [θdi] with x < y,

then some endvertex of Pi,x is ≺W -smaller than both endvertices of Pi,y. For each i ∈ [t]

and y ∈ [θ], it is easy to verify that there is a unique path in CW
1 ∪ CW

c ∪
⋃ydi

x=(y−1)di+1 Pi,x
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that contains
⋃ydi

x=(y−1)di+1 Pi,x whose set of endvertices contains the ≺W -smallest endver-

tex of Pi,(y−1)di+1 and some endvertex of Pi,ydi . Let Qi,y denote the row-extension of this

path to W ∗. Now with P∗
i := {Qi,y : y ∈ [θ]}, we easily observe that (P∗

i : i ∈ [t]) is as

desired.

Next we show that if (Pi : i ∈ [t]) is a family of disjoint non-mixing W -handlebars

none of which are in series, then we can construct a W ′-handlebar for some subwall W ′ of

W such that each W ′-handle contains exactly one path from each Pi.

Lemma 6.2.3. Let t, k, c, and r be positive integers with k ≥ 2 and c, r ≥ 3. Let W be a

r′ × c′-wall in a graph G with c′ ≥ c6.2.3(t, k, c) := c+ kt and r′ ≥ r6.2.3(k, r) := r + k.

Let (Pi : i ∈ [t]) be a family of pairwise disjoint non-mixing W -handlebars in G, each of

size k, such that no Pi is in series for all i ∈ [t]. Then there exist a subwallW ′ ofW having

at least c columns and at least r rows and a W ′-handlebar Q in G of size k such that for

each Q ∈ Q, there is a set {Pi,Q ∈ Pi : i ∈ [t]} such that

t⋃
i=1

Pi,Q ⊆ Q ⊆ W ∪
t⋃

i=1

Pi,Q.

Moreover, Q is crossing if and only if the number of crossingW -handlebars in (Pi : i ∈ [t])

is odd.

Proof. We proceed by induction on t. This lemma is trivial if t = 1 and therefore we

may assume that t > 1. First, suppose that for some distinct j′, j′′ ∈ [t], there is a path Q

in CW
1 ∪ CW

c′ that contains exactly one endvertex of each path in Pj′ ∪ Pj′′ and no endver-

tex of any path in
⋃
{Px : x ∈ [t] \ {j′, j′′}}. Without loss of generality, we may assume

that j′ = t−1, j′′ = t, andQ ⊆ CW
1 . Let (aj : j ∈ [2k]) be a strictly increasing sequence of

integers in [r′] such thatRW
aj
∩Q contains an endvertex of a path in Pt−1∪Pt for all j ∈ [2k].

For j ∈ [k], let Qj be a subpath of CW
k+1−j from a vertex in RW

aj
to a vertex in RW

a2k+1−j
.
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Then it is easy to observe that for each j ∈ [k], there is a unique path in

⋃
Pt−1 ∪RW

aj
∪Qj ∪RW

a2k+1−j
∪
⋃

Pt

that contains exactly one path in Pt−1 and exactly one path in Pt. Let W ∗ be a (c′ − k)-

column-slice of W containing CW
k+1 and CW

c′ . Then the row-extensions of all of these paths

to W ∗ yield a W ∗-handlebar P ′
t−1 that is disjoint and non-mixing with the row-extension

of Pi toW ∗ for each i ∈ [t− 2]. Note that P ′
t−1 is crossing if and only if exactly one of Pt−1

and Pt is crossing. By applying the induction hypothesis to P ′
t−1 and row-extensions of Pi

to W ∗ for all i ∈ [t− 2], we deduce the lemma in this case.

Now suppose that there is no path Q as defined above for any pair of W -handlebars

in (Pi : i ∈ [t]). Since no W -handlebar in (Pi : i ∈ [t]) is in series, it follows that each of

CW
1 and CW

c′ meets at most one W -handlebar in (Pi : i ∈ [t]) and so t = 2. Let W ′′ be

a (c′ − 2k)-column-slice of W containing CW
k+1 and CW

c′−k and let W ′ be a (r′ − k)-row-

slice of W ′′ containing RW ′′

k+1 and RW ′′

r′ . Without loss of generality, we may assume that

the endvertices of P1 are contained in CW
1 and the endvertices of P2 are contained in CW

c′ .

Let (aj : j ∈ [k]) be a strictly increasing sequence of integers in [r′] such that RW
aj

contains

the endvertex of a path in P1 that is ≺W -smaller than its other endvertex for all j ∈ [k], and

let (bj : j ∈ [k]) be a strictly increasing sequence of integers in [r′] such that RW
bj

contains

the endvertex of a path in P2 that is ≺W -larger than its other endvertex for all j ∈ [k].

Let W 0 be the k-column-slice of W containing CW
1 and let W 1 be the k-column-slice of

W containing CW
c′ . For j ∈ [k], let Pj be a subpath of CW

j from a vertex in RW
aj

to a vertex

in RW
j and let P ′

j be a subpath of CW
c′+1−j from a vertex in RW

j to a vertex in RW
bj

. Again, it

is easy to observe that for each j ∈ [k], there is a unique path in

⋃
P1 ∪RW 0

aj
∪ Pj ∪RW

j ∪ P ′
j ∪RW 1

bj
∪
⋃

P2

that contains exactly one path in P1 and exactly one path in P2. Now the row-extensions
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of all of these paths to W ′ yield a W ′-handlebar Q as desired. As before, note that Q is

crossing if and only if exactly one of P1 and P2 is crossing. This completes the proof.

The final lemma of this section shows that if (Pi : i ∈ [q]) is a family of pairwise

disjoint non-mixing W -handlebars that does not satisfy any of the three properties of Defi-

nition 3.3.1(6), then it is possible to find many disjoint cycles each containing exactly one

path from each Pi (with the help of Lemma 6.1.5).

Lemma 6.2.4. Let k, c, and r be positive integers with k ≥ 2 and c, r ≥ 3. Let q ∈ {0, 1, 2}.

LetW be a r′×c′-wall in a graphG with c′ ≥ c6.2.4(k, c) := c+ 6k and r′ ≥ r6.2.4(k, r) :=

k(r+2). Let (Pi : i ∈ [q]) be a family of pairwise disjoint non-mixing W -handlebars in G,

each of size k, such that one of the following holds.

(i) q = 0.

(ii) q = 1 and P1 is either nested or in series.

(iii) q = 2 and P1 and P2 are both in series.

Then for each x ∈ [k], there exist an r × c-subwall Wx, a set Hx = {Hx,i : i ∈ [q]} of q

disjoint Wx-handles, and a set {Px,i ∈ Pi : i ∈ [q]} such that

1. for distinct x, x′ ∈ [k] the graphs Wx ∪
⋃
Hx and Wx′ ∪

⋃
Hx′ are disjoint and

2. Px,i ⊆ Hx,i ⊆ W ∪ Px,i for each x ∈ [k] and each i ∈ [q].

Proof. Without loss of generality, we may assume that if q > 0, then the paths in P1 have

at least one endvertex in CW
1 and if q = 2, then each endvertex of each path in P1 is ≺W -

smaller than each endvertex of each path in P2 (since P1 and P2 are both in series). If q ≥ 1,

then let {P1,x : x ∈ [k]} be an enumeration of P1 such that for all x ∈ [k − 1], the ≺W -

smallest endvertex of P1,x is ≺W -smaller than both endvertices of P1,x+1, and additionally

if q = 2, then let {P2,x : x ∈ [k]} be an enumeration of P2 such that for all x ∈ [k − 1], the

≺W -smallest endvertex of P2,x is ≺W -larger than both endvertices of P2,x+1.
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LetW 0 be a 4k-column-slice ofW containingCW
1 and letW 1 be a (c′−c−4k)-column-

slice of W containing CW
c′ . Let W ∗ be a c-column-slice of W disjoint from W 0 ∪W 1.

Let {Wx : x ∈ [k]} be a set of k disjoint r × c-subwalls of W ∗ such that Wx intersects

both RW
(x−1)r+1 and RW

xr for each x ∈ [k]. For each x ∈ [2k] and z ∈ {0, 1},

• let vzx be the unique nail in the column-boundary ofW z that is contained in bothRW
⌈xr/2⌉

and CW
z(c+1)+4k and

• letwz
x be the unique nail in the column-boundary ofW z that is contained in bothRW

(r′+1−x)

and CW
z(c+1)+4k.

Note that for each x ∈ [k], the nails v02x−1, v
0
2x, v12x−1, and v12x are each contained in

a row of W that intersects Wx. For each x ∈ [2k], let Tx be the unique path in RW
r′+1−x ∪

CW
c′+1−x∪RW

⌈xr/2⌉ from w0
x to v1x. Note that T := {Tx : x ∈ [2k]} is a set of 2k disjoint paths

that are internally disjoint from W 0 ∪
⋃
{Wj : j ∈ [k]}.

If q = 0, then Wx with Hx = ∅ for each x ∈ [k] satisfies the condition and therefore we

may assume q > 0.

Suppose that q = 1 and P1 is in series. As k ≥ 2, each path in P1 has both of its

endvertices in W 0. Since W 0 has at least 2k columns, there is a set Q of 2k disjoint paths

from the endvertices of the paths in P1 to the set {v0x : x ∈ [2k]} in W 0. By the planarity

of W , we conclude that for x ∈ [k], the endvertices of P1,x are linked by two paths Q∗
x

and Q∗∗
x in Q to {v02x−1, v

0
2x}. Moreover, for each x ∈ [k], the path Q∗

x ∪Q∗∗
x ∪ P1,x can be

easily extended to a Wx-handle Hx,1 such that all desired properties are satisfied.

Now suppose that q = 1 and P1 is nested. If each path in P1 has one endvertex

in W 0 and one endvertex in W 1, then there is a set Q of 2k disjoint paths containing

for each z ∈ {0, 1} a subset of k paths from the endvertices in W z of the paths in P1

to {vz2x : x ∈ [k]} in W z. If each path in P1 has both of its endvertices in W 0, then there

are 2k disjoint paths from the endvertices of the paths in P1 to {v02x : x ∈ [k]} ∪ {w0
2x : x ∈ [k]}

in W 0, which together with the paths in {T2x : x ∈ [k]} yield a set Q of 2k disjoint paths
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from the endvertices of P1 to {vz2x : x ∈ [k], z ∈ {0, 1}}. Hence, in both of these cases, the

set Q avoids
⋃
{Wj : j ∈ [k]}. By the planarity of W , we conclude that for x ∈ [k], the

endvertices of the path P1,x ∈ P1 are linked by two paths Q∗
x and Q∗∗

x in Q to {v02x, v12x}.

As before, for each x ∈ [k], the path Q∗
x ∪Q∗∗

x ∪ P1,x can be easily extended to a Wx-

handle Hx,1 such that all desired properties are satisfied.

Therefore, we may assume that q = 2. Recall that the paths in P1 have both their

endvertices in W 0. If each path in P2 has both of its endvertices in W 1, then since each

of W 0 and W 1 has at least 2k columns, there exist a set Q1 of 2k disjoint paths from the

endvertices of the paths in P1 to {v0x : x ∈ [2k]} in W 0 and a set Q2 of 2k disjoint paths

from the endvertices of the paths in P2 to {v1x : x ∈ [2k]} in W 1. If each path in P2 has

both of its endvertices in W 0 as well, then since W 0 has 4k columns, there are 4k disjoint

paths from the set of endvertices of P1 ∪ P2 to the set {v0x : x ∈ [2k]} ∪ {w0
x : x ∈ [2k]}

in W 0. In this case, let Q1 be the subset of these paths with endvertices in {v0x : x ∈ [2k]}

and let Q2 be the concatenation of the subset of these paths with endvertices in {w0
x : x ∈

[2k]} together with the paths in {Tx : x ∈ [2k]}. Hence, in both of these cases, by the

planarity ofW , for each i ∈ [2], the endvertices of Pi,x are linked by two pathsQ∗
i,x andQ∗∗

i,x

in Qi to {vi−1
2x−1, v

i−1
2x } and these paths avoid

⋃
{Wj : j ∈ [k]}. As before, for each i ∈ [2]

and x ∈ [k], the path Q∗
i,x ∪Q∗∗

i,x ∪ Pi,x can be easily extended to a Wx-handle Hx,i such

that all desired properties are satisfied.

6.3 Lemmas for products of abelian groups

In this section we present some additional lemmas from [20] and prove useful extensions

on finding allowable values. The first lemma says that if a set of elements of Γ generates

an allowable value, then it does so using each element a bounded number of times.

Lemma 6.3.1 (Gollin et al. [20, Corollary 7.2]). Let m, t, and ω be positive integers,

let Γ =
∏

j∈[m] Γj be a product of m abelian groups and for all j ∈ [m], let Ωj be a subset

of Γj of size at most ω. For all i ∈ [t] and j ∈ [m], let gi,j be an element of Γj . If there
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exist integers c1, . . . , ct such that
∑t

i=1 cigi,j /∈ Ωj for all j ∈ [m], then there exist integers

d1, . . . , dt with di ∈ [2mω] for each i ∈ [t] such that
∑t

i=1 digi,j /∈ Ωj for all j ∈ [m].

The next lemma allows us to find large sets of elements of Γ such that for each j ∈ [m],

their γj-values are either all equal or all distinct.

Lemma 6.3.2 (Gollin et al. [20, Lemma 7.6]). There exists a function f6.3.2 : N2 → N

satisfying the following. Let m, t, and N be positive integers with N ≥ f6.3.2(t,m) and

let Γ =
∏

j∈[m] Γj be a product ofm abelian groups. Then for every sequence (gi : i ∈ [N ])

over Γ, there exists a subset I of [N ] with |I| = t such that for each j ∈ [m], either

• πj(gi) = πj(gi′) for all i, i′ ∈ I or

• πj(gi) ̸= πj(gi′) for all distinct i, i′ ∈ I .

Furthermore, if Z is a subset of [m] such that for all distinct i and i′ in [N ] there exists

j ∈ Z such that πx(gi) ̸= πx(gi′), then the second condition holds for some j ∈ Z.

For the coordinates j for which the γj-values are all distinct, we have the following

extension of Lemma 6.3.2.

Lemma 6.3.3. Let t, m, and n be positive integers, let Γ =
∏

j∈[m] Γj be a product of m

abelian groups, and let (gi : i ∈ [n]) be a family of elements of Γ such that

πj(gi) ̸= πj(gi′)

for all j ∈ [m] and distinct i and i′ in [n]. If n ≥ f6.3.3(t,m) := m3t−1 + t, then there is a

subset I ⊆ [n] of size t such that

πj
(∑

i∈S

gi
)
̸= πj

(∑
i∈T

gi
)

for every j ∈ [m] and any pair of distinct subsets S and T of I .
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Proof. Let I be a maximal subset of [n] such that πj(
∑

i∈S gi) ̸= πj(
∑

i∈T gi) for ev-

ery j ∈ [m] and every pair of distinct subsets S and T of I . Suppose that |I| < t. By

the maximality of I , for each a ∈ [n] \ I , there are disjoint subsets S ′ and T ′ of I such

that πj(ga) = πj(
∑

i∈S′ gi −
∑

i∈T ′ gi) for some j ∈ [m]. Note that there are 3|I| ways to

choose the disjoint subsets S ′ and T ′ of I . Since πj(ga) ̸= πj(ga′) for every j ∈ [m] and ev-

ery pair of distinct elements a and a′ in [n] \ I , we have that n− (t− 1) ≤ n− |I| ≤ m3|I| ≤

m3t−1, contradicting the assumption on n.

We will apply Lemma 6.3.2 multiple times to obtain a family (Si : i ∈ [t]) of large

subsets of Γ each satisfying the conclusion of Lemma 6.3.2. The following lemma says

that there is a choice of an element from each Si so that the sum of the chosen elements is

allowable in each coordinate j for which at least one Si has all distinct γj-values.

Lemma 6.3.4 (Gollin et al. [20, Lemma 7.4]). Let m, t, and ω be positive integers, let Γ =∏
j∈[m] Γj be a product of m abelian groups, and for all j ∈ [m], let Ωj be a subset of Γj of

size at most ω. Let (Si : i ∈ [t]) be a family of subsets of Γ such that for each j ∈ [m], there

exists i ∈ [t] such that πj(g) ̸= πj(g
′) for all distinct g, g′ in Si. If |Si| > mω for all i ∈ [t],

then for every h ∈ Γ, there is a sequence (gi : i ∈ [t]) of elements of Γ such that

(i) gi ∈ Si for each i ∈ [t] and

(ii) πj
(
h+

∑
i∈[t] gi

)
/∈ Ωj for all j ∈ [m].

The final lemma is an extension of Lemma 6.3.4 that given a family (Si : i ∈ [t]) of

large subsets of Γ satisfying the conclusion of Lemma 6.3.2, there are large subsets S ′
i of

Si so that for every choice of an element from each S ′
i, the sum of the chosen elements is

allowable in each coordinate j for which at least one Si has all distinct γj-values.

Lemma 6.3.5. Letm, ω, κ, t, and s be positive integers with s ≥ f6.3.5(m,ω, κ, t) := κ+mωκt−1,

let Γ =
∏

j∈[m] Γj be a product of m abelian groups, and for each j ∈ [m], let Ωj be a sub-

set of Γj of size at most ω. Let (gi,x : i ∈ [t], x ∈ [s]) be a family of elements of Γ such that

for each j ∈ [m], we have

122



(a) |{πj(gi,x) : x ∈ [s]}| ∈ {1, s} for each i ∈ [t] and

(b) πj(
∑

i∈[t] gi,1) /∈ Ωj .

Then there are subsets Ii ⊆ [s] for i ∈ [t], each of size at least κ, such that

πj(
∑
i∈[t]

gi,ai) /∈ Ωj

for every j ∈ [m] and every (ai ∈ Ii : i ∈ [t]).

Proof. Let (Ii ⊆ [s] : i ∈ [t]) be a family satisfying

(1) 1 ∈ Ii for all i ∈ [t],

(2) |Ii| ≤ κ for all i ∈ [t],

(3) for every j ∈ [m] and every (ai ∈ Ii : i ∈ [t]), we have πj(
∑

i∈[t] gi,ai) /∈ Ωj , and

(4) subject to the previous conditions,
∑

i∈[t]|Ii| is maximized.

By (b), such a family (Ii : i ∈ [t]) exists.

Suppose for contradiction that |Ix| < κ for some x ∈ [t]. Without loss of generality,

we assume that x = t. By properties (3) and (4), for each y ∈ [s] \ It, there exist j ∈ [m]

and (ai ∈ Ii : i ∈ [t− 1]) such that πj(gt,y +
∑

i∈[t−1] gi,ai) ∈ Ωj . Since s ≥ κ +mωκt−1,

we have
|[s] \ It|

m
∏

i∈[t−1]|Ii|
≥ |[s] \ It|

mκt−1
> ω ≥ max

j∈[m]
|Ωj|,

so by the pigeonhole principle, there exist j ∈ [m], (ai ∈ Ii : i ∈ [t − 1]), and distinct

y, y′ ∈ [s] \ It such that πj(gt,y +
∑

i∈[t−1] gi,ai) = πj(gt,y′ +
∑

i∈[t−1] gi,ai) ∈ Ωj . This

implies that πj(gt,y) = πj(gt,y′) and by (a), we have |{πj(gt,x) : x ∈ [s]}| = 1. It follows

that πj(gt,y) = πj(gt,1) and so πj(gt,1 +
∑

i∈[t−1] gi,ai) ∈ Ωj , contradicting properties (1)

and (3).
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6.4 Proof of Theorem 3.3.2

Theorem 3.3.2. For every two positive integersm and ω, there is a function fm,ω : N3 → Z

satisfying the following property. Let Γ =
∏

j∈[m] Γj be a product of m abelian groups,

and for every j ∈ [m], let Ωj be a subset of Γj with |Ωj| ≤ ω. For each j ∈ [m], let Aj :=

π−1
j (Γj \ Ωj) ⊆ Γ and A :=

⋂
j∈[m]Aj . Let G be a graph with a Γ-labelling γ and let O

be the set of all cycles of G whose γ-value is in A. Then for every three positive integers k,

κ, and θ, there exists a Γ-labelling γ′ of G that is shifting equivalent to γ such that at least

one of the following statements is true.

(i) There are k disjoint cycles in O.

(ii) There is a hitting set for O of size at most fm,ω(k, κ, θ).

(iii) There is a subgraphH ofG such that for some J ⊆ [m] and for the (Γ/ΓJ)-labelling γ′′

induced by the restriction of γ′ toH , we have (H, γ′′) ∈ C(κ, θ,Γ/ΓJ , A+ΓJ), andH

contains a half-integral packing of κ cycles in O.

Proof. For fixed positive integers m, ω, κ, and θ, we will define fm,ω(k, κ, θ) by recursion

on k. First, we set fm,ω(1, κ, θ) := 0. Assume that k > 1 and fm,ω(k − 1, κ, θ) is already

defined. We define k⋆ := max{k, κ}.

For integers p and z0 with p > 0 and 0 ≤ z0 ≤ m, let α(p, z0) and ρ(z0) be recursively

defined as follows. For every positive integer p, we define

ρ(0) := m,

α(p, 0) := f6.2.1

(
ρ(0), f6.3.3

(
2mω+1f6.3.5(m,ω, k

⋆, ρ(0)),m
))
,
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and for z0 > 0, we recursively define

ρ(z0) := m+ f6.3.2(α(1, z0 − 1),m),

α(p, z0) :=



α(1, z0 − 1) if p ≥ ρ(z0),

max

{
4f6.3.2(α(p+ 1, z0),m),

f6.2.1

(
p, f6.3.3

(
2mω+1f6.3.5(m,ω, k

⋆, p),m
))}

otherwise.

Let p̂ := ρ(m). Note that α(x, z0) ≥ α(ρ(z0), z0) = α(1, z0 − 1) ≥ α(x, z0 − 1) for x > 0

and z0 > 0. Thus, α is increasing in the second argument. We may also assume that f6.3.2 is

increasing in its first argument. These two properties imply that ρ(z0) ≤ p̂ for all z0 ≤ m.

Let

u := max{⌈fm,ω(k − 1, κ, θ)/3⌉, f2.2.5(f6.1.4(f6.3.2(α(1,m),m))) + 3}.

We recursively define β(p, z0, z) for integers p, z0, and z with 0 ≤ z0 ≤ z ≤ m and 0 ≤ p ≤ p̂,

as well as ψ(z) for an integer z with 0 ≤ z ≤ m+ 1 and cx(z), rx(z) for x ∈ {0, 1, 2} and

a non-negative integer z ≤ m as follows. We define

ψ(m+ 1) := 3,
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and for z ≤ m we define

c0(z) := c6.1.5(2, ψ(z + 1) + 2,m, ω),

r0(z) := r6.1.5(2, ψ(z + 1) + 2,m, ω),

c1(z) := c6.2.4(k, c0(z)),

r1(z) := r6.2.4(k, r0(z)),

c2(z) := max
{
θ, c6.2.3(p̂, k, c1(z)), max(κ, k) · c6.1.5(p̂, ψ(z + 1) + 2,m, ω)

}
,

r2(z) := max
{
θ, r6.2.3(k, r1(z)), r6.1.5(p̂, ψ(z + 1) + 2,m, ω)

}
,

β(p, z0, z) :=


max

{
u, c2(z) + 2

}
if z0 = 0,

β(1, z0 − 1, z) if z0 > 0 and p = p̂,

w6.1.4(f6.3.2(α(p+ 1, z0),m), β(p+ 1, z0, z)) if z0 > 0 and p < p̂;

ψ(z) := max
{
ψ(z + 1), β(0, z, z), r2(z)

}
.

Observe that β(p, z0, z) ≥ u. Lastly, we define

fm,ω(k, κ, θ) := max
{
6f2.6.1(ψ(0) + 2), 6u, 12fm,ω(k − 1, κ, θ)

}
.

We proceed by induction on k. The case k = 1 is clear. Suppose that k > 1. For

every subgraph H of G, let ν(H) denote the maximum number of disjoint cycles O in H

with γ(O) ∈ A. Observe that ν is a packing function for G.

Suppose for contradiction that ν(G) < k, τν(G) > fm,ω(k, κ, θ), and there is no Γ-

labelling γ′ ofG that is shifting equivalent to γ such that the statement (iii) holds. Let T be a

minimum ν-hitting set of size t := τν(G). By assumption, t > fm,ω(k, κ, θ) > fm,ω(k − 1, κ, θ).

By the induction hypothesis,G contains k − 1 disjoint cycles in O and therefore ν(G) = k − 1.
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For each subgraph H of G, if ν(H) < ν(G), then by the induction hypothesis,

τν(H) ≤ fm,ω(k − 1, κ, θ) ≤ fm,ω(k, κ, θ)/12 < t/12.

Let TT be the set of all separations (A,B) of G of order less than t/6 with |B ∩ T | > 5t/6.

By Lemma 6.1.1, TT is a tangle of order ⌈t/6⌉ > f2.6.1(ψ(0) + 2). By Theorem 2.6.1, G

has a wall of order ψ(0) + 2 dominated by TT . By Lemma 6.1.2, this wall has a ψ(|Z|)-

subwall W that is (γ′, Z, ψ(|Z|+ 1) + 2)-clean for some subset Z ⊆ [m] and some Γ-

labelling γ′ of G shifting-equivalent to γ and dominated by TT . Since γ(O) = γ′(O) for

every cycle O in G, we may assume without loss of generality that γ = γ′.

Claim 6.4.0.1. There exist an integer c ≥ β(1, 0, |Z|), a set I ⊆ [p̂], a c-column-slice W ′

ofW , a family (Pi : i ∈ I) of pairwise disjoint non-mixingW ′-handlebars, a family (Zi : i ∈ I)

of subsets of Z, and a family (gi : i ∈ I) of elements of Γ such that

(a) if I ̸= ∅, then |Pi| ≥ 2mω+1f6.3.5(m,ω, k
⋆, |I|) for each i ∈ I ,

(b) |πj(γ(Pi))| = |Pi| for all i ∈ I and j ∈ Zi,

(c) πj(γ(Pi)) = {πj(gi)} for all i ∈ I and j ∈ Z \ Zi,

(d) there is some g ∈ ⟨gi : i ∈ I⟩ such that πj(g) /∈ Ωj for all j ∈ Z \
⋃

i∈I Zi,

(e) for every i ∈ I and every g ∈ ⟨gi′ : i′ ∈ I \ {i}⟩, there is some j ∈ Z \
⋃

i′∈I\{i} Zy

such that πj(g) ∈ Ωj , and

(f) for each i ∈ I and j ∈ Zi, and every pair of distinct subsets S and T of Pi, we have

πj

(∑
P∈S

γ(P )

)
̸= πj

(∑
P∈T

γ(P )

)
.

Proof. For non-negative integers c, q, and p with q ≤ p, we say that a triple (W ′,P,Z)

consisting of a wall W ′, a family P := (Pi : i ∈ [p]) of disjoint sets of W ′-handles, and a
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family Z := (Zi : i ∈ {0} ∪ [p]) of subsets of Z is a (c, q, p)-McGuffin if W ′ is a c-column-

slice of W such that

(1) if p ̸= 0, then |Pi| ≥ α(p, |Z0|) for all i ∈ [p],

(2) |πj(γ(Pi))| = |Pi| for all i ∈ [p] and j ∈ Zi,

(3) |πj(γ(Pi))| = 1 for all i ∈ [p] and j ∈ Z \ Zi,

(4) Z0 = Z \
⋃

i∈[q] Zi,

(5) Zi \
⋃

i′∈[i−1] Zi′ ̸= ∅ for all i ∈ [q], and

(6) for all distinct i, i′ ∈ [p] \ [q] there is j ∈ Z0 such that πj(γ(Pi)) ∩ πj(γ(Pi′)) = ∅.

Note that (W, ∅, (Z)) is a (ψ(|Z|), 0, 0)-McGuffin and by the definition, ψ(|Z|) ≥ β(0, |Z|, |Z|).

Furthermore, if (W ′,P,Z) is a (c, q, p)-McGuffin, then q ≤ |Z| by (5) and |Z0| ≤ m,

which implies that ρ(|Z0|) ≤ p̂. Let (q, p) be a lexicographically maximal pair of non-

negative integers with q ≤ p ≤ p̂ for which there is a (c, q, p)-McGuffin (W ′,P,Z) for

some c ≥ β(p, |Z0|, |Z|).

First, we claim that p < ρ(|Z0|). Suppose that p ≥ ρ(|Z0|). Then

p− q ≥ ρ(|Z0|)−m ≥ f6.3.2(α(q + 1, |Z0| − 1),m)

since q ≤ m by (5) and α is decreasing in its first argument. Let P ′′ be a set of p− q

disjoint W ′-handles containing exactly one element of Pi for each i ∈ [p] \ [q]. For i ∈ [q],

let P ′
i := Pi and Z ′

i := Zi. Note that |Pi| ≥ α(p, |Z0|) ≥ 4f6.3.2(α(p + 1, |Z0|),m) ≥

4α(p + 1, |Z0|) for each i ∈ [p]. Thus, by Lemma 6.3.2, there is a subset P ′
q+1 of P ′′

with |P ′
q+1| = α(q + 1, |Z0| − 1) such that for each j ∈ [m], either

• πj(γ(P )) = πj(γ(Q)) for all P,Q ∈ P ′
q+1 or

• πj(γ(P )) ̸= πj(γ(Q)) for all distinct P,Q ∈ P ′
q+1,
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and the second condition holds for some j ∈ Z0 since by (6), for all distinct paths P and Q

in P ′′, there exists j ∈ Z0 such that πj(γ(P )) ̸= πj(γ(Q)). Let

Z ′
q+1 := {j ∈ Z0 : πj(γ(P )) ̸= πj(γ(Q)) for all distinct P,Q ∈ P ′

q+1} and Z ′
0 := Z0\Z ′

q+1.

Let P′ := (P ′
i : i ∈ [q + 1]) and Z ′ := (Z ′

i : i ∈ {0} ∪ [q + 1]). Then (W ′,P′,Z ′) is a (c, q+

1, q+1)-McGuffin, since (1) follows from the fact that |P ′
q+1| ≥ α(q + 1, |Z0| − 1) ≥ α(q + 1, |Z ′

0|)

and the remaining conditions are easy to check. This contradicts the maximality of (q, p)

because q + 1 ≤ p ≤ p̂. Therefore, p < ρ(|Z0|) ≤ p̂.

Now let us show that (W ′,P,Z) satisfies the following statement:

(∗) There is some g ∈ ⟨
⋃

i∈[p] γ(Pi)⟩ such that πj(g) /∈ Ωj for all j ∈ Z0.

Suppose to the contrary that such g does not exist. Then Z0 is nonempty. Let Λ be the

subgroup of Γ consisting of all g ∈ Γ for which there is g′ ∈ ⟨
⋃

i∈[p] γ(Pi)⟩ such that

πj(g) = πj(g
′) for all j ∈ Z0. Let λ be the induced Γ/Λ-labelling of G. Note that by

the negation of (∗), neither ⟨
⋃

i∈[p] γ(Pi)⟩ nor Λ contains an element g such that πj(g) /∈ Ωj

for all j ∈ Z0. Therefore,

(†) every cycle O of G for which πj(γ(O)) /∈ Ωj for all j ∈ [m] is λ-nonzero.

Note thatW ′ is a subwall ofW of order c ≥ u. For any S ⊆ V (G) of size at most u− 1,

there is a component X of G− S containing a row of W ′, which contains a vertex in

V̸=2(W
′) because u ≥ 3. Since TT dominatesW ′, the separation (V (G) \ V (X), S ∪ V (X))

is in TT and hence X contains a vertex of V̸=2(W
′) and at least

5t/6− (u− 1) > 5fm,ω(k, κ, θ)/6− (u− 1) > 4u

vertices of T . By (†), every minimal subgraph H with ν(H) ≥ 1 is a λ-nonzero cycle.

Moreover, if H is a subgraph of G with ν(H) < ν(G) = k − 1, then by the induction
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hypothesis,

τν(H) ≤ fm,w(k − 1, κ, θ) ≤ 3u.

Hence, by Lemma 6.1.3, G has f6.1.4(f6.3.2(α(1,m),m)) disjoint λ-nonzero V̸=2(W
′)-

paths. Note that we may assume that the function w6.1.4 is increasing in both of its ar-

guments. As |Z0| > 0 and p < p̂, we have

c ≥ β(p, |Z0|, |Z|) ≥ w6.1.4(f6.3.2(α(p+ 1, |Z0|),m), β(p+ 1, |Z0|, |Z|)).

Recall that |Pi| ≥ α(p, |Z0|) ≥ 4f6.3.2(α(p + 1, |Z0|),m) for each i ∈ [p]. Thus, by

Lemma 6.1.4 applied to W ′, there exists a c′-column-slice W ′′ of W ′ for some

c′ ≥ β(p+ 1, |Z0|, |Z|) ≥ β(q + 1, |Z0| − 1, |Z|)

and there exists a set P ′
i of f6.3.2(α(p+ 1, |Z0|),m) disjointW ′′-handles for each i ∈ [p+ 1]

such that

• for each i ∈ [p], the set P ′
i is a subset of the row-extension of Pi to W ′′ in W ′,

• the paths in
⋃

i∈[p+1] P ′
i are disjoint, and

• the paths in P ′
p+1 are λ-nonzero.

Note that since W is (γ′, Z, ψ(|Z|+ 1) + 2)-clean, every NW -path in W is (πj ◦ γ)-zero

for all j ∈ Z and therefore if P ′ is the row-extension of a W ′-handle P to W ′′ in W ′,

then πj(γ(P ′)) = πj(γ(P )) for all j ∈ Z.

Since |Z| ≤ m, by Lemma 6.3.2, there exist a subset R of P ′
p+1 and a subset Z ′ of Z

such that

• |πj(γ(R))| = |R| for all j ∈ Z ′,

• |πj(γ(R))| = 1 for all j ∈ Z \ Z ′, and
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• |R| = α(p+ 1, |Z0|) ≥ α(q + 1, |Z0| − 1).

Let p′′ := p+ 1 and q′′ := q ifZ ′ ∩ Z0 is empty and let p′′ := q + 1 and q′′ := q + 1 ifZ ′ ∩ Z0

is nonempty, and for i ∈ {0} ∪ [p′′], let

Z ′′
i :=


Z0 \ Z ′ if i = 0,

Zi if i ∈ [p′′ − 1],

Z ′ if i = p′′.

For i ∈ [p′′ − 1], let P ′′
i := P ′

i and let P ′′
p′′ := R.

We now show that
(
W ′′, (P ′′

i : i ∈ [p′′]), (Z ′′
i : i ∈ {0} ∪ [p′′])

)
is a (c′, q′′, p′′)-McGuffin;

if true, then since p′′ ≤ p̂, it contradicts the maximality of (q, p).

To observe property (1), note that α(p, |Z0|) ≥ α(p+ 1, |Z0|), and ifZ ′ ∩ Z0 is nonempty,

then α(p+ 1, |Z0|) ≥ α(q + 1, |Z0 \ Z ′|). If P ′ is the row-extension of a W ′-handle P

to W ′′ in W ′, then πj(γ(P ′)) = πj(γ(P )) for all j ∈ Z, implying properties (2) and (3)

for i < p′′. By the definition of Z ′, properties (2) and (3) hold for i = p′′. Property (4)

holds trivially. Property (5) holds because ∅ ≠ Z ′ ∩ Z0 and Z0 ∩
⋃

i∈[p′′−1] Zi = ∅ by (4).

It remains to check (6) when Z ′ ∩ Z0 is empty, q < i ≤ p, and i′ = p′′ = p+ 1. This is

implied by the property that the paths in P ′
p+1 are λ-nonzero. We conclude that (W ′,P,Z)

satisfies (∗).

If p = 0, then by property (∗), property (d) holds with Z and I := ∅ and properties (a),

(b), (c), (e), and (f) hold vacuously.

Therefore, we may assume that 0 < p < ρ(|Z0|). Let I ′ := [p]. Since

|Pi| ≥ α(p, |Z0|) ≥ f6.2.1

(
p, f6.3.3

(
2mω+1f6.3.5(m,ω, k

⋆, p),m
))

for each i ∈ [p], by Lemma 6.2.1 and (1), there is a family (P∗
i ⊆ Pi : i ∈ [p]) of pairwise

disjoint non-mixing W ′-handlebars, each of size f6.3.3(2mω+1 · f6.3.5(m,ω, k⋆, p),m). By
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applying Lemma 6.3.3 to the restriction of γ(P∗
i ) to

∏
j∈Zi

Γi for each i ∈ [p], we deduce

that there is a family of subsets (P ′
i ⊆ P∗

i : i ∈ [p]), each of size 2mω+1f6.3.5(m,ω, k
⋆, p),

satisfying properties (a) and (f) with the set I ′ = [p]. They also satisfy properties (b) and (c)

with an arbitrary family (gi ∈ γ(P ′
i) : i ∈ [p]), by (2) and (3). Observe that properties (a),

(b), (c), and (f) hold for any subset I of I ′ (and the corresponding subfamilies (P ′
i : i ∈ I),

(Zi : i ∈ I), and (gi : i ∈ I)) because we may assume that f6.3.5 is increasing in its fourth

argument. Now property (d) holds for I ′ by property (∗), so taking a minimal subset I of I ′

satisfying property (d), we have that property (e) is also satisfied by I . □

Claim 6.4.0.2. Let W ′′ be a (c− 2)-column-slice of W ′ containing CW ′
2 and CW ′

c−1. Then

there is a family (P ′′
i : i ∈ I) of pairwise disjoint non-mixing W ′′-handlebars, each of

size k⋆, such that

(a) for each j ∈ Z and each (Pi : i ∈ I) with Pi ∈ P ′′
i for all i ∈ I , we have

∑
i∈I πj(γ(Pi)) /∈ Ωj ,

(b) for each i ∈ I and each g ∈ ⟨γ(P ) : P ∈
⋃

i′∈I\{i}P ′′
i′⟩ there is j ∈ Z such that πj(g) ∈ Ωj ,

(c) for each y ∈ I such that P ′′
y is not in series and every function f :

⋃
i∈I P ′′

i → Z for

which
∑

P∈P ′′
y
f(P ) is even, there is some j ∈ Z such that

∑
i∈I
∑

P∈P ′′
i
f(P )πj(γ(P )) ∈ Ωj .

Proof. If I = ∅, then 0 /∈ Ωj for all j ∈ Z by Claim 6.4.0.1(d) and therefore this claim is

trivially true. Thus we may assume that I ̸= ∅. Let S be a maximal subset of I such that

〈
{2gi : i ∈ S} ∪ {gi : i ∈ I \ S}

〉
∩

⋂
j∈Z\

⋃
i∈I Zi

π−1
j (Γj \ Ωj) ̸= ∅.

Note that such a set S exists, since Claim 6.4.0.1(d) implies that the empty set satisfies this

condition. By Lemma 6.3.1, there exist integers (di : i ∈ I) such that di ∈ [2mω+1] is even

for each i ∈ S, di ∈ [2mω] for each i ∈ I \ S, and πj
(∑

i∈I digi
)
/∈ Ωj for all j ∈ Z \

⋃
i∈I Zi.

By the choice of S, di is odd for all i ∈ I\S. By Lemma 6.2.2, there is a family (P∗
i : i ∈ I)

of pairwise disjoint non-mixing W ′′-handlebars each of size f6.3.5(m,ω, k⋆, |I|) such that
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for each i ∈ I and Q ∈ P∗
i , there is a set {Pℓ,Q ∈ Pi : ℓ ∈ [di]} of size di satisfying the

following three properties:

•
⋃di

ℓ=1 Pℓ,Q ⊆ Q ⊆ W ∪
⋃di

ℓ=1 Pℓ,Q.

• P∗
i is in series for each i ∈ S.

• P∗
i is of the same type as P ′

i for each i ∈ I \ S.

Note that πj(γ(P∗
i )) = {diπj(gi)} for all i ∈ I and j ∈ Z \ Zi by Claim 6.4.0.1(c) and

that |πj(γ(P∗
i ))| = |P∗

i | for all i ∈ I and j ∈ Zi by Claim 6.4.0.1(f).

Since |P∗
i | = f6.3.5(m,ω, k

⋆, |I|) > mω ≥ |
⋃

i∈I Zi|ω for each i ∈ I , by Lemma 6.3.4,

there is a family (g′i : i ∈ I) of elements of Γ such that

1. g′i ∈ γ(P∗
i ) for each i ∈ I and

2. πj
(∑

i∈I g
′
i

)
/∈ Ωj for all j ∈

⋃
i∈I Zi.

By Lemma 6.3.5, for each i ∈ I there is a subset P ′′
i of P∗

i of size k⋆ such that (P ′′
i : i ∈ I)

satisfies property (a). Now (P ′′
i : i ∈ I) satisfies property (b) by Claim 6.4.0.1(e).

To prove property (c), suppose that y ∈ I , P ′′
y is not in series, and f :

⋃
i∈I P ′′

i → Z is

a function such that
∑

P∈P ′′
y
f(P ) is even. Since P ′′

y is not in series, we have y ∈ I \ S. By

Claim 6.4.0.1(c),

πj(γ(P )) = diπj(gi) for all i ∈ I , P ∈ P ′′
i , j ∈ Z \

⋃
i′∈I

Zi′ .

In particular, if di is even or
∑

P∈P ′′
i
f(P ) is even, then

∑
P∈P ′′

i
f(P )πj(γ(P )) ∈ πj(⟨2gi⟩).

Let S ′ = S ∪ {y}. Then for all i ∈ S ′, either di or
∑

P∈P ′′
i
f(P ) is even. Let g =∑

i∈I
∑

P∈P ′′
i
f(P )γ(P ). Then there is g′ ∈ Γ such that πj(g) = πj(g

′) for all j ∈ Z \⋃
i′∈I Zi′ and g′ ∈ ⟨{2gi : i ∈ S ′} ∪ {gi : i ∈ I \ S ′}⟩. By the maximality of S, g′ /∈⋂
j∈Z\

⋃
i′∈I Zi′

π−1
j (Γj \ Ωj). Therefore, there is some j ∈ Z \

⋃
i′∈I Zi′ such that πj(g′) =

πj(g) ∈ Ωj . This proves property (c). □
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Let H be the union of W ′′ and
⋃
{
⋃
P ′′

i : i ∈ I}. Note that W ′′ has at least c2(|Z|)

columns and at least r2(|Z|) rows and therefore the order of W ′′ is greater than or equal

to θ.

We now find a half-integral packing in a similar manner as in the proof of [20, Theo-

rem 1].

Claim 6.4.0.3. H contains a half-integral packing of k⋆ cycles in O. Moreover, if I = ∅,

then H contains a packing of k⋆ cycles in O.

Proof. Since |P ′′
i | = k⋆ for each i ∈ I , there exists a family (Qx ⊆

⋃
i∈I P ′′

i : x ∈ [k⋆])

of disjoint sets such that |Qx ∩ P ′′
i | = 1 for all i ∈ I and x ∈ [k⋆]. Note that if I = ∅,

then Qx = ∅ for all x ∈ [k⋆]. By Claim 6.4.0.2(a), for each x ∈ [k⋆] and j ∈ Z, we

have
∑

P∈Qx
γj(P ) /∈ Ωj . We remark that if I = ∅, then 0 /∈ Ωj for all j ∈ Z.

Since W ′′ has at least c2(|Z|) columns and c2(|Z|) ≥ k⋆c6.1.5(p̂, ψ(|Z|+ 1) + 2,m, ω),

there exists a set {Wx : x ∈ [k⋆]} of k⋆ disjoint c6.1.5(p̂, ψ(|Z|+ 1) + 2,m, ω)-column-

slices ofW ′′. Note thatW ′′ has at least r6.1.5(p̂, ψ(|Z|+ 1) + 2,m, ω) rows. For each x ∈ [k⋆],

let Q∗
x be the row-extension of Qx to Wx. Note that if I = ∅, then Q∗

x is also empty for

each x ∈ [k⋆]. Since |I| ≤ p̂, by Lemma 6.1.5, for each x ∈ [k⋆], there is a cycle Ox

in Wx ∪
⋃

Q∗
x such that γj(Ox) /∈ Ωj for all j ∈ [m]. Observe that no vertex is in more

than two of the subgraphs in {Wx ∪
⋃

Q∗
x : x ∈ [k⋆]} and therefore no vertex is in more

than two of the cycles in {Ox : x ∈ [k⋆]}. Moreover, if I = ∅, then Ox is contained in Wx

for each x ∈ [k∗], and therefore H contains a packing of k⋆ cycles in O. □

By Claim 6.4.0.3, I is nonempty because we assumed that ν(G) < k ≤ k⋆. Let J := [m] \ Z

and let γ′′ be the (Γ/ΓJ)-labelling induced by the restriction of γ to H . Since we assumed

that statement (iii) fails andH has a half-integral packing of κ cycles in O by Claim 6.4.0.3,

we have (H, γ′′) /∈ C(κ, θ,Γ/ΓJ , A+ ΓJ). We will find the desired contradiction by con-

structing in H a packing of k cycles in O.

Recall the properties (1)–(6) of C(κ, θ,Γ/ΓJ , A+ ΓJ) in Definition 3.3.1. With W ′′
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and (P ′′
i : i ∈ I), (H, γ′′) satisfies (1), (2), (3), (4), and (5) of Definition 3.3.1 by Claim 6.4.0.2.

Thus, (6) fails to hold1.

First consider the case that (P ′′
i : i ∈ I) contains a W ′′-handlebar that is not in se-

ries. Then (P ′′
i : i ∈ I) contains an even number of crossing W ′′-handlebars and no

W ′′-handlebar that is in series because (6)(a) and (6)(b) fail to hold respectively. By

Lemma 6.2.3, there exist a subwall W ∗ of W ′′ with at least c1(|Z|) columns and at least

r1(|Z|) rows and a nested W ∗-handlebar Q1 of size k such that γj(Q) /∈ Ωj for all Q ∈ Q1

and j ∈ Z. Let us define q := 1.

If the first case does not hold, then all W ′′-handlebars in (P ′′
i : i ∈ I) are in series. Let

q := |I| and observe that q ∈ {0, 1, 2} because (6)(c) fails to hold. For each i ∈ [q], let us

define Qi to be P ′′
j for the i-th element j of I . Let W ∗ := W ′′. Note that c2(|Z|) ≥ c1(|Z|)

and r2(|Z|) ≥ r1(|Z|).

In either case, we can apply Lemma 6.2.4 to obtain, for each x ∈ [k], an r0(|Z|) ×

c0(|Z|)-subwall Wx of W ∗ and a set Hx = {Hx,i : i ∈ [q]} of q disjoint Wx-handles such

that

• for distinct x, x′ ∈ [k], the graphs Wx ∪
⋃
Hx and Wx′ ∪

⋃
Hx′ are disjoint and

•
∑

i∈[q] γj(Hx,i) /∈ Ωj for each x ∈ [k] and j ∈ Z.

Finally, we apply Lemma 6.1.5 to obtain a packing of k cycles in O. This contradiction

completes the proof.

1Note that the number of handlebars in H is at most p̂, which depends only on m and ω. We could
strengthen Theorem 3.3.2 by imposing this additional restriction on the class C(κ, θ,Γ, A), which would
give us that there are only finitely many types of obstructions to consider in terms of the arrangement of the
handlebars around the wall.
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cycles,” Combinatorica, vol. 39, no. 1, pp. 91–133, 2019.

[24] N. Kakimura and K.-i. Kawarabayashi, “Half-integral packing of odd cycles through
prescribed vertices,” Combinatorica, vol. 33, no. 5, pp. 549–572, 2013.

[25] N. Kakimura, K.-i. Kawarabayashi, and Y. Kobayashi, “Erdös-pósa property and its
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[29] ——, “Über n-fach zusammenhängende eckenmengen in graphen,” J. Comb. Theory,
Ser. B, vol. 25, pp. 74–93, Aug. 1978.

[30] B. Reed, “Mangoes and blueberries,” Combinatorica, vol. 19, pp. 267–296, Feb.
1999.

[31] N. Robertson and P. Seymour, “Graph minors. v. excluding a planar graph,” Journal
of Combinatorial Theory, Series B, vol. 41, pp. 92–114, Aug. 1986.

[32] ——, “Graph minors. xiii. the disjoint paths problem,” Journal of Combinatorial
Theory. Series B, vol. 63, Jan. 1995.

[33] N. Robertson and P. Seymour, “Graph minors. x. obstructions to tree-decomposition,”
J. Comb. Theory, Ser. B, vol. 52, pp. 153–190, Jul. 1991.

[34] N. Robertson, P. Seymour, and R. Thomas, “Quickly excluding a planar graph,” J.
Combin. Theory Ser. B, vol. 62, no. 2, pp. 323–348, 1994.

[35] J. A. Schafer, “Representing homology classes on surfaces,” Canad. Math. Bull.,
vol. 19, no. 3, pp. 373–374, 1976.

[36] R. Thomas and Y. Yoo, “Packing cycles in undirected group-labelled graphs,” Sep.
2020.

[37] C. Thomassen, “On the presence of disjoint subgraphs of a specified type,” Journal
of Graph Theory, vol. 12, pp. 101–111, Oct. 2006.

[38] W. T. Tutte, Connectivity in graphs, ser. Mathematical Expositions, No. 15. Uni-
versity of Toronto Press, Toronto, Ont.; Oxford University Press, London, 1966,
pp. ix+145.

[39] P. Wollan, “Packing cycles with modularity constraints,” Combinatorica, vol. 31,
pp. 95–126, Jan. 2011.

[40] ——, “Packing non-zero a-paths in an undirected model of group labeled graphs,”
J. Comb. Theory, Ser. B, vol. 100, pp. 141–150, Mar. 2010.

138


	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	Summary
	1 | Introduction
	Erdős-Pósa property
	Cycles
	A-paths
	Organization

	2 | Preliminaries
	Basic notation and terminology
	Group-labelled graphs
	Tangles
	3-blocks
	Km-models
	Walls
	Linkages and handlebars

	3 | Statements of main results and applications
	Flat wall theorem for undirected group-labelled graphs
	A-paths
	Cycles
	Applications and discussion

	4 | Flat wall theorem for undirected group-labelled graphs
	Large Kt-model
	Large flat wall
	Proof of Theorem 3.1.1

	5 | A-paths of length zero modulo a prime
	Preliminary results
	-nonzero A-cycle-chains
	-bipartite 3-block
	Proof of Theorem 1.3.3

	6 | Obstructions to the Erdős-Pósa property of allowable cycles
	Preliminaries
	Handling handlebars
	Lemmas for products of abelian groups
	Proof of Theorem 3.3.2

	References

