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SUMMARY

Rolling element bearing fault identification is an important sub-topic of predictive

health monitoring. Most state-of-the-art fault identification approaches utilize bearing con-

figuration, shaft rotational speed and/or bearing harmonics that are only present in the spec-

trum if the sampling rate is sufficiently high. In industrial application, these three factors

are often not available. This thesis investigates the performance of various state-of-the-art

bearing fault identification approaches under unknown rotational speed and bearing con-

figuration for a range of sampling rates. The aim of this thesis is to give recommendations

for effective bearing fault identification under uncertain low-sampling rate circumstances.

The recommendations are based on simulated and experimental data.

xvi



CHAPTER 1

INTRODUCTION

1.1 Motivation

Sophisticated machine design approaches try to maximize the longevity of the considered

machinery. However, all machinery wears down over time and develops faults, eventually

rendering the machine unable to continue performing the task for which it was designed.

Naturally, the point in time when a machine part is replaced greatly influences the overall

cost of maintaining that machine. If a damaged part is not replaced early enough, this can

lead to catastrophic failure, damaging other machine parts or manufactured items or induc-

ing costs through unplanned machine downtime. On the other hand, if a part is replaced too

early before it has developed a fault, avoidable cost for increased machine downtime as well

as the acquisition and installation of replacement parts is caused. In some cases, unwar-

ranted maintenance can even increase the probability of a fault appearing [1]. Methods for

finding the optimal replacement time can be divided into time-based and condition-based

or predictive maintenance [2].

Time-based maintenance is a traditional maintenance strategy wherein maintenance de-

cisions such as expected runtime and preventive repair intervals are determined based on

statistical values like failure time data or use-based data [2]. Because catastrophic failure is

generally less desired than early replacement, the scheduled replace time is chosen earlier

than the median estimated failure time, often leading to replacement of potentially healthy

parts [3]. Condition-based maintenance, on the other hand, is a more modern maintenance

approach wherein maintenance actions are recommended based on information obtained by

a condition monitoring process [4]. Almost all equipment failures are preceded by certain

signs, conditions or indications in vibration, temperature and noise levels [5]. The amount

1



of maintenance departments in the United States that employ a form of condition-based

maintenance has increased in recent years [1].

To be able to perform condition-based maintenance effectively, it is critical to have

powerful tools for the detection of bearing defects. Many typical machinery faults can

be detected by vibration analysis [6]. As bearing faults induce impulses into the bearing,

the vibration pattern of the bearing and its surroundings changes when a fault develops,

which can be identified by vibration measurements. Among the defects that are responsible

for a large amount of machine failures in rotating machines are imbalance faults [7] and

misalignment [1]. However, the majority of problems in rotating machinery are caused by

bearing faults [8], one of which is the ball pass frequency outer race (BPFO) defect.

State-of-the-art bearing fault detection methods usually make two primary assumptions:

The sampling rate is high enough that the harmonic oscillation of the bearing can be mea-

sured, and parameters of shaft rotation speed and bearing configuration are known [3, 9,

10]. However, in application, these assumptions are not necessarily true considering real

world shop maintenance scenarios. With regard to the former, accelerometers and mea-

surement systems capable of capturing and storing high frequency measurements are sig-

nificantly more expensive than those with lower frequency ranges. With regard to the latter,

potential unavailability of tachometers can limit availability of shaft rotation data and rapid

replacement of bearings with alternate hardware or insufficient documentation can lead to

unknown bearing configurations.

Therefore, the focus of this research is to understand performance of various bearing

defect detection approaches with respect to their applicability to low sampling rates and

unknown system configurations (e.g., rotational speeds, bearing parameters).

1.2 Aim and Scope

The present work aims to provide insights on suitable BPFO fault detection methods for

unknown shaft rotation speeds and low sampling rates. Two main research questions are to
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be answered:

1. What is the impact of sampling rate on effectiveness of state-of-the-art detection

methods for ball bearing fault identification under unknown shaft rotational speeds?

2. Which BPFO detection method is best suited to deal with low sampling rates?

To answer these questions, three detection methods with increasing degree of complication

are considered. The first approach is a novel straightforward peak finding approach for the

lowest BPFO harmonics. The second approach also employs peak finding of the lower har-

monics, but in a preprocessing step, the main impulsive frequency band is identified with

help of the spectral kurtosis and then extracted by a bandpass filter. After this, envelope

demodulation is carried out before searching for peaks. The third approach tries to identify

the first bearing harmonic as well as the shaft rotation signature from a time-frequency rep-

resentation. The ratio of both in time is compared because it should be constant for a BPFO

fault. A variety of experimental and simulated datasets are used and these approaches are

compared using scores like precision and recall, as well as analyzing the progression of

experimental data over time.

1.3 Structure

The remainder of the present work is structured as follows. In Section 2, background

topics concerning rolling element bearings, spectral analysis and performance measures of

classifiers are revisited. Subsequently, the three fault detection algorithms compared in the

present work are introduced in Section 3. The introduced approaches are the novel direct

peak finding approach, an envelope demodulation approach as well as a Time-Frequency

Curve Extraction (TFCE) approach. In Section 4, the methodology of the experiments

employed in this work is visited. Simulated data generation as well as the experimental

dataset are introduced, and the central assumptions are stated. Section 5 covers the central

results and discussion. After validating the approaches with simulated data, the confusion

3



matrices and scores of the various approaches at varying sampling rates are given. After

analyzing possible causes of misclassification, recommendations for choosing an approach

are drawn. Finally, in Section 6, an overall conclusion is drawn and some future work is

suggested.
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CHAPTER 2

THEORETICAL BACKGROUND

The analysis of bearing faults requires some knowledge of bearing characteristics as well as

signal processing. This chapter provides a short overview about the necessary foundational

concepts used in later chapters. For a more in-depth treatment of these topics, [3] and the

references therein are recommended.

2.1 Defects in Rolling Element Bearings

A rolling element bearing consists of four main components: outer and inner race, cage

and rolling elements [11]. A schematic image of a ball bearing can be found in Figure 2.1.

When the inner race turns against the outer race, the rolling elements are set into a rolling

motion and are held in place by the cage. The rolling results in a significant friction reduc-

tion and therefore rolling element bearings are very common in manufacturing machines,

where parts turning against each other are crucial.

Important geometric parameters of rolling element bearings are shown in Figure 2.1

for a ball bearing. Important parameters for a rolling element bearing are shaft frequency,

number of rolling elements, pitch and rolling element diameter, load angle and the reso-

nance frequency of the bearing. The parameters and their meanings are summarized in

Outer Race

Ball

Inner Race

Cage
ϕd

D

Figure 2.1: Structure of a ball bearing [12] with modified parameter identifiers.

5



Table 2.1: Bearing geometry parameters.

Symbol Meaning

n Number of rolling elements
fr Shaft frequency
D Pitch diameter
d Rolling element diameter
φ Load angle from radial plane
ωB Primary resonance frequency of the bearing

Table 2.1.

Bearing failure is one of the most common reasons for catastrophic machine breakdown

in manufacturing machines [3]. A bearing fault occurs when one of the above mentioned

bearing parts develops a spall or crack. When another part of the bearing, usually a rolling

element, hits the crack, this results in a small impulsive hit on the bearing, and this adds an

impulse and the corresponding high-frequency impulse response to the vibration signature

of the bearing [3]. For constant rotational speeds of the bearing, the rolling elements hit the

crack repeatedly and approximately periodically, with a frequency depending on the rota-

tional speed and the bearing configuration. This is illustrated in Figure 2.2 for an outer race

defect. Two impulsive hits of the bearing and the resulting vibration with the bearing reso-

nance frequency, exponentially decaying in amplitude, can be observed. Outer race defects

incur impulse trains at the BPFO frequency, similarly inner race defects incur impulses at

the Ball Pass Frequency: Inner Race (BPFI) frequency. Cage defects occur at Fundamental

Train Frequency (FTF) and rolling element defects at Ball Spin Frequency (BSF).

According to Randall [3], the defect frequencies can then be determined as shown in

Table 2.2, assuming no slip. Slip between bearing elements usually induces a period time

deviation of around 1%− 2% around the calculated period time [3], which is the reciprocal

of the fault frequency. The main part of the present work will concentrate on outer race

(BPFO) fault identification. It is notable that the BPFO, as well as BPFI and FTF, depend

linearly on the shaft frequency fr and on bearing geometry parameters. However, in indus-
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Figure 2.2: Schematic ideal signature of a BPFO fault.

Table 2.2: Defect frequencies for common bearing defects.

BPFO
nfr
2

(
1− d

D
cosφ

)
(2.1)

BPFI
nfr
2

(
1 +

d

D
cosφ

)
(2.2)

FTF
fr
2

(
1 +

d

D
cosφ

)
(2.3)

BSF
D

2d

[
1−

(
d

D
cosφ

)2
]

(2.4)

trial application, this information may be unknown for various reasons, such as insufficient

documentation of bearing replacements and lack of tachometers.

2.2 Signal Processing and Spectral Analysis

Vibration signals can be expressed by various different physical quantities. More precisely,

the displacement, velocity and acceleration of a component can be measured. In vibration

analysis for bearing fault detection, accelerometers are the most common sensors in prac-

tice, due to their frequency range, high accuracy and simple installation [13]. However,

accelerometers are highly sensitive to ambient and measurement noise. While technical in-
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sight into accelerometers is not within the scope of this work, interested readers are referred

to [6, 14] and references therein.

An accelerometer produces an analog voltage signal [14]. The signal is then quantized

and sampled into a resulting digital signal [15], which is then directly processed or stored

for further processing. The Fourier Transform is used to identify frequency components

in a time signal. For a discrete-time (i. e., already sampled) signal s[n] of length N , its

Discrete Fourier Transform (DFT) is defined to be:

S[k] =
N−1∑
n=0

s[n]e−j
2πkn
N (2.5)

and its inverse transform is:

s[n] =
1

N

N−1∑
k=0

S[k]ej
2πkn
N . (2.6)

The discrete function S[k] is called the spectrum of the signal s[n] [16].

The DFT spectrum as obtained from (2.5) is complex, even when the signal s[n] is

real. However, in that case, to obtain a real-valued signal from the Inverse Fast Fourier

Transform (IFFT) (2.6), the frequency components larger than N
2

are exactly the complex

conjugates of their mirrored counterparts and when combining them in the synthesis equa-

tion (2.6), the real-valued synthesis equation:

s[n] =
1

N

N
2∑

k=0

A[k] cos

(
2πkn

N
ϕ[k]

)
(2.7)

results, where A[k] is the amplitude and ϕ[k] is the phase of the complex variable S[k]. For

real signals, it is therefore usually sufficient to regard only the amplitudes of the nonnega-

tive frequency DFT components to determine vibration frequencies of certain components.

From the synthesis equation (2.7), it is evident that the k-th sample can be associated

with frequency k fs
N

[3], where fs is the sampling frequency of the original signal s[n]. Due
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to the implicit N -periodicity of the DFT [16], the second half of the frequency components

can be shifted down one period, yielding a spectrum whose frequencies are distributed

symmetrically around the origin and stretch from −fs
2

to fs
2

.

Computing the DFT directly using Equation (2.5) has a computational complexity of

O (n2) [16]. However, certain symmetry properties of the DFT can be exploited to reduce

the computational complexity to O (N log2N), without changing any mathematical prop-

erties. Two of the most common algorithms that use these reductions are the D-I-T and

the radix-2-algorithm [16]. If the DFT is computed in this efficient manner, it is called

Fast Fourier Transform (FFT). To emphasize the importance of using these more efficient

algorithms, the term FFT is used for computation of the discretized spectrum from now on,

but still all introduced DFT properties hold.

2.2.1 Fast Fourier Transform Pitfalls

When using the FFT to make statements about an analog process that was measured and

then discretized, as is the case with the vibration measurements considered in the present

work, some pitfalls have to be avoided and kept in mind. In particular, aliasing effects,

leakage effects and picket fence effects can occur.

Aliasing effects From the Real Synthesis Equation (2.7), it is clear that only vibrations

in frequencies lower than half the sampling frequency can be reconstructed from the FFT

spectrum. As stated in the Nyquist-Shannon-Theorem [3], the information about higher

frequency vibration is lost in the sampling process and is consequently misinterpreted as

lower frequency components afterwards. This is illustrated in Figure 2.3. The analog

signal at a high frequency is pictured in black. The sampling points are denoted by circles,

spaced at a sampling rate lower than half the frequency of the black signal. If all samples

are connected by the most low-frequency periodic signal possible, the red signal results.

Therefore, it is impossible to determine whether the black or the red signal was present
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Figure 2.3: Illustrative figure of aliasing effect [17].

originally, if only the samples are known. Since this issue appears directly when sampling

the analog signal, it must be addressed in the analog domain before sampling and storing

the sampled data. Usually, an analog lowpass-filter with a cutoff frequency lower than the

Nyquist frequency fs
2

is applied before sampling to at least get an accurate representation

of all frequency components lower than the Nyquist frequency.

Leakage Effects The FFT only considers a finite length section of a potentially infinite

original signal. This can be interpreted as a multiplication by a rectangle window of length

N [16]. However, in the frequency domain, this multiplication corresponds to a convolution

with the FFT of the rectangle window, which has the characteristics of a sinc function. This

leads to a smearing of a frequency peak across neighboring frequencies, which is referred

to as leakage. To reduce leakage, the implicit rectangle window can be replaced by explicit

multiplication with a window with more desirable frequency characteristics. The most

widely used example of such a window, which will also be used for the computations in

this work, is the Hann window [3].

Picket Fence Effect Since the frequency domain is sampled, information about very nar-

rowband frequency peaks which are not covered by a sampling point is obscured. This

effect can be viewed as looking at a scenery through a picket fence – hence the name [3].

The most obvious way to reduce the influence of the picket fence effect is to increase the

frequency resolution by increasing the signal length N .
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2.2.2 Short-Time Fourier Transform

While an untransformed signal carries the time information with highest possible time reso-

lution, it does not contain any frequency information explicitly. Similarly, the FFT contains

the frequency information of the signal in the highest possible frequency resolution, but for

non-stationary signals, the information is averaged in time and therefore is not able to show

any progression over time. A compromise between both domains used mainly for non-

stationary signals is the Short-Time Fourier Transform (STFT). Instead of performing one

FFT on the whole signal, the signal is split into overlapping segments in the time domain,

which are then transformed individually [3]. However, there is a trade-off between time

and frequency resolution since the frequency resolution is antiproportional to the window

length. The edge cases of this trade-off are the time signal for window length 1 and the FFT

for maximal window length. The maximum amount of possible overlapping between con-

secutive signals is determined by the window that is employed. The window decreases the

signal energy at the beginning and end of a segment, thus the overlap restores this energy

loss. For a Hann window, 50% overlapping between two consecutive signals is generally

recommended as a trade-off between increased time resolution and invertibility [18].

2.2.3 Hilbert Transform and Envelope Demodulation

As introduced earlier, BPFO faults are usually characterized by impulse trains with BPFO

frequency and exponentially decaying oscillation at the bearing resonance frequency [3].

This characteristic can be regarded as a multiplication between two signals:

x(t) = m(t) cosωbt , (2.8)

where the oscillating part cosωbt with bearing resonance frequency ωb characterizes the

oscillating response of the bearing, and m(t) characterizes the impulse train and exponen-

tial decay. Equation (2.8) is a typical example of amplitude modulation, where a harmonic
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carrier signal, in this case cosωbt, is modulated by a modulating function or envelope, in

this case m(t). It is widely known that analysis of the signal envelope m(t) can be signifi-

cantly more fruitful than direct analysis of the original signal spectrum [3, 19, 20]. For this

reason, the strategy of envelope demodulation by use of the Hilbert transform [21] will be

explained briefly.

The Fourier transform of real signals, as introduced earlier, will generally have complex

values, but to ensure realness of the inverse Fourier transform, the spectral values at a

negative frequency will be the complex conjugate to its positive frequency counterpart [22].

In contrast, a signal whose frequency components are zero for all frequencies smaller than

zero is called an analytic signal [23]. Consequently, an analytic signal has complex values

in the time domain if it is not the trivial zero signal. For every real signal x(t), there is a

exactly one analytic signal X(t) whose real part is x(t) [24]. This analytic signal can be

calculated from the spectrum of x(t) by setting all negative frequency components to zero

and then doubling the positive frequency part of the spectrum in amplitude. The inverse

Fourier transform of the resulting one-sided spectrum is exactly the desired analytic signal

X(t) = x(t) + ix̃(t). The imaginary part x̃(t) is called the Hilbert transform of the signal

x(t) [24]. Similar to Euler’s formula, which states that a complex number can be split up

into an amplitude and a phase instead of real and imaginary part, the analytic signal can

also be divided into a real amplitude signal and a real phase signal. This amplitude of the

complex signal is the envelope of the original signal and the described approach is used to

calculate signal envelopes in application [3, 21].

This approach is qualitatively illustrated by a simple example in Figure 2.4. In Fig-

ure 2.4a, the initial signal as well as the desired envelope are illustrated. The corresponding

spectrum is presented in Figure 2.4b. The modulation effects, resulting in a center peak

at the carrier frequency with two peaks around the center peak at a distance of the enve-

lope frequency, are visible. Also, it is clear that the negative frequencies are the complex

conjugates of the positive frequencies. The spectrum of the corresponding analytic signal
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(a) (b)

(c) (d)

Figure 2.4: Hilbert Transform steps in time (left) and frequency (right) domain. (a) Step 1:
original signal and expected envelope, (b) step 2: FFT of original signal, (d) step 3: One-
sided spectrum created by removing the negative and doubling the positive frequencies, (c)
step 4: IFFT of the one-sided spectrum.

is given in Figure 2.4d. The negative frequency parts are removed, while the positive fre-

quency parts are doubled. Lastly, the IFFT of the analytic signal is shown in Figure 2.4c.

This signal is complex. It is apparent that the absolute value of the analytic signal indeed

traces the envelope of the original signal.

The relationship between analytic signal, original signal and Hilbert Transform signal

is further visualized in Figure 2.5. However, signal spikes and random noise can easily
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Figure 2.5: 3D visualization of Hilbert Transformation.

corrupt the presented basic signal envelope approach. For noisy signals, the envelope might

easily be more complicated than the original signal itself [21]. The fault identification

approach explained below therefore makes additional use of targeted bandpass-filtering of

the signal.

2.3 Performance Measures of Classifiers

The approaches compared in the present work all perform a binary classification task –

dividing signals into the classes ”healthy” and ”defected”. Especially with the recent rise of

machine learning, there are many popular performance metrics for classifiers [25]. Among

the most well-known metrics are confusion matrix, precision, recall and F1-score, all of

which will be used throughout the present work to compare performances. These metrics
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are explained in this section.

The confusion matrix is a very comprehensive way to display classification results [26].

A classification test is usually performed by running the classifier on a test set, which

contains signals from all desired classes. In the case for this work, the test sets must contain

healthy and defected signals. The classification itself also divides the test set into two

subsets: Positive, (i.e., flagged signals) and Negative (i.e., unflagged signals). In total, this

gives four possible types. These types are usually displayed in a matrix form, which is

called the confusion matrix. An exemplary confusion matrix is given in Table 2.3. All

confusion matrices in this document follow this given layout.

Table 2.3: Exemplary confusion matrix.

Defected signal Healthy signal
Positive (Flagged as defected) True Positive (TP) False Positive (FP)
Negative (Flagged as healthy) False Negative (FN) True Negative (TN)

The precision P of a classifier is given by

P =
TP

TP + FP
(2.9)

where TP and FP are true and false positives, respectively. In other words, the precision

is the likelihood of a flagged signal being relevant with respect to the flag [26]. A high

precision indicates that the number of FP is relatively low. If a signal is flagged by a

classifier with high precision, then it is likely that this signal is defected.

The recall R of a classifier is given by

R =
TP

TP + FN
. (2.10)

It indicates the percentage of all relevant signals that were found. A high recall indicates

that the number of FN is relatively low. If a classifier has high recall, it is unlikely that a

15



defected signal is not flagged.

Clearly in the optimal case, both precision and recall are sought to be high, or equiv-

alently, the number of FN and FP is sought to be minimal. However, in reality, precision

and recall are related antiproportionally [26]. This becomes clear in the edge cases. A clas-

sifier that blindly flags every signal it comes across will have a recall of 100%, since there

cannot be any false negatives if there are no negatives. However, this classifier will have

low precision since there will be many false positives if every healthy signal is flagged as

well. Similarly, a classifier that has an extremely strict flag policy may obtain a precision

of 100% at the expense of a high rate of FN, lowering recall values. This tradeoff makes

clear that neither precision nor recall are suitable as sole measures of a good classifier. The

harmonic mean of precision and recall is calculated by

F1 = 2 · P ·R
P +R

(2.11)

and is called the F1-score of a classifier. Since the F1-score takes into account precision as

well as recall, it can be a better suited metric than precision or recall alone [26].
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CHAPTER 3

DETECTION APPROACHES

A basic detection approach for bearing faults is the time-domain approach. Since the over-

all machine vibration increases when a fault is present, statistical features such as mean,

Root Mean Square (RMS), peak value, skew and kurtosis can indicate presence of a de-

fect [27]. Kurtosis is used often since a high kurtosis value indicates high impulsivity of a

signal [3]. The kurtosis is a scaled version of the fourth statistical moment and is computed

by:

K =

∫∞
−∞[x− µ]3p(x)dx

σ3
− 3 , (3.1)

where µ is the mean and σ is the standard deviation of the signal. Advantages of these

intuitive statistical approaches include their ease of implementation and the relatively low

computational effort. However, they also have some significant disadvantages. Increase in

vibration levels can be caused by various reasons, bearing defects being only one of them.

With purely statistical methods, it is very difficult to find the actual part on an asset that

needs to be replaced. Statistical features also have to be measured over time and compared

to healthy values for specific bearings. This means that the healthy state of the bearing

must be known and analysis of snapshots of various machines that are not connected is

impossible.

Frequency-based detection approaches promise to address these issues. While such ap-

proaches come with the cost of higher computational effort, causes of particular defect can

be determined more accurately due to distinct characteristics within the spectral data. As

established above, bearing defects are characterized by periodic, with impulsive spikes in

the waveform and similarly periodic peaks in the spectrum. This signature can be detected
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by multiple approaches, which will be presented below.

3.1 Harmonic Peak Finding

A straightforward fault detection approach is direct harmonic peak finding. This approach

is developed directly with medium to low sampling rates in mind, where the eigen fre-

quencies of the bearing are not represented. Since the bearing signal is periodic in nature

for constant rotational speeds, a BPFO defect signature has frequency components at the

BPFO frequency and its harmonics [3].

For a strong BPFO fault, these peaks can be assumed to be among the highest peaks

in the spectrum. This condition is what the harmonic peak finding approach utilizes in

determining faults. First, a fixed number N of highest amplitudes and their corresponding

base frequencies in the spectrum are determined. For each frequency fn, n ∈ {1, . . . , N}

corresponding to one of these high peaks, the harmonic frequencies hn,k = kfn, k ∈ N

are examined. Since a BPFO fault has a spectrum signature with harmonics, local extrema

or peaks in the spectrum at frequencies hn,k are expected if fn corresponds to a BPFO

base frequency. However, due to the above-mentioned leakage and picket fence effects,

the determined frequency fn can be slightly shifted compared to the true BPFO frequency,

which also means that the harmonics can be shifted from the exact integer multiples of fn.

Therefore, local harmonic extrema are searched in a range of k · 3 Hz around the expected

peak location hn,k. If one or multiple extrema are found, then the maximum of them is

treated as possible BPFO harmonic. All bases fn with at least 4 consecutive identified

harmonics are treated as possible BPFO base signals.

This approach is illustrated in Figure 3.1 for an example spectrum and N = 3. The

three leftmost peaks are the highest peaks in the spectrum and are therefore identified as

possible base peaks. The blue, yellow and red lines indicate the identified peak locations of

the projected harmonics for each of the three base peaks. In the example in Figure 3.1, the

second, yellow peak would not be regarded as possible BPFO because only one consecutive
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Figure 3.1: Example of harmonic peak identification.

harmonic can be found, whereas enough peak harmonics can be identified for the first (blue)

and third (red) peak.

This approach so far does not need a lot of a priori information, however there are

many false positive cases where a signature that does not correspond to BPFO is flagged.

For instance, noise can lead to closely spaced local extrema, which can be misinterpreted

as harmonics. Additionally, the first harmonic could be labeled as BPFO base, leading to

misidentification of the BPFO frequency. There could also be ambiguous situations like the

example in Figure 3.1, where multiple BPFO bases can be identified. The harmonic score

and the harmonic certainty are introduced to resolve these problems.

Frequency spectrum peaks introduced by BPFO defects are expected to be distinct in

the sense that the next higher amplitude value in the spectrum should correspond to a neigh-

boring peak. This is the case for the red harmonic sequence in Figure 3.1, but not for the

blue one. This property is utilized by the harmonic score and certainty. To compute the

harmonic score and certainty, the distance dn,k between the considered peak hn,k and the

closest frequency with a higher amplitude value is calculated via:

dn,k = min
f : a(f)>a(hn,k)

{|f − hn,k|} , (3.2)

where f is a frequency in the considered frequency range and a(f) describes the amplitude
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Figure 3.2: Example of harmonic score distance determination.

spectrum. An illustration for this distance value can be found in Figure 3.2. The length

of the green or red lines corresponds to the harmonic distance. In this simple example, all

green lines have a distance d1,2 = d1,4 = d1,5 = 1. The red lines correspond to larger

distances d1,3 = 2 and d1,1 = ∞. If the closest higher point in the spectrum corresponds

to a neighboring peak as discussed above, then the distance dn,k should be equal to the

distance between to harmonics, i. e. the BPFO base frequency fn. All peaks k where this

is the case are denoted valid peaks, all others invalid peaks. The second, fourth and sixth

peak marked green in Figure 3.2 are valid since their distance is 1.

The harmonic certainty HCn is defined as the ratio of the number of valid peaks to all

peaks. The harmonic score HSn is the sum of the amplitudes of all valid peaks. They are

calculated as follows:

HCn =
nvalid

nall

(3.3)

HSn =
Nn∑

k=1,dn,k=fn

a(hn,k) . (3.4)

For the illustrating example in Figure 3.2, the harmonic certainty would be 3
5

and the har-

monic score would be approximately 0.63. The harmonic certainty HCn indicates how

many of the harmonic peaks are prominent as expected. Its values range from 0 to 1, high
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values indicating a structure as expected, where the harmonic peaks are prominent. Low

values indicate a signal where higher peaks between the harmonic peaks are present, in-

dicating that the wrong BPFO base was chosen or that the signal is noisy. The harmonic

score HSn indicates the energy of the peak features and can therefore be used to find the

most BPFO-like peak sequence if a signal has multiple candidates.

The whole procedure is summarized in the flowchart presented in Figure 3.3. For the

BPFO defect identification approach, all candidates with a harmonic certainty of less than

a specified certainty threshold are discarded. From all other candidates, the one with the

highest harmonic score is picked and a defect is flagged. To further reduce the number of

false positives, it can be useful to define the signal to noise ratio (SNR) as the ratio of all

identified harmonic peaks and the rest of the frequency spectrum. If this SNR is lower than

a certain threshold, then the signal is not flagged. A priori information about the expected

noisiness of a signal can help determine an appropriate minimal SNR.

3.2 Kurtogram-Based Envelope Analysis

One basic assumption of the above mentioned peak finding approach is that the BPFO base

frequency peak is among the highest values of the spectrum. However, for signals with

high sampling rates, this is not necessarily the case. In Figure 3.4, the spectrum of the

ideal BPFO signal from Figure 2.2 is presented. Due to the modulation effects explained

previously, the highest peaks from the BPFO spectrum are in fact spaced around the natural

resonance frequency of the bearing, and the base frequencies are low in comparison. For

these systems, it is therefore unlikely that the basic peak finding approach presented above

yields the desired results and pre-treatment of the signal and spectrum is necessary.

One particular approach of pre-treatment is targeted demodulation of the signal to re-

duce the modulation effects at high frequencies and therefore shift the frequency peaks to

a lower range [3], where they can be detected by the peak finding algorithm as introduced

earlier. This demodulation is carried out with help of the Hilbert transform introduced pre-
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Figure 3.3: Flowchart for peak finding approach.

viously. For the ideal BPFO signal introduced in Figure 2.2, the resulting demodulated

waveform and spectrum can be found in Figure 3.5. From Figure 3.5a, it is obvious that

the demodulation is successful and the signal envelope traces the outline of the signal well.

The spectrum in Figure 3.5b validates that the highest harmonics are indeed transported to

lower frequency by the envelope demodulation. However, even small layers of noise can

throw off the demodulation algorithm and result in a signal that is even more modulated and

noisy than the original signal [21]. Therefore it is crucial to filter the original signal to re-

move most of the noise while leaving the BPFO signature intact, before applying envelope
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Figure 3.4: Spectrum of ideal bearing signature from Figure 2.2.

demodulation.

3.2.1 Spectral Kurtosis and Kurtogram

The kurtogram based on spectral kurtosis is a very valuable tool to determine the best

bandpass filter specifications to keep impulsive signal components while eliminating most

of the other noise [28]. The discrete spectral kurtosis is a property of a signal that is

evaluated with help of the STFT that was introduced above. The usual way to look at the

STFT is regarding it as a sequence of spectra for successive time instances. However, since

the represented frequency values are constant over time, the STFT also can be regarded

as a partition of the original signal into various frequency bins over time. This concept is

illustrated in Figure 3.6.

These output time signals can be regarded as the output of quasi-analytic filters with

the central frequency f and the bandwidth ∆f , where ∆f is the frequency resolution of

the STFT. The discrete spectral kurtosis can be computed as the kurtosis of these signal

partitions, depending on the frequency f . By the Bedrosian theorem [29], this estimator

acts like a bandpass filter around the center frequency f ± ∆f if the signal is sufficiently

stationary.
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(a) (b)

Figure 3.5: Ideal time signal from Figure 2.2 and computed envelope in (a) time and (b)
frequency domain.

To optimally filter the signal components with high spectral kurtosis, it is necessary to

perform the above-mentioned steps for various frequency resolutions. Antoni [30] proposes

a cascading scheme to compute multiple levels of spectral kurtosis with frequency spacing

multiples of 2 and 3, which utilizes the same methods as the FFT and has a complexity

order of only O(N logN). For implementation of the kurtogram, the interested reader is

referred to [30, 31]. Now the total combined envelope demodulation and peak identification

approach can be stated. First, the kurtogram of the signal is computed and the f,∆f

combination with the highest kurtosis value is selected. The Hilbert transform is then used

to demodulate the filtered signal and afterwards the peak finding approach explained earlier

is used to determine whether possible BPFO harmonics are present.

3.3 Time-Frequency Curve Extraction

When dealing with unknown rotational speeds, it is often assumed that the rotational speed

may not be constant over time, since there is no way to ensure this. For this reason, liter-

ature for fault detection under unknown rotational speed often assumes non-constant shaft
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Figure 3.6: STFT interpretation possibilities as snapshots in time or frequency.

rotation speeds [32] and employ time-frequency methods such as the STFT or the wavelet

transform [20]. Both previously mentioned approaches rely on the FFT and use detec-

tion of peaks in the spectrum. This approach can be flawed if peaks created by noise or

other stochastic processes are misinterpreted as bearing fault harmonics. Time-frequency

methods can also be of use here, since these processes can be transient and therefore not

represented constantly in a time-frequency diagram. One approach that utilizes these ben-

efits is TFCE. An overview of the approach introduced by Huang, Baddour, and Liang,

2018 will be given in this section; for more insight the interested reader is referred to [33,

34, 35].

In a first step, the Time-Frequency Representation (TFR) of the signal is obtained using

the STFT. For each time instance, a number of peaks, i. e. local maxima in the frequency

spectrum corresponding to the time instance, are determined. Afterwards, a fast path op-

timization algorithm [36] determines a fixed number of frequency peak curves throughout

time. The schematic functionality of the fast path optimization is illustrated in Figure 3.7.

It is important to note that peaks which have already been assigned to a curve are removed
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Figure 3.7: Illustration of path optimization algorithm [37]. (a) Recursive determination of
predecessors, (b) identification of paths, (c) determination of best path.

from the TFR to reduce interference for the subsequent curves to be identified.

The crucial next step for bearing fault identification is employing bearing frequency

characteristics introduced previously. As is apparent from Table 2.2, both for BPFO and

for BPFI defects, the defect frequencies are proportional to the shaft rotation frequency. It

is therefore reasonable to require that the quotient between potential bearing frequency and

shaft frequency is constant throughout the time signal.

Huang, Baddour, and Liang additionally require that this quotient is approximately the

fault frequency factor listed in Table 2.2. However, since one of the crucial assumptions

of the present work is unknown bearing configuration, this step had to be omitted. If such

a constant harmonic is found, then the signal is reported as defected. The approach leaves

some tunable parameters to change the performance depending on the respective require-

ments. Those tunable parameters include the STFT window length and the overlap, the

allowed ratio variance and the number of extracted curves. The choice of parameters used

in this work is explained in Section 4.4.
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CHAPTER 4

METHODOLOGY

4.1 Data

To investigate the classification performance of the bearing defect detection approaches,

both simulated and experimental data were utilized. This section reviews characteristics of

the simulated and experimental vibration data utilized.

4.1.1 Simulated Data Generation

To be able to generate a diverse test set for the different approaches, simulated data was

considered. The simulated data consisted of BPFO, shaft vibration and noise components.

Due to the linearity of the FFT in all considered approaches, independence of these three

components was assumed and they can simply be superposed to result in one simulated

machine signal. The first component is the perfect BPFO signature as introduced in Figure

2.2 and is given by:

sbpfo(t) = e−λ(t mod T ) sin (2πωt) , (4.1)

where λ is a damping coefficient for the introduced impulse, T is the reciprocal of the

BPFO frequency introduced in Table 2.2 and ω is the resonance frequency of the bearing.

The operator mod refers to the modulo operator.

For the purpose of this research, the bearing configuration of the bearing NTN NUP

2305E [38] was modeled. For this specific bearing, the BPFO frequency factor is 4.26, as

in Table 2.2. An exponential decay factor of λ = 2000 and a bearing resonance frequency

of 4 kHz was assumed. Caution is necessary when going from the analytical expression in

Equation (4.1) to the discretely sampled signal necessary for the classifications. Identical to
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an analog signal measured by a vibration sensor, the direct sampling of the simulated signal

in Equation (4.1) with a specific sampling frequency fs is subject to aliasing effects. Signal

components at higher frequencies than the Nyquist frequency of fs
2

are mapped to their

modulus with respect to the Nyquist frequency. This aliasing phenomenon was explained

earlier in more detail. When dealing with measured signals, an analog anti-aliasing low-

pass filter with a cutoff frequency lower than the Nyquist frequency is used to combat

the aliasing effect. The most accurate equivalent method for the mathematical signal in

Equation (4.1) would be analytically convolving the expression with an analytic expression

of a suitable low-pass filter and the result of this computation would have to be sampled.

However, this approach entails significant mathematical and computational effort.

A simplified approach involves identifying a high sampling rate such that signal com-

ponents above the corresponding Nyquist frequency are small and their aliasing effects are

negligible. After sampling at this high frequency, a digital low-pass filter emulating the

analog anti-aliasing filter can be applied to the signal, which can then be downsampled

to the original desired sampling rate. With bearing configurations as introduced before,

the amplitudes of the spectrum begin to decrease after 4 kHz (c. f. Figure 3.4), and for

frequencies larger than 40 kHz, the spectrum contributions are negligible. For increased

computational efficiency, it is advisable to choose a high frequency which is a common

multiple of many desired sampling rates, and additionally larger than 40 kHz. This base

signal can then easily be filtered by a digital anti-aliasing filter and then downsampled to

the desired sampling rate.

The second component for the simulated signal is the shaft rotation component. Due to

light imbalance and/or misalignment, the first few harmonics of shaft rotation will almost

always be visible in the spectrum [3]. For the simulated signals, the shaft rotation was mod-

eled directly in the frequency domain, specifying the shaft rotation frequency and the first

five harmonics with exponentially decaying amplitude. To vary the signal, the phases for

these six summands were added as random values between 0 and 2π. The third component
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is Gaussian noise. Noise was added to the simulated data to represent influences of other

machine parts such as gears or felt, and additional noise introduced in the measurement or

sampling process.

All fixed parameters of the simulated base signals are summarized in Table 4.1. The

three signal components were added to obtain a simulated vibration signal. The BPFO

component was scaled such that its energy is one. A diverse test set of simulated signals

was created by varying the energy of noise and shaft rotation components in relation to the

BPFO energy. Subsequently, simulated signals as introduced in this work can be charac-

terized by their shaft and noise energy relative to the BPFO energy and by their sampling

rate. Due to the relative character of all classification approaches, scaling of the resulting

signal does not impact the classification results. This way of generating simulated signals

is therefore representative of a wide range of overall energies. For every combination of

considered sampling rate, relative shaft energy and relative noise, a defected signal was

created using the above-mentioned approach. Additionally, a corresponding healthy signal

was created by only adding shaft rotation and noise, while omitting the BPFO component.

This signal generation process is illustrated in Figures 4.1 and 4.2 for a relative shaft en-

ergy of 0.5 and a relative noise energy of 200. The signals can be characterized by their

sampling rate, relative shaft energy and relative noise energy. For the sake of brevity, those

three factors can be combined in set notation. For example, the above-mentioned signal

with sampling rate 20.48 kHz is represented by the notation {20.48 kHz, 0.5, 200}.

To facilitate generation of unique test sets, signals were divided into noise categories of

low, medium and high, as indicated in Table 4.2. Relative shaft energies between 0 and 2

were considered. Since the noise was distributed over a significantly wider frequency range

than the shaft signal, the noise energy factors must be much higher than the shaft energy

factors for the same effect.
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Table 4.1: Fixed parameters for simulated base signals.

Base signal type Parameter Value

BPFO
BPFO frequency 1

T
128 Hz

Exponential decay factor λ 2000
Bearing resonance frequency ω 4 kHz

Shaft rotation
Shaft rotation frequency 30 Hz
Harmonics exponential decay factor -1
Number of harmonics 6

Noise Standard deviation (unscaled) 1

(a) (b) (c)

Figure 4.1: Simulated signal components for signal parameters {20.48 kHz, 0.5, 200}:
(a) BPFO, (b) shaft and (c) noise.

(a) (b)

Figure 4.2: Simulated signals for signal parameters {20.48 kHz, 0.5, 20} as sum of compo-
nents: (a) healthy and (b) defected.
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Table 4.2: Noise range limits for simulated data.

Category Minimal relative energy Maximal relative energy

Low noise 0 230
Medium noise 300 615
High noise 692 1000

4.1.2 Experimental Data

To further compare the bearing defect detection approaches, experimental data [39] was

also considered. Run-to-failure tests performed under normal conditions on a test rig were

considered. The data collection is explained in [19]. The data was collected during an

endurance experiment at a dedicated test rig at the University of Cincinnati. A bearing test

rig with four bearings on one shaft was considered. A schematic drawing of the test rig can

be found in Figure 4.3. The shaft was coupled to an AC motor by a rub belt, driving the

system with 2000 RPM, i. e. approximately 33 Hz. The shaft was loaded by 6000 lbs. with

help of a spring mechanism. The four bearings used were Rexnord ZA-2115 bearings with

a BPFO frequency of 236 Hz at the rotation speed of 33 Hz. For clarity, all important

numbers are summarized in Table 4.3. Each bearing housing had a PCB 353B33 high

sensitivity quartz ICP accelerometer attached to measure the vibration.

Table 4.3: Important parameters for IMS experimental data [39, 40].

Shaft rotation frequency 33 Hz
BPFO frequency 236 Hz
Sampling rate 20 kHz

According to Qiu, Lee, Lin, and Yu [19] and the reference document of the experiment

[39], the sampling rate was 20 kHz with a signal length of 20480 samples. However, as

Liu and Gryllias [40] point out, the time vector indicates that the sampling rate likely

is 20.48 kHz. Since bearing configuration and rotation speed are assumed unknown in the

present work, the dispute in these sampling rates had no impact on performance. Therefore

31



Figure 4.3: Test rig for run-to-failure experiment [19].

it is not problematic to use the originally indicated sampling rate of 20 kHz. Three test

runs are represented in the dataset [39]. Acceleration measurements were taken every 10

minutes. While the test rig was running, a magnet plug collected debris from the oil,

indicating bearing degradation. When the amount of debris on the plug exceeded a certain

level and bearing faults were inevitable, the rig was turned off and the bearings examined.

The second test was carried out for approximately seven days. At the end of the test, an

outer race fault in Bearing 1 was found [39]. This test is used in the present work. A dataset

of healthy signals was curated from measurements 100-199, and a defected dataset was

curated from measurements 840-939. According to the survey given by Liu and Gryllias,

most approaches start detecting the fault in Bearing 1 between measurement 500 and 600,

considering RPM, bearing configuration and the signal progression [40]. Thus, it is justified

to take measurements 840-939 as defected bearings.

32



4.2 Assumptions

There are important assumptions and restrictions to consider for the experiments of this

research. The fixed signal parameters can be found in Tables 4.1 and 4.3 for the simulated

and experimental data, respectively. For comparability, the simulated data was designed in

a way to mirror the experimental data directly, using the similar shaft rotation frequency.

However, in practice, other combinations of shaft rotation frequency, BPFO frequency and

bearing resonance frequency will likely be the case. A change in these frequencies will af-

fect the exact behaviors of the classification algorithms with respect to sampling rate. These

effects and how to apply the results of this work to the input signals with other frequency

ranges will be discussed in Section 5.3.3. However, since none of the approaches use abso-

lute amplitude values in any detection step, the present approach is robust towards vibration

signals with various amplitudes. Another important assumption of the present work is that

machinery faults other than BPFO are not considered in the data. The approaches are ana-

lyzed in their ability to distinguish BPFO signals from healthy signals. In real application,

signals like gear noise from other machine parts can interfere with the detection [41].

4.3 Design of Experiment

As the main goal of the present work is to analyze the behavior of various approaches

under low sampling rate conditions, classification experiments were conducted for various

sampling rates ranging from 2 kHz to the standard literature value of 20 kHz.

Table 4.4 summarizes all sampling rate steps as well as the relative shaft energy and

noise energy ranges used for experiments. Sampling rates lower than the shown values of

2 kHz are not suitable for the task since a minimal number of bearing frequency harmonics

must be present in the spectrum for any of the approaches. The simulated data for the ex-

periment was designed by full factorial design, i. e. all possible combinations of sampling

rates and relative shaft and noise energies introduced in Table 4.4 were combined. For the
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Table 4.4: Design of Experiment.

Simulated data

Parameter Qualitative range Numerical range Step size Experimental data

Sampling rate

very low – 2 kHz
low 1 4.096 kHz 4 kHz
low 2 6.144 kHz 5 kHz
medium 10.24 kHz 10 kHz
high 20.48 kHz 20 kHz

Rel. shaft energy – 0 – 2 0.142 0.7 – 15.4

Rel. noise energy
low 0 – 230 76.9 –
medium 300 – 615 76.9 0.08 – 129
high 692 – 1000 76.9 –

experimental data, this is not the case. Relative noise and shaft energy ranges were deter-

mined by computing and comparing the relative noise and shaft energy of the experimental

signals.

The shaft energy of a signal was approximated by the sum of the squared amplitudes

of the first six multiples of the shaft frequency 30 Hz. Similarly, the BPFO energy was

approximated by the sum of the squares of the amplitudes at all multiples of the BPFO fre-

quency. Every amplitude value not contributing to either shaft or BPFO energy contributed

in the same manner to the noise energy. To obtain accurate relative energies, the maximal

and minimal relative shaft and noise energy were evaluated for all signals later than the

700th signal, where the BPFO signature was already present [40].

As the experimental data was from a run-to-failure experiment, the progression between

healthy and defected signals is continuous. However, to be able to validate the classification

algorithms in terms of their scores, it is important to have a validation set, whose ground

truth is clear. According to Liu and Gryllias [40] and references therein, the defect can be

detected between samples 500 and 600, and therefore the samples 100–199 and 840–939

are good indicators for certainly healthy and certainly defected signals, respectively.
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4.4 Parameter Choices

All three approaches employ some design parameters that can be tuned by the user. All

chosen design parameters are summarized in Table 4.5. These parameters proved optimal

through a series of test runs in obvious simulated cases. In the peak finding approach, the

number of possible base peaks is a trade-off between computational efficiency and likeli-

hood to find the true BPFO base peak among the highest values. Similarly, the minimal

number of harmonics and minimal harmonic certainty are fixed in a way to eliminate peaks

caused by noise, while keeping BPFO signatures who are overlaid by noise. For the enve-

lope analysis method, a maximal kurtogram step of 7 proves sufficient exactness. From the

Table 4.5: Fixed design parameters for the three approaches.

Approach Parameter Value

Peak finding
Possible base peaks 23
Minimal harmonic certainty 0.1
Minimal number of harmonics 4

Envelope analysis
Max. kurtogram step 7
Order of bandpass filter 20 (FIR)

TFCE
min. STFT frequency resolution 5 Hz
Number extracted curves 4
Maximal variance for BPFO ratio 0.001

examples that will be discussed in detail below, it is clear that higher step sizes would not

serve for clearer results. An FIR filter of order 20 provides a good frequency response for

many standard applications.

The minimal STFT resolution of 5 Hz is necessary to provide sufficient exactness and

to reduce the amount of smearing and leakage in the frequency domain of the STFT. The

STFT window length yielding a frequency resolution of 5 Hz is given by:

lw =
5 Hz

fs
, (4.2)
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where fs is the sampling rate of the signal. For increased computational efficiency, the

power of 2 closest to and higher than lw is chosen as applied window length with a guaran-

teed frequency resolution of less than 5 Hz. While the chosen number of extracted values

4 is recommended by [33], the maximal variance was significantly reduced to 0.001 after

simulative studies. The additional step of comparison to the expected BPFO to shaft ro-

tation can not be performed if the bearing configuration is not known, demanding a low

variance to reduce false positives.
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CHAPTER 5

RESULTS AND DISCUSSION

This chapter illustrates results obtained by applying the three approaches to the experi-

mental and simulated signals introduced previously. First, the functionality of the three

approaches is illustrated step by step using exemplary signals. Subsequently, direct classi-

fication results and confusion matrices are given to facilitate a first comparison between the

three approaches. From the results of this section, it will become clear that the different ap-

proaches exhibit various restrictions and misclassifications for certain parameter values. As

a first discussion, the next section uses those results to explain reasons for those limitations.

Next, when methodic strengths and weaknesses of the approaches are clear, the influence

of the parameters noise, shaft energy and sampling rate is studied and discussed. Finally,

in the last section of this chapter, all insights from the previous sections are synthesized to

come up with suitable recommendations for usage of the three approaches.

5.1 Classification Behavior

To validate the three approaches, various steps in their execution are illustrated graphically

in the subsequent section. As explained previously, the direct peak finding approach utilizes

the first harmonics of the BPFO frequency in the signal. To illustrate how the approach

locates defect-related peaks, results are generated for a simulated signal consisting of a

bearing defect. For this purpose, a simulated BPFO signal with a relative shaft energy of

1.5 and a relative noise energy of 205 with a sampling rate of 4.096 kHz and its spectrum

were utilized. This simulated signal is displayed in Figure 5.1. In the figure, the BPFO

harmonics are visible in the spectrum and their amplitude is approximately constant due to

the low sampling rate and the anti-aliasing methods used.

The first step for the direct BPFO detection approach is determining the N highest
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(a) (b)

Figure 5.1: Exemplary simulated signal with defect and parameters {4.096 kHz, 1.5, 205}:
(a) waveform and (b) spectrum. Identified high peaks indicated by red stars; true BPFO
peak and rank indicated by Number 15.

points in the spectrum. They are indicated by red stars in the exemplary spectrum of Fig-

ure 5.1b. These peaks will be treated as potential BPFO base peaks for the following steps

of the peak finding algorithm. The 15-th highest peak in the spectrum with an amplitude

of almost 0.002 g at a frequency of 128 Hz, which is indicated in Figure 5.1b, corresponds

to the true BPFO base frequency. Next, the possible harmonics in the spectrum are de-

termined for each of the possible base peaks indicated in Figure 5.1. If local extrema are

present in a range around the predicted location of the harmonic, the highest of these local

extrema would be assumed to be the harmonic peak, regardless of its absolute height. This

is visualized in Figure 5.2 for the highest, the 12th highest and the 15th highest (i. e., the

true BPFO) base peak, respectively. Since the highest base peak, which corresponds to the

shaft rotation frequency, is located at a relatively low frequency of 30 Hz and there is some

noise present, many small local extrema in the noise are misidentified as possible harmonic

peaks, as obvious from Figure 5.2. In the extreme case of the highest base peak, depicted

in Figure 5.2a, this leads to 69 identified possible harmonics in total. For the other cases,

the number of identified possible harmonics is much lower with three in Figure 5.2b for the
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12th highest base peak and 15 in Figure 5.2c for the true BPFO peak, respectively.

(a) (b) (c)

Figure 5.2: Predicted harmonics for defected signal with parameters {4.096 kHz, 1.5, 205}:
(a) highest base peak, (b) 12th highest base peak and (c) real BPFO base peak. Red stars
indicate base peak location. Red and green lines indicate predicted harmonics.

To identify the correct BPFO base peak from the identified candidate base peaks, the

harmonic score and harmonic certainty of the associated harmonics are considered. For

the true BPFO base peak in Figure 5.2c, 9 harmonic peaks, i. e. three fifths of all predicted

harmonic peaks, are valid. In contrast, for the highest and 12th highest base peak, only

a small fraction of harmonic peaks (three in 69 and one in three, respectively) are valid.

The progression of the harmonic score over all identified candidate base peaks is shown in

Figure 5.3. From this graph, it is apparent that there may be other candidate base peaks

with more identified (valid or invalid) harmonics, such as the peak with 69 harmonics in

this example, but the corresponding harmonic score of 0.0175 for the true BPFO base peak

is significantly larger than for any other candidate base peak. This validates the utilization

of the harmonic score to identify the correct BPFO frequency.

The peak finding approach was also verified by consideration of the experimental dataset

[39]. The waveform and spectrum of the 847th measurement, taken 2004/02/18 at 07:42:00

and decimated as explained above to a sampling rate of 10 kHz, is given in Figure 5.4. This

measurement was taken late enough so that the BPFO fault was certainly present. The base

peak corresponding to the BPFO frequency at 236 Hz is indicated by a star in Figure 5.4b.

In contrast to the simulated data in Figure 5.1, it is apparent that the noise was less evenly
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Figure 5.3: Harmonic score and harmonic peaks identified for all potential base peaks.
True BPFO peak marked by star.

distributed across frequencies. In particular, there was a large peak with an amplitude of

more than 0.03 g at approximately 1000 Hz, which was neither caused by shaft rotation nor

by BPFO. Additionally, from the figure, the damping introduced by the anti-aliasing filter

is visible for frequencies greater than 4000 Hz.

(a) (b)

Figure 5.4: (a) waveform and (b) spectrum for 847th measurement of experimental data
[39]. Star indicates true BPFO base peak.

As in the case for the simulated signals, harmonics were detected for many possible
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candidate base peaks, including the true BPFO base peak. Exemplary harmonic detection

results for the highest candidate base peak and the true BPFO base peak are illustrated in

Figure 5.5. The three harmonics predicted for the highest candidate base peak presented

in Figure 5.5a are not visibly distinct in the spectrum, therefore all of them are invalid. In

contrast, for the true BPFO base peak presented in Figure 5.5b, four out of 17 harmonics

are classified as valid. The higher-order harmonics are not classified as valid since they are

buried by noise, and even though the lower-order harmonics are distinct in the spectrum,

some are not classified as valid because the high candidate base peak at approximately

1000 Hz is interfering.

(a) (b)

Figure 5.5: Predicted harmonics in spectrum of 847th signal of experimental data [39]:
(a) highest base peak and (b) true BPFO base peak. Star indicates base peak location.
Predicted harmonics indicated by red and green lines.

Across all identified possible base peaks, the true BPFO base peak exhibits the largest

harmonic score of approximately 0.0138, as is apparent from Figure 5.6. Again, the BPFO

base peak was not the base peak for which the most total harmonics are found, however of

the many harmonics found for the 7th or 12th highest base peak (150 and 100, respectively),

less than 10% each were found to be valid. From these exemplar data, it is clear that the

direct peak finding approach using the harmonic score and harmonic certainty metrics is
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appropriate for identifying BPFO defects both in simulated and experimental [39] data.

Figure 5.6: Harmonic score and harmonic peaks identified for all potential base peaks in
experimental data [39]. True BPFO peak indicated by star.

As mentioned above, the envelope approach is a pre-treatment for the peak finding

approach to enhance the bearing fault harmonics and bring them to lower frequencies in

the spectrum. The first step is computation of the kurtogram [28]. To illustrate the behavior

of the envelope demodulation approach, simulated and experimental signals with noise

were utilized. A simulated signal with similar specifications as previous was utilized, i. e. a

relative shaft energy of 1.5 and a relative noise energy of 300, but with a high sampling rate

of 20.48 kHz. The waveform of this signal can be found in Figure 5.7a. The kurtogram in

Figure 5.7b shows the frequency band with the maximum kurtosis of approximately 3.2 at

level 2.6 with a center frequency of 4.3 kHz and a bandwidth of 1.7 kHz.

In Figure 5.8, the waveforms and spectra of the three pre-treatment steps for the con-

sidered simulated signal are compared. The bandpass filter filters out all signal portions

corresponding to the shaft rotation and most of the noise, while keeping the relevant BPFO

signal components intact, as apparent in Figure 5.8b. This is also apparent in the waveform

presented in Figure 5.8a. The slow oscillations caused by the shaft rotation component are

not visible in the filtered or the envelope signal. From the figure, the envelope demodula-
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(a) (b)

Figure 5.7: (a) waveform and (b) kurtogram for simulated signal with defect and parame-
ters {20.48 kHz, 1.5, 300}.

tion does well tracing the outline of the filtered signal, indeed shifting the frequency peaks

to the low frequencies in the spectrum where they can be picked up by the peak finding

algorithm. It is important to note that, since the envelope traces an absolute value, its mean

larger than zero. This corresponds to a high peak of 0.005 g in the spectrum at the frequency

zero, which is not to be misinterpreted as a possible BPFO base peak. This validates the

envelope approach as introduced in [3] and [28].

(a) (b)

Figure 5.8: (a) waveforms and (b) spectra for the three different stages of the
envelope demodulation algorithm in simulated signal with defect and parameters
{20.48 kHz, 1.5, 300}.

The experimental signals further validate the envelope demodulation approach. Again,
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the 847th signal of the IMS bearing data [39] is analyzed, however for validation of the en-

velope demodulation approach, it is not downsampled. Similar to the simulated signal, the

highest kurtosis value of 2.9 is found in a rather low level of the kurtogram depicted in Fig-

ure 5.9b. According to the kurtogram, the optimal bandwith is 3.3 kHz at a center frequency

of 8.3 kHz. Figure 5.10 shows the raw signal, the filtered signal and the demodulated signal

in the time and frequency domain. The bandpass filter retains the highest frequency band

in the spectrum, eliminating the high peaks at 1000 Hz and 2000 Hz completely. Although

the remaining filtered spectrum looks very noisy and no peaks are identifiable, envelope

demodulation was successful at isolating the BPFO peaks and transporting them to the

front of the spectrum. Further, these peaks are indeed spaced corresponding to distances of

236 Hz.

(a) (b)

Figure 5.9: (a) waveform and (b) kurtogram for 847th experimental signal [39].

The TFCE approach employs a STFT representation of the signal. Once again, a sim-

ulated signal with a relative shaft energy of 1.5, a relative noise energy of 305 and a sam-

pling rate of 20.48 kHz was used for approach validation. The waveform and spectrum of

the simulated signal can be found in Figure 5.11. Again, in the spectrum in Figure 5.11b,

the highest peaks are spaced around the resonance frequency of the bearing at 4000 Hz. In

contrast, in the STFT presented in Figure 5.12a, only the frequencies up to 500 Hz are rep-

resented. The shaft rotation frequency at 30 Hz as well as the first three BPFO harmonics at
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(a) (b)

Figure 5.10: (a) waveforms and (b) spectra for the three different stages of the envelope
demodulation algorithm in 847th experimental signal [39].

128, 256 and 384 Hz are clearly visible as horizontal red lines in the STFT, indicating con-

stantly high amplitude values at these frequencies throughout time. The curve extraction

algorithm also extracts these exact horizontal lines as curves, as visible in Figure 5.12b.

The purple curve at 30 Hz corresponds to the shaft rotation and the blue, orange and yel-

low curves correspond to the BPFO frequency and the first two harmonics. Since these

curves are very horizontal, the variance of the ratios between the lowest (orange) and sec-

ond lowest (blue) curve values throughout time is smaller than 0.001, flagging this signal

as defected.

(a) (b)

Figure 5.11: (a) waveform and (b) spectrum of simulated defected signal with parameters
{20.48 kHz, 1.5, 305}.
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(a) (b)

Figure 5.12: (a) Envelope STFT and (b) identified time-frequency curves of simulated
defected signal with parameters {20.48 kHz, 1.5, 305}.

5.2 Results

Until now, the approaches have been validated only by few samples. In this section, more

comprehensive results for a larger number of samples are given. Table 5.1 shows the con-

fusion matrix for the case of a high sampling rate of 20.48 kHz and low noise in simulated

signals. The data set for this confusion matrix consists of 75 defected signals, created by

accumulating signals of each combination of relative shaft energy and low noise as in-

dicated in Table 4.4. The 74 healthy signals were created from the defected signals by

removing the BPFO component, ensuring that direct comparison between a healthy signal

and its defected counterpart was possible. There are only 74 healthy signals because if the

BPFO signature is removed from a signal with zero shaft and zero noise component, then

only zero remains and the zero signal can not be interpreted by the algorithms. Since a zero

signal will never occur in practice, this signal was not considered in the analysis.

All confusion matrices in this section adhere to the layout and interpretation introduced

above. From Table 5.1, the envelope approach performs best for the high sampling rate and

low noise, with a perfect TP rate in classifying all 75 defected signals as defected while only

misclassifying (FP) two healthy signals as defected. The TP rate of the TFCE approach is
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high as well, 73 out of 75 defected signals were properly classified as defected. However,

the FP rate is very high in this case, with 54 healthy signals labeled as defected by the

TFCE algorithm. In contrast, the direct peak finding approach did not flag any signals as

defected, therefore yielding no FP, but also no TP. The reasons for this will be explained

later in the discussion.

Table 5.1: Confusion matrices for classification of simulated datasets with sampling rates
of {20.48 kHz, 4.096 kHz} and low noise.

20.48 kHz 4.096 kHz
Flag raised Defected Healthy Defected Healthy

Peak finding: True 0 0 7 6
Peak finding: False 75 74 68 68

Envelope: True 75 2 33 23
Envelope: False 0 72 42 51

TFCE: True 73 54 52 21
TFCE: False 2 20 23 53

The performance of these classification algorithms for simulated data with low noise

deteriorates under lower sampling rates. The confusion matrices for low noise and a sam-

pling rate of 4.096 kHz are given in Table 5.1. The performance of the envelope approach

was found to decrease significantly in terms of every metric. For example, the TP rate

decreased to 33 of 75 defected signals accurately flagged. Similarly, misclassification of

healthy signals increased to 23 of 74 healthy signals flagged as defected. The TFCE ap-

proach also exhibits a significantly higher rate if FP and FN with 23 and 21, respectively.

Also, the direct peak finding approach does classify more healthy signals as defected than

in the previous cases. Confusion matrices for the other simulated cases mentioned in Ta-

ble 4.4 can be found in Appendix B.1.

The performance of the classification algorithms on the experimental dataset is provided

in the confusion matrices of Table 5.2. As mentioned above, the test set was created to yield

100 signals per class. Similarly to the simulated signal with high sampling rate, again, the

peak finding approach had low TP and high TN classification rates. The envelope approach
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and the TFCE approach again perform much better in comparison, each flagging more than

90 out of 100 signals correctly in each category. It is interesting to note that the TFCE

approach did not exhibit as many FP as in the simulated low-noise case. Reasons for this

will be provided in the discussion.

Table 5.2: Confusion matrices for classification of experimental dataset with sampling rates
of {20 kHz, 4 kHz}.

20 kHz 4 kHz
Flag raised Defected Healthy Defected Healthy

Peak finding: True 4 0 8 0
Peak finding: False 96 100 92 100

Envelope: True 94 10 32 25
Envelope: False 6 90 68 75

TFCE: True 98 1 99 7
TFCE: False 2 99 1 93

For experimental data with a lower sampling rate of 4 kHz, the confusion matrix is

given in Table 5.2. Again, very few signals are labeled defected by the direct peak finding

approach, but all signals that are flagged are indeed defected signals. It is also interesting

to note that the number of TP for the direct peak finding approach doubles from four TP at

the full sampling rate of 20 kHz to eight at the lower sampling rate of 4 kHz. In contrast,

the performance of the envelope approach degrades significantly, giving almost as many

false positives as true positives. In the 4 kHz case for the experimental data, the TFCE

approach still yields good results with 99 TP and 93 TN. Confusion matrices for the other

experimental cases are found in Appendix B.2.

Since the experimental data [39] stems from a run-to-failure-experiment, it can also

be used to study time progression of the classification behavior. Figure 5.13 shows the

time progression of the (defected) flag rate for sampling rates of 20 kHz and 4 kHz in the

experimental data. The flag rate was computed as the percentage of all signals out of a given

20-signal-interval that were classified as defected. For runtimes larger than 100 h, a defect

is present in the signal and the flag rate corresponds to the recall. For runtimes smaller
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than 100 h the flag rate does not have any direct correspondence to one of the introduced

classifiers since the signals can be considered healthy. In Figure 5.13a, the progression

for a sampling rate of 20 kHz is shown. Both the envelope approach and the peak TFCE

approaches exhibit a steep increase to a detection rate of 1 after a runtime of 100 hours. In

contrast, the peak finding approach does increase detection as well, albeit much later after

approximately 150 hours runtime. Also, the rate does not increase to one, but only to 0.2.

The flag rate progression for a lower sampling rate of 4 kHz is also shown in Figure 5.13b.

Again, the TFCE approach exhibits a steep increase in flag rate up to one, however in

contrast to the higher sampling rate, this increase only occurs after 130 hours. The direct

peak finding approach on the other hand starts to increase its flag rate earlier than for high

sampling rates, after approximately 140 hours runtime. Also, it is notable that flag rates for

the direct peak finding approach increase up to 0.6, which is significantly higher than the

maximum flag rate of 0.2 observed for the high frequency case. For the envelope approach

at low sampling rates, no change in behavior is visible across the whole runtime. It should

be noted that from the progression in Figure 5.13, a distinction between false positive flag

rates at the beginning of the scan and true positive flag rates at the end cannot be made for

the envelope approach.

5.3 Discussion

The present study evaluated the performance of various defect classification algorithms

(e.g., direct peak finding, envelope demodulation, TFCE) under unique conditions of noise

and sampling rate considerations. The ensuing discussion will elucidate understanding re-

garding limits of the approaches imposed by these conditions, as well as recommendations

for generalization to other bearing configurations of interest. To achieve this, an analysis

of unsuccessful classifications for each classification algorithm is conducted and discussed.

This knowledge is then applied to a study of a range of sampling rates, shaft energies and

noise to investigate areas of good and bad performance. Finally, all these findings are tied
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(a) (b)

Figure 5.13: Flag rate progression for experimental data [39] at sampling rates of (a)
20 kHz and (b) 4 kHz.

together to yield conclusive recommendations.

5.3.1 Classification Approach Limitations

In the above results, the performance of each of the classification approaches was vali-

dated in assessing their behavior both from simulated as well as from experimental data.

These approaches exhibit varying degrees of misclassifications, in terms of false positives

and false negatives, depending on the conditions of the signal measurement. In this sec-

tion, possible causes for such misclassifications will be discussed and analyzed for each

classification approach.
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Direct Peak Finding Approach

The confusion matrices for high sampling rates given in Tables 5.1 and 5.2 indicate that

for high sampling rates and low noise, the direct peak finding approach is not capable

of identifying BPFO harmonics from the signal. The reason for this is clear from the

spectrum representation given in Figure 5.14 for a simulated signal with low relative noise

of 100 and high sampling rate of 20.48 kHz. The bearing resonance frequency modeled at

4 kHz is clearly present in the frequency spectrum and because of the modulation effects

that are exploited by the envelope approach, the highest peaks in the spectrum correspond

to the shaft rotation at very low frequencies or to peaks near the resonance frequency of

4 kHz. These peaks are indicated in Figure 5.14a by red stars. It is obvious that there is no

corresponding base peak at the BPFO frequency of 128 Hz.

(a) (b)

Figure 5.14: (a) Spectrum with location of potential base peaks indicated by stars and true
BPFO frequency indicated by yellow cross, (b) harmonic certainty for direct peak finding
approach in simulated signal with defect and parameters {20.48 kHz, 1.5, 100}.

This can also be observed with the number of identified harmonics for each possible

candidate base peak presented in Figure 5.14b. The two highest candidate base peaks as

well as the 13th highest candidate base peak with a large number of identified harmonics

corresponding to the three first shaft rotation harmonics that are identified in the spectrum.
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However, as expected, the harmonic certainty for these high numbers of harmonics is low

(0.0085 or zero), as the harmonics are not distinct in the way expected for BPFO harmonics.

For all other possible candidate base peaks distributed around the bearing resonance fre-

quency, the number of identified harmonics is close to zero since even the fourth harmonic

cannot be placed into the length of the spectrum that is resolved.

(a) (b)

Figure 5.15: (a) Spectrum with potential base peaks indicated by red crosses and true BPFO
peak indicated by yellow cross, (b) harmonic certainty for direct peak finding approach in
856th experimental signal [39] with high sampling rate of 20 kHz.

Similar behavior is visible for the experimental data [39] as well. Figure 5.15 shows the

spectrum and the progression of harmonic certainty for the 856th signal of the acquisition

experiment [39], with the full sampling rate of 20 kHz. Since this was measured in a late

stage of the experiment, it is defected. Again, the identified possible candidate base peaks

are indicated by red crosses in Figure 5.15a. It is apparent that the true BPFO base peak at

236 Hz is small compared to various other candidate base peaks in the spectrum, therefore

it is not considered to be a possible candidate base peak. Even though the number of

harmonics that is found varies strongly with the possible candidate base peak, no distinct

harmonics are visible in the spectrum. The harmonic certainty therefore is lower than 0.1

for all possible candidate base peaks, similarly to the cases analyzed previously. This can
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be seen from Figure 5.15b. Thus, the BPFO is not detected and the signal is counted as FN.

(a) (b)

Figure 5.16: Identified possible harmonics for (a) highest and (b) second highest peak
in spectrum of 856th signal of experimental data [39] with high sampling rate of 20 kHz.
Identified base peaks marked by red stars. Red lines correspond to identified harmonics.

This detection of invalid harmonics is further illustrated for the highest and second

highest candidate base peak in the considered spectrum in Figure 5.16. For the highest

candidate base peak at a frequency of approximately 1800 Hz represented in Figure 5.16a,

only the first harmonic at approximately 3600 Hz is found. This harmonic is labeled invalid

as it corresponds to a relatively low amplitude peak closely surrounded by significantly

higher peaks in the spectrum. For the second highest candidate base peak at approximately

900 Hz, more harmonics in the spectrum are found, as shown in Figure 5.16b. The first

harmonic even corresponds to the highest peak in the spectrum. However, again, all har-

monic peaks are labeled invalid since they are surrounded by close peaks of similar height.

In summary, a likely cause for a FN with the direct peak finding approach is not identifying

the BPFO base peak accurately, if it is not among the N highest points in the spectrum.

A straightforward solution would be to increase N to a higher value than 23, however this

leads to high computational effort as well as to an increase in FP.
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Envelope Demodulation

The confusion matrices of Tables 5.1 and 5.2 indicate false classifications by the envelope

demodulation algorithm for signals with lower sampling rates or with noise present, as

in the experimental signal. The waveform and kurtogram of a defected simulated signal

with a low sampling rate of 4.096 kHz are given in Figure 5.17. In comparison to the

high sampling rate kurtograms in Figures 5.7b and 5.9b, the kurtogram in this case is very

different. The frequency band with highest kurtosis is now a very small frequency band of

16 Hz at the highest level 7 with a center frequency of 1.58 kHz.

(a) (b)

Figure 5.17: (a) Waveform and (b) kurtogram for simulated signal with defect and param-
eters {4.096 kHz, 1.5, 300}.

The waveform, filtered and envelope signal for this condition are shown in Figure 5.18a.

From the spectrum represented in Figure 5.18b, it is obvious that due to the properties of

the digital FIR lowpass filter, the filtered signal has a bandwidth of approximately 500 Hz,

which is significantly larger than the ideal bandwidth of 16 Hz required from the kurtogram.

The 11th, 12th, 13th and 14th harmonic of the base peak at 1408 Hz, 1536 Hz 1664 Hz and

1792 Hz, respectively, are still distinctly visible in the filtered spectrum. Nonetheless, the

envelope demodulation is unable to transport these frequencies to the front in this case.

Even though the envelope does enfold the filtered signal, this implies that no peaks at the

BPFO frequency and its harmonics are visible in the envelope spectrum.
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(a) (b)

Figure 5.18: Waveform (a) and spectrum (b) for the three pre-treatment steps in simulated
signal with defect and parameters {4.096 kHz, 1.5, 300}.

Time-Frequency Curve Extraction

The TFCE algorithm also is prone to false positives, as the confusion matrices in Tables 5.1

and 5.2 indicate. Figure 5.19 presents a simulated healthy signal with a low relative noise

energy of 150 and a relative shaft energy of 1.5. This results in a shaft rotation amplitude of

0.004 g as visible in Figure 5.19b, which is high in contrast to the noise. The envelope STFT

is presented in Figure 5.20a. The impact of the shaft rotation to the STFT representation

is large. The strong horizontal red line at 30 Hz represents the shaft rotation, and the first

two harmonics at 60 Hz and 90 Hz can be seen as fainter red horizontal lines. These curves

were also identified by the curve detection algorithm as illustrated in Figure 5.20b. In

addition, one fluctuating curve at approximately 800 Hz was found. However, because

the first three identified curves correspond to the shaft harmonics, they do have a constant

ratio towards each other and are consequently misinterpreted as BPFO base frequency and

harmonics. Huang, Baddour, and Liang [33] addressed this issue by comparing the constant

curve ratio to the expected ratio that is given by the bearing configuration as introduced

above. However, one assumption of the present work is insufficient knowledge of bearing

configuration, so this is not an option.

For lower sampling rates, false negatives also begin to occur for the TFCE classifier.
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(a) (b)

Figure 5.19: (a) Waveform and (b) spectrum of simulated false positive signal with sam-
pling rate 20.48 kHz, relative noise energy of 150 and relative shaft energy of 1.5.

(a) (b)

Figure 5.20: (a) Envelope STFT and (b) identified time-frequency curves of simulated false
positive signal with sampling rate 20.48 kHz, relative noise energy of 150 and relative shaft
energy of 1.5.

Figure 5.21 presents the spectrum and the STFT of a simulated signal with defect, sampled

at 4.096 kHz. In the spectrum of Figure 5.21b, peaks at the BPFO frequency of 128 Hz and

the harmonics are clearly identifiable by the human eye. However, the STFT spectrum in

Figure 5.22a looks different. Overall, the STFT of this signal exhibits very high values,

indicated by many red tones. There is no clear line visible, even though the frequency

resolution of 4 Hz is capable of resolving peaks spaced at 128 Hz. A possible explanation

why the peaks are not visible in the spectrum would be the picket fence effect introduced
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(a) (b)

Figure 5.21: (a) Waveform and (b) spectrum of simulated false negative signal with sam-
pling rate 4.069 kHz, relative noise energy of 305 and relative shaft energy of 1.5. BPFO
peak and first 11 harmonics indicated by stars.

(a) (b)

Figure 5.22: (a) Envelope STFT of simulated false positive and (b) identified time-
frequency curves in simulated false negative signal with sampling rate 4.096 kHz, relative
noise energy of 305 and relative shaft energy of 1.5.

previously. The narrowly spaced peaks are not represented in the STFT frequency samples,

which are too far apart.

Accordingly, the curves identified by the curve finding algorithm and illustrated in Fig-

ure 5.22b are not horizontal, but instead quite erratic. A constant ratio is not identified and

therefore the signal is falsely flagged negative. A way to mitigate this issue would be to

increase the frequency resolution, at the same time reducing the time resolution even fur-
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ther. This is a good option if the signal is long and an acceptable time resolution can be

obtained at the same time as a better frequency resolution, but for rather short signals, a

minimum number of time steps must be contained to ensure that the variance can get high

for non-constant ratios.

5.3.2 Effects of Shaft Energy, Sampling Rate and Noise

From the previous section, it is evident that shaft energy, noise and sampling rate all can

cause false negatives or false positives. The ensuing analysis quantifies and discusses the

extent of these parameters for classification performance in the three approaches. The

bearing operating and noise conditions for the simulated data used in this case are described

in Tables 4.1 and 4.2, respectively. Since the parameters used to generate the simulated

signals are known a priori, it is possible to study the impact that relative shaft energy and

sampling rate together have on the classification results. Figure 5.23 shows flag rates for

various sampling rate and relative shaft energy combinations in a low noise range for the

three approaches. For every sampling rate and shaft energy combination, five signals with

noise levels between 0 and 230 and BPFO signature were analyzed in the defected case, and

the corresponding signals without BPFO signature were analyzed in the healthy case. In the

first row, which considers defected signals, a high flag rate indicates desired performance

of the classifier, whereas in the second row with healthy signals, a high flag rate indicates a

high number of false positives (i. e., undesired behavior).

Generally, the influence of relative shaft energy on the detection behavior is smaller

than the influence of sampling rate. For the direct peak finding approach presented in

Figure 5.23a, the performance for a low sampling rate of 4.096 kHz decreases for relative

shaft energies higher than one. This can be explained by the same phenomenon as discussed

for high sampling rates earlier. The high rotational peaks may lead to the fact that the actual

BPFO base peak is not represented in the spectrum.

Similarly, the performance of the TFCE approach also worsens if the relative shaft
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(a) (b) (c)

(d) (e) (f)

Figure 5.23: Flagged signal ratio distribution under low noise for the three approaches.
Color indicates flag rate. Defected signals are considered in the top row, healthy signals in
the bottom row: (a,d) Direct approach, (b,e) TFCE approach, (c,f) Envelope approach.

energy increases. Due to the fact that the shaft rotation signature needs to be identified as

part of the TFCE approach [33], it could be intuitive to assume that higher shaft rotation

energies lead to better detection. However, from Figure 5.23b it is obvious that the opposite

is true. In sampling rate ranges between 6 kHz and 12 kHz, shaft energies higher than 1.5

lead to worse results. A possible reason for that is that the shaft rotation harmonics become

more present in the spectrum if the shaft energy is higher. Due to the frequency resolution

loss that is inherent with the transition from FFT to STFT and leakage effects, peaks can

be smeared across a range of 10 Hz in the frequency domain. Therefore, the fourth shaft

harmonic at 120 Hz may interfere with the BPFO base frequency at 128Hz and prevent the

curve detection algorithm from finding a constant horizontal curve, which could then be

detected by the TFCE algorithm. Additionally, as visible in Figure 5.23e, for sampling rates

larger than 12 kHz, the rate of false positives increases for relative shaft rotation energies
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greater than 1. The reason for this was addressed previously, the harmonics of the shaft

rotation are wrongly interpreted as BPFO harmonics.

For frequencies larger than 10 kHz, the envelope approach yields very good results.

While the flag rate with defected signals is consistently one, as visible in Figure 5.23c, the

rate of false negatives as shown in Figure 5.23f only exceed 0.5 in three cases. In stark

contrast, for sampling rates lower than 10 kHz, both in defected and healthy signals the

flag rates vary between 0.75 and 1. As elaborated above, the most likely reason for this

is that the range of the bandpass filter with the kurtogram is not appropriate and thus the

envelope modulation does not manage to extract the correct information. This can lead

to both misdetection of noise as BPFO harmonics as well as to attenuation of the present

BPFO peaks. The shaft energy does not seem to have any impact on the detection accuracy

for the envelope approach. However, increased noise can deteriorate the performance of

the envelope approach easily.

Figure 5.24: Flag rate for envelope approach for defected signals with medium noise.

In Figure 5.24, the envelope flag rates for defected signals with medium noise are pre-

sented. Reliable flagging of defected signals only begins at a sampling frequency of 20 kHz,

whereas for low noise reliable flagging starts at 10 kHz, as apparent from Figure 5.23c. Due

to the noise and possible resulting undesired harmonics as well as reduced harmonic cer-

tainty in the resulting envelope spectrum, flag rates vary throughout lower sampling rates.
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Also for the TFCE approach, the sampling rate threshold for reliable detection increases

with increased noise, from 6 kHz in the low noise case to 12 kHz in the medium noise case

as pictured in Figure 5.25. Interestingly, the rate of false positives in this case as visible in

Figure 5.25b decreases with increasing relative shaft energy, opposite to the low noise case

discussed earlier. A possible reason for this is that increased noise masks the shaft rotation

harmonics that can lead to false detections for low noise as detailed earlier.

(a) (b)

Figure 5.25: Flag rate for TFCE approach with medium noise: (a) defected signals, (b)
healthy signals

5.3.3 Recommendations

Optimal use of the three defect detection approaches depends ultimately on expected char-

acteristics of the signal, including noise and shaft energy, as well as the sampling rate

employed. The classification measures as explained previously for low noise and sampling

rates of 20.48 kHz and 4.096 kHz in a simulated signal are compared in Table 4.4. For the

sampling rate of 20.48 kHz, precision and F1 score of the direct peak finding approach can-

not be computed since there were no defected signals detected. For a high sampling rate,

the envelope approach scores highest in all three categories with a recall of 100 %, preci-

sion of 97.4 % and F1-score of 98.68 %. This is consistent with the notion that the envelope
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approach is one of the most common approaches used for bearing fault detection at suffi-

ciently high sampling rates [3, 2]. However, for low sampling rates, the TFCE approach

loses recall at 69.33 %, while the F1 score stays relatively constant at around 70 %. In con-

trast, the envelope demodulation algorithm and the direct peak finding approach only yield

F1 scores of 15.91 % and 50.38 %, respectively. This indicates that while the envelope

demodulation is a very suitable approach for higher sampling rates, the TFCE approach

shows more robust behavior over a wider range of sampling rates.

Table 5.3: Simulated performance metrics for the three approaches and a sampling rate of
20.48 kHz and low noise.

Sampling rate Approach Precision [%] Recall [%] F1-Score [%]
Peak finding N/A 0 N/A

20.48 kHz Envelope 97.40 100.0 98.68
TFCE 57.48 97.33 72.28

Peak finding 53.85 9.33 15.91
4.096 kHz Envelope 58.93 44.0 50.38

TFCE 71.23 69.33 70.27

Table 5.4: Experimental data [39] performance metrics for a sampling rate of 20 kHz.

Sampling rate Approach Precision [%] Recall [%] F1-Score [%]
Peak finding 100 4.0 7.69

20 kHz Envelope 90.38 94.0 92.16
TFCE 98.99 98.0 98.49

Peak finding 100 8.0 14.81
4 kHz Envelope 56.14 32.0 40.76

TFCE 42.42 28.0 33.73

This is further suggested by a comparison of experimental data classification scores,

as given in Table 5.4. For the experimental data at high sampling rate, both the envelope

approach and the TFCE approach perform well with F1-scores of 92.16 % and 98.49 %,

respectively. Again, for lower sampling rates, performance decreases for F1-scores of

40.76 % and 33.73 %. It is interesting that while both approaches still score in similar

F1 score ranges, the TFCE approach yielded slightly lower F1 score in this case.
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(a) (b)

(c) (d)

Figure 5.26: Simulation classifier metrics over sampling rate for various noise levels: (a)
low noise, (b) medium noise, (c) high noise, (d) experimental data [39].

Figure 5.26 shows precision, recall and F1 score progression for low, medium and high

noise simulated data, as well for the experimental data [39]. It is important to note that

F1-score and precision values can be undefined, as mentioned with respect to Table 5.3.
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This explains why some F1-score matrices have gaps as for example the F1 score curve

for peak finding under high noise as depicted in Figure 5.26c for sampling rates between

1 kHz and 4 kHz. It is immediately visible that the direct peak finding approach had the

worst recall values, rarely exceeding 20 % across all pictured cases. However, especially

for the experimental data [39], the peak finding algorithm showed high precision of up to

100 % starting at a relatively low sampling rate of 4 kHz. It is also apparent that the TFCE

approach was more robust w. r. t. noise when compared to the envelope approach. While the

envelope approach constantly maintained all scores above 90 % for low noise and sampling

rates higher than 10 kHz, as pictured in Figure 5.26a for the higher noise cases and for the

experimental data, the F1 score of the TFCE approach was consistently higher than that of

the envelope approach.

These sampling rates graphs can be used as an indicator for which method is preferred,

depending on a particular bearing system’s noise level and sampling rate. For low-to-

medium noise and high sampling rates, the envelope approach is advisable. If the sampling

rate is at least 20 kHz, then the envelope approach consistently presents precision, recall

and F1 scores above 90 %. This is confirms literature results, stating that the envelope de-

modulation approach is superior to other approaches like direct spectrum methods or the

cepstrum method if a reasonably wide frequency range is known [3]. However, for lower

sampling rates and some noise present, the performance of the envelope approach is infe-

rior to that of the TFCE algorithm. Therefore, if only one algorithm can be used due to

computation effort constraints, it is advisable to use the TFCE approach [33]. Unfortu-

nately, for all three simulated noise cases, the recall and F1-score can not exceed 80%, still

being the best algorithm considered. The direct peak finding approach has very low recall

values throughout sampling rates. However, as apparent from the experimental data given

in Figure 5.26d, the precision of the direct peak finding approach can be very good.

Therefore, the direct peak finding approach can be useful if applied as secondary identi-

fication method. In many industrial cases, multiple individual signals from the same sensor
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are regarded. To mitigate the influence of statistic variation in classifications due to noise,

it can be useful to classify multiple signals from the same bearing, and then check the flag

ratio of defected to undefected signals. This can either be done using just one algorithm,

or using peak finding as secondary approach. If a high ratio of signals from one sensor are

flagged by the TFCE approach and some of them are flagged by the peak finding approach,

due to the high precision of the peak finding approach, the likelihood of identifying a defect

is increased.

5.3.4 Generalization to Other Bearing Configurations

The experimental validations in the present work were carried out using rotation speeds of

30 Hz and BPFO frequencies of 128 Hz and 236 Hz, with a modeled resonance frequency of

4 kHz for the simulated signal, while the bearing resonance frequency for the experimental

data is unknown. In industrial application, these numbers can vary significantly, impacting

the location of the signatures in the frequency domain. However, due to the fact that reasons

for the various approach behaviors were found, some scaling rules to other frequencies can

be established.

As discussed above, the limiting factor for the envelope demodulation approach is that

the sampling rate must be high enough such that the bearing resonance frequency is well

represented in the spectrum. If the bearing resonance frequency is known from CAD mod-

els or can be estimated [42], then if a sampling rate larger than 2.5 times this resonance

frequency is feasible, envelope demodulation is recommended. The sampling rates for the

other approaches depend roughly on the shaft and first few bearing harmonics. Thus, all

sampling rate and frequency spectrum recommendations can be scaled with the location of

these peaks in the spectrum. Hence it is advisable that the sampling rate is at all times high

enough so that those can be present in the spectrum. For determining a minimal needed

sampling rate, it is therefore necessary to determine an upper bound for possible BPFO fre-

quency and then multiplying this frequency by eight to obtain the minimal recommended
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sampling rate for any approach.
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CHAPTER 6

CONCLUSION

The purpose of this work was to understand how low sampling rates, unknown bearing

parameters and rotational speeds effect bearing fault detection. Simulated as well as exper-

imental signals were used to evaluate three different approaches in sampling rates ranging

between 2 kHz and 20 kHz. The direct peak finding approach was better for low sampling

rates than for high sampling rates, but in general, detection rates are insufficient for stan-

dalone use. The envelope detection approach [3] performed very well for high sampling

rates that include the bearing resonance frequency in the spectrum, however the detection

rate decreases strongly with increased noise and decreased sampling rate. Although the

TFCE approach can not consistently yield results as good as the envelope detection ap-

proach for low noise and high sampling rates, it shows the most robust behavior for the

lower sampling rate cases.

To answer the first research question posed in Section 1.2, state-of-the-art detection

methods exhibit significant precision and accuracy losses under reduced sampling rate con-

straints. However, if the sampling rates are large enough that some bearing harmonics are

represented, detection is still possible. The BPFO detection method that is best suited for

lower sampling rates and usual amounts of noise is TFCE, if possible enhanced by ac-

cumulation and thresholding of multiple signals and enhanced by the direct peak finding

algorithm. However, for high sampling rates where the bearing resonance harmonic is cer-

tainly represented, especially in low-noise environments, envelope demodulation is more

accurate and a decision can be made after regarding fewer signals.
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6.1 Contributions

A novel peak finding algorithm that can be used by itself as well as as a second step for the

envelope demodulation algorithm has been introduced. The way of identifying individual

harmonics by their harmonic score as introduced in the present work has not been covered

in literature. The behavior of established BPFO detection algorithms under low sampling

rates had not been previously studied. The two established approaches [3, 33] as well as the

direct peak finding approach were examined under decreasing sampling rates. The study

showed that decreased sampling rate leads to decreased behavior of the TFCE and enve-

lope approaches, whereby the TFCE approach behaves more robustly than the envelope

approach.

6.2 Future Work

The present work mainly gave recommendations on the performance of the three algorithms

as separate instances. As hinted previously, detection quality can be greatly improved by

combining measurements from multiple signals as well as combining results from multiple

approaches with differing precision and recall combinations. A direct extension of the

work presented in this thesis would be quantifying these beneficial effects and exploring

various ways of joining the different approaches to obtain a better ensemble approach. With

increasing digitalization in manufacturing, computation on edge devices is very common.

In large manufacturing areas, storing and later analyzing vibration signals from multiple

sensors can easily become very costly. Potentially, these classification methods can be

transferred to edge devices such as the Beaglebone Black. Since all considered approaches

work as black-box models without a need of exact knowledge of bearing parameters, it

could be beneficial to develop a portable edge device, which can be transported throughout

multiple locations in a manufacturing hall, giving instant classification results based on

these approaches. For such a device, the constraints postulated such as uncertain rotational
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speed and unknown bearing configuration are crucial to obtain an easy setup with low cost.

It could be very cost-effective to use hardware designed for high sampling rates and then

use a lowpass filter and downsampling as needed for the specific use-case. If the methods

introduced in this thesis are employed with the intent of real-time analysis, the choice of

optimal parameters introduced above could be re-visited. For real-time implementation, a

higher importance should be placed on computational power as well as RAM usage during

the optimization of parameters.
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APPENDIX A

DETECTION ALGORITHM IMPLEMENTATIONS.

A.1 Harmonic Peak Finding

The harmonic peak finding algorithm is presented here.

1 import numpy as np

2 import scipy.signal as ss

3 from typing import Tuple

4 from awesome_vibration_toolbox.data_prep.Measurement import Measurement

5

6 def detectBpfo(measurement: Measurement, numberOfCombinationTest = 18, nbHarmo = 4,

7 minSizeHarmo = 0.01, freqRangeHarmo = 2, minSnr = 0.8, minBPFOFreq = 15,

8 prominence_req=0.5, harmo_cert_threshold=0.1, FFT_type: str = ’density’) \

9 -> Tuple[bool, str, dict]:

10 """

11 finding if a possible bpfo is in the spectrum.

12

13 :param freqs: frequency 1D array

14 :param numberOfCombinationTest: number of combinations we try, i.e.,

15 how many peaks we assume could potentially be

16 bpfo fundamentals

17 :param nbHarmo: number of harmonics of the fundamental we are able to find

18 :param minSizeHarmo: minimum size of the harmonics of the dominant peak

19 :param freqRangeHarmo: when looking for harmonics, taking the multiple of

20 dominant peak frequency, and looking above and under

21 this value for potential harmonic. Upper and lower

22 bound = k * freqDominantPeak +- freqRangeHarmo / 2

23 :param minSnr: minimum signal to noise ratio. The signal is assumed to be the

24 bpfo signal only composed of the fundamental and harmonics and

25 the noise is all the remaining spectrum

26 :param minBPFOFreq: Minimal possible BPFO frequency. Our machines run with at least

27 1200 rpm (according to Kevin), therefore the spindle frequency

28 should not be smaller than 20Hz.

29 The BPFO freqeuncy is always greater than the spindle frequency,

30 therefore 15Hz is a very conservative lower bound.

31
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32 :return:

33 (bool) possibleBpfo: True if the signal may have a bpfo

34 (dict) dictBpfo: containing all relevant information about possible bpfo if

35 flag possibleBpfo is True. Empty if False.

36 Possibly returned:

37 --> frequencyBpfo

38 --> rpm

39 --> bpfoIndex

40 --> snr

41 --> score

42 --> harmo_certainty

43 """

44 freqs, amps = measurement.get_FFT(FFT_type)

45 possibleBpfo, dictBpfo = False, {’maxNumHarmo’: 0, ’maxScore’: 0,

46 ’bestBaseIdx’: None}

47 # going testing for all the largest peaks if we find a set {fundamental, harmonics}

48 peakRank = 0

49 if minBPFOFreq - freqRangeHarmo / 2 < freqs[4]:

50 # This is the case where we can’t distinguish peaks because the resolution is

51 # too small.

52 # We require at least 4 samples between the peaks

53 minBPFOFreq = freqs[4] + freqRangeHarmo / 2

54 # print(’minBPFOfreq: ’, minBPFOFreq)

55 while peakRank < numberOfCombinationTest :

56 peakRank += 1

57 indexPeak = findLargePeak(amps, rank = peakRank)

58 if indexPeak is False:

59 break

60 if freqs[indexPeak] < minBPFOFreq:

61 # This is the case that the found peak cannot be a bpfo peak because it is

62 # too low in frequency.

63 # Then we test one more peak.

64 numberOfCombinationTest += 1

65 if numberOfCombinationTest > len(freqs)/2:

66 # We can not find a BPFO because the minimal BPFO frequency is set too

67 # high

68 raise ValueError("The specified minimal BPFO frequency is too high!")

69 continue

70

71 minSize = minSizeHarmo * np.amax(amps)

72
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73 # checking if we find enough harmonics

74 nbHarmoFound, listIndHarmo, score, harmo_certainty = \

75 findHarmoOfPeak(indexPeak, freqs, amps, minSize,

76 freqRangeHarmo = freqRangeHarmo,

77 prominence_req=prominence_req,

78 harmo_cert_threshold=harmo_cert_threshold)

79 if nbHarmoFound > dictBpfo[’maxNumHarmo’]:

80 dictBpfo[’maxNumHarmo’] = nbHarmoFound

81 if score > dictBpfo[’maxScore’]:

82 dictBpfo[’maxScore’] = score

83 dictBpfo[’bestBaseIdx’] = indexPeak

84 # we also check the signal to noise ratio is large enough. If not then the

85 # likelihood we raise a false positive is too high

86 # The chosen BPFO family is the one with the highest sum of harmonic values

87 # The peak value is neglected

88 snr = SNR(amps, np.array(np.insert(listIndHarmo, 0, indexPeak), dtype = int))

89 if nbHarmoFound >= nbHarmo and snr > minSnr:

90 if possibleBpfo: # this is the case where we have found a harmonic family

91 if score <= dictBpfo["score"]:

92 # this is the case where our first test was better

93 continue

94 possibleBpfo = True

95 dictBpfo["frequencyBpfo"] = freqs[indexPeak]

96 dictBpfo["harmonicsIndex"] = listIndHarmo

97 try:

98 dictBpfo["harmonicsFreqs"] = freqs[listIndHarmo]

99 except IndexError:

100 dictBpfo["harmonicsFreqs"] = []

101 dictBpfo["rpm"] = freqs[indexPeak] * 60

102 dictBpfo[’bpfoIndex’] = indexPeak

103 dictBpfo["snr"] = snr

104 dictBpfo["score"] = score

105 dictBpfo["harmo_certainty"] = harmo_certainty

106

107 return(possibleBpfo, ’Harmonics’, dictBpfo)

108

109

110 def findLargePeak(amplitudes, rank = 1, minBaseHeight=0.05) :

111 """

112 Detect if a peak is very dominant in the spectrum. Because, if bpfo there

113 is, there should be a peak located at the bpfo frequency. Since we do not have
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114 this information we will look for the largest peak

115

116 (float array 1 * n) amplitudes : amplitudes of the spectrum

117 (int) rank : rank of peak in terms of size. If rank == 1, then we look for the

118 largest spectrum peak. If rank == 2, then we look for the second

119 largest etc.

120

121 return

122 (int) indexPeak : index of the peak in the amplitudes array

123

124 """

125 # size of peak we are looking for

126 peak_indices, _ = ss.find_peaks(amplitudes)

127 sorted_amps = sorted(amplitudes[peak_indices], reverse=True)

128 try:

129 size = sorted_amps[rank-1]

130 except IndexError:

131 # Signal does not have any peaks

132 return (False)

133 if size > minBaseHeight*np.amax(amplitudes):

134 # getting index of it

135 indexPeak = np.argmin(np.abs(amplitudes - size))

136 else:

137 indexPeak = False

138 return (indexPeak)

139

140 def findHarmoOfPeak(indexBpfoPeak, freqs, amplitudes, minSizeHarmo, freqRangeHarmo = 6,

141 prominence_req=0.5, harmo_cert_threshold=0.1):

142 """

143 finding the harmonics of the specified peak

144 (int) indexPeak : index of the dominant peak in the spectrum

145 (float array 1 * n) freqs : frequency 1D array

146 (float array 1 * n) amplitudes : amplitudes 1D array

147 (float) minSizeHarmo : minimum size of the harmonics of the dominant peak

148 (float) freqRangeHarmo : when looking for harmonics, taking the multiple of

149 dominant peak frequency, and looking above and under

150 this value for potential harmonic. Upper and lower

151 bound = k * freqDominantPeak +- freqRangeHarmo / 2

152

153 returns

154 (int) nbHarmo : number of harmonics found
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155 (float 1 * n) listIndHarmo : index of found harmonics

156 """

157

158 # getting major peaks

159 indexPeaks, dictio = ss.find_peaks(amplitudes, distance = 5, height = minSizeHarmo,

160 prominence=minSizeHarmo*prominence_req)

161 # counting the number of harmonics. If an harmonic is not found then ending

162 # search

163 nbHarmo, listIndHarmo, flag, freqDomPeak, inf = 0, [], True, freqs[indexBpfoPeak], 0

164

165 while flag and inf < len(freqs):

166 # looking for indexes between which we look for the harmonic

167 workingIndex = \

168 np.argwhere(( (nbHarmo + 2) * (freqDomPeak - freqRangeHarmo / 2) <= freqs ) *

169 (freqs <= (nbHarmo + 2) * (freqDomPeak + freqRangeHarmo / 2)))

170

171 if len(workingIndex) > 0 :

172 inf, sup = workingIndex[0], workingIndex[-1]

173 candidates = indexPeaks[(inf <= indexPeaks) * (indexPeaks <= sup)]

174 ampsCandidates = amplitudes[candidates]

175

176 if len(candidates) > 0 :

177 nbHarmo += 1

178

179 #getting the index of the largest candidate peak

180 listIndHarmo.append(np.int(

181 candidates[ampsCandidates == np.max(ampsCandidates)]))

182

183 else : flag = False

184

185 else : flag = False

186 # here, our predicted frequency range is higher frequency than out spectrum.

187

188 listIndHarmo = np.array(listIndHarmo)

189 score, certainty = get_harmonic_score(freqs, amplitudes, listIndHarmo,

190 freqs[indexBpfoPeak], freqRangeHarmo,

191 harmo_cert_threshold=harmo_cert_threshold)

192 # print(’score: ’+str(score) + ’, harm: ’+str(len(listIndHarmo)))

193 if score == 0:

194 nbHarmo = 0

195 return(nbHarmo, listIndHarmo, score, certainty)
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196

197 def SNR(amps, indexSignal) :

198 signal = np.sum(amps[indexSignal] ** 2)

199

200 noise = np.sum(amps ** 2) - signal

201

202 snr = signal / noise

203 return(snr)

204

205

206 def get_distance_to_next_higher_point(freqs, amps, peak_index):

207 """

208 Calculate the smallest distance to a higher amplitude in the spectrum.

209 For a true harmonic signal, this distance should always be approximately

210 the BPFO frequency, because the next higher peak should be left or right

211 to the considered peak.

212 :return:

213 index, distance (float)

214 """

215

216 # find all indices of points that are higher than the considered peak

217 high_indices = np.asarray(

218 [index for index in range(len(amps)) if amps[index] > amps[peak_index]])

219 if len(high_indices):

220 min_index = min(high_indices, key=lambda i: abs(i-peak_index))

221 return min_index, abs(freqs[peak_index] - freqs[min_index])

222 else:

223 return 0, float(’inf’)

224

225

226 def get_harmonic_score(freqs, amps, listIndHarmo, bpfo_freq, freqRangeHarmo=6,

227 harmo_cert_threshold=0.1):

228 """

229 Calculates the harmonic score, i.e. the sum of all peaks whose distance to the

230 closest higher value is approximately the BPFO frequency

231 :param amps: spectrum

232 :param listIndHarmo: List of suspected harmonic peaks

233 :param bpfo_freq: Suspected BPFO frequency

234 :return: score, harmo_certainty

235 """

236 score = 0

76



237 num_scorers = 0

238 for peak_index in listIndHarmo:

239 _ , distance = get_distance_to_next_higher_point(freqs, amps, peak_index)

240 if bpfo_freq - freqRangeHarmo/2 <= distance \

241 and bpfo_freq + freqRangeHarmo/2 >= distance:

242 num_scorers += 1

243 score += amps[peak_index]

244 if score > 0:

245 harmo_certainty = num_scorers/len(listIndHarmo)

246 else:

247 harmo_certainty = 0

248 if harmo_certainty <= harmo_cert_threshold:

249 score = 0

250 return score, harmo_certainty

For the peak finding algorithm, the objects of the class Measurement are needed.

This class is defined below.

1 """

2 Measurement class file

3

4 This module specifies the Measurement class, which is a standardized class for all

5 analytics modules.

6

7 Developed by Team Kurfess/Saldana at Georgia Institute of Technology in 2018 -- 2020.

8

9 For inquiries, contact Fabia Bayer fbayer6@gatech.edu.

10 """

11

12 import numpy as np

13 from typing import Tuple

14 import awesome_vibration_toolbox.data_prep.FFTHelper as FFT

15 import scipy.fftpack

16

17 class Measurement(object):

18 """

19 A class used for standardized storage of vibration measurement information.

20

21 All attributes can only be accessed by their get() methods and can only be

22 changed by the update methods.

23

24 Measurement is characterized by an identification (ID).
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25 If no ID is given, a numeric ID increments automatically with updating

26 the waveform.

27

28 Methods:

29 --------

30 - get_sampling_rate(self)

31 - get_waveform(self)

32 - get_ID(self)

33 - get_rpm(self)

34 - get_FFT(self, type)

35

36 returns the FFT frequencies and amplitudes.

37 Allowed types:

38 - ’acc’

39 - ’vel’

40 - ’density’

41 - ’raw’

42 - ’raw_vel’

43 - update_waveform(self, new_waveform, new_ID)

44 - update_bearing(self, alpha, n) todo not implemented yet

45

46

47 Attributes:

48 ----------

49 - sampling_rate: float

50 - waveform: np.ndarray

51 - ID: object

52 - rpm: float

53 - freqs: np.ndarray

54 - spectral_density: np.ndarray

55 - acc_amps: np.ndarray

56 - vel_freqs: np.ndarray

57 - vel_amps: np.ndarray

58 - raw_freqs: np.ndarray

59 - raw_amps: np.ndarray

60 - raw_vel_freqs: np.ndarray

61 - raw_vels: np.ndarray

62 - max_resolution: Maximal accepted frequency spacing between two spectrum samples

63 """

64

65
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66 def __init__(self, sampling_rate: float, waveform: np.ndarray, ID: object = 0,

67 rpm: float = None):

68 self.__sampling_rate = sampling_rate

69 self.__waveform = waveform

70 self.__ID = ID

71 self.__rpm = rpm

72 self.__freqs = None

73 self.__vel_freqs = None

74 self.__acc_amps = None

75 self.__vel_amps = None

76 self.__spectral_density = None

77 self.__bearing_info = None

78 self.__delta_freq = None

79 self.__max_resolution = None

80 self.__raw_freqs = None

81 self.__raw_amps = None

82 self.__raw_vel_freqs = None

83 self.__raw_vels = None

84

85 # FFT calculation and getter method

86 def get_FFT(self, spectrum_type: str=’acc’, max_resolution: float = 0.2) \

87 -> Tuple[np.ndarray, np.ndarray]:

88 """

89 FFT getter and calculation.

90

91 Calculates all necessary FFT information when they are needed for the

92 first time.

93

94 Allowed inputs for spectrum_type:

95 -- ’acc’: Acceleration spectrum

96

97 -- ’vel’: Velocity spectrum

98 -- ’density’: Spectral density

99 -- ’raw’: Raw FFT without Welch’s method and any windowing (acceleration).

100 May yield clearer peaks, but more noise.

101 -- ’raw_vel’: Raw FFT without Welch’s method and any windowing, integrated to

102 velocity.

103 :param spectrum_type: desired spectrum.

104 :param max_resolution: Desired acceptable resolution (interval between

105 two samples) of the resulting spectrum.

106 Keep in mind the trade-off between de-noising
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107 and resolution.

108 :return: (np.ndarray, np.ndarray) freqs, amps - desired spectrum and frequencies

109 """

110 if spectrum_type not in [’acc’, ’vel’, ’density’, ’raw’, ’raw_vel’]:

111 raise ValueError(’"’+str(spectrum_type)+’" is not an allowed FFT type.\n’+

112 ’Allowed types: "acc", "vel", "density", "raw", "raw_vel".’)

113

114 elif ’raw’ in spectrum_type:

115 # compute the raw FFT if called for the first time

116 if self.__raw_amps is None:

117 cplx_fft = scipy.fftpack.fft(self.get_waveform())

118 self.__raw_amps = np.abs(cplx_fft)[:int(np.ceil(len(cplx_fft)/2))]

119 # Scaling for physical meaning

120 self.__raw_freqs = np.array(range(len(self.__raw_amps)))\

121 * self.get_sampling_rate()/2/len(self.__raw_amps)

122

123 if ’vel’ in spectrum_type:

124 if self.__raw_vels is None:

125 # discard the two lowest entries because division yields

126 # too high values

127 self.__raw_vel_freqs = self.__raw_freqs[2:]

128 self.__raw_vels = np.divide(self.__raw_amps[2:], self.__raw_vel_freqs)

129 return self.__raw_vel_freqs, self.__raw_vels

130

131 else:

132 return self.__raw_freqs, self.__raw_amps

133

134 else:

135 # compute the FFT if this is called the first time

136 if self.__freqs is None or self.__max_resolution != max_resolution:

137 self.__max_resolution = max_resolution

138 self.__acc_amps = None

139 self.__vel_amps = None

140 self.__freqs, self.__spectral_density = \

141 FFT.generateFFT(self.__sampling_rate, self.__waveform,

142 minResolution=max_resolution,

143 pointsBetween=1, padded=True)

144 if spectrum_type == ’density’:

145 return self.__freqs, self.__spectral_density

146

147
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148 # Compute the acceleration spectrum if acceleration or

149 # velocity spectrum is needed

150 if self.__acc_amps is None:

151 self.__acc_amps = \

152 FFT.get_spectrum_from_density(self.__sampling_rate,

153 self.__spectral_density,

154 self.__waveform, normalize=True)

155 if spectrum_type == ’acc’:

156 return self.__freqs, self.__acc_amps

157

158 # Compute velocity spectrum if needed

159 if self.__vel_amps is None:

160 self.__vel_freqs, self.__vel_amps = \

161 FFT.get_integrated_spectrum(self.__freqs, self.__acc_amps,

162 convertUnits=True)

163 return self.__vel_freqs, self.__vel_amps

164

165

166 def update_waveform(self, new_waveform: np.ndarray, new_ID = None,

167 new_samplingrate: float = None):

168 """

169 Update the waveform while keeping all other parameters constant.

170 All FFT info is deleted and recalculated at the next use.

171 Numerical ID is incremented if no new ID is given.

172

173 :param new_waveform: Waveform to be updated

174 :param new_ID: Updated ID. Increments automatically if no ID is given and

175 previous ID is numeric.

176 :param new_samplingrate: In case the sampling rate changes, new sampling rate

177 can be added (It is recommended to create a new

178 Measurement object instead).

179 """

180 self.__waveform = new_waveform

181 self.__acc_amps = None

182 self.__vel_amps = None

183 self.__freqs = None

184 self.__vel_freqs = None

185 self.__spectral_density = None

186 if new_ID is None:

187 if type(self.__ID) is int:

188 self.__ID += 1
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189 else:

190 raise ValueError("ID is not numeric and ID update can not be computed "

191 + "automatically. Please specify a new ID.")

192 else:

193 self.__ID = new_ID

194

195 if new_samplingrate is not None:

196 self.__sampling_rate = new_samplingrate

197

198 def update_bearing_info(self, alpha: float, number_balls: int):

199 """

200 Calculates bearing information and stores it in the attribute.

201 todo.

202 :param alpha:

203 :param number_balls:

204 :return:

205 """

206 pass

207

208 # Trivial Getter Methods.

209 def get_sampling_rate(self) -> float:

210 return self.__sampling_rate

211

212 def get_waveform(self) -> np.ndarray:

213 return self.__waveform

214

215 def get_ID(self):

216 return self.__ID

217

218 def get_rpm(self) -> float:

219 return self.__rpm

A.2 Simulated Signal Generation

The algorithm for the generation of simulated signals is presented here.

1 import numpy as np

2 # import matplotlib.pyplot as plt

3 from typing import Union, List, Tuple

4 from awesome_vibration_toolbox.data_prep.Measurement import Measurement

5 import scipy.signal as ss
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6 import math

7 from awesome_vibration_toolbox.data_prep.FFTHelper import generateFFT

8

9 class Signal_Generator_Object(object):

10 """

11 TODO documentation.....

12 """

13 def __init__(self, sampling_freqs: List[int], freq_res: float = 0.25,

14 fault_type: str = "bpfo", antialiasing: bool = True, **kwargs):

15 """

16

17 The base signal must be the least common multiple of all desired sampling rates

18 and must also be bigger than 20000.

19 """

20 self.antialiasing = antialiasing

21

22 # compute least common multiple of all given sampling freqs to be able to

23 # downsample as desired. Taken from

24 # https://stackoverflow.com/questions/37237954/

25 # calculate-the-lcm-of-a-list-of-given-numbers-in-python

26 self.samplingrate_high = sampling_freqs[0]

27 for freq in sampling_freqs[1:]:

28 self.samplingrate_high = \

29 self.samplingrate_high * freq // math.gcd(self.samplingrate_high, freq)

30 # ensure that the sampling rate is > 40000 to mitigate as much aliasing

31 # as possible

32 self.samplingrate_high = \

33 self.samplingrate_high * (40000 // self.samplingrate_high + 1)

34 N = self.samplingrate_high/2/freq_res

35

36 if not N.is_integer():

37 raise ValueError("N is "+str(N)+". "+

38 "Some debugging necessary or frequency resolution " +

39 "chosen stupidly :)")

40 N = int(N)

41

42 # we have now N, self.samplingrate_high, freq_resolution.

43 # distinguish the cases

44 if fault_type == "bpfo":

45 bpfo_args = {’N’: N, ’samplingrate’: self.samplingrate_high}

46 # analyze the kwargs
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47 try:

48 bpfo_args[’bpfo_freq’] = kwargs[’bpfo_freq’]

49 except KeyError:

50 raise ValueError("No BPFO frequency specified although case "

51 +fault_type+" was given.")

52 for add_param in [’bearing_freq’, ’amplitude’, ’decay’]:

53 # These are the optional parameters

54 try:

55 bpfo_args[add_param] = kwargs[add_param]

56 except KeyError:

57 pass

58

59 # generate bpfo signal

60 self.base_sig, _ = perfect_bpfo_signal(**bpfo_args)

61

62 elif fault_type == "shaft":

63 shaft_args = {’N’: N, ’samplingrate’: self.samplingrate_high}

64 # analyze the kwargs

65 try:

66 shaft_args[’shaft_freq’] = kwargs[’shaft_freq’]

67 except KeyError:

68 raise ValueError("No shaft frequency specified although case "

69 + fault_type + " was given.")

70 for add_param in [’amplitude’, ’exponential_harms’, ’harm_max’]:

71 # These are the optional parameters

72 try:

73 shaft_args[add_param] = kwargs[add_param]

74 except KeyError:

75 pass

76

77 # generate shaft signal

78 self.base_sig, _ = shaft_rotation_component(**shaft_args)

79

80 elif fault_type == "gear":

81 gear_args = {’N’: N, ’samplingrate’: self.samplingrate_high}

82 # analyze the kwargs

83 try:

84 gear_args[’gear_freq’] = kwargs[’gear_freq’]

85 except KeyError:

86 raise ValueError("No gear frequency specified although case "

87 + fault_type + " was given.")
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88 for add_param in [’num_teeth’, ’gear_res_freq’, ’lambda_g’, ’gearmesh_amps’]:

89 # These are the optional parameters

90 try:

91 gear_args[add_param] = kwargs[add_param]

92 except KeyError:

93 pass

94

95 # generate shaft signal

96 self.base_sig, _ = gear_component(**gear_args)

97 else:

98 raise ValueError("Signal type "+fault_type+

99 "undefinded. Must be in [’bpfo’, ’shaft’, ’gear’].")

100

101 self.downsampled_sigs = {}

102

103 def get_signal(self, samplingrate, energy):

104 """

105 Return a signal with the right amplitude and downsampled to the

106 right sampling rate.

107 """

108

109 if samplingrate not in self.downsampled_sigs.keys():

110 mult_factor = self.samplingrate_high / samplingrate

111 if not mult_factor.is_integer():

112 raise ValueError("The sampling rate "+str(samplingrate) +

113 " is not supported by base signal with sampling rate "

114 +str(self.samplingrate_high))

115 mult_factor = int(mult_factor)

116 if self.antialiasing:

117 base_sig = ss.decimate(self.base_sig, mult_factor, ftype=’fir’)

118 else:

119 base_sig = self.base_sig[::mult_factor]

120 energy_base = np.sum(np.square(base_sig))

121 self.downsampled_sigs[samplingrate] = (base_sig, energy_base)

122 else:

123 base_sig, energy_base = self.downsampled_sigs[samplingrate]

124 res = base_sig / np.sqrt(energy_base) * np.sqrt(energy)

125 # plt.plot(res)

126 # plt.show()

127 # print(’bla’)

128 return res
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129

130

131 def initialize_mixed_signals(samplingrates: List[int], freq_resolution: float,

132 antialiasing: bool = True, bpfo_freq: float = 128,

133 shaft_freq: float = 30, gear_freq: float = 30):

134 """

135 Create the signal generator objects

136 """

137

138 bpfo_gen = Signal_Generator_Object(sampling_freqs=samplingrates,

139 freq_res=freq_resolution,

140 fault_type=’bpfo’, antialiasing=True,

141 bpfo_freq=bpfo_freq)

142 shaft_gen = Signal_Generator_Object(sampling_freqs=samplingrates,

143 freq_res=freq_resolution,

144 fault_type=’shaft’, antialiasing=True,

145 shaft_freq=shaft_freq)

146 gear_gen = Signal_Generator_Object(sampling_freqs=samplingrates,

147 freq_res=freq_resolution,

148 fault_type=’gear’, antialiasing=True,

149 gear_freq=gear_freq)

150

151 return [bpfo_gen, shaft_gen, gear_gen]

152

153

154 def get_mixed_signal_2(generator_objects: List[Signal_Generator_Object], shaft_en,

155 bpfo_en, gear_en, noise_en, samplingrate):

156 """

157 Return a signal sith the desired signal energies.

158 """

159 bpfo_sig = generator_objects[0].get_signal(samplingrate, bpfo_en)

160 shaft_sig = generator_objects[1].get_signal(samplingrate, shaft_en)

161 gear_sig = generator_objects[2].get_signal(samplingrate, gear_en)

162 noise, noise_energy = noise_signal(N=len(bpfo_sig))

163 noise = noise / noise_energy*noise_en

164

165 signal = bpfo_sig + shaft_sig + gear_sig + noise

166

167 measurement = Measurement(samplingrate, signal,

168 ID=str(shaft_en) + "-" + str(bpfo_en) + "-" +

169 str(gear_en) + "-" + str(noise_en))
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170 return signal, measurement

171

172

173 def perfect_bpfo_signal(bpfo_freq: float = 128/2, bearing_freq: float = 4500,

174 samplingrate: float = 20000, N: int = 20000,

175 amplitude: float = 0.01, decay: float = 2000) \

176 -> Tuple[np.ndarray, float]:

177 """

178 Return a perfect bpfo signal from the corresponding equation.

179

180 :param bpfo_freq: desired BPPFO frequency.

181 :param bearing_freq: Desired bearing eigen frequency

182 :param samplingrate: Desired signal sampling rate

183 :param amplitude: Desired maximal defect amplitude

184 :param decay: desired exponential decay factor

185 :return: np.ndarray of signal values.

186 """

187

188 period_bpfo = 1/bpfo_freq

189

190 def cont_signal_fcn(t):

191 """

192 Calculate a periodically exponentially decaying signal at time t.

193 :param t: time instant

194 :return: Value of the signal at time t

195 """

196 slip = 0.98 + 0.04*np.random.rand()

197 # slip = 1

198 t_in_period = t % period_bpfo * slip

199 carrier = np.cos(2*np.pi*bearing_freq*t_in_period)

200 envelope = amplitude*np.exp(-t_in_period*decay)

201 return carrier * envelope

202

203 ts = np.array(range(N))/samplingrate

204 signal = np.array([cont_signal_fcn(t) for t in ts])

205 signal_energy = float(np.sum(np.square(signal)))

206

207 return signal, signal_energy

208

209

210 def shaft_rotation_component (shaft_freq, samplingrate: float = 20000, N: int = 20000,
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211 amplitude: Union[List[float], float] = 1,

212 exponential_harms: Union[None, float] = -1,

213 harm_max: int = 6) -> Tuple[np.ndarray, float]:

214 """

215 Create a periodic shaft rotation signal. Represented by a Taylor series

216 (or at least the first few terms) at the shaft freq and its harmonics.

217 :param shaft_freq: Shaft frequency. RPM/60.

218 :param amplitude: Base parameter or list of parameters

219 :param exponential_harms: If only one amplitude is given, exponential decay

220 of amplitudes is assumed. This parameter specifies

221 :param harm_max: If harmonics are constructed exponentially,

222 it stops after this harmonic.

223 :return:

224 """

225 # [28] proposes this shaft representation; they have amplitude_1 = 0.8 (0r 0.7)

226 # and B_2 = 0.2, the rest 0

227

228 if exponential_harms:

229 try:

230 # Making sure that we are considered with the right type

231 amplitude = amplitude[0]

232 raise ValueError("If exponential_harms is specified, " +

233 "amplitude must be a float.")

234 except TypeError:

235 amplitude = [amplitude * np.exp(k * exponential_harms)

236 for k in range(harm_max + 1)]

237

238 phases = 2*np.pi*np.random.rand(*np.shape(amplitude))

239

240 def cont_signal_fcn(t):

241 """

242 Calculate a periodically exponentially decaying signal at time t.

243 :param t: time instant

244 :return: Value of the signal at time t

245

246 :param t: time instant

247 :return: Value of the signal at time t

248 """

249 signal = 0

250 for k, a in enumerate(amplitude):

251 signal += a*np.cos(2*np.pi*(k+1)*shaft_freq*t + phases[k])
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252 return signal

253

254 ts = np.array(range(N)) / samplingrate

255 signal = np.array([cont_signal_fcn(t) for t in ts])

256 signal_energy = float(np.sum(np.square(signal)))

257

258 return signal, signal_energy

259

260

261 def gear_component(gear_freq: float, num_teeth: int = 12, gear_res_freq: float = 2500,

262 lambda_g: float = 0.05, samplingrate: float = 20000, N: int = 20000,

263 gearmesh_amps: Union[None, List[float]]=None) \

264 -> Tuple[np.ndarray, float]:

265

266 if gearmesh_amps is None:

267 gearmesh_amps = [0.5, 5, 1]

268

269 G = len(gearmesh_amps)

270

271 def cont_signal_fcn(t):

272 """

273 Calculate a gearmesh signal at time t.

274 Source: Bearing fault diagnosis under unknown variable speed via

275 gear noise cancellation and rotational order

276 sideband identification, Wang et al., 2015

277

278 :param t: time instant

279 :return: Value of the signal at time t

280 """

281

282 # Resonance response of gear

283 signal = (1 + np.cos(2*np.pi*gear_freq*t))*np.cos(2*np.pi*gear_res_freq*t)

284 for j in range(G):

285 # Meshing and multiples

286 signal += lambda_g * gearmesh_amps[j] \

287 * np.cos(2*np.pi*(j+1)*num_teeth*gear_freq*t)

288 return signal

289 ts = np.array(range(N))/samplingrate

290 signal = np.array([cont_signal_fcn(t) for t in ts])

291 signal_energy = float(np.sum(np.square(signal)))

292
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293 return signal, signal_energy

294

295

296 def noise_signal(mu: float = 0, sigma: float = 1, N: int = 20000) \

297 -> Tuple[np.ndarray, float]:

298 """

299 Add Gaussian white noise to a signal so that the desired SNR is obtained.

300 :param mu: Mean of gaussian signal from which the noise is drawn

301 :param sigma: standard deviation of the gaussian noise

302 :param N: length of desired signal

303 :return: The signal, enhanced with noise, and its energy

304 """

305 noise = np.random.normal(mu, sigma, N)

306 noise_energy = float(np.sum(np.square(noise)))

307

308 return noise, noise_energy

309

310

311 if __name__ == ’__main__’:

312 # N = 200000

313 # samplingrate = 2000000

314

315

316 samplingrate = 81920

317 freq_res = 0.25

318 list_of_generators = \

319 initialize_mixed_signals([512, 1024, 2048, 4096, 8192, 10240, 16384,

320 20480, 40960, 81920],

321 freq_resolution=freq_res)

322

323 perfect = get_mixed_signal_2(list_of_generators, 0, 1, 0, 0,

324 samplingrate=samplingrate)
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APPENDIX B

PERFORMANCE METRIC RESULTS

B.1 Simulated Data

As introduced in Section 4, the simulated data is partitioned into different noise categories.

The performance metric results for the considered sampling rates and noise categories are

given in this section.

B.1.1 Low Noise

Table B.1: Simulated confusion matrices for a sampling rate of 4.096 kHz and low noise.

Flag raised Defected signal Healthy signal
peak finding: True 7 6
peak finding: False 68 68

Envelope: True 33 23
Envelope: False 42 51

TFCE: True 52 21
TFCE: False 23 53

Table B.2: Simulated performance metrics for the three approaches and a sampling rate of
4.096 kHz and low noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 53.85 9.33 15.91

Envelope 58.93 44.0 50.38
TFCE 71.23 69.33 70.27
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Table B.3: Simulated confusion matrices for a sampling rate of 6.144 kHz and low noise.

Flag raised Defected signal Healthy signal
peak finding: True 1 2
peak finding: False 74 72

Envelope: True 56 16
Envelope: False 19 58

TFCE: True 72 37
TFCE: False 3 37

Table B.4: Simulated performance metrics for the three approaches and a sampling rate of
6.144 kHz and low noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 33.33 1.33 2.56

Envelope 77.78 74.67 76.19
TFCE 66.06 96.00 78.26

Table B.5: Simulated confusion matrices for a sampling rate of 10.420 kHz and low noise.

Flag raised Defected signal Healthy signal
peak finding: True 0 1
peak finding: False 75 73

Envelope: True 75 8
Envelope: False 0 66

TFCE: True 64 38
TFCE: False 11 36

Table B.6: Simulated performance metrics for the three approaches and a sampling rate of
10.240 kHz and low noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 0 0 N/A

Envelope 90.36 100.0 94.94
TFCE 62.75 85.33 72.23
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Table B.7: Simulated confusion matrices for a sampling rate of 20.480 kHz and low noise.

Flag raised Defected signal Healthy signal
peak finding: True 0 0
peak finding: False 75 74

Envelope: True 75 2
Envelope: False 0 72

TFCE: True 73 54
TFCE: False 2 20

Table B.8: Simulated performance metrics for the three approaches and a sampling rate of
20.480 kHz and low noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding N/A 0 N/A

Envelope 97.40 100.0 98.68
TFCE 57.48 97.33 72.28
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B.1.2 Medium Noise

Table B.9: Simulated confusion matrices for a sampling rate of 4.096 kHz and medium
noise.

Flag raised Defected signal Healthy signal
peak finding: True 7 2
peak finding: False 68 73

Envelope: True 41 35
Envelope: False 34 40

TFCE: True 17 16
TFCE: False 58 59

Table B.10: Simulated performance metrics for the three approaches and a sampling rate
of 4.096 kHz and medium noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 77.78 9.33 16.67

Envelope 53.95 54.67 54.30
TFCE 51.52 22.67 31.48

Table B.11: Simulated confusion matrices for a sampling rate of 6.144 kHz and medium
noise.

Flag raised Defected signal Healthy signal
peak finding: True 6 8
peak finding: False 69 67

Envelope: True 26 17
Envelope: False 49 58

TFCE: True 49 36
TFCE: False 26 39
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Table B.12: Simulated performance metrics for the three approaches and a sampling rate
of 6.144 kHz and medium noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 42.86 8.00 13.48

Envelope 60.47 34.67 44.07
TFCE 57.65 65.33 61.25

Table B.13: Simulated confusion matrices for a sampling rate of 10.420 kHz and medium
noise.

Flag raised Defected signal Healthy signal
peak finding: True 4 9
peak finding: False 71 66

Envelope: True 23 12
Envelope: False 52 63

TFCE: True 40 37
TFCE: False 35 38

Table B.14: Simulated performance metrics for the three approaches and a sampling rate
of 10.240 kHz and medium noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 30.77 5.33 9.09

Envelope 65.71 30.67 41.82
TFCE 51.95 53.33 52.63

Table B.15: Simulated confusion matrices for a sampling rate of 20.480 kHz and medium
noise.

Flag raised Defected signal Healthy signal
peak finding: True 4 3
peak finding: False 71 72

Envelope: True 75 0
Envelope: False 0 75

TFCE: True 68 24
TFCE: False 7 51
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Table B.16: Simulated performance metrics for the three approaches and a sampling rate
of 20.480 kHz and medium noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 57.14 5.33 9.76

Envelope 100.0 100.0 100.0
TFCE 73.91 90.76 81.44
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B.1.3 High Noise

Table B.17: Simulated confusion matrices for a sampling rate of 4.096 kHz and high noise.

Flag raised Defected signal Healthy signal
peak finding: True 0 0
peak finding: False 60 60

Envelope: True 31 33
Envelope: False 29 27

TFCE: True 11 8
TFCE: False 49 52

Table B.18: Simulated performance metrics for the three approaches and a sampling rate
of 4.096 kHz and high noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding N/A 0 N/A

Envelope 48.44 51.67 50.0
TFCE 57.89 18.33 27.85

Table B.19: Simulated confusion matrices for a sampling rate of 6.144 kHz and high noise.

Flag raised Defected signal Healthy signal
peak finding: True 0 1
peak finding: False 60 59

Envelope: True 18 12
Envelope: False 42 48

TFCE: True 34 32
TFCE: False 26 28
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Table B.20: Simulated performance metrics for the three approaches and a sampling rate
of 6.144 kHz and high noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 0 0 N/A

Envelope 60.00 30.00 40.00
TFCE 51.52 56.67 53.97

Table B.21: Simulated confusion matrices for a sampling rate of 10.420 kHz and high
noise.

Flag raised Defected signal Healthy signal
peak finding: True 4 4
peak finding: False 56 56

Envelope: True 13 6
Envelope: False 47 54

TFCE: True 41 30
TFCE: False 19 30

Table B.22: Simulated performance metrics for the three approaches and a sampling rate
of 10.240 kHz and high noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 50.00 6.67 11.76

Envelope 68.42 21.67 32.91
TFCE 57.75 68.33 62.60

Table B.23: Simulated confusion matrices for a sampling rate of 20.480 kHz and high
noise.

Flag raised Defected signal Healthy signal
peak finding: True 0 3
peak finding: False 60 57

Envelope: True 28 1
Envelope: False 32 59

TFCE: True 41 37
TFCE: False 19 23
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Table B.24: Simulated performance metrics for the three approaches and a sampling rate
of 20.480 kHz and high noise.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 0 0 N/A

Envelope 96.55 46.67 62.92
TFCE 52.56 68.33 59.42
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B.2 Experimental Data [39]

All datasets are curated by taking 100 signals each from the beginning of the measurement

process (healthy) and 100 signals from near the end of the measurement process (defected).

Table B.25: Experimental data [39] confusion matrices for a sampling rate of 20 kHz.

Flag raised Defected signal Healthy signal
peak finding: True 4 0
peak finding: False 96 100

Envelope: True 94 10
Envelope: False 6 90

TFCE: True 98 1
TFCE: False 2 99

Table B.26: Experimental data [39] performance metrics for a sampling rate of 20 kHz.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 100 4.0 7.69

Envelope 90.38 94.0 92.16
TFCE 98.99 98.0 98.49

Table B.27: Experimental data [39] confusion matrices for a sampling rate of 10 kHz.

Flag raised Defected signal Healthy signal
peak finding: True 6 0
peak finding: False 94 100

Envelope: True 5 29
Envelope: False 95 71

TFCE: True 91 12
TFCE: False 9 88
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Table B.28: Experimental data [39] performance metrics for a sampling rate of 10 kHz.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 100 6.0 11.32

Envelope 14.71 5.0 7.46
TFCE 88.35 91.0 89.66

Table B.29: Experimental data [39] confusion matrices for a sampling rate of 5 kHz.

Flag raised Defected signal Healthy signal
peak finding: True 8 0
peak finding: False 92 100

Envelope: True 19 25
Envelope: False 81 75

TFCE: True 72 10
TFCE: False 28 90

Table B.30: Experimental data [39] performance metrics for a sampling rate of 5 kHz.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 100 8.0 14.81

Envelope 43.18 19.0 26.39
TFCE 87.80 72.0 79.12

Table B.31: Experimental data [39] confusion matrices for a sampling rate of 4 kHz.

Flag raised Defected signal Healthy signal
peak finding: True 8 0
peak finding: False 92 100

Envelope: True 32 25
Envelope: False 68 75

TFCE: True 99 7
TFCE: False 1 93

Table B.32: Experimental data [39] performance metrics for a sampling rate of 4 kHz.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 100 8.0 14.81

Envelope 56.14 32.0 40.76
TFCE 42.42 28.0 96.12
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Table B.33: Experimental data [39] confusion matrices for a sampling rate of 2 kHz.

Flag raised Defected signal Healthy signal
peak finding: True 0 7
peak finding: False 100 93

Envelope: True 28 38
Envelope: False 72 62

TFCE: True 41 0
TFCE: False 59 100

Table B.34: Experimental data [39] performance metrics for a sampling rate of 2 kHz.

Approach Precision [%] Recall [%] F1-Score [%]
peak finding 0.0 0.0 N/A

Envelope 42.42 28.0 33.73
TFCE 100 41.0 58.16
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APPENDIX C

PERFORMANCE WITH EXPERIMENTAL DATA UNDER VARIOUS

SAMPLING RATES

In this section, graphs indicating the performance of the three approaches under various

sampling rates are listed.
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(a) (b) (c)

(d) (e)

Figure C.1: Flag rate progression for experimental data [39] and various sampling rates:
(a) 20 kHz, (b) 10 kHz, (c) 5 kHz, (d) 4 kHz, (e) 2 kHz.
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