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Science is more than a body of knowledge. It is a way of thinking; 

a way of skeptically interrogating the universe with a fine 

understanding of human fallibility. 
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SUMMARY 

Inquiry-based learning approaches have been advocated by researchers in science 

education for years. Other researchers have also noted the importance of teaching model-

based reasoning from an early age. In education more generally, many researchers have 

noted the importance of developing students' metacognitive skills. Inquiry and modeling 

have been viewed as metacognitive skills in and of themselves in the past. There exist 

significant challenges in teaching modeling and inquiry, however, some derived from 

their nature as metacognitive skills and others derived from the general difficulty in 

providing guided instruction in open-ended exploratory learning contexts. In order to 

alleviate these difficulties, this dissertation argues that a metacognitive tutoring system 

that teaches students an authentic process of inquiry-driven modeling within an 

exploratory learning activity can address these challenges. 

Toward this end, this dissertation first presents a model of the target process of 

inquiry-driven modeling. It then presents the Modeling and Inquiry Learning Application 

(MILA), an exploratory learning environment for facilitating authentic inquiry-driven 

modeling of an ecological phenomenon. Within this exploratory learning environment 

and in service of this process of inquiry-driven modeling, this dissertation presents the 

design and implementation of MILA–Tutoring (MILA–T), a metacognitive tutoring 

system comprised of five individual artificially intelligent agents for tutoring inquiry-

driven modeling. 

Given this model of the target process, this exploratory learning environment, and 

this metacognitive tutoring system, this dissertation presents the design of an intervention 

to test the effectiveness of MILA–T in teaching the target process. It presents a controlled 

experiment wherein some teams of students interact with MILA–T and others do not, and 

it describes the data that were gathered, processes, and analyzed in service of this 

experiment. Gathering and analysis take place at both the level of the individual student 
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and at the level of teams of students investigating an ecological phenomenon together, 

examining the impact of the tutoring system both on individual attitudes and 

understanding and on the process and products of inquiry-driven modeling within teams.  

After describing the structure of and the data gathered through the experiment, 

this dissertation then describes the results at both the individual and the team level. These 

chapters examine whether or not interaction with MILA–T helped students compared to 

interaction with the identical unit and learning environment without MILA–T. For 

individuals, it first looks at the extent to which interaction with MILA–T impacted 

individual students' declarative understanding of inquiry-driven modeling. It then looks at 

the extent to which interaction with MILA–T impacted students' attitudes towards 

science, scientific inquiry, and careers in science. It also provides some information about 

the perceptions individual students had about MILA and MILA–T as a whole. 

For teams, this dissertation first looks at summaries of the process of inquiry-

driven modeling in which teams engage, comparing the processes of teams using MILA–

T to the processes of teams interacting without MILA–T. It then looks at the explanations 

that teams generate during this experiment, comparing the strength and complexity of the 

explanations generated by teams using MILA–T with those teams generating their 

explanations without MILA–T. These analyses are repeated for a second project in which 

no teams interacted with MILA–T in order to check whether any differences diagnosed in 

the previous analysis were due solely to the presence of extra feedback or due to actual 

learning of the inquiry-driven modeling process. 

This dissertation then brings together the results of these analyses to make an 

ultimate claim regarding the effectiveness of MILA–T in teaching students inquiry-driven 

modeling compared to interaction with an identical unit and exploratory learning 

environment without MILA–T. The effects of MILA–T on metacognition are examined 

with regard to declarative, dispositional, and procedural knowledge of the target skill; the 

effect of MILA–T on the explanations generated through the inquiry-driven modeling 
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process is examined as well. Given this ultimate claim, this dissertation then discusses 

three accounts for how the claimed differences between groups of students actually arose, 

emphasizing the interaction between individuals, teams, and the classroom as a whole. 

Finally, this dissertation discusses the broader contributions of this work to 

multiple research communities, highlighted by artificial intelligence in education and 

learning sciences & technology. It then describes a number of future studies that would 

further corroborate the claims presented herein, as well as studies that would further 

differentiate between the multiple accounts of the observed differences. Finally, it 

describes recent applications of the principles featured in the design of this metacognitive 

tutoring system to online education, as well as new collaborations spawned by this work. 

Figure 1, below, presents a pictorial summary of this dissertation. Each column 

corresponds to a chapter of the dissertation, and each box corresponds to a major section 

within that chapter. This diagram will be revisited throughout the dissertation to mark 

progress and emphasize the position of a particular section in the context of the 

dissertation as a whole. 

 

Figure 1: A pictorial summary of the contents of this dissertation. Columns across the top represent 

chapters, while boxes represent major sections. Arrows represent conceptual dependencies: each 

arrow suggests the target box uses information from the source box. This summary will be used 

throughout the dissertation to mark progress. 
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CHAPTER 1 

INTRODUCTION & MOTIVATION 

 

Figure 2: The first chapter of this dissertation will cover the motivating problem of this dissertation: 

teaching students the metacognitive process of inquiry-driven modeling. 

This dissertation presents the motivation, design, implementation, deployment, 

results, and analysis of an initiative to teach the metacognitive skill of inquiry-driven 

scientific modeling to seventh grade Life Science students in a public Title I school in the 

state of Georgia. Chapter 1 presents the motivations for the research and the research's 

problems, questions, and hypotheses. Chapter 2 describes the design and rationale behind 

an intelligent tutoring system written to help instruct students in this skill. Chapter 3 

discusses the intervention itself and its experimental design, logistics, data collection, and 

objectives. Chapter 4 presents the results of this intervention on individual students' 

understanding of and disposition toward inquiry-driven modeling. Chapter 5 presents 

analysis of teams' process of and results from an inquiry-driven modeling exercise. 

Chapter 6 presents the claims derived from those results and analyses, and Chapter 7 

presents the contributions of this work to several communities and a discussion of future 

applications of this work. 
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Inquiry-Driven Modeling 

In the philosophy of science and science education communities, significant 

research has been devoted to understanding how scientists make sense of natural 

phenomena. This field of research draws its motivation from a variety of places, such as 

the desire to better understand how scientists conduct science and the desire to build 

better tools to facilitate scientific inquiry and discovery. A major component of this 

research, however, is educational; recent reforms to science education have placed a 

much greater emphasis on involving students in authentic scientific practices from an 

early age, both to increase their interest in science-related careers and to increase their 

qualifications to pursue such careers in the future (National Research Council 1996; 

Edelson 1997; Schweingruber, Duschl, & Shouse 2007; Lajoie et al. 2011). Past research 

has already shown promising results for involving students in authentic processes of 

science from an early age, such as deeper understanding of complex phenomena after 

participating in a model-based reasoning exercise (e.g. Goel et al 2013; Lehrer & 

Schauble 2004). 

In practice, scientific modeling is a complex suite of multiple different skills and 

knowledge structures intended to help scientists make better sense of the systems and 

phenomena that they analyze. Models play a key role in the process of scientific inquiry; 

they provide a simplified abstraction of reality that scientists can reason over to generate 

explanations of their observations, enabling the organization, evaluation, and expansion 

of current understanding (Darden 1998; Nersessian 1992, 1999, 2008; Griffith, 

Nersessian, & Goel 2000; Davies, Goel, & Nersessian 2005; Clement 2008). There is no 

one practice of scientific modeling, but rather the specific processes and strategies of 

modeling are driven by a diverse set of goals and priorities. (Clement 2008; Nersessian 

2008; Svoboda & Passmore 2013). This dissertation chooses to focus on one type of 

scientific modeling, dubbed here "inquiry-driven modeling". The objectives of inquiry-

driven modeling are the construction, manipulation, and improvement of scientific 
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knowledge, both for oneself and for the community as a whole. In inquiry-driven 

modeling, a scientist constructs a model to make sense of some observed data or 

phenomenon. The model, then, guides the continued inquiry process, making predictions 

that can be verified by further data-gathering or emphasizing areas where the mechanism 

of the model is poorly understood. This high-level notion of the process of inquiry and 

modeling is compatible with processes observed in the actual course of science 

(Nersessian 1999). Importantly, this abstract notion is agnostic to the specific types of 

models used in the inquiry-driven modeling process; the models could be descriptive, 

prescriptive, conceptual, simulative, causal, dynamic, or of another kind entirely. While 

the high-level process is agnostic to the type of model used, this dissertation will focus on 

models that are explanatory and mechanistic (Griffith, Nersessian, & Goel 2000; Goel et 

al. 2013). 

Significant research has identified the value of involving students in authentic 

scientific processes, such as inquiry-driven modeling, in early science education (Edelson 

1997; Gilbert, Boulter, & Elmer 2000; Lee & Butler 2003; Gilbert 2004; Braund & Reiss 

2006; Bencze & Hodson 2009). However, such involvement is difficult to implement for 

several reasons, such as the need to introduce argumentation, negotiation, and 

justification into the classroom process (Berland & Reiser 2009). As the following 

section will demonstrate, many of the difficulties with teaching inquiry-driven modeling 

are derived from its nature as a metacognitive skill and the difficulties in instructing 

metacognitive skills in general. In order to understand these difficulties and connect them 

with prior solutions to similar challenges, it is important first to understand the 

conceptualization of inquiry-driven modeling as a metacognitive skill. 

The Metacognition of Inquiry-Driven Modeling 

Inquiry-driven modeling can be viewed as a metacognitive skill for three reasons. 

First and foremost, inquiry-driven modeling meets the definition of a metacognitive skill. 
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Second, inquiry-driven modeling can be viewed as an instance of other commonly-

studied metacognitive skills, most notably self-regulated learning. Third, the facets of 

inquiry-driven modeling have been discussed as metacognitive skills in past research on 

inquiry and modeling in education. In the section "Metacognition" on page 8, 

metacognition will be discussed more generally; the aim of this section is to establish 

inquiry-driven modeling as a metacognitive skill. 

First, inquiry-driven modeling meets the common definitions of metacognition. 

Brown (1987) defines metacognitive skills as those that address self-assessment of one's 

own knowledge and regulation of the ways in which to increase or complete that 

knowledge. Weinert (1987) similarly defines metacognition as "cognition about 

cognition; that is, it refers to second-order cognitions: thoughts about thoughts, 

knowledge about knowledge or reflections about actions". As stated previously, the 

objective of inquiry-driven modeling is the construction, manipulation, and improvement 

of scientific knowledge, both for oneself and for the community as a whole. It operates 

both on content knowledge within a given domain (for example, discerning the cause and 

effect relationships working in an ecological system) as well as on the principles of 

investigating that domain themselves, such as assessing the reliability of different data-

gathering methods or balancing seemingly contradictory observations. Thus, inquiry-

driven modeling is a metacognitive skill because knowledge, understanding, and 

cognition are the targets of the skill. 

Secondly, in many ways inquiry-driven modeling can be viewed as an instance of 

the broader self-regulated learning process, instantiated in a particular domain with an 

additional set of rules. Self-regulated learning more broadly is a suite of metacognitive 

skills involving planning, monitoring, and evaluating one's own progress through 

understanding some new content. Significant research has been devoted to understanding 

the nature of self-regulated learning and how to develop it in students (e.g. Palinscar & 

Brown 1984; Butler & Winne 1995; Dweck 2000; Azevedo et al. 2011). Planning, 
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monitoring, and evaluating one's own progress, however, are fundamental to the inquiry-

driven modeling process as well. The model that scientists construct serves as a tool to 

plan further data- and evidence-gathering activities, and the results of those activities are 

then evaluated against the predictions of the model to check for deviations. Moreover, 

like self-regulated learning, inquiry-driven modeling is concerned with the processes by 

which a learner (in this case, a scientist) evaluates their own understanding. From the 

scientific community, additional rules regarding how to evaluate explanations apply, but 

the processes of self-evaluation and self-regulation apply within inquiry-driven modeling 

as well. 

Third, in much of the past research on inquiry and modeling (especially in 

education), these skills have commonly been considered metacognitive in nature. White 

& Frederiksen (1998) explored attention to metacognition as a way of bringing inquiry 

and modeling, recognized separately as desirable teaching approaches, into the classroom 

to make science accessible to a broader range of students. Metacognitive tutoring 

approaches have also been used in tutoring inquiry (Roll, Aleven, & Koedinger 2010; 

Gobert et al. 2012), albeit without the modeling component. Schwarz & White (2005) 

refer to understanding how to use models in inquiry as "metamodeling" knowledge. 

Metamodeling knowledge, they write, involves understanding the "nature and purpose of 

scientific knowledge" (p. 166). They go on to say "without such metamodeling 

knowledge, students cannot fully understand the nature of science, and their ability to use 

and develop scientific models will be impeded" (p. 166). In this distinction, Schwarz & 

White differentiate the ability to construct a model from the understanding of the overall 

role, purpose, and importance of model construction. Inquiry-driven modeling embeds 

this metamodeling knowledge into its emphases by arguing that the role of modeling is 

the synthesis of data and observations and the subsequent prediction of further data to 

gather. Schwarz & White echo this understanding of modeling as part of the broader 

inquiry process by defining metamodeling knowledge in part as an understanding that 
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"scientific knowledge is a human construct and … models vary in their ability to 

approximate, explain, and predict real-world phenomena."  

The argument that inquiry-driven modeling is a metacognitive skill is important 

because in connecting inquiry-driven modeling to metacognition, we begin to see that 

many of the traditional challenges with inquiry-based approaches to education are 

challenges because of the broader challenges with instructing metacognition in general. 

By understanding the nature of inquiry-driven modeling as metacognition, we can apply 

lessons learned from existing projects on teaching other metacognitive skills in other 

contexts or domains to the learning of inquiry and modeling. In doing so, we see that the 

challenges faced in developing inquiry- and model-based education are not unique to this 

skill, but rather more broadly present in metacognitive learning, and thus there is promise 

in using some of the same approaches used to address metacognition in the past to 

develop inquiry-based modeling knowledge. However, prior to examining how 

emphasizing metacognition can help develop knowledge of inquiry-driven modeling, it is 

important to first address criticisms of inquiry-based approaches to education. 

Addressing Challenges and Criticisms in Inquiry in Education 

Although inquiry-based approaches to education have garnered significant 

support and attention over the past several years, there exist significant criticisms on the 

effectiveness of such approaches. Kirschner, Sweller, & Clark (2006), for example, 

suggest that inquiry-based interventions involving minimal guidance do not work because 

initially, learners do not have a sufficient background in the target skill to provide their 

own guidance. Klahr & Nigam (2004) directly compared discovery learning, a method 

for inquiry-based learning (Bruner 1961), with direct instruction and found that students 

participating in direct instruction activities demonstrated significantly better outcomes 

than students in discovery-based activities. Mayer (2004) similarly recounts the failure of 

pure discovery learning in three separate contexts. Given that this dissertation focuses 
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precisely on inquiry- and discovery-based learning strategies, it is important to first 

describe how this research reacts to the criticisms of this broad approach. 

First, the existing criticism of inquiry-based approaches largely criticizes the use 

of inquiry-based learning in service of separate learning goals. For example, if the 

learning goal of a particular exercise is to instruct students on how and why fish died in a 

lake (as will be the example in this research), these critics argue it is significantly more 

effective to directly instruct students on how and why this occurred than to have them 

discover it for themselves. This criticism assumes that the learning goal is a correct 

understanding of the phenomenon, and in many units this assumption is correct. 

However, the learning goal of this research differs. In this work, correct understanding of 

some content knowledge is not the goal, but rather, the goal is the inquiry-driven 

modeling skill itself. Inquiry-based approaches have been criticized as being poor means 

to a separate end, but this research treats the inquiry-driven modeling process as the end 

in and of itself. The goal here is to teach inquiry-driven modeling rather than to use 

inquiry-driven modeling to teach some underlying content knowledge. Given the research 

discussed earlier that identifies understanding the nature and practice of science as 

valuable learning goals in their own right (Schwarz & White 2005), and given the 

alignment of state and national standards to this assertion (National Research Council 

1996; Edelson 1997; Gilbert, Boulter, & Elmer 2000; Lee & Butler 2003; Gilbert 2004; 

Braund & Reiss 2006), this learning goal largely avoids this criticism of inquiry-based 

learning. In fact, given the assertion of Kirschner, Sweller, & Clark that "the advantage of 

guidance begins to recede only when learners have sufficiently high prior knowledge to 

provide 'internal' guidance", the goal of this work can be seen as an attempt to address 

precisely the concern that these critics have raised. If it is true that inquiry-based learning 

is only effective once students know enough about inquiry to provide internal guidance, 

then a curriculum such as this one that aims to teach inquiry can serve as the bridge that 

allows other inquiry-based approaches to find greater success. 
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However, the criticism applied to interventions that use inquiry as a means to an 

end could equally be applied if this intervention used inquiry as a means to teach inquiry; 

in other words, the prior criticisms would be equally valid here if we attempted to allow 

students to "discover" the value of the inquiry process on their own. This work 

hypothesizes, however, that given an environment in which students could participate in 

inquiry-driven modeling, additional instruction on the proper participation in the process 

is still necessary. While students may demonstrate some rudimentary understanding of 

inquiry and modeling in the absence of guidance, guided instruction is critical to 

developing a true understanding of the target process. Thus, this work acknowledges 

these criticisms and attempts to address them specifically by providing the kind of guided 

instruction that Kirschner, Sweller, & Clark advocate. In fact, this work can be viewed 

specifically as an attempt to provide distributed guided instruction to multiple teams 

engaged in the inquiry process simultaneously. 

Metacognition 

Establishing inquiry-driven modeling as a metacognitive skill allows the existing 

research on metacognitive development to be applied to the inquiry domain. Developing 

metacognition has been identified as a key goal of instructional design (Baker & Brown 

1984; Bransford, Brown, & Cocking 2000), and many modern theories of learning and 

achievement point to the importance of metacognitive skills and mindsets in predicting 

and determining students' ongoing success (Babbs & Moe 1983; Borkowski, Carr, 

Rellinger & Pressley 1990; Ganz 1990; Landine & Stewart 1998; Sternberg 1998; Dweck 

2006; Isaacson & Fujita 2006). While developing metacognition is important, it also 

presents unique challenges. Several initiatives have been successful at developing 

metacognitive skills (e.g. Borkowski, Chan, & Muthukrishna 2000; Schraw, Crippen, & 

Hartley 2006; Lovett 2008; Vattam et al. 2011A; Goel et al. 2013), but often present their 

own unique challenges, such as high costs and low scalability. 
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Challenges in Developing Metacognitive Skills 

Metacognitive skills have several unique traits that differentiate them, especially 

in terms of instruction, from other skills. A strong description of the several of these 

differences and the challenges they present can be found in Roll et al. 2007. Roll et al. 

specifically propose four fundamental factors that differentiate metacognitive skills from 

cognitive skills. First, they tend to be domain independent. Skills such as help-seeking, 

self-assessment, self-explanation, and content structuring are domain-independent and 

affect learning in different subjects and contexts; however, learning is typically 

embedded in some specific subject, meaning that metacognitive skills must be taught in 

the context of other skills, competing for students' attention. Second, metacognitive skills 

are difficult to teach explicitly: their nature as operators on content knowledge or 

cognitive skills means that they typically are taught in conjunction with more 

recognizable, assessable skills. A third related problem is that these metacognitive skills 

are often deemphasized in the eyes of students in comparison to the more tangible, 

assessable cognitive skill (also in Gama 2004); this connects to the points above in that 

metacognition is typically taught in the context of a cognitive skill or some content 

knowledge that is more easily identifiable by students as the ultimate learning goal. 

Fourth, metacognitive skills exist largely "in the head" of the individual, meaning that the 

same external action might be "correct" for one student and "incorrect" for another, in 

that the underlying thought process that gave rise to the same behavior might have been 

different. This introduces a significant problem in assessment in that the visible behaviors 

on which tutoring systems most often act are merely shadows of the student's underlying 

skills and abilities. This also presents a significant challenge in researching metacognition 

as it can often be difficult to ascertain when metacognitive ability has actually been 

improved; this is discussed more in the section "Challenges in Researching 

Metacognition" on page 12. 
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Other challenges exist as well: it can be difficult to specifically describe objective 

efficacy with the skill (Roll et al. 2007); effective learning involves demonstration and 

increased participation in the skill rather than simply instruction and lecture (Lave & 

Wenger 1991; Spiro et al. 1992; Anderson, Reder, & Simon 1996); and it can be difficult 

to establish a baseline of students' prior performance with metacognitive strategies 

(Biswas et al. 2013). As described in Roll et al. 2012, many interventions, such as 

inquiry-based learning environments or project-based learning approaches, focus on 

facilitating the development and application of metacognitive skills while lacking any 

explicit attention to teaching those metacognitive skills, due in part to the difficulties in 

teaching such skills outlined above. These issues resonate strongly with the criticisms 

given in Kirschner, Sweller, & Clark 2006: providing an environment in which 

exploratory learning can occur is not the same as teaching students how to actually 

participate in exploratory learning. Compounding these issues as well are the previously-

documented challenges with teaching groups as effectively as individuals (Bloom 1984); 

even if there exist initiatives that allow students to effectively learn metacognitive skills 

with a one-on-one instructor (such as the apprenticeship approaches described by Lave & 

Wenger 1991), extensions of those initiatives to group learning and classrooms remain 

elusive. 

There are parallels to these challenges in the instruction of inquiry-driven 

modeling, as discussed above. Although inquiry-driven modeling is typically taught 

within a specific content domain (such as ecology, chemistry, or physics), it spans across 

every scientific discipline, making it more domain-neutral than other learning goals 

present in early science education. Explicit instruction is often challenging because the 

components of inquiry-driven modeling are within the scientist's head rather than 

explicitly out in the world, and thus, demonstration, mentorship, and apprenticeship are 

all valuable despite their challenges. Similarly, students are often entirely consumed with 

arriving at the right answer, but inquiry-driven modeling emphasizes that answers must 
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be defended and justified, not simply labeled as correct or incorrect; thus, students are not 

naturally predisposed to value, or even think in terms of, the metacognitive skill. These 

parallels help demonstrate two takeaways: first, they further emphasize that inquiry-

driven modeling is a metacognitive skill as seen in the shared instructional difficulties, 

and second, that the existing attempts to solve these problems in other metacognition-

focused interventions may apply to improving the instruction of inquiry-driven modeling 

as well. 

Intelligent Tutoring Systems as a Potential Solution 

Although there remain difficulties, intelligent tutoring systems do provide 

solutions to many of the challenges inherent to teaching these metacognitive skills. 

Intelligent tutoring systems, generally, have been suggested as a solution to the challenge 

of extending effective individual instruction to group and classroom learning (Corbett 

2011). In addressing those challenges, software provides the opportunity to track 

students' progress persistently and individually rather than relying on intermittent 

assignments and summative assessments. Similarly, feedback can be provided 

individually during the activity itself. In this way, students can receive just-in-time 

feedback, which has been shown to improve learning outcomes (Anderson, Corbett, 

Koedinger, & Pelletier 1995). 

Intelligent tutoring systems for cognitive skills have been successful for many 

years (e.g. Ritter, Anderson, Koedinger, & Corbett 2007; Matsuda & VanLehn 2005; 

Crosby & Iding 1997; Aleven, McLaren, Sewall, & Koedinger 2009); in recent years, 

these approaches have begun to be applied to metacognitive skills. At present there exist 

several successful initiatives in metacognitive tutoring. HelpTutor teaches help-seeking in 

the context of the established Cognitive Tutoring project (Aleven, McLaren, Roll, & 

Koedinger 2006; Roll et al. 2007), where research is also done on students' tendencies to 

"game" the tutor to get the most information out as quickly as possible (Baker, Corbett, 
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Roll, & Koedinger 2008). MetaTutor teaches self-regulated learning in the context of an 

interactive hypermedia on biological systems (Azevedo et al. 2009) and has made 

significant strides in designing ways of detecting students' mental models of 

metacognitive skills (Lintean, Rus & Azevedo 2012) and reacting by modifying the 

available content (Azevedo et al. 2011). Betty's Brain turns the relationship on its head by 

putting the student in the position of tutoring a software agent, focusing in part on 

metacognitive reasoning (Biswas et al. 2005; Kinnebrew, Biswas, Sulcer, & Taylor 

2012). Other initiatives focus on other metacognitive skills, such as learning from errors 

(Mathan & Koedinger 2005), self-explanation (Aleven & Koedinger 2002), and self-

assessment (Roll, Aleven, McLaren, & Koedinger 2011). 

Challenges in Researching Metacognition 

Interestingly, many of the challenges inherent to teaching metacognition are also 

challenges to researching metacognition. Metacognition is largely invisible, existing only 

in the head of the learner, and although observable acts can be used to estimate students' 

metacognitive processes, there will always exist a layer of interpretation between the 

observable actions and the perceived metacognitive ability. One way in which this has 

been resolved in the past is through structuring students to make their metacognitive 

processes explicit; MetaTutor (Azevedo et al. 2009) accomplishes this by supplying 

students with tutors that specifically demonstrate elements of the metacognitive process 

that students ought to learn to adopt; this approach resonates with the apprenticeship 

learning approach advocated by other research (e.g. Lave & Wenger 1991). In doing so, 

students are asked to make some of their metacognitive processes, like planning and 

monitoring, explicit. This serves two functions: the process of making them explicit helps 

students value and execute the skills, and having explicitly-stated plans and monitoring 

habits provides information on which the tutors of MetaTutor can act. 
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The process of creating explicit plans and monitoring behaviors introduces two 

mechanics, however. First, the simple process of making these explicit creates a learning 

opportunity. This opportunity is valuable, but it creates difficulty identifying the exact 

role of tutoring in supporting the development of metacognitive processes. An ideal 

environment for facilitating metacognition would likely involve this component, but for 

research purposes this introduces a separate mechanism for student improvement that 

makes measuring the effect of the tutoring system itself more difficult. Secondly and 

more importantly, providing a way in which students can make their plans and 

monitoring behaviors explicit constrains the overall learning environment to those plans 

and behaviors that the tutoring system can understand. Although this is often valuable to 

help students learn the desired skill, it also opposes some of the appeal and value of an 

open-ended exploratory learning environment for inquiry-based learning. 

The research on metacognition presented in this dissertation explicitly attempts to 

examine these areas that are largely untouched by other tutoring systems. In doing so, the 

tutoring system developed here will be at an active disadvantage in some ways because 

the information available to it is less explicit; the tutors developed for this research will 

have to infer far more about students' metacognitive processes than other metacognitive 

tutoring systems. Although the tutors will actively instruct students to engage in critical 

metacognitive processes like planning and monitoring, they will not have an explicit 

means by which to identify students' metacognition; instead, they will have to infer 

metacognition from observable actions. However, by allowing students to proceed 

without making their metacognitive processes explicit, this research will more 

authentically expose students to the open-ended and exploratory nature of authentic 

scientific modeling and inquiry. In this way, this research favors authenticity over 

measurability; although metacognition will be difficult to measure in this work, the 

process in which students engage is hypothesized to be more similar to the process in 

which scientists engage in the real world. 
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Research Agenda 

The goal of this research is to unify these two broad research communities – 

intelligent tutoring systems and inquiry-driven modeling – in service of one another. 

First, in leveraging inquiry-based approaches to scientific education, this intervention 

aims to build on the value and appeal of such inquiry-based approaches to science 

education while also improving the state of the art in inquiry-driven education. However, 

this goal is also established with an awareness of the existing difficulties in and criticisms 

of using inquiry-based approaches in science classrooms (e.g. Kirschner, Sweller, & 

Clark 2006). These difficulties and obstacles bring in the emphasis of this research on 

developing a metacognitive tutoring system to facilitate learning the inquiry-driven 

modeling process. Through a tutoring system embedded in an exploratory learning 

environment in which inquiry-driven modeling can occur, this research aims to overcome 

the problems of providing guidance, feedback, and apprenticeship to multiple student 

teams simultaneously in a classroom context. 

Research Problem 

As stated above, inquiry-driven modeling, as with any metacognitive skill, has 

significant challenges to instruction, including the difficulty in providing consistent 

feedback, the difficulty in creating an environment in which the student can be an 

increasing participant in the process, and the difficulty with persistently monitoring and 

modeling students' ability. These challenges are especially notable in traditional 

classroom environments where one individual (typically the teacher) is responsible for 

the learning of several students. It has further been noted as well that in disciplines with 

established standards, such as scientific research, it is important to directly instruct 

students on proper participation in the discipline rather than relying on them to discover 

the proper procedures on their own (Shulman & Keisler 1966; Mayer 2004). Although 

this has most commonly been cited as a challenge in using inquiry-based approaches to 
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teach content knowledge or cognitive ability (Klahr & Nigam 2004), the difficulty 

remains even when inquiry is the learning goal itself rather than a means to a separate 

end. 

The problem, then, of this research is to design ways in which guided instruction 

of inquiry-driven modeling can be implemented in classroom learning environments, 

overcoming the challenges described above. Embedded in this research agenda is the 

hypothesis that, given an environment in which teams of students can participate in 

inquiry-driven modeling, a metacognitive tutoring system will be able to provide the 

guided instruction needed to learn and master the process. This intention to use a 

metacognitive tutoring system to address the research problem then introduces additional 

problems. Inquiry-driven modeling is a metacognitive task that takes place largely in the 

mind of the student or in the conversations amongst teams of students, and thus is 

simultaneously difficult to observe and difficult to demonstrate. Teams of students are 

often more focused on the content knowledge or the correct answer than the 

metacognitive process that gives rise to an answer. Teams of students may also have 

fundamental metacognitive misconceptions about the nature of inquiry and the process of 

science which themselves are difficult to discern. Thus, a metacognitive tutoring system 

for inquiry-driven modeling must be able to observe, model, demonstrate, and instruct a 

difficult, oftentimes invisible skill that students are not naturally predisposed to 

emphasize, value, or even recognize. Adding to this difficulty, authentic participation in 

this skill is almost universally team-based. The emphasis on authenticity in this research 

shows the need to teach this skill in a team-based activity as well, but gathering 

information at the team level introduces additional challenges with regard to measuring 

individual students' performance and understanding. Thus, from the nature of the skill to 

the context in which it is demonstrated to the emphasis placed on the skill by the 

students, designing a metacognitive tutoring system for inquiry-driven modeling 

introduces numerous challenges. 
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Research Questions 

The questions addressed by this dissertation, in turn, examine the effectiveness of 

a metacognitive tutoring system in teaching inquiry-driven modeling. Compared to a 

comparable activity without a metacognitive tutoring system, how effective is a 

metacognitive tutoring system for inquiry-driven modeling at improving students' 

understanding of the skill? In order to address this question, however, it is necessary to 

first articulate what it would mean to understand the skill. Prior literature on 

metacognitive tutoring suggests examining at least three facets of a metacognitive skill: 

declarative knowledge, procedural knowledge, and dispositional framing (Roll et al. 

2007). Mastery of a metacognitive skill, by this categorization, includes being able to 

describe the skill (declarative knowledge), being able to execute the skill (procedural 

knowledge), and having the desired attitudes towards the value and appropriate 

application of the skill (dispositional framing). Thus, these three dimensions must be 

considered. In addition, the process of inquiry-driven modeling is important in the 

scientific community because of the quality of the explanations, theories, and models that 

it generates. Thus, in order to assess the benefit of a metacognitive tutoring system for 

inquiry-driven modeling, it is also important to consider the effect of the system on the 

quality of the output that the process creates. 

Based on these components of metacognitive ability and the function of the 

process in the broader scientific community, this articulation presents four distinct targets 

of analysis to assess the effectiveness of a metacognitive tutoring system: explicit 

understanding, dispositional framing, procedural execution, and final explanations. 

However, it is important to note that the last two of these targets have two dimensions to 

each. First, we can examine whether or not improvements were seen while the 

metacognitive tutoring system was in action: while receiving feedback from a 

metacognitive tutoring system, does the process in which students or teams of students 

engage improve? Do the models that they produce improve? However, this question does 
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not identify whether any improvements seen are simply functions of additional feedback 

or functions of an internalized improved understanding. To illustrate this with a more 

accessible example from a different domain and a distributed cognition explanation 

(Hollan, Hutchins, & Kirsh 2000), a student performing better on Algebra problems when 

using an Algebra tutor merely suggests that the system comprised of the student and the 

tutor is better than the student alone. In order to test true improvement, one would 

examine whether the student's performance improved in the absence of the tutor based on 

prior interaction with the tutor.  

A second question, then, follows: do students or teams of students that previously 

received feedback from a metacognitive tutoring system show ongoing improved 

performance even after the tutoring system has been disabled? Are the models and 

explanations they produce superior even in the absence of tutor feedback on those 

specific models and explanations? This leads to two dimensions of these hypotheses that 

will be examined throughout this dissertation, the Learning phase and the Transfer phase. 

The Learning phase examines whether students or teams of students perform better while 

receiving the additional feedback (i.e. while Learning the skill), while the Transfer phase 

examines whether these performance improvements transfer to a new task wherein 

students are no longer actively receiving that feedback. 

This dissertation, then, aims to answer the broad question of how interaction with 

a metacognitive tutoring system for inquiry-driven modeling affects students' 

performance across these four different metrics, with special attention paid to changes 

both during interaction with the metacognitive tutoring system and after the system has 

been disabled. Table 1, below, provides a more detailed description of the eight research 

questions implicit in this broad question, its four components, and its two dimensions.  
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Table 1: Research questions of this dissertation. 

Explicit Understanding 

Question #1: To what extent does engagement with a metacognitive tutoring system 

during participation in an inquiry-driven modeling task improve students' explicit 

understanding of the inquiry-driven modeling process? 

Dispositional Framing 

Question #2: To what extent does engagement with a metacognitive tutoring system 

during participation in an inquiry-driven modeling task change students' attitudes 

toward science, scientific inquiry, and future careers in science-related fields? 

Procedural Execution 

Question #3: To what extent does engagement with a metacognitive tutoring system 

during participation in an inquiry-driven modeling task alter student teams' 

successful execution of the desired inquiry-driven modeling process? 

Question #3A: To what extent is 

students' successful execution of the 

desired inquiry-driven modeling process 

altered during interaction with the 

metacognitive tutoring system? 

Question #3B: To what extent is 

students' successful execution of the 

desired inquiry-driven modeling process 

altered after interaction with the 

metacognitive tutoring system? 

Models and Explanations 

Question #4: To what extent does engagement with a metacognitive tutoring system 

during participation in an inquiry-driven modeling task alter the explanations that 

teams of students generate? 

Question #4A: To what extent are the 

explanations students generate altered 

during interaction with the 

metacognitive tutoring system? 

Question #4B: To what extent are the 

explanations students generate altered 

after interaction with the metacognitive 

tutoring system? 
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Research Hypotheses 

In response to these research questions, this dissertation initially adopts the broad 

hypotheses that participation in an exercise in inquiry-driven modeling using a 

metacognitive tutoring system will improve students' understanding of inquiry-driven 

modeling compared to students who participate in the identical exercise without the 

presence of such a metacognitive tutoring system. Specifically, this improved 

understanding will be seen across four dimensions: compared to students who do not 

have access to the tutoring system, students who do interact with it will have an improved 

declarative understanding of the process, a more positive dispositional framing of the 

process, a superior procedural execution of the process, and higher quality results of the 

process. Moreover, this improved procedural execution and these higher-quality results 

will be present both while the students are receiving feedback from the tutoring system as 

well as in a new exercise in which students are no longer receiving feedback. These 

hypotheses are outlined in further detail in Table 2, below. 

This dissertation will begin in Chapter 2 by first describing the design of a system 

for providing metacognitive tutoring for this inquiry-driven modeling process. In order to 

do this, it will first provide a desirable model for inquiry-driven modeling grounded in 

the literature and past research on this project. In order to ground this model and the 

subsequent design of a metacognitive tutoring system, this dissertation will also briefly 

describe the design of an exploratory learning environment, MILA (Modeling & Inquiry 

Learning Application) in which this inquiry-driven modeling process can be executed 

and tracked. Based on this model and this exploratory learning environment, this 

dissertation will then describe the design of a metacognitive tutoring system, MILA–T 

(MILA-Tutoring), embedded in MILA that guides and instruct students towards an 

improved understanding of the inquiry-driven modeling process.  
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Table 2: Research hypotheses of this dissertation. 

Explicit Understanding 

Hypothesis #1: Engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task will improve students' declarative 

understanding of inquiry-driven modeling compared to participation in inquiry-

driven modeling without a metacognitive tutoring system. 

Dispositional Framing 

Hypothesis #2: Engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task will improve students' dispositional 

framing of science, scientific inquiry, and careers in science compared to 

participation in inquiry-driven modeling without a metacognitive tutoring system. 

Procedural Execution 

Hypothesis #3: Engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task will improve teams' execution of 

the desired inquiry-driven modeling process compared to participation in inquiry-

driven modeling without a metacognitive tutoring system. 

Hypothesis #3A: This improved 

execution of the desired inquiry-driven 

modeling process will take place while 

the team is receiving feedback from the 

metacognitive tutoring system. 

Hypothesis #3B: This improved 

execution of the desired inquiry-driven 

modeling process will take place when 

the team is no longer receiving feedback 

from the metacognitive tutoring system. 

Models and Explanations 

Hypothesis #4: Engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task will improve the quality of models 

and explanations that teams generate compared to participation in inquiry-driven 

modeling without a metacognitive tutoring system. 

Hypothesis #4A: These improvements 

will be present in modeling activities 

during which the team is receiving 

feedback from the metacognitive 

tutoring system. 

Hypothesis #4B: These improvements 

will be present when the team is no 

longer receiving feedback from the 

metacognitive tutoring system. 
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After describing the tools designed for this project, Chapter 3 will describe the 

experiment used to test whether or not the results from deployment of these tools match 

the hypothesized results from Table 2, above. In order to test the accuracy of these 

hypotheses, a controlled study will be used comparing teams of students interacting with 

the exploratory learning environment without the metacognitive tutoring system (the 

Control group) to teams interacting with the exploratory learning environment with the 

metacognitive tutoring system (the Experimental group). Besides the presence or absence 

of the tutoring system, all other elements of the activity completed by the two groups of 

students will be held constant. 

Given the experimental design described in Chapter 3, Chapters 4 and 5 will 

describe the results of this experiment. First, Chapter 4 will establish that the groups of 

students participating in the intervention were effectively equal between the Control and 

Experimental groups at the start of the intervention. After establishing that foundation, 

Chapter 4 will examine the impact of the intervention on individual students. It will first 

look at how participation in the intervention affected students' understanding of inquiry-

driven modeling, focusing on whether or not engagement with MILA–T improved 

understanding compared to engagement in the intervention without MILA–T. It will then 

similarly look at how participation in the intervention affected students' dispositions 

toward science, scientific inquiry, and careers in science, and especially whether 

engagement with MILA–T affected these dispositions. It will finally look at general data 

from students on the extent to which they perceive MILA and MILA–T as beneficial to 

their inquiry-driven modeling process. 

Chapter 5 will present similar analyses and results, but at the team level. Chapter 

5 will first examine the process of inquiry-driven modeling in which teams of students 

engaged, using Markov chains to capture the overall process and connect it with the 

process of inquiry-driven modeling (and errors therein) shown in Chapter 2. It will then 

compare these chains between Control and Experimental teams, testing for the degree to 
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which each group of teams matched the desirable inquiry-driven modeling process. 

Chapter 5 will then turn to the explanations that students actually generated, evaluating 

them across five different metrics as well as coding the justifications teams provide for 

accuracy and relevance. In particular, it will examine whether teams interacting with 

MILA–T generate better explanations for the target phenomena than teams that do not 

have access to MILA–T. Finally, Chapter 5 will also report on the perceptions of the 

teachers in the classroom on the results of the intervention. 

Given the results of the analysis presented in Chapters 4 and 5, Chapter 6 will 

synthesize the results into a set of claims based on the data and original hypotheses. It 

will first run through the claims provided by each hypothesis individually, summarizing 

the analyses behind each and restating the conclusions to each hypothesis. It will then 

combine the results of those individual analyses into a broader claim about the impact of 

the intervention on students' metacognitive ability. 

Given the claims presented in Chapter 6, Chapter 7 will then discuss the 

contributions of this work to different communities, emphasizing artificial intelligence 

for education and learning sciences & technology, but also referencing intelligent tutoring 

systems, exploratory learning environments, and other communities. Finally, Chapter 7 

will discuss three directions for further research building on the results of this study: first, 

the suggested next steps for examining the new hypotheses derived from this work; 

second, recent applications of the same motivating principles in a different domain; and 

third, new collaborations spawned by this work with the Georgia Tech School of 

Biology, the Georgia State University College of Education, and the Smithsonian 

Institution. 
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CHAPTER 2 

INTELLIGENT TUTORING SYSTEMS AS A SOLUTION 

 

Figure 3: The second chapter of this dissertation covers the solution to the problem posed previously: 

a formalization of the process of inquiry-driven modeling, an exploratory learning environment that 

can facilitate inquiry-driven modeling, and most importantly, the design of a metacognitive tutoring 

system to teach students inquiry-driven modeling. 

The objective of the design portion of this project is to create a metacognitive 

tutoring system that, when situated in an exploratory learning environment that facilitates 

inquiry-driven modeling, improves students' understanding of that target skill. Prior to 

developing such an intelligent tutoring system, however, two components are necessary: 

a model of the skill it strives to teach, and an environment in which it can teach the skill. 

Toward this end, this chapter will first describe the process and results of formalizing a 

model of a desirable process. Given the model, it will then describe the design of an 

exploratory learning environment in which the desired process of inquiry-driven 

modeling can be executed and monitored. With these two tools in place, this chapter will 

then move to describe in detail the implementation of the metacognitive tutoring system, 

first at a high architectural level and subsequently in more detail for each of five 

independent pedagogical agents. 
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Process of Inquiry-Driven Modeling 

In order to effectively teach students this authentic process of inquiry-driven 

modeling, it is first necessary to have a model of what the process itself looks like, both 

to guide the construction of the exploratory learning environment and accompanying 

tutoring system and to provide a process to communicate to the students explicitly (Roll, 

Aleven, McLaren, & Koedinger 2007). In the community, there are several general 

theories regarding what the scientific process actually looks like and what it ought to look 

like, but presently there does not exist a process model of a desirable execution of 

inquiry-driven modeling. Thus, this project first starts by developing such a model. This 

model is developed based on three primary factors: the existing literature on inquiry and 

modeling, our own prior experience with modeling education across several different 

exploratory learning environments, and our own observations from a pilot study testing 

early versions of these tools. This section will first present and explain the model of the 

process of inquiry-driven modeling in Figure 4; it will then explain the development of 

this model based on the three sources described above. 

In the process model shown in Figure 4, boxes represent tasks (such as 'Observe 

Phenomenon', 'Describe Phenomenon', and 'Propose Hypothesis), while diamonds 

represent decisions (such as 'Is model sufficient?' and 'What needs improvement?'). Edges 

within the model represent transitions between tasks. Annotated edges coming out of 

decision diamonds represent the answer to the question posed in the diamond; for 

example, when students face the decision 'Is model sufficient?', they can answer either 

'Yes' (and thus enter the 'Consider accepting hypothesis' task) or 'No' (and thus enter the 

'What needs improvement?' decision). The dotted line between 'Describe Phenomenon' 

and 'Gather Information' is an optional pathway advocated by some literature on 

scientific modeling and inquiry (Nersessian 2008) which suggests scientists gather initial 

information before ever proposing a hypothesis to explain the phenomenon. In the event 

that this pathway is taken, the decision 'What did new information provide?' can only 
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have one possible exit ('New hypothesis'), given that the other three exits ('Refutation of 

hypothesis', 'Mechanism for hypothesis', and 'Evidence for hypothesis') all rely on a 

hypothesis previously existing. The three (and potentially more) tasks under 'Gather 

Information' can be considered subtasks or types of the 'Gather Information' task. 

 

Figure 4: A model of a desirable process of inquiry-driven modeling derived from the literature and 

experience in the pilot study. 

Inquiry-Driven Modeling Walk-Through 

To illustrate this model in action, we will walk through an example of a team 

engaging in the process described above. As described later in this dissertation, in this 

experiment, teams of students attempt to explain a sudden massive fish kill in Lake Clara 

Meer. A fish kill is an event wherein a massive number of fish simultaneously die in a 

localized area (Townsend, Boland, & Wrigley 1992), often due to oxygen depletion 

(Barica & Mathias 1979). Such an event occurred in a lake near Georgia Tech in 2009 
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(Wheatley 2009). During the intervention described in Chapter 3, teams of students 

attempted to construct models of what may have caused this fish kill. The following 

example uses this phenomenon to explore the model of inquiry-driven modeling given in 

Figure 4. 

To start, the investigator (a student or a scientist) begins the process by observing 

some phenomenon that they wish to explain; in this case, they observe the fish kill 

through a video played at the start of the unit. They then come to a clean, delineated 

description of the phenomenon to be described to focus the modeling and information-

gathering processes. In this project, the phenomenon could be described as: "Thousands 

of fish suddenly died in Lake Clara Meer." The definition of the phenomenon is 

important because it helps direct students' attention to the salient parts of the phenomenon 

to be explained; teams with poor phenomenon definitions sometimes became distracted 

by how the smell of the fish drove visitors away from the park, a phenomenon separate 

from the one to be described. 

After defining the phenomenon to be explored, investigators may either propose a 

hypothesis or go ahead and begin data gathering. Some models of inquiry (Nersessian 

2008) suggest scientists rarely propose hypotheses with no information about the 

phenomenon to be described, and thus information-gathering always takes place first; 

others may argue that even describing the phenomenon in the first place is a type of data-

gathering task. If the investigator does propose an initial hypothesis before gathering 

additional information, however, they construct a preliminary model of it, typically 

involving nothing but the conjecture that their chosen hypothesis does cause the 

phenomenon. In this example, a team might hypothesize that pollution was responsible 

for the fish kill. In this case, this model would simply show a causal connection between 

rising pollution and declining fish populations. This model, however, is insufficient based 

on model evaluation criteria given to students during the unit, and thus they return to the 

information-gathering task. 
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Given an insufficient model, the investigator returns to the information-gathering 

task, looking for information that will help elaborate on their model. In this example, the 

team has proposed pollution as the cause, so they attempt to find information on how 

pollution kills fish by consulting established domain knowledge. During this consultation, 

however, they find that current models of pollution's effect on aquatic ecosystem suggest 

that pollution slowly destroys ecosystems over time rather than killing all fish at once. 

Moreover, pollution destroys all life in a system, not just the fish. This gives them new 

information to use to evaluate their models, asking themselves 'What did new information 

provide?' This information refutes their hypothesis, which leads them to dismiss this 

hypothesis. 

During that information gathering process, however, they also run across 

information on how oxygen depletion caused a similar fish kill in a different lake. They 

note that oxygen depletion can kill thousands of fish at once, unlike pollution. This is 

another new piece of information to evaluate under the 'What did new information 

provide?' decision, and in this case, it leads to a new hypothesis. Thus, the team now 

proposes a new hypothesis: oxygen depletion caused the fish kill. This leads to a new 

model: the rapid depletion of oxygen caused the rapid decline of the fish population. This 

new model is also insufficient, however, leading the team back to the information-

gathering phase, now looking for evidence to support or explain how oxygen depletion 

led to the fish kill. 

To investigate this, the team decides to ask an expert at the lake about the oxygen 

levels, an example of consulting data sources as a way of gathering information (in this 

instance, the expert is a means to access the conclusions of the underlying data). The 

expert tells them that after the fish kill, biologists measured the oxygen in the lake and 

found out that oxygen levels were dangerously low. This is a new piece of information as 

well, and upon evaluation, the team discerns that this piece of information provides 

evidence that their hypothesis is true: their hypothesis predicted low oxygen levels in the 
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lake, and data gathered afterward corroborated that prediction. The team is now fairly 

confident that oxygen depletion is responsible for the fish kill, but what they do not yet 

understand is how exactly the oxygen depletion occurred. They bring up a simulation of a 

lake, and through experimentation they find that oxygen depletion is often preceded by an 

algal bloom: when algae populations spike, an oxygen crash often follows. This new 

piece of information is evaluated and determined to help provide a mechanism for their 

model: the drop in oxygen was caused by a rise in algal populations. Thus, they now have 

a three-stage model with one piece of evidence supporting it: a rise in algae populations 

causes a drop in oxygen concentration, which causes a drop in fish population, as 

evidenced in part by the observed low concentration of oxygen shortly after the fish kill. 

At this stage of the process, the team of students is not done; there remain 

questions to be asked. For example, oxygen depletion can occur due to factors other than 

algal blooms; for this model to be sufficient, the team would need to supply evidence that 

an algal bloom was responsible for the oxygen depletion rather than stratification or the 

emergence of a dead zone (two alternate explanations of oxygen depletion and fish kills). 

Similarly, there exists a mechanism by which algal blooms lead to oxygen depletion, as 

well as a mechanism by which oxygen depletion leads to fish kills. A good model of this 

phenomenon would provide the mechanisms behind these explanation of the chain as 

well. Thus, the team may continue to iterate through the inquiry-driven modeling process, 

refining their mechanism, expanding their evidence, and improving their understanding 

of the system. 

Errors in Inquiry-Driven Modeling 

In addition to this desired process, analysis of the pilot study, earlier experience in 

scientific modeling education, and literature on common scientific misconceptions 

allowed a second model to be developed augmenting this desired process with a set of 

common errors students repeatedly make when attempting to participate in inquiry-driven 
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modeling as novices. The mistakes here represent instances where students diverge from 

the model in order participate in generally undesirable behaviors, not instances where 

they depart from the model and may instead participate in other desirable inquiry 

processes. These are presented in Figure 5, below, based on where they occur in the 

modeling process. 

 

Figure 5: Common errors in the inquiry-driven modeling process. Red arrows denote common 

errors during the process. 

To explore these errors, let us consider them each in the context of the 

investigation described previously. The examples presented here are not drawn directly 

from the results of the classroom intervention described later in this dissertation, but 

mistakes of all five kinds did occur during the intervention, inspiring the examples 

presented here. First, investigators may enter into the modeling process prior to coming 

to a strong understanding of the phenomenon they are attempting to explain; this is 

shown in the model as the red arrow from observing the phenomenon to proposing 
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hypotheses. For example, a team may watch the video introducing the Lake Clara Meer 

fish kill and note that the video mentions visitors are staying away from the park as a 

result of the foul smell originating from the fish kill. This observation is not relevant to 

the fish kill itself, but in the absence of an articulation of the phenomenon to explain, it 

can be difficult to focus on the important portions of the phenomenon. This can present 

problems later in the modeling process as the pool of possible evidence and data is 

unconstrained, and models that attempt to explain multiple phenomena at once can be 

intractable in overall size. 

A second mistake come from the resistance of students to engage in the inquiry 

process authentically. As described previously, students often focus more on the content 

knowledge and "right answer" than the process (Roll et al. 2007). As such, with a 

phenomenon like the fish kill in Lake Clara Meer, they demonstrate a tendency to simply 

ask for the answer instead of engaging in the inquiry-driven modeling process. This is 

marked by the red arrow from gathering information to asking the teacher for the answer. 

This is also a somewhat delicate error: the teacher, as an individual possessing some 

expert knowledge, may be a source for authentic information-gathering when students 

ask specific questions directed by their models. The error occurs when students instead 

ask general questions about the phenomenon as a whole and take the teacher's responses 

as sacrosanct rather than individual pieces of information to be evaluated and 

incorporated accordingly. 

A third mistake arises when students encounter evidence that is indicative of a 

new hypothesis; in these instances, sometimes students will attempt to incorporate the 

new information into their present model without regard for its irrelevance to their 

model's prior claims. In the model in Figure 5, this is indicated by the red line running out 

of the 'New Hypothesis' exit to 'What does the new information provide?' For example, 

when the team in the previous example uncovered the note on oxygen depletion, they 

might modify their model to suggest pollution causes oxygen depletion which causes the 
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fish to die off. However, there was no information in their investigation to suggest 

pollution caused oxygen depletion. Rather than begin a new explanation they instead 

assume the new information is part of their prior hypothesis even in the absence of data 

suggesting the prior hypothesis is worth pursuing. 

A fourth mistake arises when students working with an insufficient explanation 

make up information rather than engage in information-gathering about the phenomenon; 

in the model in Figure 5, this is indicated by the red line running from the exits from 

'What needs improvement?' to the box indicating 'Make up information'. In some cases, 

this may be an intentionally delinquent behavior, but other times this arises in students 

seemingly earnestly engaging in the process. The error is that the students mistake 

conjecture and hypothesis for observed fact. In the previous example, confronted with a 

model that proposed oxygen depletion kills off the fish, the team may suggest that the 

reason oxygen depletion kills off the fish is because it kills the fish's food source. When 

pressed, they may suggest that they believe this because it makes sense that the fish's 

food source dies in the absence of oxygen as well. The error here is that the team infers 

that if their explanation makes sense, it is therefore accurate, rather than relying on 

external evidence to confirm their explanation. Thus, the 'make up information' task can 

be seen as relying too much on conjecture rather than hard evidence. 

A fifth mistake occurs when teams jump to accepting a hypothesis too quickly. At 

the start of the activity, teams are provided a set of model evaluation criteria that ought to 

be used in assessing their models. Many times, however, teams demonstrate a tendency to 

evaluate their model as sufficient even when it does not meet these criteria. In the above 

example, the team may infer that their three-phase model with the one piece of evidence 

is sufficient; after all, they have shown that oxygen depletion is responsible and given an 

idea for what may have caused it. However, there is no evidence that their proposed 

cause of the initial oxygen depletion is accurate, nor is there a complete mechanism 

indicating how the algal bloom actually led to the observed fish kill. Therefore, the model 
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remains insufficient, and the team is mistaken in accepting it as sufficient, due either to a 

lack of understanding of the criteria for model acceptance or an intentional disregard for 

the criteria of a good explanation. 

This list of mistakes is not exhaustive, nor is it systematically verified. Rather, 

these are some mistakes anecdotally identified during past interventions using 

exploratory learning environments, both in the history of this project and in other projects 

serving similar goals. Although the tutoring system constructed in this project aims to 

detect and correct these errors, it focuses more prominently on instructing students on the 

correct process outlined in Figure 4 on page 25. 

Development of the Model of Inquiry-Driven Modeling 

In developing a model of a desirable inquiry-driven modeling process, we first 

examined the existing literature on inquiry and modeling, paying significant attention to 

both the philosophy of science community and the science education community. Most 

significantly, we examined the work of Crawford & Stucki (1990), Schwarz et al. (2005), 

Nersessian (1992; 1999; 2008), Razzouk & Schute (2012), White & Frederiksen (1998), 

Clement (2008), Svoboda & Passmore (2013), and Darden (1998). The ideas generated 

by these theorists are generally compatible with an overall model of scientific modeling 

that involves four phases: model construction, model use, model evaluation, and model 

revision. In the context of inquiry, model use and evaluation take on a special form. 

Models are used to inform where the inquirer looks for additional information, either to 

corroborate and strengthen the claims of the model, to refute the claims of the model, or 

to elaborate on the mechanism within the model. The model is then evaluated based on 

how well it predicted the data that were actually founded and revised toward increasing 

its accuracy in the future (Schwarz & White 2005). As more new findings are accurately 

predicted by the model, the model's acceptability grows, and as more pieces of 

contradictory evidence are uncovered, its risk of being dismissed rises. This overall idea 
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is described in several places throughout the literature, but prior to the model presented 

above, there did not exist a process model of inquiry-driven modeling. The closest 

connection to the model presented here is the existing research on instructing students in 

understanding scientific modeling put together by Schwarz et al. (2009), which describes 

a sequence for teaching modeling that builds on the construction pattern described 

previously, but does not operationalize modeling and inquiry into a process diagram. The 

model presented above is compatible with the existing accepted notions of the modeling 

process, including Schwarz et al. (2009) and Nersessian (2008)'s emphasis on initially 

"anchoring" the phenomenon, while also formalizing the process into a workflow 

diagram that a metacognitive tutoring system can instruct and against which students' 

actual behavior can be compared. 

In addition to the literature on inquiry and modeling, the model of inquiry-driven 

modeling presented below was also developed based on several years of experience in 

using modeling to teach complex systems understanding in middle school classrooms. 

Early on, this project focused on teaching students to develop a functionally-oriented 

understanding of a complex ecological system (Goel et al. 2010), and early results 

showed success in the exploratory learning environment in increasing deep understanding 

of complex systems (Goel et al. 2013), providing the conceptual foundation on which 

MILA and MILA–T were constructed. While the project began by emphasizing the 

modeling element, over time it evolved to consider modeling and inquiry together 

(Joyner et al. 2012). During this process, a number of positive traits were identified, such 

as willingness to reject a previously-developed model based on new evidence. A number 

of mistakes in the process were identified, too, such as developing models for phenomena 

first and attempting to fit the evidence to them after the fact. These observations, coupled 

with the literature described above, formed the foundation for an initial model of inquiry-

driven modeling. It is important to note that the model provided above is not intended to 

represent the ideal execution of the inquiry-driven modeling process, nor is it meant to 
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present a valid representation of the way in which experts conduct scientific inquiry. 

Rather, it is presented as a desirable model of a way in which the process may be 

conducted that is attainable by the target audience of middle school students while 

remaining compatible with the existing literature on modeling and inquiry in scientific 

practice and in education. 

Early forms of the tools presented in this study, MILA and MILA–T, were 

developed in 2012 based on preliminary modeling of the target skill from the two sources 

presented above. When necessary to distinguish, the early versions of these tools are 

referred to as MILA1 and MILA–T1, while the versions of these tools present in this 

dissertation are MILA2 and MILA–T2. Generally, however, this dissertation will discuss 

the design rationale of both versions together. MILA1 and MILA–T1 were tested in a 

two-week pilot study in the summer of 2012 (Joyner, Goel, & Majerich 2013). The pilot 

study was taught by a middle school science teacher from an Atlanta-area middle school, 

and the curriculum was developed by an experienced learning scientist. During this study, 

16 students engaged with MILA1 with MILA–T1 active within it. Detailed log 

information was kept regarding students' interactions and experiences with the software 

and with the tutoring system. During the pilot study, students were asked to address the 

question: what caused the sudden massive fish kill in Lake Clara Meer? Aimed at 

addressing this question, students engaged in a process of inquiry and modeling to model 

their current understanding of the problem and use that model to dictate their continued 

examination of and evidence gathering for that problem. Based on analysis of these data 

at the conclusion of the pilot study, we adjusted the model of inquiry-driven modeling, 

leading to the model presented above. 

Equipped with this model, this research now endeavors to create two tools. First, 

in order to facilitate this process, this research demands an exploratory learning 

environment in which students can tracked during participation in an inquiry-driven 

modeling task. Then, within that exploratory learning environment, a metacognitive 
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tutoring system that guides, instructs, and apprentices students in the inquiry-driven 

modeling process can be developed. 

MILA: Modeling & Inquiry Learning Application 

As described above, MILA (Modeling & Inquiry Learning Application) is the 

latest in a line of exploratory learning environments to teach modeling and inquiry. 

MILA's roots lie first in the Aquarium Construction Toolkit (ACT; Goel et al. 2013), 

which allowed students to construct models of aquaria based on their observations of a 

real system in their classroom. ACT was generalized to the Ecological Modeling Toolkit 

(EMT; Joyner et al 2012), which supported modeling of various ecological phenomena. 

MILA builds on the modeling interface of EMT, but more explicitly brings in the role of 

inquiry in the inquiry-driven modeling process, featuring multiple tools for conducting 

inquiry within the environment (Joyner, Majerich, & Goel 2013). Technologically, MILA 

is implemented in Java to permit cross-platform deployments. Graphically, Java Swing is 

used to implement the majority of the user interface, while the modeling interface itself is 

designed from a blank canvas. In addition to Java and Java Swing, MILA also uses 

NetLogo simulations (Wilensky 1999) invoked from the "Use a Simulation" button on 

the left; students were provided with four simulations, two original simulations designed 

specifically for this project (Fish Breeding and Algal Blooms) and two designed by Uri 

Wilensky (Algae & Sunlight, Wilensky 2005; Climate Change, Tinker & Wilensky 

2007). Engagement with MILA was situated in the context of a broader curriculum, and it 

is that curriculum which has given the software and the tutors a set of metacognitive 

skills to teach. It is important to note that although this learning environment represents a 

major portion of the ongoing research being conducted in this group, MILA is merely the 

backdrop for the work in this study. A screenshot of MILA is included below in Figure 6 

for reference. 

 



   

36 

 

 

Figure 6: MILA, the environment in which the tutors are deployed. 

CMP Modeling 

The earlier exploratory learning environments developed in the history of this 

project supported students in constructing Structure-Behavior-Function (SBF) models of 

ecological phenomena. The SBF modeling language was originally created to allow 

artificial intelligence systems to reason about engineering and design (Goel, Rugaber, & 

Vattam 2009), while later efforts attempted to extend SBF modeling to educational 

settings (Goel et al. 2013). SBF models summarize a system in terms of three parts. The 

Structure is the physical arrangement of the parts in the system; the Structure of most 

aquatic ecosystems would simply be that the parts are mingled together within the lake or 

ocean. The Behavior is the processes that occur based on interactions amongst the parts 

of the Structure. The Function is the result of the mechanism, which can then be used as 

part of the Behavior for a higher-level model. For a more complete description of the 

results of using SBF in education, see Goel et al. 2013 and Joyner et al. 2012. 
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Although use of SBF modeling was shown to improve students' deep 

understanding of complex ecological systems (Goel et al. 2013), we also found that the 

vocabulary proved confusing for students and teachers alike. First, 'Behavior' most 

notably was regarded as the activity of a single organism, whereas in SBF behavior refers 

to the activity of a system as a whole. Second, 'Function' was similarly misleading; for 

many, the word 'function' suggested a system was designed intentionally to accomplish a 

certain purpose. In engineering where SBF was first used, this suggestion was accurate, 

but it risked major teleological misconceptions when applied to biology and ecology. In 

these systems, rather than designing a system to have a certain Function, we look at 

systems' output and build models that explain that output. Third, 'Structure' put an 

emphasis on the physical arrangement of parts, whereas in ecosystems the emphasis 

should be placed more generally on the pieces present in the system. 

Thus, beginning with the later generations of EMT (Joyner et al. 2012) and 

extending into development of MILA, a new vocabulary was developed: Component-

Mechanism-Phenomenon. Each part of this new vocabulary is directly analogous to a 

term in SBF. Components represent the Structure of the system, emphasizing the physical 

pieces of an ecological system and their properties. Mechanism represents the Behavior 

of the system, a sequence of developments linked together in a causal chain that results in 

some observable Phenomenon. Phenomenon represents what was formerly described as 

the Function of the system; the Phenomenon is the initial observable event that the 

investigator aims to explain. 

To instantiate the principles of CMP and better facilitate modeling of ecological 

phenomena, a new modeling interface was developed for EMT and subsequently carried 

over to MILA. In this modeling interface, students begin with a description of the target 

Phenomenon to explain. This is initially written in plain text, and subsequently is 

articulated within the model. Students then construct a Mechanism that explains how the 

Phenomenon arose, grounded in the interaction of multiple Components and their 
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properties. It is important to note that the modeling interface used in MILA instantiates 

the principles of CMP modeling, but this particular instantiation is not synonymous with 

CMP modeling. MILA implements certain features, such as management of multiple 

hypotheses and the inclusion of evidence within models, that are not core to the 

principles of CMP but rather are important for using CMP in inquiry-driven modeling of 

complex ecological systems.  

Modeling in MILA 

In order to understand how modeling in MILA provides the environment in which 

inquiry-driven modeling can occur, we will first explore specifically the design of MILA 

and its instantiation of CMP modeling. This section will first describe the overall 

structure of a project in MILA, then the semantics of models produced in MILA, and 

finally the prominent role that evidence plays in models created within MILA.  

Project Structure 

In MILA, all interaction takes place in the context of a project; the first task 

students are asked to do upon beginning engagement with the software is to create a 

project. The framing, organizing element behind a project is a particular Phenomenon to 

be explained; thus, the Phenomenon portion of CMP models is the central motivating 

element behind projects in MILA. After creating their project, students are asked to 

define the Phenomenon they are attempting to explain in a dedicated natural language 

input box. Each project is comprised primarily of models, each corresponding to a 

hypothesis for what may have caused the Phenomenon; students can also take plaintext 

notes during their inquiry. Each model provides a Mechanistic explanation for how a 

particular hypothesis may have led to the Phenomenon. Models allow students to model 

in parallel multiple hypotheses for what might be causing the Phenomenon; in this way, 

students effectively construct multiple CMP models, each with the same Phenomenon but 

different potential Mechanisms explaining different hypothesized causes. At any time, 
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students can dismiss a hypothesis that they have deemed to no longer be worth pursuing; 

Dismissing a hypothesis crosses the hypothesis out in in the 'Model Hypotheses' box on 

the left, but the hypothesis can still be viewed for reference, as well as reconsidered later 

if additional evidence arises supporting the previously-dismissed hypothesis. 

Model Semantics 

Development of the specific semantics for modeling MILA was informed by prior 

experience with classroom interventions using ACT and EMT. One major observation 

during these interventions was that in the absence of constraints, students tended to put a 

wide variety of different types of content into their models. The resultant models lacked 

any consistent semantics. In designing modeling in MILA, we equipped the modeling 

interface with semantics that structured students' thought processes toward considering 

the system in terms of its Components, Mechanism, and Phenomenon. 

For the purpose of explaining the semantics of models constructed in MILA, a 

sample model is provided below in Figure 7. 

 

Figure 7: A sample model constructed in MILA. Note that this model was constructed by an expert 

researcher; examples of student models can be found in subsequent sections. 

The primary objects of MILA models can be thought of as nodes and edges, 

although there are strong semantics at play in those nodes and edges. Each node is 
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comprised of three parts: in the middle, the Component to which the node relates 

(providing the 'C' in CMP modeling), representing a physical part of the system; in the 

top left, a particular variable or property about that Component, representing the facet of 

the Component that is actually changing; and in the top right, an annotation of the 

direction of the change. A sample node is shown below in Figure 8; this node represents 

the Concentration (the variable) of Oxygen (the Component) going down. 

 

Figure 8: A node in a MILA model, representing the Concentration of Oxygen going down. 

Nodes in a MILA model are not themselves Components, but rather refer to 

changes or alterations made to some variable about a Component. In this way, nodes 

represent trends, changes, or developments: the above node represents Oxygen 

Concentration falling, an event in a system. The Components of the models are the 

physical pieces of the system that are shown in the center of the nodes, but the nodes 

represent more than Components alone. Similarly, multiple nodes could describe the 

same Component; in the model in Figure 7, for example, two different nodes portray the 

Component 'Algae' at different points in the causal process. In other models, multiple 

nodes could describe different variables about the same Component; there might, for 

instance, exist a relationship between Fish Population and Fish Birth Rate, two variables 

of the same Component. 

Nodes are linked together with edges, and edges represent causal relationships. In 

this way, the sequence of nodes, as connected by edges, represents the Mechanism, 

comprised of changes to Components, that students are proposing to explain the 

Phenomenon. An example of a short such causal chain (itself a subset of the sample 

model, above) is shown below in Figure 9. 
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Figure 9: A portion of a model explaining how the Fish Population has dropped. 

In this subset of the sample, model, the semantics of the model read as follows: 

the rising Concentration of Dead Matter in the system is causing the Concentration of 

Oxygen in the system to fall, which in turn is causing the Population of Fish in the system 

to drop. This is a small, linear subset of the model proposed above, but non-linear models 

are also possible.  

Evidence in Modeling 

The software, broadly, is meant in part to facilitate an authentic process of 

inquiry-driven modeling, and as part of that process, we aim to teach students that any 

propositions they make about the Mechanism of a system must be defended by some sort 

of Evidence; in other words, students need to explain why they believe the Phenomenon 

happened in the way they are proposing. In order to facilitate this behavior better, 

Evidence is actually included in the models students construct on the links they draw 

between nodes. Every connection between nodes is colored from red to green 

representing the strength of the evidence that students have currently supplied for that 

connection. Upon clicking on the edge, the students are provided a separate dialog into 

which to provide their evidence. An example of a colored edge and an example of the 

pop-up dialog are shown in Figure 10 and Figure 11, on pages 42 and 44, respectively. 

During the previous walk-through of the inquiry-driven modeling process on page 

25, we discussed how students uncover new information through the inquiry process that 

then influences their model. In some cases, the effect of this new information is to 

corroborate the claims of the model. For example, the model may make a prediction (for 

example, that oxygen concentration in the lake will be low). If that prediction turns out to 
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be true, that lends credence to the model as an accurate description of the phenomenon. 

This process of providing evidence is crucial to the inquiry-driven modeling process. In 

our earlier experiments (e.g. Goel et al. 2013), one observation was that students tended 

to build models to explain phenomena first, and only come up with evidence for why 

their model was accurate later. In this way, the model's explanation was not strongly 

grounded in evidence. More importantly, this led to students searching for evidence 

solely to corroborate their model rather than grounding their model in the evidence they 

can provide. Thus, in MILA, evidence was elevated to a first-class object within the 

model itself; the mechanism that students propose is directly augmented with their 

evidence for why their proposed mechanism is an accurate description of the system. 

 

Figure 10: Several connections in a model, marked by different colors. The green connections have 

stronger evidence supporting them than the red connections. 

When providing their evidence, students are asked to categorize their evidence 

using a brief categorization scheme taught elsewhere in the lesson. The categories that 

students can use in providing their evidence are: 

 Direct Observations, observations on the system itself. For example, a team may 

observe that the fish showed no external signs of trauma, which is evidence in 

favor of suffocation as a cause of death. 
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 Simulation Observations, observations made while engaging with a simulation 

of the system. For example, the hypothetical team used previously consulted a 

simulation of the system and noted algae populations rose before oxygen crashes. 

 Similar System Observations, observations made about systems in similar 

circumstances. For example, the hypothetical team used previously discovered 

oxygen depletion was responsible for a fish kill in a similar system to Lake Clara 

Meer. 

 Expert Information, which includes established principles in the scientific 

community or testimony from a domain expert. For example, the hypothetical 

team used previously consulted a local expert on the lake to discover that oxygen 

levels were low immediately after the fish kill event.  

 Non-Expert Information, which includes testimony from teachers, casual 

observers, the Internet, and other non-trustworthy sources. For example, at least 

one team referenced a report provided in an Internet comment wherein a person 

mentioned fertilizer being dumped in the park. 

 Logical Explanations, explanations that make sense to the individual. In the 

example used previously, a team constructed a model that suggested oxygen 

depletion killed the food source for the fish because that would logically explain 

how oxygen depletion lowered the fish population. 

 Controlled Experiments, experiments actually run on the system. Although less 

applicable in ecology given the difficult in controlling variables, students in the 

class conducted a controlled experiment on samples of lake water to test whether 

the presence of certain chemicals led to the presence of other chemicals. 

 Other Evidence, evidence that does not necessarily fit into the previous 

categories. 
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These evidential categories are compatible with existing research on epistemic 

cognition (Goldin, Renken, Galyardt, & Litkowski 2014). This prior research on 

epistemic cognition identified five categories of evidence corresponding to the above 

categories of Logical Explanation, Expert Information, Non-Expert Information, Direct 

Observation, and Controlled Experiment. The two additional categories of evidence 

included here, Simulation Observation and Similar System Observation, are provided in 

direct correspondence to sources of data supplied during this curriculum (NetLogo 

simulations and articles on similar systems). These sources of evidence also build off our 

own research in other areas; we have examined the role of simulations in conceptual 

modeling (Vattam, Goel, & Rugaber 2011), as well as analogical reasoning across similar 

systems in design and understanding (Goel et al. 2011; Goel, Vattam, Helms, & Wiltgen 

2011). 

 

Figure 11: The dialog into which students can provide their evidence. On the left, students choose a 

category for the evidence they are providing. On the right, students write their evidence. 

As students construct their models, MILA examines the evidence that students 

have provided for each connection, weights it to prioritize or reward more reliable 

evidence, and assigns a score to that connection. That score, then, is reflected in the color 

of the connection in the students' model. At present, a weighting or prioritization of 

evidence has not been identified by either the epistemic cognition community or 
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researchers on the philosophy of science. For the purposes of this project, a simple 

weighting scheme was developed as a starting point to instruct students on the value of 

stronger types of evidence. Expert Information and Controlled Experiments were 

weighted the highest at three points; Simulation Observations and Similar System 

Observations were weighted at two points; and Logical Explanations, Non-Expert 

Information, and Direct Observations were weighted at one point each. This weighting 

scheme is not proposed as an optimal prioritization of evidence, but rather as one possible 

faithful recreation of the strength of different kinds of evidence uncovered by the 

epistemic cognition community. This weighting scheme was used to provide students 

feedback on the strength of their models as well as to evaluate model strength in the 

subsequent analysis in Chapter 4; however, the accuracy of this scheme relies on students 

correctly coding the category for the pieces of evidence they supply. Because there is no 

way to ensure this accuracy during interaction with the software, results were coded 

during the analysis phase to examine whether students were correctly categorizing the 

evidence they provided and adjust the scoring for different models accordingly. 

MILA–T: The Metacognitive Tutoring System 

As described previously, two versions of MILA–T have existed: MILA-T1, used 

in a pilot study in 2012, and MILA-T2, used in the primary experiment for this 

dissertation. In MILA–T1, four tutors were used: a Guide, a Critic, a Mentor, and an 

Interviewer. These tutors used some relatively simple production rules to generate 

feedback for the students based on the current day of the summer camp, the classroom 

context, and, to a limited extent, the content of their model. Based on observations from 

the pilot study and the creation of the aforementioned model of inquiry-driven modeling, 

the four tutors were revised to give much more sophisticated advice, emphasize 

metacognitive skills, and maintain an underlying model of student efficacy. Toward this 

end, a fifth tutor was also created: an Observer, to keep track of students' progress and 



   

46 

 

update an underlying profile of teams' ability for use by the other tutors. This batch of 

tutors, MILA–T2, was used in the project described in this dissertation. Unless otherwise 

noted, 'MILA–T' in this dissertation refers to MILA–T2. 

Broadly, all five tutors are characterized in some way as mimicking a functional 

role that a teacher plays in a classroom, loosely corresponding to the functional roles 

proposed in the Grasha model of teaching styles (Grasha 1996) and leveraging Shute's 

notion of different qualitative types of formative feedback (Shute 2008). This serves 

several purposes. First, these tutors are intended to provide the kinds of feedback that 

would be provided by a teacher or human tutor, and therefore it is useful to consider the 

functional roles that these individuals play in choosing the roles for these tutors (Merrill, 

Reiser, Ranney, & Trafton 1992). Second, examination of the functional roles played by 

teachers and human tutors gives insight into the types of and prompts for feedback that 

tutors may provide (VanLehn et al. 2003; Olney et al. 2012; D'Mello & Graesser 2013). 

Third, in our deployments, these tutors are used in a classroom environment, allowing the 

tutors to offload some of the demand on teachers onto the software and supporting the 

teachers' efforts to provide higher-level feedback. The analysis in Chapter 5 suggests, in 

fact, that this process of offloading functional roles from the teachers may be the primary 

mechanism behind the learning gains seen in the Experimental group of students. In 

addition to structuring the tutors around these functional roles, each tutor is also supplied 

with a human name and a human face to attempt to leverage the benefits seen in prior 

research toward spawning empathy between the student and the tutoring system (Lepper 

& Chabay 1988; Johnson, Rickel & Lester 2000; Azevedo et al. 2009; Lee & Ko 2011). 

On Metacognition 

As described at the beginning of this dissertation, the goal of this tutoring system 

is to teach students the metacognitive process of inquiry-driven modeling. However, the 

functional roles played by the tutors do not inherently connect to metacognition; it would 
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be possible to design a similar tutoring system that teaches cognitive skills or content 

knowledge. Rather, the way in which MILA–T teaches metacognition is in the content of 

the tutors. The tutors teach metacognition in three primary ways: by shifting students' 

focus to metacognitive skills, by instructing proper metacognitive abilities, and by 

demonstrating metacognitive thought themselves. 

As mentioned previously, one of the key challenges with teaching metacognition 

is instructing students to value the metacognitive process itself rather than the content 

knowledge. Our past interventions showed students had a strong proclivity to value the 

correct answer above all else, going so far as to actively eschew the desired process if 

they thought it would give them the right answer. This dynamic informed the selection of 

the phenomenon used in this intervention: the correct explanation of the fish kill in Lake 

Clara Meer is not conclusively known. Thus, the first way in which the tutoring system 

emphasizes metacognition is by attempting to shift students' focus to metacognitive 

processes rather than straightforward content knowledge. For example, the tutors 

anticipate certain undesirable questions students might ask, like "What really did cause 

the fish kill?", and reply by emphasizing the process by which they ought to answer that 

question. The tutors also ask students questions that explicitly encourage students to 

reflect on why they made the decisions that they made rather than just the content of the 

decision. 

The second way in which the tutors of MILA–T target metacognition is with the 

actual content that they provide to students. The feedback that tutors have available is all 

in service of metacognition and inquiry-driven modeling; the tutors frequently suggest to 

students how to and when to engage in metacognitive processes like planning their next 

move, evaluating and monitoring their current understanding, incorporating new 

knowledge into their prior understanding, and evaluating their prior understanding 

against that new knowledge. Thus, not only do the tutors encourage students to 

emphasize their own metacognition, but they also instruct students on how exactly they 
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should be thinking about the inquiry and modeling task. In this way, the tutors do not 

only teach students to pay attention to how they are thinking about the problem, but also 

actually how they should be thinking about the problem. 

In service of this attempt to directly and explicitly instruct the desired 

metacognitive process, the tutoring system also engages in teaching by example. In 

addition to giving explicit suggestions on what the team should do next, the tutors also 

describe the proper decision-making process for different circumstances. For example, an 

error described in the model shown in Figure 5 on page 29 is that students are not always 

sure of how to recover from and respond to evidence that contradicts their current 

hypotheses. In anticipation of this error, the tutors are equipped with responses that give 

examples of how to respond to those situations. In providing these answers, however, the 

tutors are most concerned with instructing the thought process underlying those 

responses, rather than the output of the response itself. In this way, the tutors emphasize 

metacognition by emphasizing it, instructing it, and demonstrating it. 

In addition to targeting students' metacognition, the tutors of MILA–T can also be 

described as metacognitive in that they themselves are thinking about thinking. 

Metacognition, as described previously, is defined as thought about thought, and the 

tutors of MILA–T are explicitly trying to teach thought. Thus, the tutors can be described 

as metacognitive in that they reason over students' own cognitive and metacognitive 

thought. This is significant in two ways. First, it highlights the explicit limitations placed 

on the tutoring system. They do not, for example, check the biological accuracy of the 

models that students construct because biological accuracy is not the skill they aim to 

teach; instead, they aim to teach the thought process that will ultimately lead to biological 

accuracy, not only with known systems but also with as-yet unexplained phenomena. 

Secondly, it emphasizes the apprenticeship nature woven into many of the tutors' 

responses. The tutors are frequently informing students what decisions they would make 

if they were in the same situation and what thought processes would go into those 
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decisions. In this way, the metacognitive tutors attempt to make their own metacognition 

explicit to the students in order to both emphasize and demonstrate a desirable 

metacognitive process. 

The Five Tutors 

MILA–T is comprised of five tutors: Gabriel the Guide, Craig the Critic, Mercer 

the Mentor, Isla the Interviewer, and the nameless Observer. For each of these tutors, this 

section will describe the functional role of a teacher that the tutor mimics, the detailed 

functional information by which the tutor mimics that role, a set of production rules 

emblematic of the tutor's overall operation, and the way in which the tutor attempts to 

address students' metacognitive processes of inquiry-driven modeling. 

The Guide 

The Guide, named Gabriel in the software, offers pre-written questions to which 

the team might want the answer based on their current models, past modeling behaviors, 

and the current classroom activity. Figure 12 below shows the Guide offering a selection 

of questions to the team. 

 

Figure 12: The Guide, offering a selection of questions chosen based on its production rules. 

Functional Role 

The Guide simulates the functional role played by the teacher of answering 

questions that the students bring up. In this situation, the student initiates asking a 

question, unprompted by the teacher. As such, the Guide does not interrupt the team to 
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offer questions, but rather offers questions only when the team initiates interaction. 

Interaction with the Guide can resemble a conversation; the questions that teams ask can 

lead to additional questions and multiple layers of textual feedback, mimicking an 

ongoing conversation between a teacher or human tutor and the student. For example, 

while using simulations, the team might question the relevance of the activity to the 

modeling they have been doing in the past; they would then talk to the Guide, who would 

offer the question, "How do simulations help us build scientific models?" Upon choosing 

this question, the Guide would offer guidance on how to manipulate a simulation in a 

way that informs the team's model, or how their model can guide their usage of the 

simulation. The Guide can be thought of as mimicking the Expert and Delegator styles 

from Grasha's model of teaching styles (Grasha 1996). 

Detailed Functional Information 

Figure 13 below shows the input that the Guide receives and the output that she 

returns in response. The Guide is first prompted by the team's request for help. She then 

checks the current state of the Observer's profile of the team's ability, the current state of 

the team's models of the phenomenon, and the current classroom context to develop a list 

of questions to offer to the team. Each question may lead to an additional set of questions 

(for example, a question on software interaction may lead to individual questions about 

adding components, adding connections, deleting components, etc.) or an answer, 

presented in text. 

The Guide only acts when initiated by the team. Teams consult the Guide by 

clicking the avatar in the bottom left corner of the MILA window, as shown in Figure 6 

on page 36. When teams click the Guide, the Guide runs through a series of production 

rules in order to choose which questions to offer. Factors that are considered in the 

production rules include: the current structure of the team's model; the current classroom 

context, including what day of the curriculum teams are currently on; the team's efficacy 
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with modeling and inquiry according to the Observer (as described under the section 

"The Observer" on page 67); and the recent tasks in which the team has engaged. 

Iterating through these production rules, the Guide compiles a list of questions that may 

be appropriate to the team at the given time and prioritizes them. Then, the Guide appears 

to offer the prioritized list of questions from which the team can select a question to ask. 

 

Figure 13: The inputs and outputs for Gabriel the Guide. The Guide takes in the team's request for 

help, checks the information available to her, and provides a list of questions suited to the team's 

current ability and context. 

Detailed Production Rules 

Below are three of the Guide's production rules of varying complexity. Note that 

the questions listed at the left have corresponding answers that are not shown here. Full 

rules can be found at dilab.gatech.edu/mila/ 

 

Table 3: Early in the project, the Guide supplies help at the software interaction level to prevent the 

teacher from having to explain the basic function of the software multiple times. 

Guide Rule #1 

Conditions 

 

Actions 

IF: This is the first usage of the software; 

OR: The team has not yet created anything 

in the software. 

THEN: Add to question list, "How do I 

create MILA Models?". 
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Table 4: After the team has demonstrated some minimum competency with the software interaction 

elements, the Guide shifts to prioritizing questions that instruct the team on why such a greater 

emphasis is being placed on evidence by connecting them to the broad 

Guide Rule #2 

Conditions 

 

Actions 

IF: The team has begun to add evidential 

justifications to their models; 

OR: Evidence has been introduced; 

AND: The team has not yet reached 

efficacy with evidential justifications 

according to the Observer's profile. 

OR: The team's current model is very large 

but lacks any evidential justifications. 

THEN: Add to question list, "What does 

evidence mean?"; 

AND: Add to question list, "What are the 

different types of evidence?"; 

AND: Add to question list, "How should 

evidence be used in a model?"; 

AND: Add to question list, "What is the 

importance of evidence in science?". 

 

Table 5: Once the team has engaged in a significant amount of modeling and developed multiple 

decent hypotheses and explanations, the Guide infers that the team will need to start pruning away 

some explanations soon. 

Guide Rule #3 

Conditions 

 

Actions 

IF: The team has multiple models meeting 

a minimum criteria of development; 

OR: The team has demonstrated an 

intermediate efficacy with inquiry; 

AND: The team has demonstrated a 

basic efficacy with modeling; 

OR: The team is on the last day of the 

lesson; 

AND: The team has multiple models 

under consideration. 

THEN: Add to question list, "When should 

I consider dismissing a hypothesis?" 

question. 

AND: Add to question list, "How do I 

know which hypothesis to dismiss?" 

AND: Add to question list, "Does 

dismissing a hypothesis mean I was 

wrong?" 

On Metacognition 

The Guide supports teams' metacognitive inquiry-driven modeling process in 

several ways. First, the structure of the questions themselves is intended to prompt the 

team to attend to metacognitive processes in the first place; while the Guide attempts to 

anticipate the questions teams will ask, she also anticipates the questions teams should 

ask if they are engaging in the desirable metacognitive process. Secondly, the Guide's 
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feedback nearly always evokes the team's metacognitive processes in its prescriptions; 

even on questions that are concerned primarily with the technical usage of the software 

(such as how to add nodes), the Guide touches on the way in which teams should think 

about the models they are producing and the role they play as external representations of 

their understanding. Third, the Guide is consistently concerned with students' 

dispositional approach to the process; the Guide reminds teams in several places that 

perceived failures like dismissing a failed model are actually positive steps toward an 

understanding of the phenomenon. 

The Critic 

The Critic, like the Guide, responds to teams' requests for feedback, only acting 

when the team clicks on the Critic's avatar in the bottom left. When consulted, the Critic 

gives one piece of feedback on the team's current model. The Critic is shown in Figure 14 

below. 

 

Figure 14: The Critic, providing a piece of feedback based on the current model. 

Functional Role 

The Critic simulates the functional role of responding to students' requests for 

feedback on their work, and as such, the Critic is almost exclusively concerned with the 

actual contents of the team's models. In a classroom, during paper exercises and other 

activities, the teacher may be available for students to approach and ask for feedback on 

their work at present. The teacher then gives feedback on the work shown. As such, 

similar to the Guide, the Critic waits for teams to request feedback, and gives feedback 
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primarily on the current status of what they have produced (although the Critic does 

allude to teams' interaction histories in some instances). For example, when a team 

believes they have constructed a satisfactory model (as represented in the model of 

inquiry-driven modeling presented earlier), they may ask the Critic if their model is 

satisfactory. The Critic would typically then offer an area where the model can be further 

improved. The Critic can be thought of as mimicking the Formal Authority style from 

Grasha's model of teaching styles (Grasha 1996). 

Detailed Functional Information 

Figure 15 below shows the input that the Critic receives and the output that he 

returns in response. The Critic is first prompted by the team's request for help. He then 

checks the current state of the Observer's profile of the team's ability (as described under 

the section "The Observer" on page 67), the current state of the team's models of the 

phenomenon, and the current classroom context to develop a list of possible pieces of 

feedback to provide to teams; in this way, the percepts that the Critic checks are the same 

as those that the Guide checks, but the decisions made on the basis of those percepts 

differ. After developing a list of possible pieces of feedback, the Critic randomly chooses 

one to provide with an accompanying change in facial expression. 

Like the Guide, the Critic prepares feedback only at the time when the team 

initiates communication. At that time, the Critic runs through a sequence of production 

rules reflecting various desirable criteria and common errors that might be found in a 

team's model. These production rules are prioritized according to several criteria, 

including complexity, necessity to future critiques, and past modeling performance. For 

example, the Critic checks on the strength of evidence the team has provided for their 

model, but it is not helpful to provide feedback on evidence strength when the team has 

not even drawn a complete model. Similarly, if there is a glaring problem with a model, 
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such as the presence of an orphaned node or evidence with no textual annotation, it is not 

prudent to give advanced critiques rather than fixing simpler problems. 

 

Figure 15: The inputs and outputs for Craig the Critic. The Critic takes in the team's request for 

help, checks the information available to him, develops a list of possible pieces of feedback to provide, 

and randomly selects one. 

As the Critic checks its production rules, he gathers relevant feedback to provide 

to the team, similar to the way in which the Guide gathers questions. Once the Critic 

reaches specific thresholds, however, he ceases checking for additional feedback to 

provide and randomly selects one of the pieces of feedback he has gathered to provide to 

the team. These thresholds are established primarily by complexity: the Critic will stop 

gathering additional possible pieces of feedback once he has either gathered a useful 

amount of potential feedback to offer in the same relative range of complexity, or if it 

establishes that there is a large gap in the complexity of feedback he could offer. In this 

way, the Critic can typically offer the team multiple pieces of feedback at the same time 

if they choose to continue requesting it, preventing the Critic from getting hung up on a 

piece of feedback that the team cannot incorporate yet or that was erroneously selected. 

Detailed Production Rules 

Below are three examples of specific production rules used by the Critic of 

varying levels of complexity. Full rules can be found at dilab.gatech.edu/mila/ 
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Table 6: Early on, the Critic detects one of the fundamental errors from the original inquiry-driven 

modeling process: teams beginning to model their hypothesis before articulating the phenomenon 

that they are explaining. 

Critic Rule #1 

Conditions 

 

Actions 

IF: The team has not yet written a 

phenomenon definition; 

AND: The team has already begun creating 

models. 

THEN: Add to the advice selection pool, 

"You've created some models, but you 

have not yet written a description of your 

phenomenon. Remember, it is very 

important to have a strong idea of what you 

are trying to explain before you start 

explaining it!" 

 

Table 7: Later in the modeling process, the Critic will look at the team's evidence. If the model's 

evidence is weak, the Critic checks the model of the team's ability to see if they have demonstrated 

understanding of evidence earlier in the project. If not, the Critic chooses to give them feedback on 

the weakness of their evidence. 

Critic Rule #2 

Conditions 

 

Actions 

IF: The team's model currently uses only 

weak evidence; 

AND: The team has not demonstrated 

sufficient intermediate competence with 

modeling, according to the Observer. 

OR: The team has not demonstrated 

sufficient intermediate competence 

with inquiry, according to the Observer. 

THEN: Add to the advice selection pool, 

"So far, you are focusing on some of the 

weaker kinds of evidence, like Non-Expert 

Information and Logical Explanations. 

These can be good places to get started, but 

try to look for stronger evidence to support 

your ideas. A convincing model needs very 

strong evidence to support it." 

 

Table 8: Once the team has a model that meets the earlier, simpler criteria, the Critic starts to set 

higher standards for how strong the evidence behind a model ought to be. 

Critic Rule #3 

Conditions 

 

Actions 

IF: There exists an edge in the team's 

model that has a strength score under 5. 

THEN: Add to the advice selection pool, 

"Your connection between [Start Node] 

and [End Node] has decent evidence on it, 

but it is not yet completely convincing. Try 

to solidify it with some strong scientific 

theories or direct confirming observations." 
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Note that the production rules for the Critic appear simple because implicit in the 

production rule is the knowledge that all previous production rules have not been added 

to the pool. For example, this final production rule is one of the final pieces of advice that 

teams can receive from the Critic on their models, representing the most advanced 

finishing touches that the Critic can suggest. Implicit in the selection of this rule is that 

basic errors and simpler feedback were not needed at this stage; if they had been, the 

Critic would have ceased looking for new feedback to provide before reaching this 

production rule. 

On Metacognition 

The primary role the Critic plays with regard to students' metacognitive abilities is 

the demonstration of the proper way to reason over a model. While the Critic typically 

gives its initial feedback in terms of a direct correction or improvement that can be made 

on the model, such as including Variables on Components or justifying connections with 

significant evidence, he always moves on to contextualize that within the thought process 

that that action supports. For example, providing evidence is a way of reasoning over the 

level of confidence that the team has in the model, so when the Critic is advising the team 

to add more evidence, he connects that superficial suggestion with the deeper notion of 

confidence more indicative of self-reflection on the model's strength. In this way, the 

Critic connects an observable behavior and repeatable skill with a metacognitive process. 

The Mentor 

Unlike the Guide and the Critic, the Mentor does not wait for the team to consult 

him; instead, the Mentor can interrupt the team at any time to provide feedback. When 

the Mentor's avatar changes to one with a light bulb, as currently shown in Figure 16, the 

team knows the Mentor has feedback for them. The light bulb remains until the team 

clicks and receives the feedback or until the prompt for the feedback is resolved without 

the Mentor's intervention. 
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Figure 16: The Mentor, making a positive note on the current team's variety of evidence. 

Functional Role 

In a classroom or a tutoring session, the teacher or human tutor typically observes 

the students while they engage in the activity. For teachers, they may move around the 

room, looking over the shoulder of students; for human tutors, they observe while 

students solve problems on their own. When teachers or human tutors see the student do 

something that demands feedback, they provide it immediately. This feedback may come 

with various purposes: it may be corrective when the teacher observes a mistake; it may 

be supportive when the teacher observes the students solving something correctly or 

engaging in proper reasoning; it may be expounding when the teacher witnesses a 

"teachable moment" where they may generalize students' actions to a broader principle; it 

may be connective when the teacher can link a students' activity to a related concept; or it 

may be of one of several other distinct qualitative types. The important criteria for any of 

this feedback are that it is provided immediately and spontaneously in the context of the 

activity. For example, immediately after demonstrating an understanding of the role of 

invisible substances in their model, the Mentor might give feedback connecting the 

importance of such invisible substances to other processes as well; alternatively, if the 

team has constructed complex models without any attention to invisible substances, the 

Mentor might interrupt and remind teams of the role these things can play. The Mentor 

can be thought of as mimicking the Personal Model style from Grasha's model of 

teaching styles (Grasha 1996). 
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Detailed Functional Information 

Figure 17 below shows the input that the Mentor receives and the output that he 

returns in response. The Mentor checks his percepts on a timed interval. Initially, he 

checks the current status of the Observer's profile of the team's performance (as described 

under the section "The Observer" on page 67), followed by the team's current models and 

the current context in the classroom. Using this, he builds a list of possible pieces of 

feedback to give to the team. With this list, he then checks the team's history of 

interaction with the Mentor and adjusts or dismisses feedback he has already provided in 

the past. If any feedback remains and if he has not interrupted the team recently, he 

decides to interact, illuminates his light bulb, and changes his facial expression. 

 

Figure 17: The inputs and outputs for Mercer the Mentor. The Mentor regularly checks the percepts 

available to him, selects feedback to provide, and alerts the team that feedback is available. 

The Mentor checks his production rules on a timed interval; the interval is 

changed depending on the team's activities and interaction with the Mentor and other 

tutors. Every time the Mentor checks his rules, he proceeds through a prioritized list and 

stops checking once he finds a single production rule for which the conditions are met. At 

that point, the feedback associated with the rule is processed and the Mentor's avatar is 

updated to reflect the presence of feedback: the selection panel automatically switches to 

the Mentor and a light bulb appears on the avatar. After this has occurred, the Mentor will 
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continue to check his production rules on the same interval; if the conditions that 

prompted that feedback to be available cease to be met (for example, the team fixed the 

error that the Mentor was going to correct on their own), the Mentor will respond 

accordingly and rescind that feedback. Similarly, if higher-priority feedback becomes 

available, the Mentor will switch to the higher-priority feedback. 

When the team clicks the Mentor while feedback is available, the Mentor's box 

will appear and deliver that feedback. The Mentor's feedback is all text-based, and at 

different points reflects the different qualitative types of feedback discussed previously. 

Upon viewing the feedback, the Mentor marks that feedback as 'read' permanently for the 

given group; even though in many cases the conditions for that feedback will continue to 

be met (especially when the Mentor is supporting or confirming a decision the team has 

made), that feedback will not appear again. For certain types of feedback, especially 

corrective feedback, the Mentor may comment on the same conditions in multiple ways if 

the conditions continue to be met, but he will not provide the exact same feedback more 

than once. If feedback is triggered but not read (because the conditions ceased to be true, 

higher-priority feedback became available, or the team closed the software before 

consulting the Mentor), the feedback can still be triggered and provided. Finally, if team 

clicks the Mentor when no feedback is available, the Mentor delivers a simple message 

that no feedback is currently available. 

The timed interval under which the Mentor checks his production rules is 

variable; every time teams receive feedback from the Mentor, the time until the Mentor 

checks his production rules again is modified to prevent feedback from being provided 

too frequently. When corrective feedback is provided and additional corrective feedback 

is available for those conditions, the interval is modified to ensure that the team has 

sufficient time to correct the error before being prompted again. After the interval has 

passed, the Mentor returns to his regular timing (typically ten seconds). Lastly, the 

Mentor is also in certain places directly alerted by MILA to check his production rules 
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after certain actions and under certain conditions; for example, the first day of the lesson, 

the Mentor immediately checks his production rules after several team actions to give 

precise feedback in the form of a tutorial. The immediate reactions by the Mentor are 

intended to make clear to the team what action of theirs prompted the Mentor to respond. 

Detailed Production Rules 

Below are three examples of specific production rules used by the Mentor of 

varying levels of complexity. Full rules can be found at dilab.gatech.edu/mila/ 

Table 9: The first of several rules that guide teams through the basics of using the software. Teams 

are immediately provided with feedback to create a model, add a node, add a second node, draw a 

connection, and insert a node into the middle of that connection. Each action triggers the Mentor to 

provide feedback for the teams pointing toward the next action. 

Mentor Rule #1 

Conditions 

 

Actions 

IF: The team has just opened the project for 

the first time. 

THEN: Make available feedback saying, 

"Welcome to MILA! To get started, go 

ahead and write a precise description of 

what you are trying to explain in the 

Phenomenon box. Remember, an important 

part of the scientific process is to start with 

a very strong idea of the phenomenon you 

are attempting to explain. 
 

Table 10: A rule that reflects the Mentor's reasoning in accepting the appropriateness of the 

feedback, ensuring that the feedback is directly temporally relevant (the first criteria), appropriate 

for the team's current level of ability (the second criteria), and non-repetitive (the third criteria). 

Mentor Rule #2 

Conditions 

 

Actions 

IF: The team has recently dismissed one of 

their models; 

AND: The team had not yet demonstrated 

proficiency with proposing and dismissing 

models according to the Observer's profile 

of the team; 

AND: The team has not yet received 

positive feedback on dismissing models. 

THEN: Make feedback available, "I see 

you've dismissed one of your initial 

hypotheses. Well done! Proposing and then 

ruling out hypotheses is an important part 

of science. It's crucial to reflect on your 

ideas and understand when you have 

disproven an earlier hypothesis." 
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Table 11: An alternate rule provided when the team has not yet demonstrated mastery of a concept. 

The paired feedback formed by Mentor Rules #2 and #3 demonstrates a common structure in the 

Mentor's feedback. In many places, the Mentor gives positive feedback when teams demonstrate a 

certain skill or action; if the teams do not demonstrate that skill before certain other requirements 

are met, the Mentor provides guiding feedback to consider that skill. 

Mentor Rule #3 

Conditions 

 

Actions 

IF: The team has not yet dismissed a 

model; 

AND: The team has multiple models 

currently available in their project; 

AND: The team is currently on one of the 

later days of the lesson. 

OR: One model is significantly more-

developed than the others. 

THEN: Make feedback available, "It looks 

like you haven't dismissed any of your 

models yet. It might be time to consider 

doing so. Consider taking a look at all your 

models and narrowing down which are the 

strongest, or if you can't tell, investigate 

them all equally until a better one emerges. 

Remember, dismissing prior hypotheses is 

an important part of the scientific process. 

If you need more information on when and 

what to dismiss, check with the Guide." 

On Metacognition 

 With regard to students' metacognitive skills, the Mentor plays at least two 

primary roles. First of all, similar to the Guide, the Mentor aims to attune students to the 

importance of metacognitive skills through repeated mention and explicit 

acknowledgement. The majority of the behaviors that the Mentor replies to are proxies 

for an underlying metacognitive ability; for example, while dismissing a model is a 

superficial behavior within the software consisting simply of clicking a button, the 

Mentor uses this behavior as a proxy for the willingness to dismiss failed hypotheses. 

Although this might not be an accurate proxy in all instances, the Mentor still seizes the 

opportunity to contextualize the behavior in a metacognitive skill; thus, even if the 

identification was mistaken, the Mentor still connects a recent action to the desirable 

metacognitive skill. Secondly, in line with the second and third Mentor rules above, the 

Mentor is also responsible for attempting to bring students into line with the model of 

inquiry-driven modeling outlined in Figure 4 on page 25; he does this by observing and 
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encouraging the desirable behaviors seen in that figure, while attempting also to catch 

and correct the errors noted in Figure 5 on page 29. He also detects more abstractly lack 

of performance of the behaviors in Figure 4, even when absence of the behavior does not 

cross over into the errors in Figure 5. Toward this end, the Mentor leverages his position 

as part of a broader curriculum on inquiry-driven modeling; as part of perceiving the 

current classroom context, the Mentor perceives the time by which teams are expected to 

demonstrate certain skills. If the team has not yet demonstrated a skill by the threshold 

identified by the curriculum, the Mentor alerts the team to the presence of that skill, 

describes why he has not yet identified it in the team's process, and explains the value of 

the skill. Thus, the Mentor relies significantly on the curriculum to provide a trajectory 

against which to track the team's inquiry-driven modeling ability. 

The Interviewer 

The Interviewer, shown in Figure 18 below, is responsible for asking teams 

questions that they can answer in plain text. The answers are then stored in the team's 

project for later perusal by a teacher or researcher. The Interviewer generally asks teams 

questions that the scientific process dictates they ought to learn to ask themselves. 

 

Figure 18: The Interviewer, asking the teams to reflect on their early dismissal of a hypothesis. 

Functional Role 

One important role for teachers and human tutors, especially with regard to 

developing metacognitive skills, is to probe and prompt the team to consider their own 

thought process in their decisions and behaviors. At a basic level this serves to help the 
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teacher or tutor understand the team's current level of ability, but at a deeper level, 

teachers and tutors are often asking students questions that the student should consider 

themselves during the activity. For example, in Algebra, a teacher might ask a student 

why they divided both sides by 'x'. The student would then reflect on their thought 

process and, sometimes, realize that their thought process was faulty. In modeling, a 

teacher or tutor might ask a student why they dismissed a certain model; this question 

allows the teacher or tutor to probe the student's reasoning and correct it if necessary, but 

also demonstrates to students that they ought to have an explanation for that decision 

during their own reasoning as well. The Interviewer, for example, asks exactly this 

question: when teams dismiss models, the Interviewer asks them to explain their 

reasoning, calling special attention to certain instances of model dismissal (such as 

dismissing an early, unexplored hypothesis or dismissing a thorough, well-defended 

model). The Interviewer can also be thought of as mimicking the Facilitator style from 

Grasha's model of teaching styles (Grasha 1996). 

 

Figure 19: The inputs and outputs for Isla the Interviewer. The Interviewer asks primarily about 

specific actions that the team takes in the software, and thus checks her percepts after every action 

and responds when she finds an action for which she has a question. 

Detailed Functional Information 

Figure 19 above shows the input that the Interviewer receives and the output that 

she returns in response. The Interviewer checks her percepts every time the team takes an 
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action because her questions are typically targeted at reflecting on specific actions within 

the inquiry-driven modeling process. She checks their most recent interaction with the 

Observer's current profile of the team's ability in mind (as described under the section 

"The Observer" on page 67) in order to assess whether the action she is considering 

asking about is newly demonstrated or has been executed multiple times in the past. She 

also checks the classroom context in order to understand the broader decision-making 

around the action in order to inform questions like, "What made you want to dismiss that 

hypothesis so early in your research?" 

Like the Mentor, the Interviewer continually observes team's actions in MILA and 

responds when certain conditions are met. Unlike the Mentor, however, the Interviewer 

responds more directly to individual team actions. Every time the teams perform any 

action, the Interviewer is alerted to check her production rules for a matching rule. If one 

is triggered (typically involving the action itself as one of its rules), the Interviewer 

immediately alters her avatar to include the light bulb to let the team know it has a 

question to ask. Unlike the Mentor, the Interviewer does not overwrite past questions 

with future ones; the question will remain until the team answers the question or closes 

the software. Once the team answers the question, the Interviewer can optionally reply 

with some textual feedback, or she can simply thank the team for answering the question. 

Also unlike the Mentor, the Interviewer will ask certain questions more than once; other 

questions she will ask only once. Like the Mentor, though, the Interviewer does apply a 

threshold to prevent herself from asking questions too often, even though this means that 

sometimes she passes up the chance to act on some of her production rules. 

Detailed Production Rules 

Below are three examples of specific production rules used by the Interviewer of 

varying levels of complexity. Full rules can be found at dilab.gatech.edu/mila/  
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Table 12: One of the Interviewer's questions. This question can be asked multiple times as needed, 

although several dismissals in a row will not be considered individually due to the threshold. 

Interviewer Rule #1 

Conditions 

 

Actions 

IF: The team has just dismissed a 

hypothesis; 

AND: It is relatively early in the lesson; 

OR: The dismissed model was 

relatively simple. 

THEN: Ask, "What prompted you to 

dismiss that hypothesis so quickly?"; then, 

"Sometimes hypotheses don't go anywhere 

at all and can be dismissed pretty quickly, 

but remember to always have a reason to 

dismiss an earlier hypothesis!" 
 

Table 13: Occasional events do occur where the Interviewer and the Mentor "step" on each other, 

such as when both are prepared to give feedback on hypothesis dismissals. In these instances, the 

Interviewer is capable of modifying the interval the Mentor uses to check its production rules, 

delaying the feedback and avoiding inundating the teams with too many interruptions. 

Interviewer Rule #2 

Conditions 

 

Actions 

IF: The team has just dismissed a 

hypothesis; 

AND: It is relatively late in the lesson; 

OR: The dismissed model was 

relatively complex and justified with 

significant evidence. 

THEN: Ask, "What prompted you to 

dismiss such a thorough model?"; then, 

"Dismissing hypotheses when you find 

contradictory evidence is crucial and 

represents a significant step forward for 

science. Scientists should never be 

ashamed to admit they are wrong in the 

face of contradictory evidence." 
 

 

Table 14: A rule demonstrating the Interviewer's attempt to reason over the team's behavior and 

identify a relevant question to ask. If the team rapidly dismissed and reconsidered a model, it might 

be indicative of just testing out the function, player with the software, or humoring the Mentor's or a 

teacher's suggestion. Significant time between dismissal and reconsideration, however, suggests a 

thoughtful decision. 

Interviewer Rule #3 

Conditions 

 

Actions 

IF: The team has just reconsidered a 

hypothesis; 

AND: Significant time has passed since the 

hypothesis was dismissed. 

THEN: Ask, "What discovery prompted 

you to reconsider that hypothesis?"; then, 

"Sometimes you find evidence for an old, 

failed idea while working on a new one. 

Just like you shouldn't be afraid to dismiss 

ideas when they aren't going anywhere, you 

shouldn't be afraid to revisit them, either!" 
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On Metacognition 

As mentioned previously, the primary role played by the Interviewer with regard 

to students' development of the desired metacognitive skills is to ask the students the 

questions that they ought to ask themselves. Self-reflection is a broader type of 

metacognition that is directly applicable in inquiry-driven modeling, and the Interviewer 

both encourages and demonstrates exactly this kind of self-reflection by prompting the 

team to reflect openly, modeling the behavior that they ought to internalize moving 

forward. 

The Observer 

Unlike the other tutors, the Observer has no visual manifestation and provides no 

feedback to the team. Rather, the Observer sits in the background, noting and tracking 

team behaviors and using them to modify an underlying profile of the team's ability. This 

profile, then, is available to the other tutors for use in their reasoning process. In the next 

chapter, the Control and Experimental groups in the deployment experiment are 

discussed; in the Control condition, teams do not see the tutors, but the Observer is still 

present in the background noting team behaviors. 

Functional Role 

When in a classroom or tutoring session, a teacher or human tutor is constantly 

noting elements of team's ability, tendencies, strengths, and weaknesses (Merrill, Reiser, 

Ranney, & Trafton 1992; Olney et al. 2012). These do not always prompt immediate 

feedback such as a correction or compliment, but contribute to an understanding of the 

student's ability that the teacher will use at a later time in service of another functional 

role. For example, a teacher (playing the functional role of the Mentor) might observe 

two students make the same error. The teacher may have previously noted that the first 

student has performed the skill correctly in the past while the second has made this same 
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error repeatedly. Given that mental profile of the team's abilities, the teacher may vary 

their feedback, reminding the first student that they have done it correctly in the past and 

demonstrating the skill again more clearly for the second student. 

Detailed Functional Information 

Figure 20 below shows the input that the Observer receives and the output that it 

returns in response. The Observer operates on the raw log of actions that the team 

executes; each time an action is executed, the Observer reads it and decides whether to 

modify its profile of the team's ability. Unlike the other tutors, the Observer's output is 

entirely internal to the system. The Observer maintains three profiles of the team's ability: 

a profile of inquiry ability, a profile of modeling ability, and a profile of systems 

understanding. 

Like the Interviewer, the Observer is alerted every time the team performs any 

action in the software; unlike the Interviewer, though, the Observer considers a longer 

history of the team's actions to attempt to identify the higher-level behavior. Upon being 

alerted that the team has performed some action, the Observer examines that action along 

with several of the other immediately preceding actions. The Observer then matches 

these actions against a set of action patterns it has, and if an action pattern is observed, 

the Observer modifies the underlying team profile. The Observer has separate team 

profiles for inquiry and modeling, reflecting related but distinct skills. For each skill, the 

Observer has low-level behaviors, such as Hypothesis Generation and Component 

Modification, and higher-level abstractions that summarize these lower-level behaviors. 

When the Observer notes the team performing an identified action pattern, it increments 

or decrements the portion of the profile corresponding to that pattern. It is important to 

note, however, that the Observer never considers a single performance of an action 

pattern to be indicative of the overall skill itself. Instead, the Observer demands a certain 

minimum threshold before considering that efficacy with a skill has been achieved. In 



   

69 

 

this way, the Observer attempts to avoid some of the difficulties with error detection and 

just-in-time feedback characteristic of metacognitive tutoring systems (Roll et al. 2007); 

it requires a more persistent and repeated demonstration of a skill to accept that the skill 

has been mastered. 

 

Figure 20: The inputs and outputs for the Observer. The Observer checks each action that the team 

takes and modifies its profile of the team's ability accordingly. 

Detailed Production Rules 

Below are three production rules used by the Observer of varying levels of 

complexity. As noted previously, incrementing the Observer's profile of a particular skill 

is not indicative of the Observer recognizing overall efficacy with that skill. Full rules 

can be found at dilab.gatech.edu/mila/ 

Table 15: The Observer modifies its profile of team behavior to reflect a potential increased ability to 

reason over and utilize multiple types of evidence, and a potential increased tendency to favor 

strongly-evidenced connections. The two low-level criteria on the right – Evidence Variety and 

Evidence Strength – then are united with other low-level behaviors regarding evidence to give an 

abstraction of the team's comfort with evidence as suggested in Guide Rule #2. 

Observer Rule #1 

Conditions 

 

Actions 

IF: The team has just added a new piece of 

evidence; 

AND: That new piece of evidence is of a 

type that has not previously been used; 

AND: That new piece of evidence creates 

an edge with an evidence score above 5. 

THEN: Increment the Evidence Variety 

criteria of the Inquiry profile; 

AND: Increment the Evidence Strength 

criteria of the Inquiry profile. 
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Table 16: The Observer recognizes a more advanced explanation in the model and modifies a low-

level criteria reflecting it. This criteria is then combined with other similar advanced modeling 

structures, such as Parallel Effects, Causal Flow, and Feedback Cycles, to give an overall profile of 

the team's modeling ability, as used in Critic Rule #2. 

Observer Rule #2 

Conditions 

 

Actions 

IF: The team has just added a new 

connection to their model; 

AND: That new piece connection 

establishes a model demonstrating the 

complexity of parallel chains of causation. 

THEN: Increment the Parallel Causation 

criteria of the Modeling profile. 

 

 

Table 17: The Observer recognizes that the team is proposing a new hypothesis late in the 

curriculum and have already had some success modeling previous hypotheses, together suggesting a 

willingness to consider new ideas rather than stick to old ones. Assessing that as a positive behavior, 

the Observer increments its profile of the team's Hypothesis Generation behaviors more significantly 

than when a hypothesis is proposed on the first day (when such a hypothesis is necessary to begin). 

Observer Rule #3 

Conditions 

 

Actions 

IF: The team has just added a new 

hypothesis to their project; 

AND: It is relatively late in the curriculum; 

AND: The team previously had one or 

more models meeting minimum level of 

thoroughness. 

THEN: Significantly increment the 

Hypothesis Generation criteria of the 

Inquiry profile. 

 

On Metacognition 

All of the behaviors that the Observer attempts to identify are metacognitive in 

nature; the Observer uses the observable actions in the software as proxies for an 

underlying metacognitive trait. A crucial element of this, though, is that performance of 

the action a single time does not reflect mastery of that metacognitive skill; it could be 

misidentified by the Observer or it could be an anomaly in the team's behavior that they 

do not yet perform reliably. To account for this, the Observer demands repeated 

performance of the behaviors it uses as proxies for the underlying skills, assuming that 

repeated performance of a behavior indicative of the metacognitive skill implies greater 

probability that the skill is actually informing the behavior. 



   

71 

 

Summary of Tools 

As described in this chapter, there are three primary tools at play in an 

intervention using MILA and MILA–T: a model of inquiry-driven modeling, an 

exploratory learning environment, and a metacognitive tutoring system. All three have 

been developed based on the project's ten-year history, the supporting literature, and our 

own experience with a pilot study in 2012. Although considerable more research can be 

performed on the model of inquiry-driven modeling and on MILA itself as an exploratory 

learning environment, the primary goal of the research presented here is to identify what, 

if any, learning gains are seen from interaction with the tutoring system compared to 

interaction with an identical project without the tutoring system. The experimental setup 

described in the next chapter, then, is a controlled experiment: given two groups of 

students with an identical curriculum and identical exploratory learning environment, to 

what extent do teams equipped with this metacognitive tutoring system outperform teams 

interacting without it? 
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CHAPTER 3 

EXPERIMENTAL DESIGN & METHODS 

 

Figure 21: The third chapter of this dissertation outlines the experiment that was used to test the 

effectiveness of the previously-described tutoring system for teaching inquiry-driven modeling. It 

starts by describing the design of the experiment itself, then describes how the data were gathered, 

processed, and analyzed. 

This chapter outlines the design of the experiment, including the arrangement of 

Control and Experimental groups (and other independent variables), the data gathering  

and processing procedures, and the analyses that have been run on those data. The results 

of these analyses are presented in full in Chapter 4 and 5, and the processed claims and 

conclusions are presented in Chapter 6. 

Experimental Design 

In this study, students participated in a nine-day curriculum on scientific modeling 

and inquiry. As part of this nine-day unit, students used the software system MILA for 

five class days. The curriculum was provided to the tutoring system MILA–T, and the 

tutors used this curriculum and its accompanying milestones to contextualize the 



   

73 

 

expected level of student performance during the different days of the intervention. More 

detailed information about the curriculum in which students engaged can be found in 

Appendix C. 

Students in the Experimental condition received MILA with the embedded 

tutoring system described previously for the first four days of the software interaction 

portion of the unit; students in the Control condition received MILA without the 

embedded tutoring system during these four days. On the fifth day, neither group 

received the embedded tutoring system. The first four days were spent addressing the 

problem of why thousands of fish suddenly died in Lake Clara Meer; henceforth, this is 

referred to as the Learning project because during this project, students in the 

Experimental group used MILA–T to improve their understanding (e.g. Learn) of 

inquiry-driven modeling. The fifth day was spent addressing the problem of why Atlanta 

has experienced significant temperature increases in the past several years; henceforth, 

this is referred to as the Transfer problem because it aims to test whether or not students 

in the Experimental group transferred any improvement in modeling ability to a new 

problem. Control groups received no tutor feedback in the Learning project, while 

Experimental groups did receive tutor feedback in the Learning project. Neither the 

Control nor Experimental groups received tutor feedback in the Transfer project. 

This study was conducted with 276 students in seventh grade Life Science 

classes. Students were given the option of whether or not to consent to have their data 

used in the study; for those students who did not consent, their content tests, attitudinal 

surveys, and teams' models were not included in the analysis. 237 students consented to 

participate in the study. Given that the study was conducted in a normal classroom, 

limited control was available over assignment of subjects to Control and Experimental 

conditions. Two teachers administered the classroom during the study with limited 

intervention from the researchers. Each teacher taught five classes. Each individual class 

was labeled by the school as either Gifted, On-Level, or Inclusion, and each individual 
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student was labeled by the school as either Gifted, High-Achieving, On-Level, or Special 

Needs. Gifted classrooms were comprised of Gifted and High-Achieving students; On-

Level classes were comprised solely of On-Level students; Inclusion classes were 

comprised of both On-Level and Special Needs students. Given the presence of only 

seven high-achieving students and their participation in the Gifted classes, these students 

were classified as Gifted for analysis. Teacher A taught five classes: two Gifted classes, 

one On-Level class, and two Inclusion classes. Teacher B taught five classes: three On-

Level classes and two Inclusion classes. Given the limited number of Special Needs 

students in the Inclusion classes and their individual identification for individual analysis, 

On-Level and Inclusion classes are grouped together for most team-level analysis. 

Entire classes were assigned to Control and Experimental conditions in a pair-

wise fashion based on scheduling restrictions. Each teacher was given three Experimental 

classes and two Control classes in order to facilitate comparisons within teachers. The 

Gifted classes of Teacher A were split between the Control and Experimental conditions, 

as were the Inclusion classes; the sole On-Level class for Teacher A was assigned to the 

Experimental group. The Inclusion classes of Teacher B were split between the Control 

and Experimental conditions, as were the On-Level classes; the third On-Level class was 

assigned to the Experimental condition. The chart below shows the assignment of classes 

to the Control and Experimental conditions.  

 

Table 18: The assignment of classes to the Control and Experimental conditions. 

 Control Experimental 

Teacher A 
Class A (Inclusion) 

Class B (Gifted) 

Class C (Inclusion) 

Class E (Gifted) 

Class D (On-Level) 

Teacher B 
Class F (On-Level) 

Class G (Inclusion) 

Class I (On-Level) 

Class H (Inclusion) 

Class J (On-Level) 
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Individually at the beginning of the study, students took a content test and 

attitudinal survey. Afterward, students were assigned to teams of two or three for the 

duration of the study; team assignment was taken care of by the teachers without input 

from the researchers. Teachers later reported that they attempted to put students who had 

not consented to participate in the study in teams together to maximize the number of 

fully-consenting teams; this was not performed at the request of the researchers. 98 total 

teams were formed, with 84 teams fully comprised of students consenting to the study 

(three teams, however, did not complete the Transfer project due to absences). Data are 

available on the make-up of each team. At the conclusion of the study, students again 

took the content test and attitudinal survey individually. 

A graphical calendar depicting the day-by-day activities of each class is shown 

below. Control and Experimental classes were exposed to the same lessons on the same 

days, with the only controlled variable being exposure to the tutoring system. On those 

days in which MILA was used, the teachers in each class began the class period with a 

short scripted lecture and a classroom activity. The short scripted lecture was the same 

for Control and Experimental classes. During this lecture, teachers explained to students 

how to interact with MILA, the nature of mechanism in MILA modeling, the importance, 

strength, and types of evidence that could be provided in MILA, and the overall criteria 

of a good model. During both classes as well, the teachers moved around the classroom 

giving teams feedback on the models they constructed and their overall modeling 

processes. No guidance was given to teachers to vary their behavior between Control and 

Experimental classes, although teachers later reflected that their behavior between 

Control and Experimental classes did differ due to the availability of MILA–T as an 

alternate source of feedback for students. Both Control and Experimental classes also 

participated in several shared activities outside MILA. In total, four lessons differed 

between the Control and Experimental classes. 
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Table 19: The lessons in which students participate during the intervention. 

 Control Classes Experimental Classes 

05/06 
Pre-Test and Pre-Survey, Introduction to the Lake Clara Meer Problem 

No MILA 

05/07 
Lesson 1: Introduction to MILA 

With MILA, without tutors 

Lesson 1: Introduction to MILA 

With MILA, with tutors 

05/08 
Lesson 2: Biological and Ecological Content Knowledge 

No MILA 

05/09 
Lesson 3: Introduction to Mechanism 

With MILA, without tutors 

Lesson 3: Introduction to Mechanism 

With MILA, with tutors 

05/10 
Lesson 4: Introduction to Simulations 

With MILA, without tutors 

Lesson 4: Introduction to Simulations 

With MILA, with tutors 

05/13 
Lesson 5: Lake Water Quality Experiment 

No MILA 

05/14 
Lesson 6: Free Modeling 

With MILA, without tutors 

Lesson 6: Free Modeling 

With MILA, with tutors 

05/15 
Lesson 7: Atlanta Temperatures 

With MILA, without tutors 

05/16 
Post-Test and Post-Survey, Q&A with Georgia Tech Researcher 

No MILA 

 

With the exception of interaction with the tutoring system, all elements of the 

projects were the same across the Control and Experimental classes. The same scripted 

introduction to MILA was performed by the teachers at the beginning of each class. On 

each of the following three days of interaction with MILA, students in both groups 

participated in a model walk where they looked at and evaluated MILA models 

assembled by others, followed by a discussion of the strengths and weaknesses of each 

model. Both groups discussed the different kinds of evidence, the increased value of 

certain kinds of evidence (such as Expert Information compared to Non-Expert 
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Information), and the criteria for evaluating a good model. In this way, the learning goal 

of inquiry-driven modeling was integrated into the curriculum of the unit and delivered to 

both the Control and the Experimental groups. While MILA–T aims to improve 

understanding of inquiry-driven modeling even further, understanding inquiry-driven 

modeling was nonetheless the explicit learning goal in the Control groups of the project 

as well. 

Raw Data 

Data generated over the course of this study fall into two groups: individual data 

and group data. Individual data are gleaned from individual students, whereas group data 

are generated by students working in teams of two or three where data points cannot be 

attributed to any individual student. 

Individual 

The study generated three forms of individual data: content test data, attitudinal 

survey data, and user experience data. 

 Content Test Data. Students took a content test of 15 questions before and after 

the study. The content test examined biological content knowledge and 

understanding of the scientific process. Test questions were examined by an 

independent expert prior to usage. Pre-test results will be used to assess individual 

differences prior to engagement with the intervention. 

 Attitudinal Survey Data. Students completed selections from two attitudinal 

inventories before and after the study: TOSRA (Test of Science Related Attitudes, 

Fraser 1981) and mATSI (Modified Attitudes Towards Science Inventory, 

Weinburgh & Steele 2000). Combined, they measure five constructs: attitude 

toward scientific inquiry, interest in careers in science, desire to do science, 

perception of the science teacher, and anxiety toward science. Pre-test results will 
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be used to assess individual differences prior to engagement with the intervention. 

These tests were chosen to examine multiple facets of students' attitudes toward 

science, in service of the dispositional learning goals outlined above and 

advocated by the literature (Roll et al. 2007). These five metrics are a subset of 

the twelve provided by the two inventories together and were chosen to limit the 

overall length of the survey to preserve student engagement. The metrics were 

chosen through consultation with an expert on science education. 

 User Experience Data. At the conclusion of the study, students also completed a 

survey reflecting on their experience with the intervention. For the Experimental 

condition, this survey was comprised of three free-response questions about the 

tutors, one free-response question about the software as a whole, thirteen multiple 

choice questions about the tutors, and three multiple choice questions about the 

software as a whole. Control classes only received the one free-response question 

and three multiple choice questions about the software as a whole. 

Team 

During engagement with the software, all student activities were recorded in 

multiple ways. Additionally, final projects generated by students were recorded. These 

different means of tracking work out to several different individual types of raw team-

level data: 

 Final Learning Project Models. The first four days of the software interaction 

portion of the intervention, students completed models describing what they 

believed happened in Lake Clara Meer, as described previously. By the fourth 

day, students were asked to choose the final model in which they were most 

confident. This final model and the rejected models are recorded. 

 Final Transfer Project Models. The fifth day of the software interaction portion 

of the intervention, students completed models describing why the city of Atlanta 
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has experienced record high temperatures the past several years, as described 

previously. Students were asked to submit one model of this phenomenon. This 

model and any rejected models are recorded. 

 Learning Project Interaction Log. Within the software, every individual 

interaction that students complete is recorded. Thus, a comprehensive log of the 

entire model construction and revision process that students complete while 

engaging in the software was recorded. 

 Transfer Project Interaction Log. Similarly, a revision log of students' process 

of constructing a model of temperature change in Atlanta was recorded. 

 Software Usage Statistics. In addition to the revision log, the software also tracks 

more basically the amount of time that students spend engaged with the software. 

This gives a view as to the amount of exposure the different teams receive to the 

treatment condition. 

 Tutor Interaction Statistics. In addition to the revision log, the software also 

tracks all interactions between the students and the tutors. This includes the times 

when the Mentor and Interviewer had available feedback that the team did not 

consult, and the profile that the Observer developed of teams over time. 

Data Cleaning & Processing 

Prior to analysis, data drawn from the experiment were cleaned and processed. In 

the case of the individual data, this process was relatively simple, consisting of removing 

the data for non-consenting students and evaluating the content test and attitudinal 

surveys. For the team-level data, more significant cleaning and processing was required. 

Individual 

First, content tests and attitudinal surveys from non-consenting students were 

removed from the study's data pool. The remaining 237 content tests and attitudinal 
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surveys were then paired within students and graded. The pre-test score, the post-test 

score, and the change between the two were recorded for the content test. Similarly, the 

pre-survey score, the post-survey score, and the change between the two were recorded 

for each of the five attitudinal surveys. The result of this cleaning process is a set of three 

scores for each of the six metrics for each student: the score before the intervention, the 

score after the intervention, and the change between the two. 

Team 

More significant data cleaning and processing was required for team-level data 

given that the data are not initially numeric. This process resulted in three types of data: 

 Final Model Summaries. During the intervention, each team produced two finals 

models: a final model of the Learning project (the Lake Clara Meer problem) and 

a final model of the Transfer project (the Atlanta Temperature problem). Analysis 

of these models identified qualitative differences in the models generated with 

tutor feedback and those generated without tutor feedback. Models were scored 

according to the following criteria: model complexity; total model strength; 

average model strength; average evidence strength; and total evidence. Model 

complexity sums the components and connection in the model to summarize its 

size and interconnectedness. The four evidence measurements identify different 

types of evidential strengths behind a model: how much evidence is given for the 

model as a whole (total model strength), how much evidence is given for each 

individual claim within the model (average model strength), how strong each 

individual piece of evidence is (average evidence strength), and how many total 

pieces of evidence are given in the model (total evidence). 

 Model Construction Statistics. In order to assess the model revision process in 

which students engaged, the low-level software interactions were coded into 

higher-level activities corresponding to the inquiry-driven modeling process 
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described previously. Based on these activities, Markov chains were calculated to 

summarize the transitions between different activities in the inquiry-driven 

modeling process and compare those transitions to the ideal execution of the 

process. 

 Tutor Interaction Statistics. The software logs each individual interaction that 

teams have with the tutoring system, along with timestamps indicating when the 

interaction ceased or how long the interaction lasted. These raw data were 

processed to give a clean account of the frequency with which each team 

consulted the tutors, which tutor they consulted, and the amount of time paid to 

the feedback itself as suggested by the timestamps revealing the time in which the 

feedback was visible. 

At the conclusion of this process, the clean team-level data provided numeric 

summarizations of students' models, students' model revision process, and students' 

interactions with the tutoring system. 

Variables 

The data cleaning and processing process described above generated numerical 

data on a variety of elements of the intervention. These data, in turn, becomes the input 

and output variables of the following study. Again, these are split between individual and 

team variables. 

Individual 

At the individual level, the analysis focuses on the effect of exposure to the 

Experimental condition on students' performance and responses on the pre- and post-test 

and -survey. 
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Input Variables 

The primary input variable is exposure to the experimental condition. Altogether, 

99 consenting students were exposed to the Control condition and 138 consenting 

students were exposed to the Experimental condition. In addition to the Control and 

Experimental conditions, there are two other variables to be analyzed as controlled input 

variables: 

 Teacher. Based on casual observation, significant differences were seen in the 

workings of the two teachers' classrooms. It is possible, and in fact likely, that 

there exist differences in performance based on differing teacher behavior. 

 Student Level. Individual students were given different identifiers by the school: 

Gifted, High-Achieving, On-Level, and Special Needs. Results from engagement 

with the intervention may differ based on students' prior success and ability, as 

summarized in these labels. 

Output Variables 

At the individual level, there are three categories of output variables. These 

variables will be further sub-divided for analysis, but retain this categorical structure. 

 Change in Content Test Results. Students' change in content test scores is 

analyzed as a product of the intervention. In addition to the change, the analysis 

also examines whether there are any initial or final differences in content 

knowledge between the Control and Experimental groups. 

 Change in Attitudinal Survey Results. Students' change in attitudinal survey 

scores is calculated for each of the individual inventories of the TOSRA and 

mATSI. In addition to the change, the analysis also examines whether there are 

any initial or final differences in attitudes between the Control and Experimental 

groups. 
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 User Experience Survey Results. This variable summarizes students' self-

reported experience with the software and tutoring system. This is used to 

examine whether there exists a difference in opinion toward the software based on 

exposure to the Experimental condition. 

Team 

At the team level, the analysis focuses on the effect of exposure to the 

Experimental condition on students' models and inquiry-driven modeling process for both 

the Learning project and the Transfer project. 

Input Variables 

As with the individual analysis, the primary input variable in the team analysis is 

the Control or Experimental condition. Altogether, 84 fully-consenting teams used the 

software, with 50 in the Experimental condition and 34 in the Control condition. The 

primary controlled variables for the team-level analysis mirror those from the individual 

data: 

 Teacher. The two different teachers in the study had significantly different 

approaches to guiding teams' work, and thus projects between the teachers are 

anticipated to have significant differences. 

 Class Level. The teachers' approaches to the different classes differed notably, 

especially in Teacher A's Gifted classes. Information on class labels will be 

included to examine differences between models and processes of teams in the 

Gifted classes and those in On-Level classes. 

Output Variables 

There are three primary categories of output variables available at the team level, 

corresponding to the data cleaning and processing procedures outlined above.  All three 

of these variable categories exist for both the Lake Model and the Temperature Model. 
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 Final Model Summaries. Numeric summaries of model complexity and 

evidential strength are examined to test for differences in modeling behavior and 

quality between the conditions. These numeric summaries focus on the depth and 

complexity of teams’ models and the depth, breadth, and strength of evidence 

used to justify teams’ models. As part of the analysis, the evidence provided in 

these models is coded for usefulness and proper categorization, although this may 

be considered a portion of the cleaning process as well. 

 Model Construction Statistics. In addition to testing the final models, the 

process of modeling is explicitly examined by looking at the Markov chains. 

These Markov chains are mapped to the inquiry-driven modeling process and 

examined first for improvements and second for overall differences (Kemeny 

1960). Markov chains are chosen here rather than Markov models in order to test 

for compatibility with the prior model of inquiry-driven modeling rather than to 

determine a model of teams' execution of the skill from scratch (Ghahramani 

2001). 

Analysis 

As with the data presented above, analysis is segmented between individual 

analysis and team analysis. Individual analysis addresses the first two high-level 

hypotheses, and team analysis addresses the second two high-level hypotheses (as well as 

the two sub-hypotheses under each). 

Individual 

The individual data are tested using a multivariate analysis of variance. First, a 

multivariate analysis of variance is used to establish whether or not differences existed in 

content knowledge or attitudes between the Control and Experimental groups prior to the 

study (I.1); if such differences exist, differences between the Control and Experimental 



   

85 

 

groups could be attributed to these initial differences rather than the study. This initial 

analysis also identifies whether there exist any interactions between the other input 

variables (Teacher and Student Level) and the six metrics, although the presence of these 

interactions would not pose a problem for the study. After this preliminary analysis, the 

individual analysis addresses changes across each of the six metrics. This begins with a 

multivariate analysis of variance of change in all six variables together in order to limit 

repeated testing and reduce the risk of detecting false positives. This analysis considers 

the three input variables (Condition, Teacher, and Student Level) and changes in each of 

the six output variables (I.2). If this study detects interactions with any of these 

independent variables, a series of subsequent univariate analyses is run to test for 

interactions between each input variable and each output variable (I.2.A-F). Finally, for 

those metrics that demonstrate differences between the Control and Experimental groups, 

a follow-up t-test is used to identify whether students within either Condition changed in 

a statistically significant way (I.3), and whether the changes led to statistically significant 

differences in post-test scores between Control and Experimental groups (I.4). 

Hypothesis #1 (Explicit Understanding) is addressed by I.1, I.2, I.2.A, I.3, and I.4. 

Hypothesis #2 (Dispositional Framing) is addressed by I.1, I.2, I.2.B, I.2.C, I.2.D, I.2.E, 

I.2.F, I.3, and I.4. The overlap between I.1, I.3, and I.4 is due to simultaneously analyzing 

content and attitudinal data to minimize risk of type I error. Table 20 summarizes these 

studies. 
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Table 20: Studies examining the individual-level data. 

Identifier Study Description 

I.1 
Multivariate analysis of variance testing whether there existed prior 

differences based on Condition, Teacher, or Student Level. 

I.2 
Multivariate analysis of variance testing whether change in individual 

variables interacted with Condition, Teacher, or Student Level. 

I.2.A 
Univariate analysis of variance testing for an interaction between change in 

content score and Condition, Teacher, or Student Level. 

I.2.B 

Univariate analysis of variance testing for an interaction between change in 

Attitude toward Scientific Inquiry score and Condition, Teacher, or Student 

Level. 

I.2.C 
Univariate analysis of variance testing for an interaction between change in 

Career Interest in Science score and Condition, Teacher, or Student Level. 

I.2.D 
Univariate analysis of variance testing for an interaction between change in 

Anxiety toward Science score and Condition, Teacher, or Student Level. 

I.2.E 
Univariate analysis of variance testing for an interaction between change in 

Desire to Do Science score and Condition, Teacher, or Student Level. 

I.2.F 

Univariate analysis of variance testing for an interaction between change in 

Perception of the Science Teacher score and Condition, Teacher, or Student 

Level. 

I.3 
Univariate analysis of differences within groups between pre-test and post-

test scores for metrics showing relevant differences in I.2. 

I.4 
Univariate analysis of differences across groups in post-test for metrics 

showing relevant differences in I.2. 

Team 

For team-level data, separate analyses are used to address the process data and the 

final models that teams of students produce. First, for the process data, Markov chains are 

created connecting the individual actions teams take within the model construction 

process to the underlying activities in the inquiry-driven modeling process. Markov 
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chains were chosen instead of hidden Markov models because of the desire to map and 

compare teams' behaviors to a preexisting model of the target process or skill rather than 

develop a grounded description of teams' behaviors (Ghahramani 2001). The Markov 

chains derived from patterns of teams' engagement with the model construction process 

are then aligned to the inquiry-driven modeling process provided in Figure 4 on page 25. 

A significant limitation of analysis based on Markov chains is the assumption that the 

likelihood of a subsequent state is based solely on the current state rather than anything 

about the history of state transitions preceding the current state (Lopez, Hermanns, & 

Katoen 2001); however, for this initial analysis and for comparison to the desired process 

presented previously, this assumption is not unreasonable. 

Five such chains are identified: one for each combination of Condition and 

Project (Control group Learning project, Control group Transfer project, Experimental 

group Learning project, Experimental group Transfer project), and an additional Markov 

chain including tutor interactions during the Experimental group's Learning project. 

Three studies are run on these Markov chains. First, based on identifiable improvements 

in Markov chains identified prior to processing these data, the Markov chains for the 

Experimental group are tested against the Markov chains for the Control group for 

discernible improvements (T.1L, T.1T). For this, a repeated Z-test will be conducted to 

test for differences between the Control and Experimental groups along several metrics. 

A repeated Z-test is chosen in order to target specific improvements within the broader 

Markov chains. A Bernoulli trial is used to correct for the increased likelihood of false 

positives.  

After testing for targeted improvement, a χ² analysis is run on the overall results 

to test for general differences to ascertain whether or not the presence of the tutoring 

system actually changed the inquiry-driven modeling process within either project (T.2L, 

T.2T). A χ² analysis identifies whether sets of proportions are different between different 

groups, and thus this analysis will identify whether or not Control and Experimental 
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groups are allocating their efforts differently among the phases of the process. A χ² will 

not, however, identify whether or not one group actually executes all tasks more often 

than the other if the proportions are the same; initial preliminary analysis suggested 

analysis along this path was not worth pursuing. Finally, a case study analysis is 

performed on the fifth Markov chain to ascertain where in the inquiry-driven modeling 

process tutor feedback was invoked and what activities typically followed tutor feedback 

(T.3). These five analyses address Hypothesis #3 (Procedural Execution). Hypothesis 

#3A is addressed by T.1L and T.2L, while Hypothesis #3B is addressed by T.1T and 

T.2T. T.3 does not provide evidence directly for or against any part of Hypothesis #3, but 

provides a more complete picture of the way in which the tutoring system was used by 

Experimental teams. 

Analysis of the final models and explanations teams produce is analogous to the 

studies performed on the individual data. First, a multivariate analysis of variance is 

performed with three input variables (Condition, Teacher, Class Level) and five output 

variables (the five measures of model quality) within the Learning project (T.4L) and the 

Transfer project (T.4T). If interactions are detected during that multivariate analysis, a 

follow-up univariate analysis of variance is performed on each individual output variable 

to test for interactions with each individual input variable on the Learning project 

(T.4L.A-E) and the Transfer project (T.4T.A-E) separately. After those initial analyses, 

the individual pieces of evidence that teams wrote are coded as acceptable or 

unacceptable (through a more complex coding scheme). Three rounds of coding are run 

by one coder with three weeks between subsequent sessions, with an intermediate study 

assessing the level of intrarater reliability. If sufficient intrarater reliability is established, 

a χ² analysis is conducted testing for differences in teams' performance as part of the 

evidence coding exercise, primarily testing to see whether Control or Experimental teams 

demonstrate a superior use of evidence within the Learning project (T.6L) or the Transfer 

project (T.6T). Finally, if sufficient intrarater reliability is established in T.5, the initial 
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analyses are executed again with the models reinterpreted according to the results of the 

evidence coding exercise. Unacceptable pieces of evidence are thrown out and 

miscategorized pieces of evidence are scored under the correct category to recalculate the 

four evidence-based metrics from the initial analysis. The multivariate analysis of 

variance from the original analysis is run again within the Learning (T.7L) and Transfer 

(G.7T) projects, and if interactions are observed, the follow-up univariate studies from 

the original analysis is run (T.7L.A-E, T.7T.A-E). These analyses, T.4 through T.7, 

address Hypothesis #4 (Models and Explanations). Hypothesis #4A is addressed by T.4L, 

T.6L, and T.7L, while Hypothesis #4B is addressed by T.4T, T.6T, and T.7T. T.5 

provides the information necessary to perform the other analyses described here. Table 

21 summarizes these studies. 

Table 21: Studies examining the group-level data. 

Identifier Study Description 

T.1L 
Repeated Z-test testing for desirable differences between the Control and 

Experimental groups' Markov chains during the Learning project. 

T.1T 
Repeated Z-test testing for desirable differences between the Control and 

Experimental groups' Markov chains during the Transfer project. 

T.2L 
χ² analysis testing for difference between Control and Experimental groups' 

Markov chains during the Learning project. 

T.2T 
χ² analysis testing for difference between Control and Experimental groups' 

Markov chains during the Transfer project. 

T.3 
Case study analysis on Markov chain for Experimental group's Learning 

project examining the position of the tutoring system in the process. 

T.4L 

Multivariate analysis of variance testing for an interaction between any 

independent variable (Condition, Teacher, Class Level) and any dependent 

variable (the five metrics for model evaluation) during the Learning project. 
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T.4L.A-E 
Univariate analysis of variance for interaction between each input variable 

and each individual output variable during the Learning project. 

T.4T 

Multivariate analysis of variance testing for an interaction between any 

independent variable (Condition, Teacher, Class Level) and any dependent 

variable (the five metrics for model evaluation) during the Transfer project. 

T.4T.A-E 
Univariate analysis of variance for interaction between each input variable 

and each individual output variable during the Transfer project. 

T.5 Intrarater reliability analysis on three rounds of evidence coding. 

T.6 
χ² analysis of difference in performance between the Control and 

Experimental groups in the evidence coding exercise. 

T.6L 

χ² analysis of difference in performance between the Control and 

Experimental groups in the evidence coding exercise on the Learning 

project. 

T.6T 

χ² analysis of difference in performance between the Control and 

Experimental groups in the evidence coding exercise on the Transfer 

project. 

T.7L 

Multivariate analysis of variance testing for an interaction between any 

independent variable (Condition, Teacher, Class Level) and any dependent 

variable (the five metrics for model evaluation) during the Learning project 

after the evidence coding process. 

T.7L.A-E 

Univariate analysis of variance for interaction between each input variable 

and each individual output variable during the Learning project after the 

evidence coding process. 

T.7T 

Multivariate analysis of variance testing for an interaction between any 

independent variable (Condition, Teacher, Class Level) and any dependent 

variable (the five metrics for model evaluation) during the Transfer project 

after the evidence coding process. 

T.7T.A-E 

Univariate analysis of variance for interaction between each input variable 

and each individual output variable during the Transfer project after the 

evidence coding process. 
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CHAPTER 4 

INDIVIDUAL RESULTS 

 

Figure 22: The fourth chapter of this dissertation covers the results of the individual analyses on 

students' declarative understanding of and dispositional orientation towards inquiry-driven 

modeling. 

In line with the hypotheses presented previously, the analysis of these data aims to 

identify the changes in students' understanding of, dispositions toward, process of, and 

creations through inquiry-driven modeling. This chapter will start by examining the 

individual components of this research: individual students' understanding of and 

dispositions toward inquiry-driven modeling. First, it will first look at the state of the 

students prior to the intervention. Second, it will examine the results of the first 

hypothesis, addressing students' understanding of inquiry-driven modeling before and 

after the intervention. Third, it will examine the results of the second hypothesis, 

addressing students' dispositions towards science, scientific inquiry, and careers in 

science. Finally, it will look at the results of a selection of additional sources of data that 

do not align directly with these hypotheses, but nonetheless contribute to an overall view 

of the utility of the tutoring system. 
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Data Structure 

Throughout this chapter, several tables will be presented that summarize the 

numeric results from the Control and Experimental groups. For the sake of completeness, 

these tables present the mean, standard deviation, and number of subjects within every 

significant group, from the Control and Experimental groups as a whole to narrower 

distinctions such as Teacher A's On-Level Control group students. Because of the 

quantity of data presented in these tables, they may be rather complex. In order to help 

understand these tables, the general structure of these data are presented below. 

 

Table 22: The generic structure of the tables presented in this chapter. Each cell of these tables will 

provide three numbers: the mean on top, the standard deviation in parentheses in the middle, and 

the number of subjects at the bottom. 

General Individual Data Table Structure 

Teacher A Teacher B Teacher A Teacher B 

Teacher A's Control 

group students 

Teacher B's Control 

group students 

Teacher A's 

Experimental group 

students 

Teacher B's 

Experimental group 

students 

Control Experimental 

All Control group students All Experimental group students 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

On-Level 

Control group 

students 

Gifted Control 

group students 

Special Needs 

Control group 

students 

On-Level 

Experimental 

group students 

Gifted 

Experimental 

group students 

Special Needs 

Control 

Experimental 

students 

A B A B A B A B A B A B 

Teacher 

A's On-

Level 

Control 

group 

students 

Teacher 

B's On-

Level 

Control 

group 

students 

Teacher 

A's 

Gifted 

Control 

group 

students 

Teacher 

B's 

Gifted 

Control 

group 

students 

Teacher 

A's Sp. 

Needs 

Control 

group 

students 

Teacher 

B's Sp. 

Needs 

Control 

group 

students 

Teacher 

A's On-

Level 

Exper-

imental 

group 

students 

Teacher 

B's On-

Level 

Exper-

imental 

group 

students 

Teacher 

A's 

Gifted 

Exper-

imental 

group 

students 

Teacher 

B's 

Gifted 

Exper-

imental 

group 

students 

Teacher 

A's Sp. 

Needs 

Exper-

imental 

group 

students 

Teacher 

B's Sp. 

Needs 

Exper-

imental 

group 

students 
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Each cell in the tables that follow provides the subscores for the group of students 

indicated in Table 22. Within each cell are three numbers: the number at the top is the 

mean for that group of students; the number in parentheses in the middle is the standard 

deviation for that group of students; and the number at the bottom, preceded by "n =", is 

the number of subjects in that group of students. Teacher B has no Gifted students, and as 

such the 'Teacher B's Gifted' student cells are empty. The table is structured to allow as 

many comparisons as possible under the general structure of the experiment. We can, for 

instance, directly compare the Control and Experimental students as a whole by 

comparing the 'All Control group students' and 'All Experimental group students' cells, or 

we may compare only On-Level students by comparing the 'On-Level Control group 

students' and 'On-Level Experimental group students'. In reading the tables that follow, 

please consult Table 22 to ensure understanding of the structure of the data presented. 

Preliminary Analysis 

Prior to conducting the analysis of the outcomes of the intervention, two analyses 

were necessary to assert the value and validity of the following analyses. First, it is 

necessary to assert that there exists no difference between the Control and Experimental 

groups prior to the intervention. Second, it is useful to understand differences based on 

Teacher or Student Level prior to the intervention. 

Equivalence of Means Prior to Intervention 

As stated in the previous chapter, entire classes were assigned to either the 

Control or the Experimental condition in order to prevent students from being aware of 

aid being given to other teams in their classes. Classes were also divided up in order to 

ensure an even distribution of Inclusion, On-Level, and Gifted classes between the two 

conditions, leading to the assignments noted in Table 18. Given this basis for the 

assignment to conditions, it is possible that the two groups started the experiment out 

unequal according to individual metrics that could be assessed prior to conducting the 
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analysis. Thus, the first analysis examined potential differences between Control and 

Experimental students prior to the intervention (I.1). This analysis looks at pre-test scores 

for students on the content test, as well as all five attitudinal constructs. 

Table 23 presents the results of this initial analysis. In order to minimize the risk 

of Type I error, all independent and dependent variables are analyzed in a single 

multivariate ANOVA. Thus, this table will be consulted further in the following section 

for the effects of the Teacher and the students' Levels on pre-test scores. Similarly, in the 

following sections, a single multivariate ANOVA will examine the influence of these 

factors on the change in both students' content and students' attitudinal scores. 

Table 23: Multivariate ANOVA examining the influence of Condition, Teacher, and Level on 

students' pre-test scores. The table suggests that there are influences of the Teacher  and class Level 

on students' pre-test scores, but no influence of Condition. 

Multivariate ANOVA : 

                         Df   Pillai approx F num Df den Df    Pr(>F)     

Condition                 1 0.024370   0.9242      6    222   0.47830     

Teacher                   1 0.058884   2.3150      6    222   0.03452   

Level                     2 0.253933   5.4052     12    446 1.347e-08  

Condition:Teacher         1 0.023896   0.9058      6    222   0.49150     

Condition:Level           2 0.053265   1.0169     12    446   0.43186     

Teacher:Level             1 0.012032   0.4506      6    222   0.84410     

Condition:Teacher:Level   1 0.022925   0.8681      6    222   0.51908     

Residuals               227                                               

 

 Response Content.B : 

                         Df  Sum Sq Mean Sq F value    Pr(>F)     

Condition                 1   10.09  10.087  1.2210  0.270330     

Teacher                   1   70.59  70.594  8.5452  0.003815  

Level                     2  300.69 150.343 18.1986 4.673e-08 

Condition:Teacher         1    5.23   5.233  0.6335  0.426914     

Condition:Level           2   39.87  19.936  2.4132  0.091822   

Teacher:Level             1    4.24   4.243  0.5135  0.474344     

Condition:Teacher:Level   1    8.76   8.762  1.0606  0.304164     

Residuals               227 1875.31   8.261                       

 

 Response AtSI.B : 

                         Df  Sum Sq Mean Sq F value   Pr(>F)    

Condition                 1    14.9   14.87  0.3040 0.581915    

Teacher                   1    23.4   23.37  0.4778 0.490128    

Level                     2   677.5  338.75  6.9256 0.001204 

Condition:Teacher         1    14.7   14.65  0.2995 0.584723    

Condition:Level           2    40.4   20.20  0.4130 0.662168    

Teacher:Level             1     0.4    0.40  0.0081 0.928334    

Condition:Teacher:Level   1     1.4    1.41  0.0288 0.865368 

Residuals               227 11103.3   48.91    
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 Response CIiS.B : 

                         Df  Sum Sq Mean Sq F value  Pr(>F)   

Condition                 1    10.7  10.700  0.1547 0.69449   

Teacher                   1     7.6   7.590  0.1097 0.74079   

Level                     2   372.5 186.242  2.6920 0.06991 

Condition:Teacher         1    11.4  11.441  0.1654 0.68464   

Condition:Level           2   340.3 170.130  2.4591 0.08779 

Teacher:Level             1    11.6  11.636  0.1682 0.68211   

Condition:Teacher:Level   1    51.0  51.004  0.7372 0.39146   

Residuals               227 15704.9  69.184                   

 

 Response AtS.B : 

                         Df Sum Sq Mean Sq F value   Pr(>F)    

Condition                 1    1.1   1.114  0.0754 0.783861    

Teacher                   1    4.7   4.709  0.3189 0.572853    

Level                     2  145.0  72.480  4.9078 0.008191 

Condition:Teacher         1   10.3  10.257  0.6945 0.405515    

Condition:Level           2   65.4  32.677  2.2127 0.111765    

Teacher:Level             1    1.0   0.959  0.0650 0.799040    

Condition:Teacher:Level   1   35.6  35.609  2.4112 0.121866    

Residuals               227 3352.4  14.768                     

 

 Response PofTS.B : 

                         Df  Sum Sq Mean Sq F value Pr(>F) 

Condition                 1    1.33  1.3349  0.2742 0.6010 

Teacher                   1    6.88  6.8847  1.4144 0.2356 

Level                     2    5.22  2.6113  0.5365 0.5856 

Condition:Teacher         1    1.33  1.3295  0.2731 0.6018 

Condition:Level           2   14.04  7.0180  1.4417 0.2387 

Teacher:Level             1    0.02  0.0164  0.0034 0.9538 

Condition:Teacher:Level   1    0.01  0.0095  0.0020 0.9648 

Residuals               227 1104.97  4.8677                

 

 Response DtDS.B : 

                         Df Sum Sq Mean Sq F value Pr(>F) 

Condition                 1   61.2  61.244  1.9920 0.1595 

Teacher                   1    3.3   3.274  0.1065 0.7445 

Level                     2   20.5  10.264  0.3338 0.7165 

Condition:Teacher         1   54.1  54.138  1.7608 0.1859 

Condition:Level           2   76.3  38.149  1.2408 0.2911 

Teacher:Level             1   17.9  17.930  0.5832 0.4459 

Condition:Teacher:Level   1    2.3   2.284  0.0743 0.7854 

Residuals               227 6979.3  30.746  

 

Table 23 provides the output of a multivariate ANOVA on students' pre-test 

results on the content test and each of the five attitudinal constructs. The initial 

multivariate ANOVA, shown first, demonstrates that no significant difference existed 

between the students in the Control and Experimental groups prior to the 

intervention, as measured by these six metrics. Further ANOVA on each of the six 

individual constructs reveals no statistically significant difference according to any of 
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these constructs between the Control and Experimental groups. Given this analysis, it is 

reasonable to assume that the Control and Experimental groups began the intervention on 

approximately equal footing in their content knowledge and attitude towards science 

based on these six metrics. Students in one group did not exhibit superior content 

knowledge or attitudinal scores than students in the other group 

Comparison of Groups Prior to Intervention 

Although there were no significant differences on the pre-test results between the 

Control and Experimental conditions, there did exist significant differences based on the 

two other independent variables, Teacher and Level. Table 23 further examines the 

relationship between these two variables and the results of the pre-test. First, the 

multivariate ANOVA reveals a relationship between Teacher and pre-test performance (F 

= 2.32, p < 0.05), and between student Level (Gifted, On-Level, Special Needs) and pre-

test performance (F = 5.41, p < 0.001). Further ANOVA of the specific individual reveals 

several differences. The Teacher determined statistically significant differences in 

students' pre-test content scores (F = 8.55, p < 0.01), with students of Teacher A 

outperforming students of Teacher B by an average of roughly one point. Similarly, 

statistically significant effects of the student Level were observed on students' content 

test scores (F = 18.20, p < 0.001) as Gifted students outperformed On-Level students, 

who outperformed Special Needs students. 

No effect of the Teacher was observed on any attitudinal constructs. However, 

significant effects of class Level were observed on attitudinal metrics: attitude toward 

scientific inquiry (F = 6.93, p < 0.01), career interest in science (F = 2.69, p < 0.1), and 

anxiety toward science (F = 4.91, p < 0.01). Interestingly, Special Needs students 

expressed the most positive attitudes toward scientific inquiry, while Gifted students 

reported more positive attitudes than On-Level students. Gifted students reported the 

highest interest in a career in science, followed by On-Level students, followed by 
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Special Needs students. Gifted students also reported the least anxiety toward science, 

followed by On-Level students, followed by Special Needs students. No significant 

differences were observed in perception of the science teacher or desire to do science 

between either the Teachers or the different student Levels. 

To a large extent, the results of this pre-test analysis are not surprising. Students 

assigned to the Gifted classes due to prior positive performance in science demonstrate 

higher mastery of scientific content knowledge and generally more positive attitudes 

toward science. Given that Gifted, On-Level, and Special Needs students are evenly 

balanced between Control and Experimental groups (that is, the ratio of students in the 

Control condition to students in the Experimental condition is the same across all three 

groups and both teachers), later analysis will be able to account for differences based on 

Level and Teacher in addition to Condition. 

Table 24: Initial scores for each content and attitudinal metric for students in each group and 

subgroup. The top number in each cell is the mean for that group; the number in parentheses is the 

standard deviation within that group; the bottom number is the number of samples within that 

subgroup. See Table 22 for further information about the groups of students summarized in each 

cell. 

Initial Content Scores 

Teacher A Teacher B Teacher A Teacher B 

10.22 

(3.31) 

n = 45 

8.37 

(3.32) 

n = 54 

9.93 

(2.86) 

n = 62 

9.38 

(3.05) 

n = 76 

Control Experimental 

9.21 

(3.35) 

n = 99 

9.63 

(2.97) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

8.93 

(3.01) 

n = 71 

12.44 

(1.54) 

n = 18 

5.40 

(3.13) 

n = 10 

9.46 

(2.99) 

n = 113 

11.50 

(1.59) 

n = 16 

8.44 

(3.40) 

n = 9 

A B A B A B A B A B A B 

9.48 

(2.64) 

n = 23 

8.67 

(3.16) 

n = 48 

12.44 

(1.54) 

n = 18 

-- 

-- 

n = 0 

4.50 

(1.29) 

n = 4 

6.00 

(3.95) 

n = 6 

9.55 

(2.90) 

n = 38 

9.41 

(3.05) 

n = 75 

11.50 

(1.59) 

n = 16 

-- 

-- 

n = 0 

8.62 

(3.58) 

n = 8 

7.00 

-- 

n = 1 
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Initial Attitude toward Scientific Inquiry Scores 

Teacher A Teacher B Teacher A Teacher B 

20.93 

(6.86) 

n = 45 

21.39 

(7.48) 

n = 54 

21.45 

(7.86) 

n = 62 

20.04 

(6.30) 

n = 76 

Control Experimental 

21.18 

(7.17) 

n = 99 

20.67 

(7.05) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

20.35 

(7.14) 

n = 71 

20.78 

(7.24) 

n = 18 

27.80 

(3.19) 

n = 10 

20.33 

(6.38) 

n = 113 

20.31 

(8.19) 

n = 16 

25.56 

(11.24) 

n = 9 

A B A B A B A B A B A B 

20.00 

(6.63) 

n = 23 

20.52 

(7.43) 

n = 48 

20.78 

(7.24) 

n = 18 

-- 

-- 

n = 0 

27.00 

(3.74) 

n = 4 

28.33 

(3.01) 

n = 6 

21.03 

(6.55) 

n = 38 

19.99 

(6.32) 

n = 75 

20.31 

(8.20) 

n = 16 

-- 

-- 

n = 0 

25.75 

(11.99) 

n = 8 

24.00 

-- 

n = 1 

 

Initial Career Interest in Science Scores 

Teacher A Teacher B Teacher A Teacher B 

27.73 

(7.11) 

n = 45 

27.44 

(9.11) 

n = 54 

27.37 

(8.87) 

n = 62 

26.96 

(8.22) 

n = 76 

Control Experimental 

27.58 

(8.22) 

n = 99 

27.14 

(8.49) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

27.77 

(8.21) 

n = 71 

30.39 

(7.99) 

n = 18 

21.10 

(5.30) 

n = 10 

26.70 

(8.26) 

n = 113 

29.44 

(7.81) 

n = 16 

28.67 

(12.24) 

n = 9 

A B A B A B A B A B A B 

27.00 

(5.71) 

n = 23 

28.15 

(9.21) 

n = 48 

30.39 

(7.99) 

n = 18 

-- 

-- 

n = 0 

20.00 

(3.74) 

n = 4 

21.83 

(6.37) 

n = 6 

26.05 

(8.33) 

n = 38 

27.03 

(8.26) 

n = 75 

29.44 

(7.81) 

n = 16 

-- 

-- 

n = 0 

29.50 

(12.81) 

n = 8 

22.00 

-- 

n = 1 
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Initial Anxiety toward Science Scores 

Teacher A Teacher B Teacher A Teacher B 

10.71 

(3.91) 

n = 45 

11.19 

(4.12) 

n = 54 

11.56 

(4.19) 

n = 62 

10.74 

(3.55) 

n = 76 

Control Experimental 

10.97 

(4.01) 

n = 99 

11.11 

(3.86) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

11.01 

(3.77) 

n = 71 

9.11 

(3.80) 

n = 18 

14.00 

(4.50) 

n = 10 

11.23 

(3.68) 

n = 113 

10.25 

(4.68) 

n = 16 

11.11 

(4.68) 

n = 9 

A B A B A B A B A B A B 

11.09 

(3.45) 

n = 23 

10.98 

(3.95) 

n = 48 

9.11 

(3.80) 

n = 18 

-- 

-- 

n = 0 

15.75 

(2.22) 

n = 4 

12.83 

(5.42) 

n = 6 

12.29 

(3.76) 

n = 38 

10.69 

(3.55) 

n = 75 

10.25 

(4.68) 

n = 16 

-- 

-- 

n = 0 

10.75 

(4.86) 

n = 8 

14.00 

-- 

n = 1 

 

Initial Desire to Do Science Scores 

Teacher A Teacher B Teacher A Teacher B 

22.13 

(5.07) 

n = 45 

21.15 

(5.52) 

n = 54 

19.95 

(5.76) 

n = 62 

21.07 

(5.56) 

n = 76 

Control Experimental 

21.60 

(5.31) 

n = 99 

20.57 

(5.66) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

21.63 

(5.37) 

n = 71 

22.67 

(5.10) 

n = 18 

19.40 

(5.13) 

n = 10 

20.51 

(5.57) 

n = 113 

20.31 

(6.29) 

n = 16 

21.67 

(6.14) 

n = 9 

A B A B A B A B A B A B 

22.39 

(4.85) 

n = 23 

21.27 

(5.62) 

n = 48 

22.67 

(5.10) 

n = 18 

-- 

-- 

n = 0 

18.25 

(5.91) 

n = 4 

20.17 

(4.96) 

n = 6 

19.50 

(5.47) 

n = 38 

21.03 

(5.59) 

n = 75 

20.31 

(6.29) 

n = 16 

-- 

-- 

n = 0 

21.38 

(6.50) 

n = 8 

24.00 

-- 

n = 1 
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Initial Perception of the Science Teacher Scores 

Teacher A Teacher B Teacher A Teacher B 

11.93 

(2.09) 

n = 45 

11.44 

(2.38) 

n = 54 

11.65 

(2.23) 

n = 62 

11.41 

(2.09) 

n = 76 

Control Experimental 

11.67 

(2.25) 

n = 99 

11.51 

(2.15) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

11.72 

(2.46) 

n = 71 

11.89 

(1.60) 

n = 18 

10.90 

(1.66) 

n = 10 

11.51 

(2.02) 

n = 113 

11.00 

(2.76) 

n = 16 

12.44 

(2.51) 

n = 9 

A B A B A B A B A B A B 

12.09 

(2.54) 

n = 23 

11.54 

(2.42) 

n = 48 

11.89 

(1.60) 

n = 18 

-- 

-- 

n = 0 

11.25 

(1.26) 

n = 4 

10.67 

(1.97) 

n = 6 

11.74 

(1.86) 

n = 38 

11.40 

(2.11) 

n = 75 

11.00 

(2.76) 

n = 16 

-- 

-- 

n = 0 

12.50 

(2.67) 

n = 8 

12.00 

-- 

n = 1 

Hypothesis #1: Explicit Understanding 

Previously, this study hypothesized that engagement with the tutoring system 

would improve students' declarative knowledge of the skills involved in inquiry-driven 

modeling, including an understanding of the scientific method, an understanding of the 

process of modeling and inquiry, an understanding of model evaluation criteria, and an 

understanding the importance of examining invisible components in modeling ecological 

systems. Toward this end, students completed a content test on these topics before and 

after the experiment. This content test touched on all of these elements in fifteen 

multiple-choice questions administered concurrently with the attitudinal inventories and 

can be seen in Appendix B. 

Initial t-test analysis revealed that there was an overall improvement in students' 

performance on the content test through the intervention (t = 3.48, p < 0.001).  Students 

prior to the intervention scored an average of 9.46, while students after the intervention 

scored an average of 10.44. The 95% confidence interval surrounding the difference in 

performance between the pre- and post-test is (0.430, 1.545), indicating an improvement 

of between half of a question and one and a half questions. Following this analysis, a 
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multivariate ANOVA was conducted to determine the specific impact of each of the three 

independent variables on the changes in students' content knowledge through the 

intervention. As in the preliminary analysis described above, multivariate ANOVA was 

conducted simultaneously on content scores and all five attitudinal metrics in order to 

reduce the risk of Type I error. Table 25 displays the multivariate ANOVA analysis for 

all six of these variables (I.2), followed by the ANOVA analysis specifically for the 

change in students' content scores (I.2.A). 

Table 25: Multivariate ANOVA results on the change in students' content and attitudinal scores over 

the course of the intervention. The initial multivariate ANOVA points to an effect of the 

experimental condition on the change in performance, but the subsequent ANOVA on the change in 

content scores alone reveals that the effect of the experimental condition is limited to the attitudinal 

metrics (discussed in the next section). A relationship is observed, however, between the Teacher and 

the change in content scores, with students in Teacher B's class improving their scores significantly 

more than in Teacher A's class. 

Multivariate ANOVA : 

                         Df   Pillai approx F num Df den Df  Pr(>F)   

Condition                 1 0.063999  2.52985      6    222 0.02176 

Teacher                   1 0.060708  2.39137      6    222 0.02933 

Level                     2 0.043402  0.82444     12    446 0.62523   

Condition:Teacher         1 0.009625  0.35959      6    222 0.90378   

Condition:Level           2 0.046142  0.87772     12    446 0.56988   

Teacher:Level             1 0.031328  1.19664      6    222 0.30904   

Condition:Teacher:Level   1 0.019681  0.74283      6    222 0.61570   

Residuals               227                                           

 

Response Content.D : 

                         Df  Sum Sq Mean Sq F value   Pr(>F)    

Condition                 1    2.20   2.197  0.3886 0.533638    

Teacher                   1   43.81  43.806  7.7500 0.005824 

Level                     2    7.68   3.839  0.6791 0.508092    

Condition:Teacher         1    1.54   1.539  0.2722 0.602353    

Condition:Level           2    4.29   2.143  0.3792 0.684845    

Teacher:Level             1    0.47   0.471  0.0833 0.773140    

Condition:Teacher:Level   1    1.90   1.903  0.3367 0.562323    

Residuals               227 1283.08   5.652        

                                  

The initial multivariate ANOVA reveals that there exist significant relationships 

between both the condition and the teacher on the change in students' scores on the 

content tests or attitudinal metrics. The subsequent ANOVA specifically on the change in 

students' content scores reveals that only the teacher has a statistically significant 

influence on the change in students' content scores (F = 7.75, p < 0.01). Students in 
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Teacher B's class improve significantly more in their performance on the content test 

compared to students in Teacher A's class. It is worth noting that this is the opposite of 

the relationship observed in the preliminary analysis covered earlier: on the pre-test, the 

students in Teacher A's class outperformed the students in Teacher B's class with 

statistical significance (F = 2.32, p < 0.01). Here, students in Teacher B's class improved 

more than students in Teacher A's class with statistical significance (F = 7.75, p < 0.01), 

leading to no statistically significant difference between students in Teacher B's class and 

students in Teacher A's class in performance on the post-test. A relationship still exists, 

however, between Level and performance on the post-test. 

Table 26: Difference between post-test and pre-test content scores for students in each group and 

subgroup. The top number in each cell is the mean for that group; the number in parentheses is the 

standard deviation within that group; the bottom number is the number of samples within that 

subgroup. See Table 22 for information about the groups of students summarized in each cell. 

Difference between Post-Test and Pre-Test Content Scores 

Teacher A Teacher B Teacher A Teacher B 

+0.53 

(2.26) 

n = 45 

+1.57 

(2.17) 

n = 54 

+0.50 

(2.35) 

n = 62 

+1.24 

(2.55) 

n = 76 

Control Experimental 

+1.10 

(2.26) 

n = 99 

+0.91 

(2.48) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

+1.27 

(2.46) 

n = 71 

+0.56 

(1.50) 

n = 18 

+0.90 

(1.91) 

n = 10 

+1.11 

(2.48) 

n = 113 

+0.06 

(2.14) 

n = 16 

−0.11 

(2.76) 

n = 9 

A B A B A B A B A B A B 

+0.48 

(2.89) 

n = 23 

+1.65 

(2.15) 

n = 48 

+0.56 

(1.50) 

n = 18 

-- 

-- 

n = 0 

+0.75 

(0.96) 

n = 4 

+1.00 

(2.45) 

n = 6 

+0.84 

(2.31) 

n = 38 

+1.24 

(2.56) 

n = 75 

+0.06 

(2.14) 

n = 16 

-- 

-- 

n = 0 

−0.25 

(2.92) 

n = 8 

+1.00 

-- 

n = 1 

 

In summary, based on overall results from the pre- and post-test covering 

declarative knowledge of the inquiry-driven modeling process, no statistically 

significant effect was observed on students' performance on the content test from 



   

103 

 

exposure to the tutoring system. There did exist statistically significant improvement in 

performance overall, as well as statistically significant improvement based on the teacher, 

but no effect of the tutoring system was observed. Thus, Hypothesis #1 is not accepted. 

There are not sufficient data to conclude that access to MILA–T leads to improved 

content knowledge compared to participation in the intervention without MILA–T. 

Hypothesis #2: Dispositional Framing 

Students' attitudes were assessed according to five different established attitudinal 

metrics before and after the intervention. Two of these, students' attitudes toward 

scientific inquiry and interest in science as a career, come from the Test of Science 

Related Attitudes (Fraser 1981). Fraser describes Attitude toward Scientific Inquiry as 

"acceptance of scientific inquiry as a way of thought", and Career Interest in Science as 

"development of interest in pursuing a career in science". Each construct is determined by 

responses to ten different items, evenly split between positive and negative presentations 

of the underlying attitude. For example, a negative item for Career Interest in Science is, 

"A career in science would be dull and boring", while a positive item for Attitude toward 

Scientific Inquiry is, "I would prefer to find out why something happens by doing an 

experiment than by being told."  

The other three come from the Modified Attitudes Towards Science Inventory 

(Weinburgh & Steele 2000), and are students' anxiety toward science, perception of the 

science teacher, and desire to do science. The first, Anxiety toward Science, captures the 

degree to which students regard themselves as unfit or uninterested in science; for 

example, one item offers, "I feel tense when someone talks to me about science". The 

second, Perception of the Science Teacher, looks at what role students see the teacher 

playing in the classroom; for example, "Science teachers present material in a clear way". 

The third, Desire to Do Science, examines the extent to which students are interested in 
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engaging in scientific activities outside their required assignments; for example, 

"Sometimes I read ahead in our science book". 

As referenced previously, no statistically significant differences were observed in 

students according to these attitudinal metrics prior to the intervention based on 

assignment to the Control or Experimental condition. Statistically significant differences 

were observed, however, due the students' Levels. Gifted students expressed higher 

career interest in science and lower anxiety toward science than On-Level students, who 

in turn performed more positively than Special Needs students according to both metrics 

as well. Special Needs students, however, reported a statistically significantly higher 

attitude toward science inquiry than Gifted students, who in turn reported a higher 

response than On-Level students. 

An initial multivariate ANOVA, shown earlier in Table 25 and displayed again 

below in Table 27 for reference, showed a statistically significant relationship between 

both Condition and Teacher and some parts of the change in either content or attitudinal 

scores (I.2). Subsequent ANVOA analysis, described in the remainder of this section, 

shows a statistically significant effect of Condition on Attitude toward Scientific Inquiry 

(I.2.B), as well as a borderline significant effect of Condition on Career Interest in 

Science (I.2.C). Additional relationships between Teacher and other attitudinal scores are 

also present. 

Table 27: Multivariate ANOVA results on the change in students' content and attitudinal scores over 

the course of the intervention. The initial multivariate ANOVA points to effects of the experimental 

condition and teacher on the change in performance (p < 0.05). 

                         Df   Pillai approx F num Df den Df  Pr(>F)   

Condition                 1 0.063999  2.52985      6    222 0.02176 

Teacher                   1 0.060708  2.39137      6    222 0.02933 

Level                     2 0.043402  0.82444     12    446 0.62523   

Condition:Teacher         1 0.009625  0.35959      6    222 0.90378   

Condition:Level           2 0.046142  0.87772     12    446 0.56988   

Teacher:Level             1 0.031328  1.19664      6    222 0.30904   

Condition:Teacher:Level   1 0.019681  0.74283      6    222 0.61570   

Residuals               227 
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Change in Attitude toward Scientific Inquiry 

As established previously, prior to the intervention, no statistically significant 

difference existed between Attitudes toward Scientific Inquiry in the Control and 

Experimental groups. After the multivariate ANOVA indicated a statistically significant 

effect of Condition on change in some constructs, an ANOVA was run specifically on 

this change to identify what relationship, if any, existed with regard to Attitude toward 

Scientific Inquiry. This ANOVA, shown below in Table 28, showed a statistically 

significant effect of Condition on change in Attitude toward Scientific Inquiry (F = 8.59, 

p < 0.01) (I.2.B). 

Table 28: Univariate ANOVA results on the change in students' Attitudes toward Scientific Inquiry 

over the course of the intervention. These results show a statistically significant effect of Condition on 

change in Attitude toward Scientific Inquiry between the pre-test and post-test. 

 Response AtSI.D : 

                         Df  Sum Sq Mean Sq F value   Pr(>F)    

Condition                 1   397.3  397.33  8.5903 0.003725 

Teacher                   1   118.7  118.74  2.5672 0.110490    

Level                     2    58.6   29.29  0.6333 0.531748    

Condition:Teacher         1     0.7    0.74  0.0160 0.899406    

Condition:Level           2   210.0  104.99  2.2698 0.105676    

Teacher:Level             1    52.4   52.37  1.1323 0.288419    

Condition:Teacher:Level   1    15.7   15.75  0.3405 0.560140    

Residuals               227 10499.6   46.25       

               

Full results on the change in students' Attitude toward Scientific Inquiry for each 

group are shown below in Table 29. Students in the Experimental group experienced an 

average increase of 1.46 points on their attitude toward scientific inquiry score (σ = 7.16). 

Students in the Control group, on the other hand, experienced an average decrease of 

1.16 points on their attitude toward scientific inquiry score (σ = 6.33). Thus, students who 

had access to MILA–T experienced a statistically significant increase in Attitude toward 

Scientific Inquiry relative to students who did not have access to MILA–T. 
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Table 29: Difference between post-test and pre-test Attitude toward Scientific Inquiry scores for 

students in each group and subgroup. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 22 for further information about the groups of 

students summarized in each cell. 

Difference between Post-Test and Pre-Test Attitude toward Scientific Inquiry Scores 

Teacher A Teacher B Teacher A Teacher B 

−2.07 

(6.50) 

n = 45 

−0.41 

(6.15) 

n = 54 

+0.77 

(8.27) 

n = 62 

+2.03 

(6.11) 

n = 76 

Control Experimental 

−1.16 

(6.33) 

n = 99 

+1.46 

(7.16) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

−1.27 

(6.81) 

n = 71 

−1.89 

(5.41) 

n = 18 

+0.90 

(3.78) 

n = 10 

+2.12 

(6.61) 

n = 113 

−1.62 

(10.50) 

n = 16 

−1.33 

(5.17) 

n = 9 

A B A B A B A B A B A B 

−3.04 

(7.52) 

n = 23 

−0.42 

(6.36) 

n = 48 

−1.89 

(5.41) 

n = 18 

-- 

-- 

n = 0 

+2.75 

(0.50) 

n = 4 

−0.33 

(4.59) 

n = 6 

+2.21 

(7.53) 

n = 38 

+2.08 

(6.14) 

n = 75 

−1.62 

(10.50) 

n = 16 

-- 

-- 

n = 0 

−1.25 

(5.52) 

n = 8 

−2.00 

-- 

n = 1 

 

Given the statistically significant relationship between Condition and change in 

Attitude toward Scientific Inquiry, a subsequent t-test analysis was conducted on the data 

to identify the exact nature of the change in Attitude toward Scientific Inquiry. T-test 

analysis of the difference between pre-test and post-test Attitude toward Scientific 

Inquiry scores for the Control group revealed no statistically significant difference (t = 

1.16, p = 0.27); thus, while on average Attitude toward Scientific Inquiry dropped in the 

Control group, this drop was not statistically significant on its own. T-test analysis of the 

difference between pre-test and post-test Attitude toward Scientific Inquiry for the 

Experimental group revealed a borderline statistically significant difference (t = 1.65, p < 

0.10). Finally, t-test analysis on the difference between Attitude toward Scientific Inquiry 

in Control and Experimental students (that is, not the change in scores, but the difference 

in the groups' final scores) shows students in the Experimental condition closed the 

study with a significantly higher Attitude toward Scientific Inquiry than students in 
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the Control condition (t = 2.12, p < 0.05). Prior to the study, there existed no 

statistically significant difference in Attitude toward Scientific Inquiry between Control 

and Experimental students; thus, this further confirms that access to MILA–T caused a 

positive and statistically significant effect on Attitude toward Scientific Inquiry compared 

to participation in the project without MILA–T. It should be noted that this measurement 

was taken immediately after the study closed, however; it is possible, and in fact 

probable, that this difference between Control and Experimental groups at the close of the 

study would fade over time. The takeaway of this analysis is that interaction with a 

metacognitive tutoring system during this activity improves students' attitudes in the short 

term.  

Change in Career Interest in Science 

As established previously, prior to the intervention, no statistically significant 

difference existed between Career Interest in Science in the Control and Experimental 

groups. After the multivariate ANOVA indicated a statistically significant effect of 

Condition on change in some constructs, an ANOVA was run specifically on this change 

to identify what relationship, if any, existed with regard to Career Interest in Science. 

This ANOVA, shown below in Table 30, showed a borderline statistically significant 

effect of Condition on change in Career Interest in Science (F = 3.22, p < 0.1) (I.2.C). 

Table 30: Univariate ANOVA results on the change in students' Career Interest in Science over the 

course of the intervention. These results show a borderline significant effect of Condition on change 

in Career Interest in Science between the pre-test and post-test. 

Response CIiS.D : 

                         Df Sum Sq Mean Sq F value Pr(>F)   

Condition                 1  130.3 130.349  3.2238 0.0739 

Teacher                   1    0.0   0.003  0.0001 0.9929   

Level                     2   67.2  33.588  0.8307 0.4371   

Condition:Teacher         1    6.0   5.973  0.1477 0.7011   

Condition:Level           2   19.3   9.652  0.2387 0.7878   

Teacher:Level             1  192.6 192.589  4.7632 0.0301 

Condition:Teacher:Level   1    7.3   7.297  0.1805 0.6714   

Residuals               227 9178.2  40.433                  
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Full results on the change in students' Attitude toward Scientific Inquiry for each 

group are shown below in Table 31. Students in the Experimental group experienced an 

average increase of 2.03 points on their Career Interest in Science score (σ = 6.01), while 

students in the Control group experienced an average increase of 0.53 points on their 

Career Interest in Science score (σ = 6.79). Given the positive change in scores in both 

the Control and Experimental groups, a follow-up t-test was conducted to establish the 

significance of the change. This t-test found no statistically significant difference between 

pre-test and post-test scores for students in the Control group (t = 0.44, p = 0.66), but it 

did demonstrate a statistically significant difference between pre-test and post-test scores 

for students in the Experimental group (t = 1.98, p < 0.05) (I.3). 

Table 31: Difference between post-test and pre-test Career Interest in Science scores for students in 

each group and subgroup. The top number in each cell is the mean for that group; the number in 

parentheses is the standard deviation within that group; the bottom number is the number of 

samples within that subgroup. See Table 22 for further information about the groups of students 

summarized in each cell. 

Difference between Post-Test and Pre-Test Career Interest in Science Scores 

Teacher A Teacher B Teacher A Teacher B 

+0.67 

(5.12) 

n = 45 

+0.41 

(7.96) 

n = 54 

+1.92 

(6.20) 

n = 62 

+2.12 

(5.89) 

n = 76 

Control Experimental 

+0.53 

(6.79) 

n = 99 

+2.03 

(6.01) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

+0.15 

(7.01) 

n = 71 

+0.56 

(5.63) 

n = 18 

+3.10 

(7.17) 

n = 10 

+1.92 

(6.18) 

n = 113 

+2.44 

(5.81) 

n = 16 

+2.67 

(4.53) 

n = 9 

A B A B A B A B A B A B 

+1.13 

(4.97) 

n = 23 

−0.31 

(7.80) 

n = 48 

+0.56 

(5.63) 

n = 18 

-- 

-- 

n = 0 

−1.50 

(4.04) 

n = 4 

+6.17 

(7.39) 

n = 6 

+1.68 

(6.79) 

n = 38 

+2.04 

(5.89) 

n = 75 

+2.44 

(5.81) 

n = 16 

-- 

-- 

n = 0 

+2.00 

(4.34) 

n = 8 

+8.00 

-- 

n = 1 
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This analysis shows that students in the Experimental group experienced a 

significant improvement in Career Interest in Science that students in the Control group 

did not experience. Students in the Experimental group showed a statistically 

significant improvement in Career Interest in Science, while students in the Control 

group did not. The weak effect identified by the initial ANOVA renders this conclusion 

less conclusive than the observed change in Attitude toward Scientific Inquiry, but a 

change was observed nonetheless. The previous note regarding the permanence of these 

attitudinal changes applies here as well; this observation was made immediately 

following the close of the study, and the observed effect is likely to fade over time. The 

new challenge would be to identify the degree to which the change is permanent, and to 

structure new interventions using this system to help make the change more permanent. 

Change in Anxiety toward Science 

On the Anxiety toward Science metric, higher scores correspond to more anxiety 

toward science; therefore, a drop in Anxiety toward Science score is considered a 

desirable result. As established previously, prior to the intervention, no statistically 

significant difference existed between Anxiety toward Science in the Control and 

Experimental groups. After the multivariate ANOVA indicated a statistically significant 

effect of Condition on change in some constructs, an ANOVA was run specifically on 

this change to identify what relationship, if any, existed with regard to Anxiety toward 

Science. This ANOVA, shown below in Table 32, shows that there is no statistically 

significant relationship between change in Anxiety toward Science and participation 

in the Experimental condition. A relationship does exist, however, between the Teacher 

and the change in Anxiety toward Science (F = 5.77, p < 0.05) (I.2.D). 

Further analysis revealed that although each teachers' students dropped in their 

Anxiety toward Science, Teacher A's students dropped more (2.52 points, σ = 3.17) than 

Teacher B's students (1.48 points, σ = 3.41). Table 33 below shows scores across all 
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groups and subgroups; no significant effects are observed due to any factor except 

Teacher. 

Table 32: Univariate ANOVA results on the change in students' Attitudes toward Scientific Inquiry 

over the course of the intervention. These results show a statistically significant effect of Condition on 

change in Attitude toward Scientific Inquiry between the pre-test and post-test. 

Response AtS.D : 

                         Df  Sum Sq Mean Sq F value  Pr(>F)   

Condition                 1    0.00   0.000  0.0000 0.99960   

Teacher                   1   64.27  64.272  5.7720 0.01709 

Level                     2    3.49   1.747  0.1569 0.85491   

Condition:Teacher         1    9.28   9.284  0.8337 0.36217   

Condition:Level           2   13.72   6.858  0.6159 0.54104   

Teacher:Level             1    0.01   0.012  0.0011 0.97373   

Condition:Teacher:Level   1   10.97  10.968  0.9850 0.32203   

Residuals               227 2527.65  11.135         

           

In addition to students in Teacher A's classes improving more in their Anxiety 

toward Science than students in Teacher B's classes, a significant improvement was 

observed overall. On the pre-survey, students replied with an average score of 11.05 (σ = 

3.91). On the post-survey, students replied with an average score of 9.10 (σ = 2.94). This 

change was identical across the Control and Experimental conditions, and although the 

drop was larger in Teacher A's classes than in Teacher B's, the drop was statistically 

significant within each class. 

Given that this change occurred identically across the Control and Experimental 

groups, it is reasonable to speculate that the cause of this change was not within the 

intervention itself. One likely explanation is that between the beginning and end of the 

intervention, students received their scores on the standardized End of Course Tests. 

Informal conversation suggested that students across all classes were pleased with their 

scores, and that students in Teacher A's classes generally performed better than students 

in Teacher B's. Given this positive performance on a crucial standardized test, it is 

reasonable to infer that this development – or perhaps another event that affected all 

classes – could be responsible for this significant change. Thus, although the drop in 
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Anxiety toward Science across both Teachers and Conditions is notable, it cannot be 

attributed to this intervention. 

Table 33: Difference between post-test and pre-test Anxiety toward Science scores for students in 

each group and subgroup. The top number in each cell is the mean for that group; the number in 

parentheses is the standard deviation within that group; the bottom number is the number of 

samples within that subgroup. See Table 22 for further information about the groups of students 

summarized in each cell. 

Difference between Post-Test and Pre-Test Anxiety toward Science Scores 

Teacher A Teacher B Teacher A Teacher B 

−2.78 

(2.54) 

n = 45 

−1.26 

(3.20) 

n = 54 

−2.34 

(3.57) 

n = 62 

−1.63 

(3.56) 

n = 76 

Control Experimental 

−1.95 

(3.00) 

n = 99 

−1.95 

(3.57) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

−1.73 

(2.89) 

n = 71 

−2.56 

(2.23) 

n = 18 

−2.40 

(4.74) 

n = 10 

−1.97 

(3.43) 

n = 113 

−2.19 

(4.31) 

n = 16 

−1.22 

(4.21) 

n = 9 

A B A B A B A B A B A B 

−2.74 

(2.63) 

n = 23 

−1.25 

(2.91) 

n = 48 

−2.56 

(2.23) 

n = 18 

-- 

-- 

n = 0 

−4.00 

(3.65) 

n = 4 

−1.33 

(5.39) 

n = 6 

−2.68 

(3.03) 

n = 38 

−1.61 

(3.58) 

n = 75 

−2.19 

(4.31) 

n = 16 

-- 

-- 

n = 0 

−1.00 

(4.44) 

n = 8 

−3.00 

-- 

n = 1 

Change in Desire to Do Science 

As established previously, prior to the intervention, no statistically significant 

difference existed between Desire to Do Science in the Control and Experimental groups. 

After the multivariate ANOVA indicated a statistically significant effect of Condition on 

change in some constructs, an ANOVA was run specifically on this change to identify 

what relationship, if any, existed with regard to Desire to Do Science. This ANOVA, 

shown below in Table 34, showed that there is no relationship between any 

independent variable and change in Desire to Do Science. 
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Table 34: Univariate ANOVA results on the change in students' Attitudes toward Scientific Inquiry 

over the course of the intervention. These results show a statistically significant effect of Condition on 

change in Attitude toward Scientific Inquiry between the pre-test and post-test. 

Response DtDS.D : 

                         Df Sum Sq Mean Sq F value Pr(>F) 

Condition                 1    6.5   6.532  0.2912 0.5900 

Teacher                   1   27.8  27.812  1.2399 0.2667 

Level                     2    0.2   0.121  0.0054 0.9946 

Condition:Teacher         1    5.4   5.440  0.2425 0.6229 

Condition:Level           2    6.9   3.470  0.1547 0.8568 

Teacher:Level             1   41.1  41.146  1.8343 0.1770 

Condition:Teacher:Level   1    0.5   0.452  0.0202 0.8872 

Residuals               227 5091.9  22.431  

 

The full results across all conditions are displayed below in Table 35. Although 

minor effects seem present due to Condition, Teacher, and Level, none of these 

differences are statistically significant. Thus, there are insufficient data to conclude that 

any factors held a relationship with change in Desire to Do Science (I.2.E). 

Table 35: Difference between post-test and pre-test Desire to Do Science scores for students in each 

group and subgroup. The top number in each cell is the mean for that group; the number in 

parentheses is the standard deviation within that group; the bottom number is the number of 

samples within that subgroup. See Table 22 for further information about the groups of students 

summarized in each cell. 

Difference between Post-Test and Pre-Test Desire to Do Science Scores 

Teacher A Teacher B Teacher A Teacher B 

+0.27 

(3.76) 

n = 45 

−0.06 

(4.35) 

n = 54 

+0.95 

(5.64) 

n = 62 

+0.00 

(4.58) 

n = 76 

Control Experimental 

+0.09 

(4.07) 

n = 99 

+0.43 

(5.09) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

+0.14 

(4.25) 

n = 71 

−0.06 

(2.48) 

n = 18 

+0.00 

(5.35) 

n = 10 

+0.26 

(4.71) 

n = 113 

+1.31 

(7.88) 

n = 16 

+1.00 

(3.67) 

n = 9 

A B A B A B A B A B A B 

+0.87 

(4.50) 

n = 23 

−0.21 

(4.13) 

n = 48 

−0.06 

(2.48) 

n = 18 

-- 

-- 

n = 0 

−1.75 

(3.86) 

n = 4 

+1.17 

(6.21) 

n = 6 

+0.84 

(4.95) 

n = 38 

−0.04 

(4.60) 

n = 75 

+1.31 

(7.88) 

n = 16 

-- 

-- 

n = 0 

+0.75 

(3.85) 

n = 8 

+3.00 

-- 

n = 1 
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In addition to the absence of data suggesting a relationship between any 

independent variable and change in Desire to Do Science, no data exist to suggest a 

change in Desire to Do Science overall. Students opened the study with an average 

Desire to Do Science score of 20.99 (σ = 5.53) and closed the student with an average 

Desire to Do Science score of 21.28 (σ = 5.76), a statistically insignificant (t = 0.56, p = 

0.58) change of +0.27. Thus, no data exist to suggest that any facet of the study had any 

impact on the Desire to Do Science metric. 

Change in Perception of the Science Teacher 

As established previously, prior to the intervention, no statistically significant 

difference existed between Perception of the Science Teacher in the Control and 

Experimental groups. After the multivariate ANOVA indicated a statistically significant 

effect of Condition on change in some constructs, an ANOVA was run specifically on 

this change to identify what relationship, if any, existed with regard to Perception of the 

Science Teacher. This ANOVA, shown below in Table 36, showed that there is no 

statistically significant relationship between any independent variable and change in 

Perception of the Science Teacher (I.2.F). 

Table 36: Univariate ANOVA results on the change in students' Attitudes toward Scientific Inquiry 

over the course of the intervention. These results show a statistically significant effect of Condition on 

change in Attitude toward Scientific Inquiry between the pre-test and post-test. 

Response PofTS.D : 

                         Df  Sum Sq Mean Sq F value  Pr(>F)   

Condition                 1    3.40  3.4001  0.6073 0.43661   

Teacher                   1   20.39 20.3895  3.6420 0.05760 

Level                     2   13.22  6.6101  1.1807 0.30894   

Condition:Teacher         1    0.28  0.2754  0.0492 0.82468   

Condition:Level           2    3.90  1.9503  0.3484 0.70622   

Teacher:Level             1   23.19 23.1908  4.1424 0.04299 

Condition:Teacher:Level   1   11.44 11.4417  2.0437 0.15421   

Residuals               227 1270.85  5.5985      

              

A borderline statistically significant relationship does exist between Teacher and 

change in Perception of the Science Teacher. Students in Teacher A's classes experienced 

no change to their Perception of the Science Teacher scores (dropping 0.01 from 11.77 to 
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11.76), students in Teacher B's classes reported a drop of 0.60 in their Perception of the 

Science Teacher, from 11.42 to 10.82. On its own, this drop was statistically significant. 

An interaction was also indicated between Teacher and Level, but the initial multivariate 

ANOVA did not indicate any significant effect of this interaction, suggesting that this 

interaction is merely a product of repeated testing. 

Table 37: Difference between post-test and pre-test Perception of the Science Teacher scores for 

students in each group and subgroup. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 22 for further information about the groups of 

students summarized in each cell. 

Difference between Post-Test and Pre-Test Perception of the Science Teacher Scores 

Teacher A Teacher B Teacher A Teacher B 

+0.20 

(2.39) 

n = 45 

−0.52 

(2.55) 

n = 54 

−0.16 

(2.44) 

n = 62 

−0.66 

(2.21) 

n = 76 

Control Experimental 

−0.19 

(2.49) 

n = 99 

−0.43 

(2.32) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

−0.14 

(2.67) 

n = 71 

−0.11 

(1.41) 

n = 18 

−0.70 

(2.83) 

n = 10 

−0.43 

(2.09) 

n = 113 

+0.00 

(3.52) 

n = 16 

−1.22 

(2.54) 

n = 9 

A B A B A B A B A B A B 

+0.87 

(2.82) 

n = 23 

−0.62 

(2.48) 

n = 48 

−0.11 

(1.41) 

n = 18 

-- 

-- 

n = 0 

−2.25 

(1.50) 

n = 4 

+0.33 

(3.14) 

n = 6 

−0.03 

(1.78) 

n = 38 

−0.64 

(2.22) 

n = 75 

+0.00 

(3.52) 

n = 16 

-- 

-- 

n = 0 

−1.12 

(2.70) 

n = 8 

−2.00 

-- 

n = 1 

 

Taken overall, no significant effect on Perception of the Science Teacher was 

observed. Students reported a score of 11.58 on the pre-survey (σ = 2.19) and 11.24 on 

the post-survey (σ = 2.44), a statistically insignificant change of −0.34 (t = 1.55, p = 

0.12). 
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Summary of Change in Dispositions 

The change in content test scores and attitudinal scores across the five metrics are 

summarized below in Figure 23. 

 

Figure 23: The average changes in content test scores and attitudinal survey scores in the Control 

and Experimental groups. Attitude toward Scientific Inquiry and Career Interest in Science 

exhibited a statistically significant interaction between the condition and the change in scores. 

Content Test and Anxiety toward Science exhibited statistically significant overall changes, but no 

statistically significant interaction with condition. Perception of the Science Teacher and Desire to Do 

Science exhibited neither overall change nor interaction with the condition. 
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The results presented in this section establish three important changes as a result 

of the intervention. First, a statistically significant relationship (F = 8.59, p < 0.01) exists 

between participation in the experimental condition and the change in students' Attitudes 

toward Scientific Inquiry: students in the Experimental condition experienced a positive 

and statistically significant change in Attitude toward Scientific Inquiry compared to 

students in the Control condition, leading to a positive and statistically significant 

difference in final Attitude toward Scientific Inquiry for students in the Experimental 

condition (t = 2.12, p < 0.05). Second, students in the Experimental group experienced a 

statistically significant increase in Career Interest in Science (t = 1.98, p < 0.05), while 

students in the Control group experienced no such statistically significant increase (t = 

0.44, p > 0.1); this arose from a borderline significant relationship (F = 3.22, p < 0.1) 

between participation in the experimental condition and change in Career Interest in 

Science. Third, students in both the Control and the Experimental conditions experienced 

statistically significant decreases in Anxiety toward Science, although no difference 

between the groups was observed. 

The motivating hypothesis behind this analysis was that access to MILA–T during 

participation in the intervention would lead to a positive effect on attitudes toward 

science. The first result above, the change in Attitude toward Scientific Inquiry, confirms 

this hypothesis; students with MILA–T experienced a significant improvement in 

Attitude toward Scientific Inquiry compared to students that did not have access to 

MILA–T. The second result above, the change in Career Interest in Science, further 

supports this hypothesis, although the borderline significant relationship between 

participation in the experimental condition and change in Career Interest in Science 

leaves this result slightly less conclusive on its own. Based on these two results together, 

Hypothesis #2 is accepted. There are sufficient data to conclude that access to MILA–T 

leads to improved attitudes toward science compared to participation in the intervention 

without MILA–T. These results can also be found in Joyner & Goel 2014. 
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Additional Results 

The analyses presented in the previous sections address students' understanding of 

and dispositions toward inquiry-driven modeling. In addition to the data used in these 

analyses, additional data were collected on other components and developments in the 

classroom. Although these do not explicitly address the original hypotheses, these help 

provide a more complete view of the intervention, as well as contextualize some of the 

specific developments. Here, two such topics are discussed: changes to students' class 

interests across the intervention and students' perceptions of both MILA itself and 

MILA–T. 

Changes to Students' Class Interests After Intervention 

As part of the attitudinal survey administered at the beginning and end of the 

intervention, students were asked to mark what classes they were interested in taking in 

high school. Students were given twelve options: astronomy, earth science, geometry, 

trigonometry, physics, environmental science, biology, geobiology, calculus, chemistry, 

algebra, and astrotrigology. The final subject is fictitious, but intended to capture the 

possibility of general interest in science-related classes regardless of personal familiarity. 

For each course, each student was assessed a score of −1, 0, or 1; a −1 represents a course 

that the student stated they were interested in at the start, but not at the finish. A 1 

represents a course that the student was not interested in at the start, but was interested in 

at the end. A 0 represents a course that was unchanged; either it was not marked in either 

the pre- or post-survey, or it was marked in both. These scores were then added in four 

groups: "All", the overall change in the student's course interest (all twelve scores); 

"Science", the change in the student's interest in science courses (astronomy, earth 

science, physics, environmental science, biology, geobiology, chemistry); "Math", the 

change in the student's interest in math courses (geometry, trigonometry, calculus, 
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algebra); and "Life Science", the change in the student's interest in specifically life 

science courses (biology, geobiology, environmental science). 

First, a straightforward repeated t-test revealed no evidence that students' overall 

preferences changed. In the "All" category of classes, students experience an average 

change of −0.004 classes (σ = 1.784), representing effectively no change in class interest. 

The "Science", "Math", and "Life Science" categories saw changes of −0.025 (σ = 1.378), 

−0.021 (σ = 0.936), and −0.013 (σ = 0.628) respectively, showing no effective change in 

those three categories as well. A multivariate analysis of variance was conducted to check 

for any interactions between the independent variables (Condition, Teacher, and Level) 

and the individual students' change in class interests. The results of this multivariate 

analysis of variance are below. 

Table 38: Multivariate ANOVA results on the interaction between Condition, Teacher, and Level 

and students' change in class interest over the course of the intervention. No significant interactions 

were observed. 

                         Df   Pillai approx F num Df den Df Pr(>F) 

Condition                 1 0.020512  1.16227      4    222 0.3284 

Teacher                   1 0.001475  0.08201      4    222 0.9878 

Level                     3 0.057023  1.08504     12    672 0.3696 

Condition:Teacher         1 0.019761  1.11886      4    222 0.3484 

Condition:Level           3 0.049028  0.93039     12    672 0.5157 

Teacher:Level             1 0.020735  1.17519      4    222 0.3226 

Condition:Teacher:Level   1 0.012625  0.70967      4    222 0.5861 

Residuals               225 

 

Based on this analysis, no significant changes were observed. Overall, students 

did not change in their course interests, and there was no interaction based on Condition, 

Teacher, or Level. There exist, of course, interactions between students' initial or final 

interests and their Level, but no interactions exist with regard to the change in course 

interest over the course of the intervention. 

Perception of MILA & the Tutors 

As part of the final attitudinal survey, students were also asked to rate their 

perception of MILA. Perception of MILA was rated according to students' responses to 
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three prompts: "I feel more confident with science now than I did before using MILA.", 

"I feel more interested in science now than I did before using MILA.", and "MILA was a 

useful environment for creating scientific models." Each prompt was addressed on a five-

point scale, from Strongly Disagree (1 point) to Strongly Agree (5 points). Therefore, 

students' overall perception of MILA was rated on a scale of 3 to 15. 

The overall average score given by students was 9.84 out of 15; the 95% 

confidence interval around the perception score was (9.52, 10.16). Given that a 9 would 

be a neutral score (a response of '3' to all three questions, this reflected a slightly positive 

overall perception of MILA. Following up this overall report, a multivariate analysis of 

variance was run on students' reported perceptions of MILA along with three independent 

variables: Condition, Teacher, and Level. The results of this analysis are below. 

Table 39: Univariate ANOVA results on students' reported perceptions of MILA. Statistically 

significant interactions are observed based on Teacher and Condition, with Teacher A's students 

perceiving MILA more highly than Teacher B's and Control group students perceiving MILA more 

highly than Experimental group students. 

Response MILA.A : 

                         Df  Sum Sq Mean Sq F value    Pr(>F)     

Condition                 1   36.51  36.505  5.9457 0.0155218   

Teacher                   1   71.80  71.798 11.6939 0.0007433 

Level                     2    1.17   0.586  0.0954 0.9090079     

Condition:Teacher         1    6.07   6.073  0.9891 0.3210195     

Condition:Level           2    5.25   2.627  0.4278 0.6524654     

Teacher:Level             1    7.02   7.016  1.1426 0.2862287     

Condition:Teacher:Level   1    0.35   0.350  0.0570 0.8114788     

Residuals               227 1393.74   6.140 

 

This analysis revealed interactions between students' perceptions of MILA and 

two independent variables, Condition and Teacher. With regard to Condition, students in 

the Control condition rated MILA more highly than students in the Experimental 

condition, 10.30 (σ = 2.40) to 9.51 (σ = 2.59). The 95% confidence interval for the 

perception of MILA for the Experimental group is (9.08, 9.94), while the interval for the 

Control group is (9.83, 10.77), suggesting that while both groups had a slightly positive 

perception of MILA, the Control group's perception was more positive. Students in 

Teacher A's classroom reported a perception of MILA of 10.45 (σ = 2.48) while students 
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in Teacher B's classroom reported 9.34 (σ = 2.49), showing that Teacher A's students had 

a more positive perception of MILA than Teacher B's. The full summary of students' 

perceptions of MILA is provided in Table 40, below. It is worth noting that an alternative 

explanation of the improvement in the Attitudes toward Scientific Inquiry and Career 

Interest in Science among the Experimental students may have otherwise been described 

as a side effect of a positive perception of the tools themselves; however, the presence of 

a slightly superior opinion of MILA among students in the Control group suggests that 

this cannot explain the attitudinal improvements documented previously. 

Table 40: Perception of MILA for each independent variable and combination of independent 

variables. Significant interactions were observed based on Condition and Teacher. See Table 22 for 

further information about the groups of students summarized in each cell. 

Students' Perceptions of MILA 

Teacher A Teacher B Teacher A Teacher B 

10.71 

(2.22) 

n = 45 

9.96 

(2.50) 

n = 54 

10.26 

(2.65) 

n = 62 

8.89 

(2.40) 

n = 76 

Control Experimental 

10.30 

(2.40) 

n = 99 

9.51 

(2.59) 

n = 138 

On-Level Gifted Sp. Needs On-Level Gifted Sp. Needs 

10.28 

(2.37) 

n = 71 

10.83 

(1.98) 

n = 18 

9.50 

(3.21) 

n = 10 

9.35 

(2.53) 

n = 113 

10.19 

(2.69) 

n = 16 

10.33 

(3.20) 

n = 9 

A B A B A B A B A B A B 

10.91 

(1.90) 

n = 23 

9.98 

(2.52) 

n = 48 

10.83 

(1.98) 

n = 18 

-- 

-- 

n = 0 

9.00 

(4.40) 

n = 4 

9.83 

(2.56) 

n = 6 

10.26 

(2.53) 

n = 38 

8.88 

(2.41) 

n = 75 

10.19 

(2.69) 

n = 16 

-- 

-- 

n = 0 

10.38 

(3.42) 

n = 8 

10.00 

-- 

n = 1 

 

Students in the Experimental condition were also surveyed on their perception of 

the tutoring system. Students evaluated MILA–T across ten prompts, provided in 

Appendix A as part of the attitudinal survey. Each prompt was evaluated on a scale of 1 

(Strongly Disagree) to 5 (Strongly Agree), for an overall scale of 10 to 50 with a neutral 

score of '30'. The average student response was 32.80, and the 95% confidence interval 
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surrounding the average response was (31.53, 34.07), reflecting a slightly positive 

perception of MILA–T. 

Table 41: Univariate ANOVA results on students' reported perceptions of MILA–T. A statistically 

significant interaction is observed based on Teacher, with Teacher A's students perceiving MILA–T 

more highly than Teacher B's. 

Response Tutors.A : 

               Df Sum Sq Mean Sq F value    Pr(>F)     

Teacher         1  668.9  668.93 12.2835 0.0006233 

Level           2   81.4   40.68  0.7470 0.4757521     

Teacher:Level   1    0.6    0.64  0.0118 0.9136102     

Residuals     133 7242.8   54.46 

 

 

A univariate analysis of variance was run on the results of students' perceptions of 

the tutoring system. Because only students in the Experimental group had access to the 

tutoring system, only two independent variables were used: Teacher and Student Level. 

The results of this analysis are provided  in Table 41 above. 

 

Table 42: Perception of MILA for each independent variable and combination of independent 

variables. Significant interactions were observed based on Condition and Teacher. See Table 22 for 

further information about the groups of students summarized in each cell (note that this table 

contains only the Experimental half of the table in Table 22). 

Experimental Students' Perceptions of MILA–T 

Teacher A Teacher B 

35.24 

(6.91) 

n = 62 

30.82 

(7.67) 

n = 76 

Experimental 

32.80 

(7.64) 

n = 138 

On-Level Gifted Sp. Needs 

32.01 

(7.59) 

n = 113 

36.06 

(7.06) 

n = 16 

37.00 

(6.98) 

n = 9 

A B A B A B 

34.42 

(6.80) 

n = 38 

30.79 

(7.72) 

n = 75 

36.06 

(7.06) 

n = 16 

-- 

-- 

n = 0 

37.50 

(7.29) 

n = 8 

33.00 

-- 

n = 1 
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Based on this analysis, a statistically significant interaction between the teacher 

and the perception of MILA–T is observed. Students in Teacher A's classes perceive 

MILA–T more highly than students in Teacher B's. While there appears to also be an 

interaction with students' level (Gifted and Special Needs students report their 

perceptions of MILA–T at 36.06 and 37.00 respectively, while On-Level students report 

their perception of MILA–T at 32.01), this interaction is actually explained by the 

interaction with the teacher variable and the fact that all gifted students are in Teacher A's 

classrooms. The full results of this analysis are provided above in Table 42. 

Summary of Additional Results 

Although these analyses do not directly address the hypotheses at the beginning of 

this dissertation, they help provide a more complete picture of the entire classroom 

intervention. However, there also exist confounds that limit the reliability of these data. 

First, students rating the tools were aware that this work was important to the guests in 

the classroom, and thus quite likely rated it more highly as a friendly gesture. Second and 

more importantly, however, certain elements of MILA and MILA–T are intentionally 

structured to challenge students to perform better, to critique students' past performance, 

and to set constraints and standards for the type of results students are expected to 

deliver. All of these things serve the learning goals of the intervention, but also risk 

reducing students' positive perception of the tools. Thus, while the modestly positive 

perceptions of MILA and MILA–T observed in the survey results are encouraging, the 

learning gains remain the most important positive takeaway of this study.  
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CHAPTER 5 

TEAM RESULTS 

 

Figure 24: The fifth chapter of this dissertation covers analysis at the team level. First, it looks at 

analysis of the process in which teams of students engage, and second it looks at the models that those 

teams generate. 

Chapter 4 of this dissertation explored the results at the level of individual 

students, including individuals' understanding of inquiry-driven modeling, dispositions 

toward science, scientific inquiry, and careers in science, and dispositions toward the 

intervention as a whole. Chapter 5 shifts to focus on analysis of teams. Specifically, 

Chapter 5 examines the process of model construction and the resultant explanations that 

teams of students generate. Chapter 5 builds on the Preliminary Analysis conducted in 

Chapter 4, which revealed no statistically significant differences between students in the 

Control and Experimental groups. Thus, systematic differences between the performance 

of Control and Experimental teams can be reasonably attributed to the presence of the 

tutoring system. This chapter will first explore the third hypothesis, examining process of 

model construction that teams of students have undergone. It will then explore the fourth 

hypothesis, examining the actual explanations that teams generate. Finally, it will also 
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report on interviews with the teachers at the conclusion of the intervention, summarizing 

their perception of the results in the classroom. 

Analyzing teams in this context presents a layer of abstraction between individual 

understanding and observable results; it is not always clear how the products produced by 

a team reflect on the understanding of each individual learner in the team. Oftentimes, 

superior performance of one team over another may simply reflect a single superior team 

member. The aim of this controlled experiment, however, is to evaluate the usefulness of 

MILA–T in improving performance overall; assuming that a team cannot improve 

without at least one of its individuals improving, this experiment will still reveal whether 

MILA–T is helpful to a team of collaborative learners. Although this precludes claims 

about individual learners, the forthcoming conclusion that teams do improve as a result of 

engagement with MILA–T is nonetheless indicative of a desirable overall effect that may 

be symptomatic of, but does not necessarily demonstrate, improved metacognition. More 

importantly, although examining teams limits the measurability of individual learners, a 

collaborative approach to an inquiry activity is a more authentic representation of the way 

in which science is conducted in the real world (Bray 2000; Wellman & Lipton 2004), 

and literature on science education similarly supports the need to facilitate collaborative 

inquiry at the expense of measurability (Suthers, Toth & Weiner 1997; Manlove, 

Lazonder & Jong 2006). 

Hypothesis #3: Procedural Execution 

The third hypothesis of this work hypothesized that as a result of engagement 

with a metacognitive tutoring system during interaction with MILA, teams would better 

execute the process of inquiry-driven modeling. The third hypothesis is broken down into 

two sub-hypotheses: first, that teams will better engage in inquiry-driven modeling while 

receiving feedback from a metacognitive tutoring system, and second, that teams who 

have previously participated in a modeling activity with a metacognitive tutoring system 
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will better engage in inquiry-driven modeling even when the tutoring system is no longer 

in use. The first hypothesis reflects the improvement in modeling while receiving 

feedback, while the second hypothesis reflects the transferal of that improvement to a 

new project even when such feedback is no longer being received. 

The process of inquiry-driven modeling itself, as developed based on the literature 

on scientific modeling and scientific inquiry, was described previously in Chapter 2. 

Many facets of the process are contained within the minds of the students in the team or 

in the conversations amongst the team members during the modeling process, making 

analysis difficult; ideally, teams would develop the capacity to run through the cycle 

several times each minute, consistently engaging in a process of considering new 

information, reflecting on the current understanding, modifying it accordingly, and 

returning to gathering new information. 

Within the software, however, a number of tasks are tracked to allow for insight 

into the process of model construction in which teams engage. While much of the process 

of model construction happens within the minds of the teammates and in their 

conversations, portions of it are also visible in the software; in this context, all model 

construction and revision actions are logged, providing information on the construction of 

an explicit, shared model within MILA. This information, then, supports an examination 

of the major instances of model construction and revision. These analyses can also be 

found in Joyner & Goel 2015. 

Action Categorization 

Actions within the software were initially logged at a low level of granularity, 

such as adding or moving a particular node or changing the category for a single piece of 

evidence. In order to facilitate analysis of higher-order behaviors along the lines of model 

construction and revision, these low-level activities were first categorized into a schema 

reflecting the higher-order activities that each suggested. These higher-order activities 
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were derived from the process of inquiry-driven modeling itself in order to analyze the 

data in terms of the learning goal for the exercise. The activities derived are: Start, 

Writing Problem Definition, Proposing Hypothesis, Constructing Model, Constructing 

Evidence, Revising Model, Revising Evidence, Dismissing Model, Reconsidering Model, 

Taking Notes, Using Simulation, Switching Model, and Consulting Tutor (for teams in 

the Experimental group during the Learning project). These activities were written to 

correspond to the process of inquiry-driven modeling, and roughly map to the previous 

model as shown in Figure 25 below. 

 

Figure 25: The inquiry-driven modeling process described earlier. Written in green are the tasks and 

activities identified in teams' model construction processes, mapped onto the overall process of 

inquiry-driven modeling. 

Certain activities are present in multiple places, such as model construction either 

before any investigation has taken place or after gathering more information. Other 

activities in which teams participate are not tracked within the software; for example, 
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teams may also gather information from in-class activities, in-class experts, or other 

sources outside the software, unavailable here. One task, Switching Model, is not 

contained within this model of the inquiry-driven modeling process; the Switching Model 

task occurs when a team switches what model it is currently constructing or revising, and 

therefore is a task at a greater level of abstraction than the model shown here. One can 

imagine the inquiry-driven modeling task being carried out for each hypothesis and 

model individually. 

Table 43 below shows the mapping of each low-level action within MILA to a 

higher-level activity in the inquiry-driven modeling process. Under this categorization, 

model construction is defined as instances wherein something new is inserted into the 

model, and evidence construction is defined as instances wherein a new piece of evidence 

is added to the model. In contrast, model revision is defined as instances where a 

previously-existing portion of the model is modified or removed, and evidence revision is 

defined as instances where a previously-added bit of evidence is modified or removed.  

A number of tracked actions within MILA are not contained within this 

categorization because they were not regarded to be strongly indicative of a particular 

phase of the inquiry-driven modeling process. These actions are: Component Moved, 

Evidence Viewed, Project Opened, Switching Model, Tutor Switched, Tutor Text 

Feedback Given, Tutor Hidden, Tutor Question Clicked. The four tutor-specific actions 

are coincident with the Tutor Shown action recorded previously, while Component 

Moved, Switching Model, Evidence Viewed, and Project Opened are not individually 

indicative of any activity without an accompanying other action such as Component 

Removed or Evidence Changed. 

Markov Chains 

After deriving the categorization of actions into activities and the correspondence 

of those activities to the inquiry-driven modeling process, the activities were compiled 
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together into Markov Chains (Kemeny & Snell 1960) reflecting the transition amongst 

activities among all teams. As mentioned previously, Markov chains were chosen instead 

of hidden Markov models because of the desire to map and compare teams' behaviors to a 

preexisting model of the target process or skill rather than develop a grounded description 

of teams' behaviors (Ghahramani 2001). A significant limitation of analysis based on 

Markov chains is the assumption that the likelihood of a subsequent state is based solely 

on the current state rather than anything about the history of state transitions preceding 

the current state (Lopez, Hermanns, & Katoen 2001). In reality, we would likely assume 

that determination of the next activity that teams enter would be based not only on the 

previous activity, but on the history of activities prior to the previous activity as well. 

However, given the size of the dataset (22,547 individual actions), methods of analysis 

that include a broader activity history would be computationally intractable, and so this 

analysis builds on the Markov chains proposed here. 

Table 43: The compilation of certain low-level actions within MILA to higher-order activities in the 

inquiry-driven modeling process. 

Activity Actions 

Start Start 

Writing Problem Definition Problem Definition Changed 

Proposing Hypothesis New Model Added 

Constructing Model Component Added, New Connection 

Revising Model 

Component Edited, Component Removed, Component 

Direction Changed, Removed Edge, Connection Direction 

Toggled 

Constructing Evidence Evidence Added 

Revising Evidence Evidence Changed, Evidence Removed 

Dismissing Model Model Dismissed 

Reconsidering Model Model Reconsidered 

Taking Notes Opened Notes Dialog 

Using Simulation Opened Simulation Dialog 

Consulting Tutor Tutor Feedback Received, Tutor Shown 
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As with the data from the individual analyses of students' performance on the 

content test and attitudinal metrics, individual Markov chains could be constructed based 

on a variety of subdivisions of the data, including by Teacher, by Class Level, and by 

Condition. This analysis will primarily consider dividing the data into four chains: the 

Control condition on the Learning project, the Control condition on the Transfer project, 

the Experimental condition on the Learning project, and the Experimental condition on 

the Transfer project. Comparisons will focus on comparing across conditions within 

projects. 

Due to the complexity of these Markov chains (featuring transitions amongst 

twelve different tasks), these chains are presented here as tables. Each cell of the chart 

describes the percentage of the time that a team transitioned from the activity for that row 

to the activity for that column; the length of the green bar in the cell summarizes the 

value within that cell. Five chains are presented: one chain for each combination of 

Condition and Project, and an additional chain for the Experimental group's Learning 

project that excludes the Consulting Tutor task in order to draw more direct comparisons 

with the Control condition's Learning project. 

Analysis of these Markov chains takes three forms. First, a repeated Z-test is used 

to test for targeted improvements in certain dimensions of the inquiry-driven modeling 

process between comparable Markov chains in the Control and Experimental groups. 

Second, a repeated χ² test is run on corresponding portions of comparable chains to test 

for the presence of any difference between the chains for the Control and Experimental 

groups. Third, a targeted qualitative analysis specifically on the Markov chains for the 

Experimental group is used to identify the precise placement and role of the tutoring 

system within the broader inquiry-driven modeling process.  
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Targeted Improvement in Inquiry-Driven Modeling 

Prior to calculating the values of the Markov chains for each combination of 

Condition and Project, nine desired changes potentially identifiable by these Markov 

chains were identified. These nine changes represented differences between the Control 

and the Experimental groups that the planned Markov chains would be capable of 

identifying. Table 44 below identifies the differences and the measurements from the 

Markov chains that would signify the presence of the difference. Broadly, the 

improvements are designed to reflect perceived weaknesses in teams of students in past 

interventions in the project history of ACT (Goel et al. 2013), EMT (Joyner et al. 2012), 

and MILA. In past interventions, teams exhibited a handful of weaknesses and errors in 

inquiry-driven modeling, identified previously in Figure 5 on page 29. For example, 

teams often: 

 Jump straight to proposing hypotheses before establishing a strong definition of 

the phenomenon that they were trying to explain. This leads to effects like teams 

becoming distracted by superficial observations (such as the smell of Lake Clara 

Meer driving people away) that are not part of the causal chain leading to the 

phenomenon. 

 Rely on asking the teacher for the final correct explanation rather than exploring 

themselves. This reflects both a tendency to deemphasize self-driven inquiry as 

well as an underlying misconception that science is about finding an established 

correct answer rather than developing well-defended arguments and explanations. 

 Attempt to fit multiple hypotheses or new hypotheses into a single model rather 

than developing models that targeted explaining specific hypotheses. This leads to 

teams' models reflecting a general speculation on everything going on in the 

system rather than a targeted explanation of the relationship between the 

hypothesized cause and the phenomenon. 
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 Making up information in support of their hypotheses rather than inquiring into 

the data or literature. In this sense, making up information is not malicious, but 

rather reflects teams' tendencies to design evidential justifications or mechanistic 

explanations that make sense in their own minds rather than being grounded in the 

literature or investigation of the phenomenon. This tendency is addressed more 

strongly in Hypothesis #4's emphasis on certain kinds of evidence over these sorts 

of logical explanations. 

 Accepting a hypothesis too soon rather than fleshing it out sufficiently. Embedded 

in this error is the tendency of teams to focus solely on putting information into 

their models rather than modifying and revising the information they have 

previously provided. In earlier studies, teams tended to construct models that 

made sense to them and discuss how to justify the models later, which led to a 

hesitance to ever remove claims or connections made in previous models. Instead, 

multiple iterations through the model revision process are desired before 

ultimately landing on a hypothesis teams are willing to submit. 

 Using simulations in an undirected and unintentional manner. Teams often 

become distracted by the game-like elements of simulations and simply "play" 

with them instead of controlling variables and looking for specific relationships. 

 

MILA–T was, in many ways, designed to address precisely these mistakes, as 

described earlier. In order to connect these learning goals with MILA–T, the desired 

differences based on the presence of MILA–T are also derived from these errors and the 

broader inquiry-driven modeling process. In analyzing the Markov chains, positive 

changes would be instances wherein teams demonstrated greater tendencies to articulate 

their problem, revise prior claims and justifications based on new evidence,  and dismiss 

hypotheses for which there is insufficient support. Of course, not all activities that teams 

complete as part of the inquiry-driven modeling process are contained within the 
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software; while teams were encouraged to use the note-taking facilities of MILA to 

organize information from articles and in-class experiments, teams did jump straight into 

construction and revision. For this reason, the desired differences examined in this 

analysis all take the form of increased presence of a desirable actions rather than 

decreased presence of an undesirable one, given that identification of an undesirable 

activity would potentially misrepresent activity in the classroom. For example, we might 

witness a team propose a hypothesis, construct a model, and then immediately dismiss 

the model. It would be presumptuous to treat this as an error of jumping straight from 

construction to dismissal without gathering information because an activity outside of the 

software, such as reading a source provided in class, might provide the information 

necessary to choose to dismiss that hypothesis. Thus, rather than infer errors, we instead 

look for specific desirable transitions that would serve as positive indicators of execution 

of the desirable inquiry-driven modeling process. 

Along these lines, nine desirable differences were identified; this list is not 

exhaustive and would not be sufficient to determine that improvement did not occur, but 

would be capable of demonstrating that some improvement did occur. These differences 

were identified prior to development of the Markov chains summarizing the results, and 

thus were developed independently of knowledge of the patterns of interaction in the 

Control and Experimental groups. Table 44 below summarizes the nature of these desired 

differences and the operationalized potential indicators of the presence of these 

differences within the Markov chains. The name given at the left provides the identifier 

that will be used when testing for the presence of the given difference in the subsequent 

analysis. 

 

  



   

138 

 

Table 44: The desired differences in inquiry-driven modeling based on interaction with MILA–T. 

Name Difference Difference in Markov Chains 

#1 

Greater incidence of articulating the 

problem prior to beginning any 

modeling or inquiry activities. 

There is a greater probability of 

transitioning from Start to Writing 

Problem Definition. 

#2 

Greater incidence of using the 

results of data-gathering activities to 

construct new evidential 

justifications for a model's claims. 

There is a greater probability of 

transitioning from Taking Notes and 

Using Simulation to Constructing 

Evidence. 

#3 

Greater incidence of using the 

results of data-gathering activities to 

revise previous evidential 

justifications for a model's claims. 

There is a greater probability of 

transitioning from Taking Notes and 

Using Simulation to Revising Evidence. 

#4 

Greater incidence of using the 

results of data-gathering activities to 

refute previous hypotheses. 

There is a greater probability of 

transitioning from Taking Notes and 

Using Simulation to Dismissing Model. 

#5 

Greater incidence of using the 

results of data-gathering activities to 

propose new hypotheses. 

There is a greater probability of 

transitioning from Taking Notes and 

Using Simulation to Proposing 

Hypothesis. 

#6 

Greater incidence of revising 

problem definition throughout the 

inquiry-driven modeling process. 

There is a greater probability of an action 

being Writing Problem Definition even 

after removing instances of Writing 

Problem Definition following from Start. 

#7 
Greater overall incidence of model 

revision. 

There is a greater probability of an action 

being Revising Model. 

#8 

Greater incidence of model 

construction activities spawning 

further information-gathering 

activities. 

There is a greater probability of Taking 

Notes or Using Simulation following 

from Model Construction. 

#9 
Greater overall incidence of note-

taking. 

There is a greater probability of an action 

being Taking Notes. 
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Repeated Z-test Analysis 

These nine desired differences from the Control group based on the Experimental 

group's interaction with MILA–T represent nine process hypotheses as to potential 

improvements that MILA–T may bring. Each process hypothesis is similarly present in 

both the Learning and Transfer projects. Thus, each of these eighteen process hypotheses 

must be tested. However, given that the anticipated differences are dispersed amongst a 

much larger data set, these hypotheses are tested using a repeated Z-test for each process 

hypothesis and project. Given that repeating a Z-test drastically raises the odds of a false 

positive observation, the results of this analysis are subsequently processed through an 

additional test to examine the likelihood of the given observations if no true differences 

were present. 

Table 45 gives the results of the two-tailed Z-tests for the nine hypotheses for the 

Learning project. The column at the far left maps the test to the difference in Table 44. N 

for the Control and Experimental groups represents the overall number of observed 

instances of the parent task are observed. For example, the Experimental group has 50 

instances of the Start action while the Control group has 34 instances. The % for the 

Control and Experimental groups represent the number of instances of that action that 

were followed by the desired action. For example, for process hypothesis #1, 90.0% of 

the Experimental group's Start activities were followed by the desired Writing Problem 

Definition action, while 88.24% of the Control group's Start activities were followed by 

the desired action. For those process hypotheses that refer to a greater overall incidence 

of an activity (#6, #7, and #9), the measure is taken out of the total number of actions 

completed. For example, for process hypothesis #7, 37.40% of the Experimental group's 

actions were in the Revising Model category, while 34.67% of the Control group's 

actions fell in the same category. 
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Table 45: Results from a repeated Z-test over the nine hypotheses during the Learning project. 

# Control N 

Control 

Proportion 

Experimental 

N 

Experimental 

Proportion p (z) 

#1 34 88.2353% 50 90.0000% 0.795 (0.247) 

#2 248 22.4361% 342 16.9587% 0.094 (−1.665) 

#3 248 3.6438% 342 5.2397% 0.358 (0.091) 

#4 248 6.0682% 342 9.8926% 0.096 (1.663) 

#5 248 7.8901% 342 5.8926% 0.338 (−0.956) 

#6 3548 0.0039% 5637 0.0122% 0.000 (4.102) 

#7 3548 34.6674% 5637 37.3958% 0.008 (2.647) 

#8 1064 1.4098% 1525 1.4426% 0.944 (0.069) 

#9 3548 2.8185% 5637 2.1820% 0.004 (−2.89) 

 

The repeated Z-test revealed three statistically significant differences. First, teams 

in the Experimental group displayed a significantly larger propensity to revise their 

problem definitions over time (#6). Experimental teams performed a total of 69 problem 

definition revisions beyond writing the initial problem definition over the course of the 

Learning project compared with 14 revisions for teams in the Control group. Second, 

Experimental teams demonstrated a significantly higher propensity to revise their models 

over time (#7), spending 37.4% of their actions on revision compared to 34.7% in the 

Control group. Third, Control teams actually spent a greater percentage of their actions 

on note-taking than Experimental teams (#9), spending 2.8% of their actions on note-

taking compared to 2.2% for the Experimental group. 

As referenced previously, repeating a Z-test raises the odds of a false positive. 

Thus, these data should be interpreted together rather than in isolation. Taking α = 0.01 as 

our standard for rejecting a null hypothesis, if none of the hypotheses above were valid, 

then each would have a 1% (1 in 20) chance of registering as a false positive. A Bernoulli 

(or binomial) trial reveals a 91.4% chance of no false positives, an 8.3% chance of one 
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false positive, and a 0.3% chance of two or more false positives. Thus, we may infer that 

no more than one significant difference in the repeated Z-test is a false positive (given 

that p < 0.01 that more than one false positive would occur). Thus, in this analysis, we 

may conclude that no more than one of these significant differences was a false positive, 

and thus, at least two significant differences were observed. We cannot, however, make 

any determinations as to which difference may have been a false positive. Thus, we may 

ultimately conclude that there existed at least one improvement based on 

participation in the Experimental condition, and there existed at least one other 

significant difference as well. Given that it remains statistically possible that the second 

difference benefited the control group rather than the experimental group, it is difficult to 

state conclusively that participation in the experimental group improved performance 

more generally (T.1L), but we may claim it improved performance in at least one 

particular dimension. 

Table 46 gives the results for the same hypotheses on the Transfer project. As 

with the analysis of the Learning project, analysis of the Transfer project reveals three 

statistically significant differences. Teams in the Experimental group demonstrate a 

significantly larger propensity to revise their models over time as well as take notes 

during the data-gathering process. Teams in the Control group demonstrate a greater 

likelihood to revise their problem definitions over time. Interestingly, however, there is 

no statistically significant difference in the overall likelihood of writing a problem 

definition between the Control and the Experimental groups, suggesting that the 

increased tendency to revise problem definitions over time in the Control group only 

serves to equalize such actions relative to the Experimental group's greater number of 

such actions immediately after beginning the project. 

Although a seemingly large difference was seen in the likelihood of Control and 

Experimental groups to define their problem prior to beginning modeling (process 

hypothesis #1; 63.8% for the Experimental group, 44.1% for the Control group), the 
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sample size was insufficient to define this difference as statistically significant (p = 

0.078) (T.1T). Similarly, large differences appear to exist between the Control and 

Experimental groups' steps after gathering evidence (process hypotheses #2, #3, and #4), 

but the limited number of instances of data-gathering amongst the groups prevent these 

differences from being statistically significant. 

Table 46: Results from a repeated Z-test over the nine hypotheses during the Transfer project. 

# Control N 

Control 

Proportion 

Experimental 

N 

Experimental 

Proportion p (z) 

#1 34 44.1176% 47 63.8298% 0.078 (1.762) 

#2 60 16.6667% 75 27.1870% 0.147 (1.454) 

#3 60 3.7037% 75 12.8645% 0.061 (1.868) 

#4 60 3.7037% 75 9.0909% 0.215 (1.244) 

#5 60 25.9259% 75 19.2967% 0.358 (−0.920) 

#6 1302 0.0212% 2064 0.0073% 0.001 (−3.511) 

#7 1302 27.1889% 2064 31.5891% 0.007 (2.716) 

#8 435 1.6092% 710 1.6901% 0.920 (0.104) 

#9 1302 0.2304% 2064 1.5019% 0.000 (3.593) 

 

Similar to the analysis of the Learning project, a Bernoulli trial reveals there is 

less than a 1% chance of drawing more than one false positive. Given three differences, 

we may thus conclude that a minimum of two of them were not false positives, and thus, 

we may conclude that the Experimental group benefited in at least one way. However, 

it remains possible that the control group also benefited in one way, and so it is difficult 

to claim improvement more generally based on participation in the experimental 

condition (T1.T). We may, however, claim that participation in the experimental 

condition improved performance along one dimension 
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Overall Differences in Inquiry-Driven Modeling 

The above analysis demonstrated a significant difference in the patterns of 

interaction and inquiry between the Control group and the Experimental group, but it did 

not demonstrate that the performance of either group was superior to the other. In 

addition, it only demonstrated difference between the patterns of inquiry in the two 

groups according to a narrow set of metrics. In order to more conclusively demonstrate a 

difference between the activity of the Control and Experimental group, a more thorough 

analysis covering all the dimensions of the patterns of inquiry is required. 

The presentation of the Markov Chains above specifically compares the predicted 

values based on observations from the Control group to the observed values in the 

Experimental group. This comparison is performed based on transitions from one action 

to another. Within the Control group, transitions were observed with certain frequencies; 

for example, during the Learning project, teams performing a Taking Notes action 

transitioned into Constructing Model action 4.88% of the time. In the Experimental group 

during the Learning project, 100 Taking Notes actions were observed. Based on the 

observation from the Control group, we would expected that if the Control and 

Experimental groups performed identically, there would be 5 transitions from Taking 

Notes to Constructing Model (4.88% × 100). Instead, 10 such transitions were observed. 
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This analysis allows a look at the major differences between the Control and 

Experimental groups during interaction with MILA on both the Learning and the Transfer 

projects. The frequency of expected values of 0 prevents an analysis based on repeated χ² 

tests, but χ² can be run on the overall distributions of actions across the two groups within 

each project. Comparing the expected and observed distribution of actions within the 

Experimental group during the Learning project, there exists a statistically significant 

difference in the distributions (p < 0.0001, χ² = 60.307, 9 degrees of freedom) (T.2L). 

The most significant differences come in a significantly fewer observed incidences of 

model construction than expected (−170) and notable spikes in the incidence of Revising 

Evidence (+53) and Revising Model (+154). As described before, there is not sufficient 

evidence to conclude differences along any one of these dimensions, but there does exist 

sufficient evidence to state that there exists an overall difference of some kind 

between the Control and Experimental groups on the Learning project derived from 

these individual differences. These observed differences may be strong parts of this 

overall difference. 

Comparing the expected and observed distribution of actions within the 

Experimental group during the Transfer project, there also exists a statistically significant 

difference in the distributions (p < 0.0001, χ² = 188.084, 9 degrees of freedom) (T.2T). 

The most significant differences here are a notable spike in the incidence of both 

Revising Model (+91) and Taking Notes (+26) relative to the values predicted by the 

Control group, as well as a notable drop in Using Simulation (−40). As with the results 

during the Learning project, there are not sufficient data to conclude any one of these 

differences is significant, but there does exist sufficient evidence to state that there 

exists an overall difference of some kind between the Control and Experimental 

groups on the Transfer project derived from these individual differences. 

This analysis concludes the comparative analysis of the inquiry-driven modeling 

process between the Control and Experimental groups. Based on this analysis, there are 
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sufficient data to conclude that based on interaction with MILA–T, there exists a 

difference in behavior between teams in the Control and Experimental groups. However, 

there do not exist sufficient data to conclude that the performance of teams in the 

Experimental group is superior to performance of teams in the Control group. Thus, 

Hypothesis #3 is not accepted. There are not sufficient data to conclude that engagement 

with MILA–T during the inquiry-driven modeling progress led to an improvement in the 

execution of inquiry-driven modeling itself.  

Qualitative Analysis of the Tutors' Role 

Despite the lack of data to conclude that engagement with MILA–T leads to 

improvement in the inquiry-driven modeling process, there is nonetheless sufficient 

information to support further analysis of the precise way in which the tutoring system 

was used during engagement with MILA. The above analysis asserts that a difference 

based on engagement with MILA–T does actually exist; it simply stops short of calling 

that difference an advantage. Moreover, the analysis of hypothesis #4, below, 

conclusively shows that teams in the Experimental condition produce better explanations 

than teams in the Control condition, suggesting that the process of model construction in 

the Experimental condition was superior even if that superiority did not come out in these 

specific metrics. 

Examination of the Markov chain of the Experimental group during the Learning 

experiment including the Consulting Tutor action (shown previously in Markov Chain 1) 

yields a number of observations (T.3). First, interaction with the tutoring system is deeply 

embedded in interaction with MILA. 24.64% of all interactions with MILA by the 

Experimental group during the Learning project were interactions with the tutoring 

system. In total, teams in the Experimental group registered 1837 Consulting Tutor 

actions during the four days of the Learning project, an average of 37 interactions per 

team. 
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Consulting Tutors was a common action following every other action within 

MILA. It was the most common action to follow Dismissing Model and Writing Problem 

Definition, the second-most common action that teams took immediately after starting 

their projects (after Writing Problem Definition), and the second-most common action to 

take place after the Taking Notes action (after continued note-taking). Consulting Tutors 

is also among the most common actions to follow Constructing Evidence (second-most 

common), Constructing Model (third-most common), Proposing Hypothesis (second-

most common), Reconsidering Model (second-most common), Revising Evidence (third-

most common), Revising Model (third-most common), and Using Simulation (second-

most common). Regardless of what teams did during interaction with MILA, consultation 

with one of the tutors often followed immediately thereafter. 

The most common action to follow Consulting Tutor is a repeat of the Consulting 

Tutor action, suggesting multiple consecutive instances of requesting feedback from the 

Critic or asking the Guide a question. After repeated consultation with a tutor, however, 

teams most often moved toward model construction (19.9% of the remaining transitions), 

followed by evidence construction (15.4% of the remaining transitions). These transitions 

reflect some of the most common feedback that teams received, that their models' 

mechanisms were overly simplistic or their evidential justifications were overly reliant on 

weaker forms of evidence. As referenced earlier, the desired transition after receiving this 

feedback would be to gather additional information or evidence to add to the model, but 

after consultation with the tutors teams only transitioned to note-taking 4.1% of the 

remaining transitions and using a simulation 7.1% of the remaining transitions. As 

referenced previously, however, many information-gathering tasks were performed 

outside MILA, and thus this analysis does not infer that the lack of an explicit data-

gathering task between the feedback and the continued model or evidence construction 

are instances of the error described previously. 
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Tutor-Specific Usage Patterns 

The Markov chain featuring Consulting Tutors as an action can be further 

decomposed into a Markov chain reflecting interaction with each specific tutor. This 

Markov chain is difficult to visualize given the presence of sixteen different tasks (after 

splitting Consulting Tutor into the four specific tutors and the Tutor Feedback Received 

action), but the observations derived from this chain can be summarized. First, the chart 

in Figure 26 below provides the prevalence of interaction with each of the four tutors. 

 

Figure 26: Distribution of tutor usage. The Mentor accounted for over half (52.7%) of all interactions 

with the tutoring system. 

Interactions with the Mentor comprised roughly half of all interactions that teams 

had with the tutoring system. The Interviewer and Critic followed with approximately 

20% of the interactions each, followed by the Guide with roughly 10%. This distribution 

of interaction with the tutoring system is somewhat expected; the Mentor initiates 

interaction with the teams, and therefore spawns more interaction than the Guide and 

Critic which rely on the team themselves to initiate interaction. The Interviewer also 

initiates interaction, but only based on a specific and much narrower set of prompts. 

While the Critic relies on teams to initiate interaction, it also provides more tangible 

immediate benefit as it responds directly to improvements made to the teams' models. In 

170 

339 

932 

328 

Guide Critic Mentor Interviewer

Total Tutor Interactions by Tutor 
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this way, the Critic is able to serve as an ongoing barometer of teams' success, thus 

spawning more interaction as teams check on their progress. 

Each of the tutors shows distinct patterns of interaction. Interaction with the 

Mentor, for example, is most often followed by construction (15.45%) or revision 

(10.30%) of the team's models. Interaction with the Critic, on the other hand, is most 

often followed by addressing weaknesses in the model's evidential justifications (15.63% 

evidence construction, 2.95% evidence revision). The Critic is frequently followed by 

repeated interaction with the Critic (30.38%), reflecting that it gives different feedback 

when consulted repeatedly. Interaction with the Guide, too, is often followed by repeated 

interaction with the Guide (36.47%), suggesting teams navigating the question tree to get 

answers to different questions or perusing without a particular question in mind. 

A significant feedback cycle also exists amongst the different tutors. Each tutor, at 

times, gives teams feedback on consulting with the other tutors. The Guide, for instance, 

points to the Critic as an example of model critique and the Mentor as a check for 

ongoing progress. The Mentor specifically comments on whether teams are consulting 

with the Guide and Critic, and the Interviewer asks teams to reflect on the usefulness and 

role of the tutors. As a result, a significant portion of interactions with the tutors are 

followed by interactions with other tutors: 22.12% of Critic interactions are followed by 

an interaction with one of the other tutors; this figure is 29.41% for the Guide, 15.65% 

for the Interviewer, and 20.39% for the Mentor. Similarly, 24.91% of the Critic's actions 

follow from one of the other tutors, along with 17.71% of the Guide's actions, 12.67% of 

the Interviewer's actions, and 32.27% of the Mentor's actions. 

Although no firm statistical conclusions can be drawn based on patterns of 

interaction with the tutors due to the lack of a Control group, these observations 

regarding the pattern of interaction amongst the tutors are telling. First, the frequency of 

cycles within the tutoring system (the original Markov chain showed 56.34% of 

consultations with a tutor were followed immediately by another consultation with a 
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tutor) suggests teams enter a general help-seeking phase during which they seek help 

from either multiple tutoring agents or the same agent multiple times. This suggests that 

the feedback teams are often seeking is beyond the level of a particular confusing part of 

their model, but rather reflects broader hesitation about what to do next. Second, the 

transitions out of the tutoring system suggest that teams attempt to immediately apply the 

feedback received. The majority of the feedback that the Critic has available to provide, 

for example, is for teams to improve the strength of their evidential justifications, and 

indeed, after receiving feedback from the Critic, that is exactly what teams most often do. 

The Mentor, on the other hand, comments more frequently on the specific structure of the 

team's model and their modeling process, and thus its feedback is followed more often by 

model construction and revision. As referenced above, the main reason these 

observations are interesting, however, is that the following analysis demonstrates that 

teams with MILA–T generate better explanations during both the Learning and the 

Transfer project; even if analysis of the process itself does not yield any clear differences, 

the output of the process is nonetheless superior for teams in the Experimental group 

based on some effect of the interactions documented here. 

Hypothesis #4: Models and Explanations 

The fourth hypothesis of this work stated that as a result of engagement with a 

metacognitive tutoring system during interaction with MILA, teams would generate 

superior models compared to teams that did not have the benefit of a tutoring system. 

This broad hypothesis broke down into two smaller hypotheses, dubbed the Learning 

hypothesis and the Transfer hypothesis. First, for the Learning hypothesis, teams who 

constructed models while interacting with MILA–T would construct superior models 

compared to teams who constructed their models without MILA–T. Second, for the 

Transfer hypothesis, teams who previously had constructed models while interacting with 

MILA–T would continue to construct superior models compared to teams who previously 
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had constructed models without MILA–T, even after MILA–T was disabled. In other 

words, the gains seen through interaction with and feedback from MILA–T were 

internalized as learning gains that transferred to a new modeling task where such 

feedback was no longer available. 

A number of analyses were conducted to evaluate the validity of these 

hypotheses. First, final models were analyzed as delivered by teams for their strength in 

terms of model complexity and evidential justifications, as described in Chapter 3. 

Second, the individual evidence that teams wrote in defense of their hypotheses and 

models was coded for accuracy along a number of different dimensions. This led to 

analysis of the overall quality of teams' written evidence, both across the aggregate total 

of all teams and across each individual team. Finally, these coded data were then used to 

reinterpret the original models that teams delivered according to the original metrics. 

The process presented here is organized first according to the analysis, and then 

according to the specific hypothesis. Thus, first this section will discuss the initial 

analysis of models delivered by teams in both the Learning and Transfer projects. Then, 

this section will discuss the results of evidence coding in both the Learning and Transfer 

projects. Finally, this section will discuss the reinterpretation of the original models that 

teams delivered in both the Learning and Transfer projects. 

Data Structure 

Similar to Chapter 4, several tables will be presented throughout this chapter that 

summarize the numeric results from the Control and Experimental groups. For the sake of 

completeness, these tables present the mean, standard deviation, and number of teams 

within every significant group, from the Control and Experimental groups as a whole to 

narrower distinctions like Teacher A's On-Level Control group teams. Because of the 

quantity of data presented in these tables, they may be rather complex. In order to help 

understand these tables, the general structure of these data is presented below. 
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Table 47: The generic structure of the tables presented in this chapter. Each cell of these tables will 

provide three numbers: the mean on top, the standard deviation in parentheses in the middle, and 

the number of subjects at the bottom. 

Generic Team Data Table Structure 

Teacher A Teacher B Teacher A Teacher B 

Teacher A's Control 

group teams 

Teacher B's Control 

group teams 

Teacher A's 

Experimental group 

teams 

Teacher B's 

Experimental group 

teams 

Control Experimental 

All Control group teams All Experimental group teams 

On-Level Gifted On-Level Gifted 

On-Level Control 

group teams 

Gifted Control group 

teams 

On-Level 

Experimental group 

teams 

Gifted Experimental 

group teams 

A B A B A B A B 

Teacher A's 

On-Level 

Control 

group teams 

Teacher B's 

On-Level 

Control 

group teams 

Teacher A's 

Gifted 

Control 

group teams 

Teacher B's 

Gifted 

Control 

group teams 

Teacher A's 

On-Level 

Exper-

imental 

group teams 

Teacher B's 

On-Level 

Exper-

imental 

group teams 

Teacher A's 

Gifted 

Exper-

imental 

group teams 

Teacher B's 

Gifted 

Exper-

imental 

group teams 

 

Each cell in the tables that follow provides the subscores for the group of teams 

indicated in Table 47. Within each cell are three numbers: the number at the top is the 

mean for that group of teams; the number in parentheses in the middle is the standard 

deviation for that group of teams; and the number at the bottom, followed by "n =", is the 

number of teams in that group of teams. Teacher B has no Gifted classes, and as such 

the 'Teacher B's Gifted' team cells are empty in subsequent tables. These tables are 

similar to those used in Chapter 4; however, given that Special Needs students were 

mingled with On-Level students in On-Level classes, there is no 'special needs' category 

for teams. The table is structured to allow as many comparisons as possible under the 

general structure of the experiment. We can, for instance, directly compare the Control 

and Experimental teams as a whole by comparing the 'All Control group teams' and 'All 

Experimental group teams' cells, or we may compare only Teacher A's teams by 
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comparing the 'Teacher A's Control group teams' and 'Teacher A's Experimental group 

teams'. In reading the tables that follow, please consult Table 47 to ensure understanding 

of the structure of the data presented. 

Initial Model Analysis 

Initial analysis of the models that teams submitted examined the models along 

five separate metrics. The first metric, Model Complexity, summarized the complexity 

and interconnectedness of teams' models. The Model Complexity metric summed the 

number of components and connections in teams' models without weighting them to 

capture the size of models in both number of interacting variables and components and 

number of actual interactions between those variables and components. The other four 

metrics all built from different specific elements of the evidential justifications teams 

provided within their models: Total Model Strength, Average Model Strength, Average 

Evidence Strength, and Total Evidence. Total Model Strength compiled the evidence 

across teams' entire models according to the weighting scheme described earlier. For 

example, a model supplying two pieces of Expert Information (3 points each) and two 

Direct Observation (1 point each) would receive a score of '8'. Average Model Strength 

averaged this total strength across the number of edges in the model; for example, if there 

were two edges in the model, the previous model would have an Average Model Strength 

of 4. This metric controls for instances where models had greater total strength because 

of a greater number of claims made rather than greater evidence for individual claims. 

Average Evidence Strength took this control structure a step further and examined not 

only the average across the total number of claims made, but also across the total number 

of individual pieces of evidence supplied in justification of those claims. In the previous 

example, the Average Evidence Strength would be 2 (8 points over 4 pieces of evidence). 

This metric controls for instances wherein teams provided a greater number of weak 

pieces of evidence to arrive at the same overall strength (for example, lots of Logical 
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Explanations), rather than a smaller number of strong pieces of evidence (for example, a 

few pieces of Expert Information). Finally, the Total Evidence metric serves as a control 

over all of these to see if any observed differences in the above variables could be 

attributed solely to a change in the raw number of pieces of evidence supplied by teams 

rather than variations in the actual strength of that evidence. In the above example, 4 

pieces of evidence were supplied, so the Total Evidence score would be 4. 

The granularity of these metrics aims to draw a tight conclusion regarding the 

mechanism by which any differences that are observed arise. If, for example, teams in the 

Experimental group demonstrated a significantly higher overall strength of evidence in 

their models, that greater strength could be derived from multiple different changes, such 

as larger, more complex models (providing more claims to justify with evidence and, 

thus, more evidence); more individual pieces of evidence without a difference in the 

strength of that evidence; or a preference for actual stronger pieces of evidence. 

Learning Project 

At the conclusion of the Learning project, each team was asked to supply one 

model that represented their best explanation for what caused the fish kill in Lake Clara 

Meer; teams were told that they would be turning in a single model at the conclusion of 

their inquiry two days prior to the conclusion of the project. Initially, a multivariate 

analysis was conducted on these models to discern differences between teams' models. 

Three independent variables were considered, Condition, Teacher, and Class Level 

(gifted or on-level), and five output variables were considered as described above (Model 

Complexity, Total Model Strength, Average Model Strength, Average Evidence Strength, 

and Total Evidence). The objective of this analysis was to identify which independent 

variables predicted differences in teams' models across these five metrics. 



   

156 

 

Initial multivariate analysis of variance revealed a statistically significant effect of 

Condition (F = 3.04, p < 0.05), Teacher (F = 3.28, p < 0.01), and Class Level (F = 7.54, p 

≈ 0.0) (T.4L). The results of this initial analysis of variance are shown below in Table 48. 

Table 48: Multivariate ANOVA results on the differences in teams' models across five metrics based 

on different independent variables. The results indicate statistically significant effects of all three 

independent variables: Condition (F = 3.04, p < 0.05), Teacher (F = 3.28, p < 0.01), and Class Level (F 

= 7.54, p ≈ 0.0) 

                     Df  Pillai approx F num Df den Df    Pr(>F)     

Condition             1 0.17019   3.0355      5     74  0.015116   

Teacher               1 0.18142   3.2801      5     74  0.009916  

ClassLevel            1 0.33756   7.5416      5     74 9.087e-06 

Condition:Teacher     1 0.03129   0.4781      5     74  0.791516     

Condition:ClassLevel  1 0.05205   0.8127      5     74  0.544410     

Residuals            78                                              

 

Based on the results of this analysis, a follow-up univariate analysis of variance 

was conducted on each of the five metrics. The raw results of this univariate analysis are 

shown below in Table 49. 

A number of conclusions can be drawn based on these univariate analyses 

(T.4L.A-E). First and foremost with regard to the hypotheses and Experimental 

condition, a statistically significant effect was seen based on the Condition along three of 

the five metrics: Total Strength (F = 6.71, p < 0.05), Average Strength (F = 4.23, p < 

0.05), and Average Evidence Strength (F = 4.70, p < 0.05). No statistically significant 

effect of the Condition is seen on Model Complexity (F = 0.89, p = 0.35) or Total 

Evidence (F = 1.96, p = 0.17). These results show that teams in the Experimental group 

delivered models that provided stronger evidence for their claims than teams in the 

Control group. The difference in Total Strength demonstrated this overall difference 

first, as teams in the Experimental group received an average Total Evidence Strength 

score of 17.24 (σ = 13.24), compared to 11.03 (σ = 7.67) for teams in the Control group. 

In other words, models generated by teams in the Experimental group were an average of 

6.21 points, or 56.3%, stronger than models generated by teams in the Control group. 
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Table 49: Univariate ANOVA results each of the five metrics describing the differences in teams' 

models across the different independent variables. 

Response P1.ModelComplexity : 

                     Df Sum Sq Mean Sq F value    Pr(>F)     

Condition             1   6.95   6.947  0.8914    0.3480     

Teacher               1  19.64  19.639  2.5200    0.1165     

ClassLevel            1 285.34 285.336 36.6130 4.709e-08 

Condition:Teacher     1   6.11   6.112  0.7843    0.3786     

Condition:ClassLevel  1   1.37   1.374  0.1763    0.6757     

Residuals            78 607.88   7.793                       

 

 Response P1.TotalStrength : 

                     Df Sum Sq Mean Sq F value   Pr(>F)    

Condition             1  780.6  780.61  6.7111 0.011431  

Teacher               1  356.6  356.55  3.0654 0.083907  

ClassLevel            1 1053.9 1053.88  9.0605 0.003517 

Condition:Teacher     1   47.6   47.58  0.4090 0.524344    

Condition:ClassLevel  1    1.4    1.42  0.0122 0.912230    

Residuals            78 9072.7  116.32                     

 

 Response P1.AverageStrength : 

                     Df Sum Sq Mean Sq F value   Pr(>F)    

Condition             1  21.57  21.568  4.2308 0.043040  

Teacher               1  49.53  49.530  9.7157 0.002558 

ClassLevel            1   2.44   2.438  0.4783 0.491264    

Condition:Teacher     1   1.56   1.555  0.3050 0.582314    

Condition:ClassLevel  1   0.67   0.670  0.1315 0.717846    

Residuals            78 397.64   5.098                     

 

 Response P1.TotalEvidence : 

                     Df  Sum Sq Mean Sq F value   Pr(>F)    

Condition             1   56.56  56.561  1.9585 0.165638    

Teacher               1  165.50 165.498  5.7306 0.019074  

ClassLevel            1  300.00 300.004 10.3880 0.001852 

Condition:Teacher     1   15.36  15.359  0.5318 0.468022    

Condition:ClassLevel  1    2.36   2.361  0.0818 0.775682    

Residuals            78 2252.63  28.880                     

 

 Response P1.AverageEvidenceStrength : 

                     Df  Sum Sq Mean Sq F value  Pr(>F)   

Condition             1  1.8648 1.86484  4.7012 0.03319 

Teacher               1  0.3454 0.34539  0.8707 0.35364   

ClassLevel            1  1.9683 1.96830  4.9620 0.02879 

Condition:Teacher     1  0.0094 0.00939  0.0237 0.87810   

Condition:ClassLevel  1  0.0438 0.04381  0.1104 0.74053   

Residuals            78 30.9405 0.39667        

            

This finding could, again, be explained in two different ways: either teams in the 

Experimental group used a greater number of equally-strong pieces of evidence to defend 

their models, or teams in the Experimental group used an equal number of pieces of 

evidence while making the individual pieces of evidence stronger. Based on the lack of 
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difference in Total Evidence and the present difference in Average Evidence Strength 

between the Control and Experimental groups, the latter explanation is accurate. There 

are not data indicating that teams in the Experimental group simply used a greater 

number of pieces of evidence. Instead, teams in the Experimental group received an 

Average Evidence Strength score of 1.64 (σ = 0.69), while teams in the Control group 

received an Average Evidence Strength score of 1.34 (σ = 0.56). In other words, each 

individual piece of evidence that teams in the Experimental group supplied was an 

average of 0.30 points, or 22%, stronger than each individual piece of evidence that 

teams in the Control group supplied according to the weighting scheme given in Chapter 

3.  

The numeric results for each metric for each group are shown in the tables below. 

Table 50: Difference in Model Complexity between teams in different Conditions, Teachers, Class 

Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Model Complexity in the Learning Project 

Teacher A Teacher B Teacher A Teacher B 

10.25 

(4.39) 

n = 16 

8.44 

(1.92) 

n = 18 

10.08 

(3.72) 

n = 25 

9.68 

(2.94) 

n = 25 

Control Experimental 

9.29 

(3.39) 

n = 34 

9.88 

(3.32) 

n = 50 

On-Level Gifted On-Level Gifted 

8.29 

(2.26) 

n = 28 

14.00 

(4.00) 

n = 6 

9.17 

(2.74) 

n = 42 

13.62 

(3.78) 

n = 8 

A B A B A B A B 

8.00 

(2.87) 

n = 10 

8.44 

(1.92) 

n = 18 

14.00 

(4.00) 

n = 6 

-- 

-- 

n = 0 

8.41 

(2.29) 

n = 17 

9.68 

(2.94) 

n = 25 

13.62 

(3.78) 

n = 8 

-- 

-- 

n = 0 
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Table 51: Difference in Total Model Strength between teams in different Conditions, Teachers, Class 

Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Total Model Strength in the Learning Project 

Teacher A Teacher B Teacher A Teacher B 

10.00 

(7.18) 

n = 16 

11.94 

(8.16) 

n = 18 

14.44 

(13.71) 

n = 25 

20.04 

(12.40) 

n = 25 

Control Experimental 

11.03 

(7.67) 

n = 34 

17.24 

(13.24) 

n = 50 

On-Level Gifted On-Level Gifted 

9.89 

(7.54) 

n = 28 

16.33 

(6.28) 

n = 6 

16.36 

(13.13) 

n = 42 

21.88 

(13.76) 

n = 8 

A B A B A B A B 

6.20 

(4.61) 

n = 10 

11.94 

(8.16) 

n = 18 

16.33 

(6.28) 

n = 6 

-- 

-- 

n = 0 

10.94 

(12.59) 

n = 17 

20.04 

(12.4) 

n = 25 

21.88 

(13.76) 

n = 8 

-- 

-- 

n = 0 

 

Table 52: Difference in Average Model Strength between teams in different Conditions, Teachers, 

Class Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Average Model Strength in the Learning Project 

Teacher A Teacher B Teacher A Teacher B 

1.96 

(1.39) 

n = 16 

3.15 

(2.05) 

n = 18 

2.73 

(2.15) 

n = 25 

4.51 

(2.81) 

n = 25 

Control Experimental 

2.59 

(1.84) 

n = 34 

3.62 

(2.63) 

n = 50 

On-Level Gifted On-Level Gifted 

2.61 

(1.93) 

n = 28 

2.47 

(1.50) 

n = 6 

3.75 

(2.83) 

n = 42 

2.92 

(0.99) 

n = 8 

A B A B A B A B 

1.65 

(1.30) 

n = 10 

3.15 

(2.05) 

n = 18 

2.47 

(1.50) 

n = 6 

-- 

-- 

n = 0 

2.65 

(2.55) 

n = 17 

4.51 

(2.81) 

n = 25 

2.92 

(0.99) 

n = 8 

-- 

-- 

n = 0 
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Table 53: Difference in Average Evidence Strength between teams in different Conditions, Teachers, 

Class Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Average Evidence Strength in the Learning Project 

Teacher A Teacher B Teacher A Teacher B 

1.26 

(0.56) 

n = 16 

1.40 

(0.56) 

n = 18 

1.58 

(0.81) 

n = 25 

1.70 

(0.54) 

n = 25 

Control Experimental 

1.34 

(0.56) 

n = 34 

1.64 

(0.69) 

n = 50 

On-Level Gifted On-Level Gifted 

1.30 

(0.60) 

n = 28 

1.50 

(0.24) 

n = 6 

1.59 

(0.72) 

n = 42 

1.93 

(0.34) 

n = 8 

A B A B A B A B 

1.12 

(0.66) 

n = 10 

1.40 

(0.56) 

n = 18 

1.50 

(0.24) 

n = 6 

-- 

-- 

n = 0 

1.41 

(0.92) 

n = 17 

1.70 

(0.54) 

n = 25 

1.93 

(0.34) 

n = 8 

-- 

-- 

n = 0 
 

Table 54: Difference in Total Evidence between teams in different Conditions, Teachers, Class 

Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Total Evidence in the Learning Project 

Teacher A Teacher B Teacher A Teacher B 

6.75 

(4.52) 

n = 16 

8.33 

(4.52) 

n = 18 

7.44 

(6.04) 

n = 25 

11.08 

(6.51) 

n = 25 

Control Experimental 

7.59 

(4.53) 

n = 34 

9.26 

(6.48) 

n = 50 

On-Level Gifted On-Level Gifted 

6.93 

(4.50) 

n = 28 

10.67 

(3.50) 

n = 6 

8.93 

(6.64) 

n = 42 

11.00 

(5.66) 

n = 8 

A B A B A B A B 

4.40 

(3.31) 

n = 10 

8.33 

(4.52) 

n = 18 

10.67 

(3.50) 

n = 6 

-- 

-- 

n = 0 

5.76 

(5.61) 

n = 17 

11.08 

(6.51) 

n = 25 

11.00 

(5.66) 

n = 8 

-- 

-- 

n = 0 
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To summarize the findings above, statistically significant differences based on the 

Condition were observed along three metrics: Total Model Strength, Average Model 

Strength, and Average Evidence Strength. Based on these differences, this analysis shows 

that teams in the Experimental group produced better-justified models on the 

Learning project than teams in the Control group, as measured by the metrics noted 

above. 

In addition, a number of other interactions are worth noting based on this analysis. 

First, there existed a statistically significant interaction between four of the five metrics 

and Class Level: Model Complexity (F = 36.6, p ≈ 0.0), Total Model Strength (F = 9.06, 

p < 0.01), Total Evidence (F = 10.39, p < 0.01), and Average Evidence Strength (F = 

4.96, p < 0.05). In each, teams in the Gifted classes outperformed teams in the On-Level 

classes. However, the absence of an effect in Average Evidence Strength suggests that 

these effects were largely a product of producing bigger models with more evidence 

rather than producing stronger evidence. In fact, although the difference is not 

statistically significant, teams in the On-Level classes had a higher Average Evidence 

Strength (3.30, σ = 2.56) than teams in Gifted classes (2.73, σ = 1.20). Secondly, there 

existed a statistically significant interaction between Teacher and two metrics: Average 

Model Strength (F = 9.72, p < 0.01) and Total Evidence (F = 5.73, p < 0.05). In both 

metrics, teams in Teacher B's classes outperformed teams in Teacher A's classes. 

Transfer Project 

At the conclusion of the Transfer project, each team was asked to supply one 

model that represented their best explanation of what has caused Atlanta's recent run of 

record-high temperatures. Teams were informed at the beginning of the project that they 

would be delivering such an explanation at the conclusion of class. Initially, a 

multivariate analysis was conducted on these models to discern differences between 

teams' models. Three independent variables were considered, Condition, Teacher, and 
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Class Level (gifted or on-level), and five output variables were considered as described 

above (Model Complexity, Total Model Strength, Average Model Strength, Average 

Evidence Strength, and Total Evidence). The objective of this analysis was to identify 

which independent variables predicted differences in teams' models across these five 

metrics. 

Initial multivariate analysis of variance revealed a statistically significant effect of 

Condition (F = 3.21, p < 0.05) and Teacher (F = 4.02, p < 0.01), but not of Class Level (F 

= 1,11, p = 0.36) (T.4T). The raw results of the initial multivariate analysis of variance 

are shown below in Table 55. 

Table 55: Multivariate ANOVA results on the differences in teams' Transfer project models across 

five metrics based on different independent variables. The results indicate statistically significant 

effects of all three independent variables: Condition (F = 3.21, p < 0.05) and Teacher (F = 4.02, p < 

0.01). 

                     Df   Pillai approx F num Df den Df   Pr(>F)    

Condition             1 0.184474   3.2121      5     71 0.011360  

Teacher               1 0.220778   4.0233      5     71 0.002854 

ClassLevel            1 0.072455   1.1092      5     71 0.363306    

Condition:Teacher     1 0.082125   1.2705      5     71 0.286239    

Condition:ClassLevel  1 0.024373   0.3547      5     71 0.877562    

Residuals            75 

 

Based on the results of this analysis, a follow-up univariate analysis of variance 

was conducted on each of the five metrics. The raw results of this univariate analysis are 

shown below in Table 56. 

With regard to the hypotheses and Experimental condition, a statistically 

significant effect was seen based on the Condition along three of the five metrics: Model 

Complexity (F = 4.95, p < 0.05), Total Model Strength (F = 4.61, p < 0.05), and Average 

Evidence Strength (F = 9.48, p < 0.01) (T.4T.A-E). No statistically significant effect of 

the Condition is seen on Average Model Strength (F = 0.87, p = 0.35) or Total Evidence 

(F = 0.66, p = 0.42). Unlike in the Learning project, the Transfer project did see a 

difference in Model Complexity between the Control and Experimental groups: teams in 

the Experimental group received an average Model Complexity score of 10.62 (σ = 3.70), 

while teams in the Control group received an average score of 8.91 (σ = 4.06), a 1.71 
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point advantage for teams in the Experimental group. For comparison, teams in the 

Experimental group received an average Model Complexity score of 9.88 (σ = 3.32) in 

the Learning project, while teams in the Control group received an average score of 9.29 

(σ = 3.39). 

Table 56: Univariate ANOVA results each of the five metrics describing the differences in teams' 

Transfer project models across the different independent variables. 

Response P2.ModelComplexity : 

                     Df Sum Sq Mean Sq F value    Pr(>F)     

Condition             1  57.37  57.368  4.9485   0.02912   

Teacher               1 209.35 209.353 18.0585 6.088e-05 

ClassLevel            1  58.96  58.962  5.0860   0.02704   

Condition:Teacher     1  31.54  31.544  2.7210   0.10322     

Condition:ClassLevel  1   4.51   4.508  0.3888   0.53481     

Residuals            75 869.48  11.593                       

 

 Response P2.TotalStrength : 

                     Df Sum Sq Mean Sq F value Pr(>F)   

Condition             1  320.4  320.41  4.6109 0.0350 

Teacher               1  127.8  127.82  1.8394 0.1791   

ClassLevel            1   87.6   87.60  1.2606 0.2651   

Condition:Teacher     1   12.4   12.41  0.1786 0.6738   

Condition:ClassLevel  1   85.2   85.25  1.2268 0.2716   

Residuals            75 5211.8   69.49                  

 

 Response P2.AverageStrength : 

                     Df Sum Sq Mean Sq F value Pr(>F) 

Condition             1   3.95  3.9547  0.8676 0.3546 

Teacher               1   6.17  6.1736  1.3543 0.2482 

ClassLevel            1   0.09  0.0884  0.0194 0.8896 

Condition:Teacher     1   2.22  2.2156  0.4860 0.4879 

Condition:ClassLevel  1   2.71  2.7142  0.5954 0.4427 

Residuals            75 341.88  4.5584                

 

 Response P2.TotalEvidence : 

                     Df  Sum Sq Mean Sq F value Pr(>F) 

Condition             1   11.80 11.8025  0.6630 0.4181 

Teacher               1   29.87 29.8666  1.6778 0.1992 

ClassLevel            1   18.80 18.8016  1.0562 0.3074 

Condition:Teacher     1    0.25  0.2488  0.0140 0.9062 

Condition:ClassLevel  1    9.08  9.0850  0.5104 0.4772 

Residuals            75 1335.08 17.8011                

 

 Response P2.AverageEvidenceStrength : 

                     Df Sum Sq Mean Sq F value   Pr(>F)    

Condition             1  5.006  5.0062  9.4769 0.002906 

Teacher               1  0.205  0.2050  0.3881 0.535169    

ClassLevel            1  0.035  0.0349  0.0661 0.797852    

Condition:Teacher     1  0.216  0.2156  0.4081 0.524897    

Condition:ClassLevel  1  0.182  0.1817  0.3440 0.559287    

Residuals            75 39.619  0.5282                     
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As in the Learning project, a difference in Total Model Strength between teams in 

the Control and Experimental group could be explained in one of two ways: either the 

teams with the higher strength had larger models, or they could have models of the same 

size with stronger evidence. Unlike in the Learning project, however, here the first 

explanation holds true. Teams in the Experimental group received an average Total 

Model Strength score of of 14.38 (σ = 9.09), while teams in the Control group received 

an average score of 10.35 (σ = 7.24), a 4.03 point difference in favor of teams in the 

Experimental group. Combined with the increased score on the Model Complexity 

metric, this result establishes that teams in the Experimental group were able to build 

larger, more complex models of the phenomenon without sacrificing the evidential 

strength underlying their claims. Put more simply, in the Learning project, teams in the 

Experimental group did a better job of justifying their claims; in the Transfer project, 

teams in the Experimental group justified more claims than the Control group 

equally well. Table 57 through Table 61 show the full results of this analysis. 

In order to justify more claims, teams in the Experimental group would have to do 

one of two things: either they would have to supply more bits of evidence overall, or the 

bits of evidence they supplied would have to be stronger. Given that the models from 

teams in the Experimental group were more complex, it would stand to reason that they 

justified those models with a greater number of bits of evidence. However, the analysis 

revealed no significant difference in the Total Evidence metric between teams in the 

Control and Experimental groups; teams in the Experimental group supplied on average 

7.36 (σ = 4.20) pieces of evidence per model, while teams in the Control group supplied 

an average of 6.59 (σ = 4.20) pieces, a minor difference. Rather, the greater Total Model 

Strength and matching Average Model Strength are owed to the Experimental group 

providing stronger individual pieces of evidence; the mean Average Evidence Strength 

score for teams in the Experimental group was 1.96 (σ = 0.70), while for teams in the 

Control group it was 1.46 (σ = 0.74).  
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Table 57: Difference in Model Complexity between teams in different Conditions, Teachers, Class 

Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Model Complexity in the Transfer Project 

Teacher A Teacher B Teacher A Teacher B 

11.44 

(3.85) 

n = 16 

6.67 

(2.74) 

n = 18 

11.60 

(3.58) 

n = 25 

9.50 

(3.60) 

n = 22 

Control Experimental 

8.91 

(4.06) 

n = 34 

10.62 

(3.70) 

n = 47 

On-Level Gifted On-Level Gifted 

7.93 

(3.48) 

n = 28 

13.50 

(3.51) 

n = 6 

10.15 

(3.83) 

n = 39 

12.88 

(1.89) 

n = 8 

A B A B A B A B 

10.20 

(3.65) 

n = 10 

6.67 

(2.74) 

n = 18 

13.50 

(3.51) 

n = 6 

-- 

-- 

n = 0 

11.00 

(4.06) 

n = 17 

9.50 

(3.60) 

n = 22 

12.88 

(1.89) 

n = 8 

-- 

-- 

n = 0 
 

Table 58: Difference in Total Model Strength between teams in different Conditions, Teachers, Class 

Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Total Model Strength in the Transfer Project 

Teacher A Teacher B Teacher A Teacher B 

11.25 

(7.37) 

n = 16 

9.56 

(7.23) 

n = 18 

15.84 

(10.91) 

n = 25 

12.73 

(6.28) 

n = 22 

Control Experimental 

10.35 

(7.24) 

n = 34 

14.38 

(9.09) 

n = 47 

On-Level Gifted On-Level Gifted 

9.25 

(6.89) 

n = 28 

15.50 

(7.12) 

n = 6 

14.00 

(9.42) 

n = 39 

16.25 

(7.50) 

n = 8 

A B A B A B A B 

8.70 

(6.57) 

n = 10 

9.56 

(7.23) 

n = 18 

15.50 

(7.12) 

n = 6 

-- 

-- 

n = 0 

15.65 

(12.40) 

n = 17 

12.73 

(6.28) 

n = 22 

16.25 

(7.50) 

n = 8 

-- 

-- 

n = 0 
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Table 59: Difference in Average Model Strength between teams in different Conditions, Teachers, 

Class Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Average Model Strength in the Transfer Project 

Teacher A Teacher B Teacher A Teacher B 

2.25 

(1.60) 

n = 16 

3.19 

(2.15) 

n = 18 

3.07 

(2.40) 

n = 25 

3.34 

(2.06) 

n = 22 

Control Experimental 

2.75 

(1.95) 

n = 34 

3.20 

(2.23) 

n = 47 

On-Level Gifted On-Level Gifted 

2.78 

(2.06) 

n = 28 

2.61 

(1.41) 

n = 6 

3.30 

(2.36) 

n = 39 

2.71 

(1.45) 

n = 8 

A B A B A B A B 

2.03 

(1.75) 

n = 10 

3.19 

(2.15) 

n = 18 

2.61 

(1.41) 

n = 6 

-- 

-- 

n = 0 

3.24 

(2.76) 

n = 17 

3.34 

(2.06) 

n = 22 

2.71 

(1.45) 

n = 8 

-- 

-- 

n = 0 

 

Table 60: Difference in Average Evidence Strength between teams in different Conditions, Teachers, 

Class Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Average Evidence Strength in the Transfer Project 

Teacher A Teacher B Teacher A Teacher B 

1.58 

(0.55) 

n = 16 

1.35 

(0.87) 

n = 18 

1.97 

(0.58) 

n = 25 

1.96 

(0.83) 

n = 22 

Control Experimental 

1.46 

(0.74) 

n = 34 

1.96 

(0.70) 

n = 47 

On-Level Gifted On-Level Gifted 

1.40 

(0.80) 

n = 28 

1.72 

(0.15) 

n = 6 

1.97 

(0.74) 

n = 39 

1.93 

(0.47) 

n = 8 

A B A B A B A B 

1.49 

(0.68) 

n = 10 

1.35 

(0.87) 

n = 18 

1.72 

(0.15) 

n = 6 

-- 

-- 

n = 0 

1.99 

(0.64) 

n = 17 

1.96 

(0.83) 

n = 22 

1.93 

(0.47) 

n = 8 

-- 

-- 

n = 0 
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Table 61: Difference in Total Evidence between teams in different Conditions, Teachers, Class 

Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Total Evidence in the Transfer Project 

Teacher A Teacher B Teacher A Teacher B 

7.19 

(4.56) 

n = 16 

6.06 

(3.90) 

n = 18 

7.96 

(4.64) 

n = 25 

6.68 

(3.62) 

n = 22 

Control Experimental 

6.59 

(4.20) 

n = 34 

7.36 

(4.20) 

n = 47 

On-Level Gifted On-Level Gifted 

6.11 

(4.18) 

n = 28 

8.83 

(3.87) 

n = 6 

7.15 

(4.32) 

n = 39 

8.38 

(3.62) 

n = 8 

A B A B A B A B 

6.20 

(4.85) 

n = 10 

6.06 

(3.90) 

n = 16 

8.83 

(3.87) 

n = 6 

-- 

-- 

n = 0 

7.76 

(5.14) 

n = 17 

6.68 

(3.62) 

n = 22 

8.38 

(3.62) 

n = 8 

-- 

-- 

n = 0 

Summary 

In the Learning project, teams with access to MILA–T provided models that were 

significantly higher in Total Model Strength, Average Model Strength, and Average 

Evidence Strength than teams that conducted created their models without MILA–T. 

Teams in the two groups produced models that were equally large and complex, and also 

provided the same raw number of pieces of evidence in support of those models. 

However, the individual pieces of evidence in defense of these models provided by teams 

using MILA–T were stronger than those provided by other teams. As a result, teams with 

MILA–T outperformed teams without MILA–T across all three metrics. 

In the Transfer project, all teams operated without MILA–T. Teams that had 

previously had access to MILA–T during the Learning project, however, provided 

models that were significantly higher in Model Complexity, Total Model Strength, and 

Average Evidence Strength. Thus, teams that had previously used MILA–T were able to 
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justify more claims in their explanations than teams that had not previously used MILA–

T. Additionally, these teams did so with stronger evidence; teams that had previously 

used MILA–T were able to justify larger, more complex explanations with stronger 

pieces of evidence. 

Coded Evidence Analysis 

Based on the analysis of the models that teams submitted at the end of the 

Learning and Transfer project, improvement based on engagement with MILA–T is 

reasonably well-demonstrated. However, two questions remain after that analysis. First, 

and to verify the validity of that claim, was the evidence that teams supplied in defense of 

their explanations really better in the Experimental group than in the Control group? The 

scores associated with evidence strength in the prior analysis were based on teams' self-

reported categorization of their evidence. It is possible that the teams could improve in 

their scores along these metrics simply by choosing stronger categories for their evidence 

rather than actually changing the evidence itself. Thus, it is important to examine the 

actual text of the evidence supplied by teams in addition to the categories. 

Secondly, an additional conclusion is possible based on interpretation of the 

actual textual evidence that teams supplied. While the above conclusions and claims 

suggest a shift in the type of evidence that teams prefer, they do not address the deeper 

understanding of what evidence is, how it should be used, and what constitutes a strong 

defense beyond simply the right combination of categories. In addition to verifying that 

the evidence teams supplied for their explanations is itself sound to validate the previous 

conclusions, this analysis also aims to assess whether or not MILA–T helped teams 

develop a better understanding of the role of evidence and justifying claims in general. 

Coding the evidence that teams wrote for their models consisted of three phases. 

First, a subset of the data was analyzed and coded in order to establish a coding scheme 

to use on the evidence as a whole. Then, three rounds of coding were run, each completed 
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by the same coder three weeks apart. Intra-coder reliability was then established across 

these three coding sessions. Finally, the results of this exercise were analyzed as well to 

determine whether participation in the Experimental condition changed teams' 

performance in the quality, accuracy, and strength of evidence supplied for their 

explanations. 

The teams in the study produced a total of 1301 individual pieces of evidence 

over the course of the two projects: 722 for the Learning project (261 Control, 461 

Experimental) and 580 for the Transfer project (231 Control, 349 Experimental). These 

1301 individual pieces of evidence were used to support 640 total claims or connections: 

332 for the Learning project (125 Control, 207 Experimental) and 308 for the Transfer 

project (109 Control, 199 Experimental). Each piece of evidence was coded based on the 

text of the evidence, the category chosen by teams, and the connection or claim in the 

model that teams defended using that piece of evidence. Coding was randomized across 

all claims, although all pieces of evidence associated with a single connection were coded 

at the same time to identify instances of redundant justification. 

Coding Scheme 

Initially, 15% of the individual connections (96 connections total) were randomly 

selected and separated out. These 96 connections carried 199 individual pieces of 

evidence. Notes were taken on the acceptability of the evidence, and in the event of 

unacceptability, the reason the piece of evidence was unacceptable. At the conclusion of 

this process, these notes were analyzed to identify seven categories of evidence: 

acceptable, miscategorized, and five reasons a piece of evidence may be deemed 

unacceptable. As a result of this process, seven coding labels were identified, as shown in 

Table 62 below. The examples in this table are taken directly from the coded data. The 

descriptions were written after the exercise on the initial 196 data, but before coding the 

remainder of the data.  
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Table 62: The seven categories used to code the evidence teams provided in support of their claims 

and connections in their models. The letters in parentheses in the left ('Coding Label') column give 

the abbreviations for the tables below. 

Coding Label Description Example 

Acceptable 

(A) 

The piece of evidence is acceptable. It 

applies to this connection or claim, it 

provides reason to believe the claim is 

true, it is given the proper category, and 

it does not repeat the justifications 

given in any prior pieces of evidence. 

Logical Explanation: "Since 

Algal Blooms are a plant, 

they consume more energy 

when the sun is out, work 

better, and do more." 

Miscategorized 

(M) 

The text of the evidence itself is 

acceptable, it does not repeat the 

justifications given in any prior pieces 

of evidence, and it applies to this 

connection or claim. However, the 

category given for the piece of evidence 

is incorrect. 

Controlled Experiment: "The 

boats are polluting the 

water." 

 

Direct Observation: "High 

amounts of fertilizer may 

cause too high of amounts of 

algae." 

Redundant 

(R) 

The piece of evidence does not add 

anything to the justification for this 

claim or connection that was not 

already stated by an earlier piece of 

evidence. 

Simulation Observations: 

"The fish won't get enough 

oxygen." and "The fish are 

not breathing in enough 

oxygen." 

Gibberish 

(G) 

The text of this piece of evidence is 

either missing or indecipherable. 

Direct Observation: "Dash 

Riptide a commenter said 'the 

PPC was very happy about 

their own chicken litter.'" 

Irrelevant 

(I) 

While this piece of evidence provides 

information that could be used to justify 

some claim, it does not apply in any 

way to the claim it is being used to 

justify here. 

Expert Information: "In 

2004, the U.S. reported to 

have produced 19% of the 

world's energy-related carbon 

emissions." as evidence that 

rising emissions cause global 

warming." 

Insufficient 

(S) 

While this piece of evidence suggests 

something that could be used in defense 

of this claim or connection, it is not 

sufficient on its own. 

Logical Explanation: "Toxic 

algae will cause oxygen 

levels to go down." 

Not Evidence 

(N) 

The statement does not provide any 

kind of evidence that could be applied 

to any claim or connection. 

Logical Explanation: "There 

is really no other way that 

this could be happening." 
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 In discussion, this coding scheme may be further simplified to only differentiate 

acceptable and unacceptable evidence. Any evidence items coded into the first two 

categories (Acceptable or Miscategorized) are discussed as generally acceptable, while 

any items coded into the other five categories are discussed as generally unacceptable.  

Intra-Rater Reliability 

After establishing the above coding scheme, all 1301 pieces of evidence were 

processed through three rounds of coding. Each round of coding was conducted by the 

same coder, separated by three weeks. In each round, the order of the 640 connections 

was randomized. All identifying information for each individual connection was hidden; 

only the category, text, and connection associated with each piece of evidence was visible 

during coding. One piece of evidence in the list included information that revealed that 

the evidence must have originated from a team in the Experimental group ("like the guide 

said"), but this was ultimately coded as Irrelevant to its connection. For those pieces of 

evidence coded as 'miscategorized', a new category was also included with the code. 

The tables below give the results of the three rounds of coding in pairs (T.5). 

Table 63: Coding agreement between the first and second round of evidence coding. Each cell 

represents the number of items coded with that combination of categories in the first and second 

round. For example, the top left cell shows the number of items both rounds marked 'Acceptable'. 

The second cell in the top row shows the number of items that round 1 marked 'Acceptable' and 

round 2 marked 'Gibberish'. 

 Round 2 

R
o
u

n
d

 1
 

 A M R G I S N Total 

A 834 15 10 1 6 4 6 876 

M 2 138 10 0 1 2 0 153 

R 1 7 45 0 1 0 2 56 

G 2 0 3 42 1 0 5 53 

I 2 4 3 0 60 0 6 75 

S 1 4 1 1 7 14 3 31 

N 2 0 3 1 9 2 40 57 

Total 844 168 75 45 85 0 62 1301 

Observed Agreements: 90.2% (1173/1301) 

Cohen's Kappa: 0.817 
 



   

172 

 

Table 64: Coding agreement between the first and third round of evidence coding. See Table 63 for 

notes on reading the table. 

 Round 3 

R
o
u

n
d

 1
 

 A M R G I S N Total 

A 831 18 13 1 5 3 5 845 

M 6 135 10 0 1 1 0 48 

R 3 6 46 0 0 0 1 90 

G 1 0 4 43 2 1 2 165 

I 2 8 5 0 51 0 9 59 

S 2 3 1 1 8 13 3 66 

N 0 0 2 2 9 3 41 28 

Total 845 170 81 47 76 21 61 1301 

Observed Agreements: 89.2% (1160/1301) 

Cohen's Kappa: 0.798 
 

Table 65: Coding agreement between the second and third round of evidence coding. See Table 63 

for notes on reading the table. 

 Round 3 

R
o
u

n
d

 2
 

 A M R G I S N Total 

A 828 4 7 1 1 1 2 844 

M 1 156 9 0 2 0 0 168 

R 9 5 60 0 0 0 1 75 

G 1 0 0 43 1 0 0 45 

I 2 5 3 0 69 0 6 85 

S 2 0 1 0 1 16 2 22 

N 2 0 1 3 2 4 50 62 

Total 845 170 81 47 76 21 61 1301 

Observed Agreements: 93.9% (1222/1301) 

Cohen's Kappa: 0.890 

 

Agreement between each pair of round of coding was regarded as very good. In 

most cases of disagreement, the tie could be broken between the three rounds; typically, 

one code would appear for a given item in two rounds with the third round disagreeing. 

In the twelve instances where all three rounds disagreed, the third round's code was used 

as the final code. Similar assessments of intra-rater reliability were used to assess coding 

of the correct categories for those evidence items marked as 'miscategorized' with nearly 

universal agreement and no three-way disagreements. 



   

173 

 

Following the intrarater reliability run above, a second round of reliability testing 

was conducted to examine for the more critical distinction in this coding analysis. As 

referenced above, pieces of evidence coded 'Acceptable' or 'Miscategorized' are 

considered generally acceptable because the text of the evidence supports the claims 

made by the team in the model. Pieces of evidence coded with any of the other categories 

are considered unacceptable because they do not add any real support for the teams' 

models. Thus, a follow-up round of reliability testing examined specifically agreement 

over what evidence was considered acceptable and what was considered unacceptable. 

Table 66: Coding agreement between the first, second, and third rounds of coding examining only 

whether or not individual pieces of evidence were ruled acceptable (A) or unacceptable (U). 

  2  3 

  A U  A U 

1 
A 989 40  990 39 

U 23 249  25 247 

  
1-2 Agreement: 95.2% 

Cohen's Kappa: 0.857 

 
 

1-3 Agreement: 95.1% 

Cohen's Kappa: 0.854 

 

3 
A 989 23    

U 26 263    

  
2-3 Agreement: 96.2% 

Cohen's Kappa: 0.891 
   

 

 This analysis came to greater consensus for which pieces of evidence were 

considered acceptable and which were considered unacceptable; a significant portion of 

the disagreement during the original coding process was disagreement over why a piece 

of evidence was unacceptable rather than whether it was unacceptable. The immediately 

following analysis of the coding process itself will examine the full range of coding 

categories, but when re-grading the models based on the results of this coding process, 

only the distinction between acceptable and unacceptable and the newly-assigned 

categories for miscategorized evidence will be used. 
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Overall Coding Results 

In order to better understand the quality of the evidence supplied by teams as parts 

of their models, the results of the coding process were compared between the Control and 

Experimental group. Table 67 below shows the results of this comparison. 

Table 67: Results of the coding process across Control and Experimental conditions, expressed as 

percentages of all pieces of evidence given within those groups. For reference, the categories are: 

A=Acceptable, M=Miscategorized, G=Gibberish, I=Irrelevant, N=Not Evidence, R=Redundant, 

S=Insufficient. 

 A M G I N R S 

Control 57.32% 12.20% 5.49% 8.33% 6.91% 7.93% 1.83% 

Experimental 70.70% 12.48% 2.35% 5.19% 3.34% 4.57% 1.36% 

 

To establish the significance of these differences, a χ² analysis was run using the 

percentages from the Control group as points of comparison for the Experimental group. 

Table 68 below provides the observed and expected numbers for this analysis. 

Table 68: Observed and expected counts of evidence coded into each category in the Experimental 

group, as predicted by the percentages of evidence coded into each category in the Control group.  

 A M G I N R S 

Control % 57.32% 12.20% 5.49% 8.33% 6.91% 7.93% 1.83% 

Experimental Expected 464 99 44 67 56 64 15 

Experimental Observed 572 101 19 42 27 37 11 

 

Χ² analysis reveals χ² = 120.512 (p ≈ 0.0), marking a statistically significant 

difference in the results between the Control and Experimental groups (T.6). This 

analysis shows that teams in the Experimental group generated better evidence than 

teams in the Control group. A significantly greater percentage of their evidence was 

marked as Acceptable. The rates of Miscategorized and Insufficient evidence between the 

Control and Experimental groups were relatively similar. The increase in the number of 
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Acceptable pieces of evidence in the Experimental group came from a drop in Gibberish, 

Irrelevant, Redundant, and 'Not Evidence' pieces of evidence. 

This analysis may be further decomposed into individual analysis of the results in 

the Learning project and the Transfer project. The two tables below show the results of 

this coding process within each project specifically. 

Table 69: Observed and expected counts of evidence coded into each category in the Experimental 

group during the Learning project, as predicted by the percentages of evidence coded into each 

category in the Control group. For reference, the categories are: A=Acceptable, M=Miscategorized, 

G=Gibberish, I=Irrelevant, N=Not Evidence, R=Redundant, S=Insufficient. 

 A M G I N R S 

Control 59.00% 12.64% 5.75% 8.43% 6.13% 5.36% 2.68% 

Experimental 72.83% 12.61% 1.96% 5.43% 1.96% 4.57% 0.65% 

Experimental 

Expected 
271 27 39 58 28 25 12 

Experimental 

Observed 
335 9 25 58 9 21 3 

 

Table 70: Observed and expected counts of evidence coded into each category in the Experimental 

group during the Transfer project, as predicted by the percentages of evidence coded into each 

category in the Control group. 

 A M G I N R S 

Control 55.41% 11.69% 5.19% 8.23% 7.79% 10.82% 0.87% 

Experimental 67.91% 12.32% 2.87% 4.87% 5.16% 4.58% 2.29% 

Experimental 

Expected 
193 18 29 41 27 38 3 

Experimental 

Observed 
237 10 17 43 18 16 8 

 

Χ² analysis using the Control values to predict the expected Experimental values 

within each project revealed significant differences in both. In the Learning project, χ² = 

52.423 (p ≈ 0.0) (T.6L), while in the Transfer project, χ² = 42.720 (p ≈ 0.0) (T.6T). 
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Additional analysis also examined the change in evidence quality between the 

Learning project and the Transfer project, within both the Control group and the 

Experimental group, as shown by Table 71 below. 

Table 71: Observed and expected counts of evidence coded into each category in the Experimental 

group during the Transfer project, as predicted by the percentages of evidence coded into each 

category in the Learning project. For reference, the categories are: A=Acceptable, 

M=Miscategorized, G=Gibberish, I=Irrelevant, N=Not Evidence, R=Redundant, S=Insufficient. 

 A M G I N R S 

Control % in Learning 

Project 
59.00% 12.64% 5.75% 8.43% 6.13% 5.36% 2.68% 

Transfer Project 

Expected 
136 29 13 20 14 13 6 

Transfer Project 

Observed 
128 12 19 27 18 25 2 

 

Within the Control group, a statistically significant change in performance was 

observed (χ² = 15.62, p < 0.05). The changes, however, varied; the rate of Miscategorized 

evidence was much lower in the Transfer project than the Learning project would have 

predicted, but notable rises occurred in the incidence of Gibberish, Irrelevant, and 

Redundant evidence. Overall, it would appear that teams in the Control condition 

experienced a statistically significant drop in performance between the Learning and 

Transfer projects with a moderate effect size. This is notable because for those teams in 

the Control condition, the only differences between the Learning and Transfer project 

was the different phenomenon to investigate and the presence of a shorter time constraint. 

Table 72: Observed and expected counts of evidence coded into each category in the Experimental 

group during the Transfer project, as predicted by the percentages of evidence coded into each 

category in the Learning project.  

 A M G I N R S 

Experimental % in 

Learning Project 
72.83% 12.61% 1.96% 5.43% 1.96% 4.57% 0.65% 

Transfer Project 

Expected 
254 7 19 44 7 16 2 

Transfer Project 

Observed 
237 10 17 43 18 16 8 
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As shown in Table 72, Teams in the Experimental condition experienced a larger 

drop in performance between the Learning and Transfer projects (χ² = 37.94, p ≈ 0.0). 

Although the incidence of Miscategorized, Gibberish, Irrelevant, and Redundant evidence 

stayed consistent across the two projects, the prevalence of 'Not Evidence' and 

Insufficient evidence jumped, leading to a notable drop in the number of Acceptable 

pieces of evidence relative to the total number of pieces of evidence supplied. Although 

this would appear to be expected given the removal of a source of feedback for teams in 

the Experimental condition, the tutors of MILA–T cannot actually read and give feedback 

on the evidence that teams write; thus, in the Learning project, teams in the Experimental 

condition did not receive direct feedback from MILA–T items that would have otherwise 

been marked as 'Insufficient' or 'Not Evidence'. If they nonetheless demonstrated superior 

performance in these categories when MILA–T was available, this lends credence to the 

notion that one of the main effects of MILA–T was enabling teachers to give better 

feedback in the classroom. Alternatively, it may also support the idea that the superior 

evidence during the Learning project was due to a Hawthorne effect (Cook 1962). These 

ideas are explored in more detail in the discussion of the primary claim in Chapter 6. 

In addition to comparing the results from the Control and Experimental teams 

within each project and comparing the results within each condition across projects, 

similar analysis was also conducted to examine the differences between teachers and 

class levels. Using teams in Teacher A's classes as the predictor for teams in Teacher B's 

classes, a statistically significant relationship was observed (χ² = 15.62, p < 0.05) 

suggesting that Teacher B's classes experienced a higher incidence of Redundant 

evidence, among other minor differences. Similarly, a statistically significant relationship 

was observed (χ² = 16.71, p < 0.05) when using results from On-Level classes to predict 

the results of Gifted classes. Teams in Gifted classes demonstrated more Acceptable 

pieces of evidence than predicted by the On-Level classes, as well as fewer Gibberish, 

Miscategorized, and Redundant pieces of evidence. 
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Summary of Coding Results 

The χ² analysis shows that teams in the Experimental group used evidence to 

justify their claims better than teams in the Control group, specifically by writing 

less irrelevant, redundant, and nonsensical justifications. A number of different 

mechanisms can be posited to explain this difference. First, built into the feedback of the 

tutors of MILA–T (especially the Guide and the Mentor) was a description of what 

evidence should be. The tutors informed teams that evidence can be thought of as the 

reason why you believe your claims are true, or what you would use to convince someone 

else of your claims. Similarly but importantly, these tutors also provided feedback to 

teams encouraging them to think of their models as claims to be defended. This reframing 

of the modeling exercise as an opportunity to defend and debate teams' answers may have 

improve their understanding of the role of evidence, thus leading to the drop in observed 

instances of evidence coded as 'Not Evidence' or Irrelevant. 

More directly, in some instances, MILA–T was equipped with the ability to 

directly comment on evidence that would have fallen into one of these categories, the 

'Gibberish' category. MILA–T was able to detect instances where the evidence field was 

left blank or was very short and comment accordingly, potentially directly limiting the 

number of gibberish responses. The Critic and the Mentor were also both constructed to 

alert teams when they found themselves relying too heavily on certain "weaker" 

categories of evidence, especially Logical Explanations. This feedback was present both 

at the level of individual claims (e.g., the only defense given for a specific claim is that it 

makes sense) and for the model as a whole (e.g., the model as a whole seems based in 

observations rather than established theories). This feedback may have directly limited 

the incidence of redundancy in teams' evidential justifications by encouraging them to 

vary the types of data they sought. 

These mechanisms infer that the improved use of evidence in Experimental teams 

is based on feedback received from MILA–T. However, other explanations exist as well. 
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It may be the case that the presence of MILA–T did not directly affect teams' 

understanding of evidence, but rather that MILA–T was capable of providing low-level 

feedback on model size and complexity that typically a teacher would have to provide. 

The teachers in the class, then, may not have had to constantly monitor low-level details 

of teams' progress, freeing their time to give teams' higher-level feedback on the overall 

quality of their evidence. In other words, the gains seen here may have come from the 

teachers rather than MILA–T; under this idea, MILA–T's role was in providing teachers 

more time to observe high-level trends and examine teams' models more deeply. The 

analysis of the drop-off between the Learning and Transfer project in the Experimental 

group lends some support to this idea: when MILA–T was disabled, teams in the 

Experimental condition demonstrated a higher tendency to commit mistakes that MILA–

T was not equipped to address in the first place. Therefore, it may stand to reason that the 

presence of MILA–T actually provided the teachers with the time and cognitive resources 

to focus on bigger, deeper questions, leading to better performance on metrics seemingly 

outside MILA–T's influence. The following section, Teacher Feedback, sheds more light 

on this potential mechanism behind the improved understanding of evidence seen in the 

Experimental groups. 

Another alternate explanation may describe the results more cynically as effects 

solely of the superficial or hygiene factors of the tutoring system rather than effects of the 

actual feedback provided. For example, while teams in the Experimental group did not 

receive feedback from the tutoring system directly on the evidence that they wrote (given 

the lack of natural language processing in the tutoring system), they may have 

nonetheless felt as if there statements and decisions there were being witnessed by 

MILA–T. This perceived observation of their decisions and text may have itself caused 

teams to put more effort into the evidence that they wrote as an instance of the 

Hawthorne effect (Cook 1962). Similarly, the tutors of MILA–T were equipped with 

faces and facial expressions that differed based on the decisions that teams made; this, in 
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turn, may have reinforced this feeling of being observed and further improved teams' 

performance without teams even considering the specific nature of the advice received 

from the tutoring system. These ideas are explored further in the "Discussion of Primary 

Claim" section of Chapter 6 on page 216. 

It is worth noting, however, that the rates of Miscategorized evidence were the 

same between the Control and Experimental groups. Among the potential improvements 

based on interaction with MILA–T, this shows a potential improvement that did not quite 

materialize. The tutors of MILA–T were equipped with feedback to describe and define 

the different kinds of evidence to teams. One might expect, then, that the rate of 

Miscategorized evidence would fall in the Experimental group, but that result was not 

observed. A possible explanation for this, however, is that while MILA–T also alerted 

teams to the definitions of different kinds of evidence, it also alerted teams more directly 

to the strengths associated with different kinds of evidence. Thus, it may have also caused 

teams to try to categorize evidence according to the "stronger" categories even when it 

was not a natural fit, leading to more instances of Miscategorized evidence and mitigating 

the potential improvements in understanding of the categories. 

Team-Based Coding 

Cursory perusal of the results of the coding of evidence suggested, however, that 

there existed significant variation between groups with regard to the quality of evidence 

provided. For example, in the Learning project, teams in the Control condition registered 

154 pieces of Acceptable evidence out of 261 total; however, 33 (21%) of these pieces 

came from three (10%) of the Control teams. Similarly, teams in the Control condition 

registered 22 pieces of Irrelevant evidence on the Learning project, but 9 (41%) of these 

pieces came from a single one of the 31 teams. Although difficult to empirically 

demonstrate given the low number of pieces of evidence contributed by each team, it 

would stand to reason that when a team has misconceptions about the meaning and role 
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of evidence in their model, those misconceptions would influence multiple pieces of 

evidence instead of influencing the team's results according to the mean of the Condition 

as a whole. 

In order to examine the potential influence of this effect, the results of the coding 

process were recalculated to weight each group evenly. The proportion of pieces of 

evidence falling into each of the seven categories were first calculated within each 

individual team, and those proportions were then averaged overall. This risks the opposite 

effect of the previous analysis: in the previous analysis, teams with several pieces of 

evidence within each category weighted the overall results, while in this analysis, teams 

with few pieces of evidence within each category weighted the overall results. In other 

words, a team for which both of its two pieces of evidence were labeled Acceptable 

would be as influential to the final averages in this analysis as a team for which all ten of 

its pieces of evidence were labeled Acceptable. Thus, this analysis is not superior to the 

previous analysis, but rather simply provides an alternate view of the results. 

The results of this compilation of the evidence are shown in Table 73 and Table 

74 below. 

Table 73: The reinterpreted results of the coding process for the Learning project across Control and 

Experimental conditions, expressed as percentages of all pieces of evidence given within those groups. 

For reference, the categories are: A=Acceptable, M=Miscategorized, G=Gibberish, I=Irrelevant, 

N=Not Evidence, R=Redundant, S=Insufficient. 

 A M G I N R S 

Control 62.04% 13.54% 4.78% 6.59% 5.09% 5.31% 2.64% 

Experimental 76.07% 12.04% 1.52% 4.69% 1.59% 3.38% 0.72% 

 

Table 74: The reinterpreted results of the coding process for the Transfer project across Control and 

Experimental conditions, expressed as percentages of all pieces of evidence given within those groups.  

 A M G I N R S 

Control 49.31% 16.75% 6.87% 6.45% 10.16% 9.84% 0.62% 

Experimental 71.36% 12.26% 2.36% 3.18% 3.76% 3.74% 3.34% 
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Based on this reinterpretation, the conclusions of the previous analysis remain the 

same: teams in the Experimental group outperformed teams in the Control group 

even when interpreting the quality of evidence at the model level rather than at the 

level of individual pieces of evidence. Notably, however, in the Learning project, teams 

in both the Control group and the Experimental group experienced an increase in the rate 

of Acceptable evidence and a decrease across several categories of unacceptable evidence 

(Gibberish, Irrelevant, and 'Not Evidence' specifically). This suggests that in the original 

results, a small number of teams were having a disproportionately high effect on the 

results of the coding, such as the previous example of a single team accounting for 9 of 

the 22 pieces of irrelevant evidence in the Learning project. 

In the Transfer project, a different effect was observed. Results for teams in the 

Experimental condition improved under this reinterpretation, with a modest increase in 

Acceptable evidence and decreases in evidence coded Irrelevant or 'Not Evidence'. This 

suggests again that the instances of unacceptable evidence were contained within a small 

number of teams. However, for teams in the Control condition, the opposite effect took 

place: the rate of Acceptable evidence actually dropped while the rate of Miscategorized 

evidence rose, along with the rate of unacceptable evidence coded as Gibberish or 'Not 

Evidence'. This suggests that in the Control condition, a disproportionately small number 

of teams were responsible for the instances of Acceptable evidence. For example, on the 

Transfer project in the Control condition, of 128 pieces of Acceptable evidence, 25% (32 

out of 128) came from only three (of 31, 9%) of the teams. 

As mentioned previously, the results of this modified interpretation of the results 

of the evidence coding process suggest the same conclusions as the prior analysis; in both 

the Learning and the Transfer project, teams in the Experimental condition demonstrated 

an increased incidence of evidence coded Acceptable and a decreased incidence of 

evidence coded into any of the unacceptable categories of evidence, whether summarized 

at the evidence level or the model level. 
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Coded Model Analysis 

The above process of evidence coding significantly alters the scoring of teams' 

models according to the previous metrics. Although nothing in the coding process would 

alter the complexity of teams' models, significant portions of this process may alter the 

strength of evidence that teams provide. In order to identify this effect, the metrics for 

each teams' models were recalculated according to the results of this coding process. Any 

evidence coded as redundant, gibberish, irrelevant, insufficient, or not evidence was 

thrown out. Any evidence marked as miscategorized was recalculated according to its 

new category instead of its previous category. 

Learning Project 

As before, analysis of the results of the Learning project began with a multivariate 

analysis of variance to examine the effect of the three independent variables (Condition, 

Teacher, and Class Level) on the five dependent variables (Model Complexity, Total 

Model Strength, Average Model Strength, Average Evidence Strength, and Total 

Evidence). The process of evidence coding and model regrading did not affect the Model 

Complexity statistic, and thus while it is included in this analysis to more directly 

compare the results to the previous analysis, no changes will be observed in it. 

Initial multivariate analysis of variance revealed a statistically significant effect of 

Condition (F = 3.30, p < 0.01), Teacher (F = 2.54, p < 0.05), and Class Level (F = 50, p ≈ 

0.0) (T.7L). The results of the initial analysis of variance are shown below in Table 75. 

Table 75: Multivariate ANOVA results on the differences in teams' models across five metrics based 

on different independent variables on the Learning project after the evidence coding process. The 

results indicate statistically significant effects of all three independent variables: Condition (F = 2.91, 

p < 0.05), Teacher (F = 3.12, p < 0.05), and Class Level (F = 8.21, p ≈ 0.0) 

                     Df  Pillai approx F num Df den Df    Pr(>F)     

Condition             1 0.16452   2.9143      5     74   0.01862   

Teacher               1 0.17434   3.1251      5     74   0.01295   

ClassLevel            1 0.35684   8.2114      5     74 3.291e-06 

Condition:Teacher     1 0.04268   0.6598      5     74   0.65505     

Condition:ClassLevel  1 0.05791   0.9098      5     74   0.47951     

Residuals            78 
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Table 76: Univariate ANOVA results each of the five metrics describing the differences in teams' 

models across the different independent variables after the evidence coding and model regrading. 

 Response P1.TotalStrength : 

                     Df Sum Sq Mean Sq F value   Pr(>F)    

Condition             1  746.7  746.68 10.8714 0.001472 

Teacher               1  277.6  277.57  4.0413 0.047856  

ClassLevel            1  778.1  778.13 11.3292 0.001186 

Condition:Teacher     1   28.4   28.42  0.4138 0.521909    

Condition:ClassLevel  1   24.2   24.23  0.3528 0.554253    

Residuals            78 5357.3   68.68                     

 

 Response P1.AverageStrength : 

                     Df  Sum Sq Mean Sq F value   Pr(>F)    

Condition             1  23.268  23.268  7.4604 0.007796 

Teacher               1  35.517  35.517 11.3878 0.001154 

ClassLevel            1   2.725   2.725  0.8738 0.352798    

Condition:Teacher     1   1.013   1.013  0.3248 0.570361    

Condition:ClassLevel  1   0.038   0.038  0.0122 0.912233    

Residuals            78 243.267   3.119                     

 

 Response P1.TotalEvidence : 

                     Df  Sum Sq Mean Sq F value   Pr(>F)    

Condition             1  112.72 112.718  5.9196 0.017263  

Teacher               1   98.72  98.722  5.1845 0.025530  

ClassLevel            1  188.82 188.818  9.9161 0.002322 

Condition:Teacher     1   13.08  13.084  0.6871 0.409681    

Condition:ClassLevel  1    2.65   2.653  0.1393 0.709987    

Residuals            78 1485.24  19.042                     

 

 Response P1.AverageEvidenceStrength : 

                     Df  Sum Sq Mean Sq F value   Pr(>F)    

Condition             1  1.4589 1.45887  3.8004 0.054834  

Teacher               1  0.4403 0.44034  1.1471 0.287460    

ClassLevel            1  2.9416 2.94159  7.6630 0.007038 

Condition:Teacher     1  0.0617 0.06171  0.1608 0.689559    

Condition:ClassLevel  1  0.0131 0.01315  0.0342 0.853661    

Residuals            78 29.9419 0.38387 

 

Based on the results of this analysis, a follow-up univariate analysis of variance 

was conducted on each of the four altered metrics. The raw results of this univariate 

analysis are shown above in Table 76. Compared with analysis of these data prior to the 

evidence coding and model regrading, several differences remain, but other conclusions 

change. First, as in the original analysis, a statistically significant effect of Condition is 

observed on Total Model Strength and Average Model Strength. The prior difference in 

Average Evidence Strength has dropped slightly and is no longer statistically significant 

(previously F = 4.70, p = 0.033; now, F = 3.80, p = 0.054), but in its stead there is now a 
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statistically significant difference in Total Evidence (previously F = 1.96, p = 0.166; now, 

F = 5.92, p = 0.017) (T.7L.A-E). This matches the results of the χ² analysis of the 

evidence coding itself: teams in the Control group experienced a higher incidence of 

evidence coded under unacceptable categories, and in this regarding, these pieces of 

evidence were thrown out. The inclusion of a greater percentage of Experimental group's 

evidence leads to the difference in Total Evidence between the two groups. The change in 

Average Evidence Strength is interesting, but ultimately the actual change between the 

earlier analysis and this analysis is likely not significant enough for close inspection. 

As before, the charts below report the numerical results of the analysis of the 

Learning models after evidence coding and model regrading. Given that evidence does 

not affect the Model Complexity calculation, the chart reporting results within the Model 

Complexity metric is not duplicated here. It can be seen in Table 50 on page 158. 

Table 77: Difference in Total Model Strength after the evidence coding process between teams in 

different Conditions, Teachers, Class Levels, and combinations thereof. The top number in each cell 

is the mean for that group; the number in parentheses is the standard deviation within that group; 

the bottom number is the number of samples within that subgroup. See Table 47 for further 

information about the groups of students summarized in each cell. 

Difference in Total Model Strength in the Learning Project after Evidence Coding 

Teacher A Teacher B Teacher A Teacher B 

7.19 

(5.74) 

n = 16 

9.67 

(8.03) 

n = 18 

11.88 

(10.82) 

n = 25 

16.68 

(9.33) 

n = 25 

Control Experimental 

8.50 

(7.05) 

n = 34 

14.28 

(10.29) 

n = 50 

On-Level Gifted On-Level Gifted 

7.82 

(7.19) 

n = 28 

11.67 

(5.92) 

n = 6 

13.38 

(9.87) 

n = 42 

19.00 

(11.82) 

n = 8 

A B A B A B A B 

4.50 

(3.75) 

n = 10 

9.67 

(8.03) 

n = 18 

11.67 

(5.92) 

n = 6 

-- 

-- 

n = 0 

8.53 

(8.78) 

n = 17 

16.68 

(9.33) 

n = 25 

19.00 

(11.82) 

n = 8 

-- 

-- 

n = 0 
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Table 78: Difference in Average Model Strength after the evidence coding process between teams in 

different Conditions, Teachers, Class Levels, and combinations thereof. The top number in each cell 

is the mean for that group; the number in parentheses is the standard deviation within that group; 

the bottom number is the number of samples within that subgroup. See Table 47 for further 

information about the groups of students summarized in each cell. 

Difference in Average Model Strength in the Learning Project after Evidence Coding 

Teacher A Teacher B Teacher A Teacher B 

1.40 

(1.07) 

n = 16 

2.41 

(1.89) 

n = 18 

2.26 

(1.61) 

n = 25 

3.75 

(2.10) 

n = 25 

Control Experimental 

1.94 

(1.62) 

n = 34 

3.01 

(2.00) 

n = 50 

On-Level Gifted On-Level Gifted 

1.97 

(1.70) 

n = 28 

1.78 

(1.30) 

n = 6 

3.09 

(2.13) 

n = 42 

2.58 

(1.01) 

n = 8 

A B A B A B A B 

1.17 

(0.91) 

n = 10 

2.41 

(1.89) 

n = 18 

1.78 

(1.30) 

n = 6 

-- 

-- 

n = 0 

2.11 

(1.83) 

n = 17 

3.75 

(2.10) 

n = 25 

2.58 

(1.01) 

n = 8 

-- 

-- 

n = 0 

 

Table 79: Difference in Average Evidence Strength after the evidence coding process between teams 

in different Conditions, Teachers, Class Levels, and combinations thereof. The top number in each 

cell is the mean for that group; the number in parentheses is the standard deviation within that 

group; the bottom number is the number of samples within that subgroup. See Table 47 for further 

information about the groups of students summarized in each cell. 

Difference in Average Evidence Strength in the Learning Project after Coding 

Teacher A Teacher B Teacher A Teacher B 

1.25 

(0.60) 

n = 16 

1.45 

(0.59) 

n = 18 

1.57 

(0.81) 

n = 25 

1.68 

(0.5) 

n = 25 

Control Experimental 

1.36 

(0.59) 

n = 34 

1.62 

(0.67) 

n = 50 

On-Level Gifted On-Level Gifted 

1.29 

(0.61) 

n = 28 

1.64 

(0.43) 

n = 6 

1.57 

(0.70) 

n = 42 

1.93 

(0.32) 

n = 8 

A B A B A B A B 

1.02 

(0.58) 

n = 10 

1.45 

(0.59) 

n = 18 

1.64 

(0.43) 

n = 6 

-- 

-- 

n = 0 

1.40 

(0.91) 

n = 17 

1.68 

(0.50) 

n = 25 

1.93 

(0.32) 

n = 8 

-- 

-- 

n = 0 
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Table 80: Difference in Total Evidence after the evidence coding process between teams in different 

Conditions, Teachers, Class Levels, and combinations thereof. The top number in each cell is the 

mean for that group; the number in parentheses is the standard deviation within that group; the 

bottom number is the number of samples within that subgroup. See Table 47 for further information 

about the groups of students summarized in each cell. 

Difference in Total Evidence in the Learning Project after Evidence Coding 

Teacher A Teacher B Teacher A Teacher B 

4.94 

(3.66) 

n = 16 

6.00 

(3.40) 

n = 18 

6.4 

(5.37) 

n = 25 

9.32 

(4.93) 

n = 25 

Control Experimental 

5.50 

(3.51) 

n = 34 

7.86 

(5.31) 

n = 50 

On-Level Gifted On-Level Gifted 

5.11 

(3.42) 

n = 28 

7.33 

(3.61) 

n = 6 

7.50 

(5.26) 

n = 42 

9.75 

(5.50) 

n = 8 

A B A B A B A B 

3.50 

(2.99) 

n = 10 

6.00 

(3.40) 

n = 18 

7.33 

(3.61) 

n = 6 

-- 

-- 

n = 0 

4.82 

(4.67) 

n = 17 

9.32 

(4.93) 

n = 25 

9.75 

(5.50) 

n = 8 

-- 

-- 

n = 0 

Transfer Project 

The multivariate analysis of variance was then again conducted on the models in 

the Transfer project after evidence coding and model regrading. As before, the goal here 

is to discern the effect of the three independent variables (Condition, Teacher, and Class 

Level) on the five dependent variables (Model Complexity, Total Model Strength, 

Average Model Strength, Average Evidence Strength, and Total Evidence). Similarly, as 

before, the Model Complexity status is included in the analysis for consistency, but 

remains unchanged by the coding process. 

Table 81: Multivariate ANOVA results on the differences in teams' models across five metrics based 

on different independent variables. The results indicate statistically significant effects of two 

independent variables: Condition (F = 4.23, p < 0.01) and Teacher (F = 3.90, p < 0.01). 

                     Df   Pillai approx F num Df den Df   Pr(>F)    

Condition             1 0.229323   4.2254      5     71 0.002029 

Teacher               1 0.215394   3.8982      5     71 0.003527 

ClassLevel            1 0.092597   1.4491      5     71 0.217509    

Condition:Teacher     1 0.077698   1.1963      5     71 0.319863    

Condition:ClassLevel  1 0.027497   0.4015      5     71 0.846227    

Residuals            75 
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Initial multivariate analysis of variance revealed a statistically significant effect of 

Condition (F = 4.23, p < 0.01) and Teacher (F = 3.90, p < 0.01), but not from Class Level 

(T.7T). The results of the multivariate analysis of variance are shown above in Table 81. 

Table 82: Univariate ANOVA results each of the five metrics describing the differences in teams' 

models across the different independent variables after the evidence coding and model regrading. 

Response P2.TotalStrength : 

                     Df Sum Sq Mean Sq F value    Pr(>F)     

Condition             1  509.1  509.14 12.0024 0.0008819 

Teacher               1  186.9  186.94  4.4069 0.0391584   

ClassLevel            1  119.1  119.12  2.8082 0.0979491   

Condition:Teacher     1    0.3    0.29  0.0067 0.9348601     

Condition:ClassLevel  1   81.0   81.03  1.9101 0.1710530     

Residuals            75 3181.5   42.42                       

 

Response P2.AverageStrength : 

                     Df  Sum Sq Mean Sq F value  Pr(>F)   

Condition             1  15.208 15.2081  5.9675 0.01693 

Teacher               1   0.534  0.5339  0.2095 0.64849   

ClassLevel            1   0.321  0.3207  0.1259 0.72376   

Condition:Teacher     1   0.173  0.1728  0.0678 0.79526   

Condition:ClassLevel  1   2.550  2.5503  1.0007 0.32036   

Residuals            75 191.138  2.5485                   

 

Response P2.TotalEvidence : 

                     Df Sum Sq Mean Sq F value  Pr(>F)   

Condition             1  38.59  38.592  4.1542 0.04506 

Teacher               1  42.04  42.043  4.5257 0.03668 

ClassLevel            1  24.43  24.429  2.6297 0.10908   

Condition:Teacher     1   1.16   1.164  0.1253 0.72433   

Condition:ClassLevel  1  15.92  15.919  1.7136 0.19452   

Residuals            75 696.74   9.290                   

 

Response P2.AverageEvidenceStrength : 

                     Df Sum Sq Mean Sq F value    Pr(>F)     

Condition             1  6.384  6.3838 12.2128 0.0008003 

Teacher               1  0.543  0.5431  1.0390 0.3113386     

ClassLevel            1  1.136  1.1362  2.1736 0.1445824     

Condition:Teacher     1  0.020  0.0205  0.0392 0.8436485     

Condition:ClassLevel  1  0.321  0.3210  0.6141 0.4357062     

Residuals            75 39.204  0.5227    

 

Based on these results, a follow-up univariate analysis of variance was conducted 

on each of the five metrics. The raw results of this univariate analysis are shown above in 

Table 82, and the raw numbers observed across the four metrics in the analysis after 

evidence coding and regrading are shown in Table 83, Table 84, Table 85, and Table 86. 

The evidence coding and model regrading process maintained many of the results from 
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the earlier analysis of teams' models: there remain statistically significant differences in 

Total Model Strength and Average Evidence Strength between the Control and 

Experimental groups. However, this analysis introduces two additional effects of the 

Condition: there now also exist statistically significant effects of the Condition on both 

Average Model Strength (previously F = 0.87, p = 0.35; now F = 5.97, p = 0.017) and 

Total Evidence (previously F = 0.66, p = 0.418; now F = 4.15, p = 0.045) (T.7T.A-E). 

Both these new results match with the results of the earlier χ² analysis of the results of the 

evidence coding process, which saw a much higher proportion of evidence from the 

Experimental group coded as Acceptable than in the Control group. This analysis also 

averages models at the model level rather than at the level of individual pieces of 

evidence, and thus the changes are further explained by the Team-Based Coding process, 

which saw a small number of low-performing teams lower the Experimental group's 

results, while a small number of high-performing teams raised the Control group's results.  

 

Table 83: Difference in Total Model Strength between teams in different Conditions, Teachers, Class 

Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Total Model Strength in the Transfer Project after Evidence Coding 

Teacher A Teacher B Teacher A Teacher B 

8.69 

(6.68) 

n = 16 

5.39 

(4.39) 

n = 18 

13.36 

(7.39) 

n = 25 

10.50 

(7.14) 

n = 22 

Control Experimental 

6.94 

(5.75) 

n = 34 

12.02 

(7.34) 

n = 47 

On-Level Gifted On-Level Gifted 

5.61 

(4.45) 

n = 28 

13.17 

(7.39) 

n = 6 

11.59 

(7.65) 

n = 39 

14.12 

(5.49) 

n = 8 

A B A B A B A B 

6.00 

(4.76) 

n = 10 

5.39 

(4.39) 

n = 18 

13.17 

(7.39) 

n = 6 

-- 

-- 

n = 0 

13.00 

(8.27) 

n = 17 

10.50 

(7.14) 

n = 22 

14.12 

(5.49) 

n = 8 

-- 

-- 

n = 0 



   

190 

 

Table 84: Difference in Average Model Strength between teams in different Conditions, Teachers, 

Class Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Average Model Strength in the Transfer Project after Evidence Coding 

Teacher A Teacher B Teacher A Teacher B 

1.72 

(1.24) 

n = 16 

1.76 

(1.26) 

n = 18 

2.50 

(1.31) 

n = 25 

2.75 

(2.22) 

n = 22 

Control Experimental 

1.74 

(1.23) 

n = 34 

2.62 

(1.77) 

n = 47 

On-Level Gifted On-Level Gifted 

1.64 

(1.19) 

n = 28 

2.23 

(1.39) 

n = 6 

2.68 

(1.90) 

n = 39 

2.33 

(1.03) 

n = 8 

A B A B A B A B 

1.41 

(1.10) 

n = 10 

1.76 

(1.26) 

n = 18 

2.23 

(1.39) 

n = 6 

-- 

-- 

n = 0 

2.59 

(1.44) 

n = 17 

2.75 

(2.22) 

n = 22 

2.33 

(1.03) 

n = 8 

-- 

-- 

n = 0 

 

Table 85: Difference in Average Evidence Strength between teams in different Conditions, Teachers, 

Class Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Average Evidence Strength in the Transfer Project after Coding 

Teacher A Teacher B Teacher A Teacher B 

1.41 

(0.57) 

n = 16 

1.20 

(0.68) 

n = 18 

1.93 

(0.69) 

n = 25 

1.80 

(0.89) 

n = 22 

Control Experimental 

1.30 

(0.63) 

n = 34 

1.87 

(0.78) 

n = 47 

On-Level Gifted On-Level Gifted 

1.20 

(0.64) 

n = 28 

1.77 

(0.34) 

n = 6 

1.83 

(0.82) 

n = 39 

2.06 

(0.56) 

n = 8 

A B A B A B A B 

1.19 

(0.58) 

n = 10 

1.20 

(0.68) 

n = 18 

1.77 

(0.34) 

n = 6 

-- 

-- 

n = 0 

1.86 

(0.75) 

n = 17 

1.80 

(0.89) 

n = 22 

2.06 

(0.56) 

n = 8 

-- 

-- 

n = 0 
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Table 86: Difference in Total Evidence between teams in different Conditions, Teachers, Class 

Levels, and combinations thereof. The top number in each cell is the mean for that group; the 

number in parentheses is the standard deviation within that group; the bottom number is the 

number of samples within that subgroup. See Table 47 for further information about the groups of 

students summarized in each cell. 

Difference in Total Evidence in the Transfer Project after Evidence Coding 

Teacher A Teacher B Teacher A Teacher B 

5.50 

(3.58) 

n = 16 

3.72 

(2.78) 

n = 18 

6.52 

(2.89) 

n = 25 

5.32 

(3.18) 

n = 22 

Control Experimental 

4.56 

(3.26) 

n = 34 

5.96 

(3.06) 

n = 47 

On-Level Gifted On-Level Gifted 

3.93 

(2.84) 

n = 28 

7.50 

(3.73) 

n = 6 

5.77 

(3.12) 

n = 39 

6.88 

(2.70) 

n = 8 

A B A B A B A B 

4.30 

(3.06) 

n = 10 

3.72 

(2.78) 

n = 18 

7.50 

(3.73) 

n = 6 

-- 

-- 

n = 0 

6.35 

(3.04) 

n = 17 

5.32 

(3.18) 

n = 22 

6.88 

(2.70) 

n = 8 

-- 

-- 

n = 0 

Summary of Output Hypothesis Results 

Based on the analysis provided above, there exists sufficient evidence to accept 

both facets of the fourth hypothesis: teams in the Experimental group outperform 

teams in the Control group in both the Learning and the Transfer projects. 

Learning Project 

First, in the Learning project, teams in the Experimental group are equipped with 

a set of tutors that help the team with the modeling and inquiry process. The additional 

feedback provided by these tutors has a positive effect. In the initial analysis, teams in the 

Experimental group constructed stronger evidential justifications for their models than 

teams in the Control group. These evidential justifications were analyzed across a 

collection of metrics weighting certain kinds of evidence, such as citing established 

scientific principles and transferring explanations from similar systems, as more desirable 

and other kinds, like logical explanations and direct observations alone, as less desirable. 
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This weighting scheme is described in detail in Chapter 3. When coding their evidential 

justifications themselves, teams in the Experimental group constructed superior 

explanations based on scores calculated according to this weighting scheme. 

However, implicit in this analysis was the assumption that teams were coding 

their evidence accurately, and moreover, writing useful evidence in the first place. It is 

possible that teams could have instead internalized the feedback of the tutoring system as 

asking the teams simply to label more of their evidence with the stronger categories 

rather than choose better justifications in the first place. To examine this, the evidence 

was processed through three rounds of coding to assess whether teams were writing 

sufficient justifications and coding them correctly. Here again, teams in the Experimental 

condition outperformed teams in the Control condition. A greater number of the pieces of 

evidence written by the Experimental group were coded as Acceptable (72.83%) than in 

the Control group (59.00%). Interestingly, there was no difference in the incidence of 

Miscategorized evidence between the two groups. Assessed based on the results of the 

evidence coding alone, however, teams in the Experimental group demonstrated an 

improved grasp of the nature and purpose of justifying their explanations. In many cases, 

these improvements came in areas that are difficult to attribute to the tutoring system, 

given its inability to read and interpret teams' actual evidence; this leads to the hypothesis 

that the main effect of the tutoring system may have been to free up time and cognitive 

resources in the teachers to provide better feedback as the tutoring system handles more 

basic, low-level questions. 

After this coding process, teams models' were regraded according to the same 

criteria as before. Pieces of evidence that were coded as unacceptable were thrown out, 

and pieces of evidence that were coded as Miscategorized were calculated according to 

their correct category. The results of this analysis confirmed and enhanced the results of 

the initial analysis: teams in the Experimental condition constructed models with better 

evidential justifications than models constructed by teams in the Control condition. These 
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models were superior both before the evidence coding process and after, while the 

evidence itself was coded as superior for teams in the Experimental condition. Based on 

these three facets, Hypothesis #4A is accepted. Teams with a metacognitive tutoring 

system outperformed teams without a metacognitive tutoring system on a modeling task. 

Transfer Project 

An argument could be made, however, that the results of the above analysis are 

unsurprising. In both the Control and Experimental conditions, teams had access to 

teachers for help, and in the Experimental condition, teams also had access to a tutoring 

system. Thus, teams in Experimental condition had access to more feedback, and these 

results could thus be summarized dismissively as teams unsurprisingly performing better 

when they receive more feedback. This then introduces the question: did those teams that 

performed better actually learn more, or were they simply performing better because they 

were receiving greater feedback on their work? During the Transfer project, the same 

teams started new projects examining a new phenomenon. During this phase, the tutoring 

system was disabled for teams in both the Control and the Experimental conditions. In 

this way, the Transfer project aimed to identify whether the improvements seen in the 

Learning project would transfer to a new project where the additional feedback was not 

available. 

An initial analysis was conducted on the Transfer project the same way it was 

conducted on the Learning project; the results of teams' modeling processes were 

compared across five metrics. Here again, teams in the Experimental group outperformed 

teams in the Control group across on multiple metrics. Specifically, teams in the 

Experimental group constructed larger models (as measured by the Model Complexity 

variable) and again provided better evidential justifications, this time measured as 

providing sufficient evidence to support the larger model and using stronger individual 

pieces of evidence to do so. 
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The prior questions about the strength of teams' evidence and categorizations 

remained, however, and so the evidence teams wrote for the Transfer project was again 

coded for acceptability. Compared to the Learning project, performance for both groups 

dropped in the Transfer project by approximately the same amount. It would make sense 

that the performance of teams in the Experimental group would drop given the removal 

of a source of feedback they had previously received, but the presence of a similar drop 

in the Control group suggests that this drop may instead be attributed to the increased 

time constraint during the Transfer project (one class period instead of four). With the 

drop affecting both groups similarly, teams in the Experimental group still outperformed 

teams in the Control group, with a greater number of pieces of evidence from teams in 

the Experimental group coded as Acceptable (67.91%) than in the Control group 

(55.41%). 

Based on the results of that evidence coding and model regrading process, the 

original analysis was run again, this time using the model scores derived from the results 

of the evidence coding process. The conclusions of this analysis confirmed and even 

enhanced the conclusions of the original analysis. Teams in the Experimental condition 

outperformed teams in the Control condition across all five metrics after the process of 

evidence coding and model regrading was factored into the analysis. Based on the 

improved performance of the Experimental group across all three of these analyses, 

Hypothesis #4B is accepted. In a new task with no tutoring system, teams who had 

previously participated in a modeling task with a metacognitive tutoring system 

outperformed teams who had participated in a modeling task without a metacognitive 

tutoring system. 

Teacher Feedback on Tutoring System 

This intervention involved the participation of five educators in the classroom: 

two teachers (Teacher A and Teacher B), two instructional assistants, and one supervising 
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teacher. During the intervention, the two instructional assistants provided ongoing 

support to the special education students, while the supervising teacher aided with the 

preparation of materials prior to the intervention. Three of these individuals – the two 

teachers and the instructional assistant who helped Teacher A – agreed to be interviewed 

at the conclusion of the intervention. The full interview script is provided in Appendix D. 

Interviews focused on three major topics that are also used to organize the 

following report on educators' experiences. First, educators were asked to reflect on 

MILA on its own and its strengths, weaknesses, and areas for improvement. Second, they 

were asked to reflect specifically on MILA–T, how it impacted those students who 

received it, and its strengths and weaknesses. Third, educators were asked to reflect on 

the overall unit including the accompanying lessons, study materials, and experiments. 

Feedback on Engagement with MILA 

Both teachers remarked on the ease of use of MILA and noted that teams were 

able to quickly become engaged with the program. In the case of Teacher A, this ran 

directly counter to her expectations for students in her class; she said: 

“I was a little skeptical I'll be honest at first. I thought it was 

going to be hard, I thought they were going to struggle with it 

and I'd have to run around a lot. I was actually pleasantly 

surprised at how well they handled it after a brief demonstration, 

and I do mean brief because I didn't give them a whole lot.” –

Teacher A 

Teacher B echoed Teacher A's thoughts, commenting that given the goal provided 

by the curriculum, teams were able to easily get engaged with the software: 

“The program easily lends itself to student engagement if you just 

set them up with what they need to accomplish.” –Teacher B 
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Teacher A went on to discuss the benefit of modeling in MILA, noting that the act 

of externalizing their thoughts and beliefs about the system in a structured manner forced 

teams to create more thoughtful explanations than they would in an unconstrained 

environment: 

“I do think that the modeling itself, making the models, forced 

them to have to think about what they were saying. It's easy to 

just scribble something on a piece of paper, but when you had to 

actually, 'Something goes in this box, something else goes in this 

box', and then you have to show the connection, you have to show 

evidence, I think that was a lot better than just a worksheet.” –

Teacher A 

When asked for feedback on how MILA could be improved for future iterations, 

all three educators mentioned two factors: explanation of terms and semantics and 

instruction on low-level skills. The meaning of certain terms, like 'connections' and 

'properties', were not immediately clear to all students. Explanations of these terms were 

available from the Guide, and log files show that several teams accessed those 

explanations, but there are no data to identify whether or not access to such information 

directly changed those students' understanding of those terms. Second, all three desired 

an initial phase of software instruction that focused explicitly on the interactions with 

MILA, such as how to add and delete components, before moving into learning how to 

model in MILA. A tutorial was present for those teams in the Experimental group 

through the Mentor, but its execution was grounded in the first phenomenon, combining 

software instruction with science instruction. 

All three educators provided different suggestions for potential improvements to 

the user interface. The instructional assistant suggested pop-up or tooltip definitions for 

potentially foreign words like 'phenomenon' and 'abiotic'. Teacher A suggested stronger 
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constraints on how to phrase hypotheses, such as forcing an 'if-this-then-that' phrasing. 

Teacher A also suggested providing greater structure to providing evidence; instead of 

choosing a category and writing evidence in plaintext, a structured format for the 

difference kinds of evidence could be present, mirroring the structured format of the 

models themselves. Teacher B commented on the desire for pictures, more colors, or 

other visual appeal to make the software more engaging to 7th grade students. She also 

suggested drawing a closer connection between teams' actions and the software's 

responses, especially with regard to improving the quality of evidence on connections. 

Teacher A ultimately noted that the greatest difficulty was that students' prior "learned 

helplessness prevails no matter what", and that her greatest difficult was in convincing 

students to simply push forward and try instead of awaiting guidance. 

Feedback on Engagement with MILA–T 

After reflecting on MILA on its own, the educators were asked to reflect on the 

specific role of MILA–T. First, educators commented on the difference between classes 

that had access to MILA–T and those classes that did not.  The main observation from 

Teacher B was that teams without the tutors relied more heavily on her feedback: 

“Classes without the tutors, I had to step in, they thought they 

were done, then I had to look real closely at what they were 

doing. It took more of my time.” –Teacher B 

Teams in classes without the tutors had to wait on feedback from the teacher, 

which in turn meant that feedback arose more slowly as the teacher was only able to 

provide feedback to one team at a time. Additionally, the teacher had to do more work to 

identify the current weaknesses in teams' models, such as viewing the evidence for each 

claim individually, further slowing down the feedback process. This, Teacher B 

suggested, led to teams with tutors pushing forward with their projects more quickly: 
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“I wish all my classes had the tutors because it definitely made it 

easier for them to continue with their project.” –Teacher B 

The instructional assistant agreed, suggesting that students had fewer questions 

for the educators in those classes with access to MILA–T than in classes without access: 

“I think they asked less questions of those of us who were 

walking around. … It did kind of take it off of us a little bit, we 

could say, 'Hey you need to check with your tutors', so it allowed 

us to go straight to the program to answer the questions instead 

of asking us. … They needed some clarification, but when they 

asked a question we could just refer them back to the tutors.” –

Instructional Assistant 

This feedback focused on easing the responsibilities of the teacher and allowing 

educators to focus on higher-level feedback and classroom-level trends. The primary 

takeaway here is that a significant benefit of the presence of MILA–T may be missed by 

the data on students' interactions, explanations, and attitudinal changes. Rather, a 

significant benefit might instead fall on the teachers: in the presence of the tutoring 

system, the teachers may have been able to divert their attention away from many of the 

questions students most commonly asked (such as "Am I done yet?"). Teacher B also 

commented specifically on this recurring question: 

"The tutors were very nice to have, there was a nice benefit. 

When they think they're done, they can just click on the tutors, or 

they'll pop up automatically. The time management, it definitely 

helped." –Teacher B 

With the tutors taking some of the responsibility off the teachers, the teachers may 

have been able to more fully devote themselves to other responsibilities. This idea echoes 
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the rationale behind the division of MILA–T into five functional roles: each functional 

role was designed to mimic a specific role that the teacher typically plays in the 

classroom. With the tutors playing these roles, the teachers here may have been able to 

focus on providing feedback and making observations that went beyond the capabilities 

of the tutors. For example, the tutoring system was not equipped with content knowledge 

about the target system or the ability to read students' evidential justifications, and thus, 

the teachers were responsible for providing feedback at this level. Similarly, the teachers 

could track progress among multiple teams simultaneously to monitor for common 

misconceptions or errors. In the absence of the tutors, the teachers still provided the 

feedback that the tutors were providing otherwise, and thus teams still received much of 

the same feedback from the teacher rather than the tutors (albeit less frequently, given the 

teacher's limited time). Control teams thus may have compared more favorably to 

Experimental teams than they would have otherwise. In this instance, however, feedback 

from the tutors would still lower the obligation of the teachers to provide all feedback, 

thus allowing the teachers to focus on deeper feedback. Additional data collection on the 

activity of the teacher in the classroom and the nature of feedback provided to teams by 

the teacher would be necessary to identify how the presence of a tutoring system in a 

classroom exercise changes the behavior of and demand on the teacher. 

Beyond feedback strictly on the difference between Control and Experimental 

classes, the educators also provided feedback on the specific ways in which MILA–T 

helped teams. The instructional assistant noted that she was not fully aware of the degree 

to which teams were relying on the tutors until it was disabled for the Transfer project: 

"After the final project, I noticed that our fourth period had the 

tutors, and they were asking where they were, so they were 

actually relying on them to direct them in their final project." –

Instructional Assistant 
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The instructional assistant went on to comment more narrowly on the specific 

design of the tutors. She remarked that she appreciated that the tutors facilitated iterative 

and ongoing improvement by reiterating feedback that teams had not yet internalized or 

incorporated into their models: 

“I liked that the tutors didn't go away until they fixed the 

problem. Some of the kids got annoyed by that, but I think that 

was a good thing, it's something we do on a daily basis.” –

Instructional Assistant 

Teacher A's primary commentary on the tutors focused on the degree to which 

teams actually used them. She commented first that the Gifted students did not use the 

tutoring system at all, suggesting that gifted students' engagement with the tutoring 

system, while notable in the logs of student interaction, may not have been visible at the 

classroom level. However, her belief was that this was because these students did not 

need the level of feedback provided by the tutors: 

" I know there's a few kids in those classes, they don't need the 

tutors, they got it, they understand what they're doing and run 

with it." –Teacher A 

This also reflects a misconception on the part of the teacher that tutoring is only 

for underperforming students, not to also keep high-performing students engaged. Among 

her other students, Teacher A similarly noted that many teams did not seem to use the 

tutoring system; however, of the teams that did, she believed there was a tangible benefit: 

"I don't know what [students without tutors'] models looked like 

as a whole. I think their models might not have been as great as 

the [students] that had the tutors. … Those that actually used it 

benefited from it, they really did." –Teacher A 
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Interestingly, while Teacher B and the instructional assistant commented that the 

tutors helped them by taking care of many of the questions that students were asking, 

Teacher A commented on difficulty with the same trend. While the tutors were equipped 

to answer many of the students' questions, she found herself wanting to do the answering 

instead: 

"I wanted to be the Guide and the Critic all the time, so I found it 

hard to not be the Guide and the Critic a lot." –Teacher A 

In this way, one of the benefits that Teacher B and the instructional assistant 

observed may have not been realized by Teacher A, who instead found it difficult to 

allow the tutors to provide feedback instead. This is especially interesting given that the 

instructional assistant, who previously had commented that the tutors meant teams asked 

the teachers fewer questions, worked in the same classes as Teacher A. This feedback 

may also explain Teacher A's comment that many teams did not seem to use the tutors; in 

her classroom, with her playing many of the roles that the tutors were constructed to play, 

demand for feedback from the tutors may have been lower. Anecdotally, this trend was 

especially present during the first class, wherein Teacher A actively told teams to ignore 

the tutorial provided by the Mentor and instead follow along with her tutorial on the 

board. 

Despite this difficulty leaving room for the tutors' feedback in the classroom, 

Teacher A did comment that as the intervention moved along, she found herself 

depending more on the tutoring system and struggling to avoid mentioning it in classes 

that did not have access to it: 

"[In Control group classes], I kept biting my tongue and wanting 

to say, 'What does the Critic say?'" –Teacher A 

When asked for feedback on how the tutors might be improved, the educators 

commented on four specific areas for improvement. First, the instructional assistant 
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commented on wanting greater specificity from the tutors' feedback. She remarked that at 

times, teams became frustrated because the tutors repeatedly provided feedback that they 

did not know how to incorporate. However, she also comments that this presents a 

delicate balance because many teams are also discouraged when asked to do a lot of 

reading: 

"It depends on the student. From my point of view with my 

students, more is better at certain times to clarify things. For a 

lot of them, once they get over the hump, they'll be fine if you give 

them a little more." –Instructional Assistant 

She also commented that she witnessed on some occasions that the tutors did 

operate in precisely this fashion, remarking on students' prior improvements before 

providing additional feedback: 

"I did see some tutors, especially the Critic, that said 'I like that 

you did this, but this needs to be worked on', I did see that but 

maybe just a little more detail." –Instructional Assistant 

Teacher A specifically suggested that the tutors themselves initiate more 

interaction with the teams by actively interrupting teams rather than passively alerting 

teams when feedback is available or waiting for teams to initiate interaction. This 

feedback actually ran directly counter to the design of the system, which was intended to 

limit the degree to which teams are interrupted based on past research indicating that 

frequent interruptions from autonomous software agents are often a source of irritation or 

frustration for user (Schiaffino & Amandi 2004; Rudman & Zajicek 2006). Teacher B 

commented that she liked the Interviewer's prompts that asked students to write down 

responses in natural language, even though those responses could not be used for live 

feedback: 
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"I liked the parts where they had to write, so where they popped 

up the box and said explain why you did this or what would 

happen here. Any kind of writing components, I would expand, 

especially with the new standards coming out in science, writing 

is a big aspect in science. They have to get that lingo down, so 

more writing." –Teacher B 

Finally, both Teacher A and Teacher B commented that they believed the teams 

found the facial expressions of the tutors distracting at times; both suggested that 

sometimes, teams were more impacted by the facial expression of the tutor than the 

feedback itself. In some instances, this appeared distracting to the teachers, as teams 

appeared to interpret positive feedback as negative or negative feedback as positive based 

on a misinterpretation of the tutor's expression.  

Feedback on the Intervention as a Whole 

Finally, educators were asked to reflect on the intervention and study as a whole, 

including phenomena that teams investigated, the classroom activities outside the 

software, and the learning objectives of the unit. Both Teacher A and Teacher B 

appreciated the classroom activities that went beyond the software, such as the model 

walks and the lake water exercise, and specifically liked how those activities tied back 

into the exercise within MILA. Teacher A noted some specific positive student feedback: 

"The students loved this, I got comments like 'I've never done 

anything like this before in science. This is awesome.' They really 

enjoyed it. They still want to know what happened to the fish." –

Teacher A 

Teacher A also suggested elongating the unit to allow for an additional "training" 

project, adding in additional hands-on activities to provide data for explanations in 
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MILA, and supplying additional readings on the phenomena. Teacher B similarly 

suggested expanding the number of activities outside the software that could provide data 

for explanations in MILA, and either limiting the number of "model walks" reviewing 

others' models or providing clearer differences in objective to the existing model walks. 

Takeaways from Educator Feedback 

There are a number of takeaways from the results of the interviews with the 

instructors that help contextualize the results in the prior analyses. First, the feedback 

from the teachers helps to establish an understanding of the way in which the classroom 

intervention manifested at the classroom level rather than at the team level. Earlier 

analysis of the results of the modeling exercise showed that teams in the Experimental 

group outperformed teams in the Control group on several evaluations of model quality. 

However, in some areas, these improvements were difficult to trace back to the tutoring 

system; in fact, some of these improvements came in areas that the tutoring system was 

not equipped to address. Based on that analysis, there was speculation that the benefits 

could have come from the way the presence of the tutoring system changed the classroom 

as a whole, handling easier questions and feedback opportunities and allowing the 

teachers to focus on deeper feedback and trends at the classroom level. Feedback 

obtained from the teachers appears to corroborate this idea: the teachers commented that 

they were aware of the tutoring system playing some of the roles they traditionally 

played, and more importantly aware that they were not having to answer as many 

questions and provide as much feedback in the Experimental classes. This interplay 

between the individual teams using the tutors and the patterns of interaction amongst the 

classroom as a whole may be the most significant trend to originate from this study. This 

possible explanation of the results described in Chapter 4 is discussed in further detail in 

Chapter 6, under the section "Discussion of Primary Claim" on page 216. 
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 Second, a related takeaway is that the benefits of access to MILA–T may have 

been partially felt not by the students, but rather by the teachers. With MILA–T taking 

care of some of the simpler questions about model quality and completeness, software 

interaction, and lesson goals, educators may have been more free to focus on more 

advanced commentary or trends that spanned multiple teams and classes instead of 

spending their time answering repetitive questions. Of course, in order for this to be a 

benefit, the effect of this dynamic would ultimately have to trickle down to the individual 

students in different ways, such as students receiving better feedback than they would 

have otherwise received. Thus, the effects of the dynamic should still be captured in some 

way in the data analyzed above. Additional analysis in future studies, however, ought to 

explicitly analyze the frequency, nature, and complexity of questions that students ask of 

the teacher and feedback that the teacher provides to the students. The observations made 

here suggest that teachers supported by tutoring systems may be able to provide better 

feedback to students than teachers forced to provide all the feedback on their own. 

A third takeaway builds on the design of the individual tutoring agents. As 

described in chapter 2, each of the five agents is specifically constructed to mimic a 

functional role that the teacher plays in the classroom. These are functional roles that the 

teacher is accustomed to playing, based on Grasha's model of teaching styles. The nature 

of these functional roles leads to two possible results: either the teacher and the tutoring 

system clash over what advice to give (as seen in Teacher A's initial experience), or the 

tutoring system allows the teacher to release certain functional roles and focus more on 

others (as reflected more in the feedback from Teacher B and the instructional assistant). 

This suggests that implementing a tutoring system in a classroom environment does 

require a learning curve on the part of the teacher; many habits must be temporarily 

unlearned in order to take full advantage of the support provided by the tutoring system.  
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CHAPTER 6 

CLAIMS 

 

Figure 27: The sixth chapter of this dissertation summarizes the effect of the metacognitive tutoring 

system identified in chapters 4 and 5. It then discusses three different explanations of how the 

observed effect may have arisen. 

This sixth chapter will synthesize the results of the prior analysis into a set of final 

claims that will set up further explanation of this work's contributions in Chapter 7. 

Chapter 6 will start by recapping the individual claims made as a result of the analysis 

above on each of the four hypotheses. It will briefly summarize the analyses and results 

of each of the prior for hypotheses and restate the ultimate claim (or lack thereof) 

associated with each. It will then synthesize those individual hypotheses into a broader 

claim about the extent to which this intervention actually improved metacognition in the 

students using the metacognitive tutoring system. This chapter begins by revisiting the 

original hypotheses, shown in Table 87 below. 
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Table 87: The eight hypotheses of this study. 

Explicit Understanding 

Hypothesis #1: Engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task will improve students' declarative 

understanding of inquiry-driven modeling compared to participation in inquiry-

driven modeling without a metacognitive tutoring system. 

Dispositional Framing 

Hypothesis #2: Engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task will improve students' dispositional 

framing of science, scientific inquiry, and careers in science compared to 

participation in inquiry-driven modeling without a metacognitive tutoring system. 

Procedural Execution 

Hypothesis #3: Engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task will improve teams' execution of 

the desired inquiry-driven modeling process compared to participation in inquiry-

driven modeling without a metacognitive tutoring system. 

Hypothesis #3A: This improved 

execution of the desired inquiry-driven 

modeling process will take place while 

the team is receiving feedback from the 

metacognitive tutoring system. 

Hypothesis #3B: This improved 

execution of the desired inquiry-driven 

modeling process will take place when 

the team is no longer receiving feedback 

from the metacognitive tutoring system. 

Models and Explanations 

Hypothesis #4: Engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task will improve the quality of models 

and explanations that teams generate compared to participation in inquiry-driven 

modeling without a metacognitive tutoring system. 

Hypothesis #4A: These improvements 

will be present in modeling activities 

during which the team is receiving 

feedback from the metacognitive 

tutoring system. 

Hypothesis #4B: These improvements 

will be present when the team is no 

longer receiving feedback from the 

metacognitive tutoring system. 
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This study began with the overall hypothesis that engagement with a 

metacognitive tutoring system (MILA–T) during an inquiry and modeling activity in an 

exploratory learning environment (MILA) would lead to improved metacognition of 

inquiry-driven modeling in participants compared to engagement in an inquiry and 

modeling activity in an exploratory learning environment without a metacognitive 

tutoring system. This broad hypothesis was further decomposed into four sub-hypotheses 

regarding explicit understanding, dispositional framing, the modeling process, and 

models and explanations, each of which represented a portion of the metacognitive ability 

of inquiry-driven modeling as derived from existing literature on the components of a 

metacognitive skill (Roll et al. 2007). These hypotheses are duplicated in Table 87 above. 

Hypothesis #1: Explicit Understanding 

The first hypothesis of this study is that engagement with a metacognitive tutoring 

system during participation in an inquiry-driven modeling task will improve students' 

declarative understanding of inquiry-driven modeling compared to participation in an 

inquiry-driven modeling task without a metacognitive tutoring system. In order to assess 

this, students were given a content test at the beginning and end of the intervention; this 

content test is supplied in Appendix B. The content test was developed during the spring 

of 2012 by an expert in education and educational assessment, but it has not been 

independently validated. The content test emphasizes metacognitive knowledge of 

scientific inquiry and modeling, as well as certain metacognitive elements of biological 

content knowledge  (such as understanding the role of systems and the interaction 

between invisible and visible phenomena), as best as can be established through a 

multiple-choice test. 

Prior to the intervention, these existed no difference between the Control and 

Experimental groups in performance on the content test. After the intervention, there still 

existed no difference between the Control and Experimental groups in performance on 
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the content test. Students in both groups exhibited statistically significant improvement in 

their content test scores, but that improvement was not tied to Condition. Therefore, there 

are insufficient data to accept that engagement with a metacognitive tutoring system 

during participation in an inquiry-driven modeling task improved students' declarative 

understanding of inquiry-driven modeling compared to participation in an inquiry-driven 

modeling task without a metacognitive tutoring system. Thus, Hypothesis #1 is not 

accepted. The full analysis of Hypothesis #1 can be found beginning on page 100. 

Hypothesis #2: Dispositional Framing 

The second hypothesis of this study is that engagement with a metacognitive 

tutoring system during participation in an inquiry-driven modeling task will improve 

students' dispositional framing of science, scientific inquiry, and careers in science 

compared to participation in an inquiry-driven modeling task without a metacognitive 

tutoring system. In order to assess this, students were given an attitudinal survey at the 

beginning and end of the intervention. The items on the survey measured five constructs: 

Attitude toward Scientific Inquiry, Career Interest in Science, Anxiety toward Science, 

Desire to Do Science, and Perception of the Science Teacher. The first two originate from 

the Test of Science-Related Attitudes (TOSRA; Fraser 1981), and the last three originate 

from the modified Attitudes toward Science Inventory (Weinburgh & Steele 2000). 

Together, these inventories measure students' overall attitude toward science as well as 

their specific interest in scientific inquiry and the real-life process of science. 

Prior to the intervention, these existed no significant difference based on 

Condition between the Control and Experimental groups. After the intervention, there 

existed significant differences between the Control and Experimental groups. Students in 

the Experimental group had statistically significantly higher scores on the Attitude 

toward Scientific Inquiry construct than students in the Control group. Additionally, there 

existed a statistically significant interaction between the Condition and the change in 
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Attitude toward Scientific Inquiry. Over the course of the intervention, the Experimental 

group also exhibited a statistically significant improvement in their Career Interest in 

Science that the Control group did not exhibit. No such interactions were observed in 

Anxiety toward Science, Desire to Do Science, or Perception of the Science Teacher, 

although students in both the Control and Experimental groups did exhibit a significant 

drop in Anxiety toward Science. Based on the improvements in the Experimental group 

to students' Attitudes toward Scientific Inquiry and Career Interest in Science, we can 

conclude that engagement with a metacognitive tutoring system during participation in an 

inquiry-driven modeling task improved students' dispositional framing of science, 

scientific inquiry, and careers in science compared to participation in an inquiry-driven 

modeling task without a metacognitive tutoring system. Thus, Hypothesis #2 is 

accepted. The full analysis of Hypothesis #2 can be found beginning on page 103. 

Hypothesis #3: Procedural Execution 

The third hypothesis of this study is that engagement with a metacognitive 

tutoring system during participation in an inquiry-driven modeling task will improve 

teams' execution of the desired inquiry-driven modeling process compared to 

participation in an inquiry-driven modeling task without a metacognitive tutoring system. 

This hypothesis applies in two different dimensions. First, this improved execution of the 

desired inquiry-driven modeling process will take place while the team is receiving 

feedback from the metacognitive tutoring system, and second, this improved execution of 

the desired inquiry-driven modeling process will take place when the team is no longer 

receiving feedback from the metacognitive tutoring system. Put differently, teams will 

learn an improved process of inquiry-driven modeling as measured by execution during 

the receipt of feedback, and teams will also transfer this improved process to a new task 

where no such extra feedback is present. 
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To measure teams' execution of inquiry-driven modeling, detailed logs of 

software interaction were kept throughout the intervention. After the intervention, these 

logs were mapped into Markov chains representing the patterns of interaction in which 

teams engaged during the two projects. These Markov chains, in turn, were connected to 

the original model of inquiry-driven modeling, found in Figure 4 on page 25, that 

motivated the design of the metacognitive tutoring system in order to measure improved 

execution of the desired underlying process. Nine individual desirable effects were 

identified after designing, but prior to compiling the data for, the Markov chains 

describing the activity of the Control and Experimental groups; these desirable effects are 

shown in Table 44 on page 138. After compiling the Markov chains, the Control and 

Experimental groups were tested for differences in each of these nine identified desirable 

effects within the Learning project and Transfer project independently. In both the 

Learning and the Transfer project, differences were observed in three of the nine tests. In 

each project, the Experimental group performed better in two of the tests while the 

Control group performed better in one of the tests. Due to the presence of effects 

supporting both groups, and due to the increased likelihood of false positives based on 

the repeated Z-test, no conclusions can be drawn based on these data. A subsequent χ² 

test demonstrated more thoroughly that teams in the Control and Experimental groups 

exhibited different patterns of interaction during each project, but this test does not 

provide any conclusions about the superiority of one group's pattern of interaction over 

the other. Additional analysis provided more detail on the way in which teams interacted 

with the tutoring system and the way in which those interactions altered the overall 

pattern of inquiry and modeling; however, the comparative analyses of the Control and 

Experimental groups' processes did not provide sufficient evidence to conclude either 

group performed conclusively better than the other. Therefore, there are insufficient data 

to conclude that engagement with a metacognitive tutoring system during participation in 

an inquiry-driven modeling task improved teams' execution of the desired inquiry-driven 
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modeling process compared to participation in an inquiry-driven modeling task without a 

metacognitive tutoring system, either during initial interaction with the tutoring system or 

during subsequent activity without the tutoring system. Therefore, neither Hypothesis 

#3A nor Hypothesis #3B are accepted, and thus, Hypothesis #3 is not accepted. The 

full analysis of Hypothesis #3 can be found beginning on page 124. 

Hypothesis #4: Models and Explanations 

The fourth hypothesis of this study is that engagement with a metacognitive 

tutoring system during participation in an inquiry-driven modeling task will improve the 

quality of models and explanations that teams generate compared to participation in an 

inquiry-driven modeling task without a metacognitive tutoring system. As with the third 

hypothesis, this hypothesis applies in two different dimensions. First, these improvements 

will be present in modeling activities during which the team is receiving feedback from 

the metacognitive tutoring system, and second, these improvements will be present when 

the team is no longer receiving feedback from the metacognitive tutoring system. Put 

differently, teams with the metacognitive tutoring system will put together better models 

and explanations both while receiving feedback on their models and after they no longer 

are receiving feedback on their models. 

To measure this, five different metrics were designed to summarize the quality of 

teams' models, both in terms of the model's complexity and in terms of the strength of the 

evidence that teams supply in defense of their model. The finals models submitted by 

teams at the conclusion of both the Learning and the Transfer project were processed and 

summarized according to these metrics. Then, models were compared within each 

project. In both the Learning and the Transfer project, teams in the Experimental group 

generated models that rated more highly on three of the five metrics for model 

evaluation. However, these metrics for model evaluation relied on teams accurately 

categorizing the evidence they supplied in defense of their explanations. This desired 
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accurate categorization involved both correctly identifying the category for good pieces 

of evidence as well as providing good pieces of evidence in the first place. In order to 

assure this, every connection was coded for the acceptability of its evidence. At the 

conclusion of this process, a χ² was run on the results of the coding. This test revealed 

that teams in the Experimental group performed better on their evidential justifications 

than teams in the Control group in both the Learning and Transfer projects. Both groups 

had equal rates of Miscategorized evidence, but a significantly lower proportion of 

evidence supplied by teams in the Experimental group was considered unacceptable 

compared to the Control group. Then, using the results of this coding exercise, the four 

evidence-based metrics were recalculated for each model and the original analysis was 

performed again. This time, models produced by teams in the Experimental group were 

rated as even better compared to models produced by teams in the Control group than in 

the previous analysis. In the Learning project, teams in the Experimental group generated 

better models according to three metrics, while in the Transfer project, teams in the 

Experimental group generated better models according to all five metrics. Each of these 

three analyses provides evidence that shows teams in the Experimental condition 

produced better-justified models than teams in the Control condition. Therefore, there are 

sufficient data to conclude that engagement with a metacognitive tutoring system during 

participation in an inquiry-driven modeling task improved the quality of the justifications 

that teams provided for their models and explanations compared to participation in an 

inquiry-driven modeling task without a metacognitive tutoring system, and that the 

improved quality of justifications for their models applied both while receiving feedback 

from the tutoring system and after feedback from the tutoring system had been disabled. 

Therefore, both Hypothesis #4A and Hypothesis #4B are accepted, and thus, 

Hypothesis #4 is accepted. The full analysis of Hypothesis #4 can be found beginning 

on page 151. 
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Overall Claims 

The analysis shows that there exist data to accept three of the original six 

hypotheses. There do not exist data to support the remaining three hypotheses. Table 88 

below summarizes the conclusions of this analysis; hypotheses shaded in green are 

accepted, while hypotheses shaded in red and yellow are not. Red shading indicates that 

there are no data to support the hypothesis, while yellow shading indicates that the data 

are mixed with regard to whether or not they support the hypothesis. 

Table 88: Summary of the three accepted hypotheses of this study (shaded in green) and the three 

rejected hypotheses (shaded in red or yellow). 

Hypothesis #1: Explicit Understanding 

Hypothesis #2: Dispositional Framing 

Hypothesis #3A: Procedural 

Execution (Learning) 

Hypothesis #3B: Procedural 

Execution (Transfer) 

Hypothesis #4A: Models & 

Explanations (Learning) 

Hypothesis #4B: Models & 

Explanations (Transfer) 

 

Clearly, these results are mixed. The literature defines metacognitive skills as 

consisting of at least three parts: declarative, procedural, and dispositional understanding 

(Roll et al. 2007). This analysis found no evidence for improved declarative 

understanding of inquiry-driven modeling as a result of engagement with the 

metacognitive tutoring system. This analysis also found no conclusive evidence for 

improved procedural understanding of inquiry-driven modeling as a result of engagement 

with the metacognitive tutoring system. However, this analysis did find that the results of 

the inquiry-driven modeling process were superior among teams who had received the 

metacognitive tutoring system compared to those who had not, and this improvement 

applied both while the teams were receiving feedback from the metacognitive tutoring 

system and after the metacognitive tutoring system had been disabled. Given that these 

explanations were the direct output of the inquiry-driven modeling process in which 
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groups engaged, it stands to reason that there did exist improvement in the inquiry-driven 

modeling process that was not captured by the data-gathering methods present in this 

study. Finally, this analysis also showed that students' dispositional understanding of 

science, scientific inquiry, and careers in science improved based on engagement with the 

metacognitive tutoring system. 

The absence of evidence that students' declarative understanding improved and 

the absence of definitive evidence that students' procedural execution improved, however, 

makes it difficult to conclusively accept the original hypothesis. Therefore, this analysis 

does not claim to have shown that engagement with a metacognitive tutoring system 

(MILA–T) during an inquiry and modeling activity in an exploratory learning 

environment (MILA) leads to improved metacognition of inquiry-driven modeling in 

participants compared to engagement in an inquiry and modeling activity in an 

exploratory learning environment without a metacognitive tutoring system. There are 

insufficient data to conclude that metacognition itself has been improved, and thus, there 

are insufficient data to accept the original hypothesis of this study. 

While there are insufficient data to accept the original hypothesis of the study, 

there exist sufficient data to conclude that engagement with the metacognitive tutoring 

system nonetheless had strong positive effects on students' learning. Students who 

participated in the modeling and inquiry tasks with the help of the metacognitive tutoring 

system showed a strong increase in their attitudes toward scientific inquiry and their 

career interest in science as compared to students that participated in the same process 

without the metacognitive tutoring system. Teams who had access to the metacognitive 

tutoring system produced better-justified explanations of the target phenomenon than 

teams that did not, and more importantly, they continued to produce stronger 

explanations of the phenomena after the tutoring system had been disabled. Thus, the 

lessons learned from the tutoring system during the initial phase of engagement 

transferred to a new task. Therefore, these improvements cannot be explained as simply 
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reactions to increased feedback, but rather may be described as an internalized 

understanding of the criteria of a good explanation. While it is difficult to make strong 

claims about the students' metacognition itself based on these results, these results are 

sufficient to conclude that engagement with the metacognitive tutoring system was 

beneficial to students' attitudes toward science and development of explanations of 

scientific phenomena. 

Thus, the ultimate claim of this analysis is: engagement with a metacognitive 

tutoring system during participation in an inquiry-driven modeling task improves 

students' attitudes toward scientific inquiry and careers in science, and also 

improves students' ability to generate well-justified models and explanations of a 

phenomenon both during and after engagement with the tutoring system. 

Discussion of Primary Claim 

The above claim is made based on the data present in the analysis; there are 

sufficient data to accept the hypotheses that participation in the activity with the 

metacognitive tutoring system improved attitudes toward scientific inquiry, career 

interest in science, the quality of models that teams produced, and the quality of evidence 

that teams produced. However, this analysis does not independently describe the reason 

why these changes actually took place. For that, there exist multiple possible explanations 

for the effect of the metacognitive tutoring system on the observed variables. Three 

alternatives are discussed here: authentic engagement, simple reinforcement, and 

classroom-level interactions. 

Authentic Engagement 

The first, and arguably simplest, explanation for the observed effects is that 

MILA–T worked the way in which it was intended to work. As teams interacted with 

MILA, they received feedback from the tutoring system on the progress they were 

making and areas for improvement. As they received this feedback, they applied it and 
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improved their explanations accordingly. As a result, their models and evidence during 

the Learning project were improved. The advice that the teams received from the tutoring 

system was not simply applied to the current models; the teams instead internalized the 

advice, thus transferring it to the Transfer project. When teams were confronted with a 

new phenomenon to model, they remembered the suggestions and advice of the tutors 

during the Learning project and continued constructing superior models because of the 

feedback they had previously received. As a result, their models and evidence during the 

Transfer project were improved. Because of the feedback received from the tutoring 

system, the teams were also more able to completely engage in the authentic process of 

inquiry and modeling, receiving a better view of the real process of science than groups 

relying only on teacher feedback for improvement. As a result of this exposure to and 

participation in authentic science, Experimental students also improved in their attitudes 

toward inquiry and career interest in science because of the inherent appeal of these 

elements when presented authentically. 

This explanation provides a somewhat straightforward explanation for how access 

to this tutoring system led to the observed differences between Control and Experimental 

groups; however, it also makes a potentially flawed assumption. As noted in the results, 

one of the advantages demonstrated by the Experimental teams was superior evidence; an 

average of 13% more of the evidence written by Experimental teams was deemed 

acceptable. The tutors of MILA–T, however, are unable to read the evidence written by 

students. Under the authentic engagement explanation of these results, the improvement 

seen in the Experimental teams relies on the assumption that teams learned to write better 

evidence simply from the direct instruction of the Guide rather than from any other 

source. While possible, it is perhaps unlikely that such a significant improvement could 

be seen simply from access to a couple more paragraphs of text that many groups did not 

even access. For those data, the second or third explanations may provide more 

compelling accounts. 
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Simple Reinforcement 

In order to describe the way in which access to MILA–T led to the gains 

documented previously, it is important to consider the role of superficial elements of the 

presence of the tutoring system in addition to the actual feedback it provides. In doing so, 

a somewhat cynical explanation of the results observed above may emerge. 

As teams in the Experimental group interacted with MILA, they received 

reinforcement from the tutoring system on the progress that they made. The Mentor 

would show up to praise their improvement, and the Critic would give very clear 

indicators of progress as teams expanded their model. The Critic would also give teams 

clear descriptions of areas for improvement, providing a clear goal toward which 

Experimental teams could strive. As a result, their models during the Learning project 

were improved. Teams in the Control group, on the other hand, received no such 

consistent and reliable reinforcement, and only received any feedback at all after waiting 

for the teacher to come around and provide feedback. Control teams, thus, also had 

limited or intermittent access to an external agent setting goals for them, as well as 

intermittent access to suggestions on areas for improvement. In this way, the modeling 

advantages seen by the Experimental group could be descried as simple responses to 

reinforcement. The presence of reinforcement improved students' attitudes toward the 

activity itself; they received more consistent indicators of progress and success than 

Control teams, and therefore improved in their attitude toward the task at hand.  As a 

result of their positive perception of the activity, Experimental students also improved in 

their attitudes toward inquiry and career interest in science. 

This explanation runs into difficulty with two of the data points, however. First, 

one of the observed advantages of the Experimental teams was that they wrote superior 

evidence. The tutors of MILA–T do not give any feedback on the actual evidence that 

teams write, however; it only responds to the categories. If simple reinforcement is the 

explanation of the results, then this explanation encounters difficulty explaining an 
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improvement that lacked direct reinforcement. A different kind of reinforcement, 

however, could make up for this gap. Although teams in the Experimental group never 

received feedback from MILA–T on the content of their written evidential justifications, 

they may have nonetheless perceived the tutoring system as reading their evidence; the 

presence of human faces alongside the tutoring system may further enhance this dynamic. 

This presence of the Hawthorne effect (Cook 1962) may explain this superior 

performance. An alternative explanation along this same line of thought is that the 

presence of a human face alongside the tutors humanizes them, leading to a perception 

among the students that their work is valued and supported; this leads to increased 

authentic engagement and increased effort into writing good evidential justifications. 

This echoes the literature's past support for intelligent tutoring systems with human-like 

names and faces (e.g. Lepper & Chabay 1988; Johnson, Rickel & Lester 2000; Azevedo 

et al. 2009; Lee & Ko 2011). 

This explanation effectively suggests that the nature of the feedback teams 

receive from the tutoring system is irrelevant to the results seen here; the benefits can be 

explained simply by the presence of feedback, regardless of the actual content of the 

feedback. This explanation, however, has some difficulties explaining the entirety of the 

data as well. Specifically, this explanation encounters some difficulty with the models 

and evidence generated during the Transfer project. As documented previously, the 

advantages seen in the Experimental group during the Learning project transferred to the 

Transfer project. However, during the Transfer project, the Experimental teams received 

no such feedback, limiting the potential presence of the Hawthorne effect. It is possible 

that the persistent advantages seen by the Experimental teams here were due solely to the 

positive habits cultivated through the availability of feedback during the Learning project, 

but this explanation is weaker than the prior explanation for the positive results in the 

Learning project and in attitudes overall. 
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Classroom-Level Interactions 

The above two explanations describe two ways in which the presence of feedback 

could lead to the advantages documented previously: either the specific nature of the 

feedback led to these improvements, or the existence of feedback altogether led to these 

improvements. Both explanations encountered difficulty explaining the improved 

evidence that teams in the Experimental condition wrote because neither explanation can 

provide a particularly compelling account for where Experimental teams would receive 

feedback on their evidential justifications. The authentic engagement explanation relies 

on the effectiveness of rote instruction while the simple reinforcement explanation 

demands the presence of a sort of Hawthorne effect, and while these are possible, the 

advantages seen are perhaps too great to explain without some sort of additional feedback 

and resultant improvement in the Experimental teams. 

If the Experimental teams did not receive feedback from the tutoring system on 

the text of their evidential justifications, but yet their evidential justifications were 

superior to those teams without the tutoring system, from where could this improvement 

have arisen? The third explanation is that the presence of the tutoring system interacted 

with the classroom as a whole to lead to these gains. As explained in Chapter 3 during the 

description of the curriculum, teachers in the classes were also responsible for giving 

feedback to students during the Learning and Transfer projects. Unlike the tutors of 

MILA–T, however, the teachers were capable of actually providing feedback on the text 

that teams wrote. Therefore, the superior evidential justifications in the Experimental 

teams could be described as a response to feedback from the teachers. This introduces a 

second question: why would the teams in the Experimental condition receive better 

feedback from the teachers than teams in the Control condition? To explain this, we can 

refer back to the teachers' own reports on their behavior in the classroom described in the 

final section of Chapter 5. The teachers referenced their reliance on the tutoring system to 

give feedback to multiple groups at the same time, therefore lessening the demand on the 
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teachers. This may lead to multiple effects. First, because the teachers are spending less 

time giving individual groups feedback, they are better able to focus on classroom-level 

trends outside the scope of what MILA–T can observe. Based on these trends, they can 

address broader misconceptions amongst multiple groups, improving the exercise as a 

whole for all teams in the classroom. Second, because students are able to receive 

instantaneous feedback from the tutoring system during their model construction process, 

they are able to ascend to the level of needing teacher feedback more quickly. The 

teachers can then provide feedback to those groups who have already exhausted the 

capabilities of the tutoring system and are thus ready for more advanced feedback, such 

as suggestions on improving the actual nature of their evidence. 

In this way, the effectiveness of MILA–T in improving the models and evidence 

generated by Experimental teams may be described as the successful offloading of 

functional roles from the teacher to the tutoring system. By taking care of some of the 

teacher's responsibilities, the tutoring system allows the teacher to focus on those roles 

that only he or she is still equipped to play. Teams are able to iterate over their 

explanations quickly with MILA–T's immediate feedback, meaning that they can rise to 

the level of demanding the kind of feedback only the teacher can provide more quickly. 

Then, the teacher can supply advanced feedback to a greater number of groups in the 

same time period. As a result, their models and evidence during the Learning project 

improved. Like the authentic engagement explanation and unlike the simple 

reinforcement explanation, this explanation suggests that the effectiveness of the tutoring 

system is derived from the actual feedback that is being provided. As teams receive this 

feedback, they internalize it rather than simply respond to it. As a result, their models and 

evidence during the Transfer project improved. Enhancing this trend even more, these 

Experimental teams receive and internalize feedback not only from the tutoring system, 

but also from the teachers. As with the authentic engagement explanation, this process 

led to students more deeply engaging in the authentic process of inquiry, and as they are 
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exposed to the true nature of inquiry and careers in science, their attitudes improved. The 

presence of classroom-level interactions may also explain even broader lessons outside 

the software that the teacher was able to communicate as the demands on the teacher's 

time lessened, further explaining the attitudinal gains seen in this study. 

Summary of Discussions 

This section has presented three competing explanations for how access to 

MILA–T may have led to the observed improvements. In actuality, it is unlikely that only 

one of these explanations was at play. In all likelihood, the observed advantages of the 

Experimental students and teams are based on a combination of both these explanations 

and other unidentified factors. The authentic engagement explanation almost certainly 

plays a role in generating the improvements documented previously as engagement with 

the tutoring system identifies specific, explicit areas where students can improve their 

current explanation. While the simple reinforcement explanation relies on these specific 

identified areas as well, it also relies on some authentic engagement to explain how 

students know how to improve. The classroom-level interactions explanation, similarly, 

relies on some authentic engagement to accelerate teams to the point of even being 

prepared for the type of feedback that led to the advanced improvements documented 

previously. It would also be disingenuous to discount the effect of the simple 

reinforcement explanation while accepting the value of the other explanations. Even as 

the content of the feedback and the presence of the teacher make a difference to student 

performance, the presence of clear indicators of progress gives students a goal to pursue 

even if they do not yet understand the value or nature of the goal. The presence and 

influence of human faces dynamically responding to students' actions should also not be 

discounted. But while this explanation may help explain why students want to do better, 

it similarly cannot explain how they know how to do better. While the authentic 

engagement explanation would point out that the tutoring system provides information on 
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the role of evidence, it relies on the assumption that students will internalize that 

information without receiving individualized feedback. The classroom-level interactions 

explanation provides a more compelling explanation as teams receive feedback on how to 

do better from an agent acting outside the purview of the software: the teacher. 

Similarly, it is almost certain that portions of the effects seen in this study can and 

should be explained by mechanisms outside of these three. For example, one could take 

an apprenticeship approach (similar to Lave & Wenger 1991) to explaining these effects 

and suggest that the superior performance seen initially was because the tutoring agents 

were doing some of the work for the Experimental teams; in the Transfer project, the 

teams had more experience with some of the skills and were thus able to focus on the 

portions of the work that had previously been completed by the tutoring system. One 

could also argue that the information and feedback provided by the tutoring system 

amounted to only minor improvements, but those improvements in this study facilitated a 

tipping point that cascaded to greater improvements; the improvements derived from the 

tutoring system were simply located in critical places. 

Several other explanations may also be offered, and the continued 

experimentation outlined in Chapter 7 aims to help narrow down the optimal explanation 

for the observed effects. Specifically, it is important to isolate the multiple competing 

variables at work in this study: the nature of the feedback; the level of the feedback; the 

presence of human faces on the tutoring system; the times at which the tutoring system 

interrupts; the rate at which teams may solicit feedback from the tutoring system; the 

presence of the human teacher; the roles played by the human teacher; the roles played by 

the tutoring system; the curriculum accompanying the tutoring system; the exploratory 

learning environment itself; and the context in which the exploratory learning 

environment and intelligent tutoring system are used. Analysis of these variables will 

help identify the most compelling explanation for the observed results.  
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CHAPTER 7 

CONTRIBUTIONS AND DISCUSSION 

 

Figure 28: The seventh chapter of this dissertation covers the contributions of this work to two 

communities, artificial intelligence in education and learning sciences & technology. It then covers 

future studies that ought to be conducted to expand on the findings here, as well as the way in which 

the principles at work in this dissertation have been applied in a different domain. 

The previous chapter described the primary claim of this work: engagement with 

a metacognitive tutoring system during participation in an inquiry-driven modeling task 

improves students' attitudes toward scientific inquiry and careers in science, and also 

improves students' ability to generate good models and explanations of a phenomenon 

both during and after engagement with the tutoring system. Building on that primary 

claim, Chapter 7 will list the specific individual contributions of this work to a variety of 

communities, including the artificial intelligence for education community, the learning 

sciences and technology community, and the human-computer interaction in education 

community. Finally, this chapter will discuss opportunities for future research building 

from the work described in this study, as well as recent applications of the same high-

level goals and design principles in new settings. 
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Contributions 

The primary contribution of this work is the claim stated above: the presence of a 

metacognitive tutoring system during participation in an inquiry-driven modeling task 

can improve students' attitudes towards scientific inquiry, interest in science careers, and 

explanatory models of observable phenomena. A variety of mechanisms may be at play 

to create this change, but the ultimate contribution is the statement that the presence of 

such a system can lead to such valuable gains. 

In addition, however, a number of other contributions can be derived from this 

work. We anticipate major contributions to two communities and fields of research: 

artificial intelligence in education and learning sciences & technology. These 

contributions will likely also connect to other communities as well, such as intelligent 

tutoring systems, human-computer interaction in education, scientific modeling in 

education, exploratory learning environments, and inquiry-based learning. 

To Artificial Intelligence for Education 

The primary community for the work presented here is the artificial intelligence 

for education community given that the artificially intelligent tutors of MILA–T are the 

main target of this study. A number of contributions can be derived from the design, 

development, and deployment of this tutoring system, including the existence of the 

tutors themselves, a new design idea for choosing the specific roles that these tutors will 

play, and a theory regarding the impact of these tutors on a classroom setting. 

MILA–T 

The first and most obvious contribution of this work is the tutoring system itself. 

As a result of this project, there exists a set of five tutors which together help students 

improve their understanding of inquiry-driven modeling. Based on the results of the 

analysis presented here, the usefulness of this tutoring system is documented: 
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engagement with an activity using this tutoring system led to improved attitudes toward 

science, interest in science as a career, and explanations of the target phenomenon both 

while and after feedback from the tutoring system was available. 

The tutors of MILA–T are a contribution to the artificial intelligence in education 

community in two ways. First, in conjunction with MILA, both are available for reuse 

and deployment. While the tutors of MILA–T are designed with small affordances made 

to the specific curriculum used during the intervention described here, their overall 

operation is general over any long-term modeling and inquiry project. While the tutors of 

MILA–T are broadly constructed to operate in the domain of ecology, within this area 

they are general to the individual phenomenon; no changes need be made to apply 

MILA–T to investigations of ecological phenomena besides fish kills (although 

additional content knowledge may be valuable) so long as the tutors are operating with 

CMP models. This applies to MILA as well; although the specific syntax of the CMP 

models used in MILA restricts the interface to modeling ecological phenomena, within 

this general field any new phenomenon can be approaching, modeled, and investigated 

within the system. 

Secondly, beyond engagement with MILA and MILA–T as presently constructed, 

the design of the tutoring system is also generalizable out to other modeling domains as 

well. The development of the Guide, the Critic, the Mentor, the Interviewer, and the 

Observer in other domains and with other modeling frameworks would require specific 

connections to the semantics and structure of the different representations, but those 

connections are largely compartmentalized away from the higher-level design of the 

tutors. So long as the information used by the individual tutor exists (such as a log of 

actions for the Interviewer, a presently readable model of the phenomenon for the Guide, 

or a set of criteria for a good answer for the Critic), the overall pattern of reasoning of the 

tutor can be abstracted and transferred to new software settings. This has already been 

partially accomplished as well; in the "Application to MOOCs" section of this chapter on 
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page 245, we describe the appropriation and usage of the design patterns of the Critic in 

an online course in a radically different domain to provide immediate, personalized 

feedback on multiple types of problems. 

Paradigm for Constructing Functional Roles of Tutors 

In addition to interacting with the tutors themselves and appropriating the specific 

rules that govern their interaction in a modeling task, the MILA–T tutors contribute an 

additional design principle to the design of cognitive and metacognitive tutors. One of the 

unique elements of the tutors in MILA–T is their construction to mimic the functional 

roles played by a teacher in the classroom. To date, we are not aware of any other 

tutoring system that has explicitly structured the functional roles of a tutoring system 

with attention paid to the typical interactions with a teacher in a traditional classroom; 

other work has examined human tutoring as a source of inspiration for artificially 

intelligent tutoring agents (Merrill, Reiser, Ranney & Trafton 1992; Heffernan & 

Koedinger 2002; VanLehn et al. 2003), but without explicit attention to the functional 

roles of a teacher in a traditional classroom context or the potential interaction between 

an intelligent tutoring system and an in-person teacher. Instead, in many tutoring systems, 

the tutors implicitly take on a narrow understanding of the teacher's role in providing 

correction and feedback on a present answer. This process is valuable and provides the 

chief motivating role for the design of the Critic in this work, but it represents a 

somewhat narrow replication of the range of roles that the teacher plays at any given 

time. An additional functional role identified in other tutoring systems is the ability to 

give an appropriately difficult new problem. The majority of tutoring systems build on 

these two roles. 

A close analogue to this idea can be seen in MetaTutor, the tutor for developing 

self-regulation in students constructing an understanding of scientific material (Azevedo 

et al. 2011). In MetaTutor, tutors are named with similar roles as the tutors seen here, 
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including a Guide, a Planner, a Strategizer, and a Monitor (Azevedo et al. 2009). These 

agents are constructed similarly to the agents of MILA–T in that they also each are 

endowed with a functional role. However, the fundamental difference between the agents 

of MetaTutor and the agents of MILA–T is the origin of the functional role. In 

MetaTutor, the agents are constructed with functional roles appropriated from the target 

skill; Planning, Strategizing, and Monitoring are elements of the self-regulatory process 

that the system aims to instruct. In MILA–T, the agents are constructed with functional 

roles appropriated from interaction with an instructor; Critiquing, Mentoring, and 

Interviewing are not skills that the teacher aims to teach the student, but rather are skills 

that the teacher uses to teach the student some additional learning goals. To put this 

differently, the Planner, Strategizer, and Monitor in MetaTutor are all instances of the 

Mentor role in MILA–T; all attempt to demonstrate and apprentice the student in the 

target skill for which they are constructed. 

On its own, the paradigm used to construct the tutors of MILA–T is unique in the 

intelligent tutoring systems community. What makes this contribution more significant, 

however, is that it is deeply tied to one of the hypothesized mechanisms for the 

improvement seen in this study. As referenced above and described again below, one 

hypothesis regarding the cause of the improvements based on interaction with the 

metacognitive tutoring system is that the tutors were able to take care of tasks that the 

teacher usually completes, thus freeing the teacher up to give deeper feedback. If this is 

the actual mechanism behind these improvements, then the construction of the tutoring 

system to specifically mimic the teacher's roles is fundamental to the success of the 

system. Thus, this suggests that this paradigm of constructing tutors to offload functional 

roles from the teacher may be valuable in exercises wherein tutors are deployed in a 

classroom context. This, in turn, may open up the additional gains documented 

previously specifically because this intervention took place in a somewhat traditional 

classroom. 
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Theory on Classroom-Level Effects of Team-Level Interventions 

In the past, a large number of experiments and analyses involving intelligent 

tutoring systems have taken place in controlled settings. Others involved leveraging an 

existing classroom environment, but removing the teacher from the system entirely and 

fully controlling the course of the classroom activity. At present, we are not aware of any 

previous intervention using an intelligent tutoring system that has taken place in a 

traditional classroom setting wherein a teacher remains present and plays his or her 

normal functional roles during the exercise. In this study, however, the intelligent 

tutoring system was injected into a classroom activity wherein the teacher maintained her 

normal relationship and role in the classroom. Research staff were present for technical 

support, but interaction with the individual students and teams was very limited. 

As thoroughly documented previously, an interesting potential effect of this 

unique experimental design is that the interactions between the individual teams and the 

tutoring system may have changed the nature of the interaction between the teams and the 

teachers, and thus, changed the overall patterns of interaction and feedback for the 

classroom as a whole. As discussed before, additional research is necessary to identify 

and quantify this effect. Even in the absence of such additional research, however, this 

notion in its current form provides three related contributions to the intelligent tutoring 

system community. First, this research provides a new research question that presently is 

not being addressed by the research community that might have a significant positive 

effect. Second, aside from the research question, this research provides some early 

evidence that deploying tutoring systems in controlled environments rather than natural 

classrooms may be missing a key benefit of such systems, and thus, to maximize benefit, 

intelligent tutoring systems ought to be used in traditional classrooms with teacher 

support as well. Third, in addition to posing the hypothesis that such an effect may be 

present, this work also contributes a preliminary account of how exactly such an effect 

may be arising. In this account, a tutoring system specifically constructed to mimic 
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certain functional roles of the teacher may offload from the teacher much of the cognitive 

load of administering the classroom and observing trends. Under this account, the teacher 

is able to monitor the classroom at a higher level, detect deeper misconceptions, and 

provide richer feedback because the tutoring system is addressing the questions that 

would usually dominate the teacher's time. 

To Learning Sciences & Technology 

In addition to the contributions to the artificial intelligence in education and 

intelligent tutoring systems communities, this work also provides significant 

contributions to the learning sciences & technology community separate and apart from 

the artificial intelligence elements of the project. These contributions also build on the 

inquiry in education community, the exploratory learning environments community, and 

the model-based science education community. 

MILA 

Exploratory learning environments are common in inquiry-based learning 

settings. River City (Ketelhut 2007) and Co-Lab (van Joolingen et al. 2005) are two 

examples of exploratory learning environments in which students can pursue an authentic 

process of inquiry. However, while these environments facilitate the inquiry side of the 

process, they pay relatively little explicit attention to the role that scientific modeling can 

play. Other tools, such as Betty's Brain (Biswas, Leelawong, Schwartz, & Vye 2005), 

INQPRO (Ting, Zadeh, & Chong 2006), and our own earlier tool ACT (Vattam, Goel, & 

Rugaber 2011; Vattam et al. 2011A), place a strong emphasis on the development of 

models. However, this is not typically performed in a naturalistic inquiry-based setting. 

In ACT, for instance, students learned about a system from a pre-written interactive 

hypermedia rather than through natural observation of the phenomenon itself (Goel et al. 

2010). 
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With this landscape in mind, MILA provides a significant complement to existing 

exploratory learning environments that teach and scaffold inquiry-based learning or 

scientific modeling. It is by no means superior to these systems in that the depth of the 

modeling or the flexibility of the inquiry taught in MILA is significantly diminished 

compared to the tools that emphasize one skill or the other, but rather MILA fills in a gap 

in the teaching of modeling and inquiry in exploratory learning environments in the 

community. Through the design of MILA, students are able to perform both modeling 

and inquiry in tandem, using each to guide, structure, and support the other in an 

authentic replication of naturalistic scientific modeling and inquiry in the real world. 

While MILA–T plays an important role in accomplishing this learning goal, the 

structure of MILA on its own is itself a contribution to the research on exploratory 

learning environments and inquiry-based learning. Towards the inquiry side, MILA 

unites multiple elements of the inquiry process into one contained interface. In this study, 

MILA delivered simulation capabilities for examining computational recreations of the 

natural phenomena, as well as note-taking capabilities for synthesizing information 

gathered outside of MILA. In prior studies with MILA as well, additional inquiry-

oriented features were included, such as an embedded document browser for searching 

through data and expert assessments, a pluggable framework for invoking any Flash-

based simulation within the program, and a system for creating a live question and 

answer service with real experts facilitated by MILA–T. The inquiry orientation of MILA 

is different from settings like River City that attempt to create entire virtual environments 

in which students can simulate any inquiry task. Rather, MILA's approach to inquiry is to 

facilitate and direct execution of real inquiry tasks regarding the phenomenon within the 

software itself. 

On the modeling side, MILA leverages a modeling framework called CMP 

(Component-Mechanism-Phenomenon) modeling, described in greater detail below. On 

the software side alone, however, the approach to delivering this modeling framework 
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provides a natural set of constraints to sculpt students' reasoning even in the absence of a 

tutoring system. The structure of the interface pushes students to think about modeling in 

terms of interacting trends and changing variables by reframing any claims or 

explanations in terms of causal sequences of events characterized by changes to the state 

of the system. This structure is instructed early in the use of MILA, but the constraints of 

the software push students to think in terms of the types of models that MILA can create. 

Most importantly, MILA inserts the results of the inquiry activities directly into the 

modeling process by asking students to back up the claims of the model with evidence 

derived from their inquiry activities, tightening the link between modeling and inquiry. 

As presently constructed, MILA has been successful in facilitating modeling of 

ecological phenomena in middle school classrooms. Although the primary targets of 

analysis here have been the effects of the tutoring system on top of MILA itself, prior 

analysis has identified the software's ability to drive inquiry and modeling even in the 

absence of such feedback. The semantics of the models in the software are presently such 

that it may be used in any inquiry and modeling task in the ecological domain, and 

ongoing research is examining additional ways to build a more robust toolkit for 

modeling ecological phenomena and providing more naturalistic feedback through 

simulations. 

CMP Modeling 

As referenced above, MILA is constructed specifically to facilitate CMP 

(Component-Mechanism-Phenomenon) modeling. MILA itself could use a different 

modeling framework, while CMP modeling could be used in the context of a different 

exploratory learning environment, separating out the contributions of MILA and CMP. 

MILA's precise instantiation and implementation of CMP principles provide some 

contributions outlined above, but the broader formalization of CMP modeling as an 

approach to teaching modeling and inquiry in schools stands as an independent 
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contribution as well. CMP modeling is constructed off of Structure-Behavior-Function 

(SBF) modeling, a language for constructing models originally created to facilitate design 

in artificial intelligence systems (Prabhakar & Goel 1998; Goel, Rugaber & Vattam 

2009), but more recently applied extensively to biologically-inspired human design 

(Vattam et al. 2011B; Wiltgen et al. 2011). Research has been performed applying SBF 

modeling in education both at the college level (Helms, Vattam, Goel, & Yen 2011; Yen, 

Weissburg, Helms, & Goel 2011) and in middle schools (Goel et al. 2013). This latter 

research in middle schools found that usage of SBF principles in learning about complex 

ecological systems increased students' deep knowledge about those systems (Goel et al. 

2013) as well as facilitated deeper reasoning skills in science teachers (Sinha 2010). A 

major difficulty in SBF modeling was the complex modeling semantics and foreign 

vocabulary used in these early experiments. In response to these observed problems, 

CMP modeling was developed to provide a more understandable set of semantics for 

middle school students to describe ecological phenomena as well as a simpler modeling 

interface to construct these explanations (Joyner et al. 2012). 

CMP modeling is not tied specifically to the semantics seen in MILA; while 

MILA uses nodes to represent trends that arise out of underlying components and 

properties, one could develop a system for CMP modeling that instead models the 

individual components as nodes with multiple properties directly invoked within the 

component. The research on a different extension to MILA, MILA–S, takes exactly this 

approach and is documented more fully below. Moreover, CMP modeling does not 

strictly have to take place in a software environment; it can be performed on paper as 

well. Earlier experiments with SBF modeling began by having students design models of 

ecological systems on paper using the SBF terminology and structure (Honwad et al. 

2010). Similarly, CMP modeling may be leveraged outside an exploratory software 

learning environment in an exercise wherein students clearly articulate a target 

phenomenon to describe, describe the multiple physical components and their respective 
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properties, and arrive at a mechanism explaining how a sequence of changes in properties 

led to the noted phenomenon. Thus, CMP modeling provides a robust and promising 

approach to teaching modeling separate and apart from its specific implementation within 

MILA. 

Model of Inquiry-Driven Modeling 

The existing literature from the learning sciences and technology community is 

replete with arguments supporting the desirability of an inquiry-based approach to 

science education (e.g. Schiff  1970; Keys & Bryan 2001; Gibson & Chase 2002) as well 

as the proper conductance of such open-ended, model-based, project-oriented, 

constructionist approaches to science (e.g. Clement 2000; Sins, Savelsbergh, & van 

Joolingen 2005; Schwarz et al. 2009). Schwarz et al. 2009 in particular provides a 

progression through the phases of learning about scientific modeling that students ought 

to complete, emphasizing educating students on the cycle of model construction, use, 

evaluation, and revision. Work has also been performed on the union between modeling 

and inquiry and how scientific modeling can play a critical role in driving the inquiry 

process (e.g. Jackson 1995; Stratford & Finkel 1996; Löhner, van Joolingen, Savelsbergh, 

& van Hout-Wolters 2005; Svoboda & Passmore 2013). Most notably, the Model-It 

project provides students with a tool for constructing scientific models in the service of 

authentic scientific inquiry (Soloway et al. 1997). 

However, despite the considerable time put into researching the use of modeling 

and inquiry in educational settings, relatively little has been done on formalizing the 

process into a cohesive model of the target skill. There is an understanding and 

acceptance of the notion of model construction, use, evaluation, and revision at a high 

level, but not of the way in which scientific inquiry can drive, and subsequently be 

guided by, scientific modeling. In order to instruct students in this inquiry-driven 

modeling approach, this work began by formalizing the existing literature on this skill 
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into a process flow for the investigation of a phenomenon and construction of a model of 

the phenomenon, including the possibility that the primary takeaway of the process is the 

rejection of the model as insufficient or inaccurate. This process was constructed 

according to the existing literature and supported by our own prior experience with 

developing exploratory learning environments to facilitate construction of scientific 

models in inquiry-based learning activities (Joyner et al. 2012; Joyner, Majerich, & Goel 

2013; Goel et al. 2013). In addition to the articulation of this process, we also augmented 

the model of the process with a collection of errors we have commonly witnessed 

students committing in their inquiry-driven modeling behaviors in the past. 

While this model was constructed based in large part on the literature on inquiry 

and modeling both in education and in professional practice, it is not claimed to be a 

validated model of the way in which inquiry-driven modeling is (or should be) performed 

by scientists in the real world. Rather, this model is claimed to be a desirable target for 

which to aim in interventions addressing students' modeling and inquiry skills. This 

articulation of a productive process of inquiry-driven modeling and the accompanying 

errors that students may commit in the course of the process should provide a useful 

starting point for others analyzing students' progress in learning this authentic process of 

scientific inquiry and modeling. 

Guidance for Inquiry-Based and Discovery-Based Teaching 

Although providing this model of a desirable inquiry-driven modeling process is a 

contribution to corners of the learning sciences & technology community that support 

inquiry-based, discovery-based constructivist teaching, there exist many critics of this 

approach. In many classrooms and in prior experiments along the same line of reasoning 

as this research, students complete inquiry-based, discovery-oriented projects with little 

or no guidance based on the belief that the greatest learning gains are seen in natural 

investigative experiences. Some theorists, however, argue that "minimal guidance during 
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instruction does not work" (Kirschner, Sweller, & Clark 2006). They argue, among other 

claims, that students only begin to benefit from receding guidance when students achieve 

a rate of internal knowledge to provide guidance for themselves. Teaching this kind of 

knowledge and self-guidance, however, is very difficult in open-ended discovery-

oriented endeavors because a significant level of guidance is required in the interim 

which is difficult for a single instructor to provide to multiple teams simultaneously; this 

echoes the well-documented "two-sigma problem" in education (Bloom 1984). To put 

these claims simply, students need to achieve a level of expertise to learn from discovery-

based, inquiry-based activities, and that expertise is difficult to learn within the activities 

themselves. 

We would argue that in many cases, inquiry and discovery are not merely the 

means to achieve certain learning goals, but rather are the learning goals themselves. 

Nonetheless, the idea that learning gains are not seen simply from the opportunity and 

subsequent completion of an inquiry-based learning activity is not controversial. In fact, 

MILA–T is designed with exactly this problem in mind; given an exploratory learning 

environment in which to participate in an inquiry activity, there still exists the 

opportunity for instruction and feedback to support the learning process. A tutoring 

system like MILA–T then can play the role of guiding instruction while preserving the 

elements of the activity that deliver either explicit gains to students' inquiry-driven 

discovery or gains to the underlying learning goals that inquiry-driven approaches 

attempt to accomplish. 

This claim that a tutoring system like MILA–T can provide individual guidance to 

multiple students or teams simultaneously in a way a single teacher cannot is expected; it 

is fundamental to the goal of tutoring systems, to bring immediate and individualized 

feedback to many students concurrently. However, what is particularly notable about 

MILA–T in light of this criticism is that MILA–T addresses a domain in which students 

are commonly participating in inquiry-based learning already. Inquiry-based approaches 
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are rarely used in mathematics or many other domains in which tutoring systems have 

been successful in the past. MILA–T not only operates in an inquiry-based learning 

environment, but in fact the inquiry itself is the targeted learning goal of the tutoring 

system. Thus, MILA–T plays precisely the role of guiding instruction as advocated by 

Kirschner, Sweller, & Clark while preserving the inquiry-based nature of the learning 

activity. 

Discussion 

The final discussion of this work focuses on three different areas for continued 

application of the tools developed and lessons learned throughout this study. First, this 

discussion explores two possible directions for future research within this project: 

examining the hypothesis regarding the interplay between a tutoring system and a teacher 

in a classroom and developing alternate ways to provide students feedback on their 

progress in developing explanations for phenomena. Second, this discussion describes the 

way in which the lessons and design principles learned throughout this study have been 

applied more recently in a different domain. Third, this discussion mentions three new 

collaborations spawned by this work exploring how to apply these tools and principles to 

new audiences at larger scales. 

Future Directions for Research 

One of the significant takeaways of the previously-described research is the 

hypothesis that the mechanism by which the presence of a tutoring system led to learning 

gains in the classroom may be through its impact on the way in which the teacher 

conducted the classroom generally, freeing up additional cognitive resources to provide 

deeper feedback. This hypothesis provides a valuable next step in evaluating the cause of 

the gains seen in this study. Secondly, while in this study feedback was provided to 

students as part of interaction with a tutoring system, there exist alternate ways in which 

students can receive feedback and improve accordingly. One such way has already been 
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explored: develop a system within MILA whereby students can directly invoke 

simulations that depict the way in which the system would operate if their model of the 

system was accurate. The differences between this simulated system and the actual 

system then become feedback for students to improve their model more going forward. 

Intelligent Tutors in a Classroom Setting 

Throughout this analysis, a common thread has been the proposition that the 

results seen here could be explained by the effect that the presence of a tutoring system 

has on the classroom as a whole rather than the individual students or teams using it. The 

prior analysis showed that there existed trends in the Experimental group that are difficult 

to tie directly to the feedback provided by the tutoring system. While it is true that the 

tutoring system aims to provide students with a greater understanding of the nature and 

role of evidence in supporting explanations, the tutor lacks the ability to correct students' 

flawed evidential justifications. Therefore, either students in the Experimental group 

learned a better understanding of the nature of evidence without actually receiving 

targeted correction on the evidence they have already written, or something else was 

responsible for the presence of these learning gains solely in the Experimental group. In 

the above sections, it was proposed that the primary role of the tutoring system was to 

receive and address lower-level requests for assistance, allowing the teacher in the 

classroom to field fewer questions and devote more cognitive resources to observing the 

classroom as a whole. This also would suggest that when the teacher did give students' 

feedback, it was after they had already exhausted the feedback available from the tutor, 

meaning that the specific feedback was of a higher caliber (e.g. "This piece of evidence is 

not relevant to this claim" or "This piece of evidence is insufficient."). This proposition 

was further supported by the interviews with the educators in the classroom; two 

educators reported that they were aware of answering fewer simple questions in classes in 

the Experimental group, and the third reported that she had difficulty at first allowing the 
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tutors to play her typical roles for her. Thus, there are sufficient data to justify exploring 

the nature of teacher feedback in the classroom during engagement with a metacognitive 

tutoring system. 

The data gathered as part of this analysis were not sufficient to draw strong 

conclusions about these interactions, however. In order to more rigorously test the 

hypothesis that the presence of a tutoring system allows teachers to focus on giving 

higher-level, more advanced feedback, two studies may be conducted. First, more simply, 

if the benefit of the tutoring system in this exercise was largely based on the feedback 

that teachers gave, then the teachers may be removed from the classroom entirely for a 

subsequent iteration, and interaction between teams would be limited to remove the 

presence of a "classroom-level" dynamic. The Control and Experimental groups would 

remain largely the same, with each group presented the same materials as well as 

standards for successful completion of the exercise. If the gains seen in this study were 

replicated in this follow-up study, then the gains can be attributed solely to the system 

consisting of the individual team and the tutoring system. If, on the other hand, the gains 

disappear in this follow-up study, then the benefit of the tutoring system was connected 

to the way in which it changed the classroom as a whole. 

However, that method of conducting a follow-up study would involve 

intentionally removing an element that is presently believed to be beneficial. An alternate 

manner of conducting the study would instead involve retaining and examining exactly 

the feature presently believed to potentially be at the core of the learning gains seen in the 

Experimental group in this study. This would involve running effectively the same 

experiment in design, but carefully tracking the actions of the teacher during the 

intervention. The teacher would wear a microphone and have all interactions recorded for 

subsequent analysis. Simultaneously, an observer would sit in the classroom and monitor 

the proceedings using an observational protocol like the Reformed Teaching Observation 

Protocol (RTOP; MacIsaac & Falconer 2002) to track differences between the Conditions 
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at the classroom level. After gathering these data, the questions asked of the teacher and 

the teacher's responses would be coded to check for differences in the types of questions 

asked of the teacher and the types of responses given. Based on the theory suggested by 

this prior analysis, in that study we would hypothesize that in classes with a tutoring 

system, the teacher would deliver a greater number of deep pieces of feedback and spend 

less time providing basic or superficial feedback. We would also hypothesize that there 

would be a greater frequency of feedback given to the class as a whole based on the 

teacher's observation of ongoing trends. 

While this analysis has a special relevance to metacognitive tutoring and 

metacognitive tasks given the aforementioned difficulty in observing and reacting to 

metacognitive development, it also extends to general intelligent tutoring as well. In more 

constrained domains, such as Algebra or Physics, there is often an expected set of 

common mistakes that an intelligent tutor can anticipate and correct. Such an idea is so 

common that the community has moved toward extending to teachers the ability to set up 

such tutors because the limiting factor is the limited amount of content (Aleven, 

McLaren, Sewall, & Koedinger 2009). However, even in these settings there may often 

remain patterns of errors or misconceptions that have never previously been observed, or 

students who have difficulty overcoming their errors even with the aid of such tutoring 

systems. In these settings as well, the presence of a human teacher or tutor may help 

overcome these final difficulties while also leveraging the ability of the intelligent 

tutoring system to take care of the vast majority of expected misconceptions and errors. 

Ablation of Functional Roles and Features 

The takeaway of the previous analysis is that the presence of a metacognitive 

tutoring system during engagement with an activity in scientific inquiry leads to positive 

results in students' attitudes toward science and explanations of the target phenomenon. 

However, based on this study, this conclusion only makes a claim about the presence of a 
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metacognitive tutoring system compared to the absence of one. The possibility remains 

that the gains seen here should actually be more narrowly attributed to certain functional 

roles played by the tutors in MILA–T rather than the tutoring system as a whole. 

Alternatively, the possibility also remains that the gains present here could be more 

widely attributed to any tutoring system present in the system under the same 

experimental design, whether oriented toward metacognitive ability, cognitive ability, or 

content knowledge. Similarly, it may also be argued that the gains present here are due 

solely to superficial factors of the tutoring system, such as the simple presence of 

feedback (regardless of the nature of the feedback) and the humanization of the tutors 

through human avatars. 

To more specifically note that specific origin of the positive effects seen in this 

study, a more robust set of tutors ought to be created. In addition to the five 

metacognitive tutors present in MILA–T, additional tutors playing the same five 

functional roles should be constructed to target cognitive ability and content knowledge. 

Within cognitive ability, the tasks to teach would likely involve controlling for particular 

variables in a simulation, analyzing numeric results from an experiment, or gathering 

information from existing literature (although arguments could be made that any of these 

may be classified as metacognitive skills). Within content knowledge, the tutors ought to 

be equipped with the ability to specifically evaluate the ecological accuracy of the claims 

made by students' models, as well as to provide students targeted information from the 

literature based on the current claims and structure of their explanations. Alternate 

versions of the system should also be constructed removing the faces and names of the 

tutors of MILA–T. 

After constructing these additional tutors, an ablation study would be run to vary 

the feedback that students received. Some students would receive only feedback of 

certain kinds, like metacognitive, cognitive, or content knowledge. Other students would 

receive multiple kinds of feedback, but only from certain functional roles, like the Guide 
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or the Mentor. Still others would receive the full range of available feedback, but without 

the avatars or names, while a final set would be given a "placebo" set of tutors that 

provides no feedback but appears to monitor and react to students' activity anyway. 

Based on the analysis of these data, questions could be answered about the specific gains 

seen from specific types of feedback, as well as the specific gains seen from particular 

functional roles. Based on the results here, the likely hypothesis would be that targeted 

feedback on the current weaknesses and areas for improvement in students' current 

explanations from the functional role of the Critic would be most beneficial, and that 

such feedback would be beneficial in different ways across all three dimensions. 

Alternate Methods of Feedback 

The proposed study above concludes by hypothesizing that the most useful 

functional role in an ablation experiment would be the Critic. The ultimate reason for this 

is that the Critic plays a fundamentally important functional role with regard to any kind 

of investigation, discovery, or invention process: feedback. While all the tutors provide 

feedback of some kind, the Critic provides feedback that is most directly associated with 

identifying and repairing the weaknesses in a team's current explanation. This feedback 

process is a fundamental part of the modeling process documented earlier, featuring 

model construction, use, evaluation, and revision (Schwarz & White 2005). In this 

workflow, the Critic in many ways fulfills the "use" portion of the cycle; teams use their 

model examine the weaknesses in their current understanding, and the Critic provides 

feedback on what the results of that examination ought to be. In this way, the Critic helps 

improve teams' models by directing attention to the weaknesses, while also helping 

develop students' metacognitive understanding of modeling by articulating the value and 

purpose of such evaluation. 

However, feedback from an intelligent tutoring system is only one of multiple 

possible ways to simulate this feedback process in a classroom exercise. Within 
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experiments using MILA, an alternative approach has been attempted that has shown 

promising early results. This approach does not involve a metacognitive tutoring 

component, but it is relevant to the analysis here in that it presents an alternative method 

for providing feedback to students in service of the broader inquiry-driven modeling 

process, as well as part of the full picture of the intervention. 

This alternative system is called MILA–S, for MILA–Simulation. In MILA–S, 

models that students develop are used to directly invoke a NetLogo simulation (Wilensky 

1999). Whereas the NetLogo simulations used in the intervention involving MILA–T 

served as stand-ins for the real world and did not change, simulations generated by 

MILA–S are direct compilations of the claims made by students' models. The role of 

these simulations is to give students feedback on the way in which they system would 

behave if their current model of the system is accurate. If the simulation of their current 

understanding of the phenomenon does not match the real events in the phenomenon, 

then it stands to reason that a portion of that current understanding is insufficient or 

incorrect. The simulation, then provides teams with information on whether or not their 

current understanding matches the real system, as well as the specific places where the 

difference arises. This is a feedback process similar to the role played by the Critic in 

MILA–T; the difference here is that the feedback is naturalistic and raw rather than 

intelligent and selected. As a result, however, this feedback can be received without any 

prior work being put into developing the simulation; the Critic, on the other hand, needs 

some understanding of the activity in which students are engaging to supply feedback. A 

full description of the way in which MILA–S takes MILA models and compiles then into 

executable NetLogo simulations can be found in Joyner, Goel, & Papin 2014. Prior work 

on connecting conceptual models to NetLogo simulations can be found in Vattam, Goel, 

& Rugaber 2011. 

During the intervention described in the preceding analysis, teams in the Gifted 

classes were given access to MILA–S as part of a final one-day exercise to further 
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investigate the fish kill in Lake Clara Meer. This exercise took place after these teams 

had already submitted their final Learning and Transfer models and completed the post-

test and survey, and so this activity did not influence any of the prior results. During this 

activity, teams were given 45 minutes to model the relationships in Lake Clara Meer in a 

way that would give rise to the observed phenomenon in the simulation. Within this short 

exercise, students were seen constructing initial models, generating simulations, and 

revising the models based on observed instances where the simulation did not match the 

expected results. Students were also seen using their models to reflect on the real 

systems; for example, one team constructed a model that accurately recreated the fish 

kill, but decided to revise the model because they believed it ignored important 

components from the real system. Other interesting trends were observed, such as teams 

engaging in a nested modeling process wherein the simulation became a model that was 

used, evaluated, and revised, and whose revision process led to feedback that informed 

the evaluation and revision of the conceptual model. A broader description of the patterns 

of interaction observed during this activity can be found in Goel & Joyner 2014. 

In order to facilitate this expanded functionality, MILA–S models are augmented 

with an additional layer of information on top of what is typically present in a MILA 

model. An example of this is shown in Figure 29 below. Rather than representing trends, 

each node in this interface instead represents an individual component, such as Oxygen, 

Algae, Sunlight, or "Fishies". Components are annotated with an assertion that they are 

either biotic or abiotic, and that differentiation determines the variables associated with 

the component; biotic organisms possess populations, lifespans, birth rates, and energy 

levels, while abiotic substances possess only quantities. Additionally, relationships 

between biotic and abiotic components are further explained as instances of different 

relationship prototypes, like 'eats', 'produces', or 'destroys'. These relationship prototypes 

provide information to MILA–S that is used to compile the simulation. 
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Figure 29: A MILA–S model produced by a team during the project at the end of the intervention, 

originally published in Joyner, Goel, & Papin 2014. 

At present, there does not exist a "MILA–ST", a system unifying the generated 

simulations of MILA–S with the metacognitive tutoring capabilities of MILA–T. Early 

thought has been paid to how a set of metacognitive tutors could be developed within 

MILA–T that may provide information useful during engagement with MILA–S. Planned 

development of MILA–S will focus on improving the system's ability to accurately 

simulate ecological phenomena by building in additional ecological content knowledge 

and a more complete ontology of the types of components, variables, and relationships 

necessary to fully model and understand an ecological phenomenon. 

Application to MOOCs 

Most recently, the results and lessons learned throughout this project have been 

applied in a radically different domain. In February of 2014, we began the development 

of a MOOC – a massively open online course (Pappano 2012) – on Knowledge-Based 

AI, a course taught at Georgia Tech by Prof. Goel for the past several years. Initially, this 

course was developed to be offered as part of the Georgia Tech Online Masters of 

Science in Computer Science (Lewin 2013), with plans to offer it as a freely available 
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MOOC in the future. In the past, significant criticism has been leveled at MOOCs for 

their failure to recreate desirable pedagogical experiences, instead relying on the faulty 

lecture-oriented model to reward only the most self-driven learners (e.g. Knox et al. 

2012; Martin 2013; Ross et al. 2014; Guzdial & Adams 2014). In developing an online 

course for Knowledge-Based AI, our goal from the beginning was to leverage the lessons 

learned within this project and the communities from which this project sprung. Although 

much could be written about the variety of learning strategies we have attempted to 

leverage in the development of this course, most relevant to the research presented in this 

document are the explicit focus on metacognitive development and the inclusion of 

intelligent tutoring-style individualized feedback wherever possible. 

Metacognitive Development in a MOOC 

As a course, Knowledge-Based AI relies heavily on the development of 

metacognitive ability in students. Much of the course emphasizes a feedback cycle not 

unlike the process of modeling seen in the previously-described intervention. In 

Knowledge-Based AI, we teach students to use our understanding of human cognition to 

develop artificially intelligent agents that perform the way in which humans do, and then 

to subsequently use the performance of those agents to reflect on the nature of human 

cognition. In this way, the agents can be thought of in many ways as models of our 

understanding of human cognition, and by using the agents in simulations or to perform 

tasks, we may gather information that allows us to evaluate and revise our model of 

human cognition. In this way, a major learning goal of Knowledge-Based AI is the ability 

to think about our current understanding of the human mind, to think about the inner 

workings of an artificially intelligent agent, and to use each to reflect on the other. In this 

way, Knowledge-Based AI is a richly metacognitive course. 

Because of this learning goal, the course is designed from the ground up to 

emphasize the instruction of metacognition to the students in the course. After the 
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customary introduction and lesson outline to set expectations and connect material to past 

topics, each lesson in the course starts with an example for students to complete. These 

are often duplications of basic tasks that individuals complete in the real world every day, 

such as understanding a simple sentence or finding the best container to use to transport 

soup. This example sets up the initial reflection of the lesson, examining the process by 

which we humans complete complex tasks with relative ease. This example also typically 

serves as the task which we design an agent to accomplish, drawing a close connection 

between the agent and the human mind based on their mutual ability to solve the task 

presented at the start of the lesson. As the lesson progresses, students step through the 

reasoning behind solving the problem as the agent would do so, thus consistently 

reflecting on how their mind is able to accomplish the necessary steps toward problem 

solving that the agent must be equipped to do. At the conclusion of each lesson, students 

are asked to reflect on what they themselves learned, what concepts they found difficult, 

and what connections they could draw to earlier course material. This process attempts to 

provide an explicit opportunity for self-regulation through the course, although the data 

will have to be analyzed to determine whether or not students actually take the 

opportunity to do so given the inability of the system to monitor for earnest responses. 

This focus on metacognition is not limited to the nature of the lesson planning. In 

many ways, the lesson plans are the least interesting part of this endeavor because 

nothing they provide is MOOC-specific; the exact same lesson plans could be developed 

and applied to an in-person class. However, certain production elements throughout the 

course are constructed to facilitate metacognitive development in a way that would be 

difficult in a traditional classroom. Throughout the course, there are two individuals 

interacting, the course developer and the professor. In many instances, the two interact in 

a way that is intended to demonstrate to students exactly the type of metacognitive 

abilities they ought to develop on their own. The professor, for example, will often ask 

the course developer to answer the exercises that students are asked to complete as well. 
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The course developer, in turn, will provide an answer, but will also move through an 

entire explanation of the exact thought process that went into the answer that the student 

should learn to mimic as well. This often involves specifically anticipating certain errors 

or misconceptions that the student might make and addressing how the course developer 

avoided those errors. In this way, the course developer demonstrates to students exactly 

the type of thought processes they ought to learn specifically in the context of the 

exercise that they, too, just completed. While it would be possible to duplicate this 

dynamic in some ways in an in-person classroom, the nature of the scripting process, the 

possibility for interaction between two "characters", and the ability to directly build on an 

exercise that students have just completed all make this approach uniquely well-suited to 

the pre-recorded medium. 

Individualized Feedback in a MOOC 

Intelligent tutoring is, ultimately, a matter of feedback. Based on the activity and 

input of the student, the tutor provides some feedback to help the student improve and 

more closely approximate the target skill. In most MOOCs, the opportunity for practice 

with real feedback is minimal or non-existent; in fact, it is exactly this lack of interaction 

and learning by doing that is fundamental to many of the criticisms of MOOCs. Without 

this interaction, learning is entirely instruction-based with the learner playing little role in 

actively participating in the process unless they themselves choose to break out of the 

system and apply their skills elsewhere. This lack of interaction is partially responsible 

for the criticism that MOOCs are only successful for the most self-driven learners; there 

is nothing to hold the attention or engage learners that are not already naturally engaged 

with the material. 

The Udacity development platform provides a medium for designing interactive 

exercises that can be graded by a script. Exercises can consist of any number of 

textboxes, radio buttons, and checkboxes, all of which can be leveraged dynamically in 
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the code. At a purely functional level, this provides the infrastructure necessary for 

designing interactive exercises. An example of such an exercise from the Knowledge-

Based AI class is shown below. 

 

Figure 30: An exercise from the Knowledge-Based AI course. In this exercise, students are learning 

to use a semantic network to create a formal representation of a problem state. As part of this, they 

have previously seen the creation of some nodes of the semantic network, and are now asked to 

create the possible next states. In doing so, they participate in the reasoning process that helps make 

clear how the semantic network representation is being used to support the problem solving process. 

Given this infrastructure, a small set of simple quizzes are most common. 

Oftentimes, multiple choice quizzes are written with one or more correct answers. 

Occasionally, students may be given feedback on why their current selection on these 

quizzes is wrong, but oftentimes students are instead asked simply to try again. Similarly, 

in free-response quizzes, students most often have their answer checked by a simple 

string comparison. If the string given by the student does not match the "correct" answer 

to the exercise, the student's response is marked wrong and a token hint is provided. 

While there do exist quizzes that go beyond this model, this model reflects the majority 

of quizzes seen in other classes. 

Based on our prior experience with intelligent tutoring systems, however, our 

approach to these exercises was from the start motivated by the idea of developing 
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"nanotutors" for each type of exercise. These tutors are motivated by the desire to provide 

useful feedback at every stage of the problem solving process, no matter how far the 

student is from the correct answer. In this way, feedback is mapped according to a series 

of bridges from a certain level of ability and correctness to the next. This motivating set 

design is depicted visually in Figure 31. 

 

Figure 31: A visualization of the motivating design principle behind exercises in the Knowledge-

Based AI course. 

The nanotutors in these exercises play the same role as the Critic in MILA–T: 

they look at the student's current understanding of and answer to the problem and provide 

guidance on how to reach the next level of understanding. This starts first by taking a 

look at the student's answer and ascertaining whether it is a readable answer for this 

problem. For example, in the exercise shown in the Figure 30 above, students are asked 

to fill out four numbers that together represent a state of the problem. If students were to 

put in letters, their answer would fall into the broad blue rectangle outside the red circle. 
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The nanotutor would inform the student that the only valid answers to the problem are 

numbers, moving them from the blue space to the red circle. 

Once the student has put in an answer that the nanotutor can understand, the 

nanotutor can begin to map out its understanding of the student's answer and test for its 

correctness. In some (but not all) exercises, this first involves a test of validity. While the 

answer may be readable, it may not be valid. For example, in the exercise shown above, 

one of the states does not obey the rule of the problem that the bottom number can never 

be larger than the top number (unless the top number is 0). For this reason, this is not a 

valid state. As shown in the bottom right, the student is receiving feedback on this fact; 

their answer falls into the red circle of readable but invalid answers. They are, thus, given 

instruction on how to proceed to the next stage by ensuring that only valid states are 

included. As the problem continues, the student may arrive at a valid answer that 

nonetheless is not correct for the problem, such as including the same state twice in the 

exercise above; doing so would be valid, but not correct. Finally, in many exercises, there 

is a set of answers that are technically correct but are not optimal. For these answers, 

students are alerted that their answer is correct, but also that there answer still differs 

from the tutor's in some ways. For example, in a subsequent exercise, students finish 

solving the problem given in the above exercise and input the number of moves required. 

If the number of moves that students enter is possible (an odd number greater than or 

equal to 11) but sub-optimal (greater than 11), the nanotutor tells students that while their 

answer is correct, a better answer does exist, along with a tip on how to arrive at the 

better answer. 

To illustrate this further, another example is given in Figure 32 below. Here, 

students are asked to complete a problem of rearranging blocks, a common problem in 

AI. This problem is used to reflect on how an AI agent can detect and avoid conflicts in 

advance, prioritize and select actions, and evaluate different paths from its current state to 

its goal state. Students here write out the operators that the agent might execute to arrive 
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at the goal state. Here, in the first phase, the nanotutor checks to see if the input is valid; 

each line of the box should be a move command with two parameters, and if it is not, the 

student is informed of the invalid line or lines. After confirming that all of the commands 

are readable, the tutor begins executing them. If it arrives at a command that it cannot 

execute within the rules of the problem, as seen above in the attempt to move B while A 

is on top of B, the answer is ruled readable but invalid, and the student is given the 

opportunity to revise the answer to add validity. If all the moves made within the problem 

are valid, then the nanotutor checks to see if the answer is actually correct; if the blocks 

are in the desired arrangement at the end of the process, it tells the student that their 

answer is correct, and if they are not, it tells the student the exact arrangement of the 

blocks at the conclusion of the moves. 

 

Figure 32: Another exercise from the Knowledge-Based AI class. In this exercise, students complete a 

planning exercise where they examine how an agent would be able to reconcile potentially 

incompatible goals. 

There are two crucial elements to the design of both these exercises. First, as 

described by Figure 31, at every given step of the problem-solving process students are 

given feedback on how to get closer to the answer. This mimics the role of the Critic in 

MILA–T, which gave students at any stage of the project feedback on how their model 



   

253 

 

could be better. The student is never left guessing as to the best way to proceed further in 

the problem, and in most cases, the student is also specifically informed of the reason or 

mechanism behind the current error as it relates to the design of the agent. The second 

crucial element to note here is that students are actively engaging in the exercises that are 

themselves the target concepts of the lessons. In the first exercise, students are learning 

how an agent might use a semantic network to generate potential next states and test them 

for usefulness, and to do so, they actually generate the states themselves. In the second 

exercise, students are reflecting on how an agent would select and prioritize actions, and 

to do so, they select and prioritize actions according to the same heuristics that the agent 

uses. All along, they are given explicit, targeted, individualized feedback specifically on 

the weaknesses of their current answer and the way in which the answer can be improved. 

Evaluation and Summary 

The online course described here officially launched to a closed audience of 200 

students of the Georgia Tech Online Masters in Computer Science program in August of 

2014. Analysis of the data generated by students in the class is underway. The ultimate 

goal of this analysis is to determine the ways in which students interacted with this 

feedback, such as iterating over the answer, submitting one answer and giving up, or 

skipping the exercise entirely. Present analysis, however, has covered students' 

perceptions of the tool and its usefulness in learning the material. When asked for general 

feedback on the class as a whole, one student replied: 

"On the Udacity quizzes I can really tell that you put in an effort 

to give back meaningful responses (way to be awesome at AI). 

They're seriously the best responses I've ever seen in an online 

class (I've taken about 10)." 
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A second student responded similarly: 

"I have to say that the videos combined with the puzzle exercises 

have made the concepts much, much clearer." 

A third student echoed those comments as well: 

"There are tons of exercises throughout the lecture and good 

descriptions about those exercises about how they got their 

answers. I like this a lot." 

 Continued analysis of the data generated by students in the class will provide a 

more comprehensive look at the way in which the nanotutors supplied throughout the 

course lessons were leveraged by students and the way in which those patterns of 

interaction correlated with perception of and performance in the course as a whole. 

Ongoing Collaborations 

The scope of this research has focused narrowly on teaching inquiry and modeling 

abilities to middle school students. However, the broader goal of this research program is 

to address the full scientist life cycle: secondary education, higher education, amateur 

scientists, and professional scientists. One of the key motivations behind this research 

was to bring an authentic scientific experience to secondary school students, but that 

authentic scientific experience needs tools to help facilitate the same kind of inquiry and 

modeling that we have taught to students in the first place. An ongoing goal of this 

research program is thus to support scientists at every level, training students at the 

secondary and college levels and aiding scientists at the citizen and professional levels. 

Toward this end, this dissertation will close by describing three ongoing endeavors to 

expand this research to these audiences: a collaboration with Georgia State University's 

College of Education to further help secondary school students; a collaboration with 

Georgia Tech's School of Biology to help college-level students; and a collaboration with 
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the Smithsonian Institution's Encyclopedia of Life to support citizen and professional 

scientists. 

Georgia State University's College of Education 

In recent years, researchers at Georgia State University have examined many of 

the same issues present in the work presented here. Specifically, they have examined the 

challenges present in inquiry-based education (Renken, Carrion, & Litkowski 2014), the 

different kinds of evidence used in constructing science understanding (Goldin, Renken, 

Galyardt, & Litkowski 2014), and the role of computer simulations in science learning 

(Renken & Nunez 2013). Recently, this has taken the form of a project called Choose 

Your Own Science Adventure (CYOSA), a structured activity wherein students virtually 

investigate a natural phenomenon by gathering data, constructing an understanding of the 

mechanism underlying the phenomenon, and providing evidence in support of their  

mechanism (Peffer 2014). CYOSA differs from MILA in that it is significantly more 

structured; students navigate a predetermined set of dialogs and bits of information rather 

than explore a system openly. In this way, CYOSA offers a powerful complement to 

MILA. Feedback from the teachers in the study reflected the need for more novice-level 

help, and while the tutors aim to provide that guided instruction, the open interface of 

MILA makes it difficult to perfectly understand students' abilities. CYOSA provides an 

opportunity to create novice-level guidance in a more structured environment before 

transitioning students to MILA's more open-ended inquiry environment. 

The proposed collaboration with Georgia State University aims to use CYOSA to 

provide novice-level instruction and scaffolding to complement the open-ended inquiry 

and modeling facilitated by MILA. Middle school life science students will begin by 

using CYOSA to receive highly structured information on the course of modeling and 

inquiry; during this time, a metacognitive tutoring system like MILA–T will still operate 

to emphasize, instruct, and demonstrate metacognitive processes during the structured 
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inquiry task. Once students have demonstrated an understanding of the structured task, 

they will be transitioned to the unstructured task with MILA, while the metacognitive 

tutoring system helps bridge the gap between the two environments. At the conclusion of 

this process, students will tackle an even more unstructured problem without this tutoring 

system (and potentially outside the software altogether) in order to demonstrate the extent 

of their learning during the unit. Proposals for this research are currently under 

development. 

Georgia Tech's School of Biology 

The research described in this dissertation has focused on teaching metacognition, 

inquiry, and modeling to middle school students; however, these are important abilities 

for college students as well. Can the research developed here be transferred to college-

level ecology classes? A collaboration with the Georgia Tech School of Biology aims to 

address this question, specifically building on the MILA add-on MILA–S described 

above on page 242. The learning goal of this collaboration is to teach students to use 

multiple kinds of modeling to improve their explanations of a system. More specifically, 

this collaboration aims to equip students with the ability to easily use conceptual models 

and simulation models together, improving their inquiry process and their explanations of 

the target phenomenon. Unlike the research on MILA and MILA–T, MILA–S is not 

meant solely as a teaching tool either; its ability to compile conceptual models into 

simulation models provides a practical function separate from demonstrating the process. 

While the learning goal is to teach students conceptual and simulation modeling as part of 

the inquiry process, the tool continues to play a role even after students master the ability 

to make investigating and simulating a phenomenon easier. 

In using this tool, students will address the same phenomenon as the experiment 

in middle school classes: the fish kill in Lake Clara Meer. The goal of the activity will be 

to construct a model that (a) explains how the fish kill occurred, (b) is consistent with the 
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circumstances surrounding the fish kill, and (c) is consistent with current ecological 

theories. The simulation compilation provided by MILA–S will help students evaluate 

whether the first goal has been accomplished, while traditional inquiry activities will 

provide information on whether the second and third constraints have been satisfied. The 

initial experiment with college students will be exploratory, observing students' inquiry 

and modeling behaviors and evaluating the effectiveness of the tool, the activity, and the 

students. Subsequent studies will examine the specific roles played by modeling, 

simulation, and tutoring. This exploratory study will begin in Spring 2015. 

Smithsonian Institution's Encyclopedia of Life 

As described above, while the goal of MILA and MILA–T are primarily to 

teaching inquiry and modeling, MILA–S takes this goal one step further and aims to aid 

real-world inquiry and modeling as well by providing an accessible way investigators to 

translate their present explanations into executable simulations. More information on this 

system can be found under the Alternate Methods of Feedback section on page 242. In 

ecological research, "citizen scientists" (that is, unpaid volunteers performing inquiry as a 

hobby) play a major role in documenting local phenomena and supporting real scientific 

practice (Oscarson & Calhoun 2007; Cohn 2008; Silvertown 2009; Howard & Davis 

2009). In recent years, efforts have been made to equip these citizen scientists with tools 

to improve their ability to do real, rigorous scientific research (Stapleton, Smith & 

Hughes 2005; Reddy et al. 2007; Luther et al. 2009; Graham, Henderson & Schloss 

2011). One of the challenges for citizen scientists, however, is typically the lack of 

programming expertise; scientists often use simulations of natural phenomena to test 

understanding and make predictions, but citizen scientists typically lack the ability to 

develop these simulations. MILA–S allows citizen scientists to have access to this 

simulation capability by directly compiling the more accessible conceptual models into 

executable simulation models (Joyner, Goel & Papin 2014). 
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The Encyclopdia of Life is a massive database of information about world 

ecology and biodiversity (Walter 2014). It contains millions of web pages of literature 

about the interactions of species, environments, and ecosystems. One of its main goals is 

to open up scientific knowledge to the masses, including citizen scientists who can 

significantly benefit from access to enormous amounts of scientific knowledge to use to 

examine their own local ecosystems. The collaboration with the Smithsonian Institution 

will combine the simulative capabilities of MILA–S with the content knowledge of 

Encyclopedia of Life. Using the two together, scientists will be able to construct 

executable models of their local ecosystems, leveraging the relationships and behavior 

patterns articulated within the Encyclopedia of Life. Work has also been considered to 

use natural language processing in conjunction with Encyclopedia of Life to 

automatically generate conceptual models of ecological phenomena that could then be 

passed to MILA–S to generate executable simulation models. Combined with AI like 

IBM's Watson, this research direction could ultimately lead to an agent that can 

autonomously read in simple data from the real world and relationships from 

Encyclopedia of Life and generate comprehensive models and simulations of ecosystems 

without any human intervention whatsoever.  
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APPENDIX A: ATTITUDINAL SURVEY 

The attitudinal survey featured here is a combination of selected constructs from the 

TOSRA (Test of Science Related Attitudes, Fraser 1981) and mATSI (Modified Attitudes 

Towards Science Inventory, Weinburgh & Steele 2000). Combined, it measures five 

constructs: interest in careers in science, desire to do science, perception of the science 

teacher, perception of the science teacher, and anxiety toward science.  
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Grades are very important to me.      

A job as a scientist would be interesting.      

I have a good feeling toward science.      

Working in a science laboratory would be an interesting way to make 

a living. 
     

I would like to be a scientist when after I complete my school.      

Science teachers are willing to give us individual help.      

Science is something that I enjoy very much.      

Sometimes I read ahead in our science book.      

I feel tense when someone talks to me about science.      

When I complete my school, I would like to work with people who 

make discoveries in science. 
     

A career in science would be dull and boring.      

I would dislike being a scientist after I complete my school.      

Science teachers present material in a clear way.      

It makes me nervous to even think about doing science.      

I would dislike a job in a science laboratory after I leave school.      

A job as a scientist would be boring.      

I would dislike becoming a scientist because it needs too much 

education. 
     

I like the challenge of science assignments.      
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When I hear the word science, I have a feeling of dislike.      

I would like to teach science when I leave school.      

It scares me to have to take a science class.      

Science is one of my favorite subjects.      

Science teachers make science interesting.      

I have a real desire to learn science.      

I would like to do some extra or un-assigned reading in science.      

It is important to me to understand the work that I do in science class.      

I would prefer to find out why something happens by doing an 

experiment than by being told. 
     

Doing experiments is not as good as finding out information from 

teachers. 
     

I would prefer to do experiments than to read about them.      

I would prefer to do my own experiments than to find out information 

from a teacher. 
     

I would rather find out about things by asking an expert than by doing 

an experiment. 
     

It is better to ask the teacher the answer than to find it out by doing 

experiments. 
     

I would prefer to do an experiment on a topic than to read about it in 

science magazines. 
     

It is better to be told scientific facts than to find them out from 

experiments. 
     

I would rather agree with other people than do an experiment to find 

out for myself. 
     

I would rather solve a problem by doing an experiment than be told 

the answer. 
     

 

Which of the following courses would you like to take in high school? Please check ALL OF 

THE BOXES that apply. 

 Astronomy  Trigonometry  Biology  Chemistry 

 Earth Science  Physics  Geobiology  Algebra 

 Geometry  Environmental 

Science 

 Calculus  Astrotrigology 
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The tutors were valuable and gave me good feedback and help.      

The tutors were clearly reacting to the things that we were doing in 

the software. 
     

I felt like the tutors knew when we were getting better at investigating 

the system. 
     

The tutors did a good job of giving us advice when we were wrong.      

The tutors did a good job of letting us know when we were right about 

things. 
     

The tutors were helpful in demonstrating things that we did not really 

understand. 
     

Gabriel the Guide was a useful resource to us.      

Craig the Critic was a useful resource to us.      

Marvin the Mentor was a useful resource to us.      

Isla the Interviewer was a useful resource to us.      

I sometimes found myself more interested in how the tutors worked 

than in the lessons. 
     

I sometimes found myself looking through the tutors' information 

without any real question in mind. 
     

I found the tutors' faces made it more clear what kind of feedback they 

were giving. 
     

 

 Did you have any positive experiences with the tutors used in the software? If so, please 

describe them. 

 

 Did you have any negative experience with the tutors used in the software? If so, please 

describe them. 

 

 What would you change about the tutors used in the software? Name as many things as 

you would like. 

 

 What would you change about the software used as a whole? Name as many things as 

you would like. 

  



   

262 

 

APPENDIX B: CONTENT TEST 

The following is the original content test developed for testing this intervention. 

The objective of this test is to measure students' understanding of ecology, the nature of 

science, model construction, and the scientific process.  

 
1. A valid hypothesis in any scientific 

experiment must be: 

a. believable 

b. put in the form of a question 

c. testable 

d. based on past valid 

experimentation 

 

2. A hypothesis is: 

a. a possible, tentative answer to 

a question 

b. a theory 

c. an accepted belief that has 

been tested 

d. a false belief that must be 

tested 

 

3. A theory is: 

a. a re-creation of an event 

b. an explanation for a 

phenomena 

c. a plausible, scientifically 

accepted generalization 

d. a questionable explanation for 

a natural phenomenon 

 

4. Scientists use scientific models of 

systems to: 

a. show other scientists their 

ideas 

b. drive their further research on 

the system 

c. simulate what might happen to 

the system in different 

situations 

d. all of the above 

 

5. Arguing in scientific research is: 

a. Good; it shows which ideas are 

most popular. 

b. Bad; it means the scientists 

don't understand the system 

yet. 

c. Good; it forces scientists to 

defend their ideas. 

d. Bad; it forces scientists to 

choose sides. 

 

6. For a scientific model to be good, it 

must: 

a. Be accepted. 

b. Be supported by evidence. 

c. Be simple. 

d. Be complicated. 

 

7. Which of the following would be bad 

evidence that pollution is killing 

insects? 

a. Observations that insect levels 

drop when pollution levels 

spike. 

b. Controlled experiments 

showing insects die in the 

presence of pollution. 

c. A simulation showing that 

pollution levels predict insect 

populations. 

d. An announcement from a TV 

station that pollution is killing 

insects. 

 

 

8. A scientist has found evidence that 

their hypothesis was wrong. How 

should they react? 

a. They should be glad; 

dismissing false ideas is an 

important part of science. 

b. They should apologize; if they 

were a better scientist, they 
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would not have had a wrong 

hypothesis. 

c. They should stand firm; 

science is about finding 

evidence only to support your 

ideas. 

d. They should hide the evidence; 

they do not want people 

knowing their idea was wrong. 

 

9. An example of an abiotic factor in an 

environment is: 

a. soil/water chemistry 

b. bacteria 

c. plants 

d. other animals 

 

10. An example of a biotic factor in an 

environment is: 

a. sunlight 

b. plants 

c. oxygen 

d. temperature 

 

11. Which of the following is a part of an 

ecosystem that can be removed without 

affecting the ecosystems functionality? 

a. plants 

b. water 

c. sunlight 

d. none of the above 

 

12. Bacteria play a vital role in Earth’s 

ecosystems by 

a. using oxygen 

b. producing acetone 

c. decomposing dead organisms 

d. concentrating valuable 

minerals 

 

13. Bacteria are essential to life because 

they _________________ nutrients for 

living things. 

a. recycle 

b. deposit 

c. digest 

d. engulf 

 

14. Dr. Smith thinks he sees a flaw in Dr. 

Jordan's model and corrects him. How 

should Dr. Jordan react? 

a. Accept Dr. Smith's correction 

and fix his model. 

b. Argue against Dr. Smith's 

correction about why his model 

was not incorrect. 

c. Examine Dr. Smith's correction 

and decide whether it is 

accurate. 

d. Abandon his model because 

Dr. Smith is clearly better 

qualified to model the system. 

 

15. Which of the following does not have 

to be true about a good scientist? 

a. They look for weaknesses in 

their own understanding. 

b. They always come to the right 

answer in the end. 

c. They know how to approach 

new problems. 

d. They accept correction and 

feedback from their peers. 
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APPENDIX C: LESSON PLAN FOR THE CLASSROOM ACTIVITY 

The following table provides the lessons that took place during the nine-day 

intervention. 

Georgia state standards addressed by the lesson plan: S7CS2, S7CS3, S7CS4, 

S7CS5, S7CS6, S7CS7, S7CS8, S7CS9, S7L4, S8P1. 

 Control Classes Experimental Classes 

05/06 
Pre-Test and Pre-Survey, Introduction to the Lake Clara Meer Problem 

No MILA 

05/07 
Lesson 1: Introduction to MILA 

With MILA, without tutors 

Lesson 1: Introduction to MILA 

With MILA, with tutors 

05/08 
Lesson 2: Biological and Ecological Content Knowledge 

No MILA 

05/09 
Lesson 3: Introduction to Mechanism 

With MILA, without tutors 

Lesson 3: Introduction to Mechanism 

With MILA, with tutors 

05/10 
Lesson 4: Introduction to Simulations 

With MILA, without tutors 

Lesson 4: Introduction to Simulations 

With MILA, with tutors 

05/13 
Lesson 5: Lake Water Quality Experiment 

No MILA 

05/14 
Lesson 6: Free Modeling 

With MILA, without tutors 

Lesson 6: Free Modeling 

With MILA, with tutors 

05/15 
Lesson 7: Atlanta Temperatures 

With MILA, without tutors 

05/16 
Post-Test and Post-Survey, Q&A with Georgia Tech Researcher 

No MILA 

 

  



   

265 

 

APPENDIX D: SCRIPTS FOR TEACHER INTERVIEWS 

At the conclusion of the study, teacher participants in the intervention were 

interviewed about their experience. The following is the script used for conducting these 

interviews. 

 

"Thank you for agreeing to be interviewed about your experiences in this study. Before 

we begin, I want to give you a couple notes. First, please know that there are no wrong 

answers to any of these questions. Second, in order to keep the results of this interview 

useful for analysis, I won't be engaging in any conversation, and I will simply be asking 

you the questions in this script. Third, please feel free to be critical. Our main goal is to 

improve the software and unit for future use, and in order to do so, we need to get 

feedback on what can be improved. So, please don't hesitate to criticize any element of 

the intervention.  

 

First, do you have any general thoughts on how the study as a whole went? 

 

Did you notice any differences in how students were engaged during the past two weeks 

compared to how engaged they were in the traditional classroom before? 

 

Did you notice any particular benefits to using MILA itself, separate from the tutors or 

the lessons and unit as a whole? 

 

Did you notice any particular drawbacks or weaknesses to MILA that interfered with the 

classroom or confused students? 
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Are there any particular changes or improvements that you would suggest be made to 

MILA itself, separate from the tutors or the lessons and unit as a whole? 

 

Did you notice any differences between the students who had the tutors and the students 

who did not? 

 

Did you see any particular benefits for the classes that had the tutors? 

 

Did you see any particular drawbacks for the classes that had the tutors? 

 

Are there any changes you would make to the tutors for next time? 

 

Do you have any suggestions for any improvements that could be made to the unit as a 

whole, separate from MILA and the tutors? 

 

Do you have any final thoughts on the intervention?" 
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