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Abstract

The general term program visualization refers to graphical views or illustrations of the

entities and characteristics of computer programs. This term along with many others includ-

ing data structure display, program animation, algorithm animation, etc., have been used

inconsistently in the literature, which has led to confusion in describing systems providing

these capabilities. In this paper we present a scaled characterization of program visualiza-

tion terms along aspect, abstractness, animation, and automation dimensions. Rather than

placing existing systems into hard-and-fast categories, we focus on unique and di�erentiat-

ing aspects across all systems.
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1 Introduction

A visualization tool provides graphical views of the entities and characteristics of a computer

system or program. The purpose of such a visualization tool is stated nicely by Myers, et. al.:

\Human information processing is clearly optimized for pictorial information, and pictures

make the data easier to understand for the programmer[MCS88]." The two-dimensional

format of a picture can provide greater amounts of relevant information more 
uently than
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a stream of text. Programming textbooks re
ect this fact when they use the familiar boxes

for variables, columns of boxes for arrays, and arrows for pointers. One could argue that

many programmers conceptualize algorithms as rough pictures which are then translated

into text for the coding phase. The ability to debug and demonstrate a program using

images, therefore, can make the programming process easier. Visualization techniques have

already made a signi�cant impact on programming language environments[AB89]. Appro-

priate animated images have also been used for teaching the purpose and functionality of

algorithms[Bro88a, Sta90].

In this paper, we focus on graphical views of computer programs, such as illustrations

of variables, code sections, the run-time stack, and program semantics. One term that

has become accepted for describing this general area is \program visualization." Baecker

de�nes the term as, \the use of the techniques of interactive graphics and the crafts of

graphic design, typography, animation, and cinematography to enhance the presentation

and understanding of computer programs[Bae86]."

Unfortunately, so many di�erent names are given to so many hybrids of program vi-

sualization systems that it is di�cult to consistently recognize the purpose of each. For

instance, the terms data structure display, program animation, process display, and al-

gorithm animation have all been used to label systems of varying utility. Our goal is to

characterize the many types of program visualization, both to provide a clearer meaning

of the terms in use, and to attempt a structuring of program visualization tasks to guide

further work. Lack of clarity in terms is disadvantageous in that when a new system is

developed and described by its creators, the capabilities o�ered by the system are not quite

clear. A precise descriptive scheme provides a framework for designers to describe their

work and disseminate information.

Another research area with a similar descriptive name to program visualization is visual

programming[Cha87, Shu88], but it di�ers importantly from the subject matter of this

paper. Visual programming involves actual programming through the use of pictures, icons,

and graphical entities. A programmer manipulates the visual entities in order to create a
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Figure 1: View of a linked list of Pascal records from the MacGnome system. (Figure

missing)

semantically meaningful computational process. The matter addressed herein, however,

involves the use of pictures to convey information about programs written in traditional

textual languages. A good summary of the distinctions between the two can be found in

[Mye90].

2 Characterizing Program Visualizations

Taxonomies of program visualization and visual programming systems already exist. Myers

has developed a program visualization classi�cation scheme using two axes: whether the

systems illustrate the code, data, or algorithm of a program, and whether they are dynamic

or static[Mye90]. Singh presents a similar scheme[Sin90]. Our classi�cation system follows

roughly from these|we utilize four classifying dimensions with two corresponding closely

to Myers' two dimensions mentioned above. But we do not seek to place existing systems

into labelled categories. Rather, we show how di�erent systems exhibit varying levels of

the four dimensions we have identi�ed. We also concentrate solely on program visualization

systems, focusing on characteristics and unique capabilities that di�erent systems o�er.

The characterization scheme we propose contains four dimensions: aspect, abstractness,

animation, and automation. Below we discuss each of the dimensions in more detail.
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2.1 Aspect

Program visualization systems usually focus on a di�erent aspect of a program to be visu-

alized. This dimension most closely represents the purpose of the visualization|why the

visualization is being created and what parts of the program are being emphasized.

The simplest aspect level of program visualization is just an enhanced presentation

of program text. The SEE system[BM90] uses human factors knowledge and typography

techniques to display C programs. Debuggers often show the text of programs' procedures

as they execute, with line by line highlighting.

Moving beyond purely textual views, some systems provide views of the data and data

structures in programs. One of the �rst general purpose data structure display systems,

Incense[Mye83], generates a view of user-speci�ed data structures during debugging. A

follow-up system, MacGnome[MCS88], focuses on providing simple canonical Pascal data

structure views for novice programmers. A linked list data structure view taken from

MacGnome is shown in Figure 1.

Some systems provide views of program aspects beyond pure data structures. For in-

stance, a system may include views of 
ow-of-control such as a rendering of program sub-

routines as icons, a call-graph view, views of the run-time stack and dynamic links, etc.,

in addition to data structure views. We call these types of systems program state visual-

ization systems. The Pecan system[Rei85], a view of which is shown in Figure 2, contains

an almost exhaustive set of views including symbol table, data type, stack, 
owgraph, and

expression displays. The PV system[B+85] provides program structure, 
ow of control,

and program data views, but it also includes views of important phases of the software

engineering lifecycle such as diagrams of system requirements.

Yet a further level of program display provides views of the underlying algorithm or

higher-level strategy of a program. Algorithm visualization systems are systems that provide

visual depictions of the purposeful operations, methodologies, and tactics that programmers

utilize in their programs. These types of systems are not concerned with the details of a

particular implementation in a programming language. Rather, they focus on the funda-
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Figure 2: A Pecan system view containing program text, stack, 
owgraph, and debugger

windows. (Figure missing)
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mental methods utilized to solve a problem. Their displays are inherently semantic, thus

di�ering from views of isolated data.

A graphical view of a comparison sort provides a good example of an algorithm vi-

sualization. The view may represent array elements as rectangles and highlight or 
ash

the rectangles when array values are compared prior to a possible exchange. This graph-

ical action involves a mapping from the meaning of the program to the display. Program

state visualization systems display code and its syntactic structure, such as scope, but they

stop short of showing views of the actual task being performed by the code. One of the

�rst examples of algorithm visualization is the �lm Sorting Out Sorting[BS81], generally

accepted as a motivating factor for this research area. The Balsa system[Bro88a] is the

prototype for algorithm visualization systems with its high-quality imagery, multiple views,

and scripting facilities. Balsa inspired subsequent systems such the Smalltalk based system

Animus[Dui86], and ANIM[BK91], a system for building simple algorithm visualizations in

a UNIX environment.

Note that algorithm visualization systems often encompass or include data structure and

program state visualization capabilities. Many views in the above systems illustrate only

program data and its characteristics throughout program execution. Algorithm visualiza-

tion systems, however, must contain the capabilities to illustrate the higher-level program

methodologies.

2.2 Abstractness

Even though program visualization systems may display views of the same aspect of a

program, the level of abstractness at which the view is presented may vary widely. For

example, a data structure display system may render three integer variables named hours,

minutes, and seconds as three rectangular boxes containing the individual values as text

strings. However, another view of this data structure could display the data in the form of

a clock face with appropriate hour, minute, and second hands.

One characterization of the abstractness of a program view is whether the display is iso-

6



morphic to the program components it represents[Bro88b]. That is, could a data structure

be rebuilt from its graphical representation as easily as the representation is created from

the data structure?

Algorithm visualizations, as discussed in the previous subsection, typically go beyond

isomorphic mappings of program data or code to graphical representations of program se-

mantics. Consequently, algorithm visualizations inherently provide a high level of abstract-

ness, and they have even been de�ned accordingly[Sta90]. For instance, a visualization of

a program performing an exhaustive search might contain a bar representing the number

of unsuccessful search attempts it has made. As more unsuccessful attempts accumulate,

the bar grows larger. This idea of \incorrect attempts" may not be represented anywhere

in the program, but it has semantic meaning with respect to the program's purpose.

To help understand the use of abstractness by program visualization systems, we intro-

duce the concept of intention content, the semantics or meaning behind otherwise context-

free data and code. Given a task or entity to be visualized, the intention content of the

visualization is the level of knowledge about the task's purpose required to map the task

to the visualization. Greater amounts of intention content support displays that are more

informative and that are more abstract. Also, a greater level of intention content requires a

programmer (of the algorithm being viewed) to provide the visualization system with more

information on the details of what to display.

For example, consider a view of a sort in an algorithm visualization system. Without

any intention content, the sorting display could present an array of values as an indexed

list. After each execution cycle or at programmer speci�ed times, the values on the screen

in the array would update to match the current state of the process. Actually, this will

work with any array, whether or not sorting is involved. More useful didactically are the

values of the array displayed as bars of varying height, taller bars for larger values, which

seem to trade places as the sort algorithm swaps them. However, this display cannot be

standard for all arrays. For instance, an array of indices into another array is meaningless

as a row of bars. If a high level of intention content is to be used, the programmer's purpose
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is necessary and must be supplied to the system.

Intention content is important in data structure display as well. The lowest intention

content level for data structures is represented by the classic box-and-arrow diagram, com-

monly shown in data structures and programming textbooks. Integers, reals, booleans, etc.,

each have a distinct box representation complete with name and value. Composite data

structures, such as records and structures, are built by using an encompassing box repre-

sentation around their elements' boxes. Pointers or addresses are represented by arrows to

the objects they reference. (Conceptually, the very lowest intention content level would be

a string of binary bits of length equal to the computer space used by a data structure, but

this is almost always below our needs.)

Figure 3 shows a record data structure, consisting of an integer and an array, interpreted

under varying levels of intention content. Each view is a possible interpretation of what the

data structure signi�es. The view in Figure 3a shows the classic interpretation mentioned

above, at the lowest intention content level.

Figure 3b shows a data structure view with more intention content than the one in

Figure 3a. Here, the array is shown as a bar graph with the bars scaled according to the

accompanying array element's value. An even more speci�c view, Figure 3c shows a pie

graph of the array made possible since the data structure visualization system contains

the knowledge that the values represent percentages of components in a whole, such as

the percent of elements in a chemical compound. Finally, Figure 3d shows the array data

structure and integer value interpreted as a stack. The single integer, which to this point has

been an unrelated part of the record containing the array, is the top pointer for the stack.

This type of view exhibits a high level of intention content and a high level of abstractness.

Some systems such as the data structure display system Incense[Mye83], support the

creation of both low-level concrete views and highly abstract views such as the clock face

described above. The system can generate the low-level, canonical views automatically, but

it requires programmer assistance (writing display procedures) to generate abstract views.
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Figure 3: Illustrating various intention content levels by altering the representation of a

data structure.
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2.3 Animation

Our third classi�cation dimension describes the dynamics or animation shown in program

visualization systems. Unfortunately, the term \animation" also has been loosely applied

in the past, and a large variety of systems claim to provide animation capabilities. For

example, actions such as simply highlighting lines of code as they are executed, altering

the boundary style of a graphical object, or changing color intermittently have been called

animation.

Fundamentally, animation consists of the rapid sequential display of pictures or images,

with the pictures changing gradually over time. These pictures are the frames of the ani-

mation. If the imagery's changes from frame to frame are small enough and the speed of

displaying the frames is fast enough, the illusion of continuous motion is achieved.

We consider data structure animation systems and program state animation systems to

be systems which support repeated display of data structure and program state visualiza-

tions, respectively, with changes in view su�cient in both content and time to provide a

viewer with the essence of how the data and program transform continuously throughout

execution.

As an example of what we mean, consider views of a linked list data structure being

built. If, when a new node is added, it is shown immediately at its correct position in the

list (say a horizontal row of nodes) this would be considered data structure visualization.

But if a view displays a new node being allocated in a special heap memory area, then the

node slides over to its correct position in the list, this would be considered a data structure

animation.

We consider an even more rigid speci�cation to be met for creating animations of algo-

rithms. To motivate the criteria, we introduce the notion of a valid con�guration. A valid

con�guration of a program is a state (data values, context, point of control) of the program

that involves semantic meaning and that is reachable during execution. As a program ex-

ecutes, it transforms from valid con�guration to valid con�guration. These con�gurations

can be at a �ne-grain level such as after each line of execution, or at a higher level such as
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in a sorting program, after each exchange operation. Valid con�gurations identify program

contexts that make sense in terms of the program's purpose and functionality.

Because an algorithm connotes meaning beyond simple data objects, the transitions

between valid con�gurations, in addition to the con�gurations themselves, take on added

importance. One of the primary goals of algorithm animation is to illustrate not just the set

of states a program reaches during execution, but how the transformations between states

occur. In order to incorporate this fact, we consider an algorithm animation system to

be a system that illustrates a program's behavior by both repeatedly displaying graphical

images corresponding to valid con�gurations and displaying sequences of graphical images

that correspond to states \in-between" those con�gurations. Scene display should occur at

a su�ciently brisk pace to provide the illusion of continuous motion.

Essentially, the views that are shown between valid con�gurations denote con�gurations

that are never realized and carry no semantic meaning. They are produced strictly for

aesthetic visual reasons and for illustrating how transitions between valid con�gurations

occur. Perhaps an example best illustrates this concept.

Consider the graphical depiction of a sorting program, discussed earlier, that represents

the program's data elements as a row of rectangular images. The two scenes in Figure 4

illustrate two consecutive valid con�gurations that we might reach during execution of the

program. In the second scene, elements 2 and 3 have exchanged their positions from the

�rst scene. The repeated display of such con�gurations reached during execution does not

constitute an algorithm animation according to our characterization. Rather, it would be

an algorithm visualization because no intermediate scenes between valid con�gurations were

presented. (Note, this is an algorithm visualization with extremely low intention content,

which in fact, could be considered a sophisticated data structure visualization. We use it

here to illustrate a point.) On the other hand, Figure 5 shows a superimposed sequence of

frames from what we would consider an algorithm animation. In it, the rectangles assume a

set of slightly altered positions between the two in Figure 4. If the intermediate scenes were

displayed quickly enough, they would present a de�nite illusion of motion. The important
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concept here is that all of the intermediate scenes represent program states that never really

exist and have no meaning in terms of the program context. They are purely arti�cial states,

created for the viewing aesthetics of the animation.

An animation of the Towers of Hanoi problem (often used to teach recursion) with

disks moving between the separate pegs is another example of a visualization in which

showing a series of intermediate frames of the disks' movements is absolutely critical for

understanding. Simply presenting a rapid sequence of frames with the disks at their new

end-positions (without intermediate movement presented) would be extremely di�cult to

follow and comprehend.

Brown has characterized speci�c imagery in algorithm animations along three dimen-

sions: transformation, persistence, and content[Bro88b]. The animation dimension of our

scheme coincides similarly with his transformation dimension. Our notion of characterizing

animation by the arti�cial program states presented between valid program con�gurations,

however, helps to clarify the distinction between program visualizations and animations.

One of the earliest systems to recognize the importance of smooth transitions generates

algorithm animations of Smalltalk programs by monitoring message passing[LD85]. Later

program visualization systems such as Tango[Sta90] provide explicit mechanisms to help

produce the in-between con�guration views that typify animations. In Tango, view designers

develop animations using high-level primitives that hide low-level graphics details. It is still

possible, however, to generate more traditional visualization views without the in-between

frames in these systems. In fact, some views are more informative when explicit animation

(as we characterize it) is not utilized. For example, views involving large data sets and data

structures often do not require explicit animation. In these views, the extra frames from

animation may slow down the presentation and hinder understanding.

2.4 Automation

We consider the level of automation provided for developing program visualizations to be

another characterizing factor in these systems. Automation levels can range from totally
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Figure 4: Visualizations of consecutive valid con�gurations from a bubblesort algorithm.
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Figure 5: Bubblesort algorithm animation with \in-between" con�gurations shown.

automatic views generated as a program executes to views requiring explicit programmer

design and implementation e�ort, as well as speci�cation of the appropriate trigger points

in the program.

Data structure display system views are usually generated automatically, without ex-

plicit programmer support. That is, an execution monitor or debugger examines a pro-

gram at a speci�c moment and provides information to generate graphical views of the

data structures. This capability, with no turnaround time for view design, is necessary

for time-intensive tasks such as debugging. Often, systems support automatic generation

of displays, but they also permit viewers to modify the display as desired. The GDBX

system[Bas85] provides canonical box-and-arrow displays of Pascal and C programs. It

allows viewers to reposition or eliminate data structure views as desired during a debug-

ging session. GELO[RMD89] also includes prede�ned data views, but it allows users to

graphically specify specialized data type displays using topological constraints.

It is possible to think of data structure displays that would be very di�cult to generate

automatically too. The clock face view discussed earlier would be impossible to automat-

ically generate without some designer assistance and direction. This fact illustrates that

our abstraction and automation dimensions usually exist in an inverse relationship. Cre-
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ating program visualization views with high levels of abstractness involves a great deal of

intention content and simply requires a priori design support.

Program state views such as those of the call graph, run-time stack, or text code can

be generated automatically by a program visualization system. Again, these views are

extremely useful for debugging which requires little of no view set-up time. For instance,

VIPS[ISO87] generates multiple run-time views of Ada programs, including data, block

structure, and debugger interaction windows. Often, the most di�cult part of building a

system to display program state is not the generation of the graphics, but the acquisition of

the run-time execution data and information driving the graphics. This may require low-

level coding that examines compiler information, symbol table access, or debugger internals.

As discussed earlier, algorithm visualization systems provide visual depictions of the

semantic notions and abstractions used in computer programs and processes. Algorithm

visualizations can display program information that is not immediately evident or that

cannot be automatically deduced by examining the program state during execution. That

is, algorithm visualizations require high levels of intention content from a programmer.

They are usually hand-crafted, user-conceptualized views of what is \important" about a

program, so they require a designer to specify and implement the graphics that accompany

a program.

Consequently, algorithm visualizations (and particularly animations), virtually by def-

inition, exhibit a low level of automation. Recently, systems providing algorithm views

without explicit end-designer support have appeared[HWF90], but they are restricted to

speci�c algorithm domains and they require considerable compiler crafting. Brown makes

strong arguments why, under current constraints, explicit programmer design for algorithm

animations is typically required and desirable[Bro88b].

Nevertheless, recent algorithm animation work has focused on reducing the burden of

view design and implementation. These e�orts still provide a designer with artistic freedom,

but they strive to provide tools which make view development easier and more fun. The

Aladdin system[HHR89] uses a declarative mechanism to specify view layout. Programmers
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Aspect Abstractness Animation Automation

Data Structure Display low low low high

Program State Visualization medium low low high

Program Animation medium medium medium high

Algorithm Visualization high high low low

Algorithm Animation high high high low

Table 1: Tabular breakdown of how accepted program visualization terms �t within our

characterization.

interleave graphical speci�cations throughout a program, which is then executed to gener-

ate the visualization. The Gestural system[Dui87] and the Dance animation editor[Sta91]

both allow designers to \visually program" their desired program visualization via direct

manipulation.

3 Taxonomy

We believe that our method of characterizing program visualization systems provides a

framework for understanding and discussing these systems in more detail than has been

previously available. One possibility for a subsequent taxonomy is to scale the dimensions

from 0 to 10 and then summarize each existing program visualization system via a 4-tuple

of values. This is not our intent. In fact, we believe such a classi�cation would be extremely

di�cult because many systems exhibit varying levels of each of the four dimensions.

We prefer to characterize existing accepted terms for subareas of program visualization

along our dimensions as a way of more clearly formalizing what each term means. In Table 1,

we characterize a group of program visualization areas according to our perception of how

they �t within our scheme.

Each area is categorized as low, medium, or high in the four dimensions as follows:

Aspect ranges from data structure (low) to program state (medium) to algorithm (high);

Abstractness ranges from concrete (low) to abstract (high); Animation ranges from visu-

alization (low) to animation (high); Automation ranges from little or no system assistance

(low) to automatic generation (high).

We characterize the terms data structure display, program state visualization, program
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animation, algorithm visualization, and algorithm animation. For example, if a system

in now described as providing data structure display support, this means that the system

can minimally produce automatic, concrete data structure views with little dynamics or

animation. As new types of systems are developed, the need for further descriptive names

will emerge. In fact, horizontal designations not residing in our chart such as all high char-

acterizations or low-Aspect, high-Abstractness, medium-Animation, and high-Automation

signify open areas of research.

4 Summary

We have presented, under the general area of program visualization, a characterization along

the four dimensions of aspect, abstractness, animation, and automation. We clari�ed the

meaning of the dimensions by illustrating how speci�c system aspects �t within them. The

notion of intention content was introduced to help explain the abstractness dimension. We

also clari�ed the di�erences between visualization and animation by making the distinction

that animation presents views of a program between its valid con�gurations. Finally, we

characterized common program visualization subareas according to how they �t within our

framework.
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