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SUMMARY

In recent years, the optimization, statistics and machine learning communities have built

momentum in bridging methodologies across domains by developing solutions to challeng-

ing optimization problems arising in advanced statistical modeling. While the field of op-

timization has contributed with general methodology and scalable algorithms to modern

statistical modeling, fundamental statistics can also bring established statistical concepts

to bear into optimization. In the operations research literature, sensitivity analysis is often

used to study the sensitivity of the optimal decision to perturbations in the input parameters.

Providing insights about how uncertain a given optimal decision might be is a concept at

the core of statistical inference. Such inferences are essential in decision making because

in some cases they may suggest that more data need to be acquired to provide stronger evi-

dence for a decision; in others, they may prompt not making a decision at all because of the

high uncertainty of the decision environment. Statistical inference can provide additional

insights in decision making by quantifying how uncertainty in input data propagates into

decision making.

In this dissertation, we propose a methodological and computational framework for sta-

tistical inference on the decision solutions derived using optimization models, particularly,

high-dimensional linear programming (LP). In Chapter 2, we explore the theoretical geo-

metric properties of critical regions, an important concept from classical sensitivity analysis

and parametric linear programming, and suggest a statistical tolerance approach to sensitiv-

ity analysis which considers simultaneous variation in the objective function and constraint

parameters. Using the geometric properties of critical regions, in Chapter 3, we develop an

algorithm that solves LPs in batches for sampled values right-hand-side parameters (i.e. b

of Ax = b in the constraints). Moreover, we suggest a data-driven version of our algorithm

that uses the distribution of the bs and empirically compare our approach to other methods

on various problem instances. Finally, in Chapter 4, we suggest a unified framework for

xiii



statistical inference on the decision solutions and propose the remaining work, including

the implementation of the framework to making statistical inferences on spatial disparities

in access to dental care services.
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CHAPTER 1

INTRODUCTION

In recent years, the optimization, statistics and machine learning communities have built

momentum in bridging methodologies across domains by developing solutions to challeng-

ing optimization problems arising in advanced statistical modeling [1, 2]. While the field of

optimization has contributed with general methodology and scalable algorithms to modern

statistical modeling, fundamental statistics can also bring established statistical concepts to

bear into optimization.

In deterministic optimization, the input parameters specifying the constraints or the

objective function are not exact physical parameters; commonly, they are estimates derived

from data about systems’ behavior. Deterministic optimization ignores the uncertainty in

the input parameters, assuming they are fixed; thus the derived decision solution is also

fixed. Stochastic programming and robust optimization handles data uncertainty by finding

an optimal solution that accounts for the uncertainty in the input parameters [3, 4, 5, 6]. A

decision is made prior to the realization of random parameters in such a way to perform

well on average, or to guarantee a worst-case performance. However, the derived optimal

decision is still assumed to be one “best” decision.

In the operations research literature, sensitivity analysis is often used to study the sensi-

tivity of the optimal decision to perturbations in the input parameters. Classical sensitivity

methods quantify uncertainty due to variations in input parameters either marginally for

each parameter [7, 8, 9] or for a small subset of parameters [10, 11, 12]. Given either the

distribution of uncertain parameters or a sample from the distribution, Wagner [13] pro-

posed apportioning the variance of the optimal objective value to each input parameter as a

measure of sensitivity. This dissertation proposal goes beyond existing sensitivity analysis

approaches, focusing on statistical inference for high-dimensional LP models.
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Providing insights about how uncertain a given optimal decision might be is a concept

at the core of statistical inference. Insights on the uncertainty of a decision can come in

various forms in statistical inference, including an estimate of the risk of making the deci-

sion (e.g., the standard error of an estimator), a measure of the plausibility of the decision

(e.g., p-values in hypothesis testing), or a subset of plausible decisions (e.g., confidence set

estimation). Such inferences are essential in decision making because in some cases they

may suggest that more data need to be acquired to provide stronger evidence for a decision;

in others, they may prompt not making a decision at all because of the high uncertainty of

the decision environment [14]. Statistical inference can provide additional insights in deci-

sion making by quantifying how uncertainty in input data propagates into decision making

[15, 13].

In particular, a statistical inference framework is needed in the estimation of access to

healthcare services. Optimization modeling has been implemented in the study of access

[16, 17, 18, 19], but estimates of access measures can be sensitive to the input parameters

[20]. Because such estimates may greatly influence decision makers seeking to target in-

terventions reducing disparities with limited resources, a rigorous framework for studying

access is needed to support informed policy making.

In this dissertation proposal, we propose a methodological and computational frame-

work for statistical inference on the decision solutions derived using optimization models,

particularly, high-dimensional linear programming (LP). In Chapter 2, we explore the the-

oretical geometric properties of critical regions, an important concept from classical sen-

sitivity analysis and parametric linear programming. Furthermore, we suggest a statistical

tolerance approach to sensitivity analysis, which considers simultaneous variation in the

objective function and constraint parameters and illustrate its usefulness using an inventory

management problem. Using the geometric properties of critical regions, in Chapter 3, we

develop an algorithm that solves LPs in batches for sampled values right-hand-side param-

eters (i.e. b of Ax = b in the constraints). Moreover, we suggest a data-driven version of

2



our algorithm that uses the distribution of the bs and empirically compare our approach to

other methods on various problem instances. Finally, in Chapter 4, we suggest a unified

framework for statistical inference on the decision solutions and propose the remaining

work, including the implementation of the framework to making statistical inferences on

spatial disparities in access to dental care services.
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CHAPTER 2

GLOBAL SENSITIVITY ANALYSIS VIA A STATISTICAL TOLERANCE

APPROACH

Sensitivity analysis in optimization modeling studies the stability of optimal solutions in the

presence of uncertain input parameters. In this chapter, we consider the problem of global

sensitivity analysis for linear programs when the sensitivity is quantified with respect to

multiple input parameters simultaneously. A first contribution is the study of geometric

properties of critical regions, which are subsets of values of the input parameters sharing

the same optimal basis, with emphasis given to the case where the input parameters in both

the objective function and the constraints vary jointly. While the theoretical properties have

been stated in the parametric programming literature, formal proofs have not been provided

to the best of our knowledge. A second contribution is a statistical tolerance approach to

sensitivity analysis, which considers simultaneous variations in the objective function and

constraint parameters (jointly called the RIM parameters), informed by the distribution of

the input parameters. The approach is extended to the generalized tolerance case where

the maximum regret is used as a measure of global sensitivity. In both cases, the tolerance

regions obtained can be considered confidence sets for the input parameters. We conclude

with a brief application of the proposed approach to sensitivity analysis for an inventory

management problem.

2.1 Introduction

Variations in the input parameters of (linear) optimization models and their impact on the

optimal outputs have been extensively studied in the operations research literature through

the paradigms of sensitivity analysis and parametric programming. In general, sensitivity

analysis studies small, local perturbation of parameter values, while parametric program-

4



ming aims to completely characterize the optimal objective value and optimal solutions as

functions over the parameter space.

There are broadly two classes of classical sensitivity measures in the literature: deter-

ministic (including classical sensitivity analysis) and probabilistic (e.g., [21]). Summaries

of various approaches to deterministic sensitivity analysis can be found in [22] and [23].

Deterministic methods study the stability of an optimal solution with respect to changes

in the input parameters of a linear program by determining bounds on the input parame-

ters within which the optimal basis is maintained. The classical deterministic sensitivity

analysis, studying sensitivity with respect to one input parameter at a time, provides lim-

ited insights for complex systems since it does not capture joint perturbations of uncertain

parameters ([24, 25]). Several deterministic methods have been developed to examine per-

turbations of multiple input parameters simultaneously; notably, the 100% rule ([26]) and

the tolerance approach ([27, 12]) allow for sensitivity analysis due to simultaneous vari-

ability in input parameters in the objective function and in the right hand sides (RHS) of

constraints, which are jointly called the RIM parameters. These methods, along with clas-

sical sensitivity analysis, have the benefit of being easily interpretable by practitioners, and

of requiring relatively small computational effort. However, all deterministic methods suf-

fer from the fact that they make deterministic statements about the variation of the outputs

over certain, pre-determined sets of inputs, taking into account neither how likely each

combination of input values is nor how variations of a single input parameter may affect

variations of other parameters.

In contrast, probabilistic sensitivity analysis assumes probabilistic models for the input

parameters, viewed as realizations of random variables, to derive insights into the model be-

havior, in particular, how the variations in the input parameters propagate into the variations

in the optimal solution. Some early works in stochastic programming literature studied the

related problem of describing the distribution of the optimal value given distributional as-

sumptions on the input parameters ([28, 29, 30, 31, 32]). A seminal work in probabilistic

5



sensitivity analysis was by [13], which used sampling to quantify how much of the total

variability in the optimal value is attributed to each input parameter. There have been recent

works related to the method introduced by [13], such as [33], which derived a closed-form

formula of Wagner’s sensitivity measure for a special case and [34], which took a Bayesian

view similar to Wagner’s framework. However, the number of samples required for reli-

able estimation increases exponentially in the number of random parameters. In addition,

sampling-based approaches do not apply to the use of parametric programming in many

applications, for example, for the predictive control model, which is another motivating

application of this paper.

Recent research in deterministic sensitivity analysis has also explored ways to incorpo-

rate distributional information of the random input parameters. [35] considered functional

relationships between parameters. In a subsequent paper, [36] used principal component

analysis (PCA) to determine linear functions describing relationships between random in-

put parameters for the case where RIM parameters are correlated with each other. However,

these works focused on the marginal effect on the optimal value of perturbing one parame-

ter at a time and are limited to perturbations for which an optimal basis does not change.

In this paper, we bring the benefits of the two classes of sensitivity analysis into one ap-

proach. We revisit the tolerance approach for the case where input RIM parameters follow

a multivariate probability distribution. Specifically, we assume that the parameters follow

a multivariate normal distribution; however, the approach can be easily modified for any

symmetric distribution. Under the proposed tolerance approach, we can derive the proba-

bility of input RIM parameters varying within the tolerance region. Thus, our contribution

lies in theory and methods for extending the tolerance approach to derive a tolerance region

that accounts for the distribution of input RIM parameters, including possible dependence

between the parameters. We present the applicability of this approach within a statistical

modeling framework. Specifically, the input parameters may be estimators or forecasts ob-

tained using uncertain data. Given the so-called sampling distribution of the estimated or

6



forecast input parameters, the tolerance region becomes a confidence set for the uncertain

input parameters. The input random parameters can also be assumed to follow a distribu-

tion, for example, estimated or specified using prior data. Given the distribution of the input

parameters, the confidence level of the tolerance region can be used to infer how much of

the uncertainty in the input parameters is covered and we propose a method to characterize

optimal solutions for all parameter values in the tolerance region by searching over a subset

of critical regions, where a critical region of a basis is defined as the set of input parameters

for which the basis is optimal; for a formal definition, see Section 2.4. Thus this paper ad-

dresses an important limitation of sensitivity analysis, specifically, determining how stable

(in a probabilistic sense) the optimal basis and optimal value are when the input parameters

follow a statistical distribution.

When estimates of RIM parameters have high uncertainty, a challenge in the proposed

approach is the need to find critical regions covering the tolerance region. To address this

challenge, it is necessary to understand the geometry of critical regions in the parameter

space. In this paper, we contribute to the existing theory of parametric programming by

establishing additional results, in particular, extending the theoretical study of critical re-

gions in our previous work ([37]) to the case where all RIM parameters (i.e., both the RHS

of constraints and the objective coefficients) may vary. Variations of RIM parameters were

studied by [11] and [38], but geometric properties of critical regions in the RIM parameter

space have not been formally studied to the best of our knowledge.

We also describe how the proposed framework can be applied to model predictive con-

trol (MPC). Instead of solving a control optimization problem in real time when the input

parameters are observed, MPC solves the optimization problem for a set of input parame-

ters in advance, thereby reducing the online computational effort ([39, 40, 41]). In MPC

problems, the input parameters are often forecasts, thus uncertain, following a statistical

distribution. Therefore, the proposed tolerance approach can guide determining the set of

input parameters to be solved using the distributional information. For example, [42] pre-
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sented an optimal power flow problem which includes demand forecasts on the RHS of

constraints. After determining a tolerance region, the proposed algorithm helps solving the

control optimization problem for all parameter vectors in the region.

The paper is organized as follows. After some preliminaries in section 2, we introduce

the PCA tolerance approach in section 3, first focusing on variations of RIM parameters

within the initial critical region. In section 4, we explore properties of critical regions and

how they relate to one another geometrically. We conclude section 4 by describing an

algorithm for finding all critical regions which cover a tolerance region for a pre-specified

tolerance. In section 5, we show the applicability of the PCA tolerance approach and the

theory of critical regions to global sensitivity analysis and MPC, where the RIM parameters

vary beyond the initial critical region. Section 6 concludes the paper.

2.2 Preliminary Notation and Concepts

The linear program problem in standard form (P ) is defined as

(P) min
x
cTx

s.t. Ax = b,

x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, c and x ∈ Rn, and A has full row rank. The dual problem is

(D) max
y,s

bTy

s.t. ATy + s = c,

s ≥ 0.

We refer to c as the objective function parameters and b as the right-hand-side (RHS)

parameters, while referring to b and c jointly as the RIM parameters as in the parametric
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programming literature ([11]). We denote the RIM parameters jointly by r = [bT cT ]T .

Although b and c are vectors, we denote r = (b, c) with a slight abuse of notation for

simplicity. Let (Pb,c) denote the LP (P) with specific values of b and c. We define (Db,c)

similarly.

A basis B is a subset of indexes I = {1, . . . , n} such that the corresponding columns

of A are linearly independent and |B| = m. Correspondingly, N = I \ B is the set of

nonbasic indexes. For a matrix M , MB denotes the matrix comprised of the columns of M

corresponding to the index set B and for a vector v, vB denotes the sub-vector correspond-

ing to B. MT
B denotes the transpose of the sub-matrix MB and if MB is invertible, M−T

B

denotes (M−1
B )T = (MT

B )−1. A basis B is optimal for a given problem (Pb,c) if and only if

the following conditions are met:

A−1
B b ≥ 0, (2.1)

cTN − cTBA−1
B AN ≥ 0. (2.2)

For the primal problem (Pb,c), the first condition (2.1) is known as the feasibility condition

and the second condition (2.2) is known as the optimality condition.

For a matrix M , M(i,j) is the entry in the ith row and jth column of M . Also, M(·,j) ∈

Rm×1 and M(i,·) ∈ R1×n is the jth column and ith row of M , respectively. We will use I

to denote an identity matrix. For a vector v, we denote the ith entry by vi, without using

parentheses.

A k-dimensional random vector R following a multivariate distribution, F , with mean

vector µ and covariance matrix Σ is denoted as R ∼ F(µ,Σ). In this paper, we only

consider multivariate distributions for which the expectation and covariance matrix exist.

We let R = (B,C) denote the random input parameters and r̂ = (b̂, ĉ) denote realiza-

tions of the random parameters. In general, the individual components of R may not be

independent, with the covariance of Ri and Rj given by Σ(i,j). Of particular interest in

9



this paper will be the case where F is the multivariate normal distribution, for which we

will write R ∼ N (µ,Σ). In this case, the R vector may be represented as a transforma-

tion of independent normal random variables, i.e., R = AZ + µ, where the elements of Z

are independent, standardized normal random variables and A is an appropriately chosen

matrix.

2.3 PCA Tolerance Approach

In this section, we introduce a tolerance approach incorporating distributional information

of the RIM parameters. Here we take a statistical modeling perspective; specifically, we

assume the RIM parameters are specified using uncertain data, thus they can be viewed as

random variables, denoted by R, with realizations from this distribution denoted by r̂. For

example, they can be expected costs; in this case, uncertainty is specified by the so called

sampling distribution of the estimates. The uncertainty in the RIM random parameters can

also be specified by an estimated distribution based on prior knowledge about the behavior

of the random parameters, such as forecasts of demand where the distribution of demand is

estimated from previous sales. The estimate or forecast, r̂, is used as the input parameter

to the optimization problem, thus specifying a particular linear program to be solved. We

will call this estimate the “baseline value” and examine how deviations from the baseline

affect the stability of the solution. For simplicity of illustration of the overall approach,

we assume that the sampling or estimated distribution follows a multivariate symmetric

distribution, however, this could be restrictive in some cases.

The tolerance approach ([27, 12]) is a sensitivity analysis tool for examining perturba-

tions in the RIM parameters. The maximum tolerance is defined as the largest percentage

within which the RIM parameters may vary simultaneously and independently from the

baseline values while the optimal basis is maintained. The tolerance region is the set of

input parameters within the maximum tolerance of perturbation, which is a hyperbox sym-

metric around some baseline input parameters. Thus this is a deterministic approach to
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sensitivity analysis. Several extensions of the tolerance approach exist ([43, 44, 45, 46, 47,

48]), mainly focused on relaxing the symmetry condition of the tolerance region in order

to enlarge the region. One particular extension is mentioned briefly on page 12 of Ward

and Wendell (1990), allowing for deterministic relationships between the parameters. This

idea is of particular interest to this paper as we extend this idea to account for stochastic

relationships between parameters.

2.3.1 PCA Tolerance Region

The tolerance approach introduced in this paper utilizes distributional information of in-

put parameters in the following way. Consider a standard form LP (P ) where the RIM

input random parameters follow a multivariate symmetric distribution, i.e., r̂ = (b̂, ĉ) is

a realization from F(µ,Σ). We assume that the covariance matrix Σ is known, or well

approximated. For example, if R is a sample mean from a random sample of size k, we

can approximate Σ by k−1S, where S is the sample covariance matrix of the data. For

cases when the uncertainty is specified by an estimated distribution, then the distribution

parameters are specified using prior information. For generality of the description of the

PCA tolerance approach we assume Σ is known although in the first case, we replace Σ by

the sample covariance. Under this setting we seek to evaluate how perturbations from the

(unknown) expected RIM parameters impact the optimal value and optimal solution.

Using the eigenvalue decomposition, we can write Σ = DΛDT , where D is a matrix

with eigenvector columns and Λ is a diagonal matrix of eigenvalues. In order to consider

variations from the RIM input parameters r̂, we re-parameterize the RIM vector as r̂ +

DΛ1/2p, where p ∈ Rm+n. The resulting RIM multiparametric linear program is

min
x

(c+ Scp)
Tx

s.t. Ax = b+ Sbp,

x ≥ 0,
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where Sb and Sc are the first m rows and final n rows of DΛ1/2, respectively. Note that this

is the original problem (Pb,c) for p = 0.

Decomposing the covariance matrix as provided above is similar to the approach used

in principal component analysis (PCA). PCA is a multivariate statistical method for identi-

fying an orthogonal linear basis that most meaningfully describes a data set. A key benefit

of finding such an orthogonal basis is that the eigenvectors define a set of directions along

which the RIM parameters vary independently, while eigenvalues represent the variance

along each eigenvector. Note that the eigenvectors are scaled to unit length, so that the

product DΛ1/2 is the matrix of eigenvectors scaled according to the standard deviation

along each direction. If some of the eigenvalues are zeros, then the parameter vector varies

in a lower-dimensional affine set of dimension h, where h is the number of nonzero eigen-

values. We can then re-defineD and Λ as (m+n)×h and h×hmatrices, respectively, using

only the nonzero eigenvalues and the corresponding eigenvectors. From this point forward,

we will assume all eigenvalues are strictly positive for brevity of presentation. We also note

that if the multivariate symmetric distribution is an approximation of the uncertainty, then

the independence between directions is also approximate.

Given the baseline RIM parameter r̂, we define the tolerance region V (τ) = {r̂ +

DΛ1/2p : ‖p‖∞ ≤ τ} for a finite, nonnegative number τ , known as a tolerance. The

baseline parameters can be estimators or forecasts of the input parameters as well as val-

ues reflecting some prior believe on the behavior of the inputs of interest. The tolerance

region is then a hyperbox, centered at r̂, that scales symmetrically in τ . The tolerance τ

represents the maximum number of standard deviations that r̂+DΛ1/2p ∈ V (τ) falls away

from the baseline parameter, along the directions provided by the eigenvectors. Since vari-

ations along each of the eigenvectors are independent, the likelihood of the expected RIM

parameters µ belonging in the tolerance region can be easily related to the tolerance τ .

We provide two propositions relating the tolerance τ to the confidence level of the tol-

erance region as a confidence set for µ in the case where R follows a multivariate normal
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distribution, i.e. R ∼ N (µ,Σ). The first proposition explicitly relates the tolerance τ to

the probability of the tolerance region covering µ, i.e., P(µ ∈ V (τ)). The second proposi-

tion provides guidance for finding the largest ellipse contained in a tolerance region, since

confidence regions obtained from multivariate normal distributions are often given as an

ellipse, rather than a hyperbox.([Chew]) We show that similar results can be obtained for

other symmetric multivariate distributions in Appendix A.1.

Proposition 2.3.1 The tolerance region V (τ) is an approximate (1−α)×100% confidence

box for µ = E[R], where α = 1− P (|z| ≤ τ)h for Z ∼ N (0, 1).

Proof: P (µ ∈ V (τ)) = P (‖Λ−1/2DT (R−µ)‖∞ ≤ τ) sinceR+DΛ1/2Λ−1/2DT (µ−R) =

µ. SinceR ∼ N(µ,Σ) and Λ−1/2DT (R−µ) ∼ N (0, I). Then, P (‖Λ−1/2DT (µ−R)‖∞ ≤

τ) =
∏h

i=1 P (
∣∣(Λ−1/2DT (µ−R))i

∣∣ ≤ τ) = P (|Z| ≤ τ)h, where the first equality relies

on the fact that variations along each eigenvector are independent. Therefore, the tolerance

region V (τ) is a random set that covers µ with probability P (|Z| ≤ τ)h. �

Proposition 2.3.2 Let C be a (1 − α)% confidence ellipse for µ given by C = {r′ :

(r′ − r̂)TΣ−1(r′ − r̂) ≤ (τ)2}, where α = 1 − P (χ2
h ≤ τ) and χ2

h follows a chi-square

distribution with h degrees of freedom. Then C ⊂ V (τ).

Proof: It is well known that C is a (1 − α)% confidence ellipse for µ, where α is defined

as above. Let r′ ∈ C be given. Choose γ = Λ−1/2DT (r′ − r̂) so that (r′ − r̂) = DΛ1/2γ.

Since r′ ∈ C, we have γTΛ1/2DTΣ−1DΛ1/2γ ≤ (τ)2 ⇒ γTγ ≤ (τ)2 ⇒ ‖γ‖2 ≤ τ ⇒

‖γ‖∞ ≤ τ . By definition of τ , r′ = r̂ +DΛ1/2γ ∈ V (τ). �

2.3.2 PCA Tolerance Region Maintaining Optimal Basis

Following Wendell’s approach, we first consider the PCA tolerance region that maintains

an optimal basis. We denote the corresponding tolerance level as τ ∗ and it can be ob-
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tained by solving an optimization problem τ ∗ = maxτ{τ : ‖p‖∞ ≤ τ ⇒ (b, c) =

r̂ + DΛ1/2p,A−1
B b ≥ 0, cTN − cTBA

−1
B AN ≥ 0}. Lemma A.2 of [12] provides a way for

deriving a closed-form formula for τ ∗.

τ ∗ = min

{
min

k=1,...,m

{
(A−1

B )(k,·)b∑h
j=1

∣∣((A−1
B )(k,·)Sb)j

∣∣
}
, min
k=1,...,n−m

{
((IN − IBA−1

B AN)T )(k,·)c∑h
j=1

∣∣((IN − IBA−1
B AN)T )(k,·)Sc)j

∣∣
}}

(2.3)

This approach offers several advantages to the original tolerance approach. First, in the

proposed approach, the maximum tolerance can be directly related to the likelihood of such

variations using Propositions 2.3.1 and 2.3.2. Second, while the original tolerance approach

only considers independent variations of the input parameters, our approach allows for

possible dependencies in the data.

An important limitation of this tolerance region is that it is limited to those input param-

eters that maintain an optimal basis of the baseline parameter. When a desired tolerance

value (in other words, a desired coverage of the distribution) does not allow the corre-

sponding tolerance region to maintain the same optimal basis, one needs a computational

procedure to find optimal solutions for all input parameters in the tolerance region. The

next section establishes theoretical results that are necessary for developing such a method.

Based on these theoretical results, we present an algorithm for identifying optimal solutions

of all input parameters within the tolerance region.

We conclude this section with an example illustrating the PCA tolerance region intro-

duced in this section (maintaining the optimal basis). This example is modified from the

one considered by [49] and [12]. Consider the following LP

min
x
− 12x1 − 20x2 − 18x3 − 40x4

s.t. 4x1 + 9x2 + 7x3 + 10x4 + x5 = B1

x1 + x2 + 3x3 + 40x4 + x6 = B2

x ≥ 0,
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Figure 2.1: PCA Tolerance illustrated: critical region, contour plot and tolerance region

where B ∼ N (µ,Σ) and

Σ =

 5000000 −1500000

−1500000 4000000

 .

For estimated values b̂1 = 6000 and b̂2 = 4000, the optimal basis is B = {1, 4} with

A−1
B =

 4
15

−1
15

−1
150

2
75

 .
By (2.1), the set of parameters b’s for which B is optimal is {b : A−1

B b ≥ 0}, shown

in Figure 2.1 by the area between the two dashed lines. A contour plot of the bivariate

normal likelihood, centered at the baseline values b̂1 = 6000, b̂2 = 4000 is overlaid. Notice

that the negative covariance between B1 and B2 implies that the two values tend to vary

in opposite directions. The tolerance region is shown by the rectangle, oriented along the

directions of the eigenvectors of the covariance matrix, shown by the two dotted lines.

The maximum tolerance is τ ∗ = 0.81, which means that the parameter vector may vary
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up to 0.81 standard deviations simultaneously along the direction of each eigenvector and

still maintains the optimal basis. Using Proposition 2.3.1, we determine that the tolerance

region covers the (unknown) expected input parameters, µ, with P (|Z| ≤ τ ∗)2 = 34%

confidence.

2.4 Theory and Method: Critical Regions and Neighbors

Given a pre-specified tolerance value, the corresponding tolerance region may span several

critical regions, where a critical region is defined as a set of (b, c) vectors for which a

certain basis is optimal. The task of finding optimal bases and solutions for each r ∈ V (τ)

can be reduced to finding a set of critical regions that cover V (τ). To provide a theoretical

base for the exploration of the tolerance region introduced in the previous section, this

section examines the geometric properties of critical regions and their neighbors. After

introducing some notation, we review the theoretical properties of critical regions in the

space of the RHS (b in (P)), and then establish similar results for critical regions in the

space of objective coefficients (c in (P)). Based on these properties, we study geometric

properties of critical regions in the space of (b, c), i.e., the RIM parameters. Throughout,

we give particular attention to the way in which critical regions relate to each other and

delineate the parameter space. Lastly, we provide an algorithm for finding critical regions

that cover the tolerance region for a given tolerance.

2.4.1 Critical Regions: Definitions and Review

For a basis B, critical regions RbB, RcB, and RB are defined as follows

RbB = {b ∈ Rm | A−1
B b ≥ 0}; (2.4)

RcB = {c ∈ Rn | cTN − cTBA−1
B AN ≥ 0} = {c ∈ Rn | (IN − IBA−1

B AN)T c ≥ 0}; (2.5)

RB = RbB ×RcB = {r = (b, c) ∈ Rm+n | Br ≥ 0} (2.6)
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where

B =

A−1
B 0

0 (IN − IBA−1
B AN)T

 (2.7)

.

RbB is the set of b’s for which B satisfies (2.1), RcB is the set of c’s for which B

satisfies (2.2), and RB is the set of (b, c)’s for which B is optimal for (Pb,c). We refer to

RbB and RcB as a critical region in b and a critical region in c, respectively. From this

point forward, we reserve the term critical region, without reference to b or c, for RB. A

basis B is an optimal basis if there exists (b, c) for which B is optimal for (Pb,c), i.e., RB

is nonempty. Definitions (2.4), (2.5), and (3.3) provide that critical regions, in b, in c, or

in both are polyhedral cones pointed at the origin. The dimensionality of RbB, RcB, and

RB are m, n, and m + n, respectively. For a cone defined as {v ∈ Rk : Mv ≥ 0}, where

M ∈ Rp×q, we refer to the facet defined by the jth inequality M(j,·)v ≥ 0 as the jth facet of

the cone. In parametric programming literature, there are definitions of critical region that

are different from the above ([50, 51, 47]), for example, as the set of parameter vectors for

which the same set of constraints are binding. This paper focuses on the above definitions

(2.4), (2.5), and (3.3).

The following well-known result illustrates why the concept of critical region is useful

in analyzing variations in the LP RIM parameters. Further discussions about the below

result are in [11, 23]. Let v(b, c) denote the optimal value of (Pb,c).

Theorem 2.4.1 [cf. Sections 2.4 and 3.1 of [52]] (a) The optimal value function v(b, c) is

piecewise quadratic and continuous;

(b) the optimal value function v(b, c) is convex in b and concave in c;

(c) in each critical region RB, v(b, c) is quadratic and there exists an optimal solution
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function x?(b, c) ∈ X?(b, c) that is linear in RB, namely, for (b, c) ∈ RB,

v(b, c) = cTBA
−1
B b (2.8)

and

x∗(b, c)B = A−1
B b, x∗(b, c)N = 0. (2.9)

The following additional notation about simplex pivots are useful in our theoretical dis-

cussion. We assume throughout that while performing simplex pivots, rows of the simplex

tableau are not re-ordered. That is, the ordering of the basic and nonbasic variables given

by the tableau remain the same during a pivot operation, and only the entering and exiting

variables swap positions. To track the ordering of the basic and nonbasic variables, we will

use the following notation. For a basis B, let B(·) be the bijective mapping from the set B

to the set {1, . . . ,m} which returns the row index in the tableau corresponding to each ba-

sic variable. Similarly, let N(·) be the bijective mapping from the set N to {1, . . . , n−m}

which gives an ordering to the nonbasic variables, returning the column index in the re-

duced tableau corresponding to each nonbasic variable. If B2 is a basis obtained from a

basis B1 by exchanging i ∈ B1 \ B2 for j ∈ B2 \ B1, then the following properties hold:

(1) B1(i) = B2(j); (2) N1(j) = N2(i); (3) B1(k) = B2(k) for k ∈ B1 ∩ B2; and (4)

N1(k) = N2(k) for k ∈ N1 ∩ N2. We will denote the pivoting element of a pivot that

exchanges an exiting variable i for an entering variable j as āij .

2.4.2 Geometry of Critical Regions in b

Definitions In the case where only b varies but c is fixed, two bases B1 and B2 are said to

be dual neighbors if and only if it is possible to pass from B1 to B2 by a dual simplex pivot

and vice versa. Two critical regions in b are defined to be dual neighbors if their bases are

dual neighbors. Two critical regions in b are said to be geometric neighbors if and only if

they share a facet.
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In [37], properties of critical regions in b were studied while assuming A and c fixed.

Theorem 2.4.2 [cf. Theorem 2 and 4 in [37]] Two critical regions in b are dual neighbors

if and only if they are geometric neighbors.

2.4.3 Geometry of Critical Regions in c

Definitions In the case where only c varies, but b is fixed, two bases B1 and B2 are said to

be primal neighbors if and only if it is possible to pass from B1 to B2 by a primal simplex

pivot and vice versa. Two critical regions in c are primal neighbors if their bases are primal

neighbors. The definition of geometric neighbor remains the same: two critical regions in

c are geometric neighbors if they share a facet.

The fact that c is the RHS of the dual problem (Db,c) suggests that all of the results given

in [37] may be extended to the case where c varies while A, b are fixed. We provide a full

exploration of the properties of critical regions in c in Appendix A.2. As a consequence of

Theorems A.2.1 and A.2.2, we have the following corollary, analogous to Theorem 2.4.2.

Corollary 2.4.3 Two critical regions in c are primal neighbors if and only if they are geo-

metric neighbors in c.

2.4.4 Geometry of Critical Regions

Recall that we refer to RB defined in (3.3) simply as a critical region without any reference

to b or c. Given a basis, its critical region is the Cartesian product of its critical regions in b

and c. The results in [37] show that two bases are dual neighbors if and only if their critical

regions in b are geometric neighbors. Also, from the previous section, we know that two

bases are primal neighbors if and only if their critical regions in c are geometric neighbors.

In this section, we assume that neither b nor c is fixed and study the geometry of critical

regions. Previously, we defined primal and dual neighbors where either a fixed c or b is

given, respectively. As neither b nor c is fixed in this section, we re-define primal and dual
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neighbors. We will keep using the same terms, but it will be clear from the context which

definition is used.

Definition Two bases B1 and B2 are primal neighbors if and only if it is possible to

pass from B1 to B2 by a primal simplex pivot for some fixed b ∈ RbB1 and vice versa.

Similarly, B1 and B2 are dual neighbors if and only if it is possible to pass from B1 to B2

by a dual simplex pivot for some fixed c ∈ RcB2 and vice versa. Finally, B1 and B2 are

neighbors if and only if they are either primal or dual neighbors.

We emphasize the difference between the definitions of neighbors in the previous sec-

tion and in this section. In the previous section, in a primal pivot, any nonbasic variable

with a positive entry in the corresponding column of the simplex tableau may be chosen

to enter the basis and the leaving variable is determined by the minimum ratio test for the

fixed b value. Recall that the purpose of the minimum ratio test in the simplex method is to

determine the exiting (entering) variable in such a way as to ensure that the primal (dual)

simplex pivot maintains primal feasibility (optimality). However, in the above definition,

the choice of a leaving variable in a primal pivot may vary depending on the value of b.

In other words, after choosing a nonbasic variable to enter the basis, multiple neighbors

may be reached depending on the b value used for the minimum ratio test. Later, we will

demonstrate which neighbors are reachable. We start with a basic lemma.

Lemma 2.4.4 Two critical regions cannot be both primal and dual neighbors.

The proof follows from the fact that primal pivoting elements are positive, while dual piv-

oting elements are negative.

We now begin our exploration of geometric properties of critical regions. LetB1 andB2

be two bases differing in only one index and suppose that there is a pivot operation (primal

or dual) that exchanges variable i ∈ B1 \ B2 for variable j ∈ B2 \ B1. It is clear from the

proofs of Theorems 2.4.2 and A.2.1 that a facet is shared by the pair of critical regions in b,

RbB1 and RbB2 , and the pair of critical regions in c, RcB1 and RcB2 . A key observation is

that the sign of the pivoting element determines whether these critical regions in b and c lie
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on the same side or opposing sides of the corresponding facet. If the pivot is primal, then

the pivot element is positive, RcB1 and RcB2 lie on opposing sides of a shared facet, and

RbB1 and RbB2 lie on the same side of a shared facet. This case is illustrated in Figure 2.2.

For a dual pivot, the pivot element is negative and the critical regions in c and b are oriented

conversely.

(a) RbB1 (red) and RbB2 (blue) (b) RcB1 (red) and RcB2 (blue)

Figure 2.2: Critical Regions before and after Primal Simplex Pivot

IfRB1 andRB2 are neighbors, then the pivoting element is nonzero and either the pairRbB1

and RbB2 , or the pair RcB1 and RcB2 is separated by a hyperplane in their corresponding

space. This implies thatRB1 andRB2 are separated by a hyperplane in Rn+m. We formalize

the geometric relationship between neighbors with the concept of partially shared facets.

Definition Two critical regions, RB1 and RB2 , partially share a facet if and only if

RB1 ∩RB2 is contained in a facet of both RB1 and RB2 and has dimension n+m− 1.

The following theorem is an extension of Theorem A.2.1 to the RIM case.

Theorem 2.4.5 If two critical regions are neighbors, then they partially share a facet.

Proof: In A.4

A second key observation is that in a primal (dual) pivot the choice of a leaving (enter-

ing) variable determined by the minimum ratio test depends on the value of b (c) used. The
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next lemma states that at a given basis B, for any positive (negative) entry in the tableau,

there exists a value of b (c) at which the entry is chosen to be the pivoting element for a

primal (dual) pivot, i.e., the entry wins the minimum ratio test.

Lemma 2.4.6 Let B be a basis. We then have the following results:

1. Let j ∈ N be a nonbasic variable selected to be the entering variable in a primal

pivot. Then, for every positive entry in the jth column of the tableau, (A−1
B A)(·,j),

there exists b ∈ RbB such that the corresponding basic variable wins the minimum

ratio test.

2. Let i ∈ B be a basic variable selected to be the exiting variable in a dual pivot. Then,

for every negative entry in the B(i)th row of the tableau, (A−1
B A)(B(i),·), there exists

c ∈ RcB such that the corresponding nonbasic variable wins the minimum ratio test.

Proof: We prove the first statement only as the second statement follows analogously. Let

j ∈ N be the entering variable for a primal pivot. Recall that for a given b, the minimum

ratio test selects the exiting variable

arg min
i∈B

{
(A−1

B b)B(i)

(A−1
B A)(B(i),j)

: (A−1
B A)(B(i),j) > 0}.

Now suppose (A−1
B A)(B(k),j) > 0 for some k ∈ B. It is clear that a nonnegative z ∈ Rm

may be selected such that

k = arg min
i∈B

{
zB(i)

(A−1
B A)(B(i),j)

: (A−1
B A)(B(i),j) > 0}

since the B(k)th entry of z can be made arbitrarily small. Let b∗ = ABz. Since A−1
B b∗ =

z ≥ 0, we have b∗ ∈ RbB. By construction, it is clear that at b∗, k wins the minimum ratio

test, and this concludes the proof. �
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Using this lemma, we show below that a critical region may share a facet not only with

one neighbor, but possibly with multiple neighbors. This result formally establishes the

geometric relationship between neighboring critical regions in the RIM parameter space.

Recall that in the definition of a critical region RB in (2.7), the first m facets are on its

projection on the space of b (i.e., RbB) and the next n −m facets define its projection on

the space of c (i.e., RcB).

Theorem 2.4.7 LetF be thewth facet ofRB. Then,RB shares the facetF withRB1 , . . . , RBk

and we have F =
⋃k
i=1(RB ∩ RBi), where B1, . . . , Bk is the set of bases obtained as fol-

lows:

1. if w ∈ {1, . . . ,m}, then B1, . . . , Bk are the bases obtained by a dual pivot replacing

the wth basic variable by any nonbasic variable with a negative entry on the wth row

of the simplex tableau at B,

2. if w ∈ {n −m, . . . , n}, then the bases are obtained by a primal pivot selecting the

(w−m)th nonbasic variable to enter the basis and dropping any basic variable with

a positive entry on the (w −m)th nonbasic column of the simplex tableau at B.

Proof: We prove the case of w ∈ {1, . . . ,m} only as the case of w ∈ {m + 1, . . . , n}

follows analogously. We have

F = RB∩{(b, c) ∈ Rm+n : (A−1
B )(w,·)b = 0} = (RbB∩{b ∈ Rm : (A−1

B )(w,·)b = 0})×RcB,

so F = Fb × RcB, where Fb is the wth facet of RbB. For each Bi which can be ob-

tained by a dual pivot dropping the wth basic variable from B, we have RB ∩ RBi =

(RbB ∩ RbBi)× (RcB ∩ RcBi) = Fb × (RcB ∩ RcBi), since RbBi and RbB are geometric

neighbors. Note that for any c ∈ RcB, one of the Bi will maintain dual feasibility (the

minimum ratio test guarantees this), that is, there exists i ∈ {1, . . . , k} such that c ∈ RcBi .

Thus,
⋃
i(Rc

B ∩ RcBi) = RcB and therefore,
⋃
i(R

B ∩ RBi) =
⋃
i Fb × (RcB ∩ RcBi) =
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Fb ×RcB = F . �

This result can be interpreted as follows. Consider the wth facet of RB. If w ∈

{1, . . . ,m}, then the facet is partitioned by all of the critical regions that can be ob-

tained by performing a dual pivot on a negative entry in the wth row of A−1
B AN . If

w ∈ {m + 1, . . . , n}, then the facet is partitioned by all of the critical regions that can

be obtained by performing a primal pivot on a positive entry in the (w −m)th column of

A−1
B AN . Our next result shows that any two critical regions that partially share a facet are

either primal neighbors or dual neighbors.

Theorem 2.4.8 Suppose that RB1 and RB2 are critical regions that partially or fully share

a facet. Then, RB1 and RB2 are neighbors.

Proof: In A.5

As a consequence of Theorems 2.4.5 and 2.4.8, we have the following corollary.

Corollary 2.4.9 Two critical regions are neighbors if and only if they partially share a

facet.

2.4.5 Covering a Tolerance Region by Critical Regions

Based on our understanding of critical regions and their neighbors developed in the pre-

ceding sections, in this section we present an algorithm to find all critical regions covering

the tolerance region for a pre-specified tolerance. The tolerance τ may be selected using

Propositions 2.3.1 or 2.3.2 for a desired level of confidence.

Algorithm 1 begins with a set B containing the bases that are optimal for the baseline

parameter vector, i.e., optimal for (Pb̂,ĉ). It needs the input of the baseline input parameters

r̂ for the RIM parameters and the covariance structure of the dependence between them.

The set B may contain a single optimal basis or, in the degenerate case, multiple optimal

bases. As the tolerance region is enlarged, it begins to intersect critical regions whose
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bases are not in B. By our theoretical results, we know that the first intersected critical

region is a neighbor of a basis in B. In each iteration, the algorithm finds the first neighbor

that is intersected when the current tolerance region expands. To find such a neighbor, the

algorithm maintains N (B), the set of neighbors of bases in B that are not in B, and finds

the first intersected critical region B̄. In addition, the algorithm computes the tolerance

value of the largest tolerance region that fits into the union of critical regions of bases in

B, which is denoted as t. While computing t, it computes tB for each B ∈ N (B), which

is the minimum tolerance level at which the tolerance region intersects the critical region

of B. Note that each tB value can be obtained by solving a linear program. Then, it

adds B̄ to B, updates N (B), and go to the next iteration. It terminates when the tolerance

value t reaches the target tolerance τ . Based on the theoretical results in the previous

sections, the algorithm can be seen as growing a polytope by adding critical regions in the

order the tolerance region intersects as the tolerance level increases. Recall that D and Λ

are the eigenvector matrix and the diagonal matrix of the eigenvalue decomposition of Σ,

respectively.
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Algorithm 1 Algorithm for Finding Critical Regions Covering a Given Tolerance Re-
gion

1: Input: r̂, Σ, and a desired tolerance value τ > 0

2: Initialize:

3: Set B as the set of bases optimal for (Pµ)

4: N (B)← {B : B is a neighbor of B′ ∈ B} \ B

5: t← 0

6: while t < τ do

7: Find the Next Critical Region:

8: for B ∈ N (B) do

9: Compute tB ← minp{‖p‖∞ : B(r̂ +DΛ1/2p) ≥ 0}

10: t← minB{tB : B ∈ N (B)}, B̄ ← arg minB{tB : B ∈ N (B)}

11: Update Sets of Bases:

12: B ← B ∪ {B̄}

13: N (B)← {B : B is a neighbor of B′ for some B′ ∈ B} \ B

14: return B.

2.5 Applications

In this section, we present a series of applications of the PCA tolerance approach with

the implementation of Algorithm 1 presented in the previous section. First, however, we

pause for a general discussion about nature of uncertainty in the RIM parameters and the

applicability of the PCA tolerance approach.

There are two major categories of situations where modelers may wish to consider

stochastic uncertainty in the RIM input parameters. The first is the case where the RIM

input parameter is an estimate of a distributional parameter. Using the sample mean to

estimate the expected value is such an example. The second is the case where the RIM

input parameter is a realization from the distribution itself. For instance, the RIM input
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parameter may reflect real time cost/demand information, viewed as a single realization

from the distribution of costs/demands. This second scenario includes forecasting, where

historical data is used to approximate the distribution from which future input data are

generated.

In post-optimality analysis, after the input parameters are specified and a solution is ob-

tained, the stability of the solution is examined by determining a range of RIM parameters

for which the current basis is optimal. Crucially, the decision is made under uncertainty,

so an examination of how uncertainty affects the decisions that we have made is important.

([25, 7]) In the case where only c varies, we may go beyond the initial critical region, ex-

amining the loss in optimality of the current solution against alternatives. However, in the

case where b varies, the solution may become infeasible. Therefore, as a tool for sensitiv-

ity analysis, the tolerance approach is most appropriate when b is either fixed or when the

uncertainty in b is small, and confined to the initial critical region.

The PCA tolerance approach, however, can also be used as a tool of a priori analysis.

In this case, we wish to examine the decisions that we might make in the future, once the

input parameters are realized. In other words, any decisions made are made under certainty,

once the input data is determined. Such analysis can be used to make decisions auxilary to

the optimization problem or save in real time computational costs. For instance, in model

predictive control, it is often the case that we wish to solve the optimization problem offline

over all likely input values so that the solutions can be saved and real-time optimization is

not needed once the input data is realized. In these cases, the PCA tolerance approach can

be used to determine the set of likely input values and obtain the corresponding solutions.

In the following applications, we illustrate these two contexts, first highlighting a gen-

eralized PCA tolerance approach for sensitivity analysis and second example from model

predictive control.
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2.5.1 Generalized PCA Tolerance Approach

One limitation of the tolerance approach in Section 2.3 is that it considers only variations

within the initial critical region. The generalized tolerance approach ([53]) extends the

original tolerance approach for perturbations in c beyond the initial critical region corre-

sponding to the optimal basis for the baseline parameters of the c inputs in the objective

function. Below, we briefly describe how the PCA tolerance approach and the algorithm

for exploring critical regions (Algorithm 1) can be applied to derive a sensitivity measure

for the case where the tolerance region for a given tolerance value spans multiple critical

regions.

Consider a tolerance value τ and the corresponding tolerance region V (τ) = {ĉ +

DΛ1/2p : ‖p‖∞ ≤ τ}. This is a special case of the PCA tolerance region where b is

fixed. For p = 0, let B0 be an optimal basis and x∗ be an optimal solution. Suppose that

the tolerance region intersects multiple critical regions in c, say RcB1 , RcB2 , . . . , RcBk in

addition to RcB0 . Let x1, x2, . . . , xk be optimal solutions for the k critical regions in c,

respectively. For any ĉ + DΛ1/2p 6∈ RcB0 , x∗ is suboptimal and the objective could be

improved by using one of the k solutions. The maximum regret α∗(τ) is the maximum

amount that the objective function could be improved from that of x∗ by using one of the k

solutions where c varies over V (τ), i.e.,

α∗(τ) = max
j
{αj(τ) : j = 1, . . . , k} (2.10)

where

αj(τ) = max
p
{(ĉ+DΛ1/2p)T (x∗ − xj) : ‖p‖∞ ≤ τ, c+DΛ1/2p ∈ RcBj}.

Note that each αj(τ) can be obtained for a given value of τ by solving an LP.

Once Algorithm 1 finds the set of bases B such that V (τ) ⊆
⋃
B∈B Rc

B, the maximum
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regret α∗(τ) can be calculated because we have an optimal basis for every parameter vector

in the tolerance region following the theoretical results in the previous section. Note that it

is also possible to construct a maximum regret curve α∗(t) for t ≤ τ by calculating α∗(t) in

each iteration of Algorithm 1. By Propositions 2.3.1 and 2.3.2, V (τ) is a confidence region

for µ, where the confidence level is a function of the tolerance τ and the dimensionality of

the tolerance region h. This allows us to make confidence statements about the maximum

regret. For instance, with at least P (|Z| ≤ τ)h × 100% confidence, the regret is less than

or equal to α∗(τ). If there is a desired confidence level, the corresponding tolerance value

τ can be determined using Proposition 2.3.1.

Dantzig Example

For illustration of the generalized PCAT approach, let us return to the example given in

Section 2.3.2. This time, we fix b1 = 6000 and b2 = 4000, and consider the case where only

the objective function coefficients vary. Specifically, we consider the case where the first

four coefficients, C1, C2, C3, and C4 vary according to a multivariate normal distribution

with mean vector µ = [12 20 18 40]T and covariance matrix Σ where

Σ(i,j) =


√
µi i = j,

1
2

i 6= j.

We take µ to be the baseline. Using (2.3), we see that the maximum tolerance which main-

tains the initial optimal basis is τ ∗ = 0.68. For values of the objective function coefficients

outside the initial critical region, the optimal solution changes and the maximum regret is

therefore nonzero.
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Figure 2.3: Generalized Tolerance

A plot of the maximum regret function against the tolerance value is provided in the left

panel of Figure 2.3. The tolerance value can be translated to a confidence level using

Proposition 2.3.1. A plot of the maximum regret function against the confidence level is

provided in the right panel of Figure 2.3. As can be seen in the right panel, the loss in

optimality is almost surely less than 10,000, as the tolerance region containing 99% of

the density has a maximum regret of approximately 9384.13. The maximum regret as

a function of the tolerance is piecewise-linear and nondecreasing. As a function of the

confidence level, the regret is nondecreasing and continuous, but not piecewise-linear.

2.5.2 Application to Model Predictive Control

Multiparametric programming is used in model predictive control (MPC) to solve a control

optimization problem for a set of input parameters that span beyond the initial critical

region. Since the total number of critical regions can be exponential in problem size ([54]),

it is desirable to focus on a set of input parameters that are more likely than others.
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MPC LP problems ([55]) can often be written in the following way:

min
x
cTx

s.t. Ax = b+ Fy(t),

x ≥ 0,

where y(t) is a vector of forecasts at time t. These forecasts may represent future demands,

economic conditions, or other types of unknown future system states. Often, statistical

models are used to obtain such forecasts from past data. ([42, 56, 57]) In these cases, the

distribution of the forecast can be used to determine a region in which the parameters are

likely to fall, which saves the computational load to explore all possible values of the input

parameters.

Consider an input RIM parameter vector r̂ observed from N (µ,Σ). By Proposition

2.3.1, we can use the predictive distribution to construct a tolerance region that contains

the future value of the parameters with a given probability. In particular, the PCA tolerance

approach can target a subset of the RIM parameter space to examine based on the sam-

pling distribution of the estimated RIM parameters. Algorithm 1 finds all critical regions

covering the tolerance region and then we have an optimal control solution for all input

parameters in the tolerance region.

Inventory Control Example

We illustrate the applicability of our approach to MPC using a multi-commodity inventory

control problem with parameter forecasts. The problem is to plan production of J products

over T time periods, where the cost and demand parameters are forecasts calculated using

time series modeling techniques. Similar MPC and forecasting frameworks have been used

by [57, 42] and [56] and specifically for inventory control by [58] and [59].

Let qtj, xtj , and btj denote the production quantity, the on-hand inventory at the end
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of time period, and backorders, for product j at time period t. The initial inventory and

backorder levels are fixed and denoted by x0j and b0j for product j, respectively. Production

cost, holding cost, and the penalty for backlogged demand for product j in period t are

denoted by Ctj, htj , and ptj , respectively. Finally, Dtj denotes the demand at time t for

product j and K is the inventory capacity.

(PC,D) min
q,x,b

J∑
j=1

T∑
t=1

Ctjqtj + htjxtj + ptjbtj

s.t. xt−1,j + qtj + btj = Dtj + xtj + bt−1,j for t = 2, . . . , T and j = 1, . . . , J

J∑
j=1

xtj ≤ K for t = 1, . . . , T

qtj, xtj, btj ≥ 0, for t = 1, . . . , T and j = 1, . . . , J

The goal is to make the optimal control decision minimizing the predicted system costs,

while meeting demand forecasts. We consider the inventory management problem with

J = 3 products, with costs and demands predicted over T = 7 time periods. We assume

fixed holding costs htj = 1, fixed penalties for backlogged demands ptj = 10, and fixed

inventory capacity K = 15.

Consider forecasting demand and production costs for each time period using a vector

autoregression (VAR) approach. Let yt denote the vector of demand and production costs

at time t, i.e.,

yt = [Ct1 . . . CtJ Dt1 . . . DtJ ]T .

Assuming that yt follows a VAR(1) process, we have

yt = g +Myt−1 + εt. (2.11)

The matrix M describes the correlation structure between the elements of yt across time,
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while the error terms in εt are independent and identically distributed normal random vari-

ables with mean zero, i.e., εt ∼ N (0,Σ), where Σ is a diagonal covariance matrix.

Suppose that we have an observation y0. Given estimates ĝ and M̂ , the estimate of yt

for t = 1, . . . , T is given recursively by

ŷt = ĝ + M̂ŷt−1.

The forecast demands and costs are then used to solve the control problem (PĈ,D̂). The

model (2.11) implies a correlation structure on the demands and costs, allowing for corre-

lations to exist among costs, among demands, and between them, over time. More details

and parameter values are provided in the A.6.

In this example, the tolerance region defined in Section 3 is a prediction interval for the

demand and cost forecasts. Let B0 be an optimal basis and x∗ be an optimal solution at the

predicted cost and demand values, i.e., optimal for (PĈ,D̂). The objective value of this LP

is $1775.79. We examine the tolerance of this solution to variations in the cost and demand

parameters within the tolerance region given by the prediction model. The PCA maximum

tolerance defined in Section 3 is τ ∗ = 1.2805. This means that the production costs and

demands can simultaneously vary up to 1.2805 standard deviations from their forecasts

along the directions provided by the eigenvectors of the covariance matrix and maintain

the optimal basis B0. From Proposition 2.3.1, we see that B0 is optimal with probability

P (|Z| ≤ 1.2805)42 ≈ 0.00834%.

When we consider variations of the demand and cost parameters beyond the maximum

tolerance, the tolerance region will go out of the initial critical region and the optimal basis

will change. For a tolerance value of τ = 2.602, the tolerance region is covered by 501

critical regions which were found by Algorithm 1. This tolerance region is a P (|Z| ≤

2.602)42 ≈ 67.622% prediction interval for the demand and cost parameters.
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2.6 Conclusion

Sensitivity analysis remains an important tool for practitioners in making optimal decisions.

In this paper, we focus on sensitivity analysis for linear programs when the parameters in

both the objective function and the constraints, jointly called the RIM parameters, vary

with a given statistical distribution.

In this paper, we revisit the tolerance region approach for sensitivity analysis but under

a more general setting, assuming statistical distributions on the uncertainty of the random

input parameters. The approach yields a tolerance region which is a symmetric confidence

set for given baseline input parameters, providing practitioners a sense of both how much

the parameters can vary while maintaining stability of a solution and how likely such vari-

ations are. We also extend the suggested tolerance approach beyond the initial critical

region. In this approach, a confidence set is constructed over which the maximum regret

sensitivity measure can be calculated as a measure of global sensitivity. We illustrated

the approach using multiple applications, particularly, for model predictive control and an

inventory management problem.

The implementation of the proposed tolerance approach relies on a series of theoretical

results presented in this paper. We first contribute to the theory of critical regions, which

is an important concept in the parametric programming literature used in global sensitivity

analysis methods. We provide theoretical insights into the geometric properties of critical

regions in the RIM case for which a thorough theoretical treatment was previously lacking

in the literature.

The results presented here can be extended in several ways. First, the approach of using

PCA to translate a given distribution of the uncertain parameters into the construction of

the tolerance region can be extended to the cases where the tolerance region is asymmetric.

While the resulting confidence sets would be asymmetric, calculating the corresponding

confidence levels would still be rather straightforward due to the fact that variations along
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each of the directions provided by PCA are independent. Extensions to asymmetric dis-

tributions can be achieved by defining the tolerance set based on the distribution and then

solving the corresponding multiparametric program over the region. ([38]) This approach

may be especially important for the case when uncertainty in the RIM parameters is spec-

ified by an estimated distribution rather than the sampling distribution of statistical esti-

mators, since the symmetry distribution in these cases may be especially restrictive. Last,

an algorithm searching for critical regions such as Algorithm 1 can also identify which

parameter value makes a given problem infeasible ([37]). Analyzing how the theory and

method of this paper relate to the concept of condition number of linear programs is a future

research direction.
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CHAPTER 3

SOLVING LARGE BATCHES OF LINEAR PROGRAMS

Solving a large batch of linear programs (LPs) with varying parameters is needed in stochas-

tic programming and sensitivity analysis among other modeling frameworks. The common

approach is solving the LPs for all combinations of given parameter values, called the

brute-force approach, which can be computationally infeasible when the parameter space

is high-dimensional and/or the underlying LP is computationally challenging. This chap-

ter introduces a computationally efficient approach for solving a large number of LPs that

differ only in the right hand side of the constraints (b of Ax = b). The computational

approach builds on theoretical properties of the geometry of the space of critical regions,

where a critical region is defined as the set of b’s for which a basis is optimal. To formally

support our computational approach we provide proofs of geometric properties of neigh-

boring critical regions. While these theoretical properties have been stated and applied in

the existing literature of parametric programming, their formal proofs have not been pro-

vided to the best of our knowledge. Based on the geometric properties of critical regions,

we develop an algorithm that solves the LPs in batches by finding critical regions that con-

tain multiple b’s. Moreover, we suggest a data-driven version of our algorithm that uses

the distribution (e.g., shape) of a sample of b’s for which the LPs need to be solved. The

experimental results on a benchmark problem show that our approach can be more efficient

and scale better in the number of b’s than the brute-force, but also indicate some limitations

of the algorithm.

3.1 Introduction

The need to solve a large number of linear programs (LPs) with varying model parameters

arises in various modeling frameworks. There are several popular approaches to multi-
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stage stochastic programs (SPs) that require solving a large number of LPs with varying

parameter values. One such example is the solution algorithm for two-stage SPs by [60],

a systematic approach for generating cutting planes that exclude first-stage decisions that

either are non-optimal or make the second-stage problem infeasible, which requires solving

the second-stage LP for each realization of random parameters at each iteration. A second

example is the sample average approximation approach for two-stage SPs with recourse

[61], where the second-stage LP is solved for sampled parameters at each iteration. A

third example is the simulation-based scheme called bagging to obtain a solution whose

optimality gap exhibits a specific distributional behavior [62]; to obtain the optimality gap,

multiple LPs with sampled parameter values need to be solved.

Global sensitivity analysis is another modeling framework in which a large number of

LPs with different parameters needs to be solved [13]. Classical sensitivity analysis eval-

uates variations in the optimal objective function value (called herein the optimal value)

with respect to perturbations of a parameter. [13] proposed estimating the variability of the

optimal value attributed to varying parameter values and using the variance as a measure

of sensitivity. Given a sample of parameter values, the LP for each sampled parameter is

solved separately to obtain the optimal value, from which the variance of the optimal value

is approximated. Global sensitivity or parametric programming hints broadly to quantifica-

tion of the uncertainty in the optimal value derived from optimization models, particularly

when the parameters follow a multivariate distribution. This approach can be applied to

quantify the uncertainty in the optimal solutions and outcome functions of the optimal so-

lutions.
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Generally, we consider a standard form LP:

(P) min
x

c′x

s.t. Ax = b,

x ≥ 0,

where x ∈ Rn,A ∈ Rm×n,b ∈ Rm, c ∈ Rn. In this paper, we focus on the case where a set

of right hand side parameter values, Θ = {b1, . . . ,bK}, is given while A, c are fixed. By

duality, all results in this paper extend to solving LPs for A,b fixed but varying parameter

values for c. These are common settings in the aforementioned examples.

Let (Pb) denote the LP (P) with right hand side b. Given the sample of parameter

values in Θ, the objective is to develop a computationally efficient method for solving the

collection of LPs (Pb1), (Pb2), . . ., (PbK ). Solving each individual LP separately, which we

call the brute-force approach, can easily become computationally prohibitive for a large

K and as the dimensionality of the LPs grows. The proposed method obtains optimal

solutions for the collection of LPs by solving possibly a much smaller number of LPs than

K (as small as one). The underlying idea is to take advantage of the “similarity” between

the parameter values in the sample, thus solving the LP for only one or a few parameter

values and deriving optimal solutions for similar parameter values from the solutions of the

LPs solved.

A straightforward approach is to solve the LP for a parameter vector, choose another

parameter vector to solve next, solve the LP starting from the solution for the previous

parameter vector (called ‘the warm start’), and repeat the process (e.g., [63, 64, 60]). The

challenge of this approach is deciding on the order of parameter vectors to solve the LPs,

particularly when a large number of parameter vectors is considered and when the param-

eter vectors lie in a high-dimensional space. In this paper, we develop a novel approach
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utilizing the idea of solving LPs from solutions of other LPs in order to solve an LP for

an extremely large number of parameter values (e.g., millions) while dealing with high-

dimensionality of the space of the parameter values.

The proposed computational approach for solving the collection of LPs relies on the-

oretical results from parametric programming literature, particularly, properties of optimal

bases and critical regions (e.g., see [52, 11] and references therein). Parametric program-

ming is an extension of sensitivity analysis that quantifies variations of the optimal value

and optimal solution under perturbations in the model parameters. A basis is optimal for a

given b if and only if the corresponding basic solution is feasible (the feasibility condition)

and the reduced costs are nonnegative (the optimality condition). A basis that is optimal for

some b is called an optimal basis. The critical region of an optimal basis is defined as the

set of b’s for which the basic solution is feasible, thus, optimal. One important property is

that the LPs whose b’s belong to the same critical region can be solved together by finding

the optimal basis of the critical region; this property was used in [60] for two-stage SPs

to solve the second-stage LP for all realizations of random parameters. A second property

is that dual simplex pivots can be used to generate optimal bases; this property was used

by [65] to solve the second-stage LPs in batches. However, they did not study geometric

properties of critical regions found by dual simplex pivots. By understanding properties

of critical regions and the dual simplex method, we will thus develop a computationally

efficient approach to find critical regions covering the sample of parameter values.

Geometric properties of critical regions have been previously introduced in the paramet-

ric programming literature. In [52, 11] and [66], a neighboring critical region of a critical

region R is defined as a critical region whose basis can be reached by a dual simplex pivot

from B, where B is the optimal basis of R. While this is an established definition, ge-

ometric properties of neighboring critical regions have not been studied thoroughly. The

most detailed discussion on the geometry of neighboring critical regions was given by [67],

which stated properties of neighbors including that neighbors share a facet, i.e., they are
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also “geometrically neighbors”. However, they did not provide proofs for their statements

or prior references supporting them. In [66], it was shown that neighboring critical regions

had nonempty intersection and lay on opposite sides of a hyperplane, but further geometric

properties were not studied. In this paper, we provide proofs of the geometric properties

of neighboring critical regions and simplex tableaus stated in [67] and establish geomet-

ric properties in addition to those in the previous works. Our proofs also provide a new

geometric insight for the simplex tableau that is used to find neighboring critical regions.

Furthermore, we develop a data-driven computational framework to solve batches of

LPs using the theoretical properties of neighboring critical regions and the distributional

properties of the sample of parameter values for which the LPs are solved. We provide

insights into the computational complexity of the proposed algorithms under different mul-

tivariate distributions of the sample parameter values along with current limitations of the

algorithms. We provide empirical comparisons of our approach and three other methods

for various instances generated based on benchmark problems from the existing literature.

Lastly, we evaluate the proposed computational approach for an LP from a specific appli-

cation, the measurement of spatial access to healthcare services [17, 20] and the results

suggest a limitation of our approach and future research directions.

3.2 Theoretical Properties

Notation. Let F = {b ∈ Rm | (Pb) is feasible}, the set of all parameter values b

for which the LP is feasible, which is a convex polyhedron (e.g., see [52]). Let V (b)

and X?(b) denote the optimal value and the set of optimal solutions of (Pb), respec-

tively. For a matrix M , Mi denotes its ith column and M(i) denotes its ith row. We use

B = {B(1), B(2), . . . , B(m)} to denote a basis, which is a set of indices of basic vari-

ables or equivalently, columns of A. Let N denote the set of nonbasic indices. Subscript

B on a vector (a matrix) denotes its subvector (its submatrix) of those elements (columns)

corresponding to the indices in B; subscript N is defined in the same way.
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A basis B is optimal for (Pb) if and only if

A−1
B b ≥ 0, (3.1)

c− c′BA−1
B A ≥ 0. (3.2)

The inequality (3.1) is called the feasibility condition and (3.2) is called the optimality

condition. We make the following basic assumption.

Basic Assumption. There exists b ∈ F for which (Pb) has a finite optimum.

If this assumption does not hold, then (Pb) is unbounded for any feasible b, thus the goal of

this paper becomes uninteresting. By duality, the assumption implies that for every b ∈ Θ,

(Pb) is either infeasible or has a finite optimal solution.

3.2.1 Critical Region and Neighbor

In this section, we first introduce the definition of a critical region and then study its prop-

erties as provided in the parametric programming literature. A basis B is defined to be an

optimal basis if there exists b ∈ F for which B is optimal for (Pb). For an optimal basis

B, its critical region RB is defined as

RB = {b ∈ Rm | A−1
B b ≥ 0}. (3.3)

That is, RB is the set of b’s for which B is optimal for (Pb). From (3.3), we know that a

critical region is a polyhedral cone pointed at the origin. In addition, a critical region has

the following properties.

Proposition 3.2.1 (a) A critical region RB is the set of conic combinations of the columns

of AB. Moreover, each column of AB is an extreme ray of RB.

(b) There is no redundant inequality in the description (3.3) of a critical region.

(c) Any critical region is full-dimensional, and thus, has an interior point.
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Proof: A critical region RB can be also written as

RB = {b ∈ Rm | A−1
B b ≥ 0} = {ABz | z ∈ Rm, z ≥ 0},

and the columns of AB are linearly independent, thus, (a) holds. Suppose that an inequality

in (3.3) is redundant, i.e., the inequality is a linear combination of the other inequalities.

However, the inequalities defining RB are linearly independent since A−1
B is nonsingular,

which proves (b). Suppose that a critical region is not full-dimensional, i.e., it is contained

in a hyperplane. It implies that the inequalities defining a critical region should imply an

equality, which again contradicts the fact that the inequalities are linearly independent, and

this proves (c). �

Remark: In this paper, we consider the right hand side b be a parameter vector. On the

other hand, most of the prior research in the parametric programming literature such as [52]

defined b as a linear function of parameters (often denoted as λ). This difference makes our

overall analysis simpler and enables us to establish additional results. For example, in the

previous works, a critical region defined therein may not be full-dimensional.

We review some definitions from polyhedral geometry. A face of a polyhedron is de-

fined as the intersection of the polyhedron and a supporting hyperplane. A facet of a poly-

hedron is defined as a face whose dimension is one less than that of the polyhedron. From

the above proposition, we know that each inequality in the definition (3.3) of a critical re-

gion defines a facet. We refer to the facet defined by the ith inequality (A−1
B )(i)b ≥ 0 as the

ith facet.

The following result from parametric LP literature [68, 52, 66] shows that V (b) is

linear in each critical region and there exists x?(b) ∈ X?(b) for b ∈ F such that x?(b) is

a linear function in each critical region.

Theorem 3.2.2 [cf. Section 2.2 of [52]] (a) The optimal value function V (b) is piecewise
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linear, convex, and continuous; and

(b) in each critical region RB, V (b) is linear and there exists an optimal solution function

x?(b) ∈ X?(b) that is linear in RB, namely, for b ∈ RB,

V (b) = c′BA−1
B b (3.4)

and

x?(b)B = A−1
B b and x?(b)N = 0. (3.5)

Theorem 3.2.2 implies that for parameter values of b in one critical region, the optimal

values and optimal solutions can be computed all together by finding the optimal basis

of the critical region and computing the inverse of the basis matrix. For example, after

solving an LP (Pb1) for a parameter value b1 (e.g., by simplex method), the optimal basis

B1 is obtained and the critical region RB1 is computed as in (3.3). Then, for all b ∈ RB1 ,

V (b) and x?(b) are given as in (3.4) and (3.5). Therefore, Theorem 3.2.2 provides a way to

solve a batch of LPs whose right hand sides belong to the same critical region while solving

only one LP. This is the first theoretical result supporting our computational approach for

solving a large collection of LPs in batches.

A second result supporting the proposed computational approach that we will prove is

that given a critical region RB1 and the inverse of the basis matrix A−1
B1 , we can obtain its

surrounding critical regions and compute optimal solutions for the parameter values in the

surrounding critical regions without solving another LP or inverting another matrix. This

property relies on the concept of neighboring critical regions. Any two bases B1 and B2

are said to be neighboring bases if and only if it is possible to pass from B1 to B2 by one

pivot operation of dual simplex method and vice versa. Any two critical regions R1, R2 are

said to be neighbors if and only if the corresponding optimal bases B1, B2 are neighbors.

Remark: There is a key difference between a pivot operation of typical dual simplex

methods and that of the above definition. In an iteration of dual simplex method (e.g., see
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Chapter 5 of [69]), a negative basic variable is found and if the corresponding row of the

tableau has a negative entry, then the basic variable leaves the basis. On the other hand, in

the above definition, any basic variable whose corresponding row has a negative entry can

leave the basis to find a neighboring critical region. This difference is due to the fact that

the goal of typical dual simplex methods is to find a basis optimal for a given b, whereas,

a dual simplex pivot of the above definition finds a basis that is optimal for bs not in the

current critical region.

3.2.2 Geometry of Neighbors

In this section, we prove that neighboring critical regions are also neighbors in a geometric

sense and vice versa. Also, we introduce a geometric relationship between critical region

and simplex tableau. We begin by defining geometric neighbors. Two critical regions

are said to be geometric neighbors if their intersection is a facet of each of them, i.e., they

share a facet. We refer to the concept of neighboring critical regions defined in the previous

section as algebraic neighbors when it is necessary to distinguish the two definitions.

It is a well-established result in the parametric LP literature that two algebraically

neighboring critical regions have nonempty intersection and lie in opposite halfspaces as

it follows from [66]. The next theorem shows that the intersection of neighbors is a facet

of each of them, thus they are geometric neighbors. The most detailed discussion about

geometric relationships of algebraic neighbors was by [67]. They stated the two theorems

provided below however without formal proofs. We provide proofs for both theorems, thus

formally establishing these results.

Key fundamental results used in the proofs are the following. F is the set of conic

combinations of the columns of A and a critical region RB of an optimal basis B is the set

of conic combinations of the columns of AB. In the simplex tableau at a basisB, the entries

in the jth column are the coefficients of the unique linear combination representation of Aj

by the columns of AB. Thus, a negative entry in (i, j) position in the tableau indicates that
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Aj is not a conic combination of the columns of AB, and that replacing the ith column of

AB by Aj leads to a new set of conic combinations.

Theorem 3.2.3 If two critical regions are algebraic neighbors, then they are geometric

neighbors.

Proof: The proof is similar to the one of Theorem 2.4 in [66].

Consider two critical regions R1 and R2 that are algebraic neighbors. Let B1, B2 be

the optimal bases corresponding to R1, R2, respectively. Suppose that the pivot operation

obtaining B2 from B1 replaces the ith basic variable xB1(i) by xj where j ∈ B2 \ B1. Let

H be the hyperplane defined by (A−1
B1)(i)b = 0. We denote the ith facet of R1 in H as F 1.

We will first show that R2 also has a facet F 2 contained in H and then, show that F 1 = F 2.

For simplicity of notation, let Ā = A−1
B1A. Then, we know that Āij < 0 because xj enters

the basis.

Assume that we do not reorder rows while performing the pivot operation. Then, while

computing the simplex tableau at basisB2 from the tableau atB1, the elementary row oper-

ation performed on the ith row is dividing it by Āij . Also, recall that A−1
B2 is obtained from

A−1
B1 by performing the same elementary row operations. Thus, (A−1

B1)(i) = Āij(A−1
B2)(i). By

Proposition 3.2.1(b), R2 has a facet F 2 defined by 0 ≤ (A−1
B2)(i)b = 1

Āij
(A−1

B1)(i)b. There-

fore, the facets F 1 and F 2 lie in the hyperplane H . Since Āij < 0, R1 and R2 lie on the

opposite sides of H . Moreover, for k = 1, 2,

F k = Rk ∩H = Rk ∩ {b | (A−1
Bk)(i)b = 0} = {ABkz | z ∈ Rm, z ≥ 0, zi = 0}.

Since B1 and B2 differ only at their ith index, we have F 1 = F 2. Therefore, R1 ∩ R2 =

F 1 = F 2. �

The above proof states that if a neighbor basisB2 is obtained fromB1 by a dual simplex

pivot with the ith row as a pivot row, then the ith constraint of R1, (A−1
B1)(i)b ≥ 0 defines
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the hyperplane betweenR1 andR2. In other words, if one can perform a dual simplex pivot

with the ith row as a pivot row, then there is a (geometrically) neighboring critical region

on the other side of the hyperplane. The next theorem states that if one cannot perform a

pivot operation with the ith row as a pivot row, then there is no feasible point b ∈ F on the

other side of the hyperplane.

Theorem 3.2.4 Consider the simplex tableau at a basis B and let R denote the critical

region. If a dual simplex pivot cannot be performed with the ith row as a pivot row, then

there is no feasible point b ∈ F on the other side of the hyperplane defining the ith facet

of R.

Proof: Assume that there exists b ∈ F such that (A−1
B )(i)b < 0. Since F is the set of conic

combinations of columns of A, there exists Aj such that (A−1
B )(i)Aj < 0. Thus, the ith row

of the tableau has a negative entry at the jth column. Therefore, one can perform a dual

simplex pivot with the ith row as a pivot row and the resulting (algebraic) neighbor is on

the other side of the ith facet. �

This theorem implies that, if there is a feasible parameter value b ∈ F on the other

side of a hyperplane defining a facet, then it is possible to perform a dual simplex pivot

to find a (algebraic) neighbor across the facet. This theorem is central to the proposed

computational approaches in Section 3.3 and 3.4. A given LP may not be feasible for all

given parameter values in many realistic modeling frameworks and the theorem suggests

an approach to find boundaries of F and to exclude those parameter values that make (Pb)

infeasible while exploring critical regions. If the simplex tableau at an optimal basis has a

row with no negative entry, then the corresponding hyperplane also defines a facet ofF and

we can exclude those parameter values on the other side of the hyperplane as they make

(Pb) infeasible.

In addition to the above two theorems stated in [67], we add the following theorem,
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which completes proving the equivalence between algebraic neighbors and geometric neigh-

bors.

Theorem 3.2.5 If two critical regions are geometric neighbors, then they are also alge-

braic neighbors.

Proof: Consider the critical regions R1 and R2 assumed to be geometric neighbors and let

B1 and B2 be their corresponding optimal bases, respectively. Let F = R1 ∩ R2 be the

shared facet. Let F be the ith facet of R1 and the i′th facet of R2, i.e.,

F = {AB1z | z ∈ Rm, z ≥ 0, zi = 0} = {AB2z | z ∈ Rm, z ≥ 0, zi′ = 0}.

Using this equality and the fact that all columns of AB1 and AB2 are extreme rays of F , it

is easy to show that B1 \ {B1(i)} = B2 \ {B2(i′)}, that is, B1 and B2 differ only by one

basic variable. Let B2(i′) = j.

Let H denote the hyperplane containing the facet F . Since R1 and R2 lie on the op-

posite sides of H , for all b ∈ R2, (A−1
B1)(i)b ≤ 0. Since R2 has an interior point by

Proposition 3.2.1, there exists b̂ ∈ R2 such that (A−1
B1)(i)b̂ < 0 and since B2 \ B1 = {j},

we have (A−1
B1)(i)Aj < 0. This implies that the (i, j) element of the simplex tableau at

B1 (which is the matrix A−1
B1A) is negative. Thus, we can perform a dual simplex pivot

operation at B1 removing its ith basic variable. Moreover, we can show that in the pivot

operation, xj wins the min ratio test (possibly allowing a tie). In short, if we assume that

xj does not win the min ratio test, then we can easily show that there is a nonbasic variable

with negative reduced cost at B2, that is, B2 is not an optimal basis, thus a contradiction.

Therefore, xj can enter the basis and B2 is obtained from B1 by a dual simplex pivot. �

By Theorems 3.2.3 and 3.2.5, we have the equivalence of neighbors and geometric

neighbors and thus the following corollary.
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Corollary 3.2.6 Two critical regions are algebraic neighbors if and only if they are geo-

metric neighbors.

The partition of F into critical regions depends on degeneracy of the dual of (P). If the

dual of (P) is nondegenerate, i.e., (Pb) has a unique optimal solution for any b ∈ F , then

F is uniquely partitioned by the collection of all critical regions. They can be found by

starting at a critical region, and finding its neighbors, neighbors of neighbors, and so on

[66].

Under degeneracy of the dual of (P), there can be multiple partitions of F by critical

regions as demonstrated by [11]. Under dual degeneracy, there is a tie in the min ratio

test of a dual simplex pivot in the search for neighbors. Specifically, say at a basis B1,

there is a tie between two nonbasic variables in the min ratio test and let B2 and B3 be the

two resulting bases. Then, for each of B2 and B3, there is a nonbasic variable with zero

reduced cost. Note that B2 can be obtained from B3 by a primal simplex pivot making the

nonbasic variable with zero reduced cost basic and vice versa, but they are not neighbors

according to the definition of neighboring bases. In fact, by using arguments similar to the

proof of Theorem 3.2.3, we can show that their corresponding critical regions share a facet,

but they lie on the same side of the facet and thus overlap. This implies that, in case of dual

degeneracy, there can be multiple partitions of F by critical regions. However, any tie-

breaking rule for the min ratio test gives a unique collection of critical regions partitioning

F [11].

3.3 Solving Large Batches of LPs: A General Algorithm

Based on Theorems 3.2.2 and 3.2.4, and Corollary 3.2.6, we develop an algorithm that

solves a large number of LPs with different right hand sides. Our algorithm does not solve

each individual LP separately. Instead, it solves LPs in batches, each of which contains

LPs with right hand sides belonging to the same critical region.

Suppose that for a data point b1, (Pb1) is solved by the simplex method (from now on,
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we also call the parameter values data points as they are points in the parameter space). Let

B1 be the optimal basis. The inverse of the basis matrix AB1 is obtained as a byproduct of

the simplex method. Then, the critical region RB1 is given as in (3.3) and for data points in

RB1 , V (b) and an optimal solution x?(b) are obtained as in (3.4) and (3.5). For any (ge-

ometric) neighbor of RB1 , the optimal basis is obtained from B1 by a dual simplex pivot.

Let B2 be a neighbor basis of B1. The inverse of the basis matrix AB2 is obtained from the

inverse of AB1 by performing elementary row operations to obtain the tableau of B2 from

the one of B1. Specifically, a matrix E such that EA−1
B1 = A−1

B2 , representing the elementary

row operations, can be constructed. Then, the critical region RB2 is obtained and for pa-

rameter values in RB2 , V (b) and x?(b) are also obtained. Therefore, after solving one LP

at the beginning, we can find critical regions covering sets of parameter values and compute

V (b) and x?(b) in the critical regions without solving an additional LP or inverting another

matrix. Thus, obtaining an additional (neighboring) critical region is computationally in-

expensive in comparison to solving an LP, which is a key to the efficiency of the proposed

algorithm.

This property of critical regions is well established in parametric programming liter-

ature, but it has only been used to find all critical regions that partition F so that the

functions V (b) and x?(b) are completely constructed in F [52, 66]. For example, [66]

suggested an algorithm that finds a collection of critical regions that partitions F and their

corresponding bases. However, the number of critical regions in F can be exponential in

the problem size [54]. Our goal in this paper is not to find all critical regions partitioning

F , but to instead find only those critical regions that cover the given set of parameter values

in Θ = {b1, . . . ,bK}.

Motivated by our understanding of critical regions and neighbors, we first present our

algorithm for solving batches of LPs with differing RHSs in its most general form (Al-

gorithm 1). The algorithm starts with an initial critical region (line 4), solves LPs whose

RHSs belong to the critical region (line 7-9), checks if any facet of it is a facet of F , and
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if so, then excludes those parameter values on the other side of the hyperplane based on

Theorem 3.2.4 (line 12-14), finds a neighbor of a previously explored critical region (line

16), and then repeats the process, until it finds all of the critical regions covering the param-

eter values in Θ. We emphasize again that A−1
B A in line 13 is available from the simplex

tableau of the current basis B and that A−1
B in line 8 is also obtained from the inverse of

the previous basis matrix by simply performing the elementary row operations as explained

above.

The starting point of the algorithm needs to be selected based on the set of parameter

values that need to be covered. For example, if the set of parameter values is a sample from

a unimodal probability distribution, we can start the covering search at the (sample) mode

of the distribution and find critical regions near the mode to cover the sample parameter

values. Since we expect the majority of the sample values to be located around the mode,

we also expect the majority of the values to belong to critical regions near the mode. If the

distribution is multimodal, one can consider partitioning the given points using a clustering

algorithm in a way that each cluster forms a unimodal distribution and applying the pro-

posed method to each cluster, possibly in a parallel fashion. For ease of presentation, we

will focus on unimodal distributions and hence one starting point.

Before analyzing the computational complexity of this algorithm, we provide an alter-

native approach to the computation in line 8. Each time a new critical region is found, the

algorithm needs to check if data points that are yet to be covered belong to the newly found

critical region, i.e., the inequality A−1
B b ≥ 0 in line 8. The computational burden of check-

ing the inequality isO(n2) for each b given the inverse A−1
B . However, for two neighboring

bases B and B′, we have A−1
B b = EA−1

B′ b, where E is the matrix of the elementary row

operation obtaining the tableau of B from that of B′, and thus, if we have A−1
B′ b already

computed and stored for b ∈ Θ that needs to be checked at B, then the A−1
B b values can be

obtained by performing the elementary row operations on A−1
B′ b, which requires onlyO(n)

operations for each b. Thus, by storing the values of A−1
B b for b’s that are not yet covered,
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Algorithm 2 A Batch Solution Algorithm for LPs with Different RHSs

1: Input: A set of data points Θ = {b1, . . . ,bK} and an initial point b0

2: Initialize:
3: Set of explored bases P ← {}
4: Solve (Pb0) to find the optimal basis B
5: while Θ 6= ∅ do
6: Solve a Batch:
7: for b ∈ Θ do
8: if A−1

B b ≥ 0 then
9: Store A−1

B b = x?(b)B as an optimal solution of (Pb) and exclude b from Θ
10: P ← P ∪ {B}
11: Feasibility Check:
12: for i = 1, . . . ,m do
13: if (A−1

B A)(i) ≥ 0 then
14: Exclude from Θ those bs satisfying (A−1

B )(i)b < 0 and mark them ‘infeasible’
15: Choose a Neighbor:
16: Choose a previously explored basis B′ ∈ P and find a previously unexplored neigh-

boring basis B′′ of B′ that is not in P
17: B ← B′′

we can save computations in testing to which critical region the parameter values belong

for further search. The computational improvement comes at the expense of memory usage

since this technique requires the values A−1
B b to be stored for each critical region explored

and for each b ∈ Θ uncovered yet.

The worst case computational complexity of the above algorithm is O(Ln2.5 + Qn2 +

Kn2 + KQn), where Q is the total number of critical regions the algorithm explores and

L is the maximum size of the LP (Pb) in binary coding (for simplicity of discussion, we

assume in the rest of this section that the LP is feasible for all parameter values given, so

the feasibility check part is omitted). This bound is conservative in the sense that it assumes

that all points are covered by the last critical region found. The first term is the complex-

ity of solving one LP by the interior point method to find an initial critical region, which

cannot be further reduced [70]. The second is the complexity of identifying neighbors and

obtaining the corresponding optimal bases. The third and the final term are the complexity

of checking to which critical region each b ∈ Θ belongs, discussed in the previous para-

graph, for the initial critical region and the later ones, respectively. For comparison, the
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computational complexity of the brute-force approach, solving each individual LP using

the interior point method, isO(KLn2.5). Note that if we sample a certain number of values

for each entry of b, then K equals the total number of combinations of the sampled entries,

thus is exponential in n. If we consider the maximum number of bits to store each entry of

A,b, c to be fixed, then L = O(n2). Then, the computational complexity of Algorithm 1 is

O(n4.5 +Qn2 +Kn2 +KQn) as opposed toO(Kn4.5) of the brute-force approach. Appar-

ently, the computational efficiency of our approach will depend onQ, the number of critical

regions explored to cover the parameter vectors. If the order of Q is bigger than O(Kn2.5)

or O(n3.5), then the theoretical computational complexity of the proposed approach will

be worse than that of the brute-force. The total number of critical regions partitioning

F can be exponential in problem size [54]. Thus, as the number of critical regions that

have to be found to cover given parameter vectors increases, the proposed method may be

asymptotically slower than the brute-force approach.

However, the number of critical regions that contain the parameter values can be rel-

atively small in practice. The efficiency of the proposed algorithm is determined by how

many critical regions the algorithm finds to obtain those critical regions covering all or

most of the parameter vectors, which depends on the specifications of an implementation:

the choice of the starting point b0 (line 1), the method of choosing a previously explored

basis B′ ∈ P , and the method of choosing a previously unexplored neighboring basis B′′

of B′ (both in line 16). Depending on the underlying distribution of the sample parameter

values (e.g., symmetric but with different spreadness across dimensions; or symmetric in

some dimensions but skewed in other dimensions), we can consider different strategies in

exploring critical regions. One advantage of the proposed algorithm is that we can improve

on its efficiency (i.e., reduce Q) by accounting for the distribution of the sample param-

eter values. We present such a data-driven approach in Section 3.4 and demonstrate its

effectiveness by experimental results in Section 3.5.

Lastly, it is illustrative to view our algorithm using graph theory (see Figure 3.2 in
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the next section or Figure 4-13 on page 155 of [11]). Consider a graph G whose nodes

correspond to optimal bases and in which there is an edge between two nodes if and only

if the two optimal bases are neighbors. Then, the above search algorithm reduces to a

node traversal algorithm on the unknown graph G where only a single starting node is

initially known. Finding a neighboring critical region corresponds to moving along an

edge to discover a new node in G. We also remark that a node in the context of our search

algorithm corresponds to an entire critical region, and hence represents a subset of points

in the search space, while nodes of a graph often refer to points in the search space in the

classical graph theory. Let us refer to an optimal basis as being at level k if the shortest

path to the initial optimal basis we find is k − 1 edges (thus, the initial basis is at level 1

and its neighbors are level 2, etc.). Then, the above complexity comparison indicates that

roughly speaking, if our algorithm has to find level 5 neighbors, i.e., Q is in the order of n4

or higher, then its complexity may become worse than that of the brute-force approach; this

can guide a stopping criterion of searching for critical regions containing parameter values

in Θ. The goal of the next section is developing a search strategy that limits the order of Q,

while covering as many parameter values as possible.

3.4 Solving a Collection LPs: A Data-Driven Algorithm

There is a fundamental challenge in the general search algorithm introduced in the previous

section: the geometry of the critical regions is learned with each step in the searching

procedure. Thus, the search is over an unknown graph. As the algorithm progresses, it

finds a combination of columns of A that forms an optimal basis, obtains the inverse of the

basis matrix, and then determines what portion of Θ is covered by the critical region as in

(3.3). Prior to performing the search, however, it is unknown which bases are optimal bases,

so one cannot know the shape and location of critical regions to be found. Consequently,

one can anticipate neither how many parameter values each critical region would cover nor

how many critical regions must be explored to cover all or a specified proportion of sample
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(a) Initial Critical Region (b) Critical Regions on Skeleton

Illustration of the

Skeleton Building

parameter values.

The distribution of the sample parameter values can, however, inform an implemen-

tation of our algorithm to guide our search toward the critical regions of interest. In this

section, we present an implementation of the general algorithm that exploits the distribu-

tion of the sample parameter values using the sample covariance matrix and its spectral

decomposition. The sample covariance matrix of the data points, denoted as Σ, along with

its eigenvectors, describes how the data points are distributed around the sample mean. In

particular, the eigenvector with the largest eigenvalue gives the direction along which the

data points are distributed farthest away from the sample mean. Our new algorithm will first

search along the directions given by the eigenvectors with the largest eigenvalues, using the

tool of one-dimensional parametric RHS LP [11]. Thus, the first phase of our algorithm

can be viewed as building a “skeleton” of critical regions, following the directions along

which the data points are distributed far away from the sample mean. The next phase will

find neighbors of the critical regions on the “skeleton” to cover the rest of the data points.

A graphical representation of the skeleton building process is given in Figures ?? and 3.2.

Let v1, ...,vm be the eigenvectors of Σ, sorted in decreasing order of their correspond-

ing eigenvalues. For each eigenvector of the I largest eigenvalues, where I is an input

parameter, we solve a scalar parametric RHS LP along the direction of the eigenvector. For
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(a) Initial Critical Region (b) Skeleton

(c) Neighbors of Skeleton Nodes (d) Neighbors of Neighbors

Figure 3.2: Graph Representation of the Data-Driven Algorithm

a unit eigenvector vi, consider the following scalar parametric RHS LP: solve

(Pi,θ) min
x

c′x

s.t. Ax = b̄ + θvi

x ≥ 0,

for θ ∈ [
¯
Di, D̄i], where b̄ is the sample mean,

¯
Di = minb∈Θ{vTi (b − b̄)}, and D̄i =

maxb∈Θ{vTi (b − b̄)}. The lower and upper bounds of θ (
¯
Di and D̄i) are, respectively,

the minimal and maximal scalar projections of b − b̄ onto vi for b ∈ Θ, yielding the

farthest projected distances between data points and the sample mean onto the two opposite

directions given by vi.

Solution methods for scalar parametric RHS LPs have been studied extensively in para-

metric programming literature (see [11] and references therein). The solution algorithm

amounts to finding neighbors following the procedure described in the previous section,

while the RHS moves along the line segment. Note that, necessarily, 0 ∈ [
¯
Di, D̄i] and

problems (Pi,0) and (Pb̄) are identical for all i = 1, . . . ,m. This means that after solving
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an initial LP (Pb̄), we have a starting critical region for all I scalar parametric problems.

Solving (Pi,θ) for θ ∈ [
¯
Di, D̄i] finds critical regions that intersect the line segment. Since

eigenvectors with the largest eigenvalues give the directions with highest variances, finding

those critical regions intersecting the line segments along the eigenvectors advances our

search away from the initial critical region in the direction where data points are located.

Motivated by this geometric idea for the search, we present a data-driven algorithm

for solving batches of LPs with differing b’s sampled from a unimodal probability distri-

bution (Algorithm 2 and 3). Similarly to the general algorithm, the data-driven algorithm

starts with an initial critical region, then finds neighboring critical regions in three phases.

The first phase performs the one-dimensional parametric search to ‘Build the Skeleton’.

The second phase (‘Search near the Skeleton’) finds critical regions around the “skeleton”,

guided by location of data points yet uncovered. It chooses an explored critical region that

covers the most data points, finds the facet of the critical region that has the most uncovered

data points on the other side and leads to an unexplored neighbor, explores the neighbor

across the facet, then repeats the process. In the last phase (‘Cover Outliers’), the LPs for

the remaining b’s are solved.

The ‘Build the Skeleton’ phase of Algorithm 2 can be viewed as giving ‘depth’ to our

search, advancing our exploration in the directions of highest variance and providing a

“skeleton” for the remainder of the search. Using the “skeleton” provided, the next phase

gives ‘breadth’ to our exploration, prioritizing the neighbors near the previously found

critical regions, and the last phase covers outliers. For the stopping criterion at line 10 in

Algorithm 2, we used the following rule in our implementation: as the search goes on,

we compute the number of parameter values covered by the most recent q critical regions

discovered, denoted as cq, and stop if cq
q
< rK where r is a pre-specified threshold.

56



Algorithm 3 A Data-Driven Algorithm for Solving LPs with Different RHSs

1: Input: A set of data points Θ = {b1, . . . ,bK} and a positive integer I ≤ m
2: Initialize:
3: Solve (Pb̄) to find the optimal basis B0

4: Θ← BatchSolve(Θ, B0) (see Algorithm 3)
5: Set of explored bases P ← {B0}.
6: Build the Skeleton:
7: for i = 1, . . . , I do
8: Solve (Pi,θ) for θ ∈ [

¯
Di, D̄i] and for each optimal basis B obtained, run Θ ←

BatchSolve(Θ, B) and update P ← P ∪ {B}
9: Search near the Skeleton:

10: while a stopping criterion is not met do
11: Find the basis B ∈ P whose critical region covers the most data points
12: Find the i∗th neighbor B′ of B such that B′ is unexplored and the other side of the

i∗th facet of B has the most uncovered data points
13: Θ← BatchSolve(Θ, B′)
14: P ← P ∪ {B′}
15: Cover Outliers:
16: while Θ is not empty do
17: Choose a b ∈ Θ and solve (Pb) to obtain its optimal basis B
18: Θ← BatchSolve(Θ, B)
19: P ← P ∪ {B}

Algorithm 4 BatchSolve(Θ, B)
1: for b ∈ Θ do
2: if A−1

B b ≥ 0 then
3: Store A−1

B b = x?(b)B as an optimal solution of (Pb) and Θ← Θ \ {b}
4: for i = 1, . . . ,m do
5: if (A−1

B A)(i) ≥ 0 then
6: Exclude from Θ those bs satisfying (A−1

B )(i)b < 0 and mark them ‘infeasible’
7: return Θ
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3.5 Experimental Results

In this section, we compare the empirical performance of the data-driven approach (DD in

short), the brute-force, and two additional approaches using the idea of warm start. The

‘warm start’ (WS in short) first solves the LP for a randomly chosen parameter vector and

then repeats the following two steps: randomly chooses an unsolved parameter vector and

solves the LP starting from the optimal solution of the previous parameter vector. The

‘warm start with batch solve’ (WSBS in short) is the same as the warm start except that

every time it solves an LP, it obtains the critical region of the optimal basis and checks if

other parameter vectors belong to the critical region [60]. Both of WSBS and DD cover

points by critical regions, but WSBS finds critical regions in a random manner while DD

uses the distributional information of the sampled data points. The objective of this exper-

imental study is to compare the four approaches and to highlight how properties of given

data affect their efficiency.

3.5.1 Problem Instances

In this experimental study, one problem instance requires input of A, c, and Θ, the set of

bs to solve the LP. We generated problem instances based on five existing LPs (Table 3.1),

including four benchmark problems from the MIPLIB 2010 repository [71] and a linear

optimization problem from a real application whose details are explained in Section 3.5.7.

Since the problems from MIPLIB are integer programs, we relaxed the integer constraints

and solved their LP relaxations. Table 3.1 shows the number of variables and the number

of constraints for the five base problems. Based on these five problems, we produced prob-

lem instances by generating Θs with different sizes and varying distributional properties.

By generating instances in such a way, we evaluated how the performance of the four ap-

proaches vary as the size of Θ increases, as the distribution of Θ changes, and as the rest of

the problem structure given by A and c varies. In total, we tested for 77 (A, c,Θ) triplets.

58



Table 3.1: Base problems for generating instances

Problem # constraints # variables Source

enlight13 169 338 MIPLIB

enlight15 225 450 MIPLIB

mik-250-1-100-1 401 652 MIPLIB

roll3000 3,460 4,626 MIPLIB

Access problem 285 15,120 real application

3.5.2 Implementation Setup

We set the following parameters for our implementation of DD (Algorithm 2). First, we

choose I , the number of eigenvectors for the algorithm building the “skeleton”, to be the

smallest positive integer I such that (
∑I

i=1 λi)/(
∑m

i=1 λi) ≥ 1−α where we chose α = 0.4

and λi is the ith largest eigenvalue of the sample covariance matrix. This approach is

common in principal component analysis, where I is interpreted as the smallest number

of eigenvectors explaining at least (1 − α) × 100% of the total variance. For the stopping

criterion of the data-driven algorithm, we used q = 50 and a threshold r = 0.001.

We implemented Algorithm 2 using MATLAB 2012b. For solving LPs in Algorithm

2 (line 3 and 17), we used CPLEX 12.6.3.0. For the other three approaches, we also used

CPLEX for solving LPs. We let CPLEX choose a solution method (primal simplex method,

dual simplex method, or interior point method), and it chose one of the simplex methods

for all instances we tried. We used a computer with Intel Xeon 1.8 GHz CPU and 64 GB

RAM.

3.5.3 Evaluating the Data-Driven Approach for Varying Distributions

We evaluated DD and its three phases using the ‘enlight15’ problem and 10 samples of

parameter vectors with sizeK = 100, 000. The samples were generated from a multivariate

normal distribution of dimension m = 225 with mean µ = [200, . . . , 200]T and covariance

59



matrix Σ, where

Σi,j =


60 if i = j = 1,

1.01i if i = j ∈ {2, . . . , 225},

0 if i 6= j.

(3.6)

For each of the 10 samples, we ran DD to solve the 100,000 LPs. In Figure 3.3, we show

the percentage of data points covered as a function of CPU time for each of the 10 samples.

The two vertical lines indicate the average time of the transitions between the 3 phases of

our algorithm: the first line at the transition between the skeleton building and the search

near the skeleton, and the second line at the transition between the search near the skeleton

and covering outliers.

Figure 3.3: Coverage % vs. CPU time of the data-driven algorithm for normally distributed
data

In Figure 3.3, over 60% of the sample parameter values were covered by the skeleton

building phase after 4.28 seconds on average (the first vertical line in the figure). When
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the next phase, in which the algorithm searches near the Skeleton, ends (the second verti-

cal line in the figure), over 85% sample points are covered in 30.32 seconds on average.

On average, the data-driven algorithm took 2.57 minutes to solve the 100,000 LPs and ex-

plored 458.9 critical regions on average, among which an average of 379.6 critical regions

contained data points.

We also evaluated DD for parameter vectors generated from an exponential distribution,

which is not symmetric as opposed to the normal distribution in the previous experiment.

We again obtained 10 samples of size K = 100, 000 from the following distribution:

bi ∼


200−

√
60 + Expo(

√
60) if i = 1

200−
√

1.01i + Expo(
√

1.01i) if i ∈ {2, . . . , 225},

where bi denotes the ith component of b and Expo(µ) is the exponential distribution with

mean µ. Note that the the first two moments of this distribution are the same as those of

the normal distribution in the previous experiment.

Figure 3.4: Coverage % vs. CPU time for exponentially distributed data
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The results were similar to those of the normal distribution. Our algorithm took an

average 1.38 minutes to solve 100,000 LPs, exploring 295.0 critical regions on average to

find 221.9 critical regions containing data points. In Figure 3.4, we present the coverage

percentages of sample parameter vectors by CPU time. Comparing Figures 3.3 and 3.4,

we find that the percentage of data points covered at any given time varies more in the

exponential case than in the normal case. The skewness of the exponential distribution

causes some data points to be located further from those critical regions in the skeleton

than they are in the normal case. The second phase of DD (Search near the Skeleton)

is guided only by the notion that we should explore neighbors near those critical regions

where data points were previously covered. Therefore, a wider spread of data points could

lead to less consistent performance during the second phase.

3.5.4 Comparing the Four Approaches for Varying Sample Sizes

In this section, we compare the four approaches for varying Ks. We ran these experiments

using ‘enlight15’ with two kinds of distributions of b, the first distribution is the same as the

normal distribution in the previous section and the second is a normal distribution with the

same mean vector but all entries of b have an equal variance. We call the first distribution

‘ellipse-shaped’ as the entries of b have different variances and the second distribution as

‘sphere-shaped’.
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Ellipse-shaped data.

Table 3.2: CPU time comparison for varying Ks and ellipse-shaped data

K CRs
CPU time (min)

DD WSBS WS Brute-Force

100 18 0.01 0.01 0.02 0.05

500 49 0.04 0.03 0.04 0.27

1,000 58 0.05 0.05 0.14 0.56

5,000 107 0.16 0.14 1.15 3.62

10,000 149 0.29 0.25 2.83 8.66

50,000 290 1.24 1.12

100,000 383 2.59 2.20

500,000 680 13.18 11.71

1,000,000 834 28.17 25.31
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Table 3.3: Comparison of DD and WSBS in pivots and membership checks for varying Ks
and ellipse-shaped data

K
# Pivots # Membership checks

DD WSBS DD WSBS

100 379 387 204 382

500 584 584 1,825 3,143

1,000 598 614 3,288 5,769

5,000 882 878 21,303 37,191

10,000 1,127 1,141 39,214 60,760

50,000 1,985 1,949 246,232 406,004

100,000 2,655 2,642 605,422 829,656

500,000 4,891 4,844 3,012,348 3,947,233

1,000,000 5,997 5,997 6,369,859 8,627,948

We generated data sets of varying sizes from the ellipse-shaped normal distribution and

compared the four approaches. Table 3.2 shows the CPU time of the four approaches. It

also shows the number of critical regions containing points for each instance, in the column

titled ‘CRs’. DD and WSBS are much faster than the other two approaches and WS is faster

than the brute force. Since the CPU times of the two slower approaches get large quickly as

K increases, we measured them only up to K = 10, 000. The CPU time of DD is slightly

higher than that of WSBS. For K up to 50,000, the CPU times of the two faster approaches

grow at a slightly slower rate than the rate at which K grows. For larger Ks, their CPU

times grows at higher rates, possibly due to the burden of storing solutions for the large

number of points.

For the two faster approaches, DD and WSBS, the majority of their computation con-

sists of performing pivot operations and checking which bs belong to each newly found

critical region (called herein ‘the membership check’). Table 3.3 shows the number of
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pivot operations and the number of membership checks of the two approaches for varying

Ks. For WSBS, the number of pivots is the total number of pivots the CPLEX simplex

method performed to solve all given LPs. In Table 3.3, DD requires much fewer member-

ship checks than WSBS for all Ks. On the other hand, they performed similar numbers of

pivot operations. Since DD uses a search strategy based on the distributional information

of the sampled points, it finds critical regions that contain many points earlier than WSBS

does. However, because both the pivot operation and the membership check parts of DD

were implemented by the authors for research purpose while the pivot operation part of

WSBS is done by CPLEX, hence using computing techniques more effectively, the CPU

time of DD is only comparable to that of WSBS.

Sphere-shaped data.

Table 3.4: CPU time comparison for varying Ks and sphere-shaped data

K CRs
CPU time (min)

DD WSBS WS Brute-Force

100 12 0.01 0.01 0.02 0.06

500 24 0.02 0.01 0.07 0.26

1,000 27 0.02 0.02 0.15 0.59

5,000 57 0.06 0.06 1.01 3.78

10,000 76 0.11 0.10 2.69 9.14

50,000 142 0.42 0.41

100,000 173 0.92 0.7

500,000 281 4.87 4.38

1,000,000 362 11.19 9.80
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Table 3.5: Comparison of DD and WSBS in pivots and membership checks for varying Ks
and sphere-shaped data

K
# Pivots # Membership checks

DD WSBS DD WSBS

100 381 386 135 212

500 443 444 892 1,586

1,000 466 474 1,666 2,866

5,000 618 609 10,186 16,523

10,000 715 716 22,018 33,746

50,000 1,107 1,094 115,390 177,417

100,000 1,266 1,253 244,485 405,349

500,000 1,968 1,967 1,176,249 1,820,552

1,000,000 2,447 2,465 2,337,547 3,834,952

We repeated the experiment of the previous section, but with Θ generated using a different

covariance matrix Σ = 3.1347I , where I is the identity matrix. The scalar 3.1347 was

chosen so that the determinant of the covariance matrix remains the same as that of the

previous experiment. Table 3.4 shows the CPU time of the four approaches and Table 3.5

shows the number of pivot operations and the number of membership checks for DD and

WSBS. Their overall comparison is similar to that of the case of ellipse-shaped data. Again,

the number of membership checks is consistently lower for DD, implying that DD finds

critical regions covering many points faster than WSBS.

3.5.5 Comparing DD and WSBS for Varying Benchmark Problems

Since it is clear that DD and WSBS are more efficient than WS and the brute-force, we

compared DD and WSBS in the remaining experiments. In this section, we compare them

for the four benchmark problems from MIPLIB. For each benchmark problem, we gener-
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ated Θ of size K = 50, 000 from an ellipse-shaped multivariate normal distribution. For

‘enlight15’, we used the same normal distribution as in Section 3.5.3. For the other three

problems, we also used similar distributions, but details are slightly different because the

scale of the constraints varies across problem. The details of the sampling normal distribu-

tions for the other three problems are given in Appendix A.

Table 3.6: Comparison of DD and WSBS for varying benchmark problems, all ellipse-
shaped data, K = 50, 000

Problem CRs
# Pivots # Membership checks CPU time

DD WSBS DD WSBS DD WSBS

enlight13 125 752 779 98,736 154,801 0.26 0.19

enlight15 290 1,985 1,949 246,232 406,004 1.24 1.12

mik-250-1-100-1 1,288 6,894 6,964 4,000,122 4,525,461 6.71 6.40

roll3000 3 803 609 898,900 114,795 19.63 1.03

Table 3.6 compares DD and WSBS for the four instances in the number of pivots, the

number of membership checks, and the CPU time. For the first three instances, the two ap-

proaches perform similar numbers of pivots and DD requires a less number of membership

checks but is slightly slower than WSBS in CPU time. However, the pattern does not hold

for ‘roll3000’, for which DD performs by far more pivots and is much slower than WSBS.

Note that the 50,000 points belong to only three critical regions. Since WSBS chooses

an uncovered point and obtains the critical region covering the point, WSBS quickly finds

those three critical regions. On the other hand, DD obtains all critical regions in the skele-

ton and searches some neighbors of the skeleton even though only three critical regions

contain points. While the results for the other instances show the effectiveness of the data-

driven search strategy, there are problems such as the instance of ‘roll3000’ in which DD

does not perform comparatively or better than WSBS because the distribution of sampled

points matches the geometry of critical regions in a particular way. For more results of
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‘enlight13’, ‘mik-250-1-100-1’, and ‘roll3000’, see Appendix A.

3.5.6 Effect of Variability in b

We evaluated how the variance of b affects the efficiency of DD and WSBS. We sampled

b from the same multivariate normal distribution as in Section 3.5.3, but for the covariance

matrix we used tΣ for t = 0.5, 0.6, . . . , 1.5, where Σ is the original covariance matrix

defined as (3.6). For each t value, we generated a data set of size K = 100, 000 for which

we solved the ‘enlight15’ problem using DD and WSBS.

Table 3.7: Comparison of DD and WSBS for varying constants multiplied to the covariance
matrix, K = 100, 000

t CRs
# Pivots # Membership checks CPU time

DD WSBS DD WSBS DD WSBS

0.5 74 659 669 128,973 175,059 0.33 0.29

0.6 121 933 941 158,319 248,565 0.56 0.5

0.7 176 1,329 1,304 241,501 354,040 0.95 0.78

0.8 222 1,521 1,520 291,515 470,933 1.22 1.06

0.9 293 2,034 2,014 369,732 570,993 1.71 1.52

1 383 2,647 2,623 518,651 793,193 2.46 2.25

1.1 488 3,511 3,494 664,643 1,006,703 3.45 3.17

1.2 614 4,241 4,311 1,021,733 1,308,266 4.99 4.51

1.3 716 5,242 5,245 1,534,780 1,706,076 6.18 5.84

1.4 868 6,352 6,358 2,126,265 2,253,058 8.37 8.06

1.5 990 7,162 7,138 2,997,976 2,605,891 11.09 10.01

Table 3.7 compares DD and WSBS for varying scalars multiplied to the covariance

matrix. The number of pivots is similar for the two approaches across all t values. However,

the number of membership checks of DD is consistently lower except for t = 1.5. The CPU
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time of the two approaches is similar.

3.5.7 Access Measure Application

We also evaluated our approach for an LP from a specific application, measuring spatial

access to healthcare services over a geographic area [17, 20]. Because spatial access is a

manifestation of the dynamics between a service provider network and the need or demand

for the service, its estimation requires modeling the ‘matching’ of service providers with

need/demand. Optimization models have been previously considered to derive such match-

ing that optimizes an overall system performance such as the total travel distance under a

series of realistic constraints related to need and supply. The resulting optimization prob-

lem is an LP and the output solution represents the matching between supply and demand.

Measures of spatial access are formalized as linear functions of the output solution, thus

subject to variations of the parameters in the optimization model.

We considered a simplified version of the model in [17] for estimating access to pe-

diatric specialized asthma care within the geographic area of Savannah, Georgia. The LP

has a variable xij for each pair of a census tract i ∈ I and a healthcare provider j ∈ J ,

representing the assignment of the provider’s capacity for care to patients living at the cen-

sus tract. Then, the following LP is solved to find a matching between demands in census

tracts and providers:

min
∑
i∈I

∑
j∈J

dijxij

s.t.
∑
i∈I

xij ≤ uj for j ∈ J

∑
j∈J

xij = vi for i ∈ I

x ≥ 0,

where dij is the travel distance between census tract i and provider j, uj is the capacity of
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provider j, and vi is the demand of census tract i. The LP for Savannah has 15,120 vari-

ables and 285 equality constraints in standard form. The capacity parameters (uj’s) were

sampled from a discrete distribution, while the demand parameters (vi’s) were sampled

from a multivariate normal distribution. Details of the sampling procedures for both sets of

parameters and their data sources can be found in the online supplementary material. We

generated samples of varying sizes, and compared DD and WSBS. The results are shown

in Table 3.8.

Table 3.8: Comparison of DD and WSBS for the access measure LP

K CRs
# Pivots # Membership checks CPU time

DD WSBS DD WSBS DD WSBS

100 12 156 105 321 307 0.19 0.03

500 20 135 129 1,188 1,772 0.18 0.03

1,000 20 167 108 4,665 2,761 0.25 0.05

5,000 23 183 138 19,893 15,189 0.3 0.05

10,000 23 174 150 39,683 34,040 0.31 0.08

50,000 31 160 166 97,252 146,557 0.39 0.16

In Table 3.8, DD is slower than WSBS in CPU time across all Ks. Although not shown

in the table, we also tested WS, but it took about 2 hours to solve 10,000 LPs as opposed

to DD and WSBS which took less than a minute. DD also performed more pivots and

membership checks than WSBS for Ks up to 10,000. However, for K = 50, 000, DD

performed less pivots and much less membership checks than WSBS.

The performance of DD can be explained by the mismatch between the distribution of

sampled data points and the type of the distributions DD is designed for. The RHSs of the

access problem are sampled from both discrete and normal distributions, thus there may

not be many sampled bs near the sample mean. Moreover, the data points may not be

located along the eigenvectors of the sample covariance matrix around the sample mean.
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In contrast, Algorithm 2 was designed mainly for unimodal continuous distributions and

demonstrated good performance for such distributions. However, as K gets large (such as

K = 50, 000 in Table 3.8), the performance of DD gets better. It is possible that for a small

K the sampled points are well separated into several groups due to the discrete distribution

of some part of b, but as K increases the sampled points are less separated because of the

normal distribution part of b, and thus the performance of DD improves. In sum, the above

results illustrate the importance of matching the premises of a specific implementation of

our general approach and the underlying distribution of the given data.

3.6 Conclusion

Solving a large collection of LPs with different parameters arises in various contexts, such

as sensitivity analysis and stochastic programming. We developed a new approach to solv-

ing a large number of LPs with the same dimension and structure, but different parameter

values, by borrowing information across “similar” LPs where similarity is in the sense of

geometric proximity of the critical regions. We formally established the geometric prop-

erties of critical regions, and using the results, introduced a general approach for solving a

collection of LPs in batches. Further, we developed a data-driven algorithm based on our

general approach. The experimental results on a set of benchmark problems with varying

data sets demonstrate the computational efficiency of the proposed approach over other

approaches. The results for various problem instances show that the computational load

(the numbers of pivots and membership checks) of our approach grows more slowly than

other approaches as K, the sample size, increases. However, when the variance is large,

the batch solution methods, DD and WSBS, become less efficient while the performance

of the brute-force, solving each individual LP from scratch, can provide similar results. In

addition, the advantage of our approach diminishes when the underlying distribution of the

sampled parameter values do not fall into the class of distributions for which our specific

implementation is intended.
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There are a number of future research directions. First, the empirical comparison of

the four approaches raises a fundamental question for practice: for what kind of linear

programs and sample parameter values the proposed approach is better (or can be tailored

to be better) than the other approaches? Our experimental results show that the specifics of

the proposed approach should be tailored to take into account the distribution of the sample

parameter values, resulting in a more efficient algorithm than the other approaches. In cases

where sampled parameters values are generated from a multimodal distribution, one can

consider clustering given parameter values using a clustering algorithm and then applying

our data-driven approach to each cluster, possibly using distributed computing. Another

future direction is further theoretical analysis comparing the worst case guarantee of the

computational complexity for the various algorithms. If one can derive a condition under

whichQ (the number of critical regions found by the proposed method) is bounded by some

expression of problem size and other parameters (A and c), then we will be able to better

choose which method to use under the conditions. Lastly, we considered only the cases

where uncertain parameters reside in the right hand side of the constraints, but in practice,

the coefficients in the objective function may be uncertain as well. Thus, we need to solve

an LP for a large number of given (c, b) pairs, which is called the RIM case in parametric

programming [72]. Extending the theory of critical region and the computational method

to the RIM case is another potential future research direction.
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CHAPTER 4

STATISTICAL INFERENCE FOR OPTIMIZATION MODELING:

IMPLICATIONS IN DECISION MAKING FOR IMPROVING ACCESS TO

DENTAL CARE

4.1 Introduction

Optimization is a mathematical model that is widely researched in operations research (OR)

and applied to many areas including healthcare, transportation, and manufacturing. [73, 74]

In healthcare, optimization models have been used to determine the best location for new

clinics [75, 76], to ensure appropriate coverage by ambulances across a network [77], to

route nurses for home health services [78], and to evaluate policies for pandemic influenza

[79], for evaluating service access [80], among other examples.

In deterministic optimization, one of the most common optimization approaches in

healthcare OR, the input parameters specifying the model are assumed exact physical pa-

rameters; however, they commonly are derived from uncertain data about systems’ behav-

ior. Thus using deterministic optimization, the derived optimal decision is assumed to be

one “best” decision with no uncertainty. While making one best decision given limited

information is key to the operation of any system, it is also important to provide additional

insights on how uncertain such decision might be, a concept at the core of statistical infer-

ence. This is essential in decision making because in some cases statistical inference may

suggest that more data need to be acquired to provide stronger evidence for a decision; in

others, they may prompt not making a decision at all because of the high uncertainty of the

decision environment. [81, 13].

In this paper, we introduce a statistical inference approach for informed decision mak-

ing on healthcare access using optimization modeling. The focus is on two dimensions of
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healthcare access, specifically, accessibility and availability of services, together referring

to spatial access. The access model is an assignment optimization, matching the underly-

ing networks of need (patients) and supply (providers) of healthcare to quantify access for

communities within a geographic region, jointly for subpopulation with different financial

access (Medicaid vs. non-Medicaid vs. without affordability of care) [82, 83, 20].

Uncertainty propagates into the derived access measures through imprecise knowledge

of the supply and demand/need inputs of the optimization model. We develop a sampling

approach to obtain a sample of instances for the supply and need inputs to quantify how

uncertainty in the input data impacts informed decision making for improving access. The

sampling distributions are established separately for the need of and supply inputs; the

distributions are specified using a hierarchical model with hyperparameters informed by

prior information derived from multiple data sources. For each sampled need and supply

input, we derived the access measure using the access model with the sampled input. The

final output consists of an empirical sample of of plausible values for the access measure

for each community in a geographic region of interest rather than one access estimate as

provided in the existing access modeling approaches. Using this empirical sample, we can

derive summary statistics as well as confidence intervals for the access measure for each

community. Furthermore, we apply simultaneous inference techniques to make inference

across geographically related communities.

This study is motivated by the need of addressing rigor in estimation of access, and in

evaluating and designing interventions to improve access to dental care for children.[84]

The Centers for Medicare and Medicaid Services (CMS) promoted the Oral Health Ini-

tiative to increase utilization of dental services, citing lack of access to dental care as the

most frequently reported reason for children not receiving dental care services.[85] Lack of

access is associated with poor oral health outcomes [86], which have been associated with

diminished overall health.[87] We illustrate the approach using the state of Colorado, one

of the most progressive states in terms of oral health policy.
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4.2 Methods

4.2.1 Data Sources

We used data from the 2017 American Community Survey (ACS) of the Census Bureau

to obtain the study population consisting of Colorado children, aged 0 to 18 years at the

census tract level. We used the ACS to divide the study population by financial access, dif-

ferentiated into four categories: uninsured and without affordability to pay out-of-pocket

care expenses (herein called without financial access); Medicaid-insured; Children’s Health

Insurance Program (CHIP)-insured; or with other affordability, including commercial in-

surance or out-pocket expenses (herein called private financial access). See Web-Appendix

C.1.4 for details. We note here that CHIP is referred to in Colorado as Children’s Health

Plan Plus (CHP+). We us the abbreviation CHP+ for the remainder of the paper.

To derive the provider-level information on the dental care providers, including dentists

and dental hygienists, we used the data from the Board of Dentistry and National Provider

Plan and Enumeration (NPPES). We linked these data to the InsureKidsNow.gov data to

derive the providers’ participation in public insurance programs, including Medicaid and

CHP+. See Web-Appendix C.1.5 for details.

The sampling model for the provider-level caseload was informed by multiple data

sources including the 2012 Medicaid Analytical eXtract (MAX) claims, the ACS, the

Health Policy Institute (HPI) of the American Dental Association reports on supply, and

the Rural-Urban Continuum Codes (RUCCs) developed by the United States Department

of Agriculture.

4.2.2 Access Model

We focused on two access dimensions: availability and accessibility. Availability pertains

to scarcity or congestion of service providers. Accessibility pertains to travel impedance

between demand/need points and service sites.

75



The access model replicated how supply of dental care is accessed by children in need

of dental care by matching need and supply of dental care services to minimize the total

distance traveled under access constraints using optimization modeling. Similar models

have been implemented for measuring healthcare access to pediatricians [20], pediatric

primary care [18], adult primary care [19], pediatric asthma care [17] and dental care in

Georgia [82] Because some providers do not accept or limit the number of Medicaid and/or

CHP+ patients [88, 89], the model accounted for the differentiation of the study population

by financial access. The access model also accounted for the spatial dependence due to

geographic similarities in access for nearby communities [90]. Details of the optimization

model are provided in Web Appendix C.1.1.

The access measure of interest was the average travel distance to services, a linear

function of the matching derived from the optimization model. [91, 83] The access measure

was derived at the census tract level. Details are provided in the Web-Appendix C.1.2.

4.2.3 Statistical Inference for Access Measures

The access model provides (point) estimates of the decisions patients make to access dental

care providers, further used to estimate the access measures. Because the estimated deci-

sions and access measures are derived from a model with uncertain inputs, they are also

uncertain; in statistical terms, the estimates are realizations of random variables following

a sampling distribution. Determining the sampling distribution of these point estimators

requires understanding how uncertainty propagates from the input parameters of the opti-

mization model into the output solutions.

We used a Bayesian approach because of the limited data available to derive the sam-

pling distribution. Specifically, we modeled the demand/need and the provider caseload

parameters using a hierarchical Bayesian approach, leveraging data from various sources

to inform the empirical prior distributions of the hyperparameters as described in the next

sub-section. The sampling distribution was then the posterior predictive distribution.
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Not all model parameters were assumed to be uncertain; some of the parameters of the

optimization model were assumed fixed, particularly those that could be specified by poli-

cies and guidelines. A complete list of the optimization parameters is in Web-Appendices

C.1.1 and C.1.1.

Sampling Distribution of the Population Parameters

Demand data entered the access model through the total number of visits per-year needed

by the study population within each census tract, computed as the product of the number of

children in that tract and the average visits demanded per-child (assumed fixed and equal

to 1.5).

The total population of the ith census tract and of the entire state of Colorado were

denoted Pi and POP , respectively, for i ∈ {1, . . . ,C}. The total population POP was

sampled from a negative binomial distribution, with hyperparameters chosen to mimic the

uncertainty level of the total population, given by the confidence interval provided by the

ACS data.

Given the sampled POP , the census tract population was sampled from a multinomial

distribution: (P1, . . . , PC) ∼ Mulitnomial(POP, π), where π is the vector of popula-

tion proportions of all census tracts. The prior distribution placed on π is Dirichlet, with

hyperparameters estimated from ACS data using an empirical Bayes approach.

We denote the number of children without financial access, with Medicaid, CHP+ or

private financial access of the ith census tract by NU
i , N

M
i , N

H
i , N

O
i , respectively. Given

the sampled population of the ith census tract, we modeled the population parameters of

the ith census tract by (NO
i , N

M
i , N

H
i , N

U
i ) ∼Multinomial(Pi, τi), where τi is the vector

of population proportion hyperparameters.

Details of the sampling approach are found in Web-Appendix C.1.4.
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Sampling Distribution of the Provider Caseload Parameters

The provider-level pediatric caseload was measured in number of visits dedicated to child

patients. The provider-level caseload entered the optimization model through the inputs

Cj, C
M
j , C

H
j , where Cj is the total number of visits offered and CM

j , C
H
j are the caseload

dedicated to the publicly insured, differentiated by financial access (Medicaid and CHP+,

respectively) from provider j for j = 1, . . . , J.

We assumed that the overall pediatric caseload for the jth provider follows a Poisson

distribution with parameter λj|t given provider’s t taxonomy. The prior distribution of λj

was assumed a gamma distribution, λj|t ∼ Gamma(at, bt), with hyperparameters at and

bt depending on the provider taxonomy t of the jth provider. We used an empirical Bayes

method to inform the selection of hyperparmeters of the priors using the Medicaid caseload

data. Specifically, the caseload dedicated to publicly-insured children versus other children

was modeled as a binomial distribution, where the percentage of the caseload dedicated

to Medicaid patients is sampled from a Beta distribution. We used the MAX claims data

for deriving the sampling distribution for the caseloads for Medicaid-insured and CHP+-

insured sub-populations. We derived the realized caseload for the Medicaid participating

providers, by their taxonomy and urbanicity using prior research [92].

Details are given in Web-Appendix C.1.5.

Statistical Inference on Access Measures

We sampled the posterior predictive distributions described in Sections 4.2.3 and 4.2.3 to

obtain B = 1000 instances of the input parameters of the optimization model. For each

instance of the input parameters, we solved the optimization problem and derived the access

measures. We used these samples of the access measures: (1) to evaluate the uncertainty

levels in the access measures by rurality level and by financial access; and (2) to assess

policy implications on geographic access and disparities by financial access.

For the first objective, we computed the interquantile range (IQR) of the access mea-
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sure samples and of the disparity between publicly-insured children and those with private

financial access for each census tract. Each census tract was classified into urban, suburban

and rural using the RUCCs of its corresponding county; we classified tracts with RUCCs

1-3 as urban, tract with RUCCs 4-6 as suburban, and tracts with RUCCs 7-9 as rural.

To evaluate georgraphic access, the access measures are differentiated by insurance

type, Ui, Zi, Yi, and Wi describing the average distance traveled by publicly (Medicaid

and CHP+) insured, Medicaid insured, CHP+ insured, and privately insured in census tract

i, respectively. For each of sample of input parameters, the optimization model is solved

and the access measure are computed, resulting in a sample of B estimates of the access

measures for each census tract Let (ûib, ẑib, ŷib, ŵib) represent the bth sample of the access

measures for the ith census tract derived from solving the optimization model using the bth

sample of the input parameters from the posterior distribution. Point estimates of access

for each financial access and census tract are then taken to be the medians of the B samples.

To evaluate disparities by financial access, the access measures are differentiated by

insurance type, Ui and Wi describing the average distance traveled by publicly (Medicaid

and CHP+) insured and privately insured in census tract i, respectively. The disparity

between the publicly and privately insured is defined by the difference in access between

the groups, ∆i = Ui −Wi. Disparities in spatial access can be estimated in the bth sample

by the differences δib = ûib − ŵib. Similar disparity measures can be constructed for

measuring disparities between the Medicaid and privately insured populations, as well as

between the CHP+ and privately insured populations. Since those with private financial

access are taken to be the baseline for each of the three comparisons, we refer to disparities

by the specific publicly insured population (Medicaid, CHP+, or all public insurance).

We perform simultaneous statistical inference on the access measures and disparities

between the two populations across multiple locations while accounting for spatial depen-

dence using simultaneous confidence bands. The simultaneous bands account for both the

spatial dependencies and varying levels of spatial uncertainty, while creating bands that
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are sufficiently minimal in width to detect significant differences in access. [93, 94] Using

simultaneous confidence bands, we can test whether the access measures is significantly

more than some access standard T (e.g. 15 miles in distance traveled). Furthermore, we

can test whether the disparity in access between those with public insurance and those

with private insurance is lower than some intervention threshold value T (e.g., 5 miles in

distance traveled). This hypothesis indicates the presence of systematic disparities at the

threshold level T . This hypothesis indicates the presence of systematic disparities at the

threshold level T . Complete detail on inference procedures are provided in Web-Appendix

C.1.6.

4.3 Results

4.3.1 Overall Dental Supply

We identified the full time equivalent of approximately 3,598 general dentists, 182 pediatric

dentists, and 263 independent dental hygienists operating across 3,051 provider locations.

Among these providers, 67.5% of the general dentists, 86.3% of the pediatric dentists, and

100% of the independent dental hygienists accepted public insurance. These results are

roughly equivalent to those found by the Health Policy Institute [95] and the Kaiser Family

Foundation [96]. Differentiating by Medicaid and CHP+, we found that 34.4% of general

dentists, 64.1% of pediatric dentists, and 88.7% of independent hygienists accepted Medi-

caid, while 54.9% of general dentists, 61.3% of pediatric dentists, and 27% of independent

hygienists accepted CHP+.

4.3.2 Access To Dental Care

Access Measures by Census Tract

Figure 4.1 displays access maps for the median access measure across the B = 1000

posterior samples. Median access to dental care was better in urban areas than suburban
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(a) Privately Insured (b) All Publicly Insured

(c) Medicaid Insured (d) CHP+ Insured

Figure 4.1: Median access to dental care, by financial access

and rural areas, across insurance types. The privately insured population also had better

access to care than the publicly insured, with the Medicaid insured population experiencing

worse access than those insured by CHP+.

For urban tracts, the median travel distance was 2.46 (25th percentile = 1.38, 75th per-

centile = 2.71) miles among the privately insured. Among the publicly insured, the median

travel distance was 15.56 (13.71, 24.78) miles , with the Medicaid population traveling a

median distance of 18.16 (17.75, 31.61) miles and the CHP+ population traveling a median

distance of 11.13 (10.83, 20.77) miles.
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For suburban tracts, the median travel distance was 43.49 (0.97, 58.02) miles among

the privately insured. Among the publicly insured, the median travel distance was 46.94

(24.21, 57.96) miles , with the Medicaid population traveling a median distance of 56.38

(31.18, 59.99) miles and the CHP+ population traveling a median distance of 54.08 (7.65,

59.63) miles.

For rural tracts, the median travel distance was 50.52 (0.99, 59.99) miles among the

privately insured. Among the publicly insured, the median travel distance was 55.53 (32.80,

60) miles , with the Medicaid population traveling a median distance of 59.12 (48.41, 60)

miles and the CHP+ population traveling a median distance of 54.43 (35.64, 60) miles.

Low Access Areas

In this section, we identify areas that have access to dental care services significantly below

access standards. We use the standards of T = 15 miles for urban tracts and T = 30 miles

for suburban and rural tracts.[97] For the remainder of this section, we will simply refer to

the access standard as T , without differentiating by urbanicity.

Points maps highlighting census tracts with median access measures greater than the

access standard are displayed in Figure 4.2 by financial access. Then median access mea-

sure was greater than the access standard in 15.8%, 59.9%, 94.3%, 35.1% of census tracts

for those with private financial access, all publicly insured, those insured through Medicaid,

and those insured through CHP+, respectively.

Although the median access measure was greater than the standard in many census

tracts, there was, however, considerable variability in the posterior samples of the access

measures. Figures C.7 and C.8 in Web Appendix C.1.6 show the census tract level standard

deviation and the IQR of the access measures across runs of the optimization model. Be-

cause high uncertainty makes identifying areas not meeting access standards more difficult,

we account for the varying levels of spatial uncertainty using the simultaneous inference

procedure described in Section 4.2.3. A point map showing census tracts detected to have
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(a) Private Insurance (15.8% of tracts marked) (b) Public Insurance (59.9% of tracts marked)

(c) Medicaid (94.3% of tracts marked) (d) CHP+ (35.1% of tracts marked)

Figure 4.2: Census tracts with median access measures greater than the access standard, by
financial access type
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(a) Private Insurance (10.6% of tracts marked) (b) Public Insurance (25.4% of tracts marked)

(c) Medicaid (25.2% of tracts marked) (d) CHP+ (25.2% of tracts marked)

Figure 4.3: Census tracts with median access measures significantly greater access stan-
dard, by financial access type

access measures significantly more than the access standard are displayed in Figure 4.3.

Because of the high uncertainty the access measure for some census tracts, particularly

in the western portion of Colorado, we did not detect access measures significant worse

than the standard in many of the census tracts identified as having large differences in

Figure 4.2 when performing simultaneous inference. We do, however, detect census tracts

with access to care significantly worse than the standard. We observe that 25.4% of census

tracts had median access measures significantly above the access standard for the publicly

insured, while only 10.6% of census tracts had median access measures significantly over

the access standard for those with private financial access. Among the publicly insured,
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Table 4.1: Percentage of census tracts with median access measures greater than and sig-
nificantly greater than the access standard, by urbanicity and type of financial access

Urban Suburban Rural
Financial Access % Above Std % Sig % Above Std % Sig % Above Std % Sig

Private 6.3% 3.2% 58.2% 35.8% 54.3% 40%
Public 54.9% 19.8% 74.6% 35.8% 84.3% 47.1%

Medicaid 95.8% 19.4% 77.6% 34.4% 85.7% 47.1%
CHP+ 26.5% 18.3% 68.7% 52.2% 77.1% 57.1%

Medicaid and CHP+ populations were observed to have access measures significantly over

access standard in 25.2% of census tracts, each. Furthermore, we detected many more

suburban and rural census tracts failing to meet the access standards than urban census

tracts. Table 4.1 provides a full breakdown of the percentage of census tracts, by urbanicity,

with median access measures above the access standard, as well as the percentage of census

tracts found to have access measures significantly above the standard.

4.3.3 Disparities in Access to Dental Care

We define disparities in access for each census as the difference in distance average traveled

between a publicly insured population (Medicaid, CHP+, or all publicly insured) and those

with private financial access. Thus, for the bth sample of input parameters, disparities are

estimated by the differences, δib (see Section 4.2.3). The median disparity was typically

positive for the publicly insured, with the Medicaid insured population experiencing even

greater disparities than those insured through CHP+. Web Appendix C.1.6 displays dispar-

ity maps for the median disparity across the B = 1000 posterior samples (see Figure C.9)

and provides a full description of the median disparity by census tract.

We now seek to identify disparities which are especially large by examining which

disparities are greater than some threshold T . Points maps highlighting census tracts with

median disparity in access greater than T = 5 miles are displayed in Figure 4.4. The

median disparity was greater than T = 5 miles in 87.2%, 87.3%, and 84.3% of census

tracts for all publicly insured, Medicaid insured, and CHP+ insured, respectively. Web
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(a) Medicaid (87.3% of tracts marked) (b) CHP+ (84% of tracts marked)

(c) Public Insurance (87.2% of tracts marked)

Figure 4.4: Census tracts with median disparities greater than T = 5 miles, by financial
access

Appendix C.1.6 reports the corresponding percentages for thresholds of T = 2 and T = 10

miles.

There was, again, considerable variability in the posterior samples of the disparity mea-

sures for many census tracts. Figures C.10 and C.11 in Web Appendix C.1.6 show the

census tract level standard deviation and the IQR disparity measure. Importantly, the vari-

ability in the disparity measures was considerably higher in rural and suburban areas than

in urban areas. Figure 4.5 shows the census tract level IQR of the disparity measures for

public insurance, grouped by urbanicity. The variability was similar examining disparities

for by Medicaid and CHP+ (see Figure C.12 in Web Appendix C.1.6).
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Figure 4.5: Boxplot of census tract IQR of disparity measures for publicly insured, grouped
by urbanicity

We again applied the simultaneous inference procedure described in Section 4.2.3 to

detect census tracts with statistically significant disparities in dental care access. Census

tracts with significant disparities of at least 5 miles are displayed in Figure 4.6. Similar

figures for disparities significantly over 2 and 10 miles are provided in Figures C.13, C.14,

and C.15 of Web Appendix C.1.6.

Because of the high uncertainty the access measure for some census tracts, particu-

larly in suburban and rural census tracts, we do not detect significant disparities so many

of the communities identified as having large differences in Figure 4.4 when performing

simultaneous inference. We do, however, detect significant disparities in access to dental

care between the publicly and privately insured clustered around the Denver and Colorado

Springs metropolitan areas. More generally, we find statistically significant disparities of

at least T = 5 miles for the publicly insured in 73.2% of urban census tracts, while only

finding significant disparities in 4.5% and 5.7% of suburban and rural census tracts, respec-

tively. Table 4.2 provides a full breakdown of the percentage of census tracts, by urbanicity,
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(a) Medicaid (63.1% of tracts marked) (b) CHP+ (12.5% of tracts marked)

(c) Public Insurance (61.7% of tracts marked)

Figure 4.6: Census tracts with disparities significantly greater than T = 5 miles, by finan-
cial access
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Table 4.2: Percentage of census tracts with disparity measures greater than and significantly
greater than T = 5 miles, by urbanicity and type of financial access

Urban Suburban Rural
Financial Access % Above Std % Sig % Above Std % Sig % Above Std % Sig

Public 80.5% 60% 2.8% 0.2% 2.5% 0.2%
Medicaid 81.1% 62.3% 2.9% 0.3% 2.2% 0.3%

CHP+ 80% 12% 1.5% 0.2% 1.5% 0.2%

with median disparity measures above the threshold T = 5 miles, as well as the percentage

of census tracts found to have disparities significantly above the 5 miles. Tables C.8 and

C.9 of Web Appendix C.1.6 repeat the analysis using thresholds of T = 2 and T = 10

miles, respectively.

Those insured through CHP+ tend to experience fewer disparities than those insured

through Medicaid. Overall, we detect disparities significantly greater than T = 5 miles in

61.7% of census tracts and greater than 10 miles in 12.2% of census tracts for all forms

of public insurance. However, when we examine Medicaid and CHP+ separately, we find

that 63.1% of census tracts have Medicaid populations experiencing significant dispari-

ties greater than T = 5 miles, while only 12.5% of census tracts have CHP+ populations

experiencing significant disparities greater than T = 5 miles.

4.4 Discussion

In this paper, we introduced a statistical inference scheme for informed decision making on

healthcare access. This approach builds on the optimization methodology for measuring

access recently developed for studying access [20, 17, 19, 82, 18] by offering a rigorous

framework for understanding how uncertainty propagates from uncertainty input parame-

ters into the optimal solutions and, ultimately, the measurement of spatial access. Early

attempts to derive the distribution of the optimal objective value for LP models have been

considered for stochastic optimization [28, 31, 32, 30, 29]. These formulations are im-

practical for high dimensional LPs, such as the access model which employs millions of
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variables, suggesting an empirical approach [98], such as the one developed in this paper.

Overall, we find that Colorado meets access standards for the privately insured popu-

lation in urban areas; however, many suburban and rural communities fail to meet access

standards, particularly for publicly insured populations. Although suburban and rural com-

munities experience more issues access dental care, disparities in access between the pub-

licly and privately insured populations are most acute in the urban centers. In particular, the

Medicaid population experiences more disparities than those insured through CHP+, as the

supply of dental care visits provided by providers accepting CHP+ is greater in Colorado

than the supply provided by those accepting Medicaid.

Limitations of this study center around the assumptions made to estimate access and

the limited availability of detailed data. In particular, we made assumptions about the total

capacity of providers in order to estimate the sampling distribution hyperparamters from

MAX data, although these assumptions were informed by HPI data.[99] Details are given

in Web Appendix C.1.5. Furthermore, we made several assumptions using the notion that

CHP+ providers provided caseloads similar to Medicaid providers.

The methodology in this study can be used to help decision makers evaluate the po-

tential of policies to improve health care access, providing a rigorous framework for the

study of access in a given state or other geographic entity while accounting for factors such

as geography, the need for care, and the supply of care. Furthermore, this framework can

be extended to evaluate how changes in the supply of care, such as raising the acceptance

rate of public insurance or open new provider locations, effect access. For dental care in

particular, increasing access to preventative dental care services could be cost saving. [100,

101]
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APPENDIX A

APPENDIX TO CHAPTER 2

A.1 Alternative Multivariate Distributions for Proposition 2.3.1

Applying the definition of the PCA tolerance region, the proof proposition 2.3.1 shows

thatP (µ ∈ V (τ)) = P (‖Λ−1/2DT (R−µ)‖∞ ≤ τ) where µ is the expectation ofR and Σ =

DΛDT is the covariance matrix. Thus for any distribution onR, determining the confidence

level of the tolerance region requires determining the distribution of Λ−1/2DT (R−µ). This

transformation of R “standardizes” the random variable, clearly having expectation 0 and

an identity covariance matrix.

For example, supposeR follows a multivariate t-distribution with v degrees of freedom,

i.e. R ∼ tv(µ,Σ) with density function given by

fR(r; v, µ,Σ) =
Γ((v +m+ n)/2)

Γ(v/2)(vπ)(m+n)/2 |Σ|1/2
[1 + v−1(r − µ)TΣ−1(r − µ)]

It is easy to show that then that Λ−1/2DT (R−µ) ∼ tv(0, I), where I is the identify matrix.

Thus, we have

P (µ ∈ V (τ)) = P (‖Λ−1/2DT (R− µ)‖∞ ≤ τ) = P (|tv| ≤ τ)h

where tv follows a univariate t-distribution with v degrees of freedom.

Similar results are possible for other symmetric multivariate distributions. The symmet-

ric property allows for ease in the calculation of the confidence since the tolerance region is

symmetric as well. It is possible to derive results for non-symmetric distributions, although

some of the simplifications are lost.
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A.2 Theoretical Results: Critical Regions in c

A.2.1 Geometry of Critical Regions in c

In this section, we assume that A and b are fixed.

Definitions Two bases B1 and B2 are said to be primal neighbors if and only if it is

possible to pass from B1 to B2 by a primal simplex pivot and vice versa. Two critical

regions in c are primal neighbors if their bases are primal neighbors. The definition of

geometric neighbor remains the same: two critical regions in c are geometric neighbors if

they share a facet.

The fact that c is the RHS of the dual problem (Db,c) suggests that all of the results

given in [37] may be extended to the case where c varies while A, b are fixed. However,

directly applying the proofs of the results requires consideration of optimal bases of the

dual problem written in standard form. It is well known that if B is an optimal basis to

(Pb,c), then the following solution is optimal to (Db,c)

y∗(b, c) = A−1
B cB, (A.1)

s∗B(b, c) = 0, s∗N(b, c) = cTN − cTBA−1
B AN . (A.2)

In (Db,c), a basis for the dual problem is of size n. For an optimal basis B for (Pb,c), the m

elements of y and the n−m elements of sN form an optimal basis for the dual. In this way,

optimal bases of the dual problem are fully characterized by optimal bases of the primal

problem. The basis for the primal problem is determined by the basic indices B, while the

corresponding basis for the dual problem is determined by the nonbasic indices N .

The dual basis related to a primal basis B yields a feasible solution to the dual problem

if ([IN AT ]−1)(k,·)c ≥ 0 for k = 1, . . . , n−m. One can easily show by matrix algebra that

the first n −m rows of [IN AT ]−1 are precisely the matrix (IN − IBA−1
B AN)T ; thus, for a

primal basis satisfying the optimality condition (2.2), the corresponding dual basis is dual
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feasible. Also, a critical region in c can be written as below:

RcB = {c ∈ Rn | (IN − IBA−1
B AN)T c ≥ 0}; (A.3)

= {c ∈ Rn : ([IN AT ]−1)(k,·)c ≥ 0 for k = 1, . . . , n−m}. (A.4)

That is, RcB is the set of linear combinations of the columns of IN and AT with nonneg-

ative coefficients for the columns of IN . This interpretation is useful in proving geometric

properties of neighboring critical regions in c, to which we move on now.

Remark: We note that the simplex pivot operations described in the definitions of primal

and dual neighbors are different from the pivot operations of the primal and dual simplex

algorithm (e.g., see [8]). In an iteration of the primal simplex algorithm, a nonbasic vari-

able with negative reduced cost is selected to enter the basis. In the definition of primal

neighbors, however, any nonbasic variable with a positive entry in its corresponding col-

umn may be chosen to enter the basis. This difference is due to the fact that the primal

simplex method aims to solve a single LP for a specific c value. On the other hand, our

goal for performing a primal pivot is to find a basis that is optimal for a new set of c vectors.

Theorem A.2.1 If two critical regions in c are primal neighbors, then they are geometric

neighbors in c.

Proof: Let B1 and B2 be primal neighbors and RcB1 and RcB2 are their corresponding

critical regions in c. Let i ∈ B1 \B2 and j ∈ B2 \B1 be the leaving and entering variables

in the primal pivot operation from B1 to B2, respectively. We denote the pivoting element

by āij = (A−1
B1
A)(B1(i),j).

The ability to perform a primal pivot operation implies the pivoting element āij > 0.

Let H be the hyperplane defined by (ITN1
− ATN1

A−TB1
ITB1

)(N1(j),·)c = 0. Furthermore, let

F1 and F2 be the N1(j)th (equivalently the N2(i)th) facets of RcB1 and RcB2 , respectively.

Then, F1 ⊆ H by definition. We will prove the theorem by first showing F2 ⊂ H and then

that F1 and F2 coincide.
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By matrix algebra, we can derive the following equality (detailed steps are in A.3)

−āij(ITN2
− ATN2

A−TB2
ITB2

)(N2(i),k) = (ITN1
− ATN1

A−TB1
ITB1

)(N1(j),k), (A.5)

for any k. Therefore, F2 ⊆ H and since āij > 0, RcB1 and RcB2 lie on opposite sides of

H . In addition, we have for h ∈ {1, 2},

Fh = RcBh ∩H = RcBh ∩ {c ∈ Rn : ([INh
AT ]−1c)(N1(j),·) = 0}

= {[INh
AT ]z : z ∈ Rn, zk ≥ 0 for k ∈ {1, . . . , n−m} \ {N1(j)}, zN1(j) = 0}

Since N1 and N2 only differ in their N1(j)th index, we have F1 = F2. �

We note here that if āij < 0, as is the case in a dual pivot, then RcB1 and RcB2 share a

facet but lie on the same side of the hyperplane H . This will be an important observation

in Section 2.4.4. We now present the converse of Theorem A.2.1.

Theorem A.2.2 If two critical regions in c are geometric neighbors, then they are primal

neighbors.

Proof: Let B1 and B2 be bases, and RcB1 and RcB2 denote their corresponding critical

regions in c. Assume that they are geometric neighbors. Let F = RcB1 ∩ RcB2 be the

shared facet and say that F is the N1(j)th facet of RcB1 and the N2(i)th facet of RcB2 .

That is,

F = {[IN1 A
T ]z : z ∈ Rn, zk ≥ 0 for k ∈ {1, . . . , n−m} \ {N1(j)}, zN1(j) = 0}

= {[IN2 A
T ]z : z ∈ Rn, zk ≥ 0 for k ∈ {1, . . . , n−m} \ {N2(i)}, zN2(i) = 0}

Using this equality and the fact that all columns of IN1 and IN2 are extreme rays of F ,
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we have that N1 \ {j} = N2 \ {i}. That is, N1 and N2 differ only by one variable.

Now, let H be the hyperplane containing F . Since RcB1 and RcB2 lie on opposing

sides of H , we have (ITN1
− ATN1

A−TB1
ITB1

)(N1(j),·)c ≤ 0 for all c ∈ RcB2 . Since interiors

of the two critical regions in c do not overlap, there exists ĉ ∈ RcB2 such that (ITN1
−

ATN1
A−TB1

ITB1
)(N1(j),·)ĉ < 0.

Since ĉ ∈ RcB2 , (A.4) implies that there exists ẑ ∈ Rn such that ĉ = [IN2 A
T ]ẑ

where ẑ(k,·) ≥ 0 for k ∈ {1, . . . , n − m}. By lemma A.3.1, for k ∈ N1 ∩ N2, we have

(ITN1
−ATN1

A−TB1
ITB1

)(N1(j),·)I(·,k) = (ITN1
−ATN1

A−TB1
ITB1

)(N1(j),k) = 0. Also note that (ITN1
−

ATN1
A−TB1

ITB1
)AT = 0(n−m)×m. Therefore, it must be that (ITN1

− ATN1
A−TB1

ITB1
)(N1(j),·)ĉ =

(ITN1
−ATN1

A−TB1
ITB1

)(N1(j),·)[IN2 A
T ]ẑ = (ITN1

−ATN1
A−TB1

ITB1
)(N1(j),·)I(·,i)ẑ(N1(j),·) < 0. Since

ẑ(N1(j),·) > 0, we have (ITN1
−ATN1

A−TB1
ITB1

)(N1(j),·)I(·,i) = (ITN1
−ATN1

A−TB1
ITB1

)(N1(j),i) < 0.

Again, by lemma A.3.1, (ITN1
− ATN1

A−TB1
ITB1

)(N1(j),i) = −(A−1
B1
A)(B1(i),j) = −āij .

Therefore, the pivoting element āij is positive and a primal simplex pivot can be performed

by removing the ith variable.

It now remains to show that i enters the basis by the min ratio test when j is selected

as the exiting variable. We show this by contradiction. That is, assume k ∈ B1 \ {i} enters

the basis by the min ratio test. We will show that dual feasibility is not maintained when

allowing i to be the entering variable instead of k.

Since k enters the basis by the min ratio test, it follows that

(A−1
B1
b)(B1(k),·)

(A−1
B1
A)(B1(k),j)

<
(A−1

B1
b)(B1(i),·)

(A−1
B1
A)(B1(i),j)

(A.6)

.

During a primal pivot, dual feasibility must be maintained. Row operations are used to

update the tableau, i.e., there exists a matrix E such that A−1
B1

= EA−1
B2

. Specifically, in a
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pivot from B1 to B2, we have that

(A−1
B2
b)(B1(k),·) = (A−1

B1
b)(B1(k),·) −

(A−1
B1
A)(B1(k),j)

(A−1
B1
A)(B1(i),j)

(A−1
B1
b)(B1(i),·) (A.7)

.

Combining (A.6) and (A.7), we see that dual feasibility is not maintained, thus a con-

tradiction has been reached. �

As a consequence of Theorems A.2.1 and A.2.2, we have the following corollary.

Corollary A.2.3 Two critical regions in c are primal neighbors if and only if they are

geometric neighbors in c.

Finally, we show that if no pivot operation is possible with the jth column as a pivot

column, then all c’s that lie on the opposite side of the corresponding hyperplane yield an

LP which is dual infeasible.

Theorem A.2.4 If there is no positive entry on the jth column of the simplex tableau at

a basis, then there is no c vector that makes the LP dual feasible on the other side of the

hyperplane defining the N(j)th facet of the critical region in c.

Proof: Let Kc be the set of cost vectors that makes the dual feasible. Note that we have

Kc =

c ∈ Rn | c =

[
I AT

]s
y

 , s ≥ 0

 ,

thus, Kc is the set of linear combinations of the columns of I and AT with nonnegative

weights for the columns of I .

LetB be an optimal basis andN be the corresponding set of non-basic indices. Suppose

that for a non-basic index j ∈ N , there is no positive entry on the jth column of the simplex

tableau at B, i.e., āij ≤ 0 ∀ i.
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The critical region in c of B is

RcB = {c ∈ Rn | (IN − IBA−1
B AN)T c ≥ 0}

= {[IN AT ]z | z ∈ Rn, zk ≥ 0 for k = 1, . . . , n−m},

and thus RcB is the set of linear combinations of the columns of IN and AT with nonnega-

tive weights for the columns of IN .

The N(j)th facet of RcB is defined by the inequality (ITN − ATNA
−T
B ITB)(N(j),·)c ≥ 0.

By the above definition of RcB, all columns of IN and AT satisfy this inequality. Using

Lemma A.3.1, we can also check whether the columns of IB satisfy the inequality: for

i ∈ B, let ei ∈ Rn be the unit vector with one at the ith entry and zeros at the others, then

(ITN − ATNA−TB ITB)(N(j),·)ei = (ITN − ATNA−TB ITB)(N(j),i) = −(A−1
B A)(B(i),j) = −āij ≥ 0.

Therefore, all of the columns of IB are on the same side of the hyperplane defining the

N(j)th facet as RcB. Thus, the set of all feasible c’s, Kc is also on the same side of the

hyperplane, that is, there is no c on the other side of the hyperplane that makes the LP dual

feasible. �

A.3 Details of the Proof of Theorem A.2.1

To establish the equality (A.5), we need two lemmas.

Lemma A.3.1 LetB be a basis with i ∈ N . Then theN(i)th row vector of ITN−ATNA−TB ITB

is

(ITN − ATNA−TB ITB)(N(i),k) =


−(A−1

B A)(B(k),i), k ∈ B

1, k = i

0, k ∈ N \ i
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Proof: Due to basic matrix algebra. �

Lemma A.3.2 SupposeB1 andB2 are primal neighbors. Further suppose the primal pivot

step exchanges the variable i ∈ B1 \ B2 for j ∈ B2 \ B1 and denote the pivoting element

āij = (A−1
B1
A)(B1(i),j). Then

(A−1
B2
A)(B2(k),i) =


−(āij)

−1(A−1
B1
A)(B1(k),j), k ∈ B1 ∩B2

(āij)
−1, k = j

Proof: The tableau is updated by row operations. Specifically, the pivoting row, B2(j),

is updated by dividing by the pivoting element āij . Since (A−1
B2
A)(B2(j),i) = 1, the re-

sult is proven for k = j. Each non-pivoting row is updated by adding a multiple of

the pivoting row to it. Since (A−1
B2
A)(B2(k),i) = 0 for k ∈ B1 ∩ B2 and the multiple is

−(āij)
−1(A−1

B1
A)(B1(k),j), the proof is completed. �

Lemma A.3.1 describes the rows of (IN − IBA−1
B AN)T while Lemma A.3.2 describes

how the pivot column is updated in a primal pivot.

Applying lemmas A.3.1 and A.3.2, we see that the kth element of the row vector

−āij(ITN2
− ATN2

A−TB2
ITB2

)(N2(i),·) is given by

−āij(ITN2
− ATN2

A−TB2
ITB2

)(N2(i),k) =


āij(A

−1
B2
A)(B2(k),i), k ∈ B2

−āij, k = i

0, k ∈ N1 ∩N2
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=



āij(A
−1
B2
A)(B2(k),i), k ∈ B1 ∩B2

āij(A
−1
B2
A)(B2(k),i), k = j

−āij, k = i

0, k ∈ N1 ∩N2

=



−(A−1
B1
A)(B1(k),j), k ∈ B1 ∩B2

1, k = j

−āij, k = i

0, k ∈ N1 ∩N2

=


−(A−1

B1
A)(B1(k),j), k ∈ B1

1, k = j

0, k ∈ N1 ∩N2

= (ITN1
− ATN1

A−TB1
ITB1

)(N1(j),k),

and thus we have the equality. �

A.4 Proof of Theorem 2.4.5

LetB1 andB2 be neighbors with B1 and B2 defined as in (2.7). Suppose the pivot operation

exchanges variable i ∈ B1 \B2 for variable j ∈ B2 \B1. By lemma 2.4.4, there are exactly

two cases.

Case 1: RB1 and RB2 are primal neighbors.

Note RB1 ∩ RB2 = (RbB1 ∩ RbB2) × (RcB1 ∩ RcB2). Since RbB1 , RbB2 lie on the

same side of a shared facet, their intersection has dimension m. Since RcB1 , RcB2 lie on

opposite sides of a shared facet, their intersection has dimension n − 1. Thus, RB1 ∩ RB2

has dimension n+m− 1.

The proof of Theorem A.2.1 shows that for some row k ∈ {m + 1, . . . , n}, B1
(k,·) =

−āijB2
(k,·). Let H be the hyperplane defined by {r ∈ Rn+m : B1

(k,·)r = 0} = Rm × Hc

where Hc = {c ∈ Rn : (ITN1
− ATN1

A−TB1
ITB1

)(k−m,·)c = 0}.

The kth facets of RB1 and RB2 can thus be written, respectively, F1 = RB1 ∩ H =
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RbB1 × (RcB1 ∩Hc) and F2 = RB2 ∩H = RbB2 × (RcB2 ∩Hc).

Furthermore, Theorem A.2.1 shows that RcB1 ∩ RcB2 = RcB1 ∩Hc = RcB2 ∩Hc, so

that RB1 ∩RB2 ∈ F1 and RB1 ∩RB2 ∈ F2.

Case 2: RB1 and RB2 are dual neighbors.

Case 2 is analogous to Case 1. We have RB1 ∩RB2 = (RbB1 ∩RbB2)× (RcB1 ∩RcB2).

Since RcB1 , RcB2 lie on the same side of a shared facet, their intersection has dimension n.

Since RbB1 , RbB2 lie on opposite sides of a shared facet, their intersection has dimension

m− 1. Thus, RB1 ∩RB2 has dimension n+m− 1.

The proof of Theorem 2 of [37] shows that for some row k ∈ {1, . . . ,m}, B1
(k,·) =

āijB2
(k,·). Let H be the hyperplane defined by {r ∈ Rn+m : B1

(k,·)r = 0} = Hb × Rn where

Hb = {b ∈ Rm : (A−1
B1

)(k,·)b = 0}.

The kth facets of RB1 and RB2 can thus be written, respectively, F1 = RB1 ∩ H =

(RbB1 ∩Hb)×RcB1 and F2 = RB2 ∩H = (RbB2 ∩Hb)×RcB2 .

Furthermore, Theorem 2 of [37] shows that RbB1 ∩ RbB2 = RbB1 ∩Hb = RbB2 ∩Hb,

so that RB1 ∩RB2 ∈ F1 and RB1 ∩RB2 ∈ F2. �

A.5 Proof of Theorem 2.4.8

Suppose thatRB1 andRB2 partially share a facet, i.e., RB1∩RB2 is of dimension n+m−1

and contained in both the ith facet of RB1 and the jth facet of RB2 . Since RB1 ∩ RB2 has

the same dimension as the facets of RB1 and RB2 , there is a hyperplane H which contains

the ith facet of RB1 , the jth facet of RB2 , and RB1 ∩RB2 .

We will first show that either {i, j} ⊆ {1, . . . ,m} or {i, j} ⊆ {m + 1, . . . , n} should

hold. For contradiction and without loss of generality, suppose i ∈ {1, . . . ,m} and j ∈

{m+ 1, . . . , n}. Then we write H in two ways:

1. H = {r ∈ Rm+n : B1
(i,·)r = 0} = {(b, c) ∈ Rm+n : (A−1

B1
)(i,·)b = 0, c ∈ Rn}
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2. H = {r ∈ Rm+n : B2
(j,·)r = 0} = {(b, c) ∈ Rm+n : (ITN2

− ATN2
A−TB2

ITB2
)(k,·)c =

0, b ∈ Rm}

where k = j − m. Note that the second definition places no restrictions on b, while first

definition includes the restriction that (A−1
B1

)(i,·)b = 0. This implies that (A−1
B1

)(i,·)b = 0

for all b ∈ Rm. Thus, (A−1
B1

)(i,·) is a zero vector and A−1
B1

is singular and a contradiction is

reached.

Now there are two cases; the first where {i, j} ⊆ {1, . . . ,m} and the second where

{i, j} ⊆ {m+ 1, . . . , n}.

Case 1: {i, j} ⊆ {1, . . . ,m}

Since RB1 ∩ RB2 = (RbB1 ∩ RbB2) × (RcB1 ∩ RcB2), and because it is of dimension

n + m − 1 and contained in facets of RB1 and RB2 which are in the space of b only, we

have that (RcB1 ∩RcB2) is full dimensional and (RbB1 ∩RbB2) is m− 1 dimensional.

Furthermore, it is clear from {i, j} ⊆ {1, . . . ,m} that (RbB1 ∩ RbB2) is contained in

the ith facet ofRbB1 and the jth facet ofRbB2 and thatRbB1 and RbB2 lie on opposite sides

of the hyperplane Hb = {b : (A−1
B1

)(i,·)b = 0} = {b : (A−1
B2

)(j,·)b = 0}.

Since (RcB1∩RcB2) is full-dimensional, it is possible to fix c ∈ (RcB1∩RcB2) such that

Pb,c is not dual degenerate, i.e., Pb,c has a unique optimal solution for every b ∈ Kb where

Kb is defined asKb = {b ∈ Rm : Pb,c is feasible}. (This is because dual degeneracies occur

when c lies simultaneously in the facets of multiple critical regions in c. Since (RcB1 ∩

RcB2) is full-dimensional, any finite set of facets can be avoided.)

With such a c fixed, Pb,c has a unique optimal solution for every b ∈ Kb. Note that for

b ∈ RbB1 ∩RbB2 , both B1 and B2 are optimal bases. Thus, the solutions yielded by B1 and

B2 are equal, i.e., for all b ∈ RbB1 ∩RbB2 ,

IB1A
−1
B1
b = IB2A

−1
B2
b⇒ ITB2

IB1A
−1
B1
b = A−1

B2
b (A.8)

Recall that RbB1 ∩RbB2 is m− 1 dimensional and contained in the hyperplane defined by
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(A−1
B2

)(j,·)b = 0. Thus, we can select a particular b ∈ RbB1 ∩RbB2 such that (A−1
B2

)(k,·)b > 0

for all k ∈ {1, . . . ,m} \ {j}.

Thus, it must be the case that B1 and B2 only differ by one basic variable. (Oth-

erwise, ITB2
IB1 would have multiple zero rows, precluding equality (A.8) for the appro-

priately selected b.) Since RbB1 and RbB2 lie on opposite sides of Hb, it must be that

B1 \ {B−1
1 (i)} = B2 \ {B−1

2 (j)}.

Finally, since the ith facet of RbB1 and the jth facet of RbB2 can be written as {AB1z :

z ≥ 0, zi = 0} and {AB2z : z ≥ 0, zj = 0}, respectively, and these two sets are equal, it is

clear that RbB1 and RbB2 share a facet and are dual neighbors by Theorem 2.4.2.

Case 2: {i, j} ⊆ {m+ 1, . . . , n}

Since RB1 ∩ RB2 = (RbB1 ∩ RbB2) × (RcB1 ∩ RcB2) is of dimension n + m − 1

and is contained in facets of RB1 and RB2 pertaining to c only, it must be the case that

(RbB1 ∩RbB2) is full dimensional, while (RcB1 ∩RcB2) is n− 1 dimensional.

Furthermore, it is clear from {i, j} ⊆ {m+ 1, . . . , n} that (RcB1 ∩ RcB2) is contained

in the (i−m)th facet of RcB1 and the (j −m)th facet of RcB2 and that RcB1 and RcB2 lie

on opposite sides of the hyperplane Hc = {c : ((IN1 − IB1A
−1
B1
AN1)

T )(i−m,·)c = 0} = {c :

((IN2 − IB2A
−1
B2
AN2)

T )(j−m,·)c = 0}.

Since (RbB1 ∩ RbB2) is full dimensonal, it is possible to fix b ∈ (RbB1 ∩ RbB2) such

that Pb,c is not primal degenerate, i.e., Db,c has a unique optimal solution for every c ∈

Kc = {c ∈ Rm : Db,c is feasible}. (This is because primal degeneracies occur when b lies

simultaneously in the facets of multiple critical regions in b. Since (RbB1 ∩ RbB2) is full

dimensional, any finite set of facets can be avoided.)

With such a b fixed, Db,c has a unique optimal solution for every c ∈ Kc. Note that for

c ∈ RcB1 ∩ RcB2 , both B1 and B2 are optimal bases. Thus, the dual solutions yielded by

B1 and B2 are equal, i.e., for all c ∈ RcB1 ∩ RcB2 . In particular, by equation (A.2) the
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optimal solution for the slack variables is given by

IN1(IN1 − IB1A
−1
B1
AN1)

T c = IN2(IN2 − IB2A
−1
B2
AN2)

T c

⇒ ITN2
IN1(IN1 − IB1A

−1
B1
AN1)

T c = (IN2 − IB2A
−1
B2
AN2)

T c (A.9)

Recall that RcB1 ∩ RcB2 is n− 1 dimensional, with the lone equality constraint being that

((IN2 − IB2A
−1
B2
AN2)

T )(j−m,·)c = 0. Thus, we may select a particular c ∈ RcB1 ∩ RcB2

such that ((IN2 − IB2A
−1
B2
AN2)

T )(j−m,·)c > 0 for all k ∈ {m+ 1, . . . ,m+ n} \ {j −m}.

Thus, it must be the case that N1 and N2 only differ by one basic variable. (Otherwise,

ITN2
IN1 would have multiple zero rows, precluding equality (A.9) for appropriately selected

c.) Since RcB1 and RcB2 lie on opposite sides of Hc, it must be that N1 \ {N−1
1 (i−m)} =

N2 \ {N−1
2 (j −m)}.

Finally, since the ith facet ofRcB1 and the jth facet ofRcB2 can be written {[IN1 A
T ]z :

zk ≥ 0 for k ∈ {1, . . . , n −m}, zN1(i) = 0} and {[IN2 A
T ]z : zk ≥ 0 for k ∈ {1, . . . , n −

m}, zN2(j) = 0}, respectively, it is clear that RcB1 and RcB2 share a facet and are primal

neighbors by Theorem A.2.2. �

A.6 Details of VAR Modeling

In Section 2.5.2, we consider an inventory control problem where demand and cost pa-

rameters are predicted using a first order vector autoregression (VAR(1)) model. Here we

provide the details of the VAR model and the selection of the VAR model coefficients.

Letting yt = [Dt1 . . . DtJ Ct1 . . . CtJ ]T denote the response vector at time t, the VAR(1)
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model can be written

yt = g +Myt−1 + εt (A.10)

with ε1, ε2, . . . ,
iid∼ N(0,Σ) where Σ a diagonal covariance matrix.

The forecast for time t+ τ at time t is given by the expectation of yt+τ given yt, i.e.,

ŷt+τ |t = g +Mŷt+τ−1|t (A.11)

where ŷt|t ≡ yt. The variance of the forecast is

V ar[ŷt+τ |t] =
T∑
i=1

Aτ−iΣ (A.12)

where A0 ≡ I . Furthermore, for any two forecasts where τ > `, we have

Cov[ŷt+τ |t, ŷt+`|t] = AT−τΣ (A.13)

The joint distribution of all of the forecasts follows a multivariate normal distribution with

expectation provided by (A.11) and covariances provided by (A.12) and (A.13).

We select the parameters of the VAR(1) model as follows. We select g = [30 30 30 3 4 5]T

and

Σ(i,i) =


20, i ∈ {1, 2, 3}

0.005, i ∈ {4, 5, 6}

Finally, the coefficient matrix A is generated randomly by block. Let

M =

M1 M2

MT
2 M3


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Then the elements of M1 are drawn from a uniform distribution on the interval (0, 0.1),

the elements of M2 are drawn from a uniform distribution on the interval (0,−0.005),

and the elements of M3 are drawn from a uniform distribution on the interval (0, 0.001).

These selections are meant to reflect positively correlations among demands and costs,

respectively, with negative correlations between demands and costs.
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APPENDIX B

APPENDIX TO CHAPTER 3

B.1 Additional Details and Results of the Experiments

B.1.1 Normal Distributions Used for Varying Benchmark Problems

In Section 5, we used the following distributions for the benchmark problems. For ‘en-

light13’, we used the multivariate normal distribution of dimension m = 169 with mean

µ = [200, . . . , 200]T and covariance matrix Σ, where

Σi,j =


60 if i = j = 1,

1.01i if i = j ∈ {2, . . . , 169},

0 if i 6= j.

For ‘mik-250-1-100-1’, we used the multivariate normal distribution of dimension m =

401 with mean as the original b given in the problem and covariance matrix Σ, where

Σi,j =


µ2i
100
× 0.98i if i = j,

0 if i 6= j.

For ‘roll3000’, we used the multivariate normal distribution of dimension m = 3, 460 with

mean as given in the problem and covariance matrix Σ, where

Σi,j =


µ2i

100,000
× 0.98i if i = j,

0 if i 6= j.
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B.1.2 Additional Results

In addition to the experimental results in the body of the paper, we also obtained the fol-

lowing results. Tables B.1, B.2, and B.3 compare DD and WSBS for varying Ks and for

‘enlight13’, ‘mik-250-1-100-1’, and ‘roll3000’, respectively.

Table B.1: Comparison of DD and WSBS for ‘enlight13’ and varying Ks

K CRs
# Pivots # Membership checks CPU time

DD WSBS DD WSBS DD WSBS

100 10 267 275 121 179 0.01 0.01

500 24 299 314 692 1,322 0.01 0.01

1,000 32 326 340 1,651 2,825 0.01 0.01

5,000 66 463 491 9.393 17,364 0.04 0.03

10,000 84 531 550 18,775 29,707 0.07 0.04

50,000 125 752 779 98,736 154,801 0.26 0.19

100,000 148 908 941 203,221 342,671 0.48 0.37

500,000 201 1,102 1,169 1,050,262 1,745,294 2.4 2.1

1,000,000 230 1,366 1,396 2,079,501 3,538,638 5.25 4.58
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Table B.2: Comparison of DD and WSBS for ‘mik-250-1-100-1’ and varying Ks

K CRs
# Pivots # Membership checks CPU time

DD WSBS DD WSBS DD WSBS

100 47 253 255 1,078 1,701 0.02 0.01

500 140 633 664 14,369 18,388 0.05 0.04

1,000 220 1,018 1,054 38,581 48,826 0.1 0.08

5,000 450 2,213 2,230 259,868 310,914 0.55 0.45

10,000 661 3,307 3,343 665,802 780,876 1.3 1.19

50,000 1,288 6,894 6,964 4,000,122 4,525,461 6.71 6.4

100,000 1,682 9.284 9,346 8,122,643 9,312,620 14.56 13.86

Table B.3: Comparison of DD and WSBS for ‘roll3000’ and varying Ks

K CRs
# Pivots # Membership checks CPU time

DD WSBS DD WSBS DD WSBS

100 2 761 613 139 139 1.98 0.05

500 2 719 607 1,690 738 1.78 0.05

1,000 2 804 602 4,387 1,483 2.68 0.06

5,000 3 785 618 87,149 11,515 3.98 0.17

10,000 3 779 607 167,073 23,058 5.89 0.26

50,000 3 803 609 898,900 114,795 19.63 1.03
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B.2 Sampling Parameters of Access Problem

B.2.1 Sampling Capacity Parameters

Each of the providers may have multiple physicians and the number of physicians at each

provider is given in [102]. Given a provider, we first sample the number of visits dedicated

to children for each physician located at the provider, and then the provider’s capacity is

estimated to be the sum of the capacities of physicians.

The sampling procedure for the capacity of an individual physician is as follows:

1. Randomly assign the physician a gender according to a Bernoulli(p = 0.3409) dis-

tribution, where p is the probability of being female, obtained from [103].

2. Using the gender sampled in step 1, randomly assign the physician an age. For

female physicians, assign age according to normal distribution N (µ = 48.30, σ =

10.11). For male physicians, assign age according toN (µ = 50.83, σ = 12.70). The

distributions were obtained from [103].

3. Using the (gender, age) pair of the physician, assign the physician’s number of yearly

visits for children to be 10% of the corresponding value in Table B.4, which was

estimated from [104].

Table B.4: Total number of yearly visits per physician

Age Males Females

< 40 8736 6888

40-44 8988 7224

45-49 9240 7644

50-54 9912 8064

55-59 9576 7896

60-64 8904 6216

> 65 7056 7560
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B.2.2 Sampling Demand Parameters

The total number of yearly visits required by a census tract was assumed to follow a normal

distribution with mean and standard deviation parameters given in Tables B.5 and B.6.
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Table B.5: Normal distribution parameters for demand constraints

Census Tract Mean Std. Deviation

1.00 37.993 6.6530

3.00 7.487 1.4160

6.01 31.038 5.8110

9.00 0.981 0.1935

11.00 53.626 9.9630

12.00 56.903 10.2665

15.00 5.027 0.8690

20.00 24.108 4.4470

21.00 37.456 6.9650

22.00 105.437 19.4060

23.00 14.732 2.7625

26.00 16.957 3.0020

27.00 42.006 7.8340

28.00 57.792 10.6545

29.00 42.365 7.6550

30.00 9.097 1.6390

33.01 34.136 6.1710

33.02 16.684 3.0275

34.00 41.118 7.5110

35.01 32.113 5.8980

35.02 85.248 16.0035

36.01 47.322 8.5355

36.02 78.764 14.6810

37.00 38.253 7.0470

38.00 47.854 9.0385

39.00 82.340 14.7030

40.01 78.325 14.2415

Census Tract Mean Std. Deviation

40.02 26.033 4.8240

41.00 25.739 4.6455

42.07 95.632 17.5040

42.08 80.589 14.3165

42.09 60.987 11.0010

42.10 57.321 10.3630

42.11 71.921 13.4515

42.12 70.250 13.1485

43.00 38.209 6.7765

44.00 61.326 11.3255

45.00 90.873 17.1070

101.01 42.127 7.4860

101.02 22.102 4.0240

102.00 86.945 15.8485

105.01 66.103 12.1135

105.02 113.213 20.6365

106.01 113.243 20.8780

106.03 11.853 2.0670

107.00 200.413 35.8240

108.01 47.592 8.7055

108.02 105.433 18.9695

108.03 208.862 37.8920

108.06 76.487 14.0815

108.07 111.955 20.1585

108.08 134.630 24.4145

108.09 134.496 24.6205

109.01 66.646 12.0295
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Table B.6: Normal distribution parameters for demand constraints

Census Tract Mean Std. Deviation

110.03 74.908 13.3040

110.04 62.120 11.3940

110.05 46.706 8.2550

110.06 32.368 5.9865

111.03 19.219 3.5655

111.04 81.594 15.1695

111.06 96.672 17.4375

111.07 43.329 8.0905

111.08 68.767 12.7260

111.09 113.250 20.8245

112.00 14.887 2.6180

113.00 36.707 6.6200

114.00 11.181 2.0925

115.00 44.733 8.1535

116.00 51.668 9.6175
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APPENDIX C

APPENDIX TO CHAPTER 4

C.1 Supplementary Material

C.1.1 Optimization Modeling Input Data and Notation

Notations

Table C.1: Notations

Notation Description Value(s) Data

C The number of census tracts in Colorado 1249 2010 SF2 100% census data (for

centroid location)

J The number of provider locations in Colorado 3051 2013 NPI data (for provider loca-

tion)
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Fixed Input Data

Table C.2: Fixed input data

Input

Data

Where Description Value Data

ρ (C.1) Regularization Parameter 0.55

dij (C.1),

(C.9)-

(C.11),

(C.13)

Distance from centroid of census tract i to

provider location j

− Assumed constant for each year,

ArcGIS Network Analyst, 2013

NPI data (for provider location),

2010 SF2 100% Census data (for

centroid location)

κ (C.2) Minimum percentage of the population to

be covered

0.7

MAX (C.9)-

(C.11),

(C.13)

Maximum distance allowed between pa-

tient and provider

60 Guidelines established by the U.S.

Dept. of Health and Human Ser-

vices

MAXpen(C.14) Maximum distance (miles) between cen-

sus tracts to penalize for differences in ac-

cess measure

10

f (C.1),

(C.6)-

(C.8)

Avg. # visit for census tract i 1.5

εik (C.14) Distance from centroid of census tract i to

the centroid of census tract k

− Assumed constant for each year,

ArcGIS Network Analyst, 2010

SF2 100% Census data (for centroid

location)
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Sampled Input Data

Table C.3: Sampled input data

Input

Data

Where Description Data

Pop (C.2) Total Population of Colorado Table B17024 of the ACS

pi - Population of census tract i Table B17024 of the ACS

nMi (C.3) Medicaid insured population of census

tract i

Table B17024 of the ACS

nHi (C.4) CHP+ insured population of census tract

i

Table B17024 of the ACS

nOi (C.5) Privately insured population of census

tract i

Table B17024 of the ACS

nUi (C.2) Population of census tract i lacking finan-

cial access

Table B17024 of the ACS

cMj (C.6) Yearly preventive dental care capacity at

location j devoted to Medicaid insured

children

MAX data

cHj (C.7) Yearly preventive dental care capacity at

location j devoted to CHP+ insured chil-

dren

cj (C.8) Yearly preventive dental care capacity at

location j devoted to children

Optimization Modeling of Access

The matching parameters to be estimated are θMij , θHij and θOij , the number of children from

census tract i, matched to provider j, distinguished by financial access to the dental care
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system through insurance types Medicaid (M ), CHP+ (H) or other financial access (O).

Because children with different types of insurance have access to different networks of

providers, our model matches children in the three insurance type groups separately. We

note that we do not include children with no financial access in this optimization modeling

since financial access is a precursor of spatial access, thus we assume that children with no

financial access will not have spatial access.

The location of each census tract i = 1, . . . ,C is taken to be the centroid of each tract,

while the location of each provider is taken to be the address of the individual provider,

geocoded using the Texas A&M Geocoding Services.[105] Using the Environmental Sys-

tems Research Institute’s (Esri) ArcGIS, we measure the distance dij between each census

tract centroid and provider j = 1, . . . , J. The linear component of the objective function

minimizes the total distance traveled under the matching. In formulating the model, we

follow the regularized approach of [90] in order to control for the sensitivity of the match-

ings to perturbations in the input data and to insure smoothness in the spatial domain. The
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model is formulated in equations (C.1)-(C.14).

min
θ,z,y,w

(1− ρ)
∑
i

∑
j

dijf(θMij + θHij + θOij) + ρS(z, y, w) (C.1)

∑
i

∑
j

(θMij + θHij + θOij) ≥ κ(Pop−
∑
i

nUi ) (C.2)

∑
j

θMij ≤ nMi ∀i ∈ {1, . . . ,C}, (C.3)

∑
j

θHij ≤ nHi ∀i ∈ {1, . . . ,C}, (C.4)

∑
j

θOij ≤ nOi ∀i ∈ {1, . . . ,C}, (C.5)

∑
i

fθMij ≤ cMj ∀j ∈ {1, . . . , J}, (C.6)

∑
i

fθHij ≤ cHj ∀j ∈ {1, . . . , J}, (C.7)

∑
i

f(θMij + θHij + θOij) ≤ cj ∀j ∈ {1, . . . , J}, (C.8)

zi = MAX +
1

nMi

∑
j

(dij −MAX)θMij ∀i ∈ {1, . . . ,C}, (C.9)

yi = MAX +
1

nHi

∑
j

(dij −MAX)θHij ∀i ∈ {1, . . . ,C}, (C.10)

wi = MAX +
1

nOi

∑
j

(dij −MAX)θOij ∀i ∈ {1, . . . ,C}, (C.11)

θMij , θ
H
ij , θ

O
ij ≥ 0 ∀i ∈ {1, . . . ,C}, j ∈ {1, . . . , J} (C.12)

θMij = θHij = θOij = 0 ∀i, j s.t. dij > MAX (C.13)

where
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S(z, y, w) =
∑
i

∑
k:εik≤MAXpen

1

εik
(zi − zk)2 +

∑
i

∑
k:εik≤MAXpen

1

εik
(yi − yk)2

+
∑
i

∑
k:εik≤MAXpen

1

εik
(wi − wk)2

(C.14)

The objective function (C.1) has two components, over which we minimize a weighted

sum. The first component requires the minimization of the sum of the total traveled dis-

tance in the system. The second component, (C.14), plays the role of smoothing the access

measures. The trade off between optimality and smoothness is controlled by the regular-

ization parameter ρ. This trade off is akin to the bias-variance trade off often referred to in

the statistics literature.

Without the regularization component given by (C.14), the optimization problem is a

linear program. Because of the large number of variables, the optimal solution and access

measures obtained using the unregularized model can be overly sensitive to small per-

turbations of the input parameters.[90] Motivated by the intuition that communities with

geographic proximity should experience similar levels of access, we take the regularized

objective function of (C.1), which is a quadratic program. By deploying the regularized

formulation, we reduce sensitivity and provide a measure of access that is more reliable for

decision makers.

Constraints (C.3) - (C.5) ensure that no more demand is assigned to providers than

exists from each census tract, age group pair. Constraint (C.2) provides a lower limit in-

dicating the total number of patients to which must be assigned in the system. We choose

κ, the percentage of children which should be assigned overall in the system, to be the

largest value for which the problem is consistently feasible as the sampled parameters are

repeatedly generated. Constraints (C.6) - (C.8) take providers’ capacities into account, for

the Medicaid, CHP+, and general populations, respectively. Constraints (C.9), (C.10), and

(C.11) define our access measures, zi, yi and wi, for the Medicaid, CHP+, and private fi-
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nancial access populations, respectively, for each census tract. Finally, constraint (C.12) is

the standard non-negativity constraint, while (C.13) ensures that patients are not assigned

to a provider requiring them to travel more than MAX miles.

C.1.2 Measuring Accessibility

After solving the optimization problem assigning patients to providers, we obtain match-

ings θ̂Mij , θ̂Hij , and θ̂Oij . Based on this matching, the dental care access of each census tract

is defined as the average distance that children travel to reach a dental care providers. We

define the access measures for children insured through Medicaid, insured through CHP+,

and with other financial access for each census tract i in equations (C.15), (C.16), and

(C.17), respectively..

ẑi = MAX(1−
∑

j θ̂
M
ij

nMi
) +

∑
j dij θ̂

M
ij

nMi
(C.15)

ŷi = MAX(1−
∑

j θ̂
H
ij

nHi
) +

∑
j dij θ̂

H
ij

nHi
(C.16)

ŵi = MAX(1−
∑

j θ̂
O
ij

nOi
) +

∑
j dij θ̂

O
ij

nOi
(C.17)

Note that equations (C.15), (C.16), and (C.17) are equivalent to constraints (C.9),

(C.14), and (C.11), reformulated for clarity. The measures are the weighted average of

the travel distance of children in each census tract i = 1, . . . ,C. Children who are not

assigned to a provider are assigned a travel distance equal to MAX . Therefore, the access

measures range between 0 and MAX . We use a maximum distance of 60 miles to avoid

subjecting the access measures to large distance values of those without access.

In order to study access to dental care services of the publicly insured population,

we compute the average distance traveled for those insured through Medicaid and CHP+.

Equation (C.18), shown below, defines the public insurance access measures.
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ûi =
nMi ẑi + nHi ŷi
nMi + nHi

(C.18)

C.1.3 Distributions for Sampled Input Data

In order to account for uncertainty in many of the input data of the optimization model, a

sampling approach is used. Table C.4 provides a brief overview of the distributions placed

on the input data and the methods/sources of data used to construct the distributions.

Table C.4: Sampled Input Parameters Descriptions

Input

Data

Distribution Description

POP Negative Binomial Distribution Total number of children in Colorado

NM
i Multinomial Distribution Total Medicaid-insured population, at

census tract i

NH
i Multinomial Distribution Total CHP+-insured population, at census

tract i

NO
i Multinomial Distribution Total population with other financial ac-

cess, at census tract i

NU
i Multinomial Distribution Population without financial access, at

census tract i

Cj Poisson Distribution Yearly preventive dental care capacity at

location j devoted to children

CM
j Binomial Distribution Yearly preventive dental care capacity at

location j devoted to publicly insured

children
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C.1.4 Population Sampling

In this section, we describe the modeling and sampling procedures used to sample the

population parameters which, along with the average number of visits demanded per child,

describe the need for dental care.

Description of the Population Variables

The population parameters are are segmented by census tract and type of financial access.

The total number of children in Colorado, Pop, is segmented by census tract such that

Pop =
∑C

i=1 pi, where pi is the population of census tract i. Within each census tract, the

population is split into Medicaid, privately insured, and uninsured populations, nMi , nHi ,

nOi , and nUi , respectively, such that pi = nMi + nOi + nHi + nUi .

Population Data

We use the 2017 ACS 5 year estimates (table B17024) to obtain data on the total number

of children in Colorado, the number of children in each census tract, and the number of

children in each census tract with each type of financial access.[106] The ACS expressly

provides estimates of the the total number of children and the number of children in each

census tract, which we use to estimate the hyperparameters of the population sampling

distributions.

To estimate the hyperparameters for dividing the population by financial access, we

make some assumptions about financial access based on family income. The census data

estimates the number of children living in each census tract by family income level. We

assume that children from families with incomes less that 142% of the federal poverty line

(FPL) are covered by Health First Colorado (Medicaid); similarly, we assume children from

families with incomes between 142% and 260% of the FPL are covered by Children Health

Plan Plus (CHP+). [107] Chlidren with no financial access are those from households with

incomes too high for public insurance programs but with too low to cover out-of-pocket
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expenses. We assume that children with no financial access are those from families with

incomes between 260% and 400% of the FPL.[82] Finally, we assume that children from

families with incomes greater than 400% of the FPL have private financial access, such as

private or employer-based insurance.

The end result are census estimates of 1) the number of children in Colorado, Pop, 2)

the number of children in each census tract, pi, and 3) the number of children with each of

the four types of financial access in each census tract, nMi , n
H
i , n

U
i , n

O
i . We use this data to

inform the sampling distributions of the population parameters.

Details of Hyperparameter Estimation

The modeling framework for the population parameters takes a hierarchical Bayes ap-

proach. Figure C.3 outlines the modeling framework.

POP ∼ NegBinom(µ, σ2)

(Pi;∀ i) ∼

Multin(Pop, π)

(NM
i , N

H
i , N

U
i , N

O
i ) ∼

Multin(Pi, τi)

τi ∼ Dir(αMi, αHi, αUi, αOi)

π ∼ Dir(r1, . . . , rC)

nMi , n
H
i , n

U
i , n

O
i

Figure C.1: Hierarchical framework for modeling population parameters

The red nodes represent initial sampling nodes, where the hyperparameters are fixed

values, estimated from data. Green nodes represent sampling from distributions whose

parameters are themselves samples from a higher level node. The purple node represents

the final input data used in the optimization model.
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The parameters of the negative binomial distribution, µ and σ2, used to sample the total

population were selected in order to match the estimate and sampling variance provided

in the Census Bureau data. Specifically, the ACS estimates the total number of children

in Colorado is 1,234,118, with a margin of error of 569, where 1234118 ± 569 represents

a 90% confidence interval.[108] Using a normal approximation, this applies that the sam-

pling variance of the population estimate is (569/1.645)2 = 119644.5, where 1.645 is the

95th percentile of the standard normal distribution. The negative binomial distribution,

parameterized by the mean and variance, denoted NegBinom(µ, σ2), is given by

p(Pop | µ, σ2) =

(
Pop+ µ

σ2−µ − 1

Pop

)
(
σ2 − µ
σ2

)Pop(
µ

σ2
)µ/(σ

2−µ)

The negative binomial parameters are then taken to be µ̂ = 1234118 and σ̂2 = 119644.5

We then assume that the population in each census tract follows a multinomial distri-

bution with total samples Pop and vector of proportions π. We place a Dirichlet prior on

π. That is, we have

p(p1, . . . , pC | π, Pop) =
Pop!

p1! · · · pC!

πp11 . . . πpCC

p(π | r) =
1

B(r)

C∏
i=1

πrii

where B(v) =
∏C

i=1 Γ(vi)

Γ(
∑C

i=1 vi)
is the multivariate beta function and r is the vector of hyper-

parameters r1, . . . , rC.

The parameters of the Dirichlet distribution for the proportions of patients in each cen-

sus tract were estimated using an empirical Bayes approach. That is, we first estimate the

hyperparameters of the prior from data, then update the prior distribution using the data

again to obtain the posterior distribution. Recall that we obtained census estimates of the

total population, Pop, and the number of children in each census tract, p1, . . . , pC, denoted

collectively by the vector p. We assume that the number of children in each census tract
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follows a multinomial distribution and place a Dirichlet prior on the proportions of the total

population in each census tract. That is, we place a p(π | r1, . . . , rC) = Dir(r1, . . . , rC)

prior on the vector of proportions π. Then, the distribution of the data given the prior

hyperparameters is

p(p1, . . . , pC | r) =

∫
π

p(p1, . . . , pC | π)p(π | r)dπ ∝ B(p+ r)

B(r)

Using maximum likelihood estimation, we select the prior hyperparameters which max-

imize the likelihood conditioned over the hyperparameters r, i.e.

r∗ = arg max
r

B(p+ r)

B(r)

This optimization can be achieved using gradient descent methods. Once the hyperpa-

rameters are estimated, we calculate the posterior distribution using Bayes rule, i.e.

p(π | p, r∗) =
p(p | π)p(π | r∗)∫
p(p | π)p(π | r∗)dπ

= Dir(r̂1, . . . , r̂C)

where r̂ = p+ r∗ is the vector of posterior hyperparameters.

Finally, we assume that the population in each census tract is split into four types of

financial access according to another multinomial distribution. In order to estimate the

posterior Dirichlet distribution used to sample the proportions of each census tract with

the four types of financial access, an empirical Bayes approach is again used. This time,

however, we use a regression approach to set the hyperparameters of the priors. This time

we assume that the prior distribution takes the form Dir(αiM , αiH , αiU , αiO) where αiI =

log(xTi βI). Here, xi is a vector of covariates for census tract i and βI is the financial access

type specific vector of regression coefficients, I ∈ {O,M,H,U}. The goal is to estimate

the regression coefficients which will, in turn, set the prior distributions.

The following variables were considered for covariates in the regression model:

• Poverty: the percentage of the population living below the federal poverty line in
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each census tract

• R2: binary variable indicating suburban urbancity, defined as having RUCCs 4, 5, or

6

• R3: binary variable indicating rural urbancity, defined as having RUCCs 7, 8, or 9

Note that urban urbanicity, defined as having RUCCs 1, 2, or 3, is taken to be the

baseline state, so variables R2 and R3 control for the differences between suburban and

rural, respectively, and urban census tracts. The poverty rate for each census tract was

obtained from 2017 ACS 5 year estimates (table S1702).

For each census tract i, we have the conditional likelihood

p(nMi , n
H
i , n

U
i , n

O
i | βM , βH , βU , βO) =

∫
β

p(nMi , n
H
i , n

U
i , n

O
i | τi)p(τi | βM , βH , βU , βO)dβ

∝
∏

I Γ(nIi + expxTi βI)

Γ(Pi +
∑

I expxTi βI)
× Γ(

∑
I expxTi βI)∏

I Γ(
∑

I expxTi βI)

The conditional likelihood across census tract can be obtained taking the product of the

individual census tract likelihoods, i.e.

p(nMi , n
H
i , n

U
i , n

O
i ∀i | βM , βH , βU , βO) =

C∏
i=1

p(nMi , n
H
i , n

U
i , n

O
i | βM , βH , βU , βO)

The 4 regression coefficient vectors are then estimated using maximum likelihood, i.e.

β̂M , β̂H , β̂U , β̂O = arg max
βM ,βH ,βU ,βO

C∏
i=1

∏
I Γ(nIi + expxTi βI)

Γ(Pi +
∑

I expxTi βI)
× Γ(

∑
I expxTi βI)∏

I Γ(
∑

I expxTi βI)
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which can be found using gradient descent methods. The regression parameter esti-

mates are reported in Table C.5.

Table C.5: Regression coefficients for financial access type proportions

Intercept Poverty R2 R3

β̂O 1.5992 -0.0450 -0.0343 -0.1155

β̂M -0.1084 0.0624 0.3423 0.3527

β̂H 0.4918 0.0229 0.4219 0.3909

β̂U 0.6773 0.0054 0.3095 0.3001

Once the regression coefficients are estimated, the prior distributions are set. Posterior

calculation proceeds by recognizing that

p(τi | nMi , nHi , nUi , nOi , β̂O, β̂M , β̂H , β̂U , xi) = Dir(α̂Mi, α̂Hi, α̂Oi, α̂Ui)

where α̂Ii = nIi + expxTi β̂I for each type of financial access I .

Population Sampling Procedures

Figure C.3 displays the process for sampling the optimization model input parameters. For

the bth sample, we first generate the total number of children in Colorado, Popb, from a

negative binomial distribution with parameters µ̂ and σ̂2 and the proportion of the total

population belonging to each census tract πb from a Dirichlet distribution with parameters

r̂b. Then, using the values drawn for Popb and πb, we generate the number of children in

each census tracts, pib for i ∈ {1, . . . ,C}, from a multinomial distribution. Finally, for each

census tract i, we generate the number of children with each of the four types of financial

access, (nMi , n
H
i , n

U
i , n

O
i )b, from another multinomial distribution, where the proportions,

126



τib, are drawn from a Dirichlet distribution with parameters α̂Mi, α̂Hi, α̂Ui, α̂Oi. The bth

sample of population parameters is then (nMi , n
H
i , n

U
i , n

O
i )b.

POPb ∼ NegBinom(µ̂, σ̂2)

(Pi;∀ i)b ∼

Multin(Popb, πb)

(NM
i , N

H
i , N

U
i , N

O
i )b ∼

Multin(pib, τib)

τib ∼ Dir(α̂Mi, α̂Hi, α̂Ui, α̂Oi)

πb ∼ Dir(r̂1, . . . , r̂C)

(nMi , n
H
i , n

U
i , n

O
i )b

Figure C.2: Hierarchical Bayes sampling of population parameters

C.1.5 Provider Capacities

In this section, we describe the modeling and sampling procedures used to sample the

provider capacity parameters which describe the supply of dental care.

Description of Provider Capacity Variables

The capacity parameters are given by the total capacity of visits available from provider j,

cj , the number of visits available to the Medicaid insured population cMj , and the number

of visits available to the CHP+ insured population cHj . By definition, we have that cMj ≤ cj

and cHj ≤ cj .

Provider Capacity Data

To estimate the hyperparameters of the sampling distribution, data from the 2012 Medi-

caid Analytical eXtract (MAX) claims were used. Specifically, we used data detailing the
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Medicaid caseloads of providers in Colorado. This data was used previously in examin-

ing Medicaid-specific caseload.[84, 92] Although this data is matched to specific provider

locations in Colorado, we used this data to inform our sampling distributions, developing

caseload profiles for providers by taxonomy.

We used Board of Dentistry (BOD) and National Provider Plan and Enumeration (NPPES)

data to consruct a list of the full time equivalent (FTE) number of providers at provider lo-

cations across the state of Colorado. For provider locations participating in Medicaid and

CHP+, we select the total FTE available to patients of all insurance types to be the maxi-

mum of the FTE available to Medicaid and the the FTE available to CHP+.

Details of Hyperparameter Estimation

We estimate the hyperparameters independently for each taxomony t. We classify the

providers in the MAX data as either a general dentist or a pediatric dentist. The mod-

eling framework for the capacity parameters for taxonomy t takes a hierarchical Bayes

approach. Figure C.3 outlines the modeling framework.

λj|t ∼ Gamma(at, bt)

Cj ∼ Pois(λj|t)

CM
j ∼

Binom(cj, qj|t)

qj|t ∼MixBeta(ω1t, ω2t, γ1t, γ2t)

cMj

Figure C.3: Hierarchical framework for modeling provider capacity parameters
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We assume that the Medicaid caseload data comes from a binomial distribution, where

the total caseload, in number of visits, for the jth provider, cj , is split into Medicaid

caseload and non-Medicaid caseload. The expected proportion of the total caseload dedi-

cated to Medicaid is qj|t. We assume that the total capacity of provider j is distributed as a

Poisson distribution, i.e. Cj ∼ Pois(λj|t). For estimation of the prior distributions on λj|t,

we assume that λj|t ∼ Gamma(at, bt), where at and bt depend on the provider taxonomy

t. We use an empirical Bayes method to inform the selection of hyperparmeters of the

priors from Medicaid caseload data. We assume the Medicaid caseload follows a binomial

distribution, where the total caseload comes from a Poisson distribution.

p(CM
j | cj, qj) =

(
cj
CM
j

)
q
CM

j

j (1− qj)cj−C
M
j

p(Cj | λj|t) =
λ
Cj

j|t

Cj!
e−λj|t

p(λj|t | at, bt) =
batt

Γ(at)
λat−1
j|t e−btλj|t

We place a Beta mixture prior on the Medicaid acceptance ratio of provider j, qj|t.

The mixture distribution accounts for the fact that some of the Medicaid providers will

also accept CHP+ patients, while others will not. Since a provider will likely limit the

proportion of their caseload dedicated to public insurance, participation in CHP+ will likely

affect the proportion of caseload dedicated to Medicaid. The prior is also specific to the

provider type t.

Let Aj be a Bernoulli random variable denoting whether provider j accepts CHP+ pa-

tients, with 1 denoting acceptance. Note that we cannot determine from the Medicaid

caseload data whether each individual provider accepts CHP+. We can, however, see from

the FTE data that the percentage of Medicaid providers who also accept CHP+ is around

80%. Therefore, we assume that P (Aj = 1) = 0.8 and P (Aj = 0) = 0.2. Then, we
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assume that the distribution of qj|t, conditional on Aj , is as follows:

qj|t | Aj = 1 ∼ Beta(ω1t, ω2t)

qj|t | Aj = 0 ∼ Beta(γ1t, γ2t)

The second Beta distribution, with parameters γ1t and γ2t, describes how the total

caseload is split between Medicaid caseload and excess caseload available only to the pri-

vately insured. The first Beta distribution, with parameters ω1t and ω2t, describes how the

total caseload is split between Medicaid caseload and caseload available to patients insured

through both private insurance and CHP+. In fact, we may think of the distribution of

qj|t | Aj = 1 as the marginal distribution of the proportion of the total caseload dedicated

to Medicaid, where the proportions of caseload dedicated to Medicaid, CHP+, and pri-

vate insurance, respectively, come from a Dirichlet distribution. We return to this fact in

Appendix C.1.5.

The prior on qj|t is then given by a mixture distribution

p(qj|t | ω1t, ω2t, γ1t, γ2t) =
1∑

aj=0

p(qj|t | α1t, α2t, γ1t, γ2t, aj)p(Aj = aj)

= 0.8×Beta(ω1t, ω2t) + 0.2×Beta(γ1t, γ2t)

The hyperparameters ω1t, ω2t, γ1t and γ2t are estimated in the following way. For each

of the providers in the Medicaid caseload data with taxonomy t, we divide their caseload

by 10,500, trimming caseloads that exceed 10,500. Doing so gives us an ad hoc sample of

proportions of caseload dedicated to Medicaid patients under the assumption that a provider

can see 10,500 patients per year. The assumption of 10,500 visits per provider is taken from

HPI data.[99]. The hyperparameters are then estimated from the data using maximum
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likelihood estimation. The final estimates by taxonomy are given in Table C.6.

Table C.6: Medicaid caseload proportion Beta mixture hyperparameters by taxonomy

ω̂1t ω̂2t γ̂1t γ̂2t

3.8372768 99.5271701 0.6481611 2.2043669

(a) General Dentist

ω̂1t ω̂2t γ̂1t γ̂2t

0.7023452 0.9240403 1.9830447 11.578234

(b) Pediatric Dentist

Once the hyperparameters ω̂1t ω̂2t γ̂1t γ̂2t are obtained, the hyperparameters at and bt

are estimated from Medicaid claims data using maximum likelihood estimation. First, we

calculate the distribution of the capacities given the hyperparameters. The likelihood of the

Medicaid caseloads of providers with taxonomy t can be written

p(cMj | at, bt, ω1t, ω2t, γ1t, γ2t)

=
∑∞

cj=cMj

∫ 1

0

∫∞
0
p(cMj | cj, qj|t)p(cj | λj|t)p(λj|t | at, bt)p(qj|t | ω1t, ω2t, γ1t, γ2t)dλj|tdqj|t

= 0.8×
Γ(cMj +ω1t)Γ(cMj +at)Γ(ω1t+ω2t)

cMj !Γ(at)Γ(ω1t)Γ(cMj +ω1t+ω2t)
( bt

1+bt
)at( 1

1+bt
)c

M
j

1F2(ω2t, c
M
j + at;ω1t + ω2t + cMj ; 1

1+bt
)

+ 0.2×
Γ(cMj +γ1t)Γ(cMj +at)Γ(γ1t+γ2t)

cMj !Γ(at)Γ(γ1t)Γ(cMj +γ1t+γ2t)
( bt

1+bt
)at( 1

1+bt
)c

M
j

1F2(γ2t, c
M
j + at; γ1t + γ2t + cMj ; 1

1+bt
)

where 1F2(·, ·; ·; ·) is the hypergeometric function. Then, the likelihood is the product

of the densities,

L(at, bt) =
Jt∏
j=1

p(cMj | at, bt, ω1t, ω2t, γ1t, γ2t)

,

where Jt is the number of providers of taxonomy t. The hyperparameters are then

estimated with maximum likelihood estimation, i.e. at and bt are estimated using gradient
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descent solving the optimization problem

ât, b̂t = arg max
at,bt

log(L(at, bt))

The final estimates of the Gamma hyperparameters by taxonomy are given in Table C.7.

Table C.7: Total Caseload Gamma hyperparameters by taxonomy

at bt

0.3698297 .00005449144

(a) General Dentist

ât b̂t

5.3312234928 0.0006929849

(b) Pediatric Dentist

The hyperparameter estimates ât, b̂t, ω̂1t, ω̂2t, γ̂1t, γ̂2t are then used to generate capacity

estimates for each of the B input data samples.

Capacity Sampling Procedures

To obtain sampled instances of the provider capacities using Monte Carlo simulations, we

sampled from the estimated prior distribution. Because we lack data on the capacities

of individual providers, the prior distribution cannot be updated. However, the empirical

Bayes estimation procedure ensures that the sampled capacities reflect typical provider

behavior. For each of the B samples generated, the end result is a set of capacity input

parameters (cj, c
M
j , c

H
j )b for each provide j ∈ {1, . . . , J}.

For each sample b and each provider location j, our sampling procedure accounts for

both the provider taxonomy t and the full time equivalent number of providers working

at that location FTEj . In order to sample the caseload for the provider locations, we

first account for the number of full time equivalent providers by sampling the expected

caseload of provider j, λj|t,b, from a Gamma distribution with parameters FTEj × ât and

b̂t, where FTEj is the full time equivalent number of individual providers at location j.

The Gamma(FTEj × ât, b̂t) distribution is the distribution of the sum of FTEj draws

from a Gamma(ât, b̂t) distribution, reflecting the total caseload available at each provider
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location as the sum of the caseload contributed by FTEj individual providers. Once the

sampled expected number of visits, λj|t,b, is obtained for each provider location, we sample

the total caseloads, Cj , from the Poisson(λj|t,b) distribution.

There are then three possibilities regarding the public insurance caseload. The first

is that provider location j does not accept public insurance, in which case we set cMjb =

cHjb = 0. The second and third possibilities are that the provider location accepts exactly

one of Medicaid or CHP+ and that the provider location accepts both Medicaid and CHP+,

respectively.

λj|t,b ∼ Gamma(FTEj × ât, b̂t)

Cjb ∼

Pois(λj|t,b)
cMjb = cHjb = 0

(cj, c
M
j , c

H
j )b =

(cjb, c
M
jb , c

H
jb)

Figure C.4: Sampling of Capacity Parameters: Providers not accepting public insurance

If the providers at locations j accept exactly one of Medicaid or CHP+, the next step

is to sample the portion of the caseload available to the Medicaid or CHP+ population,

setting the caseload available to the unaccepted insurance type to 0. Given the sampled total

caseload at location j, cjb, the caseload is split according to a binomial distribution, with

the proportions drawn from a Beta distribution. The parameters of the Beta distribution, γ̂1t

and γ̂2t, are taken from Table C.6 according the taxonomy of provider location j. Implicit

in this procedure is that providers accepting CHP+ but not Medicaid will accept CHP+

patients at the same rate as providers accepting Medicaid but not CHP+ accept Medicaid

patients.
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λj|t,b ∼ Gamma(FTEj × ât, b̂t)

Cjb ∼

Pois(λj|t,b)

CM
jb ∼

Binom(cjb, qjb)

qjb ∼ Beta(γ̂1t, γ̂2t)

cHjb = 0

(cj, c
M
j , c

H
j )b =

(cjb, c
M
jb , c

H
jb)

Figure C.5: Sampling of Capacity Parameters: Providers accepting Medicaid or CHP+

If provider location j accepts both Medicaid and CHP+, the next step is to split the total

caseload into caseload available to the Medicaid population, the CHP+ population, and the

general population. Recall that in cases where a provider locations accepts both Medicaid

and CHP+, we assume that FTEj to be used in calculating the total caseload is the maxi-

mum between the the FTE for Medicaid and CHP+, i.e. FTEj = max{FTEM
j , FTE

H
j }.

We assume that the minimum of the individual FTEs, FTE−J = min{FTEM
j , FTE

H
j },

is the number of providers serving both the Medicaid and CHP+ populations, while the

remaining FTEj − FTE−j providers server only Medicaid or CHP+. The caseload for

these remaining providers is sampled as in Figure C.5. For the providers serving both pop-

ulations, the caseload is split according to a multinomial distribution, with the proportions

drawn from a Dirichlet distribution. Since the Beta distribution with parameters ω̂1t and

ω̂2t (see Table C.6) may be thought of a marginal distribution of only the proportion of

the caseload available to Medicaid, we can simply split the second parameter ω̂2t in accor-
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dance with assumptions about how much is available to CHP+ patients and the privately

insured, respectively. Assuming that the caseload available to CHP+ and Medicaid are sim-

ilar, we assume that the parameters of the Dirichlet distribution are ω̂1t, ω̂1t, and ω̂2t − ω̂1t,

with the first two parameters corresponding to the Medicaid and CHP+ proportions and the

third parameter corresponding to the excess caseload available exclusively to the privately

insured.
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λj|t,b ∼ Gamma(FTE−J × ât, b̂t)

C∗jb ∼

Pois(λj|t,b)

CP∗
jb , C

M∗
jb , C

H∗
jb ∼

Multinom(c∗jb, qjb)

qjb ∼ Dirichlet(ω̂1t, ω̂1t, ω̂2t − ω̂1t)

c∗jb, c
M∗
jb , c

H∗
jb λj|t,b ∼ Gamma((FTEj − FTE−j )× ât, b̂t)

C$
jb ∼

Pois(λj|t,b)

CM$
jb ∼

Binom(c$
jb, qjb)

qjb ∼ Beta(γ̂1t, γ̂2t)

cjb = c∗jb + c$
jb,

cMjb = cM∗jb + cM$
jb ,

cHjb = cH∗jb

Figure C.6: Sampling of Capacity Parameters: Providers accepting Medicaid and CHP+,
assuming FTEM

j > FTEH
j . If FTEM

j < FTEH
j , swap positions of FTEM

j , FTE
H
j .

C.1.6 Statistical Inference for Access Measures

Inference Procedures

After obtaining the posterior distributions on the supply/demand parameters of the opti-

mization model, we sample B times, defining B optimization problems. We solve the op-
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timization for each of the B samples to obtain matchings θ̂1, . . . , θ̂B and corresponding ac-

cess measures {(ẑi, ŷi, ŵi, ûi)1, . . . , (ẑi, ŷi, ŵi, ûi)B} for each census tract i ∈ {1, . . . ,C}.

This set of B values of the access measures constitutes an empirical sample from the pos-

terior distribution on the access measures.

We pause here for a slight shift in notation which will be convenience in the subsequent

paragraphs. We denote the disparity measures for census tract i, calculated using the bth

sample of input data, by ẑib, ŵib, ŷib, and ûib. Disparities in spatial access to care between

publicly and privately insured children can be estimated by the differences δuib = ûib − ŵib.

Similarly, disparities between Medicaid insured and privately insured children and between

CHP+ insured and privately insured can be estimated by the differences δzib = ẑib− ŵib and

δyib = ŷib − ŵib, respectively.

We make inferences on the access measures and disparities in access using simultane-

ous statistical inference across multiples locations while accounting for spatial dependence

using simultaneous confidence bands derived from samples of data points at sample loca-

tions form a spatial process. Specifically, we assume that the samples χib, b = 1, . . . , B,

are realizations from the random process χ(s) with mean and covariance functions µ(s)

and Σ(s, s′), respectively. The samples could be either the samples of the access measures

or disparity measures. For locations s1, . . . , sC, we have B samples of χb = (χ1b, . . . , χCb)

from the C-variate distribution with mean µC = (µ(s1), . . . , µ(sC)) and covariance ma-

trix ΣC = {Σ(si, sj) : i, j ∈ 1, . . . ,C}. We estimate a simultaneous confidence band

for the unknown function µ(s) over the spatial domain S applying a similar methodology

introduced for the estimation of simultaneous credible bands using Markov Chain Monte

Carlo approaches.[93] Specifically, we construct simultaneous credible bands by first con-

structing pointwise credible intervals derived from the α/2 and 1 − α/2 percentiles of the

samples χi1, . . . , χiB at each location si, i = 1, . . . ,C. In the second step, we scale the

pointwise intervals by a constant factor until 100(1 − α)% of the samples χ1, . . . , χB are

contained in the credible band simultaneously. This approach allows for the credible band
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to be more narrow where information is highly concentrated and wider where information

is more disparate. In this paper, we use α = 10%, constructing 90% credible intervals.

Using simultaneous confidence bands, we can further test whether 1) the access mea-

sure is greater than some access standard T and 2) the disparities in access are lower than

some intervention threshold value T (e.g., 5 mile in distance traveled). These hypothe-

ses indicate the presence of systemic 1) lack of sufficient access to dental care and 2) the

presence of systematic disparities at the threshold level T . This analysis provides statistical

inferences on where to intervene and which spatial access measures lead to the most impact

in reducing disparities in access.
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Access Measure Variability

(a) Private Financial Access (b) All Publicly Insured

(c) Medicaid Insured

(d) CHP+ Insured

Figure C.7: Standard Deviation of Disparity Measures by Insurance Type140



(a) Private Financial Access (b) All Publicly Insured

(c) Medicaid Insured

(d) CHP+ Insured

Figure C.8: IQR of Disparity Measures by Insurance Type
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Disparities by Urbanicity and Insurance Type

The median disparity between publicly and privately insured children was greater than 2

miles in 88.5% of census tracts, greater than 5 miles in 87.2% of census tracts, greater than

10 miles in 73.9% of census tracts. The median disparity between the publicly and privately

insured was 12.51 (25th percentile = 10.72, 75th percentile = 15.84) miles in urban areas,

5.63 (-0.40, 20.25) miles in suburban areas, and 1.61 (0, 24.11) miles in rural areas. The

median disparity between the Medicaid population and privately insured was 15.51 (15.03,

18.85) miles in urban areas, 7.83 (0, 21.30) miles in suburban areas, and 0.79 (0, 39.89)

miles in rural areas. The median disparity between the CHP+ population and privately

insured was 8.53 (8.21, 11.89) miles in urban areas, 1.00 (0, 7.24) miles in suburban areas,

and 0.77 (0, 7.13) miles in rural areas.
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(a) Medicaid Insured (b) CHP+ Insured

(c) Publicly Insured

Figure C.9: Median disparity measure, by financial access
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Tables C.8 and C.9 provide a full breakdown of the percentage of census tracts, by

urbanicity, with median disparity measures above the threshold T = 2 and T = 10 miles,

respectively, as well as the percentage of census tracts found to have disparities significantly

above the T miles.

Table C.8: Percentage of census tracts with disparity measures greater than and signifi-
cantly greater than T = 2 miles, by urbanicity and type of financial access

Urban Suburban Rural

Financial Access % Above Std % Sig % Above Std % Sig % Above Std % Sig

Public 81.1% 71.9% 2.9% 0.8% 2.8% 0.5%

Medicaid 81.2% 69.2% 2.9% 0.6% 2.8% 0.4%

CHP+ 80.6% 62.2% 2.5% 0.6% 2.1% 0.3%

Table C.9: Percentage of census tracts with disparity measures greater than and signifi-
cantly greater than T = 10 miles, by urbanicity and type of financial access

Urban Suburban Rural

Financial Access % Above Std % Sig % Above Std % Sig % Above Std % Sig

Public 68.5% 11.7% 2.3% 0.2% 2% 0.2%

Medicaid 78.6% 12% 2.7% 0.2% 1.9% 0.2%

CHP+ 24.6% 10.2% 1.1% 0.2% 1.4% 0.2%
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Disparity Measure Variability

(a) Medicaid Insured (b) CHP+ Insured

(c) Publicly Insured

Figure C.10: Standard deviation of disparity measures, by financial access
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(a) Medicaid Insured (b) CHP+ Insured

(c) Publicly Insured

Figure C.11: IQR of disparity measures, by financial access
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(a) Medicaid disparity measures (b) CHP+ disparity measures

(c) Public insurance disparity measures

Figure C.12: Boxplots of the census tract level IQR of disparity measures for three public
insurance types, grouped by urbanicity
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Significant Disparities

(a) T = 2 (b) T = 10

Figure C.13: Significant Disparities in Access of T Miles or more: Medicaid and Private
Insurance

(a) T = 2 (b) T = 10

Figure C.14: Significant Disparities in Access of T Miles or more: CHP+ and Private
Insurance
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(a) T = 2 (b) T = 10

Figure C.15: Significant Disparities in Access of T Miles or more: Public and Private
Insurance
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