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Introduction

During the execution of a computer program, a computer processor usually
needs to access information stored in a memory chip, like a RAM chip found
in standard personal computers and mobile phones. Accessing RAM is much
slower than other computation on a processor, so it is generally preferable to
avoid doing so if possible.

Many computer programs access information in memory locations that are
close to each other at close points in time. For example, while reading a list of
numbers from memory, a processor would need to read numbers from consec-
utive memory addresses. Such programs are said to have good memory local-
ity. To make such algorithms run faster, standard computer architectures have
evolved to have sophisticated systems that temporarily bring relevant chunks
of memory into faster, smaller memory chips called caches in a process called
caching. This speeds up execution because if the processor finds the information
needed in cached memory, it can skip going to the RAM chip and access the
information quicker.

These caching systems are often confounded by programs that do not have
good memory locality. For example, a program that reads information from
random memory addresses would not benefit much from expecting to find the
information it needs in cached memory. Since the program cannot utilize the
cache much, it cannot avoid fetching the information from the RAM chip.

A metric for determining how quickly a program can process information
stored in memory is called memory bandwidth utilization, which is given by

Memory bandwidth =
Amount of memory accessed by a program

Time taken by program

So, a caching system would increase the memory bandwidth utilization of
a program with good memory locality. It would not do so for a program with
poor memory locality.

There are an increasing number of relevant applications where the problems
to be solved by the computer are inherently such that it is difficult for cache
systems to be of much utility, because the programs written for them would
have poor memory locality, also called sparse applications. A leading example
is graph algorithms, where even simple algorithms like breadth-first search has
the property that following an edge can lead outside cached memory.
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In order to accelerate the execution of these algorithms, novel computers with
memory-centric architectures have been developed [2]. One such architecture
is used in the Emu Chick computer designed by Emu Technology (now Lucata
Corporation). Characterizations by J. S. Young et al. have shown that the Emu
Chick performs well at sparse applications such as pointer chasing and Sparse
Matrix-Vector multiplication [6].

The Emu Chick architecture has been extended to be Lucata Pathfinder
platform, which is intended to be distributed graph analytics platform [3]. The
Lucata Pathfinder has a project in development to implement GraphBLAS,
which is a standard API for graph algorithms to be expressed in a cross-platform,
algebraic manner [4].

In this work, we will look at a data structure built for the Chick and
Pathfinder platforms. We will then attempt to make a more balanced version,
and we will then compare their pros and cons.
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Literature Review

Prior work

On a migratory-thread platform such as the Emu Chick, a shared address space
of memory is split between several CPU called nodes, and whenever a thread
running on one computing element (say node 0) must read memory from another
(say node 1), the thread stops running on node 0 and migrates to the node 1,
resuming execution there. Thus designed, the Emu Chick, which does not have
a cache, has shown to have memory bandwidth utilization that does not depend
much on whether the program had sparse memory accesses [2].

The first independent benchmark characterization of the Emu Chick is by
E. Hein et al. in [2], which involves measurements on pointer chasing, the
STREAM benchmark to measure the Emu’s memory bandwidth, and Sparse
Matrix-Vector multiplication. A later benchmark characterization is by J. S.
Young et al. in [6]. Both give pointers on programming the Emu Chick, stating
that programs must be written to optimize the layout in which it stores infor-
mation in order to limit the need to migrate threads of the program from having
to migrate around the system.

Also of note are the implementation of the Sparse Matrix-Vector multiplica-
tion explained in detail in M. E. Belvirani et al. in [1], and a parallel bitonic sort
implementation detailed in K. Veluswamy et al. in [5]. In [5], the authors also
list ways to spawn threads efficiently, adjusting the number of threads spawned
by an algorithm, and to prevent bottlenecks caused by migrating threads.

The Chunked Array

In any modern program it is common to use a collection of custom-sized data
structures, and graph frameworks like GraphIt [7] and LucataGraphBLAS [4]
use them heavily in their source code to represent node lists or edge lists. The
Pathfinder and Chick platform (both developed by the Lucata Corporation),
provide a method to do this, called ‘chunked arrays’.
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Figure 1: 5 elements on 4 nodes in a standard chunked array, showing the
location of the next element

On the Chick and Pathfinder platforms, the memory of a standard chunked
array of length k on N nodes is laid out by following the below rules:

1. A stripe of ceil(N/k) cells is allocated on each node.

2. When elements are added in sequence, the stripes of lower numbered nodes
are filled before those of higher numbered nodes.

An illustration of the above is available in Figure 1.
In this scheme, the node number for a given index i in an array of size k on

a system with N nodes is stored on is given by

floor(i /floor(k /N))

The index on the stripe is given by

i%floor(k /N)

Since a thread reading outside the node it is currently executing on can
cause a migration, and migrations can be expensive ([6]) the advantage of such
a structure is that despite having its elements distributed across nodes, reading
adjacent elements by index does not usually cause the thread to have to migrate
between nodes, that is, accesses have sequential locality. This reduces the num-
ber of migrations needed for algorithms like sparse matrix-vector multiplication
on matrices stored in the Compressed Sparse Row format.

This structure however has the problem that there is no ‘balance guaran-
tee’. In Figure 1, node 3 is completely unutilized. This means that any threads
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spawned for computation on this array will ignore Node 3 completely, and in-
stead contribute to the overutilization of other nodes on the system. Although
the relative imbalance caused every time this happens is inversely proportional
to the number of elements assigned to each node, this can cause damage if the
elements are few but represent a large amount of computation.

A balance guarantee may also significantly simplify other algorithms such
as distributed sorting, where having an even split of elements can improve de-
sign and also improve resource utilization with an algorithm like parallel prefix
mergesort. Attempting to create a distributed comparison sort for the Emu is
what motivation for this design.
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Methodology

Proposed Solution

The best way to achieve a balance guarantee is to use a round-robin array: is to
allocate elements to nodes in a round-robin fashion, with element 0 on node 0,
element 1 on node 1, and so on, wrapping around when we run out of nodes, but
this does not give us any sequential locality, since consecutive elements are on
different nodes. Reading elements in order would then cause lots of migrations.

Figure 2: 10 elements on 4 nodes with round robin layout
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Figure 3: 10 elements on 4 nodes with proposed custom chunked layout

Instead, we can try to use the filling pattern of the standard chunked ar-
ray (filling up lower nodes before higher nodes) on the shape (the set of filled
elements) of the round-robin array, and we get the best of both worlds. How-
ever, we trade off the ability to add to the end of the array efficiently, which is
acceptable for the purposes of fixed-size pools, or frequently sorted lists. The
layout of this ‘custom chunked array’ is described as in Figure 3.

The principle is that the shape (the set of filled cells) a round-robin array
makes can be split into two rectangles, one of which is wider by at most 1 than
the other, as shown in Figure 3. These two rectangles can be filled up in a similar
manner to the standard chunked array, and we would have a perfectly balanced
layout of nodes which still maintains good sequential locality. In Figure 3, we
still have sequential runs of 0-2, 3-5, 5-6, and 7-8.

We can determine the number of elements per node in the narrower rectangle,
min epn by the formula

min epn = floor(k/n)

The number of elements in the wider rectangle, if it exists, is then given by
max epn, calculated as

max epn = ceil(k/n)

The number of nodes in the wider rectangle can be given by

w = k%n

Then, we can determine the size of the wider rectangle by

b = w ∗max epn
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So, we get the tuple that represents the (node number, stripe index) by the
following formula

index(i) =

{
(floor(i/max epn), i%max epn) if i < b

w + (floor((i− b)/min epn), (i− b)%min epn) otherwise

Measurements

Uniformity of element allocation

For each total number of elements k, we compared the uniformity of element
allocation on 8 nodes between the two strategies for both elements. This was
done by measuring the statistical variance of the element distribution among
the nodes.

So, if two elements were allocated among two nodes as two on the first and
none on the second, the distribution would have a variance of 1, while an even
distribution would have a variance of 0.

However, this variance is not the best measure of the impact the imbalance
can have. Having 8 less elements in the stripe of the last node may affect
variance but would not be consequential if all stripes contained at least 100
elements. To correct for this, we measured a ‘relative variance’ by dividing the
variance by the stripe length.

The results of the absolute and relative variance calculations are plotted in
Figures 4 and 5 respectively. We see that the variance caused by using the stan-
dard chunked array is much higher than when using the custom variation, but
this variances has a maximum that it does not cross even with increasing nodes.
We can see that the custom chunked array always has smoother allocations, but
the improvement it brings over the standard chunked declines as the number of
elements increase.

Figure 4: Absolute variance for increasing array size for each strategy
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Figure 5: Relative variance for increasing array size for each strategy

Load Balancing Properties

We wrote an implementation of the proposed array and it was used to perform
sparse matrix vector multiplication, where the array was used to represent the
sparse matrix by using tuples of matrix coordinates and values. There were 67
such values in a matrix of dimension 27× 27 with a density of 0.1.

These values were pseudorandomly assigned to various coordinates, with
retries on collisions using Python’s randint and randrange. The dense vector
was striped round-robin.

Multiple threads, one for every node on the system and element of the matrix,
were spawned to perform the matrix vector multiplication on 8 nodes. The value
of 67 was therefore chosen since it is slightly above a multiple of 8, which would
cause an imbalance in the standard chunked array in the stripe on node 7.

Figure 6: Migrations in Sparse Matrix-Vector product
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This implementation was fed to Lucata’s Pathfinder simulator on CRNCH’s
testbed, which tracks the origin and destination of migrations and plots it on
a heatmap. The resulting map is shown in Figure 6. The image shows that
the biggest source and destination for thread migrations was node 0, which is
expected since it is the default location of all data not replicated across all
nodes.

The most encouraging fact about the plot is that it is relatively smooth
everywhere else, and it is symmetric along the secondary diagonal. This means
that most of the heat difference (of which there is very little) along any transition
is due to the structure of the matrix. Except node 0, there is no one node that
is strongly more the source or sink than any other node, which indicates good
balance.
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Conclusion

Discussion

Despite the availability of chunkedar rays and newer GraphBLAS implemen-
tations, the Pathfinder and Chick systems don’t currently handle more load
balanced distributed data structures, likely because likely because writing data
structures for migratory thread platforms is difficult, since reading the struc-
ture’s own properties may cause migrations if they are not carefully imple-
mented.

Nevertheless, we have identified a unique method to implement random-
access arrays with sequential locality, and shown that it has a limited but tangi-
ble benefit over the standard chunked array. The custom chunked array can be
used where balancing the number of elements in a node is a priority, and array
extensibility after initialization is not a concern.

Future Work

A timing analysis of the standard and custom chunked array needs to be done
to quantify the benefits of the additional balance when traded off with the
additional complexity in identifying the range of each stripe.

This structure can now be used to implement other fixed size array-like
structures that can take advantage of locality, like bitsets (where masking on
word-sized element boundaries is possible), or algorithms like a distributed sort.
An efficient bitset data structure can be used to perform faster breadth-first
searches over much larger sizes of inputs.
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