
Geolocation Adaptive Music Player

Alfonso Perez-Carrillo, Florian Thalmann, György Fazekas, Mark Sandler
Center for Digital Music
Queen Mary University

Mile End Road
London E1 4NS

{a.perezcarrillo, f.thalmann, g.fazekas, mark.sandler}@qmul.ac.uk

ABSTRACT
We present a web-based cross-platform adaptive music player
that combines music information retrieval (MIR) and au-
dio processing technologies with the interaction capabili-
ties offered by GPS-equipped mobile devices. The appli-
cation plays back a list of music tracks, which are linked
to geographic paths in a map. The music player has two
main enhanced features that adjust to the location of the
user, namely, adaptable length of the songs and automatic
transitions between tracks. Music tracks are represented as
data packages containing audio and metadata (descriptive
and behavioral) that builds on the concept of Digital Mu-
sic Object (DMO). This representation, in line with next-
generation web technologies, allows for flexible production
and consumption of novel musical experiences. A content
provider assembles a data pack with music, descriptive anal-
ysis and action parameters that users can experience and
control within the restrictions and templates defined by the
provider.

1. INTRODUCTION
Technological advances in computer networks, storage,

broadband communications and emerging web technologies
and standards allow a new generation of web-based appli-
cations with unique opportunities in areas of user experi-
ence, portability and social collaboration. The capabilities
of modern web browsers on desktop and mobile devices al-
low to accomplish tasks previously reserved to stand-alone
applications. Furthermore, mobile devices have developed
into compact multi-sensory computers (e.g. multi-touch, ac-
celerometer, gyroscope, video camera, microphone, or geo-
location tracking), which provide new interaction opportuni-
ties. However, the full potential of such advances is yet to be
exploited while also raising the need for novel computational
models and algorithms for the analysis and representation
of multimodal data and related metadata.

This paper presents a geo-location adaptive music player
based on Music Information Retrieval (MIR) methods, audio
processing algorithms and the concept of Digital Music Ob-
ject [3] (DMO) along with the sensing capabilities provided

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA

c© 2016 Copyright held by the owner/author(s).

by mobile platforms. The presented work is very related to
concepts used in computer game music and have also been
applied using mobile sensor data, such as G1, a native iOS
app produced by RjDj 1.

Music Information Retrieval (MIR) methods are used to
extract semantic music features from the audio signal and
audio processing algorithms are used to apply transforma-
tions to the source music material. A specific type of DMO
may be defined as data containers merging sound mate-
rial, analytical information extracted from the audio, and
information about how it should be rendered in realtime.
In our specific case, we extend the linear concept of musi-
cal track, to a representation of the track as an undirected
graph, where the nodes represent the track’s beats and the
connections indicate the similarity between two beats. Fur-
thermore, we incorporate a set of signal processing methods
and a mapping function to associate the tracks to specific
locations in a geographic map.

The adaptive player plays back a predefined playlist of
DMOs, which are linked with paths in a map. It has two
main enhanced features that are controlled by the geo-location
of the user, namely, adaptable length of the song and auto-
matic transitions [1, 11]. The player is built as a producer-
consumer application, where the content and behavior of
the musical objects are prepared by a producer and they are
controlled and experienced by consumers. The application
was built on Web standards (Web Audio API, HTML5 and
Javascript) and cross-platform frameworks (Ionic2 based on
Cordova3 and AngularJS4).

Data representation is discussed in Section 2, audio anal-
ysis and semantic representation of tracks as beat similar-
ity graphs is explained in Section 3, rendering algorithms
(beat concatenation and automatic transitions) are detailed
in Section 4, mapping between tracks and maps in Subsec-
tion 5.1 and the rendering behaviour algorithm in Subsec-
tion 5.2.

2. DATA REPRESENTATION
A piece of digital music today is typically a signal with

some metadata extracted from different sources and pro-
cesses. An emerging approach to represent musical informa-
tion and processes is the abstract concept of Digital Music
Object (DMO) [3]. It is a musical adaptation of the Compu-
tational Research Object [2], an amalgamation of a research

1https://en.wikipedia.org/wiki/RjDj
2http://ionicframework.com
3http://cordova.apache.org
4https://angularjs.org



publication, its results, and its methods used to arrive at the
results, such as computer code, which enables reproducible
scholarship. By capturing the source and the process by
which music is composed, produced and comsumed, DMOs
provide the means to reconstruct, re-purpose, remix and re-
engineer the music [3]. DMOs can be shared, edited and
executed by people or machines at any point in the produc-
tion and distribution process.

Based on the idea of DMO, we extend the traditional
concept of musical track to an amalgamation of (a) seman-
tic audio description (Section 3.1) extracted through MIR
techniques; (b) signal processing rendering algorithms (Sec-
tion 4); (c) mapping from geographic location to musical
tracks (Section 5.1); and behavioral algorithms (Section 5.2)
that adapt the music playback to the movement of the lis-
tener.

At present, the data is delivered as a set of files con-
taining the audio signal, the time onsets of the beats and
the beat similarity graph. The signal processing algorithms
are coded in the application. In the future, we will adopt
Semantic Web technologies with standard formats such as
the Resource Description Framework 5 or the Web Ontol-
ogy Language (OWL) 6 and use ontology-based modelling
techniques inspired by the Music Ontology [10].

3. SEMANTIC AUDIO DESCRIPTION
Semantic and musically meaningful features are extracted

from analysis of audio through Music Information Retrieval
techniques. In this work we are mainly focused on the most
basic rhythmic unit, the beat (Subsection 3.1.1), and in the
computation of similarity measures that allow the compari-
son of different beats.

Measuring similarities in recorded music is a difficult task
that depends on a great variety of criteria. It is usually
approached by numerically comparing psychoacoustic based
descriptions of the music. Relevant features related to psy-
choacoustic characteristics of the sound (i.e. timbre, melody,
loudness and rhythm) are extracted from the audio sig-
nal (Section 3.1), including the beat onset positions (Sec-
tion 3.1.1) and then, these features are averaged across each
beat interval into beat-synchronous features. Similarity is
represented as beat-synchronous self-disimilarity matrices
(Section 3.2) and graphs (Section 3.3).

3.1 Feature Estimation
The estimated features are related to rhythm (i.e. beat

position, beat duration, metrical position), pitch (chroma
features), timbre (MFCC coefficients) and loudness (Beat
Average Energy and Beat Onset Energy). Features were
extracted in the spectral domain (except for the energy) and
the used parameters were: analysis window length wL =
4096, hop size hop = wL/4 with no zero padding, so the
FFT length is the same as wL. All analyzed tracks had a
sampling rate of sr = 44100.

3.1.1 Rhythm: beat tracking
Perception of rhythmic structures and patterns in music

is due to the succession of strong and weak events. Onset
detection is the computational tool for finding those events
and dividing the music signal into the smallest segments.

5http://www.w3.org/RDF/
6http://www.w3.org/TR/owl2-overview/

The beat is a periodic pulse, which is perceptually induced
from the succession of onsets and is the primary music met-
rical unit. It is the pulse with which we tap our feet when
listening to music. It determines the tempo, a measure that
is perceptually restricted to a range of around 40 to 260
beats per minute (BPM). Other periodic structures built on
top of the beat pulse are the rhythm and the meter. In this
work we are mainly interested in beat onsets, duration and
metrical position:

• Beat onset position. Usually called beat tracking is per-
formed using the dynamic programming method de-
scribed in [6]. After running the algorithm, special
care is taken to place the beats at zero-crossings in
order to avoid clicks when concatenating consecutive
beats later.

• Beat duration. The duration is directly extracted from
the interval between beat onsets.

• Metrical position. This feature is still a very complex
problem and existing algorithms still provide inaccu-
rate results. For this reason, in this work, metrical
position is manually indicated by providing the time
signature and the first down-beat of each track.

3.1.2 Timbre
Timbre is represented based on the so-called Mel-scale

Frequency Coefficients (MFCC), which are a perceptually
grounded description of the instantaneous timbre envelope.
MFCCs were computed based on D. Ellis Matlab implemen-
tation [5]. The algorithm takes the FFT in a frame-by-frame
basis. Then its magnitude is warped to a Mel Frequency
scale and logarithmic amplitude and the DCT of this log-
mel spectrum is computed. The first n = 12 coefficients are
used.

3.1.3 Pitch
Since it is difficult to compute the pitch in a mixed poly-

phonic source that may include non-harmonic sounds and
noise, a much more relevant representation is the 12 di-
mensional chroma [7]. A chromagram is a representation
against time of the power spectrum energy accumulated
into 12 pitch classes that correspond to the equal temper-
ament chromatic scale. Since pitches exactly one octave
apart are perceived as particularly similar, the distribution
of chroma can reveal perceived musical similarity that is not
apparent in the original spectra. It is computed using Ellis’
chromagramIF Matlab implementation 7. The algorithm
uses instantaneous frequency estimates from the spectro-
gram to keep only real harmonics, which allows to obtain
high-resolution chroma profiles.

3.1.4 Signal Eneregy
The subjective judgment of the intensity of a sound, is

here expressed numerically as the energy of the signal. It
is computed as the quadratic mean or root mean squared
(RMS) of the signal amplitude in time domain. Conversely
to the intra-beat stability of the previous features (i.e. tim-
bre and pitch), the energy usually shows a strong peak at the
beginning of the beat and rapidly decays. For this reason

7http://www.ee.columbia.edu/˜dpwe/resources/matlab/
chroma-ansyn/



Figure 1: Beat Similarity is represented as a Self-Disimilarity Matrix (SSM) of beat-synchronous features. The process

starts by tracking the positions of the beats, based on onset detection algorithms. Then beat-synchronous features

are computed, namely Chroma, MFCC, Average Energy, Maximum Energy and Beat Duration. Chroma and MFCC

features are reduced from 12-Dimensional to 1-D by computing the Euclidean distance. Finally, SSMs are computed

for each of the features and combined in a single matrix by weighted summation.

two loudness features are computed, the average energy (of
the whole duration of the beat) and the maximum energy
at the beginning of the beat, computed as the peak energy
in a short window at the beginning of the beat.

3.2 Beat Disimilarity Matrix
The distance between beats in a track within this feature-

space is estimated by computing a self-disimilarity matrix
(SSM) [8] of the beat-synchronous features. A SSM is a
square matrix where time runs from left to right, as well as
from the top to the bottom. The matrix is symmetric, and
the diagonal is null.

For each of the audio features (Section 3.1) a SSM is com-
puted and all resulting matrices are combined into a sin-
gle one by applying a weighted sum. The SSM of a fea-
ture vector X is the matrix multiplication between trans-
posed X (XT ) and X, after normalization of the columns
of X. Normalization in case of one-dimensional features,
such as the beat duration, is straight forward: vectors are
subtracted from their minimum value and divided by the
maximum. However, for n-dimensional features as it is the
case of MFCC coefficients and Chroma features (12 dimen-
sions each) a measure for dimension reduction is needed. In
this work the Euclidean distance is used since these features
as based on the auditory spectrogram, which is perceptually
normalized, i.e. the geometric distance between segments
is proportional to the perceptual distance. Finally, every
feature SSM is combined in a weighted sum in order to ob-
tain the general Beat Disimilarity Matrix (BSM). The whole
process is represented in Figure 1.

3.3 Beat Similarity Graph
The Beat Similarity Matrix of a track is transformed into

an indirected graph as it allows a much more compact rep-
resentation, it is easily serializable in text human-readable
formats such as JSON and it allows to find paths (shortest,
longest, etc.) based on standard graph search algorithms. In
order to reduce the amount of information, a non-directed

graph with filtered weight-less edges is used. Graph edges
among beats are pruned based on the following parameters:
MinSimilaritythreshold, the minimum similarity value for
two beats to be connected in the graph; maxCandidates,
the maximum number of connections that a beat can have;
and minimumSep, the minimum temporal separation be-
tween connected beats. This includes self-connections that
are always pruned.

4. RENDERING ALGORITHMS
This work supports the use of Web standards versus na-

tive implementations as the efforts being made at present on
Web technologies forecast an stable and fast cross-platform
environment in the future, specially since the developments
of the Web Audio API (WAAPI) 8. At present, however,
sound processing in real-time is still in a very preliminary
phase. There exist alternatives to using the WAAPI such
as javascript libraries, but they are still far to achieve some
of the real-time transformations needed in this work, e.g.
time-stretching. Our algorithms are therefore adapted to
these peculiarities. The main developed algorithms are a
beat concatenation module that schedules and concatenates
the beats to be played; a beat-matcher that aligns the beats
of active tracks with different tempo; an energy cross-fader
that smoothly cross fades energy profiles of active tracks; a
time-stretching module; and an algorithm to find the best
transition instant between two songs.

4.1 Beat Scheduling and Concatenation
Representation of musical tracks as beat similarity graphs

allows for advanced playback capabilities, in contrast to the
traditional sequential playback, such as jumping to different
parts of the song through similar beats. Track duration can
be, therefore, adapted from the smallest loop in the graph
to infinite. The music player implements a beat scheduler,

8https://developer.mozilla.org/en-US/docs/Web/API/
Web Audio API



which queues the next beats to render based on the posi-
tion of the listener by means of standard graph algorithms
(i.e. Dijkstra [4]). During beat concatenation, cross-fading
may be applied, although it is not necessary as beats are
already cut at psycho-acoustically strategic positions (zero
crossings at onsets) and transitions are generally artifact-
free and smooth. However, jumping to other parts of the
song may be noticeable and higher level semantic informa-
tion should be incorporated, for instance, phrasing or de-
tection of voiced fragments, which can only be split at very
specific instants.

4.2 Music Track Transitions
The second enhanced characteristic of the presented sys-

tem is its ability to automatically perform transitions be-
tween tow (or more) songs when the listener walks into the
geographic path of a new track. The problem consists basi-
cally of aligning the beats of both tracks or beat-matching
(Section 4.2.2) and smoothly cross-fading the volumes (Sec-
tion 4.2.4). In typical DJ performances with analog turnta-
bles, the process of beat-matching is achieved by adjusting
the speed of the turntable, which alters the pitch of the
song. In order to avoid this artifact we perform time-stretch
to modify the length of the beats while preserving the pitch.

Awaiting for technical advances in WAAPI in the near
future, we propose two different approaches to overcome the
current limitations. The first approach (ap1) consists of pre-
computing and storing the transitions and the second (ap2)
just cuts off the beats to fit the length of the tempo curve.
Approach ap1 is less exposed to sound artifacts as signal
processing is carried out off-line, but it is less flexible as
transitions can not be adapted in real time, they are just
triggered when the user enters a transition part. Method
ap2 is more flexible and allows adaptation in real-time but
artifacts may be present if the tempi of the tracks being
mixed is too distant, as no time-stretching is being applied.

In both cases, an algorithm first looks for the best position
to perform the transition among the active tracks. Then, it
estimates a tempo envelope for the transition based on the
tempi of the active tracks that is used to beat-match the
beats of the active tracks. Finally, cross-fading is applied to
the energy of the tracks. If the tempo difference between
both tracks in the transition is higher than 50%, then the
lowest song tempo is artificially doubled by adding virtual
beats at the middle of each beat.

4.2.1 Finding best transition position
The first step to perform the automatic transitions is to

determine the position (in beats) of the transition. In ap-
proach ap1, it is estimated by computing a weighted cross-
correlation of the beat-synchronous features (see section 3.1)
of the active tracks. The operation is performed within a
transition window length determined by parameters maxi-
mum and minimum transition duration (trmaxL, trminL) ex-
pressed in beats. Figure 2 shows an example of the weighted
correlation functions between the computed set features for
a lag of 100 beats (the last 100 beats of the outgoing track
and the 100 first ones of the incoming track). It can be ob-
served how metrical position correlation envelopes are com-
posed by successive peaks and valleys, which allows to accu-
rately find the position of the tracks with similar rhythmic
patterns, while the rest of the features determine the areas
with higher correlation. Regarding approach ap2, the posi-

Figure 2: Cross-correlation of beat-synchronous fea-

tures for 100 beats of two consecutive tracks. The red dot

(at beat 52) indicates the beat with maximum correla-

tion, which means that the transition will have a duration

of 52 beats. The metrical position envelope is composed

by successive peaks and valleys, which helps to fine-tune

the exact transition position.

tion is estimated in real time by forcing the tracks to match
downbeats.

4.2.2 Transition tempo envelope
Tracks are played back at the original speed, but during

transitions, if active tracks have different tempi, there must
be a smooth tempo change. In approach ap1, this tempo
evolution is estimated as a linear interpolation envelope be-
tween the starting and ending tempi of the transition. The
tempo values at the boundaries are determined by averaging
the beat durations before (in-tempo) and after (out-tempo)
the transition in a window of a fixed number of beats, typ-
ically set to ten. In Figure 3, it can be observed the linear
tempo envelope during the transition, expressed in duration
of the beats and beats-per-minutes (BPM). Regarding ap2,
the tempo evolution is computed in real-time as the average
of the active tracks, weighted by the distance (in cm) of the
user to each of the active tracks. Once the tempo curve is de-
termined, beat duration from both tracks are time-stretched
to meet their new duration.

4.2.3 Time stretching
Time-stretching algorithms are used to speed up or slow

down the music without affecting the pitch. The stretch
is performed in a beat-by-beat basis. In the off-line ap-
proach, ap1, a phase-Locked-Vocoder [9] is used. In the case
of the real-time approach, ap2, after trying several computa-
tionally in-expensive time domain techniques such as resam-
pling, Overlap-add (OLA), we decided to just cut the beats
or fill them with silence at the end in order to match the
transition tempo envelope. Both resampling and OLA affect
the pitch, resulting in undesired artifacts, whereas cutting or
filling the beats is almost unnoticeable assuming that tempi
are not too far and given that possible occurring artifacts
are masked by the mix and the energy fades. In fact, the
most perceptually important features are to keep all active
tracks on beat and to preserve their original pitch.

4.2.4 Energy Band Cross-fading
The last step of the automatic transitioning is to smoothly

cross-fade the energy of the tracks. Typical fade shapes are
linear, logarithmic, exponential or S-Curve and the slopes
can be designed to be constant in gain or power. We use a
logarithmic shape with constant power, that is, the sum of
the squares of the envelopes is constant and equal to one.



Figure 3: Example of transition between two tracks at different BPM. At the top there is the out-going track, at the

middle the in-coming track and at the bottom the tempo envelope (expressed as beat duration and BPM), which is

estimated as the linear regression between the starting and ending tempi of the transition. Beats during the transition

are time-stretched to meet the new duration. We can also observe the constant-power cross-fading envelopes applied

to each of the tracks (in red).

The resulting shapes are shown in Figure 3 and were com-
puted as,

fadeIn =

√
1

2
(1 + t), (1)

fadeOut =

√
1

2
(1− t), t = {−1..1}. (2)

In approach ap2, cross-fade envelopes can be travelled
back and forth depending on the distance of the user to
the active tracks. Cross-fades can be applied to the entire
energy spectra (as explained above) or just to selected fre-
quency bands (e.g. high-pass, low-pass). In this case, the
process would be carried out in steps, until all energy bands
are cross-faded.

5. THE APPLICATION
The application was built on Web standards (Web Au-

dio API, HTML5 and Javascript) and cross-platform frame-
works (Ionic 9 based on Cordova 10 and AngularJS 11). The
use of DMOs as containers for data and metadata allows
for flexible production and consumption of the musical ex-
perience. On one side, a provider prepares and packs the
music material, the mappings and the behavior and on the
other side, consumers can download the package, consume
and interact with it within the restrictions defined by the
provider. Details regarding Provider and Consumer inter-
faces are given below.

5.1 Provider Interface
The producer is responsible for the creation of the music

playlist, setting the travel path in a map and linking the
tracks to specific segments of the path and can also tune
the parameters of the audio processing algorithms and the
mappings from location to music track. The producer is
provided with three tools, a playlist editor, a path designer
and a simulator, which were developed as desktop web ap-
plications.

9http://ionicframework.com
10http://cordova.apache.org
11https://angularjs.org

At present, the playlist is prepared manually off-line and
the audio analysis algorithms are run in MATLAB, which
generates the metadata files. In the future, the interface will
have an area to drag and drop the music files that will be
sent to a web-server with a Python back-end in order to be
analyzed. The server will in turn send back the metadata
related to the audio analysis (i.e beat position and similarity
graph).

The second tool, the path-to-track mapper (PTM), allows
to match path segments to tracks. Paths are designed us-
ing the Google maps editor, by indicating the path’s corners
with markers (google.maps.marker), and then, they are ex-
ported to a geolocation XML based format (.kml or .gpx)
as shown in Figure 4. The PTM loads such a pre-defined
path and a playlist description file and it allows to assign a
set of consecutive path-markers to each track.

Figure 4: Map editing in google maps and example of

.kml formated position of the markers in the path.

The third tool is used to simulate a user walking and play-
ing back the DMOs. The interface allows to place the lis-
tener at a specific location and can also automatically move



Figure 5: The Simulator loads the defined map (mark-

ers) and simulates a listener’s motion, listen to the

DMOs playing back and monitoring the jumps in the

DMOs beats.

the listener along the path with random velocity. Addition-
ally, the interface monitors the connections and the jumps
among similar beats and includes a player showing the cur-
rent track being played and the position of the current beat
being rendered (Figure 5). A demo of the simulator, opti-
mized for Google Chrome Navigator, can be found online 12

5.2 Consumer Interface
The consumer application is run via a Web-Browser in a

mobile device. It loads a DMO and shows a path in a map,
the names of the tracks, the track being played, the actual
position provided by the GPS and optionally the position
of the beat being played, in a similar way to the Simulator
(Figure 5). The client renders the music using the rendering
algorithms in Section 4. It also implements a beat scheduler,
selecting the following beats to render and can adapt to the
position of the listener based on standard graph algorithms
(Dijkstra [4]).

6. CONCLUSIONS
The presented Web Audio Framework based on the con-

cept of Digital Music Object and audio signal processing
algorithms, allows for the design of novel music consump-
tion experiences. As an example application we present a
DMO player for mobile devices, which reacts to the user
geolocation in a map. The application plays back a prede-
fined playlist of music tracks, which are linked with paths in
a map. The music player has two main enhanced features
which are controlled depending on the position of the lis-
tener, namely, adaptable length of the song and automatic
transitions.

The length of the song can be adapted to the position
and motion of the listener. This is possible because the en-
hanced player, instead of playing back the beats in order, it
can jump between similar beats and similarity grants that
a jump to a similar beat will not be noticeable. Further-
more, the representation of similarity as a graph allows to
search for specific paths that get close to the position of the
listener. Whenever the listener enters the path region of a
new song, the transition between songs is triggered. Au-

12http://www.eecs.qmul.ac.uk/˜alfonso/geolocation-player/

tomatic beat-matching, cross-fading and time-stretching is
carried out until the transition is finished, when the adap-
tive player goes back to the previous state of adapting the
length of the song to the listener’s position.

In the future, we will work towards an implementation
of time-stretching in real-time based on Javascript and the
Web Audio API, and adopt Semantic Web technologies for
the representation of the Music Objects.

7. ACKNOWLEDGMENTS
This paper has been supported by EPSRC Grant EP/L019981/1,

Fusing Audio and Semantic Technologies for Intelligent Mu-
sic Production and Consumption.

8. REFERENCES
[1] M. E. P. Davies, P. Hamel, K. Yoshii, and M. Goto.

Automashupper: Automatic creation of multi-song
music mashups. IEEE/ACM Trans. Audio, Speech and
Lang. Proc., 22(12):1726–1737, Dec. 2014.

[2] D. De Roure. Towards computational research objects.
In Proceedings of the 1st International Workshop on
Digital Preservation of Research Methods and
Artefacts, DPRMA ’13, pages 16–19, New York, NY,
USA, 2013. ACM.

[3] D. De Roure, G. Klyne, K. R. Page, J. P. N. Pybus,
and D. M. Weigl. Music and science: Parallels in
production. In Proceedings of the 2Nd International
Workshop on Digital Libraries for Musicology, DLfM
’15, pages 17–20, New York, NY, USA, 2015. ACM.

[4] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, (1):269–271,
1959.

[5] D. Ellis. PLP and RASTA (and MFCC, and inversion)
in Matlab, 2005. http://www.ee.columbia.edu/˜dpwe/
resources/matlab/rastamat/.

[6] D. Ellis. Beat tracking by dynamic programming. J.
New Music Research, Special Issue on Beat and
Tempo Extraction, 36(1):51–60, March 2007.

[7] D. Ellis and G. Poliner. Identifying cover songs with
chroma features and dynamic programming beat
tracking. In Proc. Int. Conf. on Acous, Speech, & Sig.
Proc. ICASSP, volume IV, pages 1429–1432., Hawaii,
2007.

[8] J. Foote and M. Cooper. Automatic audio
segmentation using a measure of audio novelty. pages
452–455, 2000.

[9] J. Laroche and M. Dolson. New phase-vocoder
techniques for pitch-shifting, harmonizing and other
exotic effects. In Proc. the IEEE Workshop on
Applications of Signal Processing to Audio and
Acoust., New Paltz, New York, Oct. 17-20 1999.

[10] Y. Raimond, S. Abdallah, M. Sandler, and
G. Frederick. The music ontology. In in Porc. 7th
International Symposium on Music Information
Retrieval, 2007.

[11] J. Tristan. Creating Music by Listening. Phd in media
arts and sciences., Massachusetts Institute of
Technology, September 2005.


