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SUMMARY

In this thesis, we present and analyze three algorithms that are designed to

make computer simulation more efficient, valid, and/or applicable.

The first algorithm uses simulation cloning to enhance efficiency in transient sim-

ulation. Traditional simulation cloning is a technique that shares some parts of the

simulation results when simulating different scenarios. We apply this idea to tran-

sient simulation, where multiple replications are required to achieve statistical va-

lidity. Computational savings are achieved by sharing some parts of the simulation

results among several replications. We improve the algorithm by inducing negative

correlation to compensate for the (undesirable) positive correlation introduced by

sharing some parts of the simulation. Then we identify how many replications should

share the same data, and provide numerical results to analyze the performance of our

approach.

The second algorithm chooses a set of best systems when there are multiple can-

didate systems and multiple objectives. We provide three different formulations of

correct selection of the Pareto optimal set, where a system is Pareto optimal if it is

not inferior in all objectives compared to other competing systems. Then we present

our Pareto selection algorithm and prove its validity for all three formulations. Fi-

nally, we provide numerical results aimed at understanding how well our algorithm

performs in various settings.

Finally, we discuss the estimation of input distributions when theoretical dis-

tributions do not provide a good fit to existing data. Our approach is to use a

quasi-empirical distribution, which is a mixture of an empirical distribution and a

distribution for the right tail. We describe an existing approach that involves an

xii



exponential tail distribution, and adapt the approach to incorporate a Pareto tail

distribution and to use a different cutoff point between the empirical and tail distri-

butions. Then, to measure the impact, we simulate a stable M/G/1 queue with a

known inter-arrival and unknown service time distributions, and estimate the mean

and tail probabilities of the waiting time in queue using the different approaches. The

results suggest that if we know that the system is stable, and suspect that the tail of

the service time distribution is not exponential, then a quasi-empirical distribution

with a Pareto tail works well, but with a lower bound imposed on the tail index.
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CHAPTER I

INTRODUCTION

When it comes to evaluating large and complex systems in real life, finding closed-

form solution can be very difficult. In such cases, simulation can come to the rescue.

However, despite advances in technology, realistic simulations of real life phenomena

are increasingly becoming more challenging. Also, many problems in our modern

world require a prompt solution; thus speed of simulation matters. In this thesis,

we discuss advances in simulation, with focus on the efficiency and validity of the

simulation.

In the first part of the thesis, we seek for efficiency via cloning. In our study,

simulation cloning combines conventional cloning and splitting ideas. It achieves

computational saving by sharing some parts of the simulation results among several

replications. Doing so may lead to a problem of growing variance, because shar-

ing computations induces positive correlation within replications that adds to the

variance. To improve performance, we introduce a modified version of simulation

cloning utilizing induced negative correlation between replications. We also address

implementation issues such as identifying the optimal number of branches sharing a

common part of a simulation for both basic and modified cloning. The objective is

to achieve maximum efficiency, which is defined to be the reciprocal of the product

of the variance and computational effort per replication.

In the second part of the thesis, we focus on ranking and selection. Although

ranking and selection has been widely studied, most works have concentrated on

choosing the best system(s) based on a single objective. However, in real life, decisions

are usually based on multiple attributes. For example, when deciding what to have
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for lunch, one naturally considers the food itself, price, time, and distance, to name

a few. It is not surprising that when the decision to make becomes more significant,

then it may not suffice to investigate a single objective. Therefore, we study Pareto

set estimation using ranking and selection. Instead of choosing a single best system,

the goal is to select a set of Pareto optimal systems. A system is Pareto optimal

if there exists no other system that can improve upon it in one objective without

hurting some other objective(s).

“Garbage in, garbage out” is one of the best-known words of wisdom in the world

of simulation. Thus, estimating input distributions correctly is an essential part of

simulation. In the third part of the thesis, we pursue the validity of simulation by

identifying better input distributions. In many cases, a set of well-known distributions

(e.g., exponential, normal, gamma, etc.) are not sufficient to describe the behavior of

stochastic input quantities. When the input distribution is distinctively different from

well-known distributions, combining some distributions may help improve the fit. For

example, Bratley et al. [15] suggests the use of quasi-empirical distributions, which are

mixtures of empirical and exponential distributions. As there may be distributions

that cannot be approximated using an exponential distribution, we combine other

distributions for a better fit and study the effects of such algorithms via simulation

of an M/G/1 queue.

This thesis is organized as following. In Chapter 2, we describe related works

for each topic we cover. In Chapter 3, we propose a simulation cloning algorithm to

promote efficiency in transient simulation. In Chapter 4, we propose an algorithm

that estimates the Pareto optimal set when multiple objectives are present. Finally,

Chapter 5 addresses difficult input analysis problem where theoretical distributions

may not provide a good fit. We conclude this thesis with a summary and description

of future work in Chapter 6. Additional numerical results for Chapter 5 are provided

in Appendix A.
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CHAPTER II

LITERATURE REVIEW

In this chapter, we review previous works and discuss their contribution and how they

motivated our work. In Section 2.1, we describe works related to simulation cloning

(see Chapter 3) and in Section 2.2, we review contributions relevant to Pareto set

estimation (which we introduce in Chapter 4). Finally in Section 2.3, literature that

is pertinent to difficult input analysis problems (see Chapter 5) is provided.

2.1 Simulation Cloning

Hybinette and Fujimoto [60] introduced a cloning mechanism that can be used to

simulate different scenarios more efficiently. Their mechanism shares some simulation

results to save computer effort in simulating different scenarios. More specifically, if

multiple scenarios have common path until a decision point where the scenarios start

to differ, then simulation cloning shares simulation results up until that point. This

research was continued by Hybinette and Fujimoto [61] who studied the impact of the

number of clones for simulation problems of different sizes. Hybinette [59] suggested

just-in-time cloning to delay the decision point as far as possible, with the goal of

making the computational savings more significant. Chen et al. [23, 24] provided

an architecture, mechanism, and design for managing simulation cloning. They also

studied an incremental cloning mechanism for distributed simulation based on the

HLA (High-Level Architecture) standard.

In a simulation context, cloning resembles the variance reduction approach known

as splitting. While splitting was originally suggested in a particle transmission setting

[62], Bayes [11] suggested the concept of splitting in simulation while using the term

importance sampling, and Hopmans and Kleijnen [56] applied the idea to a complex

3



system but found the result to be disappointing due to the increased net variance.

Other research on splitting includes Villén-Altamirano and Villén-Altamirano

[89, 90] who introduced the RESTART (REpetitive Simulations Trials After Reach-

ing Thresholds) method, which is one application of classical splitting. Their study

of the RESTART method continued, see, for example, [91, 92] and a recent tuto-

rial on RESTART for applications [93]. Also, Schreiber and Görg [49] modified the

RESTART method and successfully applied it to several finite buffered queueing sys-

tems. Garvels [39] extended and unified existing splitting methods and analyzed the

importance function. The results were extended by Garvels and Kroese [40] who

compared different implementations of an existing RESTART method and suggested

the best strategy, and by Garvels, Van Ommeran, and Kroese [41] who studied the

importance function in splitting. Lagnoux [64] also analyzed an importance split-

ting model that divides the state space into regions called importance regions. His

proposed algorithm minimizes the variance under a fixed budget. Lagnoux studied

splitting under a cost constraint in [66, 65].

More research on splitting includes Glasserman, Heidelberger, Shahabuddin, and

Zajic [43, 44], who resolved the issue of choosing the number of subpaths to generate

when a path is split and provided a proof of the method being optimal in a general

setting, and Cérou and Guyader [17] who studied adaptive multilevel splitting to find

splitting levels without much advance knowledge about the system. Cérou, LeGland,

Del Moral, and Lezaud [18] derived limit theorems for estimating rare-event proba-

bilities. Other variants of multilevel splitting include the work of Del Moral et al.

[31, 32] who referred to multilevel splitting as the Feynman-Kac model. L’Ecuyer,

Demer, and Tuffin [68, 69] provide an introduction to splitting techniques, introduce

some ways to improve their implementation by combining them with randomized

quasi-Monte Carlo, and also give examples of application where the techniques can

be effective and not.
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2.2 Pareto Set Estimation

Choosing the best system(s) from multiple candidate systems has been vastly studied.

Among many algorithms that serve the purpose, we will briefly describe the most

relevant ones, which include Ranking and Selection, Optimal Computing Budget

Allocation (OCBA), and Bayesian methods.

Ranking and Selection (R&S) is one of the best known approaches for choosing the

best from a set of systems and a vast amount of research has been done on this topic.

To name a few papers, Bechhofer [12] suggested a ranking and selection procedure for

systems with known variances. Bechhofer, Elmaghraby, and Morse [13] introduced

the problem of selecting the multinomial event with highest probability. They also

calculated the probabilities of correct selection when a lower bound on the ratio of the

best and the second best performance measures is given. Paulson [80] developed an

algorithm to choose the k best systems when systems have normal populations with

known or unknown common variances, and the algorithm was improved by Hartmann

[50]. Dudewicz and Dalal [33] considered the case with unequal and unknown vari-

ances, and Rinott [84] adapted the algorithm for better performance. Miller, Nelson,

and Reilly [75] increased the efficiency of the technique by using pseudo replications

that are not independent, when the original set of independent samples is not large

enough to achieve the desired probability of correct selection. Kim and Nelson [63]

presented a fully sequential procedure suited for the case when a small amount of

additional sampling can be done repeatedly. Nelson, Swann, Goldsman, and Song

[77] provided a two-stage procedure where some candidates are eliminated in the first

stage, and a sequential approach is used to select the best system in the second stage.

Chen [19, 20] introduced the OCBA technique whose objective is to maximize

the approximated confidence probability of correct selection with a given amount

of computational budget by deciding how to divide the budget among the systems.

When applying the OCBA technique, solving an optimization problem to decide the

5



sample sizes is crucial. Chen et al. [26] considered a new OCBA technique that solves

this optimization problem using a gradient method. Chen et al. [22] developed an

asymptotic allocation rule that uses an approximate probability of correct selection

to identify the optimal allocation analytically. Glynn and Juneja [46] used large

deviation theory on top of the OCBA approach to enable the use of the OCBA when

the performance measures of interest are not Gaussian.

Finally, there are some approaches using the Bayesian method. Chick and Inoue

[27, 28] suggested two-stage and sequential procedures based on a Bayesian model,

and used common random numbers in the latter. Frazier et al. [38] studied a similar

approach with a different stopping criterion under slightly more strict assumptions,

and found that these modifications can improve the results significantly in many cases.

The literature reviewed so far in this section concentrates on the single objective

case. While ranking and selection of systems based on a single objective is a mature

field of study, there is less literature covering the multiple objective case. Butler,

Morrice and Mullarkey [16] suggested applying multiple utility theory to transform

the multi-objective problem into a single objective problem. Baesler aned Sepúlveda

[6] also transformed the problem into a single objective problem by using a goal pro-

gramming framework and applied their algorithm to a simulation model of a new

cancer treatment center [7]. Santner and Tamhane [86] solved the problem of achiev-

ing maximum mean and minimum variance in an approximate sense by selecting a

set with reasonably large means and small variances. Batur and Choobineh [10] also

studied the case when both the mean and variance are measures of performance using

a fully sequential procedure for comparing systems. Andradóttir and Kim [3] con-

sider two performance measures, with one being the primary objective and the other

one imposing a constraint, and suggested fully sequential procedures for comparing

such systems. Healey, Andradóttir, and Kim [51] developed the dormancy concept

to further enhance efficiency. By making non-promising systems dormant, additional
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sampling can be avoided unless a dormant system turns out to be more promising

than first thought (because the system that dominated it is infeasible). They also

expanded the fully sequential procedures to incorporate the multiple constraints case

[52].

Several studies have been performed using the OCBA approach with multiple

objectives. In Lee et al. [70], a primary performance measure is selected as the ob-

jective, with the other performance measures being constraints. Hunter et al. [57, 58]

proposed a budget allocation algorithm under stochastic constraints using large de-

viation theory as in Glynn and Juneja [46]. In other works, the Pareto concept is

used to decide what are the best systems in the presence of multiple objectives. In

particular, Lee, Chew, and Teng [71] proposed a solution framework that addresses

multi-objective problems with huge solution spaces and high uncertainty in perfor-

mance measures. They integrated heuristic search and OCBA to find non-dominated

systems. Chen and Lee [25] suggested a two-stage algorithm under the assump-

tion that the performance measures are independent of each other. They select an

incomplete Pareto set that only contains the systems with the most promising per-

formance measures in any objective in the first stage, and complete it by selecting

the other non-dominated systems in the second stage. Lee et al. [72] proposed a

multi-objective optimal computing budget allocation (MOCBA) algorithm to allo-

cate computing budget to systems to minimize type I and type II errors in selecting

non-dominated systems. Teng, Lee, and Chew [88] incorporated an indifference-zone

approach into the aforementioned MOCBA algorithm.

2.3 Difficult Input Analysis Problem: Experiments using
the M/G/1 Queue

There exist numerous ways to estimate input distributions given sample data points

that represent the distribution of interest. Therefore, input analysis has been widely

studied. Most standard simulation textbooks now have a good chapter dedicated to
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the subject, including Law and Kelton [67], Fishman [37], and Banks et al. [8], just

to name a few. There are also a number of commercial distribution-fitting software

packages. In general, these packages make recommendations on the best fitted the-

oretical distribution, and also provide graphical views for heuristic decisions. For

example, Expertfit, Easyfit, and the Input Analyzer of Arena are widely used.

While aforementioned algorithms and software packages concentrate on fitting

existing theoretical distributions, there may be cases where those distributions cannot

provide a good fit. For a remedy in such case, Bratley, Fox, and Schrage [15] suggest

to use a quasi-empirical distribution. A quasi-empirical distribution is a mixture of an

empirical and theoretical distribution, where they used an exponential for the latter.

However, the importance of heavy-tails in real-life data has been prominent, and

probably more so after their work. Data is heavy-tailed when the probability of occur-

rences of extreme values is higher, and the tail behavior of these distributions cannot

be well approximated with the exponential. In diverse fields, various phenomena ex-

hibit the behavior that generates the heavy-tailed data. Teletraffic is one of the areas

that are known to be rich in heavy-tailed data, as can be seen in Willinger et al.

[96], Resnick [82], and references therein, for example. Financial data and insurance

risks have also seen a significant amount of heavy-tailed phenomena, as can be seen

in Mandelbrot [74] and Müller et al. [76]. Nature and human dynamics also display

various heavy-tailed behavior, as can be seen in Barabasi [9] and Newman [78]. Fi-

nally, there are books that provide overview, examples, and theory on the subject.

Interested readers can start from [34, 35, 79, 83] to list just a few. Heyde and Kou

[54] pointed out that the tail of a distribution heavily drives the behavior of many

performance measures of probabilistic models, and the distinction of the behavior

when the tail is light-tailed and heavy-tailed is significant. Therefore, we would like

to study and experiment with whether adding a right tail to an empirical distribution

is still efficient when the underlying distribution is suspected to have a heavy-tail,
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and if so, what type of right tails should be used.

Naturally, as the interest and importance of the heavy-tailed data emerged, fitting

distributions to the potentially heavy-tailed data received attention. There is a vast

amount of literature on this subject. An approach to estimate a tail index, proposed

by Hill [55], is one of the most popular methods. There have been numerous studies

that have improved Hill’s estimator in some direction under different circumstances.

De Haan and Peng [30] compared some of the available approaches in their work. The

endeavor to improve Hill’s estimator continued, as in Resnick and Stărică [81], Gomes

et al. [48] and Alves [2], for example. More recently, Clauset et al. [29] described an

approach that fits a power-law distribution to an empirical data set, if applicable,

using Hill’s estimator.

On the other hand, even if an input distribution is known to be heavy-tailed,

simulation or analysis of a system involved can be challenging, and also has been

worked on widely. We conclude this chapter by describing various works on the

single-server M/G/1 queueing system when the service time is heavy-tailed. Abate et

al. [1] approximated the steady-state waiting time distribution when the service time

distribution is heavy-tailed and the Laplace transforms of the inter-arrival and service

time distributions are known. Boxma and Cohen [14] also provide an asymptotic series

for the tail probabilities of the waiting time in the system. Feldmann and Whitt [36]

used mixtures of exponential distributions to predict the performance of a M/G/1

queue when the service time is heavy-tailed. Asmussen and Kroese [5] suggest two

simulation estimators that have bounded relative error and involve using importance

sampling and Monte Carlo conditioning to estimate the tail probability of system

times when the service time distribution is heavy-tailed.
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CHAPTER III

SIMULATION CLONING WITH INDUCED NEGATIVE

CORRELATIONS

3.1 Introduction

Simulation cloning is an algorithm to enhance efficiency by sharing some calcula-

tions. Hybinette and Fujimoto [60] introduced an efficient cloning mechanism. They

concentrated on the simulation of complex systems with multiple “decision points”

where clones are generated to simulate different sample paths. A decision point is

an instance in time where it is of interest to consider multiple scenarios. It may not

necessarily involve any decisions, but rather a deviation, such as a change of envi-

ronment. Computation is shared until the decision points and cloning is done by

utilizing a construct called virtual logical processes (LPs). A (physical) LP is a unit

that depicts some subset of the system that is simulated separately to the extent pos-

sible. At decision points, rather than cloning the physical LPs and simulating them

separately for each scenario, multiple virtual LPs, which map to the same physical

LP, are created. These virtual LPs will serve like physical LPs but will utilize the

calculations of one physical LP in different clones. Thus, a physical LP is only cloned

when the results for that physical LP differ among sample paths. In this way, the

computation of the LPs without difference between scenarios will be shared among

the clones.

For example, when simulating the air traffic system, physical LPs for each airport,

say Houston and Atlanta, will be generated. When a storm takes place in Houston,

then this will have direct effect on Houston but no direct effect on Atlanta for the

time being. Hence two virtual LPs for Atlanta (considering sample paths with or
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without the storm in Houston) can share the computation of one physical LP for

Atlanta. When the storm starts affecting Atlanta, a new physical LP for Atlanta will

be generated to incorporate the difference. This technique is shown to significantly

reduce the time required to compute multiple alternate futures [60].

In a simulation context, cloning resembles the variance reduction approach known

as splitting. Splitting is closely related to the work of Kahn and Harris [62]. In a

particle transmission setting, they explained splitting as follows. “Whenever a particle

passes from a less important region, it is split in two. Each of the resulting particles

is given one-half of the weight of the original particle and is treated independently

from then on.” Splitting was then widely studied as a variance reduction technique,

especially to calculate rare-event probabilities. When used as a variance reduction

technique, the idea remains the same. When a sample path reaches a threshold, the

path is split into several subpaths of lesser weight, so the paths can reach the desired

rare-event region more often.

Splitting and cloning are similar in that both approaches share certain computa-

tions. Splitting can be considered as cloning all LPs based on the states of sample

paths. However, the performance measure of interest in recent research has generally

been limited to a rare-event probability. While cloning concentrates on efficiently eval-

uating each possible scenario by simulating it once, splitting considers the precision

of statistical estimates for a single scenario. Standard output analysis for splitting,

which will be used in this chapter, can be found in Section V.5 of Asmussen and

Glynn [4].

One complication that can occur in simulation cloning used with space-parallel

simulation of a system represented by several LPs, is that future events can interfere

with already simulated events. As a result, a rollback algorithm is required. In the

previous air traffic example, as the physical LP for Atlanta airport proceeds, the

delayed flight information from Houston can arrive after the original arrival time. In

11



this case, the Atlanta LP would have simulated the arrival of a plane which did not,

in fact, arrive on time. This requires the simulation to roll back to the point where

the error occurred. However, this complication does not cause a problem for splitting,

because simulation of the paths after the splitting point has no impact on the path

before that point.

In our work, we allow simulation cloning to be flexible. In particular, cloning can

take place even if no decision is made and no changes of setting or circumstances

have occurred. While in classical splitting, splitting only occurs when a path reaches

a threshold, which is a stochastic event, we can set the splitting points to practically

any times along the simulation. For example, we can set a decision point to be

a certain predefined time point, such as 10 minutes in simulation time, or at any

physical point in a feedforward system, such as when a job leaves the third station in

a network of five tandem stations.

Simulation cloning at a certain time point has two benefits. First, we do not need

to worry about the system being feedforward. Thus, rollback will not be required

as future, by definition, cannot interfere with the past. Secondly, we can control

the occurrence of cloning with ease. While in splitting, the threshold may never be

reached in a replication, if we define the splitting point properly, that is, to be shorter

that the simulation time, cloning can be guaranteed to occur. Thus, the number of

branches or replications can be easily controlled.

Simulation cloning in this chapter is especially efficient when the latter part of

the simulation is more important or has larger variability than the front part. For

example, when simulating a battlefield, the beginning of the simulation may involve

mere searching and marching and the actual battle may take place after a fair amount

of simulation time. If the battle has the greatest impact on the outcome, simulation

cloning may be effective. Similarly, when forecasting the demand over a long period,

then naturally, the variability of the farther future will be larger. Then in the output
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analysis, the part with larger variability may have greater impact on the performance

measure, and thus require more replications to achieve better confidence. Glasserman

and Staum [45] also studied the effects of allocating different amounts of simulation

effort to different time steps. However, they concentrate on decreasing the effort by

deliberately stopping some sample paths early, whereas our approach increases the

simulation effort by cloning some simulation paths.

We consider simulation cloning in the context of transient simulation. Transient

simulations, in general, are to be replicated independently multiple times, with the

independence among replications being used to obtain statistical reliability. Starting

from the idea of sharing some computation effort, we study the use of simulation

cloning for efficient transient simulation with statistical reliability. In this approach,

simulation is run to decision points where the simulation will be branched into a pre-

defined number of clones. However, in simulation cloning, as some parts of the simu-

lation is shared among replications, independence of observations cannot be insured

with traditional output analysis. To retain independence, the notion of a replication

has to be redefined. Basically, a replication is defined to be the simulations that share

any part of the computation.

The outline of this chapter follows. Section 3.2 describes the basic cloning al-

gorithm. We improve the method by inducing negative correlation, as described

in Section 3.3. In particular, we pair each replication from basic cloning with one

counterpart that incorporates negative correlation. In Section 3.4, cloning with two

decision points is introduced and analyzed. This shows that cloning with multiple

decision points is feasible, but of course the analysis and optimal implementation be-

come more involved. In Section 3.5, numerical results provide better understanding

and show the benefits of cloning. Finally, Section 3.6 concludes the chapter.
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3.2 Basic Cloning

Basic cloning involves branching at a predefined point to a given number of branches,

and the simulation results before branching are shared among the clones. The per-

formance measure of interest is defined to be ϕ(X, Y ), where X is the vector of

random quantities observed before the branching point, and Y is the corresponding

vector observed after the branching point. Let µ = E[ϕ(X, Y )]. This is illustrated

in Figure 1, where Xr is the vector of random variables that is generated from the

r-th replication of the shared part of the simulation and Yrs, the s-th clone in the

r-th replication, is the vector of random variables that are generated from clone s

after the branching point. To prevent further unnecessary positive correlation, Xr for

r = 1, 2, . . . , R, and Yrs for s = 1, 2, . . . , S, ∀r, are independently simulated. Define

ρcn = Cor(ϕ(X1, Y11), ϕ(X1, Y12)) as the correlation between replications that share

some part of the simulation. In the above notation, c stands for “common,” and n

stands for “not common.” The interpretation of this notation is that the first vector

X is positively correlated, and that vector Y is simulated independently.

Xr

YrS

Yr1

ρcn

Figure 1: A Single Replication in Basic Cloning

The observations of the performance measure µ is denoted as Vrs = ϕ(Xr, Yrs).
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Therefore, if R is the number of replications and S is the number of clones generated

at the branching point, then

Vr =
1

S

S∑
s=1

ϕ(Xr, Yrs), for r = 1, . . . , R,

are independent and identically distributed, and our estimator of the performance

measure µ is computed as follows:

µ̂ =
1

RS

R∑
r=1

S∑
s=1

ϕ(Xr, Yrs).

This is as described in Section V.5 of Asmussen and Glynn [4]. Thus a unit depicted

in Figure 1 is considered as one replication to ensure independence in basic cloning.

In words, replication r involves simulating Xr and Yrs for s = 1, . . . , S, for any r.

To measure the benefit of cloning quantitatively as a function of S, the efficiency

of the simulation, denoted by EF (S), can be calculated as follows:

EF (S) =
1

Var(Vr)× Effort(Vr)
,

where Var(Vr) denotes the variance associated with one replication of a simulation

and Effort(Vr) is the computational cost involved in simulating the single replication.

Using this definition for the efficiency of the simulation is justified in Glynn and Whitt

[47].

Let eX denote Effort(Xr), eY denote Effort(Yrs), and σ2 denote Var(Vrs) . We

assume that Effort(Vrs) = eX + eY and Effort(Vr) = eX + SeY , ignoring the com-

putational effort associated with branching and averaging the performance measure.

Let f = eX / (eX + eY ) be the fraction of computer effort saved by sharing one

observation of X among two observations of Y . We assume that 0 < f < 1. Thus,

eY = eX [(1−f)/f ]. Then f should be significantly large for a substantial improvement

in efficiency. This is because the variance of each replication,

Var(Vr) =
σ2(1 + (S − 1)ρcn)

S
, (1)
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quickly increases as ρcn increases. Thus the efficiency of basic cloning is given by:

EF (S) =
S

σ2(1 + (S − 1)ρcn)(eX + SeY )
. (2)

To find the number of branches S∗ that maximizes the efficiency, we take the

derivative of the reciprocal of the efficiency as follows (ignoring for the moment that

S should be integer):

d( 1
EF (S)

)

dS
=
σ2(S2ρcneY − (1− ρcn)eX)

S2
,

and find the value of S that sets the value equal to 0, if possible. The approach is

justified as the second derivative of the function is always non-negative:

d2( 1
EF (S)

)

(dS)2
=

2σ2(1− ρcn)eX
S3

≥ 0.

Note that Equation (1) implies that ρcn ≥ 0. If ρcn > 0, this yields the optimal S

value as follows:

Sopt = max

{
1,

√
(1− ρcn)f

ρcn(1− f)

}
. (3)

Then the number of the branches S∗ should be either bSoptc or dSopte as the number

should be integer. It is sufficient to consider adjacent integers because the function

is convex. If ρcn = 0, then it is obvious that S should be as large as possible, as the

derivative will be negative.

The ratio of the efficiency of the basic cloning approach with S clones to the crude

Monte Carlo approach is calculated as R(S) = EF (S)/EF (1). We have

R(S) =
S(eX + eY )

(1 + (S − 1)ρcn)(eX + SeY )
=

S

(1 + (S − 1)ρcn)(f + S(1− f))
.

When cloning is performed, that is, if S ≥ 2, the ratio increases as ρcn decreases, and

as f increases.

The notion of R∗ = R(S∗) is introduced to define the ratio of the efficiency derived

from using the optimal value of S∗. Note that when f ≥ ρcn, then Sopt =
√

(1−ρcn)f
ρcn(1−f)
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and

R(Sopt) =

√
(1−ρcn)f
ρcn(1−f)

(1− ρcn)f +
√

(1−ρcn)3f(1−f)
ρcn

+
√

ρcn(1−ρcn)f3

(1−f)
+ f(1− ρcn)

=
1

1− f − ρcn + 2ρcnf + 2
√
ρcn(1− ρcn)f(1− f)

=
1

(
√
ρcnf +

√
(1− ρcn)(1− f))2

. (4)

It is now clear that R(Sopt) increases as f increases for any given ρcn, provided that

f ≥ ρcn. Similarly, R(Sopt) increases as ρcn decreases for any f ≥ ρcn. If this tendency

is pursued to the extreme, so that ρcn approaches 0 and f approaches 1, then the

ratio R(Sopt) goes to infinity.

To illustrate, we present a simple numerical analysis. If ρcn = 0.5 and f = 0.5,

then S∗ and R∗ will be 1. To get significant improvements, ρcn must be small and f

must be large. For example, if ρcn = 0.1 and f = 0.9, then R∗ ' 2.78 with S∗ = 9,

and if ρcn = 0.01 and f = 0.99, then R∗ ' 25.3 with S∗ = 99. In realistic settings,

these figures are difficult to achieve. This is because to have f large generally means

that we share significant amounts of calculation, and this increases ρcn. For example,

when the split point is approximately halfway, that is, f is approximately 0.5, the

correlation ρcn can easily be greater than 0.5 as half of the simulation shares the

common results.

As seen in the previous example, when cloning is the only technique that is used

and no special structure is exploited, the increase in variance can outgrow the benefits

of the savings from cloning, or the benefit can be small. This is because of the positive

correlation, ρcn, between Vrj and Vrk for different j and k that is due to sharing

the common part Xr of replication r between Yrj and Yrk. To mitigate the effect

of undesirable positive correlation, we introduce simulation cloning using induced

negative correlation in the next section.
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3.3 Cloning Using Induced Negative Correlation

There are different ways to apply cloning and induced negative correlation. In the

following subsections, we consider two ways of employing the techniques. In Section

3.3.1, we introduce negative correlation before and after the decision point, whereas

in Section 3.3.2, we only introduce negative correlation after the decision point.

3.3.1 Negative correlation before and after the decision point

To offset the increase of the variance from positive correlation that can be seen in

Equation (1), we pair two replications from basic cloning and induce negative cor-

relation between the replications. This is depicted in Figure 2, where X ′r and Y ′rs

denote the vectors of random variables paired with Xr and Yrs with induced negative

correlation. As in previous section, Xr, for r = 1, 2, . . . , R, and Yrs for s = 1, 2, . . . , S,

are simulated independently to avoid introducing unnecessary positive correlation.

Define

ρll = Cor(ϕ(X1, Y11), ϕ(X ′1, Y
′

11)),

ρln = Cor(ϕ(X1, Y11), ϕ(X ′1, Y
′

12)).

In the above notation, l stands for “linked” via any method for inducing negative

correlation, and n now stands for “not common nor linked.” Then ρll is the correlation

between the branches using random variables with induced negative correlation for

both the cloned and replicated parts and ρln is the correlation between the branches

using negative correlation for only the cloned part. Therefore, it is natural to expect

that 0 > ρln > ρll. The best known method for inducing negative correlation involves

simulating the second replication using the antithetic variables of the variables in the

first replication. Details can be found in [85]. There are other ways to induce negative

correlation, see, e.g., Henderson, Chiera, and Cooke [53], and any methodology that

fits the purpose can be used. In the following, we provide a more detailed analysis of

cloning with induced negative correlation.
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Xr

YrS

Yr1

ρcn

X ′r

Y ′rS

Y ′r1

ρcn

ρll

ρln

Figure 2: A Single Replication in Cloning Using Induced Negative Correlation Before
and After the Decision Point

Before further analysis, additional notation is needed. In particular, the obser-

vations of the performance measure µ are denoted as Vrs = ϕ(Xr, Yrs) and V ′rs =

ϕ(X ′r, Y
′
rs). Therefore, a replication is now defined as a unit including Xr, X

′
r, Yrs,

and Y ′rs for s = 1, . . . , S. Therefore, an observation from one replication is as follows:

V ′r =
1

2S

S∑
s=1

(ϕ(Xr, Yrs) + ϕ(X ′r, Y
′
rs)), for r = 1, . . . , R.

Then, the estimator of the performance measure should be calculated as follows:

µ̂′ =
1

2RS

R∑
r=1

S∑
s=1

(ϕ(Xr, Yrs) + ϕ(X ′r, Y
′
rs)).

Let eX = Effort(Xr) = Effort(X ′r), eY = Effort(Yrs) = Effort(Y ′rs), and σ2 =

Var(Vrs) = Var(V ′rs). Then, the variance and effort of one replication are as follows:

Var(V ′r ) =
σ2

2S
[1 + ρll + (S − 1)(ρcn + ρln)], (5)

Effort(V ′r ) = 2(eX + SeY ).
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The efficiency of the cloning is again the multiplication of the reciprocal effort and

variance, which turns out to be

EF ′(S) =
S

σ2[1 + ρll + (S − 1)(ρcn + ρln)](eX + SeY )
. (6)

To find the value of S that maximizes the efficiency, we first compute the first two

derivatives of the reciprocal of efficiency,

d( 1
EF ′(S)

)

dS
= σ2S

2(ρcn + ρln)eY − (1 + ρll − ρcn − ρln)eX
S2

,

d2( 1
EF ′(S)

)

(dS)2
=

2σ2(1 + ρll − ρcn − ρln)eX
S3

.

Note that Equation (5) implies that ρcn + ρln ≥ 0. If 1 + ρll − ρcn − ρln ≤ 0, then the

problem is trivial as EF ′(S) is non-increasing in S, and hence it is always better not

to clone at all. Also, if 1 + ρll − ρcn − ρln > 0 and ρcn + ρln = 0, then the problem is

again trivial as EF ′(S) is non-decreasing in S. Thus, we only consider the case when

1 + ρll − ρcn − ρln > 0 and ρcn + ρln > 0 for further analysis. By setting the first

derivative to zero, we can obtain the S ′opt that minimizes the reciprocal of efficiency,

and hence maximizes the efficiency of cloning, as follows:

S ′opt = max

{
1,

√
(1 + ρll − ρcn − ρln)f

(ρcn + ρln)(1− f)

}
. (7)

To find the true optimum with the restriction of S being integer-valued, it is sufficient

to consider bS ′optc and dS ′opte as the reciprocal of efficiency is a convex function of S

when 1 + ρll − ρcn − ρln ≥ 0. Note, however, that the optimal number of clones

S∗ depends on f, ρcn, ρll, and ρln. Obtaining the exact values of correlations or

computational effort may be difficult, and, hence, the number of branches can be

picked arbitrarily if desired. The cloning approach with induced negative correlation

is summarized in Algorithm 1.

To briefly show the benefit of inducing negative correlation, we again define the

efficiency ratio to be the efficiency of cloning with negative correlation divided by that
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Algorithm 1 (Splitting with induced negative correlation)

1: Predefine the splitting point and desired number of replications
2: if the number of clones should be optimal then
3: Retrieve required information on variances, covariances, and effort by running

a short simulation or using some known information
4: Compute S ′opt using Equation (7)
5: Compare the efficiency EF ′(bS ′optc) and EF ′(dS ′opte) to decide the optimal num-

ber S∗

6: else
7: Specify the number of clones S∗

8: end if
9: while Desired number of replications is not reached do
10: Proceed with the simulation until the decision point is reached
11: Generate the predefined number S∗ of clones
12: Finish the simulation of the S∗ clones
13: Start the simulation using random variables with induced negative correlation

against the run just finished. This also concludes with simulation of S∗ clones
14: end while
15: Perform the output analysis

of crude Monte Carlo simulation. Then the efficiency ratio with the optimal number

of clones S ′opt is given by

R′(S ′opt) =
EF ′(S ′opt)

EF (1)

=
S ′opt(eX + eY )

[1 + ρll + (S ′opt − 1)(ρcn + ρln)](eX + S ′opteY )

=
S ′opt

[1 + ρll + (S ′opt − 1)(ρcn + ρln)](f + S ′opt(1− f))
.

When f ≥ ρcn+ρln
1+ρll

holds, then S ′opt =
√

(1+ρll−ρcn−ρln)f
(ρcn+ρln)(1−f)

. In this case, R′(S ′opt) can be

expressed as follows:

R′(S ′opt)=

√
(1+ρll−ρcn−ρln)f

(ρcn+ρln)(1−f)

2((1 + ρll − ρcn − ρln)f +
√

(1+ρll−ρcn−ρln)(ρcn+ρln)f3

1−f +
√

(1+ρll−ρcn−ρln)3f(1−f)
ρcn+ρln

)

=
1

(
√

(ρcn + ρln)f +
√

(1 + ρll − ρcn − ρln)(1− f))2
. (8)

Equation (8) shows two limiting behaviors. If f goes to 1 and ρcn + ρln goes to

0, then S ′opt and the ratio R′(S ′opt) will go to infinity regardless of the behavior of ρll.

21



Also, if ρll approaches -1, and ρcn+ρln approaches 0, the ratio R′(S ′opt) goes to infinity

regardless of the behavior of f ≥ ρcn+ρln
1+ρll

. When this inequality does not hold, then

S ′opt = 1, and thus the ratio R′(S ′opt) goes to infinity simply if ρll approaches -1.

Note that the structure of Equation (8) resembles that of Equation (4). It can be

seen that ρcn + ρln is used in lieu of ρcn, and 1 + ρll − ρcn − ρln appears in place of

1−ρcn. Therefore, R′(S ′opt) in Equation (8) is always greater than R(Sopt) in Equation

(4), when 0 > ρln > ρll holds. Earlier in this section, we discussed the validity of

this inequality. It is also noteworthy that the ratio of Equation (8) to Equation (4),

that is,
R′(S′opt)

R(Sopt)
, approaches infinity when one of the two aforementioned conditions for

R′(S ′opt) to go infinity holds, with the additional condition that ρcn does not converge

to zero.

We provide a simple numerical example. Throughout the example, we let ρcn =

−2ρln. This choice is motivated by the fact that as ρcn is the correlation from sharing

computation and ρln is the correlation from inducing negative correlation, it is natural

to expect the former to be positive, and the latter to be negative. Also, previously in

this section, we showed that ρcn + ρln ≥ 0. For comparison with examples from the

previous section, we let ρcn and f be the same, and let ρll = −(1−ρcn) to have similar

limiting behavior as in the previous section. First, let ρcn = 0.5 and f = 0.5. Then the

best possible ratio is R∗ = 2 with S∗ = 1. This shows the extreme case where negative

correlation plays the key role. As we proceed with the same correlation scheme, let

ρcn = 0.1 and f = 0.9, then the ratio increases to R∗ ≈ 12.5 with S∗ = 3. Finally,

when we have ρcn = 0.01 and f = 0.99, then we get R∗ ≈ 166.81 with S∗ = 10. In the

previous section without induced negative correlation, the corresponding ratios were

1, 2.78, and 25.3, respectively. Although these are extreme cases, they illustrate the

potential benefits of inducing negative correlation.
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3.3.2 Negative correlation after the decision point

In this subsection, we will introduce an alternative approach of employing cloning

with negative correlation. Unless stated otherwise, all notation is inherited from

the previous section. Instead of having a negatively correlated pair of cloned parts

Xr and X ′r as in the previous subsection, a replication is a unit consisting of Xr,

Yrs, and Y ′rs for s = 1, . . . , S. This is depicted in Figure 3, where the new notation

ρcl = Cor(ϕ(X1, Y11), ϕ(X1, Y
′

11)) is introduced to denote the new negative correlation

induced by the cloned part.

Xr

YrS

Yr1

Y ′rS

Y ′r1

ρcl

ρcl

ρln

ρcn

Figure 3: A Single Replication in Cloning Using Induced Negative Correlation Only
After the Decision Point

In this approach, the observations of the performance measure µ are denoted as

Vrs = ϕ(Xr, Yrs) and V ′rs = ϕ(Xr, Y
′
rs). An observation from one replication is as

follows:

V̄ ′r =
1

2S

S∑
s=1

(ϕ(Xr, Yrs) + ϕ(Xr, Y
′
rs)), for r = 1, . . . , R.

Then, the estimator of the performance measure should be calculated as follows:

ˆ̄µ′ =
1

2RS

R∑
r=1

S∑
s=1

(ϕ(Xr, Yrs) + ϕ(Xr, Y
′
rs)).
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Moreover, the variance and effort of one replication are as follows:

Var(V̄ ′r ) =
σ2

2S
[1 + ρcl + 2(S − 1)ρcn],

Effort(V̄ ′r ) = eX + 2SeY .

Therefore the efficiency can be calculated as follows:

ĒF
′
(S) =

2S

σ2[1 + ρcl + 2(S − 1)ρcn](eX + 2SeY )
.

We again look into the reciprocal of this efficiency for simplicity. The first deriva-

tive of the reciprocal is as follows:

d( 1
ĒF
′
(S)

)

dS
=
σ2[4ρcneY S

2 − (1 + ρcl − 2ρcn)eX ]

2S2
.

This problem is trivial when 1 + ρcl − 2ρcn ≤ 0, as ĒF
′
(S) is non-increasing in S

in such a case. Thus, if 1 + ρcl − 2ρcn ≤ 0, then S∗ = 1. On the other hand, if

1 + ρcl − 2ρcn > 0, then the second derivative:

d2( 1
ĒF
′
(S)

)

(dS)2
=
σ2(1 + ρcl − 2ρcn)eX

S3
> 0,

so that the function is convex. Thus, by setting the first derivative equal to zero, we

obtain

S̄ ′opt = max

{
1,

√
(1 + ρcl − 2ρcn)f

4ρcn(1− f)

}
.

When f ≥ 4ρcn
1+ρcl+2ρcn

holds, then

S̄ ′opt =

√
(1 + ρcl − 2ρcn)f

4ρcn(1− f)
.
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The ratio of efficiency to crude Monte Carlo, R̄′(S̄ ′opt), is then given as follows:

R̄′(S̄ ′opt) =
ĒF

′
(S̄ ′opt)

EF (1)
=

2S̄ ′opt(eX + eY )

[1 + ρcl + 2(S̄ ′opt − 1)ρcn](eX + 2S̄ ′opteY )

=
2S̄ ′opt

[1 + ρcl + 2(S̄ ′opt − 1)ρcn](f + 2(1− f)S̄ ′opt)

=

√
(1+ρcl−2ρcn)f
ρcn(1−f)

2(1 + ρcl − 2ρcn)f +
√

(1+ρcl−2ρcn)3f(1−f)
ρcn

+
√

(1+ρcl−2ρcn)f3ρcn
1−f

=
1

(
√
ρcnf +

√
(1 + ρcl − 2ρcn)(1− f))2

. (9)

Clearly, the structure of this ratio resembles that of basic cloning in Equation (4).

The only difference is that 1− ρcn in Equation (4) is substituted with 1 + ρcl − 2ρcn.

As ρcl combines the positive correlation of shared part and the negative correlation

of cloned part, while ρcn is the positive correlation only from shared part, ρcl ≤ ρcn

should be natural. Therefore, cloning after the decision point should yield benefits

over basic cloning. Similar comparison can be done with Equation (8). In Equation

(8), ρcn+ρln, and 1+ρll−ρcn−ρln are used in place of ρcn and 1+ρcl−2ρcn, respectively.

Clearly, ρcn ≥ ρcn + ρln is expected. However, 1 + ρcl− 2ρcn and 1 + ρll− ρcn− ρln are

expected to be similar as the differences ρcl−ρcn and ρll−ρln both involve comparing

systems with and without negative correlation in the cloned part. This suggests that

cloning before and after the decision point will generally yield better results than

cloning only after the decision point.

Finally, Equation (9) suggests that just as in basic cloning, when ρcn approaches

0 and f approaches 1, the ratio approaches infinity regardless of ρcl. Additionally,

when ρcn goes to 0 and ρcl goes to -1, the ratio goes to infinity regardless of f . The

ratio of Equation (9) to Equation (4), that is,
R̄′(S̄′opt)

R(Sopt)
goes to infinity for the latter

scenario if f does not converge to one. Note that ratio of Equation (9) to Equation

(8),
R̄′(S̄′opt)

R′(S′opt)
, goes to zero if ρcn + ρln goes to 0 and f goes to 1 without ρcn going to

zero, or if ρcn + ρln goes to 0 and ρll goes to -1 with either ρcn or 1 + ρcl − 2ρcn not

going to zero, regardless of the value of 0 < f < 1.
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To apply a similar correlation scheme as in Section 3.3.1, we let ρcl = ρll + ρcn.

This scheme is selected with the intuition that ρcl is greater than ρll by the amount

of positive correlation incurred by sharing the first part of the simulation instead

of inducing negative correlation. Actually, ρcl > ρll + ρcn is expected, as ρll is the

negative correlation not only for the cloned part but also the shared part. Therefore,

this scheme can be viewed as favorable to the algorithm introduced in this section.

If ρcn = 1 + ρll as in Section 3.3.1, then ρcl = 2ρcn − 1. Let ρcn = f = 0.5, then

S∗ = 1 and R∗ ' 1.33. When ρcn = 0.1 and f = 0.9, then R∗ ' 9.09 with S∗ = 1,

and if ρcn = 0.01 and f = 0.99, then R∗ ' 99.01 with S∗ = 1. This is not as efficient

as in the previous section where negative correlation is induced before and after the

decision point; the corresponding ratios were 2, 12.5, and 166.81. However, compared

to basic cloning, where the corresponding values were 1, 2.78, and 25.3, respectively,

this is a significant improvement.

The examples suggest that inducing negative correlation only after the decision

point is generally more efficient than basic cloning, but less efficient than inducing

negative correlation both before and after the decision point. This is intuitive as

inducing negative correlation before the decision point impacts all clones, whereas

inducing negative correlation after the decision point only impacts pairs of clones.

Although the former approach involves more computation per observation, the addi-

tional generation of one sample path prior to the decision point is likely to be worth-

while. Therefore, from now on we will concentrate on inducing negative correlation

both before and after the decision point, as described in Section 3.3.1.

3.4 Cloning at Two Decision Points

In the previous two sections, we discussed simulation cloning with one decision point.

However, there may be cases where it is beneficial to have multiple decision points.

In this section, we describe cloning using induced negative correlation with splitting
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at two decision points. As we already have seen in Section 3.3 that using negative

correlation before and after the decision point is desirable, we will do so here. Figure

4 illustrates this case.

Yr1
Zr1S2

Zr11

YrS1

ZrS1S2

ZrS11

Y ′r1
Z ′r1S2

Z ′r11

Y ′rS1

Z ′rS1S2

Z ′rS11

Xr

X ′r

ρccn

ρcnn

ρlll

ρlln

ρlnn

Figure 4: A Single Replication in Cloning with Two Decision Points and Induced
Negative Correlation

Let the performance measure of interest be ϕ(X, Y, Z), where Z is added to the

previous notation to denote the vector of random quantities observed after the second

decision point. Similarly, let the extended notation Zrs1s2 denote the vector of random

variables generated from the s2-th clone branched from the s1-th clone of the first deci-

sion point in the r-th replication. The observations of the performance measure µ can

be denoted as Vrs1s2 = ϕ(Xr, Yrs1 , Zrs1s2) and V ′rs1s2 = ϕ(X ′r, Y
′
rs1
, Z ′rs1s2), where X ′r,

Y ′rs1 , Z
′
rs1s2

denote the random variables negatively correlated with Xr, Yrs1 , Zrs1s2 ,

respectively. As in the previous sections, to avoid introducing positive correlation,

Xr, Yrs1 , and Zrs1s2 , ∀r, s1, s2, are simulated independently. Define correlations as
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follows:

ρccn = Cor(ϕ(X1, Y11, Z111), ϕ(X1, Y11, Z112)),

ρcnn = Cor(ϕ(X1, Y11, Z111), ϕ(X1, Y12, Z121)),

ρlll = Cor(ϕ(X1, Y11, Z111), ϕ(X ′1, Y
′

11, Z
′
111)),

ρlln = Cor(ϕ(X1, Y11, Z111), ϕ(X ′1, Y
′

11, Z
′
112)),

ρlnn = Cor(ϕ(X1, Y11, Z111), ϕ(X ′1, Y
′

12, Z
′
121)).

Subscripts are used in accordance with the definitions from the previous sections.

That is, c, l, and n stand for “common,” “linked,” and “not common nor linked,”

respectively. For example, ρlln is the correlation incurred by inducing negative cor-

relation for first two parts before the second decision point, and having the last part

independently simulated. Also, as discussed earlier, if more parts are negatively corre-

lated, then the negative correlation should be larger, and when more parts are shared,

then the positive correlation should be larger. Thus, we expect 1 ≥ ρccn ≥ ρcnn ≥ 0

and 0 ≥ ρlnn ≥ ρlln ≥ ρlll ≥ −1. Note that ρcnn + ρlnn ≥ 0 and ρccn + ρlln ≥ 0 holds

as ρcn + ρln ≥ 0.

A unit depicted in Figure 4 constitutes one replication when performing the output

analysis. It includes Xr, X
′
r, Yrs1 , Y

′
rs1
, Zrs1s2 , and Z ′rs1s2 for s1 = 1, 2, . . . , S1, and

s2 = 1, 2, . . . , S2, where S1 and S2 are the number of clones at the first and second

decision points, respectively. Therefore, an observation from one replication is as

follows:

V ′′r =
1

2S1S2

S1∑
s1=1

S2∑
s2=1

(ϕ(Xr, Yrs1 , Zrs1s2) + ϕ(X ′r, Y
′
rs1
, Z ′rs1s2)), for r = 1, . . . , R.

Then, the estimator of the performance measure should be calculated as follows:

µ̂′′ =
1

2RS1S2

R∑
r=1

S1∑
s1=1

S2∑
s2=1

(ϕ(Xr, Yrs1 , Zrs1s2) + ϕ(X ′r, Y
′
rs1
, Z ′rs1s2)).

Also, σ2, which denotes the variance of a base replication before any cloning, now
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equals Var(Vrs1s2) = Var(V ′rs1s2). Finally, we add the notation for the effort of the last

part of the simulation, and let eZ = Effort(Zrs1s2) = Effort(Z ′rs1s2).

Let c1 = (1 + ρlll − ρccn− ρlln), c2 = ρcnn + ρlnn, and c3 = ρcnn + ρlnn− ρccn− ρlln.

Note that c2 ≥ 0, and c2 ≥ c3 from the earlier discussion. With the given notation,

the variance and effort of one replication are as follows:

Var(V ′′r ) =
σ2

2S1S2

[1 + (S2 − 1)ρccn + (S1 − 1)S2ρcnn + ρlll + (S2 − 1)ρlln + (S1 − 1)S2ρlnn]

= σ2

[
c1

2S1S2

+
c2

2
− c3

2S1

]
,

Effort(V ′′r ) = 2(eX + S1eY + S1S2eZ).

We start by discussing the optimal number of replicating branches, denoted S∗1

and S∗2 , for the second and third parts of the simulation. To calculate S∗1 and S∗2 ,

the efficiency of the simulation should be calculated first. To simplify the calculation,

we again find the minimum of the reciprocal of the efficiency (i.e., the product of

variance and effort). This is calculated as follows:

1

EF (S1, S2)
= σ2

[
(
c1

S1S2

+ c2 −
c3

S1

)eX + (
c1

S2

+ S1c2 − c3)eY + (c1 + S1S2c2 − S2c3)eZ

]
.

To find the optimal values of S1 and S2, we calculate the partial derivatives with

respect to each S1 and S2, as follows:

∂( 1
EF (S1,S2)

)

∂S1

= σ2(− c1

S2
1S2

eX +
c3

S2
1

eX + c2eY + S2c2eZ),

∂( 1
EF (S1,S2)

)

∂S2

= σ2(− c1

S1S2
2

eX −
c1

S2
2

eY + S1c2eZ − c3eZ).

Note that if c1 ≤ c3, then the efficiency is nonincreasing in S1, thus the problem

becomes equivalent to a single decision point case. Similarly, if c1 ≤ 0, then the

efficiency is nonincreasing in S2 (as c2 ≥ c3), and thus our problem again reduces to

the single decision point problem. We can therefore concentrate on the case where

c1 > 0 and c3 < c1. Setting the aforementioned first derivatives equal to zero simplifies
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as follows:

S2
1 =

c1eX − c3eXS2

c2eY S2 + S2
2c2eZ

, (10)

S2
2 =

c1eX + c1eY S1

c2eZS2
1 − c3eZS1

, (11)

when c2 > 0 and c2 > c3. When the values of the variances and covariances are known,

general mathematical software can solve this system of equations. The resulting

stationary point is actually the minimum if the determinant of the Hessian matrix is

positive. The elements of the Hessian matrix are given as follows:

∂2( 1
EF (S1,S2)

)

(∂S1)2
= 2σ2(

c1

S3
1S2

eX −
c3

S3
1

eX),

∂2( 1
EF (S1,S2)

)

(∂S2)2
= 2σ2(

c1

S1S3
2

eX +
c1

S3
2

eY ),

∂2( 1
EF (S1,S2)

)

∂S1∂S2

= σ2(
c1

S2
1S

2
2

eX + c2eZ).

However, even if the reciprocal of the efficiency is convex, the optimal values

obtained from solving the system of equations (10) and (11), will be, in general, non-

integer valued. Therefore, a heuristic search around the optimum has to be performed.

Heuristic search can be efficient even without solving the system of equations (10)-

(11) as the values of S1 and S2 are integer and bounded below by 1. The search can

be stopped at a local maximum (S1, S2) when EF (S1, S2) > EF (S1 + i, S2 + j) holds

∀i, j = −1, 0, 1 with (i, j) 6= (0, 0). However, solving the equations will facilitate

initiating the search for the optimal number of clones.

Numerical results can be obtained using a similar scheme as in Section 3.3. The

results are shown in Table 1. Let ρccn = ρcn and f = eX+eY
eX+eY +eZ

= eX
eX+eY

. This implies

that eX
eY

= f
1−f , eX

eZ
= f2

1−f , and eY
eZ

= f . Note that it is only these ratios of efforts that

affect equations (10) and (11). Then, ρlln = ρln and ρlll = ρll are natural choices. For

the remaining parameter values, we suggest two different schemes. The first three

rows of Table 1 show the numerical results with ρcnn = (ρccn)2 and ρlnn = −(ρlln)2.
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The next three rows show the results with 2ρcnn = ρccn and 2ρlnn = ρlln. The last

two columns show the desirable decision point when only one decision point is to be

applied, the optimal number of clones, and the efficiency ratio of such case.

Table 1: Numerical Analysis for Two Decision Points Using Scheme from Previous
Sections

ρccn ρcnn ρlll ρlln ρlnn f S∗1 S∗2 R∗ Single(S∗) Single R∗

0.5 0.25 -0.5 -0.25 -0.0625 0.5 1 1 2 S1 or S2(1) 2
0.1 0.01 -0.9 -0.05 -0.0025 0.9 7 1 22.56 S1(7) 22.56
0.01 0.0001 -0.99 -0.005 -0.000025 0.99 81 1 1953.13 S1(81) 1953.13

0.5 0.25 -0.5 -0.25 -0.125 0.5 1 1 2 S1 or S2(1) 2
0.1 0.05 -0.9 -0.05 -0.025 0.9 4 1 14.56 S1(4) 14.56
0.01 0.005 -0.99 -0.005 -0.0025 0.99 12 1 262.53 S1(12) 262.53

Table 1 shows that the as positive correlations get smaller and the negative cor-

relations and ratio of effort f get larger, the efficiency ratio increases significantly

in both scenarios. Also comparing the two scenarios, we can see that the smaller

magnitude of ρcnn and ρlnn in the first scenario leads to greater efficiency gain with

all other values fixed. Note, however, that none of the cases are better off by adding

a decision point, as at least one of S∗1 or S∗2 is optimal at one. However, this is not

always the case. In Table 2, we consider the same scenarios as in Table 1, but with

larger values of the negative correlation ρlll. As ρlnn = −(ρlln)2 was used in the first

scenario in Table 1, we apply ρlnn = (ρlll)
3 for the first three rows of Table 2. The

next three rows of Table 2 show the results with ρlnn = 3ρlll, which is consistent with

2ρlnn = ρlln in the second scenario of Table 1.

Table 2: Numerical Analysis for Two Decision Points Using Different Scheme
ρccn ρcnn ρlll ρlln ρlnn f S∗1 S∗2 R∗ Single(S∗) Single R∗

0.5 0.25 -0.3969 -0.25 -0.0625 0.5 1 1 1.66 S1 or S2(1) 1.66

0.1 0.01 -0.1357 -0.05 -0.0025 0.9 7 4 5.53 S1(22) 4.31

0.01 0.0001 -0.02924 -0.005 -0.000025 0.99 46 19 76.36 S1(795) 45.93

0.5 0.25 -0.375 -0.25 -0.125 0.5 1 1 1.60 S1 or S2(1) 1.60

0.1 0.05 -0.075 -0.05 -0.025 0.9 3 6 4.24 S2(13) 3.87

0.01 0.005 -0.0075 -0.005 -0.0025 0.99 10 20 42.25 S1(140) 34.71
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As in Table 1, Table 2 also shows significantly increasing efficiency ratio as positive

correlations get smaller and the negative correlations and ratio of effort f get larger.

As ρlll is relatively smaller in this table, the total benefit decreases compared to

Table 1. However, unlike Table 1, we can see that adding an additional decision point

increases the efficiency ratio ranging from 9 to 66 percent.

It is noteworthy that the technique of cloning with induced negative correlation

can be expanded to multiple decision points. Moreover, as can be seen from the last

two rows in both scenarios of Table 2, there are certain special cases when having

additional decision point provides benefit. However, we have performed additional

experiments that are not presented in the chapter to conserve space, and found that

in many cases the computational savings associated with multiple decision points are

not substantial. Thus, from now on we concentrate on a single decision point.

3.5 Simulation Results

In this section, we present numerical results for cloning in two settings. In Section

3.5.1, the use of cloning to simulate queueing networks with ten stations connected in

tandem is addressed. In Section 3.5.2, cloning results for a profit model with uncer-

tain supply and demand are demonstrated. In both sections, cloning with negative

correlation before and after a single decision point is employed, and basic cloning and

simply using the negative correlation are also considered for comparison

3.5.1 Ten queueing stations in tandem

In this section, we consider ten G/G/1 queueing stations connected in tandem. The

performance measure of interest is the sojourn time of the 100-th customer for the

study of transient simulation. We set the decision point to be at the end of a spec-

ified station d. Thus, when cloning is applied, the first d stations are shared, and

the remaining 10 − d stations are cloned. As can be seen from Equation (6), the

efficiency is a function of the variance, covariances, and effort. For the experiment,
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we chose different interarrival and service time distributions to affect the variance

and covariances, and chose different decision points to change the effort. Bottlenecks

in this experiment are the stations with lower service rate. In some cases, bottle-

neck stations also have greater service time variability, so that the variance of the

performance measure of interest at the station is greater.

In Tables 3 and 4, we provide the optimal number of clones and efficiency ratios for

both basic cloning and cloning with negative correlation before and after the decision

point for different interarrival and service time distributions, and hence different bot-

tlenecks. Also, to see the effects of using negative correlation, the efficiency ratio of

negative correlation without any cloning is provided. Finally, estimated correlation

values are presented to provide information about the magnitude of these correla-

tions. The correlation values are estimated through simulation, and the estimates of

ρcn, ρll, and ρln are denoted as ρ̂cn, ρ̂ll, and ρ̂ln, respectively. The optimal numbers

of branches, Ŝ∗ and the efficiency ratios, R̂(Ŝ∗), are computed using the estimated

correlation values and equations (3) and (4) for basic cloning. Also, for ARN and

cloning with ARN, the optimal numbers of branches, denoted Ŝ∗ instead of Ŝ ′∗ for

better readability and the efficiency ratios, R̂′(Ŝ∗), are computed using the estimated

correlation values and equations equations (2) and (6), and equations (7) and (8),

respectively. Note that the efficiency ratio of ARN is equal to the efficiency ratio of

cloning with ARN when the number of branches equals 1. This is denoted R̂′(1).

If not specified otherwise, the decision point d is set to five, so that the compu-

tational effort before and after the decision point is similar. In fact, throughout the

analysis, we assume that the computational effort is linear with respect to the number

of stations. That is, when the decision point is d, we use f̂ = d/10 to estimate f .

As this ignores the effort associated with generating interarrival times, which form a

portion of the shared part of the system, it is likely that f ≥ f̂ . The set of bottleneck

stations is indicated in the first row of Tables 3 and 4. Also, if the distributions of
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the bottleneck change, it is noted in the first row. The interarrival and service time

distributions are chosen as follows.

• In Table 3, the interarrival and service times are exponentially distributed. The

mean interarrival time is set to 5 and the mean service time at non-bottleneck

stations is set to 1. In the first three columns, the mean service time of bottle-

neck stations equals 4. For the last two columns, we increase the utilization ρ

of the bottleneck station 10 to 0.9 and 0.98, by setting the mean service time

equal to 4.5 and 4.9, respectively.

• In Table 4, all times are uniformly distributed, denoted U(a, b), where a and b

are the lower and upper bounds of the uniform distribution, respectively. This

allows us to separate the effects of the mean and variance of the service time

distribution. The distribution of the interarrival times is U(4, 6) and non-

bottleneck service times are U(0, 2). In the first three columns, the bottleneck

service times are U(3, 5), thus the utilization ρ = 0.8 is consistent with the

first three columns of Table 3. In the last three columns, to assess the effects of

the variance, we keep the utilization at 0.8, and use different lower and upper

bounds for the service time distribution, as in U(2, 6), U(1, 7), and U(0, 8).

• All the correlation values are estimated with a large enough number of repli-

cation that all confidence interval widths are less than 10−3. Also, when the

correlation values are smaller than 10−3, more replications were performed to en-

sure that the values shown in the tables have at least one significant digit (with

the exception of Table 5 where the confidence intervals in the first, second and

third columns are as wide as the absolute value of the estimated correlation

values).

As can be seen from Tables 3 and 4 using basic cloning does not improve the

results by a great margin, if any (the improvement ranges from 0 to 50 percent).

34



Table 3: Tandem Queue with Exponential Interarrival and Service Times
Bottlenecks st. 10 st. 9 st. 9, 10 st. 10, ρ = 0.9 st. 10, ρ = 0.98

Correlations ρ̂cn 0.3452 0.3454 0.4392 0.3622 0.3730
ρ̂ll -0.3480 -0.3426 -0.3730 -0.3930 -0.4573
ρ̂ln -0.1987 -0.1993 -0.2612 -0.2130 -0.2298

Basic Ŝ∗ 1 1 1 1 1

Cloning R̂(Ŝ∗) 1 1 1 1 1

ARN Only R̂′(1) 1.5337 1.5211 1.5948 1.6473 1.8425

Cloning Ŝ∗ 2 2 2 2 2

with ARN R̂′(Ŝ∗) 1.6698 1.6592 1.6562 1.7631 1.9437

Table 4: Tandem Queue with Uniform Interarrival and Service Times

Bottlenecks st. 10 st. 9 st. 9, 10
st. 10 st. 10 st. 10

w/ U(2, 6) w/ U(1, 7) w/ U(0, 8)

Correlations ρ̂cn 0.3708 0.3599 0.3613 0.1991 0.0957 0.0485
ρ̂ll -0.5077 -0.5919 -0.4820 -0.6059 -0.6451 -0.6302
ρ̂ln -0.2427 -0.2294 -0.2115 -0.1378 -0.0721 -0.0399

Basic Ŝ∗ 1 1 1 2 3 4

Cloning R̂(Ŝ∗) 1 1 1 1.1120 1.2591 1.3968

ARN Only R̂′(1) 2.0314 2.4504 1.9304 2.5375 2.8176 2.7040

Cloning Ŝ∗ 2 2 2 2 4 6

with ARN R̂′(Ŝ∗) 2.1491 2.4754 1.9966 2.9282 3.7590 4.1519
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Also, as it is widely known from the literature, and also can be seen from our results,

the use of antithetic variables improves computational efficiency (in our case, up to

approximately 280 percent). However, when cloning is combined with antithetic vari-

ables to induce negative correlation, then the computational savings become more

significant. Though some of the savings comes from the antithetic variables, combin-

ing the two clearly brings better results and the improvement is achieved at a low cost

as the approach is easy to implement. In Table 3, we can see that as the utilization

gets larger in the bottleneck, the effect of cloning with induced negative correlation

increases. Tables 4 shows the effect of the variance of the service time distribution of

bottleneck stations. In particular, the greater the variability of the cloned part, the

greater the efficiency gain. Finally, comparing the first, second, and third columns of

Tables 3 and 4, we can conclude that the position of the bottleneck is does not have

a major effect on the results, as long as it is located after the decision point.

From the simulation results, we can see that the traffic intensity and the variability

of the bottleneck are key factors that affect the efficiency, with more influence resulting

from the variability change. Therefore, the efficiency increases as the cloned part

becomes more important (i.e., as the traffic intensity and variability of the bottleneck

increases), and exploiting the structure of planned simulation is helpful when using

the cloning technique.

Sensitivity analysis with respect to the decision point d is shown in Tables 5 and 6.

In these tables, we assume that f = d/10. In Table 5, interarrival times are set to be

deterministic and service times exponential with ρ = 0.98. In this example, as the last

two stations form the bottleneck, the best results are obtained when the decision point

is after the 8th station. When the decision point is set after the 9th station, although

the computing effort decreases, positive correlation greatly increases, and thus cloning

becomes less effective. In this case, with the deterministic arrival and large traffic

intensity at the bottleneck, we can see significant improvement in efficiency. Finally in
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Table 6, interarrival times are set to be deterministic and service times to be uniformly

distributed. Nonbottleneck service times follow U(0, 2) and bottleneck service time

follow U(30, 50) for higher variability. As the last station is the bottleneck with

higher variability, the efficiency ratio increases as the decision point is delayed to the

end. Naturally, the optimal decision point is at the 9th station.

Table 5: Different Decision Points for Tandem Queue with Deterministic Arrival and
Exponential Service Times and Bottleneck at the 9th and 10th Stations with ρ = 0.98

Decision Point 1 2 5 8 9

Correlations ρ̂cn 0.000095 0.000119 0.000244 0.000389 0.4204
ρ̂ll -0.3302 -0.3302 -0.3302 -0.3302 -0.3302
ρ̂ln -0.000019 -0.000004 -0.000038 -0.000058 -0.1220

Basic Ŝ∗ 34 46 64 101 4

Cloning R̂(Ŝ∗) 1.1040 1.2366 1.9394 4.6293 1.3608

ARN Only R̂(1) 1.4930 1.4930 1.4930 1.4930 1.4930

Cloning Ŝ∗ 31 38 57 90 3

with ARN R̂(Ŝ∗) 1.6474 1.8423 2.8850 6.8459 1.9740

Table 6: Different Decision Points for Tandem Queue with Deterministic Arrival and
Uniform Service Times and Bottleneck at the 10th Station with ρ = 0.8 and High
Variability

Decision Point 1 2 5 8 9

Correlations ρ̂cn 0.008326 0.0168 0.0416 0.0668 0.0751
ρ̂ll -0.9948 -0.9948 -0.9948 -0.9948 -0.9948
ρ̂ln -0.008324 -0.0168 -0.0415 -0.0663 -0.0746

Basic Ŝ∗ 4 4 5 7 11

Cloning R̂(Ŝ∗) 1.0547 1.1200 1.4288 2.2719 3.1402

ARN Only R̂(1) 192.2581 192.2581 192.2581 192.2581 192.2581

Cloning Ŝ∗ 18 9 6 7 9

with ARN R̂(Ŝ∗) 211.0138 228.3665 283.9188 402.7631 521.0764

As can be seen from Tables 5 and 6, it is beneficial to share large parts of the

simulation to save computational effort. Nevertheless, the decision point should be

chosen carefully so that the key part of the simulation is not shared as in the last

column of Tables 5, as the efficiency ratio is not at optimal if the decision point is
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delayed to the last station. However, it is noteworthy that the last column of Table

5 show fair performance although the choice of decision point is not optimal.

As we mentioned earlier, in Tables 3 through 6, we estimated the correlations ρcn,

ρll, and ρln, and used these estimated correlations to estimate the optimal number of

clones and optimal efficiency ratios. However, in practice, estimated correlation values

may be unavailable or imprecise. Therefore, we now perform sensitivity analysis with

respect to the number of clones. In Figure 5, parameters from a tandem queue

with uniform interarrival and service time distributions are used, corresponding to

the second column of Table 4. Although the efficiency ratio is optimal at S = 2,

cloning is beneficial up to ten clones. In Figure 6, using data from the last column

of Table 4, cloning will be beneficial up to 189 clones. In Figure 7, values from the

last column of Table 6 is used. In this case, although the optimal number of clones is

9, significant benefit can be achieved for large range of number. Even at S = 5000,

cloning is beneficial. Figures 5, 6, and 7 suggest that even if the number of clones are

not chosen to be optimal, we can achieve efficiency improvement with a reasonable

number of clones.

3.5.2 Profit model with uncertain supply and demand

In this section, we consider a simple profit model with uncertain supply and demand.

This model is naturally feedforward because the supply is observed prior to the de-

mand, and hence partitioning the system into supply and demand components is

equivalent to partitioning it along the time horizon. Thus, the supply is shared, and

the demand is cloned. Another aspect of this model is that demand tends to have

higher variability compared to supply, as supply is generally easier to control for the

party that is interested in this profit model.

We consider a basic, linear profit model. In this model, cost is proportional to

the supply and revenue is proportional to the actual sales, which is the minimum of
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Figure 7: Sensitivity Analysis for Uniform Times with Bottleneck at 10th Station

supply and demand. Then the model is set as follows:

Profit = −Cost× Supply + Price×min(Supply,Demand).

As a rule of thumb, the selling price is significantly higher than the unit cost.

This increases the weight on the latter part of the simulation, which is related to

the demand. In this way, the latter part of the simulation, which is being replicated,

has both higher variability and significance. More specifically, we set the cost to 1

and the selling price to 10. The effort of generating one demand and one supply are

assumed to be equal, and all other computational efforts are ignored. Therefore, f is

determined by the effort required for demand and supply.

In the following experiments, demand and supply are assumed to be uniformly

distributed with the parameters shown in the first two rows of Tables 7 and 8. In

particular, D(a, b) (S(a, b)) denotes that the demand (supply) is uniformly distributed

with the lower and upper bounds of a and b. Correlations, and thus optimal number

of clones and efficiency, depend on the relative magnitude of supply and demand,

overlap of supply and demand, and the variability of supply and demand. Thus the

parameter values for the supply and demand distribution are chosen as follows:

• In Table 7, different ranges for demand and supply are considered. The demand
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and supply ranges overlap, and the variability of supply and demand is constant.

However, as the averages shift, the range of the overlapping area also changes.

As demand and supply are both determined by one uniform random variable,

f = 0.5 is assumed.

• In Table 8, we consider the case where it takes more computational effort to

forecast supply. In this table, there is one source of demand, while the number

of sources of supply is ten in the first two columns and one hundred in columns 3

and 4. Therefore, the first two columns have f = 10/11 and the last two columns

have f = 100/101. Also, the averages of both demand and total supply remain

the same, while the variability of the supply varies. The number in front of “S”

denotes the number of suppliers.

• All the experiments are run for 2× 106 replications and 200 macro replications

in Table 7. This guarantees at least one significant digit in all correlation values.

(to be edited for Table 8

As in Section 3.5.1, in Tables 7 and 8 we provide the estimated correlation values ρ̂cn,

ρ̂ll, and ρ̂ln. The optimal numbers of branches, Ŝ∗, and the efficiency ratios, R̂(Ŝ∗),

are then estimated using equations (3) and (4) for basic cloning, equations (2) and

(6) with S = 1 for ARN, and equations (7) and (8) for cloning using ARN.

Table 7 shows that the efficiency gain is more significant when the mean demand

is smaller and when the overlap is small. When both the mean demand is smaller and

the overlap is small, then the sales are more dependent on the demand, and hence

the effect of the supply, which is the shared part, becomes smaller. This is consistent

with the previous observation that cloning is more efficient when the shared part

has less impact on the performance measure of interest. Moreover, the effect of the

overlap seems to be greater than the effect of the magnitude of the mean demand.

This is because when the overlap is small, due to the structure of the profit function,
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Table 7: Profit Model with Different Means
D(0,10) D(0,10) D(0,10) D(5,15) D(9,19)
S(0,10) S(5,15) S(9,19) S(0,10) S(0,10)

Correlations ρ̂cn 0.3064 0.0056 0.0098 0.9374 0.9999
ρ̂ll -0.4219 -0.9395 -0.9999 -0.9254 -0.9999
ρ̂ln -0.2486 0.0040 -0.0098 -0.9254 -0.9999

Basic Cloning Ŝ∗ 2 13 10 1 1

R̂(Ŝ∗) 1.0206 1.7395 1.6707 1.0000 1.0000

ARN Only R̂′(1) 1.7299 16.5298 10145.5004 13.4103 8136.3442

Cloning with ARN Ŝ∗ 3 2 4 2 4

R̂′(Ŝ∗) 2.1624 19.0001 13640.1278 15.4164 11225.4346

Table 8: Profit Model with Different Variability
D(0,10) D(0,10) D(0,10) D(0,10)
10S(0,1) 10S(0.4,0.6) 100S(0,0.1) 100S(0.04,0.06)

Correlations ρ̂cn 0.0481 0.0021 0.0052 0.000205
ρ̂ll -0.5611 -0.5983 -0.5957 -0.5998
ρ̂ln -0.0459 -0.0021 -0.0051 -0.000204

Basic Ŝ∗ 14 69 139 699

Cloning R̂(Ŝ∗) 3.9464 8.4028 34.3150 77.3054

ARN Only R̂′(1) 2.2783 2.4891 2.4733 2.4989

Cloning Ŝ∗ 44 382 819 5669

with ARN R̂′(Ŝ∗) 16.6739 26.0038 198.4510 243.7143
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ρcn + ρln ' 0 and ρll ' −1. As can be seen in Equation (8), this has large impact on

the efficiency ratio.

Table 8 shows the effects of both computational effort and variability. Comparing

Table 8 with the first column of Table 7, the impact of f , the ratio of computational

effort of shared part and cloned part, is obvious. Also, when the variability decreases

in the shared part, then the efficiency ratio increases. However, as the mean supply

is constant and equal to the mean demand, the gain is not as dramatic as in the third

(fifth) column of Table 7, where supply (demand) has little effect on sales. Again,

this supports the claim from the previous section that the variability and significance

of the shared part of cloning significantly impact the effectiveness of cloning.

We conclude this section by discussing the estimated correlation values in Tables

3 through 8. In previous sections, we showed that ρcn ≥ 0 and ρcn ≥ −ρln and our

numerical results confirm this. Moreover, we assumed that 0 > ρln > ρll. The results

in Tables 3 through 8 generally support this assumption. However, in the second

column of Table 7 (with D(0,10) and S(5,15)), the negative correlation in the shared

random variable (i.e., supply) exceptionally results in a positive correlation ρln. This

may explain why the efficiency ratio is not as large as might be expected given that

sales is more dependent on demand in this case.

3.6 Conclusion

In this chapter, we have discussed the use of cloning in transient simulation. While

cloning was originally designed to share some simulation results among sample paths

for different scenarios, our approach shares simulation results among different replica-

tions of the same system. First, we describe our algorithm and identify the number of

clones that optimizes its efficiency. Then, to offset the undesired positive correlation

induced by sharing some results, we introduce cloning algorithms with induced nega-

tive correlation, and recommend inducing negative correlation both before and after

43



the decision point for best results. Also, we have shown that the algorithms can be

extended to the case with multiple decision points. Finally, simulation results are pro-

vided to illustrate the performance of our algorithms. Efficiency improvement ranges

from 60 percent to approximately 1.36 million percent depending on the structure

and performance measure of interest. Our cloning approach is easy to implement and

is especially effective when it involves sharing some simulation results that require a

substantial amount of computational effort but have little impact on the performance

measure among multiple replications.

The cloning technique considered in this chapter is similar to the use of splitting as

a rare-event simulation technique. It may be desirable to incorporate our techniques

to induce negative correlation into splitting, with the improvement achieved at low

cost. In such cases, inducing negative correlation only after the decision point may

be worthwhile(as it involves smaller modifications to the original splitting approach),

and cloning at multiple decision points corresponds to multilevel splitting.
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CHAPTER IV

PARETO SET ESTIMATION USING RANKING AND

SELECTION

4.1 Introduction

In this chapter, we consider the problem of selecting the best system when there are

multiple objectives, and present an algorithm to estimate a Pareto set using the R&S

approach. We provide three different formulations that may serve for different pur-

poses. In each case, we identify what parameter values to choose and prove that the

proposed algorithm with the suggested parameters guarantees the desired probability

of correct selection. Our work differs from the earlier works in that we can compare

multiple objectives, without prioritizing some objectives over others, and provide a

guaranteed probability of correct selection.

The outline of this chapter follows. Section 4.2 provides the problem formulations

and notation used throughout the chapter. In Section 4.3 we describe our procedure

for selecting a Pareto set with a certain probability of correct selection when there

are multiple systems and multiple objectives. Section 4.4 considers the three problem

formulations that were introduced in Section 4.2 and provides the choices of parame-

ters and validity proofs (that guarantee the desired probability of correct selection).

In Section 4.5, we present results from numerical experiments. Finally in Section 4.6,

we finish the chapter with a brief summary and conclusion.

4.2 Problem Formulation

Consider the ranking and selection problem with multiple maximization objectives.

Instead of choosing a single best system, the goal of the proposed algorithm is to
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select a set of Pareto optimal systems. A system is Pareto optimal if there exists no

other system that can improve upon it in one objective without hurting some other

objectives.

Let the set of indices for the systems be S = {1, 2, . . . , k}, where 2 ≤ k <∞. Let

Ximn be a real-valued observation associated with the m-th objective from replication

n of system i. The performance measures are defined as xim = IE[Ximn]. Also,

let X̄im(n) denote the estimate of the mean xim calculated from the average of n

independent observations. Let there be ` ≥ 2 objectives, and let H = {1, 2, . . . , `} be

a set of indices of objectives. System i dominates system j, denoted as j ≺ i, when

∀m ∈ H, xim ≥ xjm and ∃m ∈ H, such that xim > xjm. Let P denote the Pareto set.

System j ∈ P if 6 ∃i such that j ≺ i. Thus P 6= ∅ is a set of non-dominated systems.

We now define the Pareto set PIZ with indifference zone (IZ). The indifference zone

is the smallest actual amount that makes a practical difference to an experimenter.

When the difference of two values is less than the indifference zone, then the difference

is insignificant. Let δm > 0 be the indifference zone for the m-th objective. For

objective m, system i is significantly better than j, denoted as xim >IZ xjm, if xim −

xjm ≥ δm; systems i and j are indifferent, denoted as xim =IZ xjm, if |xim−xjm| < δm;

and xim ≥IZ xjm holds if xim − xjm > −δm. System i dominates system j with IZ,

denoted as j ≺IZ i, if xim ≥IZ xjm, ∀m, and ∃m such that xim >IZ xjm. System

j ∈ PIZ if 6 ∃i such that j ≺IZ i.

From their definitions, it is clear that P and PIZ can yield completely different sets.

Systems that are included in P can be excluded from PIZ . Also, systems that are not

included in P are not necessarily excluded from PIZ . More specifically, consider the

case with two systems i and j, where i 6= j, and let H i
j ⊂ H be a subset of objectives

such that ∀m ∈ H i
j, xim ≥ xjm holds. Note that H i

j∪H
j
i = H. If H i

j 6= ∅ and Hj
i 6= ∅,

xjm < xim < xjm + δm, ∀m ∈ H i
j, and xim <IZ xjm ∀m ∈ Hj

i , then a system i ∈ P

and i 6∈ PIZ . Conversely, i ∈ PIZ , but i 6∈ P , if Hj
i = H, xim ≤ xjm < xim + δm, ∀m,
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and xim 6= xjm for at least one objective. This is the case when i is dominated by

j, but the difference in all performance measures is less than the indifference zone.

For example, consider the case with two objectives, three systems, and δm = 1 for

m = 1, 2. Let x11 = 1, x12 = 2.2, x21 = 2, x22 = 2, x31 = 1.5, and x32 = 1.5. Then,

P = {1, 2} (because 3 ≺ 2), while PIZ = {2, 3} (because 1 ≺IZ 2). However, note

that PIZ = P as δm approaches 0 for all m.

Define sets SD, SU , and SA, as the sets of desirable, undesirable, and acceptable

systems, respectively. Then

SD = {j : ∀i 6= j,∃m s.t. xjm >IZ xim},

SU = {j : ∃i 6= j, s.t. ∀m,xjm <IZ xim},

SA = S \ (SD ∪ SU).

That is, SD is the set with systems that are significantly better than other systems in

at least one objective, and SU is the set with systems that are significantly dominated

by other systems in all objectives. Therefore, SA is the set with systems that are in the

indifference zone. Note that SD ⊆ P ⊆ SD∪SA and SD ⊆ PIZ ⊆ SD∪SA. Also, while

it is possible that SD = ∅ (as in traditional R&S with one performance measure), it

is always the case that SD ∪ SA 6= ∅. This follows from the fact that SU 6= S, as not

all systems can be strictly dominated by other systems in all objectives.

Let Xmn = (X1mn, X2mn, . . . , Xkmn) be a vector across systems of the n-th obser-

vations of the m-th objective. We will need the following assumption throughout the

chapter.

Assumption 1. The random vectors Xm1, Xm2, . . . are identically distributed multi-

variate normal with mean vector (x1m, x2m, . . . , xkm), variance vector (σ2
1m, σ

2
2m, . . . , σ

2
km),

and positive definite covariance matrix
∑

m, where xim and σ2
im are unknown, ∀i ∈

S,m ∈ H.

Assumption 1 is similar to normality assumptions that are conventionally used
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in the ranking and selection literature. It is not very restrictive as the performance

measures can be estimated via means of batches of observations, implying that As-

sumption 1 usually holds in an asymptotic sense.

For all j ∈ SU , let ij ∈ SD ∪ SA be a system such that xijm >IZ xjm, ∀m. (Note

that the implicit assumption that ij ∈ SD ∪ SA holds without loss of generality.)

Several of our results will require the following assumption.

Assumption 2. For all j ∈ SU , ij ∈ SD.

Without Assumption 2, there may be a case when ij ∈ SA is eliminated before ij

eliminates j. This will leave j without guaranteed elimination. In the ranking and

selection literature, it is common to assume that no performance measures fall within

the indifference zone. Under such an assumption, clearly SA = ∅ holds. If SA = ∅,

then a system is either in SU or SD. If a system j is in SU , there exists a system that

is significantly dominant in all objectives. If such system, say q, is not in SD, then

there exists a system q′ that is significantly dominant in all objectives compared to q,

and thus to j. If q′ /∈ SD, the same argument continues, and must end with a system

in SD that is significantly dominant in all objectives to system j, because the number

of systems k is finite. Therefore, Assumption 2 is less restrictive than the traditional

assumption that SA = ∅.

We consider three different formulations for the correct selection of a Pareto set.

Let P̂ denote the estimate of the Pareto set selected using our procedure. The sub-

script of the set P̂ indicates what formulation is used to select the set. In the first for-

mulation, denoted as CSER, the Correct Selection is to Eliminate all undesirable sys-

tems and Retain all desirable systems. Namely, it is the event, SD ⊆ P̂ER ⊆ SD ∪SA.

Each of the next two formulations relieves one constraint on P̂ . First, by removing

the constraint of eliminating all undesirable systems, we have the second formulation,

denoted as CSRD, in which the Correct Selection is to Retain all the systems that are

Desirable. This resembles subset selection in the ranking and selection literature in a
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sense that the selected set includes a subset whose members are dominant compared

to those not included [21]. This event can be expressed as SD ⊆ P̂RD. Second, CSEU

is the Correct Selection event where all Undesirable systems are Eliminated. It can

be expressed as ∅ 6= P̂EU ⊆ SD ∪ SA. As the original formulation both retains and

eliminates, CSER = CSEU ∩ CSRD holds.

4.3 Pareto Set Selection Procedure (PSSP)

Objective: Identify systems that are Pareto optimal when there are k systems with

` objectives, xim, ∀i ∈ S,m ∈ H. Correct selection can follow any of the three

formulations discussed in Section 4.2 that best fits the needs of users.

Setup: Select the overall confidence level 1 − α, indifference zone δm, ∀m, and

first-stage sample size n0 ≥ 2. Let 1A denote the indicator function. That is, if the

event A is true, then 1A = 1, and else, 1A = 0. Pick the constant c and calculate η

to be a solution to

g(η) ≡
c∑
l=1

(−1)(l+1)

[
1− 1

2
1{l=c}

] [
1 +

2η(2c− l)l
c

]−(n0−1)/2

= β. (12)

In general, c = 1 is a good choice. (For further reference on selecting the constant c,

refer to Section 3.1 of Kim and Nelson [63].) When this is the case, η can be obtained

from the closed-form expression η = 1
2
[(2β)

2
1−n0 − 1]. The selection of β depends on

the confidence level α and formulation (ER, RD, or EU). Refer to Theorems 4.4.1

through 4.4.3 for further details.

Initialization: Let M = {1, 2, . . . , k} be the set of systems that have not been

found to be dominated by other systems and SSim = ∅ be the set of superior systems

to system i in terms of the m-th objective. Let P̂ = ∅ denote the estimate of

the Pareto optimal set, C = ∅ denote a set of systems that have “completed” all

needed comparisons, and let h2 = 2cη × (n0 − 1). Obtain n0 observations Ximn,
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n = 1, 2, . . . , n0, ∀m ∈ H and ∀i ∈ S. For all i 6= j and ∀m, compute

S2
(ij)m =

1

n0 − 1

n0∑
n=1

[Ximn −Xjmn − (X im(n0)−Xjm(n0))]2,

the sample variance of the difference between systems i and j in objective m. Set the

observation counter r = n0.

Comparison and Stopping: For each pair of systems i, j ∈ M \ C and each

m ∈ H such that i 6= j, j /∈ SSim, i /∈ SSjm, compare

r∑
n=1

Ximn <
r∑

n=1

Xjmn −R(ij)m(r), (13)

whereR(ij)m(r) = max{0, 1
2c

(
h2S2

(ij)m

δm
−δmr)}. If (13) holds, add j to SSim. If j ∈ SSim′

for all m′ 6= m, then eliminate i from all existing sets. If |M | = 1, where |M | denotes

the number of systems in the set M , then add j to P̂ , stop, and return P̂ as the

Pareto optimal set. Otherwise, check if for all q ∈M \ {j}, there exists mq such that

j ∈ SSqmq . If so, then add j to P̂ . If P̂ = M , then stop and return P̂ as the Pareto

optimal set. If j ∈ P̂ and P̂ 6= M , check if j ∈ SSqm or q ∈ SSjm holds, ∀m ∈ H

and ∀q ∈ M \ P̂ . If so, add j to C. If |M \ C| = 1, then the remaining system has

completed comparisons with all other systems in M , and hence cannot be eliminated

by any system. Thus add the remaining system in M \C to P̂ , then stop and return

P̂ as the Pareto optimal set. See Figure 8 for the flowchart of this step.

Data Collection: If the procedure was not stopped in the Comparison and

Stopping step, take one additional observation Xim(r+1) for m ∈ H from the remain-

ing systems in M \ C, and go to Comparison and Stopping.

Note that without introducing the set C ⊆ P̂ , the PSSP algorithm cannot stop

sampling from systems placed in P̂ until P̂ = M , even if comparisons with all systems

in M \ P̂ have been completed. Also, if we let bxc denote the largest integer smaller
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∑r
n=1Ximn ≤

∑r
n=1Xjmn −R(ij)m(r)

Add j to SSim Go to Next Comparison

j ∈ SSim′∀m′

Eliminate i from M

|M | = 1

Add j to P̂

Add j to P̂

j ∈ SSqmq∀q

P̂ = M

Stop Procedure j ∈ SSqm or q ∈ SSjm ∀m ∈ H, ∀q ∈M \ P̂

Add j to C

|M \ C| = 1

Add M \ C to P̂

T F
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T

F

T

F
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T

F

F
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Figure 8: Flowchart for Comparison and Stopping Step in PSSP

than x and

N(ij)m =

⌊
h2S2

(ij)m

δ2
m

⌋
,

Ni = max
j 6=i

max
m∈H

N(ij)m ,

then Ni + 1 is the maximum number of observation that is required to make cor-

rect decision on system i. Therefore, if n0 ≥ Ni + 1, ∀i, then the procedure will

stop without additional data collection after one execution of the Comparison and

Stopping step with P̂ being the estimated Pareto optimal set.
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4.4 Parameter Choices and Validity Proofs

In Section 4.3, we deferred the specification of the parameter β used in Equation (12).

To achieve the desired probability of correct selection 1−α, β must be set differently

for each formulation CSER, CSRD, and CSEU . In the following Sections 4.4.1, 4.4.2,

and 4.4.3, we describe the choices of the parameter β and associated validity proofs

for the ER, RD, and EU formulations, respectively. Finally in Section 4.4.4 we discuss

the expected performance of the formulations.

We begin with stating the following lemma, adapted from Kim and Nelson [63],

which is required to prove the validity of PSSP under all formulations. For all systems

i, j and objectives m with xim − xjm ≥ δm, let CS(ij)m be the event that the m-th

objective of system j is found inferior to that of system i. We will need the following

lemma:

Lemma 4.4.1. Under Assumption 1, PSSP satisfies IP{CS(ij)m} ≥ 1 − β, ∀i, j,m

that satisfy xim − xjm ≥ δm.

Proof. This follows directly from the proof of Theorem 1 of Kim and Nelson [63], as

P{ICS} ≤ β, where ICS denotes the probability of incorrect selection made at a

given time when comparing two systems in one objective.

4.4.1 Eliminating the Undesirable, Retaining the Desirable (ER)

In this section, for the correct selection, CSER, we guarantee that all the systems

that are desirable are retained in the final Pareto set, and that all the undesirable

systems are eliminated.

Theorem 4.4.1. Under Assumptions 1 and 2, the PSSP procedure guarantees that

IP{CSER} ≥ 1−max(k, `)(k − 1)β.

Thus to achieve the desired confidence level, β should be set as β = α
max(k,`)(k−1)

.
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Proof. Let CSj be the event that j ∈ SU is eliminated and GSi be the event that

i ∈ SD is not eliminated. Also, let CSij be the event that i would eventually eliminate

j ∈ SU . Note that CSijj =
⋂
m∈H CS(ijj)m as for j ∈ SU to be eliminated by ij, ij has

to be declared better in all objectives. Similarly, for i ∈ SD and j ∈ S \ {i}, let GSij

be the event that j does not eliminate i, thus GSi =
⋂
j 6=iGSij. That is, for system

i to survive, no other system should eliminate i. Then it follows that

IP {CSER} = IP

{
(
⋂
j∈SU

CSj) ∩ (
⋂
i∈SD

GSi)

}

≥ IP

{
(
⋂
j∈SU

CSijj) ∩ (
⋂
i∈SD

⋂
 6=i

GSi)

}

= IP

(
⋂
j∈SU

⋂
m∈H

CS(ijj)m) ∩ [
⋂
i∈SD

(
⋂

∈SU : i 6=i

GSi ∩
⋂

∈SD∪SA\{i}

GSi)]


(14)

≥ IP

{ ⋂
j∈SU

⋂
m∈H

CS(ijj)m

}
+ IP

[
⋂
i∈SD

(
⋂

∈SU : i 6=i

GSi ∩
⋂

∈SD∪SA\{i}

GSi)]

− 1.

(15)

The first equality follows from the definition of the ER formulation. The first in-

equality holds as CSijj is the event that ij eliminates j and GSi is the event that

system  does not eliminate i. The second equality follows because for a system to be

eliminated, the system has to be inferior in all objectives compared to another sys-

tem, and system i cannot simultaneously eliminate system  and also be eliminated

by system  (so that CSi ⊆ GSi).

Let u(d) denote the number of systems in SU(SD). Note that d = 0 implies that

u = 0 by Assumption 2. In this case, any set returned by the procedure satisfies the

condition of correct selection, thus the case is trivial. Otherwise, note that if system i

is in SD, and thus should not be eliminated by any j 6= i, then it is guaranteed that i

is better than j in at least one objective, say mij, and it suffices to correctly compare

the two systems in that objective. Therefore, from Assumption 1 and Lemma 4.4.1,
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IP{GSij} ≥ IP{CS(ij)mij } ≥ 1−β. Similarly, IP{CS(ijj)m} ≥ 1−β, ∀m ∈ H, whenever

j ∈ SU . Therefore, Equation (15) yields:

IP{CSER} ≥ (1− `uβ) + [1− (d(k − 1)− u)β]− 1

= 1− [u(`− 1) + d(k − 1)]β

≥ 1− [d(k − `) + k(`− 1)]β. (16)

The first inequality holds by the Bonferroni inequality and Lemma 4.4.1. The second

inequality holds as u ≤ k− d holds. This implies that the worst-case scenario will be

when u+ d = k.

Finally, if the number of systems exceeds the number of objectives, i.e., k > `,

then the worst case is when all the systems are in the Pareto set, namely d = k,

and the lower bound (16) is 1 − k(k − 1)β. (Note that if k = `, then the worst case

does not depend on d or u as long as d + u = k.) If the opposite is true, then the

worst case happens when d = 1, so that only one system dominates all other systems,

and the lower bound (16) becomes 1− `(k − 1)β. Therefore, the lower bound (16) is

1−max(k, `)(k − 1)β, and the proof is complete.

Intuitively, eliminating a system in SU requires ` correct comparisons, whereas

selecting a system in SD requires k − 1 correct comparisons. Therefore, when the

number of objectives, `, is small, eliminating a system is easier than confirming one

to be Pareto optimal. When the number ` is large, a system must be dominated in

every objective to be eliminated, and thus it becomes relatively easier to confirm a

system to be Pareto optimal.

As discussed in Section 4.2, Assumption 2, is less restrictive than the commonly

used assumption that SA = ∅. This yields the following corollary. Note that the

second inequality in Equation (16) should be an equality in this case, which will not

affect the final result.
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Corollary 4.4.1. The result of Theorem 4.4.1 holds under Assumption 1 and the

assumption that SA = ∅.

4.4.2 Retaining the Desirable (RD)

In this subsection, we analyze the Retain the Desirable formulation for correct selec-

tion. This will guarantee that the selected set will retain SD in the final result with

the pre-specified probability of correct selection.

Theorem 4.4.2. Under Assumption 1, the PSSP procedure guarantees that

IP{CSRD} ≥ 1− k(k − 1)β.

Thus to achieve the desired confidence level, β should be set as β = α
k(k−1)

.

Proof. Correct selection under the RD formulation implies that any system in SD is

not eliminated. It follows that

IP {CSRD} = IP

{ ⋂
i∈SD

GSi

}

= IP

{ ⋂
i∈SD

⋂
j 6=i

GSij

}

≥ 1− d(k − 1)β

≥ 1− k(k − 1)β,

where the second equality follows from the definition of GSi (as in the proof of The-

orem 4.4.1), the first inequality follows from the Bonferroni inequality and Lemma

4.4.1, and the last inequality follows from the fact that d ≤ k.

Note that under this formulation, we only need Assumption 1. Also, while the

lower bound under this formulation is equal to that under the ER formulation when

the number of objectives ` is smaller than the number of systems k, when k < `,

the RD formulation performs better than the ER formulation, and the improvement
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equals (` − k)(k − 1)β. As mentioned in Section 4.4.1, selecting a system in SD

requires k− 1 correct comparisons, thus the lower bound of the RD formulation does

not depend on `. Therefore, with a fixed number of systems, increasing the number

of objectives does not affect the performance of the RD formulation. However, in

the ER formulation, to correctly eliminate the systems in SU , ` objectives should be

considered for the worst case scenario, and that is where the discrepancy comes from.

This explains why RD does better than ER when k < `.

4.4.3 Eliminating the Undesirable (EU)

In this section, we define correct selection to be the event where all the undesirable

systems are eliminated with the specified probability of correct selection.

Theorem 4.4.3. Under Assumptions 1 and 2, PSSP guarantees that

IP{CSEU} ≥ 1−max(k, `)

[
k − 1− 1

2
(k − `)1{k>`}

]
β.

Thus, to achieve the desired confidence level, β should be set as β = α

max(k,`)[k−1− 1
2

(k−`)1{k>`}]
.

Proof. To guarantee that all the inferior systems j ∈ SU are eliminated, we also need

to guarantee that the systems ij ∈ SD are not eliminated. Therefore, our bound of

the probability of correct selection under the EU formulation is

IP {CSEU} ≥ IP

{ ⋂
j∈SU

CSijj ∩GSij

}
. (17)

If u ≥ d, then the systems in SD that have to be retained may be, in the worst

case scenario, all the systems in SD. In such case, the probability of correct selection

follows:

IP {CSEU} ≥ 1− [d(k − `) + k(`− 1)]β

≥ 1−max(k, `)

[
k − 1− 1

2
(k − `)1{k>`}

]
β, (18)

where the first inequality comes from Equation (16). For the second inequality, we

should consider two cases. If k < `, the same argument as in the proof of Theorem
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4.4.1 holds. If k > `, now that we also have u ≥ d, the worst case scenario is when

d = 1
2
k. Again, when k = `, the worst case does not depend on the relative size of u

and d, but is when u+ d = k holds.

When u < d, then it follows from Equation (17) that:

IP {CSEU} ≥ IP

 ⋂
j∈SU

(
⋂
m∈H

CS(ijj)m) ∩ (
⋂

6=j,  6=ij

GSij)


≥ IP

{ ⋂
j∈SU

⋂
m∈H

CS(ijj)m

}
+ IP

 ⋂
j∈SU

⋂
 6=j,  6=ij

GSij

− 1

≥ (1− `uβ) + [1− u(k − 2)β]− 1

= 1− (`+ k − 2)uβ

> 1− k

2
(`+ k − 2)β, (19)

where the third inequality follows from the Bonferroni inequality and Lemma 4.4.1,

and the last inequality follows from u < d and `+ k > 2.

Finally, when k ≥ `, then the lower bounds (18) and (19) are equal. When k < `,

comparing Equations (18) and (19) and using k ≥ 2, the worst case occurs when

u ≥ d. Therefore, the final lower bound for the probability of correct selection is

given as in Equation (18).

It follows that the lower bound of IP{CSEU} is greater than that of IP{CSER}

when the number of systems k is larger than the number of objectives `. As this

formulation relieved the constraint that we should retain all the desirable from the

original (ER) formulation, and as intuitively eliminating a system in SU is easier than

retaining a system in SD when ` < k−1 (see Section 4.4.1), this is not surprising. As

the difference can be expressed as k
2
(k − `)β, the improvement gets more significant

as the number of systems becomes relatively greater than the number of objectives.
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4.4.4 Discussion

As we can see from Sections 4.4.1, 4.4.2, and 4.4.3, the lower bounds on the probability

of correct selection in all formulations depend on the relative magnitude of the number

of systems k and number of objectives `. In Table 4.4.4, the lower bounds of all

formulations when k ≤ ` and k ≥ ` is displayed. Note that the lower bounds are all

1− k(k − 1) when k = `.

Table 9: Lower Bounds on the Probability of Correct Selection
k ≤ ` k ≥ `

ER 1− `(k − 1)β 1− k(k − 1)β
RD 1− k(k − 1)β 1− k(k − 1)β
EU 1− `(k − 1)β 1− k[1

2
(k + `)− 1]β

If k < `, the RD formulation has a higher lower bound than both the ER and

EU formulations, with the difference being (` − k)(k − 1)β. When k ≥ ` holds, the

RD formulation has the same lower bound as ER, and the lower bound of the EU

formulation is the greatest, with the difference being k
2
(k − `)β. These conclusions

are reasonable because no matter what the number of systems is, a system j ∈

SU is eliminated if it is correctly compared with one system, and that requires `

comparisons. By contrast, retaining a system in SD requires k− 1 comparisons (as it

must be correctly compared to every other system in one objective). Thus eliminating

undesirable systems appears to be easier than retaining desirable systems when ` < k,

and vice versa. However, if |` − k| is kept the same and k > 2, the improvement of

the RD formulation is greater than that that of the EU formulation. This is due to

the fact that to be able to correctly eliminate all systems in SU , we need to retain

some systems in SD (see Assumption 2). Finally, the savings achieved by relieving

the appropriate constraint on the definition of correct selection (either retaining the

desirable or eliminating the undesirable depending on the sign of `−k) grows as |`−k|

gets larger.
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In summary, when the number of objectives ` is greater than the number of

systems k, then we can expect faster completion of the PSSP procedure by using the

RD formulation, and otherwise by using the EU formulation.

4.5 Numerical Results

In this section, we provide the results from numerical experiments under various

configurations. Configuration parameters include not only mean, variance, and co-

variance information, which are used in traditional experiments for ranking and se-

lection, but also the formulations described in Section 4.2, the number of systems k,

constraints `, desirable systems d, undesirable systems u, and Pareto optimal systems

z. We focus on the case when k = u + d, as this matches the worst case scenarios

in Theorems 4.4.1, 4.4.2, and 4.4.3. (Andradóttir and Kim [3] also state that the

addition of acceptable systems does not significantly impact the performance or va-

lidity of their R&S procedures.) Note that this leads to z = d. In Section 4.5.1, we

briefly describe the experiment configurations that we use. In Section 4.5.2, results

that provide evidence of validity are presented. In Section 4.5.3, we provide results

that document the performance of the procedure. As the ER formulation involves

the most comprehensive estimation of the Pareto set, we concentrate on the results of

the ER formulation in Section 4.5.2 and 4.5.3. We will look into other formulations

in Section 4.5.4.

4.5.1 Experiment Configurations

In this section, we introduce the configurations that are used to generate the results.

We also discuss the choice of parameters. The performance measures of the systems

and associated distributions are in accordance with Assumptions 1 and 2. We first

specify three mean configurations.

To begin with, we define One Pareto (OP) to be the configuration with only

one system in the Pareto set that dominates all other systems exactly by δm, ∀m.
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This resembles the Difficult Mean (DM) configuration of the single objective R&S

approach as there is a single best system and the difference of the mean of superior

and inferior systems equals their indifference zone, as in slippage conditions. Under

the OP configuration, ∀i ∈ S and ∀m ∈ H, consider the following:

xim =


δm, if i = k,

0, otherwise.

Under the OP configuration, clearly, d = z = 1 and u = k−1, where P = PIZ = {k}.

As the number of systems in the Pareto set also can be a parameter of interest,

we next introduce a different configuration called Many Pareto (MP). Under this

configuration, we also have control over the number z of Pareto optimal systems, as

long as 0 < z ≤ `. For all i ∈ S, m ∈ H, consider the following:

i ≤ z, xim =


δm, if m = i,

0, otherwise;

i > z, xim = −δm.

In this case, each system i is superior in one objective if i ≤ z, and all objectives are

dominated if i > z. As the differences of the performance measures are greater than

or equal to the indifference zone, P = PIZ = {1, . . . , z}. As SA = ∅, d = k − u = z

holds. Note that under the RD formulation, z = min(k, `) is the most difficult case

(that requires the most correct comparisons), and under the EU formulation, z = 1

is such a case.

Finally, we introduce the Parallel Plane (PP) configuration. The name comes

from the fact that the set of systems S forms parallel planes if plotted using their

means. Let K, a, and b be natural numbers and δm = δ, ∀m ∈ H. The parameter

a denotes the number of parallel planes, where the plane Pj is defined as a set of

systems having
∑

m xim = [K − (j − 1)`]δ, for j = 1, 2, . . . , a, and b denotes the

60



number of systems on the lowest plane (with
∑

m xim = [K− (a−1)`]δ). In addition,

each plane Pj has bounds on the values of xim, ∀i ∈ S, m ∈ H. These bounds are set

to ensure that the Pareto optimal set is equal to the top plane P1, k = u + d holds,

and the number of systems in each plane P1, . . . , Pa−1 other than the lowest plane

Pa is constant. Therefore, the number of systems satisfies k = (a − 1)z + b, and b

should be chosen so that b is not greater than the number of systems z in each plane

P1, . . . , Pa−1.

More precisely, let Z+ denote the set of non-negative integers. Then S = P1 ∪

· · · ∪ Pa, where each plane Pj, j = 1, 2, . . . , a− 1, satisfies:

Pj = {(xi1, xi2, . . . , xi`) |
∑
m

xim = [K − (j − 1)`]δ,

(a− j)δ ≤ xim ≤ [K − (a− 1)`+ (a− j)]δ, xim/δ ∈ Z+},

and

Pa ⊆ P ′a = {(xi1, xi2, . . . , xi`)|
∑
m

xim = [K−(a−1)`]δ, 0 ≤ xim ≤ [K−(a−1)`]δ, xim/δ ∈ Z+},

such that |Pa| = b, where we choose the systems in Pa in ascending order of (xi1, xi2, . . . , xi`)

(i.e., (xi11, . . . , xi1`) > (xi21, . . . , xi2`) if ∃m ∈ H such that xi1m′ = xi2m′ for m′ < m

and xi1m > xi2m). To understand the bounds on xim, first consider P ′a. As we do not

want the performance measures to be negative, the lower bound is 0. Then, as the

performance measures of a system in Pa should satisfy
∑

m xim = [K − (a − 1)`]δ,

the means cannot exceed [K − (a− 1)`]δ. Then, as a system in Pj that dominates a

system in Pj+1 has the mean performances in each objective greater by δ under this

configuration, the lower and upper bounds of the upper planes, Pa−1, . . . , P1 should

increase by δ, . . . , (a− 1)δ, respectively.

With all the constraints and bounds on the mean performance measures, the

Pareto optimal set P1 contains the same number of systems as P ′a. Moreover, the
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number of systems in P ′a is equal to the number of possible combinations of ` non-

negative integers that sum up to K − (a− 1)`. This yields

z = |P1| = |P ′a| =
(
K − (a− 1)`+ (`− 1)

`− 1

)
=

[K − (a− 1)`+ (`− 1)]!

[K − (a− 1)`]!(`− 1)!
. (20)

For ease of intuitive understanding, consider the case when a = ` = 2. Then,

z = d = K − 1, and u = b can be chosen such that 0 ≤ u ≤ K − 1. For a realization

of this configuration with K = 6, b = 5, and k = 10, see Figure 9. In this example,

S = P1 ∪ P2, where

P1 = {(xi1, xi2) |
∑
m

xim = 6, 1 ≤ xim ≤ 5, xim ∈ Z+}

= {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)},

P2 = P ′2 = {(xi1, xi2) |
∑
m

xim = 4, 0 ≤ xim ≤ 4, xim ∈ Z+}

= {(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)}.

We can eliminate z−b systems from the right-most point in the lower plane to obtain

a subset P2 of size b. Finally, we can see that z = d = 5, as can be calculated in

Equation (20).

0 1 2 3 4 5

0

2

4

Figure 9: Example PP Configuration with K = 6, k = 10, ` = 2, δ = 1

Under the PP configuration, we can control the number of systems k, while keeping

the number of objectives ` and the number z of systems in the Pareto set constant.
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The OP and MP configurations are motivated by the DM configuration, as mentioned

earlier. Thus, we will focus on these configurations when addressing the validity of the

PSSP procedure. On the other hand, the PP configuration resembles the Monotone

Increasing Mean (MIM) configuration in the R&S literature, and thus shows the

efficiency of the procedure in realistic settings.

In addition to the aforementioned mean configurations, we can also change the

value of the standard deviation. In most of our experiments, the standard deviation

of all objectives equals 1. However, to observe the effects of high variation in some

performance measures, we both consider the case where a number of systems have

higher variability, and also the case where a number of objectives have higher variabil-

ity compared to others. In both cases, higher variability corresponds to a standard

deviation of 5.

In general, we expect that the performance measures for each system i are corre-

lated. However, as was noted in Healey et al. [52] and references therein, studies have

shown that the correlation between the performance measures does not significantly

impact the results. Therefore, we will generate each performance measure in a sys-

tem independently. For now, we also simulate each system independently. However,

using Common Random Numbers (CRN) may have an impact on the performance.

We again direct the interested reader’s attention to [52] where the impact of CRN’s

among systems is measured.

Finally, there are a few parameters that are common in all configurations. For

the constant c, we use c = 1, and for the initial number of observations, we use

n0 = 20. The confidence level α in all following experiments is set to be 5%, and the

indifference zone δm = 1/
√
n0, ∀m ∈ H. Finally, the number of macro replications

is set to ensure that all the half-widths of the probability of correct selection be less

than 0.001 and that the half-widths of the total number of replications be less than

10. As the number of systems k and objectives ` differs in the experiments, those are
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presented with the results in following tables and graphs.

4.5.2 Validity

In this section, we present numerical results obtained using PSSP in the ER formu-

lation, mainly focusing on providing supporting results for validity. In the following,

PCS denotes the probability of correct selection, REP stands for the average number

of observations per system before stopping the procedure, and COMP denotes the

number of correct comparisons required to achieve correct selection, as derived in the

proofs of Theorems 4.4.1, 4.4.2, and 4.4.3. In standard R&S, COMP is generally k−1,

as it suffices to compare the best system k with all other systems correctly. However,

in the OP configuration (see Table 10), for example, when k = 2 and ` = 3, then

for correct selection, comparison in each objective has to conclude that system 2 is

superior, thus requiring 3 correct comparison. On the other hand, if k = 3 and ` = 2,

then system 3 has to be dominant in all objectives against systems 1 and 2, thus

requiring 4 correct comparisons. Assuming SA = ∅ (as in the mean configurations

we are using), we can see that the number of correct comparison required for the ER

formulation satisfies:

COMP = z(k − 1) + (k − z)(`− 1) = k(z − 1) + (k − z)`. (21)

This implies that the PSSP is likely to be more conservative than standard R&S

for the same number of systems. While standard R&S is conservative only in the

sense that the best system k is guaranteed to eliminate all other systems in the

slippage condition, the fact that we do not know z before the simulation implies that

we must also consider the worst case value of z, leading to additional discrepancy

between what we can guarantee (in calculating the lower bounds) and what actually

is required. Also, COMP increases a lot faster with the number of systems k than it

does in standard R&S, and thus our experiments focus on smaller numbers of systems

when compared to recent works on R&S.
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In Table 10, simulation results under the OP configuration are shown. All PCSs

are greater than 0.95, which is the confidence level, thus supporting the validity of

the procedure. As we can see from the PCS in the upper right triangle, when k ≤ `,

then the PCS does not depend significantly on the values of k and `. This is due to

the relationship between COMP and the actual lower bound we use to calculate the

parameter β. In particular, when k ≤ `, then the lower bound in Theorem 4.4.1 is

1 − `(k − 1)β, meaning the error probabilities are allocated for `(k − 1) (= COMP)

comparisons. On the other hand, when k > `, we can observe that the procedure

gets less conservative as the number of objectives ` increases for a fixed number of

systems k. This is because COMP increases as ` increases, but the lower bound,

which is 1 − k(k − 1)β does not change with `. Finally, for a fixed `, then the PCS

increases as k increases. This is not surprising as when k > `, the lower bound for the

ER formulation is 1− k(k− 1)β, which increases faster with k than COMP, which is

linear in k.

Table 10: Simulation Results under OP Configuration
`

k 2 3 5 10

2
PCS 0.955 0.956 0.956 0.955
REP 122.0 157.0 207.5 289.5
COMP 2 3 5 10

3
PCS 0.971 0.957 0.956 0.956
REP 181.3 204.0 263.7 352.0
COMP 4 6 10 20

5
PCS 0.983 0.975 0.960 0.960
REP 253.6 283.8 319.6 414.4
COMP 8 12 20 40

10
PCS 0.992 0.987 0.979 0.959
REP 341.1 378.3 422.1 478.1
COMP 18 27 45 90

In addition to k and `, the impact of the number of systems z in the Pareto set

is also of interest. In Table 11, simulation results under the MP configuration are

shown to illustrate the impact of z. Although the total number of correct comparison

is the same as in Equation (21), under the MP configuration, we should consider
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two different comparisons, as there are some mean performance measures that are

different by 2δ. In COMP of Table 11, we let f denote a “difficult” comparison

(where the difference is δ), and e denote an “easy” comparison (where the difference

is 2δ). For example, if k = ` = 3 and z = 2, to retain a Pareto optimal system

correctly, we need one easy comparison (against the system not in the Pareto optimal

set) and one difficult comparison to be done correctly. Then, the system not in P

requires two additional difficult comparisons. That leads to a total of 2(e + f) + 2f

comparisons from the two systems in P and one system not in P . As we considered the

dependency of the PCS on k and ` in Table 10, we fix k = ` in the MP configuration to

concentrate on the parameter z that we have not yet examined. In Table 11, we have

k = ` provided in the first row, and show results from different values of 1 ≤ z ≤ `

along the column.

Table 11 also supports the validity of PSSP, as all the PCS’s are greater than

0.95. In this table, we can discover two major causes that impact the PCS. Note

that under the MP configuration, there are some mean performance measures that

are different by 2δ. Therefore, comparing the diagonal with k = ` in Table 10 and

the first row of Table 11 (where z = 1 as in the OP configuration), we can see that

the MP configuration yields higher PCS. This implies that the PCS is larger when

some differences of performance measures are greater than the indifference zone, as

expected. Secondly, for a fixed k and `, the PCS tends to be larger when the number

of the systems in Pareto optimal z is not extreme (i.e., 1 < z < k = `), especially

when z is not extremely small. This is very obvious when we compare the cases when

z = 1 and z = 3 when k = ` = 4, where the COMPs are the same, but the PCS’s are

significantly different. Considering the probability of incorrect selection helps with

understanding this behavior. When z = 1, there is only one system in the Pareto set,

and hence, just one wrong comparison with the only system in P can result in an

incorrect selection of an undesirable system. However, when z = 2, it can be either
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system 1 or 2 that eliminates the undesirable systems. Similarly, when k = z = `,

the only way to achieve correct selection is not to eliminate any system, and hence

one wrong comparison (in objective i for any system i) will likely lead to an incorrect

selection. Thus, the PCS eventually starts decreasing when z increases to k.

Table 11: Simulation Results under MP Configuration
z k = ` 2 3 4 5

1
PCS 0.976 0.972 0.967 0.966
REP 102 187.3 249.5 299.2
COMP e+ f 2e+ 4f 3e+ 9f 4e+ 16f

2
PCS 0.956 0.992 0.997 0.998
REP 122 174.3 224.25 268.4
COMP 2f 2e+ 4f 4e+ 8f 6e+ 14f

3
PCS 0.978 0.994 0.998
REP 212 236.75 267.8
COMP 6f 3e+ 9f 6e+ 14f

4
PCS 0.989 0.997
REP 276.25 288.4
COMP 12f 4e+ 16f

5
PCS 0.994
REP 325.4
COMP 20f

4.5.3 Performance

In this section, we provide results that show the impact on the performance of PSSP

of the number of systems k, number of objectives `, number of the Pareto optimal

systems z, number of systems with higher variability, and number of objectives with

higher variability.

In Table 10 from the previous section, it is easy to see that the average number

of observations REP increases both in k and `, with more significant impact from

k. Also, Table 11 shows that the REP increases as k and ` increase. However, the

impact of z is not very obvious. Comparing the two rows of the first column, REP

increases with the difficulty of COMP. However, comparing the case when k = ` = 4,

z = 1 with k = ` = 4, z = 3, where the COMPs are equal, suggests that the number

of possible paths that leads to correct selection also plays a role. That is, for z = 1,

the only possible (correct) elimination is when all the other systems are compared
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correctly with system k. However, for z = 3, an undesirable system can be eliminated

by any of the three systems in the Pareto set.

In the following, we isolate the influence of the number of systems k from the

number of objectives `, and see the change in performance with respect to k and `

separately. To begin with, we use the PP configuration, where we can fix ` and z while

controlling the number of systems k. As in the example in Figure 9, let z = 5, ` = 2,

and k varies from 5 to 10. Under this setting, the average number of replications REP

is illustrated in Figure 10. As shown in the graph, the REP increases as k grows, as

long as the other parameters are fixed, but the rate of the growth decreases. This is

intuitive as the additional decision to be made when the number of systems increases

from k − 1 to k, is the elimination of one system, and it may be the case that the

number of observations collected for k − 1 systems are already large enough for the

additional decision.
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Figure 10: Effects of the Number of Systems

In Figure 11, we look at the impacts of the number of objectives ` on performance.

To keep the number of systems k, and the number of systems z in the Pareto optimal

set constant, we use the OP configuration with k = 2 and ` varying from 5 to 10.

In this case, REP increases almost linearly as ` grows, with other parameters fixed.

This is reasonable, as the lower bound that decides β decreases linearly with `, as
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can be seen in Theorem 4.4.1, and k ≤ ` is constant. However, the rate of increase

in Figure 11 is smaller than that of Figure 10. That is, the impact of the number of

systems is greater than that of the number of objectives. Again, considering COMP

in Table 10, this is not surprising as the decrease of the lower bound for fixed ` ≤ k

is super-linear when k increases.
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Figure 11: Effects of the Number of Objectives

Finally, we provide the results with different variances of performance measures.

Consider the OP configuration with k = ` = 5. We assume there are low variances

which are set to be 1, and high variances which are set to be 25. In Figure 12,

we consider the case when the number of systems with high variances changes. All

objectives in a system have the same variance, and system k will be the first to

have the higher variance. That is, when number of systems with high variance is 1,

then that system is system k (which is the Pareto optimal system). In this case, we

observe that REP increases significantly as soon as a system with high variances is

introduced. The rate of increase in REP decreases as the number of systems increases.

This is because, for correct selection, all the systems should correctly compare with

system k and be eliminated under this configuration. Therefore, introducing the

higher variances to system k ∈ P causes the acute increase in the number of required

observations.
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Figure 12: Effects of Number of Systems with High Variances, Starting from System
k

Thus, the next experiment uses the same configuration with the same parameters

as in Figure 12, namely the OP configuration with k = ` = 5, but we now increase

the variances of the performance measures of system k ∈ P last. That is, only when

all five systems have high variance, will system k have the higher variance. Figure

13 shows the change in REP relative to the number of systems with high variance.

Now, we can see that the rate of increase is the most significant from 4 to 5, when the

higher variance is introduced to the system that dominates all other systems, which

is consistent with Figure 12.

In Figure 14, we consider the case where the number of objectives with higher

variances in each system differs under the OP configuration with k = ` = 5. In

this graph, we can see the increase in REP as the number of objectives with higher

variances increases. Similarly with Figure 12, REP increases as the number of ob-

jectives with higher variance increases. The rate of increase decreases, however, as

the additional observations required to correctly compare the first objectives with

higher variances may already have been sufficient to correctly compare an additional

objective with higher variances. This also explains why the rate of increase decreases

in Figure 13 until the system in the Pareto set has higher variances.
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Figure 13: Effects of Number of Systems with High Variances, Starting from System
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Figure 14: Effects of Number of Objectives with High Variances

4.5.4 Comparing Different Formulations

In Sections 4.5.2 and 4.5.3, we focused on the ER formulation. In this section, we

would like to see the impact of different formulations, ER, RD, and EU. We introduce

REPk, which is the total number of observations over all the systems. That isREPk =

k × REP. This will give a sense of how the number of total observations increases

as k increases, as in the standard R&S literature, while we used the average number

in the previous sections to be consistent in the comparison for different k and `.

(For example, obtaining one observation of ` = 1 performance measure for k systems
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increases REPk by k, whereas observing ` performance measures of k = 1 system

increases REPk by 1; in both cases REP increases by 1.)

First, we consider the same configuration and settings as in Table 10. That is,

under the OP configuration, we change the number of systems k and number of

objectives ` and look into the result of each formulation. The results are shown in

Table 12. Clearly, validity of the procedure is maintained under all formulations as

all the PCS’s are greater than 0.95.

Note that while the PCS of the ER and EU formulations are similar, that of the

RD formulation is considerably more conservative. This is due to the fact that this

is a relatively “easy” configuration for RD, as there is only one system to retain and

that system strictly dominates all other systems in all objectives. This results in the

high PCS, but not necessarily lower REPk for RD. Moreover, the performance of

each formulation is as expected from their lower bounds in the validity proofs. That

is, when k > `, then EU outperforms other two formulations with less conservative

PCS and smaller REPk. Similarly, when k < `, then RD performs better than other

two. As expected from the discussion in Section 4.4.4, the relative savings in REPk

is greater for RD than for EU.

Table 12: OP Configuration under Different Formulations

k
`
2 3 5 10
ER RD EU ER RD EU ER RD EU ER RD EU

2
PCS 0.955 0.999 0.956 0.956 1.000 0.955 0.956 1.000 0.955 0.955 1.000 0.956
REPk 244 244 244 314 272 314 415 303 415 569 331 570

3
PCS 0.971 1.000 0.963 0.957 1.000 0.958 0.956 1.000 0.956 0.956 1.000 0.957
REPk 554 555 509 618 618 617 791 695 791 1056 794 1056

5
PCS 0.983 1.000 0.974 0.975 1.000 0.968 0.960 1.000 0.960 0.960 1.000 0.960
REPk 1268 1268 1137 1419 1419 1336 1598 1598 1598 2072 1809 2072

10
PCS 0.992 1.000 0.986 0.987 1.000 0.980 0.979 1.000 0.971 0.959 1.000 0.957
REPk 3411 3416 3032 3783 3787 3442 4221 4224 3976 4781 4779 4782

We also consider the MP configuration, where the number of Pareto optimal

systems z varies, as in Table 11. In Table 13, REPk is almost identical over the

formulations when k = `, as the lower bounds in Theorems 4.4.1, 4.4.2, and 4.4.3

are all identical in such case. However, under the MP configuration, we can see that,
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when z increases, the procedure becomes less conservative for the RD formulation

compared to Table 12 as now multiple systems need to be retained to make a correct

selection for the RD formulation. By contrast, as z increases, the EU formulation

becomes more conservative. Note that when k = z, any outcome does not violate the

constraints for CSEU , as there are no system to eliminate.

Table 13: MP Configuration under Different Formulations

z k = `
2 3 4 5
ER RD EU ER RD EU ER RD EU ER RD EU

1
PCS 0.976 1.000 0.977 0.972 1.000 0.970 0.967 1.000 0.968 0.966 1.000 0.96512
REPk 204 204 204 562 561 560 998 998 998 1496 1496 1497

2
PCS 0.956 0.955 1.000 0.992 0.993 0.999 0.997 0.998 0.999 0.998 0.999 0.99898
REPk 244 245 245 523 522 524 897 896 896 1342 1342 1342

3
PCS 0.978 0.978 1.000 0.994 0.994 1.000 0.998 0.998 0.99995
REPk 636 637 636 947 947 947 1339 1340 1339

4
PCS 0.989 0.989 1.000 0.997 0.996 1.000
REPk 1105 1105 1104 1444 1445 1444

5
PCS 0.994 0.994 1.000
REPk 1626 1627 1627

From Tables 12 and 13, we can see that our procedure always yields the probability

of correct selection to be greater than or equal to 1 − α (set to be 0.95 throughout

the experiments), regardless of the problem formulation. We can see a clear tendency

of number of required replications increasing when the number of systems k, or the

number of objectives `, increases. The effect is more pronounced when the number

of systems increases. Finally, as expected from the lower bound of the probability of

correct selection in the validity proofs of each formulation, RD performs best when

k < `, and EU is best when k > `.

4.6 Conclusion

In this chapter, we provided the PSSP procedure that estimates a Pareto set using

Ranking and Selection when there are multiple objectives. We introduced three dif-

ferent formulations, namely Eliminate the undesirable and Retain the desirable (ER),

Retain the Desirable (RD), and Eliminate the Undesirable (EU) depending on the

desired properties of the final set produced by the procedure, and proved validity of

our procedure for each formulation. Finally, we introduce three mean configurations

73



that are motivated by the Difficult Mean and Monotone Increasing Mean configura-

tions that are widely used in the Ranking and Selection literature. The experimental

results under all formulations and configurations show that the procedure estimates

the Pareto set at the desired level of confidence, supporting validity of the procedure.

The probability of correct selection shows that the selection gets more conservative,

as the discrepancy between the actual and worst-case numbers of required correct

comparisons becomes larger. Also, the results display the impact of several factors,

such as the number of systems k, number of objectives `, variability of performance

measures, and problem formulation on the performance of PSSP. In particular, the

performance is better for smaller k and `, but is more impacted by the number of

systems k. Similarly, the performance is better when the performance measures do

not have high variance. Finally, the Retain the Desirable (RD) formulation performs

better than other two formulations when k < `, and the Eliminate Undesirable (EU)

formulation improves performance when k > `.
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CHAPTER V

DIFFICULT INPUT ANALYSIS PROBLEMS:

EXPERIMENTS USING THE M/G/1 QUEUE

5.1 Introduction

In this chapter, we consider the simulation input analysis problem of fitting a dis-

tribution to data. We assume that the problem is difficult in that the underlying

distribution is not a known theoretical distribution. In such cases, an empirical dis-

tribution may be a good choice. However, one obvious restriction of an empirical

distribution is that in its nature, the support is bounded, while that of many existing

distributions are not. Thus, an empirical distribution can be a poor estimate when

the underlying distribution is unbounded.

For a remedy in such case, Bratley, Fox, and Schrage [15] suggest to use a quasi-

empirical distribution. In particular, when there is a reason to believe that the support

of an underlying distribution is non-negative (for example, waiting time in system,

failure rate, positive observations, etc.), they suggest to fit an empirical distribution

to most of the given data, and to fit a shifted exponential for a few extreme data on

the right tail. They are aware of the fact that this is not a rigorous approach, but

claim that it is an easy-to-use and often rational choice. The use of the exponential

tail is supported by the work of Weissman [95], stating that the successive spacings

between the k largest observations become asymptotically exponential for a wide class

of distributions, such as the exponential, Weibull, normal, lognormal, and logistic

distributions.

However, the importance of heavy-tails in real-life data has emerged and the

motivation of our work starts from the fact that the Pareto distribution has gained
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popularity upon increasing necessity of incorporating heavy-tail distributions, but

that it is not one of those distributions that can be approximated by an exponential

tail as in Weissman [95]. Therefore, our interest lies in identifying an approach that

can be applied in more generality, with reasonable ease, so that it can be used for

simulation in practice. For this purpose, we examine the impact of a few different

approaches on the M/G/1 simulation. We choose this model as it is a simple model

that is representative of the models used in the discrete-event simulation. More

specifically, we are interested in the total waiting time in the queue in steady-state,

W , which has the known mean from the Pollaczek-Khinchine formula:

IE[W ] =
ρ+ λµVar(S)

2(µ− λ)
, (22)

where S is the service time random variable, λ is the reciprocal of the mean of the

interarrival time, µ is the service rate, and ρ = λ
µ

is the system utilization. We

assume that we do not know the service time distribution but have a sample data set.

We are particularly interested in tail probabilities for W , as Sigman [87] stated that

when the service time distribution satisfies a certain set of assumptions, then the tail

probabilities of W can be approximated by:

IP{W > x} ∼ ρ

1− ρ
IP{Se > x},

where Se is the integrated tail of the service time random variable. The Cumulative

Distribution Function (CDF) of the integrated tail distribution, Fe(x), of a random

variable X with CDF F (x) for x > 0 is:

Fe(x) =
1

IE[X]

∫ x

0

F̄ (y)dy,

where F (0) = 0, and F̄ (y) = 1 − F (y), ∀y. Therefore, we believe that properly

estimating the tail distribution of the service time distribution is crucial when sim-

ulating to estimate the tail probabilities of the waiting time. Therefore, to correctly
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simulate the mean and tail probabilities of the waiting time, the first and second mo-

ments and the tail probabilities of the service time distribution should be estimated

correctly. Note that most of the aforementioned studies in M/G/1 with a heavy-tail

distribution concentrate on the case when the tails are extremely heavy, so that the

second moment of the distribution is infinite. Therefore, we would like to see how

approaches that take the Pareto distribution into consideration performs, when we

know the system is stable and the waiting time is finite.

In Section 5.2, we introduce some of the previously studied approaches that we

adopt, along with the modifications we introduce. In Section 5.3, we show the effects

of these choices on a simulation through the numerical experiments. Finally we

present our suggested approach and conclusions in Section 5.4. Additional numerical

results for this chapter are provided in Appendix A.

5.2 Candidate Approaches

Our purpose in this chapter is to investigate different approaches to estimate an un-

known input distribution and suggest one to use when a certain amount of sample

data is given, but either we have little knowledge on its distribution or the distribution

does not fit known theoretical distributions. When we know the form of the under-

lying distribution a priori, then the input analysis problem boils down to estimating

the parameters of the distribution. Also, when a theoretical distribution under con-

sideration is a good fit for the data, then after estimating the required parameters

for the set of competing theoretical distributions, each distribution can be evaluated

and ranked using some measures of goodness-of-fit. Standard simulation textbooks

such as Law and Kelton [67] are good sources of information on this subject. By

contrast, we look into cases that are more difficult because theoretical distributions

do not provide a good fit to the data.

Note that we consider non-negative observations throughout the chapter. This will
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not be limiting the use of the suggested approach, as if the distribution is unbounded

in both directions, then we can separate the data that are negative and positive. We

can take absolute values of negative observations and use the same approach. We

consider three different categories of distributions, namely, bounded, light-tailed, and

heavy-tailed. When the original distribution is bounded, then as mentioned earlier in

Section 5.1, an empirical distribution may be a good fit in most cases. However, when

the original distribution is unlikely to be bounded, then there may be cases where

we should consider other possibilities that incorporate the fact that the underlying

distribution may have an unbounded right tail.

In the following sections, we consider multiple candidate approaches that may be

used in this case, and provide some technical details. To begin with, in Section 5.2.1,

we introduce the mixture of empirical and exponential distributions adapted from

Bratley et al. [15]. In Section 5.2.2, a mixture of empirical and Pareto distributions is

introduced, and in Section 5.2.3, we modify the algorithm in Section 5.2.1 by using a

different approach to decide the cut-off point between the empirical and exponential

distributions. In Section 5.2.4, we briefly state an algorithm that resembles that of

Section 5.2.1, but with the Pareto tail instead of an exponential tail. In Section 5.2.5, a

hypothesis test for rejecting the Pareto tail when applicable is stated, and in Section

5.2.6, an approach to compare between two tail distributions, the exponential and

Pareto, is described. Finally, in Section 5.2.7, we suggest several heuristic approaches.

5.2.1 Classic Quasi-empirical Distribution with Exponential Tails

When we have no insight on distribution, and an empirical distribution is suspected

to be a poor fit due to the presence of a right tail, Bratley, Fox, and Schrage [15]

suggest to use a quasi-empirical distribution, which is a mixed empirical and expo-

nential distribution. Let X1, X2, . . . , Xn be the independent observations from the

distribution to estimate, and let X[i], i = 1, 2, . . . , n, denote the ordered statistics of
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Xi, i = 1, 2, . . . , n, in non-decreasing order. Bratley et al. [15] suggest to pick a value

k ∈ {1, 2, 3, 4, 5} that best matches the variance of the sample data, and to fit an in-

terpolated piece-wise linear CDF to the first n−k data points X[i], i = 1, 2, . . . , n−k,

and a shifted exponential to the right of X[n−k]. The idea is that when the sample size

n goes to infinity, there exists a wide range of distributions that have the successive

spacings between the k largest observations become asymptotically exponential, as

stated in Weissman [95]. Although Bratley et al. [15] chose to use a piece-wise linear

CDF for the empirical part of the data in their original approach, for simplicity, we

used a piece-wise constant CDF throughout. Also, in the experiments, instead of

choosing k ∈ {1, 2, 3, 4, 5} by matching the second moment, we use k = 5. Note

that Bratley et al. [15] appear to be considering the case when the sample size n is

relatively small (for example, 25). In our experiments, the number of observations

is significantly larger than 25, and hence even the largest suggested value, k = 5 is

significantly small compared to the number of observations. Therefore, in this ap-

proach, we will focus on experimenting with the effectiveness of using a small number

of data points to fit a tail.

Assume that F (0) = 0 and define X[0] = 0. Then the CDF for this quasi-empirical

distribution follows:

F (x) =


i

n
, X[i] ≤ x < X[i+1], i = 0, 1, . . . , n− k − 1,

1− k

n
exp(−λ(x−X[n−k])), x ≥ X[n−k],

(23)

where

λ =
k∑n

i=n−k+1(X[i] −X[n−k])
. (24)

We can see that the expected value of the random variable with this CDF matches

the average estimated from the samples X1, X2, . . . , Xn.

Let due denote the smallest integer larger than u. To generate independent and

identically distributed random variables Y1, Y2, . . . with this distribution using inverse
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transform when we have the sample data X1, X2, . . . , Xn, follow these steps:

1. Generate independent pseudo-random numbers U1, U2, . . ..

2. If Ui ≤ n−k
n

, then Yi ← X[dnUie],

else Yi ← X[n−k] − ln[n(1−Ui)/k]
λ

.

5.2.2 New Quasi-empirical Distribution with Pareto Tails

While an exponential tail may be a good resort for a light-tailed distribution, it is

hard to believe that a heavy-tailed distribution also can be approximated well with

an exponential tail, as mentioned in Section 5.1. With the growing interest in and

documented presence of heavy-tailed distributions, we would like to explore the effects

of using Pareto distributions (or power-law distributions) for the right tail.

There are two parameters that define the Pareto distribution, namely the lower

bound, xmin, from which the Pareto distribution can be fit and the tail index α. The

following is a widely accepted representation of the CDF of the Pareto distribution:

F (x) = 1−
(

x

xmin

)1−α

, (25)

for all x ≥ xmin, α > 1. To fit this distribution with given data, we adopt an

algorithm from Clauset et al. [29] as it is a recent and widely accepted framework

that is generally applicable when sample data is given. However, as can be seen

from Equation (22), the mean waiting time in an M/G/1 queue is infinite when the

service time distribution has an infinite variance. Therefore, when we consider the

Pareto distribution, we concentrate on cases where α > 3, so that IE[W ] is well

defined (see Equation (22)), while the focus in [29] is on 2 < α < 3. For analysis

and simulation studies considering cases where the variances are not finite, see the

references [1, 5, 14, 36] introduced in Section 5.1.

We now describe the approach in Clauset et al. [29]. First, their tail index α uses

a Maximum Likelihood Estimator (MLE) that is equivalent to the traditional Hill’s
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estimator, which was introduced in [55]. Assuming that the data is drawn from a

Pareto distribution for x ≥ xmin, the MLE for this tail index follows:

α̂ = 1 +m

[
m∑
i=1

ln

(
X ′i
xmin

)]−1

, (26)

where X ′i, i = 1, 2, . . . ,m, are the observed values that are greater than or equal to

the lower bound xmin. In practice, it is very rare to have the entire data obey a power

law, and hence the choice of xmin is also essential. Therefore, before calculating the

estimate of the tail index, we should first estimate xmin. One can visually pick xmin by

observing a few different plots, but we would like to consider a more objective method

that is presented in Clauset et al. [29] and implemented in Gillespie [42]. The idea

of this approach is to choose the value of x̂min among all observations X1, . . . , Xn to

minimize the discrepancy of the fitted tail distribution and the empirical distribution

of the data above x̂min. If x̂min is estimated to be smaller than the actual cutoff,

then the estimator of the tail index α will also include the data that are not actually

heavy-tailed. On the other hand, if x̂min is larger than the actual xmin, then a number

of observations will be lost.

Among measures that quantify the difference between two distributions, one of

the most commonly used ones for non-normal data is the Kolmogorov-Smirnov (KS)

statistic. This is the maximum distance between the CDF of the data and the fitted

model, which Gillespie [42] estimates as follows:

D(xmin) = max
Xi≥xmin

|S(Xi)− Pxmin(Xi)|, (27)

where S(x) is the piecewise-constant CDF of the empirical sample data to fit (i.e., the

data points Xi with Xi ≥ xmin), and Pxmin(x) is that of the fitted Pareto distribution

as in Equation (25) with α as in Equation (26). Then the estimate for xmin is a data

point from a sample data set that satisfies:

x̂min ∈ arg min
xmin∈{X1,...,Xn}

D(xmin), (28)
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see Gillespie [42]. Once xmin is properly chosen, we can use the estimate of tail index

obtained from Equation (26), and we have a fitted Pareto distribution.

Let k ∈ {0, . . . , n − 1} be such that x̂min = X[n−k]. Then m = k + 1 and α can

be estimated as in Equation (26) with {X ′1, . . . , X ′m} = {X[n−k], . . . , X[n]}. Then the

CDF of the random variable with this mixture distribution follows:

F (x) =


i

n
, X[i] ≤ x < X[i+1], i = 0, 1, . . . , n− k − 1,

1− k

n

(
x

X[n−k]

)1−α̂

, x ≥ X[n−k].

(29)

Then, the generation of independent and identically distributed random vari-

ables Y1, Y2, . . . with this distribution from the sample data X1, X2, . . . , Xn, using

the inverse-transform method can be done as follows:

1. Generate independent pseudo-random numbers U1, U2, . . ..

2. If Ui ≤ n−k
n

, then Yi ← X[dnUie],

else Yi ← X[n−k][
n(1−Ui)

k
]

1
1−α̂ .

Other than the most obvious deviation from the approach of Bratley et al. [15]

that we consider the Pareto distribution, not the exponential distribution, for the

right tail, the estimation of the cutoff point differs. In the suggested approach in this

section (from [29, 42]), xmin can be any data point Xi, i = 1, . . . , n, and hence k can

be any integer from 0 to n−1, whereas the approach in [15] chooses k ∈ {1, 2, 3, 4, 5}.

This may be due to the fact that Bratley et al. [15] seem to focus on the case when

n is small, but it is interesting that such a small number as 5 can be used to fit a tail

distribution.

5.2.3 New Quasi-empirical Distribution with Exponential Tail

As stated in Sections 5.2.1 and 5.2.2, Bratley et al. [15] restrict the number of ex-

treme values k to be within a small range of numbers. With possibilities that we may

often be in a situation with more abundant data than was the case back then, we
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experiment with the estimation of xmin without such restriction, when the underlying

distribution may be light-tailed. This approach uses a mix of empirical and exponen-

tial distributions, as in Section 5.2.1, but uses the KS statistic to choose the cutoff

point as in Section 5.2.2. More specifically, we choose x̂min as in Equation (28), where

Pxmin(x) in Equation (27) is now a CDF of a fitted shifted exponential distribution.

Estimation of the parameter λ of this exponential distribution stays as in Equation

(24), except that we now use xmin = X[n−k], where k ∈ {0, 1, . . . , n − 1}. The CDF

of the resulting (mixed) random variable is the same as in Equation (23) with the

aforementioned modifications in k. Generation of the random variables can also be

done similarly as in Section 5.2.1.

5.2.4 Quasi-empirical Distribution with Pareto Tails and k = 5

In this section, we consider fitting the Pareto distribution to a fixed number of extreme

values (without estimating xmin). Again, as in Section 5.2.1, we would like to see the

impact of estimating the tail using a small number k of extreme data points, and

hence used k = 5. In that case, the n− k smallest data points will be used to fit the

empirical distribution, and a Pareto distribution will be fitted to the right of X[n−k].

Let xmin = X[n−k]; then the tail index α can be obtained as in Equation (26) where

m = k+1 and X ′1, . . . , X
′
m are substituted with X[n−k], . . . , X[n]. Also, the CDF of this

quasi-empirical distribution can be written as in Equation (29), and the generation

of the random variables done as in Section 5.2.2.

5.2.5 Hypothesis testing for Heavy-tailed Distribution

Now that we have approaches to fit both light-tailed and heavy-tailed distributions

to a data set, we need to choose which provides a better fit. Again, a graph can be

used for visual decision, but we will concentrate on more quantitative approaches. In

this section, we state one of the approaches in Clauset et al. [29] in testing whether

the data is actually heavy-tailed (the other one is provided in Section 5.2.6), which
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is to perform a hypothesis test on whether the underlying distribution is actually

heavy-tailed. That is, given a data set, X1, . . . , Xn, and the estimated quasi-empirical

distribution with Pareto tail, we test the hypothesis that the estimated distribution is

the actual underlying distribution. This can be done with a goodness-of-fit test using

the KS statistic. This test first generates a large number of synthetic data sets of size

n drawn from the combined Pareto distribution with the estimated parameters and

the empirical distribution for values x < xmin. Then, for each synthetic data set, we

estimate the parameters α and x̂min for the Pareto distribution using Equations (26)

and (28), along with the KS statistic as in Equation (27). Then the p-value generated

from this test is the probability that the synthetic data sets have larger value of the

KS statistic compared to the original sample. Roughly speaking, it is the probability

that if we apply the same distribution-fitting process to a synthetic data set of the

same size from the estimated distribution, the resulting value of the KS statistic will

be larger than that observed for the original data set. Thus, a significantly small

number indicates that the data appears to be far from the combined empirical and

Pareto distribution.

Clauset et al. [29] state that the accuracy of the p-value is known to be approxi-

mately (4s)−0.5, where s is the number of synthetic sample sets. That is, for accuracy

of the p-value to the second digit, at least 2500 sample sets should be generated,

which yields an accuracy of 0.01. In the experiment, we set s = 1000, resulting in

an accuracy of 0.015. The suggested threshold of p-value in [29] is 0.1, which can be

interpreted as the probability of rejecting the null hypothesis when the null hypoth-

esis is true. However, we would also like to consider being conservative in selecting

the heavy Pareto tail as the true distribution. Thus in Section 5.3, we also experi-

ment with p-values of 0.5 and 0.9, and observe the effects of the different thresholds.

Obviously, as the p-value gets larger, the rejection of the Pareto tail becomes more

frequent.

84



5.2.6 Comparison between Tail Distributions

Another approach from [29] in deciding whether the tail is heavy-tailed is to directly

compare fitted light-tailed and heavy-tailed distributions. In doing so, Clauset et al.

[29] use the method proposed by Vuong [94]. This approach compares the likelihood

ratio of two competing distributions, and suggests which distribution is a better fit

to a given data set, if applicable.

More specifically, the likelihood of a set of independent observations X ′1, . . . , X
′
m,

of extreme values that are used to fit a tail distribution, can be written as

Lj =
m∏
i=1

pj(X
′
i),

where pj(x) is the Probability Density Function (PDF) of distribution j = 1, 2. Then,

the log likelihood ratio R of the two distributions follows:

R = ln

(
L1

L2

)
.

Therefore, R > 0 implies a possibility that distribution 1 is a better fit, and R <

0 supports better goodness of fit of distribution 2. As R is essentially a sum of

independent terms, from the Central Limit Theorem, R can be approximated by a

normal distribution. Then, the p-value of this test is the probability that the absolute

value of this normal random variable is larger than the observed |R|. Therefore, if

the p-value is small, then it is likely that one distribution is a superior fit compared

to the other, but when not, it is difficult to conclude which distribution is a better

fit.

In comparing the two tail distributions in our approach, we would compare an

exponential tail against a Pareto tail. However, this approach assumes that both

distributions have the same number of data points, thus requiring xmin to be equal

in both distributions. In the numerical experiments in Section 5.3, we will see the

impact of this test applied with xmin estimated for both the exponential and Pareto

distributions.
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5.2.7 Other Approaches

In addition to the approaches considered in the previous sections, there are several

heuristic approaches to consider. For example, the KS statistics for both the fitted

Pareto and exponential tails are known, as these values are calculated to determine

the best xmin in Sections 5.2.2 and 5.2.3, respectively. Therefore, we can directly

compare the magnitude of the two. That is, if the KS statistic for the exponential

distribution is larger, then we choose the Pareto distribution for the right tail, and

vice versa. The approach in Section 5.2.5 also utilizes the KS statistic of the fitted

Pareto distribution to test if we can reject the Pareto distribution. The difference

in this approach is that we now compare the KS statistic of the Pareto distribution

with that of the exponential distribution, without generating extra sample sets or

calculating extra statistics, while in the previous approach the comparison was against

the synthetic data sets.

There may be other heuristic approaches that can be used depending on the

nature of the simulation of interest. In this chapter, as our focus is on simulating

an M/G/1 queueing system, we may have some additional knowledge, such as the

stability of the system, which will restrict the values of the mean interarrival and

service times. This implies that we can impose some bounds on the parameters that

we are estimating to ensure such characteristics. The same is true when it is known

that certain moments of the performance measures of interest are finite, as we can

see from the fact that IE[W ] is finite only when Var{S} is finite (see Equation (22)).

Finally, in the experiments in Section 5.3, we will explore the possibility of combining

the aforementioned approaches in choosing one distribution over the other.

5.3 Numerical Results

We use simulation results for an M/G/1 queueing system to present the effects of the

algorithms described in Section 5.2 in estimating the service time distribution. In
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this model, the interarrival time distribution is exponential, and we assume that it is

known. In that way, we can concentrate on the impact of our approach on estimating

the service time distribution.

In the following experiments, we first generate a sample data set of size n ∈

{100, 500, 1000} from a certain distribution, and apply the approaches considered in

Section 5.2 to fit a distribution to the data. Let A denote an interarrival time random

variable and S a service time random variable. Then, we run an M/G/1 simulation

with the known interarrival distribution, which is the exponential with parameters

that sets the system utilization, ρ = IE[S]/IE[A], as specified in each experiment,

and the fitted and chosen service distribution. The underlying distributions used

to generate the service time data are the exponential, Pareto, uniform, mixture of

uniform and exponential, and mixture of uniform and Pareto distributions. As we are

interested in steady-state performance, we use the batch means approach to estimate

IE[W ] and IP{W > ti}, for i = 1, 2, 3, where W is the mean waiting time in queue

in steady-state. The choice of the thresholds t1, t2, t3 is different in each experiment.

The goal is to study the impact of the input distribution on the tail behavior, but

not as far out in the tail as in rare-event simulation. The values of t1, t2, t3 will be

noted in each experiment. Then, we repeat this process with a new sample set of n

data points N times, where N is the number of macro replications. In this way, we

can obtain statistical validity of each steady-state performance measure, and not be

biased by a single sample set generated for the input distribution.

We simulate the waiting times of the system using Lindley’s equation [73] to

generate the waiting time of the i-th customer, Wi, for i = 1, 2, . . .. More specifically,

when Si is the service time of the i-th customer and Ai is the time between the

arrival of the i-th and (i+1)-th customers, then Wi, for i = 1, 2, . . . can be calculated

through:

Wi+1 = max(0,Wi + Si − Ai),
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where W1 = 0. Then, we truncate the first 1000 observations to remove the initial

bias. The number of batches is 30, where each batch contains 200,000 observations.

Finally, as a measure of accuracy, we use the Mean of Relative Error (MRE) of the

observations from the N macro-replications. Let Zi, i = 1, . . . , N , be the observations

of a performance measure of interest from any approach with a fitted service time

distribution. Similarly, let Yi, i = 1, . . . , N , be the observations simulated with the

true service time distribution. Let ÎE[Y ] = 1
N

∑
i Yi. We use the estimated mean of

each performance measure, as the true values of the tail probabilities for some service

time distributions are not known in closed form. Then the accuracy measure, MRE,

is estimated as follows:

1

N

N∑
i=1

|Zi − ÎE[Y ]|
ÎE[Y ]

. (30)

In each experiment, the approaches we discussed in Section 5.2 are applied and the

results are compared. We now list all the approaches we consider with the notations

of the approaches provided in parentheses:

1. Fitting an exponential distribution to the entire sample set (Exp);

2. Fitting a Pareto distribution to the entire sample set (Par);

3. Fitting an empirical distribution to the entire sample set (Emp);

4. Fitting a “New” quasi-empirical distribution with an exponential tail, as in

Section 5.2.3 (NQEexp);

5. Fitting a “New” quasi-empirical distribution with a Pareto tail, as in Section

5.2.2 (NQEPar);

6. Fitting a “Classic” quasi-empirical distribution with an exponential tail, as in

Section 5.2.1 using k = 5 (CQEexp);

7. Fitting a “Classic” quasi-empirical distribution with a Pareto tail, as in Section

5.2.4 using k = 5 (CQEPar);
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8. Applying hypothesis testing with different p-values (0.1, 0.5, 0.9), as in Section

5.2.5 and using the empirical distribution or “New” quasi-empirical distribution

with the exponential tail when the Pareto tail distribution is rejected (HT empp-value

or HTNQEp-value);

9. Comparing the exponential and Pareto tails for the “New” quasi-empirical dis-

tribution through likelihood ratio using x̂min from the exponential or Pareto

distribution or both (to be conservative in choosing the Pareto), as in Section

5.2.6 (LRexp, LRPar, LRcons – LRcons only chooses the Pareto distribution when

both LRexp and LRPar do);

10. Comparing the KS statistics calculated in Sections 5.2.2 and 5.2.3 (KS);

11. Bounding α below by a bound, e.g., to make a system stable and the second

moment finite. When the bound is violated, an alternative distributions is

used, namely the “New” quasi-empirical distribution Approach 4 or empirical

distribution (BNQE
bound, B

emp
bound);

12. Combining the HT Approach 8 and bounded α Approach 11 (HT + B);

13. Combining the LR Approach 9 and bounded α Approach 11 (LR + B);

14. Combining the KS Approach 10 and bounded α Approach 11 (KS + B).

Before getting into the experiments, we elaborate on Approach 11. The motivation

of imposing the bounds on the tail index is that we know the mean waiting time is

infinite when the tail index is less than or equal to 3 (see Equation (22)). Thus

bounding the tail index below by 3 helps improve performance. However, when the

tail index is larger but extremely close to 3, the resulting M/G/1 queue may be very

volatile. Therefore, when we know that the queueing system we are simulating is

stable and the mean of the waiting time is finite, we consider being more conservative
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in choosing the Pareto tail. Therefore, we implement Approach 11 with both 3 and

4 as the bound.

We now provide additional information about the underlying distributions of the

service times. As we are mostly interested in the tail behavior, we categorize the dis-

tributions into bounded, light-tailed, and heavy-tailed distributions. For the category

of bounded distributions, we use the uniform distribution with range (0, 1), and the

service rate is 1. For this distribution, the traffic intensity ρ = 0.25. For light-tailed

distributions, we use both the exponential and mixture of uniform and exponential

distributions. For the exponential distribution, the traffic intensity ρ ∈ {0.5, 0.75}.

When using the mixture of the uniform and exponential, for a certain probability q,

a uniform random variable is generated, and with probability 1 − q, a shifted expo-

nential random variable is generated. We shift the exponential so that the random

variables from the uniform and shifted exponential do not overlap, but the support

is continuous. We look at q = 0.25, 0.75, and this leads to ρ = 0.475 and ρ = 0.375.

In the following tables, we denote such distribution as q Unif(0,10) + (1− q) Exp(1).

Finally, for heavy-tailed distributions, we use the Pareto distribution and mixture of

uniform and Pareto distributions. For the Pareto distribution, we consider Par(10,

3.5), Par(10, 4), Par(10, 5), and Par(10, 10), where the first parameter is xmin and the

second, α. The traffic intensities of these cases are, 0.75, 0.75, 0.667, and 0.5625, re-

spectively. The mixture of the uniform with range (0, 10) and Pareto with xmin = 10

and α = 4 is constructed similarly as the mixture of the uniform and exponential.

For q = 0.25, 0.75, the traffic intensities are 0.625, 0.375, respectively. The values

of t1, t2, t3 are provided in the tables where the results from each distribution are

displayed.

Finally, each steady-state simulation generates an estimate of the mean IE[W ] with

half-width less than 1% of the estimated IE[W ] for most choices of the underlying and

fitted distributions other than the Pareto distribution. However, there are two main
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exceptions. The first is when the estimated mean service time is significantly larger

than the actual value, leading to a traffic intensity close to 1. The second involves the

Pareto distribution when the actual or estimated tail index α is small. This is because

the variance of the Pareto distribution increases sharply as α decreases, impacting

the variance of the waiting time. All the half-widths of the tail probabilities are less

than 10−4. These estimates are then used to compute the MRE as in Equation (30).

The number of macro replications N = 108 for the tables provided in Appendix A,

and N = 216 for those provided in Section 5.3 (Tables 14, 15, 16, 18, and 19).

In the following sections, we compare the approaches described in Section 5.2, as

a function of the service time distribution and number of sample service times. In

Section 5.3.1, we examine the mean relative error of the different approaches when

the number of observations from the real service time distribution is n = 100, the

smallest in this experiment. In Section 5.3.2, we consider the cases when we have

more observations of the service time, namely n ∈ {500, 1000}. Finally, in Section

5.3.3, we provide a brief summary of the numerical experiments, and compare the

approaches.

5.3.1 One Hundred Observed Service Times

In this section, we consider the case when we have 100 data points observed from the

true service time distribution. We examine the results obtained from the different

approaches and compare the effectiveness of each approach. In Tables 14 and 15, the

results when the underlying service time distribution is the exponential are shown.

The traffic intensities are 0.5 and 0.75, respectively, in Tables 14 and 15, while the

service time distribution are kept the same. We can see that using a heavy right tail

when the underlying distribution is light-tailed can be significantly off, from the Fitted

Par, NQEPar, and CQEPar rows of Table 15. Also, the results from the HT and KS

approaches show that they do not do a sufficiently good job in rejecting the Pareto
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distribution, even when the underlying distribution is the exponential. On the other

hand, the likelihood ratio testing performs well in choosing the right distribution

for the tail. We can also see that the bounds on α improve the performance of

the algorithm, especially when the bound is 4. Finally, we can see that the overall

performance is better when the traffic intensity is low as in Table 14, while the relative

performance of the approaches is indifferent to ρ.

Table 14: Mean Relative Error: Exp(1), ρ = 0.5, n = 100

Mean Relative Error
IE[W ] IP{W ≥ 5} IP{W ≥ 8} IP{W ≥ 10}
= 1 ≈ 0.0410 ≈ 0.0092 ≈ 0.0034

Theoretical
Fitted Exp 0.232 0.457 0.711 0.912
Fitted Par 5.31E+75 23.4 108 296
Empirical 0.251 0.528 0.809 1.02

Quasi-Empirical

NQEexp 0.241 0.481 0.745 0.951
NQEPar 39302 2.46 9.97 25.2
CQEexp 0.253 0.523 0.848 1.12
CQEPar 99.0 0.540 1.06 2.42

Hypothesis Test

HT emp
0.1 39302 2.46 9.97 25.2

HTNQE
0.1 39302 2.46 9.97 25.2

HT emp
0.5 12143 2.26 9.05 22.7

HTNQE
0.5 12143 2.26 9.03 22.7

HT emp
0.9 863 1.41 5.10 12.2

HTNQE
0.9 863 1.39 5.07 12.2

Likelihood Ratio
LRexp 0.241 0.481 0.745 0.951
LRPar 0.241 0.480 0.746 0.956
LRcons 0.241 0.481 0.745 0.951

Heuristics

KS 21.6 0.660 1.59 3.16
Bemp

3 0.499 0.646 1.67 3.25

BNQE
3 0.491 0.616 1.61 3.17

Bemp
4 0.254 0.524 0.842 1.140

BNQE
4 0.244 0.484 0.780 1.066

HT emp
0.1 + Bemp

3 0.499 0.646 1.67 3.25

HTNQE
0.1 + BNQE

3 0.491 0.616 1.61 3.17
HT emp

0.5 + Bemp
3 0.497 0.645 1.66 3.23

HTNQE
0.5 + BNQE

3 0.489 0.613 1.60 3.15
HT emp

0.9 + Bemp
3 0.461 0.629 1.54 2.91

HTNQE
0.9 + BNQE

3 0.452 0.591 1.47 2.82

LRexp + BNQE
3 0.241 0.481 0.745 0.951

LRPar + BNQE
3 0.241 0.480 0.746 0.956

LRcons + BNQE
3 0.241 0.481 0.745 0.951

KS + BNQE
3 0.250 0.479 0.791 1.09

On the contrary, Table 16 shows that fitting the exponential to the Pareto dis-

tribution is not a very good idea. However, it is noteworthy that fitting a light tail
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Table 15: Mean Relative Error: Exp(1), ρ = 0.75, n = 100

MRE
IE[W ] IP{W ≥ 10} IP{W ≥ 15} IP{W ≥ 20}
= 3 ≈ 0.062 ≈ 0.018 ≈ 0.005

Theoretical
Fitted Exp 0.505 1.01 1.97 3.97
Fitted Par 6.76E+71 15.2 55.6 197
Empirical 0.501 1.01 1.95 3.89

Quasi-Empirical

NQEexp 0.505 1.01 1.97 3.98
NQEPar 6.86E+04 3.72 11.91 37.9
CQEexp 0.502 1.01 1.97 3.95
CQEPar 174 0.886 1.85 5.07

Hypothesis Test

HT emp
0.1 27781 3.65 11.66 37.0

HTNQE
0.1 27781 3.65 11.66 37.0

HT emp
0.5 12314 3.41 10.75 33.8

HTNQE
0.5 12314 3.41 10.75 33.8

HT emp
0.9 1169 2.43 7.09 21.1

HTNQE
0.9 1169 2.44 7.13 21.2

Likelihood Ratio
LRexp 0.505 1.01 1.97 3.98
LRPar 0.505 1.00 1.97 3.99
LRcons 0.505 1.01 1.97 3.98

Heuristics

KS 388 1.24 2.85 7.01
Bemp

3 1.64 1.50 3.79 9.84

BNQE
3 1.64 1.49 3.76 9.80

Bemp
4 0.513 1.04 2.03 4.10

BNQE
4 0.517 1.03 2.02 4.13

HT emp
0.1 + Bemp

3 1.64 1.50 3.79 9.84

HTNQE
0.1 + BNQE

3 1.64 1.49 3.76 9.80
HT emp

0.5 + Bemp
3 1.64 1.50 3.76 9.77

HTNQE
0.5 + BNQE

3 1.63 1.49 3.74 9.74
HT emp

0.9 + Bemp
3 1.55 1.41 3.42 8.69

HTNQE
0.9 + BNQE

3 1.55 1.41 3.43 8.76

LRexp + BNQE
3 0.505 1.01 1.97 3.98

LRPar + BNQE
3 0.505 1.00 1.97 3.99

LRcons + BNQE
3 0.505 1.01 1.97 3.98

KS + BNQE
3 0.510 1.02 2.00 4.05
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to an underlying Pareto distribution does not work as badly as the opposite case.

Hypothesis testing with a higher threshold seems to be rejecting the correct Pareto

distribution too often, while the likelihood ratio test does not perform well when the

xmin is estimated using the exponential tail. One approach that still works well is to

use the NQE approach with the exponential tail when a bound on the tail index is

violated, especially with the bound set at 4 (i.e., BNQE
4 ). Also, we can see in Table

22 in Appendix A, that bounding the tail index at four also works when the actual

tail index is smaller than four.

For the interest of the length of the chapter, the results under other underlying

distributions are attached in Tables 22 to 29 in Appendix A for reference. A few

notable results from those distributions are that, although Clauset et al. [29] con-

centrated on the case 2 < α < 3 in estimating the tail index, the performance of

the NQEPar approach actually improves as the tail index of the true service time

distribution increases. With the larger tail index, the relative error of the overall

approaches are smaller. The MRE also tends to be smaller for the mixture distribu-

tions, except when the underlying distribution is 0.75 Unif(0, 10) + 0.25 Par(10, 4),

which may be due to the fact that the number of data points to estimate the Pareto

tail, which is only 25, is not large enough.

Although BNQE
4 does not perform the best in each underlying distribution, it is

usually highly ranked, with no significant difference with the best approach. It is note-

worthy that even the uniform distribution, which is bounded, can be approximated

well with an unbounded distribution without significant loss of accuracy compared to

the empirical distribution. Therefore, these numerical results suggest that the best

overall approach is to first estimate the tail index for the Pareto distribution using the

approach in Section 5.2.2, but restrict the tail index α to be greater than 4. When the

estimated tail index is less than 4, we will use the approach in Section 5.2.3 instead,

which is to use the quasi-empirical distribution with the exponential tail and cutoff
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Table 16: Mean Relative Error: Pareto (10, 4), ρ = 0.75, n = 100

MRE
IE[W ] IP{W ≥ 100} IP{W ≥ 120} IP{W ≥ 140}
= 30 ≈ 0.060 ≈ 0.039 ≈ 0.025

Theoretical
Fitted Exp 0.524 1.35 1.65 1.08
Fitted Par 0.306 0.609 0.736 0.655
Empirical 0.315 0.697 0.842 0.845

Quasi-Empirical

NQEexp 0.290 0.655 0.776 0.769
NQEPar 0.412 0.694 0.858 0.776
CQEexp 0.303 0.675 0.803 0.799
CQEPar 0.418 0.796 0.840 0.905

Hypothesis Test

HT emp
0.1 0.421 0.716 0.887 0.800

HTNQE
0.1 0.415 0.702 0.869 0.790

HT emp
0.5 0.448 0.784 0.983 0.901

HTNQE
0.5 0.429 0.747 0.928 0.853

HT emp
0.9 0.398 0.756 0.938 0.910

HTNQE
0.9 0.373 0.714 0.874 0.843

Likelihood Ratio
LRexp 0.291 0.659 0.779 0.767
LRPar 0.282 0.627 0.734 0.716
LRcons 0.291 0.659 0.779 0.767

Heuristics

KS 0.376 0.683 0.835 0.762
Bemp

3 0.379 0.676 0.830 0.747

BNQE
3 0.379 0.677 0.830 0.747

Bemp
4 0.283 0.606 0.723 0.751

BNQE
4 0.268 0.575 0.682 0.734

HT emp
0.1 + Bemp

3 0.388 0.698 0.859 0.771

HTNQE
0.1 + BNQE

3 0.381 0.684 0.841 0.762
HT emp

0.5 + Bemp
3 0.414 0.766 0.955 0.872

HTNQE
0.5 + BNQE

3 0.395 0.729 0.900 0.824
HT emp

0.9 + Bemp
3 0.398 0.756 0.938 0.910

HTNQE
0.9 + BNQE

3 0.373 0.714 0.874 0.843

LRexp + BNQE
3 0.291 0.659 0.779 0.767

LRPar + BNQE
3 0.282 0.627 0.734 0.716

LRcons + BNQE
3 0.291 0.659 0.779 0.767

KS + BNQE
3 0.376 0.683 0.835 0.762
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estimated using the KS statistic. Other competitive approaches for n = 100 are using

empirical distributions, CQEexp, or Bemp
4 .

In Table 17, we show the difference in mean relative error of BNQE
4 and the

best approach for all four performance measures and each distribution, if there is

an approach better than BNQE
4 . Let pi = IP{W ≥ ti}, for i = 1, 2, 3. We can see

that there is not a single approach that is always the best approach, and also that the

difference between the MRE of the BNQE
4 and the best approach is not very significant

in most cases. Also, it may be worth mentioning that although CQEPar appears the

most often as the best approach, we do not recommend using it, as there are cases

when its performance is unacceptably poor. For example, when the true service time

distribution is an exponential and ρ = 0.5, the MRE of CQEPar is 99.0, while the

best approach (Exp) has an MRE of 0.232, and BNQE
4 has an MRE of 0.244. In

general, most approaches (other than BNQE
4 ) have worst-case performances that are

unacceptably poor.

Table 17: Comparison Between BNQE
4 and the Best Approach for Each Distribution,

n = 100
MRE Difference

Exp(1)
ρ = 0.5

Exp(1)
ρ = 0.75

Par(10,3.5) Par(10, 4)

IE[W ] 0.012 (Exp) 0.016 (Emp) 0.266 (Exp) 0.014 (LRPar + BNQE3 )

p1 0.027 (Exp) 0.144 (CQEPar) 0.192 (LRPar + BNQE3 ) 0

p2 0.069 (Exp) 0.17 (CQEPar) 0.325 (LRPar + BNQE3 ) 0
p3 0.054 (Exp) 0.24 (Emp) 0.578 (CQEPar) 0.079 (Par)

Par(10, 5) Par(10, 10) Unif(0, 1)
0.25 Unif(0, 10)
+ 0.75 Exp(1)

IE[W ] 0.004 (CQEPar) 0 0.001 (HT emp0.5 ) 0.049 (CQEPar)
p1 0.001 (Par) 0 0 0.129 (CQEPar)
p2 0.004 (Par) 0.002 (Par) 0 0.212 (CQEPar)
p3 0.032 (Emp) 0.003 (Par) 0.038 (CQEPar) 0.312 (CQEPar)

0.75 Unif(0, 10)
+ 0.25 Exp(1)

0.25 Unif(0, 10)
+ 0.75 Par(10, 4)

0.75 Unif(0, 10)
+ 0.25 Par(10, 4)

IE[W ] 0.039 (CQEPar) 0 0.001 (NQEexp)
p1 0.028 (CQEPar) 0.012 (LRPar) 0
p2 0.096 (CQEPar) 0.032 (LRPar) 0
p3 0.248 (CQEPar) 0.177 (CQEPar) 0
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5.3.2 More Observed Service Times

In this section, we look into cases where we have more observations of the service

times than in Section 5.3.1, namely n = 500 or n = 1000. For comparison, Tables 18

and 19 show the MRE for the exponential distribution with ρ = 0.5 when the sample

sizes are 500 and 1000, respectively. As there are more data points to fit and evaluate

the distributions, the performances of all the approaches under all the distributions

generally improve as the sample sizes increase. Also, the differences of relative errors

among approaches become less significant. Still, the general conclusions that there

is no single approach that works the best in all situations, and that BNQE
4 generally

performs well, remain valid. It is worth noting that the worst-case results for BNQE
4

occur for the Par(10, 3.5) distribution when n = 1000. This is not surprising as

BNQE
4 is designed to avoid underestimating the tail index, but in this case it leads

to rejecting the Pareto distribution when there is a significant amount of input data

and the tail index is estimated correctly. With more data points, underestimation

of α is less likely and there are other approaches that become competitive, including

NQEPar, KS, and KS + BNQE
3 . In Appendix A, we attach the results from all the

other distributions when the sample size is 500 (Tables 30 to 39) or 1000 (Tables 40

to 49).

As in Section 5.3.1, we compare the MREs of the recommended method, BNQE
4

and the best approach, if it performs better than the BNQE
4 , for n = 500, 1000 in

Tables 20 and 21, respectively. Clearly, the discrepancy between the MRE of the best

approach and BNQE
4 decreases as n increases, in general. Also, as expected, when the

true service time distribution is one of the theoretical distributions, the best approach

is the actual distribution, especially when n is large. However, even in such cases,

other than for the smallest tail probabilities, BNQE
4 shows comparable performance.
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Table 18: Mean Relative Error: Exp(1), ρ = 0.5, n = 500

Mean Relative Error
IE[W ] IP{W ≥ 5} IP{W ≥ 8} IP{W ≥ 10}
= 1 ≈ 0.0410 ≈ 0.0092 ≈ 0.0034

Theoretical
Fitted Exp 0.113 0.223 0.335 0.411
Fitted Par 6.63E+84 23.4 108 297
Empirical 0.118 0.249 0.401 0.511

Quasi-Empirical

NQEexp 0.114 0.232 0.352 0.435
NQEPar 16.2 0.756 2.65 6.00
CQEexp 0.118 0.248 0.409 0.541
CQEPar 0.196 0.332 0.424 0.459

Hypothesis Test

HT emp
0.1 16.2 0.756 2.65 6.00

HTNQE
0.1 16.2 0.756 2.65 6.00

HT emp
0.5 16.2 0.756 2.65 6.00

HTNQE
0.5 16.2 0.756 2.65 6.00

HT emp
0.9 15.4 0.710 2.46 5.53

HTNQE
0.9 15.4 0.710 2.46 5.53

Likelihood Ratio
LRexp 0.114 0.232 0.352 0.435
LRPar 0.114 0.232 0.352 0.435
LRcons 0.114 0.232 0.352 0.435

Heuristics

KS 0.114 0.232 0.352 0.435
Bemp

3 0.418 0.491 1.54 3.22

BNQE
3 0.417 0.489 1.54 3.22

Bemp
4 0.127 0.260 0.511 0.823

BNQE
4 0.127 0.257 0.497 0.798

HT emp
0.1 + Bemp

3 0.418 0.491 1.54 3.22

HTNQE
0.1 + BNQE

3 0.417 0.489 1.54 3.22
HT emp

0.5 + Bemp
3 0.418 0.491 1.54 3.22

HTNQE
0.5 + BNQE

3 0.417 0.489 1.54 3.22
HT emp

0.9 + Bemp
3 0.411 0.483 1.51 3.15

HTNQE
0.9 + BNQE

3 0.411 0.481 1.51 3.16

LRexp + BNQE
3 0.114 0.232 0.352 0.435

LRPar + BNQE
3 0.114 0.232 0.352 0.435

LRcons + BNQE
3 0.114 0.232 0.352 0.435

KS + BNQE
3 0.114 0.232 0.352 0.435
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Table 19: Mean Relative Error: Exp(1), ρ = 0.5, n = 1000

Mean Relative Error
IE[W ] IP{W ≥ 5} IP{W ≥ 8} IP{W ≥ 10}
= 1 ≈ 0.0410 ≈ 0.0092 ≈ 0.0034

Theoretical
Fitted Exp 0.078 0.16 0.24 0.29
Fitted Par 1.38E+79 23.4 108 297
Empirical 0.083 0.18 0.30 0.38

Quasi-Empirical

NQEexp 0.080 0.16 0.25 0.31
NQEPar 0.349 0.37 1.18 2.44
CQEexp 0.083 0.183 0.298 0.390
CQEPar 0.102 0.248 0.355 0.398

Hypothesis Test

HT emp
0.1 0.349 0.374 1.18 2.44

HTNQE
0.1 0.349 0.374 1.18 2.44

HT emp
0.5 0.349 0.374 1.18 2.44

HTNQE
0.5 0.349 0.374 1.18 2.44

HT emp
0.9 0.349 0.374 1.18 2.44

HTNQE
0.9 0.349 0.374 1.18 2.44

Likelihood Ratio
LRexp 0.080 0.164 0.252 0.313
LRPar 0.080 0.164 0.252 0.312
LRcons 0.080 0.164 0.252 0.313

Heuristics

KS 0.080 0.164 0.252 0.313
Bemp

3 0.317 0.361 1.13 2.31

BNQE
3 0.316 0.360 1.13 2.31

Bemp
4 0.102 0.210 0.507 0.908

BNQE
4 0.101 0.204 0.496 0.892

HT emp
0.1 + Bemp

3 0.317 0.361 1.13 2.31

HTNQE
0.1 + BNQE

3 0.316 0.360 1.13 2.31
HT emp

0.5 + Bemp
3 0.317 0.361 1.13 2.31

HTNQE
0.5 + BNQE

3 0.316 0.360 1.13 2.31
HT emp

0.9 + Bemp
3 0.317 0.361 1.13 2.31

HTNQE
0.9 + BNQE

3 0.317 0.360 1.13 2.31

LRexp + BNQE
3 0.080 0.164 0.252 0.313

LRPar + BNQE
3 0.080 0.164 0.252 0.312

LRcons + BNQE
3 0.080 0.164 0.252 0.313

KS + BNQE
3 0.080 0.164 0.252 0.313
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Table 20: Comparison Between BNQE
4 and the Best Approach for Each Distribution,

n = 500
MRE Difference

Exp(1)
ρ = 0.5

Exp(1)
ρ = 0.75

Par(10,3.5) Par(10, 4)

IE[W ] 0.014 (Exp) 0.016 (Exp) 0.111 (Exp) 0.011 (Par)
p1 0.034 (Exp) 0.038 (Exp) 0.278 (Par) 0.067 (Par)
p2 0.162 (Exp) 0.165 (CQEPar) 0.354 (Par) 0.095 (Par)
p3 0.387 (Exp) 0.494 (Exp) 0.419 (Exp) 0.124 (Par)

Par(10, 5) Par(10, 10) Unif(0, 1)
0.25 Unif(0, 10)
+ 0.75 Exp(1)

IE[W ] 0 0 0.002 (Emp) 0.019 (CQEPar)
p1 0 0 0 0.052 (CQEPar)
p2 0.002 (Par) 0 0 0.088 (CQEPar)
p3 0.007 (Par) 0 0.013 (Emp) 0.134 (CQEPar)

0.75 Unif(0, 10)
+ 0.25 Exp(1)

0.25 Unif(0, 10)
+ 0.75 Par(10, 4)

0.75 Unif(0, 10)
+ 0.25 Par(10, 4)

IE[W ] 0.022 (CQEPar) 0.036 (CQEPar) 0.057 (CQEPar)
p1 0.014 (CQEPar) 0 0
p2 0.050 (CQEPar) 0 0
p3 0.157 (CQEPar) 0 0

Table 21: Comparison Between BNQE
4 and the Best Approach for Each Distribution,

n = 1000
MRE Difference

Exp(1)
ρ = 0.5

Exp(1)
ρ = 0.75

Par(10,3.5) Par(10, 4)

IE[W ] 0.023 (Exp) 0.010 (Exp) 0.642 (Par) 0.012 (Par)
p1 0.049 (Exp) 0.027 (Exp) 0.369 (Par) 0.051 (Par)
p2 0.259 (Exp) 0.117 (Exp) 0.579 (Par) 0.070 (Par)
p3 0.600 (Exp) 0.313 (Exp) 0.807 (Par) 0.093 (Par)

Par(10, 5) Par(10, 10) Unif(0, 1)
0.25 Unif(0, 10)
+ 0.75 Exp(1)

IE[W ] 0.002 (Par) 0 0 0.012 (CQEPar)
p1 0.005 (Par) 0 0 0.033 (CQEPar)
p2 0.009 (Par) 0 0.001 (KS) 0.058 (CQEPar)
p3 0.018 (Par) 0 0.004 (Emp) 0.088 (CQEPar)

0.75 Unif(0, 10)
+ 0.25 Exp(1)

0.25 Unif(0, 10)
+ 0.75 Par(10, 4)

0.75 Unif(0, 10)
+ 0.25 Par(10, 4)

IE[W ] 0.014 (CQEPar) 0.030 (CQEPar) 0.079 (CQEPar)
p1 0.009 (CQEPar) 0.003 (NQEexp) 0.038 (CQEPar)
p2 0.031 (CQEPar) 0 0
p3 0.109 (CQEPar) 0 0

5.3.3 Summary and Recommendation

In Sections 5.3.1 and 5.3.2, we presented simulation results for the steady-state wait-

ing time of the M/G/1 queue, when the interarrival distribution is exponentially

distributed with a known parameter, and the service time distribution is not known,

but observed data is available. We applied all the approaches we discussed in Section

5.2 to estimate the mean and tail probabilities of the waiting time W , for eleven dif-

ferent distributions. In Tables 17, 20, and 21, we can see the best approaches under

all the experiments considered.
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Clearly, no approach prevails as the best in all cases, but we conclude that BNQE
4

is a reasonable approach to be used in most situations, especially if only limited

amounts of input data are available, as the discrepancies are fairly small in all the

cases, and its MREs are always among the smallest ones, if not the smallest. Although

CQEPar appears the most often as the best approach, this approach has shown poor

performance under certain experiment settings, and thus cannot be recommended.

The same is true of the other approaches in that their worst-case performances are

generally not comparable to the best approach or BNQE
4 . However, if there is ample

input data, it is reasonable to have more confidence in the accuracy of small tail

indices, and in such cases, there are other competitive approaches including NQEPar,

KS, and KS + BNQE
3 .

5.4 Conclusion

In this chapter, we discussed different approaches to fit a distribution to sample

data, when theoretical distributions may not provide good fit, and applied these

approaches to simulate the waiting time process of the M/G/1 queueing system.

The main approaches that we consider are quasi-empirical distributions, which are

the mixtures of empirical and right-tail distributions. We discussed quasi-empirical

distributions, both with exponential and Pareto tails, and with or without estimating

the cutoff point between the empirical and tail distributions. Then, we presented

some approaches to decide on the form of the tail distribution or to compare the

goodness-of-fit of different fitted tails. Using each approach, we estimated the mean

and tail probabilities of the waiting time process, focusing on performance measures

that are not “too rare.”

As seen from the results, unfortunately there is no magic solution that works

the best in all situations. However, the best overall results are achieved by BNQE
4 ,

which is the approach that uses a quasi-empirical distribution with a Pareto tail if
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the estimated tail index is greater than four, and otherwise uses a quasi-empirical

distribution with an exponential tail. The motivation to use this approach is that

while we recognize the need to use non-exponentially decaying distributions in certain

situations, we do not allow the tail to be extremely heavy, such that the second

moment is infinite or significantly large, unless large amounts of input data justify

such a choice. This is appropriate in the domain we consider, as we know that the

mean waiting time of an M/G/1 system depends heavily on the second moment.

Although we have not experimented with other problem domains, the volatility of

the waiting time process for small tail indices arises due to the heavy tail of the

service time distribution itself, and hence we expect that underestimation of the tail

index will also be detrimental in other fields. Finally, our recommendation is valid

for different number of observations of the underlying distribution, but the mean

relative error decreases overall as the number of samples increases, and certain other

approaches that do not exclude small tail indices are also worth considering for large

amounts of input data.

This study can be fortified by examining more extensive cases, such as the num-

ber of samples n, underlying distributions, traffic intensities, performance measures,

number of macro replications, etc. We chose an M/G/1 queueing system as it is a

simple system that is representative of other systems studied via discrete-event sim-

ulation. However, it would be desirable to apply the approach to other domains in

future research. Moreover, as we are recommending to impose a bound on the tail

index, the development of a scientific approach for selecting the value of this lower

bound is crucial (e.g., smaller lower bounds may be appropriate when there is ample

input data). Finally, the incorporation of the approaches we discussed in widely-used

distribution-fitting packages would be valuable.
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CHAPTER VI

CONCLUSION

This thesis advances the simulation field by contributing three valid and efficient

simulation algorithms. In this chapter, we briefly state the main contributions of

each algorithm in Section 6.1, and discuss future work that enhances the proposed

methods in Section 6.2.

6.1 Contribution

In Chapter 3, we proposed an algorithm that improves the efficiency of transient

simulation by using cloning. While cloning was originally designed to share some

simulation results among sample paths for different scenarios, our approach shares

simulation results among different replications of the same system. We presented our

algorithm and identified the number of clones that optimizes its efficiency. Then,

to improve performance, we introduced cloning algorithms with induced negative

correlation. Finally, we supplied numerical results that support the efficiency of the

algorithm and provided insights about its sensitivity to the choices of the number of

clones and position of the splitting point.

In Chapter 4, we proposed a procedure that considers optimization problems

with multiple objectives and estimates the Pareto set using Ranking and Selection (a

Pareto set is a set of systems that are not dominated in all objectives). Previously,

Ranking and Selection was geared toward the single objective case, possibly with con-

straints. Our procedure is designed for cases with multiple objectives when we do not

have prior information on the importance of the objectives. We proved the validity

of the procedure under three formulations. In addition, we proposed configurations

to test the validity and performance of our procedure for multiple objectives, and
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provided numerical results that confirm the validity of our approach and address its

efficiency.

In Chapter 5, we discussed different approaches to fit a distribution to sample data

when theoretical distributions may not provide good fit, and applied these approaches

to simulate the waiting time process of an M/G/1 queueing system. Our focus is on

quasi-empirical distributions, which are mixtures of empirical and right-tail distribu-

tions. We also discuss the choice of both the right-tail distribution and the cutoff

between the empirical and right-tail distributions, and finally provide a comparison

among the approaches in simulation experiments. Numerical results show that while

no approach performs the best in all cases, bounding the tail index below seems to

achieve the best overall performance.

6.2 Future Research

In this section, we discuss how the subjects presented in this thesis can be enhanced

with further research on the following topics:

1. In Chapter 3, we can improve the algorithm by finding the optimal number

and position of decision points and by devising a better way of estimating the

number of clones to use in the simulation.

2. In Chapter 4, the lower bounds for each formulation can be improved when

independence between systems and/or objectives is assumed.

3. In Chapter 5, the development of a scientific approach for selecting the optimal

value of the lower bound on the estimated tail index of a Pareto distribution

can improve the approach.
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APPENDIX A

ADDITIONAL NUMERICAL RESULTS FOR CHAPTER 5

For completeness, we provide the mean relative error for all the approaches, distribu-

tions, and performance measures. Sections A.1, A.2, and A.3 provide the results for

the different sample sizes, n = 100, 500, and 1000, respectively.

A.1 Numerical Results: One Hundred Observed Service Times

In this section, we provide the results for n = 100 that are not presented in Section

5.3.1. See Tables 22 to 29.

A.2 Numerical Results: Five Hundred Observed Service
Times

In this section, we provide detailed results when n = 500, see Tables 30 to 39.
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Table 22: Mean Relative Error: Par(10,3.5), ρ = 0.75, n = 100

Mean Relative Error
IE[W ] IP{W ≥ 150} IP{W ≥ 200} IP{W ≥ 250}
= 45 ≈ 0.056 ≈ 0.032 ≈ 0.020

Theoretical
Fitted Exp 0.366 0.871 1.01 1.13
Fitted Par 0.996 0.882 1.15 1.41
Empirical 0.698 1.03 1.31 1.58

Quasi-Empirical

NQEexp 0.632 0.957 1.24 1.51
NQEPar 0.717 0.920 1.21 1.49
CQEexp 0.566 0.963 1.22 1.46
CQEPar 0.578 0.904 0.919 0.922

Hypothesis Test

HT emp
0.1 0.918 1.03 1.41 1.80

HTNQE
0.1 0.884 1.03 1.40 1.78

HT emp
0.5 0.981 1.12 1.54 1.97

HTNQE
0.5 0.912 1.08 1.48 1.89

HT emp
0.9 0.885 1.05 1.40 1.77

HTNQE
0.9 0.811 0.988 1.34 1.69

Likelihood Ratio
LRexp 0.633 0.960 1.24 1.50
LRPar 0.458 0.783 0.950 1.07
LRcons 0.633 0.960 1.24 1.50

Heuristics

KS 0.734 0.972 1.27 1.54
Bemp

3 0.605 0.866 1.12 1.34

BNQE
3 0.605 0.865 1.12 1.34

Bemp
4 0.695 1.02 1.30 1.58

BNQE
4 0.632 0.955 1.24 1.50

HT emp
0.1 + Bemp

3 0.807 0.979 1.31 1.65

HTNQE
0.1 + BNQE

3 0.772 0.970 1.30 1.63
HT emp

0.5 + Bemp
3 0.869 1.07 1.44 1.82

HTNQE
0.5 + BNQE

3 0.800 1.02 1.38 1.74
HT emp

0.9 + Bemp
3 0.773 1.00 1.30 1.62

HTNQE
0.9 + BNQE

3 0.699 0.933 1.24 1.54

LRexp + BNQE
3 0.633 0.960 1.24 1.50

LRPar + BNQE
3 0.430 0.763 0.915 1.02

LRcons + BNQE
3 0.633 0.960 1.24 1.50

KS + BNQE
3 0.622 0.917 1.17 1.40
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Table 23: Mean Relative Error: Pareto (10, 5), ρ ' 0.67, n = 100

Mean Relative Error
IE[W ] IP{W ≥ 50} IP{W ≥ 70} IP{W ≥ 100}
= 15 ≈ 0.0656 ≈ 0.0262 ≈ 0.0070

Theoretical
Fitted Exp 0.780 1.91 3.42 6.92
Fitted Par 0.127 0.278 0.404 0.624
Empirical 0.124 0.284 0.413 0.604

Quasi-Empirical

NQEexp 0.229 0.548 0.891 1.59
NQEPar 0.134 0.289 0.432 0.705
CQEexp 0.123 0.284 0.407 0.593
CQEPar 0.230 0.499 0.623 0.752

Hypothesis Test

HT emp
0.1 0.140 0.303 0.457 0.753

HTNQE
0.1 0.147 0.319 0.486 0.816

HT emp
0.5 0.142 0.313 0.472 0.764

HTNQE
0.5 0.175 0.394 0.620 1.08

HT emp
0.9 0.137 0.304 0.457 0.728

HTNQE
0.9 0.212 0.492 0.800 1.44

Likelihood Ratio
LRexp 0.220 0.529 0.856 1.52
LRPar 0.217 0.521 0.842 1.48
LRcons 0.220 0.529 0.856 1.52

Heuristics

KS 0.146 0.328 0.492 0.793
Bemp

3 0.134 0.289 0.432 0.705

BNQE
3 0.134 0.289 0.432 0.705

Bemp
4 0.127 0.281 0.412 0.643

BNQE
4 0.127 0.279 0.408 0.636

HT emp
0.1 + Bemp

3 0.140 0.303 0.457 0.753

HTNQE
0.1 + BNQE

3 0.147 0.319 0.486 0.816
HT emp

0.5 + Bemp
3 0.142 0.313 0.472 0.764

HTNQE
0.5 + BNQE

3 0.175 0.394 0.620 1.08
HT emp

0.9 + Bemp
3 0.137 0.304 0.457 0.728

HTNQE
0.9 + BNQE

3 0.212 0.492 0.800 1.44

LRexp + BNQE
3 0.220 0.529 0.856 1.52

LRPar + BNQE
3 0.217 0.521 0.842 1.48

LRcons + BNQE
3 0.220 0.529 0.856 1.515

KS + BNQE
3 0.146 0.328 0.492 0.793
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Table 24: Mean Relative Error: Pareto (10, 10), ρ = 0.56, n = 100

MRE
IE[W ] IP{W ≥ 10} IP{W ≥ 30} IP{W ≥ 50}
= 7.35 ≈ 0.2787 ≈ 0.0444 ≈ 0.0071

Theoretical
Fitted Exp 0.963 0.365 2.93 10.3
Fitted Par 0.033 0.031 0.083 0.138
Empirical 0.034 0.031 0.084 0.139

Quasi-Empirical

NQEexp 0.245 0.107 0.734 2.46
NQEPar 0.034 0.031 0.085 0.141
CQEexp 0.034 0.031 0.085 0.140
CQEPar 0.066 0.061 0.161 0.249

Hypothesis Test

HT emp
0.1 0.035 0.032 0.087 0.146

HTNQE
0.1 0.062 0.041 0.168 0.439

HT emp
0.5 0.034 0.031 0.086 0.144

HTNQE
0.5 0.145 0.072 0.427 1.36

HT emp
0.9 0.034 0.031 0.087 0.144

HTNQE
0.9 0.197 0.090 0.585 1.93

Likelihood Ratio
LRexp 0.236 0.103 0.706 2.36
LRPar 0.236 0.103 0.706 2.36
LRcons 0.236 0.103 0.706 2.36

Heuristics

KS 0.117 0.061 0.342 1.06
Bemp

3 0.034 0.031 0.085 0.141

BNQE
3 0.034 0.031 0.085 0.141

Bemp
4 0.034 0.031 0.085 0.141

BNQE
4 0.034 0.031 0.085 0.141

HT emp
0.1 + Bemp

3 0.035 0.032 0.087 0.146

HTNQE
0.1 + BNQE

3 0.062 0.041 0.168 0.439
HT emp

0.5 + Bemp
3 0.034 0.031 0.086 0.144

HTNQE
0.5 + BNQE

3 0.145 0.072 0.427 1.36
HT emp

0.9 + Bemp
3 0.034 0.031 0.087 0.144

HTNQE
0.9 + BNQE

3 0.197 0.090 0.585 1.93

LRexp + BNQE
3 0.236 0.103 0.706 2.36

LRPar + BNQE
3 0.236 0.103 0.706 2.36

LRcons + BNQE
3 0.236 0.103 0.706 2.36

KS + BNQE
3 0.117 0.061 0.342 1.06
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Table 25: Mean Relative Error: Uniform (0,1), ρ = 0.25, n = 100

MRE
IE[W ] IP{W ≥ 0.05} IP{W ≥ 0.1} IP{W ≥ 0.5}
= 0.11 ≈ 0.2135 ≈ 0.0919 ≈ 0.0165

Theoretical
Fitted Exp 0.505 0.054 0.287 2.394
Fitted Par 4.13E+73 3.68 9.88 59.7
Empirical 0.082 0.053 0.096 0.167

Quasi-Empirical

NQEexp 0.112 0.053 0.103 0.468
NQEPar 0.131 0.053 0.098 0.262
CQEexp 0.082 0.053 0.096 0.166
CQEPar 0.085 0.055 0.105 0.172

Hypothesis Test

HT emp
0.1 0.131 0.053 0.098 0.264

HTNQE
0.1 0.139 0.053 0.101 0.333

HT emp
0.5 0.081 0.053 0.095 0.170

HTNQE
0.5 0.094 0.053 0.095 0.368

HT emp
0.9 0.082 0.053 0.096 0.167

HTNQE
0.9 0.110 0.053 0.102 0.448

Likelihood Ratio
LRexp 0.112 0.053 0.103 0.468
LRPar 0.112 0.053 0.103 0.468
LRcons 0.112 0.053 0.103 0.468

Heuristics

KS 0.095 0.053 0.096 0.354
Bemp

3 0.131 0.053 0.098 0.262

BNQE
3 0.131 0.053 0.098 0.262

Bemp
4 0.082 0.052 0.094 0.186

BNQE
4 0.082 0.052 0.093 0.204

HT emp
0.1 + Bemp

3 0.131 0.053 0.098 0.264

HTNQE
0.1 + BNQE

3 0.139 0.053 0.101 0.333
HT emp

0.5 + Bemp
3 0.081 0.053 0.095 0.170

HTNQE
0.5 + BNQE

3 0.094 0.053 0.095 0.368
HT emp

0.9 + Bemp
3 0.082 0.053 0.096 0.167

HTNQE
0.9 + BNQE

3 0.110 0.053 0.102 0.448

LRexp + BNQE
3 0.112 0.053 0.103 0.468

LRPar + BNQE
3 0.112 0.053 0.103 0.468

LRcons + BNQE
3 0.112 0.053 0.103 0.468

KS + BNQE
3 0.095 0.053 0.096 0.354
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Table 26: Mean Relative Error: 0.25 Uniform (0,10) + 0.75 Exp(1), ρ = 0.475, n =
100

MRE
IE[W ] IP{W ≥ 20} IP{W ≥ 30} IP{W ≥ 40}
= 4.0235 ≈ 0.0377 ≈ 0.0095 ≈ 0.0024

Theoretical
Fitted Exp 1.134 3.17 8.52 20.8
Fitted Par 2.23E+71 25.5 104 418
Empirical 0.179 0.351 0.532 0.736

Quasi-Empirical

NQEexp 0.182 0.366 0.558 0.778
NQEPar 0.181 0.359 0.547 0.761
CQEexp 0.179 0.352 0.533 0.739
CQEPar 0.132 0.230 0.335 0.449

Hypothesis Test

HT emp
0.1 0.181 0.359 0.547 0.761

HTNQE
0.1 0.181 0.359 0.547 0.761

HT emp
0.5 0.181 0.359 0.547 0.761

HTNQE
0.5 0.181 0.359 0.547 0.761

HT emp
0.9 0.181 0.357 0.543 0.755

HTNQE
0.9 0.181 0.359 0.546 0.760

Likelihood Ratio
LRexp 0.182 0.366 0.558 0.778
LRPar 0.182 0.366 0.558 0.778
LRcons 0.182 0.366 0.558 0.778

Heuristics

KS 0.181 0.361 0.550 0.766
Bemp

3 0.181 0.359 0.547 0.761

BNQE
3 0.181 0.359 0.547 0.761

Bemp
4 0.181 0.359 0.547 0.761

BNQE
4 0.181 0.359 0.547 0.761

HT emp
0.1 + Bemp

3 0.181 0.359 0.547 0.761

HTNQE
0.1 + BNQE

3 0.181 0.359 0.547 0.761
HT emp

0.5 + Bemp
3 0.181 0.359 0.547 0.761

HTNQE
0.5 + BNQE

3 0.181 0.359 0.547 0.761
HT emp

0.9 + Bemp
3 0.181 0.357 0.543 0.755

HTNQE
0.9 + BNQE

3 0.181 0.359 0.546 0.760

LRexp + BNQE
3 0.182 0.366 0.558 0.778

LRPar + BNQE
3 0.182 0.366 0.558 0.778

LRcons + BNQE
3 0.182 0.366 0.558 0.778

KS + BNQE
3 0.181 0.361 0.550 0.766
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Table 27: Mean Relative Error: 0.75 Uniform (0,10) + 0.25 Exp(1), ρ = 0.325, n =
100

MRE
IE[W ] IP{W ≥ 5} IP{W ≥ 10} IP{W ≥ 20}
= 1.5431 ≈ 0.1259 ≈ 0.0412 ≈ 0.0035

Theoretical
Fitted Exp 1.025 0.532 1.79 10.5
Fitted Par 4.54E+75 6.94 23.3 282
Empirical 0.326 0.345 0.442 1.01

Quasi-Empirical

NQEexp 0.329 0.345 0.446 1.05
NQEPar 0.330 0.346 0.447 1.06
CQEexp 0.327 0.345 0.442 1.02
CQEPar 0.291 0.318 0.351 0.812

Hypothesis Test

HT emp
0.1 0.330 0.346 0.447 1.06

HTNQE
0.1 0.330 0.346 0.447 1.06

HT emp
0.5 0.330 0.346 0.446 1.06

HTNQE
0.5 0.330 0.346 0.446 1.06

HT emp
0.9 0.328 0.345 0.444 1.03

HTNQE
0.9 0.329 0.345 0.446 1.05

Likelihood Ratio
LRexp 0.329 0.345 0.446 1.05
LRPar 0.329 0.345 0.446 1.05
LRcons 0.329 0.345 0.446 1.05

Heuristics

KS 0.329 0.345 0.445 1.05
Bemp

3 0.330 0.346 0.447 1.06

BNQE
3 0.330 0.346 0.447 1.06

Bemp
4 0.330 0.346 0.447 1.06

BNQE
4 0.330 0.346 0.447 1.06

HT emp
0.1 + Bemp

3 0.330 0.346 0.447 1.06

HTNQE
0.1 + BNQE

3 0.330 0.346 0.447 1.06
HT emp

0.5 + Bemp
3 0.330 0.346 0.446 1.06

HTNQE
0.5 + BNQE

3 0.330 0.346 0.446 1.06
HT emp

0.9 + Bemp
3 0.328 0.345 0.444 1.03

HTNQE
0.9 + BNQE

3 0.329 0.345 0.446 1.05

LRexp + BNQE
3 0.329 0.345 0.446 1.05

LRPar + BNQE
3 0.329 0.345 0.446 1.05

LRcons + BNQE
3 0.329 0.345 0.446 1.05

KS + BNQE
3 0.329 0.345 0.445 1.05
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Table 28: Mean Relative Error: 0.25 Uniform (0,10) + 0.75 Par(10,4), ρ = 0.625, n
= 100

MRE
IE[W ] IP{W ≥ 50} IP{W ≥ 70} IP{W ≥ 90}
= 13.352 ≈ 0.0593 ≈ 0.0283 ≈ 0.0149

Theoretical
Fitted Exp 0.593 1.36 1.79 2.05
Fitted Par 1.03E+76 15.9 34.3 66.1
Empirical 0.538 0.705 1.084 1.53

Quasi-Empirical

NQEexp 0.318 0.624 0.906 1.19
NQEPar 0.437 0.567 0.840 1.13
CQEexp 0.433 0.694 1.062 1.48
CQEPar 0.311 0.628 0.763 0.843

Hypothesis Test

HT emp
0.1 0.433 0.565 0.841 1.13

HTNQE
0.1 0.433 0.565 0.841 1.13

HT emp
0.5 0.469 0.628 0.952 1.30

HTNQE
0.5 0.464 0.617 0.936 1.28

HT emp
0.9 0.526 0.686 1.054 1.47

HTNQE
0.9 0.411 0.652 0.983 1.32

Likelihood Ratio
LRexp 0.321 0.626 0.911 1.20
LRPar 0.329 0.525 0.737 0.940
LRcons 0.321 0.626 0.911 1.20

Heuristics

KS 0.434 0.580 0.860 1.15
Bemp

3 0.503 0.603 0.924 1.30

BNQE
3 0.396 0.593 0.881 1.18

Bemp
4 0.507 0.620 0.959 1.38

BNQE
4 0.287 0.537 0.769 1.02

HT emp
0.1 + Bemp

3 0.499 0.601 0.925 1.30

HTNQE
0.1 + BNQE

3 0.392 0.591 0.883 1.19
HT emp

0.5 + Bemp
3 0.535 0.664 1.036 1.47

HTNQE
0.5 + BNQE

3 0.423 0.643 0.978 1.34
HT emp

0.9 + Bemp
3 0.526 0.686 1.054 1.47

HTNQE
0.9 + BNQE

3 0.411 0.652 0.983 1.32

LRexp + BNQE
3 0.321 0.626 0.911 1.20

LRPar + BNQE
3 0.288 0.550 0.779 0.998

LRcons + BNQE
3 0.321 0.626 0.911 1.20

KS + BNQE
3 0.393 0.606 0.902 1.20
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Table 29: Mean Relative Error: 0.75 Uniform (0,10) + 0.25 Par(10,4), ρ = 0.375, n
= 100

MRE
IE[W ] IP{W ≥ 20} IP{W ≥ 30} IP{W ≥ 40}
= 3.3107 ≈ 0.0384 ≈ 0.0173 ≈ 0.0091

Theoretical
Fitted Exp 0.370 0.863 0.825 0.559
Fitted Par 6.94E+68 25.1 57.0 109
Empirical 0.286 0.485 0.836 1.23

Quasi-Empirical

NQEexp 0.188 0.423 0.522 0.616
NQEPar 1.02 0.557 0.902 1.26
CQEexp 0.251 0.482 0.764 1.00
CQEPar 0.354 0.496 0.685 0.777

Hypothesis Test

HT emp
0.1 1.02 0.557 0.902 1.26

HTNQE
0.1 1.02 0.557 0.902 1.26

HT emp
0.5 1.02 0.560 0.908 1.27

HTNQE
0.5 1.02 0.559 0.907 1.27

HT emp
0.9 0.628 0.518 0.843 1.21

HTNQE
0.9 0.588 0.494 0.746 1.00

Likelihood Ratio
LRexp 0.188 0.423 0.522 0.616
LRPar 0.452 0.426 0.574 0.746
LRcons 0.188 0.423 0.522 0.616

Heuristics

KS 0.734 0.463 0.683 0.930
Bemp

3 0.683 0.539 0.869 1.22

BNQE
3 0.652 0.525 0.814 1.10

Bemp
4 0.282 0.467 0.770 1.12

BNQE
4 0.189 0.406 0.459 0.505

HT emp
0.1 + Bemp

3 0.683 0.539 0.869 1.22

HTNQE
0.1 + BNQE

3 0.652 0.525 0.814 1.10
HT emp

0.5 + Bemp
3 0.683 0.543 0.876 1.23

HTNQE
0.5 + BNQE

3 0.651 0.528 0.819 1.11
HT emp

0.9 + Bemp
3 0.628 0.518 0.843 1.21

HTNQE
0.9 + BNQE

3 0.588 0.494 0.746 1.00

LRexp + BNQE
3 0.188 0.423 0.522 0.616

LRPar + BNQE
3 0.233 0.425 0.558 0.703

LRcons + BNQE
3 0.188 0.423 0.522 0.616

KS + BNQE
3 0.475 0.454 0.645 0.845
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Table 30: Mean Relative Error: Exp(1), ρ = 0.75, n = 500

MRE
IE[W ] IP{W ≥ 10} IP{W ≥ 15} IP{W ≥ 20}
= 3 ≈ 0.062 ≈ 0.018 ≈ 0.005

Theoretical
Fitted Exp 0.175 0.380 0.582 0.835
Fitted Par 3.27E+69 15.2 55.7 197
Empirical 0.178 0.392 0.597 0.849

Quasi-Empirical

NQEexp 0.175 0.382 0.583 0.836
NQEPar 11.7 1.29 3.69 10.5
CQEexp 0.178 0.391 0.600 0.860
CQEPar 0.217 0.431 0.540 0.652

Hypothesis Test

HT emp
0.1 11.7 1.29 3.69 10.5

HTNQE
0.1 11.7 1.29 3.69 10.5

HT emp
0.5 11.7 1.29 3.69 10.5

HTNQE
0.5 11.7 1.29 3.69 10.5

HT emp
0.9 6.09 1.19 3.34 9.35

HTNQE
0.9 6.09 1.19 3.34 9.35

Likelihood Ratio
LRexp 0.175 0.382 0.583 0.836
LRPar 0.176 0.383 0.584 0.838
LRcons 0.175 0.382 0.583 0.836

Heuristics

KS 0.175 0.382 0.583 0.836
Bemp

3 0.400 0.668 1.54 3.47

BNQE
3 0.399 0.666 1.54 3.47

Bemp
4 0.193 0.425 0.718 1.17

BNQE
4 0.191 0.418 0.705 1.15

HT emp
0.1 + Bemp

3 0.400 0.668 1.54 3.47

HTNQE
0.1 + BNQE

3 0.399 0.666 1.54 3.47
HT emp

0.5 + Bemp
3 0.400 0.668 1.54 3.47

HTNQE
0.5 + BNQE

3 0.399 0.666 1.54 3.47
HT emp

0.9 + Bemp
3 0.398 0.663 1.53 3.44

HTNQE
0.9 + BNQE

3 0.398 0.662 1.53 3.44

LRexp + BNQE
3 0.175 0.382 0.583 0.836

LRPar + BNQE
3 0.176 0.383 0.584 0.838

LRcons + BNQE
3 0.175 0.382 0.583 0.836

KS + BNQE
3 0.175 0.382 0.583 0.836
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Table 31: Mean Relative Error: Par(10,3.5), ρ = 0.75, n = 500

Mean Relative Error
IE[W ] IP{W ≥ 150} IP{W ≥ 200} IP{W ≥ 250}
= 45 ≈ 0.056 ≈ 0.032 ≈ 0.020

Theoretical
Fitted Exp 0.173 0.495 0.433 0.433
Fitted Par 0.211 0.330 0.397 0.446
Empirical 0.314 0.628 0.842 1.03

Quasi-Empirical

NQEexp 0.287 0.615 0.758 0.858
NQEPar 0.212 0.360 0.437 0.495
CQEexp 0.290 0.614 0.795 0.931
CQEPar 0.457 0.847 0.931 0.968

Hypothesis Test

HT emp
0.1 0.214 0.372 0.449 0.503

HTNQE
0.1 0.213 0.368 0.446 0.505

HT emp
0.5 0.246 0.445 0.559 0.652

HTNQE
0.5 0.236 0.434 0.527 0.593

HT emp
0.9 0.303 0.553 0.731 0.894

HTNQE
0.9 0.273 0.530 0.662 0.759

Likelihood Ratio
LRexp 0.273 0.566 0.706 0.808
LRPar 0.218 0.376 0.455 0.513
LRcons 0.273 0.566 0.706 0.808

Heuristics

KS 0.213 0.361 0.438 0.496
Bemp

3 0.212 0.360 0.437 0.495

BNQE
3 0.212 0.360 0.437 0.495

Bemp
4 0.313 0.626 0.838 1.03

BNQE
4 0.284 0.608 0.751 0.852

HT emp
0.1 + Bemp

3 0.214 0.372 0.449 0.503

HTNQE
0.1 + BNQE

3 0.213 0.368 0.446 0.505
HT emp

0.5 + Bemp
3 0.246 0.445 0.559 0.652

HTNQE
0.5 + BNQE

3 0.236 0.434 0.527 0.593
HT emp

0.9 + Bemp
3 0.303 0.553 0.731 0.894

HTNQE
0.9 + BNQE

3 0.273 0.530 0.662 0.759

LRexp + BNQE
3 0.273 0.566 0.706 0.808

LRPar + BNQE
3 0.218 0.376 0.455 0.513

LRcons + BNQE
3 0.273 0.566 0.706 0.808

KS + BNQE
3 0.213 0.361 0.438 0.496
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Table 32: Mean Relative Error: Par(10,4), ρ = 0.75, n = 500

MRE
IE[W ] IP{W ≥ 100} IP{W ≥ 120} IP{W ≥ 140}
= 30 ≈ 0.060 ≈ 0.039 ≈ 0.025

Theoretical
Fitted Exp 0.530 1.41 1.69 1.93
Fitted Par 0.136 0.281 0.332 0.382
Empirical 0.200 0.459 0.584 0.719

Quasi-Empirical

NQEexp 0.193 0.478 0.588 0.692
NQEPar 0.152 0.313 0.377 0.442
CQEexp 0.196 0.458 0.577 0.701
CQEPar 0.266 0.599 0.684 0.755

Hypothesis Test

HT emp
0.1 0.153 0.315 0.380 0.445

HTNQE
0.1 0.153 0.316 0.380 0.445

HT emp
0.5 0.162 0.345 0.420 0.496

HTNQE
0.5 0.158 0.338 0.406 0.473

HT emp
0.9 0.167 0.370 0.459 0.553

HTNQE
0.9 0.169 0.385 0.470 0.554

Likelihood Ratio
LRexp 0.188 0.445 0.549 0.651
LRPar 0.164 0.345 0.415 0.483
LRcons 0.188 0.445 0.549 0.651

Heuristics

KS 0.154 0.319 0.384 0.450
Bemp

3 0.152 0.313 0.377 0.442

BNQE
3 0.152 0.313 0.377 0.442

Bemp
4 0.170 0.382 0.479 0.581

BNQE
4 0.147 0.348 0.428 0.505

HT emp
0.1 + Bemp

3 0.153 0.315 0.380 0.445

HTNQE
0.1 + BNQE

3 0.153 0.316 0.380 0.445
HT emp

0.5 + Bemp
3 0.162 0.345 0.420 0.496

HTNQE
0.5 + BNQE

3 0.158 0.338 0.406 0.473
HT emp

0.9 + Bemp
3 0.167 0.370 0.459 0.553

HTNQE
0.9 + BNQE

3 0.169 0.385 0.470 0.554

LRexp + BNQE
3 0.188 0.445 0.549 0.651

LRPar + BNQE
3 0.164 0.345 0.415 0.483

LRcons + BNQE
3 0.188 0.445 0.549 0.651

KS + BNQE
3 0.154 0.319 0.384 0.450
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Table 33: Mean Relative Error: Par(10,5), ρ = 0.667, n = 500

MRE
IE[W ] IP{W ≥ 50} IP{W ≥ 70} IP{W ≥ 100}
= 15 ≈ 0.656 ≈ 0.026 ≈ 0.007

Theoretical
Fitted Exp 0.774 1.90 3.40 6.809
Fitted Par 0.061 0.133 0.188 0.276
Empirical 0.074 0.166 0.262 0.456

Quasi-Empirical

NQEexp 0.101 0.245 0.389 0.674
NQEPar 0.060 0.133 0.190 0.283
CQEexp 0.072 0.165 0.260 0.441
CQEPar 0.126 0.301 0.422 0.583

Hypothesis Test

HT emp
0.1 0.060 0.133 0.190 0.283

HTNQE
0.1 0.060 0.133 0.190 0.283

HT emp
0.5 0.062 0.139 0.201 0.299

HTNQE
0.5 0.071 0.161 0.237 0.371

HT emp
0.9 0.065 0.149 0.220 0.342

HTNQE
0.9 0.080 0.187 0.287 0.475

Likelihood Ratio
LRexp 0.073 0.173 0.257 0.404
LRPar 0.069 0.160 0.235 0.360
LRcons 0.073 0.174 0.259 0.407

Heuristics

KS 0.060 0.133 0.190 0.283
Bemp

3 0.060 0.133 0.190 0.283

BNQE
3 0.060 0.133 0.190 0.283

Bemp
4 0.060 0.133 0.190 0.283

BNQE
4 0.060 0.133 0.190 0.283

HT emp
0.1 + Bemp

3 0.060 0.133 0.190 0.283

HTNQE
0.1 + BNQE

3 0.060 0.133 0.190 0.283
HT emp

0.5 + Bemp
3 0.062 0.139 0.201 0.299

HTNQE
0.5 + BNQE

3 0.071 0.161 0.237 0.371
HT emp

0.9 + Bemp
3 0.065 0.149 0.220 0.342

HTNQE
0.9 + BNQE

3 0.080 0.187 0.287 0.475

LRexp + BNQE
3 0.073 0.173 0.257 0.404

LRPar + BNQE
3 0.069 0.160 0.235 0.360

LRcons + BNQE
3 0.073 0.174 0.259 0.407

KS + BNQE
3 0.060 0.133 0.190 0.283
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Table 34: Mean Relative Error: Par(10,10), ρ = 0.5625, n = 500

MRE
IE[W ] IP{W ≥ 10} IP{W ≥ 30} IP{W ≥ 50}
= 7.35 ≈ 0.2787 ≈ 0.0444 ≈ 0.0071

Theoretical
Fitted Exp 0.962 0.365 2.93 10.3
Fitted Par 0.016 0.015 0.038 0.063
Empirical 0.016 0.015 0.041 0.068

Quasi-Empirical

NQEexp 0.139 0.061 0.416 1.40
NQEPar 0.015 0.015 0.038 0.062
CQEexp 0.016 0.015 0.040 0.067
CQEPar 0.028 0.025 0.073 0.117

Hypothesis Test

HT emp
0.1 0.015 0.015 0.038 0.062

HTNQE
0.1 0.015 0.015 0.038 0.062

HT emp
0.5 0.016 0.015 0.039 0.063

HTNQE
0.5 0.069 0.034 0.200 0.635

HT emp
0.9 0.016 0.015 0.039 0.065

HTNQE
0.9 0.087 0.041 0.255 0.828

Likelihood Ratio
LRexp 0.121 0.054 0.361 1.20
LRPar 0.103 0.047 0.307 1.01
LRcons 0.121 0.054 0.361 1.20

Heuristics

KS 0.032 0.021 0.090 0.247
Bemp

3 0.015 0.015 0.038 0.062

BNQE
3 0.015 0.015 0.038 0.062

Bemp
4 0.015 0.015 0.038 0.062

BNQE
4 0.015 0.015 0.038 0.062

HT emp
0.1 + Bemp

3 0.015 0.015 0.038 0.062

HTNQE
0.1 + BNQE

3 0.015 0.015 0.038 0.062
HT emp

0.5 + Bemp
3 0.016 0.015 0.039 0.063

HTNQE
0.5 + BNQE

3 0.069 0.034 0.200 0.635
HT emp

0.9 + Bemp
3 0.016 0.015 0.039 0.065

HTNQE
0.9 + BNQE

3 0.087 0.041 0.255 0.828

LRexp + BNQE
3 0.121 0.054 0.361 1.20

LRPar + BNQE
3 0.103 0.047 0.307 1.01

LRcons + BNQE
3 0.121 0.054 0.361 1.20

KS + BNQE
3 0.032 0.021 0.090 0.247
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Table 35: Mean Relative Error: Unif(0, 1), ρ = 0.25, n = 500

MRE
IE[W ] Pr{W ≥ 0.05} Pr{W ≥ 0.1} Pr{W ≥ 0.5}
≈ 0.11 ≈ 0.2135 ≈ 0.0919 ≈ 0.0165

Theoretical
Fitted Exp 0.494 0.027 0.280 2.37
Fitted Par 1.05E+83 3.68 9.89 59.7
Empirical 0.040 0.026 0.047 0.080

Quasi-Empirical

NQEexp 0.061 0.026 0.050 0.314
NQEPar 0.042 0.026 0.047 0.093
CQEexp 0.040 0.026 0.047 0.080
CQEPar 0.040 0.026 0.047 0.080

Hypothesis Test

HT emp
0.1 0.042 0.026 0.047 0.092

HTNQE
0.1 0.044 0.026 0.048 0.124

HT emp
0.5 0.040 0.026 0.047 0.079

HTNQE
0.5 0.050 0.026 0.049 0.201

HT emp
0.9 0.040 0.026 0.047 0.080

HTNQE
0.9 0.057 0.026 0.049 0.284

Likelihood Ratio
LRexp 0.061 0.026 0.050 0.314
LRPar 0.061 0.026 0.050 0.314
LRcons 0.061 0.026 0.050 0.314

Heuristics

KS 0.043 0.026 0.047 0.140
Bemp

3 0.042 0.026 0.047 0.093

BNQE
3 0.042 0.026 0.047 0.093

Bemp
4 0.042 0.026 0.047 0.093

BNQE
4 0.042 0.026 0.047 0.093

HT emp
0.1 + Bemp

3 0.042 0.026 0.047 0.092

HTNQE
0.1 + BNQE

3 0.044 0.026 0.048 0.124
HT emp

0.5 + Bemp
3 0.040 0.026 0.047 0.079

HTNQE
0.5 + BNQE

3 0.050 0.026 0.049 0.201
HT emp

0.9 + Bemp
3 0.040 0.026 0.047 0.080

HTNQE
0.9 + BNQE

3 0.057 0.026 0.049 0.284

LRexp + BNQE
3 0.061 0.026 0.050 0.314

LRPar + BNQE
3 0.061 0.026 0.050 0.314

LRcons + BNQE
3 0.061 0.026 0.050 0.314

KS + BNQE
3 0.043 0.026 0.047 0.140
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Table 36: Mean Relative Error: 0.25 Emp + 0.75 Exp(1), ρ = 0.475, n = 500

MRE
IE[W ] IP{W ≥ 20} IP{W ≥ 30} IP{W ≥ 40}
= 4.0235 ≈ 0.0377 ≈ 0.0095 ≈ 0.0024

Theoretical
Fitted Exp 1.14 3.17 8.54 20.9
Fitted Par 1.31E+56 25.5 104 419
Empirical 0.182 0.359 0.542 0.751

Quasi-Empirical

NQEexp 0.182 0.360 0.544 0.753
NQEPar 0.184 0.366 0.555 0.771
CQEexp 0.182 0.360 0.543 0.752
CQEPar 0.165 0.314 0.467 0.637

Hypothesis Test

HT emp
0.1 0.184 0.366 0.555 0.771

HTNQE
0.1 0.184 0.366 0.555 0.771

HT emp
0.5 0.184 0.366 0.555 0.771

HTNQE
0.5 0.184 0.366 0.555 0.771

HT emp
0.9 0.184 0.366 0.555 0.771

HTNQE
0.9 0.184 0.366 0.555 0.771

Likelihood Ratio
LRexp 0.182 0.360 0.544 0.753
LRPar 0.182 0.360 0.544 0.753
LRcons 0.182 0.360 0.544 0.753

Heuristics

KS 0.183 0.362 0.547 0.759
Bemp

3 0.184 0.366 0.555 0.771

BNQE
3 0.184 0.366 0.555 0.771

Bemp
4 0.184 0.366 0.555 0.771

BNQE
4 0.184 0.366 0.555 0.771

HT emp
0.1 + Bemp

3 0.184 0.366 0.555 0.771

HTNQE
0.1 + BNQE

3 0.184 0.366 0.555 0.771
HT emp

0.5 + Bemp
3 0.184 0.366 0.555 0.771

HTNQE
0.5 + BNQE

3 0.184 0.366 0.555 0.771
HT emp

0.9 + Bemp
3 0.184 0.366 0.555 0.771

HTNQE
0.9 + BNQE

3 0.184 0.366 0.555 0.771

LRexp + BNQE
3 0.182 0.360 0.544 0.753

LRPar + BNQE
3 0.182 0.360 0.544 0.753

LRcons + BNQE
3 0.182 0.360 0.544 0.753

KS + BNQE
3 0.183 0.362 0.547 0.759
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Table 37: Mean Relative Error: 0.75 Unif(0,10) + 0.25 Exp(1), ρ = 0.325, n = 500

MRE
IE[W ] IP{W ≥ 5} IP{W ≥ 10} IP{W ≥ 20}
= 1.5431 ≈ 0.1259 ≈ 0.0412 ≈ 0.0035

Theoretical
Fitted Exp 1.03 0.534 1.79 10.5
Fitted Par 6.04E+64 6.94 23.3 282
Empirical 0.331 0.351 0.449 1.02

Quasi-Empirical

NQEexp 0.331 0.351 0.449 1.03
NQEPar 0.333 0.352 0.451 1.05
CQEexp 0.331 0.351 0.449 1.03
CQEPar 0.311 0.337 0.401 0.889

Hypothesis Test

HT emp
0.1 0.333 0.352 0.451 1.05

HTNQE
0.1 0.333 0.352 0.451 1.05

HT emp
0.5 0.333 0.352 0.451 1.05

HTNQE
0.5 0.333 0.352 0.451 1.05

HT emp
0.9 0.333 0.352 0.451 1.05

HTNQE
0.9 0.333 0.352 0.451 1.05

Likelihood Ratio
LRexp 0.331 0.351 0.449 1.03
LRPar 0.331 0.351 0.449 1.03
LRcons 0.331 0.351 0.449 1.03

Heuristics

KS 0.332 0.351 0.449 1.03
Bemp

3 0.333 0.352 0.451 1.05

BNQE
3 0.333 0.352 0.451 1.05

Bemp
4 0.333 0.352 0.451 1.05

BNQE
4 0.333 0.352 0.451 1.05

HT emp
0.1 + Bemp

3 0.333 0.352 0.451 1.05

HTNQE
0.1 + BNQE

3 0.333 0.352 0.451 1.05
HT emp

0.5 + Bemp
3 0.333 0.352 0.451 1.05

HTNQE
0.5 + BNQE

3 0.333 0.352 0.451 1.05
HT emp

0.9 + Bemp
3 0.333 0.352 0.451 1.05

HTNQE
0.9 + BNQE

3 0.333 0.352 0.451 1.05

LRexp + BNQE
3 0.331 0.351 0.449 1.03

LRPar + BNQE
3 0.331 0.351 0.449 1.03

LRcons + BNQE
3 0.331 0.351 0.449 1.03

KS + BNQE
3 0.332 0.351 0.449 1.03
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Table 38: Mean Relative Error: 0.25 Unif(0,10) + 0.75 Par(10,4), ρ = 0.625, n =
500

MRE
IE[W ] IP{W ≥ 50} IP{W ≥ 70} IP{W ≥ 90}
= 13.352 ≈ 0.0593 ≈ 0.0283 ≈ 0.0149

Theoretical
Fitted Exp 0.572 1.37 1.74 1.88
Fitted Par 1.88E+53 15.9 34.3 66.1
Empirical 0.227 0.411 0.602 0.842

Quasi-Empirical

NQEexp 0.173 0.323 0.466 0.644
NQEPar 0.219 0.365 0.487 0.597
CQEexp 0.219 0.411 0.592 0.799
CQEPar 0.134 0.335 0.527 0.691

Hypothesis Test

HT emp
0.1 0.219 0.365 0.487 0.597

HTNQE
0.1 0.219 0.365 0.487 0.597

HT emp
0.5 0.219 0.365 0.487 0.597

HTNQE
0.5 0.219 0.365 0.487 0.597

HT emp
0.9 0.219 0.365 0.487 0.597

HTNQE
0.9 0.219 0.365 0.487 0.597

Likelihood Ratio
LRexp 0.177 0.329 0.479 0.667
LRPar 0.212 0.368 0.500 0.619
LRcons 0.177 0.329 0.479 0.667

Heuristics

KS 0.219 0.368 0.494 0.606
Bemp

3 0.219 0.365 0.487 0.597

BNQE
3 0.219 0.365 0.487 0.597

Bemp
4 0.209 0.371 0.509 0.671

BNQE
4 0.170 0.291 0.376 0.485

HT emp
0.1 + Bemp

3 0.219 0.365 0.487 0.597

HTNQE
0.1 + BNQE

3 0.219 0.365 0.487 0.597
HT emp

0.5 + Bemp
3 0.219 0.365 0.487 0.597

HTNQE
0.5 + BNQE

3 0.219 0.365 0.487 0.597
HT emp

0.9 + Bemp
3 0.219 0.365 0.487 0.597

HTNQE
0.9 + BNQE

3 0.219 0.365 0.487 0.597

LRexp + BNQE
3 0.177 0.329 0.479 0.667

LRPar + BNQE
3 0.212 0.368 0.500 0.619

LRcons + BNQE
3 0.177 0.329 0.479 0.667

KS + BNQE
3 0.219 0.368 0.494 0.606
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Table 39: Mean Relative Error: 0.75 Unif(0, 10) + 0.25 Par(10,4), ρ = 0.375, n =
500

MRE
IE[W ] IP{W ≥ 20} IP{W ≥ 30} IP{W ≥ 40}
= 3.3107 ≈ 0.0384 ≈ 0.0173 ≈ 0.0091

Theoretical
Fitted Exp 0.361 0.849 0.794 0.489
Fitted Par 8.02E+56 25.1 57.0 109
Empirical 0.222 0.322 0.499 0.728

Quasi-Empirical

NQEexp 0.129 0.264 0.355 0.513
NQEPar 0.282 0.319 0.429 0.544
CQEexp 0.214 0.322 0.498 0.716
CQEPar 0.094 0.262 0.543 0.743

Hypothesis Test

HT emp
0.1 0.282 0.319 0.429 0.544

HTNQE
0.1 0.282 0.319 0.429 0.544

HT emp
0.5 0.282 0.319 0.429 0.544

HTNQE
0.5 0.282 0.319 0.429 0.544

HT emp
0.9 0.282 0.319 0.429 0.544

HTNQE
0.9 0.282 0.319 0.429 0.544

Likelihood Ratio
LRexp 0.129 0.264 0.355 0.513
LRPar 0.212 0.285 0.443 0.640
LRcons 0.129 0.264 0.355 0.513

Heuristics

KS 0.245 0.294 0.423 0.574
Bemp

3 0.282 0.319 0.429 0.544

BNQE
3 0.282 0.319 0.429 0.544

Bemp
4 0.229 0.310 0.430 0.588

BNQE
4 0.151 0.258 0.242 0.305

HT emp
0.1 + Bemp

3 0.282 0.319 0.429 0.544

HTNQE
0.1 + BNQE

3 0.282 0.319 0.429 0.544
HT emp

0.5 + Bemp
3 0.282 0.319 0.429 0.544

HTNQE
0.5 + BNQE

3 0.282 0.319 0.429 0.544
HT emp

0.9 + Bemp
3 0.282 0.319 0.429 0.544

HTNQE
0.9 + BNQE

3 0.282 0.319 0.429 0.544

LRexp + BNQE
3 0.129 0.264 0.355 0.513

LRPar + BNQE
3 0.212 0.285 0.443 0.640

LRcons + BNQE
3 0.129 0.264 0.355 0.513

KS + BNQE
3 0.245 0.294 0.423 0.574
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A.3 Numerical Results: One Thousand Observed Service
Times

In this section, we provide the detailed results that are not presented in Section 5.3.2

for n = 1000 in Tables 40 to 49.

Table 40: Mean Relative Error: Exp(1), ρ = 0.75, n = 1000

MRE
IE[W ] IP{W ≥ 10} IP{W ≥ 15} IP{W ≥ 20}
= 3 ≈ 0.062 ≈ 0.018 ≈ 0.005

Theoretical
Fitted Exp 0.097 0.211 0.304 0.401
Fitted Par 1.05E+78 15.23 55.58 196
Empirical 0.098 0.216 0.314 0.416

Quasi-Empirical

NQEexp 0.098 0.213 0.307 0.407
NQEPar 0.430 0.536 1.33 3.21
CQEexp 0.098 0.216 0.314 0.419
CQEPar 0.131 0.297 0.389 0.445

Hypothesis Test

HT emp
0.1 0.430 0.536 1.33 3.21

HTNQE
0.1 0.430 0.536 1.33 3.21

HT emp
0.5 0.430 0.536 1.33 3.21

HTNQE
0.5 0.430 0.536 1.33 3.21

HT emp
0.9 0.430 0.536 1.33 3.21

HTNQE
0.9 0.430 0.536 1.33 3.21

Likelihood Ratio
LRexp 0.098 0.213 0.307 0.407
LRPar 0.098 0.212 0.305 0.407
LRcons 0.098 0.213 0.307 0.407

Heuristics

KS 0.098 0.213 0.307 0.407
Bemp

3 0.247 0.445 1.04 2.33

BNQE
3 0.247 0.445 1.04 2.33

Bemp
4 0.108 0.242 0.428 0.725

BNQE
4 0.108 0.238 0.421 0.714

HT emp
0.1 + Bemp

3 0.247 0.445 1.04 2.33

HTNQE
0.1 + BNQE

3 0.247 0.445 1.04 2.33
HT emp

0.5 + Bemp
3 0.247 0.445 1.04 2.33

HTNQE
0.5 + BNQE

3 0.247 0.445 1.04 2.33
HT emp

0.9 + Bemp
3 0.247 0.445 1.04 2.33

HTNQE
0.9 + BNQE

3 0.247 0.445 1.04 2.33

LRexp + BNQE
3 0.098 0.213 0.307 0.407

LRPar + BNQE
3 0.098 0.212 0.305 0.407

LRcons + BNQE
3 0.098 0.213 0.307 0.407

KS + BNQE
3 0.098 0.213 0.307 0.407
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Table 41: Mean Relative Error: Par(10,3.5), ρ = 0.75, n = 1000

Mean Relative Error
IE[W ] IP{W ≥ 150} IP{W ≥ 200} IP{W ≥ 250}
= 45 ≈ 0.056 ≈ 0.032 ≈ 0.020

Theoretical
Fitted Exp 0.182 0.505 0.434 0.453
Fitted Par 0.146 0.244 0.288 0.317
Empirical 0.906 0.584 0.887 1.23

Quasi-Empirical

NQEexp 0.788 0.613 0.867 1.12
NQEPar 0.175 0.283 0.343 0.388
CQEexp 0.595 0.582 0.854 1.14
CQEPar 0.396 0.766 0.884 0.945

Hypothesis Test

HT emp
0.1 0.213 0.326 0.415 0.492

HTNQE
0.1 0.186 0.310 0.374 0.420

HT emp
0.5 0.236 0.379 0.509 0.631

HTNQE
0.5 0.206 0.361 0.455 0.527

HT emp
0.9 0.267 0.423 0.589 0.755

HTNQE
0.9 0.222 0.402 0.515 0.606

Likelihood Ratio
LRexp 0.774 0.551 0.792 1.04
LRPar 0.707 0.385 0.528 0.684
LRcons 0.774 0.551 0.792 1.04

Heuristics

KS 0.175 0.283 0.343 0.388
Bemp

3 0.175 0.283 0.343 0.388

BNQE
3 0.175 0.283 0.343 0.388

Bemp
4 0.906 0.584 0.887 1.23

BNQE
4 0.788 0.613 0.867 1.12

HT emp
0.1 + Bemp

3 0.213 0.326 0.415 0.492

HTNQE
0.1 + BNQE

3 0.186 0.310 0.374 0.420
HT emp

0.5 + Bemp
3 0.236 0.379 0.509 0.631

HTNQE
0.5 + BNQE

3 0.206 0.361 0.455 0.527
HT emp

0.9 + Bemp
3 0.267 0.423 0.589 0.755

HTNQE
0.9 + BNQE

3 0.222 0.402 0.515 0.606

LRexp + BNQE
3 0.774 0.551 0.792 1.04

LRPar + BNQE
3 0.707 0.385 0.528 0.684

LRcons + BNQE
3 0.774 0.551 0.792 1.04

KS + BNQE
3 0.175 0.283 0.343 0.388
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Table 42: Mean Relative Error: Par(10,4), ρ = 0.75, n = 1000

MRE
IE[W ] IP{W ≥ 100} IP{W ≥ 120} IP{W ≥ 140}
= 30 ≈ 0.060 ≈ 0.039 ≈ 0.025

Theoretical
Fitted Exp 0.504 1.35 1.61 1.821
Fitted Par 0.078 0.166 0.195 0.223
Empirical 0.133 0.297 0.389 0.492

Quasi-Empirical

NQEexp 0.131 0.329 0.412 0.495
NQEPar 0.086 0.175 0.208 0.240
CQEexp 0.123 0.293 0.376 0.465
CQEPar 0.217 0.507 0.600 0.681

Hypothesis Test

HT emp
0.1 0.085 0.175 0.209 0.242

HTNQE
0.1 0.085 0.177 0.212 0.246

HT emp
0.5 0.109 0.223 0.281 0.343

HTNQE
0.5 0.100 0.223 0.269 0.314

HT emp
0.9 0.114 0.239 0.307 0.381

HTNQE
0.9 0.106 0.242 0.298 0.354

Likelihood Ratio
LRexp 0.109 0.261 0.326 0.394
LRPar 0.088 0.181 0.214 0.248
LRcons 0.110 0.264 0.330 0.398

Heuristics

KS 0.086 0.175 0.208 0.240
Bemp

3 0.086 0.175 0.208 0.240

BNQE
3 0.086 0.175 0.208 0.240

Bemp
4 0.106 0.229 0.289 0.355

BNQE
4 0.091 0.216 0.265 0.316

HT emp
0.1 + Bemp

3 0.085 0.175 0.209 0.242

HTNQE
0.1 + BNQE

3 0.085 0.177 0.212 0.246
HT emp

0.5 + Bemp
3 0.109 0.223 0.281 0.343

HTNQE
0.5 + BNQE

3 0.100 0.223 0.269 0.314
HT emp

0.9 + Bemp
3 0.114 0.239 0.307 0.381

HTNQE
0.9 + BNQE

3 0.106 0.242 0.298 0.354

LRexp + BNQE
3 0.109 0.261 0.326 0.394

LRPar + BNQE
3 0.088 0.181 0.214 0.248

LRcons + BNQE
3 0.110 0.264 0.330 0.398

KS + BNQE
3 0.086 0.175 0.208 0.240
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Table 43: Mean Relative Error: Par(10,5), ρ ' 0.67, n = 1000

Mean Relative Error
IE[W ] IP{W ≥ 50} IP{W ≥ 70} IP{W ≥ 100}
= 15 ≈ 0.0656 ≈ 0.0262 ≈ 0.0070

Theoretical
Fitted Exp 0.787 1.93 3.46 6.948
Fitted Par 0.038 0.084 0.120 0.176
Empirical 0.058 0.130 0.219 0.427

Quasi-Empirical

NQEexp 0.099 0.246 0.410 0.748
NQEPar 0.040 0.089 0.129 0.194
CQEexp 0.056 0.129 0.215 0.392
CQEPar 0.086 0.211 0.314 0.468

Hypothesis Test

HT emp
0.1 0.040 0.090 0.131 0.196

HTNQE
0.1 0.048 0.109 0.164 0.263

HT emp
0.5 0.045 0.099 0.153 0.263

HTNQE
0.5 0.062 0.147 0.235 0.407

HT emp
0.9 0.048 0.107 0.171 0.306

HTNQE
0.9 0.064 0.151 0.242 0.424

Likelihood Ratio
LRexp 0.052 0.126 0.194 0.314
LRPar 0.042 0.094 0.138 0.209
LRcons 0.052 0.126 0.194 0.314

Heuristics

KS 0.040 0.090 0.130 0.195
Bemp

3 0.040 0.089 0.129 0.194

BNQE
3 0.040 0.089 0.129 0.194

Bemp
4 0.040 0.089 0.129 0.194

BNQE
4 0.040 0.089 0.129 0.194

HT emp
0.1 + Bemp

3 0.040 0.090 0.131 0.196

HTNQE
0.1 + BNQE

3 0.048 0.109 0.164 0.263
HT emp

0.5 + Bemp
3 0.045 0.099 0.153 0.263

HTNQE
0.5 + BNQE

3 0.062 0.147 0.235 0.407
HT emp

0.9 + Bemp
3 0.048 0.107 0.171 0.306

HTNQE
0.9 + BNQE

3 0.064 0.151 0.242 0.424

LRexp + BNQE
3 0.052 0.126 0.194 0.314

LRPar + BNQE
3 0.042 0.094 0.138 0.209

LRcons + BNQE
3 0.052 0.126 0.194 0.314

KS + BNQE
3 0.040 0.090 0.130 0.195
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Table 44: Mean Relative Error: Par(10,10), ρ = 0.5625, n = 1000

MRE
IE[W ] IP{W ≥ 10} IP{W ≥ 30} IP{W ≥ 50}
= 7.35 ≈ 0.2787 ≈ 0.0444 ≈ 0.0071

Theoretical
Fitted Exp 0.971 0.369 2.95 10.4
Fitted Par 0.010 0.010 0.026 0.044
Empirical 0.011 0.010 0.029 0.048

Quasi-Empirical

NQEexp 0.108 0.046 0.324 1.10
NQEPar 0.010 0.010 0.026 0.042
CQEexp 0.011 0.010 0.029 0.048
CQEPar 0.016 0.014 0.043 0.071

Hypothesis Test

HT emp
0.1 0.010 0.010 0.026 0.043

HTNQE
0.1 0.019 0.013 0.053 0.139

HT emp
0.5 0.010 0.010 0.026 0.043

HTNQE
0.5 0.028 0.016 0.081 0.237

HT emp
0.9 0.011 0.010 0.027 0.045

HTNQE
0.9 0.037 0.020 0.108 0.333

Likelihood Ratio
LRexp 0.081 0.036 0.242 0.808
LRPar 0.055 0.026 0.161 0.523
LRcons 0.081 0.036 0.242 0.808

Heuristics

KS 0.010 0.010 0.026 0.043
Bemp

3 0.010 0.010 0.026 0.042

BNQE
3 0.010 0.010 0.026 0.042

Bemp
4 0.010 0.010 0.026 0.042

BNQE
4 0.010 0.010 0.026 0.042

HT emp
0.1 + Bemp

3 0.010 0.010 0.026 0.043

HTNQE
0.1 + BNQE

3 0.019 0.013 0.053 0.139
HT emp

0.5 + Bemp
3 0.010 0.010 0.026 0.043

HTNQE
0.5 + BNQE

3 0.028 0.016 0.081 0.237
HT emp

0.9 + Bemp
3 0.011 0.010 0.027 0.045

HTNQE
0.9 + BNQE

3 0.037 0.020 0.108 0.333

LRexp + BNQE
3 0.081 0.036 0.242 0.808

LRPar + BNQE
3 0.055 0.026 0.161 0.523

LRcons + BNQE
3 0.081 0.036 0.242 0.808

KS + BNQE
3 0.010 0.010 0.026 0.043
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Table 45: Mean Relative Error: Unif(0,1), ρ = 0.25, n = 1000

MRE
IE[W ] IP{W ≥ 0.05} IP{W ≥ 0.1} IP{W ≥ 0.5}
= 0.11 ≈ 0.2135 ≈ 0.0919 ≈ 0.0165

Theoretical
Fitted Exp 0.495 0.018 0.281 2.37
Fitted Par 3.03E+77 3.68 9.89 59.7
Empirical 0.026 0.017 0.031 0.053

Quasi-Empirical

NQEexp 0.059 0.017 0.037 0.348
NQEPar 0.027 0.017 0.031 0.057
CQEexp 0.026 0.017 0.031 0.053
CQEPar 0.026 0.017 0.031 0.054

Hypothesis Test

HT emp
0.1 0.027 0.017 0.031 0.057

HTNQE
0.1 0.033 0.017 0.033 0.116

HT emp
0.5 0.026 0.017 0.031 0.053

HTNQE
0.5 0.039 0.017 0.032 0.169

HT emp
0.9 0.026 0.017 0.031 0.053

HTNQE
0.9 0.057 0.017 0.037 0.325

Likelihood Ratio
LRexp 0.059 0.017 0.037 0.348
LRPar 0.059 0.017 0.037 0.348
LRcons 0.059 0.017 0.037 0.348

Heuristics

KS 0.030 0.017 0.030 0.105
Bemp

3 0.027 0.017 0.031 0.057

BNQE
3 0.027 0.017 0.031 0.057

Bemp
4 0.027 0.017 0.031 0.057

BNQE
4 0.027 0.017 0.031 0.057

HT emp
0.1 + Bemp

3 0.027 0.017 0.031 0.057

HTNQE
0.1 + BNQE

3 0.033 0.017 0.033 0.116
HT emp

0.5 + Bemp
3 0.026 0.017 0.031 0.053

HTNQE
0.5 + BNQE

3 0.039 0.017 0.032 0.169
HT emp

0.9 + Bemp
3 0.026 0.017 0.031 0.053

HTNQE
0.9 + BNQE

3 0.057 0.017 0.037 0.325

LRexp + BNQE
3 0.059 0.017 0.037 0.348

LRPar + BNQE
3 0.059 0.017 0.037 0.348

LRcons + BNQE
3 0.059 0.017 0.037 0.348

KS + BNQE
3 0.030 0.017 0.030 0.105
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Table 46: Mean Relative Error: 0.25 Unif(0,10) + 0.75Exp(1), ρ = 0.475, n = 1000

MRE
IE[W ] IP{W ≥ 20} IP{W ≥ 30} IP{W ≥ 40}
= 4.0235 ≈ 0.0377 ≈ 0.0095 ≈ 0.0024

Theoretical
Fitted Exp 1.14 3.17 8.54 20.9
Fitted Par 6.26E+64 25.5 104 419
Empirical 0.181 0.357 0.538 0.743

Quasi-Empirical

NQEexp 0.182 0.358 0.539 0.746
NQEPar 0.184 0.364 0.551 0.765
CQEexp 0.181 0.357 0.538 0.744
CQEPar 0.172 0.331 0.494 0.677

Hypothesis Test

HT emp
0.1 0.184 0.364 0.551 0.765

HTNQE
0.1 0.184 0.364 0.551 0.765

HT emp
0.5 0.184 0.364 0.551 0.765

HTNQE
0.5 0.184 0.364 0.551 0.765

HT emp
0.9 0.184 0.364 0.551 0.765

HTNQE
0.9 0.184 0.364 0.551 0.765

Likelihood Ratio
LRexp 0.182 0.358 0.539 0.746
LRPar 0.182 0.358 0.539 0.746
LRcons 0.182 0.358 0.539 0.746

Heuristics

KS 0.182 0.359 0.542 0.750
Bemp

3 0.184 0.364 0.551 0.765

BNQE
3 0.184 0.364 0.551 0.765

Bemp
4 0.184 0.364 0.551 0.765

BNQE
4 0.184 0.364 0.551 0.765

HT emp
0.1 + Bemp

3 0.184 0.364 0.551 0.765

HTNQE
0.1 + BNQE

3 0.184 0.364 0.551 0.765
HT emp

0.5 + Bemp
3 0.184 0.364 0.551 0.765

HTNQE
0.5 + BNQE

3 0.184 0.364 0.551 0.765
HT emp

0.9 + Bemp
3 0.184 0.364 0.551 0.765

HTNQE
0.9 + BNQE

3 0.184 0.364 0.551 0.765

LRexp + BNQE
3 0.182 0.358 0.539 0.746

LRPar + BNQE
3 0.182 0.358 0.539 0.746

LRcons + BNQE
3 0.182 0.358 0.539 0.746

KS + BNQE
3 0.182 0.359 0.542 0.750
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Table 47: Mean Relative Error: 0.75 Unif(0,10) + 0.25Exp(1), ρ = 0.325, n = 1000

MRE
IE[W ] IP{W ≥ 5} IP{W ≥ 10} IP{W ≥ 20}
= 1.5431 ≈ 0.1259 ≈ 0.0412 ≈ 0.0035

Theoretical
Fitted Exp 1.03 0.534 1.79 10.5
Fitted Par 2.37E+69 6.94 23.3 282
Empirical 0.330 0.351 0.446 1.02

Quasi-Empirical

NQEexp 0.330 0.351 0.446 1.02
NQEPar 0.332 0.352 0.449 1.04
CQEexp 0.330 0.351 0.446 1.02
CQEPar 0.318 0.343 0.417 0.929

Hypothesis Test

HT emp
0.1 0.332 0.352 0.449 1.04

HTNQE
0.1 0.332 0.352 0.449 1.04

HT emp
0.5 0.332 0.352 0.449 1.04

HTNQE
0.5 0.332 0.352 0.449 1.04

HT emp
0.9 0.332 0.352 0.449 1.04

HTNQE
0.9 0.332 0.352 0.449 1.04

Likelihood Ratio
LRexp 0.330 0.351 0.446 1.02
LRPar 0.330 0.351 0.446 1.02
LRcons 0.330 0.351 0.446 1.02

Heuristics

KS 0.331 0.351 0.447 1.03
Bemp

3 0.332 0.352 0.449 1.04

BNQE
3 0.332 0.352 0.449 1.04

Bemp
4 0.332 0.352 0.449 1.04

BNQE
4 0.332 0.352 0.449 1.04

HT emp
0.1 + Bemp

3 0.332 0.352 0.449 1.04

HTNQE
0.1 + BNQE

3 0.332 0.352 0.449 1.04
HT emp

0.5 + Bemp
3 0.332 0.352 0.449 1.04

HTNQE
0.5 + BNQE

3 0.332 0.352 0.449 1.04
HT emp

0.9 + Bemp
3 0.332 0.352 0.449 1.04

HTNQE
0.9 + BNQE

3 0.332 0.352 0.449 1.04

LRexp + BNQE
3 0.330 0.351 0.446 1.02

LRPar + BNQE
3 0.330 0.351 0.446 1.02

LRcons + BNQE
3 0.330 0.351 0.446 1.02

KS + BNQE
3 0.331 0.351 0.447 1.03
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Table 48: Mean Relative Error: 0.25 Unif(0,10) + 0.75 Par(10,4), ρ = 0.625, n =
1000

MRE
IE[W ] IP{W ≥ 50} IP{W ≥ 70} IP{W ≥ 90}
= 13.352 ≈ 0.0593 ≈ 0.0283 ≈ 0.0149

Theoretical
Fitted Exp 0.576 1.38 1.75 1.88
Fitted Par 1.65E+86 15.9 34.3 66.1
Empirical 0.178 0.336 0.451 0.602

Quasi-Empirical

NQEexp 0.090 0.200 0.274 0.390
NQEPar 0.191 0.315 0.394 0.459
CQEexp 0.177 0.336 0.451 0.593
CQEPar 0.074 0.194 0.386 0.576

Hypothesis Test

HT emp
0.1 0.191 0.315 0.394 0.459

HTNQE
0.1 0.191 0.315 0.394 0.459

HT emp
0.5 0.191 0.315 0.394 0.459

HTNQE
0.5 0.191 0.315 0.394 0.459

HT emp
0.9 0.191 0.315 0.394 0.459

HTNQE
0.9 0.191 0.315 0.394 0.459

Likelihood Ratio
LRexp 0.095 0.208 0.283 0.395
LRPar 0.189 0.313 0.391 0.458
LRcons 0.095 0.208 0.283 0.395

Heuristics

KS 0.191 0.315 0.394 0.459
Bemp

3 0.191 0.315 0.394 0.459

BNQE
3 0.191 0.315 0.394 0.459

Bemp
4 0.177 0.320 0.403 0.502

BNQE
4 0.104 0.197 0.221 0.273

HT emp
0.1 + Bemp

3 0.191 0.315 0.394 0.459

HTNQE
0.1 + BNQE

3 0.191 0.315 0.394 0.459
HT emp

0.5 + Bemp
3 0.191 0.315 0.394 0.459

HTNQE
0.5 + BNQE

3 0.191 0.315 0.394 0.459
HT emp

0.9 + Bemp
3 0.191 0.315 0.394 0.459

HTNQE
0.9 + BNQE

3 0.191 0.315 0.394 0.459

LRexp + BNQE
3 0.095 0.208 0.283 0.395

LRPar + BNQE
3 0.189 0.313 0.391 0.458

LRcons + BNQE
3 0.095 0.208 0.283 0.395

KS + BNQE
3 0.191 0.315 0.394 0.459
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Table 49: Mean Relative Error: 0.75 Unif(0,10) + 0.25Par(10,4), ρ = 0.375, n =
1000

MRE
IE[W ] IP{W ≥ 20} IP{W ≥ 30} IP{W ≥ 40}
= 3.3107 ≈ 0.0384 ≈ 0.0173 ≈ 0.0091

Theoretical
Fitted Exp 0.357 0.839 0.779 0.464
Fitted Par 6.08E+70 25.1 57.0 109
Empirical 0.225 0.237 0.306 0.460

Quasi-Empirical

NQEexp 0.093 0.171 0.242 0.471
NQEPar 0.234 0.253 0.303 0.361
CQEexp 0.198 0.237 0.306 0.457
CQEPar 0.051 0.151 0.433 0.682

Hypothesis Test

HT emp
0.1 0.234 0.253 0.303 0.361

HTNQE
0.1 0.234 0.253 0.303 0.361

HT emp
0.5 0.234 0.253 0.303 0.361

HTNQE
0.5 0.234 0.253 0.303 0.361

HT emp
0.9 0.234 0.253 0.303 0.361

HTNQE
0.9 0.234 0.253 0.303 0.361

Likelihood Ratio
LRexp 0.093 0.171 0.242 0.471
LRPar 0.186 0.226 0.311 0.430
LRcons 0.093 0.171 0.242 0.471

Heuristics

KS 0.231 0.252 0.306 0.370
Bemp

3 0.234 0.253 0.303 0.361

BNQE
3 0.234 0.253 0.303 0.361

Bemp
4 0.233 0.235 0.275 0.367

BNQE
4 0.131 0.189 0.155 0.263

HT emp
0.1 + Bemp

3 0.234 0.253 0.303 0.361

HTNQE
0.1 + BNQE

3 0.234 0.253 0.303 0.361
HT emp

0.5 + Bemp
3 0.234 0.253 0.303 0.361

HTNQE
0.5 + BNQE

3 0.234 0.253 0.303 0.361
HT emp

0.9 + Bemp
3 0.234 0.253 0.303 0.361

HTNQE
0.9 + BNQE

3 0.234 0.253 0.303 0.361

LRexp + BNQE
3 0.093 0.171 0.242 0.471

LRPar + BNQE
3 0.186 0.226 0.311 0.430

LRcons + BNQE
3 0.093 0.171 0.242 0.471

KS + BNQE
3 0.231 0.252 0.306 0.370

133



REFERENCES

[1] Abate, J., Choudhury, G. L., and Whitt, W., “Waiting-time tail proba-
bilities in queues with long-tail service-time distributions,” Queueing Systems,
vol. 16, no. 3-4, pp. 311–338, 1994.

[2] Alves, M. F., “A location invariant hill-type estimator,” Extremes, vol. 4, no. 3,
pp. 199–217, 2001.
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