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SUMMARY 

This dissertation describes an improved algorithm for the esti­

mation and control of nongaussian stochastic systems. It is assumed that 

the plant and measurement noises are bounded with the specific bounds 

and density functions known. The system is to be controlled to minimize 

a cost criterion that encompasses both the standard quadratic performance 

index and the error in the estimation of the plant states. 

The development of the combined estimation and control algorithm 

for a noisy, discrete linear system depends on the applicability of the 

Ŝeparation Theorem. Its validity for this case is demonstrated in a 

proof by dynamic programming resulting in a Riccati controller operating 

on the least-mean-square estimate. A moment technique is used in apply­

ing Bayes-law computation to obtain this estimate. The conditional den­

sity functions required in the Bayes-law computation are either expressed 

directly in terms of their moments or approximated by polynomials whose 

coefficients are functions of the moments. To evaluate the expected 

value of cross-products of the plant state and estimate, the estimate is 

expanded into a truncated polynomial. A rather complex relationship 

depending on the value of the measurement is obtained for this cross-

product. The estimate of the plant state is then combined with the 

Riccati controller to yield the improved estimation and control algori­

thm. 

The approximately optimal algorithm is applied both to linear and 
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nonlinear systems. To implement the algorithm for the nonlinear plant, 

linear perturbations about a nominal trajectory are assumed,, In both 

linear and nonlinear cases, the use of the algorithm improves the perfor­

mance and estimation error over that obtained from the combination of the 

Riccati controller and the Kalman filter. From further considerations 

of the approximately optimal algorithm, a specific controller is syn­

thesized which improves system performance for a fixed nonoptimal filter 

over the use of a Riccati controller with the nonoptimal filter. 

The basic algorithm for the linear, nongaussian, stochastic system 

was shown to be sensitive to incorrect data statistics. However, when 

correct data was used, particular examples demonstrated that the primary 

improvement was the resulting lower estimation error. It is expected 

that for other systems improvement in the standard quadratic performance 

index can be achieved by using this basic algorithm. 
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CHAPTER I 

INTRODUCTION 

Motivation 

Modern design approaches for deterministic control systems have 

utilized such variational methods as Bellman's Dynamic Programming and 

Pontryagin's Maximum Principle. Because the optimal closed-loop control 

law found by these methods is a function of the plant states, it is 

often assumed that these states are exactly measurable. This assumption 

is usually not justified in practical systems due to instrumentation 

errors and external disturbances. Thus, it becomes necessary in such 

cases to estimate the plant states for closed-loop control purposes. 

This estimation and its subsequent use for control is referred to as 

the combined estimation and control problem. 

The usual approach to the combined estimation and control problem 

has been to use the Kalman-Bucy (linear) filter with the deterministic 

optimal controller to obtain a closed-loop solution. For this solution 

to be optimal, the system must be linear and the disturbances gaussian. 

Nevertheless, even though these assumptions are rarely satisfied, the 

number of applications of the Kalman-Bucy filter in physical systems 

has rapidly increased in recent, years. For example, the Kalman-Bucy 

filter has been used in the guidance of Rangers VI and VII as well as 

in the analysis of test data from the Boeing 747. In this dissertation 

the gaussian assumption is relaxed, and the resulting optimal estimator 
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is nonlinear. Previous approaches to the optimal nongaussian combined 

problem have not resulted in computationally feasible solutions. 

The objective of this dissertation is to develop a new computa­

tional technique to yield an approximately optimal solution for the 

linear, nongaussian combined estimation and control problem. Using 

this solution, the nonlinear plant will also be investigated by linear­

izing about a deterministic nominal trajectory. 

Background 

The historical background relevant to this dissertation empha­

sizes recent developments in stochastic system theory, the Separation 

Theorem, approximate solutions for nonlinear systems, estimation theory, 

and specific optimal estimation and control. 

Stochastic System Theory 

General nonlinear stochastic systems have been investigated within 

the last decade with some success. The major difficulty has been the 

associated computational problem. The estimation of the states of a 

nonlinear plant disturbed by gaussian noise was considered by Kushner 

[1,2], His result was the first rigorous treatment of the continuous-

time nonlinear filter and yielded an infinite set of partial stochastic 

differential equations. The equations were the result of application of 

the Kolmogorov forward and backward equations. This nonlinear filtering 

algorithm was also derived with appropriate conditions by Bucy and Joseph 

[3]. W. M. Wonham [4] developed a procedure for analyzing the stochastic 

optimal control problem. He derived an equation analogous to the Hamilton-

Jacobi equation in deterministic control that reduced the control problem 
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to the solution of a functional, equation. However, this stochastic 

Hamilton-Jacobi equation contained the partial differential operator of 

the Kolmogorov equations„ Wonham applied his equation to a linear sys­

tem disturbed by gaussian noise and obtained a solution that could be 

verified by the Separation Theorem. 

Florentin [5] used the method of dynamic programming to obtain a 

nonlinear integro-partial differential, equation whose solution would 

yield both the optimal control and the value of the performance index. 

Because the resulting equations could not easily be solved in general, 

Florentin applied the method only to a linear plant with a quadratic 

performance index and gaussian disturbances. His approach to this pro­

blem yielded a set of ordinary differential equations suited for computer 

solution. Florentin concluded that for certain examples the separate 

optimization of control and estimation functions would also provide the 

optimal control policy. Because of the computational difficulties in 

these approaches, the nonlinear problem has often been linearized and 

the higher order moments neglected. 

The Separation Theorem 

The possibility of the separate optimization of a statistical 

estimator and the performance criterion of the plant to yield a system 

which would be optimal in an overall sense was suggested in 1958 by 

Kalman and Koepcke [6], Booton [7] showed for a linear terminal control 

problem corrupted by gaussian noise that the separate optima imply an 

overall optimum system. With the advent of the Kalman estimator and the 

Duality Principle [8], considerable attention has been devoted to the 
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separate optimization of the estimation and control functions. The first 

proofs of the Separation Theorem were given by Joseph and Tou [9] and by 

Gunckel and Franklin £l0]„ For the linear discrete multivariable con­

trol system subjected to additive white noise, the dynamic programming 

technique was used to show that the independent optimization of the con­

troller and the estimator results in an optimum control system with 

respect to a quadratic performance index. For a similar system, A. R. M. 

Noton [ll] showed that the Separation Theorem is valid when the measure­

ments are a mixture of both continuous and discrete data. The extension 

of the Separation Theorem to continuous linear multivariable plants dis­

turbed by white noise has been shown by Sage [123 anc* Lee [133. Bryson 

and Ho [143 proved via dynamic programming that the Separation Theorem 

is valid for both continuous and discrete linear plants having quadratic 

performance indices with gaussian noise. Alspach and Sorenson [153 

demonstrated that for a linear discrete system with nongaussian distur­

bances the separate optimization of the estimation and control functions 

results in an overall optimal scheme. Curry [163 indicated that the 

Separation Theorem is valid for a linear discrete system with nonlinear 

measurements. However, Alspach and Sorenson [153 asserted that his result 

does not yield the optimal solution. In a paper more recent than [43, 

Wonham [173 used dynamic programming and the Ito-Nisio-Fleming theory of 

functional stochastic differential equations to determine results for 

more general controllers and cost criteria. Specifically, he showed that, 

for a linear continuous plant disturbed by white gaussian noise, the inde­

pendent control and estimation of the plant, is correct regardless of 
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whether the optimal control is linear in the plant state or the cost 

criterion is quadratic. In a generalization of the combined estimation 

and control problem, Meier, Peschon, amd Dressier [18] considered a 

system which had available a control input to the plant as well as to 

a measurement subsystem. In this class of problems referred to as mea­

surement adaptive systems, a linear plant, a quadratic performance index, 

and gaussian disturbances were considered. The authors demonstrated 

that measurement control may be computed a priori and that the plant 

control and state estimation may be performed independently. Koivo [19] 

showed that the separate optimization of the plant control and state 

estimation holds for linear systems containing delayed state variables 

and having a quadratic cost functional. 

Approximate Solutions for Nonlinear Systems 

The computational difficulties accompanying the exact solution of 

nonlinear stochastic systems has led to approximate solutions for these 

systems. Sage [20] presented a method for applying the Kalman filtering 

theory to nonlinear systems. By forming approximate linear perturbational 

equations about the nominal solution of the. nonlinear differential equa­

tions, an approximate estimate may be found by the addition of the nominal 

state and the Kalman estimate of the linear perturbation. Wells [21] 

applied the same technique in the control of a nonlinear reactor. Sunahara 

[22] described another approximation for nonlinear systems called sto­

chastic linearization. The method involves the expansion of the non-

linearity into a linear function whose coefficients are selected to minimize 

mean square error. Sunahara and Ohsumi [23] used this linearization 

technique and a computational approach from dynamic programming to yield 
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a suboptimal approach to the nonlinear, stochastic control problem. 

Regardless of the particular approximations used, nonlinear systems are 

usually handled more expediently by some linearizing technique. 

Estimation Theory 

The estimation of the states of a plant corrupted by additive 

noise is an important aspect in stochastic control. Since the basic 

work of Wiener [24], the major contribution in estimation theory was 

developed by Kalman and Bucy [8,25], They converted the Wiener-Hopf 

integral equation into a nonlinear differential equation containing the 

necessary information for the design of the optimal filter. Their pro­

cedure applies to linear systems corrupted by additive white noise with 

stationary or nonstationary statistics and finite or infinite smoothing 

intervals. Ho and Lee [26] formulated the nonlinear, nongaussian esti­

mation problem from a Bayesian decision viewpoint. However, because of 

the difficulties- in finding the associated marginal and conditional den­

sities, the problem as formulated was intractable except for certain 

very special cases. Schweppe [27] developed a reachable set technique 

which resulted in a recursive algorithm to calculate a time-varying 

ellipsoid that always contained the system's actual state. The proce­

dure permitted the input to the dynamical system and the observation 

errors to be completely unknown except for bounds on their magnitude and 

energy. Kuo and Rowland [28,29] combined a moment technique with the 

reachable set concept in applying the Bayesian decision rule and the 

least-mean-square error criterion to a linear stationary system having 

nongaussian disturbances. This estimator was adaptive because the 
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filter learned the moments of the input noise from the data received and 

suboptimal because densities were approximated by truncated polynomials. 

Bucy and Senne [30] also approached the nonlinear filtering pro­

blem for discrete, nongaussian systems by Bayes-law computation. Density 

storage was accomplished in [30] by a point mass representation on a 

floating grid of indices. Alspach and Sorenson [3l] approximated con­

ditional density functions by a sum of gaussians for nonlinear Bayesian 

estimation. The results in [30,31] represent alternate approaches to 

the basic computational problem considered by Kuo and Rowland [28,29]. 

Earlier, Bryan [32] had developed a zero-order nonlinear estimator which 

applied to discrete nonstationary systems. The difficult problem of 

finding density functions to use in the Bayesian decision approach when 

applied to nongaussian and nonlinear problems inevitably results in 

such approximate filtering algorithms. 

Specific Optimal Estimation and Control 

In those cases where the independent optimization of the control 

and estimation functions is valid, some interest: has been devoted to 

the investigation of suboptimal control and estimation techniques. This 

has been necessary because of the inherent: implementation problem for 

the optimal scheme. Sims and Melsa [33] considered problems of specific 

optimal estimation for linear and nonlinear systems. Their estimation 

scheme was achieved by preselecting the filter configuration with some 

unspecified parameters and optimizing the filter performance by the se­

lection of these parameters. The solution of the associated two-point 

boundary value problem for the specific optimal estimation gave nearly 
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optimal results with considerable reduction in the complexity of imple­

mentation. The design and use of specific optimal controllers was also 

extensively investigated by Agarwal and Sridhar [34] and Murtuza [35], 

Their research was motivated by the undesirable aspects of time-varying 

parameters in the optimal controller structure and by the implementation 

problem mentioned above. A systematic approach for the selection of 

unknown parameters of a fixed controller configuration was presented 

by Murtuza such that the behavior of a class of single input, time-varying 

systems would be nearly optimal. The sensitivity of specific optimal 

controllers to variations in time intervals of optimization and initial 

conditions was investigated by Sims and Melsa [36], They indicated that 

the use of a dynamic controller involving an intermediate system improves 

the performance of the system while reducing the sensitivity to variations. 

Specific optimal control is currently being investigated for 

linear systems disturbed by nongaussian noise. In many specific optimal 

control and estimation schemes found in the literature, the parameters of 

either fixed configuration filters or controllers are adjusted to opti­

mize system performance. Raphael Sivan [37] has shown for the above 

mentioned system with a quadratic performance index that using a linear 

estimator with a linear controller would not be optimal. In fact, Sivan 

[38] demonstrated that for a polynomial controller using the first four 

moments of all random variables, coupled with a linear estimator, better 

results were obtained than for a linear controller with a linear estima­

tor. Thus, it is possible that in those situations where the estimator 

is fixed, the corresponding controller obtained by separate optimization 
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would not result in the best performance. 

Development of the Separation Theorem 

The Separation Theorem permits the separate optimization of the 

control and estimation functions to give an overall optimal solution. 

The following proof of the Separation Theorem for linear systems with 

nongaussian disturbances was developed concurrently with, but indepen­

dently of, the version given in [15], 

Problem Statement 

Consider the linear system given by 

*k+ i= Vk+ Vk + w k ( i a ) 

with a linear measurement of the plant state given as 

) 

zk+i = Vi + \+i ( 1 ' 2 ) 

where x, represents the n-dimensional state vector, u, is the control 

input vector, w, is the system noise vector, v, is the measurement noise 

vector, and z, is the measurement vector of the corrupted state vector. 

The plant and measurement noises are assumed to be zero-mean nongaussian 

white noises with a covariance matrix specified as 

i I1 ] ̂  ^ • 
Q, 0 n 
l 

0 R±J ij 
6.. (1.3) 

The problem is to minimize 

N 
J = 2" El * \ Qxk + uk R \ + ( V \ ) T D ( V V ) (1-4) 
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by filtering the measurement data to yield the best state estimate x, 

and then to use that estimate in a suitable control algorithm. 

Problem Solution 

Using the dynamic programming approach, one may define V-(Z -) 

as the optimal expected value of J for a single-stage control process 

starting at k = N-l obtained by using an optimal control LL. - and by 

knowing the measurements Z , = {z , z-, ••., 2N_-}. Therefore, using 

(1.4) 

VZN-1> - Min T EK-1 ^ -1 + V l RUN-1 ( U 5 ) 

Vi 

.^vrV/^VfWIVi} 

Differentiating (1,5) with respect to IL . and setting the result equal 

to zero to minimize V- (Z ..) yields ir - equals zero, because neither 

x_̂  - nor x^ - are functions of I L .. Using the principle of optimality, 

one may express V«(Z _) as 

VW- " Min T KVW + V-2 QXN-2 + \ - 2 RuN-2 (1-6) 

\ - 2 

+ (xN-2" V 2 ) T D ( V 2 _ W I V 2 

However, l e t t i n g LN - = Q, one may rex^rite V- (Z , ) as 

VW = vA-A-i + (XN-I" Vi ) T D C j ^-r V ^ (1-7) 

By substitution of (1.7) into (1.6), V9(Z 9) becomes 
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Wh-2) - Mln T feiVi+ (Vi" Vi^- i " VI> (1 '8) 

V2 
+ 4-2 ^ - 2 + 4-2 %-2 

+ (V2" V 2 ) T D ( V 2 " Va'N-a} 

Note t h a t x^_ may be rep laced by the p l a n t equat ion in (1.1) by l e t t i n g 

k = N-2 to give 

VW • Min T *{$-A-*a-iA*-?*-2 +
 4 - 2 B N - 2 W N - 2 V 2

 (U9) 

"H-2 

+ V2S-1V2 + V^Al-lVft-Z + V2^-24-lV2 

+ 4-2^-1 ̂ -2^-2 + BN-2V2> + 4-2^-2^-1^-2^-2 

+ 4-A-7ha-l"a-2 + 4 - 2 QxN-2 + 4-2 RV2 

+ <V2- V2> D(XN-2- W + <vr W D<vr Vi^-2 

T 
Recognizing both that the estimator minimizes (x^_1- %r_i) D ^ X N _ I " %J_I^ 

T 

for any positive definite matrix D and that (x^_„- x^_2) D(x„ 2~ %j_o^
 i s 

independent of 11̂  „, then differentiation inside the expected value of 

(1.9) with respect to I L „ yields 

E-K-2WN-2V2
 + ̂ -2^-1^-2^-2 + K-zh-ft-Z <L • 10> 

+ 2RV2l
Z
N-2} " ° 
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Since E[w „] = 0, then from (1.10) 

uN-2 " 4- (BN-2LN-lBN-2 + R> " N U S - l ^ ' W lZN-2}
 ( 1 - U ) 

V 2 " -(BN-2LN-lBN-2 + " ' ^ A - l V z V ! ( 1 ' 1 2 ) 

Therefore, 

V 2 = "CN-2 *N-2 ( 1 ' 1 3 ) 

where CN_2 = ( B * . ^ . ^ + W ^ - z S - l V z a n d *N-2 " EtxN-21^-2^ 

which is the least mean-square estimate of x̂  OÎ M O* 

Rewriting 'MZN-2-) in (1.9) yields 

V2 (ZN-2 ) " Min T- 4^-24-2^-1^-2 " 4-2CN-2BS-2LN-lV2XN-2 ( 1 '1 4 ) 

V 2 

rri. rp rri rp rp 

"XN-2AN-2LN-1BN-2CN-2V2 + V 2CN-2 (BN-2LN-1BN-2 + R)CN-2*N-2 

" ^ - Z ^ ^ + (XN-2" V 2 ) T , ) ( V 2 - W + ( X N - 1 " ^ - l ^ 0 ' 

(XN-1" fiN-l)'ZN-2j + C o n s t a n t T e r m s 

However, if one recognizes from (1.12) that 

4-2^-1^-2 " (BS-2LN-lBN-2 + R)CN-2 (1-15> 

then (1.14) may be rewritten as 
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V W • T EK-2(4-2LN-l + «V2 + V2CN-2^-2LN-lBN-2 ( 1 '1 6 ) 

rp m m T* T* 

+ R ) . C N - 2 S N - 2 " V2CN-2 (BN-2LN-lBN-2 + ^ ' W ' W " V 2 C N - 2 

(BN-2LN-lBN-2 + ^^-2^-2 + (xN-2" ^ - l ^ ^ - l ' W 
+ (XN-1" Vl> D ( V l " V l > lZN-2j + C o n s t a n t Terms 

Completing the square, (1.16) becomes 

V W " T ^ - 2 ^ - 2 ^ - 1 ^ - 2 + « " CN-2(BN-2LN-lBN-2 + R ) ' ( 1 ' 1 7 ) 

CN-2)xN-2 + (xN-2" *N-2 ) T c L ( B £-2 L N-l B N-2 + R)CN-2 * 

<V2" W + (xN-2" SN-2)Tl)(XN-2- W ' V 2 } + C o n S t a n t Te™S 

By set t ing 

LN-2 " *S-24-l*»-2 + Q " CL2
(BS-2LN-lB

N-2 + R)CN-2 ( U 1 8 ) 

*H-2 " ^-2^-2^-1^-2 + R)CN-2 + D 

then (1.16) may be wri t ten as 

V2(ZN-2> " T ^ - 2 ^ - 2 ^ - 2 + (xN-2" V / W ^ ^ " W lZN-2}
 ( U 1 9 ) 

+ Constant Terms 

Using the principle of optimality, one may express V~(Z ~) as 
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V W " TMi" ^-2^-2^-2 + (V2" V / W ^ ^ " W ( 1 ' 2 0 ) 

V3 

+ ^-3^-3 + V3 R V3 + (xN-3' Vs^Vs" W V S ) 

+ Constant Terms 

After subst i tut ion of (1.1) , (1.20) becomes 

W3> " T M i n ^ - f t - S + BN-3UN-3 +
 V 3 ) T L H - 2 ( V 3 V 3

 ( U 2 1 ) 

V3 

+ BN-3V3 + W N-3 ) + 4-3^-3 + V3*V3 + (XN-3" V 3 ) I D ' 

(xN-3" W + (KN-2" W KN-2(xN-2" W ' W + C°" s t a n t 

Terms 

Differentiat ing with respect to I L „ inside the expected value sign yields 

V3 " " iA-A.3 + R ) " 1 B S - 3 S - 2 * H - 3 ^ - 3 ( U 2 2 ) 

T 
where again it is recognized that the estimator minimizes (x^ - xL ) • 

T 
^*N-2" *N-2^ and' i n addition> t h a t ^%-3" ^N-3) D^XN-3" *N-3^ i s i n d e' 

pendent of the control u^ «,. Rewriting (1.21) and collecting terms, one 

obtains 

V3(ZN-3> " T K^-S^ - S S - A - S + Q)XN-3 + WL3(BN-3LN-2B
N-3

 (1-23) 

rp rp rp rp rp rp 

+ R)CN-3*N-3 " 5N-3CN-3BN-3LN-2AN-3XN-3 ' XN-3AN-3LN-2BN-3CN-3 * 

(See next page) 
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*N-3 + (xN-3" V3 ) T D ( XN.3" W + (xN-2" V P V 2 ' 

(xN-2" *N-2'} lZN-3} + C o n s t a n t T e r m s 

Completing the square, (1.23) may be written as 

V W " T E{V3(A£-3LN-2V3
 + " - CL^-3^-2^-3 + R> * ^ • 2 4 > 

CN-3)xN-3 + (xN-3" K-3> CN-3(BN-3LN-2BN-3 + R)CN-3 ' 

( xN-3" *K-3> + (xN-3" %-3>TD(XN-3- W V 3 } + C o n s t a n t T e r m s 

It is easy to see the repetition in (1.24) of the terms appearing in (1.17) 

Therefore, by defining 

Lk-i - £iVk-i + Q " c k - i ( B k - i L A - i + R ) ck-i ( 1 - 2 5 ) 

with 

and 

L
N - 1 = Q ( 1 - 2 6 ) 

V i - - V i K-i (1-27) 

with 

V i - (Bk-iLkBk-i + w ' X - A V i (1-28) 

where 



16 

\ + i = E [ x k + i K + i ] (1-29> 

one recognizes this as the solution to the independent optimization pro­

blem, namely, a Riccati controller operating on the least-mean-square 

estimate. This constitutes the proof by induction of the Separation 

Theorem. 

It has been shown that the Separation Theorem is valid for a linear 

discrete plant disturbed by nongaussian, white noise for the performance 

index given by (1.4). By letting D = 0, one obtains the special case 

given as 

N 
J - f « { £ *k<*|c + \ R uk) (1-3°> 

Therefore, the optimal control policy for a linear nongaussian stochastic 

system may be determined by the plant control (1.29) acting on the optimal 

nonlinear estimate (1.29). This calculation may be performed by consi­

dering the separate optimization of the control and estimation functions. 

Method of Attack 

The problem investigated in this thesis research is the combined 

estimation and control of noisy dynamical systems. Both linear and non­

linear discrete systems were considered with the input noise and the 

measurement noise assumed to be ergodic white noises with known non­

gaussian density functions. 

The solution to the linear system with quadratic performance 

index is specified by the results of the Separation Theorem, given by 

(1.25)-(1.29). However, for nongaussian disturbances the resulting 
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least-mean-square estimate is nonlinear. A Bayes-law computation permits 

the determination of the estimate with the associated difficulty of obtain­

ing the required density functions with application of the moment technique 

was selected because of the resulting simplifications in computer program­

ming. By applying this technique, formulas relating the moments of the 

observed data, the states, and the control were established and utilized 

in first-order examples. 

An approximate approach to the nonlinear combined estimation and 

control problem was shown to be computationally feasible with acceptible 

accuracy. The approach was to linearize the noise perturbations about 

the deterministic nominal trajectory and to form a variational control 

by using those techniques established in the linear case. This approxi­

mate approach was selected because the exact solution to the nonlinear 

problem was not known. 

The sensitivity of the estimation and control algorithms to erro­

neous bound and moment data was investigated. Fixing either the measure­

ment or the plant noise, the density of the other noise was changed to 

one with the same second moment. However, since the original bound and 

moment data were supplied to the filter, the sensitivity of the algorithms 

to incorrect input data was observed. 

A method for selecting the form and parameters of a specific optimal 

controller was determined. The controller selection was accomplished by 

a comparison technique with the algorithms established for the linear 

system. The controller was used with a fixed, nonlinear estimator to 

yield a better performance than that obtained by using the same nonlinear 
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estimator with a Riccati controller. This controller selection further 

demonstrated the sensitivity of the algorithms to incorrect noise statis­

tics. 

The combined control and estimation algorithms were formulated, 

and the value of each for specific examples was verified by computer 

simulations. The results were compared with the combination of the 

Kalman-Bucy filter and the Riccati controller which was shown to be the 

exact solution specified by the Separation Theorem for the linear, gaus-

sian system. 

Thesis Contributions 

The thesis research reported here has contributed to the state-

of-the-art in stochastic control theory in four specific ways: 

1. The derivation of the Separation Theorem for linear 

systems disturbed by nongaussian noises. 

2. The development of nearly optimal combined estimation 

and control algorithms for linear nongaussian stochastic 

systems. t 

3. The application of these nearly optimal algorithms for 

an approximate analysis of nonlinear stochastic systems. 

4. The synthesis of specific optimal controllers for a 

fixed nonoptimal estimator for nongaussian stochastic 

systems. 

Outline of the Thesis 

The Linear Stochastic Control Problem is treated in detail in Chapter 

II. The least-mean-square estimator incorporating the control function is 
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derived in detail using the moment technique. Computer results for a 

particular example demonstrate the effectiveness of this result. Several 

approximations to the suboptimal estimator are then presented and the 

simulation results included. Chapter III applies the methods of Chapter 

II to a nonlinear example by linearizing about a nominal trajectory to 

form a variational controller. In Chapter IV a sensitivity analysis is 

presented to show the variation of the resulting estimate with incorrect 

noise statistics. The design of a specific optimal controller to be 

used with a fixed nonoptimal filter is also discussed. Simulation results 

demonstrate the usefulness of this approach. Finally, Chapter V presents 

some conclusions as well as some recommendations for further research. 
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CHAPTER II 

THE LINEAR STOCHASTIC CONTROL PROBLEM 

Introduction 

The analysis of a linear control system disturbed by noise is 

commonly referred to as the Linear Stochastic Control Problem. This 

problem was considered in the thesis research both as a problem whose 

solution itself is useful and as a building block for the subsequent 

consideration of nonlinear stochastic control systems. The principal 

tool used in investigating this problem was Bayes-law computation based 

on the moment technique. As mentioned previously, Kuo and Rowland [28,29] 

had successfully applied the method of moments to the linear nongaussian 

estimation problem. However, the application of the moment technique to 

the combined control and estimation problem proved to be considerably 

more complicated because of the presence of feedback control. 

In the following sections the problem is formulated and the moment 

technique applied to the estimation of the plant states. After a suit­

able comparison of the results obtained with previous methods, several 

approximations to the new filtering algorithm are presented. 

Mathematical Formulation 

A model of the linear stochastic control system is given in Figure 

2.1. 

For the given first-order system the linear discrete plant is: 



w V 
k+1 

6 k+1 

M *k Unit 
Delay 

K+1rO •H-1 Nonlinear 
F i l t e r 

kk+l 

Controller 

Figure 2.1 Diagram of the Linear Stochastic Control Problem-

hO 
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\+l " Vk + Vk + w k (2A) 

zk = Ck\ + vk ( 2 ' 2 ) 

where x(k) represents the s ta te of the plant at the kth sampling ins tan t , 

u(k) represents the control supplied to the p lant , w(k) i s the nongaussian 

noise input to the p lan t , z(k) i s the measurement of the plant s ta te 

intermixed with noise, and v(k) i s the nongaussian noise corrupting the 

measurement of the plant s t a t e . The performance of the systems i s mea­

sured by 

J - T E(J0 \ *k+ \ Ruk+ ( v V T D ( V V i <2-3> 

In some applications, large-scale systems are arbitrarily designed 

on a subsystem basis. The performance criterion (2.3) which penalizes 

estimation error in addition to the normal quadratic cost is important 

in such cases when the subsystem under consideration is being used as 

a link within the larger system. Accurate estimates of the subsystem 

states are needed for use as inputs to the following subsystem. 

Assumptions 

The following basic assumptions about the given system were made: 

1. The input signal w and the measurement noise v are dis­

crete time series composed of mutually independent 

random variables. 

2. Both w and v have known density functions with finite 

bounds. 
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3. The random processes x and v are independent. 

4. At any particular stage k, the noise w is independent 

of x and u. 

The problem was to find a nearly optimal combined control and esti­

mation scheme which minimized the performance index (2.3) for the specified 

linear system (2.1)-(2.2). 

Application of the Moment Technique 

The optimal combined control and estimation algorithm for the basic 

Linear Stochastic Control Problem given above was specified by the Separa­

tion Theorem developed in Chapter I. The resulting optimal scheme was 

derived by the separate optimization of the control and estimation func­

tions. The following derivation is for a first-order system although the 

application of the moment technique to higher-order systems can be achieved. 

However, as discussed in a later chapter, computational difficulties 

involved might suggest alternative approaches. It has been shown in Chap­

ter I that the resulting estimator for this problem is nonlinear in form 

and given by 

A + i - E£*k+A+i] <2-4) 

where x\ is the least-mean-square estimate of x, , and Z, , denotes 

the complete set of measurements, i .e. Z, - = (z-, z„, . . . , z, - ) . The 

controller is the Riccati controller, which is a linear combination of 

the estimated states of the system, e.g. for the linear time-varying 

c a s e T I T 
\ - (BkL

k+iBk + R ) " \\+i\\ - \ \ ( 2 - 5 ) 
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where 

Lk - £\+i\ + * - \&l\+i\ + R>\ (2.6) 

LN-1 " «» (2.7) 

Let B and C both equal unity for the problem under consideration. The 

minimum mean-square estimate can be written as 

k+1 

V i ^+ 1 k+1 

where l-^,-, and / are the lower and upper bounds respectively of 

x,-|Z ... By the Bayesian rule, the conditional density function 

f i„ (x, ,, lz, ,n) may be expressed as 

"feu'Vi ̂ +1 k+1 

8) 

f \ + l l Z
k + l ( X k + l | Z k + l ) = 

^ l ^ ^ 1 ^ ' ' \+iK(^K) 

k+1' k 
|z<zk+ilV

 (2'9) 

This Bayesian rule is considered in Appendix I, and for v uniformly dis­

tributed on (-1,1) is shown to be 

\^K^^Z^ == r/ k+1 

*k+l 

V i l ^ i ' V 

^+1|zk<VilV -Vi 
(2.10) 

The upper and lower bounds on x,-|Z, are given from the appendix as 
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4+1,0 - Vic + \ + Wmax ( 2 ' U ) 

\ + l , 0 " V k + "k + w
m in ( 2 V 1 2 ) 

The dens i t y funct ion f i_ (x, iz, ) i s r ep re sen t ed by a polynomial given 
*k+v\ k + 1 k 

as 

M 

^IZ^llV-^"!^! ( 2 ' 1 3> 

where the coefficients are expressed as functions of the moments of 

x.,-1 |Z, . Assuming that the moments of x, |Z, are known, one may use the 

polynomial approximation to the density function of x, - JZ, to express 

the moments of x,- |zi.-4-l * ^ e result:i-nS expression from Appendix I is 

"0 v>k+i+j+i - v r j + l > ^ + i 
mx IZ = M ( 2 ' 1 4 ) 

Hc+l' k+1 " . . i+1 „ i + 1 . , . , , . \ Vk+1 " \+l ) / l + 1 
1=0 

The upper and lower bounds r e s p e c t i v e l y o n x , . | z , - may be expressed as 

Ac+1 

and 

\ + l 

4 + 1 , 0 when z f c + 1 ^ / k + 1 > 0 ~ 1 (2.15) 

z, _+l when z. , - < / . - ^ -1 
k+1 k+1 ' k+1,0 

- z k + 1 - l «hen z k + 1 > 1 ^ + 1 (2.16) 

\+i,o When zk+i s W,o+1 
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By letting j = 1, the expected value of x, - |Z, - which is the estimate 

x, - may be determined as 

M 
„ • , . i + 2 n i+2N . . , _ 

.\ *i<Vi ' W )/l+2 

\ + i = M — < 2 - 1 7 ) 

.\ Vk+r1 - vi+ 1) / i + i 

i=0 

The order of the filter is then referred to as the m-th order nonlinear 

filter depending on the number of terms in the polynomial density repre­

sentation, At this point, the solution for the combined estimation and 

control problem can be specified, except for the evaluation of the moments 

ofxk+ilV 
Evaluation of Moments of x, _ JZ, 

The moments of x^ |z, were obtained by taking the expected value 

of 

(xk+ilzk)i= ( V k - ^ k ^ J V 1 (2-18) 

for i = 1,2,3,...,N 

The resultant expected value is 

' ^ i l V 1 - E 0 n
 wk"j i < V J V ^ l V p ) (2a9) 

j=0 p=0 

i = 1,2,...,N 

Recognizing that u, = ^^T,* *-he a^ove expression can be evaluated except 
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for the terms involving 

-Ht'K^ 
for i » 1,2,3,4. 

Appendix II considered this expected value by expanding the estimate (2.17) 

by long division to yield 

a l fl al Ak a2 'k \ 
V - - 5 ( ' k + V + ^ "IF + ^ 17" " ^ -^+..0(2.20) 

Reta in ing the f i r s t two terms of ( 2 . 2 0 ) , one i s ab le to express x, to 

permit the evaluation of E[x,x\ |Z, ] . From Appendix I I , the value of x, 

has to be expressed differently for four ranges of z,. For example, the 

second moment of x, - |z, is expressed for Range B when z, ^ / , Q-l and 

zk S \,0+1 a S 

*\-,lKl - E<Wk> + 4^\K^ + ^ ^ W ^ l ^ ] (2.21) 

+ -?- {^\K^+ 2 E ^ l z k ] < E ^ + \ , o + 1 ) 

+ E [ v ^ < \ ,O + 1 > + <\,o+1>2 

+ Vk (E [ \ l z^+ K\K^ (E^V+ \>0
+1)' 

The other moments of x, |z, can be similarly calculated for the four 
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ranges of z, . These are included in Appendix II. Having obtained the 

moments of x, - |Z, , the necessary algorithms are complete. A computer 

simulation flow chart is presented in Figure 2.2 to explain the detailed 

steps of the complete filtering algorithms. After an initial assignment 

of values to E[x, |z, ], L , /, and the formation of z , the bounds and 

moments of x, - (z are calculated. Then by evaluating the coefficients 

a. in (2.13) and the bounds of ̂ wi |Z^ + - i » t n e density of x_ - Iẑ .-i i s 

formed. With this resulting density function, one is able to calculate 

the moments of x, - | z - and, therefore, the least-mean-square estimate 

x, -. The entire process is then repeated as shown in Figure 2.2. 

Comparison of Filtering Algorithms 

The comparison of the nearly optimal combined estimation and control 

algorithm with other filtering algorithms was accomplished by a specific 

example. 

Example 1 A Linear Nongaussian System, Consider a linear system 

given as 

"k+i • ° - l x k + \ + wk ( 2 - 2 2 ) 

with a linear measurement 

\+i= * k * i + vk+i ( 2 - 2 3 ) 

subject to the performance indices given in (2.3) with Q = R = 1 and 

D = 5. The density function of the input noise was given as 

1 1 w 1 0 vhen |w| < 1 
fw(w) = ' 2 

0 elsewhere 
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Figure 2.2 Flow Chart for the Combined Estimation and 

Control Algorithm. 
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The measurement noise was assumed to be uniform on (-1,1). Table 2.1 shows 

the performance of the linear system using the cost criterion of (2.3) 

with D = 0. 

Table 2.1. Linear System Performance for N=1000 

Performance (6x10 ) Estimation Error 

Kalman Filter and 
Riccati Controller 5„117141 0.240 

Fourth-Order Nonlinear 
Filter and Riccati Con­
troller 5.110580 0.138 

It is noted that the performance index used is relatively insensitive to 

the difference in estimation error in the above examples. Although there 

was improvement in performance, the magnitude was small for the given 

simple system. However, by using the cost criterion (2.3) with D = 5 

that equally weighted estimation performance and control performance, an 

appreciable difference in performance was obtained. This is seen in 

Figure 2.3 with the corresponding estimation seen in Figure 2.4. 

Approximations to the Supoptimal Filter 

The dependence of the estimate x. •, on the ranges of z- - and the 

complexity of calculating the moments and cross-moments of the system 

states pointed out the desirability of finding an approximation to this 

highly nonlinear estimate at the possible expense of some accuracy. 
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The method of analysis was to examine the geometric consideration 

found in the f i r s t term of x . , . Consider the density d i s t r ibu t ion of 

^k+l^k+l'' a S s ^ o w n i n F i S u r e 2»5. The term x. .. = — (&4.1 + / i . J which 

represents the f i r s t two terms of (2.20) appears on t h i s figure as the 

dotted l i n e . Three approximations of the estimate were generated by 

ing the expected value of /, .. - and j& . One may wri te /, - ~ as us 

4+1,0 = ^ k + \ + W m a x ( 2 ' 2 4 ) 

Taking the expected value of (2.24) 

E £W 3 = A E C / k ] + E [ \ ] + wmax <2-25> 

But E[u- ] = K,E[x, ] = 0, and E[/ ] « 1 for the designated noises . There­

fore 

E £> k + 1,0 ] = A ( 1 ) + "max ( 2 ' 2 6 ) 

which for A = .1 is E[/ k + 1 ] =• Ul. Similarly, E[j&k+1 ] = -1.1. Con­

structing these points on the density diagram of x. 1 z _ , the approximate 

curve appears as shown in Figure 2.5. 

Least-Squares Approximation 

By considering this figure, values of x, . corresponding to the 

first two terms of (2.20) for several z, , can be obtained,, The method 
k+1 

of least squares is to determine a polynomial that fits the data points. 

For the data points x, - = 0,.1,-.1,1.05,-1.05, respectively, a polynomial 
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of the form 

Vra+bVi + c4 + 4 i (2-27) 

was selected* By forming the residuals and solving the normal equations 

in [39], the values of a,b,c,d were determined. The resulting polynomial 

was 

W - V i " -119 z l i (2-28> 

By checking the data points it is seen that this approximation is a good 

one. 

Straight Line Approximation 

Another approximation to the estimate of the plant state described 

by the first two terms of (2.20) was the straight line approximation, By 

considering the two extreme data points z, .. = 2,-2 and x, , = 1.05,-1.05, 

respectively, a straight line relationship between x, - and z, - was 

determined as 

\ + i - ° - 5 2 5 zk+i <2-29) 

Obviously because of symmetry, (2„29) necessarily satisfies the data 

point at the origin. 

Hyperbolic Approximation 

The third approximation was obtained by inspection in Figure 2.5. 

The relationship between z, 1 and &,-. was seen to resemble the sum of 

a hyperbolic sine and a hyperbolic tangent. This resemblance was also 

apparent in (2.20) because of the increasing powers of /, . and &.,•!• 
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Therefore, the approximation of the estimate of the plant s t a t e was arbi ­

t r a r i l y selected as 

*bfi = i" C s l n h zk+i + t a n h zk+i ] ( 2 - 3 0 ) 

which may be expressed as 

3 . 5 7 
Zk+1 1 5 Zk+1 17 Zk+1 ( ,. 

*k+l ~ Zk+1 "* 12 " 240 " 630 U.Ji; 

Approximations to the Suboptimal Filter 

Consider again Example 1 with the performance index (2.3). Each 

of the above three approximations was compared to the Kalman filter and 

the fourth-order nonlinear filter described in Appendix I. As seen in 

Figure 2.6, the straight-line approximation showed no improvement in esti­

mation accuracy while the least-squares polynomial and the hyperbolic 

approximations yielded improved estimates. As in Example 1, the effect 

of the three different approximations on the performance index (2.3) 

for D = 0 was negligible. 

Summary and Conclusions 

The application of the method of moments to Bayes-law computation 

for the Linear Stochastic Control Problem has been presented. The appli­

cation of the computational method to a specific example was given. It 

was seen that the increase in performance for a cost criterion which 

penalized estimation error as well as control variables was significant. 

However, the principal improvement was due to the increased estimation 

accuracy. 
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Several approximations to the suboptimal filter were given which 

might reduce computational difficulties. It was seen that two of the 

approximations, i.e. the least-squares polynomial and the hyperbolic 

approximation, reduced the cost: criterion somewhat, while the straight 

line approximation showed no improvement. 

The significance of the development of the nearly optimal scheme 

is that it gives an accurate basis to which one may compare newly deve­

loped approximate solutions for higher order linear systems. Moreover, 

the algorithms developed may also be applied to an approximate analysis 

of nonlinear stochastic systems. 
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CHAPTER III 

APPROXIMATE ANALYSIS OF NONLINEAR 

STOCHASTIC SYSTEMS 

Background 

Exact solutions for the combined estimation and control of nonlinear 

stochastic systems are not yet available. The traditional approaches 

used to analyze these stochastic control problems have been approximate. 

This chapter illustrates an application of improved estimation by Bayes-

law computation for the closed-loop nonlinear stochastic control problem. 

The approach utilized here was to assume that the deterministic 

nominal solution to the nonlinear difference equations of the plant pro­

vided a good approximation to the actual system behavior, i.e. the devia­

tions from the nominal solution could be described by a set of linear 

difference equations. For those cases where this approximation is valid, 

the Separation Theorem may be applied to the resulting set of linear 

difference equations. This permits the estimation of the deviation from 

the deterministic nominal solution to be used in the formation of a varia­

tional feedback controller„ The purpose of this chapter is to present the 

results of that application of the combined estimation and control algori­

thms of Chapter II in the analysis of nonlinear stochastic systems. 

Derivation of the Variational Equations 

The plant for the nonlinear stochastic control problem is specified 
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as 

\+i= f(vV + w k ( 3 a ) 

where x, represents the plant state at the kth sampling instant, u, repre­

sents the control supplied to the plant at the kth sampling instant, and 

w, is the nongaussian noise input to the plant. A linear measurement of 

the plant state corrupted by noise is available as 

\ = "k + \ ( 3 - 2 ) 

where v, is the nongaussian measurement disturbance. The system was to 

be controlled to minimize the performance index measured by 

J = T E{J0 ^
 + R\ + D<V \>2} < 3 - 3 > 

The scalar system was considered although the resulting equations may 

be applied with modification to the vector case* 

A method of feedback control about the optimal trajectory which 

minimized the deviation from the nominal trajectory and control was 

developed. The linearized variational equations about the nominal tra­

jectories were determined first. The plant state and control were 

described as 

*k = *k + 6xk ®'^ 

\ = uk + 6\ (3'5) 
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where x, and u, represent the nominal plant state and control, respectively, 

at the kth sampling instant. Using 6x, and 6IL , the variations from the 

nominal state and nominal control, one is able to determine perturbational 

difference equations. Expanding the state equation (3.1) in a Taylor 

Series, one obtains 

- - bf(xk5V 
\ + i - ^ " " V V ' V + w k = f(W + —S )xk 

6xk (3.6) 

\ 

B uk 

6u, + w, + Higher Order Terms 

\ 

Recognizing that x, - = f (x, ,u, ) and neglecting all higher order terms 

beyond the first, (3.6) becomes 

*k+l " *k+l + 3 

3f(W 
*k 

6xk + 
of ( V V 

ou, 
)uk + wfc (3.7) 

"k 

From (3.4) one may define 

ixk+i 

a f ( V V 
S x k 

6 x k • + 

\ 

3 u k 

8uk + wk 

u, 

(3.8) 

8xk+l - V 2 ^ + B k 8 u k + wk (3.9) 
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which is governed by a new performance index given by 

N 
J = \ - E{ 2 Q6x2 + R6u2) (3.10) 
var 2 4c=0 J 

Extensions of the Basic Technique 

At this point one may identify (3.9) and (3.10) as representing the 

same linear stochastic control problem analyzed in Chapter II. Thus, the 

solution to the variational control 6u, may be determined from the Separ­

ation Theorem as 

6^ = E[6xk|6Zk] (3.11) 

6\ = "R"VPm + \R" V" V*k 

pk - « + \ [ p k + i + v" \y\ ( 3- i 2 ) 

P, = 0 
k f 

The perturbational measurement 6z, is 

6zk = Zk " \ ( 3 , 1 3 ) 

which may be shown to be 

6zk = V \ + Vk (3a4) 

= 6 x k + v k 
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Therefore, after evaluating the variational control (3.12), the overall 

control of the actual plant is determined from (3.5). The approximate 

method of analyzing the nonlinear stochastic system is represented in 

Figure 3.1. The estimate 6x, of the perturbed state may then be deter­

mined by using the estimation algorithms described in Chapter II. 

A Nonlinear Example 

The algorithms for the approximate analysis previously presented 

were applied to a particular nonlinear example. Comparisons were made 

with a Kalman filter used in the perturbation loop. The nonlinear system 

model was given by 

3 5 
x, = 0.995x^ + .0025x/ - .00035x7 + .Olu + w 

with Q = R = 2. The measurement noise v, was uniform on (-1,1) and the 

plant noise w, had a density function given by 

^11 1 0 

2 w when |w| < 1 y*> - < 
^ 0 otherwise 

A plot of the system nonlinearity is seen to have the characteristic shown 

in Figure 3.2. 

By observing Figures 3.3 - 3D5 and Table 3.1, the improvement in 

estimation error and performance is evident. Figure 303 demonstrates that 

the estimation error obtained was considerably lower using the fourth-order 

filter in the variational loop as opposed to using the Kalman filter. This 
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reduction is also reflected in Figure 3.4 which shows improvement in per­

formance as measured by (2,3), This improvement again primarily results 

from improvement in estimation error. This result supports the conclu­

sions drawn in Chapter II concerning the relative insensitiveness of the 

quadratic performance index to improvement in estimation. Table 3.1 

and Figure 3,5 illustrate reduction in estimation error for various 

ranges of plant noise. As the plant noise increased, the improvement 

decreased. This decrease occurred because the linear perturbation 

assumption was no longer valid for higher noises. Consequently, no 

estimator in a linear perturbation loop will behave adequately in this 

range because the variations from the nominal trajectory are no longer 

linear. 

r 

Table 3,1, Estimation Errors for Various a 
w 

1.08 a .05 .1 .2 .3 .545 
w 

Kalman Filter in 
Perturbation Loop .0256466 .0794721 .473700 1,5463169 8.6842 

Fourth-Order Filter 
in Perturbation 
Loop .0186825 .,0644985 .446892 1.5033834 8.4899 

A Different Variational Performance Index 

For linear perturbations about a deterministic nominal trajectory, 

it had been suggested in [2l] that a different weighting matrix Q be used 

in the variational performance index. This new Q is specified as 
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i t 

<W " Q + \n 
• > 2 

(3.15) 

V\ 

where X i s t he ad jo in t v a r i a b l e i n the op t im iza t i on problem and Q i s 

the weight ing ma t r ix for the non l inea r plant: s t a t e . Using t h i s new 

v a r i a t i o n a l Q, the e s t ima t ion and performance of the system a re degraded 

as seen in Table 3 . 2 . 

Table 3 . 2 . Degradation for Q of (3.15) 

i n V a r i a t i o n a l Performance Index 

Es t imat ion 
Er ror 

Or ig ina l 0 

Es t imat ion 
Error 
New Q 

J Using 
Or ig ina l 

Q 

J Using 

New Q 

Kalman Filter in 
Perturbation Loop 0.079 0.084 18.74 19.43 

Fourth-Order Filter 
in Perturbation Loop 0o064 0.068 16.50 17.03 

A New Nominal Trajectory 

It was also observed that the use of a properly selected nominal 

trajectory other than the deterministic nominal trajectory improved system 

performance [40], This new nominal trajectory was selected to optimize 

the Kalman-Bucy filter gain while shaping the trajectory to minimize the 

performance index (2.3). 

By inspection of Table 3„3, one may observe the effect of selecting 
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the new nominal trajectory. The dramatic improvement demonstrated by the 

new selection of a trajectory is misleading because the specific case 

illustrated was a high noise case which invalidated the linear perturba­

tion approach. The new trajectory is useful in certain special cases. 

The effect of the shaped trajectory on the variational Riccati controller 

gain can be seen in Figure 3.6. This trajectory also stabilized the 

linear perturbational equations. 

Table 3.3. Performance Improvement for New Nominal 

with a = 0.500 and a =3.14 w v 

Performance 
Index 

Shaped Trajectory 

Performance Index 
Deterministic 
Trajectory 

Kalman Filter in 
Perturbation Loop 14.24 19.80 

Fourth-Order Filter 
in Perturbation Loop 14.32 19.84 

Conclusions 

The combined estimation and control algorithms developed in Chapter 

II were applied in an approximate analysis of nonlinear stochastic systems, 

By assuming linear perturbations about a deterministic nominal trajectory, 

a variational feedback control scheme was developed,, At low noise levels, 

improvement was noticeable when the fourth-order filter was used in the 

perturbational loop. At higher noise levels, the linear perturbation 



52 

-1 .2" 

-1 .0 

c 
• H 
CO 
O 
•H 
•U 
CO 
CJ 
CJ 

• H 

- . 8 

- . 6 

- . 4 

- . 2 - -

Deterministic Nominal 
Trajectory 

Improved Nominal 
Trajectory 

.2 1.0 1.2 1.4 

Time in Seconds -» 

Figure 3.6. The Variation of Gain with Nominal Trajectories 



53 

scheme was not valid, and the resulting performance was poor. A new 

nominal trajectory was shown to have a desirable effect for those high 

noise cases. However, estimation accuracy was unacceptable at all high 

noise cases. 
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CHAPTER IV 

SENSITIVITY ANALYSIS AND SPECIFIC OPTIMAL 

CONTROLLER DESIGN 

Introduction 

The sensitivity of the estimation and control algorithms to 

variations in input data is a practical consideration in the use of the 

algorithms. The effects of incorrect modeling for Kalman-Bucy filtering 

and erroneous input data are well known £41,42]. Throughout this research 

it was necessary to supply the fourth-order estimator with the first four 

moments and the bounds of both noise.disturbances. Because of this depen­

dency, the question of sensitivity to data on moments and bounds was 

investigated. 

Another sensitivity problem was implicit in a specific optimal 

controller formulation. The problem was to select a controller to use 

with a fixed, nonoptimal, nonlinear filter that yielded a better estimate 

of the plant state and improved system performance. The sensitivity pro­

blem occurred in forming an estimate with inaccurate data. A new estimate 

was obtained by operating on the estimate of a nonoptimal filter as though 

the measurement had been available. 

Sensitivity to Noise Variations 

The sensitivity in estimation for the fourth-order nonlinear filter 

presented in Chapter II for incorrect noise statistics was investigated 

by a specific example. The example was the same as in Chapter II, i.e., 
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x ^ l = 0 - l x k + u k + wk ( 4 a ) 

with the linear measurement given as 

zk+i • x k + i + vk+i ( 4 - 2 ) 

The original data supplied to the estimator given from Chapter I I as 

4 / * i + 2 _L i + 2 N / - _ L O 

. ^ a i ( / k + l + %fl ) / l + 2 

k+1 4 -4.1 -J.-! 

consisted of the upper and lower bounds and the first four moments/ of w 

and v. The random variables w, and v were both assumed to be bounded 

and the density functions for both variables were obtained from 

f p + 1 P . . 

I 2 ~ y y ~ l 

fy(y) = ^ (4.4) 
0 otherwise 

where y in (4.4) is a dummy variable used to represent either w or v. 

The density of w was originally given for p = 10, i.e., approximately an 

inverted bell-shaped distribution on the range (-1,1). The density of 

v was specified as uniform, which corresponds to p = 0, and was also 

bounded on (-1,1). The corresponding moments of w and v with p =. 10 

and p = 0, respectively, were given by 

l 
m = 
y 

' X i P + l P A (, ^ 
y — 7 — y dy (4.5) 

-1 
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when i is even 

when i is odd 

The sensitivity in estimation was studied by varying the input noise 

and measurement noise density functions, while keeping the second moment 

fixed. This requirement then changed the bounds on the random variables 

v and v. However, the original bounds and moments, which were then incor­

rect, were supplied to the estimator. 

Variations in the Plant Noise 

The sensitivity to incorrect statistics in the plant noise w was 

considered first. The density function of the measurement noise was 

uniform on (-1,1) and held constant as the density function of the plant 

noise was varied. The original plant noise was specified by (4.4) for 

2 
p = 10. The two nonzero moments of the input data were given as m = 11/13 

4 
and m = 11/15 with bounds of (-1,1). The plant noise was allowed to vary 

w 

from p = 10 to p = 0. The input data supplied to the estimator was assumed 

to be the same as the original data, although actually the second moment 

was held constant and the bounds and other moments were changed. The 

cases that were considered are shown in Table 4.1. 

The plots of estimation error for the various density functions of 

w is shown in Figure 4.1. One can,see from this figure the estimation 

error increased as the input noise became closer to uniform. This increase 

in estimation error resulted because the bounds were becoming larger than 

the input bound to the filter. One may conclude that estimation accuracy 

is highly dependent on the correct bounds and moments of the plant noise. 
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p = 10 ( -1 ,1) 

P = 7 ( -1 .03 ,1 .03) 

P « 3 ( -1 .13 ,1 .13) 

p = 1.5 ( -1 .23 ,1 .23) 

p = 0 ( -1 .67 ,1 .67) 

Table 4.1. Variations in Plant Noise 

D A 2 4 

Bounds m m 
x x 

.847 .734 

.847 .834 

.847 1.19 

.847 1.67 

.847 5.76 

Variations in the Measurement Noise 

The sensitivity in estimation to incorrect statistics in the 

measurement noise was then considered. The plant noise density function 

specified by (4.4) with p = 10 was held constant. The original measure­

ment was uniformly distributed on (-1,1). The two nonzero moments of 

O / 

the input data were given as m = 1/3 and m = 1/5 with bounds (-1,1). 

The measurement noise was allowed to vary from p = 0 to p = 10. The 

input data was again identical to the original data although the bounds 

and the other moments, except the second, were changed. Table 4.2 shows 
the cases that were considered. The data supplied to the filter consisted 

2 4 
of bounds (-1,1), and m = .33, m = .20. The results of this variation 

' ' v v 

in noise show from Figure 4.2 and Table 4.3 that the estimation error 

decreased until p = 2. This indicates that the magnitude of the bounds 

on the noise decreased rapidly until this point and, therefore, a decrease 

in estimation error resulted. However, for p = 3,7, and 10, the bounds 
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Table 4.2. Variations in Measurement Noise 

* A 2 4 

Bounds m m 
v v_ 

o33 .200 

.33 .170 

.33 .091 

.33 .062 

.33 .050 

.33 .034 

.33 .030 

remained nearly the same with the density function becoming more concen­

trated on the bounds. Consequently, the estimation error increased in 

these regions, and one would expect even further increases in error with 

higher values of p. 

Specific Optimal Controller Design 

In most specific optimal control and estimation schemes, the para­

meters of either fixed configuration filters or controllers are adjusted 

to optimize system performance,, This section presents a basis for selec­

ting a specific optimal controller to optimize the performance of a sto­

chastic system having a fixed nonlinear filter. 

Problem Formulation 

For the linear system given in Chapter II as 

0 

0.1 

1 

2 

3 

7 

10 

(-1,1) 

(-96,.96) 

(-.82,82) 

(-.746,.746) 

(-.707,.707) 

(-.645,.645) 

(-.626,.626) 
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Table 4.3. Estimation Error for Various Measurement Noises 

p 0 0.1 1 2 3 7 10 

Estimation 
Error at N = 1000 .138 .126 .073 .067 .070 .072 .0725 

= A, x, + u, + w, \+l ~ \ \ (4.6) 

subject to the performance index (2.3) , a nonoptimal estimate x , _ of 

the plant s ta te was assumed to be avai lable . This nonoptimal nonlinear 

estimate was determined by 

\+ l ~ 2 (4+l + \fl) (4.7) 

where /, , - and L - represented the upper and lower bounds of x, - |z, n. •k+1 k+1 r rr k+1' k+1 

The problem was to determine a controller other than the Riccati controller 

to improve the performance of the system according to (2.3)„ 

Development of the Controller 

The nearly optimal combined control and estimation scheme for the 

linear system was given in Chapter II as (2.5) and (2.17). It is seen 

that for M = 4 the optimal control is expressed as 

Uk+1 " \+l\+l " \+l N 
= v>k+r - vr2"*2 

1=0 
(4.8) 

.\ \^i2 - vr2>/i+2 

i = 0 
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Dividing the polynomials in (4.8), one obtained 

2 2 

V i - \+i10-5 ( W + Vi> + "ij ^r + ^". %^ (4-9) 

2 2 
a2 4-fl \ + l a2 \+l 4+1 
a0 6 " a0 6 

+ . . . ] 

The problem was to find a controller to optimize system performance 

using a nonoptimal estimate of the plant state (4„7). If a Riccati con­

troller were selected with time-varying gain K, , then the control would 

be given as 

\ + i - VAf i • *i*it0-5(/i*i+ W l (4-10> 

One recognizes this term as being the first term of the nearly optimal 

expansion (4.9). However, since the measurement z, - was not available, 

the terms /,,1 and L, in the optimal expansion were not known exactly. 

By selecting the controller for the nonoptimal estimator as 

"k+i - * A + *ic ( S 
' f c f l x

 a l 
1 2 ao~ 

\ + l 
12 a0 

*k+l \ + l 
6 

2 (4.1 
a2 \ + l jFk+l 
ao 6 

+ ... J 

where / - and jL - were determined by using the approximation 

\+i • W (4-12) 
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then a better performance could be obtained. This expression resulted 

from taking the expected value of (4,2), 

The net effect of this solution was the formation of a new estimate 

and the use of this estimate through a Riccati controller. This idea is 

illustrated in Figure 4.3. 

zir4-i N°noPt:i-mal 

Estimator 

Lk+1 Improvement 
on 

Estimate 

Lk+1 Riccati 

Controller 

u k+1 

J 

Specific Controller 

Figure 4.3. Specific Optimal Controller. 

Referring to Figure 4.3, one may identify the new estimate £7 _ as being 

formed from a nonoptimal estimate rather than from the measurement. This 

new estimate may be written as 

al 'ta-1 
*k+l \+l + aQ 12 

4
 a2 2 a2 

a0 k + 1 a0 Ac+1 \f 1 + * *' 
(4.13) 

wh ere the approximation x, - = z. - has been used0 Therefore, the specific 
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controller problem has provided information about the sensitivity of the 

optimal filter of Chapter II by demonstrating the increase in estimation 

error with an inaccurate measurement. 

The example in the following section demonstrated the effectiveness 

of the specific optimal controller selection. 

Simulation Results for a Particular Example 

Consider the linear system from the example in Chapter II given by 

V i • °-lxk + \ + >k ( 2 - 1 2 ) 

It was assumed that a linear measurement of the plant state corrupted by 

noise was not available. Rather, a nonlinear nonoptimal estimate was 

used with the specific optimal controller. The density function of v 

was uniform on (-1,1) and the density function of w was 

11 

fw(w) = 
w when Iwl = 1 

elsewhere. 

From Figure 4.4, it is evident evident that the average estimation error 

was reduced by the specific controller by 40%. However, the specific opti­

mal controller did not perform as well as a fourth-order filter operating 

on the measurement. Thus, the sensitivity of the estimator to incorrect 

input data was demonstrated. Again, the effect on system performance with 

D = 0 was negligible in all cases. 

Conclusions 

The results of this chapter have shown the sensitivity of the 
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fourth-order filter in closed-loop operation to variations in the input 

data. Specifically, as the incorrect,bounds became large, the estimation 

error deteriorated rapidly and might possibly diverge. 

A method of selecting a specific controller was shown to be effec­

tive in improving performance as measured by (2.3). This problem also 

contained information on performance sensitivity, since the controller 

operated without accurate knowledge of the measurement. 
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CHAPTER V . - ' 

CONCLUSIONS AND RECOMMENDATIONS 

This dissertation has considered the combined estimation and con­

trol of time-varying, discrete stochastic systems. For a linear stochastic 

system, the separate optimization of the estimation and control functions 

resulted in an overall optimal system as shown by the Separation Theorem 

derived in Chapter I. Estimation by Bayes-law computation was then 

developed by application of the moment technique,, An approximate analysis 

of nonlinear stochastic systems was presented, assuming linear perturba­

tions about the deterministic nominal trajectory, which permitted the 

formation of estimation and control algorithms. 

Conclusions 

The estimation and control algorithms developed for linear stochas­

tic systems were nearly optimal because of the basic assumptions made in 

forming the moments. Only the linear term was used to represent the esti­

mate in obtaining cross-moments of the state and estimate. Because of 

the computational difficulties involved in calculating the moments using 

only the single term in the estimate expansion, the use of additional 

terms for the moment calculations was not feasible„ 

The results of using the estimation and control algorithms on a 

particular linear stochastic system demonstrated several points of interest0 

The fourth-order filter, when used with a Riccati controller as specified 
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by the Separation Theorem, decreased the mean-square estimation error and 

reduced system cost as measured by (2 ,3) . This improvement over the com­

monly used Kalman f i l t e r and Riccati control ler combinations was due to 

the additional information about the plant and measurement noises which 

was supplied to the fourth-order f i l t e r . The decrease in system cost 

was primarily caused by including the estimation error in the performance 

index. From the observation, i t i s evident that the fourth-order a lgor i ­

thm possesses important advantages for systems where estimation i s an 

important consideration. However, i f the performance i s measured by the 

standard quadratic performance index, then the Kalman f i l t e r and Riccati 

control ler appear to be adequate in most applicat ions. However for 

higher order systems, i t i s possible that the fourth-order f i l t e r might 

reduce the standard quadratic performance index suff ic ient ly so that the 

Kalman f i l t e r i s no longer acceptable with the Riccati cont ro l le r . This 

s i tua t ion could resu l t because the feedback control ler operates on more 

than one s ta te requiring greater precision in estimation. 

Although the machine execution time was unusually high for the 

Bayes-law computation in the f i r s t -order example considered, an important 

advantage was real ized by i t s use. For low-order systems, the Bayes-law 

scheme i s a nearly optimal algorithm to which one may compare the accuracy 

of faster estimation schemes. This advantage i s pa r t i cu la r ly useful in 

selecting approximate algorithms for use on higher-order systems. These 

approximate algorithms are necessary because of the extreme di f f icul ty in 

extending the Bayes-law scheme to higher-order systems. 

The extension of the basic algorithms to a nonlinear s tochast ic 

system demonstrated an approximately optimal method of handling a problem 
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which has not been solved. The method presented was valid only at low 

noise levels, and acceptable accuracy was obtained for those cases. The 

extension to the problem of selecting a specific optimal controller was 

useful in delineating the structure and sensitivity considerations of 

the estimation and control algorithms. 

In summary, the most attractive feature of the combined estimation 

and control algorithms was the improvement in estimation demonstrated for 

both linear and nonlinear stochastic systems. 

Recommendations for Further Work 

Three problems related to this thesis research are suggested for 

further study. The first recommendation is that the consideration of 

bounds in the Bayes-law computation be eliminated. Secondly, to avoid 

detailed moment calculations, another representation of the density func­

tion is suggested. Finally, it is recommended that the method be extended 

to higher-order systems by selecting a suitable specific filter. 

The sensitivity analysis of the fourth-order filter revealed that 

the knowledge of the correct state and noise bounds was essential in 

achieving accurate estimation. This sensitivity to data on the bounds and 

moments might be reduced by the addition of higher-order terms to the 

polynomial expansion. However, the implementation of these terms would 

result in increased computation. 

An important restriction in the extension of the combined estimation 

and control algorithms developed is the difficulty in theoretically evalu­

ating the expected values of cross-products of states and estimates of the 

states. To eliminate this difficulty, it is suggested that the polynomial 
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density representation be removed and replaced with some other form of 

density representation. Specifically, the representation of a density 

by a sum of gaussians [32] seems to offer important advantages. 

Finally, another possibility in the extension to higher-order 

systems is to select a specific nonlinear filter which compares favor­

ably with the Bayes-law computation for the first-order systems. 

This thesis has presented new algorithms for the combined esti­

mation and control of nongaussian stochastic systems. The resulting 

algorithms have been compared favorably with the Kalman filter and 

Riccati controller combination, which are optimal for gaussian distur­

bances. The problems outlined in this section are recommended as 

fruitful areas for further work. 
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APPENDIX I 

DERIVATION OF THE BAYESIAN ESTIMATOR 

This appendix presents the derivation of the least-mean-square 

estimator by Bayes-law computation, the approach differs from the de­

velopment in [28,29] because of the feedback control in the moment 

calculations, and the resulting estimator presented here is not 

adaptive. 

The least-mean-square estimate for the linear system given in 

(2.1) may be expressed as 

Vl = EtxM-l I W = J / W x , ^ |ZuL1
 (xW-l ' W V l (A1-0) 

/,. . k+1 I k+1 
'£, , , k+11 fct-1 

k+1 

whe r e £, 1 and / , . , r e p r e s e n t t h e lower and upper b o u n d s , r e s p e c t i v e l y , 

of x, , , Z, , .. . By t h e B a y e s i a n r u l e , one h a s 
k+1 • k+1 

^i^ww^^wv 
fx^|zk <WW : ; — — <A U 1> 

M[ M fz^lz^VilV 
The d e n s i t y f u n c t i o n f • (zi,4_i IXL._L.I)

 c a n ke w r i t t e n a s 
z k + l ' x k + l L k 

^il^/'w-l1^^ = ^a-A*1 = Vl " W (A1'2) 

k+1I k+1 k+1 

The denomina to r of ( A l . l ) may be e x p r e s s e d a s 

' / l C f l f (z |x ' 

V l WXld-l "w-l'Vl- x ^ , ^ 

(A1.3) r'kH-1 (.Al 
f
Vl|^lcnlV - J / , . ( ^ I W ^ J Z <WVdVl 
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Therefore, one needs only to evaluate f i„ (x. n |z, ) to obtain the 
Xk+l'\ k + i k 

density x,,, |Z, , which may be expressed as a polynomial. However it 

is necessary first to determine certain bounds on x, ,, Z. . 
k+1 k 

Bounds and Moments of x, M Z, 
k+1 k 

Assuming the bounds and moments of.'x, |Z have been found in 

the last sampling period, one may evaluate the bounds of x, ,,|Z, as 

^k+1,0 = Vk + uk + Wmin <2-U> 

4+1,0 " V k + Uk + "max <2-12) 

where it may be assumed that A, > 0 without loss of generality. Fur­

thermore let 

l, : lower bound of x, \z (A1.4) 

/, : upper bound of x, Jz, 

^k+i.o : lower bound of xk+ilzk 

'fcfl',0 : UPP« bound of X k + 1 | Z k 

One may obtain the moments of x... |z by taking the expected value of 

(1.1) as 

E [ x ^i i z k i = E [ V k + u k + w k i z k ] i <"•« 

= E{^ «rjVvkivj"p^kivp} 
j=0 p==0 

i=l,2,...,M 

To evaluate the above expression, the form of the estimate is re­

quired. This expression will be assumed known for the remainder of 

this section and will be developed in Appendix II. 
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Approximation of f . (x' |Z ) 
Xk+ll\ k+i k 

To approximate a density function by a polynomial of the form 

f (y) - S a.P.(y), where y(E(-l,l), the coefficients a. must be selected 
y i=0 x i i 

to minimize the mean square error of this approximation. Specifically, 

from [28] for a density function. 

4 t 
fy(y) =iS0

aiy" (A1*6) 

the coefficients a. for i=l,2,3, and 4 are 
I 

a_ = 7.3828125m (4) - 8.203125m (2) + 1.7578125 (A1.7) 
0 y y 
an = -13.125m

 (3) + 9.375m (1) 

1 y y 

a0 = -73.828125m
 (4) + 68.90625m ^ -8.203125 

2 y y 

a. = 21.875m (3) - 13.125m (1) 

3 y y 
a. = 86.1328125m (4) -73.828125m (2) + 7.3828125 
4 y y 

To approximate f i (XL~*-I Î I.) ^y a polynomial as given by (A1.6), 
xk+l^k k 

a transformation must be made such that the new variable will be dis­

tributed on (-1,1). Such a transformation is given as 

„ 4+1,0 + 4+1,0, 
k+1 4+i,o- 4+i ,o^ + 1 ( x ^ - - — ^ 2 ™ i " ) (A1.8) 

where s. in i s the new random v a r i a b l e . Let k+1 

c = 7 T T <A1.9) 
J k+1,0 \ + l , 0 

d = . 4+1,0 + 4+1,0 
4+1,0 - 4+1,0 
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Having determined a polynomial representation of f • (xu±_i |z.)> 
Xk+llZk tcfi k 

one is able to determine the density function of x. .. Z. . 
k+1 ' k 

The Bounds and Density Function of x. ., Z, .. 
' k-H ' k+1 

Since it is known that x. .. |Z, £ (£, .-, '«, /, . -, «) and assuming 
k+11 k k+1,0 'k+1,0 

that v is uniform £ (-1,1) without any loss in generality, the distri­

bution of the joint random variable z^_.x l̂ ,, •, may be represented by 

a parallelogram as shown in Figure Al.l. 

k+1,0 

.*_Xk+l 

Lk+1 Z k + 1 + 1 

Figure Al.l Distribution Region of x, ,,z 
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t h e n (A1.8) becomes 

s
k + i = cx^i + d < A 1 - 1 0 > 

Taking expected values of (ALIO), the moments of s,,, |z, are found as 

"vA"*^/8 \ + A (Aial) 

Thus, the density function of s,.|z can be approximated as a poly­

nomial 

Vjz^VilVr'A'tfi (A1-12) 

k+1' k i=0 

Making use of (ALIO) again, one has 

f
x̂ ,|Z ( v i i v = l ^ r K ^ K(si*i - c xw+ d i v (A1-13) 

k+l k k+1 k+i • k 

M £ 
f x IZ = C . E o b i ( c X k + l + d ) ( 2 - 1 3 ) 

x k + l l Z k i=0 L **L 

Therefore, for M = 4 

where 

f x IZ = * a i x k + 1 ( 2 * 1 5 ) 

X k + l ' Z k i - 0 L k + i 

a = b A + b . d + b 0 d 2 + b 0 d 3 + b . d 4 

0 0 1 2 3 4 

a , = b , c + 2 b . c d + 3b.Dcd2 + 4 b . c d 3 

1 1 2 3 4 

2 2 2 2 
a 0 = b 0 c + 3b„c d + 6 b . c d 

2 2 3 4 
3 3 a_ = b„c + 4 b , c d 

3 3 4 

a4 = V 
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Observing the right ends of Lines I and II, it is seen that 

r'k+i.o w h e n zk+i £ 4+i,o " 1 ( 2 - 1 5 ) 

'k+i = { 
zk+i + 1 w h e n zfcti < 4n ,o " x 

Similarly, from the left ends of Lines I and II, one has 

k̂+1 i 
z - 1 when z > l ^ U Q + 1 (2.16) 

^k+1,0 W h e n Zk+1 ~ \ + l , 0 + 1 

The density of XUJ.II ZJ-J.!
 c a n b e written from (Al.l) and (A1.3) as 

(A1.14) 

fzM I x ^ / ' k r f l ' W ' ^ |z.<xIcnlZk) 

f , I v _ k+1 ' k+1 k+1 k  
x u i l Z u i ^ ' ^ p/w-i' k+1' k+1 r k+1,. , I >. ^ , 17 \ j , 

. £«u, k t , ' V i l V i ' V , |z„(xk+ilzk)dxk+i 
A. .. k+1' k+1 k+1' k 
k+1 

Making use of the assumption that v, ,- is uniformly distributed on (-1,1) 

and (A1.2), one has 

f 

K ., i ^ ^ i i w • jr^r- •— (2-io) 
jz <>wv 
•1 ' k 

k+1 - JC^I^I'V-V! 

Inserting (2.15) into (2.10), one obtains 

M i 
S a i X k+ l 

fxuxl I z ^ W - l l W " M )=°+1 i+1. . . . . . . <A 1 - 1 5> 
k+i1 k+i .ia i ( 'k+i - W / ( l + 1 ) 

1— U 

Xuj.iI
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Therefore, the moments of x, .. \^[.-t
 ar^ given for the computation in 

the next sampling period as 

M i (A1.16) 

kfcf1' k+1 V1IV1 

/, ., • AVk+l 
E[xL|2^] = m

( j ) • - ' » l J —^ x: 

1=0 

J _ 1£0 

Xk+1 I Zk+1 _ M ,.1+1 • ,l+lw,..n
 (A1-17) 

.2n
ai(/^l " W / ( l + 1 ) 

1=0 
for j=l,2,...,M 

This suboptimal estimate is the conditional mean value, i.e. the first 

moment of x,,, JZ,,.. , and may be obtained from (A1.17) by setting j=l. 

Hence, one has 

M i + O 1-U9 

.\a±«£i - Ci}/<i+2) 

V M - — <2- i7> 
K*i M .,1+1 i+lN//..1N .Vi(/k+l " W / ( l + 1 ) 

1=0 

Thus the estimate of the plant state is completely specified except 

for the moments of x.... | z , w h i c h are to be evaluated in Appendix II. 
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APPENDIX II 

CALCULATION OF THE MOMENTS OF x, ̂  |z. 
k+1• k 

The purpose of Appendix II is to derive the moments (A1.7) re­

quired in the Bayes-law formulation of the estimate. M=4 was selected 

arbitrarily because of the ease in implementation and the relative 

accuracy demonstrated in [28,29]. 

The moments of x,,1|Z, are obtained by taking the expected value 

of (2.1) as seen in (A1.7). By using this expression, one is able to 

evaluate directly all expected cross-products except those given by 

E[ujSc£_1|Zk] for i-1,2,3, and 4. (A2.1) 

However, because u, = K x , (A2.1) becomes 

^VVK^-^A''^ f . 1 2 , 4 CA2.2) 
for 1=1,2,3,4. 

To evaluate these expected values, one must first express the estimate 

x, in terms of the variables of the system. Since from (A2.24) with 
K. 

M=4, x, may be w r i t t e n as 
4 ,A+2 I + 2 W # 1 0 

. , V i ( 4 -*k ) / l+2 

x ^ f — (A2.3) K H , , i + l . i + l v , . , , £ a ( / - I ) / i + l 
i=0 x k k 

/ 

which may be expanded by long d i v i s i o n to give 

2 2 2 
V k a i t k

 a
2 / i A 

\ - °'5^k + V + ijll + =Jlt - afP + ' * * (A2'4) 
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Retaining the first two terms, the expected value of the products 

in (A2.2) may be expressed as 

E [ ^ x £ - i | z k ] = E[ ( .5 [ / k + t k ] ) i
X £ - i | z k ] (A2.5) 

It has been shown from earlier considerations that /, and £, are func­

tions of the measurement z . Again by examination of Figure Al.l, it 

can be seen that the values of / and £1 depend explicitly on four 

ranges of z . The ranges of z and the corresponding values of / 

and £ are given as: 

Range A: zfc < / ^ - l and ^ i= ̂ + 1 (A2.6) 

(A2.7) 

and \ 5 4,o+1 

fk = Zk+1 

lk = Zk+1 

and \ s \,o+1 Range B: «k < / k j 0 - l and ' k * \,o+1 ( A 2 - 8 ) 

/ k = Z f c + 1 • ' (A2.9) 

4 = 4,0 

Range C: ^ $ f^-1 and \ > \ > 0
+ 1 (A2-10> 

4 = / k > o <A2-n> 

4 = zk+l 

Range D: «k S / k > 0 - l and \ = ^ k j 0
+ 1 ( A 2 ' 1 2 ) 

4 = 4 , 0 (A2-13> 

lk = \,0 
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The approach will be to find expressions for E[xr x, ] for j = 1 and 

i = 1,2,3, and 4 for all four ranges and then to generalize to the other 

required cases, i.e. j = 2,3, and 4. 

Et*Aizk ] 

The expected value of x , £ |Z, may be w r i t t e n from (A2.5) as 

S ^ P f c ] = 0.5 E [ x k ( / k + < k ) |Zk] ( A 2 . 1 4 ) 

For Range A, (A2.14) becomes 

E [ x A l Z k ] = °*5 E [ x k l Z k ( 2 z k ) ] (A2.15) 

From 2 .1 t h i s may be expressed as 

E [ x k \ lZk ] = E [ x k lZk ] + E [ x k V k lZk] (A2.16) 

Because of the independence of x, and v, , (A2.16) may be w r i t t e n 

as 

E [ x k X k l Z k ] = E [ x k ' Z k ] + E [ x k ' Z k ] E [ v k ] ikl.ll) 

S i m i l a r l y express ions may be der ived for the remaining th ree reg ions 

and may be w r i t t e n as 

Range B: 

E [ xAi zk ] = 4 ~ ( E [ xkizk ] + E[xk I V ^ V + E [xkizk ] (A2-18) 
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Range C: " 

E C x A l ^ -T- (E[\lzk^ + *l\\hm\l - EKlzk] + 4,oEf\lzk^ 
(A2.19) 

Range D: 

' [ " A I V • f *i\ iz
k] </k,o

+<k,o> <A2-20> 

At this point, it is easy to generalize to E[xr x\] for j = 2,3,4 by 

increasing the corresponding power of x, in (A2.17) and (A2.20) for all 

four ranges. The other cross-products of E[x^ x1] for i= 2,3,4 are 

calculated by suitable substitution for x . 

i T*-* i_ 
Having obtained the expressions for E[x. £ ] where i = 0,1,2,3,4 

one may proceed to find an expression for the moments of x, - \Z, . By 

expanding (A1.7) the moments of x, - |Z, may be expressed as 

mx IZ = E [ wk ] + E [ \ |Zk] + ̂ K lZk] (A2.21) 
k+1 I k 

mx |z = E [ wk ] + E[uk lZk] + A2E[\ >Zk] + 2 A E[xkuk lZk] (A2'22) 

K. r-L K. 

+ 2AE[xk |zk]E[wk] + 2E[w k ]E[u k | z k ] 

mx |Z = A3E[x^ |zk j +E[w k ] + E [ u k | z k J + 3AE[xk |zk]E[w2] 
k+1 ' k 

(A2.23) 

+ 3AE[x ku 2 | z k] + 3A2E[x2 |zk]E[wk] + 3A2E[x2uk 1^] 

+(See Next Page) 
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2-
+ . 3 E [ w k ] E [ u k | z k ] + 3 E [ w k ' ] E [ u k | z k ] + ^ [ ^ U k l Z k ] E [ \ ] 

m x |Z = A E [ xk'Zk ] + E [ \ ] + E [ u k | Z k ] + 4A E[xkUklZk ] + 4A E [ x J Z k ] E [ w k ] 
k+1 ' k 

+ 4AE[x, li* |Z, ] + 4AE[x, |z, ] E [ W ^ ] + 4E[u, | Z , ] E [ W ^ (A2.24) 

+ 4 E [ u k | Z k ] E [ w k ] + 6 E [ u k | Z k ] E [ w k ] + 6 A 2 E [ x * u 2 | Z k ] 

+ 6 A 2 E [ x k | z k ] E [ w k J + 1 2 A E [ x k u 2 | z k ] E [ w k ] + 12AE[x k u k j ^ E E w ^ ] 

9 9 
+ 12A E [ x k u k | . Z k ] E [ w k ] 

i/s4-i 
Recalling u, = K, x, and the expressions for E[x,x. |z ] where i =0,1,2,3,4, 

one is able to write down the moments required directly for the four 

ranges of z, . For convenience, one may define 
iC 

E [ x k | z k ] = m [ i ] 

E[w. ] a mwi f o r i = 1 , 2 , 3 , 4 

E [ v k ] = mvi 

Fo r Range A : z^ < / ^ - 1 and Zfe > ^ Q + 1 

m = mwl + Am[l] + K, (m[ l ] + mvl) (A2.25) I = mwi -i- am[ i j -r iv, 
Xk+1 | Z k R 
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2 2 
m I = mw2 + A m[2] + 2AmwlmLl] + K mwl(m[l ] + mvl) (A2.26) 

X k + l l \ k 

+ K 2 (m[2] + 2m[l ]mvl + mv2) + 2AK (m[2[ + m [ l ] m v l ) 
K K 

m3 I = mw3 + A3m[3] + 3Amw2m[l] + 3A2mwlm[2] + K 3 (m[3] (A2.27) 
X k + l | Z k k 

+ 3m[2]mvl + 3m[l]mv2 + mv3) + 3AK2(m[3] + 2m[2]mvl 

+ m[l]mv2) + 3A2K (m[3] + m[2]mvl) + 3mwlK2(m[2] 

+ 2m[l ]mvl + mv2) + 3K mw2(m[l] + mvl) 

+ 6AK mwl(m[2] + m [ l ] m v l ) 

m I = mw4 + A m[4] + 4Am[l|raw3 + 6A m[2]mw2 + 4A m[3]mwl 
X k + l | Z k 

+ K7(m[4] + 4m[3]mvl + 6m[2]mv2 + 4m[l]mv3 + mv4) 

+ 4AK3rawl(m[4] + 3m[3]mvl + 3m[2]mv2 + m[l ]mv3) 

+ 4K3rawl(m[3] + 3m[2]mvl + 3m[l]mv2 + mv3) (A2.28) 

+ 6KJ~mw2(m[2] + 2m[l ]mvl + mv2) + 6A2K2(m[4] 

+ 2m[3]mvl + m[2]mv2) + 12AK mwl(m[3] + 2m[2]mvl 

+ m[l ]mv2) + 4A3Kk(m[4] + m[3]mvl) + 4mw3Kk(m[1] 

+ mvl) + 12AK mw2(m[2] + m t l j m v l ) + 12A2K mwl(m[3] 

+ m[2]mvl) 

C o n s i d e r Range B : z < / Q - 1 and z £ L +1 

m i_ « mwl + K. ( m t l j + mvl + L n + 1) (A2.29) 
Xk+l'Zk Y 

m I „ = mw2 + A m[2] + 2Amwlm[. 1] + ( s e e n e x t page ) (A2.30) 
X k + l | Z k 
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+ Kkmwl{m[l] + mvl + ^ Q + 1} + ^ { m [ 2 ] + 2m[l](mvl + &k Q +1) 

+ mv2 + 2mvlU k + 1) + U k + l ) 2 } + AKk(M[2] + m[l]mvl 

+ m [ l ] ( £ k Q +1) 

3 
m3 i „ = A3m[ 3] + mw3 + 3Amw2m[l] + 3A2mwlm[2] + \ { m [ 3 ] + 3m[2]-

X k + l K k 8 

(mvl + £ + 1) + 3m[l](mv2 + 2mvlU k Q + 1) + ( j ^ + l ) 2 

+ mv3 + 3mv2(j^kj0 + 1) + 3 ^ 1 . ^ ^ + l ) 2 + U k > 0 + I ) 3 } 

+ 3AKkfm[3] + 2m[2](mvl + I n + 1) + m[l](mv2 + 2mvl-
4 k > u 

2 
U k , 0 + 1 } + U k , 0 + 1 ) 2 ) } + ^ Kkfm[3] + m[2](mvl + l^Q 

+ 1)} + 3mWlKkfm[2] + 2m[l](mvl + L n + 1) + mv2 ( A 2 * 3 1 ) 

4 ' 

+ 2mvlU k Q + 1) + (£ k Q + l ) 2 } + 3Kknw2{m[l] + mvl 

+ ik Q + 1} + 3AKkmwl{m[2] + m[l](mvl + i^ Q + 1)} 

4 
m4 I = mw4 + A4m[4] + 4Am[ l]mw3 + 6A2m[2]mw2 + 4A3m[3]mwl + ^k • 

X k + l | Z k 16 

{m[4] + 4m[3](mvl + &k Q + 1) + 6m[2](mv2 + 2mvlU k Q + 1) 

+ UkiQ + I ) 2 ) + 4m[l](mv3 + 3mv2U + 1) + 3iiivlUk Q 

+ D2 + ( \ 0 + D 3 ) + mv4 + 4mv3(j^k>0 + 1) + 6*v2(i 

• + l ) 2 + 4mvl(j^kj ( ) + I ) 3 + U k 0 + D 4 } + IAK3{m[4] 

(A2.32) 
2 m v l ( ^ > 0 + 1) 

+ (see next page) 

3m[3](mvl + ^ Q + 1) + 3mf.2](mv2 + 2mvl(j&k Q + 1) 
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+ U fe 0 + l ) 2 ) + m[l](nrv3 + 3mv2(Ak Q + 1) + 3mvlQ k Q + l ) 2 

+ (i + l ) 3 ) } + lK3rawl{m[3] + 3m[2](mvl + ^ Q + 1) + 3m[l](mv2 

+ 2 m v l U k j 0 + 1) + ( i k 0 + 0 ) 2 ) + mv3 + 3mv2U + 1) + 3 m v l ( i k ) 0 

+ l ) 2 + Uk 0 + I ) 3 } + £K2rnw2{m[2] + 2m[l](mvl + ifc Q + 1) + mv2 

+ 2mvl ( i k 0 + 1) + U k 0 + D 2 } •+ 2A2K2{m[4] + 2m[3](mvl + 'X k Q + D 

+ m[2](rav2 + 2mvlU + 1) + ( ^ Q + l ) 2 ) } + 3AK2rnwl{m[ 3] + 2m[2]' 

(mvl + lk + 1) + m[l](mv2 + 2mvlU k Q + D + ( \ Q + D 2 ) } 

+ 2A3K [ml4] + m[3](mvl + l + I )} + 2raw3Kk{m[ l ] + tnvl + ^ Q + 1} 

+ 6AK.mw2{m[2] + m[l](mvl + i n + 1)} + 6A2K mwl{m[ 3] + m[ 2] • 

(mvl + i Q + 1 ) } 

Range C : z^ * f ^ - 1 and z k > ^ + 1 

m _ = mwl + IK. (mtl] + mvl + / . n - 1) + Am[l] (A2.33) 
X k + l | Z k 2 k K}U 

m i„ = mw2 + A m[2] + 2Amwlm[l] + K mwl{m[1] + mvl + / . n (A2.34) 
x k + l l Z k k ' 

- 1} + lK2{m[2] + 2m[l](ravl + / - 1) + mv2 + 2mvl-
4 k R ' u 

( /k,0 " 1} + ( /k,0 " 1 ) 2 } + A V 4 2 ] " ^ H n i v l 

+ / k , o " 1 ) } 
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m3 . = raw3 + A3m[3] + 3Amw2m[ 1] + 3A2mwlm[2] + J.K?|m[3] + 3m[2]-
x k+l l \ 8 * 

(mvl + / k ) Q - 1) + 3m[l](mv2 + 2 m v l ( / k j 0 - 1) + (f^o ' 1 ) 2 ) 

+ mv3 + 3mv2(/ k j ( ) - 1) + 3 m v l ( / k ) 0 - l ) 2 + ( / k ) Q - l ) 3 } 

+ lAK?{m[3] + 2m[2](mvl + / Q - 1) + m[l](mv2 + 2mvl-
4 ' (A2.35) 

( / k , 0 " X> + ( ' k , 0 " I ) 2 ) } + ' | A 2 K k W 3 ] + m[2](mvl + / k > ( ) 

2 
- 1) } + ^rawlKk[m[2] + 2m[l](mvl + / Q - 1) + mv2 

+ 2 m v l ( / k j 0 - 1) + ( / k ) Q - l ) 2 ) + 3Kkmw2{m[l] + mvl + f^Q 

- 1} + 3AKkmwl{m[2] + m[ 1] (mvl + / - 1) } 

/ / 0 *̂  

m 17 = mw4 + A m[4] + 4Am[ l]mw3 + 6A m[2]mw2 + 4A m[3]mwl (A2.36) 
Xk+1 ' k 

+ 2K^{m[4] + 4m[3](mvl + /fc Q - 1) + 6m[2](mv2 + 2mvl( / k Q 

- 1) + ( / k j 0 " I ) 2 ) + 4m[l](mv3 + 3my2(/k > ( ) - 1) + 3mvl-

(/k,o " 1 ) 2 + (/k,o " 1 )3 ) + mv4 + 4mv3(4,o ' X) + 6mv2' 

< / k , o - V2 + 4 m v l < 4 , o - 1 > 3 + < / k , o - X>4J 

+ AK^{m[4] + 3m[3](mvl + /fc Q - 1) + 3m[2](mv2 +2mvl( / k Q 

- 1) + ( / k 0 - I ) 2 ) + m[l](mv3 + 3mv2(/ k ) Q - 1) + 3mvl-

(Ac,0 "• 1 ) 2 + ( / k , 0 " I ) 3 } + l^"wl .{m[3] + 3m[2](mvl + f^Q 

- 1) + 3m[l](mv2 + 2 m v l ( / k ) 0 - 1) + ( / k j Q - l ) 2 ) + mv3 

+ 3mv2( / k ) 0 - 1) + 3 m v l ( / k > 0 - I ) 2 + ( / k > Q - I ) 3 } 

+(see next page) 
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+ 3K^mw2{m[2] + 2m[ l ] (mvl + / k j Q - 1) + mv2 + .2mvl(f^0 - 1) + ( / Q 

- I ) 2 ) + 3A2K^{m[4] + 3m[3](mvl + / fe Q - 1) + .3m[2] (mv2 + 2 m v l ( / k Q 

- 1) + ( / k j Q - I ) 2 ) ) + 3AK^mwl{m[3] 4- 2m[2](mvl + / ^ - 1) + m [ l ] -

(mv2 + 2 m v l ( / k j 0 - 1) + ( / k j Q - I ) 2 ) } + 2k\[m[^] 4- m[3] (mvl + / k j 0 

- 1 ) ) +'2mw3Kk{m[l] 4- mvl + / fc Q - 1 } 4- 6AKkmw2{m[2] 4- m [ l ] ( m v l + / fc Q 

- 1) ) 4- e A ^ m w l C n O ] + m[2] (mvl + / ^ - 1) ) 

For Range D : z k * 4,o " x a n d zk = \,o + 1 

mx k + 1 |Z k=mwl + V 4 , 0 + \,0> + A m ^ 
(A2.37) 

m2
 j z = mw2 + A2m[2] + 2Amwlm[l] + I^mwlC/ Q + j ^ Q) (A2.38) 

Xk4-1 ""k 

+ ffr'k.o + \,o>2 + ^V^^o + \ ,o» 
4 

m3 i3 = mw3 + A m[3] 4- 3Amw2m[ 1] 4- 3A rawlm[2] 4- IK, ( / , n + L n ) 
x k + 1 | Z k £ k k,U k,U 

+ 3A^m[l](/k>0 + \>0>2 + f * V 2 " ' k , 0 + V0> 

2 2 (A2.39) 

•f^'k.O + \,0> +4Kk™2</k,0
+ \,0> 

+ 3 A K k m w l m [ l ] ( / k j 0 + • ̂  ) 
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x k+1 '"k 

L L 7 3 4 
m ,_ = mw4 + A m[4] + 4Am[ 1] + 6A m[2]mw2 + 4A m[3]mwl + K, . 

1" il 
( /

k , o + Vo ) 4 + fk^^^k.o + v ) 3 + - i 4 n w i ( /
k ) o (A2'40) 

+ \,o>3 +§4nw2<'k)o
 + \ ,o ) 2 +fA2V*2]<>k,o+ \ ,o)2 

+ SAK^mwlmUK/^ + ^ + 2A
3Kkm[3] ( / ^ + ^Q) 

+ 2 « 3 K k ( / k „ + ^ > 0 ) + 6AK k m w 2 m [ l ] ( / k ) 0 + X ^ ) 

+ 6 A K k n , w l I n [ 2 ] ( / k ) 0 + ^ ) 

Having obtained the moments of x _ Z , the f i l t e r i n g a lgor i thm 

i s complete. 
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