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SUMMARY

This dissertation describes an improved algorithm for the esti-
mation and control of nongaussian stochastic systems, It is assumed that
the plant and measurement noises are bounded with the specific bounds
énd density functions known. The system is to be controlled to minimize
a cost criterion that encompasses both the standard quadratic performance
index and the error in the estimation of ;he plant states,

The development of the combined estimation and control algorithm
“for #_noiéy, discrete linear system depends on the applicability of the
:Separation Theorem. Its validity for this case is demonstrated in a
proof by dynamic progfamming resulting in a Riccati controller operating
on the least-mean-square estimate, A moment technique is used in apély—
ing Bayes-law computation to obtain this estimate, The conditional den-
sity functions required in the Bayes-law computation are either expressed
directly in terms of their moments or approximated by polynomials whose
coefficients are functions of the moments. To evaluate the expected
value of cross-products of the plaﬁt state and estimate, the estimate is
expanded into a truncated polynomial, A rather complex relationship
depending on the value of the measurement is obtained for this cross-
product. The.esfiéate of the plant state is then combined with the
Riccati controller to yield the improved estimation and control algori-
thm,

The approximately optimal algorithm is applied both to linear and
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nonlinear systems., To implement the algorithm_for the nonlinear plant,
linear perturbations about alnominal.trajectory are assumed, In both
linear and nonlinear cases, the use of the'algorithm improves the perfor-
mance and estimation error over that obtained from the combinatieﬁ of the
ﬁiccati controller and the Kalman filter, TFrom further considerations
of the approximately optimal algorithm, a specific controller is syn-
thesized whiﬁh improves system performance for a fixed nonoptimal filter
over the use of a Riccati controller with the nonoptimal filter,

The basic algorithm for the linear, nongaussian, stochastic system
was shown to be sensitive to incorrect data'statistiés. However, when -
correct data ﬁas used, particular examples demonstrated that the primary
improvement was the resulting lower estimation error., It is expected
fhat for other systems improvement in the standard quadratic performaﬁce

index can be achieved by using this basic algorithm,




CHAPTER I
INTRODUCTION-

Motivation

Modern design approaches for deterministic control systems have
utilized such variational methods as Bellman's Dynamic Programming.and
Pontryagin's Maximum Principle. Bgcause the optimal closed-loop control
law found by these methods is a functionnof the plant staées, it is
often assumed that these states are exactly measurable, This assumption
is usually not justified in practical systems due to instrumentation
errors and external disturbances. Thus, it becomes necessary £q such
cases to estimate the plant'statés_for ¢losed-loop control purposes,
This estimation and its-subsequent use for control is referred to as
the combined estimation aﬁd control problem,

The usual approach to the combined estimation and control probiém'
has been to use the Kalman-Bucy (linear) filter with the deterministic
optimal controller to obtain a cloéed-loop solution. For this solution
to be optimal, the system must be linear and the disturbances gaussian,
Nevertheless, even though these assumptions are rarely satisfied, the
number of applications of the Kalman-Bucy filter. in physical systems
has rapidly increased in recent yearé. For example, the Kalman-Bucy
filter has been used in the guidance of Rangers VI and VII as well as
in the snalysis of ﬁest data from the Boeing 747. 1In this dissertation

the gaussian assumption 15 relaxed, and the resulting optimal estimator

s




is ﬁénlinear.- Previous approaches to the optimal nongaussian combined 
proﬁlem.have not resulted in computationally feasible solutions, .

The objective of this dissertﬁtion is to develop a new computa-
tional technique to yield an approximately optimal solution for the
linear, nongausgsian combined estimation and control problem. Using
this solution, the nonlinear plant will also be investigated by linear-

izing about a deterministic nominal trajectory.

Background

Thé historical background relevant to this dissertation empha-
sizes recent developments in stoqhastic gsystem theory, the Separation
Theorem, approximate solutions for nonlinear systems, estimation theory,
and specific optimal estimation and control, |
Stochastic System Theory

General nonlinear stochastic systems have been investigated within
the last decade with some success, The major difficultywpas been the
associated computational problem. The estimsation of the states of a
nonlinear plant disturﬂed by gaussian noise was considered by Kushner
[1,2]. His result was the first rigorous treatment of the continuous--
time nonlinear filter and yielded an infinite set of partial stochastic
differential equations. The equations were the result of applicgtion'of
' the kolmogorov forward and backward equations, This nonlinear filtering
algorithm was also derived with appfopriate conditions by Buéy and Joseph
[3]. W. M. Wonham [4] developed a procedure for analyziné the stochastic
optimal control problem, He derived an equation analogous to the Hamilton-

Jacobi eqﬁation in deterministic control that reduced the control problem




to the solution of a functional equation., However, this stochastic
Hamilton-Jacobi equation contained the partial differential operator of
the Kolmogﬁrov equations, Wonhém applied his equation to a linear sys-
tem disturbed by gaussian noise and obtained a solution that could be
verified by the Separation Theorem,

Floreﬁtin [5] used the method of dynamic programming to obtain a
nonlinear integro-partial differential equation whose solution would
yield both the optimal control and the value of the performance index.
Because the resulting equations could not easily be solved in general,
Florentin applied the method only to a linear plant with a quadratic
performance index and gaussian disturbances, His approach to this pro-
blem yiel&ed a set of ordinary differential equations suited for computer
solution. Florentin concluded that for certain examples fhe separate
optimization of control amd estimation functions would also provide the
optimal control policy, Because of the computational difficulties in
these approaches, the nonlinear problem has often been linearized and
the higher order moments neglected,
| The Separation Theorem

The possibility of the geparate optimization of g statistical
estimator énd the performance criteri&n of the plant to yield a system‘
wﬁich would be optimal in an overall.sense was suggested in 1958 by
Kalman and Koepcke [6]. Booton [7] showed for a linear terminal control
problem corrupted by gaussian noise that the separate optima imply an
overall optimum system, With the advent of the Kalman estimator end the

Duality Principle [8], considerable attention has been devoted to the




separate opﬁimization of the estimation and control functions., The first
proofs of the Separation Theorem were given by Joseph gnd Toﬁ [9] and by

_ Gunckel and Franklin [10], For the linear discrete multivariable con-
trol system subjected to additive white noise, the dynamic programming
technique was used to'show that the indepéndent optimization of the con-
troller ‘and the estimator results in an opfimum control system with
respect to a quadratic performance ind;x. For a similar system, A, R, M,
Noton [11] showed that the Separation Theorem is valid when the measure-
ments are a mixture of both continuous and diserete data, The extension
of the Separation Theorem to continuous linear multivariable plants dis-
turbed by white noise has been shown by Sage'[lzj and Lee [13]. Brysdn
and Ho [14) proved via dynamic programming that the éeparation Theorem

is wvalid for both continuous and discrete linear plants having quadratic
performance indices with gaussian noise. Alspach and Soreﬁson f15] |
demonstrated th;t for a linear discrete system with nongaussian distur-
béhces the separate optimization of the estimation and control funetions
results in an overall optimal schgme. Curry [16] indicated that the
Separation Theorem is valid for a linear discrete system with n&nlinear
measurements. However, Alspa@h_and Sorenson [15] asserted that his result
does not yield the optimal solution. In a paper more recent than [4],
Wonham [17] used dynamic programming and the Ito~Nisio-F1emiﬁg theory of
functional stochastic differential equations to determine results for
more general controllers and cost cxiteria, Specifically, he showed that,
for a linear continvous plant disturbed by white gaussian noise, the inde-

pendent control and estimation of the plant is correct regardless of




whether the optimal control is linear in the plant state or the cdsti
criterion is qqadratic. In a generaliza;ion of the combined estimation
and control problem, Meier, Peschon, and Dressler_[lS] congidered a
system which had available a control input to the plant as well as to

a measurement subsystem, In this class of problems réferred to as mea-
surement adaptive systems, a linear plant, a quadratic performance index,.
_and gaussian disturbances wefe considered., The authors demonstrated-
that measurement control may be computed a priori and that ﬁhe plant
control and state estimation may be performed independently, Koivo [19]
showed that the separate optimization of the plant contreol and state
estimation holds for linear Systeﬁs containing delayed state variables
and having a quadratic cost functiomal.

Approximate Solutions for Nonlinear Systems

The computational difficulties accompanying the exact solution of
nonlinear stochastic systems has led to approximate solutions for these
systems, Sage [207] presented a method for applying the Kalman filtering
theory t§ nonlinear systems, By forming apﬁroximate linear pertufbational
equations about the mominal solutionm of the nonlinear differential equa-
tions, an approximate estimate may be found by the addition of the nominal
state énd the Kalman:estiﬁate of the linear perturbation. Wells [21]
-applied the same technique in the control of a nonlinear reactor. Sunahara
[22] described another approximation for nonlinear systems called sto=-
.chastic linéarization. The method involves the expansion of the non-
linearity into a linear function whose coefficients are selected to'minimizé
mean squére error, Sunahara and Ohsumi [ 23] used this linearization

technique and a computaticnal approach from dynamic programming to yield




a suboptimal approach ﬁo the nonliuear, stochastic control problem,
ﬁegardless of the p#rticular approximations used, nonlinear systems are
usually handled more expediently by some linearizing technique.
Estimgtiﬁn Theory

The estimation of the states of a plant corrupted by additive
noise is an important aspect in stochastic control. Since the basic
work of Wiemer {24}, the mgjor contribution in estimation theory was
deve}oped by Kalman and Bucy [8,25], They cdnvertéd-the Wiener-Hopf
integral equation into a nonlinear differential equation containing the
necessary information for the design Ef the optimal filt;r. Their pro-
cedure applies to linear systems corrupted by additive white noise with
stationary or nonstétidnary statistics and fiﬁite dr infinite smoothing
intervals, Ho and Lee [26) formuiated the nonlinear, nongaussian esti-
mation proklem from a Ba&esian decision viewpoint, However, because of
the diffigulties,iu findiug the associated marginal and conditiomal den-
sities, the problem as formulated was intractable except for certain
very special cases. Schweppe [27] developed a reachable set technique
which resulted in a rgcursive algorithm to calculate a time~varying
eilipéoid;that.élways contaihed the system's actual state., The proce~
dure permitted the input to the dynamical system and the observation -
errors to be completely unknown except for bounds on their magnitude and
energy. Kuo and Rowland [28,29] combined a moment technique with the
reachable set concept in applying the Bayesian dgcision rule and the
least-mean~square error criterion to a linear stationary system having

nongaussian disturbances, This estimator was adaptive because the




filter learned the ﬁoments of the input noise from the data re;eived and
suboptimal because densities were approximated by truncated polynomials.

Bucy and Senne [30] also approached the nonlinear filtering pro-
blem for.discrete, nongaussian systemslby Bayes~law computation, Density
storage was accomplished in [30] by a point mass repréesentation on a
floating grid of indices; Alspach and Soremson [31] approximated con-
ditional density functions by a sum of gaussians for nonlinear Bayesian
estimation. The results in [30,31] represent alternéte apprﬁaches to
the basic computétional problem considered by Kuo and Rowland [ 28,297,
Earlier, Bryan [32)] had developed a zero-order nonlinear estimator which
‘applied to discrete nonstationary systems, The difficult problem of
finding density functions to use in the Bayesian decision approach when
applied to nongaussian and nonlinear problems inevitably results in |
such approximate filtering algorithms,

Specific Optimal Estimation and Control

In .those cases where the independent optimization of the control
and estimation functions is valid, somé interést has been devoted to
the investigation of suboptimal control.and estimation techniques. This
has been neéessary bec#use of the inherent {mplementation problem for
the optimal scheme. Sims and Melsa [33] considered prdblems-of specific
optimal estimation for linear and nonlinear systems, Their estimation
écheme waé achieved by preselecting the filter configuration with some
unspecified parameters and optimizing the filter performance by the se-
lection of these parametefs. The éolution of the associated two-point

boundary value problem for the specific optimal estimation gave nearly




optimal results with considerable reduction in the complexity.of iﬁple-
mentatibn. The ﬁesign and use of specific optimal controllers was also
" extensively investigated by Agarwal and.Sridhar [34] and Murtuza [35].
Their research was motivated by the undesifable aspects of time-varying
parameters in the optimal controller struﬁture and by the implementation
/problem mentioned above, A systématic approach for the éelection of
unknown parameters of a fixed.controller configuration was presented
by Murtuza such that the behavior of a class of single input, time-varying
systems would be nearly optiﬁal. The sensitivity of spécific optimal
controilers to variations in time intervals of optimization and initial
conditions was investigated by Sims and Melsa [36]. They indicated that
the use of a dynamic controller involving an intermédiate system improves
the performance of the s&stem while reducing the sensitivity to variations.
Spec;fic optimal control is currently being investigated for
lineaf systems disturbed by nongaussian noise. In many specific optimal
control and estimation schemes found in the litérature, the parameters of
either fixed configuration filters or contrellers are adjusted to opti-
mize system performance. Raphael Sivan [37] has shown for the above
mentioﬁed_systgm with -a quadratic performance index thﬁt using.a linear
estimator with a linear controller would not be optimal. In fact, Sivan
-[38] detronstrated that for a polynomial controller using the firét four
moments of all.random variables, coupled with a linegr estimator, better
results were obtained than for a linéar controller-with a linear estima-
tor, Thus, it is possible that in those situations where the estt@ator

is fixed, the corresponding controller obtained by separate optimization




would not result in the best performance.

Development of the Separation Theorem

The Separation Theorem permits the separate optimization of the
control and estimation functions to give an overall optimal éolution.
The following proof of the Separation Theorem for linear systems with
nongaussian disturbances was developed concurrently with, but indepen-
dently of, the version given in [15],

Problem Statement

Consider the linear system given by

Kerl = At Bt Y .1

with a linear measurement of the plant state given as
I
Zerl = bl ¥ Vi J' 1.2
vhere X represents,the n-dimensional state vector, R is the control
in?ut vector, W is the system noise vector, Vi is the measurement noise
vector, and 2z is the measurement vector of the corrupted state vector,

The plant and measurement noises are assumed to be zero-mean nongaussian

white noises with a covariance matrix specified as

- Q 0 |
{10 Pelot oy

The problem is to minimize

N

J --%— E{kzo x{ Qx, + u{ Ru + ( x - ﬁk)TD(xk- ﬁk)} _(1.4)
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by filtering the measurement data to yield the best state estimate ﬁk
and then to use that estimate in a suitable control algorithm.

Problem Solution

Using the dynamic programming approach, one may define Vl(zﬂ-l)
as the optimal expected value of J for a single-stage control process
starting at k = N-1 obtained by using an optimal contrel Yo and by
knowing the measurements Zg1 = {zo, Zys eess zN-l}‘ Therefore, using
(1.4)

| 1 T T
Vi ey = ﬁ;“ T BT @ * ] R (1.5)
| -1 - =

gyt ﬁN-l)TD(xN-l- -1 12 -1}

Differentiating (1.5) with respect to W1 and setting the result equal

to zero to minimize V,(Zg_,) yields ug , equals-zero, because neither

¥y.1 oT ﬁN-l are functions of U1 Using the principle of optimality,

one may express VZ(ZN-Z) as

1 T T .
Vyty ) = Min T BV () 4, Gy b, Ry, (L6)
| ‘N-2
| -8 ) - z ‘}
+0yp7 Ryp) DOyp Ry 2y,

However, letting Ly_, = Q, one may rewrite V(2 ) as

T T
Vi yap) = By lyerer G yer) D0t By .0

By substitution of (1.7) into (1.6); Vé(zn_z) becomes

0
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' . 1 T . T
s ” ﬁ;n z E{FN-ILN-IXN-l + Oopm Byo) DOy &) WD)
-2 | s
T T
¥ Aoz Pz Y ez ez
T
+ Oy_pm Ry D0y o= By ) 7o

Note that %y_q May be replaced by the plant equation in (1.1) by letting

k = N=2 to give

VZ(ZN_Z) = Min

1 T T T T |
iy 'E'E{Fu-zﬁn-zLN-lﬁu-sz-z + Uy Byl 1Bnooty-2 (19
2 .

T T T ' T T
+ oWy obN-1-2 T Un- 2o 2iN- 18- 202 T UN- 2PN- 2RN-1%N-2
+ ot n + B ) 4+ x& AL B
W= 201 Pyao¥y-2 T ByooWneo? t o EyeoAno - 1Bn-2YN-o
T T T. T
+ Ky oy oly-1"h-2 F Fn-z Pwoz t o2 Riygg
RECHICE S YO NIV CRITE NS ORI SPPY LA
a9 DOy o= Ryo) + Gygm Rylg) Dlgygm Ry) 1%y,
Recognizing both that the éstimator minimizes (xN_l- ﬁN_l)TD(xN_l- ﬁN-l)
for any posiﬁive definite matrix D and that (xN_z- ﬁN_Z)TD(xN_z- QN-Z) ig

independent of U2 then differentiation inside the expected value of

(L.9) with respect to u, , yields

- T | T T
B{2B0 By gtes * By ey ¢ By (110)

+ ZRuN-ZlZN-Z} =0

Ervwraaprien =
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Since E[wg_,] = 0, then from (1.10)

Uge2 = E{ (BN oln-1By-2 *+ R N B IAN-ZxN-leN-Z} 1.1y
o LT
Ugag = "By obyoiByoz T R ByoolyiiAn-oRN-2 (1.12)
Therefore,
g = “On-z Ky (1.13)

_ T . -1_T A _
where Cy_, = (By oLy 1By + B "By oLy 1Ay o end &y, = Elxy 12y )]

vhich is the least mean-square estimate of xN-leN-Z'

Rewriting Vz(zn-z) in (1.9) yields

.01 of.T T | I T T '
Vo (Zyp) = z;“ PR IR SO S Y WP e R )
-2 - o T

T T R T
Xy- 2w 2o 18- 2On-2%-2 Ry N-Z( N-2tn-1B-2 T Bl o%y-2

T A \T " : Ca: AT
R T R U i UL R D
(xN-l; ﬁN-l)lzN-Z + Constant Terms ‘
However, if one recognizes from (1.12) that

By_oby-1An-2 = By_oL N-1P8-2 T By (1.15)

then (1.14) may be rewritten as
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1 T T T T T ' :
Voltyod =7 E{XN-Z(AN-ZLN-I + QX + K Cno2 Byooly-1By-2 (1.16)
+ R)C -5 ¢t @t B. . + R)C - %k cT
* ROy pRy_0” Ryo2C-2 Py 2hy-1Py-2 N-2"N-2 7 w-2n-2
T T N
(By-hy-1By-2 * Ry ofyon + Oygpm Koo POyop” Hyop)
+0Og 1" Koy DOxyqt xN-l)‘zN-Z} + Constant Terms
| Completing the square, (1.16) becomes

1 (T T T T - )
Yy = T Faga By gty * On-2 By dheyByg ¥ B0 (11D

x T.T T .
Cn-2?®yo2 + (yoom Ry_p) Onoo Byogby-1By-2 + RCyoo

'(xN,z' R + Oy o" ﬁN-Z)TD(xN-Z_ ﬁN-Z)‘zN-z} + Constant Terms

By setting

T . T T
Ly-2 = Ay-obyoify-2 * @ - Cyoa ByoglyaiBy-2 * By (1.18)

T T .
Ky-2 = Cy_oCyogly-1Byog F RICy , + D

then (1.16) may be written’as

1 T ~n T N
V) = 3 By eg + g By Ry o Oy Ry 1By o) 19
+ Constant Terms

Using tﬁe principle of optimality, one may express V3(ZN_3) as
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v (ZN 3 = E;“ EI“N 2kN- 2xu 2t Gy Ry KN 2 (g™ Ryop) (1.20)
-3

T T . _ ~ T A
+ Ky_g@yo3 t uyogRuy_g (g gm Ky 4) TD(xy - XN*3)lZN_§} :
+ Constant Terms

After substitution of (l.1), (1.20) becomes

T
v (ZN P = Mn B{(A axg s+ By gy 4w ) Ly (B ga s (L2D)
-3

BN-B“N-a +uy ) x§-3°XN-3 + wy_aRuy g+ Ogg- ﬁN-s)TD .

(g3t Ky 3) + Gy.gm $y.0) Kyog (xu 7~ Ry |2 3} + Constant

Terms

Differentiating with respect to Ue 3 inside the expected value sign yields

T 1T '
g3 = 7 By_aly oBy.s + B By by ohy afy.s o (.22

AP . . R T
where again it is recognized that the estimator minimizes (% _,- ﬁN-Z) .

’ . ) : ~ T ~o .
(*N-Zf xN-Z) and, in addition, that (xN-B- xN_3) D(xN_s- xN-B) 1s_inde-
pendent of the control uN_3. Rewriting (1.21) and collecting terms, one

obtains

1 T T T T
V33 = B s Ayt A * O%es + RyaCs Chegly- s 142D

T

+ RICy_ofy 3 - Ry oCy gBy aby phy aXy g - x§-3A§-3LN-ZBN-SCN-3 .

(See next page)




n T . N \T
Bn-3 + (R g Ry g) Dlxy o= Ky 5) + (x s Ry ) Ky p
. ﬁN-Z) ‘ZN-3} + Constant Terms

Completing the square, (1.23) may be written as

1 [T T T T .
V3(Zy_g) =3 E{FN-B(AN-sLN-zﬁu-s + Q= Oy 5By aly sPy3 + R

Py T.T

. T .
Cy-37%-3 * (no3” Ayo3) One3 Biyogly-2Py-3 * PCyes
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(14 24)

(2 3" §N_3) + (KN;3; ﬁN_3)TD(xN_3- fN-3)|ZN_3} + Congtant Terms

It is easy to see the repetition in (1.24) of the terms appearing in (1.17).

Therefore, by defining

T i T
Lt = Apoqlifyer © Q- G By LBy +RC

with
Iy-1 = Q
and
Uear = Cpat Ken
with

T LT
Cor1 ™ B qlyBr1 * R B Ly

where

(1.25)

(1.26)

(1.27)

(1.28)




ik+1 = E["k+1 lzk-}-l] (1.29)

\

one recognizes this as the solution to the indepeﬁdent optimization pro-
blem, namely, a Riceati cdntroller operating on the least-mean-square
estimate, This constitutes the proof by induction of the Separation
Theorem,

It has been shown that the Separation Theorem is valid for a linear
discrete plant disturbed by nﬁngaussiaﬁ, white noise for the performance
index given bf (l.4). By letting D = 0, one obtains the special case

given as
N

1 T T, :
J = > E{kzl kuxk + ukRukj {1.30)
Therefore, the optimal control policy for a linear nongaussian stochastic
system may be determined by the plant control (1.29) acting on the optimal
nonlinear estimate (1.29), This calculation may be performed by consi-

dering the separate optimization of the control and estimation functionms.

Method of Attack

The problem investigated in this thesis research is the combined
estimation and control of noisy dynamical systems., Both linear and non-
linear discrete systems were considered with the input noise and the
measurement noise assumed to be ergodic white noises with known non-
gaussian density functions,

The solution to the linear system with quadratic performance
index is specified by the results of the Separation Theorem, given by

(1.25)-(1.29). However, for nongaussian disturbances the resulting
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least-mean-square estimate is nonlinear, A Bayes-law computation permits
the determination of the estimate with the associated difficulty of obtain-
ing the required densify functions with application of the moment technique
was selected because of the resulting simplifications in computer program-
ming. By applying tﬁis technique, formulas relating.the-moments of the
observedldata, the states, and the control were established and utilized
in first-order examples,

An approximate approach to the nonlinear combined estimation and
control problem was shown to be computationally feasible with acceptible
accuracy, The approachrwas to linearize the noise perturbations about
the deterministic nominal trdjectory and tb form a wvariational éontrol
by using those techniques established in the linear case, This approxi-
mate approach was selected because the exact solution to the nonlinear
problem was not knowm,

The sensitivity of'thé-estimation and control algorithms to erro-
neous bound and moment data was investigated, Fixing either the measure-
ment or the plant noise, the density of the other noise was changed to
one with the same second moment, However, since the original bound and
moment data were supplied to the filter, the gsensitivity of thé-algorithms
to incorrect input data was observed,

A method for selecting the form and parameters of a specific optimal
controller was determined., The controller selection was accomplished by
a comparison technique with the algorithms established for the linear
system. The controller was used with a fixed, nonlinear estimator to

yield a better performance than that obtained by using the same nonlinear
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estimator with a Riecati controller. This controller selection further

demonstrated the sensitivity of the algorithms to incorrect noise statis-

tics,

The combined control and estimation algorithms were formulated,

and the value of each for specific examples was verified by computer

simulations. The results were compared with the combination of the

Kalman-Bucy filter and the Riccati controller which was shown to be the

exact solution specified by the Separation Theorem for the linear, gaus-

sian system,

Thesis Contributions

The thesis research reported here has contributed to the state-

of-the-art in stochastic control theory in four specific ways:

1.

il

The derivation of the Separation Theorem for linear
systems disturbed by nongaussian noises.

The development of nearly optimal combined estimation
and cqnfrol algorithms for linear nongaussian stochastic
systems. .
The_épplication of these nearly optimal algorithms for
an approximate analysis of nonlinear stochastic systems,
The synthesis of specific optimal controllers for a

fixed nonoptimal estimator for nongaussian stochastic

systems,

Qutline of the Thesis

The Linéar Stochastice Control Problem is treéted in detail in Chapter

I1. The least-mean-square estimator incorporating the control function 1is




19

_ derived in detail using the moment techniqﬁe. Computer results fof a
particular example demonstrate the effectiveness of this result, Several
gpproximatidné to the suboétimal estimator are then presented and the
simul ation results included, Chapter III1 applies the methods of Chapter
i_I to a nonlinear example by linearizing about a nominal trajectory to
form a variational controller.. In Chapter IV a sensitivity analysis is
presented to show the variation of'the_resulting egtimate with incorrect
noise statistics. The design of a specific optimal controller to be

used with a fixed nonoptimal filter is also discusged. Simulation results
demonétrate the usefulness of this approach. Finally, Chapter V presents

some conclusions as well as some recommendations for further research.
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CHAPTER II

THE LINEAR STOCHASTIC CONTROL PROBLEM

Introduction

The analysis of & linear control system disturbed by noise is
commonly referred to as the Linear Stochastic Control Problem. This

problem was considered in the thesis research both as a problem whose

solution itself ié useful and as a building block for the subsequent
consideration of nonlinear.stochastic control systems. The principal
tool used in 1nvestigating this problem was Bayes-law computation based
on the moment technique. -As mentioned previously, Kuo and Rowland [28,29]
had successfully applied the method of moments to the linear nongaussian
estimation problem. However, the application of the moment technique to
the combined control and estimation problem proved to be considerably
more complicated because of the presence of feedback centrol.

In the following sections the problem is formulated and the'moment.
technique applied to the estimation of the plant states, After s suit-
able cgmpéfison of ghe results obtained with previous meﬁhods, several

approximations to the new filtering algorithm are presented,

Mathematical Formulation

A model of the linear stochastic control system is given in Figure

For the given first-order system the linear discrete plant is:




Nonlinear
Filter

F M)

It1

A'k . Unit
Delay

Controller

Figure 2.1 Diagram of the Linear Stochastic Control Problem.

)

1z
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el = A% T B T % 2.1

2, = Ckxk + v ' _ (2.2?

where x{k) represents the state of the plant at the kth sampling instant,
u(k) represents the control supplied to the plant, w(k) is the nongaugsian
noise input to the plant, z(k) is the measurement of the plant state -
intermixed with noise, and v(k) is the nongaussian noise corrupting the
measurement of the plant state. The performance_of the systems is meg-

sured by

N T

J = % E{]Eo xi Qx + w Ry + (xk- :’tk)TD(xk- :’Ek)} (2.3)

In some applicatiqns, large-scale systems are arbitrarily designed
on a subsysfem basis, The performance criterion (2.3) which penalizes
éstimation error in addition to the normal quadratic cost is important
in such cases when the subsystem under consideration is being used as
2 link within the larger system, Accurate estimates of the subsystem
states are needed for use as inputs to the following subsystem.
Assumﬁtions |

| The following basic assumptions about the given system were made;

1. The.input signal w and the.measurement noise v are dis-

crete time series composed of mutually independent
random variables.
2, Both w and v have known density functions with finite

bounds.
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3., The random processes x and v aré independent.
4, At any particular stage k, the noise w is independen;
of x and u,
" The problem was to find a nearly optimal combined control and esti-
mﬁtion'schéme which minimized the performance index (2.3) for the specified

linear system (2.1)-(2.2).

Application of the Moment Technique

The optiﬁal combined control and estimation algorithm for the basic
Linear Stochastic Control Problem given above was specified by the Separa-
tion Theoreém developed in Chapter I. The resulting'optimal scheme was
derived by the separate optimization of the control and estimation func-
tions, The following derivation is for a first-order system although the
.application of the moment technique to higher-order systems can be achieved.
Howev;r, as discussed in a later chapter, computational difficulties
invelved might suggest alternative apprdaches. It has been shown in Chap-
ter I that the resulting estimator for this problem is nonlinear in form
and given by

Pl

R = By 120 2.4

where X1 is the least-mean-square estimate of LT and Zk+1 denotes
the complgte set of measurements, 1fe' zk+1 = (zl, Bps eees zk+1). The
controller is the Riccati controller, which is a linear combination of
the estimated states of the system, e.g. for the linear time-varying

cage
T

-1 T P A : .
e = Bl R BkLk+_1Ak"k = K (2.5)

e
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where
L = AL +Q-K(BL B +R) ' (2.6)
e = A K Byl By + RIK .

Let B and C both equal unity for the problem under counsideration., \The'

minimum mean-square estimate can be written as

Tre1

Rerr = Blxeg 1200 = j‘k xk+1ka+1|Zk+1(xk+l|zk+l) Py 2B
+1 -

where £k+1 and fk+1'are the lower and upper bounds respectively of

xk+1‘zk+1' By the Bgyesian rule, the conditional density function

£ (: |Z ) may be expressed as
x'k+1|zk+1 k+1 K41
£ (z, 4 |% ) * £ (x .12,)
] "z - zkfllxk+l kb1 kel %0112 K1 4k
AR T R U i £ (2.9)

(z, ., 1%,)
201 1o et 1%

This Bayesian rule is considered in Appendix I, and for v uniformly dis-

tributed on (-1,1) is shbwn to be

ka+1|2k(xk+1|zk)

£ ( Z .4) =
Bea 21 Mer1 it Kl
S ka+llzk(xk+1|zk) e WY
+1

(2.10)

The upper and lower bounds on xk+1|zk are given from the appendix as
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Fie1,0 = At % + Vax ._ ©@an
1,0 = A ¥ % F ¥pin @)

The density functlon_ka+llzk(xk+1\zk) is represented by a polynomial given

as
| M . o
ka_l_llzk(xkﬂ'zk) = 150 *1 Meel (2.1%)

where the coefficients are expressed as functions of the moments of
xk+1|zk. Assuming that the moments of x.k+1|'2k are known, one may use the
polynomial approximation to the density function of xk+1rzk to express

the moments of xk+1lz The resulting expression from Appendix I is

Ietl®
‘é o (5, ML L
. Zo e T T A
mik 2, " m (2.14)
111241 i1 i+,
Zy il 7 e /0

The upper and lower bounds respectively on xk+1|z may be expressed as

k+1
Fer1,0 vhen z, . Z f -1 (2.15)
d kt+l k+1,0 *
fir1 = o
_ < )
zk+i+1 when Zps1 fk+1,0 1
and _ _
Zk+1'1 | when 21 > £k+1,d+1 {2.16)
T -
-
het1,0 when 2) 11 = L, 0"t

-
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By letting j = 1, the expected value of xk+1|2k+1 vhich is the estimate

xk+1 may be determined as

M -
i+2 i+2
1§0 a (ﬁk+1 i y/i +2 .
o = 1= 2.17
Tkt “Z‘ o (s i+l L4y
Z 1 " e

The order of the filter is then referred to as the m-th order nonlinear
filter depending on the number of terms in the polynomial density repre-
sentation, At this point, the solution for the combined estimation and
control problem can be specified, except for the evaluation of the moments

of xk+1|zk’

Evaluation of Moments of xk+1|2k

The moments of xk+1|2k were obtained by taking the expected value

of

(xk+1lzk) = (Akxk w W IZ ) . | (2.18)

for i-= 1,2,3,...,N

The resultant expected vélue is
j .
E(ﬁ(,,llzk) - E{ 5 % 1-] £ ax 123 P 2P} (2.19)
- P=

i=1,2,...,N

Recognizing that’uk = Kkﬁk, the above expression can be evaluated except

Ny



27

for the terms involving

SR

for i = 1,2,3,4.

Appendix II considered this ekpected value by expanding the estimate (2,17)

by long division to yield
2
Fi !

5 + .e0(2.20)

a fz a
n 1k 1
Ke = SU ¥ 40+ a, 12 * %

SES
&

Retaining the first two terms of (2.20); one is able to express ﬁk to
permit the evaluation of E[xkﬁk|zk]. ‘From Appendix II, the value of ﬁk
has to be expressed differently for four ranges of Zps For example, the

sgcond_moment of xk+1|zk is expressed for Range B when Z = fk’o-l and

N = ﬂk’ofl as

C2 _ 2 2 .2 '

E[xk+1|zk] = E(w) + AkE[xk\zk] + 2AkE[wk]E[xk|Zk] (2.21)
+ KkE[wk] {E[xk|zk] + E[vk] + £k,0+1}

+ 77 {;[xﬁlzk] + 26[x |2, 1€l ] + 4 1)
+ E[vﬁ] (nk’d+1)-+ (zk’d+1)z}

, o |
+ AR {E[xk|zk] + Elx iz, @y, ]+ Jzk,o‘”)}

The other moments of xk+1lzk can be similarly calculated for the four
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ranges of Zy . These are included in Appendix II. Having obtained the
moments of xk+1|zk, the necessary algorithms are complete, A computer
simulation flow chart is presented in Figure 2,2 to ekplain the detailed
steps of the complete filtering algorithms, After an initial assigoment
i

of values to E[xklzk], ik’ fk and the formation of Z, 5 the bounds énd
* moments of xk+1lzk are calculated. Then by evaluating the coefficients
ai'in (2.13) and the bounds of xk+1lzk+1, the density of xk+1lzk+1 is
formed, With this resulting density function, one is able to calculate
the moments of xk+1lzk+1 and, therefore, the leasF-mean-square estimate
'§k+1‘ The entire process'is then repeated as shown in Figure 2.2,

Comparison of Filtering Algorifhms

The comparison of the nearly optimal combined estimation and control
-algorithm with other filtering algorithms was accomplished by a2 specific

example;

Example 1 A Linear Nongaussian System, Consider a linear system

given as
Xl = 0.1xk + w W {2.22)
with a linear measurement

Zietl = Bl T Vsl (2.23)

subject to the performance indices given in (2.3) with Q= R = 1 and

D = 5, The density function of the input noise was given as

- —%-'— ww when IW\ <1
£ (W) =

0 elsevhere
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The measurement noise was assumed to be uniform on (-1,1), Table 2;1 shows
the performance of the linear systém using the cost criterion of (2.3)

with D = 0,

Table 2.1, Linear System Performance for N=1000

Performance (6x10-3) Estimation Error
lman Filter and _
iccati Controller 5.117141 : 0,240
ourth-0rder Wonlinear
ilter and Riccati Con-
troller 5.110580 0.138

It is noted that the performance index used is relatively insénsitive to
the différence in estimation error in the above examples. Although there
was improvement in performance, the magnitude was small for the given
gsimple system. However, by using the cost criterion (2.3) with I = 5
that equally weighted estimation performance and control performance, an
appreciable difference in performance was obtained, This is seen in

Figure 2,3 with the corresponding estimation seen in Figure 2,4,

Approximations to the Supoptimal Filter

The dependence of the estimate.ﬁk+1 on the ranges of 2161 and the
complexity of calculating the moments and cross-moments of the system
states pointed out the desirability of finding an approximation to this

highly nonlinear estimate at the possible expense of some accuracy.
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The method of analysis was to examine the geometric congideration
found in the first term of ﬁk+1; Consider the density distribution of.
xk+1zk+1,.éé shOWn-in.Figure 2.5. The tem ﬁk+1 = %% (£k+l + fk+1) which
represents the first two terms of (2,20) appears on this figure as the
dotted line, Three approximations of the estimate were generated by

using the expected value of fk+1,0 and £k+1,0' One may write fk+1’0,as
fer1,0 = M F W F Voay (2.2

Taking the expgcted value of (2.24)

E[fk+1’0] = A E[fk] F E[’uk] +w o (2.25)

But_E[uk] = KkE[ﬁk] = 0, and E[jk] =~ ] for the designated noises. There-

fore

E[fk+1’0] =AML +w - (2.26)

which for A = ,1 is E[flﬂ_l,o] = 1,1, Similarly, E[Ji,k+1’0] - -1_.1. Con-
structing these points on the density diagram of Xer1%ep1 ? the approximate

curve appears as shown in Figure 2.5,

Least-Squares Approximation

By considering this figure, values of £k+1 corresponding to the
first two terms of (2.20) for several 2k+1 can be obtained. The method
of least squares is to determine a polynomial that fits the data points,

For the data points §k+1 = 0,,1,-.1,1,05,-1,05, respectively, a polynomial
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of the form

A . 2 3 _
e =t bzk+1 +cz dzk+1 (2.27)

was -selected, 'By forming the résiduals and solving the normal equations
in [ 39], the values of a,b,c,d were determined, The resulting polynomial

was

3

- 0119 zk+1

41T el (2.28)

By checking the data points it is seen that this approximation is a good
one, |
Straight Line Approximation

Another approximation to the estimate of the plant state described
by the first two terms of (2.20) was the straight line approximation. By

considering the two extreme data points Zpel = 2,-2 gnd £k+1 = 1,05,-1.05,

+1

respectively, a straight line felationship'between £k+1 and Z el wés

determined as

&1 = 0.525 2, ) | (2.29)

Obviously because of symmetry, (2.29) necessarily satisfies the data
point at the origin.
Hyperbolic Approximation

The third approximation was obtained by inspection iu Figure 2.5,

The relationship between z and ﬁk+1 was seen fo resemble the sum of

k+1

a hyperbolic sine and & hyperbolic tangent., This resemblance was also

apparent in (2.20) because of the increasing powers of fk+1 and £k+1'
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Thetefore, the approximation of the estimate of the plant state was arbi-

trarily selected as

ﬁk—{-l = ;— [sinh el + tanh z | ] ' | (2.30)_

ktl
which may be expressed as

5 7
~p - ) 15 204 ) 17 z g
Bl = Tl ~ 12 __ 240 630

- (2.31)

Approximations to the Subogtimai Filter

Consider again Example 1 with the performance index_(2.3). Each
of the above three approximations was compared to the Kalman filter and
the fourth-order nonlinear filter described in Appendiﬁ I. As seen in
Figure 2,6, the straight-line approximation showed no improvement in esti-
mation accuracy while the least-squares polynomial snd the hyperbolic
approximations yielded improved estimates, As in Example 1, the effect
of the three diffgrent approximations on the performance index (2.3)

for D = 0 was negligible,

Summary and Conclusions

The application of the méthod_of moments to Bayes-law computation
for the Linear Stochastic Control Problem has been presented. The appli-
cation of tﬁe compﬁtational method to a specific exémple was given. It
was seen that thg increase in perfofmahce for a cost criterion which
penalized estimation error as well aé control variables was significant,
However, the principal improvement was due to the increased estimation

accuracy.
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Several approximations to the suboptimal filter were given which
might reduce computational difficulties. It was seen that two of the
approximations, i.e. the least-squares polynoﬁial and the hyperbolic
approiimatioﬁ, reduced the cost criterion somewhat, while the stfaight
line approximation showed no improvement.-

The significance of the development of the mnearly optimal scheme
is that it gives am accurate basis to which one may compare newly deve-
loped approximate solutions for higher order linear systems, Moréover,
the algorithms developed may also be applied to an approximate amalysis

of nonlinear stochastic systems.

e ——
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CHAPTER III

APPROXTMATE ANALYSIS OF NONLINEAR
STOCHASTIC SYSTEMS

Background

Exéct solutions for the combined estimation and control of nonlinear
stochastic systems ére ﬁot yet available, The traditional approaches
vused to analyze these stochastic control problems have been approximate,
This chapter illustrates an application of improved estimation by Bayes-
law computation for the closed¥loop nonlinear stochastic control problem,

The approach utilized here was to assume that the deterministic
ﬁominal solution to the nenlinear difference equations of the plant pro-
vided a good approximation to the actual system behavior, i.e. the devia-
tions from the nominal solution could be described by a gét of linear
difference equations, For those cases where this approximation is valid,
the Separation Theorem may be applied to the resulting set of linear
differeﬁcé equations. This permits the estimgtion of the deviation from
the deterministic nominal solution to be used in the formation of a varia-
tional feedback comtroller. The purpose of this chapter is to present the
results of thag.application of the combined estimation and control algori-

thms of Chapter II in the analysis of nounlinear stochastic systems.

Derivation of the Varistional Equations

The plént for the nonlinear stochastic control problem is specified
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kk+1 = f(xk,uk) + Wy 3.1)

where X represents the plant state at the kth qampling instant, u, Tepre-
sents the control supplied to the plant at the kth sampling instant, and
e is the nongaussian noise fnput to the plant, A linear measurement of
the plant state corrupted by noise is available as

z, =X £ Vi ‘ : (3.2)
where Vi is the nongaussian measurement disturbance, The system was to

be controlled to minimize the performance index measured by

N

J= % E{k§ Qxi + Ru.i + D(x, - ﬁk)z} | (3.3)

The scalar system was considered although the resulting equétions may
be applied with meodification to the vector casé.

A method of feedback control about thg optimal trajectory which -
-minimized the_deviation frcq the ﬁominal‘trajectory #nd control was
developed. The linearized variational equations about the nominal tra-

jectories were determined first, 'The plant state and control were

described as

' X = ik:+ 8%, | (3.4)

u = Ek + Suk \ ' (3.5)
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where Ek and Gi represent the nominal planf.state and control, respectively,
at the kth sampling instant., Using 6xk and 6uk, the variations from the

nominal state and nominal control, one is able to determine 'perturbational‘

1

difference equations. Expanding the state eqﬁation '(3.1) in a Taylor

Series, one obtains

BE(x ,u )
X1 = f(ﬁk-paxk,ﬁkwluk) +w, = £(K ) + % ixk (3.6)

*x

Bf(xk’uk) ‘ ﬁuk' + w

e ¥ Higher Order Terms

HFl

Recognizing that ;k+1 = f(ﬁk,ﬁk)-and neglecting all higher order terms

beyond the first, (3.6) becomes

forl T el YT o TR, +w  (3.7)
A o
From (3.4) one may define
e e A SE O ) ou, + w (3.8)
B o+ du T
X Y

6“k+1 = Akfaxk + Bkﬁuk + v | ' (3.9)
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which is governed by a new performance index given by

N
1 2. 2 |
%uéz-'hi Qox” + Rou’} (.10

Extensions of the Basi¢c Technique

At this point one may identify (3.9) and (3.10) as representing the
same linear stochastic control problem analyzed in Chapter II. Thus, the
solution to the variational control ﬁuk may be determined from the Separ-

ation Theorem as
8%, = E[éxklﬁzk] ' (3.11)

: ) | -1 -1 =-1
bu = -R Bk[Pk_i__l-FBkR Bk] Aka:’ek

| el 4o opmly A=l ;
P =Q+ Ak[Pk+1 + B R k] A (3.12)
P, =20
kg
The perturbaﬁional measurement sz is
azk = z.k - Kk . (3.13)
which may be shown to be
ézk =x- X v _ (3.14)
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Therefore, after evaluating the variational control (3.12), the overall

control of the actual plant is determined from (3.5). The approximate
5

method of analyzing the nonlinear stochastic system is represented in

Figure 3,1, The estimate!bﬁk of the perturbed state may then be deter-

mined by using the estimation algorithms described in Chapter 1I,

A Nonlinear Example -
The algorithms for the approximate analysis previously presented
. were applied to a particular nonlinear example, Compsrisons were made

with a Kalman filter used in the perturbation lecop. The nonlinear system

model was given by‘
= 0.995x + .0025% - 00035 + .0lu_ + w
x.k+1 . 'Xk . Kk . Xk . llk k

with Q = R = 2, The measurement noise Vi was uniform oﬁ (-1,1) and the

plant noise Wy had a density fﬁhction given by

S ST -
. 2 w when |w| <1
£ (w) =
W
0 -otherwise

A plot of the system nonlinearity is seen to have the characteristic shown
in Figure 3.2.

By obsefving Figures 3.3 - 3.5 and Table 3.1, the improvement in
egtimation error.and p;rformance is evident, figure 3.3 demonstrates that
thé estimation error obtained was considerably lower using the foufth-order,

filter in the variational lecop as opposed to using the Kalman filter, This
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reduction is also reflected in Figure 3.4 which shows imp;ovement in ﬁer-
formance as measured by (2.3). This improvement again primarily resultg
from improvement in estimation error. This result supportas the conclu-
-sions drawn in Chapter II comcerning the relative insensitiveness of the
quadfatic performance index to improvement in estimation, Table 3,1

and Figure 3.5 illustrate reduction in estimation error for various
ranges of plant noise, As the plant noise increased, the improvement
décreased. ‘This decrease occurred because the linear perturbation
assumption was no longéf valid for higher noises, Consequently, no
estimator in a linear perturbation.loop will behave adequately in this

range because the variations from the nominal trajectory are no longer

linear.

Table 3.1. Estimation Erroré for Various dw

1.08 o .05 S .3 .545

Kalman Filter in _
Perturbation Loop 0256466 0794721 A73700 | 1,5463169 | 8.6842

Fourth-Order Filter
in Perturbation
Foop 0186825 0644985 .446892 1,5033834 8,4899

A Differegt Variational Performance Index

For linear perturbations about a deterministic nominal trajectory,
it had been suggested in [21] that a different weighting matrix Q be used

in the variational performance index. This new Q is specified as
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Bzf (xk,uk)
2
oxy

(3.15)

Qar = VF M1
TV
where kk+1_is the adjoint vﬁriable in the optimigzation problem and Q is
the weighting matrix for the nonlinear plant state, Using this new

variational Q, the estimation and performance of the system are degraded

as seeﬁ in Table 3.2,

Table 3.2, Degradation for Q of (3.15)

in Variational Performance Index

Estimation Estimation J Uszing J Using
Exrror Error Original
Original Q New O Q New Q
iginal
Kalman Filter in
Perturbation Loop 0.079 0.084 18,74 19.43 I
Fourth-Qrder Filter :
in Perturbation Loop 0.064 0.068 16,50 17.03

A New Nominal Trajectory

It was also observed that the use of a propefly selécted nominal
trajectdry other than the de;erministic nominal trajectory improved system
performance [40]., This new nominalltrajectory was selected to optimize
the Kalman-Bucy filter gain while shaping the trajéctory to minimize the.
performance index (2.3).

By inspection of Table 3.3, one méy observe the effect of selecting
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the.new nominal trajectory, The dramatic improvement demonstrated by the
new selectioﬁ of a trajectory is mislehding because the specific case_'
illustrated was a high noise case which invalidated the iineér perturba-
tion approach, The new-trajectory is useful in certain sﬁecial cases.
The effect of the shaped trajectory on the variational Riccati controller
gain can be seen in Figure 3.6, Thié trajectory also stabilized the

linear perturbational equations,

Table 3.3. Performance Improvement for New Nominal
with g = 0,500 and o = 3.14

Performance Performance Index
Index - _ Deterministic
. Shaped Trajectory -_Trajectory

kalman Filter in
Perturbation Loop 14,24 19.80
Fburth-Order Filter .
in Perturbation Loop 14,32 19.84

Conclusions

The cbmbined estimation and control algorithms developed in Chapter
II were applied in an approximate anglysis of nonlinear stochastic‘systems.
By assuming linear perturbations about a detefmiuisﬁic neminal trajectory,
a variational feedback control scheme was developed. At low noise levels,
improvement was noticeable when the fourth-order filter was used in the |

perturbational loop. At higher noise levels, the linear perturbation

Ay
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scheme was not valid, and the resulting performance was poor. A new
nominal trajectory was showm to have a desirable effect for those high

noise cases, However, estimation accuracy was unacceptable at all high

noise cases,




CHAPTER 1V

SENSITIVITY ANALYSIS AND SPECIFIC OPTIMAL
CONTROLLER DESIGN

Introduction

fhe seﬁsitivity of the estimation and control algofithms to
variations in inpﬁt data is a practical consideration in the use of the
algorithms., The effects of incorrect modeling for Kalman-Bucy filtering
and erroneocus input data are well known [41,42]. Throughout this research
ip was necessary to supply the fourth-order estimator with the first four
moments and the bounds of both noise disturbances. Because 5f this depen-
dency, the question of sensitivity to data on moments and bounds was
investigated,

Another gsensitivity problem was implicit in a specific optimal
controller formulation. The problem was to selectla controller to use
ﬁith a fixed, nonoptﬁmal;.nonlinéar filter that yielded a befter_estimate
of the plant state and improved system performance, The sensitivity pro--
blem occurred in forming an estimate with inaccurate data. A new estimate
- was obtained by operating on the estimate of a nonoptimal filter as though

the measurement had been available,

Sengitivity to Noise Variations

"The sensitivity in estimation for the fourth-order nonlinear filter
presented in Chapter I1 for incorrect noise statistics was investigated

by a specific example, The example was the same as in Chapter II, i.e.,
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= 0.1x, +u +w (4.1)

e+l kT Y% T Y

with the linear measurement given as

z = x + v “4.2)

The original data supplied to the estimator given from Chapter II as

i+2 142
a3 gy /142

">
f

(4.3)
tet1 i+1 i+1

a1 T e

[
M-F‘1||MP
—

)/ i+l
im]l

consisted of the upper and lower bounds and the first four moments: of w
and v. The random variables w, and v, were both assumed t£¢ be bounded

k k

and the density functions for both variables were obtained from

p + 1 p
) y IYl =1
fy(y) = (4.4)

0 otherwise

where y in (4.4) is a dummy variable used to represent either w or v.
The density of w was originally given for p = 10, i.e., approximately an
inverted'bell-shaped distribution on the range (-1,1). The density of
v was speéified as uniform, which corresponds to 0 = 0, and was also
bounded on (-1;1). The corresponding moments of w and v with p =. 10

and p = 0, respectively, were given by

1
+ .
mi=f1ylrL;lyp dy ' ' (4.5)




56

—LLL- when i is even
. p¥ i+ 1
ml -
y
0 . when i is odd

The sensitivity in estimation was studied by wvarying the input noise
and measurement noise density functions, while kegping'the'second moment
fixed, This requirement then changed the bounds on the random variables
w and v, However, the original bounds and moments, which were then incor-
rect, were supplied to the.estimator.

Variations in the Plant Noise

The sensitivity to incorrect statistics in the plant noise w was

considered first, The density function of the measurement noise was
uniform on (-1,1) and held constant as the density function of thé plant

noise was varied. The original plant noise was specified by (4.4) for

p = 10, The two nonzero moments of the input data were given as mﬁ = 11/13
and m: = 11/15 with bounds of (~1,1). The plant noise was allowed to vary
from p = 10 to p = 0, The input data supplied to the estimator was assumed
to be the same as the original data, although actually the second moment

was held constant and the bounds and other moments were changed. The

cases that were considered are shown in Table 4,1,

The plots of estimation error for the various density functions of
w i8 shown in Figure 4.1l. One can.see from this figure the estimation
error.increased as the input noisé became closer to uniform, This increase
in estimation error resulﬁed because the bounds were becoming larger than
the iﬁput bound to the filter. One méy conclude that estimation accuracy

is highly dependent on the correct bounds and moments of the plant noise.
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| Table 4,1, Variations in Plant Noise

P . Bounds | ' Igg__ o _ m:
p = 10 : -1,1) ' .847 734
p=7 (-1.03,1,03) 847 .834
p=3. © 0 (-L13,1.13) 847 1.19
o= 1.5 (-1.23,1.23) 847 1.67
p=20 (-1.67,1.67) 847 5.76

Variations in ﬁhe Measurement Noise

The sensitivity in estimation to incorrect statistics in the
measurement noise was then considered, The plant noise density fﬁnction
specified by (4.4) with p = 10 was held constant. The original measure-
ment was uniformly distributed on (-1,1). Tﬁe two ﬁonzero moments of
the input data were given as mi = 1/3 and mi = 1/5 with bounds (-1,1).

The measurement noise was allowed to vary from p = 0 to p = 10. . The

input data waé-again identical to the original data although the bounds

and the other moments, except the second, were changed. Table 4.2 shows

the cases that were considered. The data supplied to the filter consisted

" of bounds (-1,1), and mﬁ = ,33, mi = .20, The results of this variation

in noise show from Figure 4,2 and Table 4.3 that the estimation error

decreased until p = 2. This indicates that the magnitude of the bounds

on the noise decreased rapidly until this point and, therefore, a decrease

in egtimation error resulted, However, for p = 3,7, and 10, the bounds
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Table 4.,2. Variations in Measurement Noise

P : Bounds mi . mi
0 (-1,1) .33 \ .200
0.1 . (-96,.96) | .33 .170
1 . (-.82,82) .33 .09l
2 (-.746,.746) .33 ' .062
3 (~.707,.707) .33 | 050
7 (-.645,.645) .33 .03

10 (-.626, 0626) .33 |030

remained nearly the same with the density function becoming more concen-
trated on the bounds, Consequently, the éstimation error increased in
these regions, and one would expect even further inereases in error with

higher values of g,

Specific Optimal Controller Design

In ﬁbst\specific optimal control and estimation schemes, the para-
meters of either fixed configuration filters or controllers are adjusfed
to optimize:system performance, This section presents a basis for selec-
ting a specific optimal controller to optimize the performance of a sto-
chastic system having a fixed nonlinear filter.

Problem Formulation

For the linear system given in Chapter II as
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Table 4,3, Estimation Error for Various Measurement Noises

p 0 a.1 1 2 3 7 10
Estimation _ . . _
irror at N = 1000 | .138 126 L0723 1.067 | .O70 | .072 .0725
T AR (4.6)

subject to the performance index (2.3), a nonoptimal estimate £k+1 of
the plant state was assumed to be available, This nonoptimal nonlinear

estimate was determined by

1 ' ¢
Br1 = 7 Yi * ) | 4.7

where fk+1 and £k+1 represented the upper and lower bounds of xk+1|zk+1’
The problem was to determine a controller other than the Riccati controller
to improve the'performance of the system according to (2.3).

‘Development of the Controller

The nearly.optimal combined control and estimation scheme for the
linear system was given in Chapter II as (2.5) and (2.17). 1t is seen
that for M = 4 the optimal control is expressed as

4

. i+2 i+2, .
. ‘ R j_zo ai (J'k-[-]. - Lk-l-l )/1+2
Ueel = Ber1¥a1 = Bl W — - — (4.8)
: S a. (f i+2 _, i+2)/i+2
ikl k+1 7

1=0




- Dividing the polynomials in (4.8), one obtained

o - | 4 fk-[-f. a1 £k+f
Uepy = Kpa[005 (g # 4yy) # 3 12 ‘T3, 12

(4.9)
0 .

2 2
% Tier A1 %2 Ay Tl
3

ao 6 ao

F e ]

The problem was to find a controller to optimize system performance
using a nonoptimal estimate of the plant state (4,7), If a Riccati con-
troller were selected with time-varying gain Kk’ then the control would

be given as

Uel = Kk+1£k+1 = Kk+1[0'5(.fk+1 + ﬂk_,_l)] (4.10)

One recognizes this term as béing the first term of the nearly optimal

expansion (4.9). However, since the measurement z was not available,

ket1
the terms fk+1 and £k+1 in the cptimal expansion were not knowm exactly.

By selecting the contrecller for the noncptimal estimator as

2 2 2
| _ s (al e A P %2 T e
b1 R P & G 12 2, 12 a 3
: 0 0 0
C% 0 A T )
aq 6
vhere fk+1 and £k+1 were determined by using the approximation

P il

“er1 = fier? %-12
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thén a better.perfqrmance could be obtained, This expression resﬁlted
from taking the expected value of (4.2).

The net effect of this solution was the formation of a new estimate
~and the use of this estimate through a Riccati controller, This idea is

illustrated in Figure &.3.

. oon ' ~r . r
Z Nonoptimal X1 Imprgﬁement X1 Riccati W
Estimator Estimate : Controller
A v
T

Specific Controller

Figure 4.3. Specific Optimal Controller,

Referring to Figure 4,3, one may identify the new estimate ﬁé+1 as being
- formed from & nonoptimal estimate rather than from the measurement. This

new estimate may be written as

2

a f a a,
e e 23 T 2 2 % 2 _
541 = Ha1 ?t s, 12 3 L1 2% Fir1 Dgr F o

4.13)

where the approximation_£k+l =7

41 has been used, Therefore, the specific
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controller problem has provided informatidn abouf thé:sensitivity of the
optimai filter of Chapter II by demonstrating the Increase in estimation
error with an inaccurate measurement.

The example in the following section demonstrated the effectivenesé

of the specific optimal controller selection.

Simulation Resugts for a Particular Example

Consider the linear system from the exémple in Chapter II given by

X = Ol +u +ow (2.12)

It was assumed that a linear measurement of the plant state corrupted by
noise was not available, Rather, a nonlinear nonoptimal estimate was
used with the specific optimal controller. The density function of v

was uniform on (-1,1) and the density function of w was

11 '
2 Wlo when-lw' =1
fw(W) =
0 elsevhere,
L

From Figure 4.4, it is evident evident that the éverage estimation error
was reduced b§ the\specific controller by 40%. However, the specific opti-
mal controller did not perform as well as a fourth-order filter operating
on the measurement. Thus, the sensitivity of the estimator to incorrect
input data was demonstrated, Again, the effect on system performance with

D = 0 was negligible in all cases.

Conclusions

The results of this chapter have shown the sensitivity of the
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fogrth-order filter in cloged-loop operation to variaﬁions in the input
data. Specifically, as the incorrect bounds became large, the estimation
error deteriorated rapidly and might possibly diverge.

A method of selecting a specific controller was shown to be effec-
tive in improving performance as measured by (2.3). This problem also
contained information on performance sensitivity, since tlie controller

operated without accurate knowledge of the measurement. "
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

This dissertation has considered the combined esﬁimation and con-
trol of time-varying, discrefe stochastic systems. For a linear stochastic
system, the separate optimization of the estimation and control functions
resulted in an overall optimal system as shown by the Separation Theorem
derived in Chapter I. Estimation by Bayes-law computation was then

develdped by application of the moment technique. An approximate analysis
of nonlinear stochastic systems was presented, assuming linear perturba-
tions about the deterministic nominal trajectory, which permitted the

formation of estimation and control algorithms.

Conclusions

The estimation and contfol algorithms developed for linear stochas-
tic systems were nearly optimal because of the basic assumptions made in
forming the moments, Only the linear Eerm was used to represent the esti-
mate in obtaining cross-moments of thé state and estimate, Because of
the computational difficulties involfed in calculating the moments using
only thé single term in the estimate expansion, the use of additional
terms for the moment calculations was not feasible,

The results of using the estimation and control algorithms on a
particular linear stochastic system demonstrated several points of interest,

The fourth-order filter, when used with a Riccati controller as specified
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by the Separgtion'Theorem, décreased the mean-square estimation error and
reduced system cost as measured by (2,3). This improvement over the com-
monly used Kalman filter amnd Riccati controller combinations was due to
the additional information about the plant and measuremeﬁt noises which
was.supplied to the fourth-order filter, The decrease in sygtem cost

was primarily cau;ed bﬁ_including the estimation error in the perforﬁance
index.l From the observation, it is evident that the fourth-opder algori-
thm possesses important advantages for systems where estimation is an
important consideration. However, if the performénﬁe is measured by the
standard quadratic performance index, then the Kalmén filter and Riccati
controller appear to be adequate in most applications. However for
higher order systems, it is pdssible that the fourth-order filter might
reduce the staqdard quadratic performance index sufficiently so that the
Kalman filter is no longer acceptable with the Riccati controllef. This
sltuation could result becausé the feedback controllerloperates on more
than one state requiring_greater precision in estimation.

Although the machine execution time was unusually high for the
Bayes-law computation iﬁ the first-order example considered, an important
advantage was realized by its use, For low-order systems, the Bayes-law
scheme 1s a nearly optimal algorithm to which one may compare the accuracy
of faster estimation schemes, This advantage is particularly useful in
selectinglapprdximate algorithms for use on higher-order systems., These
approximate algorithms are necessary because of the extreme difficulty in
extending the Bayes-law scheme to higher-order systems.

The extension of the basic algorithms to a nonlinear stochastic

system demonstrated an approximately optimal method of handling a problem

- —m——— e R R
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which has not been solved, The method presented was valid oniy at low
noige levels, and acceptable accuracy.wasfobtained for those cases, The
extension to the problem of selecting a specific optimal controller was
useful in delineating the structure and sensitivity considerations of
the estimation and coiitrol algorithms;

In summary, the most attractive feature of the combined estimation
and control algqrithms was the improvement in esfimation demonstrated for

both linear and nonlinear stochastic systems,

Recommendations for Further Work

Three problems related to this thesis research are suggested for
furthér:study. The first recommendation is that fhe consideration of
bounds in the Bayes-law computation be eliminated. Secondly, to avoid
detailed moment calculations, another répresentatiou of the densify func-
tion is suggested, Finall&, it is recommended that the method be.extended
to higher-order systems by selecting a suitable specific filter;

The sensitivity analysis of the fourth-order filter revealed that
the knowledge of the correct state and noise bounds was essential in

achieving accurate estimation, This sensitivity to data on the bounds and

‘moments might be reduced by the addition of higher-order terms to the

polynomial expansion. However, the implementation of these terms would

result in increased computation,

An important restriction in the extension of the combined estimation -

and control algorithms developed is the difficulty in theoretically evalu-
ating the expected values of cross-products of states and estimates of the

states, To eliminate this difficﬁlty, it is suggested that the polynomial
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density representation be removed and replaced with some other form of
density representation., Specifically, the representation of a density
by.a sum of gaussians [32] seems to offer important advantages,
Finally, another possibility in the extension to higher-order
systems is to select a specific nonlinear filter whiéh compares favor-
ably with the Bayes-law computation for the first-order systems..
This thesis has presented new algorithms for the combined esti-
mation and control of nongaussian stochastic systems, Tﬁe resulting
.algorithms have been comparéd favorably with the Kalman filter and
Riccati controller combination, which aré optimal for gaussian distur-

bances, The problems outlined in this section are recommended as

fruitful areas for further work,
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APPENDIX I
DERIVATION OF THE BAYESIAN ESTIMATOR

This appendix presents the derivation of the least-mean-square
estimator by Bayes-law computation. the approach differs frommthé de-
velopment in [28,29] because of the feedback control in the moment
calculations, and the resulting estimator presented here is not
adaptive.

The least-mean-square estimate for the linear system given in

(2.1) may be expressed as

. ]
Xpl = E[xk-i-llzk-l-l] = Ji ®qf
k+1

(%412, )dx (a1.0)
xk+1|2k+1 kt1 "kl T k+1

where Lk+1 and fk+1 represent the lower and upper bounds, respectively,

of x

k+1|zk+1° By the Bayesian rule, one has
f (z Ix yof x, .12.)
| S R o R o SO R E A SO
£ (x Z.,.)= (41.1)
Krp |Fery L £ 2 (2, ,112)
k+117%k
The density function f (= |x ) can be written as
zk+1|xk+1 k+1 ' k+1
£ oz %) = £ {v =z -x ., (Al1,2)
zk+1|xk+1 k1 e+l Vie+l k+l k+1 k+1.
The denominator of (Al.1) may be expressed as
(Al1.3)

f
£ (24120 = [T

Z
z z x,, ]2z, )ax
o1 | 2 ter Piosl Fet1 ot 1 1210 H¥pety

{(z, ,.|x, . )f
o1 | Fier1 X1 12
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Therefore, one needs only to evaluate £ 1Izk) to obtain the

(x
| X4 |zk It |
-density'xk+1 Zk_, which may be expressed as a polynomial. However it

is necessary first to determine certain bounds on xk+llzk.

Bounds and Moments of xk+1|25

Assuming the bounds and moments of.'xk|zk have been found in

the last sampling period, one may evaluate the bounds of xk+1|zk as

= A +u +w . (2.11)

21,0 © Atk T Y% T Ynin

-+
fk-i-].,O = Ak.fk + Y T Yoax (2.12)
where it may be assumed that Ak » 0 without loss of generality., Fur-

thermore let

Lk : ldwer Bound of xklzk (Al.4)
fk ! upper bound of xklzk

&k+1,0 : lower bound of xk+1|zk

fk+i,0 ¢ upper bound of xk+1|zk

One may obtain the moments of xk+1|zk by taking the expected value of

(1.1) as
13[;{jL |z, 1 = Ela x +u +w|z]i | (41.5)
k+1!1“k Wk Tk kl“k ’
_ i i-3] i-p 3
=B 2 v @x 207 |z }
j=0 = p=0
i-\l’z’-oo,M

To evaluate the above expression, the form of the estimate is re-
quired. This expression will be assumed known for the remainder of

this section and will be developed in Appendix II.
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Approximation of £ x, . |2,)
lEl__1|zk k+1! %k

To approximate a density function by @ polynomial of the form

fy(y).eigoaiPi(y), where y&€(-1,1), the coefficients ay must be selected

to minimize the mean square error of this approximation. Specifically,

from [28] for a density function

4
£ (y) = “o 1yi | ' (A1.6)

the coefficients a; for i=1,2,3, and 4 are

4)

[
]

7.3828125my( - 8.203125my(2) + 1.7578125 (Al.7)

a, = -13.12Smy(3) + 9.375my(1)

(2)

a, = -73.828125my(4) + 68. 90625m -8.203125

a. = 21.8?5my(3) - 13.125my(1)

(4)

= 86.1328125my -73.828125my(2) + 7.3828125

To approximate f (xk+1|zk) by a polynomial as Eiven'by (al.6),

X1 ‘Zk
a transformation must be made such that the new variable will be dis-

tributed on (-1,1). Such a transformation is given as

- 2 o Fear,0 % Ao o
1" fi1,0 - B0 ¥4 2

) (A1.8)

is the new random wvariable. Let

¢ = (A1.9)
Fed1,0 2‘k+1 0

Je0t Aengo
fer1,0 - Bea1,0

where sk+1




74

Having determined a polynomial representation of ka+1|zk(xk+1'zk)’
one is able to determine the demsity function of xk+1|zk.

The Bounds and Density Function of xk+1|zg¢;

Since it is known that xk+1|zk € ({k+1;0’ fk+1,0) gnd assuming
that v is uniform € (-1,1) without any logs in generality, the distri-

bution of the joint random variable =z may be represented by

o151 |2t
a parallelogram as shown in Figure Al.1l,

kt1

Figure'Al.l Distribution Region of x

k+1 %Kkl




then (A1.8) becomes

-3

k+1 kt+1

= ox + d (Al.

75

10)

Taking expected values of (ALl.10), the moments of Bk+1|zk are found as

(1) 1\ i-3.3 (i- j) |
§ ( d’m (al.

S 12 T 350 Her1 1%
Thus, the density function of sk+llzk can be approximated as a poly-
nomial

M i
£ (s |Z )= 3 b.s (al.
Sy 12 kT T 2 P i

_Making use of (Al.10) again, one has

Sict1
(x .,12) = (s
%y 1 1% ot i |d | 8 12 leHL e+l

f -ch(cx

X112, im0 1T kL

. Therefore, for M = 4

i
i = %a_x (2.
where
_ 2 3 4
85 = by + bd +byd” +byd” +b,d
= b.c + 2b.cd + 3b.cd> + &b, cd>
S T | 2 3 4
_ 2 2 2.2
a:2 = bzc + 3b3c d+ 6b4c d
3 3
a3 = b3c + 4b4c d
&4

= cx, .. + dlzk) (al.

+ ayl (2.

11)

12)

13)

13)

15}
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Observing the right ends of Lines I and II, it is seen that

when 2 -1 (2.15)

_ 1,0 k1 = fier1,0
w1

1

+ 1 when 2 < fk+1,0 -

211

Similarly, from the left ends of Lines 1 and 1II, one has

when z 1 (2.16)

] {zk-l-l -1 eh ” et T
et |

&k+1,0 vhen z

bl F Uetkl,0 + 1

can be ﬁritten from (Al;l) and (Al.3) as
(Al.14)

The density of x . |zk+1

f (z Ix )£ (x zZ.)
zl£_|_1|xlc+1 kbl et x o2 o1 Vi

£ perr 1) =

ka+if

"

X |Z _

S N |
(z x, ,.)E (x IZ ydx

‘zk+llxk+1 k+}| k+1 xk+1|zk_ k1 19k ikl

- Making use of the assumption that v is uniformly distributed on (-1,1)

k+1
and (Al.2), one has

£y |z, ®ir1 120
£ Gy |2.0) = Il k ' (2.10)
Fxo.q12 kL “et1’ T .
k1“1 k+1 _
| S x|z (xq 12082
K+l Tkl 1%k
Ingserting €2.15) into (2.10), one ebtains
M
A .
£ % 1120 = ] - (Al.15)
x, 4|2 k+1 i1 itl it

i=0
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Therefore, the moments of x are given for the computation in

R LAy

the next sampling period as

Mg (A1.16)
5 a.,x
f i7k+1
E[lele1 J)1| 1_]'Ic+1 i]c-l-lu 1=oi+1 -+1
e+ “ict pet1 za (f &;+1)/r+1
=0 T
B GRHL HL ,
i im0
o -
X, 4|2 M . (A1.17)
kbl et zai(fﬂ} Lﬂ})/(iﬂ)

©i=0 o
for +=1,2,... .M

This suboptimal estimate is the cpnditional mean value, i.e. the first

moment of x , and may be obtained from (A1.17) by setting j=1.

b1 V21

Hence, one has

a2 L4 Gag) |
2, - i=0 (2.17)

zoa idn - by (341

j=

Thus the estimate of the plant state is completely specified except

X lua 3 .
for the moments of xk+1|Zk+1,whlch are to be evaluated in Appendix II
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APPENDIX II

CALCULATION OF THE MOMENTS OF xk+l|zk

The purpose of Appendix II is to dérive the moments (Al.7) re-
quired in the Bayes-law formulation of the estiﬁate. M?ﬁ was selected
arbitrarily because of the ease in imp lementation and the relative
accutacy demonstrated in [28,29],

The moments of X |Z are obtalned by taking the expected value
of (2.1) as seen in (Al,7)., By using this expression, one is able to
evaluate directly all expected cross-products except those given by

i 4-1

E[uk i

|Zk} for i=1,2,3, and 4. (A2.1)

However, because uk\= Kkﬁk, (A2.1) becomes

x ) (a2.2)

E[u1 - i|z ] = KkE[
for i=1,2,3,4.

To evaluate these expected values, one must first express the estimate

gk in terms of the variables of the system. Since from (A2,24) with
M=4, x, may be written as
: 4 +2 +2
R La (f; - Li )/ 142
X = 140 - (A2.3)
5 a (fi+1 i+1)/r+1
i=0 ,
which may be expanded by long division to give
2 2
a,f. a1 f L )
1'k e 22 27 k™ k “ee (A2.4)

& = 0.5(f + 1) + 04 —0F - =52
k kT a012_ apl2 3, 6
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Retaining the first two terms, the expected value of the products

in (A2.2) may be expressed as

i 4

Al 4ei -1 .
X, Izk] (a2.5)

Elx %, [z,) = ELCSOf, + 4. 1)

-

It has been shown from earlier considerations that fk and 1, ave func-

tions of the measurement zZ) - Again by examination of Figure Al.l, it

can be seen that the values of fk and Lk depend explicitly on four

rangeé of = The ranges of =z

K and the corresponding values of fk

K’

and 4, are given as:

Range A: z, < fk,O-l and Z, = Lk,dfl (AZ,&)
k fk =z a2.7

e = Pl
Range B: z, < 'fk,O-l and 2, = {'k,0+l | (A2.8)
fk =z . _ (A2.9)

Y = 0

L E : —

Range C: z, = fk,O 1 and Ze > &k,0+1 (a2.10)
fe = Teo (42.11)

e T Zierl
Range D: 2, z jk,0~1 and 2, = Lk,0+1 (A2.12)
= A2.13
'fk jk,O ( )
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The approach will be to find expressions for E[xg £i] for j = 1 and
i=1,2,3, and 4 for éll four ranges and then to generalize to the other

required cases, i.e. j = 2,3, and 4.
Elx % |Z,]
The expected value Of.xkﬁklzk may be Fritten from (A2,5) as
| E[xk£L|Zk] = 0.5 E[x, (fi+4) 12, ] : (A2.14)
For Range A, (Ai.14) becomes

E[?k££|zk] = 0.5 E[x 12, (2z))] (A2.15)

From 2.1 this may be expressed as
A _ 2.
E[x % |2,] = E[3k|zk] + Elx, v, |Z,] (A2.16)

Because of the independence of x,_ and Vs (A2.16) may be written

k

as
Elx % 12,] = E[x§|zk] + Elx 12 JElv, ] - a2.17)

Similarly expressions may be derived for the remaining three regions
and may be written as

Range B:

E[xkﬁk\zk] = ;%— (E[xi|zk] + E[xklzk]E[vk] -+ E[xk‘zk] (A2.18)

* 4, oF L% 5 D
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Range Gz °

Blng, 15,) = 3 (BUx 1) + Blx B Jelv] - B (2] + £ ofim i3])

(A2.19) -

Range D:

LEENCRES s C RN (a2.20)

At this poiﬁt, it is easy to generalize to E[x& fk] for i = 2,3,4 by
increasing thg corresponding power of Xy in (A2,17) and (A2,20) for all
four ranges, The other cross-pfoducts of E[xﬂ ﬁi] for 1= 2,3,4 are
calculated by suitable substitution for ﬁi

Having obtained the expressions for E[xk it ] where i = 0,1,2,3,4
one may proceed to find an expression for the moments of xk+1lzk. By

expanding (Al.7) the moments of xk+1|Zk may be expressed as

mxk+1 |Zk ) E[wk] * E[uk wk.J + AE[x'k |Zk] (a2.21)

2
m

Lt Elwl] + B[’ 2} + A%Elx, (7,1 + 28 E[xu 12, (A2.22)
k+1 Tk ’ :

+ 2A§[xk|szE[wk] + ZEEWkJE[ukIZk]

m:::k-l'l |Zk = A3E[lezk] + E[Wi] + E[ul:ilzk] + SAE[xklzk]E[le(]
(42.23)

+ 38E[ % uy Iz ] + 34 E[xklZ JE[w,] + 3a E[xkuklzk]
+{See Next Page) .
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+ 3E[wk]E[uﬁ|sz + 3E[w§]E[uk|z_k] + GAE[xkuk |'zk]E[wk]-

4 4o 4 4 4 3.3 3.3
m , =A E[xklzk] +E[w.] + E[uklzk] + 4a7E[xu, |zk] + 4A E[xklzk]E[wk]

Xyl | k

+ 4AE[xk“1::|Zk] + ME[kuZk]E[wi] + 4E[uy lzk]E[wi] (A2.24)

+ 4E[uilzk]E[wk] + 6E[u§|2k‘]E[wi] + 6A2E[x§uilzk]

%Azs[xlflzk]E[wi] + 1M[xku§|zk]E[wk] + 12AE[xkuk|Zk]E[wE]

2 2
+ 128°E[ %, u, |zk] E[w,]

Recalling 0 = Kk:?k and the expressibns for E[xltf::-ilzk] vhere 1=0,1,2,3,4,

one is able to write down the moments required direetly for the four

ranges of z For convenience, one may define

X
Blx |5,) = nli]
E[w]i] =mw1: for i=1,2,3,4
E[vlic] = mvi
For Range A : z, < fk,O -1 and 2 > ‘ﬁk,O +1

m

k4 Iz,

=mil + an[1] + K (a[1] + my1) (42.25) -




2
m

Fr1

3
m

X+l

X+l

Consider Range B :

By
k+1

2
m

i+l

|2,

2,

|z,

|z, ~
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mil(ol1] + mvl)  (A2.26) |

me2 + Azm[Z] + 2Amwlm[ 1] + K,

+ Ki(m‘[ﬂ + 2m[ 1Jmvl + m\;r2) + ZAKk(m[Z[ + m[ 1]mv1)

me3 + Adml3] + 3ame2ml 1] + 34%melnl2] + Ki(m[?l] (A2.27)

+ 3m[2]lmvl + 3ol1l]mv2 + mv3) + MKi(m[3] + 2m[ 2]mvl

4 ml1]mv2) + 3A2Kk(m[3] + ol 2]mvl) + 3mw11(§(m[2]_

+ 2m[1]mvl + mv2) + 3Kkrim2(m[1] + mvl)

mwl(ml2] + ml1]lmvl)

+ 6AKk

mwh + _Az‘m[z;] + aanl1]mw3 + 6a%m[ 2]mw2 + 44%m[ 3)mw1
+ Ki(m[lt] + 4ml 3lmvl + 6ml2]mv2 + 4ol 1lov3 + mvé)

+ Z;AKimwl(m[ll-} + 3o[3Jmvl + 3m[2]mv2 + ml1lmv3)

amwl(m[i?o] + 3m(2]mvl + 3m[ 1]mv2 + mv3)

+ 6K§mw2(m[ 2] + 2o[1]mvl + mv2) + GAzKi(m[l}]

+ 4K (a2.28)

1irr:wrll(m[ 3] + 2m[2]mvl

+ wl 1]lmv2) + 4A31<k(m[4] + ml3]Jmvl) + 4m3Kk(m[l]

+ 2ml3]wvl + ml 2]mv2) + 12AK

+ mvl) + 124K me2(al 2] + ml 1mvl) + 12A2Kkmw1(m[3]

+ ml 2Jmvl)

2z, < 'fk,o -1 and 2, = 'Q‘k,O +1

mel + K (m{1] + mvl + 2, .+ 1) (A2.29)
_k 5 %k, 0
2

me2 -+ Azm[2]_ + 2Amwlm[ 1] + (see next page) (A2, 30)
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m
X+l

Xl

|z
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KZ.

k ' :
+ Rwl{n[1] + ovl + g o+ 1} + 75(m{2] + 2n(1](uvl + g +1)

+mv2 + 2vl(g o+ 1)+ (g 4+ _1)2] + Ai(k{n[z] + m[1]mvl

+ m[ ll(Ek o tD

k

|2,

3 - 2 K>
a’nl3] + mw3 + 3amw2m[ 1] + 3A%wiml 2] + “kiml3] + 3ml2]-
8

' 2
(mvl + 2.0 + 1) + 3m[1](av2 + 2mv1(,9,k’0 +1) + (zk,o + 1)

+ w3 + 3208 o+ 1)+ 3mvl(g o+ 132 + (4 o+ nH
¥ ] >

a2
+ k{ml3] + 2ml 2] ¢(mvl + 2 o+t D+ wnl1] (mv2 + 2mvl-

&

L |
34K (ml3] + ml2) (mvl + 5
2 , ,

: 2
(ot D+ (g o+ D)+

2 _
A2,
+ 1) + 2™ Hyal2] + 1)l + 4+ D+ ov2 (A2.31)
4 »
. , |
+ 2"“'1(“'1:,0 + 1) + (£k,0 + 1)7) + %Kkmwﬂm[l} + mvl
g ot Ut BAKkml[m[Z] + m[ 1] (mvl + L ot 1}
4 2 3 o
mwé + A'ml4] + 4Aml 1low3 + 6Aml 2]ew2 + 4A ml 3]mwl + _k -
: 16

(4] + 4nl3]@avl + g o+ 1) + 6ml2] (w2 + 2wl o + 1)
+ U ot 1)2) + 4ml1] (mv3 + 3av2(gy o + 1) + 3avl(y 4

+ D24 (g o+ D vk a3y o+ D+ bw2(y

C+ 4 bmvl (g, o + 13+ (b o+ n4 + lAKi[m[&]
X X 2

- (A2.32)
3ml 3] (mvl + Lot 1) + 3m[2] (mv2 + 2mv1(g, o+ 1)

+(see next page)




2 2
+ (zk’O + 1)) + ml1] (w3 + 3mv2(,zk,0 + 1) + 3m_v1(,zk’0 + 1)

+ (o~ DY+ Kml(nl3] + 3ml2] (vl + g, . + 1) + 3ml1] (mv2
k,0 5 K A0
+ 2rw1(£.k,0 + 1) + ('E'k,O +0)") + mv3 + 3m2(,ﬂ,k,0 + 1) + 3nw1(zk’0

-+ l)2 + u‘k,O + 1)3) + %KimZ[m[Z] + 2m[ 1] (mvl + ‘P’k,o + 1) + mv2

+ 2wl (g o+ D+ (g ot D%} + %A2K§{m[4] + 2m[ 3] (mv1 t 4ot D

+ml2) vz + 2vl(g o+ 1) + (g o + 1)_2); + 38KZmwl(n[ 3] + 2u(2]-
@vl + g o+ 1 +ol1]@v2 + 2wl(e, o+ 1) + (g o+ 1)2))
+ 2A3Kk[m[4] + ml 3] (vl + ;zk’O + 1)} + 2W3Kk[m[1] + mv} + B0 + 1}

+ GAKktrMZ[m[Z] +mll)(mvl + g .+ 1)} + ﬁAsznml[m[ﬂ + m[2]:

k,0

(vl + g o+ D)

Range C : zkéfk,o-l and zk>‘f‘k,0+1

m = mwl + 1 (mi1] + mvl + f - 1) + aml1] | (a2.33)
xk+l|zk sz k,0 .

2 = mw2 + Azm[2] + 2Amwlm[1] + K mwl{m[1] + mvl + f
e 1 ¢ Fhgo (230

-1} + lKi[ﬁ[‘Z] + 2m[1] (vl + fo - D +mv2 + 2mvl-
4 “k,

o - D+ Uy - 1)%) + AR, (a[2]) +nl1] (a1

* fio o DI
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3
m

4
m

X1 2

X1 Py
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= w3 + A%m[3] + 3Ame2m[ 1] + 3A%mwlm( 2] + ll(i{m[ii] + 3m[ 2]
| | 8

@vl+ f o= D+ 3m{1)@w2 + 201k o - D + (f g - 1H?%
+ w3 + 3wv2(f, o~ D + 3wvl(f - 1)2 + 0" 1)3}

+ EBKi{mD] + 20[2](mvl + f, o = 1) + n[1](mv2 + 2mvl- |
) | ’ (A2.35)

Geo- D+ o= DHT+ %Azrck{““] + m{2] (ol +f,

-1} +§m11<i[m[2] + 2m{ 1] (mv1 + fuo- D+ my2
A S
+ 2mv1(fk’0 - 1) + (jk’0 - 1)2} +_g_1(kmw2[m[1] + mvl + fk,o _

-1} + 3Akaw1[m[2] +u{1]@vl + f o - D)

= mod + A4m[4'] + &Am[ 1lmw3 + GAZm[Z]me + 4A3m[ 3 mwel '(A2.36)
+1_é_](.t{m[4] + 4m{ 3] (mvl + fo = D 6m[ 2] (mv2 + 2mvl(fy o
R R AP 12y + 4o 1] (@3 + 3my2(f, o = 1) + 3ml-
(o = DX+ (o = D) + mube 4 w3 (f o - 1) + buv2-
(o - D+ 6mvi(s o - D7+ (f o - DY
+ %Ki{m[é]‘ + 3m[3j(mv1 + fk,o - 1) + 3m[2'_.|(m2.+2mv1(fk,0
- D+ - D2 + W[ 17¢w3 + 3mv2(f, o - 1) + 3mvl-
(o = D+ U = D)+ IKamiial3] + 3a{2)Gavl + £,
- 1)+ 3m{1) w2 + 2v1CH o - D+ (fi o - DY)+ mv3

' 2 3
+ Imv2(fy o = D)+ 3l(fy o= DT A fy o= D }
+(see next page)
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2 ' '
+ 3K mw2 {mf 2] + 2m[1](mvl + f - 1) + mv2 + 2mvl(f -1+ (f
2Kk 2 . - k,0 o k,0 k,0

2 2.2
= D71+ 3A {4] + 3m[3](mvl + -1 +.3m[2](mv2 + 2nervl( _
, b 3R (nle] Wl fe0 v .0

S D+ (f - DY+ sl (al3] + 2]l + £ - D + ul1];

(mv2 + val(fk,.ﬂ - 1) + (fk,o - 1)2.) 1+ 2A3l(_k[m[4] + mf 3] (mvl + fk’o

- 1} + 2m3K {m{1] + mvl + feo = 1)+ aram2{m{2] + wl1]Gavl + £ o

- D)+ 6A2Kkmw1{m[3] +m2) Gl + fy o - D}

- =
1 and zk _Lk’o-l- 1

For Range D : %, E fk,O

m _ ( + + Am[ 1]
X g 12, = Tl + 1;_‘1{ _fk,o 4,0 [

2 2 - )
. = mw2 + Am{23 + 2Amwlm{ 1] + K mwl(f, . + )
RN | R ko " 40
F Ky o b * ARG o + 4 o))
'y _

. 3 ' 2 3
3 = mw3 + A"m[3] + 3Amw2m[ 1] + 3A 1m[2]+_]: (f +
mxk+1 lzk m mw sz k,0

* -f—}“‘i“‘[ (o * 4,0 * %Azkk“'[?‘](fk,o * 4o
+ %m“‘i(fk,o + fk,cn)z *+ K20t A 0

+ 3AK, melmf 1] (fk’o + y,k’o)

(A2.37)

(A2.38)

A, 0)3

(A2.39)
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n = meb + A'n(4] + An[1] + 6A%n[ 2}mm2 + 487m[ 3]mwl + “i:

%l g T

4 3 3 .3 (A2.40)
Urot %00 A_zﬂckm[ll(fk’_o +he o +%Kkmw1(fk’0

+ J'1:,0)3 + %Ki““”z(fk,o + fk,'o)z. * %Azki“iz](fk,o + ”k,o)z
+ anmtal 115, o + 4 0% + 2a31C, o+ 4

+ 3K (F o+ G o) 6AR me2nl 11(f, o + 4 o)

+ 6A2K.kmw1m[2](fk,0 + z.k’o)'

the filtering algorithm

Having obtained the moments of xk+1|zk ’

is complete,
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