
FIELD TRANSPORT OF CRYPTOSPORIDIUM SURROGATE 

IN A GRAZED CATCHMENT 

Prepared by: 

Appiah Amirtharajah, Michael H. Young, Kurt D. Pennell 

School of Civil and Environmental Engineering 

Georgia Institute of Technology 

Atlanta, GA 30332-0512 

and 

Jean L. Steiner, Dwight S. Fisher, Dinku M. Endale 

USD A, Agricultural Research Service 

J. Phil Campbell, Sr., Natural Resource Conservation Center 

Watkinsville, GA 30677-2373 

Sponsored by: 

Awwa Research Foundation 

6666 West Quincy Avenue 

Denver, CO 80235-3098 

Published by the 

Awwa Research Foundation 

American Water Works Association 



Page missing from thesis 



DISCLAIMER 

This study is funded by the Awwa Research Foundation (AwwaRF). AwwaRF assumes 

no responsibility for the content of the research study reported in this publication or for the 

opinions or statements of fact expressed in the report. The mention of trade names for 

commercial products does not represent or imply the approval or endorsement of AwwaRF. This 

report is presented solely for informational purposes. 

Copyright ©2001 

by 

Awwa Research Foundation 

and 

American Water Works Association 

Printed in the U.S.A 

ISBN 0-00000-000-0 

IV 



LIST OF TABLES vii 

LIST OF FIGURES ix 

FOREWORD xiii 

ACKNOWLEDGMENTS xv 

EXECUTIVE SUMMARY xvii 

CHAPTER 1: INTRODUCTION AND BACKGROUND 1 

Significance of Cryptosporidium 2 

Project Rationale 3 

Research Objectives 4 

Field Characterization Studies 5 

Modeling Studies 5 

CHAPTER 2: MATERIALS AND METHODS 7 

Field Site Description 7 

Location and Land Use 7 

Physiography, Soils and Geology 8 

Hydrology 8 

Field Characterization Studies 9 

Geophysical Surveys 9 

Instrumentation 11 

Monitoring Data and Analysis 21 

Transport Experiments 22 

Bromide Transport Experiments 22 

Microsphere Spiking Experiments 24 

Microsphere Analysis 29 

Sample Preparation 29 

CHAPTER 3: HYDROLOGIC AND TRANSPORT MODELING 45 

Description and Analysis of Water Budget Approach 45 

Particle Transport Modeling 48 

One-dimensional Flow Model 48 

v 



Two-dimensional Flow Model 57 

CHAPTER 4: RESULTS AND DISCUSSIONS 61 

Hydrology of Field Site 61 

Results of Geophysical Survey 61 

Soil Properties at Field Site W2 62 

Analysis of Site Water Budget 64 

Water Budget Analysis 68 

Transport Experiments _. 70 

Bromide Spiking Experiments 70 

Microsphere Spiking Experiments 72 

Laborartory Column Experiments 75 

Hydrological/Transport Numerical Analysis 85 

One-dimensional Modeling of Flow and Transport 85 

Field Methodologies Used For Microsphere Collection 90 

Flow-through Centrifuge 92 

Field Conditions That Would Promote the Transport of C. Parvum 

Through Soil 92 

CHAPTER 5: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summary 135 

Conclusions 135 

Recommendations 136 

REFERENCES 137 

ABBREVIATIONS 145 

VI 



TABLES 

2.1 Breakdown of instruments for measuring components of the water budget 13 

2.2 Details for the sixteen 1-inch and two 2-inch wells installed at the 

monitoring site 16 

2.3 Results of normality testing for microspheres counted on filter surface 33 

3.1 Textural classification for soil samples collected at W2 site 53 

4.1 Estimated van Genuchten parameters using the textural data listed in 

Table 2.3 and the neural network approach of Schaap et al. (1998) 63 

4.2 Fitted values of van Genuchten parameters for soil hydraulic properties 

atW2 63 

4.3 Microsphere beads appearance in water samples 72 

4.4 Properties and flow conditions for each soil column 76 

4.5 Column parameters for non-reactive tracer experiments 79 

4.6 Column parameters for microsphere bead experiments 82 

vn 



viii 



FIGURES 

2.1 Location of W2 catchment within the North Unit Watershed at the 

USDA-ARS, J. Phil Campbell, Sr. Natural Resource 

Conservation Center 35 

2.2 Idealized, two dimensional cross section of area adjacent to wetland, 

including instrument clusters, W2 catchment 36 

2.3 View looking east from the wetland showing monitoring and sampling 

instrumentation at the spring 37 

2.4 Locations of the flume, monitoring sites for soil water, soil water potential, 

ground water, and the microsphere and bromide injection site 

by the main spring 38 

2.5 Schematic diagram of zero-tension lysimeter installed in a borehole, 

and a magnified view showing individual components of the 

collection apparatus 39 

2.6 Picture of microsphere injection apparatus 40 

2.7 Injection of microsphere solution within mesh grid 40 

2.8 Operation of the Giddings probe to collect soil cores from the spiking area 41 

2.9 Removal of butyrate plastic liners containing soil from the core tube 41 

2.10 Schematic diagram of the laboratory column apparatus 42 

2.11 Image of polystyrene microspheres 43 

3.1 Modeling domain for 2-D simulations 60 

4.1a Results of numerical inversion analyses of EM-31 data 94 

4.1b Results of GPR survey along the eastern-most portion of the study area 95 

4.2a Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 0-15 cm depth 96 

4.2b Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 15-30 cm depth 97 

4.2c Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 30-46 cm depth 98 

IX 



• • ^ u A l l v u Jwn , , u l v l iviwiiuvm uuu u^uiuuuv wuuuuwuuij v̂  v»i T >̂u xv/i " ^ J U " 

collected between 46-61 cm depth 99 

4.2e Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 61-76 cm depth 100 

4.2f Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 76-91 cm depth 101 

4.2g Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 91-107 cm depth 102 

4.2h Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 107-122 cm depth 103 

4.2i Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 122-137 cm depth 104 

4.2j Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 137-152 cm depth 105 

4.2k Fitted soil water retention and hydraulic conductivity curves for W2 soil 

collected between 152-168 cm depth 106 

4.3 Water table elevations measured on December 30, 1999, using all Sixteen 

2.54-cmwells 107 

4.4 Daily and cumulative precipitation recorded by the tipping bucket rain gauge 

at the experiment site for 2000 108 

4.5 Year 2000 monthly precipation recorded by tipping bucket rain gauge compared 

to the monthly long term averages for the J. Phil Campbell, Sr. 

Natural Resource Center 109 

4.6 Cumulative precipitation and evapotranspiration at W2 site 110 

4.7 Average soil moisture for installed TDR probes and daily precipitation 111 

4.8 Average soil water storage for 5 TDR probes installed at W2 site 112 

4.9 Change in average groundwater depth from soil surface on 2/24/00 until 8/20/00 

for the 16 installed piezometers 113 

4.10 Contour maps of the groundwater as defined by the piezometers 1-11 and the 

flume outlet at various dates 114 

x 



4.11 Daily and cumulative GW underflow estimated for the southern half 

of the monitored subplot 115 

4.12 Results of baseflow separation of W2 spring for time 116 

4.13 Ground water storage at W2 site 117 

4.14 Cumulative baseflow and interflow, separated from spring flow 

using Equation 3.3 118 

4.15 Sample infectivity curve for oocysts inoculated onto MDCK cells 119 

4.16 Cumulative water volume leaving the W2 subplot, but not accounted for in 

other water budget components 120 

4.17 Bromide concentration of water collected from monitoring Well 1 121 

4.18 Bromide concentration of water samples collected at the spring 122 

4.19 Distribution of microsphere beads retained in soil cores collected from 

the spiking area 123 

4.20 Respresentative non-reactive tracer breakthrough curves for 20-30 

mesh Ottawa sand and Cecil soil 124 

4.21 Comparison of microsphere breakthrough curves for 20-30 mesh 

Ottawa sand at flow rates of 1.0, 2.5, and 5.0 mL/min 125 

4.22 Comparison of microsphere bead retention distribution in 20-30 mesh 

Ottawa sand at flow rates of 1.0, 2.5 and 5.0 mL/min 126 

4.23 Measured and predicted distribution of beads retained within 20-30 mesh 

Ottawa sand soil columns at flow rates 1.0, 2.5 and 5.0mL/min 127 

4.24 Comparison of microsphere bead breakthrough curves for 20-30 mesh 

Ottawa sand, F-70 Ottawa sand Cecil soil at a flow rate of 5.0 mL/min 128 

4.25 Comparison of microsphere bead retention distributions in 20-30, F-70, 

and Cecil soil columns at a flow rate of 5.0mL/min 129 

4.26 Fitted versus observed volumetric water contents, collected with the 

TDR from Location 4, adjacent to the spiking area 130 

4.27 Residuals obtained from HYDRUS-1D modeling 131 

4.28 Predicted deep drainage in W2 soil profile as functions of antecedent 

water storage and precipitation 132 

XI 



t . z " rcncirduoii ucpm ui pcdK njiiccuudLiori 01 lucdi buiuic 111 wz, sun 

as functions of antecedent water storage and precipitation 133 

4.30 Predicted deep drainage in hypothetical silt loam - sand soil profile 

as functions of antecedent water storage and precipitation 134 

xn 



The Awwa Research Foundation is a nonprofit corporation that is dedicated to the implementation of 

a research effort to help utilities respond to regulatory requirements and traditional high-priority 

concerns of the industry. The research agenda is developed through a process of consultation with 

subscribers and drinking water professionals. Under the umbrella of a Strategic Research Plan, the 

Research Advisory Council prioritizes the suggested projects based upon current and future needs, 

applicability, and past work; the recommendations are forwarded to the Board of Trustees for final 

selection. The foundation also sponsors research projects through the unsolicited proposal process; 

the Collaborative Research, Research Applications, and Tailored Collaboration programs; and 

various joint research efforts with organizations such as the U.S. Environmental Protection Agency, 

the U.S. Bureau of Reclamation, and the Association of California Water Agencies. 

This publication is a result of one of these sponsored studies, and it is hoped that its findings 

will be applied in communities throughout the world. The following report serves not only as a 

means of communicating the results of the water industry's centralized research program but also as 

a tool to enlist the further support of the nonmember utilities and individuals. 

Projects are managed closely from their inception to the final report by the foundation's staff 

and large cadre of volunteers who willingly contribute their time and expertise. The foundation 

serves a planning and management function and awards contracts to other institutions such as water 

utilities, universities, and engineering firms. The funding for this research effort comes primarily 

from the subscription program, through which water utilities subscribe to the research program and 

make an annual payment proportionate to the volume of water they deliver and consultants and 

manufacturers subscribe based on their annual billings. The program offers a cost-effective and fair 

method for funding research in the public interest. 

A broad spectrum of water supply issues is addressed by the foundation's research agenda: 

resources, treatment and operations, distribution and ston ge, water quality and analysis, toxicology, 

economics, and management. The ultimate purpose of the coordinated effort is to assist water 

suppliers to provide the highest possible quality of water economically and reliably. 
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EXECUTIVE SUMMARY 

SUMMARY 

The project is the first study to investigate the transport of a Cryptosporidium surrogate 

under field conditions. Polystyrene microspheres of similar size (4-6 /xm) as Cryptosporidium 

oocysts were used to spike a defined area in a cattle grazing field site with borehole wells 

instrumented with zero-tension lysimeters and pressure transducers. The polystyrene microspheres 

were detected and counted using epiflorescence microscopy. The groundwater flow at the field site 

was characterized using state of the art geophysical surveys and the hydrology (rainfall, soil water, 

groundwater flow and evapo-transpiration) was followed for a period of approximately one year. 

The transport of the surrogate microspheres was followed by periodic sampling at the zero-tension 

lysimeters, monitoring wells and a perennial spring. 

The field study was complemented by column studies in the laboratory under controlled 

conditions. The column studies focused on transport of surrogate microspheres through well 

characterized sand media and soil media from the field site. The column studies produced numerical 

values for parameters used for a one-dimensional transport model. The model was tested for the 

column configuration and the field site. 

RESEARCH OBJECTIVES 

This project focuses on field studies of colloidal-sized particle transport (similar to C 

parvum) through unsaturated soils at a small catchment used for cattle production. Known 

quantities of polystyrene microspheres, manufactured with properties similar to C. parvum, and a 

bromide tracer were applied in specific areas of a small catchment and monitored for breakthrough 

at an on-site perennial spring. Microspheres were used as surrogates of microorganisms in this field 

study. The focus on cattle grazing areas stems from the findings that many large-scale outbreaks of 

Cryptosporidiosis have been attributed, at least in part, to contamination of surface waters by cattle 

excreta. Though previous work has been done to characterize the surface water pathway, the intent 

of this study is to focus on subsurface transport of oocysts at the field scale. This is a topic which is 

not well researched or understood. 
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parvum surrogates in the vadose zone of cattle production systems. This project is designed to 

improve our knowledge of the mechanisms and processes that contribute to contamination of small 

streams and shallow groundwater from these microorganisms using surrogate particles. The 

following specific objectives are designed to couple field-scale studies, with mathematical modeling. 

Field Characterization Studies 

1. Instrument specific areas of a small catchment used for cattle grazing and quantify shallow 

subsurface flow. 

2. Conduct tracer experiments at the catchment using microspheres, and a second non-reactive 

tracer, placed beneath the soil surface to promote interflow transport. 

3. Conduct post-tracer sampling of soil at the field site for mass balance estimates. 

Modeling Studies 

1. Improve approaches to modeling the transport of oocysts in unsaturated soils using existing 

water flow and transport models, and incorporating concepts of trajectory theory. Results of 

the modeling studies can be used to simulate microsphere transport at the field site. 

The study is a first step in assessing the transport of Cryptosporidium oocysts in watersheds 

under field conditions. 

APPROACH 

The project included a literature review and gathering of background information of the field 

site and a preliminary geophysical survey conducted at the base of the catchment area used as the 

field site. The project was divided into four tasks: site characterization, field tracer studies, 

laboratory column studies, and numerical simulation of microsphere transport. The site 

characterization task required the installation of monitoring devices, so that components of the 

hydrologic water budget (e.g., soil water storage, ground water flow, etc.) were quantified. The field 
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tracer studies involved the use of a non-invasive, bromide tracer to better understand dispersion and 

pore water velocity at the site, and the use of latex polystyrene microspheres as a surrogate to 

Cryptosporidium oocysts. A sequential water sampler was installed at the mouth of a perennial 

spring and a flow-through centrifuge was used to collect the colloids including the microspheres 

from large volumes of water. Column studies were used to develop numerical values for parameters 

used in the simulation models for microsphere transport. The numerical simulation task included 

incorporation of concepts of trajectory theory into an existing, variably saturated flow model. 

Results of the field tests were used as input to the one-dimensional simulation model. 

RESULTS AND CONCLUSIONS 

The major contribution and conclusions of the project are: 

1. Improvements in field sampling and measurements for a surrogate used for 

Cryptosporidium parvum have been developed for field transport studies and 

laboratory column studies. 

2. The vertical migration of polystyrene microspheres in the column studies was 

minimal. This suggests that migration of Cryptosporidium parvum oocysts 

through fine-textured soils is likely to be minimal. 

3. Since a few microspheres were detected on a few occasions at sampling sites of 

the field, especially after rainfall events, the data suggests that a very small 

number of these surrogate particles travel through preferential flow paths at field 

sites. 

4. The parameters measured from column studies were used as input variables in a 

1-D hydrological (HYDRUS-ID) transport model, and indicated that reasonable 

predictions could be made on soil water content and the limited movement and 

depth penetration of solutes (surrogate particles) would occur based on antecedent 

water storage and precipitation. 
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INTRODUCTION AND BACKGROUND 

INTRODUCTION 

The focus of the new drinking water regulations in the U.S.A over the last decade of the 

last millennium has been to minimize and balance the health risks associated with the microbial 

pathogen, Cryptosporidium, and the cancer causing risks of disinfectants and disinfection-by 

products, such as the trihalomethanes and haloacetic acids. One of the significant regulations 

derived from the 1996 Amendments of the Safe Drinking Water Act was the Enhanced Surface 

Water Treatment Rule (ESWTR), which seeks to provide protection against Cryptosporidium. 

The rule has progressed through three stages, interim, long-term 1 and long-term 2 (LT2 

ESWTR) and the final LT2 ESWTR is expected to be promulgated in 2002. The requirements of 

the LT2 ESWTR will apply to all public water systems that use surface water or groundwater 

under the direct influence of surface water. The Federal Advisory Committee that negotiated the 

proposed regulation, recognized the importance of providing additional protection against 

Cryptosporidium, based on the results of a monitoring program to determine the concentration of 

this organism in source waters (Pontius, 2001). 

One of the viable options of meeting the provisions of the LT2 ESWTR and minimizing 

the risk associated with Cryptosporidium in drinking water is to use a multiple barrier approach 

in water treatment process trains including watershed protection and filtration. There has been 

little or no published literature on a quantitative approach to assess the transport of this organism 

through soil under real world field conditions. Transport can occur in surface runoff, via the 

vadose zone in unsaturated flow and in groundwater. It is also important to determine the extent 

of transmission of this organism in a variety of geological formations such as sand, fine-grained 

soils and formations having preferential flow paths. Thus, the research has to integrate 

knowledge from hydrology, soil science and mathematical transport analysis. The overall goal 

of this project is to initiate this fundamental understanding of the process that leads to transport 

of this organism through surface and groundwater under field conditions, so that a significant 

impact can be made in protecting the public health of communities. 
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SIGNIFICANCE OF CRYPTOSPORIDIUM 

The presence of microbial pathogens, specifically Cryptosporidium parvum (C. parvum), 

has been recognized as a significant health hazard when found in drinking water supplies. In the 

last two decades, several cases of waterborne gastroenteritis have been attributed to C parvum. 

Toward the late 1980's, the occurrence and size of outbreaks attributed to C. parvum began to 

increase. In 1987, an estimated 13,000 people in western Georgia were afflicted with 

gastroenteritis caused by C. parvum (Hayes, et al., 1989b). In April, 1993, the largest reported 

C. parvum outbreak occurred in Milwaukee, Wisconsin, where 400,000 people were sickened, 

and over 100 persons died as a result of contamination of the public drinking water supply 

(MacKenzie et al., 1994). Other, smaller outbreaks have been attributed to insufficient treatment 

of contaminated surface water and the contamination of groundwater wells by sewage effluent. 

These pathogens are a major concern of water treatment because they are considered 

ubiquitous in surface waters in the U.S. (LeChevallier et al., 1991). In one survey of water in the 

Western U.S., Rose (1988) found C. parvum oocysts in more than 75% of lakes and rivers. 

Another study by Hancock et al. (1997) used samples collected from a variety of subsurface 

environments to show that C. parvum and Giardia lamblia were present in 20%o and 14% of 

springs, respectively. Higher percentages were recorded in horizontal wells and infiltration 

galleries. The surface properties of the oocysts, such as zeta potential and hydrophobicity affect 

their adhesion on filter media and soil particles in subsurface flow (Drozd and Schwartzbrod 

1996). However, these pathogens are extremely difficult to inactivate by disinfection with 

chlorination. Conventional water treatment technologies which rely on coagulation, 

sedimentation, and filtration followed by disinfection, provide several barriers to transmission of 

oocysts. 

In rural areas where sophisticated treatment technologies are not always used to treat 

drinking water, humans can more frequently be exposed to these organisms leading to 

gastroenteritis. This may be especially true if cattle grazing is practiced in these rural areas, 

given that high density agricultural areas with cattle pastures have been shown to contain high 

levels of C. parvum oocysts (Madore et al., 1987). In several cases, direct causal links were 

made between the presence of cattle and illness in humans (Miron et al., 1991; Lengerich, et al., 
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areas, where cattle paddocks and winter calving areas are penned at high stocking rates, often 

exceeding the ability of the pasture to provide forage. These heavy use areas represent a possible 

source of stream contamination, and possibly a pathway for human contact. These cases indicate 

that ingestion by humans of inadequately treated water, contaminated by run-off from cattle 

manure, can increase the risk of these waterborne diseases. 

It is commonly understood that leaching by water is the primary mechanism of material 

translocation through the soil profile. Dissolved constituents, colloidal particles in suspension 

and larger particles not in suspension are carried downward through the soil fabric following 

precipitation events. The rate of translocation depends on a number of factors, including 

precipitation and infiltration rates, topography, presence of root holes or other preferential flow 

paths, and the characteristics of the migrating constituents, to name a few (Powelson and Gerba 

1995). Under higher flux conditions, such as those that occur during precipitation events, flood 

irrigation of agricultural fields or periodic disposal of waste water in an evaporation basin, a 

larger portion of water will travel through larger pores, where a significantly higher number of 

microorganisms will also travel through the soil profile (Jury, Gardener and Gardener 1991). As 

the flux rate decreases, larger pores cease transmitting water first, and straining leads to 

decreased transport rates (Jacobsen et al. 1997). This transient phenomenon could be responsible 

for deeper penetration of microorganisms into the soil profile, especially, if flooding occurs or if 

preferential flow pathways exist in the profile. 

PROJECT RATIONALE 

Studies have identified the presence of C. parvum in ground water environments (wells, 

springs, seeps, etc). It is generally assumed that shallow saturated water environments are 

greatly influenced by the hydrologic processes in the vadose zone. Moreover, the diversity of 

environments where C. parvum was shown to be present raises the question of whether and 

under what conditions these parasites can travel through soil material, and toward the water table 

or directly into discharge points. Conducting a field experiment at a site with a dynamic 

subsurface flow system could provide information on conditions that would promote, discourage 

or prevent the deep penetration of C. parvum into ground water environments. 
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The overall rationale of this research was to study the movement of C. parvum surrogates 

(e.g., latex polystyrene microspheres) through undisturbed soil material in the vadose zone of a 

small catchment. The catchment was characterized using a variety of techniques that included 

high intensity data collection of water fluxes into and out of well defined catchment boundaries. 

Using these techniques and the data collected, a full water balance was developed, so that the 

significance of soil water flow and transport on ground water discharge could be ascertained. 

Samples collected from the field were also used in column studies under more controlled 

conditions to characterize the filtration and detachment properties of the flow system, allowing 

these parameters to be used in 1-D and 2-D numerical models of water flow and particle 

transport. Both the site-specific data collection and transport experiments, coupled with the 

more general laboratory experiments, provide a data set under which the transport phenomena of 

Cryptosporidium surrogates can be studied. 

RESEARCH OBJECTIVES 

This project focuses on field studies of colloidal-sized particle transport (similar to C. 

parvum) through unsaturated soils at a small catchment used for cattle production. Known 

quantities of polystyrene microspheres, manufactured with properties similar to C. parvum, and a 

bromide tracer were applied in specific areas of a small catchment and monitored for 

breakthrough at an on-site perennial spring. Microspheres were used as surrogates of 

microorganisms in this field study. The focus on cattle grazing areas stems from the findings 

that many large-scale outbreaks of Cryptosporidiosis have been attributed, at least in part, to 

contamination of surface waters by cattle effluent. Though previous work has been done to 

characterize the surface water pathway, the intent of this study is to focus on subsurface transport 

of oocysts at the field scale. This is a topic which is not well researched or understood. 

The overall goal of the proposed research is to investigate the near-surface transport of C. 

parvum in the vadose zone of cattle production systems. This project is designed to improve our 

knowledge of the mechanisms and processes that contribute to contamination of small streams 

and shallow groundwater from these microorganisms. The following specific objectives are 

designed to couple field-scale studies, with mathematical modeling. 
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1. Instrument specific areas of a small catchment used for cattle grazing and quantify 

shallow subsurface flow. 

2. Conduct tracer experiments at the catchment using microspheres, and a second non-

reactive tracer, placed beneath the soil surface to promote interflow transport. 

3. Conduct post-tracer sampling of soil at the field site for mass balance estimates. 

Modeling Studies 

1. Improve approaches to modeling the transport of oocysts in unsaturated soils using 

existing water flow and transport models, and incorporating concepts of trajectory theory. 

Results of the modeling studies can be used to simulate microsphere transport at the field 

site. 

The study is a first step in assessing the transport of Cryptosporidium oocysts in 

watersheds under field conditions. 
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MATERIALS AND METHODS 

FIELD SITE DESCRIPTION 

Location and Land Use 

Field research was performed at the J. Phil Campbell, Sr., Natural Resource Conservation 

Center, in Watkinsville, Georgia. The laboratory and center are operated by the Agricultural 

Research Service (ARS) of the U.S. Dept. of Agriculture. The site is located within the Upper 

Oconee River Basin, in the Southern Piedmont region, which has been identified through the 

Unified Watershed Assessment process as being a high priority watershed in the state of 

Georgia, based primarily on high fecal coliform counts. The Southern Piedmont region is 

characterized by rolling topography with abundant precipitation and surface water resources, and 

a landscape of forest, woods, pasture, cropland, creeks, streams and urban sprawl. 

The research location consists of a 10-hectare (ha) catchment designated as W2, within 

the North Unit Watershed of the ARS facility (Figure 2.1). The catchment is used for rotational 

grazing of a pure-bred Angus herd to maintain the soils and hydrology in a state representative of 

Southern Piedmont grazing lands. The Conservation Center has maintained a research cattle 

herd for over 25 years. The current herd consists of 250 breeding cows and a total of 500-700 

cattle at any given time. The calving season is in late winter (February-March). Calves are 

weaned in the fall and most of the heifer calves are sold. The steer calves are retained for 

experiments during the subsequent year and are sold at about 20 months of age. The retained 

heifers are developed as replacement heifers for culled cows. The Conservation Center uses its 

own bulls for breeding. No more than 200 head of cattle (cows + calves) are expected to graze 

in the W2 catchment at one time. Scheduling allows the cattle to be moved to the W2 catchment 

approximately every six weeks, where they graze for approximately one week before moving to 

other pastures. The grazing interval and duration depends on the forage growth. The catchment 

is not used for calving or weaning. 
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Physiography, iSons and ideology 

Topographic slopes at W2 generally range from 2-10%. Soils are predominately Cecil 

and Pacolet sandy loam and sandy clay loam, derived from underlying and weathered schist, 

gneiss and granite. Bedrock depth varies from approximately 3 to 30 meters below ground 

surface; however, some outcroppings of saprolite (weathered crystalline rock) are visible in the 

area. Bruce et al. (1983) characterized the hydraulic properties of the soil in the West Unit, 

which includes the W2 catchment. Their characterization included the determination of soil 

water retention curves and saturated hydraulic conductivity. 

Hydrology 

The average annual precipitation is 125 centimeters (cm) (49.2 inches), and mean annual 

temperature is 16.5°C. The rainfall is distributed throughout the year, but greatly exceeds 

evaporation in the winter months, leading to saturated soils with a high probability of runoff/or 

drainage through the profile. The summer time precipitation is characterized by higher intensity, 

convective thunderstorms. Variable dry periods occur in most summers, where soils are depleted 

of stored water. Recharge occurs rapidly to depths exceeding one meter (m). Ground water 

level in calendar year 2000 varied from about seven meters below ground surface at the higher 

elevation of W2, to within one meter below ground surface near the spring. 

The North Unit Watershed includes headwaters of a first-order stream that originates on 

the property, with water coming from different ecosystems including pastures, crop land, farm 

roads, and woods. The stream flows into and out of a pond, near the outlet of the property, then 

into a residential area less than 1 kilometer (km) away increasing in order as other streams join 

from the surrounding areas. It eventually enters into Lake Oconee, a large hydroelectric and 

recreational reservoir. A unique characteristic of the W2 catchment is the presence of numerous 

seeps. Three of these seeps are large enough to form measurable and largely perennial spring 

flow. The strongest of these springs has been monitored by ARS for E. coli and was selected for 

continuous monitoring in this project. An approximately 40- by 30-m site just above this spring 

was intensely instrumented to quantify the hydrologic balance, and was used for the nonreactive 

tracer and microsphere bead field transport studies. 
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FIELD CHARACTERIZATION STUDIES 

Geophysical Surveys 

Background and Methods 

On November 29, 1998, a surface geophysical survey was conducted to obtain preliminary 

estimates of depths to the water table and underlying bedrock. The survey was conducted under 

the direction of Dr. Carolyn Ruppel (School of Earth and Atmospheric Sciences, Georgia Tech). 

Drs. Young and Endale, along with two graduate students from Georgia Tech, and other 

technical personnel from USDA-ARS, participated in the survey. Three geophysical methods 

were chosen: Terrain conductivity measurements with instrument no. EM-31, ground-

penetrating radar (GPR), and DC resistivity. The EM-31 (Geonics Ltd., Mississauga, Ontario, 

Canada) method is a non-invasive, surface geophysical technique, which uses electromagnetic 

energy to measure the apparent electrical conductivity (ECa) of earthen materials. It can be used 

to infer changes in soil water content (Sheets and Hendrickx 1995) under specific field 

conditions (e.g., uniformity in clay content and salinity). The effective depth of penetration is 

approximately 3.0- and 6.0-m for horizontal and vertical orientations (McNeill 1992), depending 

mostly on the height of the unit above the soil surface. Conductivity data were collected in both 

vertical and horizontal dipole modes on two grids with 5-m spacing between nodes. The data 

were inverted to obtain the depth to the critically saturated layer using the exact inversion 

technique of McNeill (1980): 

Zv = 
( 7 2 - G\ 

Go- <Ti 
(2.1) 

5 
Zh- — 

4 

Gl~ G \ 

Oa - G\ 

Ga~ G \ 

G2- G 
(2.2) 
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where z = depth to a subsurface interface between unsaturated and saturated material; 

y = vertical dipole modes h = horizontal dipole mode 

a = apparent electrical conductivity (ECa) 

sub-scripts a, 1, and 2 = ECa values measured with the EM-31 and assumed for layers 1 

and 2, respectively 

s = distance between source and detector (3.7m for EM-31) 

The parameters assumed were two-layer model and a \= \ mS/m (obtained using the 

GPR). The ECa value for the lower layer (o 2) was changed until the root mean square error 

(RMSE) of the difference between Zv and Zh was minimized, at which point both horizontal and 

vertical modes were assumed to converge to the same value of interface depth: 

RMSE = 
( n ( \ 2 > 

y i \Zv~ Zh) 

v/=i n - \ 

y2 

(2.3) 

Ground-penetrating radar involves the introduction of radar waves directly into the 

ground through a transmitting antenna and reception of the returned signal through a receiving 

antenna. GPR has proven to be a powerful tool for defining soil stratigraphy, locating the water 

table, and constraining shallow drainage features. For this work, 50 MHz and 100 MHz antenna 

configurations were the most useful and will nominally yield 8 tolO-m and 5-m penetration, 

respectively. GPR data are collected in bistatic mode, which produces an image of the 

subsurface similar to that generated by reflection seismic methods. GPR data collection is fast 

and completely nondestructive, requiring only that the antenna be moved by the operator over 

relatively cleared areas at even increments. 

The DC resistivity survey was implemented as a Schlumberger vertical electrical 

sounding (VES). The VES method provides constraints on simplified layered structure to depths 

of tens of meters (e.g., possibly up to 30-m based on preliminary surveys at some Piedmont 

sites). The method uses four electrodes (1.25-cm diameter) driven 15- to 20-cm into the ground. 

Small currents are introduced and the resulting potential differences between the electrodes are 

measured digitally. The electrode configuration is then shifted and the test is rerun. Inversion of 
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stratigraphy, and water table depth. The Schlumberger survey was conducted along a ~175-m 

N-S line at the east side of the study area. 

Instrumentation 

Figure 2.2 shows an idealized, 2-dimensional cross-section of the area in the immediate 

vicinity of the spring with instrumentation. The figure shows three instrumentation clusters, 

each with monitoring wells, TDR probes and tensiomcters. Zero tension lysimeters were located 

beneath the injection ring for sampling both bromide and microspheres. The suite of instruments 

allowed for monitoring of soil water flow direction, soil water storage and the presence of tracers 

during those experiments. 

Earthworks 

Early in the location's history, ARS had developed a pond immediately downstream of 

the springs and seeps by excavating an area of approximately 0.5-ha and using it as a water 

source for cattle and perhaps irrigation. In time, the pond filled in, and now acts as a wetland. 

The discharge point is a culvert under the access road immediately west of this pond. It was first 

necessary, therefore, to excavate a channel through the wetland to allow free flow at and from 

the main spring and install a flume that would not become submerged, and hence bias spring 

flow measurement. 

Runoff from W2 flowed over the springs into the wetland and subsequently through the 

culvert. It was necessary to remove the influence of runoff on spring flow and potential surface 

transfer mechanism from the selected small research plot. A berm was, therefore, constructed 

using material from the channel excavation to allow runoff from about 90% of W2 to bypass the 

springs and wet land, and discharge just upstream of the culvert. This would permit 

measurement and better characterization of runoff from 90% of W2 as it enters the culvert. 

Runoff from about 10% of W2 still entered the wetland but did not affect flow measurement at 

the main spring nor overland flow patterns at the selected 40- by 30-m research plot. The berm, 

springs and wetland area were then fenced off from cattle. 
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rlume, Logging and sampling Equipment 

The next phase of the site work consisted of installation of a measuring flume, data 

logging equipment and a water sampler. Figure 2.3 shows a front view of this apparatus. The 

data logger (model CR-10X, Campbell Scientific, Inc., Logan, UT), mounted on a pole and 

secured using a padlock, was used for storing discharge measurements, and for controlling the 

water sampler. A battery and solar charging system (model SM10, Atlantic Solar Products, 

Baltimore, MD), was used to power the data logger. Just below the pole, a concrete pad was 

constructed as base for a wooden shelter built to house the water sampler (model 900 MAX, 

American Sigma, Medina, NY). The shelter was bolted to the concrete pad, providing a level 

and secure location for the water sampler. The sampler was completely automated and could be 

programmed to collect water samples at any time interval desired, initiated by rainfall, flow 

exceeding a preset rate, or dates. Water volume collection ranges from one composite sample of 

up to 10 liters, to 24 separate composite samples from 300 ml to one liter, for each event. 

Samples were collected through a 0.95-cm (3/8 inch) diameter 9.15-m (30 foot) teflon tubing, at 

the outlet of the flume and stored in 300 ml bottles. The water sampler accounts for "dead 

volume" in the tubing by purging the line before and after collection of the actual sample. 

A 0.33-m (1-ft) H flume was then installed to monitor spring flow. The supporting 

structure was built from a series of aluminum I-beams, pressure treated lumber, sheet metal and 

concrete blocks. A retaining wall constructed of treated timber protected the flume and sampler 

from soil slumps immediately upstream. A cover, consisting of wood and screen material, was 

added to prevent intrusion of animals into the flume. A pressure transducer (model PDCR-1830-

8388, Druck, Inc. New Fairfield, CT) inserted in the flume stilling well and wired to the data 

logger was used to measure the spring flow depth above the flume base. Calibration procedures 

(head versus flow) for the flume were developed according to the Field Manual for Research in 

Agricultural Hydrology (U.S. Department of Agriculture, 1979) for higher flows. Calibration of 

low flows was refined with independent flow measurements using 10-liter buckets and a timer. 

The data logger was programmed to execute every 10 seconds and record the average flow depth 

and flow rate every 5 minutes. These data were then used to develop the spring hydrograph. All 

of the wiring for the data logger, pressure transducer, solar panel, and water sampler was placed 

in conduit to prevent damage from animals. 
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Instrumentation for Measuring Components of the Water Budget 

The instruments used to measure components of the water budget are listed in Table 2.1. 

These measurements included precipitation, evapotranspiration, soil water and potential, and 

ground water table, and are described below. 

Table 2.1 

Breakdown of instruments for measuring components of the water budget 

Component Device Vendor Number and Location 

Rainfall 

Evapotranspiration 

Spring flow 

Interflow 

Groundwater level 

Soil water content 

Rain gauges 

Weather station 

0.3-m H flume 

0.3-m H flume 

Wells 

MoisturePoint 

Soil water tension Tensiometers 

CSI, Logan, UT 

CSI, Logan, UT 

Leather Inc, Athens, GA 

Leather Inc, Athens, GA 

Tweedell and Van 

Buren, Inc., Athens, GA 

Environ. Sensor, Inc., 

Victoria, BC, Canada 

Soil Measure. Systems, 

Tucson, AZ 

3;<400m 

1 ;< 2km 

1, base of watershed 

1, base of watershed 

16; upgradient of 

spring 

5; onsite in vicinity of 

subplot 

13; onsite in vicinity of 

subplot 

Precipitation and evapotranspiration 

Precipitation was initially measured at two nearby locations using rain gauges (model 

TR525M, Texas Electronic, Inc.). One measurement site was approximately 160-m SE of the 

spring, and the second site was approximately 800-m west of the spring. The rain gauges were 

used for an unrelated study, but the precipitation rates were transferable to W2 with little error. 

For more accurate water budgeting of the research subplot, however, a similar gauge was added 

closer to the site, so that data could be collected directly by the data logger. The data logger 

program was modified to include total precipitation, collected at 5-minute intervals. Daily 

potential evapotranspiration was calculated by the Penman-Monteith method using the Reference 
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bvaporation Calculator (Allen, 1994). bvapotranspiration data were obtained irom a standard 

weather station operated by the University of Georgia, approximately 2 km west of the site. 

Soil water content 

Soil water content was measured at 5 locations using the MoisturePoint system (model 

MP-917, ESI, Victoria, British Columbia, Canada). Each probe is 1.2-m long and measures soil 

water content in 5 segments: 0-15, 15-30, 30-60, 60-90, 90-120 cm. The system measures the 

soil capacitance, which is calibrated for soil water content. Measurements are made through a 

portable interface and then downloaded to a computer. These sensors were used to estimate soil 

water storage, possibly indicating when saturated conditions occurred in the shallow soil. Probes 

are installed by advancing a solid steel rod template (1-cm diameter) to the target depth using a 

tractor mounted hydraulic soil sampling, coring and drilling machine (model GSR-T-S, Giddings 

Machine Company, Ft. Collins, CO). The machine is powered by tractor PTO through a pump 

and drive assembly. The rod is removed and the probe is pushed into place, ensuring that air 

gaps around the probe are minimized. 

Soil water potential 

Soil water potential was measured using tensiometers (models SW-031 through SW-036, 

Soil Measurement Systems, Tucson, AZ). Tensiometers varied in length between 23, 46 and 107 

cm (0.75, 1.5, 3.5 ft). One cluster of up to three tensiometers (13 total) was installed close to 

each ESI probe so that simultaneous measurements of soil water content and soil water potential 

could be obtained. The 23-cm-long tensiometers were installed at only three locations. The 

tensiometers were installed approximately 10-cm apart from one another in a triangular pattern 

to facilitate protection of the units with a cover. The triangular pattern also allows the 

tensiometers to be equidistant apart, improving the determination of hydraulic gradient. 

Tensiometer tops were positioned about 3 cm above ground surface and covered with 15-cm 

PVC cap. 

Tensiometers were installed by first augering (1.25-cm diameter) a borehole to the 

completion depth. Second, a heavy slurry composed of sieved native material was placed at the 
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bottom of the borehole. Third, tensiometers were lowered into the borehole and backfilled with 

cuttings to reduce the potential for preferential flow along the tensiometer body. A portable 

pressure transducer connected to a digital readout screen (tensimeter, Soil Measurement 

Systems, Tucson, AZ) was used to measure soil water tension at each tensiometer. When the 

transducer probe is placed over a tensiometer, a needle penetrates a stopper at the tensiometer 

and the vacuum inside the tensiometer is measured and digitally displayed in millibars (1 

millibar ~1 cm). 

Ground water level 

A total of sixteen wells were installed during two field campaigns to obtain ground water 

level and hydraulic gradient information in the vicinity of the spring. Eleven wells were installed 

during the first campaign and five during the second. Table 2.2 provides well construction 

details, and Figure 2.4 shows the well locations. 
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Table 2.2 

Details for the sixteen 1-inch and two 2-inch wells installed at the monitoring site. 

Length of Length of Total Length Total Well Total Well 

Well # t Screen Solid Length Cut off t Depth Depth 

(cm) (cm) (cm) (cm) (cm) (ft) 

1 457.2 0 457.2 9.7 447.5 14.68 

2 304.8 152.4 457.2 134.5 322.7 10.59 

3 457.2 0 457.2 86.8 370.4 12.15 

4 304.8 152.4 457.2 103.5 353.7 11.60 

5 304.8 152.4 457.2 11.4 445.8 14.63 

6 304.8 304.8 609.6 12.5 597.1 19.59 

7 304.8 304.8 609.6 23.2 586.4 19.24 

8 304.8 304.8 609.6 64.8 544.8 17.87 

9 304.8 304.8 609.6 31.5 578.1 18.97 

10 304.8 152.4 457.2 48.0 409.2 13.43 

11 304.8 304.8 609.6 33.7 575.9 18.89 

12 457.2 0 457.2 2.0 455.2 14.9 

13 457.2 0 457.2 2.0 455.2 14.9 

14 457.2 0 457.2 2.0 455.2 14.9 

15 457.2 0 457.2 2.0 455.2 14.9 

16 609.6 0 609.6 91.0 518.6 17.0 

MWlft 131.1 63.5 194.6 0 274.5 9.0 

MW2tt 131.1 116.9 248.0 248.0 254.2 8.3 

t PVC screens and solids came in standard length of 5 or 10 ft. This is what was sticking above 

ground after initial installation, which was then cut off to keep the well tops at ground level. 

ft These monitoring wells had 2-inch solid, screened and solid PVC sections. Length of solids 

refers to that above screen. 

16 



The wells were installed at a spacing of approximately 9 m, covering a total area of about 

31m (west to east) by 38 m (north to south). All wells were installed by Tweedell and Van 

Buren, Inc. (Athens, GA) using a direct-push drilling rig. Borehole diameter was 3.81 cm (1.5 

inches), into which were placed 2.54-cm (1-inch) diameter, schedule 40 PVC well pipes 

consisting of a machine drilled screen (#0.001) 305- to 610-cm (10 to 20 ft) length at the bottom 

attached to solid riser pipe that reached the surface. Given the very small annular space between 

the outside of the well pipe and the inside wall of the borehole, only a small amount of graded 

sand was used for backfill. The solid pipe extending above ground was then cutoff and the well

head was secured with concrete and a 15-cm PVC well cover. The wells were not developed 

because they were used only to monitor water level and not the concentration of either bromide 

or microspheres. Water level measurements were obtained using an electronic indicator (model 

WLT, Ben Meadows, Atlanta, GA). All wells were GPS surveyed and referenced to the state

wide coordinate system. Depth to the water table was taken from and referenced to the well 

tops. 

After monitoring water levels in the first set of 11 wells located on the north side for 

several months, is was determined that the source of the spring water was predominantly from 

the southern portion of this subplot. Consequently, five additional wells (2.54-cm (1-inch) 

diameter) were installed along the southern edge of the plot boundary. After studying the 

direction and magnitude of the gradient using data from all 16 wells, it appeared that ground 

water flowing beneath the original southern boundary of the monitored plot was most likely the 

source of the main spring. 

Instrumentation for Tracer Studies 

Several instruments were installed in the field to directly support the conservative tracer 

(bromide) and microspheres transport experiments. These devices included two monitoring 

wells, six zero-tension lysimeters, a bromide specific ion electrode, and a flow-through 

centrifuge. 
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Monitoring wells 

Based on the measurements of ground water level obtained from the 16 wells, the 

injection area for the study was chosen approximately 10-m upgradient of the spring. Two 

conventional 5.08-cm ID (2-inch) monitoring wells were then constructed along the southern 

boundary of the subplot, for subsequent water sampling and analysis during the tracer study (see 

bottom, Table 2.2). These wells were constructed according to EPA procedures for water 

sampling wells (U.S. EPA 1986). Installation consisted of drilling a 15-cm diameter borehole 

using a solid-stem auger to the desired depth. PVC well pipe (5-cm diameter) with slotted 

screens was then lowered into the hole. The hole was back filled with fine sand to 

approximately 60 cm above the screen, and then sealed to the ground surface with bentonite and 

concrete. A circular concrete pad was constructed around the well-head to prevent potential 

contamination by surface water. The PVC pipe was also capped to protect of the well. Both 

monitoring wells were developed using a mechanical surging technique described by Driscoll 

(1986) to reduce turbidity levels in the well water. The 5.08-cm monitoring wells are shallower 

with shorter screened intervals than the 2.54-cm wells. The intent of this design was to monitor 

ground water in the immediate vicinity of the water table, rather than focusing on deeper ground 

water. Microsphere beads and dissolved solutes that migrate through the soil profile at this site 

are likely to be transported near the water table, because a low-permeability layer approximately 

1.3-m below the water table should prevent transport into deeper regions of the saturated zone. 

Zero Tension Lysimeter 

Thompson and Scharf (1994) described a zero-tension lysimeter (ZTL) that is 

inexpensive, easy to install and capable of sampling colloidal sized particles in soils. The 

research team decided to use these devices to collect microspheres directly under and adjacent to 

the injection area as they migrate through the soil profile. The basic design was modified, 

however, by sloping the floor of the lysimeter at an angle of 30° rather than close to 0° as in the 

original design, thereby ensuring that water collected by the sampler can be withdrawn. The 3-

mm (1/8 inch) tubing that penetrates the outside of the sampler did not need to be sealed because 

the upper chamber was now completely isolated from the lower chamber. The design provided 
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additional security from shear of the sampling tubing during installation. The ZTLs 

incorporating the new design were assembled at a machine shop at the University of Georgia. 

Figure 2.5 shows detailed schematic diagram of the ZTLs and their field installation. 

A total of six ZTLs were installed, three inside and three outside (down gradient) the 

microsphere injection area. Each cluster of three ZTLs was spaced laterally approximately 30 

cm from one another. Within each area, a ZTL was installed at 30, 60, and 90 cm below ground 

surface. The units were installed by first removing an "undisturbed" soil core to the appropriate 

depth using the tractor mounted Giddings hydraulic soil sampling, coring and drilling machine. 

After the core was removed from the soil profile, the ZTL was carefully lowered to the base of 

the hole and centered. Fine-grained sand was poured into the top ring until the open space was 

completely filled with sand. The undisturbed soil core was then carefully lowered into the 

borehole, on top of the ZTL, making sure that the polystyrene pressure and return lines were 

taut. Soil material that extended above ground surface was removed. Finally sieved native soil 

material was packed into any air gaps between the soil core and the soil profile to minimize 

preferential flow around the ZTL. The soil surface was cleared of any debris, returning it to 

approximately original condition. The tips of the polystyrene tubes were then sealed. 

Bromide Specific Ion Electrode 

A bromide specific ion electrode (SIE, model M-12-BR-AMP-lTz, Innovative Sensors, 

Inc., Anaheim, CA), which measures the difference in bromide ion concentration between a 

closed reference cell and the sensing tip, was installed at the site on December 11, 1999. The 

probe was installed so that spring water would be funneled through 2.54-cm (lin.) diameter PVC 

pipe, into which the sensing tip of the probe was inserted horizontally. The advantage of using 

the SIE was that the bromide readings could be used to remotely trigger the Sigma auto sampler, 

reducing personnel time and cost. All water entering the flume could then be subject to 

sampling. The data logger records the output in millivolts (mv). Elevated mv readings indicate 

low bromide concentration, and vice versa. The probe was factory calibrated, but became 

suspect after the first bromide tracer experiment when it became apparent that the measured 

mass recovery was almost two orders-of-magnitude greater than the amount of bromide applied. 

The formation of air bubbles around the probe tip was suspected of reducing voltage response, 
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which in turn would lead to elevated bromide concentration values. Reinstallation or the probe 

in a vertical orientation did not solve this problem. As a result, the SIE probe was of little value 

during the project, and was replaced by conventional ion chromatography analysis of collected 

water samples. Bromide analysis and results are further discussed in the Bromide Transport 

Experiment section of this chapter and in Chapter 3, respectively. 

Flow-Through Centrifuge 

The methodology used to collect microspheres from the spring water was of paramount 

importance to the research team. It was recognized that collecting relatively small volumes of 

spring water might, or might not, yield measurable quantities of particles, yet collection of large 

volumes of spring water would be logistically difficult due to site access and water storage 

requirements. To address these countervailing issues, a flow-through centrifuge (FTC), as 

described by Hayes et al. (1989a), was used to sample virtually all spring water without the 

consequent problems of water storage. Continuous flow-through centrifuges process all water 

samples placed in line, as opposed to the collection of subsamples. Power is transmitted to the 

centrifuge via a liquid coupling (clutch), and the bowl spins at about 10,000 rpm. Water samples 

continuously pumped into the device are centrifuged, so that system retains solids (material 

denser than water) while discharging the clarified effluent. Use of the FTC (Westfalia Separator, 

Inc., Northvale, NJ) was courtesy of the Dr. Art Horowitz of the U.S. Geological Survey, 

Atlanta, GA. 

Water samples are pumped through the top of the bowl assembly and evenly distributed 

by the vane insert. The centrifugally separated solids accumulate in the various bowl chambers, 

the most dense or largest particles tend to collect in the inner bowls while the lighter or smaller 

particles tend to collect in the outer bowls. The clarified effluent is discharged via a centripetal 

pump, which is an integral part of the bowl assembly. 

Prior to field implementation, the efficacy of the FTC to separate the microspheres from 

water was tested. Duplicate water samples containing three concentrations of the microspheres 

to be used in the experiment were prepared in 4 L glass containers and transported to the USGS. 

Samples were introduced into the centrifuge with a peristaltic pump at the rate of 2 L/minute. 

The clarified effluent was collected at the exit line of the centrifuge. When completed, the bowl 
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was removed and each chamber thoroughly rinsed with de-ionized water to remove collected 

particles. Filtration of both clarified and particle-laden water, and subsequent enumeration of 

microspheres using an epiflourescent microscope counting methods (described later) was then 

carried out at Georgia Tech. The results showed positive correlation between particle 

concentration and percent recovery. Microsphere bead recovery ranged between 79 and 99 

percent. 

Mr. Kent Elrick (USGS, Atlanta, GA) trained ARS and GT personnel in the field 

installation and use of the FTC. Soon thereafter, the FTC was transported to the ARS site and 

installed on a leveled area adjacent to the spring. A peristaltic pump was also installed adjacent 

to the FTC. The inlet tubing of the peristaltic pump was installed in the outlet side of the 2.54-

cm diameter PVC pipe that housed the specific ion electrode. Several test runs of the peristaltic 

pump/FTC system were conducted to ensure that field personal understood the sampling 

instrumentation and methodology. 

MONITORING DATA and ANALYSIS 

Site conditions were monitored automatically and manually, primarily to establish the 

water budget at and around the spring. The data logger was programmed to automatically 

monitor rainfall and spring flow every 10 seconds and then process these data, storing average 

readings over 5 minutes. The equivalent average flow rate in liters per minute was obtained 

from flume head measurements. Automatic monitoring of rainfall at the spring began in early 

September 1999. Prior to that time, 5 similar rainfall gauges located from SE to N of the spring 

at distances varying from 200-m to 2-km were used to record rainfall. Monitoring of spring flow 

began on June 28, 1999. 

Monitoring data were downloaded from the data logger approximately every two weeks 

into a storage module, transferred into a computer and then imported into Microsoft Excel. 

Graphs were prepared to show cumulative rainfall and corresponding spring response with time. 

The monthly total rainfall was compared to monthly long-term average values. The Excel data 

files were also exported to the project file transfer protocol (ftp) site at Georgia Tech, making 

them available to all research team members. To facilitate the management of the potentially 

large amount of records, the data were compiled into a database using Microsoft Access 97. 
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Spring flow data, for example, was collected at 288 records a day, which translated to 105,000 

records per year. 

Soil water, soil water potential and ground water levels were recorded manually two to 

three time a week and entered into an Excel spreadsheet. These time series data were also 

graphed. Contours of ground water elevations were prepared at 5-cm intervals using a Surfer32 

(v6.01, Golden Software, Golden, CO) kriging technique to determine variations in flow 

direction with time and in response to wet and dry conditions. 

TRANSPORT EXPERIMENTS 

Bromide Transport Experiments 

A preliminary bromide tracer study was conducted at the field site, prior to microsphere 

spiking, to provide data and information on subsurface flow paths and characteristics (e.g., 

dispersivity and tracer velocity). Bromide is a very common anionic tracer, which is known not 

to interact with solid material to any great extent, though minor reactions can occur. Sodium 

bromide (NaBr) was used as the bromide ion source, with calcium chloride (CaCh) added to 

maintain the same ratio of cations/anions as measured in the spring water. This ratio, known as 

the Sodium Adsorption Ratio (SAR) is an important parameter that governs potential swelling of 

clay constituents in the soil. Therefore, the tracer solution was prepared so that the SAR was 

identical to that of spring water. The tracer solution contained 6.4 grams NaBr and 18.4 grams 

CaCl2-2H20 in 1 L of de-ionized water, providing a concentration of 5.0 g/L bromide ion. 

Field Methodology 

The first conservative tracer experiment was initiated on December 11, 1999, at 14:15 

hours, by pouring the bromide solution slowly into MW2, the 2-inch monitoring well furthest 

from the spring. To ensure that significant levels of bromide did not remain on the sides of the 

borehole, the inside of the borehole was rinsed with approximately two liters of spring water. 

The bromide solution and spring water were added slowly to the borehole, so that positive 

gradients would not be created inside the borehole and toward the aquifer unit, thereby ensuring 
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that bromide would migrate with bulk water under ambient gradient conditions. A second 

conservative tracer test was initiated on February 10, 2000 using the same concentration of 

bromide as the first test and the same spiking technique. The second tracer test was performed 

because the results of the first test were compromised by the failure of the SIE probe to 

accurately measure bromide concentrations in the spring water. A third and final tracer injection 

was carried out on February 28, 2000, at the same time as the microsphere spiking (see below). 

The intent of this tracer experiment was to characterize nonreactive solute transport and water 

flow relative to the microsphere beads. 

Method of Detection 

The specific ion electrode (SIE) was used to measure continuous bromide concentrations 

in spring water following the December 11, 1999 spiking of MW2 with bromide. The data 

logger program was modified to collect bromide concentration data at 10-sec intervals, averaged 

every five minutes, and if the bromide concentration exceeded 2.5 mg/L during any single 

sampling event, to trigger the Sigma 900 sampler every 120 minutes to sample 280 mL of fluid. 

The mass recovery of bromide, according to the SIE, after the first experiment, was found to be 

about 75 times more than what was added raising serious questions about the accuracy of the 

probe calibration. To confirm the high mass recovery, 14 water samples collected with the Sigma 

sampler were analyzed using the SIE and independently analyzed by ion chromatography at the 

University of Georgia. All samples yielded bromide below the detection limit by both analytical 

methods. After a series of checks and counter checks, including sending the probe back to the 

manufacturer for analysis of the problem, these discrepancies were thought to be a result of 

attachment of air bubbles to the probe due to its horizontal orientation, which would cause the 

voltage response to decrease and hence lead to elevated pseudo bromide concentrations. Prior to 

the second bromide tracer experiment, therefore, the SIE field setup was modified to orient the 

probe vertically and place it at the bottom of the conveyance pipe, reducing the chance of air 

bubble attachment. Bromide response in the spring water after the second spiking on February 

10, 2000, was monitored from March 2 to March 10 and again from April 21 to May 1, 

representing early and late periods after spiking. In both periods diurnal periodicity was 

observed in the SIE bromide data, and the probe became unstable during the latter period. In 
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summary, the bromide concentration data obtained with the SIE were not suitable for 

quantitative use. 

In subsequent field tests, discrete water samples were collected over time using the 

Sigma sampler, and were analyzed using ion chromatography (IC). The ion chromatograph 

(model DX-100, Dionex) was equipped with a separator column (Ion Pac AS4A, 4mm), a 

suppressor column (ASRS-ULTRA, 4mm) and a low volume, flow through, temperature 

compensated electrical conductivity detector. The eluent solution consisted of 1.8mM NaCC>3 

and 1.7mM NaHCC>3, operated at a flow rate 1.5 mL/min. Under these conditions, the bromide 

detection limit was approximately 0.4 mg/L, with an overall retention time of approximately 3.0 

minutes. Prior to injection, the water samples passed through 0.2 /xm filters to remove 

particulates. Standard calibration curve were obtained for every batch of samples or whenever 

the eluent solution was replaced. 

Microsphere Spiking Experiments 

An important assumption inherent to this research is that the microsphere beads behave 

in a manner similar to Cryptosporidium oocysts. Based on the work of Li et al. (1997), 

Fluoresbrite YG carboxylated microspheres beads, 4.505 /xm diameter, were purchased from 

Polysciences, Inc. (Warrington, PA). The zeta potential of the microsphere beads was selected 

to be similar to that of oocysts, as a function of solution pH and ionic strength. Typical zeta 

potentials of Cryptosporidium oocysts range from -30 to -40 mV at a pH = 7.0 (Ongerth and 

Pecoraro 1996). The spheres are prepared by attaching a pre-specified number of carboxyl 

groups onto the sphere to make them negatively charged. The suppliers indicated that very little 

to no pretreatment of the microspheres was needed prior to field spiking (Bangs Laboratories, 

Fishers, IN. The spheres are supplied in aqueous suspensions containing surfactant, and if 

desired, an antimicrobial agent. The suspensions were shipped in hydrophobic containers, and 

were stored in these containers until used for field spiking. 

Field Methodology 

A site 14-m ESE of the spring was chosen as the spiking location based on analysis of the 

groundwater movement as determined from the sixteen 2.54-cm well readings. The microsphere 
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bead field spiking experiment was initiated on February 28, 2000. A 152-cm by 76-cm (5-ft by 

2.5-ft) rectangular section of aluminum mesh material with 5.04-cm (2-inch) squares was cut and 

placed and over the spiking area and secured to the ground using large nails. Based on the 

dimensions of the mesh section, 450 grid openings were available for microsphere injection. 

The same mesh had been used earlier at the same location to place three ZTLs directly below the 

spiking spot. 

A stock solution of microsphere beads was prepared on February 27, 2000, by mixing 

nine vials of the microspheres in 1 L of de-ionized water that contained sodium bromide (NaBr) 

as a conservative tracer at a concentration of 5 g/L. Each vial nominally contained 5 x 10 

microspheres, thus a total of 2.25 x 1010 microspheres were added to the stock solution. A 

stirring bar was kept in motion during the entire mixing process, including through the evening, 

to reduce settling of the microspheres. On the morning of February 28, the stock solution, 

stirring plate and an HPLC pump (model Dynamix SD-200, Varian, Inc., Palo Alto, CA) were 

transported to the field and setup adjacent to the spiking area (Figure 2.6). The HPLC pump was 

equipped with a pulse dampener to induce backpressure on the effluent line and to reduce 

pulsing. Teflon tubing was used throughout the pump setup. At the end of the effluent line, a 

16-gauge surgical needle (10-cm length, blunt tip) was used to inject microspheres at a point ~5-

cm below ground surface. Guide holes were first advanced using a long nail, and the needle 

opening was then placed at the bottom of the guide hole. The pump was calibrated in the field 

using a digital balance, so that approximately 2-mL of fluid was dispensed at each injection point 

(Figure 2.7). Based on the concentration of the stock solution, approximately 4.5 x 107 

microspheres were introduced at each injection point. Microsphere spiking commenced at 1300 

hours and was completed at approximately 1500 hours. A total of approximately 2.03 x 1010 

microsphere beads (20 billion) were applied at the field site. A sprinkler system was set up the 

next day and about 1-cm of water was applied to the spiking area to initiate microsphere 

migration into the soil. This step was taken to reduce the potential for wind erosion of 

microsphere beads attached to surface soil particles. 
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Sampling methods 

To monitor microsphere transport following the spiking event, periodic fluid samples 

were collected from four types of locations/samplers: zero-tension lysimeters, 5.08-cm diameter 

monitoring wells, and the spring (FTC and Sigma sampler). Sampling from the ZTLs was 

attempted only after rainfall events. Sampling from the ZTLs consisted of first placing the fluid 

return line into a sample bottle, and then pressurizing the airline using a suitable pump. As the 

air space inside the ZTL pressurized, fluid inside was pushed upward into the sample bottle. To 

insure that all microspheres were recovered and to minimize cross-contamination, de-ionized 

water was pumped into the ZTL through the fluid return line and then recovered in the sample 

bottle. Each of the six ZTLs was checked for fluid during each sampling event, although 

samples were not always recovered from all ZTLs. Lack of rainfall at the site reduced the 

potential number of samples from the ZTLs. Only four ZTL sampling dates produced sufficient 

fluid for microsphere enumeration: 03/06/2000, 03/21/2000, 11/21/2000, and 02/07/2001. A 

total of 32 ZTL samples were collected: 15 inside and 17 outside the spiking area; 10 each at 30 

and 60-cm depth and 12 at 90-cm depth. 

Water samples were also collected from the two monitoring wells using a bailer (2.54-cm 

OD) equipped with a ball stopper. The bailer was triple-rinsed with de-ionized water between 

boreholes to minimize cross-contamination. A total of 56 samples from MW1, nearest to the 

spring, and 46 samples from MW2 were collected from 03/01/2000 to 08/07/2000. 

The flow-through centrifuge was operated a total of 35 times from 03/29/2000 to 

08/01/2000 for a period of one hour each time. At the end of each sampling period, the 

centrifuge bowl was removed and transported to an ARS laboratory for processing. The bowl 

was thoroughly rinsed with de-ionized water, ensuring that any visible particles were removed. 

Rinsing procedures were deemed effective, since most rinsed samples only contained a few 

beads and it is unlikely that small numbers of beads in any control samples would have 

materially modified the findings. The rinsate was collected and stored in glass jars for processing 

and analysis of microspheres at Georgia Tech. 

The Sigma sampler was used to collect discrete spring water samples over time. The 

sampler was run almost continuously from 3/20/00 to 11/13/00. A six week gap occurred in 

October and early November 2000 due to a malfunction of the sampler. Another sampling gap 
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usually every 30 minutes, when between 35 and 140-mL of spring water was pumped into each 

of the twenty-four 300-mL sample bottles. The number of samples per bottle varied from 2 to 8. 

The total time required to fill all 24 sample bottles ranged from 1 to 4 days. The latter rate was 

used after March 2000. A total of 999 samples, each just under 300-ml, were collected this 

manner. 

All water samples were labeled and tracked using field sampling sheets and spreadsheets, 

so that results would not be lost or misidentified during the various processing tasks of fluid 

collection, fluid filtering, data entry, and transporting. 

Destructive soil sampling 

To evaluate the distribution of microspheres retained in the soil, destructive soil sampling 

was conducted on August 10, 2000. Four soil cores were collected inside the spiking area, and 

two additional cores were collected immediately down gradient (west) of the spiking area. The 

purpose of the lateral sampling was to evaluate microsphere transport, both vertically and 

laterally, within the soil profile. Soil samples were collected using a tractor mounted Giddings 

hydraulic soil sampling, coring and drilling machine, 2.54 cm (1 in.) diameter coring tubes, and 

butyrate plastic liners (2.2-cm i.d. X 122-cm length). 

Due to the large number of microspheres that were originally applied to the site, special 

precautions were taken to minimize cross-contamination during soil core collection and 

preservation. Seven coring tubes and tips were first cleaned and wrapped in aluminum foil for 

transport to the site. Within the spiking area, different sampling tubes were used at each 

location. During practice drilling, conducted away from the site, only two cutting tips were 

found to work well with the butyrate plastic liner. Thus, the cutting tips were cleaned between 

collection of each soil core. The cleaning process included an acetone wash to dissolve residual 

microsphere beads followed by a water rinse. 

The sampling procedure involved inserting the butyrate plastic liner and spacer into the 

clean (i.e., decontaminated) tube, and securing the cutting tip. The coring unit was then attached 

to the Giddings push-pull hydraulic mechanism. The sampling tool was advanced into the 

profile to a depth of approximately 120-cm (Figure 2.8). The sampling tool was then retracted 

27 



from the soil, disengaged from the Giddings rig, and laid flat on a sheet of aluminum. The 

cutting tip was then unscrewed from the core tube, and the liner pushed from the bottom with a 

push rod that was cleaned before each use (Figure 2.9). The liner containing the undisturbed soil 

core was then sealed with red (top end) and black (bottom end) caps. The liners were kept in a 

horizontal position at all times to avoid any redistribution of material between layers. The 

boreholes were then filled with bentonite to reduce potential preferential flow into the soil 

profile. The soil cores were initially stored in a walk-in cooler at ARS, and then transferred to 

Georgia Tech for separation and counting of microsphere beads. 

The location of each bore hole was surveyed relative to the SE corner of the spiking area 

(i.e., benchmark of 0,0 (cm) on the X (N), Y(W) grid). The X, Y coordinates were (20, 18), (73, 

47), (100, 19), (141, 30) inside and (52, 133), (92, 142) outside the spiking area (152-cm by 60-

cm). Compaction occurred in some of the soil cores, reducing the actual length of the recovered 

core relative to the drilling depth. The length of core #1 was about 120-cm (100%), core #2 

recovery was about 100-cm (83%), while core #3 and #4 were only about 55-cm length (46%). 

Advancement of the drill bit was resisted until about 75-cm depth, where a texture transition 

from sandy loam to sand/loamy sand is known to occur based on prior textural analysis. 

Laboratory Soil Column Experiments 

A series of one-dimensional (1-D) soil column experiments was conducted to investigate 

transport and retention processes influencing the fate of Cryptosporidium parvum oocysts in 

porous media. As was the case for the field study, fluorescent microsphere beads (Fluoresbrite 

YG carboxylated microspheres beads, 4.505 /xm diameter, Polysciences, Inc., Warrington, PA) 

were used as a surrogate for Cryptosporidium oocysts. The specific objectives of this work were 

to a) develop analytical methods to count fluorescent microspheres, (b) develop protocols to 

extract and separate microspheres from the solid phase, (c) quantify conservative tracer and 

microsphere transport in a 1-D soil column systems as a function of flow rate and soil type, and 

(d) evaluate the utility of several mathematical models to describe microsphere transport and 

retention in porous media. 

The 1-D column apparatus consisted of a Rainin HPLC pump (model Dynamix SD-200, 

Varian, Inc., Palo Alto, CA) equipped with a 25 mL pump head and pulse dampener; a Kontes 
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borosilicate glass column (15 cm in length X 4.8 cm inside diameter), and an ISCO fraction 

collector (Figure 2.10). The column endplates were fitted with two 40-mesh nylon screens to 

retain the porous medium and to enhance radial distribution of the influent solution. Two 

reference sands, Ottawa 20-30 mesh and F-70 Ottawa sand (40-270), and Cecil soil collected at 

the field site were used as the solid media in the column. The Cecil soil was gently ground to 

pass a 20-mesh sieve to remove large particles and debris. Air-dry sand or soil was poured into 

the column in 1-cm increments and packed under gentle vibration. Prior to water saturation, the 

soil columns were flushed with CO2 gas to enhance dissolution of entrapped gas. De-aired, 

MilliQ water containing 0.01 M KC1 as a background electrolyte was then pumped through the 

column in an upflow mode at a flow rate of 5 mL/min. Approximately 15 pore volumes were 

flushed through the soil column to achieve complete water saturation. 

For each column, a non-reactive, conservative tracer study was performed using a pulse 

injection (1.5 pore volumes) of 0.01 M KI solution. Following the tracer experiment, the 

microsphere transport experiment was conducted. The fluorescent microsphere solution, 

containing approximately 3,000 microspheres/mL, was injected as a pulse (4.0 pore volumes or 

500 mL), followed by continuous flushing with 10.0 pore volumes (1,250 mL) of MilliQ water 

containing 0.01 M KC1. 

The column effluent solution was collected continuously in 20-mL vials, filtered, and 

counted for microspheres using an epifluorescence microscope. Effluent concentrations of the 

conservative tracer (KI) were analyzed using an HPLC system at a wavelength of 240 nm. After 

completion of each microsphere transport experiment, the columns were sectioned into 1.0- to 

1.5-cm increments. The microspheres were separated from the soil, filtered, and counted using 

epifluorescence microscopy as described below. 

MICROSPHERE ANALYSIS 

Sample Preparation 

Water samples collected from the ZTLs at the field site were often just a few milliliters, 

and thus, the sample vials were rinsed with a known volume of de-ionized water after each 

sampling event. All fluids were then collected in 125-ml plastic bottles. Sample bottles were 
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capped and labeled to record the date of collection, ZTL location relative to spiking area (inside 

or out) and the depth (30, 60,or 90-cm). Solutions were filtered in the laboratory under vacuum 

through a 3 fxm polycarbonated track-etch filter (model #23066, Osmonics Corp.). Since higher 

sediment loadings tended to clog the filters, it was determined through experience that field-

collected samples would need dilution before filtration. The exact volume water added for 

dilution was also recorded, but it was usually sufficient to increase the sample volume to 

approximately 200 mL. 

Thorough rinsing of the flow-through centrifuge bowls produced about 2200 mL of 

solution, which was stored in glass jars with proper labeling. Before filtration, a mechanical 

agitation system was set up to ensure thorough mixing of this solution. About 200 mL was then 

sub-sampled, while under agitation, into the funnel of the filtration system using an electric 

pump attached to a 100-mL burette. Samples were then filtered as described above. 

Samples collected from the monitoring wells were processed in a similar manner. 

Occasionally, rather turbid samples were encountered, which were diluted with de-ionized water 

to avoid clogging the filters. In some cases, samples were split, requiring two filtrations. These 

samples were sufficiently small that agitation was performed manually by shaking the samples in 

capped bottles, and transferring the volume to be filtered into a graduated beaker. This solution 

was then transferred to the filtration system. 

Spring water samples obtained from the Sigma sampler were also treated in similar 

fashion. Since the total volume of each sampling bottle was about 300 mL, the solutions were 

manually shaken, and then transferred to 300-mL graduated beakers, and then into the filtration 

system. Turbidity and filter clogging was not encountered with any of the spring water samples 

collected. 

Once filtration was complete, the filtration unit was disassembled and the filters 

recovered. All filter holders with filters in them were carefully labeled, packaged and shipped to 

Georgia Tech for microsphere enumeration. 

Separation of Microspheres from Soil 

To separate the microspheres from 20-30 mesh and F-70 Ottawa sand, approximately 300 

mL of MilliQ water was added to each soil sample, which was then sonicated for 30 minutes. 
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The resulting slurry was filtered through a mesh screen to remove the soil, while the solution that 

passed through the filter underwent a second filtration process to capture microspheres for 

counting. For the Cecil soil, which contained a large fraction of fine particles, 200 mL of a 

concentrated sucrose solution (350 g/L, density of-1.15 g/mL) was added to the sectioned soil 

samples. The slurry was then separated by centrifugation, and the resulting superaatent was 

filtered through a 3.0 jam pore size filter. 

Analysis of Microspheres using Epiflourescence Microscopy 

Fluorescent microspheres were analyzed using an epifluorescence microscope (model 

BHS, Olympus America, Inc., Melville, NY), equipped with a reflected light fluorescence 

attachment (BH2-RFC). The mercury burner light source is filtered so that only wavelengths 

longer than 455 nm reach the specimen. The microscope was also equipped with a model PM-

10ADS photomicrographic system, so that slide or print film can be used to record images of the 

slide platform. The WHK 10X20L eyepiece (model 2LC-321) and 10X objective combine to 

provide a 200 magnification. The eyepiece was fitted with a model BLO-509 net grid (10 Xy 

10) for improved counting on the filter surface. Using the 10X objective, the grid dimensions 

are 0.8 mm on a side, or 0.64 mm area. The 47 mm diameter filter yields an area of 1735 mm . 

Figure 2.11 shows a representative view of the fluorescent microspheres on filter #1 (rep 2) 

obtained from an original microsphere concentration of 1 x 105. Prior to extracting microspheres 

from soil cores collected from the field site, a series of 1-D soil column experiments was 

conducted in the laboratory to test and refine the extraction procedure. The columns were 

packed with Cecil soil, obtained adjacent to the microsphere spiking area. Approximately 500 

mL of aqueous solution containing -2,700 microsphere beads per mL were introduced to the 

column. The total recovery of microsphere beads from the treated soil columns ranged from 53 

to 80% of the injected amount. 

The large area of the filter relative to the area under the microscope makes counting the 

entire filter surface somewhat cumbersome, especially when many microspheres are present. We 

therefore chose to count microspheres within a representative number of subareas, and then 

31 



normalize the microspheres counted on the filter to the total number present, according to the 

ratio of total filter area to the counted area, or: 

rA^ 

N 

^spheres, 

total spheres = -TV 

v a ; 
i = l 

N 

where A = filter area 

a = the area of each subarea 

N = number of subareas 

(2.4) 

The need to count microspheres within subareas opens several questions regarding 1) the 

distribution of microspheres on the filter surface and 2) the representative number of subareas 

required to estimate the total population of spheres. These questions were approached by 

choosing one of the filters used on the 105 mixture (filter #1, rep 2), counting the number of 

spheres in 9, 12, 16, 20 and 24 subareas, and performing a statistical analysis on the results to 

determine if the distribution on the filter surface was normal. The number of subareas was 

considered to be a treatment(s) in this analysis. The hypothesis testing was: 

Ho: No difference in the sphere counts across the filter surface (i.e., normal distribution) 

Hj: Differences in sphere counts across the filter surface greater than can be attributed to 

randomness (i.e., distribution on filter surface subject to trends) 

A verified normal distribution of the microspheres on the filter surface would allow for 

the use of a stratified random sampling scheme (Gilbert, 1987), so long as the entire filter surface 

was included in the sampling. The subareas for each of the five treatments were chosen by 

subdividing the filter into X subareas of approximately equal area, and then counting the number 

of microspheres within the subarea. The sum, mean and variance were used in the Kolmogorov-

Smirnov (K-S) test, which calculates the cumulative probability distribution, and compares that 

to the distribution of normally distributed population (McBean and Rovers, 1998). SigmaStat 

(v.2, Jandel Scientific, Inc. San Rafael, CA) was used to run the analyses. Differences between 
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the cumulative sample distribution and the cumulative normal distribution, which exceed a 

critical value, indicate non-normality. Table 2.3 provides the results of these tests, and shows 

that each of the 5 treatments yielded results that indicate a random distribution of the spheres on 

the filter surface. 

Table 2.3 

Results of normality testing for microspheres counted on filter surface 

# subareas Mean Std. Dev. K-S distance J-^crit P/F| 

9 14.11 5.97 0.219 0.432 P 

12 15.42 5.89 0.151 0.375 P 

16 18.63 5.02 0.205 0.328 P 

20 18.45 5.31 0.122 0.298 P 

24 19.88 6.00 0.143 0.264 P 

t - P/F indicates pass or fail null hypothesis 

Data shown in Table 2.3 indicate a possible trend of higher mean counts as a function of 

the number of subareas. This observation was then checked to determine whether or not such 

behavior was an artifact of counting the filter a single time or an actual trend. After numerous 

replicate counting of the filter surface (data not shown), it became apparent that the trend was 

simply an artifact of sampling a random distribution a single time. 

The second question to be answered involved the number of subareas that need to be 

counted to reduce the variation on the filter surface to a pre-specified level. For example, if only 

two locations are selected for sampling, where one location yielded no microspheres and the 

second location yielded 10 microspheres, the coefficient of variation (CV = std deviation / mean) 

would be 141%. Increasing the number of subareas counted reduces the CV because the extreme 

values would be averaged. Using the method of Gilbert (1987), the number of subareas required 

to reduce the standard deviation to a value of two was calculated using the following equation: 

n = V t ( c r i t , d f , q ) S D / S D t a r g e t J ( 

' l + (w,a )SD/SD l a r g e t )
2 /N 
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where n = number of sampling locations needed to reduce the standard deviation (SD) below 

^•L'targeti 

i = an iteration counter, 

N = the total number of microspheres 

The degrees of freedom (df), the original number subareas counted with the microscope, 

is used for calculating tcrjt at an a = 0.05. 

The analysis was iterated by updating tcrjt, using n.i_i = df, and recalculating m, until it was 

stable after subsequent iterations. Using the 16 subarea count, which represents the median of 

the five treatments, 29 subareas would need to be sampled in order to reduce the SD below a 

value of two. The number of subareas was somewhat dependent on the filter used in the 

analysis, which admittedly retained a very large number of microspheres. It was found that the 

target subareas were essentially identical to the 24-subarea count, in terms of the tcrit; and thus, a 

24-subarea count was deemed necessary to provide a representative sampling of the filter for 

microspheres. 

During the field tracer experiment, it was anticipated that a substantially smaller number 

of microspheres would be collected and counted on any .given filter. For filters that contain a 

small number of microspheres, the entire filter will be counted for microspheres in the manner 

described by Standridge (1999). If a large number of microspheres are present, such that 

scanning the entire filter is not realistic, the 24-subarea count will be employed to determine a 

statistically valid estimate of the microspheres. 
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Figure 2.1 Location of W2 catchment within the North Unit Watershed at the USDA-
ARS, J. Phil Campbell, Sr., Natural Resource Conservation Center. 
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Figure 2.2 Idealized, two-dimensional cross section of area adjacent to wetland, 
including instrument clusters, W2 catchment. 
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Figure 2.3 View looking east from the wetland showing monitoring and sampling 
instrumentation at the spring. Left to right are: flow-through centrifuge and peristaltic pump 
assembly, flume protected from animals, data logger, and housing for SIGMA sampler. 
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Figure 2.4 Locations of the flume, monitoring sites for soil water, soil water potential, and 
ground water, and the microsphere and bromide injection site by the main spring 

38 



Sample bottle 
L 

I Soil surface 

Undisturbed Soil 
Con 

IK 

Sand 

1/8" ID 
tubing 

Water ponded in 
sampler is 

pushed out under 
pressure 

to ground surface. 

1/4" access 
port 

Magnified schematic of 
sampler 

barbed fitting and air 
pressure line 

fluid return line 

Figure 2.5. Schematic diagram of zero-tension lysimeter installed in a borehole, and a magnified 
view showing individual components of the collection apparatus 
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Figure 2.6. Picture of microsphere injection apparatus 

Figure 2.7. Injection of microsphere solution within mesh grid. 
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Figure 2.8. Operation of the Giddings probe to collect soil cores from the spiking area. 

Figure 2.9. Removal of butyrate plastic liners containing soil from the core tube. 
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Figure 2.10 Schematic diagram of the laboratory column apparatus 
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Figure 2.11. Image of polystyrene microspheres obtained with photomicrographic system using 
the epifluorescence microscope (magnification = 200X, wavelength > 455 nm). 
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CHAPTER 3 

HYDROLOGIC AND TRANSPORT MODELING 

HYDROLOGIC ANALYSIS 

Description and Analysis of Water Budget Approach 

The initial phase of hydrologic site characterization involved the development of a water 

balance equation that incorporated the main components of the hydrologic cycle: 

(P + GW underflow + SRI) - (ET + SRO + IF + GW outflow) = ±ASWS ± AGWS (3.1) 

where P = precipitation 

GW underflow and GW outflow = groundwater flowing beneath the site 

ET = evapotranspiration 

SRI and SRO = surface runon and runoff, respectively (both assumed zero) 

IF = interflow, or shallow subsurface water flow 

ASWS = change in soil water storage 

AGWS = change in ground water storage 

Each term in the equation has dimensions of length, obtained by dividing the volume of 

water by the area of the watershed. Monitoring devices and methodologies, described 

previously, were specifically designed to quantify each of the main components of the 

hydrologic cycle. Prior to the field spiking experiments, site contouring was performed to 

prevent surface water inflow and outflow from the research plot, thereby minimizing the runoff 

terms, SRI and SRO. Monitoring well data were used to quantify groundwater underflow and 

outflow. Groundwater underflow was considered to be the component of groundwater that enters 

the subplot from the east, and flows west. Estimates of groundwater flow rate were obtained 

using Darcy's Law (Q = A Ksat dh/dx), where Q is the groundwater flow rate, A is the cross-

sectional area taken as the product of the saturated thickness and the length of the flow domain 

perpendicular to the flow direction, Ksat is the saturated hydraulic conductivity, and dh/dx is the 
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hydraulic gradient. Equipotential contour lines were generated from piezometer readings, and 

the direction of water flow was assumed to be perpendicular to these contours. The hydraulic 

gradient (dh/dx) normal to the flow path was then obtained. Groundwater outflow was 

considered to be the component of groundwater that flows beneath the western boundary of the 

subplot and is not connected to the spring. 

Water flow from the spring can be considered to result from interflow and shallow 

groundwater flow, and an attempt was made to evaluate both two terms. Change in storage 

(ASWS) was monitored based on soil water content data obtained from the TDR system and the 

monitoring well data. Differences in water flow from the spring before, during, and after a 

rainfall event, coupled with monitoring of groundwater levels and soil water content allowed for 

estimation of interflow (IF). Although spring water flow data were collected continuously using 

the automated datalogger system, TDR, tensiometer and monitoring well data were recorded 

manually. Therefore, direct comparison of these two data sets is based on the assumption that 

single-point data are representative of average daily hydrologic processes. Average soil water 

storage (SWS) was then calculated using the following relationship: 

5 ^ 5 ^ 

SWS(t) = ^ ^ (3.2) 

where i and j subscripts = depth and location, respectively 

z = depth range of measurement (15, 15, 30, 30, 30 cm for i = 1 to 5) 

Ground water storage (GWS) was estimated by first measuring the water level elevation 

relative to the flume elevation for the 11 northernmost wells. These data were then analyzed 

using Surfer32 (v 6.01, Golden Software, Golden, CO), which generated a water surface by 

kriging the spatially distributed data, and then obtaining object volumes using either Simpson's 

rule or the trapezoidal rule for integrating underneath a surface. The resulting value was an 

estimate of the water volume existing above the flume elevation. These estimates were used to 

track whether or not soil water percolating downward could account for increases in groundwater 

storage. 
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Baseflow and interflow components of the water budget are extremely important at the 

W2 site because of the strong correlation between soil water movement and interflow. It was 

hypothesized at the outset of the project that shallow soil water movement toward the water table 

might be a dominant mechanism for particle transport. Therefore, separating the interflow 

component from total flow, and then analyzing particle movement during times of predominant 

soil water movement, would provide some basis for testing this hypothesis. Numerous methods 

of baseflow separation and recession are available, including graphical partitioning and digital 

filtering. Given that the spring flow data collected to date exceed 100,000 records, digital 

filtering was the most efficient method. Recursive digital filtering is commonly used in signal 

analysis (Lyne and Hollick, 1979), and was first employed in streamflow filtering by Nathan and 

McMahon (1990), using the assumption that high frequency stream responses from surface 

runoff and interflow could be removed from low frequency baseflow responses. The interflow 

equation, as modified by Chapman (1991), is: 

fk=(3a-l)(3-aylfk_]+2(3-ay\yk-ayk_l) (3.3) 

where fk = the interflow response at time, k 

a = filter parameter that controls attenuation of the signal 

y = the total springflow 

As a increases toward unity, high frequency responses of baseflow are removed and the 

spring flow is dominated by interflow. In practice, a values less than 0.9 result in identical 

responses, and given the similarity in this value as used by others (e.g., Chapman, 1991; Mau 

and Winter, 1997), a filter factor of 0.90 was chosen. As recommended by Mau and Winter 

(1997), the filter was passed three times over the data set (e.g., forward, reverse, forward). Daily 

average flow data were used in the filtering, rather than data collected at 5-minute intervals, 

greatly reducing the time necessary for filtering. 

47 



One-dimensional Flow Model 

To provide a basis for the more complex two-dimensional (2-D) flow domain and to 

evaluate laboratory column data, a one-dimensional (1-D) model was developed. For field 

application, the model incorporates known soil layering, meteorological conditions and 

parameter optimization. Parameter optimization provides estimates of the soil hydraulic 

properties using observed soil water content as an auxiliary variable, allowing the model to self-

calibrate. Once the 1-D model was able to successfully simulate changes in soil water content 

using observed meteorological and soil water conditions, the complexity of the model was 

expanded to include solute transport of the bromide tracer and microsphere beads. Initially 

simulating the transport behavior of the tracer and microspheres in a 1-D framework allows for 

more precise analysis of flow and transport parameters (e.g., dispersion coefficient, retardation 

factors), which can then be utilized for subsequent 2-D model development and simulation. 

One-dimensional modeling of water flow and solute transport was performed using the 

HYDRUS-1D code (Simunek et al., 1998) and CXTFIT (ver. 2, Toride et al., 1995). HYDRUS-

1D numerically solves Richards' equation for simulating water flow in unsaturated, partially 

saturated and fully saturated porous media, while CXTFIT assumes steady-state flow conditions. 

In other respects the governing equations of the two models are similar, and hence, the 

development presented herein will focus on the more complex transient case simulated with 

HYDRUS-1D. The governing flow equation is solved using Galerkin linear finite element 

schemes for a wide variety of time-dependent or time-independent boundary conditions. The 

mixed form of Richards' equation is shown below for one-dimensional flow: 

* ( y ) - T -
^ oz j 

_ a 
~ dz 

f 
KOff) 

V {dz J) 

where 0 = volumetric water content (L3/L3) 

t = time (t) 

z = vertical coordinate (L) positive upward 
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iv — me nyoraunc conciuciiviiy yLi/i) 
\\f = soil water potential (L) 

H = total head (L) 

S = sink term that represents water loss through plant root uptake (L3/L3t) 

Though several representations for retention curves are available, the following van 

Genuchten (1980) relationship, was chosen for modeling: 

®= - = r - (3.5) 

e,-er (i+ia^yy 

where 0 = relative volumetric water saturation 

r and s subscripts = residual and saturated volumetric water contents, respectively 

a = fitting parameter approximately equal to the inverse air entry value 

n = pore size distribution parameter 

m = (l-l/n). 

The Mualem van Genuchten function (Mualem, 1976; van Genuchten, 1980) was used to 

represent hydraulic conductivity, K(9): 

K(<9) = * , e 1 / 2 ( i - ( i - e 1 ' " ) r ) 2 0.6) 

where Ks = saturated hydraulic conductivity (L/t) 

0 < m < 1 (van Genuchten, 1980). 

As will be discussed in the following sections, the fitting parameters used in these closed-

form representations were obtained through parameter optimization, but the initial input values 

were taken from data collected at the West Unit of the ARS facility (Bruce et al., 1983). Paired 

values of water content and water potential (G(v|/)), and saturated hydraulic conductivity, were 

derived from laboratory experiments on soil cores. Fitting of the retention curve was done using 
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the paired values as input to RETC (vl.O, van Genuchten et al., 1991), which optimizes the 

fitting parameters based on the method of least squares. The residual water content, 8r, was 

taken as the water content at 15 bar potential, and the saturated water content, 6S, was taken from 

the soil porosity assuming complete water saturation: 

= • - — (3.7) 
Ps 

where pb = soil bulk density (M/L ) 

ps = soil particle density (M/L assumed at 2.65 g/cm ) 

Bruce et al. (1983) analyzed core samples collected at the field site to determine soil bulk 

density. Thus, of the five possible parameters in the retention and conductivity curve that could 

be varied (6r, 6S, a, n, and Ks), known data from field samples reduce this number to two (a and 

n). A reduction in the number of fitted parameters places greater emphasis on known data and 

reduces the potential for strongly correlated or non-unique parameter sets. 

During parameter optimization, HYDRUS-ID solves the governing equations for water 

flow using assigned initial and boundary conditions, compares the results to observed conditions 

in the field, and then reinitializes the simulation using updated parameters. After each 

simulation, the program calculates an objective function (called SSQ in HYDRUS) that 

compares the simulated versus observed space-time variables: 

<D(M)= T.VjItWij[qj(z,ti)-qJ(z,ti,b)\ (3.8) 
7=1 i'=l 

where rriq = number of different sets of measurements 

nqj = number of measurements in a particular measurement set 

Oj*(z,ti) = specific measurements at time t; for the jth measurement set at location z(z,tj) 

aj(z,tj,b) = corresponding model predictions for the vector of optimized parameters b 

(e.g., 6r, 6S, a, n, and/or Ks) 

Vj and Wjj = weights associated with a particular measurement set or point, respectively. 
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variables (e.g., observed pressure heads and/or water contents at different locations and/or time 

in the flow domain, or the actual or cumulative flux versus time across a boundary of specified 

type) (Simunek et al., 1998). Measured soil water content was used as the sole auxiliary variable 

(e.g., j = 1). Weighting coefficients were calculated as the inverse product of the measurement 

variance and the number of observations for each auxiliary variable (Clausnitzer and Hopmans, 

1995), which causes the objective function to become the average weighted squared deviation 

normalized by the measurement variances. HYDRUS-1D stops iterating when differences in 

^(b,q) between two successive iterations is less than a user-defined value (e.g., 0.001), 

indicating that a minimum was found. Parameter estimation uses the Marquardt (1963) nonlinear 

optimization routine. The measure of success in the optimization is based on maximizing the 

correlation coefficient, and minimizing &(b,q). 

The sink term on the right hand side of Equation 3.4 represents water removal through 

plant water uptake. The model of Feddes et al. (1978) was used for the simulations. Here S is a 

function of \\i, as shown: 

S(\i/) = a(y/)Sp (3.9) 

where a = water stress response function (0 < a < 1) 

i|/ = soil water potential 

Sp = potential water uptake rate [1/T]. 

The response function accounts for the reduction in water uptake as the soil water 

potential is reduced below an optimum value. Conditions of soil saturation lead to a reduced 

uptake because of anaerobiosis in the root zone, and conditions of extreme dryness lead to 

wilting conditions. Root zone distribution with depth is generally regarded as non-uniform, 

where the mass of roots near the soil surface is greater, with decreasing mass with depth. 

This non-uniform distribution can be approximated using a root zone distribution 

function (Vogel, 1987): 
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SP = 
V"/- p 

^ 
(3.10) 

where b(z) = normalized water uptake function (0 ] b(z) ] 1) at depth, z 

Lz = rooting depth of the plants 

Tp = potential transpiration rate [L/T]. 

Though b(z) is not typically known for many plants Garrot and Mancino (1996), showed 

a linear decrease with depth for turf grass species; given the predominance of grasses at the W2 

site, this approach was adopted. By substituting Equation 3.9 into Equation 3.10 and integrating 

over the depth domain, z, the actual transpiration rate, Ta, is: 

Ta=±-)a(iif)b{z)dz (3.11) 
Lz 0 

Subsurface layering for the 1-D case was determined by soil textural analysis from 

continuous soil core collected at W2 during site characterization activities. Table 3.1 shows the 

changes in textural components, and the associated soil texture. 
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Textural classification for soil samples collected at W2 site 

Sample # Bottom 

depth 

Sand Silt Clay Soil Type 

(cm) (%) (%) (%) 

W2-1 ~"~15 66 20 14 Sandy Loam 

W2-2 30 76 16 8 Sandy Loam 

W2-3 46 70 18 12 Sandy Loam 

W2-4 61 84 10 6 Loamy Sand 

W2-5 76 90 6 4 Sand 

W2-6 91 78 12 10 Sandy Loam 

W2-7 107 70 16 14 Sandy Loam 

W2-8 122 62 28 10 Sandy Loam 

W2-9 137 60 32 8 Sandy Loam 

W2-10 152 56 24 20 Sandy Loam 

W2-11 168 56 22 22 Sandy Clay Loam 

Soil texture is approximately uniform, except for the presence of a thin lens of sand at 76-

cm depth, grading upward to a sandy loam, and the presence of a sandy clay loam at a depth 

below our interest. The profile was subdivided into four layers at approximate depths of 45, 75, 

80, and 165 cm. The model domain was subdivided into 101 nodal elements, each 1.65-cm 

thick. 

Initial conditions of soil water content and soil water potential were estimated by 

simulating a constant flux of 0.05 cm/d at the upper boundary for a period of 2000 days, 

allowing the soil profile to approach mechanical equilibrium at a steady inflow rate. At this 

time, inflow should equal outflow, so that changes in soil water conditions do not change with 

time. Root water uptake was set to zero during these simulations to more quickly achieve 

equilibrium. Resulting water potential profiles taken from model output were used as input to 

the inverse simulation model; the retention function was then used to convert water potential to 

corresponding water contents. 

Boundary conditions during the inverse simulation were taken directly from measured 
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data in the field. Potential transpiration data was taken from the latter gauging station, which is 

fully equipped for measurement of potential evapotranspiration (PET) using the Bowen Ratio 

System. Soil evaporation was set to zero. The inverse simulations covered a 180-day period, 

from July 1, 1999 through December 31, 2000. During this period, the TDR probe installed at 

Location 4 (~12 m and up-gradient of the spring) was sampled 41 times, providing 205 data 

points for the inverse parameter estimation (5 depths were sampled for each time period). The 

resolution of all meteorological and soil data was limited to a daily value. 

Following the successful inverse modeling, and identification of a viable parameter set 

for the soil profile, forward modeling to simulate 1-D transport of bromide tracer and 

microspheres was completed. This modeling was performed in two steps. The first step 

simulates water flow from July 1, 1999 through February 28, 2000, or a total of 243 days 

between the onset of monitoring and the date of tracer application. The purpose of this first step 

was to establish the initial soil water conditions in the soil profile prior to injecting the tracers. 

The second step simulates water flow and chemical transport from February 28, 2000 through 

August 31, 2000, or a total of 186 days after application. The purpose of this second step was to 

estimate transport parameters of the soil material (e.g., soil dispersivity, filtration coefficient), to 

be used in the 2-D simulation model. 

HYDRUS utilizes a convective-dispersion approach to solve the governing equations for 

solute transport in porous media. The model is capable of simulating physical and chemical 

nonequilibrium, multiple phases, and sequential first-order decay reactions. The model operates 

in both forward and inverse modes, but the simulator was run in forward mode only. The 

governing equation for one-dimensional chemical transport of solutes during transient water flow 

in variably saturated, rigid porous medium is: 

„dck pbdsk d f dc^ dqzck 

~dF+ dt ~~dz~{ kYz) dz ~q" k (3-12) 

where c = aqueous (liquid) phase solute concentration (M/L3) 

s = sorbed (solid) phase solute concentration (M/M) 

q = Darcy velocity (L/t) 
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X = filter coefficient (described below). 

k subscript = kth chemical species being modeled. 

This form of the transport equation, Equation 3.12 accounts for first-order decay in the 

aqueous phase and sorption by solid phase. The sorption term on the left hand side of Equation 

3.12 represents a reversible adsorption-desorption. Several treatments of this term have been 

used to describe this process for the transport of biosolids, including first-order rate-limited 

desorption; reversible, instantaneous linear adsorption; and saturation-limited sorption (Harvey et 

al., 1991; Johnson et al., 1995). To simplify matters somewhat, an instantaneous (local 

equilibrium assumption), linear sorption model was employed initially: 

h=Kdck (3.13) 

where K<j = linear distribution or partition coefficient (L3/M). 

Incorporating Equation 3.13 into Equation 3.12, yields a reduced form of the one-

dimensional convective-dispersion equation: 

R dck _ 3 ( dc 

dt ~ dz z l dz 

dv2ck 

—fa " ^ (3.H) 

where RF = the retardation factor (RF = 1 + pbK<i/6) 

v = the pore water velocity 

ai = the longitudinal dispersivity (L) (ai = D[</vz), 

Prior to or simultaneously with the microsphere transport experiments, a transport 

experiment was conducted using a non-reactive tracer, such as CaBr2 or KI. Effluent 

concentration data were then fit to the solution of Equation 3.14 by varying cti until the 

differences between predicted and observed concentrations are minimized (i.e., least squares 

55 



fitting procedure). An RF of unity was assumed for the non-reactive tracer, that is, the ideal 

tracer was not subject to sorption processes (K<i = 0). 

Transport and retention processes for the microspheres were treated in a manner 

described by Amirtharajah (1988), and shown to be useful in hydrologic studies by Harter et al. 

(2000). In this approach, particles attach and detach from solid matter through a series of near-

term mechanisms that can be estimated from knowledge of physical properties of the pore space 

(porosity, median grain size, bulk density), particles (density, mean diameter, particle diffusion 

coefficient) and the water (density, viscosity, pore velocity). Incorporating these mechanisms 

into the trajectory theory approach requires estimation of the filtration coefficient (X), which 

describes the relationship between colloid deposition onto uniform spheres in a clean packed 

filter bed: 

. 1.5(1-8) 
A, = aer] (3.15) 

where 0 = volumetric water content of the filter bed or porosity 

dc = mean grain size 

ae = empirical constant called the collision efficiency 

r| = single collector efficiency. 

The single collector efficiency may be calculated including the effects of hydrodynamic 

retardation, electrical double layer interactions, and London-van der Waals forces, using the 

Rajagopalan and Tien (1976) equation: 

r) = 4AsN
, /3Pe-2/3 +0.00338ASN^NR

0-4 +ASN
1
L

/
0
8N^5/8 (3.16) 

where As = Happel's flow field factor 

Pe = Peclet number (qidc/D) 

NG = gravitational number (settling velocity/pore water velocity) 

NR = size group (particle diameter/mean particle diameter) 

NLO = London—van der Waals constant. 
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Based on knowledge of the porous medium, the fluid, and the particle characteristics, r\ 

can be calculated and then used to derive X. Following the transport experiments with the ideal 

tracer, the same column is used to conduct transport experiments with the microspheres, which is 

described above in the section titled Microsphere Spiking Experiment. The change in 

microsphere concentration is evaluated with time, and the observed data are fitted to the 

analytical solution by incorporating the fitted values of vj and a,], and varying X until differences 

in predicted and observed outflow concentrations are minimized. The value of A, was then used 

in the 2-D modeling, as described below. 

Two-dimensional Flow Model 

A two-dimensional (2-D) model was developed at the W2 site to simulate lateral transfer 

of water and solutes from the ground surface to the water table, and then toward the spring. 

Orientation of the model is in the x-z plane. The HYDRUS-2D model (v 2.0, Simunek et al., 

1999) was selected for the following reasons: 1) widely available and utilized by the hydrologic 

community, 2) includes an effective pre- and post-processor, and 3) ability to simulate multiple-

phase interactions between contaminants, and solid, liquid, and gases and multiple species. 

The model solves Richard's equation for water flow in unsaturated, partially saturated 

and fully-saturated porous media in two dimensions (either x-y or x-z planes). The governing 

flow equation is solved using Galerkin linear finite element schemes for a wide variety of time-

dependent or time-independent boundary conditions. The mixed form of Richards' equation is 

shown below for two-dimensional flow: 

dd 
f 

dt dx: 
K(V) 

V 
s (3.17) 

where x; = spatial coordinates (i=l,2) 

KjjA = components of a dimensionless anisotropy tensor (diagonals = 1 for isotropic 

medium). 

Representations of hydraulic properties (e.g., 9(\|/) and K(8)) are identical to those 
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obtained in the 1-D inversion modeling. Root water uptake functions and depths of root 

penetration are also kept the same, to the extent possible. 

The flow model was constructed with a flow domain taken from known W2 

characteristics. The site was represented as a vertical plane (x-z) oriented approximately east-

west looking north, so that water entering the flow domain would flow west toward the spring. 

Figure 3.1 shows the model domain as a single object, annotated appropriately. Ground surface 

elevations were obtained from site surveys, so that the gentle slope toward the right side of the 

model domain does lead westward to a sharp slope break as the spring is encountered. The depth 

of the domain (3-m) was chosen so that saturated material would encompass approximately one-

half of the total soil profile thickness, and so that the spring could be placed higher in the profile 

to allow for groundwater underflow. The east-west extent of the domain, 12-m total, was enough 

for the spiking area and the spring to be included in the model. 

A single, continuous object forms the computational domain. Boundaries were then 

defined as no-flow, constant head, seepage face, and atmospheric. The no flow boundary was 

defined at the bottom of the domain where horizontal ground water flow was assumed. Constant 

head boundaries were used on the left and right hand sides so that a hydraulic gradient at the 

water table would be formed, allowing water to flow into and out of the domain. The seepage 

face boundary was used to simulate the spring. The remaining nodes were assigned as an 

atmospheric boundary to simulate water gain and loss due to precipitation and 

evapotranspiration, respectively. 

The computer module, MESHGEN-2D, automatically generates the finite elements, 

given user-defined numbers of boundary nodes. MESHGEN-2D generates an unstructured 

triangular mesh, and then checks the mesh to improves its' smoothness, reduce elements with 

extreme angles, and eliminate six-sided elements. To keep the model efficient, the number of 

boundary nodes were limited, resulting in 953 elements for an area approximately 30 m . 

The 2-D modeling was done in parts. The first part simulated water movement from July 

1, 1999 through February 28, 2000, or up to the day of microsphere spiking. This 243-day 

period also provided an opportunity to quantify flow from the spring, allowing us to adjust the 

conceptual model of flow at the seepage face. Soil water pressure data were then used as initial 

conditions for the second model, which ran from February 28, 2000 - August 31, 2000. 
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Meteorological conditions collected at or adjacent to the site were used for the atmospheric 

boundary, similar to that used in the 1-D case. 
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Seepage 
face 

Constant head 

Constant 

No flow 

Note: Layering corresponds to soil in Table 3.2, except for Layer 5 (Layer 4 properties with 

Figure 3.1 - Modeling domain for 2-D simulations. (A) - finite element geometry; (B) -
boundary conditions; (C ) - subsurface layering. 
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RESULTS AND DISCUSSION 

HYDROLOGY OF FIELD SITE 

Results of Geophysical Survey 

Results of inversion analysis performed on data (EM-31) obtained during the geophysical 

survey are shown in Figure 4.1a. The contour intervals for the solid lines represent the depth to 

the interface between two layers. The top layer is considered to be unsaturated soil, and the 

bottom layer is soil of some critical saturation value, unknown at present without data from the 

ground. Both plots show that the saturation depth to the interface decreases toward the wetland, 

most likely because ground surface elevation also decreases in that direction (note the dashed 

elevation contours). It is clear, however, that the change in slope is more uniform in the vertical 

orientation. Average differences between the horizontal and vertical orientation is very slight 

(RMSE = 0.072 m), and there is a general trend of decreasing depth to the interface. 

Figure 4.1b shows an inverse image (black is negative polarity) of unprocessed ground-

penetrating radar (GPR) data compiled from traces collected south to north along Line 6 (furthest 

from the wetland) at 1-m spacing, using a 50-MHz antenna in bistatic mode. The figure is seen 

oriented facing west toward the wetland. Preliminary analyses yield an estimated radar velocity 

of 75 to 85 m/ns in the shallow part of the section, and the measured two way travel time to the 

presumed water table reflection yields a maximum depth of approximately 1.4 m at the left side 

of the plot, 3 to 3.4 m at the lowest point, and 2 to 2.25 m at the right side (Annotations are 

provided in Figure 4.1b). Poorly imaged material above the water table may be weakly 

developed soils that have slumped downslope. The strong reflector below the water table is 

probably the top of the saprolite, and the deep northward dipping reflectors will migrate to 

discrete lens-like features during processing. 

Preliminary analysis of the Schlumberger vertical electrical sounding (VES) survey data, 

using linear filtering forward calculations, yields a best-fit model characterized by an 

approximately 40m-thick layer with an apparent resistivity of 480 fi-m overlying a half-space of 

infinite apparent resistivity. Fine-scale oscillations at small electrode spacing were obtained that 
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represent real and well-constrained resistivity variations in the vertical structure of the shallow 

subsurface, and can probably be attributed to subtle changes in soil stratigraphy and water 

content. 

The results of the geophysical survey indicate that the depth to the water table, or to 

material with some critical saturation value, has been identified using the two methods. The EM-

31 and GPR studies indicate that the depth can be expected to vary between 2-3 m in the area 

upgradient of the wetland. The elevation contours shown in Figure 4.1a combined with the 

critical depths to saturation and the location of the wetland area indicate that ground water flow 

is westerly. This information was confirmed after the monitoring wells were installed. 

Soil Properties at Field Site W2 

The textural classification of soil samples collected from Borehole MW2 (Table 2.3 in 

Chapter 2) shows a dominantly sandy loam texture, with some distinct grading into and out of a 

sandy material at 60-75 cm depth. Though textural analyses were not performed for other core 

samples collected at the site, visual inspection indicated a lack of significant spatial variability of 

soil texture for the subplot used for transport experiments. Thus, textural analysis was limited to 

samples collected from the MW2 borehole. 

Soil textural data allows one to relate changes in particle size distribution to changes in 

soil hydraulic properties. Given the level of effort that would be required to conduct large 

numbers of core analyses for determining retention and conductivity functions, however, 

hydraulic properties were estimated using the pedo-transfer function method of Schaap and 

Bouten (1996) and Schaap et al. (1998). Schaap et al. (1998) employed a neural network 

approach to estimate the van Genuchten (1980) parameters given either soil texture, textural 

components, bulk density, and/or known points on the soil water retention curve. This approach 

provides for an increasing degree of accuracy as new data are included in the analysis. Schapp et 

al. (1998) incorporated this method into the computer program Rosetta, which is embedded in 

the HYDRUS-2 D model (Simunek et al. 1999). Inputting the known textural data (Table 2.3) 

into Rosetta provides an estimate of the van Genuchten parameters for each MW2 core 

increment (Table 4.1) and generalized for the W2 study area as a function of depth/soil horizon 
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(Table 4.2). The resulting soil water retention (pressure-saturation) and unsaturated hydraulic 

conductivity functions are shown in Figures 4.2a-4.2k. 

Table 4.1 

Estimated van Genuchten parameters using the textural data listed in Table 2.3 and the neural 

network approach of Schaap et al. (1998) 

Sample # Bottom 

Depth 

a N er es K-sat 

(cm) (cm-1) (cm /cm ) (cm3/cm3) (cm d"1 

W2-1 15 0.030 1.388 0.0492 0.3838 32.35 

W2-2 30 0.039 1.528 0.0417 0.3841 65.56 

W2-3 46 0.034 1.416 0.0463 0.3829 41.05 

W2-4 61 0.037 1.900 0.0454 0.3814 139.06 

W2-5 76 0.035 2.555 0.0492 0.3791 334.99 

W2-6 91 0.036 1.556 0.0470 0.3802 67.53 

W2-7 107 0.032 1.403 0.0500 0.3814 36.29 

W2-8 122 0.027 1.403 0.0413 0.3872 37.62 

W2-9 137 0.025 1.412 0.0373 0.3899 42.73 

W2-10 152 0.023 1.371 0.0600 0.3911 16.76 

W2-11 168 0.024 1.356 0.0630 0.3915 14.88 

Table 4.2 

Fitted values of van Genuchten parameters for soil hydraulic properties at W2 

Bottom a N 0 r 6S Ksat 

Depth 

(cm) (cm"1) (cmVcm3) (cm3 /cm3) (cm d"1) 

43~ 0.052 1.38 0.041 0.366 603 

76 0.054 1.5 0.083 0.378 225 

81 0.079 2.93 0.2 0.3 873 

165 0.034 1.52 0.092 0.34 823 
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Analysis of Site Water Budget 

Previous research conducted at the W2 site spring by Fisher et al. (2000) showed 

significant fecal coliform spikes after rainfall events with rapid declines following the spikes. 

These findings suggest that fecal coliforms were being leached downward through the soil 

profile from the ground surface, and then migrating toward the spring via groundwater interflow. 

The significance of interflow as a transport mechanism for pathogens needs to be studied and 

better understood, especially if spring water contains pathogens only during times of rapid 

flushing of the soil. The goal of the water budget analysis was to understand the link between 

the flow in the spring and soil water conditions. 

Water budget components are represented in units of volume (m3) whenever possible, 

allowing each component to be added or subtracted as needed. Since ground water flow in the 

northern portion of the subplot did not appear to drain into the spring, water volumes 

corresponding to this area were not included in the water budget. Therefore, the water budget 

analysis was limited to the southern-most area of the subplot, defined by the monitoring wells as 

shown in Figure 4.3. The dimensions of this area are 9.33 m north-south by 31.86 m east-west, 

yielding a total area of 297.13 m2. 

Precipitation 

The field site, as well as a large portion of Georgia, experienced a sustained drought 

starting in May 1998. Total rainfall for year 2000 recorded by various gages near the site was 

between 800 and 930-mm. As a result, year 2000 was one of the driest years since 1937 (64 

years), when records were started to be kept at the ARS location. The long-term yearly average 

rainfall based on the ARS data is 1264-mm. Prior to 2000, the record for the driest month was 

held by 1954 when total precipitation was only 855-mm. Other dry years were: 1988 (876-mm), 

1965 (910-mm) 1987 (914-mm) and 1955 (915-mm). Precipitation in 1999 ranked the year as 

the 18C driest. Monthly precipitation was also below the long-term average from February 2000 

through August 2000. During this eight-month period, a total of 47.9cm (18.8 inches) of rainfall 

was recorded, which is about 50% less than the long-term average. The total rainfall water 

volume was 142.27 m3 in box area shown in Figure 4.3. Rainfall during the first 2.5 months 
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experienced at the site during the latter portion of the transport experiment. Rainfall during the 

remaining 5.5-month period was the result of a few storms of relatively high intensity and short 

duration, conditions that did not result in replenishment of the soil water deficit. 

Precipitation patterns in the watershed (W2) during calendar year 2000 are presented in 

Figures 4.4 and 4.5. Cumulative precipitation was only 200 mm during this reporting period, 

May 12, 2000 to August 31, 2000, with only 24 measurable precipitation events. Two events 

exceeded 25 mm, three events were between 10 and 13 mm, and nine events were between 5 and 

10 mm. The remaining rainfall events were less than 5 mm. Monthly precipitation has been 

below the long-term (60 years) average since February (Figure 4.5). The overall water deficit 

was about 220 mm for the period May through August 2000. 

Water losses due to cumulative evapotranspiration (ET) are shown in Figure 4.6 relative 

to cumulative precipitation for calendar year 2000. A total of 97.43 cm (38.36 in) of ET was 

recorded, equivalent to a volume of 289.49 m3. When compared to the precipitation measured at 

the site, it is apparent that loss of water through ET was substantial, more than twice the amount 

of precipitation. 

Soil water 

Soil water content values recorded at the site since July 1999 are shown in Figure 4.7. 

The graph illustrates that ground water recharge occurred during Winter 1999. Soil water 

content was highest m January 2000, and then declined steadily until mid-May. Soil water 

content was lowest during the last reporting period. Near-surface soil profiles (0-30 cm depth) 

were driest, with steady increases in water content with depth. A small increase in soil water 

content was apparent following rainfall events toward the end of June and July 2000, including 

soil depths of 90-120 cm. However, no significant increase in spring discharge rates were 

observed following these events, indicating that most of the precipitation replenished the soil 

water storage, and did not significantly recharge ground water. Only the deep tensiometers, 

where soil water content remained at or above 20%, provided reasonable readings. Soil water 

potentials of material surrounding the shallow and mid-depth tensiometers were no longer in 

tensiometer range, causing the tensiometers to bubble and release water. Servicing the 
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tensiometers for each reading would eventually moisten the soil surrounding the porous cup, 

biasing the readings. The tensiometers were restored to service when sufficient rainfall occured. 

Soil water storage (SWS) data for year 2000 is shown in Figure 4.8. These data illustrate 

the strong effect of ET and low precipitation on the available soil water, especially from Day 100 

and later. The values plotted on the graph represent the product of SWS(t) obtained from 

Equation 3.2 and the area of the subplot. Dividing through by subplot area yields an average 

SWS between 40 and 20 cm. The steady decline in SWS corresponded to the decline of total 

spring flow and GW underflow, as the entire site underwent a drying period. 

Ground water 

Ground water elevations continued to decline throughout the reporting period. Figure 4.9 

shows the average elevation change from the 11 piezometers, normalized to the elevations 

recorded nine days before the microsphere injection on February 28, 2000. Except for two brief 

periods of recharge (March 15, 2000 and June 24, 2000), ground water elevations have been 

falling, with an average decline of 300 mm recorded during the reporting period. Contours of 

ground water (piezometric head) elevations for four selected time periods since well installation 

are shown in Figure 4.10. In these plots, the most westerly point (parallel to x-axis and toward 

the left) is the flume (spring outlet). Contours are represented at 5 cm intervals. The piezometric 

surface indicates a consistent, westerly flow toward the spring and wetland, regardless of the 

time period or severity of the drought. The small scale ground water trough in the center of the 

field site (Graph 4.10B) during recharge periods appears now to be more of a ridge (Graph 

4.10D), causing slightly divergent flow patterns near the spring. The graphs indicate 

convergence of flow toward the spring during high water table conditions. Under dry conditions, 

convergence appears to be somewhat reduced, and the ground water surface is relatively flat near 

the spring. 

As discussed in Chapter 2, groundwater underflow enters the subplot at the eastern plot 

boundary and flows west, toward the spring. The magnitude of GW underflow is highly 

dependent on the saturated hydraulic conductivity (Ks) of the soil material found below the water 

table. The estimated value of Ks, obtained from the numerical inversion modeling in the 1-D 

case (i.e., 8.23 m/d), was used for these calculations. Although the Ks value is rather high, it is in 
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core data, this value should be suitable for subsequent modeling efforts. Daily and cumulative 

GW underflow data obtained for calendar year 2000 are shown in Figure 4.11. The daily 

underflow data show a trend toward decreasing input to the hydrologic system as either the 

hydraulic gradient or groundwater levels (or both) decreased during the summer months. A total 

of 188.78 m3 of water entered the site along the southern portion of the monitored subplot during 

the period of the study. Precipitation and GW underflow represent the only two measured 

components that added water to the subplot area, totally 331.05 m3. The values do not represent 

deeper groundwater, which could potentially flow upward and discharge into the spring. 

Cumulative ground water baseflow and interflow during calendar year 2000 are shown in 

Figure 4.12. The total spring flow (not shown) is therefore considered to be the sum of baseflow 

and interflow. During the late spring, and throughout the summer, both flow components were 

significantly lower than the winter months of 1999-2000. The interflow rate was essentially zero 

during most of latter part of the study period because of drought conditions. The cumulative 

value of interflow and base flow was 654.80 and 1759.63 m3, respectively, or about 27% and 

73% of total spring flow. Ground water storage (GWS) is plotted on Figure 4.13 and shows a 

similar pattern of loss during the summer period. 

Spring/low 

The lack of normal precipitation patterns was seen very clearly in spring flow. Spring 

levels have not been observed at these levels, or as consistently low, as during this study period. 

Flow rates were virtually a trickle for most of the reporting period. The period started with 

spring flow between 1 and 2 L/min (consequence of dry period in the previous reporting period). 

Throughout June, 2000 and until the first week in July, 2000, spring flow ranged between 0.5 

and 1.0 L/min. Since that time, flow has remained below 0.5 L/min. Recalling that long-term 

base flow was about 5 L/min with spikes of up to 38 L/min encountered after heavy precipitation 

events, the very low base flow rates are extremely unusual. 

Further complicating the spring flow monitoring was an apparent diurnal response of the 

transducer that appears strongly correlated to ambient air temperature. The fluctuations were 

accentuated during periods of low flow. The response varied between a low at 6 PM to a high at 
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9 AM. this represents a variation oi up to 1.5 mm 01 head from the mean, which represents a 

flow variation of 0.23 L/min, or about 50% of low flow conditions. Transducer specifications 

indicate that temperature variations of ±1.05 mm are within specification, so the field results are 

very close to factory specifications. To resolve this issue, transducer output will be calibrated as 

functions of pressure and temperature. The flow data were then developed based on the resulting 

regression equation. 

Figure 4.14 shows the results of the high frequency filtering for spring flow in Year 2000, 

resulting in separate estimates of baseflow and interflow over time using Equation 3.3. As a 

reference, DOY 59 corresponds to the microsphere spiking event (February 28, 2000). The 

graph shows the relatively rapid response of the interflow component (bottom trace) versus that 

of the low frequency baseflow (top trace). The very rapid rise and fall of the interflow 

component (kinks in bottom trace) shows the responsiveness of the system to precipitation. For 

example, the rapid rise in interflow on DOY 79 occurred after a 3.5-cm precipitation event, and 

the subsequent decline in interflow shows the relatively rapid internal drainage of the soil toward 

the water table. The increase in spring discharge rates due to the interflow component represents 

a relatively rapid transfer of soil water to the groundwater component. 

Water Budget Analysis 

With knowledge of the water budget components, Equation 3.1 can be modified slightly 

to account for the lack of surface runon/runoff, and the assumption that deep ground water does 

not play a significant role in the shallow system: 

P-(ET + IF) = ±ASWS ± AGWS (4.1) 

If water budget measurements are conducted soon after precipitation occurs, water added 

to the subplot should be reflected by increased values of soil water storage (SWS) and ground 

water storage (GWS). To evaluate the relationship between precipitation and water storage 

components, a linear regression approach was applied to the observed increases in SWS and 

GWS following rainfall events versus the amount of precipitation as shown in Figure 4.15 (slope 

= 1.19; r = 0.86; SE = 15.8 m ). The near unit slope indicates a close 1:1 relationship between 

rainfall and the sum of GWS and SWS. Removing the GWS component and assuming that 
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precipitation win be completely absorbed by Ŵc5>, yielded a slope or U.JZ (not snownj, a mucn 

poorer relationship. This analysis demonstrates that water moved quickly through the soil profile 

and into the shallow ground water system. 

The site water budget focused on the shallow hydrologic system, and the source of the 

high frequency component of the spring. However, it became apparent that the total spring flow 

(BF + IF) could not be accounted for by the GW underflow alone. In fact, the total volume of 

GW underflow was only about 8% of the total flow. Therefore, it was hypothesized that 

significant quantities of deeper ground water were discharged at the spring, which was expressed 

as base flow: 

GW underflow + deep GW = BF (4.2) 

Though this component could not be measured directly due to a lack of nested piezometers, it is 

well understood that groundwater flow will have a vertical component when flowing toward a 

discharge point, such as a spring, river or lake (Freeze and Cherry, 1979). Therefore, the 

interflow component was assumed to be representative of downward percolation of soil water, 

whereas base flow was considered to represent deeper groundwater. Solving Equation (4.2) for 

deep GW and plotting the time series (Figure 4.16) shows that much of the base flow occurring 

during the early part of 2000 (DOYS 0-130) was actually deep groundwater, but that the spring 

no longer acted as a discharge point during the late Spring and early Summer. For this eight-

month period, 89% of all baseflow can be classified as deep GW. Therefore, the concentration 

of microspheres and tracer injected into the soil, or added directly to the piezometers, would be 

significantly diluted, reducing the ability of the monitoring system to detect their presence in 

spring outflow. 
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Bromide Spiking Experiments 

Accuracy of Bromide Specific Ion Electrode 

As discussed in Chapter 2 in the section titled, Method of Detection, results using the 

bromide specific ion electrode (SIE) for the first bromide tracer experiment were not validated 

because of problems associated with the SIE. Calibration of SIE become suspect immediately 

after the first bromide tracer experiment as the bromide mass recovery according to the probe 

was approximately 75 times greater than what was originally injected. To confirm bromide mass 

recovery, 14 water samples collected with the Sigma sampler were analyzed using the SIE (in the 

laboratory) and independently analyzed by ion chromatography at the University of Georgia. All 

samples yielded bromide concentration below detection limits using both analytical methods. 

Further laboratory testing and consultation with the manufacturer (Innovative Sensors Inc., 

Anaheim, CA), showed that the original calibration curve was essentially correct. After studying 

the probe configuration used in the field (i.e., horizontal orientation), it was hypothesized that air 

bubbles might have attached themselves to the probe membrane, causing the voltage response to 

decrease (decreasing voltage levels would indicate increasing bromide concentration). The SIE 

field installation was modified so that the probe membrane would be at the bottom of the 

conveyance pipe, reducing the chance for air bubbles attachment. The sensor was again used to 

detect bromide breakthrough after a second injection on February 10, 2000 at one of the two 

5.08-cm monitoring wells. However, the probe became rather unstable and showed a distinct 

diurnal trend in bromide concentration, with values below detection limit at low temperatures 

and higher concentrations at elevated temperatures. As a result the SIE measured concentration 

could not be used to assess bromide mass recovery. 

For subsequent bromide breakthrough and mass recovery determinations, discrete 

samples were collected over time using the Sigma sampler and analyzed for bromide at Georgia 

Tech using ion chromatography. The research team understood at the time of purchase that the 

SIE probe might not perform well under ambient environmental conditions, but felt that this risk 

was acceptable given the potential for the probe to reduce personnel costs, and to capture the 

bromide breakthrough period accurately. 
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Due to the problems encountered with the bromide specific ion electrode, results of the 

first two bromide tracer experiments could not be used to assess bromide transport to the spring. 

The third bromide tracer test, conducted in conjunction with the microsphere bead release, was 

initiated on February 28, 2000. Approximately 4.5 g of bromide (as NaBr) were injected just 

below the soil surface of the spiking area. Over the next five months (March 1, 2000 to August 

1, 2000) 164 water samples were collected and analyzed for bromide using ion chromatography. 

Water samples were obtained from monitoring wells 1 and 2 (84 samples), the FTC (15 

samples), and the Sigma sampler (65 samples) at regular intervals. Water samples obtained from 

the zero-tension lysimeters (ZTLs) were not analyzed for bromide due to the small volume of 

water collected, the rinsing procedure used to recovery microspheres, and the fact that no ZTL 

samples were collected from May to August 2000 due to the dry conditions. 

Bromide concentration data for Monitoring Well 1 (MWl) and the spring water are 

shown in Figures 4.17 and 4.18, respectively. Monitoring Well 1 was located just down gradient 

from the location of the microsphere and NaBr spiking area. For MWl, a small spike in bromide 

concentration occurred on 4/25/00, while a second and larger spike occurred on the 6/20/00 and 

6/23/00 sampling dates (see Figure 4.17). The second bromide spike corresponds to a relatively 

large rainfall event (3.5 cm) that occurred after a period of prolonged dry conditions (see Figure 

4.4). Elevated bromide concentrations were observed in the spring water on 7/5/00 and 7/7/00, 

approximately 14 days after those observed in the MWl (see Figure 4.18). If one assumes that 

these bromide spikes observed in MWl and spring are related (i.e., represent the same pulse of 

bromide moving through the domain) the interstitial (pore-water) groundwater velocity would be 

approximately 0.65 m/day (2.1 ft/day). Using a hydraulic gradient of 0.055 m/m, obtained from 

the piezometric surface observed on 6/12/00 (Figure 4.10D), and assuming a porosity of 0.33 

m3/m3, the resulting saturated hydraulic conductivity (Ks) calculated from Darcy's Law would be 

approximately 38.6 m/day. This value is consistent with the range of hydraulic conductivities 

reported for silty sands (Freeze and Cherry, 1979), and is similar to the value obtained for ground 

water underflow (8.23 m/day) estimated by numerical inversion. The discussion above is not 

meant to be an absolute treatment of the bromide data, but rather serves to illustrate that the 

coincidental bromide spikes observed in MWl and the spring water are likely to be related, and 
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that the estimated travel time of the bromide pulse is consistent with groundwater flow within the 

domain. Additional treatment of these data is presented in the Numerical Analysis section of this 

chapter. 

Microsphere Spiking Experiments 

Transport of Microspheres in Soil Water 

A total of 1,168 water samples were collected and analyzed for microsphere beads from 

the various devices, which are summarized in Table 4.3. 

Table 4.3 

Microsphere beads appearance in water samples 

Collecting Location # Samples # Samples with Percent 

Method3 Collected Microspheres Positive 

ZTL 30-cm 10(5/5)b 7(5/2)b 100/40 

ZTL 60-cm 10(5/5)b 4(2/2)b 40/40 

ZTL 90-cm 12(5/7)b 8(5/3)b 100/42.9 

MW1 7-m to spring 56 9 16.1 

MW2 12-m to spring 46 7 15.2 

FTC At spring 35 8 22.9 

Sigma At spring 999 23 2.3 

a ZTL (zero-tension lysimeter); FTC (Flow through centrifuge); Sigma (sampler) 
b In parenthesis are numbers for ZTLs inside/outside spiking area 

Samples collected at the spring with the Sigma samples were 999. Thirty-two samples 

were collected from ZTLs, of which 15 came from inside and 17 outside the spiking area. The 

percentage of ZTL samples that contained microspheres at some point in time varied from 40%> 

to 100%). All 5 samples from the 30-cm ZTL inside the spiking area had some microspheres, 
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at least one sampling date. The five samples each from the 60-cm ZTLs inside and outside the 

spiking area were 40% positive for microspheres. Of the 12 samples from the 90-cm ZTLs, 5 

were from inside and 7 from outside the spiking area, and were 100 and 42.9% positive, 

respectively, for microspheres. The number of microspheres counted in the ZTL samples ranged 

from 0 to 232,642. The high count was observed on March 20, 2000, in the 30-cmm ZTL within 

the spiking area. A much lower count (1,547) was obtained on March 21, 2000 from the 90-cm 

ZTL within the spiking area. These initial findings indicated that the microspheres migrated 

downward through the unsaturated zone beneath the spiking area, primarily as a result of the 30-

mm rainfall on March 20, 2000. This rainfall event was the first of that magnitude after the 

February 28, 2000 injection of microspheres into the surface soil. Samples obtained from the 

ZTLS were generally very small (a few milliliters). After the samples were collected, the ZTLs 

were further flushed with deionized water to ensure recovery of all microspheres. No samples 

were collected from the ZTLs between May 2000 to August 2000 due to the dry conditions. 

Funding ran out in August for the student worker responsible for manual monitoring and 

collection of samples. ARS, using their own resources, collected samples from the ZTLS on 

11/21/2000 and 02/07/2001. The November 2000 samples contained 1151, 865, 568 

microspheres from the 30-cm inside and outside the spiking area, and 90-cm inside spiking area 

ZTLs, respectively. The other November samples contained from 0 to 30 microspheres. All of 

the February samples from the ZTLs inside the spiking area contained relatively high numbers of 

microspheres; 5358, 280, 729, from the 30-cm, 60-cm, and 90-cm ZTLs, respectively. The 

sample obtained from the 30-cm ZTL outside the spiking area contained 492 microspheres. The 

precipitation recorded in November 2000 and December 2000 was just above the long-term 

monthly average. These data indicate that a portion of microspheres still remaining near the 

surface soil migrated through the soil profile under the favorable soil water conditions following 

the November and December 2000 rainfall events. 

A total of 102 water samples were collected (see Table 4.3) from the two monitoring 

wells: 56 from the one near the spring (MW1) and 46 from the second one (MW2). Respectively 

9 and 7 of these samples had microspheres. The maximum number of microsphere observed in 

MW1 and MW2 were 5 (10 beads/L) and 3 (6 beads/L), respectively. A total of 35 flow-through 

centrifuge (FTC) samples were analyzed for microspheres between March 29, 2000 and August 
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1, 2000. Of these, 8 samples contained microspheres. The largest number of microspheres 

observed was 5 (0.17 beads/L) from the sample obtained on March 29, 2000. The largest 

number of samples analyzed for microspheres were obtained from the Sigma sampler. ARS 

continued to collect and process samples after August 2000 for microspheres enumeration at 

Georgia Tech. A total of 999 samples were analyzed between 3/20/00 and 11/13/2000. Bead 

counts ranged from 0 to 12 (60 beads/L) per sample, with 23 positive samples. In summary, 

these data clearly indicate that a small number of beads migrated through the unsaturated zone to 

the shallow water table, perhaps via preferential flow paths, and subsequently appeared in the 

spring water. It should also be noted that substantial retention of beads by the soil matrix was 

anticipated based on the results of column studies reported in the literature and performed in the 

laboratory at Georgia Tech. 

Retention of Microsphere Beads 

Destructive soil sampling was conducted on August 10, 2000 to assess microsphere 

transport, both vertically and laterally, within the soil profile. Four soil cores were collected 

inside the spiking area, and two additional cores were collected immediately down gradient 

(west) from the spiking area. Soil samples were collected using a Giddings soil coring probe, 

and contained inside butyrate plastic liners (2.2 cm i.d. x 122 cm length). The cores were 

sectioned into increments ranging from 2-cm to 10-cm in length, with the smallest increment 

applied to the upper 12-cm of cores obtained from within the spiking area. Microsphere beads 

were extracted from soil core samples following the procedure described in Chapter 2, although 

repeated washes with the sucrose solution were required for samples containing large numbers of 

beads. 

The total number of beads recovered from each of the spiking area cores ranged from 

1.82 x 106 to 12.0 x 106 beads. Approximately 20 billion (2.025 x 1010) microsphere beads were 

applied just below the surface of the spiking area (152 cm x 76 cm), yielding an average delivery 

concentration of 1.75 x 106 beads/cm2. Based on the inside diameter of the butyrate core liner 

(2.2 cm), and assuming a completely uniform application and vertical (downward) migration, 

each core extracted from the spiking area would contain a maximum of approximately 6.65 x 10 

beads. Although bead recovery varied considerably with position, the average number of beads 
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recovered from the soil cores (7.2 x 106) was consistent with the application rate. The 

distribution of microsphere beads (# beads/g soil) with depth is shown in Figure 4.19 for the 

spiking area cores. These data clearly illustrate that the majority of beads were retained within 

the upper 10 cm of the soil profile, although it must also be recognized that beads were observed 

in all core increments. The observed trends in bead distribution with depth at the field scale was 

remarkably similar to the results obtained for the laboratory column studies, which are discussed 

below. 

For the soil cores collected outside the spiking area very few beads were observed. Soil 

cores 4 and 5, collected approximately 1 m west of the spiking area (toward the spring), 

contained 24 and 15 beads, respectively. All of the beads in core 5 were located in the upper 2 

cm increment, while the beads in core 4 were found in the upper 10 cm of the boring, with 13 

beads in the upper 2-cm increment. The sixth core, collected between piezometer number 5 and 

number 6 and approximately 4 m from the spiking area, contained no beads. These findings 

suggest that lateral migration of the beads was minimal, and most likely resulted from surface 

erosion and lateral transport, or cross-contamination during application and subsequent sampling. 

Laboratory Column Experiments 

Non-reactive Tracer Studies 

A series of one-dimensional (1-D) soil column experiments was conducted to investigate 

transport and retention processes influencing the fate of Cryptosporidium parvum oocysts in 

porous media, using fluorescent microsphere beads as a surrogate. The column experiments 

were specifically designed to evaluate the effects of pore-water velocity and soil properties on 

microsphere retention and transport, and to evaluate mathematical models to describe these 

processes. The properties and flow conditions of each soil column are summarized in Table 4.4. 
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rnor to introducing microspneres, a non-reactive, conservative tracer stuay was 

performed for each soil column. In these experiments, a pulse (~1.5 pore volumes) of 0.01 M KI 

solution was flushed through the soil column at a constant flow rate, followed by 2.0 pore 

volumes of background electrolyte solution (0.01 M KCl). Representative tracer breakthrough 

curves (BTCs) for each solid phase, plotted as relative concentration (C/C0) versus dimensionless 

pore volumes, are shown in Figure 4.20. The tracer BTCs obtained for 20-30 mesh and F-70 

Ottawa sands were symmetrical in shape, with solute breakthrough at 1.0 pore volume 

corresponding to a relative concentration of approximately 0.5. Both of these observations are 

indicative of ideal transport of a non-reactive solute. Therefore, a simplified form of the 1-D 

advective-dispersive reactive (ADR) solute transport equation, which assumes local equilibrium, 

linear sorption, and homogeneous conditions, was used to describe these data. In dimensionless 

form, this 1-D ADR transport equation may be written as: 

(4.3) 
ac* I s2c* ac* 

and 

n 1 , Pb^D n* C 
RF =\ + ——;C* = —;pv = 

V C 0 

-Vl-Pe = 
L' 

••±-.x-
X 

~ L 
(4.4) 

where, RF = the retardation factor 

Pb = soil bulk density (g/cm3) 

KD = the linear distribution coefficient (mL/g) 

0 = volumetric water content (cm3/cm3) 

C* = the relative solute concentration (mg/L) 

C = measured solute concentration (mg/L) 

Co = influent solute concentration (mg/L) 

pv = dimensionless pore volumes 

v = pore-water (interstitial or seepage) velocity (cm/hr) 

t = time (hr) 

L = the column length (cm) 

Pe = the Peclet number 
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DH = the hydrodynamic dispersion coefficient (cm /hr) 

X = dimensionless distance 

x = distance along the column (cm). 

The CXTFIT program (ver 2.0, Toride et al., 1995) employs a least-squares procedure to 

fit the experimental BTC data to the 1-D ADR equation. This approach was used to obtain 

values of RF and Pe for the 20-30 mesh and F-70 Ottawa sand non-reactive tracer experiments. 

The fitted parameters are summarized in Table 4.5, while the solid lines shown in Figure 4.20 

represent the simulated BTCs. 
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Table 4.5 

Column parameters for non-reactive tracer experiments 

Column Parameter Column 

OS1 

Column Column Column Column Column Column Column Column Column Column 

OS2 OS3 OS4 OS5 OS6 F71 F72 CL1 CL2 CL3 

SO 

Flow Rate (mL/min) 1.0 

Influent KI Cone. (mg/L) 1660 

Pulse Width (mL) 161.3 

Pe 212.7 

DH (cm2/hr) 0.67 

Dispersivity (cm) 0.070 

RF 1.02 

CO 

a™ (hr1) 

P 

Bm(cm3/cm3) 

1.0 2.5 2.5 5.0 5.0 5.0 5.0 5.0 5.0 7.5 

1630 1680 1670 1650 1660 1650 1630 1700 1620 1700 

160.9 149.3 145.0 161.2 153.4 149.9 150.0 160.9 195.9 210.4 

227.5 213.0 211.6 204.9 224.3 167.3 137.5 76.1 91.8 38.5 

0.63 1.62 1.68 3.47 3.17 4.25 5.17 7.61 6.31 14.04 

0.067 0.070 0.071 0.072 0.067 0.090 0.109 0.197 0.163 0.260 

1.00 0.99 0.98 1.00 1.00 1.02 0.99 1.00 

0.17 

0.19 

0.66 

0.28 

1.00 

0.24 

0.27 

0.79 

0.34 

1.00 

0.26 

0.65 

0.80 

0.37 
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The Peclet numbers for 20-30 mesh Ottawa sand ranged from 205 to 228, which corresponds to 

dispersivities of 0.067 to 0.072 cm. The Peclet numbers obtained for F-70 Ottawa sand were 

slightly lower, yielding dispersivity values of 0.09 and 0.11 cm. The latter result was anticipated 

given the smaller median grain size and wider grain size distribution of F-70 Ottawa sand. 

In contrast to the Ottawa sands, early breakthrough of the non-reactive tracer and tailing 

were observed for the columns packed with Cecil soil. This behavior is indicative of physical 

nonequilibrium (i.e., diffusion-controlled), which typically results from the presence of immobile 

water. Early appearance of tracer in the column effluent occurs because not all of the pore water 

is directly influenced by advective flow, while tailing along the distal portion of the BTC results 

from rate-limited mass transfer of the solute from regions of immobile water back into the 

mobile (flowing) water. Consequently, the non-reactive tracer BTC data obtained for Cecil soil 

were described using a two-region (mobile-immobile water) nonequilibrium form of the 1-D 

ADR transport equation (Toride et al., 1995). In this form, the following two dimensionless 

terms are incorporated into Equation 4.3: 

0)=°^ (4.5) 
q 

p = e m + f P b K R ^ 

e + P b K D
 9 m R T 

where ctm = the solute mass transfer coefficient between mobile and immobile water (1/hr) 

dm = volumetric content of mobile water (cm3/cm3) 

/ = the fraction of solid phase in contact with the mobile water 

3>m = the ratio of mobile water to immobile water 

Rm = the retardation factor for the mobile water 

RT = the total (equilibrium) retardation factor. 

For the case of a non-reactive tracer, the retardation factor is 1.0 regardless of location, 

and therefore (5 = $m. The values of a) obtained for the three Cecil soil column experiments 

ranged from 0.17 to 0.26, which corresponds to a mass transfer coefficient (o^) of 0.19 to 0.65 
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1/hr. The value of /3 or in this case the fraction of mobile water ($m), ranged 0.66 to 0.80. 

Although the extent of physical nonequilibrium was relatively minor based on the observed 

values of /3 and co, such behavior was not initially expected because the Cecil soil was air-dried 

and sieved to pass a 20-mesh screen prior to packing. These pretreatments would tend to reduce 

the size and number of soil aggregates, which could potentially contain regions of immobile 

water. However, the Cecil soil non-reactive tracer experiments were conducted at relatively high 

flow rates (5.0 and 8.1 mL/min), corresponding to pore-water velocities of 37 and 54 cm/hr. 

Given that the columns were only 10 and 15 cm in length, such high water velocities would 

accentuate mass transfer limitations between regions of mobile and immobile water. 

Microsphere Bead Transport and Retention 

Following the tracer experiment, a single pulse of microsphere beads was introduced into 

each soil column. The concentration of microsphere beads in the influent solution ranged from 

approximately 2,400 to 3,400 microspheres/mL. The pulse width varied from approximately 400 

to 600 mL (4 to 5 pore volumes), which was followed by approximately 775 to 1400 mL (6 to 14 

pore volumes) of background solution. The column effluent solution was collected continuously 

in 20-mL vials, which was then filtered and counted for microspheres using an epifluorescence 

microscope. Upon completion of each microsphere transport experiment, the columns were 

sectioned into 1.0- to 1.5-cm increments and the microsphere beads were extracted following the 

procedure described in Chapter 2. The overall recovery of microsphere beads from the solid 

phase and effluent solution ranged from approximately 53% to 100%. The lowest recovery rates 

were obtained for columns packed with Cecil soil, although these values are consistent with data 

reported for C. parvum oocyst recovery from fine-textured sands (Harter et al., 2000). 

Microsphere experimental conditions and recovery rates are presented in Table 4.6. 
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Table 4.6 

Column parameters for microsphere bead experiments 

Column Parameter Column Column Column Column Column Column Column Column Column Column Column 

OS1 OS2 OS3 OS4 OS5 OS6 F71 F72 CL1 CL2 CL3 

Flow Rate (mL/min) 1.0 1.0 2.5 2.5 5.0 5.0 5.0 5.0 5.0 5.0 7.5 

Influent Bead Cone. (#/L) 3381 3381 2751 2429 2885 2885 2740 2693 2546 2833 2588 

Pulse Width (mL) 451 456 424 447 513 504 423 422 515 544 557 

Beads Eluted (%) 0.099 0.22 5.1 3.35 23.6 14.1 0.04 0.02 0.010 0.002 0.009 

Beads Retained (%) 100.6 94.2 97.0 102.9 76.5 82.8 97.4 96.1 79.4 53.2 65.2 

Bead Recovery (%) 100.7 94.4 102.1 106.3 100.1 96.9 97.4 96.1 79.5 53.2 65.2 

oo 
*° Retardation Factor (RF) 

0.82 0.75 0.84 0.83 0.84 1.07 

Filtration Coefficient (k) (cm1) 0.47 0.41 0.20 0.23 0.14 0.12 

Collision Efficiency (a) 0.80 0.69 0.98 1.13 1.50 1.29 

Collector Efficiency (r\) 0.086 0.086 0.030 0.030 0.014 0.014 



The transport and retention of microsphere beads in 20-30 mesh Ottawa sand was 

evaluated as a function of flow rate. As the applied flow rate was increased from 1.0 mL/min to 

5.0 mL/min, the maximum relative concentration (C/Co) of beads appearing in the column 

effluent increased from a value of approximately 0.002 to 0.1, respectively. Microsphere bead 

recovery data shown in Table 3.C3 for 20-30 mesh Ottawa sand also demonstrate that as the flow 

rate was increased from 1.0 mL/min to 5.0 mL/min, the fraction of beads eluted from the column 

increased from approximately 0.1% to 23.6%. 

The effluent microsphere BTC data for 20-30 mesh Ottawa sand were fit to a modified 

form of the 1-D ADR transport equation, which incorporated a filtration term: 

dCw PhdC, d Cw dCu. 

dt ewdt H dx1 x dx x w ( 4 J ) 

where w and s = subscripts corresponding to the aqueous (water) phase and the solid phase 

concentration, respectively 

\ = the colloid filtration coefficient (1/cm). 

The expanded form of the colloid filtration coefficient term is defined in Chapter 3 

(Equations 3.15 and 3.16). The BTC data shown in Figure 4.21 were fit to Equation 4.7 using 

the CXTFIT program (ver. 2.0 Toride et al, 1995), for which the first-order decay term, /x, was 

replaced with vxX to yield dimensions of time"1. The fitted parameters obtained in this manner 

(i.e., retardation factor and filtration coefficient) are given in Table 4.6. In all cases, except 

Column OS6, the fitted retardation factors were less than 1.0, indicating that the microsphere 

beads traveled more quickly through the columns than the non-reactive tracer. The faster travel 

time of microsphere beads is consistent with data reported by Johnson et al. (1995), who 

attributed this behavior to: a) not all pores are accessible to the colloid-size particles and b) 

colloid-size particles are excluded from the margins of the pore volume. As expected from the 

effluent concentration data, the colloid filtration coefficient (X) decreased from 0.47 1/cm to 0.12 

1/cm as the flow rate was increased from 1.0 mL/min to 5.0 mL/min. 

Based on the median grain size of the solid phase and the collector efficiency (given in 

Table 4.6), the collision efficiency, ofc, for each column was calculated using Equation 3.15. 
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The collision efficiency term was strongly dependent on flow rate, and exceeded the theoretical 

maximum value of 1.0 at flow rates of 2.5 mL/min and 5.0 mL/min. A collision efficiency of 

greater than 1.0 was also reported by Harter et al. (2000) for C. parvum oocysts in a medium 

sand (dc = 0.05 cm) at a pore-water velocity of 62 cm/hr. In theory, the collision efficiency term 

is a correction factor applied to the single collector efficiency (Equation 3.16) in order to account 

for repulsive forces at the solid surface, which would act to reduce colloid attachment. However, 

the influence of ionic strength on collision efficiency has been shown to be negligible at ionic 

strengths above 0.001 M (Jewett et al. 1995), and thus was not considered to be an important 

factor in the column experiments reported herein (I = 0.024 M). Differences between idealized 

filtration theory (Equation 3.16) and conditions of the actual porous medium, such as surface 

roughness or surface charge heterogeneity, could lead to enhanced particle straining. However, 

the strong dependence of collision efficiency on pore-water velocity suggests that the collector 

efficiency did not entirely represent velocity-dependent filtration processes for the system 

investigated in these studies. 

The distribution of microsphere beads within the 20-30 mesh Ottawa sand columns was 

also strongly dependent on flow rate (Figure 4.22). At the highest flow rate (5.0 mL/min), beads 

were distributed throughout the column, while at the slowest flow rate (1.0 mL/min) almost all 

the beads were retained within the first 8 cm of the column. The distribution of microsphere 

beads retained within 20-30 mesh Ottawa sand was described using filtration theory. Assuming 

steady-state conditions (dCw/dt = 0;dCs/dt = 0), and minimal hydrodynamic dispersion, Equation 

4.7 may be rewritten as: 

^T = -*CW (4.8) 
ox 

Integrating Equation 4.8 with respect to distance (x) yields the following expression: 

3(1-0J 
f~i | arpc 

' = e < - * W 2*< > (4.9) 
^ 0 

Comparisons between the actual and predicted relative concentration of microsphere beads 

within the 20-30 mesh Ottawa sand columns are shown in Figure 4.23. The colloid filtration 
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coefficients (X) used to obtain these predictions were derived independently from the effluent 

BTC fitting procedures described above. In effect, these graphs illustrate the number of beads 

remaining in solution over the length of the column. Therefore, at higher flow rates the C/C0 

values are larger near the column inlet and decrease gradually with column length. The rather 

close agreement between the measured and predicted values indicates that the filtration theory 

yields reasonable estimates of both microsphere transport and retention in 20-30 mesh Ottawa 

sand, provided that the filtration coefficient is allowed to vary with velocity. 

A comparison of microsphere bead BTCs for columns packed with 20-30 mesh Ottawa 

sand, F-70 Ottawa sand and Cecil soil, at a flow rate of 5.0 mL/min, are shown in Figure 4.24. 

The number of beads eluted from both F-70 Ottawa sand and Cecil soil over the course of each 

column experiment was minimal. As a result meaningful comparisons between measured 

effluent data and model predictions of bead transport were not possible. Even at a flow rate of 

5.0 mL/min, the fraction of beads eluted from the F-70 and Cecil soil columns was less than 

0.04% (Table 4.6). In addition, the distribution of microsphere beads within F-70 Ottawa sand 

or Cecil soil columns was limited to approximately 2 cm from the column inlet (Figure 4.25). 

These findings suggest that vertical migration of microsphere beads through fine-textured soils is 

likely to be minimal; limited to a very small number of particles traveling through preferential 

flow paths which were not present in the repacked soil columns. 

HYDROLOGIC/TRANSPORT NUMERICAL ANALYSIS 

One-dimensional modeling of flow and transport 

Model calibration 

Model calibration was performed in three stages; inverse modeling to obtain soil 

hydraulic parameters, forward modeling for 243 days to establish initial soil water conditions 

prior to solute transport experiment, forward modeling for the remaining 187 days after 

introduction of solute. Using soil water content data collected from five depths at Location 4 

(immediately adjacent to the spiking area) as the sole auxiliary variable, HYDRUS-ID was used 

to simulate the transient soil water conditions to a degree of accuracy (r2 = 0.859, Q{b,q) = 
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0.1418, mass balance error = 0.19 %) consistent with the input data. Figure 4.26 shows time 

series of soil water contents from July 1, 1999 to December 31, 1999, periodically measured with 

the TDR and simulated using HYDRUS-ID. The fitted (lines) capture the general behavior of 

soil water gain due to precipitation and water loss due to percolation and root uptake, using the 

van Genuchten parameters listed in Table 4.2. This 186-day period was selected because it 

encompassed the very dry conditions experienced during the summer of 1999, and the wetter 

periods recorded during the late Fall and early Winter. Large variations in water content provide 

a more robust data set for inversion modeling, compared to one where changes in water content 

are minimal. 

Due to limitations of the inverse module of HYDRUS-ID, only 15 parameters can be 

designated as fitted in any one simulation. A four-layer model, with five variables (e.g., 0r, 0S, oc, 

n, and/or Ks) yields 20 variables to be potentially fitted. Therefore, values of a, n, and Ks were 

fit first using initial values taken from Table 4.1, while holding 6r and 6S constant. This was 

done because the general shape of a retention curve is governed by a and n. The Ks variable in 

the conductivity function is coupled to n (m = 1 - 1/n), but the correlation between these two 

would not degrade the final paired values, only increase the time for convergence (Durner et al., 

1999). By fitting these 12 variables first, and maintaining water mass balance, good estimates of 

the general shape of the curves can be obtained. Once established, values of 8r, 6S and n were fit 

simultaneously, while both n and Ks were kept constant. The strongest correlation among 

variables was limited to 0r and 9S because the model maintains water mass balance; thus, the 

difference in available moisture (e.g., 0S - 6r) will be approximately constant regardless of the 

magnitude. 

It is apparent that the shallower soils responded more quickly and at a larger amplitude 

than the deeper soils. For example, a total of 7.14 cm of precipitation was recorded during a 

series of rainfall events that occurred between Days 54 and 56. Increases in water content were 

recorded with the TDR in successively deeper soils from Day 54 through 57, and an almost 

identical pattern was simulated with HYDRUS-ID. 

To evaluate this trend more objectively, the time series of water content residuals 

(̂ observed - p̂redicted) are presented for each of the five depths listed on the plots (Figure 4.27). 

These plots are presented to determine if a systematic bias existed in the residuals, which would 

indicate a poorly chosen set of van Genuchten parameters for one or more of the soil layers. 

86 



normally distributed errors. Calculations showed that average residuals for the 7.5, 22.5, 45, 75, 

and 115 cm depths were 0.008, -0.010, 0.005, -0.009, and -0.003 cm3 cm"3, respectively, and the 

largest absolute value of the slope was 5.0 x 10"4. Both of these measures are close to zero. 

However, though the trend is close to zero in each case, the value is greater than zero in 4 of 5 

cases, indicating some serial correlation. To study the strength of this correlation, the residuals 

were analyzed using a Pearson Test for Serial Independence (McCuen, 1993), and found that 

residuals in Layers 1, 3 and 5 do contain some serial correlation at all significance levels below 

5%, but that Layer 1 failed the null hypothesis by a very narrow margin. Nonetheless, with the 

slope values very close to zero, we believe that the practical significance of correlation in the 

residuals is very low and not indicative of a systematic problem with the model or the van 

Genuchten parameter sets. 

Comparing manually-collected data with daily resolution (at best) with HYDRUS-1D, 

where time increments were approximately 90 minutes is not simple or entirely valid. Moreover, 

it is important to note that average water content measurements, taken of either 15-cm or 30-cm 

thick sequences, are compared to point measurements obtained with the model. Although data 

are compared from mid-points in the TDR probe, dynamic behavior of water movement near the 

surface occurs at resolutions much smaller than 15 cm. Nonetheless, given the limitations of the 

observed data, the geometry of the soil layers, and the estimated parameter sets, adequately 

represent field conditions. 

Water movement and particle transport during extreme events 

The drought conditions under which the microsphere transport experiment was conducted 

likely reduced the penetration depth into the soil, and the potential for preferential movement of 

microspheres through large soil pores and to the water table. Nonetheless, it has been observed 

that E. coli concentration is flow-rate dependant (Fisher et al., 2000), and it was shown herein 

that spring flow rate was positively correlated to increases in soil water and groundwater storage. 

These observations imply that high antecedent water content promotes the movement of 

pathogens toward the spring. 
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lo test tnis nypotnesis in a more rigorous manner, a series 01 model simulations were 

undertaken for two different soil profiles, and for a series of increasing antecedent water storage 

values. The goal of these model simulations was to evaluate the significance of internal drainage 

of water toward the water table, and potential movement of pathogens, given different initial and 

boundary conditions. From a field management standpoint, it would be beneficial to consider 

these conditions when deciding on grazing schedules, and their potential impact on subsurface 

transport of microorganisms. 

HYDRUS-1D was run in a forward mode for these calculations, using precipitation that 

varied from 0, 1, 2.5, 5.0, 10.0, and 15.0 cm. Soil layering was taken as either a) the profile 

characteristics (layer thicknesses, hydraulic properties) at W2 or b) a three-layer profile 

dominated by sandier soil. Initial and boundary conditions were as follows: 

V(z,t) = y/t(z) t = t0 (4.10) 

£ ( y ) | — + l | =fl l < / < 2 (4.11) 

Kbr) 

V & y 2 = 0 

^ dz A = 0 

= 0 2 < ; < 1 0 (4.12) 

?z=o=*(v) (4-!3) 

where i|/j(z) = initial soil water potential 

Pi = precipitation that varies from 0 to 15 cm/d 

z = depth in the profile (0 is top of profile and -150 cm is bottom of profile) 

Equation 4.13 represents a free-drainage condition with a unit hydraulic gradient. Water mass 

balance was taken at the bottom of the profile and accounts for flow passing the bottom plane. 

The initial soil water potential (\j/i(z)) was obtained by conducting a separate model 

simulation using a constant flux upper boundary for six different flux rates varying between 5 x 



10"4 and 0.25 cm/d. A steady-state soil profile in water potential is established when deep 

drainage equals precipitation. The SWS was obtained by integrating the steady-state water 

contents with depth, similar to the function inside the parentheses on Equation 2.2, which was 

then read into the transient model described by Equations 4.10 through 4.13. The simulation 

period was held to eight days after cessation of precipitation. This rather short period was 

employed because field observations have shown that increases in spring flow rates can occur 

within hours of precipitation when high antecedent water contents existed, and thus it was the 

intention to evaluate short-term drainage. 

Solute transport was also incorporated into this analysis. The purpose of adding a solute 

was to evaluate whether or not the potential for rapid downward migration was dependent on the 

antecedent water content conditions in the soil profile. Solute transport was simulated by placing 

a unit concentration of an ideal tracer (e.g., bromide) at 5.0 cm below ground surface, and 

simulating transport during and after precipitation. The placement depth for the solute was 

approximately the same as the microsphere and bromide injection at the field site. Migration of 

the "plume" was evaluated by recording the depths of maximum concentration, and the down 

gradient edge of the solute front (e.g., relative concentration (C/Co) = 0.01). Darcian flow was 

assumed throughout the soil profile (e.g., no preferential flow pathways), along with 

homogeneity and isotropy within each layer (e.g., no physical heterogeneities that would 

promote diffusion into immobile water regions). The former assumption will decrease 

penetration depth, while the latter assumption will increase penetration depth. Nevertheless, the 

simplifyied flow system will provide valuable information regarding ideal transport under these 

conditions. 

Figure 4.28 shows iso-drainage contours of water flow to the water table as a function of 

antecedent water storage (SWSj) for the soil characteristics at W2. These results show the initial 

SWS conditions for which deep drainage is essentially zero for most precipitation events (e.g., 

SWSj < ~29 cm), and those conditions when even small events will produce some drainage 

(SWSj > ~ 32 cm). The top portion of the plot provides the equivalent average water content for 

the profile. An important parameter is soil water holding capacity, which is marked by the 

vertical line at SWSj = 31.7 cm (6V = 0.211 cm3 cm"3). At this level, the soil profile is saturated, 

so that any new water falling upon the soil surface causes an equivalent displacement at the 

bottom of the profile. These conditions were encountered during this study in the late Winter 
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For example, Figure 4.8 shows elevated soil water storage until about Day 100, when the values 

begin decreasing steadily, and Figure 4.6 shows a significant decrease in spring flow rate 

(specifically interflow) at the same time. These results indicate the potential for "calibrating" the 

soil profile so that conditions that would promote deep drainage are understood, and 

management steps can be taken if needed. 

The migration of the ideal solute during these precipitation events, given the same initial 

and boundary conditions is shown in Figure 4.29. Clearly, the movement of the solute peak was 

independent of the SWS;, and was influenced only by precipitation. These results indicate that 

solutes subject to Darcian flow and ideal transport likely will not result in rapid downward 

transport. Rather, processes not addressed by HYDRUS-1D, specifically preferential flow or 

other types of soil bypass flow, could result in more rapid downward transport. Indeed, many of 

the occurrences of C. parvum contamination of groundwater were directly tied to transport along 

preferential flow pathways. 

Iso-drainage contours for a three-layer, two-material soil profile (sandy loam, sand, sandy 

loam in 50-cm thick layers) are shown in Figure 4.30. Maximum precipitation for this soil was 

10 cm, given the significantly lower water holding capacity of the profile versus the W2 case, 

and the higher recorded drainage. It is apparent that internal drainage will occur under wetted 

conditions even without precipitation, and that internal drainage will be initiated under lower 

rainfall conditions than in the W2 profile. The sandier soil led to a lower water holding capacity 

of approximately 26.4 cm, or equivalent to a 0V = 0.159 cm3 cm"3, which is at the limit of the x-

axis. These two profiles respond differently with respect to water holding capacity and 

conditions that would lead to downward drainage. 

Field Methodologies Used for Microsphere Collection 

Two field sampling techniques were used in this study that warrant special discussion. 

Both provided a means of collecting water samples that improved the potential identification of 

microspheres in the water samples during the field transport study. 
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Zero-tension lysimeters 

The zero-tension lysimeters (ZTLs) were installed in the soil directly below the spiking 

area for microspheres and bromide. The ZTLs were chosen for this study because they are 

designed to allow the passage of colloid-sized particles through a mesh with 150 jam openings. 

Conventional soil pore water samplers are typically made of porous ceramic or stainless steel 

with openings of between 0.5 and 20 urn. Openings of this size would: (1) filter out 

microspheres at the soil/sampler interface and (2) exceed the bubbling pressure unless the porous 

material was saturated. Both cases would render the sampler ineffective for the purpose of 

collecting microspheres. Bulk water samplers, a class of samplers that includes the ZTLs, tend 

to collect water traveling through larger pores and not through smaller pores. For this study, 

smaller pore classes were not expected to transmit significant numbers of microspheres; so, this 

disadvantage was greatly outweighed by the ability to sample microspheres in pore water. 

The basic design of the zero-tension lysimeters was modified slightly by the research 

team from that originally suggested by Thompson and Scharf (1994). In this new design, the 

floor of the sampler was fabricated at an angle of 30°, rather than close to 0° in the original 

design, ensuring that all water collected by the sampler can be withdrawn. Thus, the 1/8 inch 

tubing that penetrates the outside of the sampler does not need to be sealed, because the upper 

chamber is now completely isolated from the lower chamber. The design allows additional 

security from shearing loose the sampling tubing during installation. 

The results of the transport studies indicated the limitation and success of the ZTLs. The 

limitation of the sampler is that very moist conditions are needed before the sampler will collect 

water. Even with the new sampler design, the unusually dry conditions prevented the samplers 

from being more effective. The success of the samplers is shown that almost 90% (7 of 8) of 

samples collected with the ZTLs were found to contain microspheres. Conventional samplers 

would have yielded zero microspheres. The weather patterns dominating the southern U.S.A. 

during the Summer 2000 were unfortunate from the standpoint of the field study. Normal rainfall 

patterns would have promoted better collection of soil water, and hence the potential collection 

of particles. 
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Flow-through Centrifuge 

As described in Chapters 2, the flow-through centrifuge (FTC) was used for "sampling" 

large volumes of spring water, without the associated problems of collecting and storing large 

samples. The centrifuge effectively removed colloid-sized particles (e.g., microspheres) in 

laboratory conditions. Efficiencies of approximately 99.9%, 83.3%, and 78.8%, were obtained 

for microsphere collection in the bowl during centrifugation, from original concentrations of 1.0 

x 10 , 1.0 x 10 , and 1.0 x 10 #/L, respectively. The results show that percent recovery was 

positively correlated to particle concentration, and that even lower concentration mixtures should 

yield good recovery. 

In the field environment, the FTC provided a means of continuously sampling spring 

water at > 2 L/min for 60 minutes. Assuming that microsphere attachment and detachment 

processes would randomize the occurrence of microsphere at the spring, the ability to process 

continuous water samples improved the likelihood of recovery not generally possible elsewhere. 

To our knowledge, the FTC has been used primarily for collecting colloid and larger-sized 

sediments in stream environments to evaluate sediment loading (Hayes et al., 1989). The FTC 

has not been evaluated under the conditions tested in this research study. We believe that the 

FTC was a valuable tool used in this study, and it could be useful in similar studies where 

parasite identification and collection are important. 

Field Conditions That Would Promote The Transport Of C. Parvum Through Soil 

Clearly, the experiments conducted at the ARS site during the Summer of 2000 were 

affected significantly by lower rainfall. As indicated in the results, the rainfall amounts were the 

lowest in almost 50 years. Given that particles are transported downward into the soil primarily 

through advective transport using water as the transport medium, it is likely that penetration 

depth into the soil would be deeper in the presence of higher precipitation, and vice versa. The 

study results described above show the presence of microspheres as deep at 100 cm in a soil core 

collected directly below the spiking area. However, even with the unusually low rainfall 

amounts (30.37 cm from 28 Feb - 30 Aug, representing only 50% of normal precipitation), 

microsphere transport occurred to a depth that exceeded the depth of collection. It would be 
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appropriate to surmise that deeper penetration would have occurred under normal, ambient 

conditions. Using the known positive correlation of E. coli with spring flow (Fisher et al., 2000), 

ground water transport toward the spring would have improved the number of detections in water 

collected with the flow-through centrifuge and/or sequential sampler. 

The HYDRUS-1D transport modeling was conducted to test the hypothesis that 

conditions of elevated antecedent water storage, coupled with precipitation events, could lead to 

rapid downward drainage of existing soil water and thus a deeper penetration of tracer (or C. 

parvum) into the soil profile. The results of the modeling clearly showed that each soil profile 

has a characteristic water holding capacity, above which any appreciable precipitation caused an 

equal depth of drainage. For soil water conditions below this water holding capacity, 

precipitation reduced the antecedent water deficit, until that deficit was reduced to zero. After 

which, drainage occurred. 

With respect to the tracer migration, a significant increase in the penetration depth of an 

ideal tracer as a function of antecedent water content was not seen. Instead, the penetration 

depth was found to be independent of soil wetness before the onset of precipitation, indicating 

that the pre-existing water moves ahead of the wetting front, and that mixing in the region of the 

wetting front probably accounted for most of the differences. It is important to note, however, 

that these results assume the presence of dissolved constituents rather than constituents in 

suspension, and that porous media flow dominates (e.g., matrix flow with no preferential flow 

pathways). Modeling preferential flow pathways requires site characterization and modeling 

activities that were not within the scope of this study. 

Though the field conditions did not allow for a thorough study of preferential flow and transport, 

it would be safe to expect that near-saturated conditions in a soil with larger macropores would 

promote the potential for extremely rapid downward transport of solutions and suspensions. 

Numerous other studies have shown the potential for rapid, non-Darcian transport of ideal tracers 

under conditions of elevated water storage and precipitation. Indeed, given the results of column 

transport studies of C. parvum in coarse sediments (Harter et al., 2000), where velocity 

enhancement was quantified as a function of flux rate and grain size (higher flux rates and larger 

grain sizes led to higher enhancement), there is every reason to expect that these same factors 

would affect field transport of C. parvum as well. 
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Horizontal EM-31 inversion results 

Vertical EM-31 inversion results 

Figure 4.1a Results of numerical inversion analyses of EM-31 data. Solid lines represent depth 
to critical saturation and dashed lines represent elevation contours. Data assumes that 
"unsaturated" layer ECa = 1 mS/m and "saturated" layer ECa = 64 mS/m. 
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Figure 4. lb Results of GPR survey along the eastern-most portion of the study area. The 
vertical axis denotes two-way travel time (TWTT) in ns, but we assume that depth to the 
reflector at 240 ns ~ 8 m. Reflectors corresponding to the ground surface, the water table (or the 
depth to critical saturation), and the saprolite are shown. The hyperbolic reflectors marked A-B 
will migrate to discrete lens-like features below the saprolite layer. 
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Figure 4.2a Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 0-15 cm depth. 
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Figure 4.2b Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 15-30 cm depth. 
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Figure 4.2c Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 30-46 cm depth. 
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Figure 4.2d Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 46-61 cm depth. 
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Figure 4.2e Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 61-76 cm depth. 
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Figure 4.2f Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 76-91 cm depth. 
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Figure 4.2g Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 91-107 cm depth. 
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Figure 4.2h Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 107-122 cm depth. 
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Figure 4.2i Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 122-137 cm depth. 
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Figure 4.2j Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 137-152 cm depth. 
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Figure 4.2k Fitted soil water retention (A) and hydraulic conductivity (B) 
curves for W2 soil collected between 152-168 cm depth. 
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Easting - m 

Figure 4.3 Water table elevations measured on December 30, 1999, using all 
Sixteen 2.54-cm wells (solid squares and shaded circles). Hatched area at bottom of figure 
indicates the trough of 2nd spring. Hydraulic gradient measured from Flume to well 3, 
shown as arrow on graph. Box in center of graph indicates area used for water balance 
calculations. 
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Figure 4.4. Daily and cumulative precipitation recorded by the tipping bucket rain gauge at 
experiment site for 2000. 
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Figure 4.5. Year 2000 monthly precipitation recorded by tipping bucket rain gauge compared to 
the monthly long term averages for the J. Phil Campbell, Sr. Natural Resource Research Center. 
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Figure 4. 6 Cumulative precipitation and evapotranspiration at W2 site. 
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Figure 4.7. Average soil moisture for installed TDR probes and daily precipitation. 
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Figure 4.8 Average soil water storage for 5 TDR probes installed at W2 site. 
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Figure 4.9. Change in average groundwater depth from soil surface on 2/24/00 (4 days before 
spiking) until 8/20/00 for the 16 installed piezometers. 
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Figure 4.10. Contour maps of the groundwater as defined by the piezometers 1-11 and the flume outlet at various dates. Maps 
generated using Surfer and the Krigging technique to create the associated grid file. Dots indicate piezometer locations. 
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Figure 4.11 Daily (diamonds) and cumulative (squares) GW underflow estimated for 
the southern half of the monitored subplot. 
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Figure 4.12 Results of baseflow separation of W2 spring for time beginning in 
January 1, 2000 and ending August 31, 2000. 
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Figure 4.13 Ground water storage at W2 site 
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Figure 4.14 Cumulative baseflow (top series) and interflow (bottom series), separated 
from spring flow using Equation 3.3. 
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Figure 4.15 Relationship between precipitation and increased SWS and GWS. 
Symbols equal observed data; Line is the regression line (y = 11.18 + 1.19 (x)). 
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Figure 4.16 Cumulative water volume leaving the W2 subplot, but not accounted for 
in other water budget components. Values calculated as (baseflow - GW underflow). 
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Figure 4.17. Bromide concentration of water collected from Monitoring Well 1. 
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Figure 4.18. Bromide concentration of water samples collected at the spring (Sigma sampler). 
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Figure 4.19. Distribution of microsphere beads retained in soil cores collected from the spikinj 

area. 
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Figure 4.20. Representative non-reactive tracer breakthrough curves for 20-30 mesh Ottawa 

sand, F-70 Ottawa sand and Cecil soil. 
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Figure 4.21. Comparison of microsphere breakthrough curves for 20-30 mesh Ottawa sand at 

flow rates of 1.0, 2.5, and 5.0 mL/min. 
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Figure 4.22. Comparison of microsphere bead retention distributions in 20-30 mesh Ottawa sand 

at flow rates of 1.0, 2.5 and 5.0 mL/min. 
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Figure 4.23. Measured and predicted distribution of beads retained within 20-30 mesh Ottawa 

sand soil columns at flow rates 1.0, 2.5 and 5.0 mL/min. 
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Figure 4.24. Comparison of microsphere bead breakthrough curves for 20-30 mesh Ottawa sand, 

F-70 Ottawa sand and Cecil soil at a flow rate of 5.0 mL/min. 
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Figure 4.25. Comparison of microsphere bead retention distributions in 20-30, F-70, and Cecil 

soil columns at a flow rate of 5.0 mL/min. 
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Figure 4.26 Fitted versus observed volumetric water contents, collected with the TDR 
from Location 4, adjacent to the spiking area. Legend: closed square - 7.5 cm; closed 
circle - 22.5 cm; triangle - 45 cm; open circle - 75 cm; diamond - 115 cm. 
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Figure 4.27 Residuals obtained from HYDRUS-ID modeling 
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Figure 4.28 Predicted deep drainage in W2 soil profile as functions of antecedent 
water storage and precipitation. Water holding capacity (31.7 cm) is second y-axis. 
Equivalent average water content shown at top. 
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Figure 4.29 Penetration depth of peak concentration of ideal solute in W2 soil as 
functions of antecedent water storage and precipitation. Water holding capacity 
(31.7 cm) is second y-axis. Equivalent average water content shown at top. 

133 



0.121 0.127 0.133 0.139 0.145 0.152 0.158 

Figure 4.30 Predicted deep drainage in hypothetical silt loam - sand soil profile as 
functions of antecedent water storage and precipitation. Water holding capacity 
(26.4 cm) is second y-axis. Equivalent average water content shown at top. 
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SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

SUMMARY 

The project is the first study to investigate the transport of a Cryptosporidium surrogate 

under field conditions. Polystyrene microspheres of similar size (4-6 /xm) as Cryptosporidium 

oocysts were used to spike a defined area in a cattle grazing field site with borehole wells 

instrumented with zero-tension lysimeters and pressure transducers. The polystyrene 

microspheres were detected and counted using epiflorescence microscopy. The groundwater 

flow at the field site was characterized using state of the art geophysical surveys and the 

hydrology (rainfall, soil water, groundwater flow and evapo-transpiration) was followed for a 

period of approximately one year. The transport of the surrogate microspheres was followed by 

periodic sampling at the zero-tension lysimeters, monitoring wells and a perennial spring. 

The field study was complemented by column studies in the laboratory under controlled 

conditions. The column studies focused on transport of surrogate microspheres through well 

characterized sand media and soil media from the field site. The column studies produced 

numerical values for parameters used for a one-dimensional transport model. The model was 

tested for the column configuration and the field site. 

CONCLUSIONS 

The major contribution and conclusions of the project are: 

1. Improvements in field sampling and measurements for a surrogate used for 

Cryptosporidium parvum have been developed for field transport studies and 

laboratory column studies. 

2. The vertical migration of polystyrene microspheres in the column studies was 

minimal. This suggests that migration of Cryptosporidium parvum oocysts 

through fine-textured soils is likely to be minimal. 
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the field, especially after rainfall events, the data suggests that a very small 

number of these surrogate particles travel through preferential flow paths at field 

sites. 

4. The parameters measured from column studies were used as input variables in a 

1-D hydrological (HYDRUS-ID) transport model, and indicated that reasonable 

predictions could be made on soil water content and the limited movement and 

depth penetration of solutes (surrogate particles) would occur based on antecedent 

water storage and precipitation. 

RECOMMENDATIONS 

Two recommendations are made 

1. The single and major recommendation for further study is a validation at a field 

site of a watershed, whether viable or non-viable oocysts of Cryptosporidium 

parvum will be transported only through preferential flow paths. 

2. Use a similar methodology combining column and field studies to validate a two 

(HYDRUS-2D) or three dimensional model for transport and quantitative 

predictions for Cryptosporidium transport in watersheds. 
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ABBREVIATIONS 

A 

ARS 

As 

a 

filter area 

Agricultural Research Service 

Happel's flow field factor 

the area of each subarea 

b(z) normalized water uptake function at depth, z 

C 

Co 

c* 
c 

measured solute concentration (mg/L) 

influent solute concentration (mg/L) 

the relative solute concentration (mg/L) 

aqueous (liquid) phase solute concentration (M/L ) 

DH 

Dk 

d, 

the hydrodynamic dispersion coefficient (cm /hr) 

dispersion coefficient for the liquid phase (L/t) 

mean grain size 

ESWTR 

ET 

Enhanced Surface Water Treatment Rule 

evapotranspiration 

FTC 

f 
fk 

flow-through centrifuge 

the fraction of solid phase in contact with the mobile water 

the interflow response at time, k 

GPR 

GT 

GW 

AGWS 

ground penetrating radar 

Georgia Tech 

groundwater 

change in ground water storage 

H total head (L) 
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IF 

i 

i subscripts 

j subscripts 

interflow, or shallow subsurface water flow 

an iteration counter 

depth 

location 

K 

KD 

Kd 

K,/ 

Ks 

k 

the hydraulic conductivity (L/t) 

the linear distribution coefficient (mL/g) 

linear distribution or partition coefficient (L /M) 

components of a dimensionless anisotropy tensor 

saturated hydraulic conductivity (L/t) 

chemical species being modeled 

L 

U 

the column length (cm) 

rooting depth of the plants 

rriq number of different sets of measurements 

N 

NG 

NLo 

N R 

n 

nqj 

the total number of microspheres 

gravitational number (settling velocity/pore water velocity) 

London—van der Waals constant 

size group (particle diameter/mean particle diameter) 

pore size distribution parameter 

number of measurements in a particular measurement set 

P 

Pe 

P, 

pv 

precipitation 

the Peclet number 

precipitation that varies from 0 to 15 cm/d 

dimensionless pore volumes 
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q 

qi*(z,to 

qj(z,ti,b) 

Darcy velocity (L/t) 

specific measurements at time t; for the jth measurement set at location 

z(z,tj) 

corresponding model predictions for the vector of optimized parameters 

RF 

Rm 

RMSE 

RT 

r subscripts 

the retardation factor 

the retardation factor for the mobile water 

root mean square error 

the total (equilibrium) retardation factor 

residual volumetric water contents 

S 

SAR 

SRI and SRO 

ASWS 

s 

Sn 

sink term that represents water loss through plant root uptake (L3/L3t) 

sodium adsorption ratio 

surface runon and runoff, respectively (both assumed zero) 

change in soil water storage 

sorbed (solid) phase solute concentration (M/M) 

potential water uptake rate [1/T] 

potential transpiration rate [L/T] 

time (t) 

VES 

Vj and Wij 

v 

vertical electrical sounding 

weights associated with a particular measurement set or point, respectively 

the pore water velocity 

w and s subscripts corresponding to the aqueous (water) phase and the solid phase 

concentration, respectively 

X 

x 

dimensionless distance 

distance along the column (cm) 
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Xj spatial coordinates (i= 1,2) 

y the total springflow 

ZTL zero-tension lysimeter 

z depth of measurement 

a filter parameter that controls attenuation of the signal 

oce empirical constant called the collision efficiency 

a,] the longitudinal dispersivity (L) (c<i = Dk/vz) 

Om the solute mass transfer coefficient between mobile and immobile water 

(1/hr) 

$ m the ratio of mobile water to immobile water 

0 relative volumetric water saturation 

6 volumetric water content (cm3/cm3) 

6m volumetric content of mobile water (cm /cm ) 

X filter coefficient 

r| single collector efficiency 

o apparent electrical conductivity (ECa) 

pb soil bulk density (M/L3) 

p s soil particle density (M/L assumed at 2.65 g/cm ) 

v|/ soil water potential (L) 

V[/j(z) initial soil water potential 
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