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DEFINITIONS OF SYMBOLS USED 

A • Amplification of the amplifier without feedback. 

A 1 r Amplification of the amplifier with feedback. 

$ s Attenuation of the feedback control resistance, or ratio of the 

voltage supplied to the feedback network to the total output 

voltage. A pure numeric, independent of frequency. 

y s Attenuation of the feedback network. A vector quantity. 

$ = (3y $ a vector quantity. 

e 0 = Total output voltage. 

e g s Signal input voltage. 

R» • Resistance across which e g is developed. 

R0 s Cathode biasing resistance. 

Rf. s Resistance terminating the feedback network. 

R.p» R'-P a Feedback control resistances such that g* 
R, 

Rf +RT
f 

R^ s Resistance through which the plate voltage is applied to the tube. 

Rgp. = Screen grid voltage supply resistance. 

Cc = Cathode by-pass condenser . 

C^ s Blocking condenser for t he feedback c o n t r o l c i r c u i t . 

CSg = Screen g r id by-pass condenser . 

C m Coupling condenser between s t a g e s . 

&o = Characteristic impedance of network. 

Z^ s Transfer impedance of network. 

f0 = Null frequency, cycles per second. 

The term "regeneration" refers to the effect of feedback voltage 
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upon amplifier characteristics when the vector sum of the input signal 

voltage and the feedback voltage present in the amplifier is greater 

than the input signal voltage. 

The terms "degeneration", "inverse feedback", and "negative feedback 

are synonomous in this thesis, and refer to the effect of feedback 

voltage upon amplifier characteristics when the vector sum of the input 

signal voltage and the feedback voltage present in the amplifier is 

less than the input signal voltage. 
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FREQUENCY DISCRIMINATION BY INVERSE FEEDBACK 

INTRODUCTION 

The use of negative or inverse feedback in amplifiers has 

become widespread since the appearance of H. S. Black's paper on the 

subject in 1934. Much improvement in the operating charac te r i s t i c s of 

amplifiers may be realized by inverse feedback. Essent ia l ly the method 

of use consis ts in taking part of the output voltage of the amplifier 

and returning i t to the input c i r c u i t in the proper phase re la t ive to 

the impressed s ignal . "When t h i s i s done the re-amplified feedback 

voltage wi l l tend to cancel the d i s to r t ion and the noise originating in 

the amplif ier . This advantage i s , of course, obtained at the expense 

of reduced voltage amplification but with the high gain possible with 

modern tubes t h i s gives l i t t l e cause for concern. Usually inverse feed

back may be added to an exis t ing amplifier or designed in the c i r c u i t 

of an amplifier by the addit ion of only one condenser and one or two 

2 
resistances. The benefits may be summarized as follows : 

(1) Reduction of amplitude distortion. 

(2) Reduction of noise. 

(3) Reduction of frequency and phase distortion. 

•'•Black, H.S., Elec. Eng., vol. 53, Jan. 1934, p. 114 

2 
Reich, H.J., Theory and Applications of Electron Tubes, McGraw-

Hill, 1939, p.220 
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(4) Increase of stability (reduction of variation of amplifi

cation with operating voltages and tube age). 

(5) Reduction of variation of amplification with input voltage. 

(6) Reduction of variation of amplification with load impedance. 

(7) Increased damping of loud speaker transients and resonance. 

In some cases it may be desirable to have a gain-frequency charac

teristic which is not flat but discriminates against certain frequencies. 

One way in which this may be accomplished is by the insertion in the 

feedback circuit of a network having a response characteristic the in

verse of that desired for the amplifier. In particular the amplifier 

may be made highly selective by the use of a frequency-null bridge or 

network such as the parallel-T network. It is the purpose of this thesis 

to design and test several amplifiers which achieve frequency discrim

ination through the use of inverse feedback networks. 
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ANALYSIS OF IWERSE FEEDBACK 

In figure 1, which represents a feedback amplifier in general 

form, a portion of the output voltage is returned through the feedback 

network to the input circuit* WAU represents the amplification without 

feedback, 0 is the ratio of feedback voltage to the total output vol

tage. In general both A and 0 are complex quantities. Neglecting the 

harmonic and noise components, the output voltage, expressed in terms 

of the signal voltage, will take the form of the series: 

e0 • Aes (H-A0T 4 ̂ V + ) (l) 

which is convergent if A0 <1» The overall amplification, with feed

back, is 

, 1 - e o - A e s o ? 
~~s ^(1+A0+A202 + ) (2) 

The quantity in parenthesis in the above equation is the power seriesr 

development of 

I 
1 - A0 

Equation (2) ifey therefore be written 

i * 
A1 ^ 1 -W (3) 

Thus the original amplification is changed by the factor 

_1 
1 - A^ 
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The product Aj6 i s called the feedback factor and i s considered posi

t i ve when the vector sum of e s and fie0 i s greater than es* negative 

when the sum i s less than e s . 

The feedback i s pos i t ive , resul t ing in increased amplification 

when l-Aj2H< 1, negative, resu l t ing in decreased amplification when 

| 1—Âf I > 1, and there i s no change in gain T/vhen l-i^0 - 1 . Thus the 

magnitude of Ir&fi i s the c r i t e r i on for determining whether feedback i s 

posi t ive or negative, and not the feedback fac tor . 

I t may be shown that when the feedback i s negative the change in 

amplification i s always such as to r e su l t in a decrease in amplitude d i s 

t o r t i o n and frequency d i s to r t ion , and in some types of noise* Since i t 

i s beyond the purpose of t h i s paper to analyze in de ta i l the effect of 

feedback on noise and d i s to r t ion these components were omitted from the 

diagram in Figure !• A complete analysis from t h i s standpoint may be 

found in the references l i s t ed in the bibliography. 

As kfi i s increased beyond the value of three or four the im

portance of 1 in the gain expression 

A1 = A 
1-AjO 

becomes small i n comparison wi th Ajtf , p a r t i c u l a r l y i f the imaginary com

ponent of Aj/i i s l a rge i n comparison wi th the r e a l component. Thus i f 

the feedback i s increased or i s applied over a higher gain the overall 

amplification approaches the l imiting value: 
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and i s independent of A. If A0 » 1 the amplifier gain i s inversely-

proportional to j#, which means tha t the frequency response character

i s t i c of the amplifier with high feedback i s the inverse of the response 

charac te r i s t i c of the feedback network. Since Pm/B^V» and/(3 does not 

introduce any phase sh i f t , the frequency response of the amplifier should 

be f l a t whenV=l» If V has a null point the amplifier wil l have a 

frequency response peak, or i f V i s a low-pass f i l t e r the amplifier 

wi l l have a high-pass c h a r a c t e r i s t i c . Or, by proper design i t i s pos

sible to correct the charac te r i s t i c due to some section a t a point be

yond the amplifier by putting a rjetwork with ident ica l charac te r i s t i c s 

in the feedback c i r c u i t . 

If \ &j6 J » 1 the amplification i s independent of load impedance 

provided the load does not form a par t of the feedback c i r c u i t . Also 

the amplification i s independent of A and hence of supply voltage and 

tube f ac to r s , which greatly, improves the s t ab i l i t y of the amplif ier . 

Nyquist has shown that a great deal may be learned about the 

operation of a feedback amplifier by plot t ing a polar diagram of A^ a t 

a l l frequencies from zero to i n f i n i t y . The magnitude of A0 i s plotted 

to a l inear scale against the t o t a l phase shif t angle. If t h i s curve 

encloses the point l / 0 the feedback i s posi t ive and in sufficient 

amount to cause the amplifier to osc i l l a t e a t a par t icu lar frequency. 

If the curve does not enclose l / 0 but does in te rsec t a c i rc le of uni t 

radius with center a t l / 0 the feedback i s posit ive a t these frequencies 

but o sc i l l a t ion wi l l not occur. If the curve does not in tersec t t h i s 

Nyquist, H., Bell System Tech. Jour . , vo l . 11, p . 126 
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circle at any point the feedback is negative while tangency to the 

circle means there is no change in gain# The polar diagram for the 

triode feedback amplifier with pure resistance load is a circle with 

center at J&- /l80° and radius of J£. • ln general the high values 

of relative phase shift occur at frequencies for which A is small, so 

that it is possible to prevent oscillation in one-, two-, or three-

stage resistance coupled amplifiers. 
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THE PARALLEL-T NETWORK 

In t h e s e c t i o n on feedback a n a l y s i s i t was shown t h a t i f | Ajzf|»l 

t h e frequency response curve of a feedback ampl i f i e r w i l l be the inverse 

of the response c h a r a c t e r i s t i c of the network used i n the feedback 

c i r c u i t . The types of networks t h a t may be used a r e p r a c t i c a l l y un

l i m i t e d , the type used depending on the response c h a r a c t e r i s t i c des i red* 

In F igures 9 and 10 are shown conf igu ra t ions used by F r i t z i n g e r ^ t o ob

t a i n h igh- and low-pass response r e s p e c t i v e l y i n an a m p l i f i e r . Addition

a l s e c t i o n s may be added t o inc rease t h e sharpness of cu t -o f f . 

A r e sonan t c i r c u i t or a frequency br idge may be used t o provide 

a n u l l i n the feedback pa th and hence a'peak i n the a m p l i f i e r c h a r a c t e r 

i s t i c * Figure 7 shows the T/ien b r idge which i s well su i ted fo r t h i s 

p u r p o s e . At b a l a n c e : 

K* -3-±-
R l 
R2 R3 - j 

wc3 

R - ^ - j ML - j Ms. - Ri . - j M l 
wc3 wc4 w2csc4 wc4 

In order for this equation to hold the sum of the reals and the sum of 

the imaginaries must equal zero. 

^Fritzinger, G.H., Proc. I. R. E., vol. 26, Jan. 1958, p. 207 
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Equat ing r e a l s : 

R1R3R4 
R i R1R3R4 

•WTC3C4 

2 
w s 

1 
R3R4C3C4 

Equat ing i m a g i n a r i e s : 

(5) 

R1R4 R1R5 m
 R2R4 

03 04 04 

R1R4 =
 R2R4 " R1R3 

c3 c4 

f i - R2ft4 - R1R3 - ^2 . ^3 (6) 
c3 " R ^ " It " R4 

In many cases i t i s not convenient t o use a b r idge "because of 

t h e n e c e s s i t y of i s o l a t i n g t h e input t e r m i n a l s . Furthermore the ad

d i t i o n a l frequency d i s t o r t i o n and phase s h i f t in t roduced by t h e i s o 

l a t i n g medium may be o b j e c t i o n a l i n many c a s e s . For t he s e reasons the 

equ iva l en t p a r a l l e l - T (Figure 8) or br idged-T 3 - t e rmina l networks are 

more d e s i r a b l e . The p a r a l l e l - T w i l l be considered i n some d e t a i l here

w i t h . 

To show the equ iva l en t c i r c u i t of the p a r a l l e l - T network a t t he 

n u l l frequency each component T i s f i r s t reduced to an e q u i v a l e n t p i 

s e c t i o n and then the two s e c t i o n s a r e p a r a l l e l e d . Using the T t o p i 

t r a n s f o r m a t i o n equa t ions ( n o t a t i o n s i n F igures 2 and 3 ) : 

Z1Z2 +" Z2Z3 + hZl 
%2F — 

h 
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^1^2 "*" Z2.Z3 + %^1 
*23 = zj 

Z1Z2 + Z2Z3 + Z3Z1 
13 = ~H 

For the T section shown in Figure 4 

R1R2 " 3R2X3 " 3R1X3 
zi2 s z$q 

Rationalizing 

3R1R2 t R2X3 + R1X5 
^12 a XT" 

^25 

"3 

n R1R? / x • R1R2 

s 3 _L1 * R2 + Rl = (Rl 4- R2) + 0 -JLL 
X3 H 

RjRg- jRgXg - jRjXg = R2X3 
R 2 " 0 \ - r — «»- X3 ) 

Rl Rl 

RXR2 - jR2X3 - jR1X3a RjXg 
31 - % - 0 ( -TT— + x3 ) 

R2 R2 

For the T section shown in Figure 5 

_xlx2 " ^ 2 ^ " JX1R3 xl x2 
- - - - 3 ( x l + " x 2 ) 
R3 "Z 

z _ "X1X2 " JX2R3 " JX1R3 
•23 - zm 





Rationalizing 

•jgaj* t X2R3 » X1R5 , %S2 
A l x l 

-XXX2 - JX2R5 " JX1R3 
z 3 i = r ^ 

R a t i o n a l i z i n g 

— 3X^X2 +• ^2^3 •+* ̂ 1^3 /^3X1 
z3i = Tz = HcJT * R3 ' " j x i 

5 
For des ign convenience l e t R.. = Rg» 2R„ = R 

X-i S X p S 6-A.ir » A 

Then the equivalent pi for figure 4 becomes: 

zi2=
 2R * ^̂ r-

hz ' hi ' H'JX 

4nd for f i gu re 5 : 

2X2 

Z12= ~ R ' ^2 X 

Z 2 3 = Z31 = R ^ X 

^This assumption will be justified on page 16 
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Paralleling the two pi*s the series element is: 

z, _ ( 2 R + j ^ ) ( - ^ - J 2 X ) 
12 " 3 7^ 

2R-2L. + j( 2R_ „ 2X) 
R X 

-4X2 - J8RX + 4R2 R2 - X2 - J2RX 

£ (R2 - X2) • j 2 ( ^ T x 2 ) (R2 . x 2 ) / £ + ^ j 
R X <*R «3L 

R a t i o n a l i z i n g and s impl i fy ing : 

R . X X% . R^ 
z , " 2 " J 2 " 2R " J 2X 

' " R2 _ X2 

43? 4R^" 

R +- !_ X + * L 
5 + j ? W 

X2 _ R^_ ±2-, R2 

2R2 2X2 2R2 2X2 

The shunt e lements of t h e equ iva l en t p i , equal i f ba lanced , a r e 

*, r . (R - JX) (R - JX) R - JX 
L 23= L 13 " 2lR^- 3XJ = 2, 

In te rms of the o r i g i n a l r e s i s t a n c e and reactance: ; 

Z ' 2 S = Z ' l 3 = % " 3*8 (8) 

At one p a r t i c u l a r f requency, the "balance frequency, R = X. The 

deonminator of 1\z becomes zero and Z'-^g t e c o m e s i n f i n i t e . Then the 

e q u i v a l e n t p i c i r c u i t i s t h a t shown i n Figure 6 . 
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The characteristic impedance at the null frequency is equal to 

zo • R3 - 0X3 (9) 

since Z0 = V^cc
 Zsc a n d Zoc = Zsc = h " &* 

g 
Tuttle has shown that at balance each of the component T networks 

plays its part independently of the other, and the null condition is 

simply that corresponding to equal and opposite transmission through the 

two components. Thus as in the case of a balanced bridge the impedance 

of the generator or of the common output circuit has no effect on the 

balance condition. Wo voltage is developed across the output circuit 

because the currents from the two component sections are equal and op

posite and hence balance out. Hence in calculating the transfer im

pedance the output may be assumed to be shorted. From Figure 2, with 

the output terminals shorted, currents assumed in a right-hand rotation, 

the transfer impedance is 

eo Z, Z0 s 1 2 
Z t l2 = i 0 = Z l + Z 2 * Z3 (10) 

For the parallel combination of the two T networks the null condition is 

io+i ,° = I ^ + i r - (11) 

*t i2 r t i 2 

Tuttle, W.N., Proc. I.R.E., vol 28, Jan. 1940, p.23 
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giving 

3 3 

For two components this equation states that the sum of the two transfer 

impedances must be zero. For three or more components this is not true, 

but in the general case a balance requires that the sum of the transfer 

admittances must be zero, as may be determined from equation 11 above. 

Tuttle has shown that a network of the type shown in Figure 5 has 

an equivalent transfer impedance circuit formed by a condenser in 

series with a negative resistance 

, 1 . _2__ 

while the network of Figure 4 has a t ransfer impedance equal to an in

ductance in ser ies with a posi t ive resistance (2Rn + jR \ WĈ ) • 

Equating real and reactive components: 

2 
= R21 c3w 

1 2Ri 

Vi y 
Dividing t h e f i r s t by the second: 

c 3 - 2 R3 - nZ 
2C1 Rx 

= 0? (13) 
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where Q is the ratio of reactance to resistance of the transfer im

pedance, and is the same for both T's at "balance. 

§ makes a convenient design parameter and, when unity, 

Rl s R2 s 2R3 

C l = C2 J X / 2 °3 

By ganging 3 res is tances the null frequency may be eas i ly var ied . The 

three res is tances wil l be equal i f Q i s chosen to be yZ~ 

R l » R2 = R3 

C l • C2 = V* C3 

Or, what i s more convenient at high frequencies, the three condensers 

may be ganged and made equal i f Q - * 
Y~2 

Then: 
Hx - R2 = 4 ^ 

C l = C2.. = C3 

I t may be shown also that a null may be obtained when the two 

ser ies branches are not equal or that the null frequency may be varied 

by control of a single element. The effect of unbalance i s to increase 

the at tenuat ion of the network especia l ly of frequencies on the low side 

of the null poin t . 

The paral le l -T networks used in these t e s t s were constructed in 

shielded compartments in small plug-in cans for convenience in changing. 

To solve for the balance frequency the condition for which the 

denominator of equation (7) becomes zero i s used: 



17 

R * X 

R -
2fTf0C 

f 0 = — ± 
0 21TRC 

o r , i n terms of the o r i g i n a l network v a l u e s : 

f „ = 0 • fctfJ^Cfc 
(14) 

Or, i n the more genera l case t h e sum of t h e t r a n s f e r impedances of the 

two T components i s se t equal t o ze ro : 

R l * R2 t ^ - f - - ^ — - 3 — " m  

" % C ^ W C 1 W ° 2 W C 1 C 2 % 
3 

I f Q - 1 and t h e network i s ba l anced , 

R l = R 2 = 2 R 3 = R 

C l = C 2 = ^ 3 = C 

Then: 

s 0 

2R + j _ J L _ - j 
1 

2WC 
WC W 2 R C 2 

= 0 

Equating r e a l s : R = 

W = 

W 2RC 2 

R C 

or ; 

f = 0 2 i tR 1 C 1 
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DESIGN OF S&LfcCTIVb TE20EE iiMPLIFIER 

The tube employed i n the s i n g l e - s t a g e ampl i f i e r (Figure 11) is . 

a 6J&, a t r i o d e wi th comparat ively high mutual conductance and a m p l i f i 

c a t i o n f ac to r* I t i s important t h a t the tube se lec ted be capable of 

working i n t o a low-impedance load i f a wide v a r i e t y of networks i s t o 

be used i n t h e feedback p a t h , s ince t h e feedback network should have a 

c h a r a c t e r i s t i c impedance we l l above t h e normal load impedance of the 

t u b e . Since i t i s d e s i r a b l e , i n most t y p e s of networks, t o keep t h e i n 

t e r n a l d i s s i p a t i o n down t o as low a value as poss ib le i t i s the usua l 

p r a c t i c e t o make the c h a r a c t e r i s t i c impedance of networks r a t h e r low. 

For genera l t e s t r u n s , t h e r e f o r e , the use of a r egu l a r pentode as t h e 

so le amplifying tube i s ru led out because of i t s high p l a t e r e s i s t a n c e , 

u n l e s s some impedance t ransforming device i s used . This f ac t t oge the r 

wi th the d e s i r a b i l i t y of t e s t i n g a m p l i f i e r s of both low and high gain 

led t o the s e l e c t i o n of the 6J5 f o r t he f i r s t t e s t s . In genera l t he 

v a l u e s of c i r c u i t e lements used i n t h e t r i o d e ampl i f i e r a r e not c r i t i c a l , 

and o rd ina ry commercial t o l e r a n c e s i n t he va lues of r e s i s t a n c e s and con

densers s u f f i c e . 

To s impl i fy the t e s t runs a b a t t e r y p l a t e supply, wi th s u b s t a n t i a l 

l y cons tan t vo l t age ou tpu t , was used r a t h e r than a r e c t i f i e r - f i l t e r 

supply . An a . c . supply would have t o be designed fo r c lose vo l t age 

r e g u l a t i o n or a v a r i a b l e c o n t r o l used t o r e s e t the vo l t age a t each r ead 

ing* I n use wi th a nu l l network, however, any supply t h a t meets t h e 

normal vo l t age and f i l t e r requ i rements should be s a t i s f a c t o r y s ince t h e 

nega t ive feedback p r e sen t except a t t he n u l l frequency minimizes t h e 



Fig.ll 

sSeleciive Trtode Amplifier 

Output 
V.T 

Mt+tr 

)uamp. 

Fig. 12 
Diode Voltmeter 
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effect of supply l ine f luctuations* Used as a band-pass, high-pass, or 

low-pass amplifier any precaution dictated by the required s t a b i l i t y 

over the transmitted band should be observed in choosing, or designing, 

a supply. 

Since neither maximum gain nor minimum d i s to r t ion i s sought in 

the pa r t i cu la r amplifier t e s t ed , a f a i r l y low value of plate-supply 

res is tance was used, permitting a lower plate-supply voltage to be used. 

Excluding the output c i r c u i t the load impedance i s made up of the 

elements R^ , XcD , Rf , Rf*, and the input impedance of the network 

(see Figure 11). I t may be necessary in calculat ing some network im

pedances to consider also the reflected impedance of the network termi

nation* Ĉ  should be made large enough to have a negligible reactance 

compared with the load impedance at the lowest frequency to be con

sidered. In most cases, however, unless the network input impedance i s 

very low the load impedance wi l l be approximately equal to the feedback 

res is tance R^ + Rf^ in pa ra l l e l with Rfe. I t should be noted that in a 

permanent set-up where no control over Beta i s desired Rf or Rf plus RfA 

might be omitted en t i r e ly leaving only R-̂  in pa ra l l e l with the input im

pedance of the feedback network as the load res i s t ance . The plate 

res is tance of the 6J5 i s approximately 7000 ohms. In t h i s par t icu lar 

oase Rb was made 20.000 ohms, Rf plus R 20,000 ohms, and Cb one micro

farad. The input impedance of the 1100 cycle network most used in these 

t e s t s was approximately 21,000 ohms. Therefore, when Beta i s zero 

RL =: 10,000 ohms. When Beta i s unity RL a 5,700 ohms. If another stage 

had folio-wed the t r iode or i f a low impedance output c i r cu i t had been 
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used i t would be desirable to make B. considerably greater . In the 

t e s t s made an output c i r cu i t having more than ten times the value of R^ 

was used and so t h i s impedance was not considered in these ca lcula t ions . 

I t may be noted tha t the Beta control could as well have been placed at 

the terminating end of the network, and in some cases t h i s might be 

more des i rab le . 

The blocking condenser Ĉ  should be a high-quali ty paper or mica 

condenser with low d .c . leakage current . Since a t leas t a portion of 

the leakage current wi l l flow through the feedback network, which i s in 

ser ies with the d. c . grid b i a s , a considerable change in operating 

point may be effected by i t , especial ly i f the feedback i s applied to a 

pentode s tage. The bias voltage introduced by t h i s leakage current wi l l 

be posi t ive with respect to ground causing an increase in average plate 

current , possibly introducing non-linear d i s to r t ion and overloading the 

tube . Both mica and paper dykanol-filled condensers were t r i ed and 

found to be sa t i s fac to ry . 

The cathode bias resis tance of 1000 ohms was selected so as to 

give seven vol t s negative bias a t seven milliamperes plate current . In 

order to prevent stray constant-current feedback across R the by-pass 

condenser C employed had a value of 26 microfarads. The reactance of 

Cc should be very small compared with RQ a t the lowest frequency to be 

amplified. 

The res is tance R, terminates the feedback network and, in general, 

should be t*.bout equal in magnitude to the charac te r i s t i c impedance of 

the network. In the case of the paral le l -T network i t has been shown 

that the generator or terminating resis tances do not affect the null 
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frequency, all though the shape of the at tenuat ion curve may be a l te red , 

The lower the resis tance the less the voltage developed across i t and 

the less effective the feedback becomes. For cer ta in other types of 

networks the cut-off frequencies are not independent of the generator 

or load res is tances and i t i s desirable to terminate them in their 

cha rac te r i s t i c impedances so tha t the simple design equations wil l hold. 

The input resis tance R- provides an ever-present path for the 

d . c . b ias vol tage . I t should be made suff ic ient ly high so as to in

troduce negligible Attenuation of the input s ignal . On running t e s t s 

on the amplifier using a high-output osc i l l a to r such as the Western 

Elec t r ic 13-A, which was used in t h i s case, care must be exercised to 

keep the peak input signal voltage to the amplifier well below the value 

of d . c . bias on the tube . 

In Figure 11 i s shown the c i rcu i t of the single-stage amplifier 

t e s t e d . If R̂ . were shunted out and the feedback network with i t s con

t r o l resis tance R« plus RT« and blocking condenser C were taken out, 

an amplifier stage of conventional design, with some s l ight modifications, 

would remain. As has been shown in the section on feedback theory the 

voltage fed back to the input c i r c u i t must have a component in inverse 

phase with the input signal voltage in order t o produce degeneration. 

Since the normal phase shif t in a single tube i s 180° i t i s necessary-

only to take voltage d i r ec t ly from the plate c i r c u i t and conduct i t back 

to the grid c i r c u i t to get degeneration. Because d i rec t current from 

the plate-supply ba t te ry ELV would flow through R or R a d i rec t con-
6 t 

nection cannot be made and some type of blocking device such as C, must 

be used. This introduces additional phase shift but if C, is made large 
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this shift is not excessive. If the feedback voltage is to be reduced 

or varied a voltage divider must be used. This is the purpose of R^ 

and R' . Then Beta, the fraction of the output voltage fed to the grid, 

or the controlling network, is approximately: 

ft -- Rf +Rff 

If straight feedback without a controlling network were used the input 

terminal would be connected directly to the common junction point of Rf 

and R'.p». There are a number of modifications of this form of feedback. 
JL 

In the amplifier constructed Rf and R1 consisted of a two-pole selector 

switch used with fixed resistances* This arrangement permits the r e 

se t t ing of Beta to precise values . 

If a bridge or four-terminal network (Figure 7) i s to be used in 

the feedback c i r c u i t a t l eas t one i so la t ing transformer w i l l be necessary. 

One transformer would permit the necessary i so la t ion and balance to 

ground but i t also introduces approximately 180° phase shift and hence 

the phase must be inverted or reversed again by some method. The use 

of an equivalent three-terminal network, (Figure 8) , great ly simplifies 

the design of the feedback path since there i s a common input and output 

connection. Used over a single stage t ransformers are unnecessary. On 

the other hand the bridge has the advantage of requiring only two con

t r o l s , R» and R., while the three terminal equivalent network requires 

three variable elements. 

Thus in the c i r cu i t of figure 11 the output voltage across Rf i s 

subjected to the frequency discrimination of the feedback network. The 
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voltage passed by the network appears across R. in ser ies with the 

signal vol tage, and, if the phase shif t within the network i s less than 

90°, t h i s voltage i s out of phase with the signal voltage by more than 

90°. If Beta i s high t h i s gives the overall amplifier a charac te r i s t i c 

approximately the inverse of the feedback network cha rac t e r i s t i c . For 

convenience in t e s t ing amplifier response with different networks,the 

network connections were brought to a tube socket and the networks were 

constructed in shielded aluminum cans (see photograph) mounted on plugs* 

A simple arrangement of a peak-reading diode voltmeter as shown 

in Figure 12 was used to measure the voltage on both input and output 

c i r c u i t s . A meter of t h i s type was selected i n preference to a thermo

couple or copper oxide meter because of i t s f l a t frequency character

i s t i c and i t s low damping. The output condenser and r e s i s to r (Figure 11), 

were used to provide an a . c . supply en t i r e ly free of d . c . for t h e meter. 

The condenser has a value of several microfarads and the res is tance i s 

of the order of one meg-ohm. Reasonably accurate resu l t s could be ob

tained with copper-oxide r e c t i f i e r voltmeters. Two Heston 10,000 ohms-

per-volt meters were t r i ed and found to give r e su l t s very similar to 

the vacuum tube meters. The tube used i s a 6H6 with the two diode sections 

connected in p a r a l l e l . R i s 500,000 ohms, C i s one microfarad, the meter 

used wes © Sensitive Research Polyranger, 0-100 microamperes. Since 

ident ica l voltmeters were used on the input and on the output of the 

amplifier i t was not necessary to ca l ibra te them to measure voltage ampli

f i ca t i on . Instead a voltage divider was used on the input c i rcu i t per

mit t ing the adjustment of the two meters to the same voltage reading so 

tha t the amplification was equal to the voltage divider r a t i o . 
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The voltage developed across the condenser in Figure IE is a 

linear function of the peak volts applied and is nearly independent of 

frequency, provided C is large and R is high. 
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DESIGN OF TWO-STAGE SELECTIVE AMPLIFIER 

In order to see the effect of increased gain on selectivity a 

two-stage amplifier was constructed. For the first stage a 6J7 pentode 

was selected "because of its high amplification factor* The 6J5 triode 

was again used in the final stage because of its low plate resistance* 

If a pentode were used for this stage also care would have to be ob

served to prevent overloading of the tube by the comparatively low im

pedance of some networks. The beam power tube, however, is well suited 

to use in the stage loaded by the network. 

Over two stages the normal phase shift in the signal voltage 

approximates 360 • Therefore, the feedback voltage cannot be introduced 

in exactly the same fashion s s it -was over a single stage unless a 

transformer or phase inverting network is used. Perhaps the simplest 

manner is to terminate the feedback circuit in a resistance in series 

with the signal voltage in such a manner that the phase of the feedback 

voltage with respect to the input signal voltage is reversed. As may 

be seen in Figure 13 this resistance must be placed in the cathode circuit 

The plate current also will flow through the terminating resistance 

which, if provision is not made to prevent it, will bias the grid highly 

negative. To secure the proper bias a high resistance, R.. (Figure IS), 

connects the grid circuit of the tube to a point in the cathode circuit 

such that the drop across Rc, is applied to the grid. Then a low re

actance condenser C^ is used to provide a path to ground for the a.c* 

voltage. The reactance of C-, should be negligible, compared to the 

resistance of R-,, at the lowest frequency to be amplified so that the 
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effect of R-ĵ  on the signal voltage wi l l be negl ig ib le , 

The terminating resistance R̂  depends on the par t icular network 

used and should be made as low as i s consistent with good feedback 

since the IR drop in R̂  caused by the plate current reduces the plate 

voltage and l imi t s the current obtainable from the tube. 

The only other unusual consideration in the design of the ampli

f i e r i s in the select ion of the coupling condenser C. This condenser 

should be made as large as possible to prevent undue additional phase 

shif t a t low frequencies* If made too la rge , however, the RJfc C time 
o 2 

constant may become too large and motorboating might take place, or the 

d .c . leakage current from E^ flowing through R might upset the bias 
c> 

on the following stage. For these reasons C should be of good quality 

and should have a fairly high capacitance. -A value of 0.1 microfarad 

was used in the amplifier tested and gave satisfactory results. 

In medium or high gain amplifiers care must be taken to minimize 

stray feedback, especially positive feedback. The coupling between 

wires, tube elements, a common ground path.all may cause some feedback, 

which prevents the actual response from conforming with the calculated 

response. The higher the gain,the more sensitive an amplifier is to 

small amounts of feedback. Over two or more stagest special care should 

be observed to prevent oscillation from taking place. A small fixed 

amount of negative feedback may be of great help in stabilizing the oper

ation of the amplifier. 
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EXPERIMENTAL VERIFICATION OF THEORY 

Before any t e s t s were made on the a m p l i f i e r s frequency runs were 

made on the networks t o determine t h e i r a t t e n u a t i o n c h a r a c t e r i s t i c s . 

For these runs a Western E l e c t r i c 13-A bea t - f requency o s c i l l a t o r w i th 

con t inuous ly v a r i a b l e frequency c o n t r o l from 20 t o 10,000 cyc les per 

second was used . The inpu t t o t he networks was held cons tan t a t 10 

v o l t s R.M.S. by means of a Weston 10,000 ohms-per-vol t r e c t i f i e r type 

me te r . The output vo l t age was measured w i th a s imi l a r me te r . In a l l 

the a t t e n u a t i o n or response curves shown the t e rmina t i ng r e s i s t a n c e was 

so high as t o have a n e g l i g i b l e loading e f f e c t on the networks t e s t e d . 

On page 30 a re shown the response curves for a s ingle p a r a l l e l - T uetwork 

wi th Rn = Rg s 30,000 ohms • The terminating meter has a resistance of 

100,000 ohms. It was found that the use of a terminating resistance 

several times the magnitude of the characteristic impedance gave es

sentially the same results as open circuit termination. If R̂  is equal 

in magnitude to the characteristic impedance of the network the at

tenuation is somewhat greater at frequencies away from the null frequency, 

especially below the null frequency. At half the null frequency i t is 

about twice the value of the open circuit value while at twice the null 

frequency i t is only slightly greater. Around the null point the curve 

is practically unchanged. A further reduction in R. therefore decreases 

the effectiveness of the network, especially on the low frequency side 

of the null point. For most effective operation of the network, R̂ . should 

Number (l) in Appendix. 
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b© as high as possible or the .network should be designed so tha t £<> i s 

only one-third or one-fourth the value of R^ demanded by the c i r c u i t . 

The l i n e a r i t y of these curves near the nul l frequency, especially 

on the high-frequency side shows tha t the at tenuation i s logarithmic in 

t h i s range. The effect of unbalancing the ser ies elements of the T 

components i s to increase the a t tenuat ion, especia l ly a t low frequencies, 

while a def in i te null i s s t i l l obtained although a t a different f re 

quency. Thus any element can be used as a null frequency control 

although the effectiveness i s reduced and the simple design equations 

no longer hold. I t has been shown tha t the c r i t e r ion for a null i s tha t 

the sum of the t ransfer impedances of the two T components be zero. 

The second curve on page 30 shows the effect of using two ident ica l 

networks in tandem. As would be expected the response i s approximately 

the square of tha t of e i ther network alone. 

In order to compare networks designed for the same frequency but 

with widely different c i r c u i t constants two 1100 cycle networks were 

constructed, one with R̂  • Rg - 30,000 ohms and the other with 

R̂  = Rg r 300,000 ohms. The curves for these two net7/orks are shown on 

page 32 . I t w i l l be noticed tha t provided R. i s several times the 

magnitude of the charac te r i s t i c impedance the at tenuation i s substant ia l 

ly independent of the charac te r i s t i c impedance of the network. For 

p rac t i ca l considerations the low-impedance network may be more useful . 

In a l l the network at tenuat ion curves i t may be seen tha t a t one 

point the at tenuat ion i s i n f in i t e and a null i s obtained. This wil l 

hold t rue a t one frequency for any design of the paral le l -T network of 

the type shown in Figure 8. If the signal contains appreciable harmonic 
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content i t i s d i f f i cu l t to obtain a good n u l l , especia l ly by acoustic 

detect ion, since the harmonics are passed through with l i t t l e at tenu

a t ion , When the network i s used in the feedback c i r cu i t of an amplifier, 

however, the harmonics contained in a wave wi l l pass through while the 

fundamental i s a t tenuated. This provides degenerative feedback which 

wi l l great ly reduce the amplification of harmonics, provided the phase 

shif t in the network i s not greater than 90°. 

After making t e s t s on the networks alone frequency runs were made 

on the single-stage amplifier with various values of Beta and with dif

ferent network combinations. The response of the amplifier alone i s 

shown on page 34 in the curve Beta equal to zero. The frequency r e 

sponse i s f l a t over the normal range of audio frequencies from 100 to 

10,000 cycles . Now the 1100 cycle paral le l -T network i s plugged in the 

c i r c u i t and Beta set at l / 4 , l / 2 , 3/4 and 1 successively. The effect 

of increasing the feedback voltage as shown on page 34 i s to"pull in the 

sides" of the response curve, making i t sharper and s l igh t ly reducing 

the peak amplif icat ion. The curves are very similar in appearance to 

resonance curves -with var iable Q.. 

The effect of l inear degenerative feedback network over a l l 

frequencies i s shown by the dotted curve. For t h i s t e s t a plug with 

jumper between input and output terminals i s used instead of a network. 

With a small amount of feedback the amplification i s great ly decreased. 

Since the or iginal response curve was nearly f la t , the effect of feed

back on frequency d i s to r t ion cannot be very well i l l u s t r a t ed in t h i s 

amplif ier . 

On page 35 i s shown the band-pass effect obtained by using two 



' i 
1 t 

f T 
J 

i4/ctn 6Q Tich 



•33S&eSSi£I 
i l l i l i H H i 
MMKIBSMSI 

GaTAth'41 ,o 



36 

iden t ica l para l le l -T networks in tandem in the feedback c i r c u i t . The 

response curve of the two networks alone i s shown on page 30« 

To find the effect of increased gain on the response curve, and 

to t r y a second method of applying negative feedback a two stage 

amplifier (Figure 13) was used. The overall gain of t h i s amplifier i s 

about ten times the gain of the single t r i ode . I t i s important t ha t the 

signal voltage be held low here to prevent overloading of the second 

stage.so as not to introduce d i s to r t ion , 

The curves on page 37 and 38 show graphically the effeot of in-

creased gain in peaking the response curves. If &fi i s high the over

a l l s e l ec t iv i ty i s accentuated, becoming more pronounced than in the 

network i t s e l f . A decrease in Beta has greatest effect on frequencies 

well away from the peak frequency. Instead of ra i s ing the peak response 

with a decrease in Beta i t was s l igh t ly reduced. The explanation for 

t h i s apparent contradict ion might be tha t some posit ive feedback i s also 

present due to capacity coupling between network elements. Therefore a 

decrease in Beta also decreases the regeneration, s l igh t ly reducing the 

response. The curves with Beta equal to one show a remarkably high 

se l ec t iv i t y and could be approached only by resonant c i r c u i t s having 

very high Q, a qual i ty d i f f i cu l t to obtain at low frequencies. The 

lower frequency l imit to which the paral lel-T network could be constructed 

with small receiver par t s i s well below one cycle per second. 
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CONCLUSIONS 

The use of a network i n the feedback c i r c u i t of an ampl i f i e r 

o f f e r s a convenient method t o o b t a i n frequency d i s c r i m i n a t i o n of a lmost 

any des i r ed form i n the a m p l i f i e r • The d i s c r i m i n a t i o n i s e s s e n t i a l l y 

gained by a r e d u c t i o n i n a m p l i f i c a t i o n over the unwanted r a n g e . I f the 

product of ga in and network response i s much g r e a t e r than u n i t y , t h e n the 

o v e r a l l frequency response of the a m p l i f i e r w i l l be approximately equal 

i n form t o the i nve r t ed response c h a r a c t e r i s t i c of the feedback network. 

The sharpness of the cu t -o f f frequency i s a d i r e c t func t ion of 

g a i n . I f a n u l l network i s employed i n the feedback c i r c u i t ; t h e s e 

l e c t i v i t y of the ampl i f i e r response curve can be increased by r a i s i n g 

t h e ga in of t h a t p o r t i o n of the ampl i f i e r over which feedback i s a p p l i e d . 

A p a r a l l e l - T network used i n a feedback ampl i f i e r y i e l d s a response 

curve s i m i l a r t o t h a t which might be obtained from a high-Q resonant 

c i r c u i t . A g r e a t advantage over the resonan t c i r c u i t i s the f ac t t h a t 

o rd ina ry s m a l l - s i z e condensers and r e s i s t a n c e s may be used i n the 

p a r a l l e l - T network t o ge t a nu l l a t ext remely low f requenc ies of t he 

order of one cycle per s e c o n d . An equ iva l en t resonant c i r c u i t would i n 

volve bulky and expensive c o i l s and condensers and the s e l e c t i v i t y would 

o r d i n a r i l y be of a low q u a l i t y . 

The use of two i d e n t i c a l p a r a l l e l - T networks i n tandem gives a 

band-pass e f f e c t for the feedback a m p l i f i e r , s u b s t a n t i a l l y pass ing a l l 

f r equenc ies from one-ha l f t o twice the n u l l f requency. 

Since the xietwork used t o get frequency d i s c r i m i n a t i o n i s i n the 

feedback c i r c u i t , and not i n the l i n e . t h e l o s s of power i n the network i s 
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negl ig ib le . Thus the network may be conveniently designed with l i t t l e 

a t t en t ion given to d iss ipat ion in the elements. The paral lel-T network 

i s unaffected by the amount of resis tance in i t s elements so long as i t s 

termination i s several times greater than i t s charac te r i s t i c impedance. 

Because of these reasons the system i s applicable to power amplifiers 

a l so , especia l ly those employing beam power tubes, which are capable of 

giving fu l l output and high efficiency on low driving vol tage. 

By introducing a small, constant amount of posit ive feedback i n 

the amplif ier , in addit ion to the negative feedback with paral le l-T net

work an osc i l l a to r with resis tance frequency control , no c o i l s , and an 
o 

unusually good wave form may be obtained • 

The selective amplifier may be used as a signal analyser at audio 

frequencies. The parallel-T network is not limited to audio frequencies 

but works equally well at radio frequencies. It is believed that circuits 

of the type described in this thesis will be increasingly used and should 

be considered for possible advantages whenever new measurement or se

lectivity problems are encountered. 

°Caywood, R.W., QST, Jan. 1941, p. 22 

Scott, H.H., Proc. I.R.E., vol. 26, Jan. 1938, p. 226 

Terman, F.E., Buss, R.R., Hewlett, W.R., and Cahill, F.C#, 
Proc. I.R.E., vol. 27, Oct. 1939, p. 649 
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Parallel-T Network 
with shield cover removed 

Two sSfage 
Selective A mph fier 

Under Chassis View 
of iwo stage Amplifier 

Parts layout 

in test run 



42 

BIBLIOGRAPHY 

F E E D B A C K T H E O R Y 
* 81 • • 

Black, H / 8 . , s t a b i l i z e d Feedback A m p l i f i e r s , El ec., 'Eng. „ 
v o l . 5 3 , Jan. 1934, p. 114 

Day, J.R.;, and R u s s e l , J . B . , P r a c t i c a l Feedback Ampli f i 
er a, Electronics, v o l . 10, Apr. 1937, p . 16 

Ever i t t> W.T., Communication Engineering, McGraw-Hill, 
1937, p . ; 4 6 3 

Nyqui s t , H, Regenerat ion Theory, Bell System Tech., Jour
nal, v o l . ; 11, p . 126 

Re ich , H . J . , Theory and Applications of Electron Tubes 
McGraw-Hill, 1939, p.; 220 

Rumble, A.;R., Audio Feedback* Comm., and Bdcast Eng., v o l . 
4 , Apr. , 1937, p . 14 

Terman, F . E . , Feedback Ampli f ier Design, Electronics, 
v o l . 10, Jan. 1937, p . 12 

N E T W O R K A N A L Y S I S 

E v e r i t t , X T . , Communication Engineering, McGraw-Hill, 
1937, pp.; 1 - 5 8 

G u i l l e m i n , E. A., Communication networks, v o l . ; I , M The 
C l a s s i c a l Theory of Lumped Constant Net works'1, John 
Wiley and fSons, 1931 

T u t t l e , W»N.;, Brldged-T and P a r a l l e l - T Null c i r c u i t s 
for Measurements at Radio Frequenc ies , Proc* I.B.E.. 
v o l . 28, Jan. 1940, p . 23 

Woodward, R.W., H e t r o f l l - An Aid to S e l e c t i v i t y , QST, 
'Sept.; 19 39, p . 11 

S E L E C T I V E FEEDBACK A P P L I C A T I O N S 
Caywood, R. W. , An Amateur Appl i ca t ion of the Wlen Bridge, 

QST, Jan . 1941, p . 22 
Dawley, R . L . , A Wide Range Audio O s c i l l a t o r , Badio, 

June 1940, p. 17 
i Tbe Improved Wide Range Audio O s c i l l a t o r , Ra-

-dio, Dec. 1940, p. 16 
Fr i t . z inger , G.H., Frequency S i s c r l m l n a t l o n by Inverse 

Feedback, Proc.I.B.l., vol . 2 6 , Jan. 1938, p. 226 
'Scot t , H.JH,, A Hew Type of S e l e c t i v e C i r c u i t and Some 

A p p l i c a t i o n s , Proc . I.B.E., vol.,26, Jan . 1938, p .226 
Terman, F . E . , Buss, R.R., Hewle t t , W.fl.;, and C a h i l l , F . . C , 

Some A p p l i c a t i o n s of Negat ive Feedback, Proc. I.B.E.., 
v o l . 27, Oct. 1939, p.; 649 

• 



43 

APPENDIX 

Table of v a l u e s used in the t r i o d e s e l e c t i v e a m p l i f i e r 
shown in f i g u r e 5 :. 

Rg- 100,000 Q Rb« 20,000 Q 

Rc- 1000 Q Cc* 26 ^f 

R t- 20 ,000 Q < n e t . # l ) Cb« 1 |cf 

Rf+Rj« 20,000 Ebb» 270 v o l t s 

Tr iade • 6J5, n» g o . Gm« 2000 |Amhos 

In t h e output c i r c u i t used with the d iode meter : 

R - 1 raegc C « 1 jtf 

In the d iode meter, f i g u r e 6 : 

R « 5 0 0 , 0 0 0 c C * 1 |if 

n_amp * 100 n,_ampere meter 

Diode « 6H.6 

Table of va lued used in the t w o - s t a g e s e l e c t i v e a m p l i f i e r 
shown in f i g u r e 7 : 

R * 100,000 Q R « 250,000 Q 

1 • 1100 Q R • 1000 Q 
c l CE 

Rt • 2 0 , 0 0 0 Q ( n e t . # l ) R f + f V " 20,000 0 
R 8 g - 1 .1 raegfi Rb - 20 ,000 Q 

Rb • 250,000 c Ec « 10 nf 

Rt« 250,000 ft Cb- 1 |if 

6C - 25 ^f E « 815 v o l t s 

C 8 g - 1 nf C ^ 1 ? | 

Cc» 0 . 1 (if Triode • 6J5 

Pentode • 6J7, GB- 1200 mho*,- Rp- One megQ 
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Table oi values used in the parallel-T networks. Notations 
from figure 2 : 

Three networks baring a null frequency of approx
imately 1100 c y c l e s / s e c . were used : 

(1) and (2) 

R^Rg* 90,000 Q R3« 15,000 Q 

CfCjf 0.005 nf C5- 0.01 t̂ f 

( t ) 

R f R j - &)0,000 Q Rg- 150,000 Q 

ei-c2- o.ooo5 ,*f cs« o.ooi ^f 

In the network having a null frequency of approx
imately 39 cyc les / sec. the following values were 
used : 

( 4 ) 

Ri*Rsf .̂OOO O Rs* 20,000 ft 

C^Cg- 0 .1 nf Cs- 0 .2 rf 
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