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SUMMARY

The primary goal of space situational awareness and space domain awareness is to ac-

quire and maintain a full characterization of the space environment. The electro-optical

and radar sensors used to observe space objects are not able to fully characterize the state

of an object when either a single or a short, unobservable sequence of measurements is

obtained. The admissible region method is often used as a bootstrap method to initialize

estimation in these unobservable cases, however there are several areas of improvement

identified and addressed in this thesis. First, an approximate analytic probability of set

membership function is defined to account for systemic uncertainties in the generation of

the admissible region set. Then, a rigorous application of probability theory proves the

admissible region to be an uninformative prior and defines the necessary conditions for

when this uninformative prior becomes a true PDF. Belief and plausibility functions, de-

rived from Dempster-Shafer theory, are then applied to remove any assumptions on prior

probabilities and enable testing of the constraint hypotheses used to construct admissible

regions. Finally, an optimization based method is defined which uses the admissible re-

gions from sets of uncorrelated tracks and determines the probability of association. The

efficacies of the proposed methodologies are demonstrated using both simulated and real

observation data from the Georgia Tech Space Object Research Telescope.

xv



CHAPTER 1

INTRODUCTION AND BACKGROUND

State estimation is a critical component of most modern dynamical systems. In certain

cases a sensor can essentially provide full state information. For example, radar ranging

devices operated at high frequencies can essentially provide information on both position

and velocity states. However, in more challenging cases a given sensor may not be able

to fully provide a state estimate. This may be due to the fact that the observations are

only available sporadically, only a subset of the state space can be measured, or the system

is inherently unobservable. Initializing an estimation scheme in these situations is then

complicated by the fact that due to this unobservability a well-defined prior distribution

may be impossible to obtain [1, 2]. Uninformative priors are used as a way to address

this problem in Bayesian estimation schemes, however they inherently violate axioms of

probability [3, 4]. The challenge and goal is to provide an improved way to initialize a

state estimation scheme conditioned on the known or estimated uncertainties in the system

without violating probability theory.

In a broader sense, this particular problem of state estimation can be generalized to the

field of data fusion, since each sensor provides information about a system which is ‘fused’

in some sense to yield a better understanding about the state of the system. Furthermore,

thinking of state estimation in this way opens up additional methodologies which can be

utilized to fuse data. While in many engineering systems Bayesian estimation is typically

the primary tool, there are many other approaches to fuse data which are starting to perme-

ate into the engineering disciplines. Khaleghi et. al. offers a comprehensive review of the

recent developments in data fusion and the different fusion rules [5]. Probabilisitic fusion

handles uncertainty well and includes the classic Kalman Filter and its derivatives as well

as sequential monte carlo methods and the particle filter [6, 7, 8, 9]. Evidential reasoning is

1



essentially a relaxation of probability theory which enables imprecision of data in addition

to uncertainty [10, 11]. Fuzzy set theory further relaxes evidential reasoning by utilizing

partial set membership, providing a way to quantify vagueness of data [12]. While there are

several other data fusion approaches discussed by Khaleghi, concepts from each of these

three types can often be used in a complimentary fashion and the contributions of this work

will explore the use of a hybrid of these approaches to address some current problems with

initialization of state estimation using uninformative priors.

Khaleghi et. al. also offers several driving motivations for data fusion based on the

properties of the systems often being estimated and the current state of the art research

in data fusion systems. Some of the relevant challenges for state estimation in dynami-

cal systems are posed by the imperfection and, more importantly, the imprecision of the

data, the association of disparate data, operational timing considerations, and potentially

conflicting data or spurious data. Many estimation schemes are incapable of accounting

for or addressing all of these challenges and problems, however recent developments and

advances in random finite set statistics for data fusion, initially proposed by Mahler, appear

to offer a potential solution [13]. Yet many of these methods are computationally expensive

and it is desired to find alternative hybrid approaches which extend the utility of existing

estimation tools even when tasked with these challenges. Many of these problems can be

related directly to the challenges posed by Space Situational Awareness (SSA) where some

aspect of each of these are present in the systems used to detect, track, and characterize

space objects. The next sections introduce SSA, the current state estimation methodologies

for space objects, problems with these approaches, and the proposed contributions which

utilize various concepts of data fusion to address these problems.

1.1 Space Situational Awareness

Space situational awareness (SSA) and space domain awareness (SDA) are both national

and global priorities as space is a critical strategic domain for military applications, a high-

2



value domain for commercial telecommunications, and a unique environment for Earth and

space science [14, 15]. SDA lends from concepts of both Maritime Domain Awareness and

Air Domain Awareness with the goal of achieving a comprehensive understanding of all

aspects of the space environment that could impact the security, safety, or economy of the

United States [16, 17]. SSA, on the other hand, is the ability to maintain a comprehensive

understanding of the state of key elements of the space environment within a specific vol-

ume of time and how their states might change in the near future [18]. The current priority

for the United States Joint Space Operations Center (JSpOC) is to fully characterize the

space environment in Earth orbit for the protection of current and future space assets, the

fundamental task supporting SSA goals [19, 20]. Research in improvements for the state

estimation capabilities of the current SSA architecture is increasingly active in support of

a comprehensive SDA program [21]. These systems are limited primarily by the inability

of the current radar and optical systems to individually observe full state information on

space objects over a short period of observation time or given a single observation. Yet

these sensors must still be able to, given sufficient observation time, provide full state es-

timates. Sufficient observation time is not always given and there are vastly more objects

in orbit than sensors, which leads to spurious observations of objects which may not be

easily associated with other observations to provide a useful state estimate. This problem

is often seen in data deprived systems and is a motivating factor for the current research in

improved state estimation methods. This section outlines the current national SSA archi-

tecture, identifies current limitations, and outlines the specific needs identified by the SSA

community both nationally and internationally.

SSA is primarily motivated by a recent proliferation of space objects, both operational

payloads and debris from launches and collisions, leading to a national and global emphasis

on protecting space assets and establishing a strong SSA program [21, 22]. This emphasis

on SSA stems from several high profile collisions within the past decade. In 2007, the anti-

satellite test on the Chinese weather satellite Fengyun-3 generated over 2,000 new pieces of
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debris larger than 1cm in size [23]. In 2009, a defunct Russian Cosmos-2251 satellite col-

lided with an operational Iridium-33 satellite, generating nearly 2,000 new debris objects

larger than 10cm in size and several thousands of smaller debris objects [24]. It is estimated

that high profile collisions such as these are likely to occur every 5 to 9 years [25]. Debris

objects pose major threats as debris larger than 10cm can cause catastrophic failure and

even objects between 1 and 10cm can cause major damage to core mission components

[26, 27, 28]. An additional concern is raised due to the high area-to-mass ratio (HAMR) of

some debris objects due to complex interactions with drag, in low Earth orbit (LEO), solar

radiation pressure, as well as the dynamics of the Earth-Sun-Moon system [29]. These

complex interactions make it difficult to consistently detect, track, and associate HAMR

debris objects [30]. International measures are in place to attempt to mitigate the future

proliferation of debris, but it is expected that with the number of payloads per launch grow-

ing, several planned large constellation missions1,2, and the rapidly growing small satellite

market3 there will continue to be demand for high quality SSA data to protect these assets.

The current operational system that detects and tracks these space objects is the US

Space Surveillance Network (SSN), a combination of electro-optical (EO), conventional

radar, and phase-array radar sensors [31, 32]. The electro-optical systems (EOS) are mainly

used to augment the tracking capabilities of the SSN at geosynchronous Earth orbit (GEO)

altitudes where it is difficult to do radar ranging [33, 34, 35]. The radar systems are most

effective in LEO where systems like the Haystack radar and Millstone observatory are able

to make accurate observations of objects down to around 10 centimeters in size [36, 37].

Phase-array systems enable enhanced performance and the new Space-Fence radar array is

capable of making nearly 1.5 million observations of LEO objects daily [38]. Generally, the

radar systems are capable of regularly detecting and tracking objects only down to 10cm

1http://www.spaceflightinsider.com/organizations/space-exploration-technologies/spacex-seeks-
permission-4425-satellite-internet-constellation/

2https://www.itu.int/en/ITU-R/space/workshops/2015-prague-small-sat/Presentations/Planet-Labs-
Safyan.pdf

3http://spacenews.com/smallsat-operators-have-yet-to-allay-concerns-about-space-junk/
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due to Raleigh scattering [39]. Objects much smaller than this cannot be regularly detected

and thus cannot be regularly tracked, yet still pose significant threats. EOS are not limited

by Raleigh scattering but by the amount of light that can be gathered from the objects,

which decreases with the distance to and size of the object, as well as ambient weather

conditions, such as day vs. night or clear vs. cloudy skies. This limitation of electro-

optical sensors can be improved with space based optical sensors such as the one aboard

the Space Based Space Surveillance (SBSS) satellite [40]. SBSS is one of the premier

satellites for SSA as it is capable of surveying GEO objects and contributes significant

detection and tracking data on GEO objects to the SSN. Due to the limitations of each

type of sensor, while it is estimated that there are over 700,000 objects larger than 1cm

in Earth orbit, only a small portion of these objects are actually regularly detected and

tracked [41]. While a constantly evolving value, only about 18,000 objects of the estimated

700,000 are currently represented in the publicly available space object catalog (SOC) from

Space-track.org 4. Thus, in order to support the need for improved SSA, there is significant

research to be done in the software, algorithms, and theory supporting the characterization

of space objects as motivated by a recent review of the current Air Force Space Command

Astrodynamics’s Standards [42].

One of the areas noted for improvement in SSA by the National Academy is data asso-

ciation and orbit determination, the primary topics of this thesis. The observation of space

objects with either radar or EO sensors is an example of an underdetermined system, as

there is only partial information available to the observer over a short period of time. The

measurement of the state of the object with an EOS consists of the angular position of the

object relative to the observer. A time convolution of these individual angular measure-

ments can yield the rate of change of the angular position of the object. An example of

this is when a streak is captured as an object moves across the field of view of the sensor

over a finite integration time. This information alone is not enough to fully determine the

4https://www.space-track.org/basicspacedata/query/class/tle latest/ORDINAL/1/EPOCH/%3Enow-
30/orderby/NORAD CAT ID/format/tle
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state of the space object. The EO sensor is incapable of obtaining any range or range-rate

information, the remaining two states needed to fully define the state of the object. Con-

versely, a radar measurement allows for computation of the range to the target, as well as

the range-rate and the angular location of the target. However, radar measurements cannot

determine the angle rate information which is necessary to determine the full state of the

space object. For radar systems the angle rate states are undetermined and likewise the

range and range-rate states are undetermined for EO sensors. Over long observation peri-

ods, i.e. when a component in the SSN is capable of long duration tracking of an object,

then traditional initial orbit determination approaches such as Gauss’ or Lambert’s method

will produce a full state estimate from these measurements [43]. Furthermore, if both types

of sensors are used simultaneously to observe an object then a full state estimate is possible

with high accuracy [44].

These traditional initial orbit determination methods rely conceptually on the curvature

of the measurements to produce a state estimate. However, the measurements obtained

from a short observation or a very short sequence of observations have essentially linear

dynamics and the traditional methods begin to fail as the observation time decreases. This

issue is the main motivation behind this thesis, particularly how to best initialize state es-

timation in underdetermined systems using uninformative priors from short measurement

sequences and additionally how can disparate short measurement sequences be associated

with one another. The next subsections describe the current state of the art research ap-

proaches for initial orbit determination in such systems and identify this problem as open

area of research in the field which this thesis attempts to address.

Thesis Statement: State estimation in unobservable dynamical systems may be

improved through the approximate, analytic consideration of systemic uncertainties,

a rigorous application of probability and evidential reasoning theory to the resulting

set membership functions, and a probabilistic methodology to associate uncorrelated

6



observations.
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1.1.1 The Admissible Region Method

The failure of traditional orbit determination for short observations lead to the definition of

this phenomenon as the Too Short Arc (TSA) problem in initial orbit determination since

the measurement arc is not long enough to produce a state estimate through traditional

means [45] [46]. As shown by Milani et. al. the TSA problem implies that for a particular

TSA measurement, a continuum of potential states are possible for the range and range-

rate (or equivalently angle rates in radar systems). This continuum of potential states is a

direct result of the unobservability of these states in a TSA measurement. Milani et. al.

introduced the admissible region method to solve this problem by imposing hypothesized

constraints on this continuum of potential solutions based on the dynamics of the system

[45]. The admissible region is then defined as a bounded set which contains all of the

undetermined states which satisfy the hypothesized constraints. This is a major result for

initial orbit determination from TSA measurements since Bayesian estimation requires an

a priori distribution and the admissible region provides a straightforward method by which

to define such a distribution. However, the admissible region as introduced gives a binary

probability of set membership function which assigns a given undetermined state either 0

or 1 probability of satisfying the constraint hypothesis. Real systems are prone to obser-

vation error, timing uncertainty, and parameter uncertainties, each of which contributes to

how well it can be known if a certain state satisfies the hypothesized constraint. As such,

one open area of research is determining how to incorporate the measurement, parameter,

and timing uncertainty into the admissible region method to yield an uncertain admissible

region set. Additionally, it is desired then to determine how to find the intersection of a

finite number of these uncertain sets, or equivalently how to account for several constraint

hypotheses simultaneously.

Chapter 2 introduces a generalized notation for the admissible region and uses this nota-

tion to define an approximate analytic framework which accounts for the various uncertain-

ties of the observation system in the degree to which a given state satisfies a given constraint
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hypothesis. Then Bonferroni’s inequality is applied to generalize the ability to account for

an arbitrary number of constraint hypotheses while still incorporating the systemic uncer-

tainties, providing a concise method to quantify the probability of set membership function

for the resulting joint admissible region ‘fuzzy’ set.

Contribution 1: An analytic approximation framework to determine probability of set

membership in admissible regions, accounting for systemic uncertainties (from the mea-

surements, parameters, timing, etc.), yielding uncertain admissible regions which can in-

corporate any finite number of constraint hypotheses.

1.1.2 The Statistical Representation of the Admissible Region

After the introduction of the admissible region method, much work was done to improve its

application to initial orbit determination. In particular, there has been work done to show

different ways to represent the admissible region probabilistically for Bayesian estimation.

Fujimoto et. al. show that the admissible region may be represented statistically as a uni-

form distribution over all states satisfying the hypothesized constraints [47]. This approach

shows that since no particular state may be shown more likely to be the truth than another,

each state must necessarily have equal probability. This approach also must assume that

the admissible region has a discontinuity at the boundary where inside the boundary there

is uniform probability but outside the boundary there is zero probability [48]. The work

done by DeMars and Jah show that the bounded, compact set represented by the admissible

region may be represented as a Gaussian mixture model (GMM) [49]. The GMM approach

allows the admissible region to represented in a computationally tractable way without

discretizing individual points. It also gives ‘fuzzy’ boundaries which avoids the issue of

a probability discontinuity at the constraint hypothesis boundary. Hussein et. al. show

that by uniformly sampling from a set of alternative undetermined states and mapping the

uniform distribution into the desired range and range-rate undetermined state space, a prob-

abilistic representation of the admissible region could be generated [50]. This approach is
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ultimately similar to the GMM approach except the resulting PDF over the admissible re-

gion is not uniform. Each of the approaches discussed above make the inherent assumption

that a PDF is the correct statistical representation of the admissible region. There are cer-

tain mathematical and statistical requirements that must be met if this assumption is true,

and if not then it is an open area of research to determine the correct statistical represen-

tation of the admissible region and how to initiate sequential Bayesian estimators from the

admissible region.

Chapter 3 uses a rigorous application of probability theory to show that the admissible

region is an uninformative, or diffuse, prior and demonstrates the inherent inconsistencies

caused by treating the admissible region as a well defined PDF. Due to these inconsisten-

cies, several theorems are presented which define necessary conditions for an admissible

region to be treated as PDF to be transformed into an alternative state space for use in a

Bayesian estimator. Furthermore, an observability condition is defined based on the length

of the observation which indicates whether or not the system is observable, and equiva-

lently whether or not the admissible region can be sufficiently treated as a PDF. When the

condition is not met then the admissible region remains a diffuse prior for the purposes of

state estimation and should be treated accordingly.

Contribution 2 : A presentation of the statistically correct method by which a sequen-

tial Bayesian estimator may be initiated with an admissible region, and more generally any

uninformative prior as well as an observability condition indicating when a true PDF is

defined.

1.1.3 Evidential Reasoning Theory Applied to the Admissible Region

What is desired is a methodology which does not require specific assumptions about the

underlying probabilities, and thus does not permit inconsistent estimator behavior when

different assumed probabilities are used. The problem arises again because the system

is unobservable, which makes a traditional application of Bayesian probability difficult.
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Bayesian probability requires that there is either support for or evidence against a given

hypothesis. In general, when the problem is unobservable no such definitive support is

available given a single measurement or an unobservable sequence of measurements. While

states within the admissible region must support the hypothesized constraint being true, this

in itself does not offer support for any one state being the true solution. Treating this region

as a PDF is probabilistically incorrect because this region is just an uninformative prior

which violates the the principles of probability theory [4].

An alternative branch of information fusion, Dempster-Shafer theory, deals with this

problem by introducing plausibility as a third option which enables assignment of plau-

sibility to states which neither directly support nor refute a hypothesis [10] [51]. The

application of Dempster-Shafer theory to the admissible region problem can address the

ambiguities that exist in the assignment of prior probability by recasting the admissible re-

gion as a region of plausibility. This falls directly in line with the Dempster-Shafer method

since while the hypothesized constraints bound the set of potential solutions, they do not

directly convey support for any one solution but define all plausible solutions to the prob-

lem.

A primary theoretical construct of Dempster-Shafer theory is the frame of discernment

which contains the propositions which must be assigned belief mass [52, 53]. The proper

construction of the frame of discernment for the admissible region problem enables the

constraint hypothesis itself to be tested along with the individual states in the admissible

region [54]. This provides the ability for a sequential estimator to potentially identify when

a hypothesized constraint is incorrect and another hypothesis should be used. The aim of

this work is to detail a generalized form of the frame of discernment for the admissible

region problem and use it to define a Dempster-Shafer sequential estimation scheme. A

unique feature of Dempster-Shafer theory is the concept of a probability bound provided

by belief and plausibility [55]. While pignistic probabilities can be determined from belief,

it can be shown also that as evidence is gathered belief and plausibility collapse to a sin-
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gle value, the probability. The point when belief and plausibility become equal could, in

general, indicate observability in dynamical systems and signify that a traditional Bayesian

estimator could be initiated with the now fully defined probability distribution. This al-

ternative approach offers an attractive method by which the a-priori probability assignment

problem may be altogether avoided in favor of a more generalized estimation methodology.

Chapter 4 introduces Dempster-Shafer theory and defines its use for general underde-

termined systems for which the belief assignment function is essentially vacuous. Through

set membership, and more generally fuzzy set membership, functions, plausibility func-

tions can be defined which serve as an upper bound to the underlying probability. Then,

a combination rule is defined which takes plausibility functions from independent sources

and combines them instead of the traditional Bayesian probability update. Furthermore,

through a concise linear relationship specific to the construction of the admissible region

problem under Dempster-Shafer theory, updated plausibility values can be mapped to up-

dated belief values for a given state. These concepts are then implemented in a filter which

tracks both belief and plausibility values over time and shows that when belief and plausi-

bility are equal, the system is observable and a traditional Bayesian sequential estimation

scheme could be used.

Contribution 3 : An evidential reasoning based sequential estimator which resolves

the use of uninformative priors to initialize estimation schemes and enables the testing of

the constraint hypotheses used to construct an admissible region.

1.1.4 Association of observations via the admissible region

Another area of research in the admissible region method, and SSA in general, is in obser-

vation association. Since obtaining TSA measurements from the SSN or other observation

platforms do not give a full state estimate of the object, there is no direct way to associate

two disparate observations. Furthermore, high area-to-mass ratio (HAMR) objects have

varying dynamics due to the interaction of drag and solar radiation pressure which makes
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it difficult to confidently association observations of the same HAMR objects [56, 30]. As

such, there is much interest in using the admissible region as a foundation for observation

correlation methods. Milani et. al. gives an overview of two object associate methods based

on the admissible region in [57]. The first method uses an attribution penalty computed for

each sampled point in the admissible region to identify potentially associated objects by

setting a maximum allowed attribution penalty [58]. The second method uses integrals of

motion by requiring that the energy and angular momentum at the time of the two dis-

parate observations are equal. Siminski et. al. introduces an optimization based approach

to identify a best fitting orbit solution from an admissible region [59]. Fujimoto et. al. and

Maruskin et. al. show that by discretizing the admissible region and mapping to either

Delunay or Poincaré elements, there is only one intersection, if it exists, of two disparate

admissible regions and that intersection is the full state solution [60, 48, 61]. DeMars et.

al. introduces a multiple hypothesis filter approach which does data association and state

estimation with several TSA measurements [62]. A boundary value problem approach is

applied to the admissible region by Fujimoto and Alfriend which uses the angle-rate in-

formation to eliminate potential state hypotheses [63]. Each of these methods have been

implemented and demonstrated with some success but an open area of research is in the

intersection theories introduced by Fujimoto et. al. and Maruskin et. al. [60, 48]. These

intersection approaches require a single intersection between disparate admissible regions,

but it is not shown that in general there is only one intersection possible. The inclusion of

uncertainties will also affect the intersection approach since the intersection is no longer

a single point but a distribution of points that could be the intersection. An open area of

research in observation association is determining a computationally tractable approach

which quantifies the probability of intersection, and thus the probability of correlation, of

two or more disparate observations.

Chapter 5 introduces a generalization of the optimization problem defined to identify

the point of intersection, if it exists, between two or more higher dimensional surfaces,
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or manifolds. This optimization problem is then cast as a set of reduced order intersec-

tion problems which is shown to reduce computation time, thus improving computational

tractability. The systemic uncertainties are then used to define a probability of association

metric which attempts to quantify the extent to which a set of observations are associated

based on the known or assumed uncertainties in the system. Furthermore, due to the inclu-

sion of systemic uncertainties through the results presented in Chapter 2, the statistics about

the solution(s) to the intersection problem can be defined analytically through the Hessian

matrix. Examples are also included in Chapter 5 from real observation data to demonstrate

the capabilities of this approach.

Contribution 4 : An optimization based methodology for uninformative priors that

determines the probability that two underdetermined measurements are correlated, and si-

multaneously yields the resulting PDF about the estimated state if the observations are

correlated.

1.2 Summary of contributions and relevant literature

To summarize, the proposed contributions of this work aim to improve the applicability of

the admissible region approach to state estimation. Figure 1.1 illustrates the relationships

between each of the contributions of this work. The first contribution involves incorporat-

ing uncertainties in the system into the construction of the admissible region. The second

contribution involves using fundamental statistical properties to define the proper use of the

admissible region prior for bayesian estimation. The third contribution expands further on

the second by utilizing Dempster-Shafer theory to avoid the assignment of a prior until the

system is observable through the concepts of belief and plausibility. The fourth contribu-

tion builds upon the first by utilizing uncertainties in the admissible region to determine a

probability of association for two disparate observations. Table 1.1 summarizes the relevant

literature for each of the contributions identified.
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Table 1.1: Overview of contributions, existing literature and publications
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Figure 1.1: Summary of the contributions
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1.3 List of Publications

The publications which contribute to the contents of this thesis are listed below in chrono-

logical order, separated by publication type.

Peer reviewed journal articles
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CHAPTER 2

ANALYTIC CONSIDERATION OF SYSTEMIC UNCERTAINTIES IN THE

ADMISSIBLE REGION APPROACH

This chapter introduces the admissible region approach as originally defined by Milani et.

al. [45][65][64]. Since the introduction of the admissible region, the methodology has

been applied to various phenomenologies. Milani et. al. originally defined the method for

optical observations of near Earth objects [45]. Tommei et. al. discusses the extension

of the method for radar observations [64]. Holzinger extended the method for application

to magnetometer based detections of space object [71]. The notation defined to set up

the admissible region problem in this chapter is generalized to permit the application of

the admissible region approach to any underdetermined system. Further, the use of this

generalized notation throughout the thesis permits the methodologies and concepts defined

within to be applied not only to optical observations of space object, but also to any ob-

servation phenomenology of an unobservable system. Given the generalized notation, an

approximate analytic inclusion of systemic uncertainties is defined and compared against

numerical simulations. The resulting general approximate, analytic, uncertain admissible

region formulation forms the basis for each of the following contributions in this thesis.

2.1 Admissible States

Admissible state approaches are useful in a variety of applications, and thus a general

measurement model is used to derive the approach. A general nonlinear measurement

model is assumed,

y = h(x; k, t) (2.1)
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where y ∈ Rm is the measurement vector, x ∈ Rn is the state, k ∈ Rl is a parameter vector,

and t ∈ R is the time. In the case of an underdetermined system the number of states

that can be observed, or measured, is less than the number of states in the system, giving

m < n. This is significant because it implies there is no unique solution for x given y in

Eqn. (2.1). This signifies that the undetermined states play no role in determining y. This

enables a partitioning of the state vector into the observable and undetermined states.

xT =

[
xTd xTu

]
(2.2)

Eqn. (2.1) becomes

y = h(xd, xu; k, t) (2.3)

where xd ∈ Rm are the determined states, xu ∈ Ru are the undetermined states, and

u + m = n. Since it has already been stated that the undetermined states have no impact

on y, it follows that Eqn. (2.3) can be written simply as

y = h(xd; k, t) (2.4)

This implies that there exists a unique relationship between xd and y given the observation

parameters k and time t. Equivalently, there is a one-to-one and onto mapping from xd to y,

which means that the inverse mapping is guaranteed provide one-to-one and onto mappings

from y to xd. Thus,

xd = h−1(y; k, t) (2.5)

To bound the undetermined state solution space, admissible region methods impose a

set of state constraint hypotheses H = {H1, · · · ,Hc}. Then an admissible region can be

constructed from a given constraint Hi ∈ H under the assumption that a given hypothesis

Hi is true. These constraints may result from the dynamics of the system or from physical
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limitations and can be represented in the following form

gi(xd, xu; k, t) ≤ 0 (2.6)

Combining with Eqn. (2.5) yields

gi(h−1(y; k, t), xu; k, t) ≤ 0 (2.7)

This constraint is significant because a given observation will result in a continuum

of possible solutions for xu, but Eqn. (2.7) defines an n − m dimensional continuum of

admissible solutions that all generate the observed measurement. This definition requires

that the constraint reduces the set of solutions from an infinite continuum to a compact set

with an integrable area. In order to formalize this set,Ai ∈ Ru is defined.

Ai := {xu ∈ Ru | gi(h−1(y; k, t), xu; k, t) ≤ 0} (2.8)

The set of solutions inAi is also known as the admissible region for hypothesis Hi in the

literature [45][65][64]. The combined admissible region for all hypothesesH is then given

by

A =A1 ∩ · · · ∩Ai ∩ · · · ∩Ac (2.9)

The boundary ofAi can be defined by setting the inequality in the set definition to an

equality. This represents the constraint as a surface Bi ∈ Ru−1.

Bi := {xu ∈ Ru−1 | gi(h−1(y; k, t), xu; k, t) = 0} (2.10)

Notationally, the constraint of set Bi can be simply defined as a constraint function

gi(h−1(y; k, t), xu; k, t) ≡ κi(xu, y,k, t) = 0 (2.11)
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which implies that given y,k and t, satisfying this equation gives the undetermined states

xu in the set Bi, which is the boundary ofAi.

In the absence of uncertainty, the volume enclosed by Bi, or equivalently the admissible

regionAi, is represented as a uniform distribution [45]. This admissible region probability

of set membership in the notation proposed in this paper is formally stated as

P[(xu ∈Ai)] = P[(κi(xu, y,k, t) ≤ 0)] (2.12)

which, without the effects of uncertainty, gives a uniform value for each state satisfying the

constraint. Using Eqn. (2.12) and the following standard definition, a PDF typically used

to instantiate a filter can be determined.

fi[xu] =
P[xu ∈Ai]∫

Ai
P[xu ∈Ai]dxu

(2.13)

Because satisfaction of the constraint is binary, P[xu ∈ Ai] takes on values of 0 or 1,

yielding uniform distributions.

2.2 Uncertainties in the Admissible States

With an expression for the boundary of the admissible region method Bi defined, the effects

of uncertainty can be investigated. The uncertainty is generated by error in the measure-

ment devices as well as uncertainties in the observer’s parameters, such as the observer’s

position or velocity, and timing inaccuracies. A Taylor series expansion of Eqn. (2.11)

allows for the analysis of the effects of uncertainty on the undetermined states by provid-

ing an expression containing the uncertainty contributions of the undetermined states, the

measurements, the observations parameters and time. The Taylor series expansion of Eqn.
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(2.11) is given by

κi(xu + δxu, y + δy,k + δk, t+ δt) = κi(xu, y,k, t) +
∂κi
∂xu

δxu +
∂κi
∂y

δy

+
∂κi
∂k

δk +
∂κi
∂t

δt+ · · ·+ H.O.T

(2.14)

The full Taylor series expansion captures exactly the effects of uncertainty in the con-

straint equation, but the effects of the higher order terms can be assumed negligible for

sufficiently small errors and small curvature of the constraint. As will be shown in later

sections, the Taylor series approximation performs poorly when the constraint has high

curvature or when the uncertainties are large due to the contributions of the higher order

terms that are being neglected. Given any variation in the measurement or parameter vec-

tors, the constraint defines the perturbed location of the admissible region boundary and

must necessarily be satisfied, requiring

κi(xu + δxu, y + δy,k + δk, t+ δt) = 0 (2.15)

Using Eqn. (2.15) and assuming that the variations in δy, δk, and δt are sufficiently small,

the higher order terms are negligible. The Taylor series simplifies to

−∂κi
∂xu

δxu =
∂κi
∂y

δy +
∂κi
∂k

δk +
∂κi
∂t

δt (2.16)

Eqn. (3.70) only relates a constant variation in y, k, and t to xu. It does not give information

on how random uncertainties and errors in y, k, and t (δy, δk, δt) contribute to a resulting

distribution of the undetermined states. The first order sensitivity of the undetermined states

in Eqn. (3.70) can be rewritten as a similar equation in terms of random variables δY, δK,

and δT with each random variable belonging to a Gaussian distribution. Thus, combining

the errors δY, δK, and δT into a single variable δZ ∈ Rm+l+1, Eqn. (3.70) can be rewritten
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as

−∂κi
∂xu

δXu =
∂κi
∂z

δZ (2.17)

where δXu is now a random variable, and the uncertainty distributions

δZ =

[
δYT δKT δT

]T

can be written as

δZ ∼ N (0,Pz) (2.18)

where Pz is the known covariance matrix of δZ. Eqn. (2.17) as written is a scalar equation,

preventing a direct solution for δXu without the addition of other constraints.

(a) 3σ Uncertainty bounds for κi(xu, z)

−3 −2 −1 0 1 2 3
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σδx̂u

(b) Example Gaussian distribution in the δx̂u direc-
tion

Figure 2.1: Determining the constraints for δXu

Considering the constraint κi(xu, y; k, t), the derivative with respect to xu will be per-

pendicular to Bi at the point xu. This perpendicular vector is defined as the p vector

p =
∂κi
∂xu

∣∣∣∣∣
xu

(2.19)
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With this definition, Eqn. (2.17) can be rewritten as

pT δXu = −∂κi
∂z

δZ (2.20)

Consider the uncertainty δxu at different locations xu along the constraint κi as shown in

Figure 2.1. The variational location of the boundary can be described by a curve locally

parallel to κi, and so at the point xu, can be fully described by the projection of δxu in the

direction of p. Thus, the solution δxu should have no component in any tangential direc-

tions, enabling the remaining additional constraints to be defined. For an m dimensional

measurement, n−m−1 = u−1 tangential directions exist. The first tangential direction t1

is obtained by solving for any vector perpendicular to p. Each subsequent tangential vector

in Ru can be obtained recursively by taking the cross product.

tj = p× tj−1 for j = 2, ..., u− 1 (2.21)

Thus the matrix of tangential directions is formed by

T =


tT1
...

tTu−1

 (2.22)

where T ∈ Ru−1×u. To ensure a particular solution of δxu has no tangential component,

the following is defined.

tTi δXu = 0 (2.23)
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Combined, the constraints on the solution for δxu can be written as



pT

tT1
...

tTu−1


δXu =

pT

T

 δXu =

−∂κi

∂z

0

 δZ (2.24)

Because each row and column of the matrix on the left hand side are mutually orthogonal,

it is by definition full rank and always invertible, yielding

δXu =

pT

T


−1 −∂κi

∂z

0

 δZ (2.25)

This equation expresses the relationship between uncertainties in z and xu such that δXu is

orthogonal to the constraint boundary Bi. Let

Mi =

pT

T


−1 −∂κi

∂z

0


Then, to first order, the random variable δXu orthogonal to the constraint surface is linearly

related to the parameter random variable δz.

δXu = MδZ (2.26)

Now, the statistics of the uncertain boundary location δXu must be determined. Since δZ

belongs to a Gaussian distribution, the expected value of δXu can be taken as

E[δXu] = E[MδZ] = 0 (2.27)

indicating δXu has 0 mean, which is as expected since the uncertainties in δZ are assumed
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to belong to Gaussian distributions with 0 mean. The covariance of δXu is derived as

follows

Pxu = E [(E[δXu]− δXu)(E[δXu]− δXu)]
T

= E[(δXu)(δXu)
T ]

= E[MδZδZTMT ]

= ME[δZδZT ]MT

By definition E[δZδZT ] = Pz is the variance of δZ which allows

Pxu = MPTz MT (2.28)

Where Pxu ∈ Ru×u is the covariance matrix for δXu at a given point in Bi. Because the rela-

tionship between δxu is linear, if δz is assumed Gaussian then δXu has no higher moments.

Thus, with Equation (3.72), the distribution of the undetermined states in the direction of

p can be directly analytically approximated from knowledge of the distribution of the un-

certainties in δZ at each point on the set Bi of the admissible regionAi. Furthermore, the

Gaussian cumulative distribution function giving P[(x ≤ X)] is fully defined by mean and

variance, so the probability that a given xu is in the admissible regionAi can be defined

analytically as

P[(xu ∈Ai)] =
1

2

[
1 + erf

(
‖xu − xu,B⊥‖√

2trPxu,B⊥

)]
(2.29)

where xu,B⊥ is the point on the set Bi that is perpendicular to xu, Pxu,B⊥
is the covariance

matrix computed for that point, and erf() is the Gauss error function given below.

erf(x) =
2√
π

∫ x

0

e−t2dt (2.30)

The approximate analytical probability of set membership can be fully obtained using Eqn.
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(4.33). This particular formulation gives an analytical approach to determine the probabil-

ity that a given solution xu is in the setAi. Also, note that xd is by construction Gaussian

(xd ∼ N (xd,Pd)), so a complete distribution for x is found. This fundamental result allows

for full state uncertainty initialization for an underdetermined detection.

Additionally, the contributions of the uncertainty can be quantified analytically. Since

the distribution of xd is Gaussian, the trace of Pxu defines the distribution. The partial

derivatives of Pxu with respect to Pz gives the sensitivity of the distribution to the individual

sources of error and uncertainty and is derived by the following.

∂

∂σ2
i

tr[Pxu ] =
∂

∂σ2
i

tr[MPT
z MT]

= tr[MeieT
i MT] (2.31)

where σ2
i = Pz(i,i) and ei is the ith column of the m+ l + 1 dimensional identity matrix.

2.3 Joint Admissible Region for Multiple Constraints

Given the set of constraints H, it is likely that the probability of set memberships of each

individual constraint hypothesisHi overlaps with those of the other constraints in Ru. The

interaction of these probabilities is of interest since the combined membership functions

provides a full joint distribution under the assumption that all constraint hypotheses are

true. To characterize the joint probability, a PDF for a single constraint can be written as

f(xu ∈Ai) =
P[κi(xu) ≤ 0]∫

Ai
P[κi(xu) ≤ 0]dxu

(2.32)

which can otherwise be written as

f(xu ∈Ai) =
P[κi(xu) < 0]∫

Ai
P[κi(xu) < 0]dxu

∪ P[κi(xu) = 0]∫
Ai

P[κi(xu) = 0]dxu
(2.33)
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Furthermore, since P[κi(xu) < 0] and P[κi(xu) = 0] are mutually exclusive events

f(xu ∈Ai) =
P[κi(xu) < 0]∫

Ai
P[κi(xu) < 0]dxu

+
P[κi(xu) = 0]∫

Ai
P[κi(xu) = 0]dxu

(2.34)

Define P[xu ∈A] as the joint probability that κi(xu) ≤ 0 for i = 1, ..., c such that

P[xu ∈A] = P[κ1(xu) ≤ 0] ∩ · · · ∩ P[κi(xu) ≤ 0] ∩ · · · ∩ P[κc(xu) ≤ 0] (2.35)

Substituting Eqn. (2.34)

P[xu ∈A] = {P[κ1(xu) < 0] + P[κ1(xu) = 0]} ∩ · · ·

∩ {P[κi(xu) < 0] + P[κi(xu) = 0]} ∩ · · ·

∩ {P[κc(xu) < 0] + P[κc(xu) = 0]} (2.36)

The distribution of δXu along the p direction is a continuous Gaussian distribution, thus

P[κi(xu) = 0] = 0 which after expansion of Eqn (2.36) yields

P[xu ∈A] = P[κ1(xu) < 0] ∩ · · · ∩ P[κi(xu) < 0] ∩ · · · ∩ P[κc(xu) < 0] (2.37)

For independent events A and B, Bayes’ Theorem simplifies to P(A ∩ B) = P(A)P(B).

Under the assumption that the constraints are independent, the probability that xu is in the

set joint setA is given by

P[xu] = P[κ1(xu) < 0]× · · · × P[κi(xu) < 0]× · · · × P[κc(xu) < 0] (2.38)

were the multiplication is the pointwise multiplication of the probabilities computed for

each constraint. Thus, using Eqn. (2.13), Eqn. (2.38) and Eqn. (4.33) the joint probability

of set membership for an arbitrary number of constraints can be defined analytically. Note,
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in general the constraints are not independent and a full treatment of joint probability of

set membership is given in §2.9 where the results are compared against those of the fully

independent constraint assumption.

2.4 Track Correlation

The last section presents a method by which several constraints can be combined to gener-

ate a joint probability distribution. Similarly, this method can be used to joint probability

distributions from different epochs. Fujimoto’s work shows that observations can be as-

sociated by applying Bayes’ rule to an admissible region generated from two epochs [66].

A non-zero result indicates the observations are associated. Specifically, if the objects are

associated then there is exactly one solution with non-zero probability. An exception to this

occurs when there are multiple closely spaced objects being tracked or if there are multi-rev

solutions [72].

However, due to observation errors and uncertainties, this particular solution does not

fully capture the probability that the measurements are associated. It is possible to, through

the inclusion of uncertainty, instead obtain a distribution around this point. Consider two

admissible region PDFs f(x(t2);κi(xu, z1, t1)) and f(x(t2);κj(xu, z2, t2)), where x(t2) de-

notes that the admissible region generated from κi(xu, zk, tk) is propagated to a common

time t2. Assuming that each observation is statistically independent, then applying Bayes’

rule as before

f(x(t2);κi(xu, z1, t1))∩f(x(t2);κj(xu, z2, t2)) = f(x(t2);κi(xu, z1, t1))×f(x(t2);κj(xu, z2, t2))

(2.39)

Eqn. (2.39) gives the joint probability that a particular state xu is in the admissible region

at both times. Using Eqn. (2.13) the joint probability density can then be computed and

applied to a discretized state space similar to the approach taken by Fujimoto. Importantly,

it is not necessary that each measurement result from the same sensor phenomenology, nor
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is it required that t1 ≤ t2. A full treatment of track correlation with the uncertain admissible

region is further defined in §5.

2.5 Summary

The presented approach is valid for any measurement sensor with undetermined states,

such as optical, radar, or magnetometer sensors. Furthermore, any constraint hypothesis

that is valid for the system observed may be used with this approach. For SSA, this may

include minimum or maximum orbit energy constraints, illumination constraints, inclina-

tion constraints, etc. This approach provides a methodology to approximate uncertainty

in the admissible states based on the observer and assumed parameter uncertainty. Then,

assuming a known Gaussian distribution for the observer’s uncertainty δZ, the distribution

of the admissible region is analytically approximated. This enables a probability distribu-

tion function in the admissible regionAi to be analytically generated simply by knowing

the uncertainties associated with the measurement sensors and observer. This analytical

method can generate an approximate distribution several orders of magnitude faster than

Monte Carlo numerical analyses, improving computational tractability for practical use.

The analytical method is also extended to multiple constraints to generate a combined ad-

missible regionA and the resulting combined joint probability of set membership associ-

ated withA. The proposed method can also be used for associating admissible regions at

different epochs by computing the joint probability distribution formed by each observa-

tion.

2.6 Application

This section explores application of the analytic consideration of systemic uncertainties to

example observation scenarios to show agreement between the approximation and numer-

ical simulations.
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2.6.1 Angles-Only Initial Orbit Determination Initialization

The proposed methodology in the Theory section is applied in this section to the problem

of initial orbit determination for space objects using optical measurements. This section

begins with a review of the relevant results originally developed by Milani et. al. [45][65],

then applies the theoretical contributions of this paper. Optical measurements generate an-

gle and angle rates of the objects tracked using a streak or sequence of angle measurements

in right ascension α and declination δ. The parameters associated with optical measure-

ments include the observer position, o and velocity, ȯ, and the times at which the observa-

tions are made (or the start/stop times of a streak). Using this information, the position r

and velocity v of the object are given by

r = o + ρ̂l

v = ȯ + ρ̇̂l + ρα̇̂lα + ρδ̇̂lδ

where α is the right ascension, δ is the declination, ρ is the range to the target, ρ̇ is the

range-rate, and l̂, l̂α, and l̂δ are given by

l̂ =


cosα cos δ

sinα cos δ

sin δ



l̂α =


− sinα cos δ

cosα cos δ

0


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l̂δ =


cosα sin δ

− sinα sin δ

cos δ


For this system the states x, observations y, and parameters k are defined as follows.

xT =

[
α α̇ δ δ̇ ρ ρ̇

]
yT =

[
α1 · · · αq δ1 · · · δq

]
kT =

[
oT ȯT

]

where q is the number of observations made and α̇ and δ̇ are the angle rates.

For an observation with two measurements, the combined measurement and parameter

vector z ∈ R12 is simply given by

zT =

[
α1 α2 δ1 δ2 t1 t2 oT ȯT

]
(2.40)

To generate the angle rate data from angle pairs in z, a Lagrange Interpolation shown in

Eqn. (2.41) is used. Using this interpolation, the effects of time uncertainty can be ac-

counted for analytically in the dynamics by substituting directly for α̇ and δ̇.

α̇ = α(t1)
(t− t2) + (t− t3) + · · ·+ (t− tn)

(t1 − t2)(t1 − t3) · · · (t1 − tq)
+ α(t2)

(t− t2) + (t− t3) + · · ·+ (t− tq)
(t2 − t1)(t2 − t3) · · · (t2 − tq)

+ · · ·+ α(tl)
(t− t1) + (t− t2) + · · ·+ (t− tq−1)

(tq − t1)(tq − t2) · · · (tl − tq−1)
(2.41)

From Eqn. (2.41) and y, 4 of the 6 states of x can be observed or determined and the
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undetermined states for this system are given by

xu =

ρ
ρ̇


2×1

(2.42)

2.6.2 Example Constraints for Initial Orbit Determination

With the undetermined states xu defined, constraint hypotheses on those states must be

imposed. Many constraints exist for orbiting bodies based on the assumptions made. A

primary assumption for simple analyses is that of 2-body motion, allowing for the specific

orbital energy equation to be used. The constraint κ1 is generated by enforcing the energy

equation such that the space object orbits about the Earth. To constrain the solutions to

only objects in orbit about Earth, the admissible region set A can be defined as {xu ∈

R2|ε(r, ṙ) ≤ 0}. The set B1 is then defined as {xu ∈ R2|ε(r, ṙ) = 0}, which is given as the

solution to the following equation.

κ1(xu, z) = 2ε(r, ṙ) = ρ̇2 + w1ρ̇+ w2ρ
2 + w3ρ+ w4 −

2µ√
ρ2 + w5ρ+ w0

= 0 (2.43)

with w0 through w5 defined as in [64].

w0 = ‖o‖2 w3 = 2α̇
〈

ȯ · l̂α
〉

+ 2δ̇
〈

ȯ · l̂δ
〉

w1 = 2
〈

ȯ · l̂
〉

w4 = ‖ȯ‖2

w2 = α̇2 cos2 δ + δ̇2 w5 = 2
〈

o · l̂
〉
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From Eqn. (2.43) the solution continuum xu satisfying the constraint can be determined

given z. Also from Eqn. (2.43) t and p directions are defined at each point on B1 simply as

p(xu)T =

[
∂κ1

∂ρ
∂κ1

∂ρ̇

]
xu

t(xu)T =

[
−∂κ1

∂ρ̇
∂κ1

∂ρ

]
xu

where

∂κ1

∂ρ
= 2ρw2 + w3 +

µ(2ρ+ w5)

(ρ2 + w5ρ+ w0)3/2

∂κ1

∂ρ̇
= 2ρ̇+ w1

and the terms of ∂κ
∂Z are given in the Appendix. Note that the Lagrange interpolation (Eqn

(2.41)) is used for the angular rates, enabling computation of the partial derivatives of κ1

with respect to time. With κ1 defined, example deterministic admissible regions are com-

puted based on the measurements given in Tables 2.1 and 2.2 and the observer parameters

given in Table 2.3. The cases considered include an object at LEO and an object at GEO

with two observation intervals to demonstrate the effects including uncertainty can have.

Optical measurements can be generated from streaks for which a single detection yields

two angles or from multiple point detections over time. Table 2.3 shows measurements of

the latter form with 3 detections forming the observation. The admissible regions com-

puted from the Case 1 observations are shown in Figure 2.2 and Figure 2.3. As can be

seen in Figures 2.2a and 2.3a, without inclusion of measurement uncertainty, the approach

generates an uniform distribution with a discontinuous probability density at the boundary.

2.6.3 Accounting for Uncertainty

Recall the standard admissible region (shown in Figures 2.2 and 2.3) has a uniform proba-

bility distribution within the constraint. To approximate the true probability of set member-
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Table 2.1: GEO Optical Observation Measurements
5 minute interval 1 minute interval

Time (UTC) α (rad) δ (rad) Time (UTC) α (rad) δ (rad)
02:01:36 -1.5696 -0.09473 02:01:36 -1.5696 -0.09473
02:06:36 -1.5501 -0.09380 02:02:36 -1.5657 -0.09454
02:11:36 -1.5307 -0.09287 02:03:36 -1.5618 -0.09436

Table 2.2: LEO Optical Observation Measurements
10 second interval 1 second interval

Time (UTC) α (rad) δ (rad) Time (UTC) α (rad) δ (rad)
02:01:36 -0.88785 0.30175 02:01:36 -0.88785 0.30175
02:01:46 -0.89577 0.30866 02:01:37 -0.88853 0.30233
02:01:56 -0.90370 0.31558 02:01:38 -0.88919 0.30292

Table 2.3: Observer Parameters (Atlanta, GA) and True Object States

Parameter î ĵ k̂

Location (Lat, Lon, Alt) 33.77◦N 84.39◦W 340m

Cartesian Position (km) -1359.0 5128.8 3527.9

LEO Object Position (km) -6012.2 -316.8 3995.1

LEO Object Velocity (km/s) -4.0881 1.0216 -6.0568

GEO Object Position (km) -38845 16361 1417

GEO Object Velocity (km/s) -1.1907 -2.2837 -0.1151

ship, the uncertainties must be taken into account while computing the admissible region.

The measurements and parameters are assumed to have normal distributions with µ = 0

and σ defined by the error associated with each quantity. The errors are given below and

are consistent with or better than the performance of Raven-class telescopes used for SSA.

As stated, the analytical approach does not require discretization of the state space.

However, in order to both visualize and compare the results with a traditional Monte Carlo

approach a discretization of the state space is utilized. Since the approach is analytical, the

accuracy of the PDF generated is only dependent upon the approximation of the lineariza-

tion and the resolution of the discretization. For each observation case, the state space is

discretized to a 500 by 500 grid for a total of 250,000 points. Equation (4.33) is then eval-
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Figure 2.2: Admissible region for the Case 1 GEO observation
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Figure 2.3: Admissible region for the Case 1 LEO observation

Table 2.4: Measurement Error and Parameter Uncertainty

Right Ascension uncertainty, σα 10 arcseconds

Declination uncertainty, σδ 10 arcseconds

Timing error, σt 0.0001 s

Position error (each axis), σo 1 m

Velocity error (each axis), σȯ 1 m/s
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uated at each point xu in the grid to generate P[xu ∈ A1] for each GEO and LEO case,

which can then be normalized to compare the approximate probability of set membership.

The constraint curve B is sampled by 100 points equally spaced from ρ = 0 to ρmax with

±ρ̇ evaluated at each value of ρ. The quantity ‖xu−xu,B⊥‖ is calculated at each point as the

minimum distance from xu to the points in the sample set of points defining the constraint

curve B. The covariance Pxu,B⊥ is calculated at each point xu by evaluating Eqn (3.72).

This enables a direct comparison between the numerical and analytical approaches as the

discretization grid used by each is identical. Figure 2.4 shows the resulting analytically gen-

erated probability of set membership. To visualize the results, Figure 2.5 shows the ±3σ

bounds of the approximate probability of set membership as well as the nominal constraint

curve. These plots shows how significant an effect the measurement uncertainties have on

the admissible region. Parts of the state space are unaccounted for without the inclusion of

uncertainty, thus, to appropriately use admissible regions, observation uncertainty must be

accounted for. As an example application, the results shown in Figure 2.4 could be used

to improve Multiple Hypothesis Tracking (MHT) techniques by providing more accurate

initial probability distributions. Additionally, the +3σ curve can be computed analytically

as an upper bound to admissible region methods such as the GMM approach.

The GEO 1 minute interval and the LEO 1 second interval cases display large effects

of uncertainty. The uncertainty at the location of maximum possible ρ is larger than the

curvature of the constraint in both of these cases. Thus, there is a region in both cases where

the expected symmetry of the ±n-σ curves is no longer true. Due to the large curvature of

the constraint curve, these cases show that with large enough uncertainty effects or large

enough curvature the assumptions made in the derivation of the approach can be violated.

In the observation scenarios presented, as the observation interval approaches 1 minute for

the GEO object and 1 second for the LEO object, the asymmetry of the±n-σ curves shows

that the assumptions are starting to be violated. However even in these regions where the

curvature and sufficiently small uncertainty assumptions are violated, the % error in the
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approach is less than 6% in the GEO 1 minute observation and less than 10% in the LEO 1

second observation.
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Figure 2.4: Analytical probabilities including uncertainty over the undetermined state space

2.7 Validation of the Approximation

The analytical approach presented is based on a first order approximation using a Taylor

series expansion. Since it is an approximation, error between analytically and numerically

obtained results are expected. The purpose of this section is to quantify this error.
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Figure 2.5: The ±3σ bounds for the approximate analytical probability of set membership
shown in addition to the nominal boundary. The true state is denoted with the marker

2.7.1 True PDF

Figure 2.4 shows the full probability of set membership with uncertainty calculated from

the analytical approximation. Traditional approaches also use a discretization of the un-

determined state space to generate an admissible region probability through Monte Carlo

methods. The discretized grid generates a sampling of the state space. Since δZ is given

by Eqn. (2.18) and the measurement and parameter errors are given in Table 5.1, a Monte

Carlo simulation can provide the true distribution in δxu. For every point in the grid, ran-

domly generated uncertainties with a Gaussian distribution are calculated and the constraint

function evaluated. Each point in the grid acts as a bin recording the number of times the

40



constraint is met. The probabilities are then obtained by dividing the resulting bin values

by the total number of trials. Since δZ ∈ R12 for this example application, the Monte Carlo

simulation requires a large sample size to sufficiently capture the distribution of the data.

Thus, a Monte Carlo approach is limited by both the dimensionality of the problem and the

resolution of the discretization in addition to long computation times. A Monte Carlo sim-

ulation with one million samples is generated for an identical discretized state space grid as

the analytical approximation and each point in the grid is evaluated one million times. To

expedite this process, the algorithm was programmed to utilize a Tesla C2050 GPU through

the GPU programming functionality in MATLAB. The results from the analysis are shown

in Figure 2.6. Even with the calculations being performed on the GPU, the run time for the

Monte Carlo algorithm is approximately 2 hours. In contrast, the analytical probability of

set membership is generated in 2 minutes on the same machine (specs listed in Table 2.5)

without GPU processing. The analytical approach presented is not limited by dimension-

ality because it does not require a discretization to generate the PDF, the discretization is

being shown to compare the two results. Furthermore, the computational requirements for

the analytical approach presented are much less than those of Monte Carlo methods.

Table 2.5: Computer Specs

CPU Intel Xeon E5520 @ 2.26GHz

GPU Tesla C2050

OS RHEL 5

A piecewise % Error calculation is shown in Figure 2.7. In the LEO cases, the % Error

is below 10% in general. Note that the uncertainty effects in the GEO cases decreases as ρ

decreases. In general, the GEO cases appear to have good agreement for large ρ but as ρ

decreases so does the effect of uncertainty, reducing the comparability of the numerical and

analytical results. Thus, the % Error calculations in the GEO cases is truncated to the region

where the discretization is sufficient to compare the two. Figure 2.8 shows features of the

% Error plots not easily seen in Figure 2.7. As seen in Figure 2.7a, it appears the GEO 5
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minute observation is not in well agreement, but after discretizing the region for ρ ≥ 8 it

can be seen in Figure 2.8 that the analytical and numerical cases are in very well agreement

with less than 2% error between them. Conversely, in the GEO 1 minute interval case the

% Error is not symmetric due to the large effect of the uncertainty. The major effect seen in

the GEO 1 minute interval case is that the high curvature allows the uncertainty orthogonal

to the constraint to cross the plane of symmetry which contributes to high error near the

location of ρmax. In contrast, the GEO 5 minute interval case is expected to be in much

better agreement since the errors are lower in this case. However, what is seen here is a

limitation of the spatial resolution of the discretization. The entire distribution is contained

in 3 pixels of the chosen discretization which is insufficient to capture the true distribution,

contributing to the area near the mean being near 0% error but just outside being close to

20% error. In order to better assess how well the analytical probabilities agrees with the

Monte Carlo probabilities without considering the limitations of the discretization chosen,

an additional metric is defined in the following section.

2.7.2 Kullback-Leibler divergence

The comparison of the analytical and numerical results is fundamentally a comparison of

two distributions. Thus, a measure of the similarity of the distributions can be used as a

metric of the quality of the analytical approximation. Eqn. (4.33) defines the probability

distribution along the lines normal to the constraint curve, in the expected value case, and

both the numerical and analytical solutions should have identical curves for σ = 0. Equiv-

alently, the analytical and numerical curves (i.e. σ = 0) without considering uncertainty

should be identical. This implies that for this specific case the distribution in the p direction

at identical points on the should also be identical, enabling a comparison of the accuracy of

the analytical solution. To define these points a line integral is defined for the σ = 0 curve

such that for each point on the line, the distribution in the p direction is obtained for both

approaches. The line integral along a given constraint curve κi parameterized by s ∈ [0, 1]
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Figure 2.6: ‘True’ Monte Carlo numerical probabilities over the undetermined state space

is defined as follows. Defining the jth point in the set of n states comprising Bi as xj,Bi , the

total length, L, of κi for xu ∈ R2 can be defined by

L =
n−1∑
j=1

‖xj+1,Bi − xj,Bi‖2 (2.44)

where the set of points xj,Bi depend on the chosen discretization. Figure 2.9 illustrates this

for an example admissible region. As shown,
∑

∆L gives the total length of the admissible

region curve enabling the line integral s to be defined such that ∆s, along the line si can be
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Figure 2.7: % Error between the analytical and numerical probabilities over the undeter-
mined state space. The dotted lines in the GEO cases denote a region where the discretiza-
tion is too small to produce meaningful % error results.

computed as

∆sj =
∆Lj
L

=
‖xj+1,Bi − xj,Bi‖2

L

This procedure normalizes the constraint curve to the domain s ∈ [0, 1] allowing for the

analytically and numerically computed uncertainties to be conveniently compared. For

the numerically generated probability of set membership the −3σ through 3σ contours are

extracted and by generating a line integral for each contour. Then an interpolation through
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Figure 2.8: % Error focused on regions of interesting behavior.

Figure 2.9: Two points along L used to calculate ∆Lj

the extracted points can be used to generate the numerical distribution corresponding to

each point along s. The analytical distributions are fully defined at each point along s with

zero mean and variance given by Eqn (3.72). With both the analytically and numerically

computed distributions in the p direction along s defined, the Kullback-Leibler divergence

is utilized to numerically compare the distributions.

The Kullback-Leibler (KL) divergence metric, DKL, also known as the information

divergence, is a measure of the difference between two probability distributions P and Q

[73]. It is a measure of information lost when Q is used to approximate P . It should be
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noted that the KL divergence is not symmetric, implying DKL from P to Q is not the same

as from Q to P .

Dkl(P ||Q) =
∑
i

ln

(
P (i))

Q(i))

)
P (i) (2.45)

The equation given above is the form of the KL divergence for discrete probability dis-

tributions, where i is an index of the discrete probabilities being compared. Though the

probability distributions approximated for the uncertainties are continuous, only discrete

points from that distribution are known and thus the approximation of the KL divergence

for the numerically and analytically computed distributions as discrete is appropriate.

Because both distributions necessarily have zero mean, quantifying error in the analyt-

ical approximation can be accomplished by examining error in the standard deviation. To

asses how the values determined for DKL relate to the quality of the approximation, two

standard Normal distributions are generated as follows

P ∼ N (0, σP )

Q ∼ N (0, σP (1 + %err))

where σ%errr is the percent error difference from σP . By varying the % error up to 100%,

Figure 2.10 shows how DKL changes for standard normal distributions. Using this plot,

an interpolation can be defined to approximate the % error that corresponds to a given

DKL. The resulting interpolation is then used along with Eqn. (2.45) such that both %

error and DKL can be evaluated. The numerically computed distributions are defined as Q

and the analytically computed distributions are defined as P . Thus at each point along si

both P and Q are used to compute DKL and, using the inverse of the relationship shown in

Figure 2.10, the corresponding percent error between the numerical and analytical cases is

computed.

Since the LEO 1 second interval showed the highest effect of the uncertainty, this case

is chosen for further analysis with the Kullback-Leibler approach. It is expected that as the
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Figure 2.10: DKL as a function of % error for a standard Normal distribution
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Figure 2.11: Plots of DKL comparing the analytical and Monte Carlo simulation
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Figure 2.12: DKL over the well behaved region of the line s plotted along with % Error

uncertainty decreases the accuracy of the approximation increases, thus if the accuracy of

the approach is validated for the highest uncertainty case, it is expected to validated for the

other cases as well. Figure 2.11a shows DKL for the full length of s. However, at the ends

of the distribution DKL increases substantially towards infinity. This increase is due to the

effects of the discretization as well as the effects of uncertainty. Recalling Figure 2.4, as

the constraint approaches ρ = 0, the distribution narrows. This can be explained proba-

bilistically as the variances computed by Eqn (3.72) decrease as ρ→ 0. As the distribution

narrows with a constant, predefined discretization, the width of the distribution becomes

too small for the discretization to adequately sample from the distribution. This can be

avoided by selecting a discretization size based on the smallest distribution width, however

such an approach would be computationally infeasible. Alternatively, a discretization could

be selected such that a significant portion of s provides adequate sampling of the proba-

bility distribution in that region. Thus, 2.11b shows DKL for the region of s ∈ [0.4, 0.6].

Over this range, the values of DKL are better behaved implying that over this range of s the

discretization is sufficient for analysis.

Analyzing the results of Figure 2.12, the greatest Kullback-Leibler divergence is ex-

pected to be found to be at s = 0.5. Since this problem is derived using a Taylor series
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approach, thus the largest errors are expected in the high curvature regions of the approx-

imation. However, as the analytical results are continuous and the numerical results are

discrete, s = 0.5 has lower error than its neighboring region since the normal direction is

solely in the ρ axis, thus effects of the discretization are minimized. For this reason, the

error increases as the slope of the normal direction increases and Figure 2.12 confirms this.

In order to minimize this the selected discretization was 3500 points in each axis which

required 11 hours to generate. It is expected that a finer discretization will show the ex-

pected behavior however such a discretization is computationally infeasible. However it is

found that outside of 0.40 ≤ s ≥ .60 is where the discretization starts to fail so s = 0.41

is chosen for further analysis. The analytically and numerically obtained distribution func-

tions are shown in Figure 2.13 for s = 0.41. Note that the numerical distributions are fit to

the points from the Monte Carlo simulation as a method of comparison. The Monte Carlo

results are indeed non-Gaussian but can be approximated as Gaussian for the Kullback-

Leibler approach. It is evident in Figure 2.13a that the means of the two approaches are

well in agreement. This is as expected as the uncertainties belong to a distribution with

zero mean. Further, it is shown in Eqn. (2.27) that the mean of the distribution in the un-

determined states should be zero. At this point, the location of the highest error between

the approaches, the main difference between the numerical and analytical approaches is the

apparent overestimation of the standard deviation from the analytical approach. This is ev-

ident due to the narrower peak of the numerical distribution, indicating the true distribution

has a lower standard deviation than what is approximated analytically. The contributions

of each source of uncertainty or error can also be quantified at s = 0.41 using Eqn (2.31).

Table 2.6 shows the sensitivity of the overall uncertainty to each contributing factor and it

is apparent that the angular accuracy and timing accuracy are the most influential sources

of error.

Using the inverse of the relationship between DKL and % error shown in Figure 2.10,

Figure 2.12 plots both DKL and % error on a single axis. The location of the expected
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Table 2.6: Sensitivity of Undetermined State Uncertainty to Measurement Error and Pa-
rameter Uncertainty

Contribution Parameter

σα1 = 17.20% Right Ascension Measurement 1

σα2 = 17.19% Right Ascension Measurement 2

σδ1 = 15.77% Declination Measurement 1

σδ2 = 15.78% Declination Measurement 2

σt1 = 17.02% Time of Measurement 1

σt2 = 17.02% Time of Measurement 2

σox = 1.58× 10−6% X Component of Observer Position

σoy = 4.21× 10−7% Y Component of Observer Position

σoz = 2.92× 10−6% Z Component of Observer Position

σȯx = 4.22× 10−6% X Component of Observer Velocity

σȯy = 7.60× 10−6% Y Component of Observer Velocity

σȯz = 1.19× 10−5% Z Component of Observer Velocity

100%

maximum DKL is marked with a circle on the plot and at this point the % error of the

approach is 3.638%. Overall, the approach appears to be in good agreement with the nu-

merical results. It should be noted that several effects contribute to the accuracy of the

analytical approach. The first order approximation used to derive the approach contributes

to the errors presented. A numerical method is capable of capturing the higher order ef-

fects whereas in the presented analytical approach they are assumed negligible, so a certain

amount of error is to be expected. However, it is shown that this error is relatively small and

additional factors can contribute to lowering the error. Lower uncertainties will improve

the analytical approximation, which can be seen to some extent in Figure 2.7. Additionally,

having larger time steps between observations will improve the agreement of the analytical

and numerical PDFs reducing error. Uncertainty increases as the time between observations

decreases. Larger uncertainties contribute more to the higher order effects neglected in the
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approach. With longer time steps, uncertainty decreases overall and the error between the

numerical and analytical results will decrease as well.
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Figure 2.13: Validation of the probability and cumulative distribution functions for the
numerical and analytical cases at s = 0.41 (peak DKL error)

2.8 Joint probability of set membership with Two Constraints

Since many underdetermined systems can be subject to several constraint hypotheses, the

joint probability of set membership is of much interest. The approach presented in Section

II.C for generating a joint probability of set membership is applied to the same observa-

tion information z by considering both an energy constraint as well as a constraint on the

periapse radius of the object. For ground observers the periapse radius of the object can

be constrained using the following approach [45]. The apparent angular rate of the object

with respect to the observer is given by the proper motion η where

η =
√
w2 (2.46)
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Thus the range-rate can be equivalently written as ρ̇ = ρη and thus it is required that

|ρ̇τ | ≥ Re

|ρητ | ≥ Re

where Re is the radius of the Earth. Additionally, τ = ρ/|ρ̇| which, after simplification,

leaves

ρ2η

|ρ̇|
≥ Re

which can be written as a quadratic constraint in ρ.

κ2(xu, z) =
Re|ρ̇|
η
− ρ2 ≤ 0 (2.47)

Eqn. (2.47) represents the second constraint κ2(xu). Following the same procedure as with

the energy constraint, ∂κ2

∂xu is given by

∂κ2

∂ρ
= −2ρ

∂κ2

∂ρ̇
=

sgn(ρ̇)Re

η

where sgn() is the sign function and ∂κ2

∂Z are given in the Appendix.

The approximate and true Monte Carlo probability of set membership for κ1(xu) and

κ2(xu) are generated and the joint PDF is computed from the element-wise multiplication

of the two distributions. Figure 2.14 shows the probability of set membership generated for

the energy constraint alone. The joint approximate analytic probability of set membership

is computed using Eqn. (4.33) and shown in Figure 2.15 from the multiplication of the PDF

shown in Figure 2.14 with the probability of set membership from Figure 2.4. A numerical

Monte Carlo joint probability of set membership is generated as well and the results are
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shown in Figure 2.16. To generate a metric of comparison for the joint PDF, a % error

calculation is performed assuming the numerical distribution as the true distribution. Due

to the very tight distribution for the periapse constraints in both GEO observations as well

as the LEO 10 second interval observation, the % error calculation is only presented for

the LEO 1 second interval observation. Since the LEO 1 second interval give the largest

effect of uncertainty, it is expected that it will have the highest error overall and it can be

expected that the overall % error in the rest of the observations should be lower. Figure

2.17 shows the computed % error between the analytical probability of set membership

shown in Figure 2.15 and that of Figure 2.16 for the LEO 1 second interval observation.

Overall, the joint probability of set membership approximated from the analytical approach

agrees well with the numerical case. For solutions not in the vicinity of the intersection,

the analytical approach almost exactly matches, with less than 10% error in these regions.

At the intersections, however, the approximation has up 25% error. For reference, the

two admissible region curves are plotted as well in Figure 2.17 highlighting the location

of the intersection. It is stated previously that one of the contributions to the error in the

analytical approach is the first order approximation. However, another assumption made

is that the constraints are independent probabilistically which is inherently not true for

the selected constraints. The question then, is how to address dependent constraints in a

computationally tractable way.

2.9 Joint Probability for Dependent Constraints

The previous section highlights the error induced by assuming independence of all hypoth-

esized constraints. The error in the boundary can exceed 20% under this assumption which

indicates there must exist a more correct way to find the joint probability of set member-

ship for a joint admissible region. The full consideration of the joint admissible region
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Figure 2.14: Analytical probabilities including uncertainty over the undetermined state
space for each case

probabilities of set membership is based on the inclusion-exclusion principle

| ∪ci=1 Ai| =
c∑

k=1

(−1)k+1

( ∑
1≤i1<···<ik≤c

|Ai1 ∩ · · · ∩ Aik |

)
(2.48)

where Ai are the sets of interest and | · | denotes the cardinality of the set [74]. Eqn. (2.48)

is a combinatorial methodology which is useful for finding partitions and cuts of sets [75],
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Figure 2.15: The joint probability as obtained analytically for the energy and periapse
constraints

which when applied to probability theory yields, in general form,

P (∪ci=1Ai) =
c∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩ Aj) +
∑
i<j<k

P (Ai ∩ Aj ∩ Ak)

− · · ·+ (−1)c−1P (∩ci=1Ai) (2.49)

To apply Eqn. (2.49) to the admissible region problem, let each set Ai represent an ad-

missible region Ai. Then the probabilities shown represent the probability that a given
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Figure 2.16: The joint probability as obtained from the Monte Carlo simulation for the
energy and periapse constraints

undetermined state xu lies in the admissible region and Eqn. (2.49) can be written as

P (xu ∈ ∪ci=1Ai) =
c∑
i=1

P (xu ∈ Ai)−
∑
i<j

P (xu ∈ (Ai ∩ Aj)) +
∑
i<j<k

P (xu ∈ (Ai ∩ Aj ∩ Ak))

− · · ·+ (−1)c−1P (xu ∈ ∩ci=1Ai) (2.50)

Note that the term of interest appears on the right hand side of Eqn. (2.50). That is, the

probability quantity desired is P (xu ∈ ∩ci=1Ai). Consider the case when c = 2, then Eqn.

56



ρ (R e)

ρ̇
(R

e
/
T
U
)

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

5

10

15

20

% Error
Energy
Periapse

Figure 2.17: The percent error between the numerically computed joint probability of set
membership and the analytically computed joint probability of set membership for the LEO
1 second interval case.

(2.50) becomes

P (xu ∈A1 ∩A2) = P (xu ∈A1) + P (xu ∈A2)− P (xu ∈A1 ∪A2) (2.51)

The term P (xu ∈ A1 ∪A2) can be described without loss of generality as a piecewise

function

P (xu ∈A1 ∪A2) =



1 (κ1 ≤ 0) ∧ (κ2 ≤ 0)

1 (κ1 ≤ 0) ∧ (κ2 > 0)

1 (κ1 > 0) ∧ (κ2 ≤ 0)

z (κ1 > 0) ∧ (κ2 > 0)

(2.52)

where ∧ is the logical ”and” operator and 0 ≤ z ≤ 1. It is shown that z > 0 only when

systemic uncertainties are taken into consideration where it is possible to have a non-zero

probability of set membership outside of the nominal constraint boundary, but only in close

vicinity to the boundary [76]. By application of the Bonferroni inequality it is then possible
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to bound Eqn. (2.53) as follows

P (xu ∈A1 ∩A2) ≥ P (xu ∈A1) + P (xu ∈A2)− 1 (2.53)

without needing to determine an analytical approximation of P (xu ∈ A1 ∪A2) [77].

Without loss of generality, this simplification through Bonferroni’s inequality may then be

applied to any number of constraint hypotheses.

P (xu ∈ ∩ci=1Ai) ≥

[
c∑
i

P (xu ∈Ai)

]
− (c− 1) (2.54)

This provides a concise way to handle two or more hypothesized constraints without the

increased approximation error induced by assuming the constraint hypotheses are indepen-

dent.

Recall the errors shown in Figure 2.17 under the incorrect assumption that the constraint

hypotheses are independent. Using instead Eqn. (2.54) to define the joint probability of

set membership for the energy and periapse radius constraints these errors are reduced

substantially. Figure 2.18 shows the resulting probability of set membership function over

the joint admissible region using the Bonferroni approach and as can be seen in Figure 2.19

the percent error between the analytical and numerical approach is significantly improved.

There are still regions of large percent error near the location of the intersection, however

this is not solely due to the application of Bonferroni’s inequality. Examining Figure 2.7d

shows that there is increased error in the approximation of the energy constraint probability

of set membership even without considering additional constraints, noting again that some

of this error is induced by the limitations of computational complexity and the discretization

used for the Monte Carlo simulation. This suggests that the errors in the joint probability of

set membership functions are largely bounded by the errors of the independent membership

functions for each constraint hypothesis.
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Figure 2.18: The approximate joint probability of set membership for the LEO 1 second
interval case.

Figure 2.19: The percent error between the numerically and analytically computed joint
probability of set membership for the LEO 1 second interval case.
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2.10 Conclusions

This work generalizes the admissible region method for initial orbit determination and

presents a method by which measurement and observer uncertainties can be rigorously in-

cluded in the admissible region. From a general measurement model, the admissible region

method is generalized to define the probability of set membership function associated with

a given admissible region. Using a Taylor series expansion, an analytical expression is

derived which enables the generation of an approximate analytical model of the true prob-

ability of set membership. This approximation is shown to be in good agreement with a

numerically computed ‘true’ probability of set membership. The methodology is then ex-

tended to include multiple constraint hypotheses enabling a closed-form approximation of

a joint admissible region probability of set membership. The method presents an improved

initial orbit determination initialization with a single observation sequence by generating

an initial probability of set membership, which may then be used as a PDF in a filter, that

correctly incorporates observation and assumed parameter uncertainties.
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CHAPTER 3

PROBABILISTIC INTERPRETATION OF THE ADMISSIBLE REGION

The previous chapter introduces the inclusion of systemic uncertainties in the admissible

region by defining a membership function which is essentially a Gaussian CDF defined by

how the errors in the system map to the constraint surface. However, it does not address

the problem of how to assign prior probability density to the resulting ‘fuzzy’ set for use

in bootstrapping estimation methods. The purpose of this chapter is to define guidelines

for how prior probability densities are assigned for the uncertain admissible region based

on rigorous application of probability theory and the probability transformation theorem.

The general theory of probability transformations is an exhaustively studied topic in statis-

tics and probability with a wide range of applications [69] [78] [79]. The fundamental

results contained in this chapter are demonstrated through examples which highlight the

ambiguities present in assigning prior density in underdetermined systems.

3.1 General Probability Transformations

Given the PDF fX : Rn → R+ of a random variable X ∈ Rn, x ∼ fX(x), the cumulative

distribution function (CDF) can be written as

FX(x) = P[X ≤ x] =

∫
A

fX(x)dx (3.1)

where the volume of integration is given by A = (−∞, x1] × · · · × (−∞, xn]. Define a

transformation g : Rn → Rm where n ≥ m. Applying the transformation x̃ = g(x), the

CDF for the transformed variable is obtained using integration by substitution and is given
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by

FX̃(x̃) = P[X̃ ≤ x̃] =

∫
Ã

fX(g−1(x̃)) · abs

(∣∣∣∣∂g−1(x̃)

∂x̃

∣∣∣∣) (3.2)

where Ã = (−∞, x̃1] × · · · × (−∞, x̃n] and abs (|∂g−1(x̃)/∂x̃|) is the determinant of the

Jacobian matrix and the absolute value ensures fX̃(x̃) is non-negative for all values of x̃

[69]. The integrand of Eqn. (3.2) is by definition the PDF of X̃ = g(X) and the following

foundational theorem in multivariate statistics gives the PDF of the transformed variable.

Theorem 1 (Transformation theorem for continuous random variables [69]). Given a PDF

fX(x) and a left-invertible transformation x̃ = g(x) the PDF of the transformed variable

fx̃(x̃u) is given by

fX̃(x̃) =

 fX(g−1(x̃)) · abs(
∣∣ ∂
∂x̃g−1(x̃)

∣∣) for x̃ ∈ R(g(x̃))

0 otherwise
(3.3)

Proof. The proof of Theorem 1 is given in [69].

This transformation of X into X̃ must also satisfy

FX̃(x̃) = FX(g−1(x̃)) (3.4)

where F(·) denotes the CDF over x̃ or x [80]. This implies that for a given transformation

x̃ = g(x), the CDF must not be changed. In other words, if the CDF is known for X then

the CDF is known for X̃.

Corollary 1 (Equivalence of CDFs). Given a known CDF FX(x) for x and a once differ-

entiable and right-invertible transformation x̃ = g(x), the CDF FX̃(x̃) for x̃ must satisfy

FX̃(x̃) = FX(x̃).

Proof. The proof of Corollary 1 follows directly from the derivation and analysis of Eqn.

(3.1). By definition Eqn. (3.1) is equal to Eqn. (3.2) and thus Eqn. (3.4) must hold.
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3.2 Admissible Region Transformations

The purpose of the following subsections is to prove why, in general, an admissible region

prior cannot be transformed since a general transformation of the admissible region yields

the assignment of different prior probabilities, violating the Principe of Transformation

Groups. The first subsection shows the application of the derivation of Eqn. (3.3) to the

admissible region problem. Then the necessary conditions for an admissible region prior

to be transformed based on the definition of an admissible region are defined, followed

by a discussion of the limitation of practical transformations satisfying these necessary

conditions. The second subsection considers the case when an admissible region prior is

not considered to be uniform. The third subsection discusses the observability condition

in the admissible region problem and discusses when Eqn. (3.3) may be applied to an a

posteriori PDF based on an admissible region without any additional conditions.

3.2.1 Observability of Admissible States

The observations relevant for the admissible region approach are typically short enough

relative to the dynamics that a continuum of states could have generated the measurements

observed. In optical observations this is readily realized as a short streak from which not

enough information is available to obtain a full state estimate. The admissible region ap-

proach allows the continuum of possible solutions for an underdetermined system to be

bounded based on hypothesized constraints as described above. The continuum of possible

solutions for an underdetermined system indicates that the system is unobservable. The

undetermined states may be considered the unobservable states, and the admissible region

must be a subset of this unobservable subspace. It is then desired to determine the observ-

ability of the dynamical system being observed since, for an admissible region to exist, the

system must be unobservable. Conversely, if the dynamical system can be shown to be

observable then the admissible region is not defined.
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Consider the general nonlinear dynamical system and measurement model

ẋ = f(x, t) (3.5)

y = h(x; k, t) (3.6)

where the measurement function is defined as h : Rn × Rz × R → Rm, y ∈ Rm is the

measurement vector, x ∈ Rn is the state, k ∈ Rz is the parameter vector that may include

the observer state and any other necessary parameters, and t is the time. Several approaches

exists to show observability of the general system given by Eqns. (3.5) and (3.6). For linear

systems, the conditions for observability of this system, over a time interval t ∈ [t0, tf ], can

be assessed by the observability gramian P ∈ Sn×n+ [81] which is given in most general

form as

P(tf , t0, x(t)) =

∫ t

t0

ΦT (τ, t0)
∂h(x(τ); k, τ)

∂x(τ)

T ∂h(x(τ); k, τ)

∂x(τ)
Φ(τ, t0)dτ (3.7)

where Φ : Rn × R → Rn is the state transition matrix (STM). The observability gramian

as defined above is also valid for linearized system in a region near the point of lineariza-

tion, however it does not provide information of observability of other states. The rank

of the above observability gramian gives the dimension of the observable subspace of the

system along x(t), t ∈ [t0, tf ]. A point in state space x(t) is observable if and only if

rank[P(tf , t0, x(t))] = n. If rank[P(tf , t0, x(t))] < n then there is an unobservable sub-

space which is realized as N (P(tf , t0, x(t))), the nullspace of the observability gramian

about x(t) over the time interval t ∈ [t0, tf ], and a state estimate admits a continuum of

solutions that generate the same measurement sequence.

Hermann and Krener show that for a nonlinear system, the necessary condition for local

observability is that a one-to-one mapping exist between the output (and derivatives of the

output) and the input or initial conditions [82]. It is shown in [83] that this condition may

be sufficiently satisfied by linearizing Eqns. (3.5) and (3.6) about a reference trajectory and
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showing that for any reference trajectory in the domain (xr(t),kr(t)) ∈ W, the linearized

system is observable. For the admissible region approach W is defined as

W = {(xr(t), xr(t)) : xr0,u ∈A,kr0,d = h−1(y,k, t0)} (3.8)

Linearization of Eqns. (3.5) and (3.6) about trajectories in W yields

δẋ(t) =
∂f(x)

∂x

∣∣∣∣
xr(t),kr(t)

δx(t) (3.9)

δy(t) =
∂h(x,k, t)

∂x

∣∣∣∣
xr(t),kr(t)

δx(t) (3.10)

Observability of the linearized system may be determined directly by application of Eqn.

(3.7) and checking the rank of the local linearized observability gramian. By Theorem

3.2 in [83], if P(tf , t0, (xr(t),kr(t))) > 0 for all (xr(t),kr(t)) ∈ W then since no two

trajectories in W can yield an identical observation, the system must be observable at t0

over the entire domain W. Satisfying Theorem 3.2 in [83] is equivalent to showing that, for

every point xu ∈ A, the mapping between the output and input is indeed one-to-one. For

autonomous systems, this observability mapping is defined as

O(x) =



y

ẏ

ÿ
...


(3.11)

where the order of the derivatives of the output depend on the system [82]. The rank

of the Jacobian of this mapping, dO(x) = ∂O(x)/∂x, is of particular interest. A rank-

deficient Jacobian of this mapping implies there exists an equivalent unobservable space

for nonlinear systems which is the null space of this Jacobian. Thus, if Theorem 3.2 in [83]

is not satisfied then an unobservable space N (dO(x)) exists and a state estimate admits
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a continuum of solutions generating the same measurements over the time interval t ∈

[t0, tf ].

For observation of general dynamical systems, it is clear that if a continuum of solutions

is yielded from a measurement, the continuum of solutions form nullspace of either P or

dO(x). The admissible region is a bounded subset of this nullspace, which implies that

A can only be formed if the system is unobservable. Alternatively, this implies that if a

system can be shown to be observable, then A must be an empty set. Statistically this

implies that if A = ∅ then a state estimate and corresponding distribution around that

state estimate exists and the admissible region approach is not necessary. Applying this

theory to observation of space objects leads to the following Lemma.

Lemma 1 (Admissible Regions and System Observability). Observation of an object fol-

lowing Newtonian dynamics over a time period t ∈ [t0, tf ] such that ∆t = tf − t0 � λ−1
max

yields a local linearized observability gramian with rank P(tf , t0, (xr(t), kr(t))) = d <

n ∀ (xr(t), kr(t)) ∈ W. Every point xu ∈A is therefore unobservable for this short obser-

vation sequence.

Proof. Utilizing the linearized system described in Eqns. (3.9) and (3.10), the observability

gramian is given by Eqn. (3.7). Consider the Taylor series approximation of the state

transition matrix.

Φ(τ, t0) = I6 +
∂f
∂x

(τ − t0) + H.O.T (3.12)

where f(x,p, t) represents the dynamics of a Newtonian system with the state given by

x =

r

ṙ

 (3.13)

where r and ṙ are the position and velocity respectively and the system parameters given
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by p. The dynamics may be written in general as

ẋ = f(x,p, t) =

 ṙ

a(x,p, t)

 (3.14)

The linearization of the dynamics is then given as follows

∂f
∂x

=

 0 I3

∂a(x,p,t)
∂r

∂a(x,p,t)
∂ṙ

 (3.15)

where Iv is the v × v identity matrix. Let Fr = ∂a(x,p, t)/∂r and Fṙ = ∂a(x,p, t)/∂ṙ.

Taking the first order terms of the Taylor series approximation of the state transition matrix,

Φ(τ, t0) ≈ I6 +

 0 (τ − t0)I3

(τ − t0)Fr (τ − t0)Fṙ

 (3.16)

where the acceleration of the linearized dynamics depends on the time span and the magni-

tudes of the elements of Fr and Fṙ. Given that Fr and Fṙ are square matrices, the eigenvalue

decomposition provides

Fr = U1ΛrU−1
1 (3.17)

Fṙ = U2ΛṙU−1
2 (3.18)

where Λr and Λṙ are diagonal matrices containing the eigenvalues of Fr and Fṙ. Let λmax

denote the maximal eigenvalue in Λr and Λṙ.

In general, there exists a constant C such that if C is small enough then CFr and CFṙ

are negligible. In particular, let the time span of interest satisfy C = (τ − t0) � 1/λmax

then it is clear that (τ−t0)λmax � 1 which further implies that (τ−t0)Fr and (τ−t0)Fṙ are

negligible. Thus, if the time period is small enough to satisfy the condition (τ−t0)� λ−1
max
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then the contributions of Fr and Fṙ are negligible and Eqn. (3.16) is approximated as

Φ(τ, t0) ≈ I6 +

0 (τ − t0)I3

0 0

 (3.19)

and the dynamics essentially follow straight line motion.

Define

Hr(τ) =
∂h(x; k, τ)

∂r(τ)
(3.20)

Hṙ(τ) =
∂h(x; k, τ)

∂ṙ(τ)
(3.21)

HTH =
∂h(x(τ); k, τ)

∂x(τ)

T ∂h(x(τ); k, τ)

∂x(τ)
(3.22)

=

HT
r Hr HT

r Hṙ

HT
ṙ Hr HT

ṙ Hṙ

 (3.23)

By definition, the rank of HTH depends on the dimension of ∂h/∂x. Introduce a bijective

transformation ζ : Rn → Rn which maps the state vector into a partitioned state vector

containing the observable and unobservable states as follows

z = ζ(x) =

z1

z2

 (3.24)

where z1 ∈ Rq are the observable states of the system and z2 ∈ Rn−q are the unobservable

states of the system. Each of the partial derivatives may now be partitioned as well yielding

∂h
∂x

=
∂h
∂z

∂z
∂x

=

[
∂h
∂z1

∂h
∂z2

]
∂z
∂x

(3.25)

where rank[ ∂z
∂x ] = n since ζ is a bijective transformation. The unobservable states play no

68



role in the measurements, ∂h/∂z2 = 0 leaving

∂h
∂x

=

[
∂h
∂xd

0
]
∂z
∂x

(3.26)

which implies that rank[HTH] = q, the dimension of the observable states. With the

approximation for Φ(τ, t0) and the definition of HTH, the local linearized observability

gramian may be analytically integrated. Keeping the matrices expressed in block form,

using Eqn. (3.19), and introducing a change of variables s = τ − t0 then

H(1,1) = HT
r Hr (3.27)

H(1,2) = HT
r HrsI3 + HT

r Hṙ (3.28)

H(2,1) = sI3HT
r Hr + (HT

r Hṙ)
T (3.29)

H(2,2) = s2I3HT
r Hr + sI3HT

r Hṙ (3.30)

+ (HT
r Hṙ)

T sI3 + HT
ṙ Hṙ (3.31)

P(tf , t0, (xr(t),kr(t))) =

∫ ∆t

0

∂z
∂x

T

H(1,1) H(1,2)

H(2,1) H(2,2)

 ∂z
∂x

ds (3.32)

The three specific cases for evaluating P(tf , t0, (xr(t),kr(t))) that are possible are given as

follows 
Case 1 : h(x; k, t1)

Case 2 : h(x; k, {t1, · · · , tv}), (tv − t1)� λ−1
max

Case 3 : h(x; k, {t1, · · · , tv}), (tv − t1)� λ−1
max

(3.33)

where v ∈ Z+, v > 1. Case 1 details a measurement that is dependent upon a single in-

stance in time t1. The integration of Eqn. (3.32) is then only dependent upon instantaneous

evaluations of h at a given time. Case 2 details a measurement function dependent upon

a time interval t1 to tv where the total time interval satisfies (tv − t1) � λ−1
max. In this
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case the measurement is essentially a convolution over time which must be evaluated when

determining the rank of the observability gramian. This is particularly the case for optical

measurements where y is often obtained from a streak which is obtained over a short time

interval. Case 3 details a measurement function dependent upon a sufficiently long time

period where the assumption of Eqn. (3.19) is no longer valid.

For both Case 1 and Case 2, since ∆t � λ−1
max is small, it is reasonable to assume that

any higher order powers of ∆t in Φ(tv, t0) may be considered negligible. With this in mind,

the integration of Eqn. (3.32) gives a simple result after neglecting higher order terms of

∆t.

P(tf , t0, (xr(t),kr(t))) ≈ ∆t

H1 H2

HT
2 H3

 (3.34)

The matrix P(tf , t0, (xr(t),kr(t))) has rank[HTH] = d where d = q for Case 1. For

Case 2, the value of d depends on the time convolution of the measurement function over

the time of observation. For both Case 1 and Case 2 then, rank[P(tf , t0, x(t))] = d as

long as ∆t � λ−1
max. Because this is true for any point xu, if d < n, all such points are

unobservable. For an observation falling under Case 3, it is possible that the system is

observable and P(tf , t0, (xr(t),kr(t))) may have full rank.

Example 1 (Observability in Keplerian Dynamics).

To demonstrate Lemma 1 for Keplerian dynamics, it is first necessary to determine C.

Specifically, the dynamics are given by

f(x, t) =

 ṙ

− µ
‖r‖3 r

 (3.35)
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where x =

[
rT ṙT

]T
. Thus,

∂f
∂x

=

 0 I3

M 0

 (3.36)

Φ(τ, t0) ≈ I6 +

 0 (τ − t0)I3

(τ − t0)M 0

 (3.37)

The matrix, M, is given by

M =


3µr2x
‖r‖5 −

µ
‖r‖3

3µrxry
‖r‖5

3µrxrz
‖r‖5

3µryrx
‖r‖5

3µr2y
‖r‖5 −

µ
‖r‖3

3µryrz
‖r‖5

3µrzrx
‖r‖5

3µrzry
‖r‖5

3µr2z
‖r‖5 −

µ
‖r‖3

 (3.38)

which can be written as

M =
3µ

‖r‖3


r2x
‖r‖2 −

1
3

rxry
‖r‖2

rxrz
‖r‖2

ryrx
‖r‖2

r2y
‖r‖2 −

1
3

ryrz
‖r‖2

rzrx
‖r‖2

rzry
‖r‖2

r2z
‖r‖2 −

1
3

 (3.39)

It can be shown that the eigenvalues of the factored matrix in Eqn. (3.39) are simply

Λ =
3µ

‖r‖3


−1/3 0 0

0 −1/3 0

0 0 2/3


It follows that λmax = 2µ/‖r‖3. It is then possible to define a time interval sufficiently

small enough that M(τ − t0) can be approximated to have a negligible contribution by

letting (τ−t0)�
√
‖r‖3/2µwhere the square root is necessary for consistent units of time.
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The rest of Lemma 1 follows directly by continuing the proof with (τ − t0)�
√
‖r‖3/2µ.

Lemma 1 gives the conditions under which an admissible region exists for a dynamical

system. For optical observations, the instantaneous measurement consists of two angles

giving d = q = 2, a Case 1 situation. However, since a truly instantaneous measurement is

often not realizable, optical observations have a finite integration time. The convolution of

these instantaneous measurements over the integration time provides angle rate information

for the measurement and thus while q = 2, this Case 2 situation yields d = 2q. It is

important to understand the type of measurement to properly determine the observability

of the system. The next section builds upon the existence of the admissible region and

shows its definition and properties.

3.2.2 Defining the Admissible Region

Defining the admissible region requires knowledge of a measurement model for the system

being observed. Consider a general nonlinear measurement model given by

y = h(x; k, t) (3.40)

As done in all admissible region approaches, the state vector is partitioned in to determined

states xd ∈ Rd and undetermined states xu ∈ Ru where u+ d = n [76]. This means that

y = h(xd; k, t) (3.41)

Admissible region approaches constrain this continuum of solutions using hypothesized

constraints in the form κi(xu, y,k, t) ≤ 0 where κi : Ru × Rm × Rl × R → R. The

admissible region for the ith hypothesized constraint κi(·) is then defined as

Ai := {xu ∈ Ru | κi(xu, y,k, t) ≤ 0} (3.42)
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where Ai ⊆ Ru. Furthermore, if there are c such hypotheses then the total combined

admissible region is given by

A =
c⋂
i=1

Ai (3.43)

where A must be a bounded set [64]. The requirement that A be compact ensures the

assumed uniform distribution has non-zero probability. Thus, each state x ∈ A can be

assigned a non-zero uniform probability.

3.2.3 The Admissible Region Prior

The probability that a given state xu ∈ Ru satisfies the ith admissible region constraint is

then given by

P[xu ∈Ai] = P[κi(xu, y,k, t) ≤ 0] (3.44)

Without any additional information, the inequality defining Ai in Equation (3.42) is a

binary constraint and P[xu ∈Ai] ∈ {0, 1} since each xu has either 100% or 0% probability

of satisfying the constraint. Thus the probability that xu satisfies a given constraint κi can

be exactly expressed as a piecewise membership function defined as

mi(xu) =

 1, κi(xu, y,k, t) ≤ 0

0, κi(xu, y,k, t) > 0
(3.45)

Thus P[xu ∈Ai] = mi(xu), and the prior distribution for a particular constraint hypothesis

can then be defined as [78]

fi,xu(xu) =
mi(xu)∫
Ai

dxu

(3.46)

Eqn. (3.46) results in a uniform distribution, which is demonstrated in [47]. Applying the

chain rule of probabilities, the general joint probability function over all k constraints can
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be written as

fxu(xu) =
P[xu ∈A]∫
A

dxu

=
1∫

A
dxu

c∏
k=1

P

[
xu ∈Ak

∣∣ xu ∈
k−1⋂
j=1

Aj

]
(3.47)

where the bracketed term gives the probability that kth constraint is satisfied given that each

of the k − 1 previous constraints are satisfied [79]. If the constraints κi are assumed to be

independent, then by Bayes’ rules the conditional probability terms evaluate to 1 and Eqn.

(3.47) simplifies to

fxu(xu) =

∏c
k=1 P [xu ∈Ak]∫

A
dxu

(3.48)

=

∏c
k=1mk(xu)∫
A

dxu

(3.49)

By this formulation, every xu ∈A is a candidate solution that satisfies the c constraints and

without additional information; no one state can be considered more likely than another.

Thus fxu(xu) is a constant overA and as such the admissible region must be considered

a uniform distribution. This fact is consistent with the work presented by Fujimoto and

Scheeres stating that without any a priori information regarding the observation, an ad-

missible region is expressed as a uniform PDF [72]. However, it should be noted that the

notation used in this paper will refer to the statistical representation of the admissible re-

gion as an admissible region prior, which is also consistent with a general uninformative

prior. The reason for this notation will become clear in the next section.

3.2.4 Transformation of the Admissible Region Prior

Suppose a user wishes to use the admissible region method to initiate an estimation proce-

dure in a state space different from the state spate in which the admissible region constraints

are formed. Following the general probability transformation approach, a transformation
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g : Rn → Rn can be defined. This transformation must also be able to be partitioned into

gu : Ru → Ru and gd : Rd → Rd such that

x̃u = gu(xu; y,k, t) (3.50)

x̃d = gd(xd; y,k, t) (3.51)

For simplicity, this transformation will be expressed as gu(xu; ·) for the remainder of this

paper. In general, the transformation gu(xu; ·) must be left invertible in order to preserve

probability. Additionally, the transformation must satisfy the condition that the underdeter-

mined and determined states in the transformed space are still capable of being partitioned,

leading to the following Lemma.

Lemma 2 (Partitioned Transformed State). An admissible region prior expressed in state

space xu may be transformed to state space x̃u = gu(xu; ·) only if there exist some x̃d =

ḡd(y; ·), ḡd : Rm → Rd such that y = h(xd; k, t) = h̃(x̃d; k, t), h̃ : Rd × Rl × R→ Rm.

Proof. The undetermined states xu are independent of the determined states xd as defined

in [76]. This enables the partitioning of the state space such that the measurement y is only

a function of the determined states, the parameters k, and time and can be expressed by

y = h(xu, xd; k, t) = h(xd; k, t)

which by definition means xd = h−1(y,k, t). If there is a transformation of xu, then the

transformation can be given by

x̃d = gd(xd)

= gd(h−1(y,k, t))
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which can be defined as ḡd = gd ◦ h−1 : Rm → Rd giving,

x̃d = ḡd(y; ·)

Thus, the measurement function is now expressed by

y = h̃(gu(xu; ·), ḡd(y; ·),k, t)

For the admissible region problem, it is required that x̃ can be partitioned into x̃u and x̃d

such that y is independent of x̃u. In general h̃(gu(xu; ·), ḡd(y; ·),k, t) 6= h̃(ḡd(y; ·),k, t)

since the transformation is not necessarily a function solely of xu. Thus, the function

ḡd(y; ·) must be defined to ensure that the determined variables are transformed such that

the transformed undetermined states remain independent of the measurements. If a trans-

formation ḡu(y; ·) cannot be defined such that this is true then

y = h̃(gu(xu; ·), ḡd(y; ·),k, t) 6= h̃(ḡd(y; ·),k, t)

and the admissible region formulation is invalid.

The result of Lemma 2 essentially requires that if the undetermined states can be trans-

formed then they must remain unobservable with respect to the observations. Because this

is a requirement for the formation of an admissible region, any transformation that does

not satisfy Lemma 2 necessarily generates a region that can no longer be defined as an

admissible region.

Assuming a transformation satisfying Lemma 2 exists, the admissible region in the

transformed space can be defined. For the admissible region problem, since the constraint
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hypothesis is a function of a unique state xu,

κi(xu, y,k, t) = κ̃i(gu(xu; ·), y,k, t) (3.52)

κ̃i(x̃u, y,k, t) = κi(g−1
u (x̃u; ·), y,k, t) (3.53)

Eqns. (3.52) and (3.53) then imply that P[x̃u ∈ Ãi] = P[xu ∈Ai] and mi(xu) = mi(x̃u)

where,

Ãi := {x̃u ∈ Ru | κ̃i(x̃u, y,k, t) ≤ 0} (3.54)

and

m̃i(x̃u) =

 1, κ̃i(x̃u, y,k, t) ≤ 0

0, κ̃i(x̃u, y,k, t) > 0
(3.55)

The general admissible region prior in the transformed space is given by

fX̃u
(x̃u) =

1∫
Ã

dx̃u

c∏
k=1

P

[
x̃u ∈ Ãk

∣∣ x̃u ∈
k−1⋂
j=1

Ãj

]
(3.56)

Assuming again that the constraint hypotheses are independent, the admissible region prior

expressed in x̃u is given by,

fX̃u
(x̃u) =

∏c
k=1 m̃k(x̃u)∫
Ã

dx̃u

(3.57)

A general nonlinear transformation of a uniform PDF must yield a non-uniform PDF

according to Eqn. (3.3). For an unobservable system, the PDF is defined by a marginal-

ization over only the observable states [84]. The result of a nonlinear transformation of the

n dimensional state space then has no probabilistic impact on this marginal PDF, and as

such under this approach any initial distribution for the unobservable states may be used.
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This is the justification for the use of probability transformations in the admissible region

approach outlined in the introduction.

However, this application of probability theory implies that there is inherent benefit to

be gained in selecting a different state space in which to express the problem which gives

different initial distributions. While probabilistically correct, this approach can yield in-

consistent results due to the implication that given a single, unobservable measurement the

initial PDF can be better represented based solely on the state space in which the problem

is expressed. This inconsistency is noted in alternative formulations of probability theory

which aim to preserve objective information about the unobservable system, which does

not follow from the straightforward application of probability theory [3].

Theorem 2 will prove by contradiction this inconsistency for the admissible region

problem by showing how the choice of state space can impact the validity of the hypoth-

esized constraint assumptions and derive a condition which preserves objective informa-

tion about the unobservable system, namely the probability of set membership. The uni-

form PDF of an admissible region is a statistical representation of the fact that each state

xu ∈ A is consistent with the measurement y. Without any additional information, each

state necessarily has equal probability which must also be true if xu is expressed in any other

state space. Given this fact, there must exist a necessary relationship between fXu(xu) and

fX̃u
(x̃u) to preserve the set membership information.

Theorem 2 (Equivalence of Admissible Regions). Given xu ∈A and an invertible trans-

formation x̃u = gu(xu; ·), a reparameterization of the admissible region prior by g is only

valid if the transformation satisfies |∂xu/∂x̃u| = ζ ∀ xu ∈ A where ζ is the ratio of the

volume of the admissible region as expressed in both state spaces and fX̃u
(x̃u) = ζfxu(xu).

Proof. The proof of Theorem 2 is given by way of contradiction. Assume first that the

statistical representation of the admissible region is given by a PDF. Then assume there

exists an invertible transformation gu(xu; ·) for which |∂xu/∂x̃u| 6= ζ for some x ∈ A.

The relationship between fxu(xu) and fx̃u(x̃u) may be determined by applying Eqn. (3.3)
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as follows

fX̃u
(x̃u) =

∏c
k=1mk (g−1(x̃u))∫

A
dxu

abs

(∣∣∣∣∂g−1
u (x̃u)

∂x̃u

∣∣∣∣) (3.58)

Each of the terms in Eqn. (3.58) have been defined thus far except for the Jacobian term

|∂g−1(x̃u)/∂x̃u|. Rearranging Eqn. (3.58), by substituting the x̃u PDF on the left hand side

and multiplying by the denominator of the right hand side,

∏c
k=1 m̃k (x̃u)∫
Ã

dx̃u

∫
A

dxu =
c∏

k=1

mk

(
g−1
u (x̃u)

)
abs

(∣∣∣∣∂g−1
u (x̃u)

∂x̃u

∣∣∣∣) (3.59)

Note that for the admissible region approach mk(xu) = m̃k(x̃u) since it is necessary that

P[xu ∈Ai] = P[x̃u ∈ Ãi]. Thus, dividing each side by
∏c

k=1 m̃k (x̃u) results in,

∫
A

dxu∫
Ã

dx̃u
= ζ = abs

(∣∣∣∣∂g−1
u (x̃u)

∂x̃u

∣∣∣∣) (3.60)

If |∂xu/∂x̃u| 6= ζ then,

∫
A

dxu∫
Ã

dx̃u
6= ζ (3.61)

which then implies P[xu ∈ Ai] 6= P[x̃u ∈ Ãi] for Eqn. (3.59) to hold. But this is a

contradiction since, by definition, the admissible region approach gives that P[xu ∈Ai] =

P[x̃u ∈ Ãi] regardless of the transformation.

Theorem 2 imposes a geometric constraint on the transformation g through the determi-

nant of the Jacobian. The constraint requires the determinant to be constant which implies

the distortion of the x̃u state space relative to the xu state space is the same at every point.

This is necessary to ensure that any one point inside the admissible region in xu remains

inside the equivalent admissible region expressed in x̃u. The constant Jacobian constraint

limits the practical applicability of probability transformations to admissible region because
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useful state space transformation are often complex, nonlinear functions. More importantly,

Theorem 2 shows an admissible region must be uniform, or uninformative, regardless of

the state space it is expressed in. Any general PDF must satisfy the probability transforma-

tion given by Eqn. (3.3), but as shown by Theorem 2, under most practical transformations,

an admissible region fails to satisfy Eqn. (3.3). Moreover, the implications of Theorem 2

follow directly the main ideal behind the Principle of Transformation Groups through the

preservation of the prior probability across a transformation.

The result of Theorem 2 is directly related to Jeffreys’ prior [3]. A Jeffreys’ prior is an

uninformative prior which satisfies

f(x) ∝
√

detI(x) (3.62)

where f() denotes the prior and I(x) is the Fisher information matrix [85]. If I(x) is

singular then Jeffreys’ prior does not exist [86]. For the application of Jeffreys’ prior in

this paper, since x essentially belongs to a uniform distribution, the Fisher information ma-

trix will be non-singular. The proportionality of Eqn. (3.62) gives that a Jeffreys prior is

invariant to a reparamaterization of x. Applying the previously derived probability trans-

formation and defining a reparameterization or transformation of x given by x̃ = g(x; ·)

then

f(x̃) = f(x)

∣∣∣∣∂x
∂x̃

∣∣∣∣ (3.63)

It can likewise be shown that

√
detI(x̃) =

√
detI(x)

∣∣∣∣∂x
∂x̃

∣∣∣∣ (3.64)
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thus for Jeffrey’s prior to hold, Eqn. (3.62) may be rewritten as

f(x̃)

∣∣∣∣∂x
∂x̃

∣∣∣∣−1

∝
√

detI(x̃)

∣∣∣∣∂x
∂x̃

∣∣∣∣−1

(3.65)

The proportionality of Eqn. (3.62) requires that |∂x/∂x̃|−1 = |∂g−1
u (x̃u)/∂x̃u| to be a con-

stant. This result is directly equivalent to Theorem 2 for admissible regions. Jeffreys’ prior

is based on Jeffreys’ Rule which states that given an equation for f(x), applying the equa-

tion to determine f(x̃) directly should yield an identical result as computing f(x)|∂x/∂x̃|.

Applying this to an admissible region system, Jeffreys’ Rule states that if fXu(xu) is the

prior, then a reparameterization of x must satisfy

fX̃u
(x̃u)

∣∣∣∣∂g−1
u (x̃u)
∂x̃u

∣∣∣∣ ∝√detI(x̃u)

∣∣∣∣∂g−1
u (x̃u)
∂x̃u

∣∣∣∣ (3.66)

which confirms Theorem 2 and shows it is consistent with the statistical representation of

an admissible region being identified in this paper as an admissible region prior as opposed

to a PDF.

Given that a transformation g exists which satisfies Theorem 2, it is possible to define

the transformed admissible region prior. The final expression for the transformed admissi-

ble region prior is then given by

fX̃u
(x̃u) = ζ

∏c
k=1mk (xu)∫
A

dxu
(3.67)

Eqn. (3.67) signifies that for the admissible region problem with no additional information,

the admissible region of xu expressed in any transformed state space x̃u such that g−1(x̃u)

exists is necessarily uniform and simply scaled by a factor ζ . Given that the transforma-

tion satisfies Theorem 2, the admissible region prior may be expressed in any state space

which agrees with the work shown in [47]. It should be noted that useful transformations

are often highly non-linear and as such will not typically satisfy the conditions presented
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by Theorem 2. It is likely that, in general, an admissible region admissible region prior

cannot be transformed since no practical transformations exists satisfying Theorem 2. If an

admissible region prior is transformed by a transformation not satisfying Theorem 2, then

the prior in the transformed space is no longer a uniform representation of the state space,

and this non-uniform representation is not based on statistical information but based only

on the transformation function. Because of this, any transformation not satisfying Theo-

rem 2 generates a set of prior probabilities misrepresenting the true distribution by directly

violating the Principle of Transformation Groups.

3.2.5 Priors Using Uncertain Admissible Region Constraints

While Eqn. (3.67) applies for transformations of uniform priors, it may also be applied

to non-uniform admissible region priors. An approach for generating the non-uniform

probability that xu is inA is shown in [76]. The approximate analytical probability for a

given admissible region is given by

P[(xu ∈Ai)] = mi(xu) =
1

2

[
1 + erf

(
‖xu − xu,B⊥,i‖√

2trPxu,B⊥,i

)]
(3.68)

which updates the piecewise membership function given by Eqn. (3.45) to a continuous

membership function by including uncertainty effects. These uncertainties are quantified as

the covariance matrix Pz where z is the combined matrix of the measurements, parameters,

and time. The quantity xu,B⊥,i is the point on the boundary of Ai orthogonal to xu and

Pxu,B⊥,i is the covariance calculated at this boundary point. Substituting Eqn. (3.68) into

Eqn. (3.49) then gives the non-uniform prior.

Corollary 2 (Systematic Uncertainty in Admissible Regions). If the combined measure-

ments, parameters, and time covariance matrix Pz are known then transformation of the
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non-uniform admissible region probability is given by

P[(x̃u ∈ Ãi)] = m̃i(x̃u) =
1

2

[
1 + erf

(
‖gu(xu; ·)− gu(xu,B⊥,i; ·)‖√

2trPx̃u,B⊥,i

)]
(3.69)

where Px̃u,B⊥,i
is the modified covariance matrix.

Proof. Given the previous transformation x̃u = gu(xu; ·), Eqn. (3.68) can be derived for

x̃u. The simplified Taylor series expansion from Eqn. (17) in [76] now becomes

−∂κi
∂x̃u

∂x̃u
∂xu

δXu =
∂κi
∂z

δZ (3.70)

Carrying the notation defined in [76], a new perpendicular vector p̃ is defined as

p̃ =
∂κi
∂x̃u

∂g−1
u (xu; ·)
∂xu

∣∣∣∣∣
xu

(3.71)

The rest of the derivation can be carried out as specified in [76] by replacing p with p̃

resulting in

M̃ =

p̃T

T


−1 −∂κi

∂z

0


where T ∈ Ru−1×u is a matrix of tangential unit vectors which gives

Px̃u = M̃PzM̃
T

(3.72)

Eqn. (3.69) is obtained by substituting Px̃u and g(xu) into Eqn. (3.68).

Eqn. (3.69) defines the approximate analytical probability distribution function for an
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admissible regionAi in the x̃u space. Alternatively, from Eqns. (3.52) and (3.53)

P[(xu ∈Ai)] = P[(x̃u ∈ Ãi)] (3.73)

=
1

2

1 + erf

‖gu(xu; ·)− gu(xu; ·)u,B⊥‖√
2trPx̃u,B⊥

 (3.74)

≈ 1

2

[
1 + erf

(
‖xu − xu,B⊥‖√

2trPxu,B⊥

)]
(3.75)

Because of this, it is equivalent to directly map each xu to x̃u and assign each x̃u = g(xu)

the probability of set membership P[x ∈Ai] or vice-versa.

3.2.6 The Observability Condition

Lemma 1 shows that the existence of the admissible region implies that there is a non-trivial

unobservable subspace of the system given a short enough observation. However, it is pos-

sible for the system to become fully observable given enough observations or a long enough

observation of the system. Thus, it is of interest to understand how the observability of a

system affects the transformation of the admissible region prior. If an initial observation is

made such that the admissible region is non-empty then the admissible region prior is the

statistical representation of theA. However, if an additional measurement can be taken at

a time t such that each state xu ∈A is locally observable, then an a posteriori PDF can be

constructed. This a posteriori PDF represents a true PDF over the state space and can be

used directly with Eqn. (3.3) to transform probabilities between state spaces. As such, it is

of interest to determine when the states xu ∈A become locally observable.

Corollary 3 (Observability in Admissible Region Problems). If the observability gramian

for the admissible region system satisfies rank[P(tf , t0, x(t))] = n where x(t) = [xd(t) xu(t)]∀ xu ∈

A then the PDF associated with the admissible region estimate may be transformed with-

out the condition |∂xu/∂x̃u| = ζ ∀ xu ∈A.

Proof. The admissible region A is, as defined, a subset of the unobservable state space
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where each state xu ∈ A has no effect on the measurements. Since the mapping h from

x to y cannot be a one-to-one and onto, each xu ∈ A must necessarily have a uniform

probability. Because this is also true in any transformed state space x̃, the admissible region

must necessarily be uniform in any state space. If a system is locally observable at xk ∈ Rn,

where k is an arbitrary index, then there exists a measurement function ho : Rn → Rm

where ho is a one-to-one and onto function. Thus, xj 6= xk =⇒ ho(xj) 6= ho(xk) and

each unique observation corresponds to a unique state x. If the transformation g(x) is also

one-to-one and onto then there must also exist a measurement function h̃o : Rn → Rm such

that x̃j 6= x̃k =⇒ h̃o(x̃j) 6= h̃o(x̃k) and ho(xj) = h̃o(x̃j) = y. A unique solution exists

for a given observation, or set of observations, and a PDF can then be defined about that

solution. Because this unique PDF cannot be identical in both state spaces, the condition

given by |∂xu/∂x̃u| = ζ can no longer hold, and for an observable system the PDF can

simply be transformed by Eqn. (3.3).

The main result of Corollary 3 is that the PDF associated with a givenA may not gen-

erally be transformed until it is observable. This equivalently means that until the problem

is observable, the prior defined overA is uninformative. Since there are likely no practical

transformations that satisfy Theorem 2, the significance of Corollary 3 is in the fact that

general admissible region PDF transformations are possible, but only once each state in

A becomes locally observable. Furthermore, by Lemma 1, if every xu ∈ A is locally

observable, then the region is necessarily not an admissible region.

3.3 Additional Transformations

This section discusses additional transformations that apply to the probability transforma-

tion theorems, corollaries, and lemmas presented in this work.
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3.3.1 Linear Transformations

The only set of functions that will always satisfy Theorem 2 are linear transformations

leading to Remark 1.

Remark 1: Any linear transformation x̃u = gu(xu) = Tuxu such that Tu ∈ Rn×n, rankTu =

n that can be defined ∀xu ∈A will satisfy the requirements given by Lemma 1 and Theo-

rem 2. Thus, for any linear transformation of an admissible region, ζ can be defined such

that fX̃u
(x̃u) = ζfXu(xu).

Any invertible linear transformation of covariance in extended Kalman filters satisfies

Theorem 2 as long as the covariance is sufficiently small. While any linear transformation

of the admissible region prior satisfies Theorem 2, it is unlikely that these transformations

are practical or useful for the admissible region problem.

3.3.2 Sigma Point Transformations

An additional application of the general probability transformation comes from sigma point

transformations and filters [87]. Sigma point filters use transformations of the sigma points

of a Gaussian PDF to map the PDF over nonlinear transformations, used largely in the

Unscented Kalman Filter. The sigma point transformation as originally defined relies on

the fact that the transformation preserves the mean and covariance [88]. Alternatively, the

sigma point transformation must preserve the PDF. Assume a PDF fx(x) is known for a

given x, then the first order Taylor Series expansion of the inverse of the transformation

x̃ = g(x) is given by

x + δx = g−1(x̃) +
∂g−1(x̃)

∂x̃
δx̃ (3.76)

x + δx = x +
∂g−1(x̃)

∂x̃
δx̃ (3.77)

δx =
∂g−1(x̃)

∂x̃
δx̃ (3.78)
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Since a sigma point transformation aims to preserve the mean and covariance a transfor-

mation given by |∂g−1(x̃)/∂x̃| = 1 is a valid sigma point transformation since the PDFs of

x and x̃ are the same. However, if |∂g−1(x̃)/∂x̃| = c where c is a constant for all x in the

vicinity of the Gaussian PDF parameterized by the sigma points, then the PDF is also pre-

served by the scaling factor c. The PDFs can then be written as fx(x) = fx̃(x̃)/c. This result

is analogous to Theorem 2 since the admissible region prior must be preserved and the PDF

must be preserved for sigma point transformations, the scaling factor c is equivalent to ζ

for admissible regions.

3.3.3 Transformations Over Time

General probability transformations also apply to transformations through time as shown

by Park and Scheeres [89]. Here it is shown that the framework presented in this paper is

consistent with these existing methods. Given an initial PDF for a system, it is often useful

to know how that PDF changes over time. Consider the following system dynamics

ẋ = f(x, t) (3.79)

where x ∈ Rn and t ∈ R. The solution is expressed as

x(t) = φ(t; x0, t0) (3.80)

where the subscript ‘0’ denotes the initial state, x(t0) = x0 and φ is the flow function

satisfying

dφ

dt
= f(φ(t; x0, t0), t) (3.81)

φ(t0; x0, t0) = x0 (3.82)
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In the case of time transformations, the function φ is the transformation function g(·). The

PDF transformation of a dynamical system over time comes from analysis of the Fokker-

Planck equation. If the system introduced above satisfies the Itô stochastic differential

equation, then the time evolution of the PDF stochastic variable X over time is given by the

Fokker-Planck equation [90]

∂fx(x, t)
∂t

= −
n∑
i=1

∂

∂xi
(fx(x, t)fi(x, t)) (3.83)

assuming no diffusion terms. Park and Scheeres show the integral invariance of a PDF

through the solution to this simplified Fokker-Planck equation for a system with no diffu-

sion resulting in [89] [91].

f(φ(t; x0, t0), t) = f(x0, t0)

∣∣∣∣ ∂x
∂x0

∣∣∣∣−1

(3.84)

which is the exact form given in Eqn. (3.3). Under Hamiltonian dynamics, Liouville’s

theorem proves that |∂x/∂x0| = 1 for all time t since the transformation over time is a

Canonical transformation [89]. For a Hamiltonian system Eqn. (3.84) simplifies further

since the Jacobian term evaluates to unity. Thus, if the PDF is known at any time, it is

known for all time for Hamiltonian systems. This exactly matches with Theorem 2 since

|∂x/∂x0| = ζ = 1 and at any time t the PDF is given by ζf(x0, t0) = f(x0, t0).

3.4 Discussion

The results presented in this paper show that, following the Principle of Transformation

Groups, transformations of admissible region probabilities are only possible under strict

conditions outlined by Theorem 2. This restriction ensures that the prior probabilities as-

signed originally are equivalent to the prior probabilities assigned after a transformation

of the state space. In other words, this restriction ensures that the prior probabilities are

equivalent regardless of how the problem is posed, which is consistent with the Principle
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of Transformation Groups. Notably acceptable transformations include linear transforma-

tions and transformations with constant Jacobians over the admissible region. If a nonlinear

transformation is applied to an admissible region prior that does not satisfy Theorem 2, then

the resulting prior is necessarily a mis-representation of the statistical representation of the

admissible region under the Principle of Transformation Groups. Furthermore, if a filter is

instantiated from this improperly transformed prior then it may cause unnecessary ineffi-

ciency in filter convergence. However, once every state in the admissible region becomes

observable then Theorem 1 can be applied to transform the true a posteriori PDF with ap-

propriate x̃ = g(x) as desired. As such, for any filter to be properly instantiated under the

Principle of Transformation Groups, the admissible region should remain expressed in the

state space of the original admissible region prior formulation unless either Theorem 2 or

Corollary 3 is satisfied.

As mentioned, this approach which preserves prior probability across transformations is

only an alternative formulation of the problem. It is up to the user to decide which approach

is appropriate for the specific application. The next section shows a comparison of this

alternative Principle of Transformation Groups approach with a traditional application of

the probability transformations.

3.5 Simulation and Results

To demonstrate probability transformations as applied to admissible regions, consider the

observation of an object in LEO from an observer in Socorro, NM. Following the approach

described in [76], the measurement vector is given by,

y =

[
α δ α̇ δ̇

]T
(3.85)
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with the object state vector,

x =

[
r v

]
(3.86)

where r and v are position and velocity of the space object. The state matrix may also be

represented by the topocentric spherical coordinates,

x̃ =

[
α δ α̇ δ̇ ρ ρ̇

]T
(3.87)

For this observation model the undetermined states are given by x̃u = [ρ ρ̇], where ρ is the

range and ρ̇ is the range-rate. The true state of the object at time t0 is given in canonical

units as

r =


−0.9281

−0.0489

0.6167

DU v =


−0.5171

0.1292

−0.7662

DU/TU (3.88)

where 1 DU = 6378 km and 1 DU/TU = 7.90538 km/s. An initial series of 2 measure-

ments of the inertial bearings are gathered at 20 second intervals producing the following

determined states, or observation, vector

xd =

[
−3.0337 rad −0.0538 rad −0.1003 rad/TU −0.4482 rad/TU

]
(3.89)

From this information an admissible region can be constructed. The admissible region is

then constructed such that the constraint hypotheses give a region where 10000 km ≤ a ≤

50000 km and e < 0.4. A set of 5000 points are uniformly sampled from the admissible

region to demonstrate the requirements on admissible region transformations and are shown

in Figure 3.1. The upper bound on semi major axis is given by the solid line and the upper

bound on eccentricity is given by the dotted line in Figure 3.1.
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Figure 3.1: A set of 5000 points sampled uniformly from the admissible region.

Initial orbit determination methods can then use these sampled points to initiate par-

ticle filters or multiple hypothesis filters to process new observations. For these particle

filter methods, the state vector can be converted to cartesian coordinates for propagation.

However, this involves a transformation of the state space which implies either Theorem 2

or Eqn. (3.3) must be applied. The transformation from x̃ to x is given by,

r = o + ρ̂l (3.90)

v = ȯ + ρ̇̂l + ρα̇̂lα + ρδ̇̂lδ (3.91)

where,

l̂
T

=

[
cosα cos δ sinα cos δ sin δ

]
l̂
T

α =

[
− sinα cos δ cosα cos δ 0

]
l̂
T

δ =

[
cosα sin δ − sinα sin δ cos δ

]

and o ∈ R3 is the observer position and ȯ ∈ R3 is the observer velocity. This transformation

is both one-to-one and onto as there is only one cartesian state corresponding to a given ρ,
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Figure 3.2: Values of |∂x/∂x̃| evaluated for each particle x(t)

ρ̇, and observation vector. The Jacobian of this transformation is clearly a function of ρ

and ρ̇ and thus cannot be constant over the admissible region. After a single observation,

the admissible region must still be expressed as a uniform distribution and transforming

the sampled points into cartesian coordinates and expressing the admissible region prior

in cartesian coordinates violates Theorem 2. To demonstrate this, Figure 3.2 shows the

values of the determinant of the Jacobian over the admissible region. Since the probability

transformation of an admissible region requires this value to be constant, it is clear that the

transformation to cartesian coordinates violates Theorem 2.

With a single observation and no consideration of uncertainty, each of the points sam-

pled from the admissible region necessarily has a uniform spatial distribution. New mea-

surements should allow the admissible region to become observable by taking into account

the new information provided by the measurements. Once the system is observable, by

Corollary 3, the admissible region prior becomes a true PDF and the transformation is given

directly by Eqn. (3.3). To test for observability, the condition number, K(P(t, t0, x(t))),

for the local linearized observability gramian is computed for each value of ρ and ρ̇ shown

in Figure 3.1. The inverse of the machine epsilon value δ−1
m is also plotted, which indicates

that any K(P(t, t0, x(t)) > δ−1
m is essentially infinity due to the precision of the computer.
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Then an additional observation is made 30 minutes after the initial set of observations.

The additional observations are ingested by the particle filter and the updated observability

gramian is computed. Figure 3.4 shows how the condition number for the observability

gramian for each particle changes after the second observation is made. This change in

condition number implies that the observability gramian becomes full rank after a second

observation is made. At this point it is possible to transform the PDF expressed in terms

of ρ and ρ̇ into cartesian coordinates by direct application of Eqn. (3.3). Figure 3.5 shows

the updated PDF after the second observation is made and can equivalently be expressed in

cartesian coordinates by Eqn. (3.3).

To demonstrate the importance of Theorem 2 and Corollary 3, consider the process

shown in Figure 3.3 by which the cartesian PDF for these observations can be determined.

The original admissible region in ρ and ρ̇ is represented by Ãt0 and after the second obser-

vation is made the PDF over the particles is given by fX̃u
(x̃u). The admissible region given

byA represents the transformation of Ãt0 while the system is still unobservable. It has

already been shown that this particular transformation does not satisfy Theorem 2, thus it is

expected that the resulting PDF in cartesian space given by fXu(xu) will not be equal to the

transformation of fX̃u
(x̃u) into cartesian coordinates once the system is observable. This

subtle difference in approach will generate two different PDFs for the particles resulting

from the second observation and mathematically the PDF generated from the unobservable

transformation is incorrect. Figure 3.6 shows the resulting PDF for the unobservable and

observable transformations outlined in Figure 3.3. The PDFs shown are represented as the

normalized histograms of the particles for each cartesian state after the resampling step in

the particle filter. As can be seen, there is a slight bias in the particle filter results when

instantiating the particle filter with an admissible region that has been transformed while

unobservable. Note that these results do not imply that the particle filter will not converge

to the correct state, but in certain cases, especially when the time between observations is

short, there can be a noticeable bias in the particle filter. Figures 3.7 and 3.8 illustrate this
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dependence on time. If the second observation is one hour after the initial observation, as

seen in Figure 3.8, there is little difference between the PDFs because the particle filter

eliminates the bias introduced by the different initial weighting of the transformed parti-

cles. However, if the second observation is only 10 minutes after the initial observation,

as seen in Figure 3.7, there is a considerable difference in the PDF for the unobservable

transformation.

This is exactly the reason for the application of the Principle of Transformation Groups;

as the problem posed in both situations is identical, one would expect the resulting PDF to

be identical as well. However, as these results show, for short observations, the prior prob-

abilities determined for a given problem are not consistent across a general transformation

even though the a priori information (the constraint hypotheses) is identical in both cases.

Since initial orbit determination systems are often faced with short times between observa-

tions, it is important to ensure particle filters for initial orbit determination are instantiated

properly. Thus, once a particle filter is instantiated in a given state space using an admissi-

ble region, the PDF must remain expressed in that state space until the system is observable

when applying the Principle of Transformation Groups. The general exception to this are

linear transformations which always satisfy the requirements of Theorem 2. The results

of this work show that the consideration of the Principle of Transformation Groups does

play a role in the formation of a PDF for a given admissible region. Ultimately, it is up

to the user to determine if the effect this principle has on the PDF used for estimation is

significant.

3.6 Conclusions

The probabilistic application of the admissible region to estimation is investigated under the

Principle of Transformation Groups, which seeks to preserve prior probability in the lack

of additional information on the system. The general theory of probability transformations

is then presented and applied directly to the admissible region problem. It is found that
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Figure 3.3: Outline of the two approaches for generating the PDF in cartesian coordinates

Figure 3.4: Condition number of P(t, t0, x(t)) computed for each particle xu(t)

Figure 3.5: Admissible Region prior expressed in ρ and ρ̇ 30 minutes after the initial ob-
servation
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Figure 3.6: Difference between the cartesian PDFs, second observation is 30 minutes after
the initial observation.

Figure 3.7: Difference between the cartesian PDFs, second observation is 10 minutes after
the initial observation.
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Figure 3.8: Difference between the cartesian PDFs, second observation is 60 minutes after
the initial observation.

general probability transformations are invalid for admissible regions under the Principle

of Transformation Groups since they do not preserve prior probability, thus a constraint

on transformations for admissible region problems is defined. The constraint is shown to

ensure the admissible region remains an uniform distribution regardless of the state space it

is expressed in. This also shows that the statistical representation of the admissible region

is consistent with Jeffreys’ prior and satisfies the Principle of Transformation Groups. The

results presented highlight the fact that a traditional probability mapping will tend to yield

a different PDF than when the Principle of Transformation Groups is applied. As the

observation time grows, the difference between the PDF is reduced, however over short

time period observations it is shown the difference in the PDFs can be significant.

97



CHAPTER 4

EVIDENTIAL REASONING THEORY APPLIED TO THE ADMISSIBLE

REGION

The findings of Chapter 3 show that the admissible region is not truly a general PDF due

to the violation of fundamental probabilistic theorems. The solution offered in Chapter 3

treats the admissible region as an uninformative prior which preserves probability density

across transformations, but still technically requires an assumption be made about the prior

probability. What is desired is a methodology that can incorporate the fact that given a sin-

gle set of unobservable measurements, the form of true underlying probability distribution

is largely unknown, and thus any prior probabilities should not be assumed. Furthermore,

it is desired for a methodology to also provide an indication as to when the hypothesized

admissible region constraints are incorrect. This chapter introduces Dempster-Shafer evi-

dential reasoning and the concept of ignorance as applied to the admissible region problem

to provide such a methodology. As will be shown, this provides a powerful method by

which not only are a priori assumptions on probability not necessary but also enables test-

ing of validity of the assumptions used to construct the admissible region. The result is a

more generalized estimation scheme which quantifies the lack of information, or rather the

unobservability, as bounds on the true underlying probability distribution and enables the

assignment of belief to states outside of the admissible region as well.

4.1 Dempster-Shafer theory

Traditional Bayesian probability is based on the pair (p, q) where p represents the probabil-

ity that some hypothesis is true and q is the probability that some hypothesis is false [92].
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Given some hypothesis h and state x, this is typically formulated as follows

p(x|h) ∈ [0, 1] (4.1)

q(x|h) = 1− p(x|h) (4.2)

The limitation of traditional Bayesian probability is that the state of interest can only sup-

port or refute the hypothesis. However, in many real world applications there often exists

states which do not inherently refute a hypothesis, but which also do not directly support

the hypothesis. The Dempster Shafer (DS) approach involves utilizing the triple (p, q, r)

which adds a quantification of plausibility, r, to address this imprecision in the system [52].

To introduce DS theory, first define Ω as the frame of discernment, the set which con-

tains the states for over which evidence, or more specifically belief mass, should be as-

signed [10]. In traditional DS theory, Ω is defined as

Ω = {ω1, ω2, · · · , ωn} (4.3)

where Ω is a mutually exclusive set of hypotheses for which exactly one hypothesis ωi is

true. The frame of discernment is also called the truth set since it contains the truth solution.

DS theory then utilizes mass functions to assign mathematical probability to the power set

of Ω which contains the 2n − 1 non-empty subsets of Ω (including Ω itself) as well as the

empty set. Let A ⊂ Ω be a generic subset of the frame of discernment. The mass function

is then defined as m : 2Ω → [0, 1], or equivalently the basic belief assignment (BBA) [55].

A given BBA must satisfy

∑
A⊆Ω

m(A) = 1 (4.4)

A BBA could, for example, be defined as a plausibility measure on Ω. A simple form of

such a plausibility measure is the membership function for ω ∈ A [55]. In general, many
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different choices exist for the BBA and while it is often useful to define a more meaningful

BBA based on the application, the selection of the BBA is subjective [53].

The mass function, or BBA, is used to define three useful quantities in DS theory,

∀A ⊆ Ω,Beli(A) =
∑
∅6=B⊆A

mi(B) (4.5)

∀A ⊆ Ω,Pli(A) =
∑

A∩B 6=∅

mi(B) (4.6)

∀A ⊆ Ω,Qi(A) =
∑
A⊆B

mi(B) (4.7)

Beli(A) is the belief function and gathers evidence to supportA, a given proposition. Pli(A)

is the plausibility function which gathers evidence that permits the occurrence of proposi-

tion A but does not necessarily support A directly. Qi(A) is called the commonality func-

tion by Shafer and is generally not used in a technical sense [10]. The belief and plausibility

are related through duality

∀A,Pli(A) + Beli(Ā) = 1−mi(∅) (4.8)

where Ā is the complement of A. If mi(∅) = 0 then it is implied that the solution must

exist in Ω. Furthermore, it is only necessary to define one of the quantities, Bel, Pl, or mi

as each of the other quantities may be derived if the BBA is known or if either a belief or

plausibility function is directly obtained. This is useful in applications where the BBA may

be unknown but a plausibility function or belief function can be directly defined.

Another useful concept introduced from DS theory is the belief-plausibility gap, which

is an indicator of ignorance in the system as utilized by Jaunzemis and Holzinger [93].

Igi(A) = Pli(A)− Beli(A) (4.9)

Plausibility and belief are shown to be upper and lower bounds on the true probability by
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Dempster [55]. The belief-plausibility gap can then be used as an indication of the amount

of information in the system. It can be used to indicate when there is enough information

for an under-determined state estimation problem to have a unique solution.

These summarized components of DS theory will be rigorously applied to the admis-

sible region problem in the next section. This formulation avoids ambiguities in how to

address the probabilistic nature of the admissible region for estimation by introducing be-

lief and plausibility rather than just a probability or likelihood.

4.2 Belief Functions on Real Numbers

Traditional DS theory is derived for scenarios where Ω represents a finite set and the belief

functions are defined over the power set of Ω. For general belief functions defined on real

numbers, the belief functions are no longer defined over the power set of Ω. Let Ω = Rn

be a frame of discernment defined over the set of real numbers. Let B(R) denote the Borel

sigma-algebra on the set R and let A = B1(R) × · · · × Bn(R) be the cross product of n

such Borel sigma-algebra. The belief density for Ω = Rn is then defined as m : A → [0, 1]

satisfying

∫
A
m(z)dz = 1 (4.10)

Note that in general the set A includes both singleton and non-singleton subsets of Rn.

While Eqn. (4.10) poses no theoretical issues for a frame of discernment defined over

real numbers, computationally the problem may become intractable, especially in higher

dimensions. It is desired to define a restriction of the frame of discernment to reduce the

computational requirements in application.

Consider Ω = Rn where the subsets of A are restricted to the singletons of Ω. The
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basic belief assignment mass may then be defined as follows

m(A) =


m(a) A = {a}, a ∈ Rn

0 otherwise

which only assigns belief to the singletons of Ω [4]. Given that Ω is a countable set of points

in Rn then the summations in Eqns. (4.5) and (4.6) become infinite sums. Particularly this

is useful in state estimation when a particular proposition A ∈ Ω cannot take on multiple

values. However, Dubois and Prade [55] show that if the subsets of A are restricted to the

singletons of Ω then

Bel(A) = Pl(A), ∀A ∈ A (4.11)

This implies that the basic belief assignmentm(·) is simply a probability measure on Ω and

the desired benefits gained through using DS theory are lost.

Thus, it is desired to have a more inclusive frame of discernment which permits both

singleton and nonsingleton propositions while still remaining computationally tractable.

Rogers and Costello show that, in general, it is sufficient to consider only a finite number

of nonsingleton propositions [54]. The primary nonsingleton proposition which must be

included in the frame of discernment is Ω itself, or the uncertainty proposition. The uncer-

tainty proposition enables belief mass to be applied to the entire frame of discernment in

addition to the individual singletons. The uncertainty proposition accounts for the fact that

there may be situations in which a sensor may not reliably support any individual proposi-

tion, but given that the true proposition lies in Ω, it still supports assignment of all belief

to Ω. The selection of the other nonsingleton propositions is assumed to be arbitrary, but

chosen appropriately for the given problem.

Given that the initial orbit determination problem gives a frame of discernment over the

real numbers, only a finite number of nonsingleton propositions should be defined to ensure
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computational tractability. That is, only a finite number of sets from 2Ω should be included

as candidate for which belief mass can be assigned. Let the general frame of discernment

defined for a belief function on real numbers as

Ω = {{x} ∈ Rn} (4.12)

then the particular subset of 2Ω of interest is

Θ = {{x} ∈ Rn} ∪ Rn ⊂ 2Ω (4.13)

which is the union of a countable set of singleton state propositions and the full space Rn

and represents a computationally tractable set to define as opposed to the full power set.

Let Θ be defined as the plausibility space, that is the space over which the plausibility

and belief functions are defined. If it is possible to define a region X inside of which the

solution is hypothesized to lie such that X ⊂ Rn then frame of discernment is given by

Ω = {{x} ∈ X} (4.14)

and the plausibility space can be written as

Θ = {{x} ∈ X} ∪ X (4.15)

Yet, Eqn. (4.15) does not account for the fact that evidence can be gathered to suggest the

solution does not actually lie in X as hypothesized. To fully include this possibility that the

truth proposition does not lie in X , let X̄ denote the concept of ‘none of the above’ (NOTA)

for estimation. The frame of discernment is then defined as

Ω = {{x} ∈ X} ∪ X̄ (4.16)
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where X̄ = (Rn \ X ). The resulting plausibility space is then defined as

Θ = {{x} ∈ X} ∪ X ∪ X̄ (4.17)

which implies that belief mass can be assigned, to states in X , to X itself, or outside of

the subset in which the solution is thought to lie, giving the ability to identify changes to a

system or, for instance, differentiate between objects under observation.

Note that the use of X̄ can instead be generalized into more useful alternative propo-

sitions. For instance, if all belief mass is assigned to X̄ given a set of measurements, it

could indicate that the original assumptions which were used to construct the admissible

region, and thus X , are wrong. Thus, a potentially useful additional proposition is X2

which could represent the set of all potential states under a different hypothesis from the

one used to create X . This ability to attribute evidence to discriminate between correct or

incorrect hypotheses is an example of the utility provided by implementing DS theory for

the admissible region problem.

4.3 Combination of Evidence

The belief density defined in the previous section operates on single piece of evidence

collected from a given source. An additional utility of DS theory is the flexibility in com-

bining or fusing evidence from different sources. There exist many different forms of rules

to combine evidence from different belief assignment functions [94] [95]. A general rule

of combination for a given belief function is given by Dempster’s combination rule

(m1 ⊕m2)(A) =

∑
B∩C=A

m1(B)m2(C)

η
, A ⊆ Ω, A 6= ∅ (4.18)

η = 1−
∑

B∩C=∅

m1(B)m2(C) (4.19)
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where the belief functions m1 and m2 represent distinct pieces of evidence [55]. For in-

stance,m1 andm2 could be a set of two sensors both providing independent evidence about

the state of a system. The normalization factor η accounts for the degree of conflict between

the two sources. Dempster’s rule is a conjunctive rule that is both commutative and asso-

ciative and thus can be used iteratively in estimation schemes to update belief assignment.

Dempster’s rule is the subject of scrutiny due to potential issues such as Zadeh’s para-

dox which yields a counterintuitive result if Dempster’s rule is applied directly [96]. Dezert

et. al. also presents arguments against the use of Dempster’s rule of combination in cer-

tain situations [97]. In short, the problem arises when there is a source of evidence which

get essentially treated as absolute truth, erasing the benefits gained by combining evidence

provided by other sources. Problems also arise when the sources of information are not

independent and a normalization factor must be included to correct for this dependence

[98]. However, application of Dempster’s rule to the admissible region problem does not

suffer from any of these problems as it is assumed that any two given measurements are

independent of one another. Zadeh’s paradox is not an issue due to the treatment of the

admissible region problem, since it is unobservable there is no belief mass being directly

assigned to particular states, and as such it is unlikely for the evidence gained by a given

source to be treated as absolute truth.

4.4 The Admissible Region BBA

The application of DS theory to the admissible region problem is initialized similarly to a

traditional Bayesian approach. Since it is of interest to estimate the full state x which is in

Rn the elements of the frame of discernment Ω must also be in Rn for this admissible region

problem. Following the construction of Ω outlined in the previous section, let X ⊂ Rn

represent the full set of admissible states defined by the admissible region and X̄ = Rn \X
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represent the set of all inadmissible states. Mathematically, these sets are represented by

X = {(xu, xd) : xu ∈A} (4.20)

X̄ = {(xu, xd) : xu /∈A} (4.21)

and represent the full n dimensional set of admissible states. Then Ω and Θ are fully defined

as

Ω = {x ∈ X , X̄ } (4.22)

Θ = {x ∈ X ,X , X̄ } (4.23)

where Θ is a fully exhaustive subset of the full power set of Ω, which must contain the

solution. Note also that this is a fully generalizable problem formulation which can be

applied to any unobservable system.

A simple outline of the posed problem is as follows, given a measurement y it is desired

to find a BBA of the form m(x|y) which assigns belief mass to elements of Θ. As noted,

the state x is partitioned into the determined state, which may be directly obtained from

the measurements, and the undetermined state which may be unobservable. Assume that at

time tk a measurement yk is obtained. Through the independence property applied to belief

functions [99], the BBA can be partitioned as

m(x|y0:k−1) = mu(xu|y0:k−1)md(xd|y0:k−1) (4.24)

since knowledge of xd does not impact the belief allocated to xu and vice versa. The

determined states are directly observable through the measurements and as such it is known

that the belief mass function is equivalently the probability mass function and Eqn. (4.24)
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becomes

m(x|y0:k−1) = mu(xu|y0:k−1)pd(xd|y0:k−1) (4.25)

where pk(·) denotes a probability mass (or density) function. Similarly the plausibility

function for the admissible region problem may be defined as

Pl(x|y0:k−1) = Plu(xu|y0:k−1)pd(xd|y0:k−1) (4.26)

where again the plausibility of the determined state is equal by definition to the belief and

thus the probability. It is now of interest to determine the form of either the BBA mu(xu|·)

or the plausibility function. Note that the belief assignment and plausibility are both only

conditioned on the sequence of measurements y0, · · · , yk. This contrasts the Bayesian

instantiation of an estimation problem where the initial probability is conditioned both on

the measurements as well as some a priori distribution. Since DS theory does not require

any knowledge of this a priori distribution, it avoids altogether the issue that arises when

this a priori distribution is either not known or uninformative.

The BBA for this problem is subject to several constraints from the problem formu-

lation. Given that the states xu are undetermined, a single measurement does not offer

evidence to substantiate any particular state being more valid than another. In a probabil-

isitic sense, each state would be given a uniform probability however if there is no evidence

for any of the states then belief should not be assigned to any of the states. This would give

an essentially vacuous belief function which satisfies the following

Bel(X ) = 1 (4.27)

Bel(V) = 0,∀V ∈ Θ \ X (4.28)

Pl(V) > 0,∀V ∈ Θ \ X (4.29)
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A vacuous belief function is equivalently an indication that there is insufficient information

to assign belief mass to any given state in the frame of discernment, but since Ω must

contain the truth, the whole admissible region set is attributed all initial belief mass.

Given the problem formulation, the BBA mu(xu|·) is a vacuous belief function given a

single measurement. Through Eqn. (4.6) it is possible to show that there exists a concise

linear relationship between Pl and m given the defined frame of discernment. Let this set

of linear equations be represented by

Pl(x|y0:k−1) = Am(x|y0:k−1) (4.30)

Pl



x1|y0:k−1

x2|y0:k−1

...

X|y0:k−1

X̄ |y0:k−1


=



1 0 · · · 1 0

0 1 · · · 1 0

...
...

...
...

...

1 1 · · · 1 0

0 0 · · · 0 1


m



x1|y0:k−1

x2|y0:k−1

...

X|y0:k−1

X̄ |y0:k−1


(4.31)

where the matrix A ∈ R`×` where ` is the cardinality of Θ [70]. Note in general, if N

is the number of points sampled from X , then ` = 2N + 1 which accounts for each of

the cross combinations of particles contained in X . Again, this poses significant problems

for computational tractability, especially for the matrix inverse operation [54]. A major

simplification is to define a priori that the belief masses assigned to the cross terms are zero

and excluding the resulting plausibilities, which gives ` = N + 2. This matrix A is defined

based on the principle of least commitment, the idea behind which implies the BBA defined

should never assign more belief mass than justified to elements of Ω [100, 101, 102].

Since A is always an invertible matrix, there exists a direct form by which the belief

masses can be found assuming the plausibility function is known and is simply given by

m(·) = A−1Pl(·) (4.32)
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assuming a suitable plausibility function may be found. Thus it is desired to determine

a suitable candidate for the plausibility function, one of which is the probability of set

membership inAi. Furthermore, since the combination of vacuous belief functions is still

vacuous [4], it is desired to find a way to combine plausibility which may be used with

Eqn. (4.32) to find a non-vacuous belief function.

An initial, potential candidate for a plausibility function is the probability of set mem-

bership. Let Pi : Ru × Rz+1 → R+ denote the probability of set membership for a given

state given the ith hypothesized constraint

Pi[(xu ∈Ai)] ≈
1

2

[
1 + erf

(
‖xu − xu,B⊥‖√

2trPxu,B⊥

)]
(4.33)

where the method to determine Pxu,B⊥
is given by Worthy and Holzinger [76]. Then let this

initial plausibility function for the admissible region problem be defined using Eqn. (2.54)

as follows

P (xu ∈ ∩ci=1Ai) ≥

[
c∑
i

Pi(xu ∈Ai)

]
− (c− 1) (4.34)

where again c is the total number of constraint hypotheses.

Referring back to Eqn. (4.6), by definition the plausibility of any state x is lower

bounded by m(X|y). Using Eqn. (4.34), a pseudo-plausibility function for a singleton

hypothesis x ∈ Θ may be defined as follows

P̃l(x|y) = P (xu ∈ ∩ci=1Ai)p(xd|y) (4.35)

Eqn. (4.35) alone is not sufficient to define a plausibility function as while it may go to

zero, plausibility of any state in X must be lower bounded by the belief of X itself. Thus a
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well defined plausibility function is given by

Pl(x|y) = P̃l(x|y) +m(X|y) (4.36)

which gives the necessary lower bound on the plausibility of any given state.

It is then necessary to define how either plausibility or belief mass are assigned to X as

well as X̃ . Let

m(X|y) =

∫
X P̃l(x|y)dx∫

X dx
(4.37)

Pl(X̄ |y) = m(X̄ |y) = 1−max
x∈X

Pl(x|y) (4.38)

be the belief functions for these nonsingleton hypotheses. Direct application of Eqn. (4.6)

gives a plausibility function for X containing the sum of the belief masses attributed to all

x ∈ X , as can be seen in the corresponding row of the matrix A. Defining such a function,

however, is difficult since a priori the belief masses, m(x|y), are unknown. If instead a well

defined belief mass function for X is available, then this issue can be avoided. Eqn. (4.37)

represents such a belief mass function defined by the integral of the pseudo-plasibility

function normalized by the volume of X . It is straightforward to see that the belief function

for X̄ is equivalent to the plausibility function and thus what is defined is the probability or

likelihood that a given state is not in X .

Given Eqns. (4.37) and (4.38), the linear relationship shown in Eqn. (4.31) is modified

as follows 

Pl(x1|y0:k−1)

Pl(x2|y0:k−1)

...

m(X|y0:k−1)

m(X̄ |y0:k−1)


=

1

ζ



1 0 · · · 1 0

0 1 · · · 1 0

...
...

...
...

...

0 0 · · · 1 0

0 0 · · · 0 1


m



x1|y0:k−1

x2|y0:k−1

...

X|y0:k−1

X̄ |y0:k−1


(4.39)

which provides a relationship between the computed pseudo-plausibilities of each state
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coupled with the defined beliefs of the non-singleton propositions and the belief masses

attributed to the states. The constant ζ ensures that the total belief function defined over Θ

collectively integrates, or sums, to unity. Eqn. (4.39) provides a computationally tractable

way to quantify plausibility and belief in the system, without considering all 2N + 1 com-

binations of propositions necessary if Θ = 2Ω, by defining the belief masses for the desired

non-singleton hypothesis directly and utilizing those belief masses to compute the resulting

plausibilities of the states in X . Furthermore, the plausibility of X can be easily defined

after taking the inverse relationship.

Eqn. (4.37) assigns plausibility to the collective set of states comprising the admissible

region based on the pseudo-plausibilities of individual states in the admissible region. The

plausibility of the proposition that the true state does not lie in the admissible region is then

defined in Eqn. (4.38). This implies that given a single measurement, since the admissible

region hypothesizes that the trues lies in AR, the belief mass assigned to X̄ should be zero

until evidence is gained that suggests otherwise.

With Eqns. (4.36), (4.37), and (4.38), a plausibility function is fully defined for Ω, and

given the relationship given in Eqn. (4.32) the belief mass function can also be derived. The

remaining concern is the combination of evidence from two independent observations. It is

shown that given a single observation the BBA is vacuous and utilizing Eqn. (4.32) with the

plausibility function just defined confirms this fact. The combination of two observations

should yield a joint BBA which is no longer vacuous, however without knowledge of the

form of the vacuous belief function the combination rule cannot be directly applied. It is

desired to find an equivalent combination rule for plausibility, that is given Pl1(·|y1) and

Pl2(·|y2) what is Pl1⊕2(·|y1, y2). First consider Dempster’s combination rule applied to the

admissible region, for any singleton proposition A ∈ Ω the combination rule simplifies to

(m1 ⊕m2)(A) =
m1(A)m2(A)

η
(4.40)
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since B ∩ C = A is also a singleton [103]. Furthermore, if B ∩ C = ∅ then by definition

m1 = m2 = 0 so the normalization term η becomes 1. This is equivalently stating that

there is no conflicting evidence being offered by the sensors. Thus, the combination rule as

applied to propositions in the admissible region problem is simply given by

m1⊕2(A) = m1(A)m2(A) (4.41)

Applying Eqn. (4.6), the joint plausibility for the admissible region problem is given by

Pl1⊕2(A|y1, y2) =
∑

A∩B 6=∅

m1⊕2(B) (4.42)

which is simply the product of the individual plausibility functions.

Pl1⊕2(A|y1, y2) = Pl1(A|y1)Pl2(A|y2) (4.43)

Eqn. (4.43) now provides an iterative method by which plausibilities from independent

measurements can be combined to create a joint plausibility. More importantly, through the

use of Eqn. (4.32), once the joint plausibility is determined, the joint belief mass function

can also be determined and thus both belief and plausibility can be found for a given state

in Ω.

4.5 Observability and Ignorance

Since the condition m(X ) = 0 yields a probability over the rest of Θ by construction, this

condition can be related to the observability of the system. Recall a system is observable if

the state can be determined in finite time using only the measurements, or equivalently the

output of the system [81]. By this definition, it is equivalent to stating when m(X ) = 0 the

system must be observable since in a probabilistic sense there exist singleton propositions

in Θ for which there is explicit support for being the truth state.
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Them(X ) = 0 condition is related to ignorance by construction since it is only possible

for m(X ) = 0 if Ig(x) = 0 for all x ∈ X . Worthy and Holzinger show that the degree to

which a given set of observation is observable is related to the following relationship

∆t = tf − t0 � λ−1
max (4.44)

where tf and t0 are the times of the first and last observation respectively and λ is defined

in [104]. For keplerian dynamics this condition is given by

∆t�

√
‖r‖3

2µ
(4.45)

where r ∈ R3 is the position of the satellite and if this condition is satisfied then the

problem is essentially unobservable. This condition is essentially a lower bound on the

order of magnitude of the observation time required for the state of a given object to become

observable.

Combining these concepts, it can be shown that as long as the condition given by Eqn.

(4.44) is satisfied, there will be significant ignorance in the system. The question is then

when is there sufficient observability, or when is ignorance small enough to consider the

system observable. In the ideal case when Ig(x) = 0 ∀x ∈ X , then instead of utilizing a

DS approach for sequential estimation, a traditional particle filter can be instantiated with

the resulting probability distribution over X . Recalling again that belief and plausibility

can be treated as lower and upper bounds on probability, respectively,

m(x) ≤ P (x) ≤ Pl(x)

P (x) = m(x) + ∆

∆ ≤ Ig(x)

By the above, Ig(x) could be considered as the upper bound on the amount of error, de-
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noted ∆, in the probability distribution used to instantiate a traditional Bayesian estimation

scheme.

tol ≥ max
x

(Ig(x)) (4.46)

Eqn. (4.46) then provides a user-defined parameter which indicates the maximum allowed

error in the distribution used to instantiate a traditional Bayesian estimator, or equivalently

the maximum allowed ignorance before the system is considered observable. As long as

the tol parameter is exceeded, the DS filtering approach should continue to be used but once

the condition is met a particle filter could be instantiated with the resulting belief function

m(x) defined over X .

4.6 Application to Sequential Estimation

The direct application of Eqns. (4.43) for the admissible region problem is sequential es-

timation. In particular, the the particle filter is a standard estimation tool and it is desired

to understand how to incorporate belief and plausibility into the particle filter formulation.

There are several existing applications of DS theory to particle filtering which take advan-

tage of either the belief assignment or plausibility functions as the primary weighting terms.

Reineking rigorously applies the principles of DS theory to particle filtering and derives a

general update equation for plausibility similar to Eqn. (4.43) [105]. Muños-Salinas et. al.

demonstrate the application of DS theory to people tracking by instantiating multiple parti-

cle filters operating on belief, with initial belief mass distributions updated with Dempster’s

rule [98]. Rather than updating the belief functions directly, the approach implemented in

this paper utilizes a plausibility update which then enables the corresponding belief value

to be computed and then reverts to a traditional Bayesian estimator once the problem is

observable. The sequential update for plausibility used in this paper is generated through
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the use of Eqn. (4.43).

Pl0(x|y0) = P (xu ∈ ∩ci=1Ai|y0)p(xd|y0) (4.47)

Plk(x|y0:k) = Plk(x|yk)Plk−1(x|y0:k−1) (4.48)

The initialization of the belief assignment function is vacuous

m0(x|y0) = 0 (4.49)

m0(X|y0) = 1 (4.50)

and the update for the belief assignment function then comes through the inverse linear

relationship defined by Eqn. (4.39)

mk(x|y0:k) = ζA−1Plk(x|y0:k) (4.51)

Eqn. (4.51) is also equal to Bel(x|y0:k) by the definition of Θ . The DS particle filter

methodology implemented for this work utilizes Eqns. (4.48) and (4.51) and is outlined in

Algorithm 1.

4.7 Reduction to Bayesian Inference

The use of the concepts of belief and plausibility to instantiate a particle filter for the ad-

missible region problem is a convenient way to avoid the ambiguities inherent in the direct

application of Bayesian inference. However, it is still desired to determine when the con-

cepts of belief and plausibility collapse back to standard Bayesian inference, that is when a

traditional particle filter may be utilized. Consider again the linear relationship defined in

Eqn. (4.31). It equivalently states that

Plk(x|·) = mk(x|·) +mk(X|·) (4.52)
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Algorithm 1 Uninformative Prior Dempster Shafer Particle Filter
1: procedure DEMPSTERSHAFERFILTER(yk,k,Θk−1,Plk−1)
2: Θk = ∅
3: if k = 0 then . Initialize belief, plausibility for k = 0
4: for i← 1, N do
5: Θi

k = xi, xi ∈A . Sample admissible region, add propositions to Θk

6: Pl(xi) = 1 . (Eqn. (4.47))
7: m(xi) = 0 . (Eqn. (4.49))
8: Θi+1

k = X . AddA proposition
9: Pl(X ) = 1

10: m(X ) = 1 . (Eqn. (4.50))
11: Θi+2

k = X̃ . Add ‘none-of-the-above’ proposition
12: Pl(X̃ ) = 0
13: m(X̃ ) = 0
14: else
15: for i← 1, N do
16: xi = φ(k; x, k − 1), x ∈ Θk−1 . Draw from plausibility space
17: Θi

k = xi
18: ỹk = h(xi,k, k) . (Eqn. (2.3))
19: xiu, xid = g(x,k, ·) . Partition state vector
20: p(xid) = exp−1

2
(yk − ỹk)TR−1(yk − ỹk)

21: Pl(xiu) = P (xiu ∈Ak) . Plausibility of xiu (Eqn. (4.34))
22: Pl(xi) =Pl(xiu)p(xid) . Full state plausibility (Eqn. (4.36))
23: Plk(·) =Pl(·)Plk−1(·) . Update plausibility distribution (Eqn. (4.48))

24: Plk(X ) =
∫
X P̃l(x|y)dx∫

X dx . Determine plausibility ofA (Eqn. (4.37))
25: Plk(X̄ ) = 1−Pl(X ) . Determine ‘none-of-the-above’ plausibility
26: mk(·) = A−1Plk(·) . Determine belief assignments (Eqn. (4.32))
27: return mk, Plk, Θk
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for all the singleton propositions x ∈ X . Given that if Pl(x) = m(x) then Pl(x) = Bel(x) =

p(x) it is necessary that m(X ) = 0 for this construction of a DS particle filter to collapse

to the traditional Bayesian implementation. However, the inclusion of the none-of-the-

above hypothesis X̄ requires an additional condition to be considered. Since the operator is

interested in the belief attributed to each of the states in Θ, it is necessary to include a check

for which hypothesis has the most belief mass when m(X ) = 0. In particular if Eqn (4.53)

is satisfied, then it suggests that, based on the plausibility function defined, there is more

evidence suggesting that the truth solution does not lie in the original admissible region.

max
x∈X

mk(x|·) < mk(X̄ |·) (4.53)

As such when this condition is met, it is necessary to then repeat the filtering process

initialized with a different hypothesis for A. If Eqn. (4.53) is not satisfied then it is

sufficient to instantiate a particle filter with the resulting distribution over X .

4.8 Simulation and Results

Several scenarios will be examined to demonstrate the utility of the application of DS the-

ory to the admissible region problem. The first case demonstrates the use of the DS particle

filter as outlined in Algorithm 1 and its reduction to essentially a traditional particle filter

once enough observations are made as well as the indifference of DS theory to the problem

formulation, elucidating the benefits gained by choosing to use DS theory to avoid am-

biguities caused by different problem formulations in Bayesian theory. The second case

demonstrates the utility gained by augmenting Ω with the ‘NOTA’ proposition, and high-

lights a potential area for future research. The last two cases demonstrates the use of the

DS particle filter on real observation data.
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4.8.1 Scenario 1

The observations utilized in the following example test cases are assumed to be captured

from Atlanta, GA with an optical telescope with uncertainty parameters given as listed in

Table 5.1. The observation scenario utilizes a measurement function of the form given in

Table 4.1: Parameters, Measurement Error and Parameter Uncertainty
Lattitude, Longitude, Altitude [33.7490◦N, 84.3880◦W, 310m]

Right Ascension uncertainty, σα 10 arcseconds
Declination uncertainty, σδ 10 arcseconds

Timing error, σt 0.01 s
Position error (each axis), σo 1 m
Velocity error (each axis), σȯ 1 cm/s

Eqn. (2.3)

yk = hu(xk; k, t) (4.54)

where k is a set of parameters. Through Taylor series expansion of Eqn. (2.3), the mea-

surement function may be approximated over short time periods as

yk(t) ≈ yk(t0) +
∂yk
∂t

∆t (4.55)

where ∆t represents a finite observation time. Given that ∆t is not insignificantly small,

Eqn. (4.55) enables both the angles and their time derivatives to be determined over the

course of a short observation yielding

yk =



α

δ

α̇

δ̇


(4.56)
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Table 4.2: True Orbit
Semi-major axis, a 6782.0 km

Eccentricity, e .0007
Inclination, i 51.6◦

RAAN, Ω 29.4◦

Argument of perigee, ω 117.5◦

True Anomaly, ν 20.0◦

where α is the right ascension, δ is the declination of the space object and α̇ and δ̇ are the

respective rates.

The initial state of the object used in this scenario is described in Table 4.2. The deter-

mined states are then given by

xd =



α

δ

α̇

δ̇


(4.57)

with undetermined states

xu =

ρ
ρ̇

 (4.58)

The measurements are provided by a series of 30 simulated observations at 20 second inter-

vals initiated at 2017-1-17T08:00:00Z. The DS particle filter is implemented as described

in Algorithm 1, with tol = .01 and is initialized from a sampling of the set membership

function over the admissible region and the initial measurement and the belief and plausi-

bility values are updated each time a new simulated observation is acquired. As described,

the initial values of belief are zero for all propositions in Θ except for X which is as-

signed belief of 1. The initial plausibility assigned is 1 for all propositions except for X̃ the

‘NOTA’ proposition.
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For comparison a traditional particle filter is instantiated with a purely uniform distri-

bution over the admissible region and updated with each new measurement

p0,PF1(x|y0) =
1

N
(4.59)

where N = 6000 is the total number of samples.

To not only highlight the independence of DS from this initial distribution, but also to

show that the particle filter eventually removes biases caused by arbitrary a priori probabil-

ity assignment, the following arbitrary ‘PDF’ is selected for the initialization of the second

particle filter

p0,PF2(x|y0) =
1

C
sin(mod(ρ, π))× sin(mod(ρ̇, π)) (4.60)

where C ensures p0,PF2(·) integrates to 1. The use of this PDF is just for demonstration

purposes only since the undetermined states are unobservable, thus in this lack of informa-

tion any PDF is technically equally valid as long as it is not defined as a function of any

determined states [84]. Each filter is updated with the measurements, and the first measure-

ment y0 at time t = 0 is used to construct the admissible region from which the samples are

drawn for the particle filter as well as the set from which samples of X are drawn. Figure

4.1 shows the initial distributions for each filter.

As each measurement is ingested by the various filters, the PDFs or belief surfaces are

updated accordingly. Figures 4.2-4.4 are included to convey how the plausibility and belief

surfaces evolve over time compared to the probability density function of the two particle

filters. These figures highlight two important aspects of the limitations inherent in attempt-

ing to assign prior probabilities in undetermined systems. First, both distributions shown in

Figure 4.4c and Figure 4.4d seem to be converging to the truth solution appropriately even

though they were initialized with very different prior probabilities. This is an direct result

of the concept of ignorance, both initial distributions are essentially acceptable because
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(a) Uniformly Initialized PF (b) Non-uniformly Initialized PF

(c) Dempster Shafer PF

Figure 4.1: Initial distribution of states for Scenario 1 along with nominal A constraint
surface plotted.

without any a priori information all that can be truly stated is that the prior probabilities lie

between 0 and 1 for all states. The strength of the DS particle filter, and DS theory in gen-

eral, is that no prior probabilities need to be assigned. The prior information provided to

the DS particle filter reflects the actual knowledge of the system, that is the unobservability

(or similarly ignorance) of the system.

Another important implication of DS theory is that once there is no ignorance in the

system, and the belief/plausibility functions and PDF are equivalent functions, the resulting

PDF must be correct. The fact that the resulting distributions from initializing the particle

filter with two different prior probabilities are different seemingly imply that one or both

of these distributions could be incorrect given the initial unobservability of the system.
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Plausibility and belief surfaces have the same general shape and as states gain additional

belief mass they proportionately lose plausibility until belief and plausibility are equal and

at this point traditional particle filter implementation is essentially equivalent. Figure 4.4

shows the near equality of the belief and plausibility values just before m(X ) goes to zero

at time t = 560.

It is also of interest to examine how the belief mass attributed to both X and X̄ change

over the course of the simulation as well. Figure 4.7 displays these belief masses over the

course of the simulation. As can be seen, as more observations are made, and equivalently

more evidence is gathered, the evidence supporting assignment to the entire admissible

region instead of individual states inA is goes to zero. Note that while Figure 4.7 shows

the belief and ignorance approaching 0 and 1 respectively, they do not attain these bounds.

The algorithm utilized for the test scenarios continues to update the belief and plausibility

values until the ignorance condition is met. If this condition is removed the algorithm

would continue updating belief and plausibility, but the ignorance and maximum belief

values would asymptotically approach 0 and 1 respectively as one would expect. Figure

4.6 demonstrates the true asymptotic nature of the ignorance (and equivalently the inverse

asymptotic relationship with belief mass in X ). Figure 4.6 also shows the point in time

where the tol = 0.01 condition is met and how ignorance changes after this condition is

met. As expected, ignorance continues to fall even after the tolerance condition is met until

it reaches a lower bound defined based on the errors and uncertainties in the system. Note

that this is the general behavior of ignorance through the scenarios shown in this section,

and this asymptotic behavior is also seen in the maximum belief mass assignment. The

next example will demonstrate how it is possible to denote a potential incorrect admissible

region hypothesis constraint assumption, or equivalently cases when the maximum belief

is attributed to the NOTA proposition.
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(a) DSPF - Plausibility Surface (b) DSPF - Belief Surface

(c) Uniformly Initialized PF (d) Non-uniformly Initialized PF

Figure 4.2: Belief, Plausibility, and Probability updates for t = 40s.

4.8.2 Scenario 2

Scenario 2 uses the same observation configuration as before but now with the object state

given in Table 5.4. Note that this object is in a hyperbolic orbit, which implies that the

admissible region constructed for all possible closed orbits will not contain the truth solu-

tion. LetA represent the admissible region under the constraint hypothesis that the object

has a closed orbit and let Ω follow from the definition presented in this paper. The set X

represents the set of all admissible closed orbits consistent with the measurements being

captured, but it is known that the true state consistent with these measurements lies in X̄ .

The purpose of this case is to demonstrate that the belief mass assignments can provide
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(a) Plausibility Surface (b) Belief Surface

(c) Uniformly Initialized PF (d) Non-uniformly Initialized PF

Figure 4.3: Belief, Plausibility, and Probability updates for t = 120s.

indications as to when the assumptions of the problem, namely the assumptions involved

in definingA, and thus X and also X̄ , are valid.

In lieu of showing the full evolution of the plausibility, belief, and probability surfaces

over time, Figure 4.7 shows the belief, plausibility, and PF distributions at t = 540 and

Figure 4.8 shows the evolution of the belief assignments to the admissible region, the none

of the above (NOTA) set, and the maximum belief assigned to any state in the original

admissible region similar to Figure 4.7. The desire is to show that if more belief mass is

being assigned to the ‘NOTA’ set than any particular state in the admissible region, it may

indicate that the truth solution does not lie in the original admissible region. While the

‘NOTA’ set in this example is simply defined as all states not in the admissible region, it

124



(a) Plausibility Surface (b) Belief Surface

(c) Uniformly Initialized PF (d) Non-uniformly Initialized PF

Figure 4.4: Belief, Plausibility, and Probability updates for t = 480s.

may also be more useful to define subsets of X \A which are valid alternative hypotheses

which could be tested such that if belief masses are assigned to these not only is it an

indication that the initial hypothesis is incorrect, but also provides an indication as to a

correct alternative hypothesis. Figure 4.8 demostrates that while there is a state in X which

appears to have support, or belief, there is more significant evidence suggesting that the

true state is not in X . This information could then be used to reinitialize the DS process

with a different, more suitable hypothesis.
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Figure 4.5: The belief mass assigned to the nonsingletons of Ω

Figure 4.6: Asymptotic behavior of Ignorance for Scenario 1.
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Table 4.3: True Orbit for Case 3
Semi-major axis, a −20000 km

Eccentricity, e 1.5
Inclination, i 51.6◦

RAAN, Ω 29.4◦

Argument of perigee, ω 117.5◦

True Anomaly, ν 20.0◦

(a) Plausibility Surface (b) Belief Surface

(c) Uniformly Initialized PF (d) Non-uniformly Initialized PF

Figure 4.7: Belief, Plausibility, and Probability updates for t = 540s.

4.8.3 Scenario 3

This scenario deals with the application of the DS particle filter to real observation data

from the Georgia Tech Space Object Research Telescope (GT-SORT) observatory. GT-

SORT is a 0.5 meter, f/6 Raven class optical telescope mounted on a Paramount ME II
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Figure 4.8: The belief mass assigned to the nonsingletons of Ω indicate the hypothesis may
be incorrect.

Figure 4.9: Asymptotic behavior of Ignorance for Scenario 2.
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German equatorial mount1 accompanied by a 60mm ZWO optics finder scope. Images are

captured using the Grasshopper32, a 6MP, monochrome, CMOS electro-optical sensor on

the telescope and a Zwo Asi174 MM CMOS sensor on the finder scope. This configuration

provides GT-SORT 13.3×10.6 arcminute field of view and an instantaneous field of view of

.3121 arcseconds. No filters were applied when the data was collected for the results shown

in this section. The ANIK-F1 satellite (NORAD ID 28868) was selected to demonstrate a

nominal case where the strict hypothesized constraints are true. The constraints used for the

admissible region are the closed orbit energy constraint as well as an eccentricity constraint

which bounds the admissible eccentricity for the object. Since ANIK-F1 is a known GEO

object, the admissible region is initialized with e = 0.1 as the constraint on eccentricity.

Figure 4.10 shows the initial admissible region for the DS particle filter along with the

initial samplings for the particle filters. Note that the true state of the object, estimated using

TLE information, lies within the defined admissible region as expected. Measurements of

ANIK-F1 were taken over a 24 hour period with initial measurements taken on 3 Mar

2017 and follow up observations taken on 4 Mar 2017. Figure 4.11 shows the belief and

plausibility surfaces after the final measurement is ingested as well as the particle filter

distributions. Note that in both the DS particle filter and the traditional particle filter the

truth lies just outside the set of particles with non-zero belief or density respectively. This

is due in some part to the errors in the TLE over the time period of interest as well as due

to uncharacterized biases in the GT-SORT system and dynamics bias from the assumption

of Keplerian dynamics. However, the purpose of this case is to show that the DS particle

filter does indeed confirm the hypothesized constraint is valid once enough observation

information is available as shown in Figure 4.12.

1http://www.bisque.com/sc/pages/ParamountMEII.aspx last accessed on 12/12/2016
2https://www.ptgrey.com/grasshopper3-usb3-vision-cameras last accessed on 12/12/2016
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(a) Uniformly Initialized PF (b) Non-uniformly Initialized PF

(c) Dempster Shafer PF

Figure 4.10: Initial distribution of states for Scenario 3 along with nominalA constraint
surface and truth orbit plotted.
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(a) Plausibility Surface (b) Belief Surface

(c) Uniformly Initialized PF (d) Non-uniformly Initialized PF

Figure 4.11: Belief, Plausibility, and Probability updates for t =2017-03-04T09:40:04.

Figure 4.12: The belief mass assignments to the propositions in Θ.
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4.8.4 Scenario 4

The final test case demonstrates the use of this approach on real observation data when the

hypothesized constraints are too strict and exclude the true state. The object tracked is the

defunct Cosmos 1247 satellite (NORAD ID 12303) with the initial observation taken at

2017-3-4T01:59:40Z. The observations were captured on the GT-SORT main sensor with

an integration time of 1s and a frame rate of approximately 0.6 Hz for for 20 minutes. Fig-

ure 4.13 shows the tumbling nature of the object as the brightness varies over the different

exposures of the object.

Similar to Scenario 3, the initial DS particle filter is instantiated with the assumption

that the object observed is a GEO object and as such has an imposed eccentricity constraint

of e = 0.1. Figure 4.14 shows the initial sampling for each of the filters with truth not

contained within the initial admissible region. Figure 4.15 shows the belief and plausibility

surfaces along with the particle filter distribution at t = 160s, the time step before all belief

mass is attributed to the ‘NOTA’ hypothesis for e = 0.1. Since it is clear from these results

that the initial constraint is likely incorrect, it is desired to see how changing the constraint

affects the belief assignments.

Figure 4.16 shows how the belief masses vary when the constraint is modified from a

fairly strict assumption of e = .1 to a general closed orbit constraint e = 1. The true ec-

centricity of Cosmos 1247 is 0.5898033 which confirms what the DS particle filter results

show for any constraints on eccentricity which exclude this value. Note that for the eccen-

tricity constraints which fully encompass e = 0.5898033, the belief mass assigned to the

‘NOTA’ hypothesis remains very small. Note also that for this length of observation, even

with the least restrictive assumption the problem isn’t fully observable after 20 minutes so

while the DS filter is well posed for e > .6, it has not fully converged to a PDF after 20

minutes of observation.
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(a) 2017-03-04T02:12:08.070Z

(b) 2017-03-04T02:12:14.310Z

(c) 2017-03-04T02:12:15.890Z

Figure 4.13: Images of the tumbling COSMOS 1247 object.
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(a) Uniformly Initialized PF (b) Non-uniformly Initialized PF

(c) Dempster Shafer PF

Figure 4.14: Initial distribution of states for Scenario 4 along with nominalA constraint
surface plotted.

4.9 Conclusions

This chapter introduces Dempster-Shafer (DS) theory and applies it to the admissible region

problem. Due to the unobservable nature of the problem, there exists ambiguities in how

probabilities are assigned to the states within the admissible region. DS theory avoids

these ambiguities by utilizing plausibility and belief functions which are derived from a

belief assignment which only assigns belief mass if there is direct evidence supporting an

given state. Furthermore, it enables the assignment of belief mass not only to individual

states, but also to sets of state solutions, and in particular the entire admissible region.

Given a single observation, it is shown that the belief assignment function is vacuous for
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(a) Plausibility Surface (b) Belief Surface

(c) Uniformly Initialized PF (d) Non-uniformly Initialized PF

Figure 4.15: Belief, Plausibility, and Probability updates for t = 160s.

the admissible region problem and all belief mass is thus assigned to the full admissible

region. A plausibility function is defined which assigns plausibility to each state in the

admissible region, the admissible region itself, and the proposition that the state does not

lie in the admissible region. It is shown that the combination of these plausibility functions

enables a corresponding belief function to be defined through a linear relationship which

upon sufficient observations collapses to traditional Bayesian inference. This DS particle

filter is demonstrated on four example scenarios which convey the advantage of utilizing

belief functions to initialize sequential estimation schemes for undetermined systems as

opposed to traditional application of probability theory.
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(a) NOTA Hypothesis Belief (b) Max Belief of Admissible States

Figure 4.16: Results for how the belief assigned to X̄ changes with constraint strictness
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CHAPTER 5

ASSOCIATION OF OBSERVATIONS VIA THE ADMISSIBLE REGION

The previous three chapters enable systemic uncertainties to be accounted for in the ad-

missible region method and define how the admissible region should be treated probabilis-

tically. However, it is known that if two observations are associated then the admissible

regions, and furthermore the full n-dimensional manifold defined by combining A with

the determined states, must have a point (or several points) of intersection when propagated

to a common epoch. Additionally if two or more observations can be shown to be associ-

ated and yield an observable combined set of measurements then it follows that the issue

of unobservability presented in Chapter 3 can be altogether avoided. This chapter explores

this idea further and uses the uncertain admissible region to define a computationally effi-

cient optimization methodology which finds the point(s) of intersection of n-dimensional

manifolds and uses hypothesis testing to define a probability of association for the given

measurements. The result of the analytical gradient and Hessian information also results in

a concise expression of the statistics about the resulting state estimate if a point(s) of inter-

section exists, and agrees well with a full particle filter implementation with significantly

reduced computation time.

5.1 Association of Admissible Regions with Uncertainty

Park and Scheeres show that under Keplerian dynamics, admissible regions may be mapped

forwards or backwards in time and the probability distribution remains invariant [89]. As

such, this section will introduce a methodology to associate admissible regions using the

topocentric spherical coordinates common to optical measurements of space objects, in-

cluding the systemic uncertainties, for example measurement error, timing uncertainty, and

observer position knowledge. The optimization based approach for associating observa-
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tions is first defined in general. Then, the optimization problem formulation is simplified

by partitioning the state space. Next, the uncertainties in the system are considered and

a hypothesis testing method is introduced for associating the observations. Lastly, special

cases of the optimization problem for association are discussed.

5.1.1 Optimization Approach for Set Intersection

LetAi now denote the joint admissible region generated from the ith observation captured

by an observer at time ti. For each xu ∈ Ai, a full state x(ti) may be formed from the

transformation

x(ti) = g(xu, xd,k) (5.1)

where k ∈ Rl is a set of parameters, which may also be propagated to any other time t. The

set of all states x(ti) that can be formed from xu ∈Ai reside on a u-dimensional manifold

in n-dimensional space (for optical observations of space objects this is a 2 dimensional

manifold in a 6 dimensional space [66]). Let this time-varying, u-dimensional manifold

for the ith observation be defined at a time t by Xi(t) as follows

Xi(t) = {x(t) : xu(ti) ∈Ai} (5.2)

The set Xi(t) ⊂ Rn contains all possible states, x, at time t that could have originated

from a particular undetermined state xu ∈ Ai. LetAj now denote the admissible region

generated from the jth observation at time tj . Likewise define,

Xj(t) = {x(t) : xu(tj) ∈Aj} (5.3)

and so forth for a given number of measurements. It is required that the number of measure-

ments N satisfies N × d > n for there to be a solution to the general association problem.
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Letting N × d = q, then the association of a set of q measurements which yield the sets

X1(t1) ⊂ Rn, · · · ,Xq(tq) ⊂ Rn requires that there exist at least one state x(t) satisfying

x(ti) ∈ Xi(ti), i = 1, · · · , q (5.4)

Let O(t) ⊂ Rn denote the set of such states, then the equivalent definition of this set is

given by

O(t) =
⋂
q

Xi(t) (5.5)

and it is required that

O(t) 6= ∅ (5.6)

at any epoch time t for the set of q measurements to be associated.

For a case where q = 2, it is only necessary that there exist a state x(t) such that

x(t) ∈ Xi(t) ⊂ Rn and x(t) ∈ Xj(t) ⊂ Rn at any common epoch time t. Let Oij(t) ⊂ Rn

be defined as set of states residing in both Xi(t) and Xj(t).

Oij(t) = Xi(t) ∩ Xj(t) (5.7)

Then the condition for the two observations to be associated is given by

Oij(t) 6= ∅, ∀t (5.8)

The set O(t) satisfies card(O(t)) ∈ Z+ if O(t) 6= ∅ and thus O(t) represents the set of

possible initial orbit state solutions for two observations as shown in [61]. This implies the

measurements are associated only if the intersection of the sets Xi and Xj is non-empty and

is the foundation of the intersection approaches discussed in [61] [60] [47] [59].
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Note that these intersection based methods are typically defined for optical observa-

tions. The methods are well defined since the codimension of the admissible region for

optical observations is 4. Specifically, the admissible region for optical observations is

constructed through the fact that the angles and angle rates are known and only range

and range-rate are undetermined. This implies for a given admissible region observation,

xd ∈ R4 and Xi ∈ R6. Thus, given two observations it is true that the general case of

finding the intersection of Xi and Xj has either no solutions, or a single solution, because

the problem is overdetermined. However, in a more general sense the intersection of two

arbitrary sets Xi and Xj is not guaranteed to be an overdetermined problem. Consider a

radar observer which provides range and range-rate measurements giving xd ∈ R2 but still

Xi ∈ R6. Given just two observations, the problem is now underdetermined and the gen-

eral solution will find the intersection at an infinite set of points in R2. Generalizing these

intersection based methods for arbitrary sets requires then that, given two measurements it

is required that

2u ≥ n (5.9)

to ensure the problem is overdetermined and thus ensure that there can exist a point solution

at the intersection if it exists.

The intersection problem is a well posed optimization problem, where the point, or

points, of intersection are the optimum of a formally defined distance metric [106]. Define

the function d(a,b) : Rn × Rn → R+ such that if an intersection exists then there exists

xi ∈ Xi(t) and xj ∈ Xj(t) such that d(xi, xj) = 0. Further, if d(a,b) is nonnegative,

symmetric, and satisfies the triangle inequality then d is a metric defined on Xi×Xj [107].

Figure 5.1 shows a representative example of how this distance metric is defined.

This distance metric may serve as the cost function for a constrained optimization ap-

proach to find the minimum distance between the sets Xi and Xj and is selected based on
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the desired application. For example, a general distance metric is the Euclidean distance

between the sets. The minima of the Euclidean distance directly identifies potential state

solutions for the observations. The Mahalanobis distance between measurements is an ad-

ditional distance metric that may be used to account for the measurement uncertainties in

the system [108].

Alternatively, the control distance metric may be used in situations when attempting

to associate measurements of potentially maneuvering spacecraft [109]. Intersection based

observation measurement association methods have difficulty in associating measurements

from maneuvering spacecraft due to the fact that, by maneuvering, the likelihood that these

methods are able to find a consistent solution is greatly reduced. The control distance finds

the optimal maneuvered trajectory for two given observations, and by utilizing it as the

distance metric for association, one can determine the probability that two observations are

associated even if the spacecraft is maneuvering.

Figure 5.1: The distance metric d defined on Xi(t) and Xj(t)
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Regardless of the distance metric chosen, the general optimization problem is posed as

minimize
xu,i,xu,j

d(xi(t), xj(t))

subject to xi ∈ Xi(t)

xj ∈ Xj(t)

which attempts to minimize the distance metric by changing the undetermined states of

the ith and jth observations. This optimization problem directly yields the states in the

set Oij(t) which represent the potential hypothetical state solutions corresponding to the

observations at a given time t. The optimization based approach posed by Siminski et. al

is analogous to the generalized optimization problem defined above [59].

5.1.2 Simplified Optimization Approach for Set Intersection

The optimization problem defined in the previous section is of dimension 2u with 2n vari-

ables and 2d constraints. As such the optimizer must search for the optimum over an

n-dimensional, non-convex space with 2u design variables. However, this problem can be

simplified if the dimension of the design variables and the dimension of the state space over

which the optimizer searches can be reduced, improving computational performance. The

dimensionality of this the state space can be reduced by taking advantage of the ability to

partition the state space. Every state xi ∈ Xi(t) may be partitioned into determined and

undetermined states assuming knowledge of the observer dynamics. The set Xi(t) may

also be partitioned into a set of determined states Xd,i(t) and a set of undetermined states

Xu,i(t). A further simplification can be made by assuming that the common epoch time is

either ti or tj , the time one of the observations is made. Assuming that the common epoch

time is t = tj , then Xj(t) does not need to be propagated in time. With this assumption,

the entire set Xu,j(t) is simply given by the admissible regionAj . More importantly, the

set Xd,j(t) is simply defined as {xd,j}, a single point which is the set of determined states
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that are obtained from the observation at time tj . With this formulation of the problem, for

every state xi ∈ Xi(t) such that xd,i(t) = xd,j(t) and xu,i(t) ∈ Aj there exists a full state

x(t) that lies in the intersection of Xi(t) and Xj(t). Note that since the determined states

and the measurements have a one-to-one and invertible mapping, this form of the optimiza-

tion problem is essentially posed in the measurement space. By these simplifications, the

optimization problem may be reformulated as

minimize
xu,i∈Ai

d̃(xd,i(t), xd,j(t))

subject to xu,i ∈ Xu,i(tj)

where d̃(a,b) : Rd × Rd → R+ is the new distance metric and the only design variable is

xu(ti). Again, this distance metric is general and could be chosen to be the Mahalanobis dis-

tance for example. Figure 2 illustrates how the distance metric is defined for the simplified

optimization problem. Note that in this figure, the set Xd,i containing all the possible de-

termined states, or equivalently the possible measurements, lie on a manifold of dimension

Rd. Choosing to use the determined states as the design space for the optimization problem

Figure 5.2: The distance metric defined on Xd,i(t) and Xd,j(t)

yields a well defined, closed set over which the design variables, the undetermined states,

must take values. This optimization problem attempts to then find the potential intersection
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between the point Xd,j and the d dimensional manifold Xd,i.

This simplified optimization approach minimizes the distance between the d-dimensional

subspaces of Xd,i and Xd,j . Note that since the dimension of the determined space is d < n,

it is necessary that

Nd ≥ n (5.10)

where N is the number of observations. If Eqn. (5.10) is not satisfied, the optimization

problem will be underdetermined. When Eqn. (5.10) is satisfied, it is important to note that

N optimization problems must be solved to fully define O(t).

Let the solutions to the simplified optimization problem belong to the set

Mi = arg min
xu,i∈Ai

d̃(xd,i(tj), xd,j(tj)) (5.11)

Define the corresponding n-dimensional states in this set of solutions by

Oi→j(ti) = {g(xu, xd,k, ti) : xu ∈Mi} (5.12)

This set represents the set of states at time ti consistent with mapping Xd,i(ti) from time

ti to time tj . Because this optimization approach is underdetermined, that is it only finds

an intersection of the sets Xd,i and Xd,j , it is not sufficient to directly state that points in

Oi→j(ti) are the potential state solutions. It is necessary to also find the solutions to the

reverse optimization problem given by

minimize
xu,j∈Aj

d̃(xd,j, xd,i)

subject to xu,j ∈ Xu,j(ti)
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the solution to which yields

Mj = arg min
xu,j

d̃(xd,i(ti), xd,j(ti)) (5.13)

Oj→i(tj) = {g(xu, xd,k, tj) : xu ∈Mj} (5.14)

the set of states consistent with mappingXd,j(tj) to time ti. Figure 5.3 illustrates the overall

optimization problem following this simplified approach when N = 2. It is clear that for a

Figure 5.3: The simplified optimization problem requires the intersection to be found be-
tween pairwise sets of observations

potential state solution to exist, it must reside inOij(t) = Oj→i(ti)|t ∩Oi→j(tj)|t, where |t

indicates that each set is propagated to a common epoch time t. This generalizes forN ≥ 2

as

Oij(t) =
N⋂
i=1

N⋂
j=1,j 6=i

Oi→j(ti)|t (5.15)

where each Oi→j(ti) is the set of solutions to the simplified optimization problem.

This condition ensures that the optimal solution when mapping from time ti to time tj

is identical to the optimal solution when doing the reverse mapping for all pairwise sets of
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N observations and can be equivalently expressed as

minimize
xu,i∈Ai

N∑
i=1

N∑
j=1,j 6=i

d̃(xd,i(t), xd,j(t))

subject to xu,i ∈ Xu,i(tj)

and is the foundation of the contributions of this work.

This optimization problem is similar to the boundary value approach presented by

Siminski et. al. [59], but provides a more computationally efficient design space in which

to optimize. Specifically, the optimization approach developed by Siminski et. al. is of di-

mension u+nwhere the design variables are of dimension u and the objective space, which

is essentially equivalent to a trajectory optimization problem, is of dimension n. Compu-

tationally, optimizing over an n dimensional space becomes more difficult as n increases.

The proposed approach utilizes N ! optimization problems each with a u dimensional de-

sign variable in a m dimensional objective space. For N = 2 the dimensionality of both

the proposed approach and the approach presented by Siminski et. al. are the same. How-

ever, it is more computationally tractable to perform theN required simplified optimization

problems as it is easier to find all local minima in this non-convex, reduced dimension state

space than in the full n dimensional, non-convex, objective space.

Note that while there is not commonly more than one point of intersection of the ad-

missible region manifolds [61], it is possible that there exist several local minima found by

the optimization algorithm. Figure 5.4 illustrates a notional case where there are two points

such that

d̃1 = d̃(xd,1(tj), xd,j(tj)) = d̃2 = d̃(xd,2(tj), xd,j(tj)) (5.16)

for N = 2. In this case, the optimization could present two local minima that could in-

dicate the observations are associated. Without considering uncertainties in the problem,
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Figure 5.4: An notional example where there are two local minima.

the issue of local minima may be eliminated since if two observations are associated then

there must exist at least one state such that the distance metric d̃(xd,j(t), xd,i(t)) is exactly

zero. However, since there are uncertainties and errors in all observation systems, one is

interested in the probability that the distance metric is zero, or equivalently, the probability

that the two observations are associated. The case when uncertainties are considered in this

optimization problem is discussed in the next sections.

5.1.3 Simplified Optimization Approach for General Phenomenologies

The simplified optimization approach described in Section 5.1.2 can be applied to various

measurement phenomenologies. Figure 5.3 illustrates a case for optical observations where

d = 4 and n = 6 and thus requiring N = 2 observations to find local minima which may

indicate association. However this methodology is easily extensible to other observation

methodologies, several of which are highlighted in this section. Radar observations enable

accurate determination of range, range-rate, and line of sight however cannot accurately or

reliably measure angular rates [64]. Again this is an example of an observation system with

d = 4, and as such 2 radar observations are required in order to perform association via the

simplified optimization approach. Magnetometer based observations have been recently

proposed as a method for detecting objects in GEO [71]. These observations also provide
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a set of 4 determined states which just as in the optical and radar cases require at least

N = 2 observations to perform association. Signals of opportunity can give serendipitous

measurements, specifically time difference of arrival (TDoA) measurements which provide

pseudo-ranges and timing data which combined provide a position estimate for an object of

interest [110]. Due to the lack of phase information, these observations do not provide any

information on the velocity and as such these are the unobservable states giving d = 3 and

again requiring N = 2 observations to perform the simplified optimization approach for

association. The topology of the admissible region in this case is illustrated in [110] and

lends to a well posed optimization problem even though the problem is not overdetermined.

The application of this simplified optimization approach for each of these measurement

phenomenologies retains the computational attractiveness of performing 2 reduced order

optimization problems, however there are more difficult cases in which d is of a lower

dimension requiring significantly more optimization problems to be solved. For example,

given a spurious observation of an object in a radar ranging system in which only the range

and range-rate information is available the dimension of the determined states is d = 2

which implies there must be at least N = 3 such measurements to utilize this method for

association. This then requires 6 optimization problems to be solved. If additionally the

range-rate information is unavailable, then d = 1 and at leastN = 6 such measurements are

necessary for this association method resulting in 720 necessary optimizations problems to

be solved. While this method certainly generalizes to these phenomenologies, it is worth

mentioning that the computational tractability of this method suffers when the number of

observable states is sufficiently low. Furthermore, the topology of the optimization problem

could pose problems in these cases since with only one or two observable states, it may be

difficult to ensure that there exist unique points of minimum distance solutions. Thus,

if the dimension of the determined states is sufficiently low such that the computational

benefits offered from the reduced order optimization are outweighed by the total number of

optimization problems that must be solved then it is an indication that a traditional particle

148



based, full dimension association method should be used.

5.1.4 Hypothesis Test for Observation Association

The optimal value of the distance metric defined in the optimization approach can only

truly be zero in the case of perfect sensors and perfect knowledge of the observer dynam-

ics. In general, there are uncertainties associated with the observation and errors associated

with the observer state in addition to timing errors. Each of these effects must be taken

into account when attempting to identify if an intersection exists between two observa-

tions. Figure 5.5 shows a general representation of the optimization problem considering

uncertainty. With uncertainties, Xd,i and Xd,j are the random variables representing the dis-

Figure 5.5: A representation of the sets Xd,i(tj) and Xd,j(tj) including uncertainties and
errors.

tributions. These random variables, assuming Gaussian uncertainties, now imply the sets

Xd,i(t) and Xd,j(t) are probabilistic

Xd,i(ti) = {Xd,i(ti) : Xd,i(ti) ∼ N (xd,i(ti),Σi),Xu,i(ti) ∼Ai} (5.17)

Xd,j(tj) = {Xd,j(ti) : Xd,j(tj) ∼ N (xd,j(tj),Σj),Xu,j(tj) ∼Aj} (5.18)

where xu is sampled from the ith probabilistic admissible region generated by Eqn. (2.54)

and Σi ∈ Rd×d is the covariance matrix for the ith observation. Following the simplified
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optimization approach, the distribution about the single point xd,j ∈ Xd,j(tj) is now an

ellipsoid in Rd centered at xd,j . The distance metric of the simplified optimization approach

also becomes a random variable defined as

D = d̃(Xd,i(t),Xd,j(t)) (5.19)

As shown in the previous section, if an intersection exists, or equivalently if the observa-

tions are associated, then there should exist a state xd,i(t) such that Eqn. (5.19) equals zero.

Let li = card(Mi) and lj = card(Mj) and define

Di→j(xu(ti)) = d̃(Xd,i(tj),Xd,j(tj)) (5.20)

as the random variable of the distance metric mapping a state xu ∈Mi from time ti to time

tj where xd(ti) ∼ N (xd,i(ti),Σi). Likewise, Dj→i(xu(tj)) is the random variable of the

distance metric mapping a state xu ∈Mj from time tj to time ti. Since D is now a random

variable, it is desired to understand what distributions Dj→i(xu(tj)) and Di→j(xu(tj)) are

drawn from to determine if there is association. Let f0(s) be the distribution defined by

imposing that the location of the intersection is at the location of a local minima. Equiva-

lently,

f0(s) = {D0 : d0 = d̃(xd,i(t),Xd,j(t) + c), Xd,j(t) ∼ Xd,j(t)} (5.21)

where xd,i is a fixed point in Xd,i corresponding to a local minima and c shifts Xd,j to be

centered at xd,i and xu ∈ Mi. Figure 5.6 illustrates how this distribution is created by

shifting the location of Xd,j by c to the location of the local minima. This distribution

represents the distribution that D is drawn from if this local minima is indeed a point of
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Figure 5.6: A representation of the how f0 is constructed.

intersection. The actual distribution of D can then be represented by

f1(s) = {D0 : d0 = d̃(xd,i(t),Xd,j(t) + c), Xd,j(t) ∼ Xd,j(t)}+ dij,xu(ti) (5.22)

= f0(s) + dij,xu(ti) (5.23)

where since c is a constant value, dij,xu(ti) represents a constant which shifts the location

of distribution f0(s). Thus, dij,xu(ti) is only non-zero if the local minima is not a point of

intersection. The scenario described to construct f1 is illustrated by Figure 5.5.

Given these two distributions, it is possible to define a test to determine which distribu-

tion D is drawn from. By Eqn. (5.23) and Eqn. (5.10), for a set of N observations to be

associated it is necessary that for at least one pair of points xu ∈Mi and xu ∈Mj ,

[
N∑
i=1

N∑
j=1,j 6=i

dij,xu(ti)

]
= 0 (5.24)

Eqn. (5.24) takes into account the requirement that every pair of the d dimensional surfaces

that can be formed from the N observations must all have an intersection. This results in
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the following hypothesis tested to determine if Eqn. (5.24) is satisfied.

H0 : Di→j(xu(tj)) ∼ f0(s) + dij,xu(ti) i, j = 1, · · · , N ; i 6= j (5.25)

H1 : Di→j(xu(tj)) ∼ f0(s) + 0 i, j = 1, · · · , N ; i 6= j (5.26)

The alternative hypothesis H1 assumes that all N observations are associated, and the null

hypothesis H0 assumes that there is no association of one or more of the N observations.

These hypotheses can be tested at all li × lj pairwise combinations of solutions inMi and

Mj independently.

The binary hypothesis test is constructed by first determining the probability density

functions associated with the null and alternative hypotheses, f0(s) and f1(s) respectively,

which are defined by Eqns. (5.21) and (5.23) [111]. The Type I error of the binary hypoth-

esis test, the probability of false association PFA in this application, is determined by

PFA =

∫ ∞
c

f0(s)ds (5.27)

The value of c is selected specifically to obtain a desired PFA. The probability of associa-

tion is then given by

PA =

∫ ∞
c

f1(s)ds (5.28)

Additionally, the probability of a Type II error, the probability of missed association PMA

in this application, is the complement of PA. While larger values of c reduce the proba-

bility of false association, it also reduces the probability of a correct association. Figure

5.7 illustrates the binary hypothesis testing setup. Since the hypotheses are tested at each

pairwise combination of solutions, the result from this set of hypothesis tests is a li× lj set

of values of PA.
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(a) PFA (b) PA

(c) PMA

Figure 5.7: Binary Hypothesis Testing Setup

5.1.5 Solution at the Intersection of Admissible Regions

It is stated in the preceding optimization approach to associating admissible regions that

there is not a general case in which there will be more than one local point of intersection

of the two sets. It is clear that ifO(tj) consists of a single point xs, then not only are the ob-

servations yielding Xd,i and Xd,j associated, but also a single solution exists. Conceptually,

this implies that the measurements taken at time ti and tj could only have been observed if

the object’s true state is xs at time tj . Now consider a notional case where two intersections

exist, the representative geometry of which is shown in Figure 5.8. In this notional case,

there exist two unique states {xu,1(ti), xu,2(ti)} ∈Ai that when mapped forwards to time

ti, produce exactly the same set of determined states xd(tj). This illustration is consistent

with the multirevolution problem [61], wherein over long time periods, an observation may

be consistent with more than one state due to ambiguity in the number of orbits completed

between the observations.

In addition, when taking into account the systemic uncertainties in the system, there is

the potential for spurious local minima to occur. Consider the illustration shown in Figure
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Figure 5.8: Notional case of two or more intersections of the sets Xd,i(tj) and Xd,j(tj)

5.9 where each of the sets are now distributed probabilistically in Rd. The uncertainties

Figure 5.9: Ambiguous case where uncertainties creates additional potential points of in-
tersection

about the sets Xd,i(tj) and Xd,j(tj) creates the potential for there to be more than one local

minima found by the optimizer. Note that it is important for the optimizer to find all such

local minima as it is not known a priori which minima is the truth solution. The question

posed by this scenario, as well as the scenario from Figure 5.8, is how to handle the cases

where several solutions are local minima and will be found to have a significant individual
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value of PA.

In general, while the solution at these optimal values are possibly the state of the object,

the existence of a single, or multiple, intersections is fundamentally an indication that the

two observations are associated. A positive association signifies that a traditional Bayesian

update method can be performed to obtain the PDF over the object orbit estimate from

ingesting the newly associated measurement.

Thus, the probability of association metric should simply denote when a positive as-

sociation has occurred. As stated in the previous section, the probability of association

computed for each pair of local minima yields a set of li× lj values of PA. Let these values

of PA be arranged into a li × lj matrix and denote this matrix as PA. Let PA then repre-

sent the overall probability of association metric for the observations from time ti and time

tj . Each element of PA gives the individual probability of association for a given pair of

solutions for xu.

Note that each of these pairs of solutions are mutually exclusive, and as such the total

probability that a particular pair is correct must sum to one. For this problem, the event

probabilities can be assumed to be found by normalizing the individual probability of as-

sociation values by the sum the values as follows

P [(xu,i(ti), xu,j(tj))] =
PA,(ij)

li∑
i=1

lj∑
j=1

PA,(i,j)

(5.29)

The overall probability of association can then be found by taking the weighted norm of

the probabilities of association values as follows

PA =

li∑
i=1

lj∑
j=1

P [(xu,i(ti), xu,j(tj))]PA,(i,j) (5.30)

which gives a single metric quantifying the total probability that the observation taken at ti

is associated with the observation taken at time tj .
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5.1.6 Approximation of the Bayesian Update using Gaussian Mixtures

Ultimately, the association of a set of measurements is used along with Bayes rule to gener-

ate a full state estimate. Particle filtering or multiple hypothesis filtering methods are often

used to incorporate a Bayesian update for initial orbit determination [62] [112]. These ap-

proaches can be computationally demanding due to the number of particles necessary to

generate a good approximation of the PDF. While the particle filter approaches the exact

PDF as the number of particles goes to infinity, it can be shown that a Gaussian Mixture

approximation of this PDF can be derived from the optimization problem defined in this

paper. Consider the distance metric defined in the previous section and the requirement

given by Eqn (5.24). One may define

L(xu,i | xd,j, t) = exp

(
−

N∑
i=1

N∑
j=1,j 6=i

d̃(xd,j(t), xd,i(t))

)
(5.31)

as the general likelihood that the undetermined state is given by xu,i at time t given a set of

true measurements given by xd,j , j = 1, · · · , N . Note that Eqn. (5.31) has a form similar to

the form of the Bayesian update used in particle filtering which enables this approximation

[113]. The maximum likelihood estimate (MLE) for xu,i is given as follows. [78]

arg max
xu,i∈Ai

L(xu,i | xd,j, t) (5.32)

It is often more convenient to rewrite the natural log of Eqn. (5.32) as follows,

arg max
xu,j∈Ai

ln [(L(xu,i | xd,j, t)] (5.33)

which, for the likelihood defined by Eqn. (5.31), simply yields

arg max
xu,j

−
N∑
i=1

N∑
j=1,j 6=i

d̃(xd,j(t), xd,i(t)) (5.34)
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which is identical to optimization problem presented in the previous section, only posed

as a maximization problem rather than a minimization. Thus, the set of solutions to

this optimization problem, are equivalently derived from the set of MLEs for xu,i. Let

card(Mi(ti)) = `i and let x̂u,k denote the kth MLE for xu,i. As defined x̂u,k(ti) is the

kth(ti) solution residing inMi(ti), the set of solutions to the optimization problem. Each

x̂u,k satisfies the following

E

[
N∑
i=1

N∑
j=1,j 6=i

∂

∂x̂u,k

(
−d̃(xd,j(t), xd,i(t))

)]
= 0u×1 (5.35)

E

[
N∑
i=1

N∑
j=1,j 6=i

∂2

∂x̂2
u,k

(
d̃(xd,j(t), xd,i(t))

)]
= I(x̂u,k)u×u (5.36)

where Eqn. (5.35) follows directly from each x̂u,k being a MLE, since the derivative of the

log-likelihood is zero at the maximum, and I(x̂u,k) is the Fisher information matrix [114].

Defining Pu,k as the covariance matrix associated with x̂u,k, then by the Cramer-Rao bound

Pu,k ≥ I(x̂u,k)−1 (5.37)

[115]. Assume this bound is attained by the limiting properties of the MLE [116], then the

statistics about the estimate is approximated by a Gaussian such that xu,i ∼ N (x̂u,k,Pu,k).

Further, given that li is finite then the kth full a priori estimate x̂k at time ti is approximated
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by

x̂k(ti) =

x̂u,k

xd,i

 (5.38)

Pk(ti) =

Pu,k Pud,k

PTud,k Ri

 (5.39)

=

Pu,k 0u×d

0d×u Ri

 (5.40)

for each x̂k ∈ O(ti), where Ri is again the determined state (or measurement) covariance

matrix and Pu×d,k is the cross covariance term. Given that the state space is partitioned and

by definition the determined states xd are independent of the undetermined states xu (or

equivalently the undetermined states are unobservable), it is clear that they are uncorrelated

and Pu×d,k = 0 and the resulting covariance matrix for a given estimate xk has the block

diagonal shown.

In the simplest case, li = 1, and x̂(ti) and P(ti) represent the approximate distribu-

tion about the estimated state solution at time ti. This process can likewise be used to

approximate the PDF of the state estimate at time tj or a traditional Kalman filter may be

instantiated from x̂(ti) and P(ti) to obtain the PDF of the state estimate at time tj . If li > 0

then a Gaussian mixture model can be used to represent the distribution by

f(x(ti)) =

li∑
i=1

wiN (x̂k(ti),Pk(ti)) (5.41)

and the weights wi are given by

wi =

lj∑
j=1

P [(xu,i(ti), xu,j(tj))] (5.42)

where wi represents the total event probability for xu,i(ti). The resulting Gaussian mixture
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can then be used to instantiate a Gaussian mixture Kalman filter, for example, to obtain

the PDF of the state estimate at time tj . Likewise, an unscented particle filter could be

instantiated from the Gaussian mixture given by Eqn. (5.41). The implementation of this

MLE approach in addition to the optimization based approach to identify the probability

of association combines the association and estimation processes into one step, enabling a

significant reduction in computation time. However, there is an assumption of observability

in the application of this approximation, and this limitation is discussed in the next section.

5.1.7 The Observability Condition

A limiting case of the proposed approximation of the Bayesian update is when the time

between observations is very small. The approximate condition for near unobservability

for Keplerian dynamics

(tj − ti)�

√
‖r‖3

3µ
(5.43)

where r ∈ R3 is the position of the satellite from the center of the central body and µ is

the gravitational parameter of the central body [117]. Unobservability is an issue in the

proposed optimization problem because the sets Xd,i and Xd,j are nearly tangential in this

case. While the problem is unobservable the objective space for the optimization problem

is then approximately constant with small values of Di→j , and it is unlikely for a well-

defined local minimum to be found, especially when using numerical methods, and as such

the assumption that the local minimum solution is the MLE breaks down. The question is

when is the Gaussian mixture approximation appropriate for a given problem.

The computation of the Fisher information matrix (or equivalently the Hessian of the

optimization problem) gives an indication as to how well posed is the optimization problem.

If any of the eigenvalues of Ik(·) are negative or zero then it is an indication that in the

region of a given x̂u, the optimization problem is not convex and thus this estimate is not an
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MLE. If both eigenvalues are positive, then the condition number of the Fisher information,

cond(Ik(·)), can indicate if the eigenvalues are sufficiently positive for optimality, and thus

for the assumption that the estimate is a MLE to hold. Since Ik(·) is a symmetric matrix,

the condition number is given by

cond(Ik(·)) =
λmax(Ik(·))
λmin(Ik(·))

(5.44)

which is the ratio of the maximum and minimum eigenvalues. If the condition number of

this matrix is large for all local minima, it is equivalent to stating that the unobservability

condition provided in Eqn. (5.43) is met. Thus the condition under which a Gaussian

approximation is appropriate is given from rearranging Eqn. (5.43) as follows

cond(Ik(·)) < (tj − ti)
−1

√
‖r‖3

3µ
, (5.45)

for each solution k. Under a limiting case when Eqn. (5.45) is not satisfied for each k,

it would be necessary to use traditional methods, such as a particle filter, to perform a

Bayesian update. However, the proposed general optimization based approach itself holds

even for this limiting case since the probability of association can still be determined ac-

cording to §5.1.4.

5.2 Simulation Results

The optimization based approach described in the previous sections is applied to the fol-

lowing simulated observations to demonstrate the effectiveness of the association method

and to highlight key contributions of uncertainties in the observation systems. The observa-

tions are simulated over an object in low Earth orbit (LEO) with orbital elements randomly

selected. The observer for the simulations is located in Atlanta, GA and is assumed to be

operating in a fixed pointing mode so that simulated objects ‘streak’ across the simulate
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image. For the purposes of this simulation, the field of view of the telescope is set to be

3◦ × 3◦. This simulation environment is propagated forwards in time and as objects pass

through the simulated field of view of the observer, the right ascension, α, and declination,

δ, angles at the beginning and endpoint of the simulated streak are recorded. Using the

Lagrange interpolation approach from [76], each simulated observation yields

zi =

[
α1 α2 δ1 δ2 t1 t2 o ȯ

]T
(5.46)

where the subscripts 1 and 2 indicate the start and end point of the streak and o ∈ R3 and

ȯ ∈ R3 are the observer position and velocity respectively. Each of these parameters has

some associated uncertainty which will be taken into consideration when computing the

probabilistic admissible region and during the hypothesis testing. The uncertainties used

during the following simulations, unless otherwise stated, are defined in Table 5.1 using the

GT-SORT as a baseline.

Table 5.1: Measurement Error and Parameter Uncertainty
Right Ascension uncertainty, σα 0.63 arcseconds

Declination uncertainty, σδ 0.57 arcseconds
Timing error, σt 0.0052 s

Position error (each axis), σo 1 m
Velocity error (each axis), σȯ 1 cm/s

For optical observations,

xd =

[
α α̇ δ δ̇

]T
(5.47)

and for every observation set zi a probabilistic admissible region can be constructed over

xu =

[
ρ ρ̇

]
(5.48)

given the uncertainties in Table 5.1 using the approach outlined in [76]. Eqn. (2.54) is used
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to generate the joint probabilistic admissible region for the energy constraint identified in

[76] and the periapse radius constraint. Each such admissible region generated from a given

observation may be used with the optimization approach defined in this paper.

The distance metric in this section is defined to be the square of the Mahalanobis dis-

tance defined as

d̃(xd,i(tj), xd,j(tj)) = dM(xd,i(tj), xd,j(tj))2 (5.49)

= (xd,i(tj)− xd,j(tj))TR−1(xd,i(tj)− xd,j(tj)) (5.50)

where R is the measurement error covariance matrix. The hypothesis testing is set up

by first running the optimizer over the sets Xd,i(ti) andXd,j(tj) to find the local minima

for the forwards and backwards mapping. Then, for each pairwise set of solutions, 500

values of xd,i(t) and xd,j(t) are sampled to generate a distribution of Di→j . The PDF for

the alternative hypothesis is generated by these values of Di→j . Since the null hypothesis

assumes the intersection exists, the PDF for the null hypothesis is generated by centering

the distribution at the local minima solution. If the observations are associated, then this

implies Eqn. (5.24) should hold. The binary hypothesis test is then performed using PFA =

5%. To achieve this, for every set of hypotheses constructed from Eqns. (5.25) and (5.26),

the value of c is iterated until Eqn. (5.27) gives PFA = 5%. The probability of association

threshold for these examples is set to Pmin = 0.50, which requires the largest probability

of association to exceed this value in order for a Bayesian update to be performed on the

newly associated measurement. The Bayesian update is performed using a particle filter

by sampling A1 with 50000 points and ingesting the associated measurement at time t2

and also by approximation using the method proposed in this work. Several test cases have

been selected from the simulation described above to demonstrate the results of attempting

to perform association with this method.

The details of the GT-SORT sensor used for the results shown in Cases 3 and 4 are
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provided as follows. The telescope itself is a 0.5 meter, f/6 Raven class optical telescope

mounted on a Paramount ME II German equatorial mount1. The imaging sensor is the

Grasshopper32, a 6MP, monochrome, CMOS electro-optical sensor. This configuration

provides GT-SORT with a 13.3 × 10.6 arcminute field of view and an instantaneous field

of view of .3121 arcseconds. No filters were applied when the data was collected for the

results shown in this section.

5.2.1 Case 1: Single Solution

For the single solution case, the true state of the object at the beginning of the simulation

is given in Table 5.4. The simulated initial observation for this case is initiated at time t1 =

Table 5.2: True Orbit for Case 1
Semi-major axis, a 7034 km

Eccentricity, e .001
Inclination, i 88◦

RAAN, Ω 19◦

Argument of perigee, ω −134.6◦

True Anomaly, ν 158.0◦

02:00:00 UTC 01 Mar 2016 and the second observation is initiated at t2 = 02:10:41 UTC

01 Mar 2016. For this observation, the admissible region probability of set membership

and distance metric contours are shown in Figure 5.10. As can be seen, there is only

one solution found through the optimization approach both in the forwards and reverse

mapping. To convey the results of the actual optimization algorithm, Table 5.4 displays the

probability of set association for this case. Since there is only one solution found, there

are no other pairwise solutions to consider and PA = 0.932, indicating strong association

between the two observations. Table 5.4 also displays the location of these solutions within

the admissible regions at time t1 and time t2. The determined states for both measurements

1http://www.bisque.com/sc/pages/ParamountMEII.aspx last accessed on 12/12/2016
2https://www.ptgrey.com/grasshopper3-usb3-vision-cameras last accessed on 12/12/2016
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are given below

xd(t1) =

[
46.5◦ −36.3◦ 0.032◦/s 0.075◦/s

]
(5.51)

xd(t2) =

[
171.8◦ 42.6◦ 0.089◦/s −0.045◦/s

]
(5.52)

where xd = [α, δ, α̇, δ̇]. Combining the solutions in Table 5.4 with the determined states

above yields the full state estimate for the object at either time t1 or t2.

For this case, a particle filter with 50,000 particles is used to approximate p(xu(t1)), the

numerical a posteriori pdf after ingesting the newly associated measurement. Figure 5.11b

shows the updated PDF along with the location of the estimate at t1 given in Table 5.4 as

estimated by the particle filter. This PDF can also be approximated as a Gaussian about

the MLE as described in Section 5.1.6. Figure 5.11 shows the comparison of the particle

filter results with the MLE approximation described in Section 5.1.6. The approximation

of the distribution is in good agreement with the numerically computed distribution of the

particle filter. In particular, for Case 1 since the time between the observations is relatively

short, the errors in the approximation method due to linearization are minimal and there

is good agreement with the particle filter distribution. The estimated orbit solution for the

MLE approximation is given by Table 5.3. However, the runtime for the particle filter is

Table 5.3: Estimated Orbit for Case 1
Estimate Cov. (3σ) Error

Semi-major axis, a 7033.3 km 3.70 km 0.70 km
Eccentricity, e .0011 4×10−4 1×10−4

Inclination, i 88.0◦ 0.006◦ 4×10−4◦

RAAN, Ω 19.0◦ 0.009◦ 4×10−4◦

Argument of perigee, ω −134.7◦ 10.82◦ 0.1◦

True Anomaly, ν 158.27◦ 10.89◦ 0.27◦

on the order of several minutes whereas the runtime for the approximation is on the order

of 8 seconds. This reduction in computation time is benefited further by the necessity of

computing the probability of association even in the particle filter case. Since this approxi-
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mation combines the association and estimation steps, it costs very little extra computation

to produce the estimated PDF. For the next two examples, the a posteriori PDFs shown

will also be generated from the MLE approximation. Note that in each of the figures com-

paring the MLE and particle filter approximations, the plots are centered about the MLE

estimate and are plotted with equal axes to best compare the size and shape of the estimated

distributions.

(a) ProbabilisticA1 at t1 (b) d̃(xd,1(t2), xd,2(t2))

(c) ProbabilisticA2 at t2 (d) d̃(xd,1(t1), xd,2(t1))

Figure 5.10: The contours of the probability of set membership and distance metrics for
Case 1 with solutions labeled at time t1 and t2.
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Table 5.4: Case 1 Probability of association and optimization solutions
Solution 1

PA 0.932
PFA 0.05
ρ(t1) (Re) 0.4045
ρ̇(t1) (Re/TU) −0.7563
ρ(t2) (Re) 0.4067
ρ̇(t2) (Re/TU) 0.7542

Figure 5.11: The numerical PDF after ingesting the newly associated observation and
points sampled from the approximated PDF generated with the MLE approximation.
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5.2.2 Case 2: Ambiguous Solutions

For this case, the time between the observations is selected to be large. The true state of the

object at the beginning of the simulation is identical to Case 1 with a true anomaly now of

ν = −156.2. The initial observation for this case is initiated at time t1 = 16:44:1.52 UTC

29 Feb 2016 and the second observation is initiated at t2 = 02:10:41 UTC 01 Mar 2016.

The time between the first and second observations in this case is about 9.5 hours and the

determined states for both measurements are given below

xd(t1) =

[
149.0◦ −11.3◦ 0.066◦/s −0.107◦/s

]
(5.53)

xd(t2) =

[
171.8◦ 42.6◦ 0.089◦/s −0.045◦/s

]
(5.54)

Fujimoto et. al. describe the multi-rev solution problem in the intersection based associ-

ation approach outlined in [61]. Ambiguity may arise when the observations of a space

object may not be associated due to this multi-rev problem. The solutions presented below

highlight this problem as Figure 5.13 shows for both the forwards and reverse mapping that

there are several local minima that are selected as potential solutions. Figures 5.13b and d

shows the expected case where the optimizer settles into multiple of the lowest valleys of

the distance metric surface. Note that because a numerical optimizer is being used, there

can be cases when an infeasible solution is selected, for example along the boundary of

the admissible region. These solutions can safely be omitted because their probability of

association value will be either exactly zero or very small. After omission of infeasible so-

lutions, table 5.5 shows each of the pairs of solutions and the corresponding PA values. The

overall probability of association for this case is PA = .5991 indicating again that, even

though there are more than two possible points of intersection, the two observations are

likely associated. As such, the approximate PDF of the state estimate at time t1 is shown

in Figure 5.14.

The orbital elements associated with the three solutions for xu(t2) are given in Tables
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5.6, 5.7, and 5.8. Note again the importance of considering all three local minima as

possible solutions, while the probability of association value might be highest for Solution

1, the actual solution that matches best with truth is Solution 2. Note also that in Figure 5.14

the PDF comparison is only shown with the PDF for Solution 2 because in the particle filter

approach the other local minima are eliminated by the full Bayesian update. The hypothesis

test simply tries to determine if there is evidence that a point of intersection exists at each

local minima. The three solutions shown in Table 5.5 all have significant evidence for an

intersection but does not correspond to the weightings computed in the particle filter. Each

of these solutions are indeed considered in the particle filter as they would each be assigned

a non-zero weight, however the weightings assigned to Solutions 1 and 3 are significantly

lower than those assigned to Solution 2, thus the particle filter only generates a PDF about

Solution 2 with 50000 particles. Given an infinite number of particles, all three solutions

would be present in the particle filter PDF as well. Figure 5.12 illustrates the three orbits

that the optimizer finds to have significant probability of association.

Figure 5.12: Illustration of three potential local minima solutions found by the optimizer
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(a) ProbabilisticA1 at t1 (b) d̃(xd,1(t2), xd,2(t2))

(c) ProbabilisticA2 at t2 (d) d̃(xd,1(t1), xd,2(t1))

Figure 5.13: The contours of the probability of set membership and distance metrics for
Case 2 with solutions labeled at time t1 and t2.

Table 5.5: Case 2 Probability of association and optimization solutions
Solution 1 2 3
PA 0.572 0.588 0.634
PFA 0.05 0.05 0.05
ρ(t1) (Re) 0.496 0.581 0.612
ρ̇(t1) (Re/TU) 0.489 0.507 0.531
ρ(t2) (Re) 0.065 0.471 0.527
ρ̇(t2) (Re/TU) 1.135 0.800 0.730
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Table 5.6: Estimated Orbit for Case 2 - Solution 1
Estimate Cov. (3σ) Error

Semi-major axis, a 9334.1 km 1.77 km 2300.1 km
Eccentricity, e .316 1×10−4 0.315
Inclination, i 81.7◦ 0.009◦ 6.30 ◦

RAAN, Ω 0.313◦ 0.010◦ 18.687◦

Argument of perigee, ω 46.4◦ 0.074◦ 181.0◦

True Anomaly, ν 3.88◦ 0.074◦ 154.12 ◦

Table 5.7: Estimated Orbit for Case 2 - Solution 2
Estimate Cov. (3σ) Error

Semi-major axis, a 7033.6 km 1.41 km 0.372 km
Eccentricity, e .0011 2×10−4 1.7×10−4

Inclination, i 88.0◦ 0.011◦ 0.002 ◦

RAAN, Ω 19.0◦ 0.016◦ 0.014◦

Argument of perigee, ω −135.7◦ 11.860 ◦ 1.145◦

True Anomaly, ν −154.1◦ 11.862 ◦ 2.092 ◦

Table 5.8: Estimated Orbit for Case 2 - Solution 3
Estimate Cov. (3σ) Error

Semi-major axis, a 7023.9 km 5.31 km 10.05 km
Eccentricity, e .0431 5×10−4 0.042
Inclination, i 88.2◦ 0.011◦ 0.194 ◦

RAAN, Ω 22.6◦ 0.019◦ 3.561 ◦

Argument of perigee, ω −160.2◦ 0.696 ◦ 25.55 ◦

True Anomaly, ν −127.5◦ 0.705 ◦ 28.77 ◦

Figure 5.14: The numerical PDF after ingesting the newly associated observation and
points sampled from the approximated PDF generated with the MLE approximation.
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5.2.3 Case 3: GPS Satellite Observation

While the simulation shows good results from this optimization based approach, it is neces-

sary to determine how the approach performs on real data. Using the Georgia Tech Space

Object Research Telescope (GT-SORT), a Raven class telescope, a sequences of images

were obtained of the GPS BIIR-11 satellite (NORAD ID 28190). The orbital elements

for the GPS BIIR-11 satellite are determined from TLEs during this observation epoch are

given in Table 5.9. For this configuration, the GT-SORT imager captured 10s exposures

Table 5.9: True Orbit for Case 3
Semi-major axis, a 26559.7 km

Eccentricity, e .01061
Inclination, i 55.7441◦

RAAN, Ω 63.5728◦

Argument of perigee, ω 40.9903◦

True anomaly, ν 73.9◦

with no filter. The first observation is captured at 02:14:52.590 UTC and the second ob-

servation is captured at 04:30:59.979 UTC on 30 Mar 2016. The images containing the

GPS BIIR-11 object are shown in Figure 5.15. The star labels shown refer to the Tycho-2

star identification system. The total time between the observations is 2.268 hours, which is

sufficient for an attempt at initial orbit determination since the unobservability criterion for

GPS altitude is 1.06 hours. The measurements extracted from the images in Figure 5.15

by utilizing morphological operations to find the centroids as well as endpoints of the star

streak geometries. The extracted measurements are described as follows

xd(t1) =

[
82.0◦ 34.8◦ 0.007◦/s 0.008◦/s

]
(5.55)

xd(t2) =

[
−156.9◦ 51.4◦ 0.012◦/s −0.006◦/s

]
(5.56)

Figure 5.16 shows the admissible regions and distance metric contours for this example

along with the location of the minima for this case. Table 5.10 shows the solutions and
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(a) 30 Mar 2016 02:14:52.590 UTC at start of exposure

(b) 30 Mar 2016 04:30:59.979 UTC at start of exposure

Figure 5.15: Real images containing the tracked GPS BIIR-2 satellite. The streaks are the
stars captured during the 10 second exposure. Field of view is 13.3× 10.6 arc-minutes.

the individual probabilities of associations for each solution. In this case, the two pairs

of solutions found by the optimizer are identical and PA = .932. Figure 5.17 shows the

approximated updated PDF, which again can be shown to match reasonably well with the
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particle filter results. The orbit state estimate is shown in Table 5.11. Note that the error

in the state estimate solution is orders of magnitude higher in semi-major axis compared to

the simulated test cases. While the method introduced in Chapter 2 enables systemic uncer-

tainties to be taken into account, it does not directly take into account biases which may be

present in the observation system. In the simulated cases, these biases are not of concern,

however the data obtained from GT-SORT and the data reduction process itself may be a

source of bias which affects the accuracy of this optimization based approach. Further-

more, there is an issue of dynamics bias introduced by assuming Keplerian dynamics in the

approach. These biases contribute to the errors shown in Table 5.11.

One of the primary benefits of this methodology is that the hypothesis testing frame-

work not only gives a probability of association for each pair of observations, but also

provides a state estimate and estimated covariance directly eliminating the need to instan-

tiate a particle filter. Each of the test cases show very good agreement between the full

particle filter and the MLE approximation. Thus it is justifiable to state that this analyti-

cally approximated state and covariance estimate can be sufficiently used in place of the

particle filter result. Furthermore, because this approximation is analytical it is very com-

putationally efficient even considering the optimization required to find the local minima.

To illustrate this fact, the run times for these test cases are shown in Table 5.12. Even

in the cases where there are multiple solutions, the MLE approximation has a CPU run

time at least an order of magnitude less than that of the particle filter. Note that the gen-

eral association problem is, in worst case, factorial which implies that any computational

improvements are also essentially factorial. The two order of magnitude reduction in com-

putation time using this methodology would significantly outperform Particle Filter based

association methods as the number of uncorrelated observations to associate increases.
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(a) ProbabilisticA1 at t1 (b) d̃(xd,1(t2), xd,2(t2))

(c) ProbabilisticA2 at t2 (d) d̃(xd,1(t1), xd,2(t1))

Figure 5.16: The contours of the probability of set membership and distance metrics for
Case 3 with solutions labeled at time t1 and t2.

Table 5.10: Case 3 Probability of association and optimization solutions
Solution 1

PA 0.932
PFA 0.05
ρ(t1) (Re) 3.151
ρ̇(t1) (Re/TU) 0.0011
ρ(t2) (Re) 3.295
ρ̇(t2) (Re/TU) 0.0207
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Figure 5.17: The updated approximate state PDF for Case 3 after ingesting the newly
associated observation

Table 5.11: Estimated Orbit for Case 3
Estimate Cov. (3σ) Error

Semi-major axis, a 27005.2 km 26.86 km 446.6 km
Eccentricity, e .0270 3×10−4 0.016
Inclination, i 55.8◦ 0.018◦ 0.130◦

RAAN, Ω 63.4◦ 0.033◦ 0.012◦

Argument of perigee, ω 43.88◦ 1.972◦ 2.147◦

True Anomaly, ν 71.9◦ 1.963◦ 2.117◦

Table 5.12: CPU Run Time Comparison
MLE Approximation Particle Filter

Case 1 7.392s 220.39s
Case 2 14.95s 220.25s
Case 3 7.692s 230.42s
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5.2.4 Case 4: GEO Object Observation (Semi-Unobservable)

This case focuses on an observation of an object in GEO over a very short time period

using GT-SORT. Two of the images from this sequence are shown in Figures 5.18 and

5.19. The black boxes outline the stars that were detected in the image. The exposure time

is 5 seconds and the field of view is 13.3× 10.6 arc-minutes.

Figure 5.18: Real image containing an uncorrelated streak. 14 Jan 2016 01:02:21.429 UTC
at start of exposure.

The streak captured from the object is highlighted by a green box with the right ascen-

sion and declination given in degrees. The inertial bearing angles given by the gridlines on

superimposed on the image are generated from identifying the stars in the image using the
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Figure 5.19: Real image containing an uncorrelated streak. 14 Jan 2016 01:02:32.549 UTC
at start of exposure

astrometry.net suite3. The star IDs are included in Table 5.13 due to their length.

Figure 5.20 just shows closeup views of the streaks captured by GT-SORT The streak

shown in Figure 5.18a was captured at 01:02:21.429 UTC on 14 Jan 2016 with a 5 second

integration time. The streak shown in Figure 5.18b was captured at 01:02:32.549 UTC on

14 Jan 2016 also with a 5 second integration time. The measurements extracted from the

3http://nova.astrometry.net/
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Table 5.13: SDSS Star IDs
A 1237679077518803255
B 1237679077518868483
C 1237679077518802951
D 1237679322849542204
E 1237679077518802967
F 1237679322849476639
G 1237679322849542190
H 1237679077518802946
I 1237679077518802948
J 1237679322849542196
K 1237679077518802976
L 1237679077518802964
M 1237679077518802982
N 1237679322849542363
O 1237679077518803001
P 1237679077518802990

(a) 14 Jan 2016 01:02:21.429 UTC (b) 14 Jan 2016 01:02:32.549 UTC

Figure 5.20: Closeup image of the streaks of the GEO object.

images in Figure 5.18 are given as follows

xd(t1) =

[
8.15◦ −5.42◦ 0.0039◦/s 9× 10−5.◦/s

]
(5.57)

xd(t2) =

[
8.19◦ −5.42◦ 0.0041◦/s 0.0001◦/s

]
(5.58)

178



The time between the observations is 11.1 seconds, which along with Eqn. (5.43) can

be used to show that this observation sequence is unobservable. Let ‖r‖ = 6678km, which

is representative of a low LEO object and can be treated as a lower bound on the time

required between observations for observability. Then the observability condition becomes

√
‖r‖3

3µ
=

√
6678km3

3 · 3.986× 105
= 499s� 11.1s (5.59)

Thus, this observation scenario falls under the unobservable case discussed previously.

Figure 5.21 shows the probabilistic admissible regions formed for both observations as

well as a contour plot of PA for each point sampled. For this unobservable scenario, the

distance metric evaluated acrossA1 andA2 is approximately flat as can be seen in Figure

5.22. As such, Figures 5.21b and 5.21d just give examples of what the individual PA

value would be for points sampled within both A1 and A2. Because the points found

by the optimizer are unlikely to indicate the location of a solution producing a valid state

estimate, the Table of solutions shown in the previous sections is omitted and instead the

weighted norm of the probability of association is computed across the entire admissible

region. In this regard, the weighted norm for the unobservable case can be treated as an

∞-norm on the probability of association values. Applying the∞-norm to PA in this case

yields PA = 0.903 for these two observations, again indicating that association is very

likely.

The Bayesian update in this case cannot be performed via the MLE approximation

and a particle filter is used instead. Note that the updated PDF is nearly equivalent to the

admissible region shown in Figure 5.21c. This is attributed to the unobservable nature of

the observations, while it can be shown that they are associated, little information is gained

after ingesting the associated observation into the particle filter.
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(a) ProbabilisticA1 at t1 (b) PA (t1 → t2)

(c) ProbabilisticA2 at t2 (d) PA (t2 → t1)

Figure 5.21: The contours of the probability of set membership and contours of PA for
Case 4.

Figure 5.22: The distance metric surface computed for the unobservable case is essentially
uniformly the point of intersection
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(a) Initial prior distribution (b) Updated prior

Figure 5.23: The updated state prior for Case 4 after ingesting the newly associated obser-
vation into a particle filter at time t1

5.3 Conclusions

This chapter introduces an optimization based approach to perform observation association

in the presence of systemic uncertainties. The general optimization methodology is based

on minimizing the distance between the possible solutions over the full state space. The

novel approach in this work optimizes over a partitioned state space. It is shown that the

minimum distance between the partitioned state spaces is an equivalent method by which

association may be determined. Conditions for the existence of possible state solutions are

presented following the definition of the reduced order optimization problem. This method-

ology is then expanded to include systemic uncertainties. The hypothesis testing method is

shown to be useful for associating observations in single solution cases. Large uncertain-

ties and long time intervals between observations may give rise to optimization solutions

with several local minima. The results shown utilize a single probability of association

metric encompassing all such local minima solutions. This chapter also introduces an ap-

proximation which improves computational efficiency by combining the association and

estimation by assuming the optimum solutions are the maximum likelihood estimator. This

enables the distribution to be approximated as Gaussian and directly given by the inverse

of the Hessian evaluated at the optimum. Several simulated test cases as well as real data
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cases from the Georgia Tech Space Object Research Telescope are given to demonstrate

the effectiveness of the methodology.
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CHAPTER 6

FUTURE WORK

The contributions of the thesis work to improve state estimation methods for unobservable

systems. However, there is still room for improvement and further development of the con-

cepts presented. While Contributions 1 and 2 both are essentially complete treatments of

uncertainty in the admissible region problem and necessary conditions for the admissible

region prior respectively, Contributions 3 and 4 really only introduce new methodologies

by which these state estimation problems may be addressed. Summarized below are po-

tential areas of future work that will further develop the state of the art for initializing state

estimation with uninformative priors as well as the association of short arc measurements.

6.1 Resampling DS Particle Filter

Chapter 4 details the Dempster-Shafer particle filter for initializing state estimation for un-

observable dynamical systems based on admissible region theory. However, the algorithm

presented in Chapter 4 does not utilize resampling of the plausibility space, Θ. As demon-

strated, the presented algorithm works well to not only instantiate a Bayesian estimation

scheme without making an assumption on the prior, but also to identify when an admis-

sible region hypothesized constraint may be incorrect. At a theoretical level, the concept

of resampling may violate the construction of Θ and Ω since the frame of discernment is

assumed to be a mutually exclusive and also exhaustive list of hypotheses. Thus, the resam-

pling algorithm developed must respect this constraint. The primary question then, is how

to perform the resampling step when each particle has both a plausibility and belief value,

when members of Θ to be sampled are non-singletons, and when the NOTA non-singleton

set is unbounded. Future work will investigate how to best resample the DS particle filter

in light of these concerns.
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Figure 6.1: Three satellites in the ANIK-F1 Cluster at GEO

6.2 Evidence Based Association and Tracking

Chapter 5 builds on the admissible region theory by developing an optimization based

approach to association of uncorrelated tracks. The probability of association metric de-

veloped works well to associate disparate observations for the simulated test cases and real

data cases demonstrated. However, it is expected that for ambiguous cases where there are

multiple satellites in very similar orbits or for formation flying clusters the association met-

ric can give inconclusive results. Figure 6.1 shows a dataset from GT-SORT where these

ambiguities actually pose a problem.

This problem may be remedied by combining the concepts introduced in Chapters 4
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and 5 to develop an evidential reasoning based multiple hypothesis filter for association

and tracking of objects. Future work should attempt to connect these methodologies for a

more robust filter which takes into account that fact that belief mass could be assigned to

the NOTA set when in reality the measurement fed to the DS particle filter is not associated

with the already processed measurements.

6.3 Characterization and Tracking

Evidence based methods are often used to handle both characterization and tracking simul-

taneously. This may also be used to augment the capabilities of state estimation schemes

for SSA by utilizing photometric data to further characterize the observed space objects.

There are existing approaches which utilize multiple-model adaptive estimation schemes to

tackle this problem [118], however the extension of DS theory to this problem might prove

to be a more generalized approach. Future work will identify other hypothesis to add to

the frame of discernment which can offer more information on the state of the object, for

instance whether the object is tumbling or is stable.

6.4 High Area to Mass Ratio Objects

The association methodology presented in Chapter 5 uses the Mahalanobis distance as the

cost function for the optimization problem. This can be substituted for a more appropri-

ate cost function depending on the type of object being observed. For HAMR objects

where the dynamics evolve with drag (if in LEO) and/or solar radiation pressure, using

the Mahalanobis distance to associate two observations of the same HAMR object does

not guarantee association. A more appropriate distance metric might be the control dis-

tance metric proposed by Jaunzemis and Holzinger [109]. Utilizing this methodology and

attempting to find the optimal maneuver, or control cost, connecting two observations of

HAMR objects may enable association to be carried out with more confidence than offered

by current methods [56, 30]

185



6.5 Characterization of Dependent Errors

The association methodology presented in Chapter 5 takes into account the errors in the

knowledge of the observer state as well as the timing error of the observer system. These are

treated as independent error sources in the methodology presented, however it is known that

these errors are not necessarily independent and as such it is a point of future work to take

into account dependent sources of error in this association approach. Furthermore, it is a

topic of future work to account for the potential underlying biases present in the observation

systems and how these biases affect the optimization based association methodology.
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CHAPTER 7

CONCLUSIONS

Initializing state estimation in underdetermined or unobservable systems is a difficult prob-

lem when posed with a single observation or a short sequence of unobservable observations.

Particularly in orbit dynamics, the traditional state estimation methods, such as Gauss’

method, fail when the measurement arc is too short. Short arc measurements will continue

to be a part of the data obtained by sensors in the SSN, in addition to a widely growing

network of commercial sensors, as objects continue to be launched into orbit and sensor

technologies and efficiencies improve. This reinforces the need to improve estimation tech-

niques instantiated on these too short arc measurements.

The admissible region method was developed initially to utilize hypothesized con-

straints to bound a set in the unobservable subspaces of the dynamical system of inter-

est. Chapter 2 builds upon the admissible region method further by allowing for systemic

uncertainties to be taken into account in the problem. The hypothesized constraints essen-

tially form a set membership function, and the traditional admissible region method results

in a binary membership function. The probability of set membership function introduced

in Chapter 2 makes the admissible region instead a fuzzy set where the set membership

for points near the nominal constraint boundary is dependent on the uncertainties in the

system.

Chapter 3 details foundational principles probability transformation theory and then

applies it to the admissible region problem. The admissible region itself is useful because

it provides a bounded set from which a sequential estimator may be instantiated. How-

ever, there is no concise definition in the literature for how the admissible region should be

treated probabilistically. Chapter 3 offers some insight on why the admissible region prior

distribution cannot be truly treated as a PDF until the problem becomes observable. Fur-
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thermore, it defines an observability condition that, when satisfied, implies there is enough

observability for a true PDF to be defined.

But the contributions of Chapter 3 still impose some kind of assumed prior for the

admissible region. What is truly desired is a method which does not require any kind of as-

sumed prior and which can provide an indication of when the assumed constraint hypothe-

ses are incorrect. This is provided with Dempster-Shafer theory as introduced in Chapter 4.

The DS particle filter derived utilizes the vacuous nature of the belief mass assignment for

a given short arc measurement to instantiate a DS filter with perfect plausibility of all states

in the plausibility space and zero belief for each of states except for the entire admissible

region itself. This filter then ingests measurements and updates the plausibility and belief

values appropriately and collapses down to a traditional Bayesian PDF once the system is

sufficiently observable. As demonstrated, this method not only requires no a priori assump-

tion on the probabilities but also collapses down to match the distribution yielded from a

traditional particle filter.

Finally, Chapter 5 details a methodology by which a set of uncorrelated tracks may be

probabilistically associated with one another utilizing the admissible region method. The

method builds on the previous work which shows that if a point of intersection may be

found between the admissible regions of disparate observations, then the observations are

likely associated. The optimization based approach described utilizes multiple reduced di-

mension sub-problems to identify a point of intersection in the d-dimensional subspaces

of the admissible region. Furthermore, through a maximum likelihood estimator assump-

tion, the solution and the Hessian at the solution can directly approximate the true distri-

bution one would obtain from a traditional particle filter. The efficacy of the method is

demonstrated not only on simulated test data but also on real observation data provided by

GT-SORT.

To conclude, a methodology is first presented by which uncertainties in the observation

systems may be incorporated in the sets defined in the admissible region method. Then,
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various methods are explored which utilize the resulting fuzzy sets for initialization of state

estimation methods. First, necessary conditions on when this fuzzy set may be treated as a

PDF rather than an uninformative prior for the purposes of are shown. Then, an evidential

reasoning based approach is developed which takes uninformative priors and uses plausi-

bility and belief to bound the true PDF value without assuming an a priori distribution until

the system is observable, at which point plausibility and belief collapse to the true PDF.

Finally, an association method is develop which takes disparate observations and proba-

bilistically associates them, and if a pair of observations are fully observable then provides

a full state estimate in addition to the corresponding uncertainty distribution.
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APPENDIX A

CONSTRAINT DERIVATIVES

The approximate analytic equations for probability of set membership for the hypothesized

energy and periapse radius constraints are based on partial derivatives of the constraint

functions with respect to the combined parameter and determined state vector z as defined

in Chapter 2. Described below are the analytic derivatives used in the results section.
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For the periapse constraint:
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∂κ2
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For the energy constraint:
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