
NON-DECIMATED WAVELET TRANSFORM IN
STATISTICAL ASSESSMENT OF SCALING: THEORY

AND APPLICATIONS

A Thesis
Presented to

The Academic Faculty

by

Minkyoung Kang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
August 2016

Copyright © 2016 by Minkyoung Kang



NON-DECIMATED WAVELET TRANSFORM IN
STATISTICAL ASSESSMENT OF SCALING: THEORY

AND APPLICATIONS

Approved by:

Professor Brani Vidakovic, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Kamran Paynabar
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor David Goldsman
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Eberhard O. Voit
Department of Biomedical engineering
Georgia Institute of Technology

Professor Ben Haaland
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: May 6, 2016



To my family: my father (Kang, ShinSul), my mother (Kim,

JeongJa), and my sister (Kang, SooJung)

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to express my appreciation to Prof. Brani Vidakovic

for his support, extreme patience, kindness, and brilliance. I am very fortunate to

have an opportunity to work under his advisement through my Ph.D. I also would like

to appreciate my thesis committee: Prof. David Goldsman, Prof. Kamran Paynabar,

Prof. Eberhard O. Voit, and Prof. Ben Haaland for their insightful comments and

questions that are very helpful. I appreciate Prof. William Auffermann for valuable

comments.

In addition, I am very thankful to Jane Chisholm for her classes and English

corrections. She supported me to become a better English writer. I thank all of

my internship supervisors who provided me with great opportunities so that I could

work with interesting real-world data sets in locations around the world. I’ve been

fortunate to have my Ph.D. friends who suported me through this journey and filled

my daily life with good laughs. I am very grateful for having CRC near my office and

staff members who provided me with great services everyday.

Last but not least, my sincere appreciation to my family members who give me

endless love and support, whenever and wherever.

Indeed, for the last four years, Georgia Institute of Technology provided me with

the most exciting adventures in the world. Thank you Georgia Tech!

iv



Contents

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Self-similar Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Hurst exponent . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Examples of self-similar processes . . . . . . . . . . . . . . . 3

1.1.3 Basics of Self-similar Processes . . . . . . . . . . . . . . . . . 8

1.2 Fractional Brownian Motion . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Basics of Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Mallat’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Wavelet Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.1 Haar Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.2 Other Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.7 Discrete Wavelet Transformations (DWT) . . . . . . . . . . . . . . . 30

1.7.1 Matrix-based DWT . . . . . . . . . . . . . . . . . . . . . . . 32

1.8 Traditional orthogonal Wavelet Transform . . . . . . . . . . . . . . . 35

1.9 Non-decimated Wavelet Transform (NDWT) . . . . . . . . . . . . . 37

1.9.1 Discrete Version of NDWT . . . . . . . . . . . . . . . . . . . 41

1.9.2 Scaling, Anisotropy, and Wavelet Spectrum . . . . . . . . . 44

II MATRIX FOR NON-DECIMATED WAVELET TRANSFORM 50

2.1 Non-decimated Wavelet Transforms . . . . . . . . . . . . . . . . . . 51

2.2 Matrix Formulation of NDWT . . . . . . . . . . . . . . . . . . . . . 57

v



2.2.1 Scale-Mixing 2-D NDWT . . . . . . . . . . . . . . . . . . . . 60

2.3 Computational Efficiency of the NDWT Matrix . . . . . . . . . . . . 62

2.4 Two Examples of Application . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Package Description and Demos . . . . . . . . . . . . . . . . . . . . 68

2.5.1 Core Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.5.2 Other Functions and Data Sets Included . . . . . . . . . . . 69

2.5.3 DEMO 1: Transform and reconstruction . . . . . . . . . . . . 70

2.5.4 DEMO 2: Denoising of Doppler Signal . . . . . . . . . . . . . 71

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

III NON-DECIMATED WAVELET SPECTRA AND ITS APPLICA-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1 Simulated cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Application in Mammogram Diagnostic . . . . . . . . . . . . . . . . 79

3.2.1 Source of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.2 Diagnostic Classification . . . . . . . . . . . . . . . . . . . . 80

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

IV BAYESIAN APPROACH TO ESTIMATION OF SCALING WITH
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

V METHODS FOR ASSESSMENT OF SCALING BY MEDIANS
OF LOG-SQUARED NONDECIMATED WAVELET COEFFICIENTS:MEDL
AND MEDLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 MEDL Method . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.2 MEDLA Method . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vi



VI CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Appendix A — PROOFS AND DERIVATIONS . . . . . . . . . . . 112

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii



List of Tables

1 The filter coefficients of Daubechies’ wavelets for N = 2, . . . , 10 van-
ishing moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Symlet coefficients for N = 4, 5, and 6 vanishing moments. . . . . . . 29

3 Coiflet coefficients for N = 2, 4, and 6 vanishing moments. . . . . . . 29

4 The analogy between Fourier and wavelet methods . . . . . . . . . . 30
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q-q plots of Ĥ versus the quantiles asymptotic distribution when H =
0.3, 0.5, and 0.7, respectively. . . . . . . . . . . . . . . . . . . . . . . 103

36 Panels on the right are histograms of Ĥ and panels on the left are
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SUMMARY

The advancement of sensor technology enables us to collect a massive amount

of data and at the same time, poses a challenge of summarizing such data in useful

features. In this thesis, the focus is on the summary of complex real-life signals that

possess self-similarity, which indicates that the signal behaves similarly in a range of

scales, or resolutions. Such signals can be well characterized with a scaling index, or

self-similarity index, that represents essential scaling characteristics.

This thesis proposes four novel methods that facilitate and improve the assessment of

scaling in signals based on non-decimated wavelet transform (NDWT). NDWT’s are

preferred to the standard orthogonal wavelet transforms in a number of data analytic

tasks because of their time-invariance and redundancy. To facilitate NDWT, Chapter

2 of this thesis devises an NDWT matrix that efficiently maps an input signal from

an acquisition domain to the wavelet domain with a simple matrix multiplication.

Applying the proposed NDWT matrix provides four advantages: It is compressive in

summarizing information, faster in computation, and flexible in processing inputs of

any size. Such advantages of an NDWT matrix are illustrated with various example

applications. An NDWT matrix is used for all NDWT transforms in Chapters 3 to

5. Chapter 3 introduces a method for scaling estimation based on an NDWT and

its wavelet spectrum. The method utilizes a distinctive character of an NDWT that

does not decimate wavelet coefficients, which enables us to obtain local spectra and

more accurate scaling estimators. The method applied to simulated signals for which

scaling is known in advance yields estimators with lower mean squared errors. An

example application with mammographic images for breast cancer detection yields

the best diagnostic accuracy in excess of 80%. In Chapter 4, we shift the focus to

xii



some real-life signals for which theoretical scaling index is known and fixed. Based on

Bayesian statistics, the method proposed in the chapter incorporates prior informa-

tion about Hurst exponent H of signals to a likelihood function and estimate H with

maximum a posteriori (MAP) estimation. The method yields estimators with lower

mean squared errors even when the mean value of the prior distribution is slightly dif-

ferent from the true theoretical value. In the assessment of scaling of one-dimensional

data based on NDWT, the regression method, which is standardly used, yields bi-

ased estimators because of autocorrelations present within wavelet coefficients. This

autocorrelation is a result of redundancy of NDWT. Chapter 5 illustrates two robust

methods for estimation of scaling that decrease the autocorrelation with a logarith-

mic transform and a resampling approach. The proposed methods yield lower mean

square errors with decreased bias and the resulting estimators are asymptotically

normal and unbiased with variance that is independent of the multiresolution levels.
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Chapter I

INTRODUCTION

This chapter overviews statistical models and transforms that are pertinent for an un-

derstanding of the subsequent chapters. A number of models of random processes pro-

vide useful tools for analysis in various fields. We discuss some of traditional random

processes that scale and are fundamental in assessing performance of methods devel-

oped in the following chapters. In addition, we overview multiscale analysis methods

such as multiresolution analysis, wavelet transforms, and general time/frequency rep-

resentations that will be domains in which the proposed estimators are defined.

1.1 Self-similar Processes

Theoretical self-similar processes such as fractional Brownian motion and processes

with 1/f power-law spectra have become an essential tool for modeling a wide range of

real-world signals that describe phenomena in engineering, physics, medicine, biology,

economics, geology, chemistry, and so on. We often summarize the behavior of self-

similar processes with the Hurst exponent, a self-similarity index that quantifies a

measure of self-similarity in time series.

1.1.1 Hurst exponent

Hurst exponent was discovered by Harold Edwin Hurst who, during his 62 years in

Egypt, mainly worked to design reservoirs for the Nile River. Hurst’s goal was to

identify an optimal reservoir capacity R so that the reservoir could accept river flow

in N units of time, X1, X2, . . . XN , and emit a constant flow of X̄ per unit time.

By inspecting historical data on Nile River flow, Hurst discovered an interesting

phenomenon that is now referred to as the Hurst effect. He obtained the optimal

1
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Figure 1: (a) presents consecutive yearly measurements (n=512 ) from the Nile River
dataset for the years 62-1281 A.D. while (b) shows the wavelet spectra of (a), which
demonstrates the scaling behavior.

volume of the reservoir, given by the so-called adjusted range

R = max
1≤k≤N

(X1 + · · ·+Xk − kX̄)− min
1≤k≤N

(X1 + · · ·+Xk − kX̄). (1)

Hurst also reviewed other geophysical data because records of the water flow rarely

lasted more than 100 years. To compare data from different sources, he standardized

their adjusted ranges R with a sample standard deviation

S =

√√√√ 1

N − 1

N∑
i=1

(Xi − X̄)2 , (2)

and obtained dimensionless ratio R/S, which is a rescaled and adjusted range. Based

on more than 800 records, Hurst discovered that the value of R/S scales at NH ,

ranging from 0.46 to 0.93 with a mean of 0.73 and a standard deviation of 0.09.

In contrast to Hurst’s findings, Feller proved that the theoretical value of R/S was

1/2 for independent and identically distributed random variables with a finite second

moment (Feller (1951)). It was assumed that strong Markovian dependence was

responsible for the deviation, which Hursts results showed. Later on Barnard proved

that H = 1/2 holds for Markovian dependence cases (Barnard (1956)). Mandelbrot,

2



Mandelbrot, B.B. and Van Ness, and Mandelbrot and Wallis associated the Hurst (or

Joseph) phenomenon in the presence of long memory (Mandelbrot, 1975; Mandelbrot

and J. W. Van Ness, 1968; Mandelbrot and Wallis, 1969). The Hurst exponent is

closely related to self-similar processes.

1.1.2 Examples of self-similar processes

We present some self-similar processes that scale in daily life. The degree of self-

similarity of such processes is well represented with Hurst exponent H.

1.1.2.1 Turbulence

Here, we analyze an example of a real-life self-similar process, turbulence, which is

measurements in turbulent phenomena. From July 12 to 16, 1995, the velocity and

air temperature were measured at 5.2 m above the ground surface over an Alta Fescue

grass site at the Blackwood division of the Duke Forest in Durham, North Carolina.

A heat wave was present in North Carolina for several days when these measurements

were taken until it swept from the Midwest to the East Coast. During the experiment

in Durham, the maximum average air temperature was as high as 38◦C. The sky was

clear with low to moderate winds during the measurement period. The measurement

took place in a 480 m-by-305 m grass-covered forest clearing (36◦2′N 79◦8′W ,

elevation = 163 m) and a triaxial sonic anemometer mounted on a mast situated

250 m and 160 m north and west, respectively, of the edge of the 12 m tall Loblolly

pine forest. The triaxial sonic anemometer (Gill Instruments/1012R2) collected the

measurements of three velocity components (U, V,W ) and air temperature T with

sampling frequency (fs) of 56 Hz and period (Tp) of 19.5 minutes, which yielded

N = 65, 536 measurements per velocity component per run.

The analysis of the measurement data collected in North Carolina was based on

Kolmogorov’s K41 theory. In 1941, Kolmogorov devised the theory, which was based

on the idea of energy cascading by Richardson, for the analysis of locally isotropic and

3
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Figure 2: Temperature in different domains

fully developed turbulences. Since then, several models related to energy cascades

have been proposed. Such models consider energy dissipation ε, [energy per unit of

fluid mass per unit time], a key parameter that depends on the viscosity of kinematics,

the components of velocity, and the position of moving fluid. A description of this

transmission process follows: Energy is transmitted from large eddies, the source of

energy injection, to small eddies, where the energy is converted into heat by viscosity

and parameter ε. For the mathematical derivations of K41 theory, let x = (x1, x2, x3)

as the position vectors and u = (u1(x), u2(x), u3(x)) as the velocity components.

When the flow in which the probability distribution of the relative velocity differences

∆u(r) = u(x + r)− u(x),

is independent of time and invariant under translations, reflections, and rotations, it

can be referred to as locally isotropic turbulence. The principal objects of K41 theory

are structure functions. Structure functions are closely related to the correlations of

two-point velocity differences,

〈∆u(r)2〉 = 2σ2
u(1− ρu(r)).

The definition of a (longitudinal) structure function of order p is

Dp(r) = 〈||∆u(r)||p〉,
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where the angular brackets represent time averaging. We derive a functional descrip-

tion for the moments of velocity differences, or structure functions, with dimensional

analysis and obtain

Dp(r) = Cp[〈ε〉 r]
p
3 , (3)

where Cp is a universal constant. From Navier-Stokes equations, we can directly infer

that C3 = −4
5

for the third-order structure function. From (3), we know that the

structure functions exhibit scaling behavior. Then,

Dp(r) ∝ rζp ,

where the exponent ζp is called the scaling exponent and ∝ means “proportional to.”

The K41 theory yields the simple model ζp = p
3
. Similarly, with respect to the

structure functions, the energy of the turbulent fluctuations per unit of mass of fluid

in scales r can be derived from the hypotheses. By dimensional analysis,

Er ∝ (r)
2
3 . (4)

With the Fourier transform of Er, which yields the spectral density φ(k), we obtain

the introduced “−5
3

law” for the power spectrum, as shown in Figure 2

Ek = 2R−1k2φ(k)

∝ k−
5
3 .

From this,

logEk = −5

3
log k + C,

where C is a constant independent of k. We will see later that this is connected with

Hurst exponent H = 1/3.
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1.1.2.2 Gait Data

Dynamical analysis of gait data revealed that the stride interval (duration of the

gait cycle) of human walking exhibit scaling behaviors. The analysis indicates that

fluctuations at one time scale are statistically similar to those at multiple other time

scales, when more than hundreds steps are measured from healthy human subjects

walking at their normal rate. The experimental data are from healthy subjects walk-

ing for 1 hour at usual, slow, and fast paces. The fluctuations of stride interval

demonstrated long-range correlations with power-law decay for up to a thousand

strides by every three walking rates. Interestingly, long-range correlations disap-

peared during metronomically-paced walking, that is, variations in the stride interval

were anti-correlated. Other experiments confirmed the result that scaling behavior of

spontaneous stride interval are normally quite robust and intrinsic to the locomotor

system. In addition, scaling behavior of neural output may have some connection to

the higher nervous system responsible for walking rhythm.

The gait data is collected from participants who are not under any medication and

do not have medical history of neuromuscular, respiratory or cardiovascular disorders.

Average age of participants was 21.7 years and a range of age was 18-29 years. A

range of height was 1.77 ± 0.08 meters, and a range of weight was 71.8 ± 10.7 kg.

Participants were asked to walk continuously on level ground around an obstacle

free, length of either 225 or 400 meters, approximately oval path. The stride interval

was collected using ultra-thin and force-sensitive switches attached inside one of shoes.

Figure 3 indicates 2048 data points collected from one of participants. We can

easily find that slow and fast stride intervals have slopes of -0.91 and -0.97, respec-

tively, while stride intervals for normal walk has a slope of -0.74. Such slopes are

closely related to the degree of self-similarity, Hurst exponent H. We will explain the

relationship of slopes and H later.
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Figure 3: (a) Gait timing for Slow, Normal and Fast Walk;(b) scaling behavior in the
Fourier domain, and (c) in the wavelet domain.

1.1.2.3 Rate of exchange

A number of economic time series, such as stock market prices, exchange rates, and

asset returns possess self-similar property and long range dependence (LRD). Such

fact is in empirical contradiction to several economic theories such as random walk

theory for stock market, perfect markets, and so on. Thus, several modeling tools

for scaling and LRD processes such as ARFIMA, fGn, fBm, GARCH, and so on. are

developed.

We present rates of exchange between Hong Kong Dollar (HKD) and US Dollar

(USD) reported by the ONADA Company between 24 March 1995 and 1 November

2000. In Figure 4, we can find the scaling behavior of the exchange rate.
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Figure 4: (a) Exchange Rates HKD per US$; (b) scaling behavior in the Fourier
domain, and (c) in the wavelet domain.
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1.1.2.4 DNA Random Walks

One of principal tasks in the analysis of DNA sequences is finding if two sequences are

related. This is studied by using a scoring system, which ranks the possible relations

between the sequences and consider statistical significance of each relation (Durbin

et al., 1998).

Bacry et al. (1996) wrote that the analysis of DNA walks is affected by the presence

of a global linear trend induced by the excess of purines over pyramidines. Such trend

is a singular process that can be assessed for long-range correlations and related

properties.

A DNA molecule consists of long complementary double helix of purine nucleotides

(denoted as A and G) and pyrimidine nucleotides (denoted as C and T). We can

translate the a strain of DNA as a sequence of alphabet that corresponds to a random

walk. By the letter at position i in the sequence, the random walk increase x(i) = 1

for A and G, and decrease x(i) = −1 for C and T. The random walk is defined as

a cumulative sum of that increment or decrement s(n) =
∑n

i=1 x(i), where n is an

index smaller than the length of the sequence. Peng et al. (1994) first proposed DNA

walks.

Bacry et al. (1996) studied self-similarity and fractality of DNA walks for humans.

It is found that that the Hurst exponent for introns (non-coding sequences) is about

0.6, while for exons (coding sequences), the Hurst exponent is close to 0.5.

1.1.3 Basics of Self-similar Processes

We provide the definitions and properties of self-similar processes. Then we dicuss

types of analysis that estimate the scaling and self-similarity properties. To under-

stand self-similar processes, we begin by an discussion of some basic concepts and

definitions. All the stochastic processes presented are real-valued and defined in a

general probability space (Ω,F , P ).
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Figure 5: (a) 8196-long DNA random walk for a spider monkey, from EMLB Nu-
cleotide sequence alignment DNA database; (b) wavelet scaling with the slope −2.24.

Definition 1.1.1. X(t)
d
= Y (t) represents equality in all finite dimensional distribu-

tions of stochastic processes X(t) and Y (t).

The following definitions are building blocks for an understanding of self-similar

processes.

Definition 1.1.2. If limh→0 P (|X(t + h) − X(t)| > ε) = 0, for any ε > 0, then the

process X(t), t ≥ 0 is stochastically continuous at t.

Definition 1.1.3. A stochastic process X(t), t ≥ 0 is self-similar if for any a > 0,

there exists b > 0 such that

X(at)
d
= bX(t) (5)

A stochastic process is trivial when its distribution is defined as a point measure.

For example, any single real-valued random-variable process X(t) = const is a trivial

stochastic process. Following Lamperti (1962),

Theorem 1.1.1. If a stochastic process X(t), t > 0 is non-trivial, stochastically

continuous at t = 0, and self-similar, then there exists a unique H > 0 such that b

9



in Definition 1.1.3 can be expressed as b = aH . In addition, H > 0 if and only if

X(0) = 0 (almost surely)

A self-similar process is generally defined as follows.

Definition 1.1.4. If there exists H > 0 such that for any choice of a > 0, X(at)
d
=

bX(t). Then it follows that X(0) = 0 almost surely and the stochastic process X(t)

is self-similar.

In this definition, the uniqueness of H is not explicitly given even though Theorem

1.1.1 guarantees uniqueness. The phenomena referred to as long-range dependence is

closely related to self-similarity.

To understand long-range dependence, we start by introducing the stationarity of a

process.

Definition 1.1.5. A stochastic process X(t) is strictly stationary if given n time

point t1, . . . tn for any n and lag k > 0,

X(t1), . . . , X(tn)
d
= X(t1 + k), . . . , X(tn + k) (6)

This condition of the process is strong because it forces all moments of all degrees of

the process such as expectations, variances, and third- or higher-order quantities to be

the same at any time point. One can also express a stationary process with a spectral

representation and the auto-covariance of the process in terms of the spectrum of

the process based on the Wiener-Khinchine theorem. Based on the assumption that

E|X(t)|2 <∞, the strict stationarity of X(t) implies the following:

(i) E(X(t)) = µ for all t ∈ R,

(ii) COV (X(t+ h), X(t)) = γX(h) = E
[
(X(t+ h)−E[X(t+ h)])(X(t)−E[X(t)])

]
,

which is independent of time t but dependent on temporal difference h,

(iii) the auto-covariance function of X(t) is γX(h) = COV (X(t+ h), X(t)),

10



(iv) the autocorrelation at lag τ is ρ(τ) = γ(τ)/γ(0), where γ(0) = cov(X(t), X(t)) =

var(X(t)).

When X(t), t ≥ 0 is self-similar with Hurst exponent H and when the distributions

of X(t+ h)−X(t) are independent of t (i.e., stationary increment), X(t) is referred

to as H − sssi, for short. Relaxing the previous conditions, stochastic processes that

satisfy (i) and (ii) are referred to as weakly stationary or second-order stationary.

Definition 1.1.6. A second-order stationary stochastic process X(t) has long-range

dependence with parameter α, if for a constant cγ > 0, its autocovariance function is

γx(k) ∼ cγ|k|−(1−α), α ∈ (0, 1)

Intuitively, when a stationary process X has long-range dependence, long memory,

or strong dependence, its auto-covariance function, γ(·), has slow decays that

∞∑
i=0

γ(i) =∞.

Unlike short-range dependence, a process with long-range dependence has a significant

amount of cumulative correlation effect. Generally speaking, self-similarity and long-

range dependence are not identical concepts but under the condition that 1/2 < H <

1, long-range dependence becomes a equivalent concept to asymptotic second-order

self-similarity for stationary processes.

1.2 Fractional Brownian Motion

Fractional Brownian motions (fBms) and fractional Brownian fields (fBfs) are Gaus-

sian H−sssi processes with stationary increments. They scale regularly and represent

examples of monofractal objects with a singular scaling index, Hurst exponent H. For

a mathematical representation, let us denote path of a one-dimensional (1-D) fBm

process with Hurst exponent H as {BH(t), t ∈ R}. By definition of self-similarity of
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fBm, it holds that BH(at) is equal in distribution to aHBH(t), a ≥ 0. The covariance

function of BH(t) is

γBH
(t, s) = E{BH(t)BH(s)} =

σ2
H

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ R, (7)

where σ2
H = Γ(1 − 2H) cos(πH)

πH
, and 0 ≤ H ≤ 1. Because γBH

(t, s) is not a function

of |t − s| only, the fBm is non-stationary. We cannot obtain a spectrum of fBm by

a direct definition. However, we can indirectly deduce a pseudo-spectrum from the

fact that increments of fBm are stationary Reed et al. (1995)

SBH
(ω) ∝ |ω|−2H−1,

where ω indicates frequency in the power spectrum. This definition extends to a two-

dimensional (2-D) fractional Brownian motion, or equivalently, fractional Brownian

field (fBf), BH(u), where u and v are points in 2-D space [0, 1]×[0, 1]. The covariance

function of BH(u) is

γBH
(u,v) = E{BH(u)BH(v)} =

σ2
H

2
[ ||u||2H + ||v||2H − ||u− v||2H ], (8)

where || · || represents the Euclidean norm, and σ2
H = 2−(1+2H)Γ(1−H)

πHΓ(1+H)
. As a result, the

relationship between the power spectrum and Hurst exponent H is

SBH
(ω) ∝ ||ω||−2H−2.

1.3 Basics of Wavelets

The first theoretical results in wavelets were reported in the early 1980s in connection

with the continuous wavelet decompositions of square integrable functions. We will

denote the space of all squared integrable functions L2, that is, functions for which∫
f 2 <∞. The seminal papers on these subjects are Grossmann and Morlet (1985);

Morlet et al. (1982). We define ψa,b(x), a ∈ R\{0}, b ∈ R as a family of functions

that are translations and re-scales of a single function, ψ(x) ∈ L2(R),

ψa,b(x) =
1√
|a|
ψ

(
x− b
a

)
. (9)
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With a normalization factor, 1√
|a|

, ||ψa,b(x)|| is valid for any choice of a and b. The

wavelet function ψ (also known as the mother wavelet) is assumed to meet the ad-

missibility condition,

Cψ =

∫
R

|Ψ(ω)|2

|ω|
dω <∞, (10)

where Ψ(ω) =
∫
R
ψ(x)e−ixωdx is the Fourier transformation of ψ(x). An implication

of the admissibility condition (10) is

0 = Ψ(0) =

∫
ψ(x)dx.

In addition, if
∫
ψ(x)dx = 0 and

∫
(1 + |x|α)|ψ(x)|dx < ∞ for some α > 0, then

Cψ <∞.

Using the continuous wavelet transformation, we can define any function f(x) in

L2 as a function of two variables

CWT f (a, b) = 〈f, ψa,b〉 =

∫
f(x)ψa,b(x)dx.

In the above equation, dilation (a) and translation (b) parameters can vary continu-

ously in R\{0} × R. The following paragraphs present several important properties

of the continuous wavelet transformation.

Shifting Property. The shift in a function in the time domain does not affect con-

tinuous wavelet transformation. For example, if f(x) undergoes continuous wavelet

transformation CWT f (a, b), then the shifted function of f(x), g(x) = f(x − β) also

has the same continuous wavelet transformation CWT g(a, b) = CWT f (a, b − β).

Scaling Property. The scaling of a function in the time domain does not affect con-

tinuous wavelet transformation. For example, if f(x) undergoes continuous wavelet

transformation CWT f (a, b), then g(x) = 1√
s
f
(
x
s

)
has the same continuous wavelet

transformation CWT g(a, b) = CWT f
(
a
s
, b
s

)
.
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One can simply prove the shifting and the scaling property by changes in variables

before performing integration for the continuous wavelet transform.

Example 1.3.1. The “Mexican hat” or “Marr’s” wavelet is defined as

ψ(x) =
d2

dx2
[−e−x2/2] = (1− x2)e−x

2/2,

where Cψ = 2π can be obtained by direct calculation.

When a function of one variable is transformed by continuous wavelet transfor-

mation, the resulting function consists of two variables indicating redundancy in the

transformation. To control the amount of information produced from the transfor-

mation, which maintains invertibility, one can choose the discrete values of a and b,

which are used in the transformation. However, a sampling rate that preserves all

information about the decomposed function should be greater than critical sampling.

The critical sampling (Figure 6) that produces the minimal basis is defined by

a = 2−j, b = k2−j, j, k ∈ Z. (11)

If the sampling rate becomes coarser than the critical sampling rate, a unique inverse

transformation does not exist, which means that one cannot fully recover the original

function. In addition, the given sampling rate yields an orthogonal basis {ψjk(x) =

2j/2ψ(2jx−k), j, k ∈ Z} under some conditions on wavelet function ψ. Other options

for the sampling rate exist. As an example, by selecting a = 2−j, b = k, one can

obtain non-decimated (or stationary) wavelets. More general sampling rates are given

by

a = a−j0 , b = k b0 a
−j
0 , j, k ∈ Z, a0 > 1, b0 > 0. (12)

Reconstructions become numerically stable when the system {ψjk, j, k ∈ Z} consti-

tutes a frame. At (12), we evaluate (9) as
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Figure 6: Critical Sampling in the R× R+ half-plane (a = 2−j and b = k 2−j).

ψjk(x) = a
j/2
0 ψ

(
x− k b0 a

−j
0

a−j0

)
= a

j/2
0 ψ(aj0x− k b0).

1.4 Multiresolution Analysis

A multiresolution analysis (MRA) is the nested sequence of closed subspaces Vn, n ∈ Z

in L2(R) with a containment hierarchy

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (13)

The intersection of such nested spaces contains only zero functions and their union is

dense in L(R),

∩nVj = {0}, ∪jVj = L2(R),

where the closure of set A is denoted as A. The hierarchy written in (13) is constructed

so that the following two conditions are met: First, V -spaces are self-similar, which

means that

f(2jx) ∈ Vj iff f(x) ∈ V0. (14)
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Second, a scaling function φ ∈ V0, whose integer-translates span the space V0, exists

as

V0 =

{
f ∈ L2(R)| f(x) =

∑
k

ckφ(x− k)

}
,

where the set {φ(• − k), k ∈ Z} is an orthonormal basis for V0. We present some

technical conditions on φ. We assume that
∫
φ(x)dx ≥ 0, and this integral, in fact,

equals 1, which is proven in the subsequent section. The function φ(x) ∈ V0 is

represented as the linear combination of functions from V1, i.e.,

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k), (15)

for some coefficients hk, k ∈ Z, because V0 ⊂ V1. This equation, referred to as

scaling equation (or two-scale equation), is indeed a fundamental element of wavelets

for construction and utilization. Note that one may find another indexing of multi-

resolution subspaces, that is, the reverse of that in (13)

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · . (16)

We further explore the properties of multiresolution analysis subspaces and their bases

in the Fourier domain. We define the function m0 as

m0(ω) =
1√
2

∑
k∈Z

hke
−ikω =

1√
2
H(ω). (17)

(17) is sometimes referred to as the transfer function, which describes the behavior

of associated filter h = {hk, k ∈ Z} in the Fourier domain. The period of function

m0 is 2π and the Fourier coefficients of function H(ω) =
√

2 m0(ω) are filter taps

{hn, n ∈ Z}. In addition, (15) becomes

Φ(ω) = m0

(ω
2

)
Φ
(ω

2

)
, (18)
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where Φ(ω) is the Fourier transformation of φ(x) in the Fourier domain. Because

Φ(ω) =

∫ ∞
−∞

φ(x)e−iωxdx

=
∑
k

√
2 hk

∫ ∞
−∞

φ(2x− k)e−iωxdx

=
∑
k

hk√
2
e−ikω/2

∫ ∞
−∞

φ(2x− k)e−i(2x−k)ω/2d(2x− k)

=
∑
k

hk√
2
e−ikω/2 Φ

(ω
2

)
= m0

(ω
2

)
Φ
(ω

2

)
.

We iterate (18) and obtain

Φ(ω) =
∞∏
n=1

m0

( ω
2n

)
. (19)

(19) converges under some mild conditions on the rates of decay of scaling function

φ.

In connecting the MRA to the theory of signal processing, coefficient hk in (15)

are important. Vector h = {hk, k ∈ Z} is referred to as a wavelet filter, that is, a

low-pass (averaging) filter. We prove the normalization and orthogonality properties

of wavelet filters.

Normalization.

∑
k∈Z

hk =
√

2. (20)

Proof:

∫
φ(x)dx =

√
2
∑
k

hk

∫
φ(2x− k)dx

=
√

2
∑
k

hk
1

2

∫
φ(2x− k)d(2x− k)

=

√
2

2

∑
k

hk

∫
φ(x)dx.
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Because
∫
φ(x)dx 6= 0, which is based on the assumption, (20) follows.

Orthogonality. For any l ∈ Z,∑
k

hkhk−2l = δl. (21)

Proof: From the scaling equation, (15), it follows that

φ(x)φ(x− l) =
√

2
∑
k

hkφ(2x− k)φ(x− l) (22)

=
√

2
∑
k

hkφ(2x− k)
√

2
∑
m

hmφ(2(x− l)−m).

We integrate both sides of (22) to obtain

δl = 2
∑
k

hk

[∑
m

hm
1

2

∫
φ(2x− k)φ(2x− 2l −m) d(2x)

]
=

∑
k

∑
m

hkhmδk,2l+m

=
∑
k

hkhk−2l.

By taking k = 2l+m, we obtain the last line. When l = 0, (21) becomes an important

and special case, ∑
k

h2
k = 1. (23)

In the Fourier domain, we can show that system {φ(• − k), k ∈ Z} constitutes an

orthonormal basis for V0 with respect to either Φ(ω) or m0(ω).

(a) Using Φ(ω), we express

∞∑
l=−∞

|Φ(ω + 2πl)|2 = 1. (24)

The [par] property of the Fourier transformation and the 2π-periodicity of eiωk yields

δk =

∫
R
φ(x)φ(x− k)dx

=
1

2π

∫
R

Φ(ω)Φ(ω)eiωkdω

=
1

2π

∫ 2π

0

∞∑
l=−∞

|Φ(ω + 2πl)|2eiωkdω. (25)
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The final line in (25) is Fourier coefficient ak when one performs the Fourier series

decomposition of

f(ω) =
∞∑

l=−∞

|Φ(ω + 2πl)|2.

The uniqueness of Fourier representation ensures that f(ω) = 1.

(b) In terms of m0 :

|m0(ω)|2 + |m0(ω + π)|2 = 1. (26)

Because
∑∞

l=−∞ |Φ(2ω + 2lπ)|2 = 1, by (18),

∞∑
l=−∞

|m0(ω + lπ)|2|Φ(ω + lπ)|2 = 1. (27)

We divide the sum of (27) into two sums – the first sum with odd and the second

sum with even indices, which yield

1 =
∞∑

k=−∞

|m0(ω + 2kπ)|2|Φ(ω + 2kπ)|2 +

∞∑
k=−∞

|m0(ω + (2k + 1)π)|2|Φ(ω + (2k + 1)π)|2.

We use relation (24) and the 2π-periodicity of m0(ω) and simplify the above expres-

sion.

1 = |m0(ω)|2
∞∑

k=−∞

|Φ(ω + 2kπ)|2 + |m0(ω + π)|2
∞∑

k=−∞

|Φ((ω + π) + 2kπ)|2

= |m0(ω)|2 + |m0(ω + π)|2.

Based on the properties of the wavelet filter, we derive wavelet functions. If a

sequence of subspaces satisfies MRA properties, at least one orthonormal basis for

L2(R) (though not unique) exists as

{ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z}. (28)
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ψjk(x), where j is fixed and k ∈ Z, is the orthonormal basis of the “difference space”

Wj = Vj+1 	 Vj. The function ψ(x) = ψ00(x) is formally referred to as a wavelet

function or casually as mother wavelet. A wavelet function is derived from the scaling

function. Because of the containment W0 ⊂ V1, ψ(x) ∈ V1, the wavelet function is

represented as

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k), (29)

for some coefficients gk, k ∈ Z. Let us define

m1(ω) =
1√
2

∑
k

gke
−ikω. (30)

We obtain the Fourier counterpart of (29) by following the same procedure of m0,

Ψ(ω) = m1(
ω

2
)Φ(

ω

2
). (31)

By the rules of construction, the spaces W0 and V0 are orthogonal. Therefore,

0 =

∫
ψ(x)φ(x− k)dx =

1

2π

∫
Ψ(ω)Φ(ω)eiωkdω

=
1

2π

∫ 2π

0

∞∑
l=−∞

Ψ(ω + 2lπ)Φ(ω + 2lπ)eiωkdω.

Following the same logic as in (24), we conclude that

∞∑
l=−∞

Ψ(ω + 2lπ)Φ(ω + 2lπ) = 0.

Considering the definitions of m0 and m1 and following the same steps for deriving

(26), we find

m1(ω)m0(ω) +m1(ω + π)m0(ω + π) = 0. (32)

Based on (32), we conclude that there exists a function λ(ω) such that

(m1(ω), m1(ω + π) ) = λ(ω)
(
m0(ω + π), −m0(ω)

)
. (33)
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We substitute ξ = ω + π and use the 2π-periodicity of m0 and m1 to conclude that

λ(ω) = −λ(ω + π), and (34)

λ(ω) is 2π-periodic.

Any function λ(ω) can satisfy (32) as long as their forms are in e±iωS(2ω), where S

is an L2([0, 2π]) and a 2π-periodic function. However, only functions with |λ(ω)| = 1

can define an orthogonal basis ψjk of L2(R). The summary of the conditions of λ(ω)

are

(i) λ(ω) is 2π-periodic,

(ii) λ(ω) = −λ(ω + π), and

(iii) |λ(ω)|2 = 1.

Although any function satisfying the above three conditions can create a valid m1,

standard choices for λ(ω) are −e−iω, e−iω, and eiω. We define m1(ω) as

m1(ω) = −e−iωm0(ω + π) (35)

so that it creates a convenient and standard connection between filters h and g.

{ψ(•− k), k ∈ Z} is an orthonormal basis for W0, which is implied in the form of m1

and equation (24). Using |m1(ω)| = |m0(ω + π)|, we can rewrite the orthogonality

condition (26) as

|m0(ω)|2 + |m1(ω)|2 = 1. (36)

We compare the definition of m1 in (30) with

m1(ω) = −e−iω 1√
2

∑
k

hke
i(ω+π)k

=
1√
2

∑
k

(−1)1−khke
−iω(1−k)

=
1√
2

∑
n

(−1)nh1−ne
−iωn.
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As a result, we can relate the elements of filters h and g as

gn = (−1)n h1−n. (37)

Such a relation (37) is often referred to as the quadrature mirror relation, and filters

h and g are referred to as quadrature mirror filters in the signal processing literature.

Remark 1.4.1. Selecting λ(ω) = eiω yields high-pass filter gn = (−1)n−1 h−1−n,

which is rarely used. Defining gn as (−1)nh1−n+M , where M is a “shift constant,” is

sometimes convenient. Since such a re-definition of g affects only the shift-location

of the wavelet function.

1.5 Mallat’s Algorithm

Burt and Adelson invented orthogonal and biorthogonal pyramid algorithms for image

processing Burt and Adelson (1983a,b). In a tree-like fashion, pyramid algorithm

process an image at a sequence of scales which range from fine to coarse in cascade.

In each scale, processed images can be denoised, improved, or compressed through

different applications.

Mallat was a pioneer in formally linking wavelets, multiresolution analyses, and

cascade algorithms Mallat (1989b,a). Mallat’s cascade algorithm elucidate a con-

structive and efficient recipe that performs the discrete wavelet transformation. It

filters data with h and g in cascade, so that the wavelet coefficients from different

scales in the transformation can be related to one another. In fast Fourier transfor-

mations, Danielson-Lanczos algorithm takes a similar role as Mallat’s algorithm in

wavelet transform.

It is useful to understand the relationship between the original signal with the

space coefficients from the space VJ , for some J . Two complementing spaces, smooth

and detail spaces are pairs of (VJ−1,WJ−1), (VJ−2,WJ−2), and etc. Decreasing the

index in V -spaces coarsens the approximation of the data.
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By a direct substitution of indices in the scaling equations (15) and (29), one

obtains

φj−1,l(x) =
∑
k∈Z

hk−2lφjk(x) and ψj−1,l(x) =
∑
k∈Z

gk−2lφjk(x). (38)

This relationship becomes a building block of the cascade algorithm.

In a multiresolution analysis · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . , because Since

Vj = Vj−1 ⊕ Wj−1, any function vj ∈ Vj can be represented uniquely as vj(x) =

vj−1(x) + wj−1(x), where vj−1 ∈ Vj−1 and wj−1 ∈ Wj−1. It is common to denote the

coefficients related to φjk(x) and ψjk(x) by cjk and djk, respectively.

Therefore,

vj(x) =
∑
k

cj,kφj,k(x)

=
∑
l

cj−1,lφj−1,l(x) +
∑
l

dj−1,lψj−1,l(x)

= vj−1(x) + wj−1(x).

We use the general scaling equations (38), orthogonality of wj−1(x) and φj−1,l(x) for

any j and l, and additivity of inner products, to obtain

cj−1,l = 〈vj, φj−1,l〉

= 〈vj,
∑
k

hk−2lφj,k〉

=
∑
k

hk−2l〈vj, φj,k〉 (39)

=
∑
k

hk−2lcj,k.

Similarly dj−1,l =
∑

k gk−2lcj,k.

The cascade algorithm is still valid in the reverse direction. Coefficients that

belong to the next detailed scale in Vj can be obtained from the coefficients cor-

responding to Vj−1 and Wj−1. The relation below specify a single iteration of the

23



reconstruction algorithm.

cj,k = 〈vj, φj,k〉

=
∑
l

cj−1,l〈φj−1,l, φj,k〉+
∑
l

dj−1,l〈ψj−1,l, φj,k〉 (40)

=
∑
l

cj−1,lhk−2l +
∑
l

dj−1,lgk−2l,

Example 1.5.1. Considering DAUB2, the scaling equation at integer k is

φ(n) =
3∑

k=0

hk
√

2φ(2n− k).

Recall that h = {h0, h1, h2, h3} = {1+
√

3
4
√

2
, 3−

√
3

4
√

2
, 3+

√
3

4
√

2
, 1−

√
3

4
√

2
}.

Because φ(0) =
√

2h0φ(0) and
√

2h0 6= 1, it becomes clear that φ(0) = 0. Using

φ(3) = 0, we obtain the system for φ(1) and φ(2) φ(1)

φ(2)

 =
√

2 ·

 h1 h0

h3 h2

 ·
 φ(1)

φ(2)

 .
Using

∑
k φ(x− k) = 1, we have that φ(1) + φ(2) = 1. We solve for φ(1) and φ(2) to

obtain

φ(1) =
1 +
√

3

2
and φ(2) =

1−
√

3

2
.

Now, one can refine φ,

φ

(
1

2

)
=

∑
k

hk
√

2φ(1− k) = h0

√
2φ(1) =

2 +
√

3

4
,

φ

(
3

2

)
=

∑
k

hk
√

2φ(3− k) = h1

√
2φ(2) + h2

√
2φ(1)

=
3 +
√

3

4
· 1−

√
3

2
+

3−
√

3

4
· 1 +

√
3

2
= 0,

φ

(
5

2

)
=

∑
k

hk
√

2φ(5− k) = h3

√
2φ(2) =

2−
√

3

4
,
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or ψ,

ψ(−1) = ψ(2) = 0,

ψ

(
−1

2

)
=

∑
k

gk
√

2φ(−1− k) = h1

√
2φ(1) = −1

4
, [gn = (−1)nh1−n]

ψ(0) =
∑
k

gk
√

2φ(0− k) = g−2

√
2φ(2) + g−1

√
2φ(1)

= −h2

√
2φ(1) = −

√
3

4
,

etc.

1.6 Wavelet Filters

In wavelet transforms, users can choose various wavelet filters that are appropriate

for the purpose of the transform. We presents several commonly used wavelet filters.

1.6.1 Haar Wavelet

The Haar wavelet is a simple and widely applicable wavelet. In addition, it has

immense educational value in the introduction of wavelets. In this section, we use the

Haar wavelet to exhibit some of the properties discussed in Section 1.4. Assuming

that everything else is unknown, we begin with φ(x) = 1(0 ≤ x ≤ 1). The scaling

equation (15) for the Haar wavelet is very simple. By observing simple graphs of two

scaled Haar wavelet φ(2x) and φ(2x+ 1) placed next to each other, we conclude that

the scaling equation is

φ(x) = φ(2x) + φ(2x− 1)

=
1√
2

√
2φ(2x) +

1√
2

√
2φ(2x− 1). (41)

Therefore, the wavelet filter coefficients are

h0 = h1 =
1√
2
.
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The transfer functions become

m0(ω) =
1√
2

(
1√
2
e−iω0

)
+

1√
2

(
1√
2
e−iω1

)
=

1 + e−iω

2
,

and

m1(ω) = −e−iω m0(ω + π) = −e−iω
(

1

2
− 1

2
eiω
)

=
1− e−iω

2
.

Note m0(ω) = |m0(ω)|eiϕ(ω) = cos ω
2
· e−iω/2 (after cosx = eix+e−ix

2
). Because ϕ(ω) =

−ω
2
, Haar’s wavelet has the scaling function, which is symmetric in the time domain.

One can easily verify the orthogonality condition |m0(ω)|2 + |m1(ω)|2 = 1. Relation

(31) becomes

Ψ(ω) =
1− e−iω/2

2
Φ
(ω

2

)
=

1

2
Φ
(ω

2

)
− 1

2
Φ
(ω

2

)
e−iω/2,

and in the time-domain, we apply the inverse Fourier transformation to obtain

ψ(x) = φ(2x)− φ(2x− 1).

Following such steps, we finally obtain the Haar wavelet function, ψ. By inspecting

the expression of m1 or of ψ(x), which consist of φ(2x) and φ(2x − 1), respectively,

we conclude that g0 = −g−1 = 1√
2
. However, the Haar basis is not appropriate for

all applications for several reasons. The fundamental components in Haar’s decom-

position are discontinuous functions that are not sufficient for approximating smooth

functions. While Haar wavelet are well localized in the time domain, they decay at a

slow rate of O( 1
n
) in the time/frequency domain.

1.6.2 Other Wavelets

In this section, we overview Daubechies, Symlet, and Coiflet wavelet filters. Here we

briefly discuss features and provide filter tabs for several wavelets from each family.
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1.6.2.1 Daubechies

Ingrid Daubechies was the first in inventing a family of wavelets that are compactly

supported orthogonal wavelets with extremal phase. Daubechies are indexed with

the number of vanishing moments N , or the number of filter tabs that amounts to

2N . Table 1 gives filter coefficients for the DAUB2, . . . , and DAUB10 (indexed with

vanishing moments) filters.

1.6.2.2 Symlet

While the compactly supported wavelets cannot be symmetric, one can form a wavelet

with compact support that are close to symmetry. Proposed by I. Daubechies, the

symlet wavelets are modified Daubechies’ family wavelets for least asymmetry with

compact support. Thus, Symlet and Daubechies wavelets share similar properties.

The naming convention and the number of filter tabs of Symlet follow the same rule

as Daubechies. Table 2 gives filter coefficients for the SYM4, SYM5, and SYM6

(indexed with vanishing moments) filters.

1.6.2.3 Coiflet

Coiflets were requested by R. Coifman and developed by I. Daubechies. It is less

asymmetric than the wavelets from the Daubechies or Symlet families, which was

possible by the price of a larger support. Coiflets have high vanishing moments

of both the scaling and the wavelet functions. The vanishing moments of scaling

functions minimizes aliasing error occurred in discretization of continuous function.

Coiflets are indexed with the number of vanishing momentsN for both the wavelet and

scaling functions while the number of filter tabs amounts to 3N . Table 3 gives filter

coefficients for the COIF2, COIF4, and COIF6 (indexed with vanishing moments)

filters.
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Table 1: The filter coefficients of Daubechies’ wavelets for N = 2, . . . , 10 vanishing
moments.

k DAUB2 DAUB3 DAUB4

0 0.4829629131445342 0.3326705529500827 0.2303778133088966
1 0.8365163037378080 0.8068915093110930 0.7148465705529161
2 0.2241438680420134 0.4598775021184915 0.6308807679298592
3 -0.1294095225512604 -0.1350110200102548 -0.0279837694168604
4 -0.0854412738820267 -0.1870348117190935
5 0.0352262918857096 0.0308413818355607
6 0.0328830116668852
7 -0.0105974017850690

k DAUB5 DAUB6 DAUB7

0 0.1601023979741926 0.1115407433501095 0.0778520540850092
1 0.6038292697971887 0.4946238903984531 0.3965393194819173
2 0.7243085284377723 0.7511339080210954 0.7291320908462351
3 0.1384281459013216 0.3152503517091976 0.4697822874051931
4 -0.2422948870663808 -0.2262646939654398 -0.1439060039285650
5 -0.0322448695846383 -0.1297668675672619 -0.2240361849938750
6 0.0775714938400454 0.0975016055873230 0.0713092192668303
7 -0.0062414902127983 0.0275228655303057 0.0806126091510831
8 -0.0125807519990819 -0.0315820393174860 -0.0380299369350144
9 0.0033357252854738 0.0005538422011615 -0.0165745416306669
10 0.0047772575109455 0.0125509985560998
11 -0.0010773010853085 0.0004295779729214
12 -0.0018016407040475
13 0.0003537137999745

k DAUB8 DAUB9 DAUB10

0 0.0544158422431070 0.0380779473638881 0.0266700579005487
1 0.3128715909143165 0.2438346746126514 0.1881768000776480
2 0.6756307362973218 0.6048231236902548 0.5272011889316280
3 0.5853546836542239 0.6572880780514298 0.6884590394535462
4 -0.0158291052563724 0.1331973858249681 0.2811723436606982
5 -0.2840155429615815 -0.2932737832793372 -0.2498464243271048
6 0.0004724845739030 -0.0968407832230689 -0.1959462743773243
7 0.1287474266204823 0.1485407493381040 0.1273693403356940
8 -0.0173693010018109 0.0307256814793158 0.0930573646035142
9 -0.0440882539307979 -0.0676328290613591 -0.0713941471663802
10 0.0139810279173996 0.0002509471148278 -0.0294575368218849
11 0.0087460940474065 0.0223616621236844 0.0332126740593155
12 -0.0048703529934519 -0.0047232047577528 0.0036065535669515
13 -0.0003917403733769 -0.0042815036824646 -0.0107331754833277
14 0.0006754494064506 0.0018476468830567 0.0013953517470513
15 -0.0001174767841248 0.0002303857635232 0.0019924052951842
16 -0.0002519631889428 -0.0006858566949593
17 0.0000393473203163 -0.0001164668551292
18 0.0000935886703200
19 -0.0000132642028945
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Table 2: Symlet coefficients for N = 4, 5, and 6 vanishing moments.

k SYM4 SYM5 SYM6

0 0.032223100604052 0.019538882735250 0.015404109327045
1 -0.012603967262031 -0.021101834024689 0.003490712084222
2 -0.099219543576634 -0.175328089908056 -0.117990111148520
3 0.297857795605306 0.016602105764511 -0.048311742585698
4 0.803738751805133 0.633978963456791 0.491055941927974
5 0.497618667632775 0.723407690404040 0.787641141028651
6 -0.029635527646003 0.199397533976856 0.337929421728166
7 -0.075765714789502 -0.039134249302313 -0.072637522786377
8 0.029519490925706 -0.021060292512371
9 0.027333068344999 0.044724901770781
10 0.001767711864254
11 -0.007800708325032

Table 3: Coiflet coefficients for N = 2, 4, and 6 vanishing moments.

k COIF2 COIF4 COIF6

-6 0 0 -0.003793512864381
-5 0 0 0.007782596425673
-4 0 0.016387336463204 0.023452696142077
-3 0 -0.041464936786872 -0.065771911281469

-2 (
√
15− 3) ·

√
2/32 -0.067372554723726 -0.061123390002973

-1 (1−
√
15) ·

√
2/32 0.386110066822763 0.405176902409118

0 (3−
√
15) ·

√
2/16 0.812723635449413 0.793777222626087

1 (
√
15 + 3) ·

√
2/16 0.417005184423239 0.428483476377370

2 (
√
15 + 3) ·

√
2/32 -0.076488599078281 -0.071799821619155

3 (9−
√
15) ·

√
2/32 -0.050594344186464 -0.082301927106300

4 0 0.023680171946848 0.034555027573298
5 0 0.005611434819369 0.015880544863669
6 0 -0.001823208870911 -0.009007976136731
7 0 -0.000720549445520 -0.002574517688137
8 0 0 0.001117518770831
9 0 0 0.000466216959821
10 0 0 -0.000070983302506
11 0 0 -0.000034599773197
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1.7 Discrete Wavelet Transformations (DWT)

One applies discrete wavelet transformations (DWT) to the discrete datasets and

yields discrete outputs. The procedures of performing DWT is similar to performing

fast Fourier transformation (FFT), which is the Fourier method for a set of discrete

data.

Table 4: The analogy between Fourier and wavelet methods

Fourier Fourier Fourier Discrete
Methods Integrals Series Fourier Transformations
Wavelet Continuous Wavelet Discrete
Methods Wavelet Transformations Series Wavelet Transformations

The original time domain discrete input data is mapped to the wavelet domain as

a vector of the same size using discrete wavelet transformations. Such process is

linear and thus can be performed by a matrix multiplication as well. For example, we

multiply a matrix of size n×n to one dimensional input data of size n for the discrete

wavelet transformation. Such transformation matrices can be either orthogonal or

“close” to orthogonal depending on boundary conditions. When the transformation

matrix is orthogonal, we can regard such process as a rotation in Rn space in which

an input data represent coordinates of a single point. New coordinates in the rotated

space is the discrete wavelet transformation of the original data.

Example 1.7.1. Let an input data be {−1, 2} and let M(−1, 2) be the point in R2

with coordinates given by the data vector. DWT with the Haar wavelet basis is the

same as rotating the coordinate axes by an angle of π
4
. The rotation matrix is

W =

 cos π
4

sin π
4

cos π
4
− sin π

4

 =

 1√
2

1√
2

1√
2
− 1√

2

 ,

and the discrete wavelet transformation of (−1, 2)′ is W · (−1, 2)′ = ( 1√
2
,− 3√

2
)′. Note

that the energy (squared distance of the point from the origin) is preserved, (−1)2 +

(2)2 = ( 1√
2
)2 + ( 3√

2
)2, since W is a rotation.

30



Example 1.7.2. Let y = (1, 0,−5/2, 3/2, 1/2,−1/2, 3/2, 5/2). We interpolate the

values f(n) = yn, n = 0, 1, . . . , 7 by the father wavelet from the Haar wavelet, the

vector represent the sampled piecewise constant function. It is obvious that such

defined f belongs to Haar’s multi-resolution space V0. The following matrix equation

gives the connection between y and the wavelet coefficients (data in the wavelet

domain).



1

0

−5/2

3/2

1/2

−1/2

3/2

5/2



=



1
2
√

2
1

2
√

2
1
2

0 1√
2

0 0 0

1
2
√

2
1

2
√

2
1
2

0 − 1√
2

0 0 0

1
2
√

2
1

2
√

2
−1

2
0 0 1√

2
0 0

1
2
√

2
1

2
√

2
−1

2
0 0 − 1√

2
0 0

1
2
√

2
− 1

2
√

2
0 1

2
0 0 1√

2
0

1
2
√

2
− 1

2
√

2
0 1

2
0 0 − 1√

2
0

1
2
√

2
− 1

2
√

2
0 −1

2
0 0 0 1√

2

1
2
√

2
− 1

2
√

2
0 −1

2
0 0 0 − 1√

2



·



c00

d00

d10

d11

d20

d21

d22

d23



.

The solution is 

c00

d00

d10

d11

d20

d21

d22

d23



=



√
2

−
√

2

1

−2

1√
2

−2
√

2

1√
2

− 1√
2



.

Thus,

f =
√

2φ−3,0 −
√

2ψ−3,0 + ψ−2,0 − 2ψ−2,1

+
1√
2
ψ−1,0 − 2

√
2ψ−1,1 +

1√
2
ψ−1,2 −

1√
2
ψ−1,3. (42)
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The solution is easy to verify. For example, when x ∈ [0, 1),

f(x) =
√

2 · 1

2
√

2
−
√

2 · 1

2
√

2
+ 1 · 1

2
+

1√
2
· 1√

2
= 1/2 + 1/2 = 1 (= y0).

Such multiplication process for wavelet transformation is easy to understand at

conceptual level, but has some limitation in practical utility. The size of a matrix

that can transform an input of size (n > 1015) is immense (1015 × 1015) which makes

it difficult to be stored and computed for large signals. However, as we will see

later, when dealing with images of moderate size, matrix transforms are an excellent

approach.

1.7.1 Matrix-based DWT

We can perform the change of basis in V1 from B1 = {φ1k(x), k ∈ Z} to B2 = {φ0k, k ∈

Z} ∪ {ψ0k, k ∈ Z} by matrix multiplication. Therefore, as mentioned before, we can

define a discrete wavelet transformation matrix. Example 1.7.2 already showed a

transformation matrix corresponding to Haar’s.

Let the length of the input signal be 2J , h = {hs, s ∈ Z} are the wavelet filter,

and N is some constant. Denote Hk a matrix of size (2J−k× 2J−k+1), k = 1, . . . with

an ith row and jth column element

hs, s = (N − 1) + (i− 1)− 2(j − 1) modulo 2J−k+1. (43)

Note that Hk is the circulant matrix, which means that its ith row is the circularly

shifted version of the first row by 2(i − 1) units, which is derived from the modulo

operator in (43).

By analogy, we define a matrix Gk based on the filter g. To obtain a Gk that

corresponds to the already defined Hk, we change hi by (−1)ihN+1−i. The constant

N is a shift parameter, which affects the position of the wavelet on the time scale.

The unitary matrix

 Hk

Gk

 is a basis-change matrix in 2J−k+1 dimensional space.
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Therefore,

I2J−k = [H ′k G
′
k]

 Hk

Gk

 = H ′k ·Hk +G′k ·Gk.

and

I =

 Hk

Gk

 · [H ′k G′k] =

 Hk ·H ′k Hk ·G′k

Gk ·H ′k Gk ·G′k

 .
That implies,

Hk ·H ′k = I, Gk ·G′k = I, Gk ·H ′k = Hk ·G′k = 0, and H ′k ·Hk +G′k ·Gk = I.

Now, for a sequence y the J-step wavelet transformation is d = WJ · y, where

W1 =

 H1

G1

 , W2 =


 H2

G2

 ·H1

G1

 ,

W3 =




 H3

G3

 ·H2

G2

 ·H1

G1


, . . .

Example 1.7.3. Suppose that y = {1, 0,−5/2, 3/2, 1/2,−1/2, 3/2, 5/2} and filter is

h = (h0, h1, h2, h3) =
(

1+
√

3
4
√

2
, 3+

√
3

4
√

2
, 3−

√
3

4
√

2
, 1−

√
3

4
√

2

)
. Then, J = 3 and matrices Hk and

Gk are of dimension 23−k × 23−k+1.

H1 =



h1 h2 h3 0 0 0 0 h0

0 h0 h1 h2 h3 0 0 0

0 0 0 h0 h1 h2 h3 0

h3 0 0 0 0 h0 h1 h2



G1 =



−h2 h1 −h0 0 0 0 0 h3

0 h3 −h2 h1 −h0 0 0 0

0 0 0 h3 −h2 h1 −h0 0

−h0 0 0 0 0 h3 −h2 h1


.
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Since,

H1 · y = {1.2089,−0.3239,−0.0657, 2.6818}

G1 · y = {0.6470, 0.0947, 0.0820,−2.9451}.

W1y = {1.2089,−0.3239,−0.0657, 2.6818 | 0.6470, 0.0947, 0.0820,−2.9451}.

H2 =

 h1 h2 h3 h0

h3 h0 h1 h2

 G2 =

 −h2 h1 −h0 h3

−h0 h3 −h2 h1

 .
Because of short lengths of the filter and data, we are only able to perform discrete

wavelet transformation for two steps, W1 and W2.

The two-step DAUB2 discrete wavelet transformation of y is

W2 · y = {1.3125, 0.6875| − 0.0658, 2.6818|0.64700.09470.0820,−2.9451}, because

H2 ·H1 · y = H2 · {1.2089,−0.3239,−0.0657, 2.6818}

= {1.3125, 0.6875}

G2 ·H1 · y = G1 · {1.2089,−0.3239,−0.0657, 2.6818}

= {−0.0658, 2.6818}.

We can easily extend such 1-D matrix-based DWT to a 2-D matrix-based DWT.

Let us consider an example of transforming a 2-D input X of size (m×m) with DWT

of depth 3. We form a matrix W3 for an input of size m and use it for both column

and row decomposition.

W3 ·X ·W ′
3

Note that the first W3 is for a row-wise decomposition of X, while the second W3 is

for a column-wise decomposition.
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1.8 Traditional orthogonal Wavelet Transform

In this section, we provide functional representations of standard orthogonal wavelet

transform (DWT). We assume that a multiresolution framework is specified, and

we denote φ and ψ scaling and wavelet functions, respectively. A data vector y =

(y0, y1, . . . , ym−1) of size m can be expressed as function f in terms of shifts of the

scaling function at some multiresolution level J such that J − 1 < log2m ≤ J , as

f(x) =
m−1∑
k=0

ykφJ,k(x),

where φJ,k(x) = 2J/2φ
(
2Jx− k

)
. We can express the data interpolating function f

as

f(x) =
m−1∑
k=0

cJ0,kφJ0,k(x) +
J−1∑
j=J0

2n−1∑
k=0

djk2
j/2ψ

(
2jx− k

)
, (44)

where

φJ0,k(x) = 2J0/2φ
(
2J0x− k

)
,

ψjk(x) = 2j/2ψ
(
2jx− k

)
,

j = J0, . . . , J − 1; k = 0, 1, . . . ,m− 1.

The DWT of vector y consist of wavelet coefficients, cJ0,k, k = 0, . . . 2J0 − 1 and

djk, j = J0, . . . , J − 1; k = 0, . . . , 2j − 1,.

Note that shift k is level dependent, 2−jk. Thus, as the level decreases, number of

wavelet coefficients are reduced by half. The resulting wavelet coefficients are c(J0) =(
cJ0,0, . . . , cJ0,2J0−1

)
and d(j) =

(
dj,0, . . . , dj,2j−1

)
, j = J0, . . . , J − 1, for p = J − J0.

Since the number of wavelet coefficients decreases by half in each decomposition level

p < J .

Coefficients in d(j) captures detail information within an input and referred to

as detail coefficients, while coefficients in c(J0) captures coarse fluctuation within an

input and referred to as coarse coefficients. For any given decomposition depth p,
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because of decimation, the total number of wavelet coefficients is the same as the

original data vector, m.

Such 1-D definitions can be easily extended to 2-D transforms. We describe stan-

dard and a scale-mixing 2-D DWTs of f(x, y), where (x, y) ∈ R2. For the standard

2-D DWT, the wavelet atoms are

φJ0;k(x, y) = 2J0φ(2J0x− k1)φ(2J0y − k2),

ψ
(h)
j;k(x, y) = 2jφ(2jx− k1)ψ(2jy − k2),

ψ
(v)
j;k(x, y) = 2jψ(2jx− k1)φ(2jy − k2),

ψ
(d)
j;k(x, y) = 2jψ(2jx− k1)ψ(2jy − k2),

where k = (k1, k2) is the location pair, and j = J0, . . . , J − 1 is the scale. The depth

of the transform is p = J − 1− J0. The wavelet coefficients of f(x, y) are calculated

as

cJ0;k = 2J0
∫∫

f(x, y)φJ0;k(x, y) dxdy,

d
(i)
j;k = 2j

∫∫
f(x, y)ψ

(i)
j;k(x, y) dxdy,

where J0 is the coarsest decomposition level, and i ∈ {h, v, d} represents the “ori-

entation” of detail coefficients as horizontal, vertical, and diagonal (e.g., Vidakovic

(1999), p. 155). Figure 7(a) presents the tessellation of a standard 2-D DWT.

For the scale-mixing 2-D DWT, the wavelet atoms are

φJ01,J02;k(x, y) = 2(J01+J02)/2φ(2J01x− k1)φ(2J02y − k2),

ψJ01,j2;k(x, y) = 2(J01+j2)/2φ(2J01x− k1)ψ(2j2y − k2),

ψj1,J02;k(x, y) = 2(j1+J02)/2ψ(2j1x− k1)φ(2J02y − k2),

ψj1,j2;k(x, y) = 2(j1+j2)/2ψ(2j1x− k1)ψ(2j2y − k2),

where J01 and J02 are coarsest levels, and j1 ≥ J01; j2 ≥ J02,. The resulting wavelet
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(a) (b)

Figure 7: Locations of four types of wavelet coefficients in the tessellation of 3-level
decomposition with the standard (a) and scale-mixing (b) 2-D DWT’s. Different
types of coefficients are defined in (45).

coefficients for f(x, y) from the scale-mixing DWT are

cJ01,J02;k =

∫∫
f(x, y)φJ01,J02;k(x, y) dxdy,

hJ01,j2;k =

∫∫
f(x, y)ψJ01,j2;k(x, y) dxdy, (45)

vj1,J02;k =

∫∫
f(x, y)ψj1,J02;k(x, y) dxdy,

dj1,j2;k =

∫∫
f(x, y)ψj1,j2;k(x, y) dxdy.

Notice that in the standard DWT, we use common j to denote a scale, while in the

scale-mixing DWT, we use a pair (j1, j2), which indicates that two scales are mixed.

Figure 7(b) illustrates the tessellation of coefficients of scale-mixing 2-D DWT.

1.9 Non-decimated Wavelet Transform (NDWT)

Each version of a wavelet transform has characteristics that are useful in certain

applications. A popular version is a non-decimated wavelet transform (NDWT),

which can overcome sensitivity to translations in time and shift found in standard
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orthogonal wavelet transform.

In early 1990s, NDWT appeared in literature with various names for a number of

applications and purposes as the following. Mallat (1991) proposed a method that

approximates continuous wavelet transform with an iterative algorithm, which turned

out to be equivalent to a shift-invariant representation. Shensa (1992); Beylkin (1992)

describes an efficient algorithm with O(n log2(n)) complexity for calculating wavelet

coefficients that are shift-invariant, that is, yielding redundant wavelet coefficients at

all N circulant shift for an input signal size of N . Pesquet et al. (1996) extended

a wavelet packet decomposition for time invariance and applied it to estimation and

detection problems. Unser (1995) uses an overcomplete wavelet decomposition, which

is referred to as “discrete wavelet frame”, for classification of texture. Coifman and

Donoho (1995); Lang et al. (1995) applied translation invariant transform to thresh-

olding for noise reduction. Nason and Silverman (1995) describes “stationary wavelet

transform” with example applications for local spectra estimation. Liang and Parks

(1996) applied a translation-invariant wavelet algorithm for data compression.

Such proposed methods are described with slightly different terms but essentially

are NDWT and utilize properties such as translation/shift invariance and more dense

approximation of continuous wavelet transform that are results of redundancy of

NDWT. The NDWT is a redundant transform because it is performed by repeated

filtering with a minimal shift, or a maximal sampling rate, at all dyadic scales. Sub-

sequently, the transformed signal contains the same number of coefficients as the

original signal at each multiresolution level. We start by describing algorithmic pro-

cedure of 1-D NDWT. Traditionally, we perform a wavelet transformation with a

convolution of an input data and wavelet and scaling functions. A principal differ-

ence between NDWT and DWT is a sampling rate. This will be illustrated in the

following derivations. With an assumption that a multiresolution framework is spec-

ified and that φ and ψ are scaling and wavelet functions respectively. We represent
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a data vector y = (y0, y1, . . . , ym−1) of size m as a function f in terms of shifts of the

scaling function at some multiresolution level J such that J − 1 < log2m ≤ J , as

f(x) =
m−1∑
k=0

ykφJ,k(x),

where φJ,k(x) = 2J/2φ
(
2J(x− k)

)
. The data interpolating function f can be re-

expressed as

f(x) =
m−1∑
k=0

cJ0,kφJ0,k(x) +
J−1∑
j=J0

m−1∑
k=0

djk2
j/2ψ

(
2j(x− k)

)
, (46)

where

φJ0,k(x) = 2J0/2φ
(
2J0(x− k)

)
,

ψjk(x) = 2j/2ψ
(
2j(x− k)

)
,

j = J0, . . . , J − 1; k = 0, 1, . . . ,m− 1.

The coefficients, cJ0,k, k = 0, . . .m− 1 and djk, j = J0, . . . , J − 1; k = 0, . . . ,m− 1,

represent the NDWT of vector y.

Notice that a shift, k, is constant at all levels, unlike the traditional orthogonal

wavelet transform in which the shifts are level dependent, 2−jk. This constancy of

the shifts across the levels in NDWT indicates that the transform is time invariant.

As we see from equation (52), the NDWT produces a redundant representation of the

data. For an original signal of size m transformed into p decomposition levels (the

depth of transform is p), the resulting non-decimated wavelet coefficients are c(J0) =

(cJ0,0, . . . , cJ0,m−1) and d(j) = (dj,0, . . . , dj,m−1) , j = J0, . . . , J − 1, for p = J − J0.

Since NDWT does not decimate, nothing stops the user from taking p larger than

dlog2me. For such p coarse levels of details become zero-vectors.

Coefficients d(j) serve as the detail coefficients while coefficients c(J0) serves as the

coarsest approximation of the data. Later, we will refer to these coefficients as d-type

and c-type coefficients. With p detail levels, the total number of wavelet coefficients

39



is (p+ 1)×m. Such wavelet coefficients at different decomposition levels are related

to one another by Mallat’s pyramid algorithm (Mallat (1989b), Mallat (1989a)) in

which convolutions of low- and high-pass wavelet filters, (h) and (g), respectively,

take place in a cascade. The filters h and g are known as quadrature mirror filters.

As we discussed in Remark 1.4.1, given a low-pass wavelet filter h = (h0, . . . , hM),

fully and uniquely specified the choice of wavelet basis, the ith entry of the high-pass

counterpart g is gi = (−1)l−i · hM−s−i, for arbitrary but fixed integers l and s. We

will further discuss the filter operators in the context of NDWT later in this section.

Expanding on the 1-D definitions, we overview a 2-D NDWT of f(x, y), where

(x, y) ∈ R2. Several versions of 2-D NDWT exist but we focus on the standard and

a scale-mixing versions. For the standard 2-D NDWT, the wavelet atoms are

φJ0;k1,k2(x, y) = 2J0φ(2J0(x− k1))φ(2J0(y − k2)),

ψ
(h)
j;k1,k2

(x, y) = 2jφ(2j(x− k1))ψ(2j(y − k2)),

ψ
(v)
j;k1,k2

(x, y) = 2jψ(2j(x− k1))φ(2j(y − k2)),

ψ
(d)
j;k1,k2

(x, y) = 2jψ(2j(x− k1))ψ(2j(y − k2)),

where (k1, k2) is the location pair, and j = J0, . . . , J − 1 is the scale. The depth of

the transform is p = J − 1− J0. The wavelet coefficients of f(x, y) are calculated as

cJ0;k1,k2 = 2J0
∫∫

f(x, y)φJ0;k1,k2(x, y) dxdy,

d
(i)
j;k1,k2

= 2j
∫∫

f(x, y)ψ
(i)
j;k1,k2

(x, y) dxdy,

where J0 is the coarsest decomposition level, and i ∈ {h, v, d} indicates the “orienta-

tion” of detail coefficients as horizontal, vertical, and diagonal (e.g., Vidakovic (1999),

p. 155). The tessellation to a standard 2-D NDWT is presented in Figure 14(a).
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For the scale-mixing 2-D NDWT, the wavelet atoms are

φJ01,J02;k(x, y) = 2(J01+J02)/2φ(2J01(x− k1))φ(2J02(y − k2)),

ψJ01,j2;k(x, y) = 2(J01+j2)/2φ(2J01(x− k1))ψ(2j2(y − k2)),

ψj1,J02;k(x, y) = 2(j1+J02)/2ψ(2j1(x− k1))φ(2J02(y − k2)),

ψj1,j2;k(x, y) = 2(j1+j2)/2ψ(2j1(x− k1))ψ(2j2(y − k2)),

where J01 and J02 are coarsest levels, j1 ≥ J01; j2 ≥ J02, and k = (k1, k2). As a result,

we obtain wavelet coefficients for f(x, y) from the scale-mixing NDWT as

cJ01,J02;k =

∫∫
f(x, y)φJ01,J02;k(x, y) dxdy,

hJ01,j2;k =

∫∫
f(x, y)ψJ01,j2;k(x, y) dxdy, (47)

vj1,J02;k =

∫∫
f(x, y)ψj1,J02;k(x, y) dxdy,

dj1,j2;k =

∫∫
f(x, y)ψj1,j2;k(x, y) dxdy.

Notice that in the standard NDWT, we use common j to denote a scale, while in the

scale-mixing NDWT, we use a pair (j1, j2), which indicates that two scales are mixed.

Figure 14(b) illustrates the tessellation of coefficients of scale-mixing 2-D NDWT. In

Section 2.2.1 we will refer to coefficients from (53) as c-, h-, v-, and d-type coefficients.

1.9.1 Discrete Version of NDWT

While the functional series involving wavelet and scaling functions as decomposing

atoms is an established mathematical framework for describing the NDWT, we pro-

vide an alternative description of NDWT using convolution operators (Nason and

Silverman (1995), Vidakovic (1999), Strang and Nguyen (1996)). Such a description

is preferred for discrete inputs.

Let [↑ 2] denote the upsampling of a given sequence by inserting a zero between

every two neighboring elements of a sequence. We define the dilations of wavelet
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(a) (b)

Figure 8: Four types of wavelet coefficients with their locations in the tessellation of a
2-D standard (a) and scale-mixing (b) NDWT of depth 3. Coefficients c represent the
coarsest approximation, h and v represent the mix of coarse and detail information,
and d carry information about details only.
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Figure 9: Lena image in different domains
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filters h and g as

h[0] =h, g[0] = g (48)

h[r] =[↑ 2]h[r−1], g[r] = [↑ 2]g[r−1].

Inserting zeros between each element of filters h[r−1] and g[r−1] creates holes (trous, in

French), which is why this approach is sometimes called Algorithm á Trous.

A non-decimated wavelet transform is completed by applying convolution opera-

tors, H[j] and G[j], which come from dilated filters h[r] and g[r] in sequence. Detail

Figure 10: Graphical explanation of the NDWT process. Given signal aJ of size m,
we decompose the signal to p + 1 multi-resolution subspaces that include p levels of
detail coefficients and one level of scaling coefficients, resulting in a set of coefficient
vectors, d(J−1),d(J−2), . . . ,d(J−p), and c(J−p) in shaded blocks.

and coarse coefficients generated from each level have an identical size, m, which is

the same as that of the original signal. To obtain coefficients at decomposition level

J − j, where j ∈ {1, 2, . . . , p}, we repeatedly apply convolution operators to a coarse

coefficient vector from the previous decomposition level, J − j + 1

c(J−j) = H[j−1]c(J−j+1)

d(J−j) = G[j−1]c(J−j+1),

where H[j−1] and G[j−1] are filter operators that perform low- and high-pass filtering

using quadrature mirror filters h[j−1] and g[j−1], respectively. The NDWT is the result
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of repeated applications of two filter operators, H[j] and G[j]. Operators (H[j], G[j])

do not have an orthogonality property, so to obtain such a property, we utilize two

additional operators D0 and D1, which perform decimation by selecting every even

and odd member of an input signal. An example of the use of the decimation operator

D with a signal x is

(D0x)i = x2i,

(D1x)i = x2i+1,

where i indicates the position of an element in the signal x. We apply (D0H
[j−1],

D0G
[j−1]) and (D1H

[j−1], D1G
[j−1]) to a given signal and obtain the even and odd

elements of NDWT wavelet coefficient vectors, c(J−j) and d(J−j), respectively. Thus,

equation (54) is, in fact, performed as the following process

(c(J−j))2i = D0H
[j−1]c(J−j+1)

(c(J−j))2i+1 = D1H
[j−1]c(J−j+1)

(d(J−j))2i = D0G
[j−1]c(J−j+1)

(d(J−j))2i+1 = D1G
[j−1]c(J−j+1).

We apply the filtering twice at the even and odd positions for each decomposition

level, so a shift does not affect transformation results, which means that the NDWT

is time-invariant. Such time-invariance property of the NDWT yields a smaller mean-

squared-error and reduces the Gibbs phenomenon in de-noising Coifman and Donoho

(1995). However, the violation of variance preservation in the NDWT complicates

the signal reconstruction.

1.9.2 Scaling, Anisotropy, and Wavelet Spectrum

We present several properties that self-similar processes exhibit in the wavelet do-

main. Some seminal papers in this field are written by Flandrin and his collaborators
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(Abry et al., 1993; Flandrin, 1989b,a, 1992). A rich amount of recent literature con-

tinues with this topic. The self-similarity is an inherent property in a number of

high-frequency real-life signals and images. Wavelets, which are local and adaptive

functional bases, are suitable for assessing the degree of self-similarity in such data

Vidakovic (1999). The literature on assessing the Hurst exponent is rich and the

monograph Doukhan et al. (2003) provides a comprehensive overview.

To quantify characteristics within 2-D inputs with a wavelet spectrum, we consider

two types of descriptors: scaling and asymmetry measures. Defined in a time/scale

domain, a wavelet spectrum represents the distribution of energies within an original

signal along the range of scales (i.e., resolution levels). In the wavelet jargon, the term

“energy” stands for a squared wavelet coefficient. For each 2-D resolution level in-

dexed by j = (j1, j2), |dj|2 represents the average level energy. The wavelet spectrum

refers to a sequence of logarithms of average level energies along a hierarchy that can

be selected in various ways. Figure 11 demonstrates three possible hierarchies in a tes-

sellation of 2-D scale mixing NDWT. In this thesis, we focus on only the main diagonal

hierarchy whose 2-D scale indices coincide, i.e., j1 = j2. We denote a set of levels that

belong to the main diagonal hierarchy js = (j, j), where max(j02, j01) ≤ j ≤ J − 1.

Wavelet coefficients obtained from an NDWT possess spatial location invariance

across the level spaces. Thus, once the area of interest in an original signal is selected,

one can easily identify wavelet coefficients in each resolution level that correspond to

the selected area. Therefore, when calculating a wavelet spectrum, one can use either

all wavelet coefficients or only the portion of coefficients corresponding to an area of

interest. Such local spectra are natural for NDWT, unlike the orthogonal transforms

that decimate. Right panel in Figure 13 exemplifies this feature. For the estimation

of the scaling, we measure the rate of average energy decrease along js in the main

diagonal hierarchy. When this decrease of energy is regular, it can be connected to the

degree of self-similarity in signals and defines a commonly used scaling index, Hurst
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Figure 11: Three hierarchies of detail spaces in the tessellation of 2-D scale mixing
NDWT of depth 4, where we index detail spaces with the pair of indices (j1, j2). (a)
A main diagonal hierarchy whose scale indices satisfy j1 = j2, (b) a hierarchy whose
scale index j2 is fixed to the finest resolution level, and (c) a hierarchy whose scale
indices satisfy j1 = j2 + 1.

exponent H. The relationship between energies in the wavelet spectra and Hurst

exponent H is captured by a simple equation. To explain the equation in detail, we

consider one example with a 2-D fBf BH(x, y) ∈ R2 of size (2J × 2J). We perform a

2-D scale-mixing NDWT to BH(x, y) with the lowest resolution levels for column and

row decompositions of BH(x, y) as j01 and j02, respectively. Figure 12 demonstrates

the resulting resolution space and wavelet coefficients yielded from this transform.

The wavelet spectrum from the main diagonal hierarchy is defined as a set of pairs

(
j, log2

(
|d(j,j);k|2

) )
, (49)

where (j, j) ∈ js and max(j02, j01) ≤ j < J . Wavelet coefficients d(j,j);k are approxi-

mately independent and identically distributed Gaussian random variables with zero

mean and a variance dependent on level j, Heneghan et al. (1996). The expected

energy at each level in the main diagonal hierarchy is

E
[
|d(j,j);k|2

]
= 22j

∫∫
ψ
(
2j(v − k)

)
ψ
(
2j(u− k)

)
E
[
BH(v)BH(u)

]
dvdu

=
σ2
H

2
Vψ2−(2H+2)j, (50)
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Figure 12: The location of wavelet coefficients that belong to various resolution levels
when we perform a 2-D scale-mixing NDWT to an image of the size (2J × 2J) with
the lowest resolution levels for columns and rows of j01 and j02, respectively.

where (j, j) ∈ js, u,v ∈ R2, k = (k1, k2), and

Vψ = −
∫∫

ψ(p+ q)ψ(q)|p|2Hdpdq.

Expression Vψ is independent of scale j but dependent on wavelet function ψ and

Hurst exponent H. Details on derivation of (50) are deferred to Appendix A.1.

Taking the logarithm of both sides in (50) yields

log2E
[
|d(j,j);k|2] = −(2H + 2)j + C, (51)

where (j, j) ∈ js and C is a constant that does not depend on j but possibly on

wavelet function ψ and H. Figure 13 provides a graphic of a wavelet spectrum. In

the left panel of Figure 13, a wavelet spectrum of log average energies across the

scales is represented by a solid line, and its linear fit is represented by a dotted line.

The right panel of Figure 13 shows a 2-D NDWT of depth 5 of a image that has a

selected area of interest. Red marked areas represent wavelet coefficients that belong

to the area of interest and are used for scaling estimation from the main diagonal
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Figure 13: (a): Wavelet spectrum of log average energies across the scales represented
by a solid line and its linear fit represented by a dotted line. (b): A 2-D NDWT of
depth 5 of an image that has a selected area of interest(colored) with the diagonal
hierarchy of levels and pairs of subspaces for anisotropy calculations.

hierarchy. The left top image in the matrix represents the coarsest features of an

original image. Note that for calculation of the scaling descriptors, we use only

wavelet coefficients located in the colored areas, i.e., corresponding to the area of

interest since we are interested in local spatial characteristics. At each resolution

level, we can readily identify wavelet coefficients that correspond to a selected area

of interest in the original image. This spatial location invariance across the scales is

distinctive feature of NDWT’s, and enables the construction of local spectra.

Once we calculate the slope β̂ in the linear fit of pairs in (49), according to (51),

the Hurst exponent is estimated as Ĥ = −β̂/2− 1.

For the estimation of the degree of horizontal/vertical anisotropy Aj, we calculate
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the asymmetry ratio of two average energies that are adjacent to the main diagonal

hierarchy and whose scale indices differ by 1. Thus, an asymmetry measure at level j

is Aj = |d(j+1,j)|2/|d(j,j+1)|2, where (j, j) ∈ js. If an input image exhibits isotropy in

horizontal and vertical directions, the ratio is close to 1. Figure 13 visually describes

the linked pairs of subspaces used for calculation of four asymmetry measures. Intro-

duced scaling and anisotropy measures will be used in Chapter 3. In the next chapter,

we will introduce a matrix-based NDWT that can facilitate NDWT in various ways.
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Chapter II

MATRIX FOR NON-DECIMATED WAVELET

TRANSFORM

A traditional way of performing NDWT involves convolution of scaling and wavelet

functions with an input data, or a function. However, as all wavelet transforms are

linear, NDWT can be described as a matrix multiplication. This chapter develops

an algorithm that performs an NDWT as a matrix multiplication and provides the

algorithm as a MATLAB package, WavmatND, which efficiently performs NDWT.

The proposed package has three novel features. The first feature is that instead of

using convolution-based Mallat’s pyramid algorithm Mallat (1989a), we perform the

NDWT by matrix multiplication. The matrix is formed directly from wavelet filter

coefficients. Remenyi et al. (2014) also performed the NDWT using a matrix-based

approach; however, their rules of constructing a matrix were based on Mallat’s algo-

rithm. Percival and Walden (2006) provide a matrix construction rule for NDWT,

but the construction requires a convolution of filters in defining entries of the matrix,

which is, essentially, Mallat’s algorithm. The proposed method explicitly defines each

entry of the transform matrix directly from the filter elements. With its simple con-

struction rules, the proposed matrix-based NDWT requires significantly less time for

computation compared to the convolution-based NDWT when the input signals are

of a moderate size.

The second feature is that inverse transform matrix differs from the transpose of

direct transform matrix up to a multiplicative rescaling matrix. Rescaling of sub-

matrices of a NDWT matrix is needed to both obtain resulting wavelet coefficients
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in their proper scales and retrieve the original signal without loss of information.

Unlike the matrix for the orthogonal wavelet transform, which is a square matrix, a

NDWT matrix for a p-depth decomposition of a signal of size m consists of (p + 1)

square ([m×m]) submatrices, each of which corresponds to one decomposition level.

For a perfect reconstruction, the proposed process utilizes a weight matrix of size

[(p + 1) ·m× (p + 1) ·m] that enables lossless reconstruction. The multiplication of

the transposed NDWT matrix, the weight matrix, and the NDWT matrix, in that

order, yields an identity matrix of size [m ×m], which guarantees a lossless inverse

transform. The matrix of Percival and Walden (2006) can retrieve an input signal but

the resulting wavelet coefficients are down-scaled because of insisting on the energy

preservation in redundant transform. With the proposed two-stage process, we can

obtain the wavelet coefficients in their correct scale and then we can utilize a weight

matrix if the inverse transform is necessary.

The third feature is that the package can handle one- or two-dimensional (1-D

or 2-D) signals of an arbitrary size, and even the rectangular shapes in the case of a

2-D transform. This property is not shared by critically sampled wavelet transforms

that require an input of dyadic size. In addition, one can perform a 2-D NDWT with

two different wavelet bases, one base acting on the rows and another acting on the

columns of the 2-D input signal, which allows for more modeling freedom in the case

of spatially anisotropic 2-D signals.

2.1 Non-decimated Wavelet Transforms

Unique characteristics of the NDWT are well captured by its alternative names such

as “stationary wavelet transform,” “time-invariant wavelet transform,” “á trous trans-

form,” or “maximal overlap wavelet transform.” In this section, we will overview the

features of the NDWT that motivate such names, beginning with a description of a
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one-dimensional NDWT for a discrete input.

Assume that a multiresolution framework is specified and that φ and ψ are scaling

and wavelet functions respectively. We represent a data vector y = (y0, y1, . . . , ym−1)

of size m as a function f in terms of shifts of the scaling function at some multireso-

lution level J such that J − 1 < log2m ≤ J , as

f(x) =
m−1∑
k=0

ykφJ,k(x),

where φJ,k(x) = 2J/2φ
(
2J(x− k)

)
. The data interpolating function f can be re-

expressed as

f(x) =
m−1∑
k=0

cJ0,kφJ0,k(x) +
J−1∑
j=J0

2n−1∑
k=0

djk2
j/2ψ

(
2j(x− k)

)
, (52)

where

φJ0,k(x) = 2J0/2φ
(
2J0(x− k)

)
,

ψjk(x) = 2j/2ψ
(
2j(x− k)

)
,

j = J0, . . . , J − 1; k = 0, 1, . . . ,m− 1.

The coefficients, cJ0,k, k = 0, . . .m− 1 and djk, j = J0, . . . , J − 1; k = 0, . . . ,m− 1,

comprise the NDWT of vector y.

Notice that a shift, k, is constant at all levels, unlike the traditional orthogonal

wavelet transform in which the shifts are level dependent, 2−jk. This constancy of

the shifts across the levels in NDWT indicates that the transform is time invariant.

As we see from equation (52), the NDWT produces a redundant representation of the

data. For an original signal of size m transformed into p decomposition levels (the

depth of transform is p), the resulting non-decimated wavelet coefficients are c(J0) =

(cJ0,0, . . . , cJ0,m−1) and d(j) = (dj,0, . . . , dj,m−1) , j = J0, . . . , J − 1, for p = J − J0.

Since NDWT does not decimate, nothing stops the user from taking p larger than

dlog2me. For such p coarse levels of detail become zero-vectors.

52



Coefficients in d(j) serve as the detail coefficients while coefficients in c(J0) serve

as the coarsest approximation of the data. Later, we will refer to these coefficients

as d-type and c-type coefficients. With p detail levels, the total number of wavelet

coefficients is (p+ 1)×m. Such wavelet coefficients at different decomposition levels

are related to one another by Mallat’s pyramid algorithm (Mallat (1989b), Mallat

(1989a)) in which convolutions of low- and high-pass wavelet filters, (h) and (g),

respectively, take place in a cascade. The filters h and g are known as quadrature

mirror filters. Given a low-pass wavelet filter h = (h0, . . . , hM), fully and uniquely

specified by the choice of wavelet basis, the ith entry of the high-pass counterpart g is

gi = (−1)l−i · hM−s−i, for arbitrary but fixed integers l and s. We will further discuss

the filter operators in the context of NDWT later in this section.

Expanding on the 1-D definitions, we overview a 2-D NDWT of f(x, y), where

(x, y) ∈ R2. Several versions of 2-D NDWT exist but we focus on the standard and

a scale-mixing versions. For the standard 2-D NDWT, the wavelet atoms are

φJ0;k1,k2(x, y) = 2J0φ(2J0(x− k1))φ(2J0(y − k2)),

ψ
(h)
j;k1,k2

(x, y) = 2jφ(2j(x− k1))ψ(2j(y − k2)),

ψ
(v)
j;k1,k2

(x, y) = 2jψ(2j(x− k1))φ(2j(y − k2)),

ψ
(d)
j;k1,k2

(x, y) = 2jψ(2j(x− k1))ψ(2j(y − k2)),

where (k1, k2) is the location pair, and j = J0, . . . , J − 1 is the scale. The depth of

the transform is p = J − 1− J0. The wavelet coefficients of f(x, y) are calculated as

cJ0;k1,k2 = 2J0
∫∫

f(x, y)φJ0;k1,k2(x, y) dxdy,

d
(i)
j;k1,k2

= 2j
∫∫

f(x, y)ψ
(i)
j;k1,k2

(x, y) dxdy,

where J0 is the coarsest decomposition level, and i ∈ {h, v, d} indicates the “orienta-

tion” of detail coefficients as horizontal, vertical, and diagonal (e.g., Vidakovic (1999),

p. 155). The tessellation to a standard 2-D NDWT is presented in Figure 14(a).
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For the scale-mixing 2-D NDWT, the wavelet atoms are

φJ01,J02;k(x, y) = 2(J01+J02)/2φ(2J01(x− k1))φ(2J02(y − k2)),

ψJ01,j2;k(x, y) = 2(J01+j2)/2φ(2J01(x− k1))ψ(2j2(y − k2)),

ψj1,J02;k(x, y) = 2(j1+J02)/2ψ(2j1(x− k1))φ(2J02(y − k2)),

ψj1,j2;k(x, y) = 2(j1+j2)/2ψ(2j1(x− k1))ψ(2j2(y − k2)),

where J01 and J02 are coarsest levels, j1 ≥ J01; j2 ≥ J02, and k = (k1, k2). As a result,

we obtain wavelet coefficients for f(x, y) from the scale-mixing NDWT as

cJ01,J02;k =

∫∫
f(x, y)φJ01,J02;k(x, y) dxdy,

hJ01,j2;k =

∫∫
f(x, y)ψJ01,j2;k(x, y) dxdy, (53)

vj1,J02;k =

∫∫
f(x, y)ψj1,J02;k(x, y) dxdy,

dj1,j2;k =

∫∫
f(x, y)ψj1,j2;k(x, y) dxdy.

Notice that in the standard NDWT, we use common j to denote a scale, while in the

scale-mixing NDWT, we use a pair (j1, j2), which indicates that two scales are mixed.

Figure 14(b) illustrates the tessellation of coefficients of scale-mixing 2-D NDWT. In

Section 2.2.1 we will refer to coefficients from (53) as c-,h-, v-, and d-type coefficients.

While the functional series involving wavelet and scaling functions as decompos-

ing atoms is an established mathematical framework for describing the NDWT, we

provide an alternative description of NDWT using convolution operators (Nason and

Silverman (1995), Strang and Nguyen (1996), Vidakovic (1999) ). Such a description

is preferred for discrete inputs.

Let [↑ 2] denote the upsampling of a given sequence by inserting a zero between

every two neighboring elements of a sequence. We define the dilations of wavelet
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(a) (b)

Figure 14: Locations of four types of wavelet coefficients in the tessellation of 3-level
decomposition with the standard and scale-mixing 2-D NDWT’s. Different types of
coefficients are defined in (53).

filters h and g as

h[0] =h, g[0] = g (54)

h[r] =[↑ 2]h[r−1], g[r] = [↑ 2]g[r−1].

Inserting zeros between each element of filters h[r−1] and g[r−1] creates holes (trous,

in French), which is why this approach is sometimes called Algorithm á Trous, see

Shensa (1992).

A non-decimated wavelet transform is completed by applying convolution opera-

tors, H[j] and G[j], which come from dilated filters h[r] and g[r] in sequence. Detail

and coarse coefficients generated from each level have an identical size, m, which is

the same as that of the original signal. To obtain coefficients at decomposition level

J − j, where j ∈ {1, 2, . . . , p}, we repeatedly apply convolution operators to a coarse

coefficient vector from the previous decomposition level, J − j + 1

c(J−j) = H[j−1]c(J−j+1)

d(J−j) = G[j−1]c(J−j+1),
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Figure 15: Graphical explanation of the NDWT process. Given signal aJ of size m,
we decompose the signal to p + 1 multi-resolution subspaces that include p levels of
detail coefficients and one level of scaling coefficients, resulting in a set of coefficient
vectors, d(J−1),d(J−2), . . . ,d(J−p), and c(J−p) in shaded blocks.

where H[j−1] and G[j−1] are filter operators that perform low- and high-pass filtering

using quadrature mirror filters h[j−1] and g[j−1], respectively. The NDWT is the result

of repeated applications of two filter operators, H[j] and G[j]. Operators (H[j], G[j])

do not have an orthogonality property, so to obtain such a property, we utilize two

additional operators D0 and D1, which perform decimation by selecting every even

and odd member of an input signal. An example of the use of the decimation operator

D with a signal x is

(D0x)i = x2i,

(D1x)i = x2i+1,

where i indicates the position of an element in the signal x. We apply (D0H
[j−1],

D0G
[j−1]) and (D1H

[j−1], D1G
[j−1]) to a given signal and obtain the even and odd

elements of NDWT wavelet coefficient vectors, c(J−j) and d(J−j), respectively. Thus,
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equation (54) is, in fact, performed as the following process

(c(J−j))2i = D0H
[j−1]c(J−j+1)

(c(J−j))2i+1 = D1H
[j−1]c(J−j+1)

(d(J−j))2i = D0G
[j−1]c(J−j+1)

(d(J−j))2i+1 = D1G
[j−1]c(J−j+1).

We apply the filtering twice at the even and odd positions for each decomposition

level, so a shift does not affect transformation results, which means that the NDWT

is time-invariant. Such time-invariance property of the NDWT yields a smaller mean

squared error and reduces the Gibbs phenomenon in de-noising applications (Coifman

and Donoho, 1995). However, the violation of variance preservation in the NDWT

complicates the signal reconstruction. In the following section we will discuss how to

perform lossless reconstruction of an original image using a matrix-based NDWT.

2.2 Matrix Formulation of NDWT

In this section, we translate multiple convolutions in the NDWT into a simple matrix

multiplication. In Mallat’s algorithm, scaling and wavelet functions are convolved in

a cascade. Instead of performing convolutions with wavelet and scaling functions, we

formulate the NDWT as matrix multiplication. We simplify the cascade algorithm

as follows. With filtering matrices, Mallat’s cascade algorithm is implicit in repeated

matrix multiplications of low- and high-pass filter matrices, (H) and (G), respectively.

The following matrices illustrate combination of component filter matrices, to achieve

transforms of depth 1, 2, and 3.
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W (1)
m =

H1

G1


[2m×m]

,W (2)
m =


H2

G2

 ·H1

G1


[3m×m]

,W (3)
m =




H3

G3

 ·H2

G2

 ·H1

G1


[4m×m]

, . . .

Filter matrices

[
Hp Gp

]T
as submatrices of W

(p)
m are formed by simple rules. The

sizes of Hp and Gp for p ∈ {1, 2, . . . } are the same, m ×m, and their entries at the

position (i, j) are

aij = 1√
2
h

[p−1]
s , s = N + i− j modulo m

bij = 1√
2
(−1)sh

[p−1]
N+1−s, s = N + i− j modulo m,

respectively, where N is a shift parameter and h
[p−1]
s is the sth element of a dilated

wavelet filter h with p− 1 zeros in between the original components (h1, h2, . . . , hu),

h[p−1] = (h1,

p− 1︷ ︸︸ ︷
0, . . . , 0, h2,

p− 1︷ ︸︸ ︷
0, . . . , 0, h3, . . . ,

p− 1︷ ︸︸ ︷
0, . . . , 0, hu)

For example, h
[p−1]
1 = h1, h

[p−1]
p+1 = h2, . . . , and, h

[p−1]
p(u−1)+1 = hu. Following such

construction rules, W
(p)
m becomes a matrix of size

(
m(p + 1) × m

)
consisting of

p + 1 stacked submatrices of size [m × m]. The NDWT matrix formed in the de-

scribed process is not normalized and signal reconstruction cannot be done by using

its transpose only. Indeed, in terms of Mallat’s algorithm, for the inverse transform,

at each step the multiplication by 1/2 is needed for perfect reconstruction (see Mallat,

1999, Proposition 5.6).

Thus, we construct a diagonal weight matrix that rescales the square submatrices

comprising the NDWT matrix, to be used when performing the inverse transform.
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The weight matrix for W
(p)
m has size (m(p+ 1)×m(p+ 1)) and is defined as

T (p)
m = diag(

2m︷ ︸︸ ︷
1/2p, . . . , 1/2p,

m︷ ︸︸ ︷
1/2p−1, . . . , 1/2p−1,

m︷ ︸︸ ︷
1/2p−2, . . . , 1/2p−2, . . . ,

m︷ ︸︸ ︷
1/2, . . . , 1/2).

A 1-D signal y of size [m×1] is transformed in a p-level decomposition to a vector

d by multiplication by wavelet matrix W
(p)
m . The original signal is then reconstructed

by multiplying d by (W
(p)
m )′ rescaled by the weight matrix T

(p)
m .

d = W (p)
m × y[m×1]

y = (W (p)
m )′ × T (p)

m × d, (55)

where p and m are arbitrary.

Note that (W
(p)
m )′ × W

(p)
m 6= Im. On the other hand, column vectors of matrix

V
(p)
m =

(
T

(p)
m

)1/2

W
(p)
m form an orthonormal set, that is,

(V (p)
m )′ × V (p)

m = Im (56)

The product V
(p)
m × (V

(p)
m )′ cannot be an identity matrix, but∑

i

(
V (p)
m × (V (p)

m )′
)
ij

=

(∑
j

(
V (p)
m × (V (p)

m )′
)
ij

)′
= [1m,0pm] ,

where [1m,0pm] is a row vector consisting of m ones followed by the pm zeros.

Since Im = (V
(p)
m )′ × V (p)

m = (W
(p)
m )′ × T (p)

m ×W (p)
m , the perfect reconstruction is

achieved by (W
(p)
m )′ × T (p)

m applied on the vector transformed by W
(p)
m , as in (55).

Although transformation by V
(p)
m looks more natural because of (56), the scaling

of wavelet coefficients when transformed by V
(p)
m is not matching the correct scaling

produced by Mallat’s algorithm, or equivalently, by integrals in (52). The correct

scaling of wavelet coefficients is important in applications involving regularity assess-

ment of signals and images, as we will see in the mammogram example from Section

2.4.
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2.2.1 Scale-Mixing 2-D NDWT

A 2-D signal A of size [m × n] for p1- and p2-level decomposition along rows and

columns, respectively, is obtained by NDWT matrix multiplication from the left and

its transpose from the right. The transform results in a 2-D signal B of size (p1 +

1)m× (p2 + 1)n. The inverse transform applies the rescaling matrices T
(p1)
m and T

(p2)
n

on the corresponding NDWT matrices,

B = W (p1)
m ×A[m×n] × (W (p2)

n )′

A = (W (p1)
m )′ × T (p1)

m ×B × T (p2)
n ×W (p2)

n , (57)

Here p1, p2, m, and n can take any integer value, and W
(p1)
m and W

(p2)
m could be

constructed using possibly different wavelet filters.

Figure 16: Graphical illustration of a 2-D NDWT scale-mixing transform with 3-levels
along the columns and 2-levels along the rows. The NDWT matrices W1 and W2 can
be constructed by possibly different wavelet filters.

One of the advantages of the scale-mixing 2-D NDWT is its superior compress-

ibility. Wavelet transforms act as approximate Karhunen-Loève transforms and com-

pressibility in the wavelet domain is beneficial in tasks wavelet-based data compression

and denoising. When an image possesses a certain degree of smoothness, the coef-

ficients corresponding to diagonal decomposition atoms [d-coefficients in (53)] tend

to be smaller in magnitude compared to the c-, v- or h-type coefficients in (53).

As an example, consider performing a p-level decomposition of a 2-D image of size

[m×n] with the both NDWT matrix (as scale-mixing) and standard 2-D NDWT. The
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(a) (b)

Figure 17: Tesselation of 3-level decomposition with standard (left) and scale-mixing
(right) 2-D NDWT. Shadded areas correspond to d-type wavelet coefficients

compressibility of transform can be defined as the proportion of diagonal-type coeffi-

cients divided by the total number of wavelet coefficients. As we mentioned before,

d-coefficients correspond to decomposing atoms consisting of two wavelet functions,

while the atoms of c-, v- or h-type coefficients contain at least one scaling function.

In the scale-mixing NDWT of depth p, p2mn/((p+1)2mn) is the proportion of d-type

coefficients, while in the standard 2-D NDWT this proportion is pmn/((3p + 1)mn)

(see Figure 17). The former is always greater than the later, except when p = 1, in

which case the two proportions coincide. Thus, the scale-mixing 2-D NDWT tends

to be more compressive compared to the standard 2-D NDWT.

As an illustration, we transform a noiseless “Lena” image of size 256×512 (Figure

18(a)) with both the standard and scale-mixing 2-D NDWT in a 3-level decomposition

using the Haar wavelet. To compare the compressibility, we calculate and contrast

Lorenz curves. For the Lorenz curve, we normalize all squared wavelet coefficients

as pk = d2
k/(
∑

i d
2
i ), sort pk in an increasing order, and obtain the cumulative sum

of sorted pk. This cumulative sum of (normalized) energy for the two transforms is
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"Lena" image for the Lorez curve
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Figure 18: Image in panel (a) is transformed with both scale-mixing and standard
2-D NDWT into 3 decomposition levels based on a Haar wavelet filter. A detail of
the Lorenz curve in panel (b) indicates that the 2-D scale-mixing NDWT compresses
the information in image more efficiently compared to the traditional transform.

shown Figure 18b ). The curves are plotted against the portion of wavelet coefficients

used in the cumulative sum. At top right corner of Figure 18b, the curves meet, since

for both curves
∑
pi = 1. However, the blue curve (standard NDWT) uniformly

dominates the red curve (scale-mixing NDWT). This means that the compressibility of

the scale-mixing NDWT is higher. In simple terms, the scale-mixing NDWT requires

smaller portion of the wavelet coefficients to preserve the same relative “energy.”

To numerically quantify this compressibility, we think of pk’s as the probabilities

and calculate entropies of their distributions. Calculating the normalized Shannon

entropy, (
∑n

i=1 pi log pi)/ log n, we obtain 0.7994 for the scale-mixing NDWT and

0.8196 for the standard NDWT. The scale-mixing NDWT has lower entropy, which

confirms its superior compressibility. Although demonstrated here only on “Lena”

image, this superiority in compression for scale-mixing transforms holds generally, see

Remenyi et al. (2014).

2.3 Computational Efficiency of the NDWT Matrix

Next we discuss several features of NDWT matrix, so that users are aware of its

advantages as well as limitations.

Principal advantages of a NDWT matrix are compressibility, computational speed,
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and flexiblity in size of an input signal. We already discussed the better compress-

ibility when NDWT matrices are used for 2-D scale-mixing transforms.

Next, we compare the computation time of the matrix-based NDWT to that of

the convolution-based NDWT. The NDWT matrix performs a transform faster than

the convolution-based NDWT. This statement is conditional on the software used

for the computation. We used MATLAB version 8.6.0.267246 (R2015b, 64-bit) on a

laptop with quad-core CPU running at 1,200 MHz with 8GB of RAM.

At first glance, improving the speed of calculation by using matrix multiplication

over convolutions looks counterintuitive. The asymptotic computational complexity

for convolutions is much lower than the complexity of matrix multiplication. The

NDWT based on Mallat’s algorithm has calculational complexity of O(n log n), while

the (näıve) matrix multiplication has the complexity of O(n3). The complexity of

matrix multiplication could be improved by the Le Gall (2014) algorithm to O(n2.3729),

with a theoretical lower bound of O(n2 log n), still inferior to convolutions. However,

the “devil is in the constants.” For signals of moderate size, the calculational overhead

that manages repeated filtering operations in convolution-based approach slows down

the computation and direct matrix multiplication turns out to be faster.

As an illustration, we simulated 100 2-D fractional Brownian fields (fBf) of size

(210×210) with the Hurst exponent H = 0.5 and performed the eight-level decomposi-

tion NDWT with four wavelets: Haar, Daubechies (4 and 6 tabs), and Coiflet. For the

NDWT of a single signal, the computation time of the matrix-based NDWT was on

average of 9.02 seconds while that of the convolution-based NDWT was on average of

17.26 seconds. In addition, about 40 % of the computation time of the matrix-based

NDWT was spent on constructing an NDWT matrix that could be used repeatedly

in simulation for the same type of NDWT once generated. Thus, as the NDWT is

repeated on the input signals of the same size using the same wavelet filter, the dif-

ference in computation time becomes even greater. For a 1-D signal transform, the
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Figure 19: Average computation time (in seconds) to perform the matrix-based and
convolution-based NDWT for 8-level decompositions along both rows and columns
using Coiflet, Daubechies 4, Daubechies 6, and Haar wavelets. The size of inputs is
210 × 210 and the computation time is averaged over 100 repetitions.

matrix-based NDWT is approximately twice as fast as the convolution-based NDWT

under the given conditions, but this factor increases to three for the NDWT of 100

signals having the same size and transformed using the same matrix.

While NDWT matrices reduce the computation time by storing all entries of the

matrices used in convolution for each decomposition level in a single matrix, such

property can limit the usage of NDWT matrices. When the size of an input is large,

a computer with standard specifications may not have enough memory to store a

NDWT matrix of appropriate size. This issue affects mostly the cases of 1-D signals.

For 2-D transforms, if the computer can store an image, it can most likely store the

NDWT matrix, since the matrix is only (p+ 1) times larger, and p is typically small.

To find a limit on the size of an 1-D input, we repeatedly constructed NDWT matrices

for one-level decomposition increasing the size of an input by 500 in each trial. We

found that as the size of an input signal exceeded 35, 000, matrix construction was

not possible because of limited memory capacity.

The matrix-based NDWT can be applied to signals of a non-dyadic length and for

2-D applications, to rectangular signals of possibly non-dyadic sides. Typically, the
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Figure 20: Computation time (in seconds) of the matrix- and convolution-based
NDWT for 8-level decomposition evaluated for 100 2-D signals of the size (1, 024 ×
1, 024) using Haar wavelet. The matrix was pre-constructed to perform the same type
of transform.

standard convolution-based NDWT can only manage dyadic or squared 2-D input

signals of dyadic scale (e.g., Wavelab).

2.4 Two Examples of Application

In this section, we provide two applications in which the package WavmatND is

used. In the first application we apply our matrix-based NDWT to obtain a scaling

index from the background of a mammogram image. The scaling index of an image

is measured by Hurst exponent, a dimensionless constant in interval [0, 1]. For locally

isotropic medical images, the Hurst exponent is known to be useful for diagnostic

purposes (Ramirez and Vidakovic (2007), Nicolis et al. (2011), Jeon et al. (2014)).

Wavelet-based spectra of an image is defined on a selected hierarchy of multireso-

lution spaces in a wavelet representation as a set of pairs (j, S(j)), where j is the

multiresolution level and S(j) is the logarithm of the average of squared wavelet co-

efficients at that level. The Hurst exponent, as a measure of regularity of the image,

is functionally connected with the slope of a linear fit on pairs (j, S(j)). Any type

of wavelet decomposition can serve as a generator of wavelet spectra, and in this

application we look at 2-D scale-mixing NDWT of a digital mammogram.

The digital mammogram analyzed comes from the Digital Database for Screening

Mammography (DDSM) at the University of South Florida. The image is digitized
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by HOWTEK scanner at the full 43.5-micron per pixel spatial resolution and features

craniocaudal (CC) projection. A detailed description of the data can be found in

Bowyer et al. (1996). Figure 21 shows the location of the region of interest (ROI)
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Figure 21: A ROI in a mammogram image selected for the estimation of scaling.

within the mammogram. We selected the ROI of size 2401×1301 and transformed it to

a scale-mixing 2-D non-decimated wavelet domain. The spectral slope is estimated

from the levelwise log-average squared coefficients along the diagonal hierarchy of

multiresolution spaces, comprising the wavelet spectra, as in Figure 22. The slope of

−2.6722 gives the Hurst exponent of −(slope + 2)/2 = 0.3361. Details can be found

in 3 who use the Hurst exponent estimators to classify the mammograms from the

DDSM data base for breast cancer detection.

In the second example, we denoise a signal captured by an atomic force microscope.

The atomic force microscopy (AFM) is a type of scanned proximity probe microscopy

that measures the adhesion strength between two materials at the nanonewton scale.

The AFM data from the adhesion measurements between carbohydrate and the cell
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Figure 22: Left panel: The selected region of interest (ROI) where the Hurst exponent
is estimated. Right panel: The dash-dotted line represents 2-D non-decimated wavelet
spectra of the ROI from the left panel. The dashed line shows the regression result
using the corresponding energy levels.

adhesion molecule (CAM) E-Selectin was collected by Bryan Marshall from the De-

partment of Biomedical Engineering at Georgia Institute of Technology. The technical

description and details are provided in Marshall et al. (2005).

In AFM, a cantilever beam is adjusted until it bonds with the surface of a sample,

and then, the force required to separate the beam and sample is measured from the

beam deflection. Beam vibration can be caused by external factors such as thermal

energy of the surrounding air and the footsteps of someone outside the laboratory. The

vibration of a beam shows as noise on the deflection signal. For denoising purposes, we

decomposed AFM signal of size 3,000 into 10 decomposition levels using the NDWT

with a 6-tab Daubechies wavelet (3 vanishing moments) and applied hard thresholding

on wavelet coefficients. The threshold for this process is set as
√

2 logmσ̂, where σ̂ is

an estimator of standard deviation of noise present in the wavelet coefficients at the
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Figure 23: Denoising of AFM by hard-thresholding on NDWT coefficients with 6-tab
Daubechies wavelet.

finest level of detail, and m is the size of the original signal. Given the redundancy of

the transform, we estimate σ̂ by averaging two estimators, σ̂o and σ̂e as
√

(σ̂o + σ̂e)/2.

Estimators σ̂o and σ̂e are sample standard deviations of wavelet coefficients at every

odd and even locations, respectively, within the finest level of detail. Figure 23 shows

the noisy AFM signal and its denoised version. The researchers are particularly

interested in the shape of the signal for the first 350 observations of an AFM signal,

prior to cantilever detachment.

2.5 Package Description and Demos

The MATLAB package, WavmatND, includes two core functions, several additional

functions, and data sets needed for illustrative examples and demos.
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2.5.1 Core Functions

WavmatND() is a core function that generates a transform matrix. Inputs to this

function are a wavelet filter, size of an input signal, the depth of transformation, and

a shift. The shift corresponds to parameter s in the definition of quadrature mirror

filter gi = (−1)l−ihM−s−i, i = 0, . . . ,M, and is usually taken as 0 or 2.

weight() generates a weight matrix that rescales every submatrix in the inverse

wavelet transform. This matrix is necessary for the lossless inverse transform, as in

(57). It assigns different weights to each submatrix, as described in Section 2.2. In-

puts to this function are the size of the original signal and the depth of the transform.

2.5.2 Other Functions and Data Sets Included

For the illustration purposes, we include a custom made function WaveletSpectra2NDM.m

for assessing the scaling in images based on 2-D NDWT.

WaveletSpectra2NDM() estimates a scaling index of an image using the diagonal

hieararchy of nested multiresolution spaces in a 2-D scale-mixing NDWT. It returns

the average level-energies for a specified range of levels, scaling slope, and a graph

showing linear regression fit of log energies on the selected levels. The inputs are 2-D

data/image, the depth of transform, a wavelet filter, a range of levels used for the

regression, and an option for showing the plot (1 for a plot and 0 for no plot).

NDWT2D() is a function that performs a standard 2-D NDWT using NDWT matrices.

It returns c-, h-, v-, and d-types of wavelet coefficients. In this transform there is no

scale mixing and x-scale is the same as the y-scale. Inputs to this function are an

image, a wavelet filter, the depth of transform, and a shift.

filters.m contains some commonly used wavelet filters needed for construction of

a NDWT matrix. It provides Haar, Daubechies 4-20, Symmlet 8-20, and Coiflet 6,
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12, and 18 filters with high accuracy. Users can choose an appropriate wavelet filter

based on type of analysis and input data, compromising between the smoothness and

locality.

afm.mat and tissue.mat are data sets used in the two applications. Interested read-

ers can load the data sets for further analysis. We also included the code used to

generate the results in the thesis at exampleApplications.m.

lena.mat is well-known image of Lena Söderberg, one of the most used images in

signal processing community. This image is utilized in DEMO 1 explained in the

next section.

2.5.3 DEMO 1: Transform and reconstruction

As we discussed earlier, a matrix-based NDWT maps an original data set into a time-

scale domain with efficient and simple steps. In the following code, we load image

lena, of size (256× 512) and create two NDWT matrices W1 and W2 that perform the

NDWT on image by columns and rows, respectively. We use the Haar wavelet and

perform a p-depth NDWT in both columns and rows for p = log(min(m,n))− 1 = 7.

load lena; [n m]=size(lena);

p=floor(log(min(m,n)))-2; shift=0;

h = [1/sqrt(2) 1/sqrt(2)];

W1=WavmatND(h,n,p,shift); W2=WavmatND(h,m,p,shift);

tlena=W1*lena*W2’;

The reconstruction of the transformed lena tlena is simple. We generate weight

matrices, T1 and T2, of the sizes compactible with W1 and W2, respectively, and re-

construct the signal sa follows:

T1=weight(n,p); T2=weight(m,p);

rlena=W1’*T1*tlena*T2*W2;
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The reconstructed signal is rlena. The transformation and reconstruction are illus-

trated in Figure 24.

Original image

100 200 300 400 500

50

100

150

200

250

Transformed image with NDWT

200 400 600 800 1000 1200 1400

100

200

300

400

500

600

700

Retrieved image

100 200 300 400 500

50

100

150

200

250

Figure 24: Lena image in the original and wavelet domains from Demo 1.

2.5.4 DEMO 2: Denoising of Doppler Signal

In this demo, we first generate a Doppler signal s of size 1,000 and a matching signal

noise consisting of i.i.d normal variables with mean 0 and variance 0.052. The sum

of s and noise constitutes a noisy signal sn with signal-to-noise ratio of 5.78.

sigma=0.05; m=250;

t = linspace(1/m,1,m);

s = sqrt(t.*(1-t)).*sin((2*pi*1.05) ./(t+.05));

noise=normrnd(0,1,size(s))*sigma;

sn=s+noise;

Next, with a Haar wavelet, we generate the NDWT matrix, W, which decomposes the

signal into
(
blog(1000)c − 1

)
decomposition levels. The resulting wavelet coefficients

are in tsn.

J=floor(log2(m)); k=J-1;
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qmf = [1/sqrt(2) 1/sqrt(2)];

W = WavmatND(qmf,m,k,0);

T = weight(m, k);

tsn=W*sn’;

Then, we apply hard thresholding for denoising. Hard thresholding is applied to all

detail level subspaces, and the threshold is set to be
√

2 log(m)σ̂, where σ̂ is the

square root of average of variances of wavelet coefficients at odd and even positions

at the finest level of detail, and m is the length of the original signal.

sigma2hat=(var(tsn(end-m+1:2:end))+var(tsn(end-m:2:end)))/2;

threshold=sqrt(2*log(k*m)*sigma2hat);

snt= tsn(m+1:end).*(abs(tsn(m+1:end))>threshold);

rs=W’*T*[tsn(1:m); snt];

The reconstructed denoised signal is rs.
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Figure 25: Doppler signals in time and wavelet domains for denoising from Demo 2.
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2.6 Discussion

The non-decimated wavelet transform (NDWT) possesses properties beneficial in var-

ious wavelet applications. We developed MATLAB package,WavmatND, which

performs the NDWT in one or two dimensions. Instead of repeated convolutions

that are standardly performed, the NDWT is performed by matrix multiplication.

This significantly decreased the computation time in simulations when performed in

MATLAB computing environment. This reduction in computation time is addition-

ally augmented when we applied the NDWT repeatedly to signals of the same size,

decomposition level, and choice of wavelet basis. In 2-D case, the NDWT matrix

yields a scale-mixing NDWT, which turns out to be more compressive compared to

the standard 2-D NDWT. For lossless retrieval of an original signal, we utilize a

weight matrix. We also relax the constraint on the size of input signals so that the

NDWT could be performed on signals of non-dyadic size in one or two dimensions.

We hope that this stand-alone MATLAB package will be a useful tool for practitioners

interested in various aspects of signal and image processing.

The package WavmatND can be downloaded from Jacket’s Wavelets WWW

repository site http://gtwavelet.bme.gatech.edu/.
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Chapter III

NON-DECIMATED WAVELET SPECTRA AND ITS

APPLICATION

In this chapter, we apply the NDWT-based scaling estimation method introduced in

section 1.9.2 to simulated and mammographic images and improve scaling parameter

estimation.

The method is illustrated with an application of the breast cancer detection. Breast

cancer is the most common form of cancer in terms of incidence and the second most

common form of cancer with regards to cancer mortality in women in the United

States. The early detection of the breast cancer is crucial for patients’ survival because

the survival rates significantly decrease as the breast cancer metastasizes American-

CancerSociety (2014). Mammographic screening is the most common means of breast

cancer screening for the early detection of breast cancer. However, even experienced

radiologists misdiagnose up to 30% of mammograms because breast tissue is complex

and signatures of disease can be subtle Martin et al. (1979). In addition, multiple

mammographic screenings might be required to confirm the cancer and each screen-

ing is costly and stressful to the subjects. A number of existing computer methods

for breast cancer detection focus on the detection of specific markers, such as tumors

or micro-calcifications. In this chapter, we characterize the self-similar properties of

normal breast tissue with NDWT, where non-normal tissue is a potential marker of

breast cancer.

To assess the health conditions based on mammographic images, we utilize a

method based on non-decimated wavelet spectra that is introduced in section 1.9.2.

The parameters describing spectral regularity form a battery of spectral summaries
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which describe the self-similarity and the degree of fractality present in mammogram

images. Diagnostics of breast cancer based on scaling measures of mammograms

obtained with orthogonal wavelet transform (DWT) and linear regression can be

found in Nicolis et al. (2011). For the same task, multifractal spectral tools have been

used in Ramı́rez-Cobo and Vidakovic (2013) while the complex wavelets have been

utilized by Jeon et al. (2014). Extending on the aforementioned results, we develop

a wavelet spectral scaling estimation method based on the non-decimated wavelet

transform (NDWT). The NDWT provides two features that improve on the scaling

estimation: First, the NDWT as a redundant transform, yields wavelet coefficients

at a maximal sampling rate independently of the multiresolution level. Thus, we

obtain the maximum number of wavelet coefficients at all levels, which improves the

stability and accuracy of estimation. Second, the size of an input signal is maintained

at each resolution level. This enables us to localize wavelet coefficients corresponding

to a region of interest (ROI) at any level in the wavelet domain. We highlight such

features in a simulation study and an application for breast cancer detection with

mammogram images. In addition, non-decimated transforms do not require dyadic

size inputs, which is a constraint for wavelet transforms that decimate. To understand

benefits of NDWT in scaling estimation, we start by estimating simulated signals and

compare the estimation performance of the methods.

3.1 Simulated cases

In a simulation study, we compare the performance of NDWT- and DWT-based

scaling estimation methods. We simulate three sets of 500 2-D fBm signals of size

29 × 29 with Hurst exponents 0.3, 0.5, and 0.7, respectively. Next, we transform

each signal into 8 multiresolution subspaces for both row and column decompositions

with a 2-D scale-mixing NDWT based on four wavelets: Daubechies 6, Symmlet 8,

Coiflet 6, and Haar. The wavelets are indexed by number of filter components and
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not by the number of vanishing moments. We found that the estimation performance

is robust with respect to choice of wavelet filter. In estimating the scaling, we take

logarithm on part of the main diagonal wavelet spectrum which includes level (j, j)

where j = 2, 3, . . . , 6, and then fit a linear regression model on log average level

energies. The slope of this linear regression leads the estimator of Hurst exponent.

We evaluate the performance of both NDWT- and DWT- based estimation methods,

by comparing their means, variances, and biases.

Unlike the decimated case in which the number of coefficients differs at each

level, and correct linear fitting procedure involves weighted regression Veitch and

Abry (1999), here the ordinary least square (OLS) regression provides theoretically

correct and satisfactory fit. Because of redundancy, dependence among neighboring

wavelet coefficients within the same level is much more pronounced than in the case

of orthogonal wavelets. Although this dependence is not biasing estimators, the

variances of estimators are affected. Another factor that influences variance is the

choice of wavelet basis, and more local wavelet bases are preferred.

Tables 5-7 summarize the estimation results under various settings. An average of

Ĥ, its mean-square error, variance, and bias-squared, based on 300 2-D fBm’s when

true Hurst exponents, H = 0.3, 0.5 and 0.7, are provided. Symmlet 8, Daubechies 6,

Coiflet 6, and Haar wavelet bases are used in non-decimated and orthogonal versions

of wavelet spectra. Figure 26-28 show box-and-whisker plots of simulations described

in Tables 5-7.

Because NDWT produces the maximum number of wavelet coefficients at each

resolution level, we are able to obtain more accurate estimates of energies with more

coefficients to average at each level. Thus, the NDWT-based method yields estimators

with lower mean squared errors compared to the DWT-based method. As it can be

seen in Tables 5-7 and Figures 26-28, the empirical variances are influenced by the

choice of wavelet. The redundancy of NDWT turned out to be beneficial despite some
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Table 5: An average of Ĥ, its mean-square error, variance, and bias-squared, based on
300 2-D fBm’s when true H = 0.3 obtained by various wavelet-bases and transform
choices, i.e., non-decimated and orthogonal.

Wavelets Symmlet 8 Daubechies 6 Coiflet 6 Haar
ND Ortho ND Ortho ND Ortho ND Ortho

Mean 0.2946 0.2945 0.2955 0.2939 0.2963 0.2939 0.2959 0.2632
MSE 0.0017 0.0043 0.0016 0.0041 0.0015 0.0041 0.0012 0.0047

Variance 0.0017 0.0043 0.0015 0.0041 0.0015 0.0041 0.0012 0.0034
Bias 2.2E-5 1.3E-5 1.4E-5 2.2E-5 7.9E-6 2.2E-05 1.2E-5 0.0013

Table 6: As in Table 5 but for H = 0.5.

Wavelets Symmlet 8 Daubechies 6 Coiflet 6 Haar
ND Ortho ND Ortho ND Ortho ND Ortho

Mean 0.5115 0.5096 0.5109 0.5112 0.5109 0.5125 0.4703 0.5153
MSE 0.005 0.002 0.0046 0.0019 0.0046 0.0018 0.0044 0.0018

Variance 0.0049 0.0019 0.0045 0.0018 0.0045 0.0017 0.0035 0.0016
Bias 0.0001 8.5E-5 9.9E-5 0.0001 9.9E-5 0.0001 0.0009 0.0002

Table 7: As in Table 5 but for H = 0.7.

Wavelets Symmlet 8 Daubechies 6 Coiflet 6 Haar
ND Ortho ND Ortho ND Ortho ND Ortho

Mean 0.7212 0.727 0.7279 0.6688 0.7237 0.7267 0.7256 0.7267
MSE 0.0026 0.0065 0.0028 0.0045 0.0026 0.0058 0.0026 0.0058

Variance 0.0022 0.0058 0.002 0.0035 0.002 0.0051 0.002 0.0051
Bias 0.0004 0.0007 0.0008 0.001 0.0006 0.0007 0.0006 0.0007
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Figure 26: Boxplots of Ĥ from 300 simulations of 2-D fBm’s when H = 0.3 with
various wavelet bases and non-decimated and orthogonal transform.
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Figure 27: As in Figure 26, but for H = 0.5.
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Figure 28: As in Figure 26, but for H = 0.7.
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negative effect of increased levelwise dependence among the coefficients.

3.2 Application in Mammogram Diagnostic

We apply the 2-D scale-mixing NDWT-based method to digital mammograms with

the goal of identifying wavelet features suggestive of breast cancer.

3.2.1 Source of Data

We obtain the mammographic images from Digital Database for Screening Mammog-

raphy (DDSM) at the University of South Florida Bowyer et al. (1996). All cases

examined had biopsy results which served as ground truth. University researchers

used the HOWTEK scanner at the full 43.5-micron per pixel spatial resolution to

scan 45 mammograms from patients with normal studies and 79 from patients with

confirmed breast cancer. Each case contains two images of each breast in cranio-

caudal (CC) and mediolateral oblique (MLO) projections. From these images, we
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obtain 124 CC projection images and identify background tissue area of a breast in

each mammographic image so that we can extract wavelet features that indicate the

health conditions of patients based on the identified tissue areas without affects of

background non-breast area. Figure 29 shows the mammogram and the mask image,

which is a binary image that takes value 1 if the location belongs to a breast tissue

area or 0 otherwise. In a subsequent classification process, we use the mask image to

filter out numerical values (i.e., wavelet coefficients) from NDWT that are irrelevant

to defining self-similar properties of breast tissues.

3.2.2 Diagnostic Classification

For breast cancer diagnostics, we performed 2-D scale-mixing NDWT of depth 6 for

each mammogram. The mammograms had various sizes and the location of a breast

tissue area within a mammogram also varied. As we were interested exclusively in the

scaling characteristics of the breast tissue, we first identified the wavelet coefficients,

which belong to the breast tissue area using a two-step process. We began by orienting

all mammograms from left to right, so that a breast tissue area starts at the right-

hand side of mammogram. Then, for each row, we defined the boundary of the breast

tissue area. This was done by an algorithm that selected the left-most-pixel for

which the average intensity of the 64 subsequent pixels decreased below a predefined

threshold λ. We averaged a sequence of pixel intensities so that noisy fluctuations

among pixel intensities in a row are smoothed, to prevent multiple boundary points

in a single row of pixels. Once the boundary point in each row of pixels was identified,

we adjust for the “cone-of-influence” effect typical for all wavelet transforms. The

cone-of-influence effect refers to a blurring effect of wavelet filters when applied in a

sequential manner, like in Mallat’s algorithm. Because of this blurring effect, a local

feature of a signal propagates along the multiresolution spaces in a shape of a cone.

The longer the wavelet filter, the wider the cone. To eliminate this effect, that is,
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Figure 29: The top panel depicts an exemplary row of pixel intensities from an
original image that exhibits fluctuations. The bottom panel shows the pixel intensity
smoothed by a moving average, from which we are able to identify a single boundary
pixel.

to eliminate influence of non-tissue pixels on the local wavelet spectra, we shift m

pixel-locations to the right from the original boundary to form an updated boundary.

To emphasize locality, we used Haar wavelet, which produces the most narrow

cone. The maximum length of a Haar wavelet filter convolved over the 6-level non-

decimated decomposition is bounded by 26 which is an approximation to the maximal

width of the cone. For comparisons and robustness assessment, in further analysis we

selected three m values, 0, 26, and 27.

Based on the boundary construction rules for each row, we form a 0-1 image

(mask) so that we can select wavelet coefficients corresponding to the ROI through a

simple multiplication.
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An entry at row i and column j of a binary image (mask) µ is

µij =

 1, 1
m

∑j+m
k=j+1 Iik > λ and j ≥ m+ 1

0, else

where Iik indicates a pixel intensity in a mammogram at position (i, k), and m the

length of a shift. The mask µ has the same size as the mammogram. The entry of µ

at location (i, j) is an indicator that is 1 if pixel (i, j) belongs to a breast tissue region

and is unaffected by the cone of influence, and 0 otherwise. We perform Hadamard

(element-by-element) multiplication of a mask image and wavelet coefficients at each

resolution level. With such multiplication, only wavelet coefficients that belong to the

breast tissue region at each level are selected. From those selected wavelet coefficients,

we find five descriptors: a scaling measure and four asymmetry measures, as in Panel

(b) of Figure 13.

As we discussed, the asymmetry measure, compares horizontal vs vertical isotropy of

in breast tissue.

The scaling descriptor, is calculated by the equation (51) from coefficients in

the main diagonal hierarchy, |d(J−5,J−5)|2, |d(J−4,J−4)|2, |d(J−3,J−3)|2, |d(J−2,J−2)|2, and

|d(J−1,J−1)|2. The choice of diagonal hierarchy provides the most information about

the regularity of breast tissue Nicolis et al. (2011).

The asymmetry measures are the energy ratios of two adjacent levels to the main

diagonal hierarchy (j, j), indexed by (j, j−1) and (j−1, j) for j = J−4, J−3, J−2,

and J − 1. For example, at scale j = J − 3, an asymmetry measure is defined as

|d(J−3,J−4)|2/|d(J−4,J−3)|2.

We found that the five scales of finest detail were most effective in classification

of the health conditions of patients because disease signatures are mostly captured

in subtle variations within the tissue area. Note that the energy at each level is

calculated with only the wavelet coefficients located in the breast tissue area.

We use the obtained five features of all mammograms as inputs to three classifiers:
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Figure 30: An original mammogram (a) and a binary mask (b) indicating the domain
of wavelet coefficients used in the analysis. The black line in the original image
represents the boundary detected by the algorithm. Panel (b) shows the mask image
in which white corresponds to 1 and black to 0.

logistic regression, support vector machine, and random forest algorithm. In each

iteration, we use four-fold cross validation, which randomly divides the data into four

sets and then uses three sets as training data and the remaining set as test data.

We repeat this random division of training and testing data sets 200 times, and the

report prediction accuracies averaged over these 200 repetitions.

We present and compare the performance of classification in terms of sensitivity,

specificity, and the overall classification accuracy, which are shown in Tables 8, 9, and

10.

83



Table 8: Sensitivity with three classifiers. All algorithms show strong diagnostic

power in identifying cancerous mammograms.

m value Logistic regression SVM Random forest

0 0.7354 0.6811 0.8511

26 0.7692 0.7104 0.8721

27 0.7703 0.7213 0.8739

Table 9: Specificity with three classifiers.

m value Logistic regression SVM Random forest

0 0.6293 0.585 0.585

26 0.6642 0.5865 0.5865

27 0.6572 0.5954 0.5954

Table 10: Classification accuracy with three classifiers. Random forest algorithm

shows the best diagnostic accuracy exceeding 80%.

m value Logistic regression SVM Random forest

0 0.692 0.6474 0.7975

26 0.7264 0.6655 0.8272

27 0.7256 0.6753 0.8335

3.3 Conclusions

Most existing computer aided breast cancer detection methods focus on identifying

markers of breast cancer in specific regions. The diagnostic use of information con-

tained in the background tissue is often ignored modality. This chapter relates the
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degree of self-similarity and anisotropy of patterns in breast tissue areas of a mam-

mogram to the presence of breast cancer. We develop a 2-D scale-mixing NDWT

based method that estimates the degree of scaling behavior and anisotropy of breast

background tissue. We first assess the scaling estimation performance of the pro-

posed method in simulated cases with 2-D fBm’s. In the simulations, the proposed

method yields, on average, scaling estimators closer to the target values and with

lower mean square errors. Then, we apply the NDWT method to publicly available

mammographic images from University of South Florida Bowyer et al. (1996) for

the detection of breast cancer. The selected classifiers use five descriptors: one self-

similarity measure and four asymmetry measures. Computation of those descriptors

benefited from two distinctive characteristics of non-decimated wavelet transforms.

First, the redundancy of transform produced estimators with smaller variance with-

out inducing additional bias, and the second, the spatial invariance of the transform

enabled calculation of local spectra so that coefficients not corresponding to breast

tissue were excluded from the analysis. With the five descriptors described in this

chapter, we achieved an average diagnostic accuracy in excess of 80%.

One of the valid criticisms for the clinical use of this methodology is that the accuracy

rate is not high enough. Indeed, this would be the case if the proposed method is to be

used by itself. However, even the classifiers, “slightly better than flipping a coin,” can

improve accuracy when added to a battery of other independent testing modalities.

In this respect, our findings provide an opportunity for significant improvement of

existing mammogram classification procedures and can assist the radiologist.
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Chapter IV

BAYESIAN APPROACH TO ESTIMATION OF SCALING

WITH APPLICATIONS

A number of phenomena in various fields such as geology, atmospheric sciences, eco-

nomics, to list a few, can be modeled as a fractional Brownian motion indexed by

Hurst exponent H. This exponent is related to the degree of regularity and self-

similarity present in the signal, and it often captures important characteristics useful

in various applications. Given its importance, a number of methods have been devel-

oped for the estimation of the Hurst exponent. Typically, the proposed methods do

not utilize prior information about scaling of a signal.

Several examples in which the Hurst exponent is well localized are as follows. For

locally isotropic and fully developed turbulences, Kolmogorov introduced K41 theory.

Following his theory, the Hurst exponent H of turbulence processes is 1/3. For

physical particles, the asymptotic behavior of some Brownian motions that interact

through collisions on a real line converges to an fBm with Hurst exponent H =

1/4 Nourdin et al. (2009); Peligrad and Sethuraman (2007); Swanson (2011). In a

study of DNA sequences, Arneodo et al. mapped nucleotide sequences onto a “DNA

walk” and determined that non-coding regions can be well modeled by a fractional

Brownian motions with a Hurst exponent close to 0.6 Arneodo et al. (1996). For

atmospheric turbulence, wave fronts become fractal surfaces behaving as an fBm

with Hurst parameter H = 5/6 once they are degraded by turbulence Schwartz

et al. (1994); Ribak (1997); Pérez et al. (2004). In addition, other refined models

for turbulence yield various Hurst exponent values different from 1/3, but instead, a

value that can be estimated by the local power law Nelkin (1975); Biskamp (1994);
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Horbury et al. (2008). Such real-life phenomena are just a few examples in which we

have prior information about the Hurst exponent prior to observing the data.

Thus, we develop a Bayesian scaling estimation method with non-decimated wavelet

transform (NDWT) motivated by real-life signals that are known to possess a cer-

tain theoretical degree of self-similarity. Bayesian approaches have been previously

employed in this context. The Hurst exponent for Gaussian data was estimated with

a Bayesian model in Makarava et al. (2011); Benmehdi et al. (2011); Conti et al.

(2004). Holan et al. Holan et al. (2009) developed a hierarchical Bayesian model to

estimate the parameter of stationary long-memory processes. A Baysian model for

the parameter estimation of auto-regressive fractionally integrated moving average

(ARFIMA) processes Hosking (1981) are discussed in Graves et al. (2015); Ravis-

hanker and Ray (1997); Pai and Ravishanker (1998). These models are based on

time domain data. However, the de-correlation property of wavelet transforms facili-

tates a simplified model construction, and multiple wavelet-based Bayesian techniques

has been developed. Based on a Bayesian approach, Vannucci and Corradi Vannucci

and Corradi (1999) estimated parameters for long memory process with a recursive

algorithm and Markov chain Monte Carlo (MCMC) sampling. A Baysian wavelet

model for ARFIMA processes is illustrated in Ko and Vannucci (2006).

In this chapter, we estimate Hurst exponent of a fractional Brownian motion (fBm)

with wavelet coefficients from non-decimated wavelet transform (NDWT) and a

Bayesian approach that incorporates information about the theoretical value of Hurst

exponent via the location of a prior distribution. We combine the likelihood function

and the prior distribution on (H, σ2) to obtain non-normalized posterior distribu-

tion. Because we want to estimate the most likely H value of an input signal given

prior information and wavelet coefficients, we calculate Ĥ, which maximizes the non-

normalized posterior distribution. This is equivalent to estimating the mode of the

posterior distribution, also referred to as maximum a posteriori (MAP) estimation.
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In addition, MAP estimation method results in an optimization problem that can be

solved in various ways and yields an estimator optimal under a zero-one loss function.

We apply the proposed method to simulated signals for the estimation of Hurst ex-

ponent H based on prior distributions with approximately correct mean values. The

results indicate that averaged mean squared error (MSE) of estimators significantly

decreases with a prior distribution with a mean that matches the value of a true

Hurst exponent. Moreover, when a slightly biased mean value of a prior distribution

is provided, the averaged mean squared errors of the estimators from the proposed

method are still lower than those from the regression-based method.

4.1 Method

We applied a Bayesian model to wavelet coefficients in the domain of non-decimated

wavelet transforms (NDWT). In multiresolution analysis of a m-dimensional fBm

BH(t) with Hurst exponent H, a coefficient dj from multiresolution subspace at level

j, is related to a coefficient d0 from a subspace at level 0, as Flandrin (1992)

dj
d
= 2−(H+m/2)jd0, d0 ∼ N(0, σ2).

As wavelet coefficients at each multiresolution subspace follow a normal distribution

with mean zeros and common variance, an average of the squared wavelet coefficients,

under the assumption of independence, follows a chi-square distribution. The number

of degrees of this distribution is equal to the size of the original data. Based on such

properties, we establish the following lemma:

Lemma 4.1.1. Let yj be the average of squared wavelet coefficients, d2
j , in a wavelet

subspace at level j. Then the distribution of yj is

g(yj) =

(
1

Γ(2mJ−1)

)(
2(2H+m)j+mJ

2σ2

)2mJ−1 (
yj
)2mJ−1−1

exp
(
− 2mJ

2σ2 yj2
(2H+m)j

)
,
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where m is the dimension of the signal, H is the Hurst exponent, J is an integer part

of log2 n, and n is the size of the input signal.

The likelihood function of (H, σ2) conditional on observations of averaged energies

from levels j1, . . . , j2 is

L(H, σ2|yj1 , . . . , yj2) =

j2∏
i=j1

g(yi).

We use beta distribution and non-informative prior 1/σ2 as independent priors on H

and σ2, respectively,

π(H, σ2) =
Hα−1(1−H)β−1

B(α, β)
× 1

σ2
.

The hyperparameters in beta distribution, α and β are calibrated by considering the

impact of effective sample size (ESS) and the mean of the beta distribution, α
α+β

,

which is linked to the Hurst exponent of an input signal. The ESS for the beta(α, β)

prior is approximated with α + β and is closely related to the performance of the

Bayesian estimation. For example, when ESS is large, the posterior distribution is

dominated by the prior Morita et al. (2008). Based on simulations, we selected the

ESS to be approximately 50% the original data size, but the ESS can be calibrated

based on the level of certainty about H. The larger the ESS is, the more confident

we are about the mean of a prior, that is, in the “true” value of H.

Theorem 4.1.1. The maximum a posteriori (MAP) estimator of H is a solution to

the following non-linear system:
∂π(H,σ2|yj1 ,...,yj2 )

∂σ2 = −
(
bc+2

2

)
1
σ2 + b

2σ4

∑j2
j=j1

yj2
(2H+m)j = 0

∂π(H,σ2|yj1 ,...,yj2 )

∂H
= α−1

H
− β−1

1−H + b ln ln 2
∑j2

j=j1
j − ln 2

∑j2
j=j1

yjj2
(2H+m)j∑j2

j=j1
yj2(2H+m)j

(bc+ 2) = 0

(58)

Details of derivation and solution of (58) are deferred to Appendix. As the closed

form solution that satisfies the non-linear system (58) is not available and given that

the value of H ranges only from 0 to 1, we approximately solve the equations by

inserting sequentially increasing H from 0 to 1 with increments of 10−7.
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4.2 Simulations

In this section, we compare the estimation performance of the proposed method to

that of non-decimated wavelet transform-based method that uses no prior information

on H and estimates scaling by regression, which is standardly performed. The mean,

variance, mean squared error, and squared bias are reported. We simulated three

sets of two hundred one-dimensional (1-D) fractional Brownian motions (fBm’s) of

size 211 with Hurst exponents 0.3, 0.5, and 0.7 each. Next, we estimated the Hurst

exponent of each signal using the proposed method and the traditional regression-

based method. We perform an NDWT of depth 8 using Haar wavelet and analyze

resulting wavelet coefficients on the 4th, 5th, and 6th levels, noting that resolution

increases with the level index and that the finest level of detail is 10. The prior

distribution for H is the beta with specified hyperparameters. For each set, we use

three sets of prior hyperparameter settings. The prior means are taken the same as

the real (used for simulation) value, and 0.05 higher or lower than the real value, so

that the effect of prior robustness can be observed. The parameters of different prior

distribution settings are in Table 11.

Tables 12-14 summarize the estimation results in terms of mean, variance, MSE, and

Table 11: Setting of the parameters in the simulation study. Prior mean is µ and
(α,β) are parameters for beta prior.

µ 0.25 0.3 0.35 0.45 0.5 0.55 0.65 0.7 0.75
α 256 307.2 358.4 460.8 512 563.2 665.6 716.8 768
β 768 716.8 665.6 563.2 512 460.8 358.4 307.2 256

squared bias. Figure 31 shows the estimation results as box-and-whisker plots. The

proposed method yields estimators with lower MSE compared to the regression-based

method under various prior settings. The estimation performance is robust to slight

deviations in parameters of the prior. Even if the mean of a prior differs from the
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Table 12: Estimation performance comparison under various prior settings with sim-
ulated 200 1-D fBm’s of size 211 when Hurst exponent H = 0.3.

Prior mean Regression
0.25 0.3 0.35

Mean 0.2756 0.3043 0.3316 0.3100
Variance 0.0013 0.0013 0.0013 0.0068
MSE 0.0018 0.0013 0.0023 0.0068
Squared bias 0.0006 1.45E-5 0.0010 1.71E-5

Table 13: As in Table 12, but for H = 0.5.

Prior mean Regression
0.45 0.5 0.55

Mean 0.4669 0.4922 0.5176 0.4863
Variance 0.0010 0.0010 0.0010 0.0043
MSE 0.0023 0.0011 0.0012 0.0047
Squared bias 0.0013 0.0001 0.0002 0.0004

Table 14: As in Table 12, but for H = 0.7.

Prior mean Regression
0.65 0.7 0.75

Mean 0.6280 0.6561 0.6858 0.5502
Variance 0.0014 0.0014 0.0015 0.0062
MSE 0.0059 0.0029 0.0015 0.0255
Squared bias 0.0045 0.0015 0.0001 0.0193

value of a true Hurst exponent, estimation performance is better than the regression-

based method. A correct prior mean settings significantly enhance the estimation

performance. We noticed, that due to autocorrelations among the NDWT wavelet

coefficients, regression-based scaling estimation suffers from bias for Hurst exponents

exceeding 1/2. Such bias is substantially alleviated by the proposed method.

4.3 An Application

As an example with a real-life measurements that scale, we apply the proposed method

to a dataset that traces the velocity components of turbulence. Measurements are

taken with sampling frequency (fs) of 56 Hz and period (Tp) of 19.5 minutes at Duke

Forrest (Durham, NC) on July 12, 1995. The data set was from a triaxial sonic
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(c) H = 0.7

Figure 31: Estimation results of simulated 200 1-D fBm’s with size 211 when Hurst
exponent is 0.3, 0.5, and 0.7 under various prior settings.
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Figure 32: U velocity component of turbulence in time and wavelet domains.

anemometer (Gill Instruments/1012R2) mounted on a mast 5.2 m above the ground

surface over an Alta Fescue grass site. We select the U component of the velocity

with size 29 and use it to compare the estimators from the proposed and regression-

based methods. Based on Kolmogorov’s K41 theory, we know that measurements

of velocity components should have Hurst exponent close to H = 1/3. Therefore,

for the proposed method, we set the prior distribution to be the beta distribution

with parameters, α = 85.3 and β = 170.7, which is apriori centered at 1/3. We

perform NDWT of depth 8 on the input signal and use wavelet coefficients from the

eighth to the fifth level for calculations in both methods. We obtain Ĥ = 0.341 with

the regression-based method while Ĥ = 0.335 with the proposed method. Figure 32

depicts the input turbulence signal in time domain and its wavelet spectrum by an

NDWT.

4.4 Conclusions

A theoretical value of Hurst exponent H is available for some signals, but standard

scaling estimation methods do not utilize such information. We proposed a Bayesian

scaling estimation method that incorporates theoretical scaling information via a

prior distribution and estimates H with a MAP principle. The proposed method
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yields lower mean squared errors in simulations, and such performance was robust

to small misspecification in the prior location. The method applied to a turbulence

velocity signal yields an estimator of H close to the theoretical value.
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Chapter V

METHODS FOR ASSESSMENT OF SCALING BY

MEDIANS OF LOG-SQUARED NONDECIMATED

WAVELET COEFFICIENTS:MEDL AND MEDLA

At first glance, data that scale look like noisy observations, and often the large-scale

features (e.g. basic descriptive statistics, trends, smoothed functional estimates, and

so on) carry no useful information. For example, the pupil diameter in humans

fluctuates at a high frequency (hundreds of Hz), and prolonged monitoring of this

yields massive data sets. Researchers found that the dynamics of change in the

diameter are informative of eye pathologies, e.g., macular degeneration (Moloney

et al., 2006). Yet, the trends and traditional summaries of the data are clinically

irrelevant because the magnitude of the diameter depends on ambient light and not

on the inherent eye pathology.

Formally, a deterministic function f(t) of a d-dimensional argument t is said to be

self-similar if f(λt) = λ−Hf(λt), for some choice of Hurst exponent H, and for

all dilation factors λ. The notion of self-similarity has been extended to random

processes. Specifically, a stochastic process {X(t), t ∈ Rd} is self-similar with scaling

exponent (or Hurst exponent) H if for any λ ∈ R+,

X(λt)
d
= λHX(t), (59)

where the relation “
d
=” is the equality in all finite dimensional distributions.

In this chapter, we are concerned with the precise estimation of scaling exponent H

in one-dimensional setting. A number of estimation methods for H exist: re-scaled

95



range calculation (R/S), Fourier-spectra methods, variance plots, quadratic varia-

tions, zero-level crossings, and so on. For a comprehensive description, please refer

to Beran (1994), Doukhan et al. (2003), and Abry et al. (2013). Wavelet transforms

are especially suitable for modeling self-similar phenomena, as is reflected by vibrant

researches. An overview is provided in Abry et al. (2000a).

If processes possess a stochastic structure (e.g. Gaussianity, stationary increments),

the scaling exponent H becomes a parameter in a well-defined statistical model and

can be estimated as such. Fractional Brownian motion (fBm) is important and well-

known model for data that scale. Its importance follows from the fact that fBm is a

unique Gaussian process with stationary increments that is self-similar in the sense

of (59).

A fBm has a (pseudo)-spectrum of the form S(ω) ∝ |ω|−(2H+1), and thus the log-

magnitudes of detail coefficients at different resolutions in a wavelet decomposition

exhibit a linear relationship. Leveraging on this linearity and using non-decimated

wavelet domains constitute the staple of this chapter.

In p-level decomposition of an input signal of size m, NDWT yields m × (p + 1)

wavelet coefficients, while DWT yields m wavelet coefficients independent of p. Each

decomposition level in NDWT contains the same number of coefficients as the size

of the original signal. This multiplicity of coefficients contributes to the accuracy

of estimators of H. However, given the redundancy of NDWT, reducing the bias

induced by level-wise correlation among the coefficients becomes an important issue.

The two estimators we propose are based on logarithm-first approach connecting

Hurst exponent with a robust location and resampling techniques.
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Figure 33: The autocorrelation present in wavelet coefficients from the DWT and the

NDWT.

Figure 33 illustrates the autocorrelation within wavelet coefficients in the level J − 4

(the level of finest detail is J − 1, so J − 4 is 4th “most detailed” level) in DWT and

NDWT. Haar wavelet was used on a Brownian motion path of size 211. As we note,

the coefficients from the NDWT are highly correlated while such correlation is not

present among the DWT coefficients.

The two methods introduced in the following section reduce the effect of the corre-

lation among wavelet coefficients, while maintaining redundancy and invariance as

desirable threads of NDWT.

5.1 Method

We start by an overview of properties of wavelet coefficients and existing methods in

literature based on which we develop the proposed methods.
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Only detail wavelet coefficients are used for defining a wavelet spectrum, and subse-

quently, for estimating H. When an fBm with Hurst exponent H is mapped to the

wavelet domain by DWT, resulting detail wavelet coefficients satisfy the following

properties (Tewfik and Kim, 1992; Abry et al., 1995; Flandrin, 1992):

(i) dj, a detail wavelet coefficient from level j, follows the Gaussian distribution

with a mean of 0 and a variance of σ2
02−j(2H+1), where σ2

0 is a variance of a detail

coefficient at level 0,

(ii) a sequence of wavelet coefficients from level j is stationary, and

(iii) the covariance between two coefficients from any level of detail decreases expo-

nentially as the distance between them increases.

From the property (i), the relationship between detail wavelet coefficients and Hurst

exponent H is

log2 E{d2
j} = −j(2H + 1) + 2 log2 σ0.

Abry et al. (2000b) calculate a sample variance of wavelet coefficients to estimate

E{d2
j} assuming i.i.d. Gaussianity of coefficients on level j. Empirically, we look at

the levelwise average of squared coefficients,

d2
j =

1

nj

nj∑
i=1

d2
j,k,

where nj is the number of wavelet coefficients at level j. The relationship between d2
j

and H is

log2 d
2
j

d
≈ −(2H + 1)j − log2C − logχ2

nj
/ log 2,

where
d
≈ indicates approximate equality in distribution, χ2

nj
follows a chi-square dis-

tribution with nj degrees of freedom, and C is a constant. The method of Abry

et al. (2000b) is affected by the non-normality of log2 d
2
j and correlation among detail
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wavelet coefficients, which results in biases of weighted least squares estimates. To

reduce the bias, Soltani et al. (2004) defined “mid-coefficients,” as

Dj,k =
d2
j,k + d2

j,k+nj/2

2
.

According to this approach, each multiresolution level is split on two equal parts

and corresponding coefficients from each part are paired, squared, and averaged.

This produces a quasi-decorrelation effect. Soltani et al. (2004) show that level-wise

averages of log2Dj,k are asymptotically normal with the mean −(2H+1)j+C, which

is used to estimate H by regression.

The estimators in Soltani et al. (2004) consistently outperform the estimators in

Abry et al. (2000b) under various settings. In addition, Shen et al. (2007) shows

that the method of Soltani et al. (2004) yields more accurate estimators since it takes

the logarithm of a mid-coefficient, and then averages. Thus, averaging logged wavelet

coefficients, rather than taking logarithm of averaged wavelet coefficients, yields more

precise estimators and this approach will be pursued in this chapter.

For both proposed methods, we first take the logarithm of a squared wavelet coefficient

or an average of two squared wavelet coefficients, and then we derive the distribution

of such logarithms under the assumption of independence. Next, we calculate the

median of the derived distribution instead of the mean. The medians are more robust

to potential outliers that can occur when logarithmic transform of a squared wavelet

coefficient is taken and the magnitude of coefficient is close to zero. This numerical

instability may increase the bias and variance of sample means. However, since the

logarithms are monotone, the variability of the sample medians will not be affected.

The first proposed method is based on the relationship between the median of the

logarithm of squared wavelet coefficients and the Hurst exponent. We use acronym

“MEDL” to refer to this method. In MEDL, the logarithmic transform reduces the au-

tocorrelation, while the number of coefficients remains the same. The second method

derives the relationship between the median of the logarithm of average of two squared
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wavelet coefficients and the Hurst exponent. We use acronym “MEDLA” to refer to

this method. The MEDLA method is similar in concept to approach of Soltani et al.

(2004) who paired and averaged wavelet coefficients prior to taking logarithm. Then

the mean of logarithms was conected to H. Instead, we repeatedly sample with re-

placement N random pairs keeping distance between them at least qj. Then, as in

Soltani et al. (2004) we find the logarithm of pair’s average and then connect the

Hurst exponent with the median of the logarithms. As we relax the constraints on

the distance between members of each pair, we obtain a larger amount of distinct

samples and selecting only N samples out of such sample population further reduces

the correlation.
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Figure 34: Autocorrelation of variables used in four methods.

To illustrate the decorrelation effects of the proposed methods, in Figure 34, we

compare the autocorrelation present in variables that are averaged: means of d2
jk for

traditional method, means of log2

[
d2jk+d2

jk+N/2

2

]
for Soltani-like method, medians of

log d2
jk for MEDL, and medians of sampled log

[
d2jk1

+d2jk2
2

]
for MEDLA method. The
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two default methods exhibit higher amount of autocorrelation that decreases at a

slower rate. MEDLA shows substantial reduction in correlation.

For formal distributional assessment of the two proposed methods, we start with an

arbitrary wavelet coefficient from decomposition level j at location k, djk, resulting

from a non-decimated wavelet transform of a one-dimensional fBm BH(ω, t), t ∈ R,

dj =

∫
R
BH(ω, t)ψjk(t)dt, for some fixed k.

As Flandrin (1992) showed, the distribution of a single wavelet coefficient is

dj
d
= 2−(H+1/2)jσZ, (60)

where Z follows a standard normal distribution, and σ2 is the variance of wavelet

coefficients at level 0. We will use (60) repeatedly for the derivations that follow.

5.1.1 MEDL Method

For the median of the logarithm of squared wavelet coefficients (MEDL) method, we

derive the relationship between the median of the logarithm on an arbitrary squared

wavelet coefficient from decomposition level j and Hurst exponent H. The following

theorem serves as a basis for the MEDL estimator:

Theorem 5.1.1. Let y∗j be the median of log d2
j , where dj is an arbitrary wavelet

coefficient from level j in a NDWT of an fBm with Hurst exponent H. Then, the

population median is

y∗j = − log 2 (2H + 1)j + C, (61)

where C is a constant independent of j. The Hurst exponent can be estimated as

Ĥ = − β̂

2 log 2
− 1

2
, (62)

where β̂ is the slope in least squares linear regression on pairs (j, ŷ∗j ), and ŷ∗j is the

sample median.
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The proof of Theorem 5.1.1 is deferred to Appendix A.3. We estimate y∗j by taking

sample median of all logged squared wavelet coefficients at each level. The use of

ordinary linear regression is justified by the fact that variances of the sample medians

ŷ∗j are constant in j, that is,

Lemma 5.1.1. The variance of sample median ŷ∗j at level j is approximately

πeQ

2NQ

where N is the sample size and Q = (Φ−1(3/4))
2
.

The theorem is stating that the logarithm acts as a variance stabilizing operator;

the variance of the sample median is independent of level j, and ordinary regression

to find slope β in Theorem 5.1.1 is fully justified. Note that the use of ordinary

regression simplifies approaches used in DWT, where the weighted regression is needed

to account for levelwise heteroscedasticity.

The levelwise variance is approximately 5.4418/N, independent of H and σ2. The

proof of Theorem 5.1.1 is deferred to Appendix A.3. In addition, we find the distri-

bution of Ĥ:

Theorem 5.1.2. The MEDL estimator Ĥ follows the asymptotic normal distribution

Ĥ
approx∼ N

(
H,

3A

Nm(m2 − 1)(log 2)2

)
,

where A = πeQ/(2Q) ∼= 5.4418, N is the sample size, and m is the number of levels

used for the spectrum.

The proof of Theorem 5.1.2 is deferred to Appendix A.3. To verify Theorem 5.1.2, we

perform an NDWT of depth 10 on simulated fBm’s with H = 0.3, 0.5, and 0.7. We

use resulting wavelet coefficients from levels J − 7 to J − 2 inclusive (i.e., six levels)

to estimate H with MEDL. Following Theorem 5.1.2, Ĥ of MEDL in the simulation

follows a normal distribution with mean H and variance 7.9007 × 10−5, which is

illustrated in Figure 35.
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Figure 35: Panels on the right are histograms of Ĥ and panels on the left are q-q
plots of Ĥ versus the quantiles asymptotic distribution when H = 0.3, 0.5, and 0.7,
respectively.
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5.1.2 MEDLA Method

For the median of the logarithm of averaged squared wavelet coefficients (MEDLA)

method, we derive the relationship between logarithm of an average of two squared

wavelet coefficients and Hurst exponent H. Soltani et al. (2004) proposed a method

that quasi-decorrelates wavelet coefficients by dividing all wavelet coefficients on one

level into left and right sections and pairing every coefficient in the left section with

its counterpart in the right section, maintaining the equal distance to its partner (i.e.,

members in each pair are N/2 apart when N is the number of wavelet coefficients

on that level). Then, Soltani et al. (2004) averaged every pair of squared wavelet

coefficients and took logarithm from each average. We follow similar idea except that

instead of fixing the combinations of pairs, which amounts to N/2 pairs in Soltani

et al. (2004), we randomly sample with replacement N pairs whose members are at

least qj apart. Based on sample autocorrelation graphs, we define qj = 2J−j that

increase in each level j because the finer the subspace (i.e., larger j), the lower the

correlation among wavelet coefficients. Then, we propose an estimator of H according

to the following theorem.

Theorem 5.1.3. Let djk1 and djk2 be two wavelet coefficients from level j, at positions

k1 and k2, respectively, from a NDWT of a fBm with Hurst exponent H. Assume

that |k1 − k2| > qj, where qj is the minimum separation distance that depends on

level j and selected wavelet base. Let y∗j be the median of log

[
d2jk1

+d2jk2
2

]
. Then, as

in Theorem 5.1.1, results (61) and (62) hold.

The proof of Theorem 5.1.3 is deferred to Appendix A.4. To estimate y∗j , we first

repeatedly sample N pairs of wavelet coefficients with replacement from all pairs that

are at least qj apart. Then, we take logarithm of pair’s average energy and take the

median. As in Theorem 5.1.1, the variances of sample medians ŷ∗j are free of j.
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Lemma 5.1.2. The variance of the sample median ŷ∗j at level j is approximated by

1

N(log 2)2
,

where N is the sample size.

The proof is straightforward and given in Appendix A.4. Thus, the variance of ŷ∗j is

constant over levels. We find that MEDLA estimator of H indeed follows a normal

distribution with a mean and a variance as the following.

Theorem 5.1.4. The estimator Ĥ of MEDLA follows the asymptotic normal distri-

bution

Ĥ
approx∼ N

(
H,

3

Nm(m2 − 1)(log 2)4

)
,

where N is the sample size, and m is the number of levels used for the spectrum.

The proof of Theorem 5.1.4 is deferred to Appendix A.4. To verify Theorem 5.1.4,

we use the same wavelet coefficients from the simulation in section 5.1.1. Following

Theorem 5.1.4, Ĥ of MEDLA in the simulation follows a normal distribution with

mean H and variance 7.9007× 10−5, which is verified in Figure 36.

5.2 Simulation

We simulate three sets of three hundred one-dimensional fractional Brownian motion

(1-D fBm) signals of size 211 with Hurst exponents 0.3, 0.5, and 0.7 for each set.

Then, we perform an NDWT of depth 10 with a Haar wavelet on each simulated

signal and obtain wavelet coefficients to which we applied the proposed methods for

the estimation of Hurst exponent. For all methods and estimations, we used wavelet

coefficients from levels J − 7 to J − 2 for the regression. We compare the estimation

performance of the proposed methods to two standard methods: a method of Veitch

and Abry (1999) and a method of Soltani et al. (2004), both in the context of NDWT.

We present the estimation performance in terms of mean, variance, bias-squared, and
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Figure 36: Panels on the right are histograms of Ĥ and panels on the left are q-q
plots of Ĥ versus the quantiles of asymptotic distribution when H = 0.3, 0.5, and 0.7,
respectively.
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mean squared error, based on 300 simulations for each case. Table 15 and Figure 37

indicate that as H increases, the proposed methods outperform the standard methods.

For smaller H, the estimation performance of all methods were comparable.

Table 15: Estimation of H with 300 simulated 1-D fBm signals of size 211 when
H=0.3, 0.5, and 0.7 by four methods

H=0.3
Method Traditional Soltani MEDL MEDLA
Mean 0.2864 0.2849 0.2778 0.2783

Variance 0.0017 0.0015 0.0021 0.0016
Bias-squared 0.0002 0.0003 0.0005 0.0005

MSE 0.0019 0.0018 0.0026 0.0021

H=0.5
Method Traditional Soltani MEDL MEDLA
Mean 0.475 0.5091 0.4966 0.4982

Variance 0.0012 0.0022 0.0023 0.0017
Bias-squared 0.0006 6.7E-5 4.1E-6 1.3E-6

MSE 0.0018 0.0023 0.0023 0.0017

H=0.7
Method Traditional Soltani MEDL MEDLA
Mean 0.5524 0.7286 0.7065 0.7084

Variance 0.0039 0.0028 0.0033 0.0024
Bias-squared 0.0217 0.0008 3.3E-5 6.2E-5

MSE 0.0256 0.0036 0.0033 0.0024

5.3 Conclusions

We proposed two methods for robust estimation of Hurst exponent in one-dimensional

signals that scale. Unlike the standard methods, the proposed methods are based on

NDWT. The motivation for using NDWT was its redundancy and time-invariance.

However, the redundancy, which was useful for the stability of estimation, introduces

autocorrelations among the wavelet coefficients. The proposed methods lower the

present autocorrelation by (i) taking logarithm of the squared wavelet coefficients
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Figure 37: Boxplots of Ĥ by four methods with 300 simulated 1-D fBm signals of size
211 when H=0.3, 0.5, and 0.7
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prior to averaging, (ii) relating the Hurst exponent to the median of the model dis-

tribution, rather than the mean, and (iii) resampling the coefficients.

The method is compared to a standard approach and gives estimators with smaller

MSE for a range of input conditions.
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Chapter VI

CONCLUSIONS

In this thesis, we introduced four novel methods that facilitate the scaling estimation

based on NDWT. Chapter 2 introduced an NDWT matrix which is used to perform

an NDWT in one or two dimensions. The use of matrix significantly decreased the

computation time when 2-D inputs of moderate size are transformed under MATLAB

environment, and such reduction of computation time was augmented when the same

type of NDWT is performed repeatedly. With 2-D inputs, an NDWT matrix yielded a

scale-mixing NDWT, which is more compressive than the standard 2-D NDWT. The

retrieval of an original signal after the transform was possible with a weight matrix.

An NDWT matrix can handle signals of non-dyadic sizes in one or two dimensions.

The proposed NDWT matrix was used for the transforms in Chapters 3-5. Chap-

ter 3 introduced a method for scaling estimation based on a non-decimated wavelet

spectrum. A distinctive feature of NDWT, redundancy, enables us to obtain local

spectra and improves the accuracy of scaling estimation. For simulated signals with

known H values, the method yields estimators of H with lower mean squared errors.

We characterized mammographic images with the proposed scaling estimator and

anisotropy measures from non-decimated wavelet spectra for breast cancer detection,

and obtained the best diagnostic accuracy in excess of 80%. Some real-life signals

are known to possess a theoretical value of the Hurst exponent. Chapter 4 described

a Bayesian scaling estimation method that utilizes the value of a theoretical scaling

index as a mean of prior distribution and estimates H with MAP estimation. The

accuracy of estimators from the proposed method is robust to small misspecification

of the prior mean. We applied the method to a turbulence velocity signal and yielded
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an estimator of H close to the theoretical value. Chapter 5 proposed two methods

based on NDWT for robust estimation of Hurst exponent H of 1-D self-similar signals.

The redundancy of NDWT, which improved the accuracy of estimation, introduced

autocorrelations within the wavelet coefficients. With the two proposed methods, we

alleviated the autocorrelation in three ways: taking the logarithm prior to taking

the median, relating Hurst exponent to the median instead of mean of the model

distribution, and resampling the coefficients.
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Appendix A

PROOFS AND DERIVATIONS

A.1 2-D scale-mixing non-decimated wavelet transform

We derive expression (51). For 2-D fBf BH(x, y) ∈ R2, detailed wavelet coefficients

obtained by an NDWT located in one level from the main diagonal hierarchy is

d(j,j);k1,k2 =

∫ ∫
BH(x, y)ψj;k1(x)ψj;k2(y) dx dy

= 2j
∫ ∫

BH(x, y)ψ(2j(x− k1))ψ(2j(y − k2)) dx dy, (63)

where (j, j) ∈ js. We can simplify (63) by letting k = (k1, k2) and v= (x, y).

d(j,j);k = 2j
∫ ∫

BH(v)ψ
(
2j(v − k)

)
dv.

The energy of each decomposition level is the variance of the detailed wavelet coeffi-

cients d(j,j);k Heneghan et al. (1996)

E
[
|d(j,j);k|2

]
= 22j

∫ ∫
ψ
(
2j(v − k)

)
ψ
(
2j(u− k)

)
E
[
BH(v)BH(u)

]
dvdu

=
σ2
H

2
22j
[ ∫ ∫

ψ
(
2j(v − k)

)
ψ
(
2j(u− k)

)
|v|2H dvdu

+

∫ ∫
ψ
(
2j(v − k)

)
ψ
(
2j(u− k)

)
|u|2H dvdu

−
∫ ∫

ψ
(
2j(v − k)

)
ψ
(
2j(u− k)

)
|v − u|2H dvdu

]
. (64)

By the property of wavelet filters, we know that∫
ψ(2j(v − k))dv =

∫
ψ(2j(u− k))du = 0.

Thus we can simplify (64) as

E
[
|d(j,j);k|2

]
= −σ2

H

2
22j
∫ ∫

ψ(2j(v − k))ψ(2j(u− k))|v − u|2Hdvdu.
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We substitute p = 2j(v − u) and q = 2j(u− k) and obtain

E
[
|d(j,j);k|2

]
= −σ

2
H

2
22j

∫ ∫
ψ(p+ q)ψ(q)2−2Hj|p|2H2−4jdpdq

= −σ
2
H

2
2−j(2H+2)

∫ ∫
ψ(p+ q)ψ(q)|p|2Hdpdq

=
σ2
H

2
Vψ2−j(2H+2),

where Vψ = −
∫ ∫

ψ(p+ q)ψ(q)|p|2Hdpdq which is dependent on wavelet function ψ

and Hurst exponent H, but independent of j. σ2
H is given in (8). By taking logarithm

on the energy, we obtain the relationship between wavelet coefficients and the Hurst

exponent H.

log2E
[
|d(j,j),k|2

]
= −(2H + 2)j + C.

A.2 Derivation of Bayesian estimation of scaling

Let dj = djk be an arbitrary (w.r.t. k) wavelet coefficient from the jth level of the non-

decimated wavelet decomposition of the m-dimensional fractional Brownian motion

BH(ω, t), t ∈ Rm,

dj =

∫
Rm

BH(ω, t)ψ∗jk(t)dt, for some fixed k = (k1, . . . , km)

Here ψ∗jk(t) =
∏k

i=1 ψ
∗
jki

(ti) where ψ∗ is either ψ or φ, but in the product there is at

least one ψ. It is known that Flandrin (1992)

dj
d
= 2−(H+m/2)j d0,

where d0 is a coefficient from the level j = 0, and
d
= means equality in distributions.

Coefficient dj is a random variable with expectation

Edj = 0, Vardj = Ed2
j = 2−(2H+m)j σ2,

where σ2 = Vard2
0.
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The fBm BH(t) is a Gaussian m-dimensional field, thus

dj ∼ N (0, 2−(2H+m)jσ2).

The rescaled “energy” is

2(2H+m)j

σ2
d2
j ∼ χ2

1

while, under assumption of independence,

2(2H+m)j

σ2

∑
k∈jth level

d2
jk =

2(2H+m)j+mJ

σ2
d2
j

has χ2
2mJ distribution. Here J is the integer part of the logarithm for base 2 of the

size of the signal.

Here, d2
j is the average energy in jth level.

Thus,

d2
j
d
= 2−(2H+m)j−mJσ2χ2

2mJ .

From this,

Ed2
j = σ22−(2H+m)j−mJEχ2

2mJ = 2−(2Hj+mj)σ2,

and

Vard2
j = σ42−(4H+2m)j−2mJ × 2 · 2mJ = 2−4Hj−2mj−mJ+1σ4.

The density of d2
j for fixed H, j,m, and σ2 is

g(yj) =

(
1

Γ(2mJ−1)

)(
2(2H+m)j+mJ

2σ2

)2mJ−1 (
yj
)2mJ−1−1

exp
(
− 2mJ

2σ2 yj2
(2H+m)j

)
Indeed, the cdf of d2

j is

G(yj) = P(d2
j ≤ yj) = P

(
χ2

2mJ ≤
2(2H+m)j+mJ

σ2
yj

)
.
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Then,

g(y) = G′(y) = f(h(y)) |h′(y)|,

with h(yj) = 2(2H+m)j+mJ

σ2 yj and f(x) = 1
2n/2Γ(n/2)

xn/2−1 exp{−x/2}, x ≥

0, for n = 2mJ . Once the energy at each level j, yj, is calculated, we can obtain

the likelihood:

L(H, σ2|yj1 , . . . , yj2) =

j2∏
j=j1

g(yj) =

(
(2σ2)−2mJ−1

Γ(2mJ−1)

)(j2−j1+1)

×

j2∏
j=j1

(
2(2H+m)j+mJ

)2mJ−1 (
yj
)2mJ−1−1 × exp

(
−

j2∑
j=j1

2mJ

2σ2
yj2

(2H+m)j
)

=

(
(2σ2)−b/2

Γ(2b/2)

)c j2∏
j=j1

(
2(2H+m)jb

)b/2 (
yj
)b/2−1 × exp

(
− b

2σ2

j2∑
j=j1

yj2
(2H+m)j

)
where b = 2mJ and c = j2 − j1 + 1.

To obtain an expression proportional to the posterior distribution, we multiply like-

lihood function with a prior distribution, π(H, σ2),

L(H, σ2|yj1 , . . . , yj2)× π(H, σ2).

As the Hurst exponent is supported on (0, 1) interval, we selected beta(α, β) distribu-

tion as the prior on H. For the prior distribution of σ2, we selected a non-informative

(improper) prior 1
σ2 . The parameters H and σ2 are considered apriori independent,

so their joint prior is

π(H, σ2) =
1

σ2

Γ(α + β)

Γ(α)Γ(β)
Hα−1(1−H)β−1.

A non-normalized posterior is

F =π(H, σ2)L(H, σ2|yj1 , . . . , yj2) =
Γ(α + β)

Γ(α)Γ(β)
Hα−1(1−H)β−1

( 1

Γ(b/2)

)c( b
2

)bc/2
×

( 1

σ2

)bc/2+1
j2∏
j=j1

2(2H+m)jb/2
(
yj
)b/2−1

exp
(
− b

2σ2

j2∑
j=j1

yj2
(2H+m)j

)
. (65)
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Taking logarithm of (65) yields

lnF = −bc+ 2

2
lnσ2 +

j2∑
j=j1

[
(2H +m)jb

2
ln 2 +

b− 2

2
ln yj

]
− b

2σ2

j2∑
j=j1

yj2
(2H+m)j

+ ln

[
Γ(α + β)

Γ(α)Γ(β)

]
+ (α− 1) lnH + (β − 1) ln(1−H)− c ln

[
Γ(b/2)

]
+
bc

2
ln[b/2].

(66)

For the estimator that maximizes the posterior, maximizes its non-normalized version

as well, and we proceed with finding the MAP estimator. First, we obtain σ2 that

maximize the likelihood by taking derivative

∂ lnF

∂σ2
= −

(bc+ 2

2

) 1

σ2
+

b

2σ4

j2∑
j=j1

yj2
(2H+m)j = 0 (67)

σ2 =
b
∑j2

j=j1
yj2

(2H+m)j

bc+ 2
(68)

Using (68) obtained, we can express (66) with respect to H only and take derivative

to obtain H that maximize the likelihood.

lnF = −bc+ 2

2
ln

[
b
∑j2

j=j1
yj2

(2H+m)j

bc+ 2

]
+

j2∑
j=j1

[
(2H +m)jb

2
ln 2 +

b− 2

2
ln yj

]
− bc+ 2

2
+ ln

[
Γ(α + β)

Γ(α)Γ(β)

]
+ (α− 1) lnH + (β − 1) ln(1−H)

− c ln
[
Γ(b/2)

]
+
bc

2
ln[b/2]. (69)

∂ lnF

∂H
= − (bc+ 2)

ln 2
∑j2

j=j1
yjj2

(2H+m)j∑j2
j=j1

yj2(2H+m)j
+ b ln 2

j2∑
j=j1

j +
α− 1

H

− β − 1

1−H
= 0. (70)

There is no closed form solution for H, se we numerically approximate its value by

solving equations in (70) numerically.

A.3 Derivation of MEDL

Proof of Theorem 5.1.1
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A single wavelet coefficient in a non-decimated wavelet transform of fBm(H) is nor-

mally distributed, with variance depending on its level j,

dj
d
= N (0, 2−(2H+1)jσ2).

Its rescaled square is χ2 with one degree of freedom,

δ =
2(2H+1)j

σ2
d2
j
d
= χ2

1,

with density

δ1/2−1(1
2
)1/2

Γ(1
2
)

e−δ/2 =
e−δ/2√
2δΓ(1

2
)
.

The pdf of d2
j is

f(d2
j) =

e−cjd
2
j/2√

2cjd2
jΓ(1/2)

cj,

where cj = 2(2H+1)j

σ2 . Let y = log d2
j , then d2

j = ey and
∂d2j
∂y

= ey. The pdf of y is

f(y) =
cje

−cje
y

2√
2cjeyΓ(1/2)

ey =

√
cje
−

cje
y

2 ey/2
√

2Γ(1/2)
=

√
cj
2π
e−

cje
y

2 ey/2,

The cdf of y is

F (y) =

∫ y

−∞
f(t)dt = 2Φ

(√
cje

y/2
)
− 1,

where Φ is the cdf of standard normal distribution. Let y∗ be the median of the

distribution of y. We obtain the expression of y∗ by solving F (y∗) = 1/2. This

results in

y∗ = 2 log

[
1
√
cj

Φ−1(3/4)

]
From this equation, we can find a link between y∗ and the Hurst exponent H by

substituting cj,

y∗ = 2 log[Φ−1(3/4)]− log cj

= − log 2 (2H + 1)j + log σ2 + 2 log[Φ−1(3/4)] (71)

= − log 2 (2H + 1)j + C,
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where C is a constant independent of the level j.

Proof of Lemma 5.1.1

An approximation of variance of sample median ŷ∗j is obtained using normal approx-

imation to a quantile of absolutely continuous distributions,

V ar(ŷ∗j ) ≈
1

4N(f(y∗j ))
2
.

After substituting the expression for y∗ we obtain Lemma 5.1.1

V ar(ŷ∗j ) ≈
πeQ

2NQ
, Q =

[
Φ−1(3/4)

]2 ≈ 0.4549.

Thus the variance of the sample median is approximately 5.4418/N.

Proof of Theorem 5.1.2

An NDWT-based spectrum uses the pairs

(
j, ŷ∗j

)
, j = J −m− a− 1, . . . , J − a− 1.

from m decomposition levels, starting with a coarse j = J −m− a level and ending

with finer level j = J − 1 − a. Here a is an arbitrary integer between 0 and J − 3.

When a = 0, the finest level j = J − 1 until level J − 1−m are used.

Then the spectral slope is

β̂ =
12

m(m2 − 1)

J−1−a∑
j=J−m−a−1

(j − J − a− (m+ 1)/2) ŷ∗j .

The estimator β̂ is unbiased,

Eβ̂ =
12

m(m2 − 1)

J−1−a∑
j=J−m−a−1

(j − J − a− (m+ 1)/2) (− log 2 (2H + 1)j + C)

= − log 2 (2H + 1),

where C is a constant and H is the theoretical Hurst exponent.

By substituting Var(ŷ∗j ) = A/N from Theorem 5.1.1 we find

Var(β̂) =
12A

Nm(m2 − 1)
, and Var(Ĥ) =

3A

Nm(m2 − 1)(log 2)2
,
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for Ĥ = −β̂/(2 log 2)− 1/2.

Thus, the MEDL estimator Ĥ is approximately normal with mean H and variance

3A/(Nm(m2 − 1)(log 2)2), where A ∼= 5.4418, N is the sample size, and m is the

number of levels used for the spectrum.

A.4 Derivation of MEDLA

Proof of Theorem 5.1.3.

We begin by selecting the pair of wavelet coefficients that follow a normal distribu-

tion with a zero mean and a variance dependent on level j, from which the wavelet

coefficients are sampled.

dj,k1 , dj,k2 ∼ N (0, 2−(2H+1)jσ2),

where σ is the standard deviation of wavelet coefficients from level 0, k1 and k2

are positions of wavelet coefficients in level j, and H is the Hurst exponent. We

also assume that coefficients dj,k1 and dj,k2 are independent, which is a reasonable

assumption when the distance |k1 − k2| > qj = 2J−j. Then, we define δ as

δ =
2(2H+1)j

σ2
(d2
j,k1

+ d2
j,k2

) = Cj · a,

for Cj = 2·2(2H+1)j

σ2 and a =
d21+d22

2
. Since δ follow χ2

2 distribution, the pdf of the

average of two squared wavelet coefficients a is

f(a) =
Cj
2
e−

Cja

2 .

Denote y = log a. The pdf and cdf of y are

f(y) =
Cj
2
e−

Cje
y

2 ey

F (y) = 1− e−Cje
y/2.

Let y∗ be the median of y. The expression for y∗ is obtained by solving F (y∗) =

1− e−Cje
y∗/2 = 1/2,

y∗ = log (log 4)− logCj.
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After replacing Cj with 2·2(2H+1)j

σ2 , the median becomes

y∗ = − log 2 (2H + 1)j + log σ2 + log (log 2),

similarly as in (71) in the MEDL method.

Proof of Lemma 5.1.2

An approximation of variance of sample median is obtained as

V ar(ŷ∗j ) ≈
1

4n(f(y∗j ))
2
.

After plugging in the expression for y∗ into 1
4n(f(y∗j ))2

, we obtain

V ar(ŷ∗j ) ≈
1

N(log 2)2
,

Thus the variance of the sample median in MEDLA method is approximately 2.08/N.

Proof of Theorem 5.1.4

For the distribution of Ĥ from MEDLA, we follow the same regression steps on pair

(j, ŷ∗j ) as in Appendix A.3. By substituting Var(ŷ∗j ) = 1
N(log 2)2

from (5.1.2) we find

Var(β̂) =
12

Nm(m2 − 1)(log 2)2
, and Var(Ĥ) =

3

Nm(m2 − 1)(log 2)4
,

for Ĥ = −β̂/(2 log 2)−1/2. Thus, the MEDLA estimator Ĥ is approximately normal

with mean H and variance 3/(Nm(m2 − 1)(log 2)2), where N is the sample size, and

m is the number of levels used for the spectrum.
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P. Abry, P. Gonçlavès, and P. Flandrin. Wavelet-based spectral analysis of 1/f pro-
cesses. In Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 3, pages 237–240, 1993.

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch. Wavelets for the analysis, estimation,
and synthesis of scaling data. In K. Park and W. Willinger, editors, Self-Similar
Network Traffic and Performance Evaluation, pages 39–88. Wiley, 2000a.
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