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SUMMARY

Dense subgraph discovery is an important primitive for many real-world applications

such as community detection, link spam detection, distance query indexing, and computa-

tional biology. In this thesis, our focus is on solving the densest subgraph problem - finding

a subgraph with the highest average degree in a graph.

The densest subgraph problem is solvable in polynomial time using maximum flows

[44]. Since maximum flow computations are expensive despite the theoretical progress

achieved over the recent years, Charikar’s greedy peeling algorithm is frequently used

in practice [26]. This algorithm is simple, runs in linear time, and provides a 1/2-

approximation for the problem. Bahmani et al. [11] show that the dual of the problem

is a mixed packing and covering linear program1, which they solve using the multiplica-

tive weight update framework to derive a near-linear time algorithm to find the densest

subgraph.

In this thesis, we first give a faster width-dependent algorithm to solve the above men-

tioned mixed packing and covering LPs, a class of problems that is fundamental to com-

binatorial optimization in computer science and operations research. Our algorithm finds

a (1 + ε) approximate solution in time O(Nwε−1), where N is number of nonzero entries

in the constraint matrix of the LP and w is its width (maximum number of nonzeros in

any constraint). This run-time is better than that of Nesterov’s smoothing algorithm, which

requires a runtime of O(N
√
nwε−1). Here, n denotes the dimension of the problem. Our

work utilizes the framework of area convexity introduced by Sherman [90] to obtain the

best dependence on ε while breaking the infamous `∞ barrier to eliminate the factor of
√
n. The current best width-independent algorithm for this problem runs in time O(Nε−2)

[106] and hence has worse running time dependence on ε. As a special case of our result,

we report a (1− ε) approximation algorithm for the densest subgraph problem which runs

1A mixed packing and covering linear program is a linear program in which all coefficients, variables and
constraints are non-negative.
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in time O(m degmax ε
−1), where m is the number of edges in the graph and degmax is the

maximum graph degree.

Secondly, we devise an iterative algorithm for the densest subgraph problem which nat-

urally generalizes Charikar’s greedy algorithm. Our algorithm draws insights from itera-

tive approaches used in convex optimization, and also exploits the dual interpretation of the

densest subgraph problem. We have empirical evidence that our algorithm is much more

robust against the structural heterogeneities in real-world datasets, and converges to the op-

timal subgraph density even when the simple greedy algorithm fails. On the other hand, in

instances where Charikar’s algorithm performs well, our algorithm is able to quickly verify

its optimality. Furthermore, we demonstrate that our method is significantly faster than the

maximum flow based exact optimal algorithm. We conduct experiments on datasets from

broad domains, and our algorithm achieves ∼ 145× speedup on average to find subgraphs

whose density is at least 90% of the optimal value.

Lastly, we design the first fully-dynamic algorithm which maintains a (1− ε) approxi-

mate densest subgraph in worst-case poly(log n, ε−1) per update. We approach the densest

subgraph problem by framing its dual as a graph orientation problem, which we solve using

an augmenting path-like adjustment technique [65]. Our result improves upon the previous

best approximation factor of (1/4−ε) for fully dynamic densest subgraph [21]. We also ex-

tend our techniques to solving the problem on vertex-weighted graphs and directed graphs

with similar runtimes.
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CHAPTER 1

INTRODUCTION

Finding dense components in graphs is an important primitive for a variety real-world ap-

plications involving large networks. Applications of dense subgraph discovery include

• community detection in social networks [68, 82, 67, 31, 27],

• unsupervised detection of stories from micro-blogging streams in real time [8],

• indexing graphs for efficient distance query computation [29, 59, 5],

• anomaly detection in financial networks and social networks [43],

• link spam detection [42], and

• DNA motif detection and computational biology [57, 85, 84]

among others.

Due to its practical relevance, many notions of graph density have been studied in liter-

ature. The prototypical dense subgraph is a clique. However, the maximum clique problem

is not only NP-hard, but also strongly inapproximable [52]. The notion of optimal quasi-

cliques has been developed to detect subgraphs that are not necessarily fully interconnected

but very dense [100]. However, finding optimal quasi-cliques is also NP-hard [63, 98]. A

popular and scalable approach to finding dense components is based on k-cores [89, 35].

Recently, k-cores have also been used to detect anomalies in large-scale networks [41, 91].

[70, 95, 101] contain several other applications of dense subgraphs and related problems.

In this thesis, we study one of the most widely used formulations of dense subgraph

discovery - the densest subgraph problem, which is formulated as follows: given an undi-

rected graph G(V,E) we want to find a set of nodes S ⊆ V that maximizes the degree

density
|E(S)|
|S|

, where E(S) is the subset of edges in the graph contained within S.
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In addition to its practical applicability, the densest subgraph problem also has great

theoretical relevance due to its close connection to fundamental graph problems such as

network flow and bipartite matching1. While near-linear time algorithms exist for finding

matchings in graphs [77, 39, 32], the same cannot be said for flows on directed graphs [74].

In this sense, the problem acts as an indicative middle ground, since it is both a specific

instance of a flow problem [44, 11], as well as a generalization of bipartite b-matchings.

Interestingly, the densest subgraph problem does allow near-linear time algorithms [11].

1.1 Background

Goldberg [44] gave the first polynomial-time algorithm to solve the densest subgraph prob-

lem by reducing it to O(log n) instances of maximum flow. This was subsequently im-

proved to use only O(1) instances, using parametric max-flow [40]. The current best al-

gorithm for directed maximum flow runs in time O(|E|
√
|V |) (ignoring log factors) [71].

Charikar [26] gave an exact linear programming formulation of the problem, while at the

same time giving a simple greedy algorithm which gives a 1/2-approximate densest sub-

graph (first studied in [10]). Despite the approximation factor, this algorithm is popular in

practice [29] due to its simplicity, its efficacy on real-world graphs, and due to the fact that

it runs in linear time and space.

Obtaining fast algorithms for approximation factors better than 1/2, however, has proved

to be a harder task. One approach towards this is to sparsify the graph in a way that main-

tains subgraph densities [76, 78, 34] within a factor of 1 − ε, and run the exact algorithm

on the resulting sparsifier. However, this algorithm still incurs a term of n1.5 in the running

time (using the current best maximum flow runtime), causing it to be super-linear for sparse

graphs.

A second approach is via numerical methods to solve the dual LP DUAL(G). Solving

DUAL(G) can be shown to reduce to solving O(log |V |) mixed packing covering LPs ap-

1We describe this connection explicitly in Section 2.2.2.
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proximately - we show this in Section 2.2.2. Bahmani et al. [11] gave a O(m log n · ε−2)

algorithm by bounding the width of the dual LP for this problem, and using the multiplica-

tive weights update framework [83, 9] to find an (1− ε)-approximate solution.

Further background details are left to future chapters, where we briefly go over results

related to the contributions in each particular chapter.

1.2 Alternate Formulations and Related Work

The densest subgraph problem has also been studied in weighted graphs, as well as directed

graphs. When the edge weights are non-negative, both the maximum flow algorithm and

Charikar’s greedy algorithm maintain their theoretical guarantees. In the presence of nega-

tive weights, the problem in general becomes NP-hard [102]. For directed graphs Charikar

[26] provided a linear programming approach which requires the computation of n2 linear

programs and a 1/2-approximation algorithm which runs in O(n3 + n2m) time. Khuller

and Saha have provided more efficient implementations of the exact and approximation

algorithms for the undirected and directed versions of the problem [64]. Furthermore,

Tsourakakis et al. recently extended the problem to k-clique, and (p, q)-biclique densest

subgraph problems [99, 78]. These extensions can be used for finding large near-cliques in

general graphs and bipartite graphs respectively. Tatti and Gionis [96] introduced a novel

graph decomposition known as locally-dense, that imposes certain insightful constraints

on the k-core decomposition. Further, efficient algorithms to find locally-dense subgraphs

were developed by Danisch et al. [30].

Notice that in our formulation of the problem, there are no restrictions on the size of

the output. When restrictions on the size of S are imposed the problem becomes NP-

hard. The densest-k-subgraph problem asks for find the subgraph S with maximum degree

density among all possible sets S such that |S| = k. The state-of-the art algorithm is due

to Bhaskara et al. [16], and provides a O(n1/4+ε) approximation in O(n1/ε) time. A long

standing question is closing the gap between this upper bound and the lower bound. Other

3



versions where |S| ≥ k, |S| ≤ k have also been considered in the literature see [7].

1.3 Organization of Contributions

We can organize our contributions in this thesis into the following three parts.

• In Chapter 3, we develop a new width-dependent algorithm for mixed packing and

covering problems, thereby giving the fastest algorithm for the densest subgraph

problem on graphs with bounded degree [24].

• In Chapter 4, we adapt Charikar’s greedy 1/2-approximation algorithm to give a fast

and simple iterative algorithm for the densest subgraph problem. This is the first

algorithm which is able to inherit the speed of Charikar’s greedy algorithm, but is

still able to arrive at exact solutions to the problem on real-world graphs [23].

• In Chapter 5, we give the first fully dynamic (1− ε) approximation algorithm for the

densest subgraph problem [88].

4



CHAPTER 2

PRELIMINARIES

2.1 Graphs

We represent any undirected graph G as G = 〈V,E〉, where V is the set of vertices in G,

E ⊆ {(u, v) | u, v ∈ V } is the set of edges in G. For any subset of vertices S ⊆ V , we

use E(S) to denote the subset of all edges within S, and G(S) = 〈S,E(S)〉 to denote the

graph induced by S. We use n = |V | and m = |E| to represent the number of vertices and

edges respectively.

Weighted graphs additionally contain a weight function w : E 7→ R assigning a weight

to each edge in the graph. In this thesis, we also deal with vertex-weighted graphs – where

a similar weight function assigns weights to vertices.

In directed graphs, the edges are assigned directions (edges are ordered pairs of ver-

tices).

2.1.1 Subgraph density

There exist several measures of density of a subgraph. We will use the following definition

in this thesis.

Definition 2.1 (Degree density). The degree density ρG(S) of a subgraph G(S) in G is

defined as

ρG(S) =
|E(S)|
|S|

.

Note that ρG(S) is simply twice the average degree of G(S) - hence the nomenclature.

Definition 2.2 (Maximum Subgraph Density). The maximum subgraph density of G, ρ∗G,

5



is simply the maximum among all subgraph densities, i.e.,

ρ∗G
def
= max

S⊆V
ρG(S).

Equivalently, the subgraph which realizes this maximum density is called the densest

subgraph. So, our formal problem statement is as follows:

The Densest Subgraph Problem

Given an undirected unweighted graphG = 〈V,E〉, find a subset of vertices S∗ ⊆ V

such that

S∗ = argmax
S⊆V

ρG(S).

2.1.2 Dynamic and streaming graph data structures

Formally, a graph data structure is said to be fully dynamic if it can support the following

operations on a graph:

• insert an edge,

• delete an edge,

• query a desired optimum value or solution.

The time taken to insert/delete edges is called the update time, and the time to find the

optimum is termed the query time. The time complexities of these are mainly measured

in two ways: worst-case and amortized. The former resembles the analysis of static algo-

rithms, where a single update/query is guaranteed to terminate in the specified time. The

amortized runtime of an update/query operation is the average time it takes over the course

of a series of many updates/queries - usually a number of the order of the size of the graph.

Although a strictly weaker notion, it is useful in analyzing data structures which do well

6



on average, and hence perform much better in practice than their theoretical worst-case

complexities suggest.

We call an algorithm (1 − ε)-approximate fully dynamic if we can query a (1 − ε)

approximation to the optimum. Data structures which only allow insertions but not dele-

tions are termed incremental data structures, whereas those that allow deletions and not

insertions are termed decremental.

Streaming data structures, on the other hand, restrict the amount of memory one can

use to solve a given problem. It allows for a sub-linear amount of storage, and hence the

key objective is to minimize the number of times an input is read by the algorithm (number

of passes).

2.2 Linear Programming

Linear programming is a technique to optimize a linear objective given a family of linear

constraints. Formally, a linear program (LP) is of the following general form:

maximize cTx

subject to Ax ≤ b,

x ≥ 0.

Here A ∈ Rn×m is the constraint matrix. b ∈ Rn and c ∈ Rm are vectors.

Several polynomial-time algorithms exist for solving LPs exactly [103].

2.2.1 LP duality

Every linear program (we call this the primal problem) can be converted to a dual linear

program, which provides an upper bound to the objective value of the primal. Considering

the above LP as the primal, the following constitutes its corresponding dual LP.

7



minimize bTy

subject to ATy ≥ c,

y ≥ 0.

We refer to x ∈ Rm as the primal variables and y ∈ Rn as the corresponding dual

variables.

We note a few important properties of LP duality which will prove useful in later dis-

cussion in the thesis. First, we state relationships between any primal solution and any dual

solution. For their proofs, refer to any text on Linear Programming (for e.g., [103])

Fact 2.3 (Weak Duality). Suppose x′ is any feasible primal solution, and y′ is any feasible

dual solution. Then,

cTx′ ≤ bTy′.

Fact 2.4 (Strong Duality). Suppose x∗ is an optimal primal solution, and y∗ is an optimal

dual solution. Then,

cTx∗ = bTy∗.

The above remark states that finding the optimal objective value to the dual also gives

the optimal to the primal and vice versa. But given an optimal dual solution y∗, we want to

derive the optimal primal solution x∗ too. For this, we can use the complementary slackness

theorem. Let Ai,: denote the ith row and let A:,j denote the jth column of A.

Fact 2.5 (Complementary Slackness). Suppose x and y are feasible primal and dual solu-

tions respectively. Then, x and y are both optimal solutions of their respective LPs if and

only if

• for all i ∈ [n],

yi(bi − ATi,:x) = 0,

8



• for all j ∈ [m],

xj(A
T
:,jy − ci) = 0.

2.2.2 LP formulation of Densest Subgraph

The following is a well-known LP formulation of the densest subgraph problem, introduced

by Charikar [26]. Associate each vertex v with a variable xv ∈ {0, 1}, where xv = 1

signifies v being included in S. Similarly, for each edge, let ye ∈ {0, 1} denote whether or

not it is in E(S). Relaxing the variables to be real numbers, we get the following LP, which

we denote by PRIMAL(G), whose optimal is known to be ρ∗G.

PRIMAL(G)

maximize
∑
e∈E

ye

subject to ye ≤ xu, xv, ∀e = uv ∈ E∑
v∈V

xv ≤ 1,

ye ≥ 0, xv ≥ 0, ∀e ∈ E,∀v ∈ V

The construction above gives some intuition behind this formulation. Charikar [26]

showed that the LP exactly models the densest subgraph problem. We repeat the argument

here for the sake of completeness.

Lemma 2.6 (LP formulation for Densest Subgraph [26]). Given a graph G = 〈V,E〉, let

G(S∗) be the densest subgraph, where S∗ ⊆ S. Then, the optimum of PRIMAL(G) is

exactly ρG(S∗).

Proof. Set xv = 1/|S∗| for each v ∈ S∗ and ye = 1/|S∗| for each e ∈ E(S∗). Set

all other variables to 0. This achieves a feasible solution of value of ρG(S∗) and hence

OPT ≥ ρG(S∗).
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Now consider an optimum solution to the LP x∗, y∗. Without loss of generality, we can

assume that y∗uv = min(x∗u, x
∗
v). Let V (r) indicate all vertices with x∗v ≥ r, then E(r)

defined similarly is also the edge set induced by V (r).

Since
∫∞

0
E(r)dr =

∑
e y
∗
e and

∫∞
0
V (r)dr =

∑
v x
∗
v, we know that

∫∞
0
E(r)dr∫∞

0
V (r)dr

≥ OPT.

Hence there must be an r such that |E(r)|/|V (r)| ≥ OPT.

Let fe(u) be the dual variable associated with the first 2m constraints of the form ye ≤

xu in PRIMAL(G), and let D be associated with the last constraint. We get the following

LP, which we denote by DUAL(G).

DUAL(G)

minimize D

subject to fe(u)+fe(v) ≥ 1, ∀e = uv ∈ E∑
e3v

fe(v) ≤ D, ∀v ∈ V

fe(u) ≥ 0, fe(v) ≥ 0, ∀e = uv ∈ E

This LP can be visualized as follows. Each edge e = uv has a load of 1, which it wants to

assign to its end points: fe(u) and fe(v) such that the total load on each vertex is at most

D. The objective is to find the minimum D for which such a load assignment is feasible.

Now, consider the case where we fix the parameter D. Then, the LP has only non-

negative constraints and hence is an instance of a mixed packing and covering problem.

Hence, the densest subgraph problem can be solved by finding the smallest D such that the

dual is feasible. This can be done by binary searching over all O(|V |3) possible values of

D.

Note also, that this formulation resembles a bipartite graph between edges and vertices.
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Then, the problem is similar to a bipartite b-matching1 problem [18], where the demands

on one side are at most D, and the other side are at least 1.

From strong duality, we know that the optimal objective values of both linear programs

are equal, i.e., exactly ρ∗G. Let ρG be the objective of any feasible solution to PRIMAL(G).

Similarly, let ρ̂G be the objective of any feasible solution to DUAL(G). Then, by optimality

of ρ∗G and weak duality,

ρG ≤ ρ∗G ≤ ρ̂G.

2.3 Definitions for Convex Optimization

For any integer q, we represent using ‖·‖q the q-norm of any vector. We represent the

infinity-norm as ‖·‖∞. We denote the infinity-norm ball (sometimes called the `∞ ball) as

the set

Bn∞(r)
def
= {x ∈ Rn : ‖x‖∞ ≤ r}.

The nonnegative part of this ball is denoted as

Bn+,∞(r) = {x ∈ Rn : x ≥ 0n, ‖x‖∞ ≤ r}.

For radius r = 1, we drop the radius specification and use the short notation Bn∞ and Bn+,∞.

We denote the extended simplex of dimension k as

∆+
k

def
= {x ∈ Rk : x ≥ 0k,

k∑
i=1

xi ≤ 1}.

For any y ≥ 0k, proj∆+
k

(y) = y/‖y‖1 if ‖y‖1 ≥ 1.

The function exp is applied to a vector element wise. The division of two vectors of the

same dimension is also performed element wise.

1In the b-matching problem, b is the capacity vector for the vertices, i.e., bi is the maximum number of
edges in the solution that vi can be adjacent to. Setting b to the unit vector gives the traditional matching
problem.
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For any matrix A, we use nnz(A) to denote the number of nonzero entries in it. We use

Ai,: and A:,j to refer to the ith row and jth column of A respectively. We use notation Aij

(or Ai,j alternatively) to denote an element in the i-th row and j-th column of matrix A.

‖A‖∞ denotes the operator norm ‖A‖∞→∞
def
= supx 6=0

‖Ax‖∞
‖x‖∞ .

We first define the notions of convexity and smoothness that we will use in our analysis.

Let X ⊆ Rn be a convex set.

Definition 2.7 (Convexity). A function f : X 7→ R is said to be convex if for any x, y ∈ X

and any λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(x).

Definition 2.8 (Strong convexity). A function f : X 7→ R is said to be α-strongly convex

if for any x, y ∈ X ,

f(x)− f(y) ≤ ∇f(x)T (x− y) +
α

2
||x− y||2.

Definition 2.9 (Smoothness). A continuously differentiable function f : X 7→ R is said to

be β-smooth if for any x, y ∈ X ,

||∇f(x)−∇f(y)|| ≤ β||x− y||.

Definition 2.10 (Saddle Point Problem). The saddle point problem on two sets x ∈ X and

y ∈ Y can be defined as follows:

min
x∈X

max
y∈Y
L(x, y), (2.1)

where L(x, y) is some bilinear form between x and y.

Definition 2.11 (Primal-dual Gap). For a saddle point problem defined by the bilinear
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form L on sets X and Y , we define the primal-dual gap function as sup(x,y)∈X×Y L(x, y)−

L(x, y).

This gap function can be used as measure of accuracy of the above saddle point solution.

Definition 2.12 (ε-approximate solution to the Saddle Point Problem). We say that (x, y) ∈

X × Y is an ε-optimal solution for (2.1) if

sup
(x,y)∈X×Y

L(x, y)− L(x, y) ≤ ε.

2.4 Theoretical Models of Computation

2.4.1 Sequential computation

In this thesis, we adhere to a simple algorithmic computation model, where each of the

basic arithmetic operations and memory accesses are assumed take one unit of time. The

sequential time complexity of an algorithm is the total number of these basic operations

used.

2.4.2 Parallel computation

For discussions involving parallel computation, we use the work-depth model, where work

is the total time complexity as computed in the sequential model, and depth is the length of

the longest chain of basic operations which depend on each other. We sometimes refer to

this as the parallel runtime.
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CHAPTER 3

ALGORITHMS FOR MIXED PACKING AND COVERING LINEAR PROGRAMS

In Section 2.2.2, we showed that the dual of the densest subgraph problem, i.e., the load

balancing problem, can be reduced to solving O(log n) instances of a mixed packing and

covering linear program. In this chapter, we study algorithms to solve this broad class of

linear programs.

This chapter consists of joint work with Digvijay Boob and Di Wang [24].

3.1 Introduction

3.1.1 Mixed packing and covering linear programs

Mixed packing and covering linear programs (LPs) are a natural class of LPs where coeffi-

cients, variables, and constraints are non-negative. They model a wide range of important

problems in combinatorial optimization and operations research. In general, they model

any problem which contains a limited set of available resources (packing constraints) and

a set of demands to fulfill (covering constraints).

Two special cases of the problem have been widely studied in literature: pure packing,

formulated as

max
x∈Rn

+

{bTx | Px ≤ p},

and pure covering, formulated as

min
x∈Rn

+

{bTx | Cx ≥ c},

where P, p, C, c, b are all non-negative. These are known to model fundamental problems

such as maximum bipartite graph matching, minimum set cover, etc. [73]. Algorithms to

14



solve packing and covering LPs have also been applied to great effect in designing flow

control systems [13], scheduling problems [83], zero-sum matrix games [79] and in mech-

anism design [108]. In this chapter, we study the mixed packing and covering (MPC)

problem, formulated as checking the feasibility of the set:

{x ∈ Rn
+ | Px ≤ p, Cx ≥ c},

where P,C, p, c are non-negative. We say that x is an ε-approximate solution to MPC if it

belongs to the relaxed set

{x ∈ Rn
+ | Px ≤ (1 + ε)p, Cx ≥ (1− ε)c}.

MPC is a generalization of pure packing and pure covering, hence it is applicable to a

wider range of problems such as multi-commodity flow on graphs [105, 90], non-negative

linear systems and X-ray tomography [105].

General LP solving techniques such as the interior point method can approximate solu-

tions to MPC in as few as O(log(ε−1)) iterations - however, they incur a large per-iteration

cost. In contrast, iterative approximation algorithms based on first-order optimization meth-

ods require poly(ε−1) iterations, but the iterations are fast and in most cases are conducive

to efficient parallelization. This property is of utmost importance in the context of ever-

growing datasets and the availability of powerful parallel computers, resulting in much

faster algorithms in relatively low-precision regimes.

3.1.2 Background

In literature, algorithms for the MPC problem can be grouped into two broad categories:

width-dependent and width-independent. Here, width is an intrinsic property of a linear

program which typically depends on the dimensions and the largest entry of the constraint

matrix, and is an indication of the range of values any constraint can take. In the context
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of the MPC problem, we define wP and wC as the maximum number of non-zeros in any

constraint in P and C respectively, and subsequently define the width of the LP as w def
=

max(wP , wC). Additionally, N denotes the total number of non-zeros in the constraint

matrices P and C.

One of the first approaches used to solve LPs was Langrangian-relaxation: replacing

hard constraints with loss functions which enforce the same constraints indirectly. Using

this approach, Plotkin, Schmoys and Tardos [83], and Grigoriadis and Khachiyan [48]

obtained width-dependent polynomial-time approximation algorithms for MPC. Luby and

Nisan [73] gave the first width-dependent parallelizable algorithm for pure packing and

pure covering, which ran in Õ(ε−4) parallel time, and Õ(Nε−4) total work.1 Here, parallel

time (sometimes termed as depth) refers to the longest chain of dependent operations, and

work refers to the total number of operations in the algorithm.

Young [105] extended this technique to give the first width-independent parallel algo-

rithm for MPC in Õ(ε−4) parallel time, and Õ(mwCOLε
−2) total work2. Young [106] later

improved his algorithm to run using total work O(Nε−2). Mahoney et al. [75] later gave

an algorithm with a faster parallel run-time of Õ(ε−3).

The other most prominent approach in literature towards solving an LP is by converting

it into a smooth function [79], and then applying general first-order optimization tech-

niques [79, 81]. Although the dependence on ε from using first-order techniques is much

improved, it usually comes at the cost of sub-optimal dependence on the input size and

width. For the MPC problem, Nesterov’s accelerated method [81], as well as Bienstock

and Iyengar’s adaptation [22] of Nesterov’s smoothing [79], give rise to algorithms with

runtime linearly depending on ε−1, but with far from optimal dependence on input size and

width. For pure packing and pure covering problems, however, Allen-Zhu and Orrechia

[6] were the first to incorporate Nesterov-like acceleration while still being able to obtain

1Õ hides factors polylogarithmic in the size of the input.
2Here, m is the total number of constraints, and wCOL (column-width) is the maximum number of con-

straints that any variable appears in.
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near-linear width-independent runtimes, giving a Õ(Nε−1) time algorithm for the packing

problem. For the covering problem, they gave a Õ(Nε−1.5) time algorithm, which was

then improved to Õ(Nε−1) in [104]. Importantly, however, the above algorithms do not

generalize to MPC.

3.1.3 Our results

We give the best parallel width-dependent algorithm for MPC, while only incurring a linear

dependence on ε−1 in the parallel runtime and total work. Additionally, the total work has

near-linear dependence on the input-size. Formally, we state the main result of this chapter

as the following theorem.

Theorem 3.1. There exists a parallel ε-approximation algorithm for the mixed packing

covering problem, which runs in Õ(wε−1) parallel time, while performing Õ(wNε−1) total

work, where N is the total number of non-zeros in the constraint matrices, and w is the

width of the given LP.

Table 3.1 compares the running time of our algorithm to previous works solving this

problem.

Sacrificing width independence for faster convergence with respect to precision proves

to be a valuable trade-off for several combinatorial optimization problems which naturally

have low width. Prominent examples of such problems which are not pure packing or

covering problems include Multicommodity Flow and Densest Subgraph, where the width

is bounded by the degree of a vertex. In a large number of real-world graphs, the maximum

vertex degree is usually small, hence our algorithm proves to be much faster when we want

high-precision solutions.

We explicitly show that this result directly gives the fastest algorithm for Densest Sub-

graph on low-degree graphs in Appendix 3.5.
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Table 3.1: Comparison of runtimes of (1 + ε)-approximation algorithms for the mixed
packing covering problem. Recall that m denotes the total number of constraints and dCOL

denotes the column-width.

Depth Total Work Comments

Luby & Nisan ‘93 [73] Õ(ε−4) Õ(Nε−4) pure packing/covering

Young ‘01 [105] Õ(ε−4) Õ(mdε−2) d is column-width

Bienstock & Iyengar ‘06 [22] Õ(n2.5w1.5
P wε−1) width-dependent

Nesterov ‘12 [81] Õ(w
√
nε−1) Õ(w ·N

√
nε−1) width-dependent

Young ‘14 [106] Õ(ε−4) Õ(Nε−2)

Mahoney et al. ‘16 [75] Õ(ε−3) Õ(Nε−3)

Allen-Zhu & Orrechia ‘19 [6] Õ(ε−3) Õ(Nε−1) pure packing/covering

This thesis Õ(wε−1) Õ(wNε−1) width-dependent

3.2 The Mixed Packing and Covering Problem and Saddle Point Formulation

The mixed packing-covering (MPC) problem is formally defined as follows.

Mixed Packing and Covering (MPC) Problem

Given two nonnegative matrices P ∈ Rp×n, C ∈ Rc×n,

• find an x ∈ Rn, x ≥ 0, ‖x‖∞ ≤ 1 such that Px ≤ 1p and Cx ≥ 1c if it exists,

• otherwise report infeasibility.

Note that the vector of 1’s on the right hand side of the packing and covering constraints

can be obtained by simply scaling each constraint appropriately. We also assume that each

entry in the matrices P and C is at most 1. This assumption, and subsequently the `∞

constraints on x also cause no loss of generality3.

We can now define an ε-approximate solution to the mixed packing-covering (MPC)

problem as follows.

3This transformation can be achieved by adapting techniques from [104] while increasing dimension of
the problem up to a logarithmic factor. Details of this fact are in Appendix A.
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Definition 3.2 (ε-approximate MPC solution). We say that x is an ε-approximate solution

to the mixed packing-covering problem if x satisfies x ∈ Bn+,∞, Px ≤ (1 + ε)1p and

Cx ≥ (1− ε)1c.

Here, 1k denotes a vectors of 1’s of dimension k for any non-negative integer k.

We reformulate MPC as a saddle point problem, as defined in Section 2.3:

λ∗
def
= min

x∈Bn+,∞
max

y∈∆+
c , z∈∆+

p

L(x, y, z), (3.1)

where

L(x, y, z)
def
=

[
yT zT

] P −1p

−C 1c


x

1

 .
Given a feasible primal-dual feasible solution pair (x, y, z) and (x, y, z) for (3.1), we

denote w = (x, u, y, z) and w = (x, u, y, z) where u, u ∈ R. Then, we define a function

Q : Rn+1+p+c × Rn+1+p+c → R as

Q(w,w)
def
= [yT zT ]

 P −1p

−C 1c


x
u

− [yT zT ]

 P −1p

−C 1c


x
u

 .
Note that if u = u = 1, then

sup
w∈W

Q(w,w) = sup
x∈Bn+,∞,y∈∆+

p ,z∈∆+
c

L(x, y, z)− L(x, y, z)

is precisely the primal-dual gap function defined in Section 2.3. Notice that if (x∗, y∗, z∗)

is a saddle point of (3.1), then we have

L(x∗, y, z) ≤ L(x∗, y∗, z∗) ≤ L(x, y∗, z∗)

for all x ∈ Bn+,∞, y ∈ ∆+
p , z ∈ ∆+

c . From above equation, it is clear that Q(w,w∗) ≥ 0

for all w ∈ W where W def
= Bn+,∞ × {1} × ∆+

p × ∆+
c and w∗ = (x∗, 1, y∗, z∗) ∈ W .
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Moreover, Q(w∗, w∗) = 0. This motivates the following accuracy measure of the candidate

approximate solution w.

Definition 3.3. We say that w ∈ W is an ε-optimal solution of (3.1) iff

sup
w∈W

Q(w,w) ≤ ε.

Remark 3.4. For a given problem matrix A ∈ Ra×b, we define a matrix MA as follows:

MA
def
=

0b×b −AT
A 0a×a

 .
We can rewrite Q(w,w) = wTJw where J = MH and

H =

 P −1p

−C 1c

 ⇒ J :=



0n×n 0n×1 −P T CT

01×n 0 1Tp −1Tc

P −1p 0p×p 0p×c

−C 1c 0c×p 0c×c


.

Thus, the gap function in Definition 3.3 can be written in the bilinear form supw∈W w
TJw.

Lemma 3.5 relates the ε-optimal solution of (3.1) to the ε-approximate solution to MPC.

Lemma 3.5. Let (x, y, z) satisfy sup(x,y,z)∈Bn+,∞×∆+
p ×∆+

c
L(x, y, z) − L(x, y, z) ≤ ε. Then

either

1. x is an ε-approximate solution of MPC, or

2. y, z satisfy yT (Px− 1p) + zT (−Cx+ 1c) > 0 for all x ∈ Bn+,∞.

Proof. Suppose we are given (x, y, z) such that

sup
(x,y,z)∈Bn+,∞×∆+

p ×∆+
c

L(x, y, z)− L(x, y, z) ≤ ε.
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If there exists x̃ which is feasible for MPC, then choosing x = x̃ gives L(x̃, y, z) ≤ 0.

Hence we have that

sup
(y,z)∈∆+

p ×∆+
c

L(x, y, z) ≤ ε.

By the optimality over extended simplices ∆+
p ,∆

+
c , we get

‖[Px− 1p]+‖∞ + ‖[−Cx+ 1c]+‖∞ ≤ ε.

So, if there exists a feasible solution for MPC then x is ε-approximate solution of MPC.

On the other hand, suppose x is not an ε-approximate solution. Then

max{‖[Px− 1p]+‖∞, ‖[−Cx+ 1c]+‖∞} > ε

⇒ sup
(y,z)∈∆+

p ×∆+
c

L(x, y, z) =‖[Px− 1p]+‖∞ + ‖[−Cx+ 1c]+‖∞ > ε

Let (ŷ, ẑ) ∈ ∆+
p ×∆+

c such that L(x, ŷ, ẑ) > ε then we have

sup
x∈Bn+,∞

L(x, ŷ, ẑ)− L(x, y, z) ≤ ε

⇒ L(x, ŷ, ẑ)− inf
x∈Bn+,∞

L(x, y, z) ≤ ε

⇒ inf
x∈Bn+,∞

L(x, y, z) > 0

Hence, if x is not ε-approximate solution of MPC then (y, z) satisfy yT (Px − 1p) +

zT (−Cx+ 1c) > 0 for all x ∈ Bn+,∞ implying that MPC is infeasible.

Lemma 3.5 states that in order to find an ε-approximate solution of MPC, it suffices to

find an ε-optimal solution to (3.1). Henceforth, we will focus on ε-optimality of the saddle

point formulation (3.1).
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3.3 Nesterov’s Technique

3.3.1 Non-smooth optimization

Let η(x)
def
= maxy∈∆+

c ,z∈∆+
p
L(x, y, z) be a piecewise linear convex function. Assuming

oracle access to this “inner” maximization problem, the “outer” problem of minimizing

η(x) can be performed using first order methods like mirror descent, which are suitable

when the underlying problem space is the unit `∞ ball. One drawback of this class of

methods is that their rate of convergence, which is standard for non-accelerated first order

methods on non-differentiable objectives, is O(ε−2) to obtain an ε-approximate minimizer

x of η - an x which satisfies η(x) ≤ η∗ + ε, where η∗ is the optimal value. This means

that the algorithm needs to access the inner maximization oracle O(ε−2) times, which can

become prohibitively large in the high precision regime.

3.3.2 Strongly convex regularization

Note that even though η is a piecewise linear non-differentiable function, it is not a black-

box function, but a maximization over a linear function in x. This structure can be exploited

using Nesterov’s smoothing technique [79]. In particular, η(x) can be approximated by

choosing a strongly convex3 function φ : ∆+
p ×∆+

c → R and considering

η̃(x) = max
y∈∆+

c ,z∈∆+
p

L(x, y, z)− φ(y, z).

This strongly convex regularization yields that η̃ is a smooth convex function. If L is

the constant of smoothness of η̃ then application of any of the accelerated gradient meth-

ods in literature will converge in O(
√
Lε−1) iterations. Moreover, it can also be shown

that in order to construct a smooth ε-approximation η̃ of η, the Lipschitz smoothness con-

stant L can be chosen to be of the order O(ε−1), which in turn implies an overall conver-

gence rate of O(ε−1). In particular, Nesterov’s smoothing achieves an oracle complexity of
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O((‖P‖∞ + ‖C‖∞)Dx max{Dy, Dz}ε−1), where Dx, Dy and Dz respectively denote the

sizes of the ranges of strongly convex regularizers for each of the three sets X , Y and Z.

Dy and Dz can be made of the order of log p and log c, respectively. However, Dx can be

problematic since x belongs to an `∞ ball. We expand on this in Section 3.3.3.

An alternative approach to the MPC problem is via Nesterov’s dual extrapolation algo-

rithm[80]. Although the algorithm’s time complexity is the same as that of the algorithm

described in the previous paragraph, is a different algorithm in that it directly addresses the

saddle point formulation (3.1) rather than viewing the problem as optimizing a non-smooth

function η. The final convergence for the dual extrapolation algorithm is given in terms

of the primal-dual gap function of the saddle point problem (3.1). Moreover, as opposed

to smoothing techniques which only regularize the dual, this algorithm regularizes both

primal and dual parts (joint regularization), hence is a different scheme altogether.

Note that for both schemes mentioned above, the maximization oracle itself has an ana-

lytical expression which involves matrix-vector multiplication. Hence each call to the ora-

cle incurs a sequential run-time of nnz(P )+nnz(C). Then, the overall complexity for both

schemes is of order of O((nnz(P ) + nnz(C))(‖P‖∞ + ‖C‖∞)Dx max{Dy, Dz}ε−1).

3.3.3 The `∞ barrier

Note that the first method, i.e., Nesterov’s smoothing technique has known lower bounds

due to Guzman et al. [51] (see Corollary 1 in their paper). According to their result, the

framework of Nesterov’s smoothing has a known limitation since it only regularizes the

dual variables. As opposed to this, Nesterov’s dual extrapolation regularizes both primal

and dual variables, and has potential to skip the lower bounds mentioned in [51]. However,

the complexity result of this method involves a Dx term, which denotes the range of a

convex function over the domain of x. Through the following lemma, we derive a lower

bound for this range in case of `∞ balls.

Lemma 3.6. Any strongly convex function has a range of at least Ω(
√
n) on any `∞ ball.
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Proof. Consider an arbitrary strongly convex function d. Assume WLOG that d(0) = 0

(otherwise, we can shift it accordingly). We will show that maxx∈Bn∞(r) d(x) ≥ nr2

2
by

induction on n for set Bn∞(r). This suffices because Bn+,∞(1) is isomorphic to Bn∞(1
2
). The

claim holds for n = 1 by the definition of strong convexity. Now, suppose it is true for

n − 1. Then there exists x ∈ Bn−1
∞ (r) such that d(x) ≥ (n−1)r2

2
. Moving r units in the

last coordinate from x in the direction of nonnegative slope, suppose we reach x̂ ∈ Bn∞(r).

Then, due to strong convexity of d, we have d(x̂) ≥ d(x) + 1
2
‖x̂− x‖2

∞ ≥
(n−1)r2

2
+ r2

2
=

nr2

2
.

Since Dx = Ω(
√
n) for each member function of this wide class, there is no hope of

eliminating this
√
n factor using techniques involving the explicit use of strong convexity.

So, the goal now is to find a joint regularization function with a small range over `∞ balls,

but still act as good enough regularizers to enable accelerated convergence of the descent

algorithm.

3.4 Area Convexity for Mixed Packing Covering LPs

In pursuit of breaking the `∞ barrier, we draw inspiration from the notion of area convexity

introduced by Sherman [90]. Area convexity is a weaker notion than strong convexity,

however, it is still strong enough to ensure that accelerated first order methods still go

through when using area convex regularizers. Since this is a weaker notion than strong

convexity, we can construct area convex functions which have range of O(no(1)) on the `∞

ball.

In this section, we present our technical results and algorithm for the MPC problem,

with the end goal of proving Theorem 3.1. First, we present some theoretical background

towards the goal of choosing and analyzing an appropriate area-convex regularizer in the

context of the saddle point formulation, where the key requirement of the area convex

function is to obtain a provable and efficient convergence result. Finally, we explicitly

show an area convex function which is generated using a simple “gadget” function. We
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show that this area convex function satisfies all key requirements and hence achieves the

desired accelerated rate of convergence. This section closely follows [90], in which the

author chooses an area convex function specific to the undirected multicommodity flow

problem.

3.4.1 Area convexity: definitions and preliminaries

First, we define area convexity, and then go on to mention its relevance to the saddle point

problem (3.1).

Area convexity is a notion defined in context of a matrix MA (recall from Remark 3.4),

where A ∈ Ra×b is the problem matrix, and a convex set K ⊆ Ra+b.

Definition 3.7 (Area Convexity [90]). A function φ is area convex with respect to a matrix

A on a convex set K if and only if for any t, u, v ∈ K, φ satisfies

φ

(
t+ u+ v

3

)
≤ 1

3
(φ(t) + φ(u) + φ(v))− 1

3
√

3
(v − u)TMA(u− t).

To understand the definition above, let us first look at the notion of strong convexity

(recall from Section 2.3). φ is said to be strongly convex if for any two points t, u, 1
2
(φ(t)+

φ(u)) exceeds φ(1
2
(t+u)) by an amount proportional to ‖t−u‖2

2. Definition 3.7 generalizes

this notion in context of matrix A for any three points x, y, z. φ is area-convex on set K if

for any three points t, u, v ∈ K, we have 1
3
(φ(t) + φ(u) + φ(v)) exceeds φ(1

3
(t + u + v))

by an amount proportional to the area of the triangle defined by the convex hull of t, u and

v.

Consider the case that points t, u, v are collinear. For this case, the area term (i.e.,

the term involving MA) in Definition 3.7 is 0 since matrix MA is antisymmetric. In this

sense, area convexity is even weaker than strict convexity. Moreover, the notion of area is

parameterized by matrix A.

25



To see a specific example of this notion of area, consider A =

0 −1

1 0

 and t, u, v ∈

R2. Then, for all possible permutations of t, u, v, the area term takes a value equal to

±(t1(u2 − v2) + u1(v2 − t2) + v1(t2 − u2)). Since the condition holds irrespective of the

permutation so we must have that

φ( t+u+v
3

) ≤ 1
3

(
φ(t) + φ(u) + φ(v)

)
− 1

3
√

3
|t1(u2 − v2) + u1(v2 − t2) + v1(t2 − u2)|.

But note that area of triangle formed by points t, u, v is equal to 1
2
|t1(u2−v2)+u1(v2−t2)+

v1(t2 − u2)|. Hence the area term is just a high dimensional matrix based generalization of

the area of a triangle.

We now state some useful lemmas which help in determining whether a differentiable

function is area convex. We start with the following remark which follows from the defini-

tion of area convexity (Definition 3.7).

Remark 3.8. If φ is area convex with respect to A on a convex set K, and K ⊆ K is a

convex set, then φ is area convex with respect to A on K.

For a symmetric matrix A and an antisymmetric matrix B, we define an operator �i as

A�i B ⇔

A −B

B A

 is positive semi-definite.

In order to handle the operator �i, we state some basic but important properties of this

operator, which will come in handy in later proofs.

Lemma 3.9. For symmetric matrices A and C and antisymmetric matrices B and D,

1. If A�iB then A�i(−B).

2. If A�i B and λ ≥ 0 then λA�i λB.
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3. If A�iB and C �i D then A+ C �i(B +D).

Proof. 1.

A�i B ⇔

A −B

B A

 � 0

⇔ xTAx+ yTAy + yTBx− xTBy ≥ 0, ∀ x, y

⇔ xTAx+ yTAy − yTBx+ xTBy ≥ 0, ∀ x, y

⇔

 A B

−B A

 � 0⇔ A�i(−B)

Here, the third equivalence follows after replacing y by −y.

2.

A�i B ⇔

A −B

B A

 � 0⇒

λA −λB

λB λA

 � 0⇔ λA � λB

3. A�iB implies

A −B

B A

 � 0. Similarly C �i D implies

C −D

D C

 � 0. Hence

 A+ C −(B +D)

(B +D) (A+ C)

 � 0.

So we obtain A+ C �i(B +D).

The following two lemmas from [90] provide the key characterization of area convexity.
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Lemma 3.10 ([90]). Let A ∈ R2×2 be a symmetric matrix. Then,

A�i

0 −1

1 0

⇔ A � 0 and det(A) ≥ 1.

Proof. Let A =

a b

b d

, B =

0 −1

1 0

 and T =

A −B

B A

. From the definition of the

operator, A�i B if and only if T � 0.

First, we note that T � 0 implies A � 0. Secondly, T � 0 also implies that all

its principal minors are nonnegative. This means that a, d ≥ 0, and d(det(A) − 1) ≥ 0

(the principal minor obtained by removing the 3rd row and column). This implies that

det(A) ≥ 1.

So T � 0 implies A must be invertible. Then, using the property for Schur comple-

ments, we obtain that T � 0 ⇔ A + BA−1B � 0. Now, A−1 =
1

ad− b2

 d −b

−b a

,

and hence A + BA−1B = A(1 − 1
det(A)

). This implies that T � 0 ⇔ A � 0 and

det(A) ≥ 1.

For any set K, we represent its interior, relative interior and closure as

int(K), relint(K) and cl(K), respectively.

Lemma 3.11 (Theorem 1.6 in [90]). Let φ be twice differentiable on the interior of convex

set K, i.e., int(K).

1. If φ is area convex with respect to A on int(K), then d2φ(x)�i MA for all x ∈

int(K).

2. If d2φ(x)�i MA for all x ∈ int(K), then φ is area convex with respect to 1
3
A on

int(K). Moreover, if φ is continuous on cl(K), then φ is area convex with respect to

1
3
A on cl(K).
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3.4.2 Area convex regularization applied to the saddle point framework

Having laid a basic foundation for area convexity, we now focus on its relevance to solving

the saddle point problem (3.1). In order to do so, we need to pick a suitable area convex

function φ on the set Bn+,∞ × ∆+
p × ∆+

c . Since φ is defined on the joint space, it has the

property of joint regularization vis a vis (3.1). However, we need an additional parameter:

a suitable matrixMA. The choice of this matrix is related to the bilinear form of the primal-

dual gap function of (3.1). For this, we use the matrix J defined in Remark 3.4.

The algorithm we state exactly follows Nesterov’s dual extrapolation method described

earlier. One notable difference is that in [80], they consider joint regularization by a

strongly convex function which does not depend on the problem matrices P and C, but

only on the constraint set Bn+,∞ × ∆+
p × ∆+

c . Our area convex regularizer, on the other

hand, is tailor made for the particular problem matrices P and C, as well as the constraint

set.

Recall from Remark 3.4 that we can write the gap function criterion of optimality in

terms of bilinear form of the matrix J . Suppose we have a function φ which is area convex

with respect to H on setW . Then, consider the following jointly-regularized version of the

bilinear form:

η̃(w) := sup
w∈W

wTJw − φ(w). (3.2)

Similar to Nesterov’s dual extrapolation, one can attain O(ε−1) convergence of accelerated

gradient descent for function η̃(w) in (3.2) over variable w. In order to obtain gradients of

η̃(w), we need access to argmaxw∈W w
TJw − φ(w). However, it may not be possible to

find an exact maximizer in all cases. Again, one can get around this difficulty by instead

using an approximate optimization oracle of the problem in (3.2).

Definition 3.12. A δ-optimal solution oracle (OSO) for φ : W → R takes input a and
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outputs w ∈ W such that

aTw − φ(w) ≥ sup
w∈W

aTw − φ(w)− δ.

Given Φ as a δ-OSO for a function φ, consider the procedure described in Algorithm 1.

Input: Matrix J as defined in Remark 3.4

Initialize w0 ← (0n, 1,0p+c);

for t← {0, . . . , T} do

wt+1 ← wt + Φ(Jwt + 2JΦ(Jwt));

return wT

Algorithm 1: Area Convex Mixed Packing Covering (AC-MPC)

For Algorithm 1, Sherman [90] shows the following:

Lemma 3.13 (Theorem 1.3 from [90]). Let φ : W → [−ρ, 0]. Suppose φ is area convex

with respect to 2
√

3H onW . Then for J = MH and for all t ≥ 1 we have wt/t ∈ W and,

sup
w∈W

wJ · wt
t
≤ δ +

ρ

t
.

In particular, in ρε−1 iterations, Algorithm 1 obtains a (δ + ε)-solution to the saddle point

problem (3.1).

The analysis of this lemma closely follows the analysis of Nesterov’s dual extrapolation.

Note that each iteration consists of O(1) matrix-vector multiplications, O(1) vector

additions, andO(1) calls to the approximate oracle. Since the former two are parallelizable

to O(log n) depth, the same remains to be shown for the oracle computation to complete

the proof of the run-time in Theorem 3.1.
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Recall from the discussion in Section 3.3 that the critical bottleneck of Nesterov’s

method is that the diameter of the `∞ ball is Ω(
√
n), which is achieved even in the Eu-

clidean `2 norm. This makes ρ in Lemma 3.13 to also be Ω(
√
n), which can be a major

bottleneck for high dimensional LPs, which are commonplace among real-world applica-

tions.

Although, on the face of it, area convexity applied to the saddle point formulation (3.1)

has a similar framework to Nesterov’s dual extrapolation, the challenge is to construct

a φ for which we can overcome the above bottleneck. Particularly, there are three key

challenges to tackle:

1. We need to show that existence of a function φ that is area convex with respect to H

onW .

2. φ :W → [−ρ, 0] should be such that ρ is not too large.

3. There should exist an efficient δ-OSO for φ.

In the next subsection, we focus on these three aspects in order to complete our analysis.

3.4.3 Choosing an area convex function

First, we consider a simple 2-D gadget function and prove a “nice” property of this gadget.

Using this gadget, we construct a function which can be shown to be area convex using the

aforementioned property of the gadget.

Let γβ : R2
+ → R be a function parameterized by β defined as

γβ(a, b) = ba log a+ βb log b.

Lemma 3.14. Suppose β ≥ 2. Then d2γβ(a, b) �

0 −1

1 0

 for all a ∈ (0, 1] and b > 0.
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Proof. We use the equivalent characterization proved in Lemma 3.10. We need to show

that d2γβ(a, b) � 0 and det(d2γβ(a, b)) ≥ 1 for all a ∈ (0, 1] and b > 0. First of all, note

that d2γβ is well-defined on this domain. In particular, we can write

d2γβ(a, b) =

 β

b
1 + log a

1 + log a
b

a

 .
Note that a 2 × 2 matrix is PSD if and only if its diagonal entries and determinant are

nonnegative. Clearly diagonal entries of d2γβ(a, b) are nonnegative for the given values of

β, a and b. Hence, in order to prove the lemma, it suffices to show that det(d2γβ(a, b)) ≥ 1.

det(d2γβ(a, b)) = β
a
− (1 + log a)2 is only a function of a for any fixed value of β ≥ 2.

Moreover, it can be shown that det(d2γβ) is a decreasing function of a on set (0, 1]. Clearly,

the minimum occurs at a = 1. However, det(d2γβ(1, b)) = β − 1 ≥ 1 for all b > 0. Hence

we have that det(d2γβ(a, b)) ≥ 1 for all a ∈ (0, 1], b > 0 and β ≥ 2.

Finally to see the claim that det(d2γβ) is a decreasing function of a ∈ (0, 1] for any

β ≥ 2, consider

d

da

(
det(d2γβ(a, b))

)
= − β

a2
− 2(1 + log a)

a

≤ −2(1 + a(1 + log a))

a2
< 0

where the last inequality follows from the observation that 1 + a + a log a > 0 for all

a ∈ (0, 1].

Now, using the function γβ , we construct a function φ and use the sufficiency criterion

provided in Lemma 3.11 to show that φ is area convex with respect to J onW . Note that

our set of interestW is not full-dimensional, whereas Lemma (3.11) is only stated for int

and not for relint. To get around this difficulty, we consider a larger setW ⊃ W such that

W is full dimensional and φ is area convex onW . Then we use Remark 3.8 to obtain the

final result, i.e., area convexity of φ.
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Theorem 3.15. Let w = (x, u, y, z) and define

φ(w)
def
=

p∑
i=1

n∑
j=1

Pijγpi(xj, yi) +
p∑
i=1

γ2(u, yi) +
c∑
i=1

n∑
j=1

Cijγci(xj, zi) +
c∑
i=1

γ2(u, zi),

where pi = 2 ‖P‖∞‖Pi,:‖1 and ci = 2 ‖C‖∞‖Ci,:‖1 . Then φ is area convex with respect to
1

3

 P −1p

−C 1c


on set W def

= Bn+1
+,∞ × ∆+

p × ∆+
c . In particular, it also implies 6

√
3φ is area convex with

respect to 2
√

3

 P −1p

−C 1c

 on setW .

Proof. Note that γci , γpi are twice differentiable in int(W). So, from Part 2 of Lemma 3.11,

it is sufficient to prove that d2φ(w)�i J for all w ∈ int(W).

By definition, we have γci ≥ 2 for all i ∈ [c] and γpi ≥ 2 for all i ∈ [p]. Moreover

xj ∈ (0, 1) and yi > 0, zi > 0 for any w = (x, u, y, z) ∈ int(W). Then by Lemma 3.14

and Proposition 3.9, we have

d2φ(w) =

p∑
i=1

n∑
j=1

Pijd
2γpi(xj, yi) +

p∑
i=1

d2γ2(u, yi) +
c∑
i=1

n∑
j=1

Cijd
2γci(xj, yi) +

c∑
i=1

d2γ2(u, zi)

�i

( p∑
i=1

n∑
j=1

−Pijej ⊗ en+1+i +

p∑
i=1

en+1 ⊗ en+1+i

+
c∑
i=1

n∑
j=1

Cijej ⊗ en+p+i +
c∑
i=1

(−1)en+1 ⊗ en+1+p+i

)
, (3.3)

where ek ⊗ el = eke
T
l − eleTk . Here we arrive at Pijd2γpi(xj, yi)�i−Pijej ⊗ en+1+i using

Lemma 3.14 and Parts 1-2 of Proposition 3.9; and Cijd
2γci(xj, yi)�i Cijej ⊗ en+1+p+i

using Lemma 3.14 and Part 2 of Proposition 3.9. Similar arguments can be made about

terms inside the other two summations. Finally we use Part 3 of Proposition 3.9 to obtain

(3.3). Note that the matrix in the last summation is in fact J .

Since d2φ�i J , using Part 2 of Proposition 3.9, we have d26
√

3φ�i 6
√

3J . Then

by Part 2 of Lemma 3.11, we obtain that 6
√

3φ is area convex with respect to
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2
√

3

 P −1p

−C 1c

 on setW .

Note that the set of interestW ⊂W . Moreover,W is a convex subset. By Remark 3.8,

one can see that 6
√

3φ is area convex with respect to 2
√

3

 P −1p

−C 1c

 on setW .

Theorem 3.15 addresses the first part of the key three challenges. Next, Lemma 3.16

shows an upper bound on the range of φ.

Lemma 3.16. Function φ :W → [−ρ, 0] then ρ = O(‖P‖∞ log p+ ‖C‖∞ log c).

Proof. Note that γβ(a, b) ≤ 0 for any a ∈ [0, 1], b ∈ [0, 1], β ≥ 0. Since Pij ≥ 0, Ckj ≥ 0

for all possible values of i, j, k hence we clearly have φ(w) ≤ 0 for all w ∈ W . Now we

prove that lower bound is not too small.

We have

p∑
i=1

n∑
j=1

Pijγpi(xj, yi) =

p∑
i=1

n∑
j=1

Pij(yixj log xj + piyi log yi)

≥ −
p∑
i=1

n∑
j=1

Pijyi
1

e
+

p∑
i=1

piyi log yi

p∑
j=1

Pij

= −
p∑
i=1

n∑
j=1

Pijyi
1

e
+

p∑
i=1

2‖P‖∞yi log yi

≥ −
p∑
i=1

‖P‖∞
e

yi +

p∑
i=1

2‖P‖∞yi log yi

≥ −‖P‖∞
e
− 2‖P‖∞ log p.

Note that w ∈ W implies u = 1. So

p∑
i=1

γ2(u, yi) =

p∑
i=1

2yi log(yi) ≥ −2 log p.
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Similarly, we have

c∑
i=1

n∑
j=1

Cijγci(xj, zi) ≥ −
‖C‖∞
e
− 2‖C‖∞ log c.

c∑
i=1

γ2(u, zi) ≥ −2 log c.

Taking sum of all four terms, we conclude the proof.

Finally, we need an efficient δ-OSO. Consider the alternating minimization algorithm

pictured in Algorithm 2.

Input: a ∈ Rn+1, a1 ∈ Rp, a2 ∈ Rc, δ > 0

Initialize (x0, u0) ∈ Bn+,∞ × {1} arbitrarily;

for k ← {1, . . . , K} do

(yk, zk)← argmax
y∈∆+

c , z∈∆+
p

yTa1 + zTa2 − φ(xk−1, uk−1, y, z);

(xk, uk)← argmax
(x,u)∈Bn+,∞×{1}

[xT u]a− φ(x, u, yk, zk);

return (xK , uK , yK , zK)

Algorithm 2: δ-OSO for φ

Beck [14] shows the following convergence result.

Lemma 3.17 ([14]). For δ > 0, Algorithm 2 is a δ-OSO for φ which converges in

O(log δ−1) iterations.

We show that for our chosen φ, we can perform the two argmax computations in each

iteration of Algorithm 2 analytically in time O(nnz(P ) + nnz(C)), and hence we obtain a

δ-OSO which takes O((nnz(P ) + nnz(C)) log δ−1) total work. Parallelizing matrix-vector

multiplications eliminates the dependence on nnz(P ) and nnz(C), at the cost of another

logN term.
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Lemma 3.18. Each argmax in Algorithm 2 can be computed as follows:

xk = min
{

exp
(

a
PT yk+CT zk

− 1
)
,1n
}

for all j ∈ [n].

yk = proj∆+
p

(
exp
{

1
2(‖P‖∞+1)

(a1 − Pxk−1 log xk−1)
})

zk = proj∆+
c

(
exp
{

1
2(‖C‖∞+1)

(a2 − Cxk−1 log xk−1)
})

In particular, we can compute xk, yk, zk in O(nnz(P ) + nnz(C)) work and O(logN) par-

allel time.

Proof. Note that maximization with respect to u is trivial since u = 1 is a fixed variable.

We first look at maximization with respect to x ∈ Bn+,∞. Writing the first order necessary

condition of Lagrange multipliers, we have

aj −
p∑
i=1

Pij
∂

∂t
γpi(t, v)

∣∣∣∣
(t,v)=(xj ,yi)

−
c∑
i=1

Cij
∂

∂t
γci(t, v)

∣∣∣∣
(t,v)=(xj ,zi)

− λj = 0

⇒ aj −
{ p∑
i=1

Pijyi +
c∑
i=1

Cijzi
}

(1 + log xj)− λj = 0.

Here λj is the Lagrange multiplier corresponding to the case that xj = 1. By complimen-

tary slackness, we have λj > 0 iff xj = 1.

This implies xj = min

exp

 aj
p∑

i=1
Pijyi+

c∑
i=1

Cijzi

− 1

, 1
 for all j ∈ [n].

Now we consider maximization with respect to y, z. Note that there are no cross-terms

of yi and zi, i.e., ∂γpi
∂yi

is independent of z variable and vice-versa. So we can optimize them

separately. From first order necessary condition of Lagrange multipliers for y, we have

a1
i −

n∑
j=1

Pij
∂

∂v
γpi(t, v)

∣∣∣∣
(t,v)=(xj ,yi)

− ∂

∂v
γ2(t, v)

∣∣∣∣
(t,v)=(u,yi)

− λ = 0

⇒ a1
i −

n∑
j=1

Pij(xj log xj + pi(1 + log yi))− u log u|u=1 − 2(1 + log yi)− λ = 0

⇒ a1
i −

n∑
j=1

Pijxj log xj − 2(‖P‖∞ + 1)(1 + log yi)− λ = 0

where last relation follows due to definition of pi and λ is Lagrange multiplier correspond-
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ing to the constraint
p∑
i=1

yi ≤ 1. By complementary slackness, we have λ > 0 iff
p∑
i=1

yi = 1.

Eliminating λ from above equations, we obtain

y = proj∆+
p

(
exp

{
1

2(‖P‖∞ + 1)
(a1 − Px log x)

})
.

Similarly, we obtain

z = proj∆+
c

(
exp

{
1

2(‖C‖∞ + 1)
(a2 − Cx log x)

})
.

It is clear from the analytical expressions that for each iteration of Algorithm 2, we

need O(nnz(P ) + nnz(C)) time. Hence, the total runtime of Algorithm 2 is O((nnz(P ) +

nnz(C)) log δ−1).

Theorem 3.15 and Lemmas 3.16-3.18 combined together complete the proof of Theo-

rem 3.1.

3.5 Application to Densest Subgraph

We conclude the chapter by circling back to our original problem - the densest subgraph

problem. In this section, we apply the result in Theorem 3.1 to the dual LP described in

2.2.2. This can be viewed as using the algorithm described by Bahmani et al. [11], but

instead of using the multiplicative weights update technique to solve the dual, we use our

algorithm instead.

Parameterizing the dual LP with respect to D, we get the following feasibility problem.
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MPC formulation of Densest Subgraph

Given a graph G = 〈V,E〉, and a candidate threshold value D, does there exist a f

such that:
fe(u)+fe(v) ≥ 1, ∀e = uv ∈ E∑

e3v

fe(v) ≤ D, ∀v ∈ V

fe(u) ≥ 0, fe(v) ≥ 0, ∀e = uv ∈ E

It is easy to see that the above formulation is a Mixed Packing and Covering (MPC)

problem, and hence one can directly apply Theorem 3.1 to solve it. The solution to the

densest subgraph problem (i.e., the maximum subgraph density) is simply the smallest

value of D for which the LP is feasible. Since D can take at most O(|V ||E|) ≤ O(|V |3)

values in total, the densest subgraph problem can be reduced to solving O(log |V |) in-

stances of MPC, where the number of nonzeros N in the matrix is O(|E|) and the width w

is simply the maximum degree in G. This gives the following corollary.

Corollary 3.19. Given a graphG = 〈V,E〉 with maximum degree ∆, we can find a (1−ε)-

approximation to the maximum subgraph density of G, ρ∗G, in parallel time Õ(∆ε−1) and

total work Õ(|E|∆ε−1).

Note that we have only a dual solution, which does not directly give a primal solution,

i.e., a subgraph with density at least (1 − ε) of the optimum. We describe a way to make

this translation in Chapter 5 (Section 5.2.2).

The previous fastest algorithms for densest subgraph do not depend on ∆ - however,

their dependence on ε−1 is quadratic. Corollary 3.19 gives the fastest algorithm for this

problem in the high precision regime (ε < 1/∆), since its dependence on ε−1 is only

linear.
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CHAPTER 4

COMBINATORIAL ALGORITHMS FOR DENSEST SUBGRAPH

In Chapter 3, we designed an efficient numerical descent-based algorithm for mixed pack-

ing and covering linear programs, and thereby for the densest subgraph problem. In this

chapter, we explore combinatorial algorithms to find dense subgraphs.

This chapter consists of joint work with Digvijay Boob, Yu Gao, Richard Peng, Char-

alampos E. Tsourakakis, Di Wang and Junxing Wang [23].

4.1 Motivation

Finding the exact solution to the densest subgraph problem can be reduced to solving a

few instances of a maximum flow problem [44, 40]. Maximum flow computations, despite

theoretical advancements, require a running time super-linear in the size of the input, and

hence are not scalable to sizes of many current real-world networks. Although we have

shown the existence of several numerical near-linear time algorithms for the problem, these

are still far from being optimal algorithms in practice, especially when we want to run

our algorithms on a single machine. Due to this, Charikar’s greedy peeling algorithm is

frequently used in practice [26] despite its approximation factor being far from optimal.

This algorithm iteratively peels the lowest degree node from the graph, thus producing a

sequence of subsets of nodes, of which it outputs the densest one. This simple, linear time

and linear space algorithm provides a 1/2-approximation for the densest subgraph problem

(DSP).

Our work in this chapter was originally motivated by a natural question: How can we

quickly assess whether the output of Charikar’s algorithm on a given graph instance is

closer to optimality or to the worst case 1/2-approximation guarantee? However, we ended

up answering the following intriguing question that we state as the next problem:
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Problem 4.1. Can we design an algorithm that performs

• as well as Charikar’s greedy algorithm in terms of efficiency, and

• as well as the maximum flow-based exact algorithm in terms of output quality?

As a solution to the above problem, we make the following contributions in this chapter.

• We design a novel algorithm GREEDY++ for the densest subgraph problem that com-

bines the best of two different worlds, the accuracy of the exact maximum flow based

algorithm [44, 40], and the efficiency of Charikar’s greedy peeling algorithm [26].

• It is worth outlining that Charikar’s greedy algorithm typically performs better on

real-world graphs than the worse case 1/2-approximation; on a variety of datasets we

have tried, the worst case approximation was 0.8. Nonetheless, the only way to verify

how close the output is to optimality relies on computing the exact solution using

maximum flow. Our proposed method GREEDY++ can be used to assess the accuracy

of Charikar’s algorithm in practice. Specifically, we find empirically that for all

graph instances where GREEDY++ after a couple of iterations does not significantly

improve the output density, the output of Charikar’s algorithm is near-optimal.

• We implement our proposed algorithm in C++ and apply it on a variety of real-world

datasets. We verify the practical value of GREEDY++. Our empirical results indicate

that GREEDY++ is a valuable addition to the toolbox of dense subgraph discovery;

on real-world graphs, GREEDY++ is both fast in practice, and converges to a solution

with an arbitrarily small approximation factor.

4.2 Charikar’s Greedy Algorithm

Since our algorithm GREEDY++ is an improvement over Charikar’s greedy algorithm, we

discuss the latter algorithm in greater detail. The algorithm removes in each iteration, the
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node with the smallest degree. This process creates a nested sequence of sets of nodes

V = Sn ⊃ Sn−1 ⊃ Sn−2 ⊃ . . . ⊃ S1 ⊃ ∅. The algorithm outputs the graph G[Sj]

that maximizes the degree density among j = 1, . . . , n. The pseudocode is shown in

Algorithm 3.

Input: Undirected graph G

Output: A dense subgraph of G: Gdensest

Gdensest ← G;

H ← G;

while H 6= ∅ do

Find the vertex u ∈ H with minimum degH(u);

Remove u and all its adjacent edges uv from H;

if ρ(H) > ρ(Gdensest) then

Gdensest ← H;

return Gdensest

Algorithm 3: GREEDY

4.3 Proposed Algorithm: GREEDY++

As we discussed earlier, Charikar’s peeling algorithm greedily removes the node of small-

est degree from the graph, and returns the densest subgraph among the sequence of n sub-

graphs created by this procedure. While ties may exist, and are broken arbitrarily, for the

moment it is useful to think as if Charikar’s greedy algorithm produces a single permutation

of the nodes, that naturally defines a nested sequence of subgraphs.
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4.3.1 Algorithm description

Our proposed algorithm GREEDY++ iteratively runs Charikar’s peeling algorithm, while

keeping some information about the past runs. This information is crucial, as it results

in different permutations, that naturally yield higher quality outputs. The pseudocode for

GREEDY++ is shown in Algorithm 7. It takes as input the graph G, and a parameter T of

the number of passes to be performed, and runs an iterative, weighted peeling procedure.

In each round the load of each node is a function of its induced degree and the load from

the previous rounds. It is worth outlining that the algorithm is easy to implement, as it is

essentially T instances of Charikar’s algorithm. What is less obvious perhaps, is why this

algorithm makes sense, and works well. We answer this question in detail in Section 4.4.

4.3.2 Tight example for Charikar’s greedy algorithm

We provide a graph instance that clearly illustrates why GREEDY++ is a significant

improvement over the classical greedy algorithm. We discuss the first two rounds of

GREEDY++. Consider the following graph G = B
⋃(
∪ki=1Hi

)
where B = Kd,D and

Hi = Kd+2. Namely G is a disjoint union of a complete d×D bipartite graph B, and of k

(d + 2)-cliques H1, . . . , Hk. Consider the case where d � D, k → +∞. G is pictured in

Figure 4.1(a). The density of G is

2dD + (d+ 1)(d+ 2)k

2d+ 2D + 2k(d+ 2)
→ d+ 1

2
.

Notice that this is precisely the density of any (d+ 2)-clique. However, the density of B is

dD
d+D
≈ d, which is in fact the optimal solution. Charikar’s algorithm outputs G itself, since

it starts eliminating nodes of degree d from B, and by doing this, it never sees a subgraph

with higher density. This example illustrates that the 1/2 approximation is tight. Consider

now a run of GREEDY++.

In its first iteration, it simply emulates Charikar’s algorithm. The D − d vertices of B
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Input: Undirected graph G, iteration count T

Output: An approximately densest subgraph of G: Gdensest

Gdensest ← G;

Initialize the vertex load vector `(0) ← 0 ∈ Zn;

for i : 1→ T do

H ← G;

while H 6= ∅ do

Find the vertex u ∈ H with minimum `
(i−1)
u + degH(u);

`
(i)
u ← `

(i−1)
u + degH(u);

Remove u and all its adjacent edges uv from H;

if ρ(H) > ρ(Gdensest) then

Gdensest ← H;

return Gdensest

Algorithm 4: GREEDY++

which were eliminated first - each have load d. At this stage, our input is the disjoint union

of k cliques and a d × d bipartite graph. Of the remaining 2d vertices in B, one vertex is

charged with load d, two vertices each with loads (d−1), (d−2), . . . , 1, and one vertex with

load 0. On the other hand, vertices inHi are charged with loads d+1, d, . . . , 0. Figure 4.1(b)

shows the cumulative degrees of vertices in G after one iteration of GREEDY++.

Without any loss of generality let us assume the vertex from B that got charged 0

originally had degree d. This vertex in the second iteration will get deleted first, and the

vertex whose sum of load and degree is d+ 1 will get deleted second. But after these two,

all the cliques get peeled away by the algorithm. This leaves us with a d×D − 2 bipartite
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graph as the output after the second iteration, whose density is almost optimal.

B = Kd,D

...
...

...

(D) a1

(D) a2

(D) a3

(D) ad

b1 (d)

b2 (d)

b3 (d)

bd (d)

bd+1 (d)

bD (d)

Hi = Kd+2

...

c1

(d+ 1)

c2

(d+ 1)

c3

(d+ 1)

(d+ 1)
c4

c5

(d+ 1)

cd+2

(d+ 1)

(a) Initial degrees of G

B = Kd,D

...
...

...

(D + 1) a1

(D + 2) a2

(D + 3) a3

(D + d) ad

b1 (d)

b2 (d+ 1)

b3 (d+ 2)

bd (2d− 1)

bd+1 (2d)

bD (2d)

Hi = Kd+2

...

c1

(2d+ 2)

c2

(2d+ 1)

c3

(2d)

(2d− 1)
c4

c5

(2d− 2)

cd+2

(d+ 1)

(b) Cumulative degrees (degree + load) of G after one iteration

Figure 4.1: Illustration of two iterations of GREEDY++ onG. The output after one iteration
is G itself (density ≈ (d + 1)/2), whereas the output after the second iteration is B \
{b1, b2} (density≈ d).

Before we prove our theoretical properties for our proposed algorithm GREEDY++, it

is worth outlining that experiments indicate that the performance of GREEDY++ is signif-

icantly better than the worst-case analysis we perform. Furthermore, we conjecture that

our guarantees are not tight from a theoretical perspective; an interesting open question is

to extend our analysis in Section 4.4 for GREEDY++ to prove that it provides asymptoti-
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cally an optimal solution for the DSP. We conjecture that our algorithm is a (1 + 1/
√
T)-

approximation algorithm for the DSP. Our first lemma states that GREEDY++ is a 2-

approximation algorithm for the DSP.

Lemma 4.2. Let Gdensest the output of GREEDY++. Then, ρ(Gdensest) ≥ ρ∗G/2, where ρ∗G

denotes the optimum value of the problem.

Proof. Notice that the first iteration is identical to Charikar’s 1/2-approximation algorithm,

and Gdensest is at least as dense as the output of the first iteration.

The next lemma provides bounds the quality of the dual solution, i.e., at each iteration

the average load (average over the algorithm’s iterations) assigned to any vertex is at most

2ρ∗G.

Lemma 4.3. The following invariant holds for GREEDY++: for any vertex v and iteration

i, `(i)
v ≤ 2i · ρ∗G.

Proof. Consider the point at which vertex v is chosen in iteration i. Denote the graph at

that instant to be G(i)
v =

〈
V

(i)
v , E

(i)
v

〉
.

First, let i = 1. The proof for this base case goes through identically as in [26].

`(1)
v = deg

G
(1)
v

(v) ≤ 1

|V (i)
v |

∑
u∈V (i)

v

deg
G

(1)
v

(u)

=
2|E(1)

v |
|V (1)
v |

= 2 · ρ
G

(1)
v
≤ 2 · ρ∗G.

Now, assume that the statement is true for some iteration index i − 1. For any vertex

u at that point, the cumulative degree is `(i−1)
u + deg

G
(i)
v

(u). Since v has the minimum
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cumulative degree at that point,

`(i)
v = `(i−1)

v + deg
G

(i)
v

(v) ≤ 1

|V (i)
v |

∑
u∈V (i)

v

(
`(i−1)
u + deg

G
(i)
v

(u)
)

≤ 2(i− 1)ρ∗G +
1

|V (i)
v |

∑
u∈V (i)

v

deg
G

(i)
v

(u)

≤ 2i · ρ∗G.

Finally, we bound the runtime of the algorithm as follows. The next lemma states that

our algorithm can be implemented to run in O((n+m) ·min(log n, T )).

Lemma 4.4. Each iteration of the above algorithm runs in timeO((n+m)·min(log n, T )).

Proof. The deletion operation, along with assigning edges to a vertex and updating degrees

takes O(m) time since every edge is assigned once. Finding the minimum degree vertex

can be implemented in two ways:

1. Since degrees in our algorithm can go from 0 to 2Tm, we can create lists for each

separate integer degree value. Now we need to scan each list from deg = 1 to

deg = 2Tm. However, after deleting a vertex of degree d, we only need to scan from

d− 1 onwards. So the total time taken is O(2Tm+ n) = O(mT ).

2. We can maintain a priority queue, which needs a total of O(m) update operations,

each taking O(log n) time.

Note that in the case of weighted graphs, we cannot maintain lists for each possible

degree, and hence, it is necessary to use a priority queue.

4.4 Intuition Behind GREEDY++: Multiplicative Updates

Explaining the intuition behind GREEDY++ requires an understanding of the load balanc-

ing interpretation of Charikar’s LP for the DSP [26], and the multiplicative weights update
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(MWU) framework by Plotkin, Shmoys and Tardos [83] used for packing/covering LPs. In

the context of the DSP, the MWU framework was first used by Bahmani, Goel, and Mu-

nagala [11]. We include a self-contained exposition of the required concepts from [11, 26]

in this section, that has a natural flow and concludes with our algorithmic contributions.

Intuitively, the additional passes that GREEDY++ performs, improve the load balancing.

4.4.1 A load balancing problem

Recall the definition of the dual LP of Densest Subgraph from Section 2.2.

minimize D

subject to fe(u)+fe(v) ≥ 1, ∀e = uv ∈ E

`v
def
=
∑
e3v

fe(v) ≤ D, ∀v ∈ V

fe(u) ≥ 0, ∀e = uv ∈ E

fe(v) ≥ 0, ∀e = uv ∈ E

This LP can be visualized as follows. Each edge e = uv has a load of 1, which it wants

to send to its end points: fe(u) and fe(v) such that the total load of any vertex v, `v, is

at most D. The objective is to find the minimum D for which such a load assignment is

feasible.

For a fixed D, the above dual problem can be framed as a flow problem on a bipartite

graph as follows: Let the left side L represent V and the right side R represent E. Add a

super-source s and edges from s to all vertices inLwith capacityD. Add edges from v ∈ V

to e ∈ E if e is incident on v in G. All vertices in R have demands of 1 unit. Although

Goldberg’s initial reduction [44] involved a different flow network, this graph can also be

used to use maximum flow and use that to find the exact optimum to our problem. From

strong duality, we know that the optimal objective values of both linear programs are equal,

i.e., exactly ρ∗G. Let ρG be the objective of any feasible solution to PRIMAL(G). Similarly,

let ρ̂G be the objective of any feasible solution to DUAL(G). Then, by optimality of ρ∗G and
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weak duality, we obtain the optimality result ρG ≤ ρ∗G ≤ ρ̂G.

4.4.2 MWU formulation by Bahmani et al.

Bahmani et al. [11] use the following covering LP formulation: decide the feasibility

of constraints fe(u) + fe(v) ≥ 1 for each edge e = uv ∈ E subject to the polyhedral

constraints:

∑
e3v

fe(v) ≤ D, ∀v ∈ V

fe(u) ≥ 0, ∀e = uv ∈ E

fe(v) ≥ 0, ∀e = uv ∈ E

The width of this linear program is the maximum value of fe(u) + fe(v) provided that

fe(u), fe(v) satisfy the constraints of the program. In order to provably bound the width of

the above LP, Bahmani et al. introduce another set of simple constraints as follows:

∑
e3v

fe(v) ≤ D, ∀v ∈ V

q ≥ fe(u) ≥ 0, ∀e = uv ∈ E

q ≥ fe(v) ≥ 0, ∀e = uv ∈ E

where q ≥ 1 is a small constant. So, for a particular value ofD, they verify the approximate

feasibility of the covering problem using the MWU framework.

However, this necessitates running a binary search over all possible values of D and

finding the lowest value of D for which the LP is feasible. Since the precision for D can be

as low as ε, this binary search is inefficient in practice. Furthermore, due to the added `∞

constraint to bound the width, extracting the primal solution (i.e. an approximately densest

subgraph) from the dual is no longer straightforward, and the additional rounding step to

overcome this incurs additional loss in the approximation factor.
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In order to overcome these practical issues, we propose an alternate MWU formulation

which sacrifices the width bounds but escapes the binary search phase over D. Eliminating

the artificial width bound makes it straightforward to extract a primal solution. Moreover,

our experiments on real world graphs suggest that width is not a bottleneck for the running

time of the MWU algorithm. Even more importantly, our alternate formulation naturally

yields GREEDY++ as we explain in the following.

4.4.3 An alternate MWU formulation

We can denote the LP DUAL(G) succinctly as follows:

minimize D

subject to Bf ≤ D1

f ∈ P

where f is the vector representation of the all fe(v) variables, B ∈ Rn×2m is the matrix

denoting the left hand side of all constraints of the form
∑
e3v

fe(v) ≤ D. 1 denotes the

vector of 1’s and P is a polyhedral constraint set defined as follows:

fe(u) + fe(v) ≥ 1 ∀e = uv ∈ E

fe(u) ≥ 0 ∀e ∈ E, ∀v ∈ e.

Note that for any f ∈ P , we have that the minimum D satisfying Bf ≤ D1 is equal

to ‖Bf‖∞. This follows due to the non-negativity of Bf for any f ∈ P . Now a simple

observation shows that for any non-negative vector y, we can write

‖y‖∞ = max
x∈∆+

n

xTy
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where ∆+
n := {x ≥ 0 : 1Tx ≤ 1}. Hence, we can now write DUAL(G) as:

min
f∈P
‖Bf‖∞ = min

f∈P
max
x∈∆+

n

xTBf

= max
x∈∆+

n

min
f∈P

xTBf . (4.1)

Here the last equality follows due to strong duality of the convex optimization.

The “inner” minimization part of (4.1) can be performed easily. In particular, we need

an oracle which, given a vector x, solves

C(x) = min
f∈P

∑
e=uv

xufe(u) + xvfe(v).

Lemma 4.5. Given a vector x, C(x) can be computed in O(m) time.

Proof. For each edge e = uv, simply check which of xu and xv is smaller. WLOG, assume

it is xu. Then, set fe(u) = 1 and fe(v) = 0.

We denote the optimal f for a given x as f(x). Now, using the above oracle, we can

apply the MWU algorithm to the “outer” problem of (4.1), i.e., maxx∈∆+
n
C(x). Addition-

ally, to apply the MWU framework, we need to estimate the width of this linear program.

The width for (4.1) can be bounded by largest degree, dmax of the graph G. Indeed, we see

in Lemma 4.5 that f(x) is a 0/1 vector. In that case, ‖Bf(x)‖∞ ≤ dmax.

We conclude our analysis of this alternative dual formulation of the DSP with the fol-

lowing theorem.

Theorem 4.6. Our alternative dual formulation admits a MWU algorithm that outputs an

f ∈ P such that ‖Bf‖∞ ≤ (1 + ε)ρ∗G.

For the sake of completeness, we detail the MWU algorithm and the proof of Theo-

rem 4.6 in Appendix B.
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Let us now view Charikar’s peeling algorithm in the context of this dual problem. In a

sense, the greedy peeling algorithm resembles one “inner” iteration of the MWU algorithm,

where whenever a vertex is removed, its edges assign their load to it. Keeping this in mind,

we designed GREEDY++ to add “outer” iterations to the peeling algorithm, thus improving

the approximation factor arbitrarily with increase in iteration count. By weighting vertices

using their load from previous iterations, GREEDY++ implicitly performs a form of load

balancing on the graph, thus arriving at a better dual solution.

4.5 Experiments

4.5.1 Experimental setup

The experiments were performed on a single machine, with an Intel(R) Core(TM) i7-2600

CPU at 3.40GHz (4 cores), 8MB cache size, and 8GB of main memory. We find densest

subgraphs on the samples using binary search and maximum flow computations. The flow

computations were done using C++ implementations of the push-relabel algorithm [45],

HiPR1. We have implemented our algorithm GREEDY++ and Charikar’s greedy algorithm

in C++. Our implementations are efficient and our code is available publicly2.

We use a variety of datasets obtained from the Stanford’s SNAP database [72], ASU’s

Social Computing Data Repository [107], BioGRID [94] and from the Koblenz Network

Collection [69], that are shown in table Table 4.1. A majority of the datasets are from

SNAP, and hence we mark only the rest with their sources. Multiple edges, self-loops are

removed, and directionality is ignored for directed graphs. The first cluster of datasets are

unweighted graphs. The largest unweighted graph is the web-trackers graph with roughly

141M edges, while the smallest unweighted graph has roughly 25K edges. For weighted

graphs, we use a set of Twitter graphs that were crawled during the first week of February

2018 [93]. Finally, we use a set of signed networks (slashdot, epinions). We remind the

1HiPR is available at http://www.avglab.com/andrew/soft/hipr.tar
2Our code for GREEDY++ and the exact algorithm is available at the anonymous link https://www.

dropbox.com/s/jzouo9fjoytyqg3/code-greedy%2B%2B.zip?dl=0
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Table 4.1: Datasets used in our experiments.

Name n m

web-trackers [69] 40 421 974 140 613 762
orkut [69] 3 072 441 117 184 899
livejournal-affiliations [69] 10 690 276 112 307 385
wiki-topcats 1 791 489 25 447 873
cit-Patents 3 774 768 16 518 948
actor-collaborations [69] 382 219 15 038 083
ego-gplus 107 614 12 238 285
dblp-author 5 425 963 8 649 016
web-BerkStan 685 230 6 649 470
flickr [107] 80 513 5 899 882
wiki-Talk 2 394 385 4 659 565
web-Google 875 713 4 322 051
com-youtube 1 134 890 2 987 624
roadNet-CA 1 965 206 2 766 607
web-Stanford 281 903 1 992 636
roadNet-TX 1 379 917 1 921 660
roadNet-PA 1 088 092 1 54 898
Ego-twitter 81 306 1 342 296
com-dblp 317 080 1 049 866
com-Amazon 334 863 925 872
soc-slashdot0902 82 168 504 230
soc-slashdot0811 77 360 469 180
soc-Epinions 75 879 405 740
blogcatalog [107] 10,312 333 983
email-Enron 36 692 183 831
ego-facebook 4 039 88 234
ppi [94] 3 890 37 845

twitter-retweet [93] 316 662 1 122 070
twitter-favorite [93] 226 516 1 210 041
twitter-mention [93] 571 157 1 895 094
twitter-reply [93] 196 697 296 194

soc-sign-slashdot081106 77 350 468 554
soc-sign-slashdot090216 81 867 497 672
soc-sign-slashdot090221 82 140 500 481
soc-sign-epinions 131 828 711 210

reader that while the DSP is NP-hard on signed graphs, Charikar’s algorithm does provide

certain theoretical guarantees, see Theorem 2 in [102].
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Figure 4.2: Number of iterations for GREEDY++. Histograms of number of iterations to
reach (a) 99% of the optimum degree density, (b) the optimum degree density.

4.5.2 Experimental results

Before we delve in detail into our experimental findings, we summarize our key findings

here:

• Our algorithm GREEDY++ when given enough number of iterations always finds the

optimal value, and the densest subgraph. This agrees with our conjecture that running

T iterations of GREEDY++ gives a 1 +O(1/
√
T) approximation to the DSP.
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Figure 4.3: Scalability. (a) Running time in seconds of each iteration of GREEDY++
versus the number of edges. (b) Speedup achieved by GREEDY++ over the exact max-flow
based algorithm, plotted vs. number of edges in the graph. Specifically, the y-axis is the
ratio of the run time of the exact max flow algorithm divided by the run time of GREEDY++
that finds 90% of the optimal solution.

• Experimentally, Charikar’s greedy algorithm always achieves at least 80% accuracy,

and occasionally finds the optimum.

• For graphs on which the performance of Charikar’s greedy algorithm is optimal, the

first couple of iterations of GREEDY++ suffice to deduce convergence safely, and thus
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act in practice as a certificate of optimality. This is the first method to the best of our

knowledge that can be used to infer quickly the actual approximation of Charikar’s

algorithm on a given graph instance.

• When Charikar’s algorithm does not yield an optimal solution, then GREEDY++

within few iterations is able to increase the accuracy to 99% of the optimum density,

and by adding a few more iterations is able to find the optimal density and extract

and optimal output.

• When we are able to run the exact algorithm (for graphs with more than 8M edges, the

maximum flow code crashes) on our machine, the average speedup that our algorithm

provides to reach the optimum is 144.6× on average, with a standard deviation equal

to 57.4. The smallest speedup observed was 67.9×, and the largest speedup 290×.

Additionally, we remark that the exact algorithm is only able to find solutions up to

an accuracy of 10−3 on most graphs.

• The speedup typically increases as the size of the graph increases. In fact, the maxi-

mum flow exact algorithm cannot complete on the largest graphs we use.

• The maximum number of iterations needed to reach 90% of the optimum is at most

3, i.e., by running two more passes compared to Charikar’s algorithm, we are able to

boost the accuracy by 10%.

• The same remarks hold for both weighted and unweighted graphs.

Number of iterations. We first measure how many iterations we need to reach 99% of

the optimum, or even the optimum. Figures 4.2(a), (b) answer these questions respectively.

We observe the impressive performance of Charikar’s greedy algorithm; for the majority of

the graph instances we observe that it finds a near-optimal densest subgraph. Nonetheless,

even for those graph instances –as we have emphasized earlier– our algorithm GREEDY++

acts as a certificate of optimality. Namely, we observe that the objective remains the same
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Figure 4.4: Convergence to optimum as a function of the number of iterations of
GREEDY++. (a) roadNet-CA, (b) roadNet-PA, (c) roadNet-TX, (d) com-Amazon, (e) dblp-
author, (f) ego-twitter, (g) twitter-favorite, (h) twitter-reply. Here, the accuracy is given by
ρ(Hi)

ρ∗G
, where Hi is the output of GREEDY++ after i iterations.
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after a couple of iterations if and only if the algorithm has reached the optimum. For the

rest of the graphs where Charikar’s greedy algorithm outputs an approximation greater

than 80% but less than 99%, we observe the following: for five datasets it takes at most

3 iterations, for one graph it takes nine iterations, and then there exist three graphs for

which GREEDY++ requires 10, 22, and 29 iterations respectively. If we insist on finding

the optimum densest subgraph, we observe that the maximum number of iterations can go

up to 100. On average, GREEDY++ requires 12.69 iterations to reach the optimum densest

subgraph.

Scalability. Our experiments verify the intuitive facts that (i) each iteration of the greedy

algorithm runs fast, and (ii) the exact algorithm that uses maximum flows is comparatively

slow. We constrain ourselves on the set of data for which we were able to run the exact

algorithm. Figure 4.3(a) shows the time that each iteration of the GREEDY++ takes on

average (runtimes are well concentrated around the average) over the iterations performed

to reach the optimal densest subgraph. Figure 4.3(b) shows the speedup achieved by our

algorithm when we condition on obtaining at least 90% (notice that frequently the actual

accuracy is greater than 95%) of the optimal solution versus the exact max-flow based

algorithm. Specifically, we plot the ratio of the running times of the exact algorithm by

the time of GREEDY++ versus the number of edges. Notice that for small graphs, the

speedups are very large, then they drop, and they exhibit an increasing trend as the graph

size grows. For the largest graphs in our collection, the exact algorithm is infeasible to run

on our machine.

Convergence. Figure 4.4 illustrates the convergence of GREEDY++ for various datasets.

Specifically, each figure plots the accuracy of GREEDY++ after T iterations versus T . The

accuracy is measured as the ratio of the degree density achieved by GREEDY++ by the

optimal degree density. Figures 4.4(a),(b),(c),(d),(e),(f),(g),(h) correspond to the conver-

gence behavior of roadNet-CA, roadNet-PA, roadNet-TX, com-Amazon, dblp-author, ego-

twitter, twitter-favorite, twitter-reply respectively. These plots illustrate various interesting
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Figure 4.5: Log-log plot of optimal degree density ρ∗ versus the number of edges in the
graph.

properties of GREEDY++ in practice. Observe Figure 4.4(e). Notice how GREEDY++

keeps outputting the same subgraph for few consecutive iterations, but then suddenly

around the 10th iteration it “jumps” and finds an even denser subgraph. Recall that on aver-

age over our collection of datasets for which we can run the exact algorithm (i.e., datasets

with less than 8M edges), GREEDY++ requires roughly 12 iterations to reach the optimum

densest subgraph. For this reason we suggest running GREEDY++ for that many iterations

in practice. Furthermore, we typically observe an improvement over the first pass, with the

exception of the weighted graph twitter-reply, where the “jump” happens at the end of the

third iteration.

Anomaly detection. It is worth outlining that GREEDY++ provides a way to compute

the densest subgraph in graphs where the maximum flow approach does not scale. For

example, for graphs with more than 8 million edges, the exact method does not run on our

machine. By running GREEDY++ for enough iterations we can compute a near-optimal or

the optimal solution. This allows us to compute a proxy of ρ∗ for the largest graphs, like
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orkut and trackers. We examined to what extent there exists a pattern between the size of

the graph and the optimal density. In contrast to the power law relationship between the

k-cores and the graph size claimed in [91], we do not observe a similar power law when

we plot ρ∗ (the exact optimal value or the proxy value found by GREEDY++ after 100

iterations for the largest graphs) versus the number of edges in the graph. This is shown in

Figure 4.5. Part of the reason why we do not observe such a law are anomalies in graphs.

For instance, we observe that small graphs may contain extremely dense subgraphs, thus

resulting in significant outliers.

4.6 Conclusion

In this chapter we provide a powerful algorithm for the densest subgraph problem, a popu-

lar and important objective for discovering dense components in graphs. The main practical

value of our GREEDY++ algorithm is two-fold. First, by running few more iterations of

Charikar’s greedy algorithm we obtain (near-)optimal results that can be obtained using

only maximum flows. Second, GREEDY++ can be used to answer for first time the ques-

tion “Is the approximation of Charikar’s algorithm on this graph instance closer to 1/2 or to

1?” without computing the optimal density using maximum flows. Empirically, we have

verified that GREEDY++ combines the best of “two worlds” on real data, i.e., the efficiency

of the greedy peeling algorithm, and the accuracy of the exact maximum flow algorithm.

We believe that GREEDY++ is a valuable addition to the algorithmic toolbox for dense

subgraph discovery that combines the best of two worlds, i.e., the accuracy of maximum

flows, and the time and space efficiency of Charikar’s greedy algorithm.

An intriguing open question which remains from our work is a theoretical convergence

proof for GREEDY++. In addition to the empirical evidence towards convergence, we be-

lieve that our algorithm mimics a linear programming solution given by the multiplicative-

weight-update framework [9, 83]. Hence, we state this open problem as the following

conjecture:
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Conjecture 4.7. GREEDY++ is a 1+O(1/
√
T) approximation algorithm for the DSP,

where T is the number of iterations it performs.
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CHAPTER 5

DYNAMIC ALGORITHMS FOR DENSEST SUBGRAPH

In Chapters 3 and 4, we studied the densest subgraph problem as a static problem, in which

we are required to compute a (1 − ε) approximate solution on a single unchanged graph.

Motivated by the fact that most real-world networks undergo frequent changes, in this

chapter we study the densest subgraph problem in the fully dynamic model of computation,

wherein we are required to maintain a solution as edges are inserted and deleted.

This chapter consists of joint work with Junxing Wang [88].

5.1 Introduction

A majority of real-world networks are very large in size, and a significant fraction of them

are known to change rather rapidly [86]. This has necessitated the study of efficient dy-

namic graph algorithms - algorithms which use the existing solution to quickly find an

updated solution for the new graph. Due to the size of these graphs, it is imperative that

each update be processed in sub-linear time.

Data structures which efficiently maintain solutions to combinatorial optimization prob-

lems have shot into prominence over the last few decades [92, 37]. Many fundamental

graph problems such as graph connectivity [55, 56, 62, 60, 47], maximal and maximum

matchings [50, 17, 15, 19, 20], maximum flows and minimum cuts [58, 97, 46, 47, 28]

have been shown to have efficient dynamic algorithms which only require sub-linear run-

time per update. On the other hand, lower bounds exist for the update times for a number

of these problems [4, 54, 1, 2, 3]. [53] contains a comprehensive survey of many graph

problems and their state-of-the-art dynamic algorithms.

The state-of-the-art data structure for maintaining (1 − ε)-approximate maximum

matchings takes O(
√
mε−2) time per update [50]. Bhattacharya et al. [18] maintain a
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constant factor approximation to the b-matching problem in O(log3 n) time. For flow-

problems, algorithms which maintain a constant factor approximation in sublinear update

time have proved to be elusive.

5.1.1 Background and related work

In terms of dynamic and streaming algorithms for the densest subgraph problem, the first

result is by Bahmani et al. [12], where they modified Charikar’s greedy algorithm to give

a (1/2 − ε)-approximation using O(log1+ε n) passes over the input. Das Sarma et al. [87]

adapted this idea to maintain a (1/2 − ε) approximate densest subgraph efficiently in the

distributed CONGEST model. Using the same techniques as in the static case, Bahmani et

al. [11] obtained a (1− ε)-approximation algorithm that requires O(log nε−2) passes over

the input.

Subsequently, Bhattacharya et al. [21] developed a more nuanced data structure to

enable a 1-pass streaming algorithm which finds a (1/2− ε) approximation. They also gave

the first dynamic algorithm for DSP - a fully dynamic (1/4 − ε) approximation algorithm

using amortized time O(poly(log n, ε−1)) per update. Around the same time, Epasto et al.

[33] gave a fully dynamic (1/2 − ε)-approximation algorithm for DSP in amortized time

O(log2 nε−2) per update, with the caveat that edge deletions can only be random.

Kannan and Vinay [61] defined a notion of density on directed graphs, and subse-

quently gave a O(log n) approximation algorithm for the problem. Charikar [26] gave a

polynomial-time algorithm for directed DSP by reducing the problem to solving O(n2)

LPs. On the other hand, Khuller and Saha [64] used parametrized maximum flow to derive

a polynomial-time algorithm. In the same paper, they gave a linear time 2-approximation

algorithm for the problem.

An alternate approach towards a dynamic algorithm for the densest subgraph problem is

to adapt the multiplicative weights update framework [9] used to solve the densest subgraph

problem in [11] to allow for edge updates. This technique works in the incremental (only
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edge insertions) regime for bipartite matchings [49], and can similarly be adapted to work

in the purely decremental case for the densest subgraph problem to give an O(log3 nε−3)

amortized runtime per update.

5.1.2 Our results

As in previous chapters, we use the dual of the densest subgraph problem to gain insight on

the optimality conditions, as in [26, 11]. Specifically, we translate it into a problem of as-

signing edge loads to incident vertices so as to minimize the maximum load across vertices.

Viewed another way, we want to orient edges in a directed graph so as to minimize the max-

imum in-degree of the graph. This view gives a local condition for near-optimality of the

algorithm, which we then leverage to design a data structure to handle updates efficiently.

As the primary result in this chapter, we give the first fully dynamic (1− ε)-approximation

algorithm for DSP which runs in O(poly(log n, ε−1)) worst-case time per update:

Theorem 5.1. Given a graph G with n vertices, there exists a deterministic fully dynamic

(1− ε)-approximation algorithm for the densest subgraph problem using O(1) worst-case

time per query and O(log4 n · ε−6) worst-case time per edge insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding approximate dens-

est subgraph in time O(β + log n), where β is the number of vertices in the output.

Charikar [26] gave a reduction from the densest subgraph problem on directed graphs to

solving a number of instances of an LP. We visualize this LP as DSP on a vertex-weighted

graph. We show that our approach on unweighted graphs extends naturally to those with

vertex weights, thereby also giving a fully dynamic (1 − ε)-approximation algorithm for

directed DSP which runs in O(poly(log n, ε−1)) worst-case time per update:

Theorem 5.2. Given a directed graph G with n vertices, there exists a deterministic fully

dynamic (1 − ε)-approximation algorithm for the densest subgraph problem on G using

O(log n · ε−1) worst-case query time and worst-case update times of O(log5 n · ε−7) per

edge insertion or deletion.
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Moreover, at any point, the algorithm can output the corresponding approximate dens-

est subgraph in time O(β + log n), where β is the number of vertices in the output.

5.2 Fully Dynamic (1− ε)-approximation Algorithm

In this section, we describe the main result of this chapter: a deterministic fully-dynamic

algorithm which maintains a (1 − ε)-approximation to the densest subgraph problem in

poly(log n, ε−1) worst-case time per update.

5.2.1 Intuition and overview

At a high level, our approach is to view the densest subgraph problem via its dual problem,

i.e., “assigning” each edge fractionally to its endpoints (as we discuss in Chapter 1). We

view this as a load distribution problem, where each vertex is assigned some load from its

incident edges. Then, the objective of the problem is simply to find an assignment such that

the maximum vertex load is minimized. It is easy to verify that an optimal load assignment

in the dual problem is achieved when no edge is able to reassign its load such that the

maximum load among its two endpoints gets reduced. In other words, local optimality

implies global optimality.

In fact, this property holds even for approximately optimal solutions. We show in Sec-

tion 5.2.2 that any solution f which satisfies an η-additive approximation to local optimal-

ity guarantees an approximate global optimal solution with a multiplicative error of at most

1−O(
√
η log n/ρ̂G), where ρ̂G denotes the maximum vertex load in f . Here, an η-additive

approximation implies that for any edge, the maximum among its endpoint loads can only

be reduced by at most η by reassigning the edge. So, given an estimate of ρ̂G and a de-

sired approximation factor ε, we can deduce the required slack parameter η, which we will

alternatively denote as a function η(ρ̂G, ε).

To do away with fractional edge assignments, in Section 5.2.3 we scale up the graph

by duplicating each edge an appropriate number of times. When η is an integer, one can
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always achieve an η-additive approximation to local optimality by assigning each edge

completely to one of its endpoints. We visualize such a load assignment via a directed

graph, by orienting each edge towards the vertex to which it is assigned. Now, the load on

every vertex v is simply its in-degree din(v). Then, an η-approximate local optimal solution

is achieved by orienting each edge such that there is no edge −→uv with din(v)− din(u) > η,

because otherwise, we can flip the edge to achieve a better local solution. Let us call this a

locally η-stable oriented graph.

This leaves the following challenges in extending this idea to a fully dynamic algorithm:

1. How can we maintain a locally η-stable oriented graph under insertion/deletion op-

erations efficiently?

2. How do we maintain an accurate estimate of η while the graph (and particularly ρ̂G)

undergoes changes?

In Sections 5.2.4 and 5.2.5, we solve the first issue using a technique similar to that

used by Kopelowitz et al. [65] for the graph orientation problem. When an edge is inserted

or deleted, it causes a vertex to change its in-degree, which might cause an incident edge

to break the invariant for local η-stability. If we flip the edge to fix this instability, it might

cause further instabilities. To avoid this cascading of unstable edges, we first identify a

maximal chain of “tight” edges - edges that are close to breaking the local stability con-

straint, and flip all edges in such a chain. This way, we only increment the degree of the

last vertex in the chain. Since the chain was maximal, this increment maintains the stability

condition. By defining a “tight” edge appropriately, and applying the same argument to the

deletion operation, we show that each update incurs at most O(ρ̂G/η) flips. This chain of

tight edges closely relates to the concept of augmenting paths in network flows [36] and

matchings [77, 32], which seems fitting, considering our intuition that densest subgraph

relates closely to these problems.

In Section 5.2.6, we solve the second issue - by simply running the algorithm for
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O(log n) values of η, and using the appropriate version of the algorithm to query the solu-

tion.

5.2.2 Sufficiency of local approximation

From strong duality, we know that the optimal solution to DUAL(G) gives the exact maxi-

mum subgraph density of G, ρ∗G. Let us interpret the variables of DUAL(G) as follows:

• Every edge e = uv assigns itself fractionally to one of its two endpoints. fe(u) and

fe(v) denote these fractional loads.

•
∑

e3v fe(v) is the total load assigned to v. We denote this using `v.

• The objective is simply maxv∈V `v.

If there is any edge e = uv such that fe(u) > 0 and `u > `v. Then e can transfer an

infinitesimal amount of load from u to v while not increasing the objective. Hence, there

always exists an optimal solution where for any edge e = uv, fe(u) > 0 =⇒ `u ≤ `v.

Using this intuition, we write the approximate version of DUAL(G) by providing a slack of

η to the above condition. We call this relaxed LP as DUAL(G, η).

DUAL(G, η)

`v=
∑
e3v

fe(v) ∀u ∈ V

fe(u) + fe(v)= 1, ∀e = uv ∈ E

fe(u), fe(v)≥ 0, ∀e = uv ∈ E

`u≤ `v + η, ∀e = uv ∈ E, fe(u) > 0

Theorem 5.3 states that this local condition is, in fact, also sufficient to achieve global

near-optimality. Specifically, it shows that DUAL(G, η) provides a 1
(1−ε) -approximation to

ρ∗G, where η is a parameter depending on ε described later. Kopelowitz et al. [65] use

an identical argument to show the sufficiency of local optimality for the graph orientation

problem.
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Theorem 5.3. Given an undirected graph G with n vertices, let f̂ , ˆ̀denote any feasible

solution to DUAL(G, η), and let ρ̂G
def
= maxv∈V ˆ̀

v. Then,

(
1− 3

√
η log n

ρ̂G

)
· ρ̂G ≤ ρ∗G ≤ ρ̂G.

Proof. Any feasible solution of DUAL(G, η) is also a feasible solution of DUAL(G), and

so we have ρ∗G ≤ ρ̂G.

Denote by Ti the set of vertices with load at least ρ̂G − ηi, i.e., Ti
def
={

v ∈ V | ˆ̀
v ≥ ρ̂G − ηi

}
. Let 0 < r < 1 be some adjustable parameter we will fix later.

We define k to be the maximal integer such that for any 1 ≤ i ≤ k, |Ti| ≥ |Ti−1|(1 + r).

Note that such a maximal integer k always exists because there are finite number of vertices

in G and the size of Ti grows exponentially. By the maximality of k, |Tk+1| < |Tk|(1 + r).

In order to bound the density of this set Tk+1, we compute the total load on all vertices in

Tk. For any u ∈ Tk, the load on u is given by

ˆ̀
u =

∑
uv∈E

f̂uv(u).

However, we know that fuv(u) > 0 =⇒ ˆ̀
v ≥ ˆ̀

u − η, and hence we only need to count

for v ∈ Tk+1. Summing over all vertices in Tk+1, we get

∑
u∈Tk

ˆ̀
u =

∑
u∈Tk,v∈Tk+1

f̂uv(u) ≤
∑

u∈Tk+1,v∈Tk+1

f̂uv(u) = |E(Tk+1)|.

Consider the density of set Tk+1,

ρG(Tk+1) =
|E(Tk+1)|
|Tk+1|

≥
∑

u∈Tk
ˆ̀
u

|Tk+1|
≥ |Tk| · (ρ̂G − ηk)

|Tk+1|
,

where the last inequality follows from the definition of Tk.
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Using the fact that |Tk|/|Tk+1| > 1/(1 + r) ≥ 1− r,

ρG(Tk+1) ≥ (1− r)(ρ̂G − ηk) ≥ ρ̂G(1− r)
(

1− 2η log n

r · ρ̂G

)
,

where the last inequality comes from the fact that n ≥ |Tk| ≥ (1 + r)k, which implies that

k ≤ log1+r n ≤ 2 log n/r.

Now, we can set our parameter r to maximize the term on the RHS. By symmetry, the

maximum is achieved when both terms in the product are equal and hence we set

r =

√
2η log n

ρ̂G
.

This gives

ρG(Tk+1) ≥ ρ̂G·

(
1−

√
2η log n

ρ̂G

)2

≥ ρ̂G·

(
1− 2

√
2η log n

ρ̂G

)
≥ ρ̂G·

(
1− 3

√
η log n

ρ̂G

)
.

Lastly, since ρG(Tk+1) can be at most the maximum subgraph density ρ∗G, the theorem

follows.

The set Tk+1, in the above proof, is actually a subgraph of G with density at least

ρ∗G(1 − 3
√
η log n/ρ̂G). However, we need the exact value of ρ̂G to find this set. As

we will see in later sections, we will only have access to an estimate ρest of the form:

ρest ≤ ρ̂G ≤ 2ρest. So, if we instead set

r =

√
2η log n

ρest , (5.1)

we get

ρG(Tk+1) ≥ ρ̂G ·

(
1−

√
2η log n

ρ̂G

)(
1− 2

√
η log n

ρ̂G

)
≥ ρ̂G ·

(
1− 4

√
η log n

ρ̂G

)
.
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Using the fact that ρ̂G ≥ ρ∗G, ρ
est gives us the following corollary.

Corollary 5.4.

ρG(Tk+1) ≥ ρ∗G ·

(
1− 4

√
η log n

ρest

)
,

where Tk+1 is as defined in the proof of Theorem 5.3, using the value of r as defined in

(5.1).

We can now set η corresponding to the desired error ε and the estimate ρest.

5.2.3 Equivalence to the graph orientation problem

To obtain a 1 − ε approximation, we need to set η =
ε2ρest

16 log n
. For simpler analysis and

to avoid working with fractional loads, we duplicate each edge α def
=

64 log n

ε2
times. By

doing this, we ensure that ρest ≥ ρ̂G/2 ≥ ρ∗G/2 ≥ α/4, and thus, η ≥ 1. This means we

can do away with fractional assignments of edges and so each edge u, v is now assigned to

either u or v. We can now frame the question as follows:

Given an undirected graph G and an integer η, we want to assign directions to edges

in such a way that for any edge −→uv,

din(v) ≤ din(u) + η.

The above graph orientation problem, i.e., dynamically orienting edges of a graph to

minimize the maximum in-degree, is well studied [25, 66, 65]. Kopelowitz et al. give

an efficient dynamic algorithm for the problem, where the update time depends on the

arboricity1 of the graph with worst-case time bounds. Our technique for inserting and

deleting edges mimics the algorithm by Kopelowitz et al. [65]. However, for our problem,

the slack parameter η grows linearly with the maximum vertex load. Hence, we can exploit

this additional power to arrive at worst-case times independent of any measure of actual

1Arboricity is an alternate measure of density defined as αG(V ) = |E(V )|/(|V | − 1), and is within O(1)
of our density measure.
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density in the graph. Additionally, to bound the cost of a vertex informing its updated

degree to its neighbors, we use a lazy round-robin informing technique, in which not all

neighbors are always informed of the latest updates. We expand on these details in the rest

of the section.

5.2.4 Data structure for edge flipping in directed graphs

At the lowest level, we want to build a data structure that maintains a directed graph under-

going changes. Ideally, we want each vertex to know its neighbors’ labels, so that we can

quickly find any edge violating or exactly satisfying the approximation condition. We refer

to the latter as a tight edge. However, this property is expensive because each vertex could

possibly have too many neighbors to inform. Specifically, each vertex could have up to ρ̂G

in-neighbors and as many as n− 1 out-neighbors.

We deal with this issue in the following way. Since a vertex can have Ω(n) out-

neighbors, it does not inform its changes to its out-neighbors, but only its in-neighbors.

So, any vertex remembers the labels of its out-neighbors. Hence, it is easy to find a tight

outgoing edge; however, to find a tight incoming edge, we need to query the labels of all its

in-neighbors. Hence, both the update subroutines and finding a tight incoming edge - use

as many as ρ̂G operations.

However, ρ̂G can also get prohibitively large when the graph sees many insertions, and

can reach Ω(n) (e.g. in a clique). To tackle this, we relax the requirement for tightness

of an edge: we say that an edge −→uv is tight if din(v) ≥ din(u) + η/2. Now, finding a tight

edge becomes less strict - importantly it now suffices to update one’s in-neighbors (or query

one’s in-neighbors) once every η/4 iterations. So, in each update, a vertex v only informs

4din(v)/η of its neighbors in round-robin fashion. This reduces the number of operations

to O(α) per update, as desired.

Lemma 5.5. There exists a data structure LAZYDIRECTEDLABELS(G, η) which can

maintain a directed graph G(V,E), appended with vertex labels d : V 7→ Z+ while under-
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We maintain the following global data structure:
• LABELS: Balanced binary search tree with all labels. We store the max element

separately.

Each vertex u maintains the following data structures:

• d(u): u’s label, initialized to 0.
• INNBRSu: List of u’s in-neighbors, initialized to ∅.
• OUTNBRSu: Max-priority queue of u’s out-neighbors indexed using du, initialized

to ∅.

Operation add(−→uv)
Add u to INNBRSv

Add v to OUTNBRSu with key
du(v)← d(v)

Operation remove(−→uv)
Remove u from INNBRSv

Remove v from OUTNBRSu

Operation flip(−→uv)
remove(−→uv)
add(−→vu)

Operation increment(u)
d(u)← d(u) + 1

Update d(u) in LABELS

for v ∈ the next 4din(u)
η

INNBRSu do
dv(u)← d(u) in OUTNBRSv

Operation decrement(u)
d(u)← d(u)− 1

d(u) in LABELS

for v ∈ the next 4din(u)
η

INNBRSu do
dv(u)← d(u) in OUTNBRSv

Operation tight in nbr(u)

for v ∈ the next 4din(u)
η

INNBRSu do
if d(v) ≤ d(u)− η/2 then

return v
return null

Operation tight out nbr(u)

t← OUTNBRS[u].max

if du(v) ≥ d(u) + η/2 then
return v

else return null

Operation label()
return d(u)

Operation max label()
return LABELS.max

Operation maximal label set(r)

m← max label()

do
A ← all elements ≥ m − η

in LABELS

B ← all elements ≥ m − 2η

in LABELS

m← m− η
while |B|/|A| ≥ 1 + r

return B

Algorithm 5: LAZYDIRECTEDLABELS(G, η): A data structure to maintain a di-
rected graph with vertex labels. V and η are known.
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going the following operations:

• add (−→uv): add an edge into G,

• remove (−→uv): remove an edge from G,

• increment(u): increment d(u) by 1,

• decrement(u): decrement d(u) by 1,

• flip (−→uv): flip the direction of an edge in G,

• tight in nbr(u): find an in-neighbor v with d(v) ≤ d(u)− η/2, and

• tight out nbr(u): find an out-neighbor v with d(v) ≥ d(u) + η/2.

• label(u): output d(u).

• max label(): output maxv∈V d(v).

• maximal label set(r): Output all elements with labels ≥ max label() − η · i,

where i is the smallest integer such that |labels ≥ η · (i+1)| < (1+r)|labels ≥ η · i|.

Moreover, the operations add, remove and flip can be processed in O(log n) time;

tight in nbr, increment and decrement can be processed in O(α) time; and

tight out nbr and max label can be processed in O(1) time. maximal label set can

be processed in time in the order of the output size.

The pseudocode for this data structure is in Algorithm 5.

Proof. The correctness of the data structure follows from the description in Algorithm 5.

The operation add involves inserting an element into a list and a priority queue - giv-

ing a worst-case runtime of O(log n). The runtimes for remove and flip follow sim-

ilarly. The operations increment and decrement involve 1 update to a balanced BST

and O(α) priority-queue updates, giving a worst-case runtime of O(α log n) per call.

tight in nbr queries O(α) neighbors, resulting in a worst-case runtime of O(α) per call.

tight out nbr, label and max label simply check an element pointer, resulting in a
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O(1) runtime. Lastly, maximal label set traverses a balanced BST, until it exceeds the

desired threshold. The time taken is O(β + log n) where β is the number of elements read,

which is also the size of the output.

5.2.5 Fully dynamic algorithm for a given density estimate

Here, we assume that an estimate of ρ∗G (equivalently, an estimate of ρ̂G) is known. We

denote this estimate as ρest, where ρest ≤ ρ̂G ≤ 2ρest. Using this, we can compute the

appropriate η(ρest, ε)
def
= 2ρest/α. Recall that α was defined as α def

= 64 log n · ε−2. From

Section 5.2.4, we have an efficient data structure to maintain a directed graph, which we

will use to maintain a locally η-stable orientation. This in turn gives a fully dynamic algo-

rithm which processes updates efficiently, as we explain below.

We first define a tight edge in a locally stable oriented graph:

Definition 5.6. An edge −→uv is said to be tight if din(v) ≥ din(u) + η/2.

Now, consider inserting an edge −→xy into a locally η-stable oriented graph. Since y’s in-

degree increases, it could potentially have an in-neighbor z such that din(z) < din(y) − η.

Note that for this to happen,−→zy was necessarily a tight edge. To “fix” this break in stability,

we flip the edge yz; however, this causes w’s in-degree to increase, which we now possibly

need to fix. Before explaining how we circumvent this issue, let us define a maximal tight

chain.

Definition 5.7. A maximal tight chain from a vertex v is a path of tight edges

−→uv1,
−−→v1v2, . . . ,

−−→vkw, such that w has no tight outgoing edges.

A maximal tight chain to a vertex v is a path of tight edges−−→wv1,
−−→v1v2, . . . ,

−→vkv, such that

w has no tight incoming edges.

Now, instead of fixing the “unstable” edge caused by the increase in y’s in-degree right

away, we instead find a maximal tight chain to y and flip all the edges in the chain. This

way, the in-degrees of all vertices in the chain except the start remain the same. Due to
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the maximality of the chain, the start of the chain has no incoming tight edges, and hence

increasing its in-degree by 1 will not break local stability. The same argument holds when

we delete −→xy, except we find a maximal tight chain from y.

The approximate density is nothing but the highest load in the graph. For querying

the actual subgraph itself, we use the observation from Section 5.2.2, where the required

subgraph can be found by: (i) finding sets of vertices with load at most η · i less than the

maximum (Ti), and (ii) returning the first Ti+1 such that |Ti+1|/|Ti| < 1 + r, where r is an

appropriate function of η.

Lemma 5.8. There exists a data structure THRESHOLD(G, η) which can maintain an undi-

rected graph G(V,E) while undergoing the following operations:

• insert(u, v): insert an edge into G,

• delete(u, v): delete an edge from G, and report the vertex with decreased load

• query load(u): output the current load of u.

• query density(): output a value ρout such that (1− ε)ρ∗G ≤ ρout ≤ ρ∗G.

• query subgraph(): output a subgraph with density at least (1− ε)ρ∗G.

Moreover, the operation insert takes O(α2) time, delete takes O(α log n) time, query

takes O(1) time, and query subgraph takes O(β + log n) time, where β is the size of the

output.

The pseudocode for this data structure is in Algorithm 6.

Let us denote by du(v), the apparent label of v as seen by u. This concept is needed be-

cause when the label of a vertex changes, it doesn’t relay this change to all its in-neighbors

immediately. However, we can claim the following:

Lemma 5.9. The local gap constraint is always maintained, i.e., for any edge −→uv, d(v) ≤

d(u) + η.
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• Initialize data structure L ← LAZYDIRECTEDLABELS(G, η) with:

G = (V, ∅), α← 64 log n · ε−2, η ← 2ρest/α

Operation insert((u, v))

if d(u) ≥ d(v) then
L.add (−→uv)

w ← v
else
L.add (−→vu)

w ← u

while L.tight in nbr(w) 6= null

do
w′ ← L.tight in nbr(w)

L.flip
(−−→
w′w

)
w ← w′

L.increment(w)

Operation query subgraph()

r ←
√

2η log n/ρest

return L.maximal label set(r);

Operation delete((u, v))

if u ∈ INNBRSv then
L.remove (−→uv)

w ← v
else
L.remove (−→vu)

w ← u

while L.tight out nbr(w) 6= null

do
w′ ← L.tight out nbr(w)

L.flip
(−−→
ww′

)
w ← w′

L.decrement(w)

return(w)

Operation query density()
return L.max label× (1− ε);

Operation query load(u)
return L.label(u);

Algorithm 6: THRESHOLD(G, ρest, ε): Update routines on G when an estimate to

its maximum load is known. Additionally V , n = |V |, and ε are known.

Proof. There are two ways that this invariant could become unsatisfied: via a decrement to

u or an increment to v.

Recall that v informs each in-neighbor its label once every η/4 updates, hence |du(v)−

d(v)| cannot be larger than η/4. u only decrements if it cannot find a tight out-neighbor,

which means that du(v) < d(u) + η/2. Hence, at any instant that d(u) is decremented,

d(v) ≤ d(u) + 3η/4.

On the other hand, d(v) is only incremented if v cannot find a tight in-neighbor. Con-

sider the last time that d(u) is decremented before this instant. At this point, d(v) ≤

d(u)+3η/4. After this, there can only be less than η/4 increments of d(v) before it queries
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d(u) and flips. Hence, d(v) ≤ d(u) + η.

Using Lemma 5.9 and Corollary 5.4, we get the following corollary, which shows the

correctness of Lemma 5.8.

Corollary 5.10. Let ρout = (1− ε) maxv∈V d(v). Then, (1− ε)ρ∗G ≤ ρout ≤ ρ∗G.

Proof of Lemma 5.8. Corollary 5.10 gives the correctness proof. It remains to show the

time bounds. Note that in both insert and delete operations, the maximum chain of

tight edges can only be of length at most 2ρ̂G/η = O(α). The insert operation calls add

and increment once, flip and tight in nbr O(α) times. From Lemma 5.5, this results

in a worst-case runtime of O(α2) per insertion. The delete operation calls remove and

decrement once, flip and tight out nbrO(α) times. From Lemma 5.5, this results in a

worst-case runtime ofO(α·log n) per deletion. query density only needs one max label

call which isO(1) worst-case. query load also needs one label call which isO(1) worst-

case. Lastly, query subgraph’s runtime follows from Lemma 5.5.

5.2.6 Overall algorithm

Now, we have a sufficient basis to show our main theorem, which we restate:

Theorem 5.1. Given a graph G with n vertices, there exists a deterministic fully dynamic

(1− ε)-approximation algorithm for the densest subgraph problem using O(1) worst-case

time per query and O(log4 n · ε−6) worst-case time per edge insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding approximate dens-

est subgraph in time O(β + log n), where β is the number of vertices in the output.

From Section 5.2.5, we now have an efficient fully dynamic data structure

THRESHOLD(G, ρest, ε) to maintain a 1− ε approximation to the maximum subgraph den-

sity, provided the optimum remains within a constant factor of some estimate ρest. Partic-

ularly, THRESHOLD(G, ρest, ε) requires ρ̂G/η to be small to work efficiently. On the other

hand, too small an η results in a bad approximation factor.
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• for i← 1 to log2 n do
α← 64 log n · ε−2; ρest

i ← 2i−2α

Initialize Ti ← THRESHOLD(G, ρest
i , ε)

Initialize a sorted list of edges pendingi ← ∅ using two balanced BSTs (one
sorted using the first vertex of the edge, and another using the second)

Set active← 0

Operation query()
return Tactive.query()

Operation query subgraph()

return Tactive.query subgraph()

Operation insert((u, v))

for k ← 1 to α do // duplicating (u, v) α times

for i← log2 n to active + 1 do Ti.insert((u, v)) // affordable

copies

ρ← Tactive+1.query()

if ρ ≥ 2ρest
active then active← active + 1

else Tactive.insert((u, v))

for i← active− 1 to 1 do // unaffordable copies

`u ← Ti.query load(u); `v ← Ti.query load(v)

if both `u, `v ≥ 2ρest then add (u, v) to pendingi
else Ti.insert((u, v)) // edge is still insertable

Operation delete((u, v))

for k ← 1 to α do // duplicating (u, v) α times

for i← log2 n to active + 1 do Ti.delete((u, v)) // affordable

copies

ρ← Tactive.query()

if ρ < ρest then
active← active− 1

Tactive.delete((u, v))

for i← active− 1 to 1 do // unaffordable copies

if (u, v) ∈ pendingi then remove one copy of (u, v) from pendingi
else

w ← Ti.delete((u, v)) // w’s load was decremented

if (w,w′) ∈ pendingi for any w′ then
Ti.insert((w,w′))

Remove (w,w′) from pendingi

Algorithm 7: Main update algorithm. V , n = |V |, and ε are known quantities.
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To ensure that we always work with the right estimate ρest, we will construct log2 n

copies of THRESHOLD, one copy for each possible ρest, or equivalently each possible value

of η. In the ith copy of the data structure, we set ρest
i ← 2i−2α, and so ηi ← 2i−1. Let us

call this ith copy of the data structure as Ti ← THRESHOLD(G, ρest
i , ε). We also define

η0 = 0 for the sake of the empty graph.

We say that Ti is accurate if ρest
i ≤ ρ̂G, or equivalently ηi ≤ 2ρ̂G/α. Note that we

will never use a copy that is not accurate to deduce the approximate solution. On the other

hand, we say that Ti is affordable if the maximum possible chain length is less than 2α, i.e.,

ηi > ρ̂G/α. On copies that are not affordable, if there are any additions which can cause

the maximum load in that copy to increase, we hold these off until a later time.

Lastly, note that for any value of ρ̂G, there is exactly one copy which is both accurate

and affordable. We call this the active copy. The solution is extracted at any point from

this copy. Suppose the index of the current active copy is i. Then, after an insertion, this

can be either i or i + 1. We first test this by querying the maximum density in Ti+1, and

accordingly update the active index. Similarly, after a deletion, this can be i or i − 1. For

insertions which are not affordable, we store the edges in a pending list. Consider an

insertion (u, v) which is not affordable in Ti. This means that the loads on both u and v

are at the limit (ηiα). We save (u, v) in the pending list. For Ti to become affordable, one

of u’s or v’s load must decrease. At this point, we insert (u, v). The pseudocode for the

overall algorithm is in Algorithm 7.

Notice, importantly, that insertions are made into Ti only when it is affordable. How-

ever, we always allow deletions because these are either deletions from the pending edges

or from the graph currently stored in Ti, which is still affordable.

Proof of Theorem 5.1. To show the correctness of Algorithm 7, we need to prove that at

all times, ρ̂G/2 ≤ ρest
active < ρ̂G. We know that this is true at the start of the algorithm.

Assume this property is true at some instant before an update. When an edge is inserted,

the first inequality might break. So, we test this after every addition and increment active
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accordingly. The argument follows similarly for deletions. However, we also need to make

sure that when some Ti is queried, there are no edges remaining in pendingi, otherwise the

queried density could possibly be incorrect. Consider an edge (u, v) inserted into pendingi

at some point during the algorithm. For Ti to be queried, it must be active, which means

that at some point, the load of either u or v decreased, causing (u, v) to be inserted. Even

when there are multiple such edges adjacent to the same high-load vertex, we are assured

to see at least that many decrements at that vertex.

From Lemma 5.8, it follows that a query takes O(1) worst-case time, and finding the

subgraph takes O(β + log n) time, where β is the size of the output subgraph. Each insert

or delete operation is first duplicated α times. Secondly, the updates are made individually

in log2 n copies of the data structure.

First, note that any insert or delete operation in pending can be processed in O(log n)

time. This is also true for searching using a single end point of an edge owing to the manner

in which pending is defined.

When an edge is added, it makes two load queries and then possibly inserts in Ti. From

Lemma 5.8, this gives a worst-case runtime of O(α3 log n) time per insertion.

As for deleting an edge, it sometimes also requires an insertion into Ti. Again, plugging

in runtimes from Lemma 5.8, we obtain a worst-case runtime of O(α3 log n) time per

deletion.

5.3 Vertex-weighted Densest Subgraph

In this section, we extend the ideas from Section 5.2 to extend to graphs with vertex

weights. As we will see in Section 5.4, this extension is crucial in arriving at efficient

dynamic algorithms for DSP on directed graphs.

Let us first formally define the concept of density in vertex-weighted graphs. Given a

graph G = 〈V,E,w〉, where w : V 7→ Q≥1, the density of a subgraph induced by a vertex
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subset S ⊆ V is

ρG(S)
def
=

|E(S)|∑
v∈S ω(v)

.

For ease of notation we denote ω(S)
def
=
∑

v∈S ω(v). Constructing the approximate dual

like in Sections 2.2 and 5.2, we get the same conditions except the load on a vertex v is

now defined as

`v =
1

ω(v)

∑
e3v

fe(v).

Let ωmin and ωmax denote the smallest and largest vertex weight in G. We multiply all

the weights by 1/ωmin and later divide the answer by the same amount. This ensures that

all weights are at least 1, and the maximum weight is now given by W def
= ωmax/ωmin.

We first show that local approximations also suffice for vertex-weighted DSP. We reuse

the notation used in Section 5.2 for the exact and approximate dual LP – DUAL(G) and

DUAL(G, η), but with vertex weights included.

Theorem 5.11. Given an undirected vertex-weighted graph G with n vertices, with max-

imum vertex weight W , let f̂ , ˆ̀ denote any feasible solution to DUAL(G, η), and let

ρ̂G
def
= maxv∈V ˆ̀

v. Then,

(
1− 3

√
η log(nW )

ρ̂G

)
· ρ̂G ≤ ρ∗G ≤ ρ̂G.

Proof. The proof follows the proof of Theorem 5.3 almost identically.

Any feasible solution of DUAL(G, η) is also a feasible solution of DUAL(G), and so

we have ρ∗G ≤ ρ̂G.

Denote by Ti the set of vertices with load at least ρ̂G − ηi, i.e.,

Ti
def
=
{
v ∈ V | ˆ̀

v ≥ ρ̂G − ηi
}
.

Let 0 < α < 1 be some adjustable parameter we will fix later. We define k to be the
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maximal integer such that for any 1 ≤ i ≤ k,

ω(Ti) ≥ ω(Ti−1) · (1 + α).

Note that such a maximal integer k always exists because there are finite number of vertices

in G and the size of Ti grows exponentially. By the maximality of k,

ω(Tk+1) < ω(Tk) · (1 + α).

In order to bound the density of this set Tk+1, we compute the total load on all vertices in

Tk. For any u ∈ Tk, the load on u is given by

ˆ̀
u =

1

ω(u)

∑
uv∈E

f̂uv(u).

However, we know that

fuv(u) > 0 =⇒ ˆ̀
v ≥ ˆ̀

u − η

and hence we only need to count for v ∈ Tk+1. Summing over all vertices in Tk+1, we get

∑
u∈Tk

ω(u)ˆ̀
u =

∑
u∈Tk,v∈Tk+1

f̂uv(u) ≤
∑

u∈Tk+1,v∈Tk+1

f̂uv(u) = |E(Tk+1)|.

Consider the density of set Tk+1,

ρ(Tk+1) =
|E(Tk+1)|
ω(Tk+1)

≥
∑

u∈Tk
ˆ̀
u

ω(Tk+1)
≥ ω(Tk) · (ρ̂G − ηk)

ω(Tk+1)
,

where the last inequality follows from the definition of Tk.

Since ρ(Tk+1) can be at most the maximum subgraph density ρ∗G, and using the fact that
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ω(Tk)/ω(Tk+1) > 1/(1 + α) ≥ 1− α,

ρ∗G ≥ (1− α)(ρ̂G − ηk) ≥ ρ̂G(1− α)

(
1− 2η log(nW )

α · ρ̂G

)
,

where the last inequality comes from the fact that nW ≥ ω(Tk) ≥ (1 +α)k, which implies

that k ≤ log1+α(nW ) ≤ 2 log(nW )/α.

Now, we can set our parameter α to maximize the term on the RHS. By symmetry, the

maximum is achieved when both terms in the product are equal and hence we set

α =

√
2η log(nW )

ρ̂G
.

This gives

ρ∗G ≥ ρ̂G·

(
1−

√
2η log(nW )

ρ̂G

)2

≥ ρ̂G·

(
1− 2

√
2η log(nW )

ρ̂G

)
≥ ρ̂G·

(
1− 3

√
η log(nW )

ρ̂G

)
.

Once again, scaling the graph up by a factor of α def
=

64 log(nW )

ε2
, we can frame the

question as the following graph orientation problem:

Given an undirected graph G with vertex-weights w : V 7→ Q+ and a slack pa-

rameter η, we want to assign directions to edges in such a way that for any edge

u→ v,
din(v)

ω(v)
≤ din(u)

ω(u)
+ η.

To adapt the data structure from Algorithm 5, we only need to make the following

change:

• increment(u) and decrement(u) no longer increment/decrement by 1 but by

1/ω(u).

• Each entry in the LABELS data structure is additionally appended with vertex weights
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- because instead of computing |A| and |B|, we need to compute ω(A) and ω(B) in

maximal label set.

• Since we assumed that ω(v) ≥ 1 for all v ∈ V , we do not have to adjust the condi-

tions for tight edges.

Once we are provided with an estimate of ρ̂G, we can use the data structure from Al-

gorithm 6 without any changes. Similar to Section 5.2.6, we now need to guess a value for

ρ̂G. Notice that the range of values can now be O(nW ). Hence, using O(log(nW )) values,

we can apply Algorithm 7 to also solve the vertex-weighted version of DSP.

This gives us the following result.

Theorem 5.12. Given a vertex-weighted graph G with n vertices, and vertex-weights in

the range ωmin and ωmax, there exists a deterministic fully dynamic (1− ε)-approximation

algorithm for the densest subgraph problem on G using O(1) worst-case query time and

worst-case update times of O
(

log4
(
n · ωmax

ωmin

)
· ε−6

)
per edge insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding approximate dens-

est subgraph in time O(β + log n), where β is the number of vertices in the output.

5.4 Directed Densest Subgraph

The directed version of the densest subgraph problem was introduced by Kannan and Vinay

[61]. In a directed graph G = 〈V,E〉, for a pair of sets S, T ⊆ V , we denote using E(S, T )

the set of directed edges going from a vertex in S to a vertex in T . The density of a pair of

sets S, T ⊆ V is defined as:

ρG(S, T )
def
=
|E(S, T )|√
|S||T |

.

The maximum subgraph density of G is then defined as:

ρ∗G
def
= max

S,T⊆V
ρG(S, T ).
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Note that we use the same notation for density for undirected and directed graphs, as the

distinction is clear from the graph in the subscript.

Charikar [26] reduced directed DSP to O(n2) instances of solving an LP, and also ob-

served that only O(log n/ε) suffice to extract a (1 − ε) approximation. Khuller and Saha

[64] used the same reduction, but further simplified the algorithm to O(1) instances of a

parametrized maximum flow problem.

In this section, we recount this reduction, but by visualizing the problem reduced to as

a densest subgraph problem on vertex-weighted graphs, as defined in Section 5.3.

5.4.1 Reduction from Directed DSP to Vertex-weighted Undirected DSP

Given a directed graph G = 〈V,E〉 and a parameter t > 0, we construct a vertex-weighted

undirected graph

Gt = 〈Vt, Et, ωt〉

where,

• Vt
def
= V

(L)
t ∪ V (R)

t , in which V (L)
t and V (R)

t are both clones of the original vertex set

V ;

• Et
def
=
{

(u, v) | u ∈ V (L)
t , v ∈ V (R)

t , (u, v) ∈ E
}

projects each original directed edge

(u, v) ∈ E into an undirected edge between V (L)
t and V (R)

t , and

• ωt(u)
def
=


1/2t u ∈ V (L)

t

t/2 u ∈ V (R)
t

To understand the intuition behind this reduction, consider a pair of sets S, T ⊆ V .

Consider the set S(L) corresponding to S in V (L)
t , and the set T (R) corresponding to T in

V
(R)
t . ρG(S, T ) = |E(S,T )|√

|S||T |
, whereas ρGt(S

(L) ∪ T (R)) = 2|E(S,T )|
(1/t)|S|+t|T | . Picking t carefully

lets us relate the two notions, leveraging the AM-GM inequality as indicated by the two

denominators. Lemmas 5.13 and 5.14 show this relation in detail.
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Lemma 5.13. For any directed graph G = 〈V,E〉, let Gt be defined as above. Then for

any choice of parameter t,

ρ∗G ≥ ρ∗Gt
.

Proof. Let S(L) ∪ T (R) denote the densest (vertex-weighted) subgraph in Gt, where S(L) ∈

V
(L)
t and T (R) ∈ V (R)

t . Let S and T denote the corresponding vertex sets in V . Then we

have

|Et(S(L) ∪ T (R))| = ρ∗Gt
· (|S(L)|/t+ t|T (R)|)/2

≥ ρ∗Gt

√
|S(L)| · |T (R)|,

where the inequality follows from the AM-GM property. Using the facts |Et(S(L) ∪

T (R))| = E(S, T ), |S(L)| = |S|, and |T (R)| = |T |, we get that

E(S, T )√
|S| · |T |

≥ ρ∗Gt
.

Lastly, since the density of the pair of sets S, T in the directed graph G is at most ρ∗G, we

get that ρ∗G ≥ ρ∗Gt
.

So, Gt provides a ready lower bound for computing maximum subgraph density, for

any t. The next lemma shows that a careful choice of t can give equality between the two

optimums.

Lemma 5.14. For any directed graph G = 〈V,E〉 and a pair of subsets S, T that provides

the maximum subset density, i.e., ρ∗G = ρG(S, T ), we have

ρ∗G = ρ∗Gt
,

where t =
√
|S|
|T | .

Proof. Now, consider the sets S(L) ∈ V
(L)
t and T (R) ∈ V

(R)
t corresponding to S and T

85



respectively. The density of set S ∪ T can be at most ρ∗Gt
:

ρ∗Gt
≥ 2|E(S, T )|
|S|/t+ |T | · t

.

Substituting t with |S|/|T |,

ρ∗Gt
≥ 2|E(S, T )|

|S|
√
|T |
|S| + |T |

√
|S|
|T |

=
|E(S, T )|√
|S| · |T |

= ρ̂∗G.

Combining this with the bound from Lemma 5.13 gives that ρ∗G = ρ∗Gt
.

Note, however, that this does not directly give an algorithm for directed densest sub-

graph, since we do not know the optimum value of |S|/|T |. Since both |S| and |T | are

integers between 0 and n, there can be at most O(n2) distinct values of |S|/|T |. So, to

find the exact solution, we can simply find ρ∗Gt
for all possible t values, and report the

maximum.

This connection was first observed by Charikar [26], where he reduced the directed

densest subgraph problem to solving O(n2) linear programs. However, our construction

helps view these LPs as DSP on vertex-weighted graphs, for which there are far more opti-

mized algorithms than solving generic LPs, in both static and dynamic paradigms. Charikar

[26] also observed that a 1 − ε approximate solution could be obtained by only checking

O(log nε−1) values of t. As one would expect, to obtain an approximate solution for the di-

rected DSP, it is not necessary to obtain an exact solution to the undirected vertex-weighted

DSP. As we show in Lemma 5.15, we only require O(log nε−1) computations of a 1 + ε/2

approximation to the densest subgraph problem.

Lemma 5.15. For any directed graph G = 〈V,E〉 and a pair of subsets S, T that provides

the maximum subset density, i.e., ρG(S, T ) = ρ∗G, we have

ρ∗Gt
≥ (1− ε)ρ∗G,
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where
√
|S|
|T | · (1− ε) ≤ t ≤

√
|S|
|T | ·

1
(1−ε) .

Proof. Consider the vertices S(L) ∈ V
(L)
t and T (R) ∈ V

(R)
t corresponding to S and T

respectively. The density of set S(L) ∪ T (R) can be at most ρ∗Gt
:

ρ∗Gt
≥ 2|E(S, T )|
|S|/t+ |T | · t

.

Substituting the bounds for t,

ρ∗Gt
≥ 2(1− ε)|E(S, T )|

|S|
√
|T |
|S| + |T |

√
|S|
|T |

= (1− ε)ρG(S, T ) = (1− ε)ρ∗G.

5.4.2 Implications of the reduction

The above reduction implies that finding a (1−ε)-approximate solution to directed DSP can

be reduced toO(log n·ε−1) instances of (1−ε/2)-approximate vertex-weighted undirected

DSP.

Theorem 5.16. Given a directed graph G, with m edges and n vertices, and a T (m,n, ε)

time algorithm for (1− ε)-approximate vertex-weighted undirected densest subgraph, then

there exists an (1−ε)-approximate algorithm for finding the densest subgraph in G in time

T (m, 2n, ε/2) ·O(log nε−1).

Proof. For each value of t in

[
1√
n
,

1

(1− ε/2)
√
n
,

1

(1− ε/2)2
√
n
, . . . ,

√
n

]
,

we find an approximate value ρ such that ρ ≥ (1− ε/2)ρ∗Gt
, and output the maximum such

value. Using ε/2 as the error parameter in Lemma 5.15, we get that ρ ≥ (1− ε)ρ∗G.

The number of values of t is log1/(1−ε/2) n = O(log nε−1).

The current fastest algorithms for (1− ε)-approximate static densest subgraph [11, 24]
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rely on approximately solving DUAL(G), which is a positive linear program, and subse-

quently extracting a primal solution. Both these parts of the algorithm extend naturally to

vertex-weighted graphs. Substituting these runtimes in for T (m,n, ε), we get the following

corollary.

Corollary 5.17. Let G be a directed graph with m edges and n vertices, and let ∆ be the

maximum value among all its in-degrees and out-degrees. Then, there exists an algorithm

to find a (1− ε)-approximate densest subgraph in G in time Õ(mε−2 ·min(∆, ε−1)).

Here, Õ hides polylogarithmic factors in n.

The same reduction also applies to fully dynamic algorithm for directed DSP.

Theorem 5.18. Suppose there exists a fully dynamic (1− ε)-approximation algorithm for

undirected vertex-weighted DSP on an n-vertex graph with update time U(n, ε) and query

time Q(n, ε). Then, there exists a deterministic fully dynamic (1− ε)-approximation algo-

rithm for directed DSP on an n-vertex graph using U(2n, ε/2) · O(log nε−1) query time

and Q(2n, ε/2) ·O(log nε−1) query time.

Substituting the runtimes from Theorem 5.12 in Section 5.3, we get our result for dy-

namic DSP on directed graphs.

Theorem 5.2. Given a directed graph G with n vertices, there exists a deterministic fully

dynamic (1 − ε)-approximation algorithm for the densest subgraph problem on G using

O(log n · ε−1) worst-case query time and worst-case update times of O(log5 n · ε−7) per

edge insertion or deletion.

Moreover, at any point, the algorithm can output the corresponding approximate dens-

est subgraph in time O(β + log n), where β is the number of vertices in the output.
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APPENDIX A

PROOF OF WIDTH REDUCTION FOR THE MPC PROBLEM

In Section 3.2, we made the assumption that all entries in the constraint matrix can be

assumed to be bounded by 1, with only a O(log n) extra factor in running time. This

assumption follows from the results in [104]. We outline this proof in this section for

completeness.

For the purpose of this proof, we introduce notation [k] := {1, . . . , k}.

Suppose we are given an instance of mixed packing covering of the form

Px ≤ 1p, Cx ≥ 1c, x ≥ 0n. (A.1)

Case 1: For each column P:,i associated with variable xi, let Pji,i
def
= maxj∈[p] Pji > 0.

Then we consider the following updates to MPC in order to reduce diameter.

Suppose, without loss of generality, C1,i = maxj∈[c] Cji and Cci = minj∈[c] Cji. If

C1i ≤ Pji,i then we can update P :,i =
1

Pji,i
P:,i, C :,i =

1

Pji,i
C:,i and xi = Pji,ixi. Then we

observe that each element in P :,i, C :,i is at most 1. Moreover, due to the packing constraint

P ji,:x ≤ 1, we note that for any feasible x, P ji,ixi ≤ 1. Finally, since P ji,i = 1, we

have that xi ≤ 1 lies in the support of constraint set. So we replaced the i-th column and

corresponding i-th variable of the system by an equivalent system.

Similarly, if Cc,i ≥ Pji,i then consider xsol defined as

xsolk :=


1

Pji,i
if k = i

0 otherwise.

Then xsol is already a feasible solution of MPC. So we may assume that Cci < Pji,i < C1i.
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In this case, define ri =
C1i

Pji,i
and ni = dlog rie. We make ni copies of the column C:, i

and denote by the tuple (i, l) the columns of a new matrix Ĉ:,(i,l) where l ∈ [ni]. Similarly,

we add ni copies of variable xi, denoted as x̂(i,l). We make similar changes to P:,i. Note

that this system is equivalent to earlier system in the sense that any solution x̂(i,l), l ∈ [ni]

can be converted into a solution of the earlier system since xi =
∑

l∈[ni]
x̂(i,l). However,

this allows us to reduce the elements of Ĉ along with certain box constraints on x̂i, which

was our original goal. For each j ∈ [c], l ∈ [ni], redefine

Ĉj,(i,l) = min{Cji, 2lPji,i}

and for variable x̂(i,l), add the constraint

x̂i,l ≤
2

2lPji,i
. (A.2)

Claim A.1. MPC (A.1) and the new system defined by matrices Ĉ, P̂ and variable x̂ are

equivalent.

Proof. For this proof, let us focus on i-th column and i-th variable.

For any feasible solution x̂, consider xi =
∑

l∈[ni]
x̂i,l. This xi does not violate any

covering constraint since Ĉj,(i,l) ≤ Cji. The packing constraints also follow because we

have not made any changes to the elements corresponding to the packing constraints P̂j,(i,l).

For the other direction, the key fact to note is that any feasible x satisfies xi ≤
1

Pji,i
due

to packing constraint Pji,:x ≤ 1. Let li be the largest index such that

xi ≤
2

2liPji,i
,
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and then let

x̂(i,l) =


xi if l = li

0 otherwise.

By construction, x̂(i,l) satisfies the constraint in (A.2) for all l ∈ [ni]. Moreover, for con-

straint j, we must have Ĉj,:x̂ ≥ 1. Note that if Ĉj,(i,li) = Cji then there is nothing to prove.

So we assume that Cji > Ĉj,(i,li) = 2liPji,i. Then we must have that li < ni in this case, by

definition of ni. This then gives x̂(i,li) = xi ≥
1

2liPji,i
by our choice of li being the largest

possible. Then we know that Ĉj,(i,li) = 2liPji,i, and hence the j-th covering constraint is

satisfied.

Packing constraints are satisfied trivially since there is no change in elements of P̂:,(i,l)

for all l ∈ [ni]. Hence the claim follows.

Finally the proof follows by change of variables as x(i,l) = 2l−1Pji,i and C :,(i,l) =

1

2l−1Pji,i
Ĉ:,(i,l). Further, note that all elements of P :,(i,l) are at most 1 for all l ∈ [ni], and

all elements of C :,(i,l) are at most 2 for all l ∈ [ni] and xi,l ≤ 1 for all l ∈ [ni].

Case 2: Suppose Pji,i = 0.. This implies that in variable xi, this is a purely covering

problem. So we can increase xi to satisfy the jth covering constraint such that Cji > 0

independent of the packing constraints and problem reduces to smaller packing covering

problem in remaining variables and covering constraints j such that Cji = 0. For this

smaller packing covering problem, we can apply the method in Case 1 again.
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APPENDIX B

MULTIPLICATIVE WEIGHTS UPDATE ALGORITHM

In this section, we give an algorithm to solve the zero-sum game maxx∈∆n minf∈P x
TBf ,

which corresponds to solving the dual of the densest subgraph problem, as described in

Section 4.4. Given that we have an oracle access to minf∈P x
TBf , we can use the multi-

plicative weights update framework to get an ε-approximation of the game [38].

The pseudocode for the MWU algorithm is shown in Algorithm 8.

Input: Matrix B, approximation factor ε

Output: An approximate solution to the zero-sum game.

Initialize the weight vector as w(1)
i ← 1 for all i ∈ [n];

Initialize η ← ε

2 degmax

;

for t : 1→ T do

x
(t)
i ← w

(t)
i /‖w(t)‖1 for all i ∈ [n];

Find f(x(t)) using Oracle(x(t));

Set C(x(t))← (x(t))TBf(x(t));

Let bTi f(x
(t)) be the i-th element in Bx(t);

Update the weights as w(t+1)
i ← w

(t)
i (1 + ηbTi f(x

(t)))

return
1

T

∑
t∈[T ]C(x(t))

Algorithm 8: Multiplicative Weight Update Algorithm

To prove the convergence of Algorithm 8, we use the following theorem from [9]. We

modify it slightly to accommodate for the fact that the width of the DSP, ||Bf(x)||∞, can be
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at most degmax. In other words, the oracle can assign at most degmax edges to any particular

vertex.

Lemma B.1 (Theorem 3.1 from [9]). Given an error parameter ε, there is an algorithm

which solves the zero-sum game up to an additive factor of ε using O(W log nε−2) calls to

ORACLE, with an additional processing time of O(n) per call, where W is the width of the

problem.

Using the fact that our ORACLE runs in O(m) time (from Lemma 4.5), and using W =

degmax, we get the following corollary.

Corollary B.2. The Multiplicative Weight Update algorithm (Algorithm 8) outputs a (1−ε)

approximate solution to the densest subgraph problem in time O(m degmax log nε−2).
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