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Abstract

This paper describes and evaluates operating system support for on-line scheduling of real-time tasks on
shared memory multiprocessors. The contributions of this work include: (1) the design and implementation of an
efficient on-line scheduler that can execute a variety of policies addressing both the assignment of real-time tasks to
processors and the scheduling of tasks on individual processors, (2) performance improvements in multiprocessor
scheduling due to the separation of task schedulability analysis from actual task scheduling and due to the use
of parallelism internal to the scheduler, and (3) the scheduling of individual as well as sets and groups of tasks.
Performance measurements on a multiprocessor machine describe the costs and benefits attained from (2) and
(3), based on experiences with a multiprocessor robot navigation and planning program being implemented as

part of this research.



1 Runtime Support for Real-Time Systems

Complex real-time applications. Most modern embedded architectures consist of multiple processors operating
in parallel to achieve the high throughput and low latency required by their application software. Accordingly,
such software is partitioned into multiple tasks that potentially execute concurrently, often using shared resources,
and typically requiring that task-specific timing constraints be met during execution. Moreover, real-time systems
are inherently dynamic when they operate in complex external environments or consist of many interoperating,
asynchronous, and potentially distributed code modules. External events causing dynamic system behavior include:
(1) unforeseen events, like the detection of new obstacles in robot navigation[2], (2) actions by human operators,
and (3) unexpected system loads due to excessive levels of inputs in certain sensors, such as the arrival of threats
in military applications[15]. In addition, internal characteristics of real-time computer systems leading to dynamic
system behavior include software and/or hardware faults due to the system’s inherent complexity[5] and temporary
actions required by specific system components, to avoid component damage, to trade off component performance
vs. reliability, etc.

The Rapid scheduler. This paper presents the Rapid scheduler for dynamic real-time, multiprocessor systems.
This scheduler is designed to support autonomous robotics application, where single or multiple robots operate in
potentially unknown environments and where robot application software is implemented as a group of cooperating
and communicating threads jointly serving robot sensors and actuators and sharing the resources of the robot’s em-
bedded computer system. As a result, the Rapid scheduler has to support the on-line scheduling of time-constrained
individual tasks, sets of unrelated tasks, and groups of tasks cooperating to solve a single problem. Furthermore,
dynamically arriving tasks may be sporadic or sporadically periodic, the latter requiring their periodic execution for
some limited amount of time. Task sets or groups may consist of any number of sporadic or periodic tasks. Task
arrivals may occur at any time during system operation, and task time constraints may be characterized by soft or
hard deadlines and start (or release) times known at the time of task arrival.

On-line real-time scheduling. On-line real-time schedulers have been constructed in many past and several
recent research efforts. The Spring operating system designers have implemented and evaluated multiprocessor sched-
ulers running on single, dedicated nodes of small-scale parallel embedded systems[25], with recent work addressing
hardware support for on-line scheduling[16], and past work addressing distributed real-time systems[18]. Shin et
al.[13] and the HartOS operating system group has experimented with tradeoffs in communication vs. performance
and quality in distributed real-time scheduling. In addition, research at Carnegie Mellon University has been ex-
tending priority-based scheduling methods to address dynamic system behaviors, typically by development of novel
scheduling algorithms[24]. Multiprocessor implementations of internally concurrent schedulers were first described
in [7], then generalized and evaluated rigorously and experimentally in [23, 30]. The latter work also developed new
algorithms for schedulability analysis and addressed the scalability of schedulers in terms of their locality characteris-
tics on large-scale parallel machines. Also, higher level mechanisms for managing soft real-time parallel applications
are being at the University of Rochester[28].

Scheduler performance and concurrency. The Rapid scheduler builds on our previous research in real-time,



multiprocessor threads[30], but focusses on two topics not explored to date: (1) the use of concurrency during schedul-
ing and (2) the efficient implementation of concurrent multiprocessor schedulers on large scale parallel machines.

This research currently uses a 64-node shared memory KSR-1 multiprocessor; its primary contributions are:

¢ Scheduler concurrency — in contrast to [30], schedulability analysis and scheduling are performed by multiple,
concurrently executed threads, thereby enabling us to vary both the latency of scheduling for individual requests
and scheduling throughput, by variation of internal scheduler concurrency. Presentation of performance gains
due to parallelism appear in Section 4. Tradeoffs in performance gains vs. the resulting quality of multiprocessor

scheduling are shown to favor efficiency over additional efforts to increase quality.

e Asynchronous scheduler execution - the Rapid scheduler decouples (1) the generation of scheduling re-
quests associated with new task arrivals, from (2) the schedulability analysis performed for such requests, from
(3) the scheduling of tasks. The associated program interface presented by Rapid and its use by a sample
robot navigation program are presented in Section 2 of this paper. The internal scheduler mechanisms used for
the decoupled execution of steps (1)-(3) are described in Section 3. Performance advantages derived from the

resulting asynchrony among steps (1)-(3) are evaluated in Section 4.

In future work, alternative implementations of internal interactions among different scheduler components will be
evaluated to address the general topic of suitable operating system interfaces for real-time operating systems’ resource
managers|1].

The remainder of this paper is structured as follows. First, a sample multiprocessor application is shown to require
on-line real-time scheduling. This robot planning and navigation code motivates the functionality and demonstrates
the interfaces offered by Rapid. In Section 3, the internal structure of Rapid are described in detail, in order to

explain the performance measurements in Section 4. Conclusions and future research appear in Section 5.

2 Rapid Scheduling for Robot Navigation and Planning

2.1 Schema-based Robot Navigation

The sample application used for evaluation of Rapid is a parallel code performing robot navigation to a known goal
position. Navigation is performed across an un-mapped world potentially cluttered with obstacles. The parallel code
is based on the reactive component of the Autonomous Robot Architecture (AuRA) [3], in which motor schemas
are the basic unit of behavioral control of the physical system. Concurrency of execution is possible because several
schemas may be active simultaneously as the robot moves. Schemas jointly generate an overall navigational behavior:
(1) perceptual schemas process sensor data and provide inputs to, (2) motor schemas that generate movement vectors,
and (3) movement vectors are summed and normalized before the result is transmitted to the robot’s actuators (or
simulated robot) for execution of movement. Additional schemas are responsible for planning, using a parallel

implementation of a planning algorithm similar to the D* algorithm by Stentz[27].



Motor, perceptual, and planning schemas are implemented as concurrent execution threads with the Cthreads
library for parallel programming [21]. A basic navigational strategy requires threads for: (1) sensor, which provides
sensor inputs and also terminates processing when the robot reaches the goal, (2) move-to-goal, noise, and avoid
obstacle, which are each single threaded motor schemas, and (3) move-robot, a single thread which references the
outputs of the motor schemas and effects robot movement. While the behavior of this set of schemas is robust (ie.,
the robot will not run into obstacles), the robot may fail in complex environments (e.g., it can become trapped in
box canyons). Complex environments require additional schemas, including a planner, which has multiple threads
jointly computing a plan based on which successful movement toward the goal can be ensured. The task of planner
threads is to find an optimal (for the known world) route to the goal, and their continuous execution at some level
of criticality is indicated, in part to minimize delay upon discovery of new obstacles by basing new plans on partially
and continuously computed alternate plans.

Timing constraints in the robot application are due to the operational requirements of the underlying vehicle, such
as its sensor’s ranges and rates of output and its actuators’ required rates of control. In addition, thread execution
periods directly depend on vehicle speed, which in turn depends on the computational resources available to execute

the threads. Unexpected events result in dynamic changes to threads’ timing requirements:

o Unforeseen obstacles detected during vehicle movement require re-planning. This means that previously un-
scheduled planner threads must be created and scheduled or that increased attention is given to previously

scheduled planners, therefore requiring their rescheduling.

e As in other autonomous systems[26][17][20, 9], fail-safe plans are used to preclude abrupt mission termination,
excessive waiting, or failure in unknown environments. Therefore, the detection of a new obstacle not only may
interfere with the existing plan and therefore, cause re-planning, but it also triggers a fail-safe strategy that
reduces the vehicle’s speed to a guaranteed safe level and causes the vehicle to continue moving in the general
direction of the goal while avoiding obstacles. This may be implemented by dynamic creation and scheduling

of a sporadic thread executing the fail-safe plan.

Dynamic obstacle detection, continuous and concurrent planning and re-planning, and fail-safe robot operation
jointly imply that execution threads must be scheduled dynamically, during system operation, and that scheduling
must be performed such that thread timing constraints can be easily varied. In fact, experimentation with a prototype
of the concurrent robot code described in [4] demonstrate both the importance of concurrency in thread execution

and the need for dynamic control of thread scheduling:

o ‘best effort’ thread scheduling disregarding thread timing constraints demonstrates the existence of parallelism

in the robot code, but

e also shows that the dynamic variation of threads’ timing constraints can significantly improve the speed and
quality (measured as total path length from origin to goal) of robot movement when schemas’ rates of execution

are continuously adjusted according to their current criticality.



A suitable application interface for dynamically schedulable and re-schedulable threads, with varying time con-

straints, is described next, using fragments of the robot application discussed above.

2.2 Rapid Application Interface

Idealized schema execution. The outline of the operation of a generic robot schema is:
e run schema code,
e calculate next invocation parameters, and
e reschedule self.

Ideally, scheduling is performed for each execution of a schema instance. This is because schemas are designed to
control highly reactive autonomous systems like ‘cockroach’ robots, unstable flying vehicles like helicopter, etc. In
addition, schemas are often relatively ‘small’ in terms of the number of instructions executed per schema run. The
resulting frequent need for schema scheduling and rescheduling is one of the primary motivations for the design and
implementation of the Rapid scheduler, which uses the robot navigation code described in this section as one instance
of a real-time code ‘stressing’ its on-line scheduling technology.

Dynamic periodic schemas. While an idealized schema requires scheduling for each execution, in practice and
with the particular vehicles used in our research (a Denning mobile robot at present, and an autonomous wheeled
vehicle in the future), scheduling overheads may be reduced by scheduling several periodic executions of each schema
at one time. Essentially, schema instances are executed as periodic tasks with limited time horizons, as shown in the

code below:

void schema()
{
run_schema_code();
current_invocation++;
if (current_invocation = horizon) {
current_invocation = 0;
horizon = calculate_horizon (obstacles);
period = calculate_period (vehicle_speed);
if (!'RTasync_multi_fork (schema,NOW+period,runtime,period,
horizon,slow_and_reschedule))

slow_and_reschedule();

int calculate_period (vehicle_speed)



return ((sensor_range/vehicle_speed)/safety_factor);

void slow_and_reschedule()
{
vehicle_speed = vehicle_speed - (vehicle_speed/backoff_factor());
horizon = calculate_horizon (obstacles);
period = calculate_period (vehicle_speed);
if (!RTasync_multi_fork (schema,NOW+period,runtime,period,
horizon,slow_and_reschedule))

slow_and_reschedule();

In this code, Calculate_horizon() determines the number of periods that can be executed using the current vehicle
parameters and known obstacles. Open areas with few obstacles generate longer horizons, while close obstacles and
high obstacle densities generate shorter horizons. In addition, Calculate_period ensures that for a given sensor
range and the current vehicle speed, the vehicle cannot impact an obstacle that is just beyond its sensor range for
the duration of each period.

The Rapid-provided scheduling construct RTasync_multi_fork() schedules a horizon number of schema invo-
cations beginning at time NOW+period, with a return value indicating success or failure. For low latency, this call
internally performs several levels of schedulability analysis. At the first level, ‘sanity checks’ concerning the specific
scheduling request and crude estimates of available execution times are used to indicate the probable success or
failure of the submitted request, so that upon failure, the robot code can quickly take some alternate action (dis-
cussed next). When success is probable, the Rapid call initiates thorough schedulability analysis and returns the
value TRUE, eventually resulting in the newly created set of tasks (schema instances) being executed before their
desired time horizon (interpreted as a hard deadline by Rapid). If scheduling is not likely to succeed, FALSE is
returned causing the recursive execution of alternate actions, in this case consisting of execution of the procedure
slow_and_reschedule().

In slow_and_reschedule(), a lower vehicle speed increases the period, thereby reducing the total computation
time needed before the given time horizon. slow_and_reschedule() internally attempts to schedule the resulting
schema instances at their new periods. Last, the procedure Backoff_factor() will halt the vehicle before period
time has passed and before the schema’s deadline is reached. This corresponds to an emergency reaction and may
take other forms in different real-time applications, such as increases in altitude in autonomous guided missiles; the
reversion to human intervention in the ASV walker[6] or in other semi-autonomous vehicles, etc.

Sporadic schemas. While the previously described schemas can gradually adjust vehicle speed and direction

in response to environmental changes; the detection of a new obstacle may also require an immediate and significant



change to vehicle movement, such as a complete course reversal (e.g., consider ‘cockroach’ vehicles driven by schema-
based navigation). Consequently, when the sensor schema detects a previously unknown obstacle (code not shown
for brevity), it takes two actions: (1) it executes the Rapid callRTsync_fork(new_obstacle,NOW,runtime,deadline),
and (2) it switches from the follow-plan schema to the slower but more robust move-to-goal schema. It is impor-
tant to note that the execution of new_obstacle is not a safety requirement, since avoid-obstacle will continue to
ensure that the vehicle does not crash into any obstacle. Therefore, the deadline used in the fork instruction simply
needs to ensure that schema new_obstacle is scheduled sometime before the obstacle is reached. Upon execution
of new_obstacle, if the newly detected obstacle does not actually block the current path, then the vehicle reverts
to following its previous plan and no vehicle parameters are changed. Otherwise, new_obstacle makes a heuristic
decision about how significant the re-planning effort will be, may reduce vehicle speed to permit time for re-planning
and/or to free computational resources, and forks additional planning threads.

Planner schemas. Planning schemas are scheduled, run, and re-scheduled like motor schemas. However, since
their continuous execution is desired rather than essential, if their re-scheduling fails, then planning periods are simply
increased without altering vehicle operation. In addition, planning threads autonomously increase their periods when
no additional planning has to be done due to the lack of new obstacles or of other changes in the robot’s external
environment. When periods exceed some pre-determined value, planning threads are not re-scheduled. Conversely,
planning threads with excess work will attempt to reduce their periods and thereby, increase their total execution

time before their planning horizons.

2.3 Rapid Functionality

Rapid call interface and timing model. We have described the operation of Rapid using (1) idealized, constantly
re-scheduled schemas and (2) sporadic and dynamic periodic schemas with limited time horizons. Specific examples
of schemas are periodic planning schemas performing self-rescheduling and sporadic fail-safe schemas performing
move-to-goal processing rather than following an outdated plan. The Rapid scheduling calls used for such schemas
are: RTsync_fork(new_obstacle,NOW,runtime,deadline) and RTasync_multi_fork(), which create and schedule
either a single thread synchronously with the execution of the requester or a set of threads asynchronously with the
requester’s execution. The thread’s timing constraints are described by parameters (A, S,C, D), with A being its
arrival time, S being the earliest possible time at which its execution may begin (start time), C' being the estimated
maximum computation time, and D being the deadline by which it must complete its execution, none of which need
to be known until the time of thread’s scheduling (in this case, until its creation). The lazity | of thread T; on a
processor is given by { = A —C; where A is the total available processor time in the scheduling interval [S;, D;]. Note
that since A varies with time, a thread’s laxity changes over time. A thread’s laxity may be used as a measure of its
urgency at some given point in time. For example, a thread’s laxity of 0 at time ¢ implies that the thread must be
scheduled immediately in order to meet its deadline. A thread’s mazimum lazity value is the maximal value among
its set of laxities on the parallel machine’s processors. Rapid uses task laxity to order scheduling requests.

In addition to dealing with timing constraints, Rapid calls also offer return values and exceptions concerning



scheduling (e.g., to indicate that re-scheduling fails and must be retried). In addition, and more importantly, two
different types of calls are offered: (1) synchronous calls (ie., RTsycnch-fork) and (2) asynchronous calls (ie.,
RTasynch-fork). Synchronous calls imply that the caller waits until scheduling has been performed, whereas asyn-
chronous calls permit the caller to continue (perhaps performing other tasks) while tasks are being scheduled.
Asynchrony is discussed in more detail below, since it is a prerequisite for attaining concurrency in task scheduling.

Scheduler functionality. Given the timing model and scheduling calls described above, the functions of the
Rapid scheduling algorithm are schedulability analysis and schedule construction. Schedulability analysis determines
whether a feasible schedule exists for a single or set of tasks, whereas schedule construction calculates a feasible
schedule, if it exists. A schedule is feasible if all tasks in the set can be assigned to processors and scheduled such
that their timing constraints are met. A set of tasks is schedulable if there exists at least one algorithm that can
feasibly schedule the set. We call a newly arriving task dynamically schedulable if it can be scheduled to meet
its timing constraints such that all previously scheduled tasks also remain schedulable. Note that two important
characteristics of this definition are (1) that all scheduling guarantees are maintained after they are made (any other
assumption would lead to unreasonable costs and lack of predictability in actual real-time systems), and (2) that
schedulability analysis and schedule construction are separated. This separation permits the rapid recognition of
failures regarding task scheduling, so that the application program or higher-level operating system software [10, 12]
can deal with such failures in a timely manner (e.g., by submission of alternate tasks, by reduction of execution time
using alternate algorithms, etc.).

Schedulability algorithm. Rapid uses Zhou’s slot list algorithm to perform schedulability analysis of a task
on each processor. This algorithm takes O(nlogn) steps to determine the schedulability of any new task, where n is
the number of slots in the slot list. Detailed studies of average slot list lengths indicate that algorithm performance
remains good and even improves with increasing system loads[23]. However, in contrast to Rapid, the multiprocessor
slot list-based algorithm described in [30] only allows a single scheduler to be active at a time. Therefore, although
actual scheduling overhead is comparatively low, overall scheduling latency could become unacceptable in the presence
of a large queue of tasks to be scheduled. The Rapid concurrent scheduler allows multiple scheduling threads to be
active simultaneously thereby, increasing throughput and decreasing latency.

The execution of Rapid. The Rapid scheduler is not simply run as independently scheduled threads with fixed
execution periods staggered across different processors, as the non-concurrent multiprocessor scheduler described in
[30]. Instead, whenever a schema finishes its execution, the low-level task dispatcher within Rapid can choose to
run either a thread executing the scheduler or the next available application task. The scheduler is run if (1) there
is sufficient time to run the scheduler at least once before the next task’s scheduled start time, and (2) if no other
processor is capable of analyzing the currently outstanding request(s). Otherwise, the dispatcher will execute the
next available task that has already passed its start time, even if that task was originally scheduled to begin its
execution later. In summary, Rapid scheduling is performed opportunistically whenever processing time is available
on any of the processors capable of analyzing a given set of tasks (called a scheduling group in Section 3). However,

for reasons of system predictability under high system loads, Rapid schedulers will also be scheduled conservatively



using a dynamic variant of the staggered scheme described in [30].

2.4 Rapid Concurrent Scheduling

To attain concurrency in task scheduling, Rapid must decouple (1) the generation of scheduling requests, from
(2) schedulability analysis for requests, from (3) the decision concerning thread scheduling. Orthogonally, thread
creation itself can also be decoupled from its scheduling, by using the RT-thread-prefork calls described in [22]
(not used in this example), or by first creating a thread with a non-real-time fork instruction and then scheduling it
using RTasynch-schedule(). The primary mechanism supplied by Rapid for attaining asynchrony and to permit
thread creation separately from thread scheduling is the reservation. Reservations and the decoupling of (1)-(3) are

important for two reasons:

e (oncurrency in schedulability analysis implies the use of multiple, potentially asynchronous scheduling threads
in order to analyze a single scheduling request. A reservation associates the requesting entity (some thread
calling RTasynch-fork) with threads performing schedulability analysis and scheduling. The requesting thread

can proceed asynchronously with such threads, or it can wait for analysis to be performed.

o Flexibility and therefore, suitable performance require the potential use of different policies for decision-making
concerning thread scheduling (e.g., best vs. any fit across different processors), of different degrees of parallelism
in schedulability analysis (resulting in different execution rates for threads performing such analyses), and of
different means for accessing and updating scheduling requests. In response to these needs, Rapid offers
several levels of decision making concerning scheduling requests and multiple means of storing and sharing
reservations among scheduling threads. It also allows a requesting thread to wait on and make decisions based
on its reservation, and it can indicate in each reservation multiple, potentially suitable time slots on different

Pprocessors.

Therefore, in contrast to previous work on scheduler activations described in [1], the role of a reservation in Rapid
is to provide a vehicle for maintaining information about specific scheduling requests, for single or sets of tasks, and
to permit application threads and the different components of the Rapid scheduler to cooperate (synchronize) and
communicate (exchange information) to satisfy such requests.

Multiple levels of decision-making. As stated above, another difference of Rapid scheduling to previous work
is the immediate feedback given to a requester at the time of request generation. As a result, a requester can make
a heuristic decision on whether schedulability analysis is likely to be performed in time and/or is likely to succeed,
given the known rates of execution for threads performing schedulability analysis and given current knowledge of
likelihood of success in scheduling. If the request is likely to fail, then no reservation is generated and the scheduling
request returns a failure indication. As a result, the more time-consuming reservation generation, queueing, and
schedulability are performed only when there exist some hope of success for the request. Since even probably
successful scheduling requests may fail, the requester can also supply a failure function with the initial request which

is included with the reservation. If the request fails, the scheduler itself (rather than the requesting task) immediately



executes this failure function. Alternatively, failure can be detected and acted on when the requester inspects the
return parameters of the submitted request.

Additional support for handling scheduling failures must either be part of higher level real-time operating system
functionality or must be supplied by application programs. One approach to implementing such support is taken by
the CHAOS® is an object-based, real-time operating system kernel[11], where related groups of object invocations
may be scheduled individually but can then be grouped together into an atomic computation, which is viewed by the

operating system as a single schedulable unit with guaranteed scheduling, consistency and failure recovery attributes.

3 The Rapid Scheduler

3.1 A Scalable Implementation

NUMA machines. The previous section demonstrated the basic functionality of the Rapid on-line real-time
scheduler. This section describes the scheduler’s concurrent and distributed implementation on a shared memory
multiprocessor. While our current platform is not an embedded machine, it has several characteristics in common

with most embedded parallel architectures:

e Machine scalability implies non-uniformity in access times to shared memory (NUMA), resulting in memory
access times to cache, local, and remote memory units differing by factors of roughly 1:10:100. Such proper-
ties are shared by most embedded architectures, with larger differences in access cost existing when message

communications must be used in place of shared memory accesses.

o Devices may be attached to any one node of the parallel machine, and operating system kernels reside on each
of its processors, while higher level operating system utilities run as processes on any number of nodes. As a
result, real-time tasks can be created on any node of the parallel architecture, and they can run on any or a

set of nodes possessing their devices (or can remotely use devices for low-bandwidth accesses).

As with most parallel machines; to attain speedup in parallel program execution, KSR programmers are able to reserve
processors for their own use, thereby enabling us to experiment with user-level support for real-time scheduling not
subject to arbitrary interference from the current machine’s non-real-time operating system.

Concurrent execution, distributed data structures, and locality of access. The Rapid on-line scheduler
is structured to attain high performance on NUMA machines of varying sizes. First, to attain locality of reference
a dispatcher and a run queue — called task list (TL) — are located on each processor of the machine. In addition,
a data structure maintaining higher level information about current processor schedules — called slot list (SL) - is
also located on each processor, so that a local scheduler can perform its own schedulability analysis and scheduling
without requiring access to non-local information. Second, in contrast to our previous work described in [30], Rapid
supports concurrency in scheduling by decoupling (1) the generation of scheduling requests (generating a reservation),
from (2) their processing (schedulability analysis by slot list inspection), from (3) task scheduling (task insertion

into some TL). Third, Rapid implements several levels of schedulability analysis, so that requests being submitted
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Figure 1: Structure of the Multiprocessor Scheduler

can be (a) quickly diagnosed as reasonable or unreasonable, (b) analyzed to provide hard deadline guarantees, and
(c) analyzed to provide hard deadline guarantees by also re-scheduling previously scheduled tasks. However, such
re-scheduling will never be performed such that previously made guarantees are retracted.

Reservations and reservation lists are the mechanisms supporting the decoupling of (1)-(3). Specifically, and as
shown in Figure 1, when the currently executing task finishes, the dispatcher selects the next task to execute from
its task list (TL), which involves neither remote memory accesses nor the creation of manipulation of reservations.
However, when an executing task forks a new task or re-schedules an existing task, then Rapid creates a reservation
for the task, based on which schedulability analysis and scheduling may be performed. The reservation is inserted
into a reservation list (RL ), which is structured to match the machine’s NUMA characteristics and can accommodate
the new task’s constraints concerning processors and/or devices required for its execution.

Reservations are inspected by threads performing schedulability analysis, and are removed from reservation
lists only when schedulability analysis is completed. Schedulability analysis is performed using Zhou’s[29] slot
list algorithm, where successful analysis results in the generation of a reservation entry by the scheduler into the
reservation maintained for this task.

A scheduling decision is made for each reservation as soon as permitted by the decision-making algorithm being
used, which may be ‘best fit’ (requiring that all schedulers inspect the task) or ‘any fit’ (allowing the “first’ successful
scheduler to accept the task for insertion into its TL), etc. Once a decision has been made, the reservation is removed
from the reservation list and the task is inserted into the appropriate task list. Since such decision making and task
list insertion are performed by the threads performing schedulability analysis, locality of reference is maintained even
when executing user-provided failure functions performing exception handling upon failure. Reservation entries for

this task not accepted are removed by scheduling threads, thereby again maintaining locality of access to slot lists.
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Variation of scheduler concurrency. The level of concurrency during schedulability analysis can be varied
by creation of any number of threads performing this analysis for single or multiple processors, thereby resulting in
a single thread manipulating some fixed number of slot lists corresponding to the number of processors for which it
is responsible. Strict locality requirements indicate the need for one scheduling thread per processor, so that only
the reservation list is shared between multiple processors. It is possible to relax such requirements on machines like
the KSR, where a moderate number of remote memory accesses are possible due to automatic caching performed
by the underlying machine’s architecture. Operationally, scheduler configuration resulting in changed locality and
concurrency levels for scheduling is performed using scheduling groups, where in Figure 1 a single scheduling thread
accesses an internally distributed reservation list (RL) and manipulates a limited number of SLs and TLs on behalf
of each reservation being serviced.

Since any number of threads performing schedulability analysis can be run concurrently, improvements in schedul-
ing latency are attained when a single task’s schedulability is evaluated for multiple target processors and when sets
of tasks are evaluated. Performance effects due reservation and reservation list implementation, tradeoffs in schedul-
ing performance vs. quality of scheduling decisions, and improvements in scheduling latency and throughput are
evaluated in Section 4.

Scheduler configuration. The flexibility of Rapid is enhanced by describing the scheduler’s desired configura-
tion with an explicit configuration description. This also permits the dynamic change of scheduler structure to adjust
it to different machine configurations and runtime needs. Furthermore, a processor’s membership in a scheduling
group is defined explicitly in each scheduler’s state. This permits processors to be dynamically added to or removed
from scheduling groups, and processors can simultaneously belong to more than one scheduling group. The size of
scheduling groups results in tradeoffs in scheduler performance vs. the quality of scheduling exposed in part by our
past work [30] and to be investigated further in our future research. Similarly, communication between processors
and the scheduler is via the per-processor reservation list (RL) part of each scheduler’s state. Experimentation with
shared RL’s has shown poor performance due to the high remote/local memory access ratios resulting from such RL

sharing (see Section 4).

3.2 Performance of Concurrent Scheduling

Figure 2 depicts the decoupled execution of task generation (the *fork’ instruction), schedulability analysis, decision
making, and task execution, involving several processors in the same and in different scheduling groups. Processors
p0, pl and p2 constitute scheduling group 1(sched_groupl) and processors p3, p4 and pJ constitute scheduling group
2 (sched_group?). Normally, a task created in a scheduling group will be executed by one or more of the processors
in that scheduling group. For instance, fork! on p0 generates a reservation for task! that is scheduled by scheduleri
on p2. However, when tasks have processor constraints or when information is available to the fork procedure that
schedulability analysis will not succeed in its own scheduling group, then the fork will employ the reservation list
to submit the reservation to a different scheduling group. For example, Fork3 in sched_group2, recognizes that

task3 has a deadline before scheduler? will run next, and therefore sends the reservation to sched_groupl, where
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Figure 2: Operation of the Multiprocessor Scheduler

schedulerl schedules task3 on p0. In addition to knowledge about the frequencies of scheduler execution, processor
load information can also be made available to the fork procedure, thereby permitting it to decide where schedulability
analysis is most likely to succeed [29].

The operational description of scheduling in Figure 2 permits us to define several terms precisely. First, scheduling
latency is defined as the total elapsed time from generation of a scheduling request (reservation generation) to insertion
of the task into a designated task list. Scheduling latency is affected by the degree of concurrency of scheduling,
by the rate of execution of scheduling threads, by the costs of scheduling mechanisms including RLs, SLs, TLs,
and reservation entries, and by the schedule of the requesting thread, which makes the final decision concerning
task scheduling. Minimum scheduling latency is attained when the requesting thread itself performs schedulability
analysis, decision making, and task insertion not using reservations and reservation lists. Measurements of Rapid
comparing this minimum latency to expected latency values will be provided with the final version of this paper.
Tradeoffs in scheduling latency vs. scheduling quality are apparent when newly arriving tasks are rejected simply
because their local scheduling group is full whereas other scheduling groups have resources that may be utilized by
the task.

Scheduling throughput is defined as the number of tasks scheduled over time by some configuration of the Rapid
scheduler. Throughput is directly related to scheduling latency when sets of tasks must be co-scheduled, but increased
throughput due to concurrency in scheduling can result in increased latency for individual tasks due to the additional
overheads of reservations and reservation lists and due to the additional delays caused by possible gaps between the
execution times of the requesting thread and the various scheduling threads. Such issues may be addressed by
proper scheduling of scheduling threads, such as the staggered schedule suggested by Zhou[30]. In order to evaluate
scheduling overheads and latencies without considering this issue, we also define scheduling effort as the total amount
of execution time spent on performing scheduling actions on behalf of a single task. Clearly, best fit policies will differ
significantly in scheduling effort from any fit, and scheduling effort when the requesting task performs all scheduling

actions will differ due to reservation overheads from the total effort made by asynchronously executed scheduling
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threads on behalf of this task.

4 Rapid Performance

The purpose of this section is to evaluate the scheduling technology offered by Rapid. We focus on the novel

contributions of this work, which are:

e (oncurrency in scheduling — what are the effects of concurrency on both the quality and performance of
scheduling, where performance is measured as scheduling latency and as scheduling effort for individual and

sets of tasks?

o Implementation issues for on-line scheduling — to evaluate the effects of decoupling task generation, from
schedulability analysis, from decision-making, and to understand issues specific to large-scale parallel machine,
such as appropriate implementations of reservations and reservation lists which determine the manner in which

tasks are shared by multiple schedulers.

e Configuration of schedulers — what are the costs vs. benefits of being able to configure schedulers leading to

different sizes of scheduling groups and different structures of reservation lists?

4.1 Performance of Rapid Mechanisms

We first evaluate basic performance properties of the Rapid scheduler. All such measurements are obtained from
runs with simulated workloads on a Kendall Square Supercomputer (KSR-1), which has a 0.05usec clock cycle time
and memory access times ranging from 2 to 600 processor cycles depending on the required caching actions.

The costs of request generation (ie., reservation generation) and selection from reservation lists are small, roughly
30 pseconds total. Comparatively higher are the costs (1) of reservation entry (in deadline order) into the reservation
list, which depends on list size and (2) the costs of schedulability analysis. (1) is not interesting to evaluate since a
number of obvious optimizations not yet applied to Rapid can be performed, including the use of hashing, of calendar
queues, and of access trees. (2) requires approximately 180 puseconds for a single processor’s slot list. Additional
details on some of these costs will appear in an extended version of this paper, including the costs of reservation
generation, minimal decision making consisting of diagnosing success or failure, and insertion into the local task
list. Significant variations in execution times only exist for list (RL, SL, and TL) manipulation, with total execution
time dominated by SL manipulation. Details on the effects of task laxities, execution times, and system load on SL
execution times are not reported below; they are described in a previous publication[30]. For purposes of this paper,
it is sufficient to state that SL execution time strictly depends on the number of slots in the list, which tends to
remain constant and/or grow smaller with increasing system load due to the merging of adjacent slots.

Conclusions from these results are straightforward. First, additional scheduling costs due to the use of reservations
is small compared to the cost of schedulability analysis, prompting us not to consider implementation of an optimized

path for local scheduling in which reservations are not used. Second, parallelization of on-line scheduling should
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be most effective when applied to schedulability analysis, especially when each task must be analyzed for multiple
processors or when sets of tasks must be evaluated, as is the case for the co-scheduling of groups of tasks. Third, even
assuming fairly moderate request rates for schedulers, a single scheduler cannot handle more than a few processors,
again due to the cost of schedulability analysis. This indicates that concurrency in scheduling is essential for larger

scale parallel system or that hardware support is required for scheduling as described in [19].
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4.2 Effects of Concurrency on Scheduler Performance

Scheduling throughput. Performance improvements due to the use of concurrency are shown in Figure 3, where
scheduling throughput is demonstrated as the total time required to schedule a remote fixed set of feasible tasks
already available when schedulability analysis is initiated. Several specific times are reported. First, the time required
for request selection is relatively flat, which indicates that contention for requests is minimal. Average wasted time is
the time spent analyzing a reservation that is ultimately declined. This happens because of programmed permitted
asynchrony and duplication in request selection. A strong restriction (mutex lock) on reservation list access would
preclude this possibility, but significantly increases request selection time.

This graph also shows that speedup declines fairly quickly, indicating a limitation on the number of schedulers
that can reasonably share a single request list. Detailed measurements of earlier implementations of the reservation
list exposed several implementation issues not reported in detail in this paper.

Scheduling quality. One possible undesirable effect of concurrent scheduling is a decrease in schedule quality.

Rapid guarantees that reservations will be examined in their listed order (for which a least laxity ordering has been
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Schedulable Task Sets

N | Zhou Rapid
100 100 100
200 100 100
300 100 100
400 100 100
500 100 100
600 100 100
700 99 100
800 90 95
900 72 81
1000 32 46

Table 1: Scheduling quality comparison with Zhou

shown optimal by Zhou for off-line multiprocessor scheduling). However, requests are not guaranteed to be scheduled
in the order in which they appear in the list due to possible differences in execution speeds of scheduling threads.

Table 4.2 compares Rapid’s schedule quality to Zhou’s slot list scheduler. Both schedulers used the same set
of input tasks with exponentially distributed start times, run times and deadlines. The results are reported as the
number of task sets out of 100 where all tasks are schedulable. These results show that the concurrent scheduling
in Rapid does not adversely impact schedule quality. Improvements in concurrent vs. non-concurrent scheduling for
heavily loaded systems are due to

Hierarchical scheduling. Figure 4 demonstrates the importance of hierarchal scheduling. This graph shows
the total time required to schedule 1056 randomly (exponential distribution) generated tasks from a remote request
list. As seen in this graph, total execution time of schedulability analysis is dominated by the amount of time spent
analyzing requests that ultimately fail, except in the rightmost part of the graph where the task rejection rate falls
to zero. The failed time vastly exceeds the amount of time spent analyzing request that ultimately succeed (useful).
Therefore, early rejection of tasks that obviously cannot be scheduled via primary scheduling can significantly reduce
scheduling overhead and potentially decrease the scheduling latency if the application uses an adapt and reschedule

strategy like slow_and_reschedule described previously.

5 Conclusions and Future Work

Conclusions. The use of concurrency during schedulability analysis is shown to increase the performance of on-
line real-time scheduling. Such increases outweigh the costs of additional mechanisms required for asynchronous

task generation, schedulability analysis, and decision-making. Furthermore, increased performance is shown not to
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degrade the quality of on-line multiprocessor scheduling significantly compared to our past results attained with
synchronous scheduling methods[30]. The primary Rapid concept and mechanism supporting such asynchrony is
the notion of reservation, which defines an application interface containing scheduling information to end users and
permits concurrent scheduling components to share information concerning single or groups of tasks being scheduled,
thereby also defining interfaces between those components.

Rapid’simplementation directly supports its extension to large-scale parallel machines, because its data structures
are distributed across the different nodes of a parallel machine, accessed locally to increase locality of access, and
because Rapid itself can be configured to vary the number of processors for which individual schedulers are responsible,
the number of processors to be considered for each task being scheduled, and the scheduling algorithm used for
multiprocessor task scheduling (e.g., best fit or any fit). The concept supporting such configurability is the scheduling
group, defined as a number of processors served by a single scheduler, but each retaining individual data structures
for threads scheduling and schedulability analysis. Tasks are scheduled within their groups, whenever possible, and
are shared between multiple groups with explicit inter-group communications using a reservation list. Reservation
list fragmentation vs. the use of a central list can result in significant execution time reductions due to decreases in
caching and/or remote memory access on the underlying parallel machine, as shown in [8].

While the results presented in this paper address the efficient scheduling of single or sets of tasks, Rapid already
contains support for groups of tasks that must be co-scheduled with ‘all or none’ semantics, or must be partially
scheduled separating essential from non-essential tasks, etc. It is our intent to experiment with such scheduling,

in part to demonstrate the performance gains possible from the use of parallelism for scheduling tasks related by
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dependency relationships. In addition, it should be apparent that the co-scheduling of several tasks on different
processors is equivalent to the scheduling of a single task on one processor jointly with the allocation of one or
multiple schedulable resources required by this task on schedulable ‘processors’ interpreted as resources. Rapid can
address such dynamic task and resource scheduling with minor changes to its current implementation.

Not addressed extensively by Rapid is how to deal with failures in task scheduling, in task and resource scheduling,
etc. Instead, Rapid returns failure and timing information to the task generator, then expecting the user to implement
recovery actions, submit alternate tasks for schedulability analysis, etc. In addition, Rapid permits users to specify
failure functions executed by scheduling threads in reaction to scheduling failures. Our motivation for not including
additional functionality to address exception handling is the conviction that such functionality ought to reside at
higher levels of the real-time operating system, as described in [10], or at user level where application semantics may
be used in making recovery decisions. For example, in the robot navigation code described in Section 2, planning is
performed continuously during robot movement so that partially generated alternate plans are continuously available.
However, it is up to the application to decide on the amounts of re-planning required upon obstacle detection and
then submit for re-scheduling the previously scheduled planning tasks. Rapid offers no higher-level support for ease
of implementation of such forward recovery. Note that the use of pre-scheduling or even imprecise computation[14]
may be indicated in this context system loads are sufficiently high to result in a high probability of failure for dynamic
re-scheduling.

Future research. The immediate next steps in this research concern experimentation with task groups, where
different tasks in the same group must be co-scheduled. Additional performance and quality evaluation of on-
line scheduling will be performed, as well. More importantly, we will generalize the current Rapid scheduler to
provide: (1) application interfaces to support the robotics applications described in this paper and additional real-
time applications, resulting in an alternative to the real-time threads implementation described in [22], and (2)
increased configurability for inclusion of resource scheduling algorithms and of different models of timing constraints,
and for experimentation with scaling Rapid to larger parallel machines, where alternative scheduling groups and
communication structures among those groups must be considered[8]. In essence, Rapid will be the basis for a
flexible framework for implementation of schedulers for embedded systems. Last, we will experiment with task
groups that require the co-scheduling of related tasks or that require the allocation of both CPU and other resources
for task execution.

In the course of developing our scheduler, we have recognized the need to develop several new scheduling policies
beyond the standard best-fit, any-fit and worst-fit algorithms.

For multi-threaded tasks where the application programmer supplies cooperation controls, the scheduling policy
must distribute the task’s total runtime among a set of processors. Two reasonable policies to accomplish this would
be a greedy algorithm and an even distribution algorithm. A greedy algorithm would assign each processor as much
of the task as possible between the task’s start time and deadline. An even distribution algorithm would attempt to
assign the same amount of time to each of the processors.

Likewise, for a set of related tasks that must be scheduled with all-or-none semantics, there could be greedy
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and even distribution policies where each processor is assigned as many tasks as possible (greedy) and where each
processor is assigned the same amount of total runtime from the group (even distribution).

There is an extension to strict alternate scheduling where only one task of a set must be scheduled where scheduling
some subset of the group is considered successful. Each individual task would have an associated scheduling success
quantity. If the total of these quantities for the successfully scheduled tasks is greater than the application defined
criteria, then scheduling succeeds. Otherwise, scheduling fails and none of the set of tasks is scheduled.

We have also recognized that efficient multiprocessor scheduler architectures are dependent on the underlying
hardware characteristics, particularly the local/remote memory access ratio. While the current implementation is
reasonably flexible, there are several areas that need further study.

In the three phases of scheduling (offer generation, schedulability analysis, and offer resolution), offer resolution
is currently ad hoc. In some scheduling policies, resolution is implicit (e.g. any-fit). In other policies (e.g. best-fit)
resolution is explicit following some termination condition. In the case of real-time systems, schedulability analysis
termination could be either all processors/tasks analyzed or the arrival of the task’s start time. Offer resolution
should be formally separated from schedulability analysis to provide greater parallelism, predictability, and more
complete schedulability analysis.

We also recognize that it may be useful to have schedulers exchange offers between themselves rather than relying
on the fork mechanism sending the offer to the appropriate scheduler. Schedulers could be connected in rings or
trees or other logical structures based on the application characteristics and the hardware characteristics.

The time cost of sharing offers inherent in the hardware and the acceptable scheduling latency defined by the
application, will determine the structure of the scheduling groups. At one extreme, very fast inter-processor commu-
nications and very short latency requirements will result in a single scheduling group which includes all the processors
of the system. At the other extreme, a ring of scheduling groups consisting of a single processor each, results from
high communications costs and long scheduling latencies.

The connections between scheduling groups need not be uniform or static. In an application where task generation
is not uniform in time or across tasks, scheduling groups which generate more than the average number of tasks
should have more connections to other scheduling groups than groups which generate fewer tasks. An implementation
of this principle might have scheduling groups with long offer queues adding connections to scheduling groups with
short offer queues and groups with short offer queues deleting connections to groups with long offer queues. The
assumption here is that the task rejection rate will be relatively small, so that the offer queue length is related to
the future processor load.

Acknowledgements. Tucker Balch is contributing the robot navigation and planning code used in this research.
Hongyi Zhou has provided some assistance in comparing the quality of Rapid scheduling to her previous results

published in [30].
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