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TEN⋅SION (těn’shən) 

noun. Middle French or Latin. 

 

The act or action of stretching or the condition or degree of being stretched to stiffness 

Either of two balancing forces causing or tending to cause extension 

Inner striving, unrest, or imbalance often with physiological indication of emotion 

 

- Merriam-Webster dictionary 
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SUMMARY 

 
 
 
 Disease and degeneration of articular cartilage and fibrocartilage tissues severely 

compromise the quality of life for millions of people.  Although current surgical repair 

techniques can address symptoms in the short term, they do not adequately treat 

degenerative joint diseases such as osteoarthritis.  Thus, novel tissue engineering 

strategies may be necessary to combat disease progression and repair or replace damaged 

tissue.  Both articular cartilage and the meniscal fibrocartilage in the knee joint are 

subjected to a complex mechanical environment consisting of compressive, shear, and 

tensile forces.  Therefore, engineered replacement tissues must be both mechanically and 

biologically competent to function after implantation.  The goal of this work was to 

investigate the effects of oscillatory tensile loading on three dimensional engineered 

cartilaginous tissues in an effort to elucidate important aspects of chondrocyte and 

fibrochondrocyte mechanobiology. 

 To investigate the metabolic responses of articular chondrocytes and meniscal 

fibrochondrocytes to oscillatory tensile loading, various protocols were used to identify 

stimulatory parameters.  Several days of continuously applied tensile loading inhibited 

extracellular matrix metabolism, whereas short durations and intermittently applied 

loading could stimulate matrix production.  Subpopulations of chondrocytes, separated 

based on their zonal origin within the tissue, differentially responded to tensile loading.  

Proteoglycan synthesis was enhanced in superficial zone cells, but the molecular structure 

of these molecules was not affected.  In contrast, neither total proteoglycan nor protein 

synthesis levels of middle and deep zone chondrocytes were substantially affected by 

 xx



tensile loading; however, the sizes of these new matrix molecules were altered.  Up to 14 

days of intermittently applied oscillatory tensile loading induced modest increases in 

construct mechanical properties, but longer durations adversely affected these mechanical 

properties and increased degradative enzyme activity.  These results provide insights into 

cartilage and fibrocartilage mechanobiology by elucidating cellular responses to tensile 

mechanical stimulation, which previously had not been widely explored for these tissues.  

Understanding the role that mechanical stimuli such as tension can play in the generation 

of engineered cartilaginous tissues will further the goal of developing successful 

treatment strategies for degenerative joint diseases. 
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CHAPTER 1 
 

INTRODUCTION 

1 
 

1.1 Motivation 

 Diarthrodial joints rely on a complex interplay of diverse tissues to maintain 

proper function.  If one or more of these tissues (e.g. articular cartilage, meniscus, 

ligament, or tendon) is damaged due to an acute injury or chronic degradation, the 

homeostatic balance of the entire joint can be disrupted.  One potential consequence of 

this imbalance is osteoarthritis, a degenerative joint disease characterized by thinning of 

the articular cartilage, joint pain, and loss of mobility that affects millions of Americans 

costing over $60 billion annually1.  In addition to direct trauma or degradation of the 

articular cartilage, incidences of osteoarthritis have been shown to increase following 

injury to the menisci2.  This may be in part because tears to the inner region of the 

meniscus, which is highly avascular, often fail to adequately heal and the joint 

biomechanics of the knee are adversely altered3.  One potential solution to this clinical 

problem is promoting meniscal repair via tissue engineering strategies4.  A key 

component to successful meniscus or articular cartilage tissue engineering is to develop 

an understanding of the role that mechanical loading can play in tissue development, 

maintenance, and repair.  During normal physiologic joint loading, the meniscus 

experiences compressive stresses in the inner region but predominately circumferential 

tensile stresses in the outer region.  Thus, investigating cellular responses to tensile forces 
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could provide useful insights for tissue engineering ultimately leading to improved repair 

strategies. 

1.2 Research Objectives 

 The overall goal of this dissertation research was to explore the effects of tissue 

appropriate mechanical stimulation, namely tensile loading, on fibrochondrocytes from 

the meniscus of the knee.  The effects of tensile loading on articular chondrocytes were of 

interest, both for comparison to the fibrochondrocyte response and as an independent 

investigation into how these cells would respond to mechanical stimulation that may less 

prominent in normal physiology but potentially important in some cases.  In addition to 

these goals the distribution and organization of extracellular matrix (ECM) molecules in 

the meniscus were examined in an effort to better understand the spatial relationship 

between various components.  At its heart, this work aimed to contribute to the overall 

understanding of how cells from both articular cartilage and fibrocartilage respond to 

mechanical stimulation, furthering efforts to develop tissue engineered repair strategies. 

 Driving these goals was the central hypothesis that tensile mechanical stimulation 

could be used to modulate the extracellular matrix synthesis of meniscal 

fibrochondrocytes and articular chondrocytes in three dimensional hydrogel construct 

culture.  This hypothesis was refined into three major components and specific aims were 

set forth to address each question posed by the hypotheses. 

 

Hypothesis I:  Continuously applied oscillatory tensile loading will inhibit meniscal 

fibrochondrocyte and articular chondrocyte matrix synthesis.  However, short durations 
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of continuous oscillatory tensile loading (≤ 24 hours) as well as intermittently applied 

oscillatory tensile loading will promote matrix synthesis. 

Specific Aim I:  Determine the responses of meniscal fibrochondrocytes as well as 

articular chondrocytes seeded in fibrin hydrogel constructs to various protocols of 

oscillatory tensile loading. 

 To investigate the effects of oscillatory tensile loading on chondrocytes and 

fibrochondrocytes, studies evaluating a wide variety of cellular responses using several 

different loading conditions were conducted.  Initial studies focused on using continuous 

oscillatory tensile loading (1.0 Hz, 5% ± 5% amplitude) for three consecutive days.  

Subsequent studies, primarily using only articular chondrocytes, examined the effects of 

shorter duration loading protocols, such as comparing 24, 48, and 72 hours of continuous 

loading.  Additionally, changes in matrix molecule gene expression levels were 

investigated using short loading durations (≤ 8 hours).  Finally, using the results of these 

studies as well as information from the literature as guides, intermittent oscillatory tensile 

loading protocols consisting of repeated load/rest cycles were used to evaluate 

chondrocyte cellular responses. 

 

Hypothesis II:  Cells isolated from distinct zones of articular cartilage and meniscal 

fibrocartilage will respond in a zone-dependent manner to intermittently applied 

oscillatory tensile loading. 

Specific Aim II:  Investigate the effects of intermittent oscillatory tensile loading on 

subpopulations of articular chondrocytes from the superficial, middle, and deep regions 
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of articular cartilage as well as subpopulations of meniscal fibrochondrocytes from the 

inner and outer regions of the meniscus. 

 Heterogeneous cell populations reside within both articular cartilage and the 

meniscus, and recently a careful elucidation of potential differences in these cell 

populations has been of increasing interest.  Since cells from different phenotypic 

populations may behave differently during in vitro culture and in response to mechanical 

loading, several studies were undertaken to investigate the zone-dependent cellular 

responses of articular chondrocytes and meniscal fibrochondrocytes.  Articular 

chondrocytes were separated in three groups according to their origin in the tissue:  

superficial zone, middle zone, and deep zone.  ECM synthesis, cellular proliferation, and 

cell morphology were evaluated at various time points in fibrin hydrogel constructs.  

Additionally, an intermittent protocol was used to evaluate potential zone-dependent 

responses to oscillatory tensile loading.  Finally, fibrochondrocytes from the meniscus 

were separated into inner zone and outer zone subpopulations and subjected to the same 

intermittent oscillatory tensile loading protocol. 

 

Hypothesis III:  Extended in vitro culture of fibrin hydrogel constructs seeded with 

articular chondrocytes in combination with intermittent oscillatory tensile loading will 

stimulate extracellular matrix production yielding constructs with enhanced tensile and 

compressive mechanical properties. 

Specific Aim III:  Determine the effects of extended durations of intermittent oscillatory 

tensile loading on the extracellular matrix accumulation and mechanical properties of 

articular chondrocyte seeded tissue engineered hydrogel constructs. 
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 Although to date cartilage tissue engineering strategies have failed to produce 

tissue replacements with mechanical properties equivalent to the native tissue, significant 

enhancement of construct mechanical properties has been achieved using extended in 

vitro culture times coupled with mechanical stimulation5.  Therefore, an initial study was 

undertaken to evaluate the changes in the tensile mechanical properties of fibrin hydrogel 

constructs over extended durations of free swelling culture.  Hydrogel constructs were 

allowed to culture in vitro for up to 27 days and the dynamic tensile properties of the 

constructs were tested at various points over the course of the study.  In a subsequent 

study, hydrogel constructs were cultured in free swelling conditions for 7 days and then 

subjected to intermittently applied oscillatory tensile loading for up to an additional 21 

days.  The dynamic tensile mechanical properties over a three decade frequency sweep of 

strain rates were measured every 7 days.  Additionally, cylindrical cores of each construct 

were tested in unconfined compression at a quasi-equilibrium state.  Finally, changes in 

ECM accumulation and degradation were evaluated in an effort to correlate the structural 

contents of the hydrogel constructs with their mechanical properties. 

 

1.3 Significance and Contribution 

 The studies performed for this dissertation provide insights into the responses of 

meniscal fibrochondrocytes to a tissue appropriate loading mode, oscillatory tension, in a 

three dimensional in vitro culture system.  Additionally, using hydrogel constructs seeded 

with articular chondrocytes allowed for not only a direct comparison to a more well 

characterized cell type, but also aided in understanding how chondrocytes respond to 

mechanical forces that are not necessary a major component of their native environment.  
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However, additional rationale exists for investigating the articular chondrocyte response 

to oscillatory tension, because tensile strains are found along the articular surface and 

may become more prevalent in articular cartilage following a traumatic injury that 

disrupts the otherwise smooth joint surface or even after surgical intervention where a 

softer material is used to repair damaged cartilage tissue. 

 Although the studies presented here certainly add to the knowledge base of this 

biological system, they also contribute in the broader context of tissue engineering and 

regenerative medicine in a more tangible way.  Rigorous therapeutic strategies to treat 

cartilage and fibrocartilage damage require an understanding of the cellular processes 

occurring during physiologically relevant mechanical stimulation.  Knowledge of the 

structure and organization of native tissue provides clues to mechanisms involved in 

mechanotransduction as well as establishes design parameters for developing tissue 

engineered constructs.  Studying the responses to shorter durations of mechanical 

stimulation yields insights into how specific loading scenarios could be used to 

manipulate cellular behavior.  Additionally, studying construct development over 

extended periods of in vitro culture is important for refining techniques used to create 

replacement or repair tissues. 
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CHAPTER 2 
 

BACKGROUND AND LITERATURE REVIEW 

2 
 

2.1 Articular Cartilage 

 Articular cartilage is a complex tissue that lines the ends of long bones in 

articulating joints providing compressive resistance and excellent frictional properties 

during joint motion6.  The structure and organization of the macromolecular components 

of articular cartilage convey unique mechanical and biological characteristics to the 

tissue, often yielding an entire lifetime of normal function7. 

2.1.1 Articular Cartilage Composition and Structure 

 Articular cartilage possesses four major constituents: water, collagens, 

proteoglycans, and cells.  Similar to many soft tissues, cartilage is highly hydrated with 

water comprising approximately 75% of the total tissue mass.  Collagens account for 10-

20% of the tissue mass while proteoglycans contribute another 5-10%.  The primary 

collagen in articular cartilage is type II collagen, which accounts for up to 90% of the 

total collagen content.  Other collagens such as types VI, IX, X, and XI have also been 

found in articular cartilage.  The main proteoglycan in articular cartilage is the large 

aggregating chondroitin sulfate proteoglycan also known simply as aggrecan.  

Additionally, smaller proteoglycans such as decorin, biglycan, fibromodulin, and 

perlecan are also present.  Smaller amounts of a variety of other non-collagenous proteins 

constitute the remaining portion of the articular cartilage extracellular matrix.  In 
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addition, adult articular cartilage is predominantly avascular7, which may contribute to 

the inadequate healing response typically seen following injury or disease. 

The Collagen Network 

 Although organizational patterns of the collagen network are not apparent under 

visible light, detailed observations are possible with electron microscopy.  Type II 

collagen, the dominant collagen protein in articular cartilage, is a triple helical molecule 

containing three identical α1(II) chains that can interact with adjacent molecules to form 

larger fibrils up to 120 nm in diameter6.  Near the articular surface, the collagen fibers are 

densely packed and primarily oriented parallel to the surface.  This organizational pattern 

gives the surface zone of articular cartilage greater tensile stiffness compared to deeper 

regions in the tissue, which is thought to be a functional adaptation to the shear and 

tensile forces induced at the joint surface during articulation8-10.  Deeper within the tissue, 

collagen content decreases, but the diameter of the fibrils increases6,7.  Additionally, 

collagen fibers in the midsubstance of the tissue are more randomly oriented.  The 

deepest regions of non-calcified cartilage contain the largest diameter collagen fibrils, 

which are oriented perpendicular to the articular surface passing through the tidemark and 

into the calcified cartilage below.  This highly organized collagen network conveys 

tensile stiffness to articular cartilage, providing mechanical characteristics that vary 

through the tissue depth and are well suited for the stress environment that develops 

during joint loading. 

Proteoglycan Organization 

 Proteoglycans (PGs) are molecules possessing a protein core with at least one 

attached glycosaminoglycan (GAG) side chain.  The GAG side chains are long, 
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unbranched polysaccharides consisting of repeating disaccharide units each with a 

negatively charged group, often sulfate11,12.  Hyaluronic acid (HA), chondroitin sulfate 

(CS), keratin sulfate (KS), and dermatin sulfate (DS) are the major GAGs found in 

human articular cartilage13-15.  As noted above, aggrecan is the most prominent PG found 

in articular cartilage.  Newly synthesized, intact aggrecan consists of a long core protein 

with a globular domain (G1) at its N-terminal, a short inter-globular domain, a second 

globular domain (G2), a long region with up to several hundred GAG molecules, and 

finally a third globular domain (G3) at the C-terminal (Figure 2.1).  

 

 

 

G1 G2 G3

KS CS 1 CS 2

Link Protein

HA

G1 G2 G3

KS CS 1 CS 2

Link Protein
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Figure 2.1 Molecular structure of aggrecan shown attached to a hyaluronic acid (HA) 
backbone and stabilized by link protein.  Aggrecan consists of the core protein, three 
globular domains (G1, G2, G3), a keratin sulfate (KS) rich region, and two chondroitin 
sulfate (CS1 and CS2) rich glycosaminoglycan regions. 

 

 

 

 9



 Aggrecan molecules bind to hyaluronic acid (HA) via the G1 domain, and this 

interaction is stabilized by link protein.  The HA backbone is found in various lengths 

from several hundred to more than 10,000 nanometers with larger aggregates having as 

many as 300 attached aggrecan molecules16,17.  GAG chains contain negatively charged 

sulfate groups, and it is these sulfated glycosaminoglycans (sGAG) that give aggrecan 

molecules their functional properties.  Since the sGAGs have a high anionic charge, they 

both repel each other as well as attract water molecules.  The result is an influx of water 

into the tissue causing swelling.  However, the aggrecan molecules are entangled with the 

collagen network, restricting expansion and thereby inducing a swelling pressure within 

the tissue.  The compressive mechanical properties of cartilage result from this swelling 

pressure.  Additionally, the swelling pressure maintains tension on the collagen network. 

 As with the collagen network, aggrecan is not uniformly distributed throughout 

articular cartilage.  Aggrecan concentration is lowest near the surface of the tissue18, but 

smaller PGs such as decorin and biglycan are most abundant in this region6,18-20.  The 

concentration of aggrecan increases through the middle and deep zones of articular 

cartilage, but is lower in the region containing calcified cartilage.  This inhomogenous 

distribution of aggrecan has functional consequences, as evidenced by experiments 

demonstrating that the compressive mechanical properties vary through the tissue 

depth21. 

2.1.2 Cells of the Articular Cartilage: Chondrocytes 

 Articular cartilage is populated with a single cell type, the chondrocyte, which 

synthesizes and maintains the complex architecture of extracellular matrix molecules 

within the tissue.  Although all cells in articular cartilage are referred to as chondrocytes, 
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differences in cellular morphology, gene expression profiles, and extracellular matrix 

synthesis exist throughout the tissue depth.  Near the superficial zone, chondrocytes are 

primarily flat or oblong in shape and align parallel to the joint surface7.  Chondrocytes 

further from the surface have a spherical shape and are larger than superficial zone cells 

(Figure 2.2).  In the cartilage deep zone, chondrocytes tend to be arranged in vertical 

columns as the tissue transitions to calcified cartilage22.  Overall, the cell density and 

metabolic activity in articular cartilage is low compared with many other tissues (~35 x 

106 cells/cm3)7.   Cell density also varies with tissue depth, being highest in the 

superficial zone and lowest deeper within the tissue. 

 

 

 

Figure 2.2 Hematoxylin and Eosin (H&E) stain of the middle zone of immature bovine 
articular cartilage.  Cell nuclei are dark blue and cartilage matrix is lighter blue. 

 

 

 The composition of the matrix molecules surrounding chondrocytes also is 

dependent on tissue depth.  Proteoglycan-4 (PRG4), also known as superficial zone 

protein or lubricin, is only found along the tissue surface and surrounding chondrocytes 
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in the superficial zone23.  Type VI collagen is found in the pericellular matrix in nearly all 

chondrocytes in adult cartilage as a fine filamentous network24 that interacts with the 

small proteoglycan decorin25.  Chondrocytes residing in the deepest zone, the calcified 

cartilage, synthesize type X collagen and can calcify the extracellular matrix6. 

 The depth dependent compositional differences seen in articular cartilage are due, 

at least partially, to metabolic specialization of the chondrocytes resident in each tissue 

zone26.  Only chondrocytes from the superficial zone synthesize PRG4 in situ23, and this 

characteristic was conserved during both in vitro monolayer culture and three 

dimensional construct culture for up to 9 days27.  However, multiple passages of 

monolayer culture eliminated differences in PRG4 gene expression in chondrocyte 

subpopulations28.  Consistent with PG synthesis rates in situ22 and the overall PG 

distribution found in articular cartilage, chondrocytes isolated from the deep zone 

synthesize more extracellular matrix PGs than cells from the superficial zone during two 

or three dimensional in vitro culture26,29.  Gene expression profiles for freshly isolated 

chondrocytes from these distinct zones also exhibit a similar pattern28,30. 

2.1.3 Pathology of Articular Cartilage 

 Although many individuals go their entire lives without persistent symptoms of 

joint pain or stiffness, it is estimated that virtually all elderly adults exhibit some level of 

cartilage degradation.  In fact, aggrecan molecules in elderly, but otherwise healthy, 

cartilage tissue exhibit extensive processing such that numerous aggrecan fragments but 

very little full length, intact aggrecan (structure shown in Figure 2.1) are found in the 

tissue31.  Many joint diseases are characterized by inflammation and irritation of 

articulating joints, broadly classified as arthritis.  The most prevalent of all joint disease 
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is osteoarthritis (OA), which compromises the quality of life for over 20 million 

Americans1.  OA is characterized by progressive joint pain, loss of joint mobility, 

radiologically apparent joint space thinning, as well as fibrillation and degeneration of the 

articular cartilage.  The incidence of OA greatly increases with age32,33, joint injury34,35, 

and excessive joint loading36-39.  The majority of cases of OA develop in the absence of 

an identified acute cause and rarely occur in individuals under 40 years of age.  However, 

incidents of injury, hereditary abnormalities, and developmental or metabolic disorders 

can lead to the development of OA at a much younger age1.  Relatively little is known 

regarding specific mechanisms involved in the progression of OA from mild joint pain to 

a debilitating lack of mobility. 

 Following joint injury, osteoarthritis may be initiated by seemingly minor damage 

to the articular cartilage surface.  Mechanical disruption of the surface not only damages 

nearby chondrocytes, but also affects the frictional and wear properties of the joint during 

articulation.  Hence, small asymptomatic fissures or cracks can become significant over 

time due to repetitive wear on the compromised surface.  Concomitant with macroscopic 

tissue damage is a loss of functional proteoglycan matrix molecules following injury40,41.  

As a result of the decreased concentration of PGs in the cartilage matrix, the water 

content in the tissue increases leading to a loss of mechanical integrity.  As the articular 

cartilage become softer, greater stresses are transferred to the subchondral bone further 

altering the joint biomechanics and exacerbating the problem42.  More severe injuries can 

create full thickness cartilage lesions resulting in immediate symptoms and more rapid 

degradation of the surrounding tissue.  Ultimately, progressive OA can lead to a total loss 

of articular cartilage function, bone on bone contact, and severe joint pain. 

 13



 Although many treatment options are available for patients suffering from various 

stages of osteoarthritis, none of them actually cure the disease.  Several treatments, 

however, do improve patient symptoms and may slow the progression of OA.  Minor 

damage to the articular surface can be treated with arthroscopic lavage and debridement, 

a process involving the removal of torn pieces of cartilage to reduce mechanical 

symptoms43.  This technique may have short term mechanical benefits, but does not alter 

pain or functional levels in patients with arthritic knees44.  Injuries penetrating the entire 

cartilage depth into the subchondral bone are known to fill with fibrocartilage repair 

tissue presumably due to the access to blood and reparative cells in the underlying bone 

marrow45.  The technique of  arthroscopic microfracture46 attempts to initiate this healing 

process by penetrating the subchondral bone in a controlled manner to induce bleeding 

into full thickness cartilage defects.  The microfracture technique has proven to be useful 

in younger patients with traumatic injuries rather than chronic cartilage degradation, but 

the newly synthesized repair tissue typically does not completely fill the defect site and is 

mechanically inferior to the surrounding tissue47. 

 More invasive repair techniques may be necessary in cases of severe injury or 

after less complicated treatments have failed.  Osteochondral autograft or allograft 

procedures involve removing a full thickness cylindrical core from a non-load bearing 

region of cartilage (or from a cadaveric donor) and transplanting it into the defect site48,49.  

However, complications from these procedures can arise from donor site morbidity and 

failure of the graft to integrate with the surrounding tissue.  Additionally, great care must 

be taken to properly size the graft as even small mismatches in diameter or height can 

severely compromise the success of the procedure50.  An additional method called 
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autologous chondrocyte implantation (or transplantation) is based on a similar strategy 

except that chondrocytes are isolated from excised tissue and expanded in two 

dimensional in vitro culture51.  The expanded chondrocytes are then implanted into the 

cartilage defect site as a cell slurry, covered with a periosteal flap, and sealed with fibrin 

glue.  The newly implanted cells can then adhere to the surrounding cartilage and form a 

repair tissue.  Like the osteochondral autograft procedure, autologous chondrocyte 

implantation can cause donor site morbidity; however, patients generally do report 

improvements and a reduction in pain symptoms following autologous chondrocyte 

implantation47.  Additionally, one randomized prospective study found significant 

improvements in healing following autologous chondrocyte implantation compared with 

osteochondral autograft procedures52. 

 The final option for patients with severe OA is total joint replacement.  This 

procedure is extremely invasive, but highly effective for alleviating pain and restoring 

joint mobility.  Total joint replacement remains the best treatment option for elderly 

patients with debilitating OA.  However, these replacements will typically only last 10-15 

years before a revision surgery is required due to implant loosening or wear.  Therefore 

total joint replacement does not represent an attractive option for younger patients who 

expect to outlive their implants.  Thus, an unmet clinical need remains for younger 

patients (i.e. < 65 years old) who develop osteoarthritis following traumatic injury or 

articular cartilage degradation.  Ideally, intervention strategies would be successful in 

halting the progression of OA and restoring normal joint function in these patients before 

painful and difficult to treat cartilage lesions develop. 
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 Tissue engineering represents an exciting opportunity for improving the treatment 

options in cartilage repair.  Tissue engineering “is an interdisciplinary field that applies 

the principles of engineering and life sciences toward the development of biological 

substitutes that restore, maintain, or improve tissue function”53,54.  Many of the 

shortcomings of the cartilage repair techniques described above may, in fact, be 

overcome using tissue engineering approaches.  Cartilage tissue engineering strategies 

seek to replace or repair damaged cartilage tissue with biological materials thereby 

relieving pain and restoring joint function. 

 

2.2 Fibrocartilage Tissues 

 Fibrocartilage tissues are found in many joints throughout the body, most 

prominently the knee, the temporomandibular joint, and the vertebral joints.  The regions 

in tendons that wrap around bones or are located near bone insertion sites are also 

considered fibrocartilage55.  Fibrocartilage tissues typically experience a combination of 

compressive and tensile forces during joint motion and are composed of extracellular 

matrix molecules well suited for this complex mechanical environment.  Structurally and 

compositionally, fibrocartilage tissues lie somewhere between articular cartilage and 

other connective tissues such as tendon or ligament.  These tissues are rich in highly 

organized collagen fibers, but also contain significant quantities of both large and small 

proteoglycan molecules. 

 In many ways, fibrocartilage tissues play mechanical supporting roles by 

protecting the adjacent articular cartilage or bone from excessive loading and by 

contributing to the overall joint stability.  The two menisci of the knee joint certainly 
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fulfill these roles and will be the primary focus of the remaining discussion on 

fibrocartilage tissues.  The menisci are semilunar tissues situated between the femoral 

condyles and the tibial plateau in the knee joint.  The pair is instrumental in load 

transmission, bearing 50-70% of the total load during normal joint motion56,57.  

Additionally, the menisci absorb shock during impact loading and also participate in joint 

lubrication58.  As knowledge of the mechanics, structure, and biology of the menisci has 

increased in the past half century, recognition of their importance in maintaining normal 

knee joint biomechanics and function has also increased. 

2.2.1 Composition and Structure of the Knee Menisci 

 The knee meniscus is highly hydrated with approximately 70% of its total mass 

being water58.  The primary extracellular matrix component in the meniscus is collagen, 

which accounts for over 70% of the solid mass of the tissue59.  Several collagen types 

including I, II, III, V, and VI are found in the meniscus, but type I collagen is by far the 

most prominent, comprising 98% of the total collagen content58.  Proteoglycans are found 

in the meniscus at much lower concentrations (1-3% of the total mass) than in articular 

cartilage57-59.  Both the large chondroitin sulfate proteoglycan, aggrecan, and smaller 

dermatin sulfate proteoglycans such as decorin and biglycan can be found in the 

meniscus.  Vascularity in the meniscus decreases with age until only the outer 10-30% of 

the periphery remains highly vascularized in adulthood60,61. 

The Collagen Network 

 Large bundles of type I collagen constitute the vast majority of the extracellular 

matrix in the meniscus.  Type I collagen is a triple helical molecule with two identical 

 17



α1(I) chains and one α2(I) chain59 that can form long microfibrils and aggregate laterally 

to form relatively large diameter fibrils.  In all tissues, collagen fibers play a significant 

role in resisting tensile forces.  The collagen fibers in the meniscus are primarily oriented 

circumferentially, parallel with the outer periphery of the tissue.  This structure can 

readily be seen with simple chromatic staining and a light microscope (Figure 2.3).  

Additionally, there are smaller, radially oriented fibers both along the surfaces of the 

tissue and disbursed through the midsbustance58,62,63.  The inner zone of the meniscus 

also contains smaller, more randomly oriented collagen fibers with a higher proportion of 

type II collagen. 

 

 

A B

Figure 2.3 Hematoxylin and Eosin (H&E) stain of the midsubstance of immature bovine 
meniscus tissue.  Cell nuclei are dark blue and fibrocartilage matrix is pink/purple.  (A) 
Large, parallel collagen fibers dominate the structure of the meniscus. (B) Cross-section 
of collagen fibers depicting the network of large bundles (perpendicular to image plane) 
interspersed with smaller connecting fibers (in image plane). 

 

 

 This highly organized structure in the meniscus is particularly well suited to its 

mechanical environment.  During joint loading, the menisci are displaced radially by the 
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femoral condyles due to their wedge-like shapes.  However, because the menisci are 

attached to the underlying bone on the tibia at both the anterior and posterior horns, this 

displacement induces large circumferentially oriented tensile hoop stresses in the outer 

region of the tissues57,58.  The effect of this load distributing phenomenon is that the large 

compressive forces in the knee resulting from normal joint motion are translated to 

circumferential tensile forces alleviating the adjacent articular cartilage from bearing 

much of the direct load. 

 Other collagen types are also found in the menisci, but their functions are not 

clearly understood.  Type II collagen has been found primarily in the inner, avascular 

regions of the meniscus, and it appears to colocalize with the larger type I collagen fibers 

and concentrate around the radially oriented “tie” fibers in the midsubstance of the 

tissue60,64.  Type VI collagen is also found in the meniscus in fairly significant quantities 

(~ 2% of the dry mass65), primarily located in the interterritorial regions of the matrix60.  

The function of type VI collagen in the meniscus is not well understood, but has been 

suggested to act as an intermolecular adhesion protein and a cell attachment protein.  Our 

findings regarding type VI collagen in the meniscus will be discussed in more detail in 

the following chapter. 

Proteoglycan Distribution 

 The proteoglycan content in the meniscus significantly lower than in articular 

cartilage, however, the structures of the large chondroitin sulfate proteoglycans (i.e. 

aggrecan) found in both tissues are similar66,67.  Additionally, a larger proportion of PGs 

with dermatin sulfate GAGs are present in the meniscus compared with articular 

cartilage68.  The distribution of PGs, especially aggrecan, within the meniscus varies 
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throughout the tissue.  In adult porcine menisci, approximately 8% of the dry mass of the 

inner region is comprised of GAGs, whereas only 2% of the total dry mass in the outer 

region is GAG69.  The dermatin sulfate PGs, namely decorin and biglycan, are more 

uniformly distributed throughout the meniscal extracellular matrix.  This inhomogenous 

PG distribution in the meniscus correlates well with the mechanical environment of 

different regions of the tissue.  As discussed above, aggrecan molecules carry the 

compressive loads in cartilage tissues through the interactions of the GAG side chains 

with interstitial water.  Compressive loads are known to be highest in the inner region of 

the meniscus, and thus higher aggrecan content may represent a functional adaptation to 

the local mechanical environment58,69. 

2.2.2 Cells of the Meniscus:  Fibrochondrocytes 

 The cells resident in meniscal fibrocartilage tissues exhibit characteristics of both 

fibroblasts and chondrocytes, and have therefore been designated as fibrochondrocytes.  

These cells, however, are not a homogeneous population with uniform phenotype70,71.  

Two distinct populations, one more proliferative and the other with higher matrix 

synthesis potential were identified in monolayer cultures and could be preferentially 

stimulated with different culture medium supplements72.  Early work using light and 

electron microscopy revealed that cells near the superficial regions of the meniscus (i.e. 

near the articular surface) were predominantly elongated and oval in shape, whereas cells 

deeper in the tissue were rounded with numerous filamentous projections emanating from 

the cell body60,73.   

 More recently, detailed immunohistochemical localization suggested that four 

distinct fibrochondrocyte subpopulations are present in adult rabbit menisci74.  Cells near 
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the tibial and femoral surfaces of the inner tip were classified as fusiform and lacked any 

cytoplasmic projections.  Fibrochondrocytes in the midsubstance of the inner region were 

found to be rounded and chondrocyte-like in appearance.  In the middle and outer zones 

two fibrochondrocyte populations were identified each with rounded cell bodies, but 

increasingly more elaborate cytoplasmic projections extending in multiple directions.  

Clear regional delineations for the different subpopulations were not found, but instead 

these morphological changes developed gradually.  These distinct, yet related, 

subpopulations of fibrochondrocytes synthesize and assemble the diverse extracellular 

matrix structure found in meniscal fibrocartilage.  These specialized morphological 

characteristics may indicate the ability of cellular subpopulations to sense, respond, and 

maintain their local matrix environment74. 

2.2.3 Pathology of the Meniscus 

 Damage to the menisci of the knee can occur concurrently with traumatic injuries 

to the anterior cruciate ligament, but is also found in the absence of other signs of joint 

damage2,75,76.  Additionally, non-traumatic meniscal tears can occur in patients with 

degenerate menisci suffering from osteoarthritis in the adjacent cartilage tissues3.  

Meniscal tears restricted to the outer vascular region of the tissue have the potential to 

heal without the need for surgical intervention, but tears penetrating the avascular inner 

region do not heal autonomously3,77,78.  Traditionally, torn menisci were fully or partially 

excised with little attempt to preserve meniscal function.  However, as the importance of 

the meniscus in maintaining normal knee joint function has become better understood, 

efforts have increased to develop novel surgical repair techniques57,79. 
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 Injury or disease in the meniscus, itself, is not necessarily the primary clinical 

concern, but rather the secondary impact on the neighboring articular cartilage.  Full or 

partial meniscectomy following injury often results in the early onset of 

osteoarthritis2,80,81.  This process is not completely understood, but the higher incidence 

of articular cartilage degeneration is at least partially due to a dramatic change in knee 

biomechanics in the absence of a competent meniscus.  Without the meniscus bearing the 

majority of load in the knee joint, the underlying articular cartilage is exposed to 

significantly larger compressive forces.  This may induce direct mechanical damage to 

the cartilage, which then can initiate the progression of OA.  Additionally, compressive 

overloads can induce the upregulation of catabolic cytokines that cause secondary tissue 

damage and initiate a biochemical cascade leading to OA82.  Meniscal allograft 

transplantation following total meniscectomy can be successful in alleviating pain 

symptoms and slowing articular cartilage degradation, however substantial disability in 

joint function often remains83.  Additionally, the potential for disease transmission and a 

limited donor supply remain complicating factors for allograft transplantation.   

 Tears in the avascular region of the meniscus often are not candidates for surgical 

intervention using currently available techniques79, and even surgically repaired injuries 

can heal with mechanically inferior tissue and may be susceptible to re-injury84.  

Therefore, opportunities exist for tissue engineering strategies to improve the prospects 

for meniscal repair. 
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2.3 Engineering Cartilaginous Tissues 

 Investigations into the potential to engineer replacement tissues for damaged 

articular cartilage began in the early 1990’s85,86.  Since this time, scientific efforts have 

grown immensely with hundreds of research studies currently being published on various 

aspects of cartilage and fibrocartilage tissue engineering each year.  The fundamental 

goal of this field is to create a biologically based, mechanically stable replacement for 

damaged cartilage or fibrocartilage that will reduce pain, restore joint function, and halt 

or slow the progression of osteoarthritis.  Many different techniques have been employed 

to stimulate the development of engineered cartilaginous tissues, including two and three 

dimensional in vitro cell culture, mechanical conditioning, and biochemical stimulation.  

Although much progress has been made in recent years, a clinically successful cartilage 

or fibrocartilage tissue replacement remains out of reach. 

2.3.1 In Vitro Cell Culture 

 A fundamental principle in tissue engineering is the ability to stimulate the 

development of a new tissue outside the body that can later be implanted into a patient.  

Unlike some cell types such as fibroblasts or endothelial cells, chondrocytes quickly lose 

their phenotype when cultured in two dimensional monolayers28,87.  Therefore, rapid and 

extensive expansion of a chondrocyte population is not possible without compromising 

some cartilage specific cell behaviors, namely the production of the extracellular matrix 

molecules aggrecan and type II collagen.  However, chondrocytes do posses the ability to 

redifferentiate following expansion in two dimensional culture if placed in a proper three 

dimensional environment88.  Therefore, many cartilage tissue engineering efforts have 

involved using three dimensional scaffolds to preserve the chondrocytic phenotype89-93.  
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Although culturing chondrocytes in this way will preserve their phenotype and yields a 

cartilage-like tissue construct, neither the native structure nor mechanical characteristics 

of cartilage are adequately reproduced. 

 Fibrochondrocytes in two dimensional monolayer cultures and may retain their 

phenotype to a greater extent than chondrocytes over short times in culture72,94-96.  

Limited data are available on the behavior of fibrochondrocytes in three dimensional in 

vitro culture, however, many of the principles and techniques used for articular 

chondrocyte culture have been applied to fibrochondrocytes96-99. 

2.3.2 Exogenous Stimuli 

 Several forms of exogenous stimuli have been used in an effort to generate more 

functionally competent cartilage and fibrocartilage tissue engineered constructs.  

Additionally, assessing cellular responses to these stimuli in three dimensional in vitro 

culture provides insights into fundamental cell behaviors that may be crucial for tissue 

engineering strategies to be successful.  Some of the earliest work using exogenous 

stimuli for cartilage tissue engineering demonstrated that dynamic mechanical 

compression could enhance chondrocyte extracellular matrix synthesis in agarose 

constructs100.  Additionally, short bouts of dynamic compression applied for several 

weeks significantly improve the mechanical characteristics of agarose constructs seeded 

with articular chondrocytes5.  Dynamic shear loading can stimulate chondrocyte 

extracellular matrix synthesis in cartilage explants101 and in scaffold-free tissue 

engineered constructs102.  In addition to direct mechanical stimulation, fluid induced 

shear stress improves the biochemical and mechanical characteristics of engineered 

cartilage tissues103-106. 
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 The effects of mechanical stimulation on fibrochondrocytes have not been widely 

studied in three dimensional culture.  However, static compression has been shown to 

modulate intervetebral disk fibrochondrocyte gene expression in alginate beads107 as well 

as inhibit fibrochondrocyte extracellular matrix synthesis in tissue explants108.  

Compression of fibrochondrocytes in two dimensional monolayer cultures has also been 

shown to influence gene expression of meniscal fibrochondrocytes109.  Interestingly, 

cyclic tensile strain on two dimensional cultures of fibrochondrocytes from the 

temporomandibular joint disk has anti-catabolic effects at both the gene expression and 

protein synthesis levels110,111. 

 In addition to direct or indirect mechanical stimulation, biochemical factors have 

also been used to stimulate chondrocytes and fibrochondrocytes during in vitro culture.  

Growth factors such as transforming growth factor-β (TGF-β), insulin like growth factor 

(IGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF) 

can stimulate chondrocyte and fibrochondrocyte extracellular matrix synthesis in vitro.  

Other types of stimulation such as using low oxygen concentration in the culture 

environment also improve the characteristics of engineered cartilage tissues112-114.  

Combinations of mechanical and biochemical stimuli are also being increasingly 

employed to further enhance development of engineered cartilaginous tissues108,115-117. 

2.3.3 A Role for Tensile Loading 

 Many forms of mechanical stimulation have been used in an effort to engineer 

cartilaginous tissue replacements.  Mechanical tension, however, has not been widely 

explored as a means to modulate chondrocyte or fibrochondrocyte extracellular matrix 

biosynthesis or stimulate the development of engineered cartilaginous tissues.  Although 
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cartilage and fibrocartilage tissues may not be directly loaded in tension, several 

scenarios exist where these tissues are subjected to a tensile mechanical environment. 

 In healthy fibrocartilage, normal compressive joint loading induces significant 

tensile stress in specific regions of these tissues due to their anchorage in the joint, 

anatomical shape, and ultrastructural organization.  For example, the menisci in the knee 

joint develop circumferential tensile hoop stresses in the outer region of the tissue during 

normal loading57,58,118.  Similarly, tensile stress develops near the upper boundary of the 

temporomandibular joint disc under normal conditions119.  Thus, any engineered 

replacement tissue implanted into a defect site or used as a tissue substitute would 

experience a similar tensile mechanical environment.  Understanding the role of tensile 

loading and deformation in tissue development, maintenance, and repair may therefore be 

crucial to understanding how repair or replacement tissues will perform in an in vivo 

fibrocartilage environment. 

 Although tension is not typically a major component in the in vivo mechanical 

environment, tensile strains are found in normal articular cartilage as well.  Compressive 

joint loading will induce some local tensile strain in transverse directions throughout the 

tissue due to the Poisson effect.  Additionally, tension is a more significant part of the 

local mechanical environment near the articular surface.  During articulation, a 

combination of compressive and shear forces are imparted to the cartilage surface, which 

induces local tensile strains58.  Traumatic injury or arthritic degradation may cause 

cracking or tearing of the joint surface.  Compressive loading of this damaged region 

could result in high stress concentrations near injury sites also leading to the development 

of significant tensile strains.  This dramatic change in the local mechanical environment 
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may then cause further degeneration and disease progression.  Alternatively, many 

cartilage tissue engineering repair strategies involve inserting a relatively soft engineered 

construct into a defect site.  Since the surrounding cartilage tissue is stiffer than the repair 

tissue, a region with a substantial material property mismatch would result around the 

implant.  During functional loading, the repair and native tissues will deform to different 

degrees thereby potentially inducing tensile strains.  This local tensile mechanical 

environment could influence how the repair tissue matures and integrates with the 

surrounding tissue. 

 The use of mechanical tension for cartilage or fibrocartilage tissue engineering 

provides opportunities to investigate potentially unique characteristics of the cells 

resident in these tissues that may not be possible with other modes of mechanical 

stimulation.  Understanding how these cells respond to mechanical tension in a well 

controlled in vitro environment may offer insights into the development, maturation, and 

integration of implanted tissue engineered constructs.  In addition, mechanical tensile 

stimulation may be useful for generating constructs with anisotropic material properties 

or matrix organization similar to those found in native tissue and potentially important for 

successful repair.  The series of studies presented in this dissertation focuses on 

understanding the effects of tensile loading on chondrocytes and fibrochondrocytes 

during in vitro culture.  Elucidating how these cells may respond to a tensile mechanical 

environment will provide valuable and novel contributions to the field of cartilage and 

fibrocartilage tissue engineering. 
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CHAPTER 3 
 

CHARACTERIZATION OF THE DISTRIBUTION AND ORGANIZATION OF 
EXTRACELLULAR MATRIX MOLECULES IN THE BOVINE MENSICUS 

3 
 

3.1 Introduction 

 Although tears restricted to the avascular midsubstance of the semilunar menisci 

of the knee have long been known to inadequately heal77, these tissues have only more 

recently been recognized to play important functions in the joint57.  The discovery that 

the predominant structural components of the menisci differ from those of hyaline or 

elastic cartilages59 provided further distinctions.  Although great strides have been made 

towards elucidating meniscal structure, organization, and function; research on the 

meniscus remains in its infancy compared with articular cartilage, bone, and many other 

tissues. 

 Recently, the structure and orientation of collagen fibrils in the menicus62 as well 

as regional variations in meniscal cell morphology74 have been shown in great detail.  

Additionally, the organization of specific extracellular matrix molecules, such as types I 

and II collagen, aggrecan, and other small proteoglycans has been elucidated to varying 

degrees of detail in several species64,120-123.  Each of these studies further revealed the 

complexities of meniscal structure and the organization of its extracellular matrix.  Types 

I and II collagen were found to co-localize in an intricate network in stark contrast to the 

diffuse type II collagen staining seen in articular cartilage64.  This finding raised 

interesting questions of how diverse matrix molecules may interact to form a more 

complex and functionally competent tissue. 
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 As stated previously and discussed in more depth in the preceding chapter, 

injuries to the avascular inner region of the meniscus often fail to adequately heal, and 

although surgical techniques have been constantly improving, many meniscal tears 

remain unsuitable for surgical repair79.  In recent years meniscal tissue engineering 

research has garnered increasing attention and may eventually be able to fulfill this unmet 

clinical need.  Gaining a more complete understanding of the intricacies of meniscal 

structure will aid in the pursuit of successful tissue engineering repair strategies.  Using 

detailed imaging analyses of meniscal microarchitecture, potential design templates for 

scaffolding materials as well as benchmark criteria for in vitro tissue regeneration can be 

developed. 

 Several studies were undertaken to histologically evaluate the distribution and 

organization of a variety of extracellular matrix molecules in the bovine meniscus.  

Initially, types I, II, and VI collagen as well as aggrecan were independently imaged 

using fluorescence immunohistochemical techniques.  However, to truly appreciate the 

potential interplay between these matrix molecules, multiple collagen types were also 

visualized simultaneously. 

 

3.2 Materials and Methods 

3.2.1 Meniscal Tissue Harvest and Processing 

 Intact immature bovine stifle joints were obtained from an abattoir and aseptically 

disarticulated.  The lateral and medial menisci were excised from the joint and transferred 

to sterile PBS that had been supplemented with antibiotic/antimycotic (see Appendix D 

for formulation).  Using a sterile scalpel, several 2-3 mm slices were cut from each 
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meniscus in two different orientations:  radial cross-sections and circumferential cross-

sections (Figure 3.1).  The radial cross-sections would allow for end-on imaging of the 

primary collagen network in the menisci, whereas circumferential cross-sections would 

provide views along the main axis of these fibers.  Two fixation and processing 

treatments were subsequently used to prepare meniscal tissue slices for imaging.  They 

were designated “formalin fixed” and “fixed-frozen.” 
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Figure 3.1 Schematic of meniscus cross-section preparation for imaging analysis 
 

 

Formalin-Fixed Tissue

 Tissue slices to be used for the imaging of individual extracellular matrix 

molecules were processed using the formalin-fixed protocol.  Slices were transferred to 

50 mL conical tubes and 10% neutral buffered formalin was added until all tissue was 

submerged.  Tubes were maintained at 4°C for 3-4 days to allow for complete fixation of 

the tissue.  Formalin was then removed and tissue slices were washed several times with 

PBS before being stored in fresh PBS at 4°C.  Meniscus slices were affixed to the 

freezing stage of a Microm sledge microtome with a small amount of Tissue-Tek O.C.T. 
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compound and sectioned to 50 µm.  Sections were then washed in PBS and carefully 

transferred to 1.5 mL microcentrifuge tubes.  All subsequent processing and immuno-

staining was performed in the microcentrifuge tubes. 

 Antigen retrieval was accomplished using 0.25% trypsin in PBS for 30 minutes at 

37°C.  Tissue slices were then treated with 1% Triton X for 20 minutes at 37°C and 

blocked against non-specific interactions using 2% normal goat serum for 10 minutes at 

room temperature.  Several PBS washes were performed between each of the above 

processing steps. 

Fixed-Frozen Tissue

 Tissue slices to be used for simultaneous imaging of multiple extracellular matrix 

molecules were processed using the fixed-frozen protocol.  After being cut from the 

intact menisci, tissue slices were transferred to 50 mL conical tubes and 10% neutral 

buffered formalin was added until all tissue was submerged.  Tubes were maintained at 

4°C for only 4 - 6 hours to allow for preliminary fixation of the tissue, but not extensive 

crosslinking.  Formalin was then removed and replaced with a solution of 30% sucrose, 

and tubes were maintained at 4°C overnight.  Tissue slices were then transferred to 

appropriately sized cryomolds and covered in Tissue-Tek O.C.T. compound.  Finally, 

tissue slices were rapidly frozen using liquid nitrogen cooled isopentane and stored at -

80°C until sectioning.  Frozen tissue blocks were sectioned using a Microm Cryo-Star 

HM 560MV cryostat to 7 µm, carefully transferred to SuperFrost plus microscope slides, 

and stored at -80°C. 

 Immediately prior to immuno-staining, slides were removed from the -80°C 

freezer and allowed to dry at room temperature for 20 minutes.  Sections were then fixed 
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with acetone for 5 minutes at room temperature in a chemical fume hood.  Finally, 

sections were allowed to dry for at least 5 minutes and then rehydrated in PBS.  Slides 

were transferred to Thermo Shandon Sequenza Slide racks and washed several times with 

PBS.  Sections were treated with 0.1% Triton X for 15 minutes at room temperature and 

antigen retrieval was accomplished using 0.5% trypsin for 10 minutes at 37°C.  Blocking 

of non-specific interactions was achieved by incubating sections for 1 hour at room 

temperature in PBS supplemented with 1% bovine serum albumin (BSA), 0.1% gelatin, 

0.05% Tween-20, and 2% normal goat serum.  Three washes with PBS were performed 

between each of the above processing steps. 

3.2.2 Meniscus Tissue Immuno-Staining 

 Thick sections (50 µm) in microcentrifuge tubes were incubated overnight at 4°C 

with solutions of PBS plus 2% normal goat serum containing antibodies against either 

types I, II, or VI collagen or aggrecan.  Primary antibodies were either raised against or 

had confirmed cross reactivity with bovine proteins.  All primary antibodies were used at 

a 1:50 dilution; additional information can be found in Appendix D.  According to 

information from the manufacturer, the primary antibodies against collagen molecules 

had been affinity purified and verified not to exhibit cross reactivity with other collagen 

subtypes.  Sections were washed twice with PBS and again blocked with 2% normal goat 

serum for 10 minutes at room temperature.  Fluorescently conjugated secondary 

antibodies appropriately matched to the primary antibodies for species and 

immunoglobulin subtype were diluted 1:100 in PBS.  Sections were incubated with the 

secondary antibody solutions for 2-3 hours at 4°C before being thoroughly washed in 

PBS and mounted on microscope slides using aqueous gel mounting medium.  Primary 
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antibody solutions also contained AlexFluor 546-phalloidin to label F-actin cytoskeletal 

proteins and secondary antibody solutions contained 0.1 µg/mL Hoechst 33258 to label 

DNA. 

 Fixed-frozen sections were incubated for 1 hour at room temperature in the 

Sequenza staining racks with solutions of PBS plus 1.0% BSA and 0.1% gelatin 

containing combinations of primary antibodies raised against types I, II, or VI collagen.  

The antibody against type I collagen was raised in a different species (mouse) than the 

antibodies against the other collagen molecules (rabbit) and therefore could be used in 

combination with either type II or VI collagen antibodies (see Appendix D).  Dilutions of 

1:100 were used for all primary antibodies.  Appropriate combinations of fluorescently 

conjugated secondary antibodies were diluted 1:100 in PBS, added to the Sequenza racks, 

and maintained for 1 hour at room temperature.  Finally, DAPI was used to counterstain 

nuclei and coverslips were mounted on the slides using aqueous gel mounting medium.  

As before, several PBS washes were performed between each of the above staining steps. 

 Negative controls were performed either by omitting primary antibodies from the 

immuno-staining solutions (formalin fixed tissue) or by substituting non-immune mouse 

and rabbit IgG molecules for primary antibodies (fixed-frozen tissue). 

3.2.3 Extracellular Matrix Molecule Imaging 

 Thick sections (50 µm) were imaged using laser scanning confocal microscopy.  

An argon laser was used to excite green fluorescent molecules at 488 nm, a helium-neon 

laser was used to excite red fluorescent molecules at 543 nm, and an argon laser was used 

to excite blue fluorescent molecules at 364 nm.  Zeiss LSM 510 software was used to 

collect and process images. 
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 Thin, fixed-frozen sections were imaged using epifluorescence microscopy with a 

mercury lamp providing excitation for all fluorescent molecules.  Individual filter cubes 

were used to view blue, green, and red fluorescence signals.  Images for each 

fluorescence channel were captured individually with Q-Pro software and later combined 

using Adobe Photoshop.  Images for all samples were obtained using identical exposure 

time settings for the digital camera. 

 All images presented here were obtained from medial menisci.  However, images 

from lateral menisci typically revealed similar extracellular matrix molecule structure, 

organization, and distribution.  Although some differences in biosynthesis have been 

found between fibrochondrocytes from medial and lateral menisci99,124, an in depth 

structural comparison between them was beyond the scope of these studies.   

 

3.3 Results 

 Variations in meniscal fibrochondrocyte actin cytoskeletal morphology 

throughout the tissue were clearly evident in the radial cross-sections and were similar to 

the vimentin structure previously reported in rabbit mensici74.  The innermost zone of the 

meniscus contained predominantly rounded or oblong shaped cells with peripheral F-

actin filaments, but cells exhibiting cytoskeletal projections were typically not seen 

(Figure 3.2A).  Fibrochondrocytes containing extensive cytoskeletal projections and a 

more stellate morphology were increasingly found in the middle and outer regions of the 

meniscus (Figure 3.2B,C).  Cells in the middle zone often maintained a rounded cell body 

with concentrated F-actin around the perimeter and typically had two or three small 

cytoskeletal projections consisting of well organized F-actin filaments.  However, cells in 
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the outermost region typically possessed a less well defined cell body that had little 

associated F-actin.  These cells contained numerous cytoskeletal projections extending in 

three dimensions and were characterized by punctuate F-actin staining.  The 

morphological transition evident in fibrochondrocytes was in stark contrast to that seen in 

articular cartilage (Figure 3.3).  In agreement with published reports7, articular 

chondrocytes were found to exhibit morphological changes with distance from the tissue 

surface, transitioning from a flattened morphology aligned parallel to the surface to a 

spheroidal morphology of increasing size, but cells were always rounded or oblong and 

cytoskeletal projections were not evident. 

 

 

Inner Middle Outer 

Figure 3.2 Meniscal fibrochondrocyte cell morphology transitioned from round in the 
inner zone to stellate in the outer zone.  Red is F-actin, blue is DNA, scale bars are 20µm. 
 

 

 Images shown in Figure 3.2 are composites of many planar images representing a 

tissue thickness of 20 – 40 µm.  Because cellular projections were often perpendicular to 

the plane of the sections, these three-dimensional images provided unique insights into 
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the fibrochondrocyte cell morphology that would not have been readily apparent using 

thin slices of tissue and conventional fluorescence microscopy. 

 

 

Articular Cartilage Superficial Zone

 

Figure 3.3 Articular chondrocyte cell morphology was flattened at the surface but round 
deeper within the tissue.  Red is F-actin, blue is DNA and also designates the tissue 
surface at the top of the image, scale bar is 20 µm. 

 

 

 Confocal microscope images of extracellular matrix molecules in the immature 

bovine meniscus revealed several interesting structural and organizational features of the 

tissue.  The intensity of staining for the G1 domain of aggrecan was found to decrease 

over radial cross-sections of the tissue.  Aggrecan staining in the inner region was dense 

with additional localization in the pericellular matrix contributing to a semi-organized 

network interconnecting neighboring cells (Figure 3.4A).  Staining intensity for aggrecan 

was lower in the middle zone and lower still in the outer zone (Figure 3.4B,C).  Aggrecan 

in the outer zone was found in an organized network that appeared to both surround large 

fiber bundles and subdivide them into smaller compartments. 
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Figure 3.4 Confocal microscope images of aggrecan distribution and organization in three 
zones of radial cross-sections of medial menisci.  Green is the G1 domain of aggrecan, 
blue is DNA, and scale bars are 50 µm. 

 

 

 The organization of collagen molecules was also found to vary throughout radial 

cross-sections of the meniscus and several differences among specific collagen types was 

also noted.  Staining for type I collagen was diffuse in the inner zone, but appeared highly 

organized in the middle and outer zones (Figure 3.5A-C).  Large fiber bundles 

perpendicular to the plane of the images were seen in both the middle and outer zones.  

Additionally, somewhat smaller fibers oriented parallel to the image plane (referred to as 

radial tie fibers63,64) were positive for type I collagen.  Fibrochondrocytes in the middle 

and outer zones were most often found at the junctions of the collagen fiber network as 

well as along the radially oriented tie fibers. 

 Type II collagen staining was found in a similar pattern to that seen for type I 

collagen (Figure 3.5D-F).  The inner zone exhibited diffuse, mostly unorganized type II 

collagen, although more intense staining was found pericellularly as well as near the 
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tissue surface.  The middle and outer zones, however, contained a highly organized 

network of fibers.  Although staining seemed to be more intense in the inner zone, type II 

collagen was found throughout the cross-section of the meniscus up to the outermost rim. 

 Some interesting distinctions between type VI collagen staining and the other 

collagen molecules studied were evident (Figure 3.5G-I).  First, type VI collagen seemed 

to be more organized in the inner region compared with the other collagens.  Intense 

staining was seen surrounding cells, similar to that found in articular cartilage (not 

shown), but type VI collagen also appeared to be organized in the interstitial areas 

between cells.  Discrete fibers of varying sizes were clearly evident and often branched 

between multiple cells.  Overall, the organization of type VI collagen staining in the 

middle and outer regions was similar to that seen for types I and II collagen, but a finer 

meshwork of fibers was found.  Type VI collagen was clearly organized into larger 

bundles perpendicular to the image plane, but was also more often found in the 

intrabundular space compared with the other collagens.  The presence of type VI collagen 

in the space within the larger collagen fiber bundles was a consistent and potentially a 

functionally important distinction from types I or II collagen.  Additionally, very intense 

staining for type VI collagen was seen in the radial tie fibers in the middle and outer 

tissue zones.  Negative controls lacking primary antibodies exhibited very little signal in 

all cases. 

 As discussed above, fibrochondrocyte cell morphology varied over the meniscal 

cross-sections, a feature that was also evident in sections stained for type VI collagen 

(Figure 3.5G-I).  In contrast to the other extracellular matrix molecules examined in this 

study, regardless of the tissue zone, type VI collagen was found in the pericellular matrix  
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Figure 3.5 Confocal microscope images of collagen organization in three zones of radial 
cross-sections of medial menisci.  Green is the indicated collagen molecule, blue is DNA, 
and red is the F-actin cytoskeleton (type VI collagen images only).  Scale bars are 50 µm. 
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immediately surrounding the resident fibrochondrocytes.  In the middle and outer zones, 

cytoskeletal projections, evidenced by F-actin staining, were found to colocalize with and 

often oriented along the type VI collagen network.  Since the overall organization in the 

middle and outer zones was similar among all three collagen molecules imaged, cellular 

projections could be seen oriented along types I and II collagen as well.  However, this 

feature was most prominent in the sections stained for type VI collagen, perhaps due to 

the finer type VI collagen network.  In fact, if the green fluorescence channel showing the 

collagen network was turned off, leaving only the channels showing the actin 

cytoskeleton and DNA visible, the organized network in the middle and outer zones of 

the tissue could still be detected based solely on the location and orientation of the 

resident fibrochondrocytes. 

 Images of the collagen extracellular matrix from circumferential cross-sections 

(see Figure 3.1 for details on tissue sample orientation) revealed further distinctions in 

meniscal collagen organization.  Large, circumferentially oriented fibers, parallel to the 

image plane in this view, stained heavily for type I collagen (Figure 3.6A); whereas 

smaller, similarly oriented fibers stained positive for types II and VI collagen (Figure 

3.6B,C).  These smaller fibers were spread out, typically with 10 – 20 µm spacing 

between areas of more intense staining.  The relative fiber sizes and spacing of the three 

collagen molecules imaged suggested that the large circumferential type I collagen fiber 

bundles are surrounded or even lined by smaller type II and VI collagen fibers.  Cell 

bodies were typically only found in areas that stained positively for type II or type VI 

collagen, often being completely surrounded.  This finding indicated that 

fibrochondrocytes may directly interact with types II or VI collagen in situ. 
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Figure 3.6 Confocal microscope images of collagen organization in circumferential cross-
sections of medial menisci.  Tissue slices used for these images were taken from the outer 
zone of the meniscus.  Green is the indicated collagen molecule and blue is DNA.  Scale 
bars are 50 µm. 
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 Fixed-frozen meniscus sections simultaneously immuno-stained for multiple 

collagen molecule types exhibited similar patterns for the individual collagen types as the 

sections described above.  Images from the co-stained sections, however, provided 

additional insights into the relative locations of the three collagen molecules.  Sections 

co-stained for types I and II collagen produced images very similar to those reported by 

Kambic and McDevitt64 (data not shown).  Colocalizaion of types I and II collagen was 

most striking in the outer zone, because type I collagen was fairly diffuse in the inner 

zone.  The outer zone contained large fiber bundles that stained positively for both 

collagen types as well as radial tie fibers, which stained somewhat diffusely for type I 

collagen, but more discretely for type II collagen.  From the combined images it was 

clear that type II collagen appeared nearly everywhere that type I collagen was present.  

In addition, type II collagen tended to stain more intensely than type I collagen in the 

finer network of fibers that existed between larger circumferentially oriented fiber 

bundles. 

 Sections co-stained for types I and VI collagen also yielded striking images that 

provided interesting insights into the spatial relationship of these two molecules (Figure 

3.7 and Figure 3.8).  Images of the inner zone again showed an intricate network of type 

VI collagen but diffuse staining for type I collagen (Figure 3.7A,B).  The combined 

images indicated that there was some degree of colocalization throughout the tissue 

section, most likely due to the diffuse nature of type I collagen (Figure 3.7C).  

Additionally, areas surrounding cells evidenced increased staining intensity for both 

matrix molecules and therefore a greater degree of colocalization was seen in these areas. 

 42



 

Inner Zone
  Type I Collagen  Type VI Collagen 

AA  BB  

Combined Image 

CC  

Figure 3.7 Colocalization of types I and VI collagen in the inner zone of the medial 
meniscus.  (A) and (B) are individual images of type I and type VI collagen, respectively, 
and (C) is the overlay of these two images plus the blue fluorescence channel.  Red is 
type I collagen, green is type VI collagen, and blue is DNA.  Areas of yellow indicate 
colocalization of types I and VI collagen in (C).  Scale bars are 50 µm. 
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 In the outer zone, types I and VI collagen were predominately found to colocalize 

along large fiber bundles (Figure 3.8C).  Careful inspection of the images revealed that 

these large fiber bundles stained positive for type I collagen across their entire thickness, 

whereas type VI collagen staining was most intense at the periphery.  This observation 

indicated that type VI collagen lines the outside of the larger type I collagen bundles.  

Interestingly, in the outer zone less colocalization was found in the area immediately 

surrounding the cells than what was seen in the inner zone.  The pericellular matrix in the 

outer zone nearly always stained intensely for type VI collagen, but not necessarily for 

type I collagen.  Additionally, intense colocalization was found at fiber junctions, 

especially where multiple large fibers came together.  Negative controls using non-

immune IgG molecules in place of primary antibodies exhibited minimal signal for all 

tissue zones and sections imaged. 
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Figure 3.8  Colocalization of types I and VI collagen in the outer zone of the medial 
meniscus.  (A) and (B) are individual images of type I and type VI collagen, respectively, 
and (C) is the overlay of these two images plus the blue fluorescence channel.  Red is 
type I collagen, green is type VI collagen, and blue is DNA.  Areas of yellow indicate 
colocalization of types I and VI collagen in (C).  Scale bars are 50 µm. 
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3.4 Discussion 

 Not long ago it was believed that the menisci were nothing more than 

evolutionary remnants of perhaps muscle or other musculoskeletal tissues.  However, a 

mounting body of evidence has shown that the menisci play a critical role in knee joint 

biomechanics56,125-127 and their full or partial removal adversely affects the neighboring 

articular cartilage, often leading to osteoarthritis2,80.  The matrix composition and 

ultrastructure of the menisci give these tissues mechanical characteristics that are well 

adapted to performing their biomechanical role in the body57.  In particular, the large 

circumferentially oriented collagen fibers in the outer regions of the meniscus seem well 

suited for supporting the tensile hoop stress that develops in this region during joint 

loading62.  In addition to correlating meniscal mechanical properties with the 

organizational features of primary matrix constituents, efforts to further elucidate and 

understand the functional roles of less abundant extracellular matrix molecules have been 

ongoing60,69,128,129.  Although many different extracellular matrix molecules have been 

identified in the meniscus, there remains a limited understanding of how these molecules 

may relate to and interact with one another.  Thus, the goal of the studies presented in this 

chapter was to investigate the structural complexities of bovine meniscal tissue and 

explore the spatial relationships that exist between various extracellular matrix 

molecules. 

 The images of immunolocalized extracellular matrix molecules in the immature 

bovine meniscus described in this chapter provided a detailed view of meniscal 

ultrastructure and matrix organization.  Immunolocalization patterns for types I and II 

collagen were consistent with a recently published report64.  Type I collagen was found to 
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be diffuse in the inner zone of medial menisci, but organized into large circumferentially 

oriented bundles in the middle and outer zones.  Additionally, radially directed tie fibers 

were found throughout the middle and outer regions and stained diffusely for type I 

collagen.  The inner zone contained type II collagen that seemed to be somewhat more 

organized with significant staining immediately surrounding cells, especially those near 

the surfaces of the tissue.  The middle and outer zones exhibited highly organized type II 

collagen fibers in patterns similar to those seen for type I collagen.  Additionally, images 

from the circumferential cross-sections reinforced the observation that the type II 

collagen fibers seemed to surround the larger type I fibers in the outer zone of the 

meniscus. 

 An interesting difference between the results of our studies and those of Kambic 

and McDevitt64 was that we found positive staining for type II collagen well into the 

outer region of the immature bovine meniscus, whereas they reported an abrupt loss of 

type II collagen signal in the outer zone of mature canine menisci.  This loss of type II 

collagen staining coincided with the vascularized region of the meniscus, approximately 

10-12% of the length of the tissue cross-sections.  Although some decline in type II 

collagen staining intensity in the outer zone was found in our studies, it was both subtle 

and gradual.  Additionally, we found vascular structures, evidenced by circular or oblong 

clusters of cells staining heavily for F-actin filaments, in the midsubstance of the 

immature tissue.  No attempt was made to quantify this observation, but it was clear that 

the region containing blood vessels was greater than 10-12% of the cross-section length.  

The difference seen in the degree of vascularization and potentially in the type II collagen 

distribution was likely due to the different ages of the tissue investigated, as the meniscus 
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is known to become less vascularized with age61.  A careful comparison of meniscal 

tissue from various aged animals of the same species correlating vascular structures with 

a lack of matrix molecules typically found in hyaline cartilage (i.e. type II collagen and 

aggrecan) could test this hypothesis and provide insights into meniscal structure and 

developmental patterns.   

 A preliminary study of this kind was performed in our laboratory with bovine 

menisci of several ages (4 weeks, 8 weeks, and 2-3 years old).  Type II collagen staining 

was decreased in the outer region of 8 week old animals compared to 4 week old animals, 

although similar structural features were evident in menisci of both ages.  Additionally, 

the 2-3 year old menisci had greatly reduced staining for type II collagen in all regions, 

indicating age-related changes in type II collagen that may have affected the accessibility 

of the epitope recognized by our primary antibody.  However, neither the distribution nor 

organization of type VI collagen was dramatically affected by age.  This preliminary 

study suggested that some components of the extracellular matrix in the bovine meniscus 

may be affected by aging; however, further work is necessary before more definitive 

conclusions can be drawn. 

 Staining for the G1 domain of aggrecan was intense, but lacked extensive 

organization in the inner zone of the meniscus.  However, aggrecan in the middle and 

outer zones was organized in a highly ordered network, but stained at progressively lower 

intensities.  The distribution of aggrecan found in our studies was consistent with reports 

describing the proteoglycan distribution and aggrecan gene expression profiles in 

different zones of the meniscus64,69,120.  Another study investigating the distribution of a 

number of matrix molecules, including aggrecan, in ovine menisci of varying ages 
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showed a similar aggrecan distribution in young animals (2 and 7 days old), but a 

uniform aggrecan distribution over meniscal cross-sections from older animals (1.5 and 

10 years old)122.  However, images of the same specimens stained with toluidine blue, 

which reacts with all anionic proteoglycans, exhibited areas of lower staining intensity in 

the middle and outer tissue zones regardless of animal age.  This difference could be due 

to a loss of heavily sulfated glycosaminoglycan chains known to occur in fibrocartilage 

and articular cartilage with age130,131, but retention of the hyaluronic acid binding region 

of aggrecan, the target of the primary antibody.  However, our studies in immature 

bovines as well as those of Valiyaveettil et al.120 in skeletally mature canines used 

primary antibodies directed against a similar region of aggrecan.  In both cases the 

staining intensity for aggrecan was lower in the outer zone of the meniscus.  Therefore, 

perhaps the differences found in aggrecan distribution were the result of inter species 

variation or even differential binding characteristics of the antibodies used.  Taken 

together, our data and the published studies cited above indicated that the inner zone of 

meniscal tissue contains relatively high levels of aggrecan regardless of species or age, 

whereas the outer zone may contain decreased amounts of aggrecan, which is organized 

into an interconnected network.   

 The observed spatial distribution for types I and II collagen and aggrecan in our 

studies was consistent with proposed structure-function relationships of the meniscus 

where compressive forces that develop in the inner zone are primarily resisted by 

proteoglycans, and large circumferential tensile forces that develop in the outer zones are 

resisted by collagen fibers.  Although the role for aggrecan in the inner zone of the 

meniscus seems clear, its function in the outer zone is less well established.  An emerging 

 49



related hypothesis is that proteoglycans in the fibrocartilaginous regions of tendons serve 

to provide some compressive stiffness as well as separate and allow collagen fibers to 

slide relative to one another during deformation132.  Aggrecan as well as the small leucine 

rich proteoglycan decorin have be identified in tendons in remarkably similar patterns to 

those shown here for meniscus132-134.  The organized network of aggrecan we observed in 

the outer region of the meniscus, which seemed to localize at the periphery of large, 

circumferentially oriented type I collagen fiber bundles, could serve a similar role in 

meniscal tissue. 

 Type VI collagen is ubiquitous in connective tissues, and has been identified in 

meniscus and other fibrocartilages60,65,135.  Naumann et al.123 described weak type VI 

collagen staining in the matrix and moderate staining in cellular and pericellular regions 

of rabbit menisci; however the images were taken at low magnification and detailed 

spatial and organizational analyses was not performed.  Additionally, it has been reported 

that type VI collagen is located primarily in the interterritorial regions of the meniscus 

matrix60.  In our studies, type VI collagen was immunolocalized in areas immediately 

surrounding cells as well as in an interconnected network throughout cross-sections of the 

tissue.  To our knowledge these are the most detailed images of type VI collagen in the 

meniscus to have been presented.  In addition, the cytoskeletal projections of 

fibrochondrocytes located in the middle and outer zones of the tissue were often oriented 

along and colocalized with type VI collagen.  These cells were predominately found at 

fiber junctions and bifurcations, but could also be seen along the radial tie fibers.  Finally, 

images of circumferential cross-sections revealed thin type VI collagen fibers spaced in 
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such a way that indicated they were located at the periphery of the larger type I collagen 

fibers. 

 Both articular chondrocytes136 and meniscal fibrochondrocytes137 have been 

shown to directly attach to type VI collagen in vitro, and type VI collagen has been 

shown to interact with a number of extracellular matrix molecules25,138.  Thus, this 

protein may provide a functional link between cells and the extracellular matrix.  Our 

investigations supported this hypothesis.  The images presented in this chapter strongly 

suggest that the pericellular matrix, and thus the local cellular microenvironment, is rich 

in type VI collagen throughout the meniscus.  Types I and II collagen were also found in 

the pericellular matrix, but not as consistently as type VI collagen.  These findings have a 

number of implications for fibrocartilage and potentially articular cartilage tissue 

engineering.   

 Many outcome measures for cartilage and fibrocartilage tissue engineering focus 

on major matrix components (i.e. types I and II collagen and aggregating proteoglycans), 

which are most responsible for the mechanical integrity of these engineered tissues.  

However, the images presented in our studies suggest that these matrix molecules may 

not be the most prominent in areas directly surrounding cells in the meniscus.  The native 

microenvironment of a fibrochondrocyte may consist mostly of type VI collagen, and 

thus when attempting to recreate an extracellular matrix in an engineered tissue it may be 

equally important to promote the development of an appropriate pericellular matrix.  

Therefore, a successful tissue engineered fibrocartilage replacement may not only need a 

highly organized network of oriented collagen fibers, but also a pericellular matrix rich in 

 51



type VI collagen providing a mechanical and cell signaling environment similar to native 

tissue. 

 In addition to strong pericellular staining, type VI collagen was found in an 

intricate network of fibers colocalized around the periphery of large type I collagen fiber 

bundles.  This structural hierarchy is similar to that seen in tendon fibrocartilages132,135, 

and may have functional implications for the meniscus during normal joint loading, 

degradation, and repair.  It is not clear what role type VI collagen plays in the meniscus, 

however images from our studies suggest several possibilities.  Since type VI collagen is 

known to interact with hyaluronan138 and small proteoglycans25, it may participate in the 

organization of these proteoglycans at the surface of type I collagen fibers.  An organized 

proteoglycan network surrounding the collagen fiber bundles, as discussed above, could 

both provide structural support during compressive loading as well as facilitate collagen 

sliding during tensile loading.  Type VI collagen may also function as a cell attachment 

protein in the meniscus, and the sheath-like organization surrounding the larger type I 

collagen fibers could be a product of cellular matrix synthesis and migration during tissue 

development or provide an ongoing means of cellular migration during tissue 

maintenance or repair. 

 The studies described in this chapter provided an in depth investigation of the 

structure, distribution, and organization of several extracellular matrix molecules in the 

immature bovine meniscus.  Differential organization patterns were seen in the inner and 

outer zones of the meniscus for aggrecan and types I, II, and VI collagen.  Additionally, 

the distribution of aggrecan was found to vary over cross-sections of the meniscus in a 

pattern consistent with typical proteoglycan contents found in each tissue zone.  Images 
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of type VI collagen revealed a network of fibers organized around larger type I collagen 

fiber bundles that had not been previously described in detail.  These studies add to the 

overall understanding of meniscus structure and its complexity.  The ability to visualize 

the extracellular matrix organization in the meniscus using high magnification images 

produced using highly specific immunohistochemical techniques also provides insights 

into the potential function of these matrix molecules and how they may interact with one 

another.  Finally, efforts to develop tissue engineered replacements for a damaged or 

diseased meniscus can be greatly enhanced by understanding the complexities of cell and 

extracellular matrix organization.  The detailed images presented in this chapter could be 

used to develop a design template for tissue engineered scaffolds as well as to provide 

histological benchmarks for cellular and matrix organization in tissue engineered 

constructs. 
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CHAPTER 4 
 

DESIGN AND VALIDATION OF A NOVEL BIOREACTOR:  
THE OSCILLATORY TENSILE LOADING DEVICE 

4 
 

4.1 Introduction 

 The ability to apply well-defined mechanical stimuli to cells and tissues has been 

pivotal in furthering the understanding of both the biomechanical properties and the 

mechanobiology of many biological systems.  In addition to simply measuring the 

mechanical characteristics of these systems, much can be learned by stimulating (or 

suppressing) biological processes via alterations to the mechanical environment.  Dozens, 

of different types of devices, often referred to as bioreactors, have been developed to 

apply a myriad of forces, displacements, or flows to cells and tissues.  Some of these 

systems can be very simple, merely supplying a circulating supply of culture medium, 

whereas others can be quite complex, imparting well defined mechanical 

compression139,140 or shear101, uniform fluid induced shear stress105, tightly controlled 

medium perfusion141, or some combination of these. 

 For this thesis research, a bioreactor capable of applying oscillatory tensile 

displacements to tissue engineered constructs was necessary.  Although bioreactors 

capable of applying tensile stretch to monolayer cultures142 were commercially available, 

no comparable system for three-dimensional tissue or constructs existed.  Thus, the 

design and development of a novel bioreactor device was required. 
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4.2 Design Considerations 

 Once the overall goal of designing a device capable of imparting oscillatory 

tensile loads to three dimensional tissue engineered constructs had been established, it 

was necessary to develop more specific design criteria.  Although no commercially 

available bioreactor met this overall design goal, a review of the relevant literature was 

conducted to assess the advantages and disadvantages of a variety of bioreactors143,144 and 

identify specific features that would ultimately guide system development.  Initially, 

these criteria were fairly modest and can be summarized as three main specifications.  

The following criteria served as guides for the first generation oscillatory tensile loading 

system design (Figure 4.1A) and remained important for each successive generation of 

the system. 

 

(1) The ability to deliver oscillatory tensile displacements of at least 10% strain at 

a frequency of at least 1.0 Hz 

(2) The ability to culture tissue engineered constructs in individual wells, allowing 

for analysis of conditioned media and using radioactive precursor molecules to 

assess extracellular matrix synthesis, as well as the ability to culture multiple 

samples in parallel providing statistical power 

(3) The ability for the entire system to fit within a standard tissue culture incubator 

without the need for modifications, such as custom ports for cabling or a drive 

mechanism 
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 After the first generation system was built, tested, and used as a proof of concept 

for subjecting tissue engineered constructs to oscillatory tensile loading, more rigorous 

design criteria were developed.  This process was incremental, as shown in Figure 4.1, 

but ultimately the following final design criteria were implemented in addition to those 

stated above. 

 

(1) Closed loop position feedback with computer control and custom programming 

capability 

(2) Generation of uniform strain fields across and along the constructs during 

loading 

(3) Use of relatively small tissue engineered constructs (< 1.0 mL volume) and 

therefore smaller culture media requirements (< 2.0 mL volume) 

(4) Increased sample capacity for greatly experimental flexibility 

(5) Simple to assemble, use, and disassemble rapidly and repeatably 

(6) Relatively low per unit material and component cost (< $5,000) 

 

 Upon completion of the final design a novel bioreactor device had been developed 

(Figure 4.1D), which met or exceeded all of the stated requirements.  This device, in 

itself, represented a unique contribution to the field of tissue engineering and provided 

the opportunity for an experimental system that would have otherwise been impossible.  

The oscillatory tensile loading device was designed to be extremely versatile with respect 

to the loading protocol employed as well as the size of the constructs used in the device, 

and therefore could be implemented in a wide variety of applications. 
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4.3 The Oscillatory Tensile Loading Device 

 The final design for the oscillatory tensile loading device (Figure 4.2) can be 

broken down into four essential components:  (1) the linear motor, (2) the linear slide 

bearing, optical encoder, and interface adapters, (3) the mobile “tension rake” pieces, and 

(4) the stationary culture chambers.  Additionally, a control unit is required, which houses 

the power supplies, amplifier, and controller for the device and interfaces with a 

computer.  Engineering drawings for all parts of the device as well as a detailed list of the 

components can be found in Appendix A.  Additionally, the operating instructions and 

the source code for the programs used during operation can be found in Appendix A. 
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Figure 4.2 Final design of the oscillatory tensile loading device 
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 The linear motor is mounted toward the rear of the polycarbonate base plate via a 

heat sink block.  This method of attachment is preferred because it not only firmly 

connects the motor with the rest of the system, but also provides optimal heat dissipation 

away from the motor and guarantees maximum performance.  A misalignment coupling 

is used to interface the motor with the linear slide bearing.  This coupling assures that 

small inaccuracies in the position of the motor or slide bearing do not damage the motor 

or reduce overall device performance.   

 The linear slide bearing consists of a stainless steel rail interfaced with a block 

containing two rows of stainless steel ball bearings and is mounted on an aluminum block 

such that the motor can be connected at the appropriate height.  The block on the linear 

slide bearing is fitted with three additional aluminum adapter pieces.  The first adapter 

piece connects to the misalignment coupling and consequently the linear motor.  The 

second adapter piece connects to the optical encoder and allows the encoder to read the 

position scale on the side of the aluminum spacer block.  The optical encoder has a 

precision of 0.5 µm allowing for accurate position feedback to the controller.  The final 

adapter piece interfaces with the mobile tension rake and ultimately enables the transfer 

of motion from the motor to the tissue engineering constructs. 

 The body of each mobile tension rake is made from polysulfone, chosen for its 

resistance to corrosion in humid environments and when in contact with saline based 

solutions.  Twelve 4.0 mm diameter x 25 mm long stainless steel pins fit into the long, 

narrow end of the tension rake and are held in place with short 4-40 stainless steel socket 

head cap screws.  Opposite the pins in the tension rake is a wide, shallow slot that loosely 

fits over the interface adapter, attaching the tension rake to the linear slide bearing.  A 
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second tension rake can be attached using an additional aluminum interface adapter in a 

similar fashion (see Figure A.3 in Appendix A for a schematic of the tension rake). 

 The final essential component used with the oscillatory tensile loading device is 

the stationary culture chamber, which is also made from polysulfone.  Two culture 

chambers can be used simultaneously in the device.  Each culture chamber has twelve 

rectangular wells uniformly spaced over the length of the chamber.  On one end of each 

well is a fixed 4mm diameter peg while on the other end is a 4.75 mm wide by 8.0 mm 

long slot.  The culture chambers attach to the base plate such that the pins on the tension 

rakes align with slots in each well.  The primary culture chamber is attached directly to 

the base plate, whereas the secondary culture chamber is raised approximately 12 mm by 

an aluminum spacer plate.  Finally, the culture chambers, tension rakes, and linear slide 

bearing assembly can be covered with a polycarbonate shield to maintain sterility when 

transferring the device from the tissue culture hood to the incubator. 

 

4.4 Hydrogel Constructs Used with the Oscillatory Tensile Loading Device 

 Developing a system to study the effects of oscillatory tension on cells within in a 

three dimensional hydrogel matrix also required careful design of tissue engineered 

constructs.  Thus, in parallel with the oscillatory tensile loading device, constructs with a 

unique geometry and device interface features were developed.  One of the important 

design criteria for the final system was that uniform strain fields would be generated 

across the width and down the length of the constructs.  Early construct designs were oval 

in shape and consisted entirely of the fibrin hydrogel, but finite element modeling of this 
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design predicted highly non-uniform strain fields.145  Therefore, a new construct design 

was implemented to address this concern (Figure 4.3). 
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Figure 4.3 Fibrin construct used with the oscillatory tensile loading device. 

 

 

 The hydrogel material used in all studies presented in this dissertation was fibrin, 

the primary protein in blood clots.  Fibrin spontaneously assembles when the enzyme 

thrombin cleaves 4 specific Arg-Gly peptide bonds on the molecule fibrinogen146.  

Globular domains on fibrinogen molecules possess binding sites specific to the amino 

acid sequence revealed by this enzymatic cleavage.  Upon hydrolysis, the exposed 

peptide groups bind with the globular domains of adjacent fibrin monomers in a process 

called fibrilogenesis.  Many fibrin monomers come together to form large, linear arrays.  

This fibrin structure is stabilized via amide bonds that form between side chains of the 

monomers in a reaction catalyzed by transglutaminase, also known as clotting factor 

XIIIa.  Fibrin clots can be dissociated by plasmin, a serine protease that cleaves fibrin in 

its central α-helical coiled coil region147. 
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 Fibrin has been extensively used as a tissue engineering scaffold for a wide 

variety of cell types148-151, including chondrocytes140,152-154 and fibrochondrocytes97.  The 

mechanical characteristics of fibrin hydrogels made them particularly attractive for the 

studies conducted for this dissertation.  Fibrin hydrogels have viscoelastic properties in 

both tension and compression, and perhaps most importantly are highly extensible unlike 

some other hydrogel scaffolds, such as agarose.  Additionally, chondrocytes152, smooth 

muscle cells148, and fibroblasts155 have all been shown to exhibit increased levels of 

extracellular matrix synthesis when cultured in hydrogels composed of fibrin as opposed 

to type I collagen.  Finally, many cells types can bind to fibrin or other adhesion 

molecules known to associate with fibrin (such as fibronectin) via integrin receptors156,157 

allowing for direct mechanotransduction between the hydrogel and the embedded cells.  

Hydrogels, such as alginate and many poly(ethylene glycol) based scaffolds, do not 

possess cellular binding sites.  Therefore, fibrin was a favorable choice because forces 

eneratg ed during oscillatory tensile loading could be directly transmitted to cells 

embedded within the fibrin matrix. 

 A key design feature of the hydrogel construct was the polyethylene end blocks 

located at either end of the rectangular constructs.  These end blocks were cut from 

porous polyethylene sheets with an average pore size of 15 – 45 µm and an average 

porosity of 50% (Porex, POR-4898).  Additionally, the polyethylene sheets had been 

treated with a surfactant making the material hydrophilic.  Rectangular end blocks (10 

mm x 6.5 mm x 3 mm) were cut and a centered 4 mm diameter hole was punched in the 

blocks using a custom designed set of tools (see Appendix A).  Finished end blocks were 

loaded into custom polycarbonate molds and the assembly could be sterilized via 
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autoclaving prior to construct preparation.  Since the smooth polycarbonate surface of the 

molds was hydrophobic and the polyethylene end blocks were hydrophilic, the fibrin 

solution readily flowed into the pore space in the end blocks creating a hydrogel construct 

that was well integrated with the end blocks.  Presumably, as the fibrin formed a gel-like 

matrix it not only bonded to the polyethylene due to the hydrophilic treatment, but the 

p rizing fibers also became entangled in the pores of the end blocks.  These hybrid 

fibrin-polyethylene constructs could then be used in the oscillatory tensile loading device.  

 To position the constructs in the loading device, the hole in one end block was 

placed over the peg in a well in the stationary culture chamber.  Up to twelve constructs 

could be placed into each culture chamber.  Then, a pin on the tension rake was inserted 

into each hole in the end block attached to the opposite end of the construct (Figure 4.2).  

After all constructs and the tension rake were in place, culture medium could be added to 

each well in the chambers.  This mechanism for interfacin

olyme

 

g the constructs with the device 

llowed for well controlled displacements to be applied to the constructs by commanding 

the motor to move the tension rake to a desired position. 

 

4.5 Validation of the Oscillatory Tensile Loading Device and Hydrogel Constructs 

cts, (3) 

the mechanical characteristics of the hydrogel constructs, and (4) the ability to maintain 

living chondrocytes in the three-dimensional hydrogel constructs during loading. 

a

 The final step in the development of the oscillatory tensile loading device was 

validating that the system was, in fact, meeting the specified design criteria.  Four areas 

were determined to be important in the validation of the system:  (1) the actual motion 

profile of the device, (2) the local strain fields generated in the hydrogel constru
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4.5.1 Motion Profile Validation 

 The final motion profile of the oscillatory tensile loading device was highly 

dependent on the servo loop PID tuning parameters assigned to the system controllers.  It 

was determined that an accurate position profile could best be maintained by 

programming the controller for the linear motor (LinMot, Appendix A.1) in “force 

control mode” as opposed to “velocity control mode.”  Thus the LinMot controller could 

be tuned by setting appropriate values for the current amplifier gain and current offset, 

but addition parameters were not required.  However, the tuning parameters for the 

system controller (Trio, Appendix A.1) had to be carefully selected to produce an optimal 

motion profile.  In addition to the conventional PID parameters (Proportional gain, 

Integral gain, and Derivative gain), two additional parameters were incorporated into the 

Trio controller operation (Output Velocity gain and Velocity Feed Forward gain).  Using 

these five parameters, the oscillatory tensile loading device was tuned to achieve an 

acceptable motion profile when operating at frequencies and displacements appropriate 

system, especially one with the dynamic demands of the oscillatory tensile loading 

for this system.  The values for each of these parameters can be found in Appendix A. 

 The Trio system controller had the ability to store and export values for many 

different parameters, such as the demanded position, the measured position, and the 

following error.  Therefore to assess the motion profile of the oscillatory tensile loading 

device during a typical cycle, these three parameters were stored and exported for 

analysis.  The demanded position, measured position, and following error for the motion 

profile used in this thesis research (1.0 Hz frequency, 2.0 mm peak-to-peak amplitude 

sine wave) is shown in Figure 4.4.  Given the limitations of tuning any closed loop servo 
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device, it was determined that the system met the design requirements of maintaining a 

consistent, repeatable motion profile. 
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Figure 4.4 Sine wave motion profile for the oscillatory tensile loading device at 1.0Hz 
and 2mm peak-to-peak amplitude 

 

 

4.5.2 Hydrogel Construct Strain Field Validation 

 To ensure that cells seeded throughout the hydrogel constructs were being 

subjected to similar levels of deformation, it was necessary to evaluate the local strain 

fields that developed during construct stretching.  Although incorporating the 

polyethylene end blocks into the construct design should have eliminated much of the 

“end effects” and thus the non-uniform strain field associated with the interface between 

the constructs and the oscillatory tensile loading device, it was important to verify this 

assumption. 
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 A poroelastic finite element model (Abaqus 6.3-3) had been developed to predict 

the strain fields, fluid velocities, and fluid pressures for the original construct design145, 

and was adapted for the new construct design and geometry.  The fibrin portion of the 

construct was modeled as brick elements and given an isotropic elastic modulus of 22 

kPa158, a Poisson’s ratio of 0.3, and a permeability of 5x10-10 m4/N*sec159.  Since the 

polyethylene end blocks could be considered rigid in comparison to the fibrin hydrogel, 

they were not included in the model, and the elements at the hydrogel-end block interface 

were assigned uniform, rigid displacements.  Deformation to the hydrogel construct was 

applied using 50 equal time steps up to a total displacement of 50%.  Due to symmetry 

considerations, only 1/8 of the hydrogel construct was required for the model, and 

displacements were held at zero across the planes of symmetry.  The FE model predicted 

that the logarithmic strain (true strain) in the axial direction (Y-direction) was highly 

uniform throughout the construct (Figure 4.5C).  Areas near the interface between the 

fibrin construct and the end blocks tended to have slightly lower strain magnitudes than 

the bulk of the construct, but this non-uniformity only persisted a short distance.  

Additionally, in the bulk of the construct the model predicted strains that were 

approximately 90-93% of the displacement (e.g. a 10.0% displacement produced a 9.32% 

strain in the bulk of the construct). 

 Local strain fields in the hydrogel constructs were also verified experimentally.  

Constructs were cast using 50 mg/mL fibrinogen and 50 U/mL thrombin, and during 

polymerization small, tracking beads were placed in triad patterns on the surface of the 

constructs.  No additional adhesive was necessary to attach the beads to the constructs.  

After approximately 18 hours in DMEM plus 10% FBS, constructs were stretched at 
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0.2mm/sec up to a total displacement of 50% while digital video images were recorded 

(Figure 4.5A).  The video images were analyzed with Matrox 2.0 software and the 

position of each bead was obtained relative to a stationary point in the test configuration.  

Local Green’s strains (Eij) were calculated from the changes in the positions of the beads 

using large deformation strain theory with the following equations. 
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 Finally, position information for nodes from the finite element model that 

corresponded to the locations of the tracking beads in the experimental analysis was 

extracted and used to calculate theoretical local Green’s strain in the same way.  

Comparison of the experimental and theoretical local Green’s strains showed a close 

match, especially at lower values of deformation (Figure 4.5B).  Taken together, the 

finite element model and the experimental strain analysis indicated that the strain fields 

generated in the hydrogel constructs during loading were highly uniform and could be 

predicted reasonably well for a variety of applied deformation.  Thus, the design criteria 

of having a uniform strain field throughout the construct had been satisfied. 
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Figure 4.5 Experimental and theoretical validation of the strain field within fibrin 
constructs during loading.  (A) Snapshots from video images during construct stretching 
showing tracking beads.  (B) Calculated experiment and theoretical Green’s strains 
correlated well, especially at low values of deformation.  (C) FEM results indicated a 
uniform strain field throughout the construct. 
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4.5.3 Hydrogel Construct Mechanical Characterization 

 In addition to validating the strain fields generated during loading in the hydrogel 

constructs, it was important to characterize their mechanical behavior.  Therefore, 

hydrogel constructs were cast and allowed to incubate in DMEM plus 10% FBS 

overnight as before.  Using an EnduraTEC ELF-3200 testing frame, constructs were 

subjected to several mechanical testing protocols designed to evaluate construct strength 

and durability in tension (Figure 4.6A). 

 The first series of constructs were subjected to 10 sinusoidal preconditioning 

cycles at 0.1 Hz, 5% ± 5% amplitude, followed by a frequency sweep over three decades 

(0.1 Hz, 1.0 Hz, and 10 Hz) at 10% ± 5% amplitude.  The constructs were then returned 

to 0% strain and allowed to equilibrate for 60 seconds.  Finally, a tensile ramp at 0.1 

mm/sec was preformed up to 60% displacement (Figure 4.6B).  The hydrogel constructs 

exhibited a fairly linear stress-strain relationship after an initial “toe-in” region, and 

constructs cast in different batches and tested on different days yielded highly consistent 

results.  The elastic modulus of the constructs was calculated using the linear region of 

the stress-strain curve and found to be 26 kPa – 30 kPa.  The tensile ramp test was 

intended to be a failure test, but most constructs did not fail at displacements up to 60%, 

which was the limit of travel of the mechanical testing frame. 

 Additional constructs were similarly treated and then tested using a larger number 

of cycles.  The sinusoidal tests were performed at 1.0 Hz, 10% ± 5% amplitude for a total 

of 500 cycles.  The loads generated during this test closely followed the sinusoidal 

displacement (Figure 4.6C), and the stress-strain loading and unloading behavior did not 

vary significantly over time (Figure 4.6D).  The results of this series of mechanical 
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tension tests indicated that the new hydrogel construct design possessed sufficient 

mechanical integrity for use with the oscillatory tensile loading device.  Additionally, 

these tests showed that the tensile mechanical properties of the hydrogel constructs could 

be readily measured, an important improvement over earlier construct designs. 

4.5.4 Chondrocyte Viability in the Hydrogel Constructs 

 The final necessary component in validating the oscillatory tensile loading device 

and the hydrogel constructs was to ensure that chondrocytes would remain viable when 

seeded in the constructs and during loading.  Hydrogel constructs (50 mg/mL fibrin, 

50U/mL thrombin) were seeded with 5 x 106 chondrocytes/mL and allowed to culture in 

free swelling conditions for five days in serum supplemented DMEM.  Constructs were 

placed in the stationary culture chamber, interfaced with the tension rake, and loaded 

continuously with a 1.0 Hz frequency, 5% ± 5% amplitude sine wave for 24 hours.  

Parallel constructs held at 0% displacement served as unloaded controls.  Following 

loading constructs were washed in PBS, incubated at 37°C with a vital dye solution 

containing 4µM calcein-AM and 4µM ethidium homodimer for 90 minutes, and finally 

washed again in PBS.  Constructs were then imaged using laser scanning confocal 

microscopy to determine the viability of chondrocytes.  In a separate study, constructs 

were seeded as described above, cultured in free swelling conditions for seven days, and 

subjected to 18 hours of the same loading protocol.  Immediately following loading, 

portions of these constructs were fixed in 10% neutral buffered formalin for 30 minutes at 

4°C and washed in PBS.  Constructs were then incubated with AlexFluor 546 conjugated 

phalloidin and Hoechst dye to label F-actin filaments and DNA, respectively, and imaged 

using confocal microscopy. 

 70



 

 

 

A   B

Tensile Ramp
0.1mm/sec

-5000

0

5000

10000

15000

20000

0 0.2 0.4 0.6 0.8

Strain (mm/mm)
St

re
ss

 (P
a)

C
0%

5%

10%

15%

20%

Time

De
fo

rm
at

io
n 

(%
)

0

0.05

0.1

0.15

0.2

Lo
ad

 (N
)

Deformation Load

D

Cycle Number

0

1000

2000

3000

4000

5000

6000

7000

0 0.02 0.04 0.06 0.08 0.1

Strain (mm/mm)

St
re

ss
 (P

a)

5 50 100 250

Figure 4.6 Mechanical characterization of hydrogel constructs.  (A) Construct in the test 
frame.  (B) Stress-strain data for several constructs during a 0.1 mm/sec tensile ramp.  (C)  
Actuator position and load generated during 1.0 Hz frequency, 10% ± 5% amplitude sine 
waves.  (D) Stress-strain data for a representative construct at various points in a cyclic 
fatigue test (1.0 Hz frequency, 10% ± 5% amplitude sine wave). 
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 Images from this analysis indicated that chondrocyte viability was high in the 

hydrogel constructs regardless of loading condition (Figure 4.7A,B).  In these images, 

larger, green areas defined the cytoplasm of live cells, while smaller, red areas revealed 

the DNA of dead cells.  Additionally, chondrocytes near the interface between the 

hydrogel and the end blocks, indicated by the white line, as well as chondrocytes resident 

within the pore space of the end blocks remained viable (Figure 4.7C).  Finally, images of 

chondrocyte F-actin (red) and DNA (blue) revealed cells with a round morphology, 

peripheral F-actin, and evidence of cell division (Figure 4.7D).  Analysis of this series of 

images provided strong evidence that chondrocytes would remain viable and maintain an 

appropriate morphology during culture in the hydrogel constructs.  The observation that 

chondrocytes also were viable near and within the polyethylene end blocks additionally 

suggested that the polyethylene did not create a locally toxic environment.  Therefore, the 

final validation requirement of maintaining cell viability for the oscillatory tensile 

loading device was achieved. 
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Figure 4.7 Viability of chondrocytes in hydrogel constructs.  (A) Unloaded construct.  (B)  
Construct subjected to oscillatory tensile loading.  (C)  Construct subjected to oscillatory 
tensile loading; white line indicates hydrogel-end block interface.  (D) Construct 
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4.6 Conclusions 

 The development of the oscillatory tensile loading device was crucial to the 

success of this thesis research.  Although designing the system was an iterative process, 

the design criteria set forth in this chapter were always used to make judgments regarding 

specific improvements that would be made.  Through this process of design, evaluation, 

and redesign, a novel device was created that specifically addressed many of the 

limitations of existing tensile loading bioreactors.  The oscillatory tensile loading device 

represents a unique contribution to the fields of biomechanics, bioreactor development, 

and mechanobiology, without which much of the work presented in this dissertation, 

would have been impossible. 

 74



CHAPTER 5 
 

SUSTAINED AND INTERMITTENT SHORT TERM OSCILLATORY TENSILE 
LOADING OF ENGINEERED CARTILAGINOUS TISSUES 

5 
 

5.1 Introduction 

 Several different modes of mechanical stimulation have been extensively used to 

influence the behavior of articular chondrocytes or meniscal fibrochondrocytes during in 

vitro culture.  Static compression can inhibit extracellular matrix synthesis in tissue 

explants from both articular cartilage139 and meniscal fibrocartilage108, whereas dynamic 

compression139,160,161 and dynamic tissue shear101 stimulate matrix synthesis.  Similar 

effects have been found for articular chondrocytes seeded into three-dimensional tissue 

engineered scaffolds5,100,162,163.  In contrast, mechanical tension has not been widely used 

as a means to modulate chondrocyte metabolism. 

 As discussed in Chapter 2, tensile strains are not a dominant component of the 

mechanical environment in articular cartilage, but do occur during normal joint loading.  

Specifically, the superficial zone of the tissue is subjected to a combination of shear and 

tensile forces due to the compressive and sliding motions inherent during articulation.  

Additionally, following injury to the joint surface or after a repair procedure, tensile 

strains may become more prominent due to discontinuities in the cartilage extracellular 

matrix.  In contrast, tension is a significant component of the mechanical environment in 

normal fibrocartilage.  During normal joint loading significant tensile stresses develop in 

specific regions of these tissues due to their location and anchorage in the joint, 
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anatomical shape, and ultrastructural organization.  The mechanical environments of the 

menisci in the knee joint as well as the temporomandibular joint disc contain significant 

tensile components during normal loading.  Therefore, understanding the role of tensile 

loading and deformation in tissue development, maintenance, and repair is important for 

successfully developing and implementing repair strategies for both fibrocartilage and 

articular cartilage tissues. 

 The overall goal of the studies presented in this chapter was to determine how 

oscillatory tensile loading affects articular chondrocytes and meniscal fibrochondrocytes 

in three-dimensional fibrin hydrogel culture.  Studies varying the preculture time before 

loading were conducted to determine if the accumulation of a newly synthesized 

extracellular matrix would affect chondrocyte responses to tensile loading.  The effects of 

various total loading durations initiated following a set preculture time were also 

evaluated.  Additionally, sustained versus intermittently applied oscillatory tensile 

loading was investigated in an effort to identify protocols that could be used to stimulate 

extracellular matrix synthesis in developing tissue engineered constructs cultured in vitro.  

Based on preliminary work in our laboratory, we hypothesized that longer durations of 

continuously applied oscillatory tensile loading would inhibit extracellular matrix 

synthesis and accumulation, but shorter durations of continuous loading as well as longer 

periods of intermittently applied loading could promote matrix synthesis and deposition. 
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5.2 Materials and Methods 

5.2.1 Tissue Harvest and Cell Isolation 

 Full thickness articular cartilage was aseptically harvested from the 

femoropatellar groove and femoral condyles of 2-4 week old bovine stifle joints.  Tissue 

samples included the intact articular surface, but the deepest layers that may have 

included calcified cartilage were avoided.  Throughout the harvest procedure, PBS 

supplemented with antibiotic/antimycotic was used to prevent tissue dehydration.  

Cartilage tissue was minced and articular chondrocytes were enzymatically isolated using 

0.2% collagenase in antibiotic supplemented high glucose DMEM for approximately 40 

hours at 37°C with gentle agitation.  Meniscal fibrochondrocytes were isolated from the 

entire medial and lateral menisci of the same animals.  Following excision from the joint 

and mincing, the tissue was soaked in 0.25% trypsin in PBS for 1 hour at 4°C.  The 

trypsin solution was removed and tissue was transferred to a 37°C incubator for an 

additional hour.  Finally, cells were isolated using 0.4% collagenase in antibiotic 

supplemented high glucose DMEM for approximately 40 hours at 37°C with gentle 

agitation. 

 Following tissue digestion, cell solutions were filtered through a sterile 74µm 

mesh, washed with PBS, concentrated with centrifugation for 10 minutes at 400 x g, and 

counted using a Coulter Multisizer II (preculture duration study) or a Coulter ViCell XR 

(all other studies).  Finally, cells were cryopreserved at a concentration of 15e6 cells/mL 

in DMEM + 20% FBS + 10% DMSO by cooling the cell solution 1°C per minute to -

80°C.  Vials were then transferred to liquid nitrogen for storage.  Note that chondrocytes 
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used in the final intermittent loading study (see section 5.2.6) were seeded into the fibrin 

hydrogel constructs directly after isolation to simplify the construct seeding procedure as 

well as maximize cell viability, which is inevitably reduced by cryopreservation. 

5.2.2 Fibrin Hydrogel Construct Seeding 

 The preculture duration study used an early design of the oscillatory tensile 

loading device (Figure 4.1A) and oval-shaped fibrin hydrogel constructs164.  All other 

studies utilized the closed-loop, computer controlled design of the oscillatory tensile 

loading device (Figure 4.1C,D) and rectangular fibrin hydrogel constructs (Figure 4.3).  

The cell density, fibrin and thrombin concentrations, and culture medium supplements, 

however, were identical for all studies described. 

 Cells were rapidly thawed, re-counted, and then seeded at a density of 5e6 

cells/mL into fibrin hydrogel constructs using custom polycarbonate molds.  As stated 

above, cells used in the final intermittent loading study were seeded into constructs 

immediately after isolation from the tissue.  Fibrinogen was dissolved in DMEM at a 

concentration of 100 mg/mL in a 37°C water bath and briefly centrifuged to remove 

bubbles that had formed in the solution.  An appropriate volume of cells suspended in 

DMEM was combined with FBS and ε-aminocaproic acid (ACA).  The fibrinogen 

solution was then added to the cell/DMEM/FBS/ACA solution.  A small volume of 

thrombin (~800 U/mL in 40 mM CaCl2) was added to each well in the polycarbonate 

molds.  Finally, the cell/fibrinogen solution was added to the molds, and the fibrin 

hydrogel constructs were incubated for 90 minutes at 37°C to allow for thorough 

gelation.  The final concentrations of all components in the constructs are summarized in 

Table 5.1. 
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Table 5.1 Fibrin hydrogel construct composition 

Component Final Concentration 

Chondrocytes or  
Fibrochondrocytes 5e6 cells/mL 

FBS 10% v/v 

ACA 2 mg/mL 

Fibrin 50 mg/mL 

Thrombin 50 U/mL 

High glucose DMEM ~ 85% v/v 
 

 

 After constructs were fully formed, they were removed from the molds and 

transferred to 8-well rectangular tissue culture plates.  Fully supplemented culture 

medium (Table 5.2) was added to each well and the culture plates were maintained in a 

5% CO2 incubator at 37°C.  Culture medium was changed every 2 days, and in some 

cases aliquots were stored at -20°C for later analysis. 

 ACA acts as an inhibitor of fibrinolysis, stabilizing the constructs and preventing 

premature fibrin degradation148.  This inhibitor is widely used clinically as a clot 

stabilizer to prevent fibrinolytic bleeding as well as to stabilize fibrin sealants.  ACA has 

been used in vitro for fibrin constructs containing dorsal root ganglia149, smooth muscle 

cells148, and articular chondrocytes140.  The moderate levels of ACA used in these studies 

prevent fibrin degradation with no apparent effects on chondrocyte metabolism for up to 

40 days in culture (unpublished observations from our laboratory). 
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Table 5.2 Fully supplemented culture medium formulation 

Component Concentration 

FBS 10% v/v 

ACA 2 mg/mL 

Non-essential amino acids 10 mM 

HEPES buffer 10 mM 

Ascorbic acid 50 mg/mL 

L-proline* 0.4 mM 

Gentamicin 50 µg/mL 

Fungizone 0.25 µg/mL 

High glucose DMEM ~85% v/v 

* L-proline only added to the culture medium used  
in experiments with radiolabeled precursor molecules 

 

 

5.2.3 Preculture Duration Study 

 Fibrin hydrogel constructs used in the preculture duration study were precultured 

for either 1, 7, or 14 days.  A detailed schematic describing all of the loading protocols 

used in this chapter is shown in Figure 5.1 after section 5.2.6.  Once the constructs had 

been transferred to the oscillatory tensile loading device, one hole in each construct was 

positioned over the stationary pin in the tensile loading chamber.  When all constructs 

were positioned in the chamber, the mobile pins on the tension rake were inserted into the 

second hole on the opposite side of each construct.  This procedure is described in more 

detail in Chapter 4. 
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 Constructs in this study were subjected to 68 hours of continuous oscillatory 

tensile loading at a frequency of 1.0 Hz and 5% ± 5% sinusoidal displacement.  These 

values for frequency and displacement were consistent with stimuli previously applied to 

fibroblasts in collagen gels143,165 in an effort to impart physiologically relevant levels of 

deformation.  Unloaded constructs served as controls in each group.  During the final 20 

hours of culture, the medium was additionally supplemented with 10 µCi/mL L-[5-3H]-

proline and 5 µCi/mL of 35S-sodium sulfate.  In cartilaginous tissues these radiolabled 

precursor molecules are incorporated into newly synthesized proteins (primarily 

collagens) and proteoglycans, respectively, and their incorporation rates can therefore be 

used as indicators of extracellular matrix production.  The sample size for this study was 

6 constructs per loading group per preculture duration. 

5.2.4 Sustained Loading Duration Study 

 Based on results from the previous study, all constructs in the sustained loading 

duration study were precultured for a total of 7 days after seeding.  For the first 6 days of 

culture the constructs were kept in the 8-well culture plates, as described above, with 

medium changed every 2 days.  On the 6th day, constructs were transferred to either the 

unloaded or tensile culture chambers, positioned on the stationary pins in the chambers, 

and returned to the incubator.  The following day the culture medium was changed in all 

wells and the tension culture chambers were interfaced with the oscillatory tensile 

loading device.  Fresh culture medium was added to each well and oscillatory tensile 

loading was begun.  As described in Chapter 4, the entire oscillatory tensile loading 

device and the unloaded culture chambers were placed inside an incubator held at 37 °C 
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and 5% CO2.  Note that the culture medium used during the application of loading in this 

study and all subsequent studies was not supplemented with gentamicin or Fungizone. 

 Fibrin hydrogel constructs in the sustained loading duration study were subjected 

to continuously applied oscillatory tensile loading for 24, 48, or 72 hours.  Culture 

medium was replaced every day, and during the final 24 hours of culture for each group 

3H-proline and 35S-sulfate were added to the culture medium as described above.  As 

discussed in the previous chapter, the axial strains generated in the rectangular constructs 

closely matched the percentage displacements applied by the oscillatory tensile loading 

device (Figure 4.5).  In contrast, the maximum axial strain generated in the oval 

constructs used in preculture duration study described above was approximately half of 

the applied displacement (i.e. a 10% displacement produced a maximum strain of 

~5%)145.  Therefore, a sinusoidal displacement of 1.0 Hz and 5% (2.5% ± 2.5%) 

amplitude was used for this study so as to yield a maximum strain in the hydrogel 

consistent with previous work.  The sample size for this study was 6 constructs per 

loading group per loading duration. 

5.2.5 Short Term Loading Study 

 Fibrin hydrogel constructs in the short term loading study were precultured for 

either 1 or 4 days in 8-well rectangular culture plates using the supplemented culture 

medium described previously (Table 5.2).  After the prescribed preculture period, 

constructs were transferred to either the unloaded or tension culture chambers, fresh 

culture medium was added to each well, and oscillatory tensile loading was begun 

immediately.  Constructs were loaded continuously for 1, 4 or 8 hours with a 1.0 Hz, 
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2.5% ± 2.5% amplitude sinusoidal displacement.  The sample size for this study was 5-6 

constructs per group. 

 Immediately following loading, constructs were removed from the culture 

chambers, the polyethylene end blocks were removed, and portions of the fibrin hydrogel 

constructs were transferred to RNase/DNase free microcentrifuge tubes.  300 µL of RLT 

lysis buffer (Qiagen RNeasy kit) supplemented with 10 µL/mL β-mercaptoethanol was 

added to each tube.  The tubes were heated to 60°C for 10 minutes and vortexed 

periodically.  Finally, samples were stored at -80°C until RNA extraction and further 

processing for gene expression profiles were performed.   

 The α-helical coiled coil region of fibrin contains numerous disulfide bonds that 

contribute to the structural integrity of the hydrogel.  The addition of β-mercaptoethanol 

to the cell lysis buffer, in addition to inhibiting enzyme activity, facilitates solubilization 

of the fibrin hydrogels by disassociating these bonds.  Therefore, the extraction of RNA 

from the hydrogels is more consistent and efficient than what can be obtained via 

mechanical disruption techniques, such as biopulverization with liquid nitrogen cooling 

or passing the hydrogel through a small bore syringe needle. 

 Isolation of RNA from the constructs was achieved using modifications to the 

TriSpin method166,167 followed by the Qiagen RNeasy RNA isolation procedure.  Total 

RNA was quantified and equal amounts were reversed transcribed to cDNA using the 

Promega Reverse Transcription System.  Custom primers for bovine type II collagen, 

aggrecan, and type I collagen (see Table 6.1) were used to amplify cDNA, and SYBR 

green was used to measure the amplification in real time on an ABI Prism Sequence 

Detector 7700.  Detailed protocols for these processes are available in Appendix C.  
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Known quantities of cDNA spanning 4-6 orders of magnitude for each gene were run in 

parallel to serve as standards. 

5.2.6 Intermittent Loading Study 

 All constructs in the intermittent loading study were precultured for a total of 7 

days and were transferred to the unloaded or tension culture chambers on the 6th day of 

preculture, as described above.  The initial experiment in this study used the 1.0 Hz, 2.5% 

± 2.5% amplitude loading protocol that was also described above.  However, constructs 

in this experiment were subjected to intermittent bouts of this loading protocol.  The first 

intermittent loading protocol consisted of 3 hours of oscillatory tensile loading followed 

by 3 hours of recovery where constructs were held at 0% displacement.  The cycle was 

repeated 4 times per day.  This protocol was referred to as “3 Hour.”  The second 

intermittent loading protocol was dubbed “12 Hour” and consisted of 12 hours of 

oscillatory tensile loading followed by 12 hours of recovery at 0% displacement.  These 

intermittent protocols were repeated for 3 consecutive days with the culture medium 

being changed every day during the final hour of the last recovery period each day.  

During the final 24 hours of culture for each group, 3H-proline and 35S-sulfate were 

added to the culture medium as described above. 

 The second experiment in the intermittent loading study used the same two 

loading protocols, but the amplitude of the sinusoidal displacement was increased to 10% 

(5% ± 5%).  The intermittent protocols were then applied for either 3 or 7 consecutive 

days and culture medium was again changed every day as before.  During the final 24 

hours of culture for each group, 3H-proline and 35S-sulfate were again added to the 
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Figure 5.1 Schematic of protocols used in the oscillatory tensile loading studies. 
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culture medium.  The sample size for both experiments in this study was 6 constructs per 

group. 

5.2.7 Biochemical Composition Analyses 

 The cellular and biochemical contents of the fibrin hydrogel constructs used in all 

studies presented in this chapter, with the exception of the short term loading study, were 

assessed via well established techniques.  At the conclusion of the loading period in each 

study, constructs were removed from the culture chambers and the polyethylene end 

blocks were removed.  Oval-shaped constructs from the preculture duration study did not 

have end blocks, but only the central portions of these constructs were used in subsequent 

analyses.  Constructs were then transferred to 8-well rectangular culture plates containing 

PBS supplemented with 0.8 mM L-proline and 1.0 mM sodium sulfate.  Constructs were 

washed in this solution at 4°C for approximately 2 hours, and the wash solution was 

replaced every 30 minutes.  This wash period was necessary to remove any 3H-proline or 

35S-sulfate in the constructs that had not been incorporated into protein or proteoglycan 

macromolecules. 

 Following the wash procedure, total mass was measured and the constructs were 

frozen at -20°C.  Constructs were then lyophilized to dryness and solid mass was 

measured.  Proteinase K (≥ 0.25 mg/mL) in 100 mM ammonium acetate was used to 

solubilize constructs prior to further analysis.  The digests were analyzed for 3H and 35S 

incorporation using liquid scintillation counting, DNA content using the Hoechst 33258 

dye assay168, and sulfated glycosaminoglycan (sGAG) content using the 1,9-DMMB dye 

binding assay169.  sGAG released to the culture medium was also assessed with the 

DMMB dye assay for some studies. 
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5.2.8 Dynamic Tensile Testing 

 An additional set of fibrin hydrogel constructs was cultured in parallel with the 

final experiment of the intermittent loading study.  The culture medium for these 

constructs was not supplemented with radiolabeled precursor molecules so that their 

mechanical properties could be assessed without risk of contaminating the mechanical 

testing equipment with radioactive material.  Following the loading period for this 

experiment (either 3 or 7 days), constructs designated for mechanical testing were 

removed from the culture chambers, transferred to 8-well rectangular culture plates, and 

maintained in sterile PBS at 37°C for several hours until testing.  Custom designed 

interface pieces (see Appendix B) were used with an EnduraTEC ELF 3200 mechanical 

testing frame to assess the dynamic tensile properties of these constructs. 

 Prior to testing, the length and thickness of each construct were measured using a 

digital Vernier caliper.  At the beginning of each test, a small tensile preload (~ 0.01 N) 

was applied to the construct.  Next, 5 preconditioning cycles were performed from 0-5% 

strain at 0.1 mm/sec followed by a slow (0.1 mm/sec) linear ramp to 10% total strain.  

This position was held for 60 seconds before constructs were returned to the starting 

position and allowed to equilibrate for several minutes.  Constructs were then stretched 

until a preload of 0.01 N was achieved and this position was designated as the new start 

position.  A 0.1 mm/sec ramp was again performed to 10% strain and then constructs 

were held at this position for 2 minutes to allow for stress relaxation.  A dynamic 

frequency sweep over 3 decades was performed using a sinusoidal wave of 10% ± 1.5%.  

All tensile mechanical tests were performed at room temperature without supplemental 

hydration.  A module accompanying the control software for the ELF 3200 was used to 
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perform FFT analysis on load and displacement data acquired during the dynamic 

frequency sweep.  The sample size of this portion of the study was 4-6 constructs per 

group. 

5.2.9 Statistical Analyses 

 All studies described in this chapter were analyzed using a general linear model 

and Tukey’s test for post-hoc comparisons.  Data are presented throughout as the mean ± 

the standard error of the mean with significance at p < 0.05.  Models included all factors, 

including the interaction terms between factors, for which the significance criterion was 

met and are described in detail below.  Analysis for the preculture duration study (Section 

5.3.1) used a multifactor model with preculture time and loading as factors.  Data from 

the loading duration study (Section 5.3.2) were analyzed as a single factor model 

(loading) with each loading duration group treated separately.  In the short term loading 

study (Section 5.3.3) comparisons between preculture times were made using a two factor 

model (preculture time and loading duration), and comparisons between loading groups 

were made using a single factor model (loading).  Similarly, data from the intermittent 

loading study (Section 5.3.4) were analyzed with a two factor model (loading and loading 

duration) when comparing the 3 day versus 7 day loading durations, but with a single 

factor model (loading) when comparing the unloaded and tension groups for each loading 

protocol.  Finally, data for total sGAG synthesis (Section 5.3.4) was analyzed with a 

multifactor model (loading and loading duration). 
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5.3 Results 

5.3.1 Preculture Duration Study*

 The objective of the preculture duration study was to investigate the effects of 

various preculture times before beginning 68 hours of continuous oscillatory tensile 

loading.  Constructs containing either articular chondrocytes or meniscal 

fibrochondrocytes were used in this study.  Note that this study was performed using an 

early design of the oscillatory tensile loading device (Figure 4.1A) and used oval-shaped 

constructs consisting entirely of the fibrin hydrogel matrix.  The fibrin hydrogel 

constructs containing fibrochondrocytes that were precultured for 14 days had contracted 

beyond a geometry that could be accommodated by the oscillatory tensile loading device; 

therefore, only data from the 1 and 7 day preculture groups were collected for the 

fibrochondrocyte constructs.  Over extended periods of culture, constructs containing 

chondrocytes also exhibit some contraction, but this did not occur within the 14 days of 

preculture used in this study. 

 The DNA content of chondrocyte constructs from the preculture duration study 

increased with time in culture (p < 0.001) and was additionally increased by sustained 

oscillatory tensile loading (Figure 5.2A, p < 0.007).  In contrast, the DNA content of 

fibrochondrocyte constructs decreased with time in culture (p < 0.003) and was further 

decreased with tensile loading (Figure 5.2B, p < 0.05). 

 

                                                 

* Material presented in Section 5.3.1 was reprinted from the Journal of Biomechanics, 37, Vanderploeg, 
Imler, Brodkin, Garcia, and Levenston, “Oscillatory tensile loading differentially modulates matrix 
metabolism and cytoskeletal organization in chondrocytes and fibrochondtrocytes,” 1941-52, Copyright 
(2004) with permission from Elsevier. 
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Figure 5.2 DNA contents for fibrin hydrogel constructs from the preculture duration 
study containing (A) chondrocytes or (B) fibrochondrocytes.  Inset tables indicate results 
from two-factor general linear model analysis for statistical significance. 

 

 

 Sulfated glycosaminoglycan (sGAG) accumulation increased with time in culture 

for hydrogel constructs containing both cell types (Figure 5.3A,B, p < 0.001).  Tensile 

loading did not significantly affect sGAG content in chondrocyte constructs, but did 

significantly reduce sGAG accumulation in fibrochondrocyte constructs for each 

preculture time investigated (Figure 5.3B, p < 0.015).  Note that data for construct DNA 

and sGAG contents were presented as normalized to construct wet mass and DNA 

content, respectively, but analysis of non-normalized data yielded equivalent results.  

 Although biosynthesis rates, indicated by 3H-proline and 35S-sulfate 

incorporation, typically varied with preculture duration for constructs containing both cell 

types, these difference did not indicate any overall trends (Figure 5.3C-F).  Therefore, the 

discussion of results from these analyses will be focused on differences found at each 

preculture time in response to the application of oscillatory tensile loading.  3H-proline 
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incorporation, indicative of total protein production, was inhibited by tensile loading in 

the chondrocyte constructs precultured for 7 days (Figure 5.3C, p < 0.001), but was not 

significantly altered by loading in any other group.  In contrast, 35S-sulfate incorporation, 

indicative of proteoglycan synthesis, was inhibited by tensile loading at all preculture 

times in the chondrocyte constructs (Figure 5.3E, p < 0.001), but only after 1 day of 

preculture in the fibrochondrocyte constructs (Figure 5.3F, p < 0.05).  Taken together 

these data suggested that 68 hours of sustained oscillatory tensile loading generally 

inhibited extracellular matrix synthesis in constructs containing either chondrocytes or 

fibrochondrocytes.  Additionally, this tensile loading protocol promoted cellular 

proliferation in articular chondrocytes, but not in meniscal fibrochondrocytes. 

5.3.2 Sustained Loading Duration Study 

 In the sustained loading duration study, the differential effects of subjecting fibrin 

hydrogel constructs containing articular chondrocytes to either 24, 48, or 72 hours of 

continuous oscillatory tensile loading were investigated.  This study and all subsequent 

studies used the final design of the oscillatory tensile loading device in combination with 

the rectangular fibrin hydrogel constructs discussed in Chapter 4.  A sinusoidal 

displacement of 1.0 Hz and 5% (2.5% ± 2.5%) was used for the remaining studies 

described in this chapter, unless otherwise noted. 

 The DNA content of fibrin hydrogel constructs was similar for all three loading 

durations investigated.  However, consistent with the preculture duration study presented 

above, 72 hours of continuous oscillatory tensile loading led to a significant increase in 

construct DNA content (Figure 5.4A, p < 0.05).  Construct sGAG accumulation was not 
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Figure 5.3 Biochemical analyses of the preculture duration study.  The left column 
contains data from chondrocyte constructs: (A) sGAG content, (C) 3H-proline 
incorporation, and (E) 35S-sulfate incorporation.  The right column contains data from 
fibrochondtocyte constructs: (B) sGAG content, (D) 3H-proline incorporation, and (F) 
35S-sulfate incorporation.  Inset tables indicate results from statistical analyses, and in 
cases with a significant interaction term, stars indicate the preculture durations for which 
the effect of tension was significant (Tukey’s test, p < 0.05). 
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significantly affected by 24 or 48 hours of continuous oscillatory tensile loading, but 

sGAG accumulation was significantly reduced after 72 hours of loading (Figure 5.4B, p < 

0.02).  Trends in biosynthesis were consistent for both the 3H-proline and 35S-sulfate 

incorporation in response to various durations of sustained oscillatory tensile loading, 

although statistical significance was only found for 35S-sulfate incorporation (Figure 

5.4C,D).  Specifically, 72 hours of loading significantly inhibited 35S-sulfate 

incorporation (p < 0.01).  Overall, these results were consistent with previous 

observations in our laboratory that longer periods of sustained oscillatory tensile loading 

tended to inhibit extracellular matrix synthesis and accumulation whereas this effect was 

less pronounced or even reversed when using shorter durations of tensile loading164.  

These findings led to the hypothesis that shorter tensile loading durations may stimulate 

chondrocyte matrix synthesis and were the impetus for the remaining studies presented in 

this chapter. 

5.3.3 Short Term Loading Study 

 The objective of the short term loading study was to elucidate the potential effects 

of short durations of oscillatory tensile loading on chondrocyte gene expression.  Fibrin 

hydrogel constructs were precultured for either 1 or 4 days and then subjected to tensile 

loading for either 1, 4, or 8 hours.  Matrix molecule gene expression levels were chosen 

as the primary outcome measure in this study because extracellular matrix synthesis 

would be small and potential differences between treatment groups would most likely be 

undetectable on the time scales used. 
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Figure 5.4 Biochemical analyses of fibrin hydrogel constructs subjected to various 
durations of sustained oscillatory tensile loading.  All constructs were precultured for 7 
days and then subjected to continuous oscillatory tensile loading for the lengths of time 
shown.   indicates tension significantly different from unloaded. 
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 Gene expression for both collagen types assessed (types I and II) was higher in 

constructs precultured for 4 days compared to those with only a 1 day preculture, but this 

effect was only statistically significant for the 1 and 4 hour loading groups (Figure 

5.5A,B,E,F, p < 0.001).  Additionally, aggrecan gene expression levels were higher after 

4 days of preculture only in the 1 hour loading group (Figure 5.5C,D, p < 0.011).  In 

contrast, aggrecan gene expression levels were found to be lower after 4 days of 

preculture for the 8 hour loading group (Figure 5.5C,D, p < 0.05).  The constructs used 

for the 8 hour loading groups were seeded separately from those used for the 1 or 4 hour 

loading groups, which may account for the differences seen between these loading 

duration groups. 

 The effect of oscillatory tensile loading was found to be statistically significant 

only in three cases:  aggrecan expression was decreased in the 1 day preculture group 

after 1 hour of tensile loading (Figure 5.5C, p < 0.005), type I collagen expression was 

increased in the 1 day preculture group after 4 hours of tensile loading (Figure 5.5E inset, 

p < 0.022), and type I collagen expression was decreased in the 4 day preculture group 

after 8 hours of tensile loading (Figure 5.5F, p < 0.021).  Although these differences were 

statistically significant, none of the changes induced by tensile loading represented more 

than a 1.5 fold change in gene expression level and therefore were not considered to be 

functionally relevant.  In contrast, the increases with preculture time seen in the gene 

expression levels of types I and II collagen ranged between 2 and 12 fold. 
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Figure 5.5 Gene expression profiles for chondrocytes in fibrin hydrogel constructs 
exposed to short durations of oscillatory tensile loading. (A,B) Type II collagen, (C,D) 
Aggrecan, and (E,F) Type I collagen. The left column shows constructs precultured for 1 
day before loading, while the right column shows constructs precultured for 4 days before 
loading.  The inset figure in (E) is a rescaled version of the primary figure in (E) to 
provide more detail.  indicates 4 day preculture significantly different from 1 day 
preculture.   indicates tension significantly different from unloaded. 
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 Two additional independent studies investigating other short term loading 

durations were also performed and yielded consistent results for matrix molecule gene 

expression levels as the study described here.  Strong changes in gene expression levels 

were not found for either 2 or 6 hours of tensile loading after 4 days of preculture, or for 

6 or 18 hours of tensile loading after 7 days of preculture compared to unloaded controls.  

The results of these studies indicated that collagen gene expression increased with time in 

culture for chondrocytes in fibrin hydrogel constructs, but overall matrix molecule gene 

expression was not sensitive to oscillatory tensile loading for the conditions chosen for 

these studies.  These results favored using a longer preculture time in future studies.  

Additionally, it was hypothesized that repeated bouts of short durations of loading may 

be necessary to induce more substantial changes in the chondrocyte response to 

oscillatory tensile loading. 

5.3.4 Intermittent Loading Study 

 The goal of the intermittent loading study was to investigate how various 

protocols of intermittently applied oscillatory tensile loading modulated chondrocyte 

extracellular matrix synthesis.  Additionally, the mechanical characteristics and matrix 

molecule accumulation of fibrin hydrogel constructs were explored.  Two intermittent 

loading protocols, selected based on results from earlier studies in our laboratory as well 

as relevant published reports on chondrocyte responses to intermittent mechanical 

loading170,171, were used in each of two independent studies.  Chondrocyte seeded fibrin 

hydrogel constructs were precultured for 7 days and then subjected to either the “3 Hour” 

protocol that consisted of 3 hours of tensile loading followed by 3 hours of recovery and 
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repeated 4 times each day or the “12 Hour” protocol that consisted of 12 hours of tensile 

loading followed by 12 hours of recovery and repeated once per day. 

 Neither DNA content (Figure 5.6A) nor sGAG accumulation (Figure 5.6B) was 

significantly affected by either intermittent loading protocol when applied for 3 

consecutive days.  The “3 Hour” intermittent oscillatory tensile loading protocol inhibited 

both 3H-proline and 35S-sulfate incorporation during the final day of 3 consecutive days 

of application (Figure 5.6C,D, p < 0.005).  In contrast, the “12 Hour” protocol did not 

significantly affect 3H-proline incorporation, but did significantly increase 35S-sulfate 

incorporation during the final day of loading (Figure 5.6D, p < 0.015). 

 The hydrogel constructs used for each loading protocol were seeded separately 

from the same batch of cryogenically frozen chondrocytes.  Note that both the DNA and 

sGAG contents of constructs from the “12 Hour” group are substantially lower than for 

constructs from the “3 Hour” group.  These differences may be the result of different 

initial cell seeding densities, although every effort was made to maintain uniformity 

between seedings.  Hence, it is difficult to make strong comparisons between the 

different loading protocols.  However, each loading protocol was performed with an 

independent control group and therefore comparisons between the “Unloaded” and 

“Tension“ groups for each protocol are valid. 
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Figure 5.6 Biochemical analyses of fibrin hydrogel constructs subjected to protocols of 
intermittent oscillatory tensile loading. “3 Hour” = 3 hours of loading followed by 3 
hours recovery, repeated 4 times per day. “12 Hour” = 12 hours of loading followed by 
12 hours recovery, repeated once per day.   indicates tension significantly different from 
unloaded. 
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 A second study was performed to assess the effects of the same two intermittent 

oscillatory tensile loading protocols (“3 Hour” or “12 Hour”), but for longer durations.  

All constructs were precultured for 7 days and then the intermittent loading protocols 

were applied for either 3 or 7 consecutive days.  Additionally, the amplitude of the 

sinusoidal displacement was increased to 10% (5% ± 5%).  Both the extracellular matrix 

synthesis and the tensile mechanical properties of the hydrogel constructs were evaluated 

in this study. 

 The DNA content in constructs in the 7 day loading groups was higher than those 

in the 3 day loading groups (p < 0.001), but no significant differences were found in 

response to either intermittent loading protocol (Figure 5.7A).  Constructs in the 7 day 

loading groups had similarly accumulated more sGAG compared to constructs in the 3 

day loading groups (Figure 5.7B, p < 0.005).  Additionally, the sGAG content of 

constructs subjected to 3 days of either intermittent tensile loading protocol was 

significantly lower compared to unloaded controls (p < 0.05). 

 Results for biosynthesis levels in the hydrogel constructs indicated that both 3H-

proline and 35S-sulfate incorporation during the final day of loading were decreased in the 

7 day loading groups compared to the 3 day loading groups (Figure 5.7C,D, p < 0.001).  

However, no significant differences were seen between the unloaded controls and 

constructs subjected to either intermittent loading protocol for either loading duration. 
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Figure 5.7 Biochemical analyses of fibrin hydrogel constructs subjected to intermittent 
oscillatory tensile loading for two different durations. “3 Hr Tension” = 3 hours of 
loading followed by 3 hours recovery, repeated 4 times per day. “12 Hr Tension” = 12 
hours of loading followed by 12 hours recovery, repeated once per day. 

 indicates 7 days of loading significantly different from 3 days of loading.  indicates 
tension significantly different from unloaded. 
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 The amount of sGAG released to the culture medium was also measured 

throughout this study.  Both intermittent tensile loading protocols induced an increase in 

sGAG release to the medium compared with unloaded controls at each loading duration 

investigated (Figure 5.8, p < 0.015).  Interestingly, after 3 days of loading there was no 

difference in the total sGAG produced (retained in construct + released to medium) by 

either tensile loading group compared with the unloaded controls.  However, after 7 days 

of loading total sGAG production in both intermittent loading groups was higher 

compared to unloaded controls (p < 0.015).  Therefore, this study suggested that longer 

durations of intermittent oscillatory tensile loading stimulated extracellular matrix 

production, but reduced the retention of these newly synthesized matrix molecules in the 

constructs. 

 The dynamic moduli of constructs in the 7 day loading groups were significantly 

higher compared to constructs in the 3 day loading groups (Figure 5.9, p < 0.001).  

Additionally, constructs from both 3 and 7 day loading groups had a significantly higher 

dynamic modulus compared with constructs only allowed to culture for 1 day total 

(Figure 5.9, dashed line, p < 0.001).  No differences in mechanical properties were seen 

between the unloaded controls and constructs subjected to either loading protocol. 
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Figure 5.8 Total sGAG produced by chondrocytes in fibrin hydrogel constructs subjected 
to intermittent oscillatory tensile loading. “3 Hr Tension” = 3 hours of loading followed 
by 3 hours recovery, repeated 4 times per day. “12 Hr Tension” = 12 hours of loading 
followed by 12 hours recovery, repeated once per day. Colored bars represent sGAG 
retained in the constructs, while open bars represent sGAG released to the culture 
medium.   indicates media sGAG for 7 days of loading significantly different from 3 
days of loading.  ‡ indicates total sGAG (construct + media) for 7 days of loading 
significantly different from 3 days of loading.   indicates media sGAG for tension 
significantly different from unloaded.  † indicates total sGAG (construct + media) for 
tension significantly different from unloaded. 

 

 103



Dynamic Modulus
@ 1.0 Hz

0

30

60

90

120

150

3 7
Days of Tensile Loading

E*
 (k

Pa
)

 

              Unloaded 12 Hr Tension3 Hr TensionUnloaded 12 Hr Tension3 Hr Tension                   

Figure 5.9 Mechanical characterization of fibrin hydrogel constructs subjected to 
intermittent oscillatory tensile loading for two different durations. “3 Hr Tension” = 3 
hours of loading followed by 3 hours recovery, repeated 4 times per day. “12 Hr 
Tension” = 12 hours of loading followed by 12 hours recovery, repeated once per day. 
Dashed line indicates mean value for constructs tested 1 day after seeding. 
  indicates 7 days of loading significantly different from 3 days of loading. 

 

 

5.4 Discussion 

 The studies described in this chapter explored the effects of various oscillatory 

tensile loading protocols on articular chondrocytes or meniscal fibrochondrocytes seeded 

in three dimensional fibrin hydrogel constructs.  The objective of these efforts was to 

identify tensile loading regimes that modulated cellular proliferation and extracellular 

matrix biosynthesis in specific ways and ideally to establish an optimal protocol that 

could be used to stimulate the development of engineered cartilaginous tissues. 

 The initial preculture duration study indicated that 68 hours of continuous 

oscillatory tensile loading inhibited extracellular matrix synthesis in both articular 

chondrocytes and meniscal fibrochondrocytes for many of the preculture durations 
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investigated.  This result was notable because several published reports have shown that 

other modes of dynamic mechanical stimulation, such as unconfined 

compression100,139,160,172 and shear101,102,116, stimulated extracellular matrix synthesis in 

both tissue explants and cell seeded constructs.  These different responses to tension 

versus compression or shear could potentially be due to the different loading modes, and 

thus chondrocytes and fibrochondrocytes may respond fundamentally differently to 

tension.  However, each of the reports referenced above used shorter total loading 

durations (i.e. 24 hours) or short bouts of dynamic loading that were repeatedly applied.  

Thus, the differing trends in matrix synthesis may, in fact, be the result of using shorter 

term versus prolonged mechanical stimulation. 

 This hypothesis was tested in the sustained loading duration study described in 

this chapter.  Consistent with previous results, 72 hours of sustained oscillatory tensile 

loading was found to increase construct DNA content and decrease chondrocyte 

extracellular matrix synthesis.  However, these trends were not seen in constructs 

subjected to only 24 or 48 hours of sustained loading.  These observations were 

consistent with a previously published report from our laboratory describing decreases in 

extracellular matrix accumulation and mechanical properties following 10 and 20 days of 

dynamic compression in chondrocyte seeded fibrin constructs140.  Additionally, many 

researchers have shown that short term continuous dynamic compression or long term 

application of intermittent dynamic compression increased chondrocyte matrix synthesis 

in several different scaffold systems5,100,162,173.   

 Since tensile mechanical stimulation has not been widely explored as a means to 

influence chondrocyte or fibrochondrocyte behavior in culture, few published reports 
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were available for direct comparison.  However, cyclic tensile loading of human dermal 

fibroblasts in three dimensional collagen143,165 and fibrin174 constructs has been shown to 

increase construct mechanical properties.  Additionally, Seliktar et al.165 demonstrated 

that 4 days of cyclic tensile strain enhanced construct mechanical properties, but 

prolonged exposure to strain had adverse effects due to increases in protease activity.  

Taken together, the results from our studies and the published reports referenced above 

supported the hypothesis that longer durations of oscillatory tensile loading can inhibit 

chondrocyte extracellular matrix production and accumulation, whereas shorter durations 

may stimulate matrix production and have the potential to enhance engineered 

cartilaginous tissues. 

 In an effort to identify specific effects of brief periods of oscillatory tensile 

loading on chondrocyte gene expression, several short term loading studies were 

performed.  Although collagen gene expression levels were found to increase with time in 

culture, consistent and substantial changes in matrix molecule gene expression were not 

found in response to oscillatory tensile loading.  A recently published study investigating 

the effects of cyclic tensile loading on chondrocytes in alginate hydrogels reported 

increases in gene expression levels for several extracellular matrix molecules, including 

collagen types I and II and lubricin171.  Tensile loading was applied in this report for 3 

hours per day for 3 consecutive days, based on previous findings indicating that 

biosynthesis was increased when loading was applied for several consecutive days 

compared to a single application of loading175.  Hence, several repetitions of the 1, 4, and 

8 hour tensile loading bouts used in our studies may have resulted in more dramatic 

differences in response to loading.  However, in our studies the scaffold material used 
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was fibrin, whereas in the above cited report alginate was used.  Presumably, tensile 

loading may influence gene expression levels via various mechanotransduction pathways, 

which are likely to depend on the local cellular mechanical environment and hence the 

scaffold system.  As discussed in Chapter 4, fibrin possesses numerous binding sites that 

can facilitate direct cell attachment, but an alginate hydrogel is essentially inert and does 

not contain cellular binding domains.  This difference in cellular attachment mechanisms 

could significantly influence the mechanotranduction characteristics between the two 

scaffold systems.  Additionally, other scaffold differences such as ion concentration, 

porosity, and mechanical stiffness may also exist.  Thus, the expectation that the 

modulation of matrix molecule gene expression found in one system will directly 

translate to another scaffold system is not well founded.   

 Finally, dynamic mechanical loading may not substantially regulate chondrocyte 

matrix metabolism at the level of gene transcription, as has been recently postulated for 

fibrin hydrogels176 as well as suggested for cartilage tissue explants177.  Rather than 

influencing gene transcription in our system, tensile loading may have had a more 

significant effect on post-translation modifications of extracellular matrix molecules 

influencing their assembly, distribution, and retention in the construct.  Additionally, 

mechanical loading may have altered mRNA stability or functionality but not necessarily 

total transcription levels. 

 The series of intermittent loading studies described in this chapter investigated 

how the chondrocyte response to oscillatory tensile loading might be enhanced by using 

repeated bouts of shorter loading durations.  The “3 Hour” intermittent protocol, which 

consisted of 3 hours of loading followed by 3 hours of recovery repeated 4 times per day, 

 107



was found to inhibit both 3H-proline and 35S-sulfate incorporation during the final day of 

a 3 day loading period.  In contrast, the “12 Hour” protocol, consisting of 12 hours of 

loading followed by 12 hours of recovery repeated once per day, enhanced 35S-sulfate 

incorporation during the final day of a 3 day loading period.  These results were 

consistent with Chowdhury et al.170, who found that a similar 12 hour dynamic 

compression loading protocol maximally stimulated 35S-sulfate incorporation in 

chondrocyte seeded agarose constructs compared to protocols using shorter 

loading/recovery cycles. 

 The amplitude of tensile displacement was then increased to a 5% ± 5% sinusoid 

(as opposed to 2.5% ± 2.5% as in previous studies) and the intermittent oscillatory tensile 

loading study was repeated for either 3 or 7 consecutive days of loading.  Interestingly, 

no changes in 3H-proline and 35S-sulfate incorporation were found in response to either 

tensile loading protocol under these conditions.  However, both protocols increased the 

amount of sGAG released to the culture medium compared with the unloaded controls.  

Furthermore, the total sGAG produced, the sum of that retained in the constructs and 

released to the culture medium, was increased by both loading protocols after 7 days of 

application compared to unloaded controls, but no differences were seen after only 3 days 

of loading.  Hence, intermittent oscillatory tensile loading applied for 7 days increased 

overall glycosaminoglycan production, but also increased the amount of these newly 

synthesized molecules released from the constructs.  This finding was intriguing because 

it demonstrated that oscillatory tensile loading stimulated matrix production, but the 

fibrin hydrogel constructs were not able to effectively retain this new matrix.  Therefore, 

a balance may exist between enhancing extracellular matrix production via mechanical 
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stimulation and achieving adequate retention such that sufficient construct maturation can 

occur.  By optimizing the loading protocol to maximize matrix production using the least 

amount of loading time and enhance matrix retention by using the longest duration of 

recovery time, an ideal balance between synthesis and retention may be possible to 

achieve.  Attempts at such an optimization have been made using dynamic mechanical 

compression with some success173,178, but performing comparable studies with oscillatory 

tensile loading was beyond the scope of this dissertation. 

 The dynamic tensile properties of the fibrin hydrogel constructs were measured 

after 3 and 7 days of intermittent oscillatory tensile loading.  Mirroring the biochemical 

contents, the constructs subjected to 7 days of loading (14 days of total culture) were 

significantly stiffer than those only subjected to 3 days of loading (10 days total culture).  

Both groups were stiffer than control constructs only cultured for 1 day before testing.  

Additionally, no differences in the dynamic tensile modulus of the constructs were seen 

in response to either loading protocol.  Although this initially seemed like a null result, it 

provided valuable information regarding our fibrin hydrogel construct system.  This study 

demonstrated that up to 7 days of intermittent tensile loading did not induce significant 

scaffold degradation or contraction.  The fibrin scaffold provides the bulk of the 

mechanical integrity in these constructs, and therefore damage, either directly from 

stretching or from cell-mediated degradation, could undermine the utility of this system 

for studying the development of engineered cartilage tissues.  Additionally, 21 days of 

dynamic compression was necessary before increases in the mechanical properties and 

extracellular matrix accumulation of chondrocyte seeded agarose hydrogels were 
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apparent5; thus similar increases in our system would not have been expected after only 7 

days of loading. 

 Based on the results from all of the studies presented in this chapter, the “12 

Hour” intermittent oscillatory tensile loading protocol was selected for the remainder of 

the work in this dissertation.  This protocol consisted of 12 hours loading at a frequency 

of 1.0 Hz and a sinusoidal displacement of 5% ± 5% followed by 12 hours of recovery at 

0% displacement. 

 The overall objective of all the studies presented in this chapter was to gain a 

better understanding of how articular chondrocytes and meniscal fibrochondrocytes 

would respond to oscillatory tensile loading and how various regimes of tensile loading 

could be used to modulate cellular processes in specific ways.  Although several of these 

studies demonstrated that oscillatory tension could influence chondrocyte metabolism, 

often these changes in response to loading were subtle.  This observation was not unique 

to our studies as many of the published reports cited throughout this dissertation 

described differences between treatment groups of 20% or less, which is not uncommon 

with three dimensional engineered tissues.  However, the inhomogeneity of the cell 

population isolated from full thickness articular cartilage tissue may have also 

contributed to these results.  Chondrocyte morphology and phenotype are known to be 

dependent on their origin within the tissue7.  Many of the specific differences were 

discussed in Chapter 2, and it has been repeatedly shown that chondrocytes isolated from 

different zones of the tissue maintain at least some of these distinctions during in vitro 

culture26,29,179-183.  Therefore, chondrocytes derived from different zones within the tissue 

may respond to oscillatory tensile loading in distinct ways, but these potential differences 
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could have been “diluted out” in our hydrogel constructs that contained a mixed 

population of cells. 

 The series of studies presented in this chapter represent a unique contribution to 

the field of cartilage tissue engineering and provide insights into how oscillatory tensile 

loading modulates chondrocyte and fibrchodrocyte behavior in vitro.  Longer durations of 

continuous oscillatory tension generally inhibited extracellular matrix synthesis in both 

cell types, but this effect was not found for shorter loading times.  Additionally, applying 

tensile loading intermittently was found to stimulate matrix synthesis, but also to induce 

increased levels of the newly synthesized matrix molecules to be released into the culture 

medium.  Understanding how articular chondrocytes respond to altered mechanical 

loading environments, such as tension, may offer valuable insights into how better to 

manipulate tissue engineered cartilage constructs in vitro.  Similarly, using tensile 

loading to modulate meniscal fibrochondrocyte metabolism could prove useful for 

developing fibrocartilage repair tissues.  Ultimately, understanding more completely how 

various loading environments can affect cell behavior may prove crucial to understanding 

how cartilage and fibrocartilage tissues develop, are maintained, and can be repaired. 
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CHAPTER 6 
 

DIFFERENTIAL RESPONSES OF ZONE-SPECIFIC CHONDROCYTES AND 
FIBROCHONDROCYES TO OSCILLATORY TENSILE LOADING 

6 
 

6.1 Introduction 

 Articular cartilage is a stratified tissue with well characterized depth-dependent 

patterns of cellular morphology7, extracellular matrix ultrastructure184, and mechanical 

characteristics21.  Chondrocytes from the superficial zone have a flattened morphology 

and align parallel to the joint surface, whereas cells from deeper within the tissue possess 

a more spherical morphology7.  Collagen content is most dense in the superficial region 

where the fibers are aligned parallel to the joint surface, whereas proteoglycan content is 

highest in the middle and deep regions6,184.  Some zone-specific phenotypic differences in 

chondrocytes are lost after periods of two-dimensional in vitro culture28,29, however some 

differences, especially in regard to extracellular matrix synthesis, seem to be more 

inherent and are retained in both two-dimensional and three-dimensional cultures26,29.  

Recreating this inhomogeneous composition of cartilage to some degree may be 

necessary for cartilage tissue engineering strategies to be successful.  Therefore, several 

recent attempts have been made to create tissue engineered cartilage constructs with a 

stratified or zonal organization180,182.  Additionally, subpopulations of chondrocytes 

originating from distinct tissue zones have been shown to differentially respond to 

mechanical compressive loading181. 
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 Similarly, as discussed in detail in Chapter 3, the extracellular matrix 

ultrastructure, as well as cellular phenotype and morphology vary by zone in the 

meniscus58.  Fibrochondrocytes from the inner region of the meniscus tend to resemble 

articular chondrocytes, whereas cells found in the outer region have a more fibroblastic, 

stellate morphology74.  Previous work in our laboratory has also demonstrated differences 

in the gene expression profiles, extracellular matrix synthesis rates, and response to static 

compression between cells from different meniscal zones124. 

 Although several studies investigating three-dimensional culture of zone-specific 

chondrocytes have been published180-182, these studies used scaffold materials that do not 

enable direct cell-matrix interactions, such as poly(ethylene glycol) derivatives, alginate, 

and agarose.  The fibrin hydrogel construct system used in our current studies, however, 

does allow for direct cellular interaction with the surrounding matrix and therefore the 

cellular environment may be quite different from that of the more inert scaffolds.  Hence 

initial studies were designed to investigate the ability of fibrin hydrogels to preserve 

zonal differences in chondrocyte phenotype.  Subsequently, the effects of intermittent 

oscillatory tensile loading on zone-specific chondrocytes in fibrin hydrogel constructs 

were explored.  An intermittent tensile loading protocol developed in earlier studies and 

described in Chapter 5 was chosen for the current investigation.  Finally, an identical 

loading study was performed using zone-specific meniscal fibrochondrocytes from either 

the inner or outer region of the tissue. 

 Based upon available information regarding zone-specific chondrocytes as well as 

our own experimental findings with zone-specific meniscal fibrochondrocytes, we 

hypothesized that cells from distinct zones of articular cartilage and the meniscus would 
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differentially respond to oscillatory tensile loading.  Since the surface of articular 

cartilage experiences some tensile strain in vivo, we believed that chondrocytes from the 

superficial zone would exhibit a more dramatic response to oscillatory tensile loading 

compared to chondrocytes from deeper in the tissue.  Additionally, the subtle effects of 

oscillatory tensile loading seen in previous studies using cells pooled from all tissue 

regions may be the result of zone dependent responses to loading.  Therefore 

investigating the effects of oscillatory tensile loading on separate subpopulations of 

chondrocytes and fibrochondrocytes may better elucidate specific inherent cellular 

responses. 

 

6.2 Materials and Methods 

6.2.1 Tissue Harvest and Cell Isolation 

 Articular chondrocytes and meniscal fibrochondrocytes were obtained from 

immature bovine stifle joints as described previously, but special harvest procedures were 

required to separate the tissues into distinctive zones.  The intact femoral-patellar groove 

and femoral condyles were aseptically removed using a small hand saw.  Rectangular 

osteochondral blocks (3-4 mm per side) were then cut from the tissue such that at least 

two sides were perpendicular to the surface.  The tissue blocks were thoroughly rinsed in 

PBS supplemented with antibiotic/antimycotic before being divided into discrete zones 

using a sledge microtome.  The top 250 µm was taken as the superficial zone, tissue 

ranging from 500 - 1000 µm from the surface was taken as the middle zone, and tissue 

1250 - 2000 µm from the surface was taken as the deep zone (Figure 6.1).  Tissue from 
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the deep zone never included regions of calcified cartilage.  The overall thickness of the 

tissue blocks varied slightly with location in the joint (i.e. blocks from the central region 

of the femoropatellar groove were thicker than blocks from the femoral condyles).  This 

procedure was developed based on information available in the literature27,180 as well as 

several pilot studies conducted in our laboratory.  Tissue slices from the discrete zones 

were pooled and chondrocytes were enzymatically isolated using 0.2% collagenase in 

DMEM supplemented with antibiotics for approximately 20 hours.  The cell suspensions 

were then passed through a sterile 74 µm mesh, washed, and concentrated via several 

centrifugation steps.  Cell counts and viability for each zonal group were determined 

using a Beckman Coulter Vi-Cell XR and cell size was determined using a Beckman 

Coulter Multisizer III.  Finally, chondrocytes from each zone were suspended in fresh 

DMEM and seeded into either cylindrical fibrin hydrogels (11 mm diameter x 3 mm 

thick) or the rectangular fibrin hydrogel constructs as described in Chapter 5. 

 

 

Superficial  < 250 µm

Middle  500 – 1000 µm

Deep  1250 - 2000 µm

Superficial  < 250 µm

Middle  500 – 1000 µm

Deep  1250 - 2000 µm
 

Figure 6.1 Schematic of zone-specific articular chondrocyte harvest procedure 

 

 

 Intact medial and lateral menisci were aseptically excised from up to 6 joints and 

thoroughly rinsed with PBS supplemented with antibiotic/antimycotic.  All connective 
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tissue was carefully removed including the fibrous attachments located at the anterior and 

posterior horns.  The boundary for the inner zone of the meniscus was determined 

visually as the point where the tissue transitioned from blue-white and partially 

translucent to more opaque and solid white in appearance (Figure 6.2). 

 

 

Outer Zone

Inner Zone

Outer Zone

Inner Zone  

Figure 6.2 Schematic of zone-specific meniscal fibrochondrocyte harvest procedure 

 

 

 This inner portion consisted of approximately 25% of the total radial length of the 

meniscus.  The inner zone was carefully separated from the bulk of the meniscus using a 

sterile scalpel and transferred to PBS.  Progressing radially toward the outer edge of the 

tissue, the next 3-4 mm was dissected away and discarded.  The remaining tissue was 

taken as the outer zone and transferred to PBS.  All tissue was then minced and 

fibrochondrocytes were enzymatically isolated using a sequential protocol of trypsin and 

0.4% collagenase as previously described in Chapter 5.  Tissue from medial and lateral 

menisci was kept separate throughout the harvest and cell isolation procedures.  Cell 

suspensions were processed as described above and equal numbers of cells derived from 

medial and lateral menisci were pooled after counting.  This procedure left two distinct 
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populations of inner zone and outer zone meniscal fibrochondrocytes.  These populations 

were suspended in fresh DMEM and seeded into rectangular fibrin hydrogel constructs as 

described in Chapter 5. 

 In addition, aliquots containing approximately 2 million cells from each zonal 

population were removed for gene expression analysis using real time RT-PCR prior to 

construct seeding.  Cells in these aliquots were pelleted, the supernatant was replaced 

with cell lysis buffer plus β-mercaptoethanol, and the suspensions were frozen at -80°C.  

The Qiagen RNeasy RNA isolation procedure was used according to the manufacturer’s 

instructions to isolate RNA.  Total RNA isolated was quantified and equal amounts of 

RNA were reverse transcribed to cDNA using the Promega Reverse Transcription 

System (see Appendix C for additional details).  Custom primers (Table 6.1) were used to 

amplify cDNA, and SYBR green was used to measure amplification in real time on an 

ABI Prism Sequence Detector 7700. 
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Table 6.1 Primer sequences for bovine genes used in real time RT-PCR 

Gene GenBank 
Accession #

Primer Sequence 5’ – 3’ Amplicon

Type II Collagen 
Forward 
Reverse 

X02420 
 

 
GCA TTG CCT ACC TGG ACG AA 

CGT TGG AGC CCT GGA TGA 

 
83 bp 

Aggrecan 
Forward 
Reverse 

NM_173981
 

 
CCT CAG GGT TTC CTG ACA TTA 
TAA GCT CAG TCA CGC CAG ATA 

 
82 bp 

Type I Collagen 
Forward 
Reverse 

AB008683
 

 
AAG AAC CCA GCT CGC ACA TG 

GGT TAG GGT CAA TCC AGT AGT AAC CA 

 
107 bp 

Decorin 
Forward 
Reverse 

NM_173906
 

 
ACT GAA GGA ATT GCC AGA GAA 
CTA CGA CGA TCA TCT GGT TCA 

 
119 bp 

Biglycan 
Forward 
Reverse 

S82652 
 

 
GGT CCT CGT GAA CAA CAA GAT 
GGA TCT CAC ACA GGT GGT TCT 

 
85 bp 

 

 

6.2.2 Fibrin Hydrogel Construct Culture 

Free Swelling Culture 

 Zone-specific chondrocytes in cylindrical fibrin hydrogels were cultured in 24-

well tissue culture plates for up to 15 days and medium was changed every two days.  

The serum supplemented DMEM formulation described previously (Table 5.2) was used 

for all studies presented in this chapter, although the gentamicin and Fungizone were 

replaced with antibiotic/antimycotic.  On the final day of culture for each time point 

(days 3, 8, or 15), medium was additionally supplemented with 10 µCi/mL L-5-3H-

proline and 5 µCi/mL 35S-sodium sulfate.  Additionally, the antibiotic/antimycotic 
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solution was withheld from the culture medium during the radiolabeling procedure.  

Upon removal from culture, hydrogels were washed 4 times for 30 minutes each at 4°C 

in PBS with 1.0 mM L-proline and 0.8 mM sodium sulfate to remove unincorporated 

radioactive precursors.  The total wet mass of each hydrogel was then measured and the 

hydrogels were frozen at -20°C. 

Oscillatory Tensile Loading 

 Rectangular fibrin hydrogel constructs, containing either zone-specific 

chondrocytes or fibrochondrocytes, were treated identically throughout the culture and 

tensile loading periods.  Constructs were cultured in free swelling conditions using 

rectangular 8-well tissue culture plates in an incubator held at 37°C and 5.0% CO2 for 6 

days with media changed every 2 days.  On the 6th day, constructs were randomly 

assigned to the unloaded or tension culture chambers (see Section 4.3) and allowed to 

culture without any loading for one additional day.  Thus, the total preculture time for 

these studies was 7 days.  The antibiotic/antimycotic solution was only added to the 

culture medium during the first 6 days of culture. 

 On the following day, an intermittent oscillatory tensile loading protocol was used 

to stimulate the fibrin hydrogel constructs.  Constructs were stretched using a 1.0 Hz 

sinusoidal wave form with a 5% ± 5% amplitude.  This protocol was applied for 12 hours 

followed by a 12 hour recovery period where constructs were held at 0% displacement.  

This loading regime was repeated 3 times, yielding a total culture duration of 10 days (7 

days unloaded, 3 days tension).  Culture medium was changed everyday during the final 

hour of the recovery period, and a portion of the conditioned culture medium was 

collected at each media change throughout the studies.  Parallel constructs in the 
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unloaded culture chambers served as controls.  Culture medium was additionally 

supplemented with 10 µCi/mL L-5-3H-proline and 5 µCi/mL 35S-sodium sulfate on the 

final day of culture.    Upon removal from culture, constructs were washed as described 

above, end blocks were removed, total construct mass was recorded, and samples were 

frozen at -20°C.  In addition, a set of constructs from each group was randomly selected 

after only two days of free swelling culture, and the medium for these constructs was 

supplemented with radioactive precursors for an additional 24 hours.  This set of 

constructs served as an early time point control and was designated “3 Day.” 

 

 

Table 6.2 Summary of culture conditions for zone-specific chondrocyte and 
fibrochondrocyte studies 

Group Name Preculture Duration Loading Duration Total Culture Time 

3 Day 3 days N/A 3 days 

Unloaded 7 days 3 days, unloaded 10 days 

Tension 7 days 3 days, tension 10 days 
 

 

6.2.3 Biochemical Composition Analyses 

 For each study described here, the frozen hydrogel constructs were lyophilized to 

dryness, measured for solid mass, and digested overnight at 60°C using proteinase K in 

100 mM ammonium acetate.  3H-proline and 35S-sulfate incorporation rates (indicators of 

total protein and proteoglycan synthesis, respectively) were assessed using a liquid 
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scintillation counter.  Total DNA and sulfated glycosaminoglycan (sGAG) contents were 

measured using the Hoechst dye168 and the 1,9-DMMB dye169 assays, respectively. 

 For the zone-specific chondrocyte tensile loading study only, total sGAG released 

into the culture medium was also assessed using the DMMB assay.  Further 

characterization of the proteoglycans released into the medium for this study was 

performed using size exclusion liquid chromatography and Western blot analysis.  

Portions of the conditioned media from the final day of culture were first processed using 

a Hi-Trap Sephadex G-25 Superfine column to remove radioactive precursors not 

incorporated into macromolecular structures.  7M Urea plus 50 mM Tris acetate was used 

to equilibrate the columns, and 8M Urea plus 50 mM Tris acetate was used as the elutent.  

Fractions in the excluded volume of this column were pooled and concentrated using 

Amicon Ultra-4 10 kDa centrifugal filters.  Samples were then run on a 30 x 1 cm Econo-

Column packed with Sepharose CL-4B and equilibrated with 4M Guanidine HCl plus 50 

mM sodium acetate.  500 µL fractions were collected at a flow rate of 0.35 mL/minute 

and analyzed for 35S and 3H content with a liquid scintillation counter.   

 A quantitative assessment of liquid scintillation counter data from the size 

exclusion column chromatography was undertaken to determine the fraction of 35S-

sulfate incorporated into large proteoglycans (i.e. intact aggrecan) versus small 

proteoglycans (i.e. decorin, biglycan, or aggrecan fragments).  The fractions representing 

these two proteoglycan populations were determined from examining data from all 

samples.  It was important to subtract off the background level in this data, because some 

sample readings were only 2-3 times higher than the average background intensity 

readings.  An appropriate method for estimating the background of each sample was to 
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use the average reading of the final 8 fractions of each column run.  A Newton-Cotes 

integration method was used to approximate the area under each peak, which is 

equivalent to the total 35S found in each peak. 

 

( )⎥
⎦

⎤
⎢
⎣

⎡
−⋅−⎟

⎠

⎞
⎜
⎝

⎛
++⋅= ∑

−

=

222
2

1

2
1 nBfffhA avg

n

i
in  

 

 where   A = area under each peak, i.e. total 35S in the peak 

   h = volume collected in each fraction 

   fi = CPM reading from each fraction 

   n = number of fractions in each peak 

   Bavg = average background reading 

 

The total macromolecular 35S was calculated by adding the areas for the two peaks in 

each sample, and finally the percentage of the 35S in each peak was determined. 

 Finally, fractions corresponding to peaks containing large proteoglycans (intact 

aggrecan) and to small proteoglycans (decorin, biglycan, aggrecan fragments, etc.) were 

each pooled and concentrated using the 10 kDa centrifugal filters.  Proteoglycans from 

portions of the pooled samples were precipitated overnight at 4°C by adding 3 volumes 

of ice cold 100% ethanol plus 50 mM sodium acetate.  The protocol for Western blot 

analysis found in Appendix C was followed to detect the presence of biglycan, decorin, 

and the G3 domain of aggrecan. 
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6.2.4 Statistical Analyses  

 Chondrocyte size data were analyzed using a two-sided paired student’s t-test, and 

all other data were analyzed using a general linear model and Tukey’s test for post hoc 

analysis with significance set at p < 0.05.  The study investigating zone-specific 

chondrocytes in free swelling culture was analyzed with a multifactor model using 

cartilage zone and culture time as factors.  The studies investigating the effects of tensile 

loading on zone-specific chondrocytes or fibrochondrocytes were analyzed with single 

factor models (cartilage zone or loading condition), evaluating each group separately.  

Column chromatography data were transformed using an arcsine function to ensure 

normality185 and then analyzed using a multifactor model with cartilage zone and loading 

condition as factors.  In all cases, interaction terms were included in the models when 

appropriate and the criterion for significance was satisfied.  Unless otherwise noted, the 

sample size was 6 for all groups analyzed in these studies. 

 

6.3 Results 

6.3.1 Zone-Specific Chondrocytes:  Free Swelling Culture 

 Consistent with published data22,29,181,186, chondrocyte cell size was significantly 

larger with increasing distance from the tissue surface as indicated by shifts in the cell 

size distributions (Figure 6.3A, p < 0.001).  Superficial zone cells were smaller than 

middle zone cells, which were in turn smaller than deep zone cells.  Between 3800 and 

6600 cells were measured in each zonal group for this analysis.  Additionally, gene 

expression data generally agreed with previous published reports30,187 (Figure 6.3B).  
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Type II collagen gene expression in middle and deep zone chondrocytes was 

approximately 4-fold higher than in superficial zone cells.  Deep zone cells also had an 

approximately 3-fold higher level of aggrecan gene expression compared with superficial 

and middle zone cells.  Finally, type I collagen gene expression was several orders of 

magnitude lower relative to type II collagen in all zones, and type I collagen expression 

in middle and deep zone chondrocyte was approximately 5- and 9-fold higher, 

respectively, compared with superficial zone cells. 
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Figure 6.3 Characterization of zone-specific chondrocytes prior to seeding in fibrin 
hydrogel constructs. (A) Cell diameter distribution; mean ± standard deviation. (B) Gene 
expression for type II collagen, aggrecan, and type I collagen. 

 

 

 Data presented for free swelling culture using zone-specific chondrocytes are 

from one of two independent experiments yielding similar results.  Fibrin hydrogel DNA 

content increased with time in culture for chondrocytes from all zones (Figure 6.4A,  

p < 0.001).  Additionally, hydrogels containing chondrocytes from the superficial and 
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middle zones had a significantly higher cell density than those with deep zone 

chondrocytes after 15 days in culture (Figure 6.4A, p < 0.002).  DNA data are presented 

as normalized to the average hydrogel DNA contents after 3 days in culture for each 

zonal group to account for small differences in initial hydrogel seeding density 

(differences were typically less than 10%).  Total sGAG content also increased 

significantly with time in culture for hydrogels containing cells from all zones (Figure 

6.4B, p < 0.001).  After 8 days in culture, deep zone hydrogels contained a greater 

amount of sGAG than superficial zone hydrogels (p < 0.001).  This trend persisted 

through 15 days of culture, where middle zone hydrogels also contained more sGAG than 

superficial zone hydrogels (p < 0.001). 
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 Data from the analysis of radiolabeled precursor incorporation were consistent 

with gross biochemical content and revealed interesting differences among chondrocytes 

with different zonal origins.  3H-proline incorporation rates decreased with time in culture 

for superficial zone hydrogels (Figure 6.5A, p < 0.001).  However, 3H incorporation was 

stable through 8 days of culture in middle and deep hydrogels before significantly 

dropping off after 15 days of culture (p < 0.001).  Additionally, 3H incorporation was 

higher in middle and deep zone hydrogels compared to superficial zone hydrogels after 

both 3 and 8 days of culture (p < 0.001).  On day 15 of culture, 3H incorporation levels 

for all zones were comparable. 
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Figure 6.5 Biosynthesis rates of zone-specific chondrocytes in fibrin hydrogels cultured 
in free swelling conditions. (A) 3H-proline incorporation as a measure of total protein 
synthesis. (B) 35S-sulfate incorporation as a measure of proteoglycan synthesis.  

 indicates significant difference from Superficial; ‡  indicates significant difference 
from Middle. 
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 The incorporation rate of 35S-sulfate was not different between 3 and 8 days in 

culture for superficial zone hydrogels, but then was significantly decreased by 15 days in 

culture (Figure 6.5B, p < 0.001).  In contrast, 35S incorporation increased in middle and 

deep zone hydrogels from days 3 to 8 of culture, but had significantly declined by 15 

days in culture (p < 0.001).  Additionally, after 3 days of culture 35S incorporation in 

middle zone hydrogels was higher than in superficial zone hydrogels (p < 0.05).  After 8 

days in culture, however, 35S incorporation in both middle and deep zone hydrogels was 

significantly higher than in superficial zone hydrogels (p < 0.001).  Finally, there were no 

significant differences in 35S incorporation among any of the zones after 15 days in 

culture.  Taken together, these results indicated that the phenotypic differences among 

zone-specific chondrocytes were largely maintained in three-dimensional fibrin hydrogel 

culture. 

6.3.2 Zone-Specific Articular Chondrocytes:  Oscillatory Tensile Loading 

 Having established that fibrin hydrogels were suitable for preserving phenotypic 

distinctions in zone-specific chondrocytes, the effects of intermittent oscillatory tensile 

loading on chondrocytes derived from specific tissue zones were explored.  Constructs 

were precultured for 7 days in free swelling conditions and then subjected to 3 days of 

intermittent oscillatory tensile loading.  Additional constructs were only cultured for a 

total of 3 days in free swelling conditions, serving as an early time point control.  Culture 

and loading times for all remaining studies presented in this chapter are summarized in 

Table 6.2 

 Consistent with previous studies, chondrocytes from all zones proliferated from 

days 3 to 10 in culture (Figure 6.6, p < 0.001).  DNA data are again presented as 
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normalized to the mean value of the “3 Day” constructs from each zonal group.  

Additionally, superficial zone constructs had a higher cell density compared to constructs 

containing cells from either the middle or deep zones (Figure 6.6, p < 0.05), but there 

were no differences between constructs containing chondrocytes from the middle and 

deep zones.  Finally, no effect of tensile loading was found on cell density for constructs 

containing chondrocytes from any of the three zones. 
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Figure 6.6 DNA content of fibrin hydrogel constructs seeded with zone-specific 
chondrocytes and subjected to intermittent oscillatory tensile loading.  indicates 
significant difference from Superficial. 

 

 

 Extracellular matrix synthesis rates, as indicated by 3H-proline and 35S-sulfate 

incorporation, varied (1) over time in culture, (2) with tissue zone, and (3) with the 

application of oscillatory tensile loading (Figure 6.7).  As seen in the previous studies, 
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3H-proline incorporation decreased with time in culture in superficial zone constructs, but 

increased with time in culture for middle and deep zone constructs (Figure 6.7A, p < 

0.005).  Additionally, deep zone constructs had higher 3H incorporation compared to 

superficial zone constructs after 3 days of culture (Figure 6.7A, p < 0.002).  After 10 days 

in culture (“Unloaded” group), deep zone constructs had elevated 3H incorporation rates 

compared to both superficial and middle zone constructs (p < 0.001), and middle zone 

constructs had higher a 3H incorporation rate than superficial zone constructs (p < 0.001).  

Oscillatory tensile loading decreased 3H-proline incorporation only for deep zone 

constructs (p < 0.001). 
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Figure 6.7 Biosynthesis rates of zone-specific chondrocytes in fibrin hydrogel constructs 
subjected to intermittent oscillatory tensile loading.  indicates significant difference 
from Superficial;   indicates significant difference from Middle; ‡  indicates tension 
significantly different from unloaded. 
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 The incorporation rate of 35S-sulfate increased from day 3 to day 10 in culture for 

constructs containing cells derived from each of the three tissue zones (Figure 6.7B, p < 

0.001).  After 3 days of culture, the 35S incorporation rate in deep zone constructs was 

also higher compared to superficial and middle zone constructs (p < 0.05).  However, by 

10 days of culture (“Unloaded” group), 35S incorporation in deep zone constructs was 

significantly higher than in either superficial or middle zone constructs (p < 0.001).  

Middle zone constructs also had a higher 35S incorporation rate compared to superficial 

zone constructs after 10 days in culture (“Unloaded” group, p < 0.001).  35S-sulfate 

incorporation was not affected by oscillatory tensile loading except in superficial zone 

constructs, where it was increased due to loading (p < 0.005). 

  The sGAG content of hydrogel constructs from all zones increased 

significantly with time in culture (Figure 6.8, colored bars, p < 0.001).  Although after 

only 3 days of culture (“3 Day” group) no significant differences in construct sGAG 

content were found among constructs containing chondrocytes from different zones, after 

10 days in culture (“Unloaded” group) deep zone constructs had accumulated a 

significantly higher amount of sGAG compared to superficial or middle zone constructs 

(p < 0.001).  Additionally, over the course of the 10 day culture period superficial zone 

constructs released more sGAG into the culture medium than either middle or deep zone 

constructs (Figure 6.8, open bars, p < 0.001).  Finally, total sGAG synthesis (retained in 

constructs + released to media) after 10 days of culture was significantly higher in deep 

zone constructs compared with middle or superficial zone constructs (Figure 6.8, colored 

+ open bars, p < 0.001). 

 

 130



 

 

 

             Articular Chondrocytes 

sGAG

0

500

1000

1500

2000

 Superficial         Middle            Deep

µg
 / 

co
ns

tr
uc

t
‡

 

                       Unloaded Tension3 Day Unloaded Tension3 Day  

Figure 6.8 Total sGAG produced by zone-specific chondrocytes in fibrin hydrogel 
constructs subjected to intermittent oscillatory tensile loading.  Colored bars represent 
sGAG accumulated in the constructs, while open bars represent sGAG released to the 
culture medium.  indicates significant difference from Superficial;  ‡  indicates 
significant difference from Middle;  indicates tension significantly different from 
unloaded in all cases (construct, media, and total);  indicates tension significantly 
different from unloaded only for release to media. 
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 The introduction of intermittent oscillatory tensile loading produced several 

intriguing results regarding sGAG accumulation in the constructs and release to the 

media.  First, oscillatory tension significantly increased the amount of sGAG both 

retained in the construct (colored bars) and released to the media (open bars) only in 

superficial zone constructs (Figure 6.8, p < 0.02).  Release of sGAG to the media was 

also increased by oscillatory tensile loading in the middle zone constructs (p < 0.001), but 

no effect of tension was observed for deep zone constructs.  Intermittent oscillatory 

tensile loading increased total sGAG production (retained in construct + released to 

media) only in superficial zone constructs (p < 0.003).  Interestingly, the total sGAG 

production in superficial zone constructs that were subjected to oscillatory tensile loading 

was equivalent to that in both the middle and deep zone constructs.  Therefore, even 

though baseline levels of sGAG synthesis and 35S-sulfate incorporation in superficial 

zone constructs were consistently lower than those of middle or deep zone constructs, 

intermittent oscillatory tensile loading stimulated proteoglycan production in superficial 

zone chondrocytes to such an extent that these seemingly inherent zone-dependent 

differences were overcome.  Further characterization of the proteoglycans being 

produced and released to the culture medium by chondrocyte subpopulations was 

necessary to better understand the nature of the effects of intermittent oscillatory tensile 

loading. 

 Safranin-O staining on formalin fixed, paraffin embedded samples revealed that 

cells from all zonal groups were uniformly spread throughout the constructs (data not 

shown).  Glycosaminoglycan accumulation, evidenced by red/orange stain, clearly 

increased with time in culture as small “pockets” of positive staining material were seen 
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to form around individual cells or cell clusters.  No differences between superficial, 

middle, or deep zone cells or between loaded and unloaded constructs were readily 

apparent via Safranin-O staining. 

 Culture media collected on the final day of loading (day 10 of culture) were used 

to assess potential differences in the proteoglycans produced by zone-specific 

chondrocytes.  These media samples contained proteoglycans that had been synthesized 

and released during the final 24 hours of culture as well as proteoglycans synthesized on 

previous days of culture, but not released to the medium until the final 24 hours.  

Proteoglycan characterization was focused on those both synthesized and released during 

the final 24 hours of culture.  These proteoglycans would contain incorporated 35S-sulfate 

and thus be readily detectable via liquid scintillation counting. 

 Proteoglycans in the culture medium collected from the final 24 hours of culture 

were separated into two populations based on hydrodynamic size, as evidenced by two 

peaks in the liquid chromatography data (Figure 6.9A,C,E).  The Sepharose CL-4B used 

in the size exclusion chromatography columns has a fractionation range of 70 kDa to 

20,000 kDa.  The two proteoglycan populations were most clearly delineated in culture 

medium from the superficial zone hydrogel constructs.  The first major peak, designated I 

in Figure 6.9, eluted near the void volume of the column and therefore corresponds to 

second peak, designated II, eluted much later and therefore corresponds to smaller 

macromolecules, perhaps small proteoglycans such as decorin and biglyan as well as 

aggrecan that has been processed via enzymatic cleavage. 
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Figure 6.9 Analysis of proteoglycans and proteins released to the medium on the final 
day of culture using size exclusion liquid chromatography. (A, B) Superficial zone 
constructs. (C, D) Middle zone constructs. (E, F) Deep zone constructs. Lines labeled I 
and II (A, C, E) designate peaks corresponding to large and small proteoglycans, 
respectively.  Data shown are the mean CPM values in each fraction for three replicates 
per group. 
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 The percentage of 35S-sulfate found in each of the two peaks was quantified.  

Chondrocytes from the deep zone incorporated a significantly larger amount of 35S into 

large proteoglycans compared with chondrocytes from the middle (Figure 6.10, p < 

0.0419) or superficial zones (p < 0.001).  Interestingly, the application of oscillatory 

tensile loading tended to cause more 35S to be incorporated into smaller proteoglycans, 

although this result was only statistically significant for deep zone chondrocytes (p < 

0.002).  From the column chromatography data alone, it is difficult to determine whether 

oscillatory tensile loading (1) decreased release of newly synthesized large proteoglycans 

relative to smaller proteoglycans, (2) preferentially increased the rate of synthesis and 

release of smaller proteoglycans, or (3) increased enzymatic activity leading to a higher 

release rate for smaller proteoglycan fragments. 
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Figure 6.10 Quantification of proteoglycans released to the medium on the final day of 
culture.  Data are shown as a percentage of 35S-sulfate found in peak I, interpreted as 
intact aggrecan molecules. Data represent the mean percentage values for three replicates 
from each group.  indicates significant difference from Superficial; ‡  indicates 
significant difference from Middle;  indicates tension significantly different from 
unloaded. 
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 Following size exclusion chromatography, fractions from each peak were pooled 

and concentrated.  Portions of three replicates from each group were pooled and 

proteoglycans were ethanol precipitated, separated via electrophoresis on Novex 4-12% 

gradient gels, and probed with antisera to various proteoglycans.  Lanes containing peak I 

fractions from each group were negative for the G1 (N-terminal of the core protein) and 

G3 (C-terminal of the core protein) domains of aggrecan as well as decorin and biglycan 

(Figure 6.11A-D, lanes corresponding to Peak 1).  This result was surprising considering 

DMMB analysis of the pooled fractions prior to ethanol precipitation indicated sufficient 

quantities for Western blotting and was comparable to (and in some cases greater than) 

values obtained for peak II fractions.  Unfortunately, the limited quantity of pooled 

material was exhausted performing the Western blot analyses shown in Figure 6.11.  

Therefore, we cannot positively confirm the presence of large proteoglycan molecules 

 (i.e. intact aggrecan) in the fractions that eluted in peak I, but this may be due to 

complications with the precipitation or gel loading procedures rather than due to the 

sample contents themselves. 

 Intact aggrecan was absent from lanes containing peak II fractions as no signal for 

either the G1 or G3 domains of aggrecan was found at molecular weights above 

approximately 100 kDa (Figure 6.11A,B).  Intact deglycosylated aggrecan core protein 

would be expected to migrate to ~350 kDa and react with both G1 and G3 antisera 

(Figure 6.11B, lane corresponding to AC, >250 kDa).  Conversely, decorin (Figure 

6.11C, ~ 70 kDa) and biglycan (Figure 6.11D, ~70 kDa) were readily detected in lanes 

comprised of peak II fractions.  The smear in the bands positive for biglycan may be the 
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Figure 6.11 Western blot analysis of proteoglycans released to the culture medium on the 
final day of culture and separated using size exclusion liquid chromatography. All 
samples were deglycosylated with chondroitinase ABC and keratinase I and II prior to 
loading. (A) Aggrecan-G1 domain, ~65 and ~90 kDa. (B) Aggrecan-G3 domain, ~60 and 
~110 kDa. (C) Decorin, ~75 kDa. (D) Biglycan, ~75 kDa.  “AC” in (B) indicates extract 
from articular cartilage tissue as a positive control. 
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result of incomplete deglycosylation prior to sample loading.  In addition, the G1 and G3 

domains of aggrecan were found at positions corresponding to known aggrecan cleavage 

fragments in peak II fractions (Figure 6.11A, ~90 and ~65 kDa and Figure 6.11B, ~110 

and ~60 kDa).  Although an equal volume of each sample (as opposed to an equal 

quantity of precipitated proteoglycans) was loaded into each lane of the gel, differences 

between samples from the three tissue zones or between unloaded and loaded samples 

were difficult to assess using Western blot data.  This is not surprising since differences 

among groups found via the size exclusion chromatography analysis were subtle. 

 Finally, the chromatography elution profiles for proteins containing 3H-proline 

that were synthesized and released during the final 24 hours of culture also revealed 

interesting results (Figure 6.9B,D,F).  Regardless of loading, cells from the superficial 

zone synthesized proteins that were similar in size and elution profile (Figure 6.9B).  In 

contrast, proteins synthesized by cells from the middle and deep zones were affected by 

oscillatory tensile loading.  Shifts in both the quantity and size of proteins released to the 

culture medium were seen with tensile loading (Figure 6.9D,F).  Culture media from 

middle and deep zone hydrogel constructs exposed to oscillatory tensile loading 

contained higher amounts of larger proteins compared to unloaded constructs.  

Interestingly, this effect of loading was not seen as simply a shift in the mean 

hydrodynamic size of proteins, but a change in the elution profile.  Therefore not only 

was the mean size of the proteins released to the medium increased by tensile loading, but 

also the proportion of larger to smaller proteins was increased. 
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6.3.3 Zone-Specific Meniscal Fibrochondrocytes:  Oscillatory Tensile Loading 

 Distinct subpopulations from the inner and outer regions of the meniscus were 

successfully isolated as evidenced by gene expression data (Figure 6.12).  Type II 

collagen gene expression levels in fibrochondrocytes from the inner zone were 

approximately 30-fold higher than in cells from the outer zone.  In contrast, type I 

collagen gene expression was similar for the two cell populations.  Aggrecan expression 

levels were slightly higher (nearly 2-fold) for inner zone fibrochondrocytes.  Conversely, 

decorin gene expression was approximately 2-fold higher in outer zone cells.  Finally, 

biglycan gene expression was approximately 5-fold higher for inner zone 

fibrochondrocytes compared with outer zone cells.  These data are consistent with 

previous data from our laboratory124.  Cell size, determined during cell viability and 

quantity assessments, was similar for the two subpopulations. 

 As seen in previous studies164, a trend for decreasing cellular content with time in 

culture was evident in the fibrochondrocyte seeded hydrogel constructs.  Additionally, 

after 10 days in culture (“Unloaded” group), outer zone constructs contained significantly 

fewer cells than inner zone constructs (Figure 6.13A, p < 0.001).  Total sGAG content 

increased from 3 to 10 days in culture for inner zone constructs, but decreased over time 

in outer zone constructs (Figure 6.13B, p < 0.005).  Additionally, the total sGAG content 

was significantly higher in inner zone constructs compared to outer zone constructs after 

10 days in culture (p < 0.001).  Intermittent oscillatory tensile loading had no apparent 

effect on construct sGAG content for cells from either tissue zone. 
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Figure 6.12 Zone-specific meniscal fibrochondrocyte collagen (A) and proteoglycan (B) 
gene expression prior to seeding into fibrin hydrogel constructs. 

 

 

 3H-proline incorporation increased over time in culture (p < 0.001), but was 

similar for constructs containing either inner zone or outer zone fibrochondrocytes 

(Figure 6.13C).  No differences were found in 3H incorporation into hydrogel constructs 

containing either cell subpopulation with the application of oscillatory tensile loading.  

35S-sulfate incorporation decreased with time in culture (p < 0.006), but was not affected 

by tissue zone or oscillatory tensile loading (Figure 6.13D).  Although the 3H 

incorporation levels were comparable between the meniscal fibrochondrocytes and the 

zone-specific articular chondrocytes, as expected 35S incorporation was much lower in 

the fibrochondrocyte hydrogel constructs. 
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Figure 6.13 Biochemical analyses of fibrin hydrogel constructs seeded with zone-specific 
fibrochondrocytes and subjected to intermittent oscillatory tensile loading. Construct (A) 
DNA content and (B) sGAG content. Construct (C) 3H-proline and (D) 35S-sulfate 
incorporation indicate total protein and proteoglycan synthesis, respectively.  

 indicates significant difference from Inner. 
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6.4 Discussion 

 The series of studies presented in this chapter investigated potential phenotypic 

differences among cells isolated from distinct zones of articular cartilage or meniscal 

fibrocartilage and their responses to intermittent oscillatory tensile loading.  Analysis of 

cell size demonstrated that chondrocyte diameter increased with increasing distance from 

the joint surface in immature bovine articular cartilage.  This result has been consistently 

seen in numerous species of various ages including adult and immature bovine22,181,182,187, 

adult porcine29, and adult human186.  Cell size in situ or immediately after enzymatic 

isolation appears to be a fairly universal indicator of zonal origin, although the 

differences in size between superficial and deep zones chondrocytes become less 

pronounced with time in culture29,181 and with age186,187.  Additionally, chondrocytes 

from both superficial and deep zones were shown to increase in size over 3 days of 

agarose culture181.  Cell size immediately after isolation provides a simple and reliable 

method of delineating chondrocyte subpopulations based on zonal origin. 

 Chondrocytes from all three tissue zones proliferated over time in fibrin hydrogel 

culture, but to different degrees.  In all studies, the cell density of hydrogels containing 

superficial zone chondrocytes increased at a higher rate than deep zone hydrogels.  This 

finding is in contrast to Lee et al.181, who observed that deep zone chondrocytes 

proliferated significantly faster in three-dimensional agarose culture compared to 

superficial zone cells.  Several potential explanations exist for this difference.  First, the 

aforementioned agarose study used chondrocytes from mature bovine 

metacarpophalangeal joints, whereas in our studies chondrocytes from immature bovine 

stifle joints were used.  Mature chondrocytes are known to be less metabolically active 
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than cells from immature animals, so it is conceivable that age could differentially 

influence the proliferative capacity of chondrocyte subpopulations.  Second, Lee et al. 

assessed proliferation only over the first 72 hours of culture using 3H-thymidine 

incorporation, but our study focused on longer culture times, up to 15 days, and assessed 

cellular content via measuring total DNA.  Therefore, a potential explanation is that deep 

zone chondrocytes proliferate more rapidly in the first few days of culture, but over time 

the proliferation rate of superficial zone chondrocytes increases.   

 A final possible cause for the differences seen in zone-specific chondrocyte 

proliferation is the different scaffold materials used.  Agarose is essentially inert and 

provides no mechanism for cells to directly interact with the matrix.  In contrast, fibrin 

has multiple cell binding sites and therefore enables direct cell-matrix interactions.  

Interestingly, total cellular content of micromass cultures of superficial zone 

chondrocytes from immature bovines was found to significantly increase from days 4 to 7 

of culture, but no changes were seen in deep zone chondrocytes or cells from mature 

animals187.  Micromass culture is essentially high density (i.e. 50x106 cells/mL), pellet-

like cell culture providing abundant direct cell-cell contact and potentially cell-matrix 

interactions.  Scaffold environment has been demonstrated to significantly influence 

chondrocyte proliferation and matrix synthesis during in vitro culture152; therefore 

chondrocytes of distinct zonal origin could be differentially affected by scaffold materials 

with different cellular interaction motifs.  In our fibrin hydrogel culture system cell 

density in hydrogels with superficial zone chondrocytes increased more rapidly than in 

hydrogel with deep zone chondrocytes, perhaps due to specific integrin or non-integrin 

cell-matrix interactions triggering cell cycle entry. 
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 Chondrocytes from distinct tissue zones exhibited different extracellular matrix 

synthesis profiles over time in culture.  Both 3H-proline and 35S-sulfate incorporation 

rates were higher in middle and deep zones cells compared to chondrocytes from the 

superficial zone for up to 8 days in culture.  The finding that chondrocytes from the 

deeper regions of the tissue produced more extracellular matrix than cells from nearer to 

the surface is consistent with numerous published studies investigating zone-specific 

chondrocytes from many different species in various culture conditions13,22,26,29,180-

182,186,187.  After 15 days in culture, however, 3H and 35S incorporation rates in constructs 

containing chondrocytes from any of the three zones had dropped significantly and were 

no longer significantly different from one another.  This dramatic decrease in the 

extracellular matrix synthesis rates at 15 days in culture was also seen in a previous study 

in our system, although to a somewhat lesser degree.  Matrix synthesis rates for 

chondrocytes in agarose culture have been shown to decrease over time, which may be 

due to increased matrix accumulation in the pericellular space89,188.  Thus, a similar 

mechanism may have contributed to the decline in 3H and 35S incorporation rates in our 

studies.  However, some zone-dependent differences in proteoglycan synthesis must have 

persisted past 8 days of culture since the sGAG content in middle zone hydrogels was 

highest after 15 days in culture.  Interestingly, this pattern is consistent with the 

proteoglycan distribution found in native tissue7. 

 Over time in culture, rectangular fibrin hydrogel constructs seeded with zone-

specific chondrocytes and used to investigate the effects of intermittent oscillatory tensile 

loading exhibited similar cellular proliferation and extracellular matrix synthesis 

characteristics to the hydrogels in our studies described above.  Thus, we could be 
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confident that the zone-specific chondrocyte isolation procedure as well as fibrin 

hydrogel culture yielded consistent and repeatable results. 

 Three days of intermittent oscillatory tensile loading did not affect 3H-proline 

incorporation rates for superficial or middle zone constructs, but did cause a significant 

decrease in 3H incorporation into deep zone constructs.  When the conditioned culture 

medium of deep zone constructs was analyzed via size exclusion chromatography, it was 

observed that medium from samples subjected to tension contained higher levels of 

proteins with incorporated 3H-proline compared to medium from unloaded samples (p < 

0.03).  It is difficult to directly compare 3H incorporated into proteins retained in the 

constructs and those released to the culture medium due to differences in construct and 

medium processing and analysis, but the increased 3H incorporation seen in the media 

may have offset the decreased incorporation found in the constructs.  The net effect 

produced would be an increase in protein release to the culture medium, but potentially 

no significant change in overall protein synthesis in response to tensile loading. 

 An interesting finding regarding the proteins synthesized and released to the 

media during the final day of culture was that intermittent oscillatory tension altered the 

elution profile of these proteins in the middle and deep zone chondrocytes, but not in the 

superficial zone chondrocytes.  Elution profiles for proteins released to the culture 

medium from middle and deep zone constructs exhibited a shift toward larger proteins as 

well as higher quantities of total protein released.  It is reasonable to assume that loading 

would cause an overall increase in the proteins released to the culture medium based on 

increased fluid flow through the constructs elevating transport rates.  However, if 

increased transport was the only mechanism governing changes in protein release to the 
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media following oscillatory tensile loading, a shift in the magnitude, but not necessarily 

the shape, of the elution profile would be expected.  Therefore oscillatory tensile loading 

may have promoted the synthesis of larger protein molecules, presumable collagens, by 

middle and deep zone chondrocytes, but not by superficial zone chondrocytes.  

Alternatively, oscillatory tensile loading could have induced enzymatic activity in middle 

and deep zone chondrocytes that facilitated the release of larger protein molecules to the 

culture medium.  Additional studies specifically investigating the characteristics of the 

proteins synthesized by chondrocytes from each tissue zone would be necessary to 

ascertain if either of these proposed mechanisms would account for the differences seen 

in our studies. 

 In native cartilage tissue, the collagen content is denser and the ratio of collagen 

to proteoglycans is higher near the joint surface compared with deeper regions7.  As a 

result, the tensile mechanical properties of the superficial zone in articular cartilage are 

greater than the rest of the tissue8,58,184.  The unique structure of the superficial zone of 

articular cartilage is thought to be a functional adaptation to the shear and tensile forces 

induced during normal joint motion7.  In our studies, proteins synthesized and released by 

superficial zone cells were not affected by oscillatory tensile loading and were essentially 

uniformly distributed across the entire column volume during size exclusion 

chromatography.  When chondrocytes from the middle and deep zones of the tissue were 

exposed to oscillatory tensile loading, the elution profile of proteins released to the 

culture medium became quite similar to that of the superficial zone chondrocytes.  This 

apparent shift in the size distribution of synthesized proteins may represent an adaptation 
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to a tensile mechanical environment and reveal subtle cellular changes in response to 

loading that are not apparent when measuring total protein production. 

 Intermittent oscillatory tensile loading increased 35S-sulfate incorporation in 

superficial zone constructs, but did not affect 35S incorporation in middle or deep zone 

constructs.  In addition, total sGAG accumulation in the superficial zone constructs as 

well as sGAG release to the culture medium by superficial zone chondrocytes were also 

increased by oscillatory tensile loading.  Thus, tension seemed to be a potent stimulus for 

proteoglycan production in superficial zone cells.  In contrast, both 15% static 

compression as well as dynamic compression at several frequencies were found to inhibit 

glycosaminoglycan synthesis by superficial zone chondrocytes in three-dimensional 

agarose culture181.  This difference is significant because it indicates that the effect on 

zone-specific chondrocyte extracellular matrix synthesis may be dependent on a specific 

mechanical environment.  Superficial zone chondrocytes may respond to tensile loading 

in a fundamentally different manner compared to compressive loading.  Since different 

scaffolding materials were used in these studies (fibrin versus agarose), it is difficult to 

make strong assertions regarding potential differences in mechanotransduction pathways 

involved in the tensile versus compressive loading.  However, both static and dynamic 

compression suppressed proteoglycan synthesis and accumulation by full thickness 

chondrocytes in fibrin hydrogels when applied continuously for up to 20 days140.  

Therefore, it is possible that compressive loading triggers cellular signaling pathways 

distinct from those potentially activated by tensile loading in superficial zone 

chondrocytes. 
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 Also of note was the observation that although oscillatory tensile loading 

increased proteoglycan synthesis and release to the culture medium in superficial zone 

constructs, the nature of these proteoglycans did not seem to be affected.  Regardless of 

loading, conditioned medium from superficial zone constructs contained a larger 

proportion of smaller proteoglycans and processed aggrecan fragments relative to large 

proteoglycans.  Therefore, the rate of proteoglycan synthesis of the superficial zone 

chondrocytes was increased by oscillatory tensile loading, but the nature of the 

proteoglycans being synthesized was unchanged.  This is in contrast to chondrocytes 

from the middle and deep zones, where a more substantial percentage of incorporated 35S 

was found in smaller proteoglycans and aggrecan fragments after the application of 

oscillatory tensile loading compared to unloaded controls.  Thus, oscillatory tensile 

loading differentially affected proteoglycan synthesis in zone-specific chondrocytes in a 

more intricate manner than simply modulating total production.  Functionally this 

difference implies that chondrocytes from the middle and deep tissue zones are more 

susceptible to phenotypic alterations induced by tensile loading than are superficial zone 

chondrocytes.  Since tension is not a significant component of the mechanical 

environment in the deeper regions of articular cartilage during physiologic loading, 

perhaps chondrocytes from these regions respond more dramatically when tensile loading 

is introduced.  However, superficial zone chondrocytes, which may experience more 

tensile loading in vivo, may be stimulated by oscillatory tension, but not necessarily 

induced to significantly alter the nature of extracellular matrix molecules produced or the 

degree to which those molecules are subsequently modified. 
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 Differences in the initial gene expression profiles and glycosaminoglycan 

accumulation over time in culture were evident between fibrochondrocytes from the inner 

and outer zones, but no significant differences were found in either 3H-proline or 35S-

sulfate incorporation rates.  Contrary to our initial hypothesis, oscillatory tensile loading 

did not significantly affect meniscal fibrochondrocytes from specific tissue zones.  

Extracellular matrix synthesis levels and general cellular metabolic activity is much 

lower in fibrochondrocytes compared with articular chondrocytes, and consequently the 

outcome measures used in this study (i.e. indicators of cellular proliferation and 

extracellular matrix synthesis) may not be sensitive enough or even appropriate for 

detecting the potential effects of tensile loading.  Analysis of gene expression or a more 

detailed investigation of the structural characteristics of extracellular matrix molecules 

produced in response to tensile loading may reveal more subtle features of zone-specific 

meniscal fibrochondrocytes. 

 The studies presented in this chapter revealed interesting and important 

differences in zone-specific chondrocytes; specifically how these subpopulations 

responded to intermittent oscillatory tensile loading.  Many of the results shown here 

were consistent with previous work investigating chondrocytes from distinct tissue zones 

in a variety of culture models.  However, some interesting differences were found that 

indicated zone-specific chondrocytes may respond to oscillatory tensile loading in a 

fundamentally different manner compared to compressive loading.  Additionally, 

chondrocytes from the deep zone, and to a lesser extent those from the middle zone, were 

induced to change the characteristics of extracellular matrix molecules synthesized in 

response to oscillatory tensile loading.  The overall protein and proteoglycan synthesis 
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rates in these chondrocyte subpopulations were not affected by tensile loading, but more 

subtle effects on the size distributions of extracellular matrix molecules were evident.  

Hence, chondrocytes from deeper regions in the tissue may be inherently more sensitive 

to an altered mechanical environment such as tension.  Consequently, engineered 

cartilage tissues using predominantly deep zone chondrocytes may behave quite 

differently during culture and after implantation compared to those using superficial zone 

chondrocytes.  Stratified tissue constructs that attempt to recapitulate the zonal 

inhomogeneities of native cartilage may also be subject to differential developmental 

patterns determined by the zonal origins of the cells used and the environment to which 

the constructs are exposed.  Understanding differential behaviors of zone-specific 

chondrocytes and fibrochondrocytes in a variety of mechanical and biochemical 

environments will be important to the successful development of functional tissue 

engineered cartilage and fibrocartilage replacements. 
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CHAPTER 7 
 

LONG TERM OSCILLATORY TENSILE LOADING 
OF ENGINEERED CARTILAGINOUS TISSUES 

7 
 

7.1 Introduction 

 A fundamental component to successful tissue engineering is the ability to 

produce tissue constructs with sufficient mechanical properties to function properly once 

implanted into a patient.  This characteristic is especially important for tissues such as 

cartilage and fibrocartilage whose primary function is to provide mechanical support.  

Many factors can influence the mechanical properties of tissue engineered constructs, 

including the quantity and structural organization (i.e. directional orientation or degree of 

cross-linking) of the extracellular matrix produced by the cells during in vitro culture.  

Strategies to increase extracellular matrix accumulation during in vitro culture have been 

explored in an effort to generate constructs with superior mechanical properties.  

Techniques such as using dynamic mechanical stimulation5,173, biochemical stimulation, 

or combinations of these two189 have yielded some successes, but producing tissue 

engineered cartilage with equivalent mechanical characteristics to native tissue is still 

beyond reach. 

 As demonstrated in the preceding chapters, oscillatory tensile loading, when 

applied for relatively short periods of time (e.g. ≤ 3 days), affected both chondrocyte and 

fibrochondrocyte matrix synthesis rates.  However, total extracellular matrix 

accumulation was not typically influenced by oscillatory tensile loading over these short 
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intervals.  To evaluate the potential of oscillatory tensile loading to stimulate total 

extracellular matrix deposition and accumulation, longer time periods of in vitro culture 

may be necessary.  Therefore, studies were undertaken to assess the effects of extended 

culture durations on matrix accumulation and the mechanical properties of the 

rectangular fibrin hydrogel construct system. 

 Initially it was important to characterize the changes in mechanical properties of 

the fibrin hydrogel constructs after extended culture in free swelling conditions.  

Although we hypothesized that the hydrogel constructs would remain viable, continue to 

accumulate extracellular matrix, and have improved mechanical characteristics after 

extended culture times, this free swelling study would determine the feasibility of using 

the fibrin hydrogel construct system over extended culture periods. 

 A subsequent study was designed to determine the effects of extended durations 

of in vitro culture coupled with oscillatory tensile loading.  The primary outcome 

measures were the construct mechanical properties both in tension and compression, but 

extracellular matrix synthesis and degradation were also investigated.  Previous work 

described in Chapter 5, indicated that longer durations of sustained oscillatory tensile 

loading may adversely affect extracellular matrix accumulation.  Therefore, an 

intermittent loading protocol, also detailed in Chapter 5, was chosen for the longer term 

loading study.  We hypothesized that extended durations of intermittent oscillatory tensile 

loading would result in hydrogel constructs with enhanced tensile and compressive 

mechanical properties.  Additionally, we proposed that this outcome would result from an 

increase in extracellular matrix accumulation as well as a directional orientation of the 

newly synthesized matrix. 
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7.2 Materials and Methods 

7.2.1 Tissue Harvest and Cell Isolation 

 Articular chondrocytes were obtained from 2 - 4 week old bovine stifle joints as 

previously described.  Briefly, articular cartilage was aseptically removed from the 

femoral-patellar groove and femoral condyles.  Cartilage from the full depth of the tissue 

was excised, although care was taken to exclude tissue from the deepest zones that may 

have included some calcified cartilage.  Tissue was minced and chondrocytes were 

isolated using 0.2% collagenase in DMEM supplemented with antibiotics at 37°C for 

approximately 40 hours.  The cell suspension was then passed through a sterile 74 µm 

mesh and concentrated via several centrifugation and wash steps.  Finally, chondrocytes 

were counted using a Beckman Coulter Vi-Cell XR, suspended in fresh DMEM, and 

seeded into rectangular fibrin hydrogel constructs as described in Chapter 5. 

7.2.2 Free Swelling Culture 

 Fibrin hydrogel constructs were cultured in free swelling conditions using 

rectangular 8-well tissue culture plates in an incubator held at 37°C and 5% CO2.  

Medium was changed every two days and the fully supplemented formulation described 

in Chapter 5 was used (Table 5.2).  The gentamicin and Fungizone were withdrawn from 

the culture medium after the third media change.  After 9, 18, or 27 days of culture, 6 

samples were randomly chosen for tensile mechanical testing.  The specimens were 

washed in sterile PBS and maintained at 37°C until shortly before testing. 
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7.2.3 Intermittent Oscillatory Tensile Loading 

 Fibrin hydrogel constructs were initially cultured for 6 days in free swelling 

conditions, as described in Section 7.2.2.  On the 6th day, constructs were randomly 

assigned to the unloaded or tension culture chambers (see Section 4.3) and allowed to 

culture without any loading for one additional day.  Thus, the total preculture time for 

this study was 7 days.  On the following day, an intermittent oscillatory tensile loading 

protocol was used to stimulate the fibrin hydrogel constructs.  Constructs were stretched 

using a 1.0 Hz sinusoidal wave form with a 5% ± 5% amplitude.  This protocol was 

applied for 12 hours followed by a 12 hour recovery period where constructs were held at 

0% displacement.  Culture medium was changed every day during the final hour of the 

recovery period.  A modified formulation of the fully supplemented culture medium 

described previously (Table 5.2) with gentamicin and Fungizone replaced with 

antibiotic/antimycotic was used for these studies.  The antibiotic/antimycotic solution 

was included in the medium during the first 7 days of culture and then only on days 14 

and 21 of the remaining culture period.  On these days, constructs were removed from the 

oscillatory tensile loading device, increasing the risk of bacterial or fungal contamination, 

and therefore necessitating the inclusion of the antibiotic/antimycotic solution.  Parallel 

constructs in the unloaded culture chambers served as controls at each time point. 

 After 2, 7, 14, 21, and 28 days of total culture, 8 constructs per group were 

removed from the oscillatory tensile loading device.  A group of 6 constructs was 

transferred to PBS and maintained at 37°C until shortly before mechanical testing.  The 

remaining two constructs were immediately fixed in 10% neutral buffered formalin for 25 
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minutes at 4°C, washed in PBS, and stored at 4°C until processing for cell morphology 

and extracellular matrix imaging. 

7.2.4 Mechanical Testing Procedures and Analyses 

Tensile Mechanical Tests 

 The dimensions of the fibrin hydrogel constructs were measured using a digital 

Vernier caliper (length and width) and a custom designed resistance micrometer 

(thickness).  Length measurements were taken from the interface of the fibrin hydrogel 

and the end blocks, width measurements were taken at the narrowest location along the 

hydrogel, and thickness measurements were taken at three points across the width of the 

hydrogel and averaged.  This method of determining the mean construct thickness was 

necessary because surface tension during casting caused the edges of the fibrin hydrogel 

to be thicker than the center region. 

 Custom designed aluminum adapters were used to interface the constructs with 

the EnduraTEC ELF 3200 testing frame and the load cell (Figure 7.1A).  Engineering 

drawings of the adapters can be found in Appendix B.  Once constructs were interfaced 

with the testing adapters, a small preload of approximately 0.05 N was applied to each 

construct to establish the start position for each test. Constructs were then subjected to 5 

cycles of preconditioning (0.1 Hz frequency, 2.5% ± 2.5% amplitude sinusoid), returned 

to the start position for 2 minutes of equilibration, stretched 2 mm (~ 10% engineering 

strain) at a rate of 0.1 mm/sec, and then held at this position for 2 minutes to allow for 

stress relaxation.  Time, position, and load data were collected during the ramp and stress 

relaxation portions of the tests at a sampling frequency of 100 Hz.  Constructs were then 
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returned to initial position and allowed to re-equilibrate for several minutes until the 

value of the measured load reached the tare load prior to testing. 

 Next, dynamic tensile tests were performed using frequencies covering two 

decades.  For the initial long term free swelling culture study, the dynamic tests were 

performed at 0.05, 0.1, 0.5, 1.0, and 5.0 Hz using a 10% ± 5% sinusoidal strain wave.  

However, to prevent damaging the fibrin hydrogels during testing, the amplitude of the 

sinusoidal waveform was reduced to 10% ± 1.5% for subsequent testing in the second 

study reported here.  The same range of testing frequencies was used.  The dynamic 

tension tests were begun by stretching constructs 0.1 mm/sec to a load value of 0.05 N.  

This position was designated as the new start position.  A 0.1 mm/sec linear ramp was 

performed to 10% engineering strain, which was the mean value for dynamic testing.  

Additionally, constructs were held at this position for 2 minutes before initiating the 

frequency sweep.  During the dynamic tests, 5 cycles were performed at each testing 

frequency, and data from the third cycle was collected for analysis.  Upon completion of 

the dynamic tension tests, constructs were removed from the adapters and allowed to 

equilibrate in PBS at room temperature for a minimum of one hour.  The EnduraTEC 

dynamic mechanical analysis (DMA) software was used to perform FFT analysis on the 

force and position data acquired during the dynamic frequency sweep.  The ratio of the 

fundamental components from the FFT analysis of the measured force and the measured 

displacement was used to calculate the dynamic stiffness (K*).  The dynamic modulus 

(E*) was then determined by multiplying K* by the ratio of the construct length to the 

construct cross-sectional area.  These values were calculated for each frequency used 

during the tensile testing procedure. 
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Figure 7.1 Mechanical testing of the fibrin hydrogel constructs in (A) the tension test 
configuration and (B) the compression test configuration. 
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Compressive Mechanical Tests 

 Only constructs from the long term intermittent oscillatory tensile loading study 

were tested in compression.  Following equilibration in PBS for at least one hour after 

tension tests, two 6 mm diameter cylindrical cores were removed from each fibrin 

hydrogel construct using a dermal biopsy punch (Figure 7.1B).  The diameter and 

thickness of each core were measured as described above.  Cores were tested in 

unconfined compression by first positioning them in a cylindrical polycarbonate chamber 

interfaced with an EnduraTEC ELF 3100 testing device.  The chamber was manually 

raised until the hydrogel core was within 2 mm of an impermeable stainless steel platen 

attached to a 1 N load cell and the actuator of the testing device.  The platen was slowly 

lowered until a load value of 0.05 N was achieved.  This position was recorded and used 

as the starting position for the test.  Without moving the platen, the chamber was filled 

with room temperature PBS, and the load cell was tared to 0.0 N to compensate for any 

surface tension forces between the PBS and the platen.  The platen was then lowered 10% 

of the hydrogel core thickness at 0.1 mm/sec, and held at this position for 10 minutes to 

allow for stress relaxation.  Time, position, and load data were collected throughout the 

ramp and relaxation portions of the tests at a 100 Hz sampling frequency. 

 The compressive ramp modulus was calculated using the slope of the stress-strain 

curve during the linear ramp.  An initial non linear region was observed up to 

approximately 5% strain.  The linear portion of the stress-strain curve was found to be 

between 5% and 10% strain, and thus the ramp modulus was calculated using data from 

this range by least squares regression.  The compressive equilibrium modulus was 

calculated by averaging the final 100 stress data points of the relaxation portion of the 
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test and then normalizing this value by the strain level (-0.10 in all cases).  The mean rate 

of change for the stress at this time was less than 0.025% per second.  Following 

compression tests, hydrogel cores were equilibrated in room temperature PBS for at least 

one hour before further processing. 

7.2.5 Extracellular Matrix Composition and Degradation Analyses 

 Following mechanical testing, each fibrin hydrogel construct was allowed to 

equilibrate in room temperature PBS for at least one hour and then the end blocks were 

separated from the hydrogel and discarded.  Constructs were measured for wet mass as 

three separate pieces:  the two 6 mm hydrogel cores and the remaining material from the 

rectangular constructs.  Samples were frozen, lyophilized to dryness, measured for solid 

mass, and stored at -20°C for further analysis. 

 Proteoglycans from one 6 mm diameter hydrogel core from each sample were 

extracted overnight with agitation at 4°C in 4M Guanidine HCl, 50mM sodium acetate, 

10mM MES, and protease inhibitors (5mM EDTA, 5mM IAA, 1x Protease Inhibitor 

Cocktail Set I), pH 7.5.  Vials were centrifuged for 30 minutes at 20,000 x g at 4°C to 

pellet insoluble material.  The supernatants were transferred to fresh tubes and assayed 

for sulfated glycosaminoglycans (sGAG) using the 1,9-DMMB dye assay169.  Equal 

volumes of extracted material were pooled in groups according to time in culture and 

loading condition.  Next, 3 volumes of ice cold 100% ethanol with 50mM sodium acetate 

was added to each pooled sample, and proteoglycans were precipitated at 4°C overnight.  

Proteoglycans then were deglycosylated with chondroitinase ABC and keratinase I and II.  

The protocol for Western blot analysis found in Appendix C was followed to detect the 

G1 domain and the NITEGE fragment of aggrecan core protein.  The NITEGE epitope is 
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revealed following enzymatic cleavage in the inter-globular domain of aggrecan core 

protein (Figure 7.2).  Aggrecanases, including ADAM-TS4 and ADAM-TS5, are known 

to specifically act on this site. 
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Figure 7.2 Diagram of enzymatic cleavage of aggrecan. (A) Intact aggrecan molecule 
depicting one site of aggrecanase activity. (B) Aggrecan fragment with exposed NITEGE 
neo-epitope. 

 

 

 Insoluble material remaining from guanidine extracts was soaked in 10 volumes 

of PBS overnight at room temperature.  Excess PBS was removed and samples were then 

frozen, lyophilized to dryness, and digested using 0.25 mg/mL proteinase K in 100 mM 

ammonium acetate at 60°C.  The DMMB dye assay was again used to determine the level 

of proteoglycan extraction. 

7.2.6 Extracellular Matrix Imaging 

 Formalin fixed constructs were stored in sterile PBS at 4°C before processing.  

The polyethylene endblocks were removed and each construct was sliced in half 

lengthwise to yield two pieces approximately 20 mm long x 5 mm wide x 3 mm thick.  

One portion from each construct was transferred to an embedding cassette and 
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maintained in 70% ethanol for at least 24 hours.  Samples were processed for paraffin 

embedding using graded alcohol dehydration followed by paraffin infiltration.  4 µm 

thick sections were cut from paraffin blocks and mounted on microscope slides.  Sections 

were obtained from regions near the construct surface as well as from the midsubstance. 

 Samples were deparaffinized and rehydrated in deionized water.  Proteoglycan 

accumulation and distribution in the construct sections were assessed using Safranin-O 

staining (see Appendix C for detailed protocol).  Cell nuclei were counterstained with 

hematoxylin.  Parallel samples were stained with Picrosirius Red to assess the collagen 

content and orientation in the constructs (protocol also found in Appendix C), and cell 

nuclei were again counterstained with hematoxylin.  Images were captured using 

conventional or polarized light microscopy on a Nikon E600 microscope and QCapture 

Pro software. 

7.2.7 Statistical Analyses 

 Data were analyzed using a general linear model and Tukey’s test for post hoc 

analyses with significance set at p < 0.05.  A multifactor model (loading and loading 

duration) was used for data from tensile mechanical testing and biochemical analyses.   

Interaction terms were included in the models as appropriate where the criterion for 

significance was satisfied.  Statistical significance represented in figures by the 

combination of connecting lines and symbols indicates the interaction term was not 

significant, whereas symbols alone indicate a significant interaction term and therefore 

statistical significance only in the associated treatment groups. 

 As described in Section 7.2.4, two cylindrical punches were taken from each 

fibrin hydrogel construct for mechanical testing in compression yielding a total of 12 
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samples.  Since the two samples from each construct were not independent, their data 

values were averaged and then treated as a single sample, yielding a sample size of 6.  A 

multifactor model (loading and loading duration) was initially used to analyze data from 

compression testing.  Additionally, the effects of tensile loading on construct 

compressive mechanical properties were analyzed with pairwise t-tests treating each 

loading duration group separately. 

 

7.3 Results 

7.3.1 Free Swelling Culture 

 Fibrin hydrogel constructs seeded with chondrocytes obtained from full thickness 

articular cartilage were cultured in free swelling conditions for up to 27 days.  The 

measured length and thickness of the hydrogel constructs decreased over time in culture, 

indicating compaction of the hydrogels (Table 7.1).  Measurements of the width of the 

hydrogels were not recorded, but only one sample (Day 27 group) exhibited any visibly 

noticeable contraction in this direction. 
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Table 7.1 Compaction of fibrin hydrogel constructs over time in free swelling culture 

Culture Time 
(days) 

Change in Length 
(from nominal 20 mm)

Change in Thickness 
(from nominal 3.0 mm) 

9 -1.58% ± 0.51% +4.56% ± 2.80% 

18 -2.71% ± 0.38% -7.33% ± 1.78%  

27 -6.44% ± 0.33% ‡  -14.2% ± 1.50%  

values are mean ± standard error of the mean 
 indicates significant difference from Day 9, p < 0.005 

‡  indicates significant difference from Day 18, p < 0.001 
 

 

 The results of the dynamic tensile tests indicated that the fibrin hydrogel 

constructs became stiffer over time (Figure 7.3).  Both the dynamic stiffness (K*) and the 

dynamic modulus (E*) increased significantly from day 9 to day 18 (p < 0.001) and again 

from day 18 to day 27 (p < 0.001).  This trend was consistent for each frequency tested, 

but only the results at 1.0 Hz are shown. 

 These two measures are not independent, but do provide complementary 

information.  For rectangular test specimens, the relationship between K* and E* is: 

thicknesswidth
lengthKE

⋅
⋅

=
**  

 The increase in E* over time in culture indicated the modulus of the hydrogel 

constructs was increasing, but a reduction in cross sectional area with no concurrent 

increase in stiffness could also yield this result.  However, since K* is independent of the 

cross sectional area, the increase in K* over time in culture indicated that the stiffness of 

the hydrogel constructs was increasing independent of dimensional changes.  

Additionally, the dramatic increases in the tensile mechanical properties (~69% and 

~94% from days 9 to 27 for K* and E*, respectively) far outweigh the modest changes in 
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the construct dimensions (Table 7.1).  The results of this study indicated that three 

dimensional fibrin hydrogel constructs seeded with articular chondrocytes exhibited 

enhanced mechanical characteristics following extended periods of in vitro culture. 

 

 

0.0

30.0

60.0

90.0

120.0

9 18 27
Days in Culture

K
* (

N
/m

) o
r E

* (
kP

a)
Dynamic Stiffness (K*)          
Dynamic Modulus (E*)

‡

‡

 

Figure 7.3 Dynamic tensile properties of fibrin hydrogel constructs in long term free 
swelling culture.  Both the dynamic stiffness and the dynamic modulus increased 
significantly with culture time.  indicates significant difference from Day 9; ‡  indicates 
significant difference from Day 18. 

 

 

7.3.2 Intermittent Oscillatory Tensile Loading 

 Fibrin hydrogel constructs were seeded with chondrocytes obtained from full 

thickness articular cartilage, cultured for 7 days in free swelling conditions and then 

cultured for up to 21 additional days using an intermittent oscillatory tensile loading 

protocol.  In all subsequent figures and discussion, groups are denoted by their time in 

free swelling culture and the time subjected to loading.  For example, “7 + 7” indicates 7 
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days of free swelling culture plus 7 additional days of culture either unloaded or with 

intermittent oscillatory tensile loading. 

Construct Mechanical Properties 

 The percentage of solid matrix in the constructs increased with time in culture 

(Figure 7.4A, p < 0.001).  Intermittent oscillatory tensile loading further increased the 

percentage of solid matrix in the constructs (Figure 7.4A, p < 0.004).  Much of this effect 

was due to a decrease in overall construct mass as evidenced by the concurrent reduction 

in construct cross sectional area induced by tensile loading (Figure 7.4B, p < 0.001).  The 

total amount of solid matrix, however, did increase over time for all groups.  

Interestingly, unloaded constructs showed no signs of compaction over time in culture.  

Digital images of the hydrogel constructs taken prior to mechanical testing further 

illustrated the dimensional changes induced by tensile loading (Figure 7.5). 
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Figure 7.4 Long term intermittent oscillatory tensile loading induced matrix compaction 
in fibrin hydrogel constructs.  (A) The percentage of solid matrix in the constructs 
increased with time in culture and tensile loading.  (B) The cross sectional area of the 
constructs remained constant over time in culture, but decreased with tension.  indicates 
tension significantly different from unloaded.  
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Figure 7.5 Images of fibrin hydrogel constructs after (A) 7 days of preculture plus 14 
days loading or (B) 7 days of preculture plus 21 days loading.  Note the subtle change in 
construct length after 14 days of intermittent oscillatory tensile loading (A, double arrow) 
and the noticeable decrease in construct width (B, arrow heads) and increase in construct 
length (B, double arrow) after 21 days of intermittent oscillatory tensile loading. 
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 Dynamic tension tests revealed results consistent with those seen in the long term 

free swelling culture study.  The dynamic tensile stiffness (K*) significantly increased 

with time in culture for unloaded constructs (Figure 7.6A, p < 0.001) as well as 

constructs subjected to oscillatory tensile loading (p < 0.01).  K* was not affected by 

tensile loading except after 21 days of loading where it was significantly decreased 

compared to unloaded controls (Figure 7.6A, p < 0.01).  In contrast, the dynamic tensile 

modulus significantly increased both with time in culture (Figure 7.6B, p < 0.001) and 

the application of intermittent oscillatory tensile loading (p < 0.001).  As discussed in 

Section 7.3.1, the differences in K* and E* resulted from changes in the overall construct 

dimensions. 
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Figure 7.6 Dynamic tensile mechanical properties of fibrin hydrogel constructs. 
(A) Dynamic tensile stiffness (K*) increased significantly with time in culture, but did 
not change in response to tension except in the 7+21 group. (B) Dynamic tensile modulus 
(E*) significantly increased with time in culture and with intermittent oscillatory tensile 
loading.   indicates tension significantly different from unloaded. 
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 Mechanical tests conducted in unconfined compression also revealed interesting 

characteristics regarding the development of the hydrogel constructs.  The results of the 

multifactor ANOVA indicated that the compressive ramp modulus, calculated as the ratio 

of stress to strain during the linear portion of the ramp to a 10% strain, increased from 

day 14 (7+7) to day 28 (7+21) for unloaded constructs (Figure 7.7A, p < 0.034), however 

p-values for comparisons between unloaded and tension groups were not significant.  In 

contrast, when data were analyzed with pairwise t-tests 7 or 14 days of intermittent 

oscillatory tensile loading was found to significantly enhance the construct compressive 

ramp modulus (p < 0.01).  After 21 days of loading, however, the compressive ramp 

modulus was not significantly different compared to unloaded controls.  The equilibrium 

compressive modulus, measured after 10 minutes of stress relaxation, also significantly 

increased with time in culture for unloaded constructs (Figure 7.7B, p < 0.001) according 

to ANOVA analysis.  However, pairwise t-tests indicated the equilibrium modulus was 

only affected by tensile loading in the 7+14 group where it was significantly elevated 

compared to unloaded controls (Figure 7.7B, p < 0.001).  Since all samples for 

compression testing had similar cross-sectional areas, the trends for the peak and 

equilibrium compressive loads, which were not normalized by the sample cross-sectional 

area, were consistent with data presented here. 
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Figure 7.7 Compressive mechanical properties of the fibrin hydrogel constructs. (A) The 
compressive ramp modulus increased with time in culture and further increased with 7 or 
14 days of intermittent oscillatory tensile loading (7+7 and 7+14 groups). (B) The 
compressive equilibrium modulus also increased with time in culture and additionally 
increased with 14 days of intermittent oscillatory tensile loading.  indicates tension 
significantly different from unloaded by pairwise t-tests. 

 

 

Construct Extracellular Matrix Content 

 The sGAG contents of the fibrin hydrogel constructs significantly increased with 

time in culture regardless of loading condition (Figure 7.8, p < 0.001), ultimately 

accounting for approximately 0.45% of the total construct mass and nearly 10% of the 

construct solid content after 28 days in culture.  Oscillatory tensile loading, however, did 

not have a significant effect on sGAG accumulation at any time point.  Data shown are 

the total sGAG content from one cylindrical core used for compressive mechanical 
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testing and are normalized to the wet mass of the core.  Data for non-normalized sGAG 

and sGAG normalized by dry mass had similar trends as data shown in Figure 7.8. 
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Figure 7.8 sGAG content of the fibrin hydrogel constructs normalized to wet mass.  
sGAG content increased with time in culture, but was not affected by tensile loading.  

 indicates significant difference from 7+0; ‡  indicates significant difference from 7+7. 

 

 

 Thin sections of paraffin embedded constructs were stained with Safranin-O to 

show glycosaminoglycan distribution and accumulation over the course of this study.  

Images of sections from constructs only cultured for 2 days revealed that chondrocytes 

were uniformly distributed throughout the constructs, but as expected, sGAG was 

virtually undetectable at this early time point.  Images from later culture times, however, 

clearly demonstrated an increase in sGAG accumulation over time in culture (Figure 7.9).  

Heaviest staining was seen immediately surrounding cells and cell clusters, but the 
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overall sGAG distribution was uniform within each construct.  Sections were obtained 

both from regions near the surface and at a depth of least 100 µm (5-8 cell diameters) into 

the constructs, and sGAG distribution and accumulation were similar in both locations.  

Higher magnification images revealed that sGAG was evenly distributed in the 

pericellular space of individual cells as well as around larger cell clusters (Figure 7.10).  

No substantial differences in sGAG accumulation or distribution were readily apparent 

between unloaded controls and constructs subjected to oscillatory tensile loading at any 

time point imaged. 

 Adjacent construct sections were stained with Picrosirius Red to investigate 

collagen deposition and organization within the constructs.  Collagen accumulation was 

found in similar patterns as sGAG.  Little collagen accumulation was found after 14 days 

in culture (Figure 7.11A, 7+7 group).  However, the pericellular space readily stained 

positive for collagen with increased time in culture (Figure 7.11B, 7+21 group).  

Differences in collagen staining between unloaded controls and constructs subjected to 

tension were not evident (images in Figure 7.11 were taken from unloaded constructs).  

The fibrillar structure of fibrin is similar to collagen, which caused high background 

staining in all images.  Finally, polarized light was used to assess collagen orientation in 

the constructs.  Images appeared similar to those of the midsubstance of articular 

cartilage samples used as positive controls.  Collagen fibers were found to be more well 

organized, and therefore more brightly colored in polarized light, in circumferential 

patterns around chondrocytes, but no linear collagen orientation was found in either 

unload constructs or those subjected to oscillatory tensile loading. 
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Figure 7.9 Safranin-O staining demonstrates proteoglycan accumulation in fibrin 
hydrogel constructs during long term intermittent oscillatory tensile loading culture.  
Scale bars are 500 µm. 
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7+21 Unloaded 

Figure 7.10 Higher magnification image of Safranin-O staining in a construct subjected 
to oscillatory tensile loading (7+21 culture group).  The interface between the fibrin 
hydrogel and the polyethylene end block is shown along the upper edge of this image 
(arrow). Scale bar is 100 µm. 

 

 

7+7 Unloaded 7+21 Unloaded 

AA BB

Figure 7.11 Picrosirius Red staining indicates collagen accumulation in unloaded fibrin 
hydrogel constructs.  (A) Little collagen was visible in the 7+7 constructs, but areas 
surrounding cells had some positive staining (arrows).  (B) Collagen accumulation was 
apparent in the 7+21 constructs as heavier staining was found around individual cells and 
cell clusters (arrows).  Scale bars are 500 µm. 
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Extracellular Matrix Degradation 

 To assess potential extracellular matrix degradation in our fibrin hydrogel 

construct system, proteoglycans were extracted from the 6 mm diameter cores used for 

compressive mechanical testing, and immunoblots for the G1 domain of aggrecan and a 

specific aggrecan cleavage fragment were performed.  Aggrecan G1 positive bands were 

detected in all construct extracts and migrated to positions corresponding to molecular 

weights greater than 250kDa, representing predominately intact aggrecan molecules 

(Figure 7.12A).  Much less intense band staining was seen at a variety of lower molecular 

weight positions in all groups.  Band intensity for the large aggrecan molecules appeared 

to increase with time in culture, correlating to the increases found in sGAG content 

described above.  Additionally, migration of these bands also increased with time in 

culture, indicating the presence of smaller aggrecan molecules likely due to C-terminal 

enzymatic cleavage in a process also seen in aging native tissue.  The increased aggrecan-

G1 band migration also appeared in samples from constructs subjected tensile loading.  

This effect was more pronounced in the 7+14 and 7+21 groups (Figure 7.12A, lanes 4-7).  

Thus, aggrecan processing may be triggered by longer periods of culture in three 

dimensional fibrin hydrogel constructs and accelerated by extended duration of tensile 

loading. 

 An antibody specific to the aggrecan-NITEGE cleavage fragment, known to be 

generated by aggrecanases such as ADAM-TS4 and ADAM-TS5 in cartilage tissues, was 

used in a subsequent immunoblot (Figure 7.12B, approximately 65 kDa).  Band intensity 

for aggrecan-NITEGE increased with time in culture.  The aggrecan-NITEGE positive 

band corresponding to constructs in the 7+21 group subjected to intermittent oscillatory 
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tensile loading also was more intense compared to the corresponding unloaded control 

group (Figure 7.12B, lanes 6-7).  Adobe Photoshop 5.5 (Adobe Systems) was used to 

analyze pixel intensity levels in regions encompassing individual bands.  Uniform 

rectangular areas were analyzed for each lane and the average pixel intensities were 

compared.  This analysis confirmed the observations that band intensity for aggrecan-G1 

increased with time in culture and band intensity for aggrecan-NITEGE increased with 

time in culture and with tensile loading in the 7+21 constructs.  The pixel intensity 

measurements for the NITEGE bands were also normalized by the measurements from 

the corresponding G1 bands, yielding results consistent with those discussed above. 
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         A:  G1-Aggrecan  B:  NITEGE cleavage fragment

Figure 7.12 Western blot analysis of guanidine extracts indicated significant 
accumulation of aggrecan and its degradation products in the fibrin hydrogel constructs.  
Proteoglycans were deglycosylated prior to loading. (A) Aggrecan processing increased 
over time in culture and with tension as indicated by the increasing migration of G1-
aggrecan band positions. (B) Accumulation of NITEGE epitope increased with time in 
culture and further increased after 21 days of tensile loading (B, lanes 6-7 ~65 kDa). 
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 Thin sections from paraffin embedded constructs were also processed for 

immuno-fluorescence detection of the aggrecan-NITEGE cleavage fragment.  Intense 

staining was found near the cell surface in all samples, however, no differences were 

apparent with time in culture or between loading groups.  Representative images of 

unloaded constructs from the 7+7 and 7+21 groups are shown in Figure 7.13. 

 

 

7+7 Unloaded 7+21 Unloaded 

A  B  

Figure 7.13 Immunofluorescence images of the aggrecan G1–NITEGE cleavage fragment 
in unloaded fibrin hydrogel constructs cultured for either 14 days (A, 7+7) or 28 days (B, 
7+21).  Staining for the –NITEGE fragment (green) was localized at the cell periphery.  
Blue is DNA.  Original magnification 100x. 

 

 

7.4 Discussion 

 The studies presented in this chapter were designed to investigate the effects of 

intermittently applied long term oscillatory tensile loading on chondrocyte seeded three 

dimensional fibrin hydrogel constructs.  Extended periods of intermittent mechanical 
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stimulation have been shown to enhance the mechanical properties of tissue engineered 

constructs5,102,173,190.  Therefore, we hypothesized that oscillatory tensile loading could 

also be an effective stimulus for producing engineered cartilaginous tissues with 

enhanced mechanical characteristics. 

 The percentage of solid mass of the fibrin hydrogel constructs increased with time 

in culture in both studies presented in this chapter.  As previously discussed, a portion of 

this effect was due to a decrease in the overall mass of the constructs.  Consistent with 

this decrease in construct mass were changes in construct dimensions.  These 

dimensional changes were presumably due to cell-mediated compaction of the fibrin 

matrix.  Intermittent oscillatory tensile loading applied for 14 and 21 days significantly 

enhanced matrix compaction.  Mechanical tension has been found to induce cell-

mediated matrix compaction in both fibrin and collagen scaffolds populated with several 

different cell types165,174,191-194.  However, matrix compaction in many of these cited 

studies occurred more rapidly and to a greater degree than what was seen in our system.  

This difference could have resulted from the higher initial protein concentration used in 

our system (50 mg/mL fibrin versus typically < 5 mg/mL fibrin or collagen).  

Additionally, chondrocytes do not typically have a highly contractile phenotype, unlike 

the fibroblasts or smooth muscle cells used in the reports cited above.  Thus, tensile 

loading may promote a more contractile phenotype in articular chondrocytes, similar to 

that seen in fibroblasts or meniscal fibrochondrocytes (see Chapter 5, section 5.3.1). 

 Both the tensile and compressive properties of the fibrin hydrogel constructs 

increased with time in culture.  This result was consistent with the observation that 

extracellular matrix molecule accumulation also increased with culture time.  Oscillatory 
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tensile loading further increased construct dynamic tensile modulus (E*), but it appears 

that this was due primarily to a reduction in cross-sectional area of the loaded constructs.  

However, modest increases in the compressive mechanical properties were caused by up 

to 14 days of tensile loading.  This finding is consistent with previous studies that have 

reported increases in the mechanical properties of tissue engineered cartilage constructs 

following 4 weeks of intermittently applied compressive loading5,173.  Interestingly, 

although these reports described more substantial increases in construct mechanical 

properties after loading than what were found in our studies, longer culture times were 

needed before any differences were seen.  After 21 days of intermittent oscillatory tensile 

loading, however, the mechanical properties of constructs in our system were either not 

significantly different or decreased compared to unloaded controls. 

 The large increase in matrix compaction along with the decreasing trends in the 

mechanical properties of constructs subjected to 21 days of intermittent oscillatory tensile 

loading indicated that increasing levels of extracellular matrix degradation may have 

been triggered.  During development, engineered tissues probably require some level of 

extracellular matrix degradation and turnover for proper tissue maturation.  If matrix 

degradation exceeds synthesis, however, then the growth and the potential for success of 

these tissues may be compromised.  Analyses of proteoglycans extracted from the fibrin 

hydrogel constructs indicated that a basal level of matrix degradation was occurring in all 

samples, and this level was increasing with time in culture.  Additionally, constructs 

subjected to 21 days of tensile loading appeared to contain increased levels of enzyme 

generated aggrecan fragments.  Hence, durations of this intermittent oscillatory tensile 

loading protocol longer than 14 days may increase enzyme activity in fibrin hydrogel 
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constructs thereby promoting extracellular matrix degradation and reducing mechanical 

integrity.  Additionally, cyclic tensile loading has been shown to increase the 

susceptibility of devitalized195 or glutaraldehyde crosslinked196 pericardium tissue to 

enzymatic degradation via exogenous bacterial collagenase.  The mechanism responsible 

is unknown, but this phenomenon could have resulted from conformational changes in 

matrix molecules thereby enhancing access to cleavage sites for proteolytic enzymes or 

simply from increased enzyme and proteolytic byproduct transport through the tissue.  

Oscillatory tensile loading in our system could have similarly enhanced degradation via 

extracellular matrix molecule deformation once a sufficient pool of proteolytic enzymes 

had accumulated within the constructs (i.e. after 21 days of loading). 

 The studies presented in this chapter demonstrated that our fibrin hydrogel 

construct system can be used for long-term in vitro culture of articular chondrocytes.  

Cells within the constructs appeared to maintain their chondrocytic phenotype and 

continued to produce proteoglycans for up to 28 days in culture.  Constructs accumulated 

newly synthesized extracellular matrix over time in culture, resulting in increased levels 

of stiffness in both tension and compression.  The intermittent oscillatory tensile loading 

protocol chosen for these studies also transiently enhanced construct mechanical 

properties.  This protocol utilized a 50% duty cycle consisting of 12 hours of oscillatory 

tensile loading followed by 12 hours of recovery each day.  Although this loading 

protocol was found to increase total glycosaminoglycan production over 7 days in earlier 

studies, it may not have been optimal for promoting extracellular matrix synthesis and 

retention over longer culture periods.  Further work could clearly be done optimizing the 

system in an effort to improve a number of outcome measures, such as matrix 
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accumulation and/or organization, construct mechanical properties, the suppression of 

excessive enzymatic activity, etc.  However, these studies have demonstrated that 

oscillatory tensile loading, when applied in intermittent bouts, can modulate chondrocyte 

behavior in fibrin hydrogel constructs and has the potential to enhance important 

characteristics of tissue engineered constructs.  Although tensile stresses and strains are 

not typically a dominant component of the mechanical environment in articular cartilage, 

understanding how chondrocytes respond to tension can lead to new insights regarding 

cartilage development, maintenance, degeneration, and strategies for repair. 
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CHAPTER 8 
 

CONCLUSIONS AND RECOMMENDATIONS 

8 
 

8.1 Summary 

 Disease and degeneration of orthopedic tissues such as articular cartilage and 

fibrocartilage severely impacts the quality of life for millions of patients.  Unfortunately, 

current surgical repair techniques do not adequately treat osteoarthritis and other 

degenerative joint diseases.  Thus, novel tissue engineering strategies may be necessary 

to combat disease progression and replace damaged tissue.  Both articular cartilage and 

the meniscal fibrocartilage in the knee joint are subjected to a complex mechanical 

environment consisting of compressive, shear, and tensile forces.  Therefore, engineered 

replacement tissues must be mechanically competent to successfully function after 

implantation into a joint.  Although mechanical integrity is crucial, engineered tissues 

must also perform biological functions (i.e. synthesis and maintenance of extracellular 

matrix molecules) that will be affected by the local mechanical and biochemical 

environment.  Understanding how these engineered tissues respond to applied mechanical 

stimuli will offer insights into improving techniques used in their development as well as 

how they may perform post implantation.  The work presented in this dissertation 

investigated the effects of oscillatory tensile loading on three dimensional engineered 

cartilaginous tissues in an effort to elucidate important aspects of mechanotranduction. 

 The series of studies presented in Chapter 3 provided detailed images of the 

cellular and extracellular matrix morphology in immature bovine meniscus tissues.  
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Cellular cytoskeletal organization was rounded and chondrocyte-like in the inner region 

of the tissue but gradually transitioned to a stellate morphology in the middle and outer 

regions.  These results agreed with a published study on rabbit menisci74.  Additionally, 

the distribution and organization of proteoglycan and collagen extracellular matrix 

molecules varied throughout the tissue.  The inner region of the meniscus was composed 

of a more diffuse matrix with larger aggrecan and type II collagen contents.  In contrast, 

both collagen and aggrecan were highly organized in the middle and outer regions of the 

tissue.  Large, circumferentially oriented type I collagen bundles dominated the 

extracellular matrix in the outer region with types II and VI collagen located near the 

periphery of these large fiber bundles.  Simultaneous imaging of multiple collagen 

species yielded results similar to those recently reported for types I and II collagen64, but 

also provided a unique view of the spatial relationship between types I and VI collagen.  

Type VI collagen was located at the periphery of large type I collagen fiber bundles with 

intense colocalization often found at fiber junctions.  Detailed investigations of native 

meniscal extracellular matrix structure not only offer insights into the functions of 

specific matrix components, but also can assist in developing design criteria for 

engineered replacement tissues. 

 The Oscillatory Tensile Loading Device, the custom designed bioreactor used in 

many of the studies presented in this dissertation, represented a novel contribution to the 

field of tissue engineering.  This versatile device was capable of imparting a well defined 

and repeatable oscillatory tensile displacement to hydrogel constructs.  The design of the 

construct interface ensured that the strain field generated in the constructs during loading 

was highly uniform.  In addition to being useful for investigating specific cellular 
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responses to tensile loading (as was the goal in this work), this device could also be used 

for conditioning large numbers of tissue engineered constructs for future in vivo studies. 

 The series of studies described in Chapter 5 explored the effects of a wide variety 

of oscillatory tensile loading protocols on articular chondrocytes and meniscal 

fibrochondrocytes seeded in three dimensional fibrin hydrogel constructs.  Longer 

durations of sustained loading inhibited the matrix synthesis of both cell types and 

increased chondrocyte proliferation; however, these effects were not found for shorter 

loading durations.  This result suggested that shorter durations of tensile loading may be 

able to stimulate extracellular matrix metabolism.  Chondrocyte gene expression levels 

for types I and II collagen and aggrecan, however, were not substantially influenced by 

short durations (1, 4 or 8 hours) of oscillatory tensile loading.  Therefore, repeated bouts 

of short durations of loading were applied in an intermittent protocol in an effort to 

enhance the chondrocyte response.  Three days of intermittent oscillatory tensile loading 

using the “3 Hour” protocol inhibited extracellular matrix synthesis, but three days of the 

“12 Hour” protocol stimulated proteoglycan synthesis.  Finally, longer durations of these 

intermittent protocols were found to enhance overall sGAG production, but much of this 

synthesized matrix was lost to the culture medium and not retained in the construct.  This 

set of studies provided evidence that oscillatory tensile loading could be used to modulate 

chondrocyte metabolism, and to a lesser extent fibrochondrocyte metabolism, during in 

vitro culture.  Specifically, the “12 Hour” intermittent protocol was selected for future 

studies because this loading regime showed potential for stimulating chondrocyte 

extracellular matrix synthesis. 
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 The effects of oscillatory tensile loading on constructs containing cells derived 

from the entire articular cartilage or meniscus were often subtle.  Therefore studies were 

undertaken to isolate the responses of chondrocytes and fibrochondrocytes derived from 

distinct regions of the tissues.  Zone-specific chondrocytes seeded into fibrin hydrogels 

exhibited similar matrix biosynthesis trends as found in native tissue22 and other in vitro 

culture environments26,29,183.  Additionally, zone dependent differences were found in 

response to intermittent oscillatory tensile loading.  Tensile loading significantly 

enhanced proteoglycan synthesis in chondrocytes from the superficial zone.  This 

difference was more striking for the total sGAG produced, (retained in the constructs plus 

released to the culture medium).  Additionally, protein synthesis was only inhibited in 

deep zone cells by tension.  To better characterize the proteoglycans and proteins released 

to the culture medium, column chromatography was used to separate them based on 

hydrodynamic size.  Consistent with previously published reports26, superficial zone 

chondrocytes incorporated a lower proportion of 35S-sulfate into larger proteoglycans 

compared to cells from the deep zone.  Additionally, tensile loading significantly 

decreased the proportion of 35S-sulfate incorporated into large proteoglycans only in deep 

zone chondrocytes.  Decorin, biglycan, and both N-terminal and C-terminal aggrecan 

fragments were detected in all samples containing small proteoglycans.  Tensile loading 

also induced an increasing shift in the size of proteins synthesized by middle and deep 

zone chondrocytes.  Finally, tensile loading did not significantly affect the matrix 

metabolism of meniscal fibrochondrocytes isolated from either the inner or outer zone of 

the tissue.  These studies demonstrated that chondrocytes from distinct cartilage zones 

differentially respond to tensile loading. 
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 Chapter 7 described studies investigating the effects of extended durations of 

oscillatory tensile loading on fibrin hydrogel constructs seeded with articular 

chondrocytes.  Modest levels of hydrogel compaction were seen after 4 weeks of free 

swelling culture, and the mechanical characteristics of the constructs were significantly 

enhanced over this time.  Up to 3 weeks of the “12 Hour” intermittent oscillatory loading 

protocol substantially increased hydrogel compaction compared to unloaded controls, as 

evidenced by a reduction in cross sectional area.  Additionally, tensile loading did not 

significantly alter construct dynamic tensile stiffness (K*) compared to unloaded controls 

except after 21 days of loading where K* was decreased.  In contrast, construct dynamic 

tensile modulus (E*), which was normalized by the construct cross sectional area, was 

significantly enhanced by tensile loading.  Construct compressive mechanical properties 

were also enhanced by up to 14 days of tensile loading.  Extracellular matrix molecules 

accumulated in all constructs over time in culture, but these levels were not affected by 

tensile loading.  Western blot analyses indicated that increased enzymatic cleavage of 

aggrecan occurred over time in culture and was further increased by 3 weeks of tensile 

loading.  These studies demonstrated that some mechanical characteristics of chondrocyte 

seeded fibrin hydrogel constructs were enhanced with oscillatory tensile loading; 

however, extended durations of loading triggered increased enzymatic activity, resulting 

in extracellular matrix degradation. 

 

8.2 Conclusions 

 The studies presented in this dissertation provided the first extensive set of 

investigations into the effects of oscillatory tensile loading on articular chondrocytes and 
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meniscal fibrochondrocytes cultured in a three dimensional tissue engineered scaffold 

system.  The results of these studies provide insights into cartilage mechanobiology and 

may be useful for cartilage and meniscus tissue engineering applications.  Oscillatory 

tensile loading was found to modulate chondrocyte and fibrochondrocyte metabolism in a 

protocol dependent manner.  Longer durations of sustained loading inhibited extracellular 

matrix synthesis, whereas shorter durations and intermittent loading could stimulate 

matrix production.  A variety of different loading protocols were explored to determine 

important characteristics for stimulating chondrocyte extracellular matrix synthesis.  Our 

results along with data available in the literature suggest that effective stimuli for 

chondrocyte metabolism may result from shorter loading durations applied for a few 

hours per day.  Alternatively, employing a protocol where loading is only applied every 

other day may additionally enhance this effect197.  A single cycle of compressive loading 

has been shown to enhance chondrocyte matrix production over a 4 week culture 

period178.  Minimal mechanical stimulation in this manner could serve to trigger 

mechanotransduction signaling pathways, thereby increasing extracellular matrix 

production.  Concurrently, the increase loss of matrix molecules to the culture medium 

that results from subsequent cycles of mechanical deformation could be reduced by the 

extended recovery periods used in this loading regime. 

 Much of the work presented in this dissertation was originally motivated by the 

clinical need to address the inadequate reparative capacity of meniscal fibrocartilage 

following injury.  Stimulating meniscal fibrochondrocytes with oscillatory tensile loading 

is a promising approach because the mechanical environment in the meniscus has a large 

tensile component.  Thus, we designed a custom bioreactor capable of applying well-
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defined oscillatory tensile strains to tissue engineered constructs in a controlled in vitro 

environment.  Although fibrochondrocyte protein synthesis levels in vitro are comparable 

to those of articular chondrocytes, fibrochondrocyte proteoglycan metabolism was found 

to be quite low compared to articular chondrocytes.  However, it should be noted that 

many of the analysis techniques used in these studies were developed to evaluate articular 

cartilage explants or isolated chondrocytes during in vitro culture.  Although 

fibrocartilage shares much in common with articular cartilage, these outcome measures 

may not be optimal for investigating fibrochondrocyte behavior.  Fibrochondrocyte total 

proteoglycan and protein synthesis levels were not typically affected by tensile loading in 

our system, but these measures only reflect gross matrix production.  More specific 

molecular biochemical evaluations of the matrix molecules produced by 

fibrochondrocytes might be necessary to resolve potential differences in subtle structural 

features or functional characteristics.  Alternatively, fibrochondrocyte metabolism could 

be enhanced using growth factor supplementation to augment the responsiveness of these 

cells to mechanical or other modes of stimulation, as has been explored in our 

laboratory108,198.  Finally, it is important to bear in mind that certain limitations exist in all 

in vitro model systems.  To achieve a well defined and controlled system, many of the 

growth factors, cytokines, and chemotactic or haptotactic factors found in an in vivo 

environment are not present in a model system.  Therefore, it is important to keep the 

results presented here regarding the metabolic inactivity of meniscal fibrochondrocytes in 

this context of an in vitro model system.  However, the above experimental outcomes, 

combined with the higher metabolic activity of articular chondrocytes, led us to primarily 
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focus our remaining studies on the responses of articular chondrocytes to oscillatory 

tensile loading. 

 Elucidating various aspects of meniscal fibrochondrocyte biology provides 

important information regarding how fibrocartilage tissues develop, are maintained, and 

can be repaired.  However, using primary fibrochondrocytes is not necessarily a 

requirement for a successful engineered fibrocartilage tissue.  Early studies in our 

laboratory demonstrated that oscillatory tensile loading could induce a morphological 

change in articular chondrocytes cultured in fibrin hydrogel constructs164.  Chondrocytes 

in unloaded constructs remained rounded with peripheral F-actin filaments, but a 

significant subpopulation of chondrocytes subjected to tensile loading developed a 

stellate morphology with extensive cytoskeletal projections containing both vimentin and 

vinculin proteins.  This new morphology was strikingly similar to the morphology 

meniscal fibrochondrocytes spontaneously developed in the same culture conditions 

indicating this chondrocyte population may have the potential to adopt more 

fibrochondrocyte-like characteristics when stimulated with tension.  These results 

suggested that since articular chondrocytes are inherently more metabolically active than 

fibrochondrocytes, inducing a phenotypic shift in chondrocytes may be beneficial for 

fibrocartilage tissue engineering applications.  In addition to the potential of chondrocytes 

as a fibrocartilage tissue engineering cell source, investigating their responses to 

oscillatory tensile loading is interesting from a mechanobiology perspective. 

 Although it is well established that chondrocyte morphology and phenotype vary 

throughout the tissue depth, relatively few efforts have been made to understand how 

these different cell populations respond to exogenous mechanical stimuli.  We report here 
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that chondrocytes from the superficial zone of articular cartilage increased proteoglycan 

production in response to a three day intermittent oscillatory tensile loading protocol.  

The molecular characteristics of the PGs being produced and released to the culture 

medium were found to be similar to unloaded controls.  In essence, oscillatory tensile 

loading stimulated proteoglycan synthesis in superficial zone chondrocytes, but did not 

structurally alter those synthesized molecules.  This zone-specific response of articular 

chondrocytes to tensile loading may be related to zone dependent differences found in the 

mechanical environment of native tissue.  As discussed previously, the surface of 

articular cartilage experiences some tensile strain during normal joint articulation.  The 

combination of compression and a sliding motion as two cartilage surfaces move past one 

another will produce shear strain at the surface and therefore local tensile strain will also 

be present.  Thus, chondrocytes resident in the superficial zone of articular cartilage may 

experience tension as part of their normal mechanical environment.  Moderate levels of 

appropriate mechanical stimulation increase cartilage metabolism at both the cell and 

tissue levels.  Therefore, a reasonable hypothesis is that tensile stimulation could increase 

metabolism in chondrocytes that are accustomed to mechanical tension, i.e. cells near the 

articular surface.  This idea is also consistent with our observation that the nature of the 

proteoglycans being produced by superficial zone chondrocytes did not change, and 

therefore tensile loading simply stimulated metabolism without altering the synthesis 

product.  Furthermore, a specific protein that may have a role in this response is 

proteoglycan-4 (PRG4, a.k.a. superficial zone protein).  PRG4 is an intermediate sized 

proteoglycan (~345 kDa MW) with only a few chondroitin sulfate and keratin sulfate 

GAG chains199.  Found exclusively at cartilage surfaces and in synovial fluid, it has been 
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implicated in maintaining the frictional properties of the articular surface.  A recent report 

described an upregulation of PRG4 mRNA and protein synthesis in response to combined 

compression and sliding stimuli not found when only compressive loading was 

applied200.  Although we did not specifically investigate whether tensile loading increased 

PRG4 synthesis in superficial zone chondrocytes, it is reasonable to suggest that PRG4 

production could be influenced by tensile loading and that the substantial increase in 

proteoglycan production in our system was at least partially due to PRG4 production.  

Assessing the extent that tensile loading may modulate PRG4 synthesis could elucidate 

an interesting aspect of cartilage mechanobiology: whether tensile loading generally 

enhances proteoglycan metabolism in superficial zone chondrocytes or specifically 

stimulates particular molecules such as PRG4. 

 As previously stated, our results suggest that tensile loading stimulated 

metabolism in superficial zone chondrocytes without altering the synthesis products; 

however, this was not the case for chondrocytes from the middle and deep zones.  For 

deep zone chondrocytes oscillatory tensile loading increased the proportion of lower 

molecular weight proteoglycans.  This trend was also found for middle zone cells, but 

further experiments are needed to confirm this result.  Chondrocytes from the middle and 

deep zones would typically experience little mechanical tension in situ; therefore tensile 

loading can be considered a more abnormal mechanical environment for these cells.  

Thus, the change in the characteristics of the proteoglycans synthesized by middle and 

deep zone chondrocytes in response to tensile loading may indicate an adaptation to the 

altered mechanical environment.  This response could have been the result of middle and 

deep zone cells synthesizing a larger proportion of the smaller, dermatin sulfate PGs 
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(decorin and biglycan) or generating more aggrecan fragments through increased enzyme 

activity. 

 In addition to the differences found in the proteoglycans, oscillatory tensile 

loading applied to middle and deep zone chondrocytes induced a shift in the size 

distribution of proteins with incorporated 3H-proline.  Chondrocytes typically incorporate 

the majority of 3H-proline into newly synthesized collagen molecules.  Therefore, this 

shift in the size of proteins containing 3H in response to tensile loading most likely 

represents an increase in the size of collagen molecules being assembled and released to 

the culture medium.  This response may also be an adaptation to the altered mechanical 

environment.  A tempting speculation is that tensile loading induced middle and deep 

zone chondrocytes to produce larger collagen molecules to better accommodate the new 

local mechanical environment.  Further characterization, such as an ELISA, could 

determine what portion of these proteins are in fact collagens, and column 

chromatography in combination with specific degradative enzymes may serve to more 

precisely assess the size and composition of these proteins.   

 These studies are the first to demonstrate differential responses of zone-specific 

chondrocytes to oscillatory tensile loading in three dimensional in vitro culture and have 

important implications for cartilage tissue engineering and mechanobiology.  Our 

findings of differential proteoglycan and protein synthesis characteristics between 

chondrocytes obtained from the superficial zone and the middle and deep zones of 

articular cartilage suggest that chondrocyte origin is an important consideration when 

developing strategies for cartilage tissue engineering.  Often chondrocytes from the entire 

thickness of articular cartilage are pooled to generate tissue engineered constructs, but 
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cellular subpopulations may respond in very different ways to the same exogenous 

stimuli.  Specifically, in response to tensile loading, chondrocytes from the middle and 

deep zones exhibited proteoglycan synthesis characteristics that may not be beneficial for 

the development of tissue engineered cartilage replacements.  Therefore, it is important to 

recognize differences in zone-specific chondrocyte mechanobiology when employing 

exogenous mechanical stimuli.  Engineered cartilaginous tissues implanted into a defect 

site will most likely experience some tensile strain as the deformation of the construct 

and the surrounding cartilage tissue will differ due to their mismatch in material 

properties.  Hence, understanding the effects of tensile loading on chondrocyte 

subpopulations can help direct strategies for conditioning engineered tissues prior to 

implantation as well as promoting successful integration, healing, and ultimately cartilage 

restoration. 

 Long term in vitro culture using intermittent mechanical stimulation has been 

demonstrated to be an effective means of generating engineered tissues with enhanced 

mechanical characteristics5,173.  We found that modest increases in the mechanical 

properties of chondrocyte seeded fibrin hydrogel constructs could be achieved with up to 

14 days of intermittent oscillatory tensile loading.  However, beyond this time point, both 

tensile and compressive mechanical properties were adversely affected by tensile loading.  

Evidence of increased aggrecanase activity was also found in constructs subjected to 21 

days of tensile loading.  These results indicate that extended durations of tensile loading, 

even when applied intermittently, may trigger a degradatory response from chondrocytes.  

Enhancement of matrix degrading enzyme activity was also seen in chondrocytes 

subjected to sustained dynamic compression140 and fibroblasts subjected to sustained 
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dynamic stretch165.  In each of these studies, only 8-10 days of sustained loading were 

necessary to induce changes in enzyme activity, whereas 21 days of intermittent tensile 

loading, but not shorter loading durations, increased levels of aggrecan fragments in our 

system.  The total number of cycles during 8-10 days of sustained loading is roughly 

equivalent to the number of cycles in 21 days of our “12 Hour” intermittent loading 

protocol (1 Hz frequency in all cases).  Potentially a threshold for the total number of 

deformation cycles (or # cycles per unit time) exists that delineates stimulatory from 

degradatory loading regimes.  Hence, our intermittent loading protocol may have had 

stimulatory effects at earlier time points, but was akin to an “over use” regime at longer 

times inducing an increased in matrix degrading enzyme activity.  Identifying a threshold 

for metabolic stimulation could greatly assist in developing mechanical loading protocols 

by optimizing stimulatory effects while avoiding regimes where detrimental catabolic 

processes are prominent. 

 Unexpectedly, substantial quantities of aggrecan cleavage fragments were 

produced after long term culture in the fibrin hydrogel constructs regardless of loading 

condition.  In contrast, few aggrecan fragments were released to the culture medium 

during in vitro culture of untreated articular cartilage tissue explants201, and the majority 

of aggrecan synthesized by chondrocytes and retained in alginate constructs over 21 days 

of culture had full-length core protein202.  Additionally, fibrin has been found to activate 

gelatinase activity in glomerular endothelial cells203.  In normal physiologic wound 

healing, fibrin clots rapidly form at injury sites and possess many factors that recruit cells 

to initiate repair processes.  Wound healing involves both anabolic and catabolic 

responses as cells remodel the extracellular matrix at the site of injury.  Hence, although 
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fibrin clots are typically only found in articular cartilage following penetration of the 

underlying subchondral bone, extended chondrocyte culture in a fibrin matrix may induce 

aspects of a wound healing response such as enhanced enzyme activity.  This 

characteristic may be unique to fibrin hydrogels and limit their potential for use in the 

long term development of engineered tissues.  However, if the catabolic side of the 

wound healing response could be controlled and the anabolic side exploited, then such a 

response could be advantageous for construct development.  Selective enzyme inhibitors 

could be used to investigate this idea.  Since aggrecan molecules were clearly being 

degraded in these studies, selective aggrecanase inhibitors may be able to reduce or 

eliminate undesirable aggrecan cleavage.  Studies in our laboratory have shown that these 

inhibitors can reduce or delay the effects of interleukin-1α induced degradation in 

articular cartilage and meniscus tissue explants201,204; therefore, appropriately 

administered aggrecanase inhibitors may also be beneficial for promoting growth in 

engineered tissue constructs. 

 

8.3 Future Recommendations 

 The work completed for this dissertation provided novel contributions to the 

understanding of chondrocyte mechanobiology and may prove useful in developing 

engineered cartilaginous tissues for both articular cartilage and meniscal fibrocartilage 

repair.  Additionally, many of the immunofluorescence imaging techniques as well as the 

bioreactor developed for this research can be used for numerous future investigations. 

Many avenues for further exploration could be pursued based on this work, and a few 

specific recommendations for future developments are provided here. 
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 The Oscillatory Tensile Loading Device was designed for maximum adaptability, 

allowing for future modifications as needed.  The device is currently controlled using 

closed loop position feedback, but is not capable of measuring forces applied to 

constructs during operation.  Incorporating force monitoring into the system would 

provide valuable additional information during construct loading.  A simple means to 

achieve this goal would be to place a force transducer in line with the mobile tension 

rake.  However, this would only provide a global force measurement that included the 

sum of the forces generated by each construct plus the inertia of the system.  Although 

technically challenging, placing micro pressure transducers on each stationary pin of the 

culture chambers could yield individual force measurements for each construct.  The 

tensile mechanical characteristics of each construct could then be monitored 

longitudinally over the course of an experiment, which would be a significantly 

improvement over destructive end point testing currently used.  This modification will 

enhance the capabilities and overall utility of the Oscillatory Tensile Loading Device for 

future applications. 

 The depth of knowledge regarding cellular responses to tensile mechanical stimuli 

could be enhanced by using varied cell sources.  All of the studies presented here 

employed an immature bovine cell source.  This cell type is well characterized in the 

articular cartilage literature and thus was an excellent choice for these studies.  However, 

when using an animal cell source, questions always arise regarding the applicability of 

the results to humans.  Additionally, most patients in need of cartilage repair are older 

adults.  Chondrocyte extracellular matrix metabolism and sensitivity to growth factor 

stimulation are known to decrease with age; therefore cells from older animals (or older 
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humans) may not respond in the same manner as the immature cells used here.  Related 

to this concern is that cells from different animal species can also respond differently to 

exogenous stimuli.  As was discussed in Chapter 3, variations exist in the patterns of 

extracellular matrix molecule distribution in menisci from different species.  Conducting 

additional studies using either human cells or at least cells from another animal species 

would be beneficial for understanding if the results presented here are more universal or 

highly age and species dependent.  Additionally, bone marrow stromal cells (BMSCs) 

have the potential to differentiate down chondrocytic or fibrochondrocytic pathways and 

therefore make an attractive cell source for tissue engineering.  Using the Oscillatory 

Tensile Loading Device developed at part of this dissertation research, on-going work in 

our laboratory is investigating the combination of loading and growth factor 

supplementation to differentiate BMSCs into cells that produce a fibrocartilage 

matrix205,206. 

 Local mechanical, biochemical, and cellular interaction characteristics are 

extremely important influences on cellular behaviors.  The three dimension culture 

system used throughout this dissertation work employed a homogeneous fibrin hydrogel 

scaffold material.  Numerous studies have shown that cellular responses to a variety of 

stimuli are dependent on the local environment, and therefore observations regarding 

specific cellular behaviors in one scaffold system may not necessarily translate to 

another.  Thus, conducting similar studies using another material, preferably with 

different cellular adhesion characteristics, would help determine if the results presented 

here are more broadly applicable.  Fibrin has many cellular adhesion sites as well as 

regions that can bind other adhesion molecules, such as fibronectin.  Presumably 
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chondrocytes and fibrochondrocyte can interact with this matrix using a number of 

different receptors.  Studies with more inert hydrogel materials such as alginate or 

poly(ethylene glycol), which do not contain cell receptor binding sites, could help isolate 

the effects of direct tensile strain on the cell membrane from indirect mechanical 

stimulation caused by macroscopic deformation of the construct.  Synthetic self 

assembling peptide materials are also an ideal choice, because they can often be 

thermally, photochemically, or ionically crosslinked on demand.  Additionally, specific 

molecules can be tethered to these materials generating custom designed cell-scaffold 

interface regimes.  Adhesion molecules, such as RGD peptides, could be used to promote 

specific integrin interactions that initiate desirable signaling cascades.  Growth factors or 

cytokines could be immobilized on the scaffold material to provide a homogeneous 

distribution of these signaling molecules.  Studies using materials with well defined cell-

scaffold interface regimes could be used for more in depth investigations into 

mechanotransduction signaling pathways as well as specific synergistic effects between 

mechanical and biochemical stimuli. 

 In addition to exploring scaffolds with diverse cell-matrix interaction regimes, the 

organization of the scaffold matrix itself may prove important.  Both articular cartilage 

and fibrocartilage tissues are highly inhomogeneous and anistropic, but the vast majority 

of tissue engineering studies, including those presented here, have utilized a homogenous 

scaffold material.  In our studies, uniaxial tensile loading did not induce either cellular or 

extracellular matrix directionality.  Therefore, employing a scaffold material with a 

predefined orientation, perhaps to mimic the outer zone of the meniscus, could be 

advantageous in generating a replacement tissue with enhanced mechanical 
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characteristics or growth potential.  The haptotactic factors of an organized scaffold 

matrix environment could promote the development of a newly synthesized extracellular 

matrix with preferential directionality.  Used in combination with mechanical stimulation 

this technique could further enhance tissue construct growth, ideally leading to the 

development of a biologically and mechanically functional extracellular matrix. 

 The ability to generate a functional extracellular matrix is fundamental to the 

success of tissue engineering and regenerative medicine therapies.  Our major motivation 

for performing the detailed immunofluorescence imaging of meniscus tissue was to gain 

an understanding of the spatial relationships of various matrix molecules in situ.  During 

in vitro culture, chondrocytes and fibrochondrocytes synthesize and organize a new 

extracellular matrix in a time dependent manner.  Many researchers have found ways to 

augment matrix synthesis via exogenous stimuli, but few have been able to accomplish 

this while also controlling the organization of this developing matrix.  Applying the 

imaging techniques presented in Chapter 3 to tissue constructs early in their development 

would provide useful insights important growth and maturation characteristics of repair 

tissue.  For example, examining specific matrix molecules produced by meniscal 

fibrochondrocytes as well as their organization in the first several days of culture would 

be useful for understanding the initial events in fibrochondrocyte-mediated tissue repair.  

Additionally, comparisons of developmental patterns among various scaffolding 

materials would also be useful in determining whether early extracellular matrix 

deposition and organization are dependent on specific cell-scaffold interactions.  

Knowledge acquired from these types of imaging studies could then be used to develop 
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strategies that can either promote or repress specific extracellular matrix synthesis 

patterns observed during construct maturation. 

 In summary, along with the specific findings regarding articular chondrocyte and 

meniscal fibrochondrocyte responses to oscillatory tensile loading, this dissertation 

explored ideas that can propel future research in a number of areas.  The Oscillatory 

Tensile Loading Device is a robust bioreactor currently used for tissue engineering and 

mechanobiology investigations in cartilage and meniscus but also has the potential to be 

used with other tissue such as tendons and ligaments.  Exploring differences in 

chondrocytes derived from specific zones of articular cartilage is becoming an area of 

increasing research interest, and identifying zone-specific characteristics that can be 

exploited in developing cartilage tissue replacements represents an exciting opportunity.  

Finally, immunofluorescence imaging techniques developed in this work for native 

tissues are powerful tools that can be used to identify key relationships between 

molecules and assess how well those relationships are being emulated in engineered 

tissues. 
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APPENDIX A 
 

OSCILLATORY TENSILE LOADING DEVICE 

A 
 

A.1  List of Device Components 

Table A.1:  Components purchased for the oscillatory tensile loading device 

Part Number Description Vendor 

0150-1208 PS01-23X80-M20 Linear Motor Stator, 
with IP67 connector LinMot 

0150-1301 PL01-12X170/120 Linear Motor Slider LinMot 

0150-1901 Mounting Flange 23x5mm LinMot 

0150-1981 KS01-D/M-04 4 meter IP67 cable LinMot 

0150-1651 E110-VF LinMot Amplifier/Controller LinMot 

0150-1944 24V/150W Power Supply LinMot 

0150-1941 48V/300W Power Supply LinMot 

P165 MC202 Trio Motion Controller Trio Motion 
Technology 

P350 RS232 Serial Cable Trio Motion 
Technology 

RGH24Z30F00A 0.5 Micron encoder with reference switch Renishaw 

A-9541-0037 RGM245S 90 degree mount reference Renishaw 

A-9541-0124 Scale installation tool Renishaw 

A-9523-6050 50 cm encoder tape Renishaw 

RSR9WZM-110 110mm mini block and rail assembly THK Co. 

 
all above components purchased through Dynamic Solutions (Lilburn, GA) 

LK-70 Linear misalignment coupling,  
G1/G2 = M5 

R+W Coupling 
Technology 
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Table A.2:  Components custom made for the oscillatory tensile loading device 

Figure Reference Quantity Description Source 

Figure A.2A 4 Tension culture chamber JM Machining

Figure A.2B 2 Unloaded culture chamber JM Machining

Figure A.3 4 Mobile Tension rake JM Machining

Figure A.3 48 Stainless steel pins for tension rake JM Machining

Figure A.4 8 Polycarbonate construct mold JM Machining

Figure A.5A 2 End block length spacer JM Machining

Figure A.5B 2 End block width spacer JM Machining

Figure A.6A 2 End block punch template (upper) JM Machining

Figure A.6B 2 End block punch template (lower) JM Machining

Figure A.7A,B 2 Polycarbonate base plate Mech. Engr. 

Figure A.8A 2 THK slide mount Mech. Engr. 

Figure A.8B 2 Optical encoder mount Mech. Engr. 

Figure A.8C 2 Linear motor bracket Mech. Engr. 

Figure A.9A 2 Rake connector plate Mech. Engr. 

Figure A.9B 2 Double rake interface plate Mech. Engr. 

Figure A.9C 2 Double chamber spacer block Mech. Engr. 

Figure A.10 4 Culture chamber shield Mech. Engr. 

* JM Machining (Lawrenceville, GA) 

* Mech. Engr. = Georgia Tech School of  
Mechanical Engineering machine shop 
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A.2  Oscillatory Tensile Loading Device Engineering Drawings 

 

 

 

Figure A.1:  Complete assembly of the oscillatory tensile loading device. 
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Figure A.2 Stationary culture chambers 
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Figure A.3 Mobile tension rake and stainless steel pins 
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Figure A.4 Polycarbonate construct mold 
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Figure A.5 End block length and width cutting tools 
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Figure A.6 End block punching templates 
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Figure A.7 Polycarbonate base plate 
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Figure A.8 Linear motor and linear slide bearing interface pieces 
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Figure A.9 Tension rake and culture chamber interface pieces 
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Figure A.10 Polycarbonate culture chamber shield 
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A.3  Device Operation Instructions 

A.3.1 Device Startup 

1. Culture chambers, tension rakes and rake interface pieces, and socket head cap screws 
should all be sterilized prior to beginning this procedure 

2. Polycarbonate culture chamber shield should be thoroughly wiped with 70% ethanol 
before being transferred to the biosafety cabinet and again once they are inside the 
cabinet 

3. Move the Oscillatory Tensile Loading Device into the biosafety cabinet 

4. Ensure the device control box is in the off position and the computer is connected to 
the control box via the RS-232 cable 

5. Connect the motor power/signal cable from the control box to the LinMot motor 

6. Connect the optical encoder cable to the control box, and secure with back shell 
screws 

7. Power on the control box using the power switch on the back of the unit 

8. Open the Motion Perfect 2 software on the attached computer 

9. Open the Terminal window and select COM 0 

   Also open the Axis Parameters and Oscilloscope windows so that the motion of 
 the device can be monitored during operation 

10. Run the program called STARTUP_1 

   ** IMPORTANT:  the tension rake cannot be connected to the device while 
 running this program 

11. Follow the instructions and choose which controller is being used (1) or (2) 

12. The device will move to a mechanical stop and then find the home position for the 
system being used.  Wait for the program to finish.  Now the motor will be positioned 
at the home position for 20 mm long constructs 

13. Attach the Tension Culture Chamber to the Base Plate with at least 2 M6 socket head 
cap screws.  Ideally, constructs should have been positioned in the culture chambers 
previously 

14. Carefully insert the stainless steel pins on the Tension Rake into the holes in the 
construct end blocks.  Start on one end of the chamber and work down to the opposite 
end.  Be careful to minimize unnecessary deformation of the constructs 

15. Attach the Tension Rake to the interface piece with 4 M6 socket head cap screws 

   ** If two Tension Culture Chambers are being used simultaneously, the Double 
 Rake Interface piece must also be attached at this point 

16. Repeat steps 13-15 above for the second culture chamber if necessary 
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17. Ensure all screws are tight, but do not over tighten as this may damage the 
polysulfone pieces 

18. Check the alignment of the device and ensure that the end blocks of all constructs are 
in line with the axis of tensile displacement 

19. Fill each well in the culture chamber with 1.5 – 2.0 mL of culture medium 

20. Position the polycarbonate culture chamber shield over the chambers and rake pieces 

21. Before moving the system to the incubator, it is advisable to perform 15-30 cycles of 
oscillatory tensile loading to check that everything is functioning properly.  See steps 
24-26 below and choose the “input number of loading cycles option” 

22. Carefully move the Oscillatory Tensile Loading Device to the tissue culture incubator 
keep it as level as possible during the transfer.  The culture chambers should be 
positioned at the back of the incubator with the back of the motor facing the door of 
the incubator.  Close the inner door to the incubator and position the cables such that 
the door can be latched closed 

23. Collect the cables and secure them in a manner to keep them out of the way 

24. Run the program INTERMITTENT in the Motion Perfect 2 software 

25. Follow the instructions of the program 

   Enter which controller and system is being used 

   Enter the desired peak-to-peak amplitude if the sine wave in mm 

   Enter the desired frequency of motion in Hz 

   Choose the type of protocol to be performed:  Intermittent, Continuous, or Input
 number of cycles 

   * For the Input number of cycles option, enter the desired number of cycles as an 
 integer 

   * For the Intermittent option enter (1) how many minutes of loading are desired, 
 (2) how many minutes are recovery are desired, and (3) how many repeats of this 
 cycle are desired. 

    Note: Minutes of loading and recovery must be entered as integers ≥ 1 

    Note: Loading period + recovery period = 1 cycle 

26. The program will instruct the device to begin automatically and the parameters 
selected will be outputted to the screen 

27. Visually check the device to ensure it appears to the operating correctly.  Also check 
the motion profile using the digital oscilloscope in the Motion Perfect 2 software to 
ensure that the following error is within tolerance limits 

   ** Minor adjustments can be made to the device tuning parameters (in the Axis 
 Parameters window) to adjust the motion of the device 

   IMPORTANT: THIS SHOULD ONLY BE ATTEMPTED BY SOMEONE 
 WITH INTIMATE KNOWLEDGE OF TUNING THE DEVICE AS 
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 INCORRECT VALUES FOR THE TUNING PARAMETERS CAN LEAD TO 
 SYSTEM INSTABILITY AND DAMAGE OR DESTROY THE OSCILLATRY 
 TENSILE LOADING DEVICE 

28. Periodically check the motion profile of the device using the digital oscilloscope 

29. At any time during device operation the command “VR(1) = 0” can be entered into 
the Terminal window and the device will finish its current cycle, return to the home 
position, and the program will terminate 

 

A.3.2 Device Takedown 

1. Ensure the device is stopped or enter “VR(1) = 0” into the Terminal window to stop 
the device motion.  The loading protocol parameters will be outputted to the screen 

2. DO NOT turn off the control box at this point 

3. Remove the device from the incubator and place on a wheeled cart 

4. Move the cart to a nearby laboratory bench with adequate space 

5. Carefully remove the culture chamber shield and the tension rake(s) 

6. Transfer constructs to appropriate buffer solution depending on the specific 
experimental design of the study 

7. Disable the drivers in the Motion Perfect 2 software (upper left corner of the screen) 

8. Turn off power to the control box by the switch on the back 

9. Wait at least 2 minutes before disconnecting the motor and encoder cables from the 
control box 

10. All components of the Oscillatory Tensile Loading Device should be thoroughly 
cleaned with 70% ethanol after each use and before storing the device 

 

  Following these simple procedures will ensure that you maximize the performance of 
the Oscillatory Tensile Loading Device as well as your own productivity, safety, and 
enjoyment for many years to come. 
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A.4  Source Code for Operational Programs 

A.4.1 Program STARTUP_1 

'THIS PROGRAM WILL INITIALIZE THE CONTROLLER UPON STARTUP 
 
'DETERMINE WHICH CONTROLLER IS BEING USED 
controlcheck: 
PRINT " " 
PRINT "WHICH CONTROLLER IS BEING USED?" 
PRINT "ENTER (1) FOR CONTROLLER #1 OR (2) OR CONTROLLER #2: "; 
INPUT controller 
IF (controller <> 1) AND (controller <> 2) THEN 
    PRINT "INVALID ENTRY - RETRY" 
    GOTO controlcheck 
ENDIF 
IF controller = 1 THEN 
    offset = 2.9019 
ELSE 
    offset = 2.3850 
ENDIF 
PRINT " " 
PRINT "OFFSET FOR CONTROLLER #"; 
PRINT controller[0]; 
PRINT " IS "; 
PRINT offset[4]; 
PRINT " MM" 
 
'INITIALIZE AXIS PARAMETERS 
UNITS=2000 
SPEED=.5 
ACCEL=1000 
DECEL=1000 
FE_LIMIT=.1 
CREEP=.5 
 
'INITIALIZE CONTROL LOOP PARAMETERS 
P_GAIN=2.75 
I_GAIN=.5 
D_GAIN=7 
OV_GAIN=0 
VFF_GAIN=80 
 
DATUM (0) 
SERVO=1 
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WDOG=1 
WA (5000) 
REVERSE 
WAIT IDLE 
WA (5000) 
DATUM(0) 
DEFPOS(0) 
SERVO=1 
WDOG=1 
WA (5000) 
DATUM (1) 
WAIT IDLE 
WA (2000) 
MOVEABS(offset) 
WAIT IDLE 
DEFPOS(0) 
PRINT "STARTUP PROGRAM COMPLETE ON CONTROLLER #"; 
PRINT controller[0] 
STOP 
 

 

A.4.2 Program INTERMITTENT 

'THIS PROGRAM WILL USE THE CAM FUNCTION 
'TO PERFORM A SINE WAVE MOTION 
'THE OPTION FOR INTERMITTENT PROTOCOLS WILL BE INCLUDED 
 
'INITIALIZE AXIS PARAMETERS 
UNITS=2000 
SPEED=1 
ACCEL=2 
DECEL=2 
FE_LIMIT=1.0 
'INITIALIZE CONTROL LOOP PARAMETERS 
P_GAIN=.7 
I_GAIN=.0035 
D_GAIN=7 
OV_GAIN=-3 
VFF_GAIN=-28 
 
VR(1)=0 
VR(2)=0 
VR(3)=0 
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SERVO=1 
WDOG=1 
 
'DETERMINE WHICH CONTROLLER IS BEING USED 
controlcheck: 
PRINT " " 
PRINT "WHICH LOADING SYSTEM IS BEING USED?" 
PRINT "ENTER (1) FOR SYSTEM #1 OR (2) FOR SYSTEM #2: "; 
INPUT controller 
IF (controller <> 1) AND (controller <> 2) THEN 
    PRINT "INVALID ENTRY - RETRY" 
    GOTO controlcheck 
ENDIF 
IF controller = 1 THEN 
    P_GAIN=.7 
    I_GAIN=.0029 
    D_GAIN=7 
    OV_GAIN=-3 
    VFF_GAIN=-30 
ELSE 
    P_GAIN=.7 
    I_GAIN=.025 
    D_GAIN=.5 
    OV_GAIN=-2 
    VFF_GAIN=10 
ENDIF 
 
encchk: 
amp = 0 
freq = 0 
cycles = 0 
PRINT " " 
PRINT "WHAT IS THE DESIRED SINE WAVE AMPLITUDE IN MM? "; 
INPUT amp 
PRINT "WHAT IS THE DESIRED FREQUENCY IN Hz? "; 
INPUT freq 
PRINT " " 
PRINT "ENTER (2) FOR INTERMITTENT LOADING" 
PRINT "ENTER (1) FOR CONTINUOUS LOADING" 
PRINT "ENTER (0) TO INPUT NUMBER OF LOADING CYCLES: "; 
INPUT VR(1) 
PRINT " " 
IF (VR(1) <> 0) AND (VR(1) <> 1) AND (VR(1) <> 2) THEN 
    PRINT "ERROR, PLEASE RE-ENTER" 
    GOTO encchk 
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ENDIF 
IF VR(1)=0 THEN 
    PRINT "HOW MANY CYCLES ARE DESIRED? "; 
    INPUT cycles 
ENDIF 
IF VR(1)=2 THEN 
    PRINT "HOW MANY MINUTES OF LOADING? "; 
    INPUT loading 
    PRINT "HOW MANY MINUTES OF RECOVERY? "; 
    INPUT recovery 
    PRINT "HOW MANY REPEATS OF THIS PATTERN? "; 
    INPUT repeats 
ENDIF 
scale = amp * UNITS*1.0 
num_p = 50 
count = 0 
incrcount = 0 
waitcount = 0 
repcount = 0 
SPEED AXIS(0)= (2*amp)*freq 
ACCEL AXIS(0) = SPEED AXIS(0)*10 
DECEL AXIS(0) = SPEED AXIS(0)*10 
WAIT IDLE 
MOVEABS (0.0) 
WAIT IDLE 
MOVE (-amp*1.0) 
WAIT IDLE 
SPEED AXIS(0) = (num_p * freq)*1.0 
ACCEL AXIS(0) = SPEED AXIS (0)* 1000 
DECEL AXIS(0) = SPEED AXIS (0)* 1000 
dist = num_p 
FOR p= 0 TO num_p 
    TABLE(p,((-SIN(PI*2*p/num_p)/(PI*2))+p/num_p)) 
NEXT p 
FOR i= 1 TO num_p 
    TABLE(num_p+i,TABLE(num_p-i)) 
NEXT i 
IF (VR(1)=0) AND (cycles <>0) THEN 
    PRINT " " 
    PRINT "SPECIFIED CYCLES LOADING PROTOCOL:" 
    PRINT amp[2];" MM DISPLACEMENT AT ";freq[2];" Hz FOR ";cycles[0];" 
CYCLES." 
    FOR j= 1 TO cycles 
        'IF j=15 THEN 
        'SCOPE (ON,1,1000,7000,MPOS,DPOS,FE) 
        'TRIGGER 
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        'ENDIF 
        CAM(0,2*num_p,scale,dist) 
        count=count+1 
        VR(2) = count 
        WAIT IDLE 
    NEXT j 
ELSE 
    IF (VR(1)=1) THEN 
        PRINT " " 
        PRINT "CONTINUOUS LOADING PROTOCOL:" 
        PRINT amp[2];" MM DISPLACEMENT AT ";freq[2];" Hz." 
        REPEAT 
            CAM(0,2*num_p,scale,dist) 
            count=count+1 
            VR(2) = count 
            WAIT IDLE 
        UNTIL (VR(1) <> 1) OR (WDOG <> 1) 
    ELSE 
        IF (VR(1)=2) THEN 
            PRINT " " 
            PRINT "INTERMITTENT PROTOCOL:" 
            PRINT amp[2];" MM DISPLACEMENT AT ";freq[2];" Hz." 
            PRINT loading[0];" MIN LOADING, ";recovery[0];" MIN RECOVERY, "; 
            PRINT "REPEATED "; repeats[0];" TIMES." 
            REPEAT 
                incrcount = 0 
                waitcount = 0 
                VR(4) = 0 
                IF DPOS <> (-amp*1.0) THEN 
                    WAIT IDLE 
                    SPEED AXIS(0)= (2*amp)*freq 
                    ACCEL AXIS(0) = SPEED AXIS(0)*10 
                    DECEL AXIS(0) = SPEED AXIS(0)*10 
                    MOVE (-amp*1.0) 
                ENDIF 
                PRINT " " 
                PRINT "LOADING FOR ";loading[0]; 
                PRINT " MINUTES IN REPEAT #";repcount+1[0];"..." 
                REPEAT 
                    WAIT IDLE 
                    SPEED AXIS(0) = (num_p * freq)*1.0 
                    ACCEL AXIS(0) = SPEED AXIS (0)* 1000 
                    DECEL AXIS(0) = SPEED AXIS (0)* 1000 
                    CAM(0,2*num_p,scale,dist) 
                    incrcount = incrcount + 1 
                    VR(2) = incrcount 
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                UNTIL (VR(2)= freq*loading*60) OR (VR(1) <> 2) OR (WDOG <> 1) 
                VR(3) = VR(3) + VR(2) 
                WAIT IDLE 
                SPEED AXIS(0)= (2*amp)*freq 
                ACCEL AXIS(0) = SPEED AXIS(0)*10 
                DECEL AXIS(0) = SPEED AXIS(0)*10 
                MOVE (amp*1.0) 
                PRINT VR(2)[0]; " CYCLES WERE RUN "; 
                PRINT "IN ";VR(2)/(60*freq)[2];" MINUTES OF RUN TIME."; 
                PRINT " (REPEAT #";repcount+1[0];")" 
                IF (VR(1) = 2) AND (recovery > 0) THEN 
                    PRINT " " 
                    PRINT "WAITING FOR ";recovery[0]; 
                    PRINT " MINUTES IN REPEAT #";repcount+1[0];"..." 
                    REPEAT 
                        WA (60000) 
                        waitcount = waitcount + 1 
                        VR(4) = waitcount 
                    UNTIL (waitcount = recovery) OR (VR(1) <> 2) 
                    PRINT "WAITED ";VR(4)[0];" MINUTES OF RECOVERY TIME."; 
                    PRINT " (REPEAT #";repcount+1[0];")" 
                    repcount = repcount + 1 
                ENDIF 
            UNTIL (repcount = repeats) OR (VR(1) <> 2) 
            WAIT IDLE 
        ENDIF 
    ENDIF 
ENDIF 
WAIT IDLE 
IF DPOS <> 0 THEN 
    SPEED AXIS(0)= (2*amp)*freq 
    ACCEL AXIS(0) = SPEED AXIS(0)*10 
    DECEL AXIS(0) = SPEED AXIS(0)*10 
    MOVE (amp*1.0) 
ENDIF 
IF (VR(1) <> 2) AND (repcount = repeats) THEN 
    PRINT " " 
    PRINT VR(2)[0]; " CYCLES WERE RUN"; 
    PRINT " IN ";VR(2)/(60*freq)[2];" MINUTES OF RUN TIME." 
ENDIF 
PRINT " " 
PRINT "LOADING PROTOCOL COMPLETE" 
STOP 
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APPENDIX B 
 

CUSTOM ADAPTERS FOR TENSILE MECHANICAL TESTS 

B 
 

B.1 Tensile Mechanical Testing Adapters Engineering Drawings 

 

 

Figure B.1 Tensile mechanical test adapter to interface hydrogel constructs with the 
EnduraTEC ELF 3200 testing frame. 
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Figure B.2 Tensile mechanical test adapter to interface hydrogel constructs with the 
Interface SMT load cell. 

 

 

 

1”1”

 

Figure B.3 Custom shoulder screws to interface the hydrogel constructs with the tensile 
mechanical test adapters.  Drawing adapted from McMaster-Carr. 
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B.2 Tensile Mechanical Test Adapters Use Procedures 

 Custom designed adapters for the tensile mechanical tests were necessary because 

commercially available “grip” adapters did not allow for accurate or repeatable 

positioning of the hydrogel constructs in the EnduraTEC ELF 3200 testing frame.  Using 

the “grip” adapters would have introduced a greater degree of experimental error due to 

the potential for misalignment of the hydrogel construct as well as the need to adjust the 

grips for each individual test.  Therefore, simple yet highly practical adapters were 

designed, manufactured, and used for all tensile mechanical tests described in Chapter 7. 

 The ELF interface adapter (Figure B.1) was attached to the actuator of the ELF 

3200 test frame with a single 10-32 stainless steel socket head cap screw via the through 

hole in the base of the adapter.  The Load Cell interface adapter (Figure B.2) was 

attached to the Interface SMT series load cell using a 1/4-20 stainless steel socket head 

cap screw via the through hole in the base of the adapter.  Attaching the adapters using a 

single screw was an important design feature, because it allowed the adapters to be 

properly aligned with respect to one another.  The screws were first hand tightened and 

then secured with an Allen wrench, being carefully not to over-tighten and potentially 

damage the load cell. 

 Two custom shoulder screws were used to interface the hydrogel constructs with 

the tensile mechanical test adapters (Figure B.3).  These shoulder screws had a 6-32 

thread and a 1-inch long shoulder.  To attach the hydrogel construct, one shoulder screw 

was slid into the through hole of the ELF adapter, through the hole in the end block of a 

hydrogel construct, and then tightened into the threaded hole in the ELF adapter.  The 

hydrogel construct was then centered and positioned vertically in the adapter.  The load 
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cell and Load Cell adapter were attached to a mechanical stroke adapter, which was 

positioned to align the through and threaded holes in the Load Cell adapter with the hole 

in the lower end block of the hydrogel construct.  The second shoulder screw was then 

fed through the adapter, the end block, and secured into the threaded hole in the Load 

Cell adapter.  Finally, the actuator on the ELF 3200 was positioned such that the hydrogel 

construct was in a zero deformation state prior to the start of the test. 
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APPENDIX C 
 

LABORATORY PROTOCOLS 

C 
 

C.1 Western Blotting Procedure 

C.1.1 Sample Preparation 

1. Either media samples or tissue extracts in 4M Guandine-HCl can be used in this 
procedure 

2. Add 3 volumes of ice cold absolute ethanol with 5mM sodium acetate to portions of 
the samples containing at least 100 µg GAG by DMMB assay 

3. Let samples stand at 4°C for at least 16 hours to precipitate proteoglycans 

4. Centrifuge samples at 4°C at maximum speed 

5. Remove and discard the ethanol supernatant, dry the pellet, and resuspend in 
chondroitinase buffer with protease inhibitors (typically 100 µL) 

6. Remove the CS chains by digesting samples with 5 µL Chondroitinase ABC at 37 °C 
for 2-3 hours 

7. Add 3 µL each of Keratinase I (endobetagalactosidase) and Keratinase II and 
incubate for at least another 2 hours at 37 °C (can be left overnight) 

8. SpeedVac dry a portion of each sample that is equivalent to 10 µg of GAG according 
to the previous DMMB assay 

9. Dissolve samples in electrophoresis sample buffer (Tris-Glycine, 3M Urea, DTT) 

 

C.1.2 Gel Electrophoresis and Western Blotting Procedure 

1. Boil samples for 4 minutes to separate structures prior to loading 

2. Load samples into the lanes of a Novex 4-12% gel in electrode buffer at 200 volts for 
40 minutes at room temperature 

3. Transfer proteins to nitrocellulose membrane in transfer buffer at 30 volts for 90 
minutes on ice 

4. Rinse in TBS-TWEEN for 5 minutes on rocker plate 
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5. Block membrane for 30 minutes at room temperature on rocker plate in blocking 
buffer (800 mg non-fat dry mile in 80 mL TBS-TWEEN) 

6. Incubate membranes with primary antibody solutions (1:1000 dilution in Blotto with 
TWEEN) overnight at 4 °C on rocker plate 

7. Wash 3 x 5 minutes in TBS-TWEEN at room temperature 

8. Incubate for 1 hour at room temperature in secondary antibody solution (1:10,000 in 
Blotto with TWEEN) on rocker plate 

9. Wash 3 x 5 minutes in TBS-TWEEN 

10. Develop membrane with ECF for 5 minutes 

11. Scan on Fuji Phosphoimager 

 

C.2 RT-PCR Procedures 

C.2.1 RNA Isolation from Fibrin Hydrogels 

1. Dissociate fibrin hydrogels in a small volume of RLT buffer plus β-mercaptoethanol 
(~300 µL) at 60°C for 10-15 minutes 

2. Either proceed with RNA isolation below or store samples at -80°C 

3. Add 1 mL Trizol reagent and incubate at room temperature for 15 minutes 

4. Centrifuge at 12000 x g for 10 minutes 

5. Transfer the supernatant to a new tube and discard the pellet 

6. Add 200 µL of chloroform and vortex well 

7. Centrifuge at 12000 x g for 15 minutes.  The mixture will separate into a red organic 
phase, a white interphase, and a clear aqueous phase, containing the nucleic acids. 

8. Pipette the aqueous phase to a new tube being careful not to mix the phases. 

9. Precipitate the RNA with 500 µL of isopropyl alcohol 

10. Incubate at room temperature for 10 minutes 

11. Centrifuge at 12000 x g for 10 minutes 

12. Discard the supernatant and resuspend the pellet in 350 µL of RLT buffer 

13. Continue with the RNeasy isolation protocol for animal tissues, including 
homogenization with the QIAshredder 
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Qiagen RNeasy Isolation Protocol 

1. Pipette cell lysate directly onto a QIAshredder spin column placed in a 2 mL 
collection tube, and centrifuge for 2 minutes at maximum speed 

2. Add one volume (usually 350 or 600 µL) of 70% ethanol to the homogenized lysate, 
and mix well by pipetting.  Do not centrifuge 

3. Apply up to 700 µL of the sample, including any precipitate that may have formed, to 
an RNeasy mini column placed in a 2 mL collection tube.  Close the tube gently, and 
centrifuge for 15 seconds at ≥8000 x g.  Discard the flow-through 

4. Add 700 µL Buffer RW1 to the RNeasy column.  Close the tube gently, and 
centrifuge for 15 seconds at ≥8000 x g to wash the column.  Discard the flow-through 
and collection tube 

5. Transfer the RNeasy column into a new 2 mL collection tube.  Pipette 500 µL Buffer 
RPE onto the TNeasy colun.  Close the tube gently, and centrifuge for 15 seconds at 
≥8000 x g to wash the column.  Discard the flow-through 

6. Add another 500 µL Buffer RPE to the RNeasy column.  Close the tube gently, and 
centrifuge for 2 minutes at ≥8000 x g to dry the RNeasy silica-gel membrane 

7. To elute, transfer the RNeasy column to a new 1.5 mL collection tube.  Pipette 30 µL 
RNase-free water directly onto the RNeasy silica-gel membrane.  Close the tube 
gently, and centrifuge for 1 minute at ≥8000 x g to elute. 

8. Repeat the elution step as described with a second volume of RNase-free water.  
Elute into the same collection tube 

 

Measuring RNA Quantity 

1. After eluting the RNA from the RNeasy columns, take 5 µL and dilute 1:20 into 100 
µL of RNase-free water in a fresh tube 

2. Store the remaining RNA at -80°C 

3. Read the absorbance of each sample at 260 and 280 nm with the UV 
spectrophotometer 

4. Total RNA = OD260 * 43µg/mL/OD * 20 * 0.055 mL 

5. The ideal 260:280 ratio is 1.8-2.0; lower ratios indicate protein contamination 

 

C.2.2 Reverse Transcription to cDNA 

1. Take a volume from each sample equal to 1 µg of total RNA and transfer to a new 
tube 
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2. If the volume is less than 9.75 µL, bring the volume up to 9.75 µL with RNase-free 
water.  If the volume is great than 9.75 µL, speedvac the samples until all the volume 
has been evaporated and resuspend in 9.75 µL of water 

3. Incubate the samples at 70°C for 10 minutes to remove secondary structures 

4. While the samples are incubating, prepare the RT-master mix in a new tube 

  Volumes per reaction: 

  MgCl2   4 µL 

  RT 10x Buffer  2 µL 

  DNTPs   2 µL 

  Oligo dT primers  1 µL 

  RNasin   0.5 µL 

   * make enough total volume for each sample plus 2 extra; keep everything on ice 

5. Transfer the samples to room temperature for 2 minutes 

6. While the vials are cooling add enough AMV reverse transcriptase to the master mix 
for 0.75 µL per reaction plus 2 extras 

7. Add 10.25 µL to each sample and centrifuge briefly to collect the reaction mix 

8. Incubate the samples at 42 °C for 60 minutes 

9. Incubate the samples at 90 °C for 5 minutes 

10. Transfer to ice for 5 minutes 

11. Add 30 µL to each sample to bring the total volume to 50 µL 

12. cDNA samples can be store at -20 °C 

 

C.2.3 Real Time RT-PCR Procedure 

1. Thaw cDNA samples, standards, and primers; pulse spin to collect material 

2. Prepare qPCR reaction solution for a 50 µL reaction volume per sample 

  AP Biosystems Master Mix 25 µL 

  100 µM forward primer  0.125 µL 

  100 µM reverse primer  0.125 µL 

  Nuclease free water  23.75 µL 

3. Arrange strip tubes in 96-well set up plate 

4. Add 49 µL of reaction solution to each tube 
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5. Add 1 µL of each sample or standard to the tubes, being careful not to contact the 
reaction solution with the pipette tip (also add 1 µL water to at least 2 tubes for a no 
template control) 

6. Close tubes with optical strip caps and ensure each cap fit securely 

7. Briefly centrifuge plate to collect all solutions 

8. Perform the real time RT-PCR reaction with ABI 7700 Sequence Detector 

 

C.3 Histological Staining Procedures 

C.3.1 Safranin-O Staining 

1. Samples should be formalin-fixed, paraffin embedded, and sectioned to 4 µm 

2. Deparaffinize and rehydrate samples in water 

3. Rinse with deionized water for 1 minute 

4. Incubate in Weigert’s hematoxylin working solution (Sigma, HT10-79) for 5 seconds 

5. Rinse in running tap water for 2 minutes 

6. Dip once in 1% acid alcohol (glacial acetic acid in 70% ethanol) 

7. Rinse in runner tap water for 2 minutes 

8. Incubate in 0.2% aqueous fast green (Fast Green C.I. 42053 in distilled water) for 1 
minute 

9. Rinse in 1% acetic acid for 3 seconds 

10. Incubate in 0.1% Safranin-O (Safranin-O C.I. 50240 in distilled water) for 5 minutes 

11. Wash sections in 95% alcohol for 1 minute each 

12. Dehydrate in reagent alcohol, 3 times for 1 minute each 

13. Clear in xylene, twice for 1 minute each 

14. Mount with synthetic resin and allow slides to dry in chemical fume hood 

 

This procedure results in red-orange GAGs, black nuclei, and green cytoplasm 

 

C.3.2 Picrosirius Red Staining 

1. Samples should be formalin-fixed, paraffin embedded, and sectioned to 4 µm 
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2. Deparaffinize and rehydrate samples in water 

3. Incubate in Weigert’s hematoxylin working solution (Sigma, HT10-79) for 5 seconds 

4. Rinse in running tap water for 10 minutes 

5. Incubate in picro-sirius red (1mg/mL Sirius red F3B C.I. 35782 in saturated aqueous 
picric acid) for 60 minutes at room temperature 

6. Wash in 2 changes of acidified water (5mL/L glacial acetic acid in distilled water) 

7. Dehydrate in 3 changes of 100% ethanol, 1 minute each 

8. Clear in xylene, twice for 1 minute each 

9. Mount with synthetic resin and allow slides to dry in chemical fume hood 

 

This procedure results in red collagen and black nuclei; under polarized light, larger more 
organized collagen fibers appear bright yellow/orange and thinner collagen fibers an 
reticulin appear green 
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APPENDIX D 
 

MATERIALS AND SUPPLIES 

D 
 

Product Vendor Location 
α-collagen I primary antibody AbCam Cambridge, MA 
α-collagen II primary antibody AbCam Cambridge, MA 
α-collagen VI primary antibody AbCam Cambridge, MA 

 
SYBR Green Master Mix Applied Biosystems Foster City, CA 

 
1.0 x 30 cm Econocolumns BioRad Hercules, CA 

 
Chondroitinase ABC Calbiochem La Jolla, CA 
Protease Inhibitor Cocktail Set I Calbiochem La Jolla, CA 
T-75 Tissue culture flasks Corning Corning, NY 

 
Proteinase K EMD Chemicals Gibbstown, NJ 
β-Mercaptoethanol EMD Chemicals Gibbstown, NJ 

 
24-well Tissue culture plates Falcon Franklin Lakes, 

CA 
 

#22 Scalpel Blades Fisher Scientific Pittsburgh, PA 
10% Neutral Buffered Formalin Fisher Scientific Pittsburgh, PA 
Sodium Dodecyl Sulfate (SDS) Fisher Scientific Pittsburgh, PA 
Sodium Sulfate Fisher Scientific Pittsburgh, PA 
Tris Acetate Fisher Scientific Pittsburgh, PA 
Triton X-100 Fisher Scientific Pittsburgh, PA 

 
Hi-Trap Sephadex G-25 Superfine 
Desalting Column 

GE Healthcare Piscataway, NJ 

L-5-3H-proline GE Healthcare 
(Amersham) 

Piscataway, NJ 
 
 

Fetal Bovine Serum (FBS) Hyclone Logan, UT 
 

Porous Polyethylene (POR-4898) Interstate Specialty 
Products 

Leicester, MA 
 
 

4',6-Diamidino-2-phenylindole (DAPI) Invitrogen  
(Molecular Probes) 

Carlsbad, CA 
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Product Vendor Location 
AlexaFluor 488 Goat α-Rabbit IgG 
secondary antibody 

Invitrogen  
(Molecular Probes) 

Carlsbad, CA 

AlexaFluor 546 Phalliodin Invitrogen  
(Molecular Probes) 

Carlsbad, CA 

AlexaFluor 594 Goat α-Mouse IgG 
secondary antibody 

Invitrogen  
(Molecular Probes) 

Carlsbad, CA 

Antibiotic/Antimycotic Invitrogen Carlsbad, CA 
Collagenase Type II Invitrogen Carlsbad, CA 
Forward and Reverse PCR primers Invitrogen Carlsbad, CA 
Fungizone (Amphotericin B) Invitrogen Carlsbad, CA 
Gentamicin Invitrogen Carlsbad, CA 
HEPES Buffer Invitrogen Carlsbad, CA 
High Glucose Dulbecco’s Modified 
Eagle’s Medium (DMEM) 

Invitrogen Carlsbad, CA 

Kanamycin Sulfate Invitrogen Carlsbad, CA 
LIVE/DEAD Assay Kit Invitrogen  

(Molecular Probes) 
Carlsbad, CA 

Non-essential amino acids (NEAA) Invitrogen Carlsbad, CA 
Penicillin-Streptomycin-Neomycin Invitrogen Carlsbad, CA 
Phosphate Buffered Saline (PBS) Invitrogen Carlsbad, CA 

 
α-Aggrecan-G1 primary antibody John D. Sandy, PhD Tampa Bay, FL 
α-Aggrecan-G3 primary antibody John D. Sandy, PhD Tampa Bay, FL 
α-Aggrecan-NITEGE primary antibody John D. Sandy, PhD Tampa Bay, FL 

 
Isopentane JT Baker Phillipsburg, NJ 
Urea JT Baker Phillipsburg, NJ 

 
α-Biglycan primary antibody Larry W. Fisher, PhD Bethesda, MD 
α-Decorin primary antibody Larry W. Fisher, PhD Bethesda, MD 

 
Red FDA rubber McMaster Carr Atlanta, GA 

 
Amicon Ultra-4 Centrifugal Filter Millipore Billerica, MA 

 
4 mm Dermal Biopsy Punch  Miltex York, PA 
6 mm Dermal Biopsy Punch  Miltex York, PA 

 
35S-Sodium Sulfate MP Biomedicals Irvine, CA 
Bovine Thrombin MP Biomedicals Irvine, CA 
Ecolume MP Biomedicals Irvine, CA 
Sucrose MP Biomedicals Irvine, CA 

 
8-well Tissue culture plates Nalgene Nunc Rochester, NY 
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Product Vendor Location 
Polystyrene Beads Polysciences Warrington, PA 

 
Promega Reverse Transcription Kit Promega Madison, WI 

 
Qiagen Qiashredders Qiagen Valencia, CA 
Qiagen RNeasy Mini Kit Qiagen Valencia, CA 

 
Immature Bovine Stifle Joints Research 87 Marlborough, 

MA 
 

Acetone Richard-Allan 
Scientific 

Kalamazoo, MI 
 
 

Tissue Tec OCT Freezing Compound Sakura Tokyo, Japan 
 

Keratinase II Seikagaku 
Corporation 

Tokyo, Japan 
 
 

Guanidine-HCl Shelton Scientific Shelton, CT 
 

1,9-Dimethylmethlyene Blue Sigma St. Louis, MO 
Absolute Ethanol Sigma St. Louis, MO 
Ammonium Acetate Sigma St. Louis, MO 
Bovine Fibrinogen Sigma St. Louis, MO 
Bovine Serum Albumin (BSA) Sigma St. Louis, MO 
Calf Thymus DNA Sigma St. Louis, MO 
Chondroitin Sulfate Sigma St. Louis, MO 
Glycine Sigma St. Louis, MO 
Hoechst 33258 Sigma St. Louis, MO 
Keratinase I Sigma St. Louis, MO 
L-ascorbic acid Sigma St. Louis, MO 
L-proline Sigma St. Louis, MO 
Non-immune Mouse IgG Sigma St. Louis, MO 
Non-immune Rabbit IgG Sigma St. Louis, MO 
Normal Goat Serum Sigma St. Louis, MO 
Safranin O Sigma St. Louis, MO 
Sepharose CL-4B Sigma St. Louis, MO 
Sirius Red F3B Sigma St. Louis, MO 
Sodium Acetate Sigma St. Louis, MO 
Sodium Chloride Sigma St. Louis, MO 
Tris Base Sigma St. Louis, MO 
TWEEN-20 Sigma St. Louis, MO 
ε-aminocaproic acid Sigma St. Louis, MO 

 
74 µm Mesh Filter Paper Small Parts, Inc. Miami Lakes, FL
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Product Vendor Location 
Sequenza Staining Racks/Coverslips Thermo Electron Waltham, MA 

 
No. 12 Razor Blades VWR Scientific West Chester, 

PA 
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