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A T C range of maximum resolved shear stress in the grain 

Ae a n strain amplitude normal to the plane of maximum shear strain amplitude 

(|) defines crystallographic close-packed planes relative to bisector angle 

j o reference plastic slip strain rate 

X0, stress ratios x/Oyy and o x x /Oyy, respectively 

u constraint coefficient 

p constraint parameter 

6 bisector angle between slip systems 

a a n stress amplitude normal to the plane of maximum shear strain amplitude 

a m a x maximum stress 

o m i n minimum stress 

( j n

m a x maximum normal stress on the plane of critical alternating shear stress 

o o p opening stress 

a x x direct stress parallel to the crack plane 

oy yield stress 

Gyy far field normal stresses 

x far field shear stress acting on the crack plane 

T a n allowable alternating shear stress 

x a amplitude of the maximum shear stress 

x a resolved shear stress on a* slip system 
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driving force parameters in fully elastic and plastic microcrack 

propagation laws, respectively 

a crack length 

aj initial crack length 

&f final crack length 

a 0 crack length corresponding to the long crack threshold, AK,^ 

A 0 , B constants 

C e , C p fully elastic and plastic microcrack propagation law coefficients, 

respectively 

C' p fully plastic microcrack propagation law coefficient 

C, C*, Cj constants 

C elastic stiffness 

C elastic right Cauchy stretch tensor 

D threshold growth rate 

d grain size 

E, G Young's modulus and shear modulus, respectively 

E' elastic Lagrangian strain tensor with respect to intermediate configuration 

g" reference strength of the a* slip system 

H fatigue limit for shakedown 
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k, k* constants 

kd transition crack length, where k is the scaling factor 

K o p e n stress intensity factor at crack opening load 

stress intensity factor at maximum load 

M, m exponents for fully elastic and plastic terms in da/dN, respectively 

M E strain rate sensitivity 

m ( a ) unit vector along direction normal to the a m slip system 

m^ crack length exponent in da/dN law 

1% n constants 

N f number of cycles to fatigue crack of prescribed length considered as 

"failure" 

P hydrostatic stress 

q parameter which characterizes hardening behavior 

R ratio Ao m i n /Aa m a x 

R e ratio Aym a x7Ay 
max 

R n ratio Ao n/At n 

r p plastic zone size 

s ( a ) unit vector along the a* slip system 

S 2nd Piola-Kirchoff stress tensor with respect to the intermediate 

configuration 
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SUMMARY 

The problem of estimating the remaining life in components under HCF conditions is 

to properly assess and small crack regime, which may account for 50-90% of the total life (N f 

= 1 mm). With many of the factors that affect small crack behavior, such as interactions with 

grain boundaries, material inhomogeneity, and surface roughness, incorporating these effects 

into growth models which account for microstructurally small cracks to long cracks has been 

a challenge. This work is an effort to assess these features and to understand amplitude and 

stress state dependencies which enable more precise incorporation of these factors into 

growth models. This was achieved through the use of a crystal plasticity micromechanical 

model which was embedded within a finite element context. Plasticity effects are primarily 

accounted for in this model. 

For the uncracked cases considered on polycrystalline aggregate, it was found that 

when assessing three candidate fatigue initiation parameters, the Fatemi-Socie parameter 

produced the most descriptive assessment of the damage because it showed both amplitude 

and stress state dependencies from the distribution plots. This results also correlates with its 

ability to predict fatigue damage from components under multiaxial fatigue. 

For the cracked analyses performed, the local microplasticity which develops behind 

the crack under cyclic loading has a tremendous impact on the crack tip opening and sliding 
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displacements which are produced. With proportional, reversed loading applied 

macroscopically, a local, nonproportionality develops at the crack tip. This nonproportional 

develops at smaller crack length ratios for cyclic tension-compression as compared to cyclic 

shear. It also develops at lower strain amplitudes for the cyclic tension-compression case than 

for the cyclic shear case. Plasticity induced-closure was found to have an influence on this 

development. These computations have shown that the opening displacements for small 

cracks account for a large proportion of the driving forces which attribute to crack growth. 

Small crack behavior has been previously viewed as being dominated by sliding displacements 

along the crack plane. The increased opening displacements are primarily caused by the lack 

of constraint from the surface and the surrounding microstructure has an influence for 

increased crack lengths. This work quantified the influences of the free surface and the 

surrounding microstructure through the utilization of the crystal plasticity micromechanical 

model. 
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CHAPTER I 

INTRODUCTION 

A major challenge in estimating the high cycle fatigue (HCF) life of components is 

proper characterization of the small crack regime. This regime refers to the initial part of the 

crack growth rate versus crack length curve wherein the crack growth rate is not correlated 

by linear elastic fracture mechanics (LEFM) concepts based on long crack solutions for AK 

in homogeneous materials and long crack growth rate data. The growth of sufficiently small 

cracks is controlled by the local microstructure (grain boundaries, inclusions), and exhibit 

growth rates higher than long cracks at the same apparent applied stress intensity fatigue 

range based on long crack solutions (1). Under primarily HCF conditions and for the small 

crack regime, long crack LEFM concepts have been used, although they lead to an 

overestimation of fatigue life. Within the past few decades, critical plane approaches have 

gained increasing support for correlation of fatigue crack "initiation" lives and character of 

small crack propagation under predominantly low cycle fatigue (LCF) conditions for various 

stress states (2-7). 

In addition, experimental studies of the propagation of microstructurally and 

physically small cracks under both LCF and HCF conditions (8-15) have revealed that 

elastic-plastic fracture mechanics (EPFM) concepts may be used to correlate the growth of 
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small fatigue cracks for various alloys. However, due to the persistent influence of 

microstructural anisotropy and periodicity, complex mixed-mode loading conditions and 

crack opening/closure behavior of small cracks, EPFM solutions and concepts for long 

cracks do not uniquely carry over to small cracks. Small fatigue cracks show anomalously 

high, irregular (oscillatory) growth rates in the early stage of crack propagation when 

compared to large cracks at the same nominal AK based on long crack solutions. This high 

crack growth rate occurs even under nominally elastic conditions, i.e. even when no 

macroplasticity is involved. The irregular growth rate, in turn, is caused by interactions with 

microstructural inhomogeneities. This is considered as a major contributing factor to the so-

called "small crack problem" involving inapplicability of long crack LEFM AK solutions and 

data. 

It is important to incorporate small crack growth behavior into life assessment of 

components limited by HCF performance. Examples include rotor hubs in helicopters, such 

as the US Navy H-46 and H-53 platforms. The H-46 helicopter will be required to satisfy 

the Navy and Marine corps mission requirements for the foreseeable future. Service life 

extension of the aircraft is, therefore, dependent upon valid analysis of the useful life of the 

aircraft's components such as the rotor hub which must withstand several cyclic loading 

modes - tension, compression, twisting, as well as corrosive environments. One of the most 

prominent modes of loading is low amplitude cycling with high tensile mean stress. Due to 

these types of loading conditions, detectable small cracks were found on the tie bar of rotor 
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hubs (16) and in the upper hub plate (17) (in Fig. 1.1). In this case, a redesign of the tie bar 

was required. Premature cracks in the titanium H-53 main rotor hub upper plate spawned 

an investigation into the adequacy of inspection intervals of 10 flight hours (17). Analytical 

and experimental tests were performed and it was recommended that the inspection interval 

increase to 30 flight hours, assuming reliable ultrasonic detection of a 0.030 inch (762 |im) 

flaw. It is evident that loading conditions, flaw size detection, and correlative models all play 

a major role in fatigue life assessment. 

Comprehensive and robust models for the growth of cracks from a length on the order 

of a grain size (or below) to reliably detectable dimensions (approximately 500 u,m to 1000 

u,m) do not currently exist, especially under general multiaxial loading conditions. Such 

models would provide a fundamental advance relative to the current cyclic stress- and strain-

based crack initiation models. In addition, they should provide a consistent treatment of the 

growth of fatigue cracks ranging in length from microstructurally small to mechanically long 

cracks. The key goal of this research is to explore the effects of material inhomogeneity on 

the driving forces for fatigue crack formation and small fatigue crack growth, as well as 

conditions for the transition from crystallographic Stage I to Stage II growth. Using 

computational models which incorporate planar double slip crystal plasticity, qualitative 

forms for driving force parameters are examined that are consistent with critical plane 

concepts and local mixed-mode crystallographic growth concepts for the 2-D case. This 

research also considers the effects of the free surface, surrounding grains, and local plasticity 
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on crack tip opening and sliding displacements (CTOD and CTSD, respectively), which are 

central to the crack propagation relation. In addition to computing CTOD and CTSD for 

monotonic loading of cracks which are oriented on favorable crystallographic planes in 

surface grains subjected to either remote tensile or shear loading, these parameters are also 

determined for fatigue loading cases. 

These results assist the development of small crack propagation models which respect 

stress state, stress amplitude, and stress state sequence effects (cf. McDowell and Bennett 

(18)). To verify the model's capability for complex loading, baseline constant amplitude, 

amplitude sequence, as well as stress state sequence experiments were performed on 304 SS 

and 1045 steel. These materials were selected because they have two different cracking 

mechanisms - shear stress-dominated versus normal stress-dominated - and were previously 

well-documented in the work of Socie (4) for uniaxial and torsional loading conditions on 

thin-walled tubular specimens. 

This introductory chapter provides background for the thesis by: (i) defining small 

cracks and related length scales; (ii) reviewing multiaxial theories with an emphasis on 

critical plane approaches for fatigue crack formation and early growth; (iii) summarizing the 

status of small fatigue crack growth laws; and (iv) outlining the outstanding issues to be 

addressed in this work. 
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LI Definitions of Small Cracks and Length Scales 

Three categories of small fatigue cracks may be defined. The first category is 

microstructurally small fatigue cracks. These cracks are characterized as having all 

dimensions on the order of a characteristic microstructural dimension, e.g. the grain size (19). 

Cracks of this type often exhibit crystallographic crack growth, that is, crack growth 

dominated by shear along crystallographic slip planes. If the applied stress is not high 

enough, the crack growth rate decreases or the cracks even arrest as the crack tip encounters 

a grain boundary or other material inhomogeneity. The microstructurally small crack and its 

crack tip cyclic plastic zone may be completely embedded within a single grain. 

Microstructural Fracture Mechanics (MFM) (11) is a label that has been introduced for 

models that treat the distinct growth behavior of these cracks. MFM is a material-structure 

sensitive approach that is characterized by the consideration of material attributes, e.g., grain 

boundaries, inclusions, and persistent slip bands (PSBs). 

The next category is that of mechanically small fatigue cracks (11). These cracks 

have dimensions that are small compared to a characteristic dimension, such as the scale of 

plasticity at the root of some mechanical discontinuity (19) or a crack tip cyclic plastic zone. 

Such cracks may be fully embedded within the cyclic plastic zone of a notch, or the cyclic 

plastic zone size may simply be a large fraction of the crack size. A variant of EPFM, which 

was termed E P F M p has been suggested for cracks of this category (18). 

Finally, fatigue cracks are considered physically small (11) when the crack size is 
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small compared to the scale of the characteristic physical dimension. This term includes 

mechanically small cracks as well, but generally applies to cracks that are small but still 

larger than 5 to 10 grain diameters such that LEFM or EPFM applies (20). Such cracks may 

exhibit anomalous behavior if analyzed based on LEFM because of the physical smallness 

of the crack (21) relative to the cyclic plastic and damage process zones at the crack tip. 

Physically small cracks eventually become long cracks which are described by LEFM. 

Figure 1.2 illustrates these different crack sizes along with the characteristic dimensions. It 

is emphasized that these categorizations depend on both crack geometry and load level. 

These characterizations of small cracks are presented within a context of stages of 

growth. In ductile metallic materials, small cracks initiate on crystallographic planes of 

intensified slip, a process which occurs on planes of maximum shear. Stage I cracks 

propagate on these shear planes, due to slip processes and decohesion ahead of the crack tip. 

Typically, microstructurally and mechanically small cracks are in this stage of crack growth. 

Stage II propagation occurs by processes of slip and decohesion in the plastic shear zone at 

the crack tip. Figure 1.3 shows a schematic of Stage I and Stage II crack growth behavior. 

The slip and decohesion is again controlled by the maximum shear strain and the growth 

increment depends on slip irreversibility. Another important effect is the tensile stress across 

the maximum shear-strain plane, which influences dislocation mobility and the decohesion 

associated with the slip process (22). Li (23) examined the effect of the normal stress on 

extended Stage I growth, wherein it acts to offset the dominate crystallographic slip at the 

crack tip by causing a balance of slip mechanisms. Long crack propagation in initially 
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isotropic polycrystals is almost always observed to follow Stage II growth, corresponding to 

macroscopic Mode I dominance. 

Attempting to apply a correlation for small cracks by using da/dN versus AK (as in 

showing the AK solution and LEFM precepts of mechanically long cracks), i.e. 

% ' c w a . ) 

has resulted in the so-called anomalous behavior of microstructurally small cracks, first 

reported by Pearson (24). In particular, the cyclic crack growth rate of small cracks may 

significantly exceed that of long cracks at the same level of AK. One of the reasons for the 

nonconformity of small crack behavior with that of mechanically long cracks has to do with 

the violation of validity limits of LEFM. These limits are violated due to the lack of self-

similarity of growth and a cyclic plastic zone/process zone size which is on the order of crack 

length. As small cracks grow further into the bulk material and away from the surface, the 

crack is increasingly constrained by surrounding grains and statistically has more available 

slip systems upon which to grow and local crack paths to choose. From a statistical 

viewpoint, the small crack front samples an increasing number of microstructural barriers 

with extension (e.g. grain boundaries, inclusions, etc.) (54) leading to a reduction of the 

growth rate and to a decrease in the scatter of the growth rate (1). As the crack increases in 

length, it must maintain a coherent crack front across a growing number of grains. As the 
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number of grains sampled along the crack front increases, the probability of encountering 

retarding grain orientations along the crack front increases (24). This change in 

'environment' that the small crack undergoes accounts for such breakdowns of the 

applicability of simple, homogeneous, self-similar LEFM and EPFM concepts to small 

cracks. Furthermore, application of simple plasticity-induced or obstruction-induced closure 

laws can only partially explain these microstructurally small crack effects. 

1.2 Critical Plane Multiaxial Theories for Fatigue Crack Initiation 

The local conditions at the tip of a Stage I small fatigue crack are mixed-mode 

regardless of mixity of the remote loading due to crystallographic growth, local anisotropy, 

and constraint of neighboring grains. Therefore, multiaxial behavior with multiaxial fatigue 

crack initiation mechanics is an inseparable feature of the small crack problem. Various 

approaches have been developed to model the small crack "initiation" regime under 

multiaxial fatigue loading conditions. These approaches include equivalent stress-strain (26), 

energy (27), damage mechanics/cumulative damage (28-33), and critical plane (34). Early 

developments of multiaxial fatigue theories were based on static yield theories (von Mises, 

Tresca, Rankine) but were later extended to more address complex states of stress (26). 

Early LCF theories were based on parameters such as the maximum principal strain range, 

maximum shear strain range, and maximum octahedral shear strain range (34). A more 
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is no detailed review of these approaches is given elsewhere (35). In these approaches there 

distinction between nucleation, small crack propagation, and transition to mechanically long 

crack growth. There is simply an effective stress or strain range quantity which was 

correlated to "fatigue life." These theories did not incorporate the effects of orientation of 

the crack in relation to the 3-D stress/strain field - a crucial factor when assessing multiaxial 

behavior. 

Critical plane approaches are of most relevance to the present research because of 

their more intimate connection to mixed-mode driving forces. In the early 1970's, critical 

plane multiaxial fatigue theories were first formally introduced. These approaches are based 

on observations that cracks form and grow on specific shear planes during the early stages 

of fatigue; the approach considers the macroscopic stress and strain resolved onto such 

'critical' planes as most directly influential in the nucleation and growth of cracks. Critical 

planes refer to those planes within a material which undergo the most extensive range of 

shear strain. From early multiaxial HCF fatigue research by Stulen and Cummings (36), 

Findley et al. (37) and Findley (38), critical plane approaches have sought to include more 

detailed information regarding the fatigue cracking process. Based on physical observations 

of the orientation of evolving fatigue cracks in steel and aluminum, Findley et al. (37) 

discussed the influence of the normal stress acting on the maximum shear stress plane. The 

earliest critical plane model was then introduced (38) for HCF, i.e. 

\ n + k ° a n = C (1.2) 
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for a given fatigue life, where the allowable alternating shear stress amplitude on the shear 

stress plane, xan, decreases with an increase in the maximum normal stress amplitude, aan, 

to this plane. Constant k is used to correlate experimental data and C is constant for a given 

life. Equation (1.2) is discussed here to demonstrate the general philosophy of critical plane 

approaches. Some combination of the shear and normal stresses that act on a certain 

'critical' plane establishes a level function for a given life. The major advantage of critical 

plane approaches is that they offer a two-parameter correlation to relate predicted fatigue life 

to experimentally observed cracking behavior. As a result, this approach provides good 

correlation with experimental results, a physical interpretation of the theory of small crack 

initiation/growth, and the ability to predict the plane on which cracks occur. An analogy can 

be drawn to two parameter approaches in elastic-plastic fracture, such as including both the 

singularity strength and the triaxiality factor ahead of the notch root. In the EPFM case, the 

two-parameter approach is used to describe geometry effects on the R-curve. In fatigue, 

equations of this form help describe stress state dependence and planes of crack formation 

along with the primary cyclic driving force. 

In 1973, Brown and Miller (6) proposed an expression similar to that in Equation 

(1.2) for LCF. They proposed that cracks initiated on the planes of maximum shear strain 

range. They hypothesized that the amplitude of maximum shear strain, A y ^ , and the strain 

amplitude normal to the plane of maximum shear strain amplitude, Ae„, were the critical 

parameters governing damage. Brown and Miller (6) also developed the T-plane 
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representation for LCF as a means to obtain an empirical fit to experimental data. A so-

called T-plane plot is a locus of points of constant fatigue life to a given crack length in the 

space of Ae„ versus A y ^ . Brown and Miller (6) found that data from all types of biaxial and 

multiaxial fatigue tests can be plotted on such T-planes, i.e within the "wedge" formed by 

uniaxial and equibiaxial test conditions (cf. Figure 1.4). When obtaining Ae„ and A y ^ for 

several different types of tests, it is possible to draw contours of constant fatigue life to a 

given crack length which separate out the torsion test, with its Case A type cracking system, 

from the plane strain and equibiaxial tests, which produce Case B cracks. These two types 

of cracking systems, illustrated in Figure 1.5, are indicated by the planes of maximum shear 

and the directions of Stage I and Stage II crack growth. In this Figure, £„ e 2, and e 3 are the 

principal strains. Case A cracks propagate along the surface of the specimen, whereas Case 

B cracks propagate inwards and away from the surface. In a uniaxial test, there are equal 

proportions of Case A and Case B propagation modes, which consequently produces a nearly 

circular crack front. In a torsion test, cracks propagate predominantly in the Case A mode, 

giving long shallow Stage I cracks along the surface. 

Socie et al. (39) added a term to Equation 1.2 which would account for the effect of 

mean normal stress on the y ^ plane. Fatemi and Socie (40) were able to incorporate 

nonproportional loading effects into the earlier model. This was significant because it was 

found that shear-based approaches would not be applicable to all multiaxial fatigue situations 

as had already been demonstrated under HCF conditions in the work of Gough et al. (41) and 
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Findley (38). The increased damage during out-of-phase loading was attributed to the extra 

cyclic hardening due to the rotation of the principal axes. Kurath and Fatemi (42) introduced 

the parameter 

1 + k* - 2 . = C* 
a . 

(1.3) 
y ) 

for a given life, where a „ m a x is the maximum normal stress to the plane of maximum shear 

strain range, Ay m a x ; here, k* is used to correlate experimental data, C* is constant for a given 

life, and G v is the cyclic yield strength. 

A most recent development in critical plane formulations is incorporating the effects 

of the transverse strain - the normal strain in the crack-line direction. Wang and Pan (43) 

examined the effects of the transverse strain on the near-tip fields of small Case A cracks in 

power-law hardening materials under mixed mode I and 11 conditions. For their finite 

element analyses on a 2-D center cracked panel subjected to biaxial normal and shear strains, 

they found that in addition to the cyclic plastic zone ahead of the crack tip, a second 

concentration of plastic straining occurred directly below the crack tip. This result indicated 

that the presence of a tensile transverse strain produced increased opening stress ahead of the 

crack tip. From their computational results, they suggest that the transverse strain be 

included in critical plane formulations. Therefore, an additional normal (stress) strain term 
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would be added in Equation (1.3). Clearly, more experimental and computational analyses 

are required to properly determine how the transverse strain should be incorporated into 

critical plane formulations in order to reflect increased opening stresses ahead of the crack 

tip. 

Even with these significant advances in LCF correlations, additional work is needed 

to model the evolution of the crack length with increments of cycle under multiaxial fatigue, 

and to address the HCF regime. Propagation analyses, often treated using either LEFM or 

EPFM, should be combined with critical plane concepts outlined above. Critical plane 

approaches, to some degree, have been extended (2-3,20) to small crack propagation 

formulations because of their ability to reflect the physical observations of crack growth 

behavior. Such a physically-based approach is attractive in that modeling parameters can be 

directly attributed to features of cracking mechanisms on the microscale; other empirical 

approaches do not directly reflect such observations. 

Small crack propagation formulations consistent with critical plane concepts were 

introduced by McDowell and Berard (2-3) and Reddy and Fatemi (44). Reddy and Fatemi 

(44) used a combination of AK and critical plane concepts for the propagation of cracks. 

Since the two-parameter approach in Equation (1.3) correlated fatigue life to a 1 mm surface 

crack under a wide variety of multiaxial loading conditions, Reddy and Fatemi (44) 

postulated that these parameters can represent the driving force for crack propagation. They 

defined a pseudo-AK as 
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CPA G A Y n 
1 + * _ 2 (7ia) 1/2 (1.4) 

y / 

to correlate with da/dN. This parameter takes the form of an effective strain-based AKCPA, 

where G is the shear modulus, and a is half the surface crack length. Here, AKCPA is used for 

materials for which crack nucleation and small crack propagation occur along the planes of 

maximum shear strain amplitude. The constant k* is determined by collapsing the fully 

reversed uniaxial fatigue data to the fully reversed torsional fatigue data. It was found that 

this formulation gave promising results for both nonproportional and proportional tests, but 

there was still significant scatter for low AKCPA when comparing to experimental data. 

Indeed there are problems in using LEFM concepts/parameters to characterize small 

crack growth. Dowling and Begley (44) first introduced the AJ-Integral for fatigue crack 

growth in an elastic-plastic cyclic deformation field. This parameter is perhaps a more 

appropriate candidate than AK to be combined with critical plane concepts because AJ can 

be applied to problems involving elastic-plastic deformation, and small fatigue cracks are 

often characterized by substantial crack tip plasticity. Small crack propagation under 

predominately LCF conditions has been treated within the framework of EPFM by a number 

of researchers (13-14,46-48). The cyclic J-Integral (45,49-51), AJ, has been frequently 

applied to correlate small crack propagation rate using the power-law relation 
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(1.5) 

Hoshide and Socie (8) extended the J-Integral form presented by Shih and Hutchinson (52) 

(pure Mode I loading) to include mixed-mode loading. One of the shortcomings of Equation 

(1.5) is that both the elastic and plastic components of the AJ-Integral have the same linear 

dependence on crack length. Results of various studies (cf. (19,53-54)) conflicted with the 

notion that the dependencies were the same for microstructurally small fatigue cracks. Such 

cracks grow by traversing and re-encountering grain boundaries. Their growth depends on 

microstructure, which renders the rate of growth of small cracks highly nonlinear, even 

oscillatory. Once the small crack has extended over more grains and has become 

mechanically small, the crack tends toward the applicability of Equation (1.5). 

1.3 Small Fatigue Crack Growth 

By establishing physical attributes of small crack behavior under HCF, a growth 

equation which respects many of the these attributes can be proposed. A primary goal of 

establishing a crack growth law which traverses multiple regimes of crack growth is to 

provide better estimates of the remaining life of components in fatigue. Naive treatments of 

propagation have led to overestimations of fatigue life. A distinguishing feature of HCF is 
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the high degree of heterogeneity of local cyclic slip processes. Under LCF conditions, PSBs 

and small cracks are fairly uniformly distributed among grains, leading to low variability of 

fatigue crack nucleation and propagation processes. There is a regime of crystallographic 

growth of small cracks roughly coincident with the orientation of maximum shear planes, 

termed by Forsyth (55) as Stage I growth. For HCF conditions, the cyclic plastic slip 

processes are highly heterogeneously distributed among grains and the surface crack density 

is sparse (56). For these conditions, there may also be an early transition to Stage II 

behavior, characterized by propagation normal to the direction of the maximum principal 

stress range. The following sections discuss in more detail the transition between stages of 

small crack growth, intrinsic material resistance ahead of the crack, fatigue limits, the role 

of the free surface and crack closure issues. 

1.3.1 Transition from Stage I to Stage II Crack Growth 

Early assessments of the transition from Stage I to Stage II crack propagation were 

made by Cox and Field (57) in 1952. They found that this occurred when the ratio of local 

tensile stress to shear stress was about 1.6. Swenson (58) established that the transition for 

FCC metals that exhibit disassociation into partial dislocations occurs when the separation 

of partial dislocations is reduced to the order of the Burger's vector. This disassociation is 

influenced by the crack tip stress field and the materials' stacking fault energy. In 1972, 

Plumbridge (22) stated that the transition occurred when the ratio of tensile stress to shear 
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stress at the crack tip reached a critical value. Miller (11) established that Stage I 

crystallographic (shear-dominated) small crack growth is typically observed to transition to 

the Stage II growth (normal/tensile dominated) regime for crack lengths on the order of 5-10 

grains, depending on the strength of the material. The strength of the material itself is a 

function of grain size and texture (11). 

Li (23) studied the small crack transition behavior for aluminum alloys. The 

transition condition was quantitatively proposed to occur when the CTSD of Stage I cracks 

was equivalent to the CTOD of a Stage II crack. A physical basis of the transition crack size 

can be interpreted as the point where the dislocation pile-up reaches a level sufficiently high 

due to grain boundary blocking at the transition until new dislocation sources are activated. 

The plastic zone then extends right through the grain boundary to re-develop in the next 

grain. In Li's (23) interpretation, the transition is not related to the grain size or several grain 

sizes; rather the transition is closely related to the local stress level. His dislocation-based 

micromechanical model predicted both the crack growth transition and growth rates for small 

fatigue cracks. Both the local stress level and local microstructure control the transition from 

Stage I and Stage II. This transition depends on stress amplitude and stress state as well. 

Precise conditions for the transition are not yet established, in general. Certainly, no 

comprehensive models of cracks in polycrystals have been developed or studied to 

understand effects of heterogeneity due to lattice misorientation on abroad scale rather than 

single, planar bicrystal boundaries. 
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1.3.2 Fatigue Limits 

One method to represent thresholds for small crack growth in HCF is to plot a 

Kitagawa diagram which represents a locus of points of non-propagating crack length versus 

stress amplitude. An example for a low carbon steel with a ferrite grain size of 55 u,m is 

shown in Fig. 1.6 (12). Three regimes are labeled. In Regime I, small cracks do not 

propagate. Regime I is bounded from above at very small crack lengths by the smooth 

specimen fatigue limit, Acrwo. In reality, microstructurally small cracks have complex 

oscillatory growth rates below A a w o (cf. Fig. 1.6), but these cracks arrest if the applied stress 

amplitude lies below Acrwo (10-11,59). In Regime JJ, cracks propagate at stress amplitudes 

greater than A a w o , or at crack lengths that exceed a0, defined as the crack length 

corresponding to the long crack threshold, A R ^ , at an applied stress of Aa w o . The dashed 

line between Regimes II and HI corresponds to the asymptotic long crack threshold of LEFM 

for a > a 0. Crack length aj = 20.3 urn represents the non-propagating limit for 

microstructurally small cracks for this material; for a > aj and at stress levels below Aa w o , 

small cracks propagate at crack lengths below that of the long crack threshold. This has been 

attributed to decreased plasticity-induced closure effects for small cracks relative to long 

cracks in the vicinity of threshold conditions, accounting for the gradual transition from 

microstructurally small to long crack regimes (54). Cracks in Regime IQ grow until arrested 

at the boundary of Regimes JJ and HI, subject to EPFM, a plasticity-induced closure transient 
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that develops with propagation. 

The Kitagawa diagram has considerable relevance to threshold fatigue design 

approaches for HCF because it distinguishes between thresholds for small and long cracks. 

To a limited extent, the diagram also shows the change in fatigue crack growth mechanisms 

as a function of stress amplitude and crack length. Such diagrams, however, are applicable 

only to constant amplitude fatigue and may not be applied to overload conditions or 

sequences of amplitudes (54). Detailed incremental models for crack propagation and arrest 

are therefore crucially important to treat history effects and multiaxial loading conditions. 

Riemelmoser et al. (60) utilized dislocation arguments to describe fatigue limits for 

an aluminum alloy (Al 7075-T6) and a steel (Steel A533). They assert that if the discrete 

nature of plasticity is taken into account by a dislocation model, the conditions for the fatigue 

threshold may be established. They found that this demarcation between applying a 

continuum versus a discrete (or cycle-by-cycle) analysis occurred at when the ACTOD was 

smaller than 150 Burgers vectors per cycle. Although their model neglected the influence 

of microstructure, the existence of a threshold was expressed in terms of the discrete nature 

and development of plasticity. 

In addition to the fatigue limit for nonpropagating cracks, shakedown may also lead 

to a fatigue limit in HCF. The shakedown stress amplitude refers to the level at which 

microplasticity within and among grains is suppressed. The elastic shakedown limit of the 

heterogeneous cyclic microplasticity response may, in general, be lower than that associated 

with grain boundary blockage of small cracks. An elastic-plastic shakedown limit may also 
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exist which reflects an insufficient degree of cyclic microplasticity to nucleate cracks. In 

both instances, the consideration of heterogeneity of the polycrystal is essential. The model 

of Dang-Van (61), for example, accounts for the orientation distribution of grains, employing 

a polycrystal plasticity analysis to assess the intensity of cyclic plasticity and constraint 

between grains. A local critical slip plane failure criterion of Mohr-type, similar to Equation 

(1.2), is given by 

A T 

~2 
-+kP=H ( I 6 ) 

to assess whether the fatigue limit (arrest threshold) of individual grains, H, is breached. 

Here, At c is the range of the maximum resolved shear stress in the grain, and P is the peak 

hydrostatic stress. Shakedown of cyclic microplasticity is explicitly taken into account, 

although a crack length dependency is not included. Such local approaches recognize that 

the description of threshold behavior of local mixed Mode I-II nucleation/propagation 

behavior of Stage I small cracks must consider a combination of maximum shear stress range 

and some measure of normal stress to this plane (62). This method has successfully 

correlated HCF life for high strength components such as bearings. 

From the discussions above, it is apparent that some combined approach which 

utilizes stress state, crack length dependencies, and shakedown limits of cyclic 

microplasticity would provide a more complete method for determining fatigue limits for 
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small cracks. Chapter HI presents a micromechanical analysis on the distribution of 

microplasticity in polycrystals. This serves in establishing the nature of the transfer function 

between macroscopically applied stress to microcracking within an aggregate. Analyses of 

this type enables one to comprehend the distribution and intensity of cyclic microplasticity 

as a function of stress state and amplitude. Chapter V details a three-regime model which 

accounts for the full range of growth from microstructurally small to long cracks, including 

small crack threshold limits. 

1.3.3 Roughness and Plasticity-Induced Crack Closure 

There are other important mechanisms that affect the propagation of small cracks in 

HCF, including roughness-induced (crack face asperity interactions) and plasticity-induced 

closure. Faceted crystallographic crack growth promotes crack surface roughness-induced 

interference effects, particularly in low stacking fault energy FCC alloys and for coarse 

grained metals (63). Roughness-induced crack closure is promoted by a tortuous crack path 

associated with a mixed-mode crack growth mechanism and mismatch between the fatigue 

crack face asperities (64). This is particularly important for small cracks in HCF since the 

distribution of crack-like defects in cyclic plasticity is much less uniform than under LCF 

conditions (54). Asperities form on surfaces of growing small cracks, and these asperities 

may either bridge or wedge cracks open, leading to local shielding or enhancement. Tong 

et al. (63) addressed modeling sliding mode crack closure effects due to faceted fracture 
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surfaces which may prevail in the propagation of small crystallographic cracks. They 

performed analytical and finite element analyses to parametrically show the effects of 

asperity height, friction coefficient and crack length on the near threshold propagation rate 

in pure remote mode II loading. The model revealed that the faceted crack surface generated 

a local wedging mode I displacement, while the frictional attenuation tended to decrease the 

mode II displacements. Consequently, both the macroscopic mode II and local mode I AK 

were reduced at the same time. In view of actual small crack profiles, an ideal mode II 

loading condition may not be achieved due to the inevitable local mixed-mode loading 

conditions at the crack tip. Stage I crack tips inherently involve mode mixity because of 

local anisotropy and heterogeneity (54) ahead of the crack. 

This behavior contrasts to plasticity-induced closure of small cracks under constant 

amplitude loading. Plasticity-induced closure is caused by residual plastic deformation left 

in the wake of an advancing crack. Small cracks generally have a smaller plastic wake 

behind the crack tip for the same crack tip driving force and decreases with decreasing crack 

size (65). As the crack lengthens, interactions between the crack and microstructural features 

(such as asperity height) may diminish relative to plasticity-induced closure, particularly for 

fine grain alloys. Effects of plasticity-induced closure on small crack behavior are explored 

in the computational analyses in Chapter IV. 
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1.3.4 The Role of the Free Surface 

Proximity of the small crack to the free surface has several implications. One aspect 

of surface proximity is its effect on dislocation accumulation near the surface. Harvey et al. 

(66) used atomic force microscope images of slip band emergence at the free surface in both 

HSLA steel and Ti to confirm their model for crack nucleation based on cumulative slip 

offset which incorporates grain size and other factors. Dislocation models by Tanaka and 

Mura (67) and Venkataraman etal. (68-70) assume that the forward and reverse (irreversible) 

plastic flow within a PSB is modeled by dislocations with different signs moving on two 

closely spaced layers. The theory of continuously distributed dislocations is used to account 

for the monotonic buildup of dislocation dipoles piled up within the PSB. This buildup is 

associated with the development of extrusions or intrusions which are crack nucleation sites. 

These models, however, do not consider the effect of surrounding grains and the spread of 

cyclic plastic strain into those grains. This is a significant consideration, particularly for the 

growth of cracks. The role of the dislocation density gradient near the surface in the 

propagation of small cracks in HCF has not been studied. 

A second factor which influences small cracks growing from the surface is the lack 

of constraint on crack opening/sliding. Constraint refers to the buildup of stress around a 

crack front due to the restraint against in-plane and out of plane deformation (71). The in-

plane constraint has been associated with the closeness of the crack front to external 

boundaries whereas the out-of-plane constraint is mainly influenced by plate (or specimen) 
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thickness. Quantifying the level of constraint, therefore, is an important factor in modeling 

fatigue crack growth of small cracks. This lack of constraint also leads to initially high crack 

growth rates for small cracks until they grow into the surface where they experience more 

constraint from surrounding grains and more available slip systems upon which to grow (72-

73). Keller and Gerberich (74) and Lin and Lin (75) made observations on the surface versus 

bulk behavior of a HSLA steel and single and polycrystalline aluminum under cyclic 

loadings, respectively. Keller and Gerberich (74) measured the surface layer to be 

approximately 300 (xm or 6-7 grain diameters and found that after an accumulated bulk strain 

of 5% for high strength, low alloy (HSLA) steel, the surface experienced approximately three 

times as much accumulated strain as the bulk of the material. Additional studies by Chen et 

al. (76) reproduce similar results for single crystals of Fe-3wt%Si. Chen et al. (76) explain 

that this type of surface effect is due to the activation of multiple slip systems on the surface 

which causes a higher strain level on the surface, thereby affecting the crystal orientation 

locally. They found that the strain gradient disappeared after approximately 100 jim below 

the surface. This dimension is very crucial to small cracks because their dimension is on the 

order of this surface layer. These observations have tremendous bearing as to why they grow 

so rapidly in the MSC regime relative to long cracks with the same applied AK. 
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1.3.5 Small Crack Interactions with Microstructure 

Grain boundaries and second phase particles are the primary microstructural barriers 

to small crack growth. The grain boundary is an amorphous interface where two single 

crystals of different orientation are joined. Because of the plastic incompatibility due to 

misorientation at the grain boundary, it is an effective barrier to dislocation glide. Likewise, 

interphase boundaries resist dislocation motion in the softer phase unless the hard particles 

are fractures or sheared, or the interface is decohered. Three observed small crack behaviors 

provide evidence for interaction of the small crack tip with grain boundaries. First, small 

fatigue crack propagation may slow down upon approaching a grain boundary due to 

interaction of the plastic zone with the grain boundary. Deceleration of the growth rate is the 

result of interaction of the crack tip cyclic plasticity with local barriers to plastic flow. 

Secondly, due to misorientation between two neighboring grains, a small crack front may 

deviate after penetrating the grain boundary. The deflection of the crack front is the result 

of an orientation change of newly activated slip bands. Thirdly, the very first grain boundary 

does not always lead to a severe drop of growth rate when a small fatigue crack penetrates 

it, although it usually controls the scale of nonpropagating cracks of the fatigue limit (cf. 

Miller (11), Li (23)). Some grain boundaries provide less blockage to small fatigue crack 

propagation due to their orientation (22). The adjacent grain may have a favorable 

orientation that promotes continuous slip without enhancing dislocation pile-ups and related 

stress concentrations. After penetrating the grain boundary, the small fatigue crack 
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propagates with reference to this preferred grain orientation. 

Through the periodic measurement of plastic zone size (and shape) of growing small 

fatigue cracks, Zhang and Edwards (77) found that cracks begin to decelerate when their 

relatively large cyclic plastic zones (not the crack tips), were blocked by grain boundaries. 

Further propagation of the crack required that the plastic zone extend in the next grain, 

suggesting that the initiation of plasticity in the next grain controls the fatigue limit and 

growth rate in the small crack regime. This is a similar description of the small crack 

behavior as given by Li (23). 

There is a subtle distinction of the interaction of the local lattice orientation of a long 

crack tip and a small crack tip with barriers. In the long crack case, it may be said that the 

crack tip field is influenced by barriers since it represents a bounded singular domain 

enclosing a statistically significant set of barriers. For microstructurally small 

crystallographic cracks, it is not clear that the tip obeys a singularity of long crack type since 

the scale of inelastic deformation, surface roughness, and damage process zone in the vicinity 

of the crack may be on the order of the crack length itself. Certainly, the embryonic stages 

of crack nucleation along PSBs suggests that such cracks embark on growth with the scale 

of cyclic plasticity and/or distributed damage as the dominant feature. Hence, there is a 

significant perturbance of the stress and strain fields in the vicinity of the crack due to 

interaction with microstructural obstacles. For long cracks, interaction with barriers along 

the crack front tend to average out, leading to less variability in the crack growth rate and 

therefore an apparent insensitivity to microstructural detail. 
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1.3.6 Small Crack Propagation Approaches 

Identification of the potential limitations of LEFM/EPFM and direct experimental 

observations have led to alternative small crack propagation approaches. Tomkins (78) 

proposed a small crack propagation law for LCF based on shear decohesion along conjugate 

slip planes ahead of a Stage II crack, resulting in linear dependence of da/dN on crack length. 

In the transition from microstructurally small to long crack behavior, da/dN is often observed 

to be approximately linear with crack length in LCF. Many of the applications of the AJ-

Integral have been reported for physically small cracks in LCF. Additional approaches for 

microstructurally and physically small cracks may be found in articles by Miller (10-11). Of 

particular interest for this research are those approaches which address many of the details 

of microstructural barrier interactions in Stage I and early Stage II propagation. Hobson et 

al. (79) developed empirical laws for deceleration of small fatigue cracks approaching a 

microstructural barrier located at a = d, i.e. 

for a<d, where xa is the amplitude of maximum shear stress, a and A 0 are constants (for a 

given mean stress), and d is fitted by regression analysis of data. Often, d is on the order of 
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a few mean grain diameters. The crack growth rate relation in Equation (1.7) averages 

oscillatory behavior at individual grain boundaries. For mechanically small cracks, the 

relation 

— = B T P a 
dN 

D (1.8) 

was proposed by Miller (10), where D is a threshold growth rate, and B is a constant for a 

given mean stress. This relation assumes that cracks on the order of 3-10 grain diameters 

must be treated with an EPFM-type relation due to local large scale yielding effects. The 

highest rate from Equations (1.7) or (1.8) is assumed to apply. Arrest may occur if the two 

curves do not intersect prior to a = d. 

In work by Hussain et al. (80), models of the small crack growth process were based 

on dislocation blockage and slip transfer solutions that display significant microstructural 

sensitivity and oscillatory growth behavior predicted over the first several grains. Tanaka 

et al. (81) provide detailed solutions for crack tip sliding and opening displacements which 

consider grain boundary blockage and slip transfer for Stage I and Stage II small cracks. 

They show that in addition to grain boundary blockage, large scale yielding and lower 

effective yield strength near the surface contribute to higher growth rates for cracks on the 

order of grain size. Depending on the degree of misorientation with nearest neighboring 
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grains, the first grain boundary may serve as the most effective barrier against arrest, similar 

to the assumptions of the Hobson et al. (79) and Navarro and de los Rios (83-84) models. 

Local crack closure effects associated with discrete slip bands and crack path fluctuations can 

also alter the local crack tip opening displacements in Stage II. While distributed dislocation 

theory-based approaches offer predictive capability, they are limited in addressing other 

important effects such as crack branching, lack of constraint associated with the free surface, 

effects of surrounding grains, and roughness-induced crack face interference. In short, they 

are highly idealized. 

1.4 McDowell-Berard Small Crack Propagation Law 

To properly assess and provide correlative models for the small crack regime, stress 

state, stress amplitude and crack length dependencies must be incorporated. McDowell and 

Berard (2-3) introduced a growth law that addressed these dependencies by proposing 

distinct growth laws for LCF and HCF. Under LCF conditions, McDowell and Berard (2-3) 

assumed mixed mode I and II crack growth in the plane of the crack, associated with 

crystallographic Stage I shear growth. They extended the AJ-Integral by analogy in the form 

f Ax Ayp) 
n 1 max I 

m 
m a m = D a N cP e * y m « m d-9) 
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for completely reversed loading, where is defined as 

% = (1 + up) ®p(K£aWn + 1) 
' AT AY P X 

n l ma I 2 2 , 
(1.10) 

Equation (1.9) applies in the limit as the plastic strains dominate the elastic strains, i.e. the 

fully plastic case. Parameter Pp introduces dependence of the crack tip fields and/or crack 

tip opening and sliding displacements on stress biaxiality ratios Xa and where Xa = x/a^ 

and 40 = oxjGyy (x and are the far field shear and normal stresses, respectively; crxx is the 

direct stress parallel to the crack). The constraint parameter, p, is nonzero only when 

multiple normal stress components are operative as in biaxial loading. It is defined as 

p 2 A T / 2 R* a n ) 

and introduces additional dependence of the small crack propagation rate on R„ = 

(Aa„/2)/(Axn/2). Here, R„ is a biaxiality factor which varies from zero for completely 

reversed torsional fatigue to unity for uniaxial or biaxial loading conditions. Also, A<J„, AT„, 

and A y ^ are the ranges of normal stress, shear stress, and maximum plastic shear strain, 
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respectively, on the plane of maximum range of plastic shear strain. Constants \i and m 

control the influence of constraint and nonlinearity of small crack growth; Cfp is a fully 

plastic coefficient which recovers the independent LCF Coffin-Manson and cyclic stress-

plastic strain laws for completely reversed loading in torsional and uniaxial fatigue. 

The McDowell and Berard (2-3) law showed qualitative agreement with LCF 

experimental results based on T-plane plots (6-7) for completely reversed loading of both 

Case A and Case B (6-7) histories for Stage I shear-dominated small cracks. Again, Case A 

(e.g. torsion or combined axial-torsion or tubes) cracks grow along the surface and Case B 

(e.g. equibiaxial loading) cracks grow into the surface depending on the orientation of the 

3-D strain field with respect to the surface. Their proposed law was able to correlate fatigue 

life (to a 1 mm crack) to within a factor of two on life for a wide range of multiaxial loading 

conditions. From these results and others (4-7), consideration of (i) the range of shear strain 

and (ii) the stress or strain normal to the plane of maximum shear strain seem essential to 

correlate fatigue life. 

Although separate forms for LCF and HCF small crack propagation were developed 

(2-3), a unified law is desirable. Considering that the McDowell-Berard approach (i) 

provided agreement with LCF experimental behavior in the T-plane, (ii) correlated the 

fatigue life (1 mm crack) to within a factor of two for a wide range of multiaxial loading 

conditions, and (iii) included distinct small crack growth laws for LCF and HCF, it is a 

viable candidate for extension to multiple regimes of small fatigue crack growth, especially 
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with an enhancement of its treatment of the MSC regimes. 

As a first step, McDowell and Poindexter (aka Bennett) (20) extended the McDowell-

Berard model into a unified law for both LCF and HCF. In this case, the possibility of a 

fatigue limit was neglected. The treatment of detailed nucleation and MFM growth concepts 

for a < d (10-11,84) were not addressed, where a is the crack length and d is on the order of 

the grain size. For this engineering model, the complexities of microstructural influence on 

small cracks below the transition crack length, kd, were taken into account in an average 

sense by assigning a nonlinear dependence on crack length, amplitude and stress state, rather 

than considering the vagaries of oscillatory growth past barriers. For a > kd, a linear 

dependence of da/dN on crack length was assumed up to validity of LEFM. 

To represent the MFM and EPFMM regimes of small crack propagation, the 

McDowell-Berard small crack propagation law was modified as 

where 

= up) (P Rn + 1) 
' A T AyPn 

n I n 
, 2 2 

(1.13) 
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Y = (1 + up) Rn + 1) ' Ax Ay e ) 
n i max I 

, 2 2 
(1.14) 

and i? e is a non-dimensional ratio, 0 < Re < 1, representative of the relative degree of 

macroscopic elastic straining 

A y e 

_ *- max 
e (L15) 

The effective crack length exponent, m ,̂ is of a different form for each of two regimes of 

propagation, i.e. 

my = my (Re, Rn, AfmJ far ±- < 1 ; m = 1 for -2- z 1 
kd 1 kd (116) 

In Equation (1.12), the coefficient DaN is determined by integrating the expression for 

constant amplitude loading conditions between given initial and final crack lengths, i.e. 
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where it is understood that m,, in the second term on the right-hand-side corresponds to the 

regime a < kd. The decomposition into MFM (a < kd) and EPFM H (a > kd) regimes is 

clearly reflected by the two terms of equation above. Since is a function of stress 

amplitude and stress state, it is apparent that depends on both stress state and amplitude. 

The adoption of a constant kd in Equation (1.12) is purely empirical in nature, intended to 

reflect experimental evidence. Likewise, the forms of ¥ e a n d ^ in Equation (1.12) are based 

on the McDowell-Berard model from MFM concepts/solutions and micromechanical models. 

Improvements in the forms of kd and my are desired in order to reflect the changing driving 

forces for small cracks. 

Equation (1.12) compared well to experiments performed by Socie (4) on 1045 steel 

and Inconel 718 concerning the growth of small cracks under completely reversed tension 

and torsion. There are fundamental differences between propagation of small cracks in 

cyclic torsion and tension-compression. For lives on the order of 10 6 cycles under tension-

compression, most of the "initiation" life is spent in propagating cracks with lengths on the 

order of the grain size. However, in torsion for N f = 10 6 cycles, most of the life is devoted 

to propagation of cracks with lengths in excess of the grain size. At increasing lives, the 

34 



fraction of life spent in growing cracks with lengths less than 100 urn in length increases, to 

a much greater extent in uniaxial fatigue than in torsional fatigue. The crack growth behavior 

is quite nonlinear with respect to crack length for cracks shorter than 100 |Xm under HCF 

conditions, particularly for uniaxial fatigue at longer lives. The point of departure from Stage 

I shear-dominated crack growth to Stage II normal stress-dominated growth occurs at higher 

strain amplitudes for uniaxial fatigue, likely due to the influence of the normal stress across 

the Stage I crack in promoting secondary slip band formation and crack branching at the 

crack tip. Torsional fatigue appears to promote Stage I behavior at long lives for a given 

crack length, perhaps associated with low symmetry slip (lower Taylor factor and more 

primary slip) at the local level. This likely points to an enhanced microstructural roughness-

induced shielding effect in uniaxial HCF relative to torsion when the crack opening 

displacement is on the scale of crack surface roughness. 

Iso-crack length contours similar to those of Socie (4) were constructed for 1045 

steel. Consistent and similar differences are exhibited by the model for torsional and 

uniaxial behavior. A major reason for writing Equation (1.12) in that form is to account for 

sequence effects. Sequences of torsional fatigue followed by uniaxial fatigue for three 

different loading levels are shown in Fig. 1.7, with N f corresponding to % = 1 mm. The law 

predicts relatively strong sequence effects for the case of decreasing stress amplitude (11). 

The interaction curves plotted from stress state sequence effects exhibit a nearly bilinear 

character, similar to the double-damage curve analysis introduced by Manson and Halford 
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(32), especially for cyclic tension. The McDowell-Poindexter (20) law more adequately 

correlates experimentally observed damage accumulation and interaction than a single 

power-law description based on nonlinear cycle fraction summation. This 'bilinear' form 

is a natural consequence of the decomposition of the crack growth process into two regimes 

with different operative mechanisms. Even with the advances offered by this form of the 

small crack propagation law, improvements are needed for the current empirical forms for 

kd, v P e , Wp, and crack length dependencies. 

1.5 Three-Dimensional Effects for Small Cracks 

After small cracks initiate on the surface, they grow along the surface and into the 

bulk material. By growing into the bulk, the small crack experience more constraint from 

the surrounding material which can be characterized as a three-dimensional (3-D) effect. A 

3-D description of small fatigue crack closure would be another factor that would improve 

the predictive capabilities of remaining life. To predict the fatigue crack growth patterns and 

fatigue lives for surface cracks, and 3-D crack geometries such as surface cracks at holes and 

corner cracks at holes, Newman and Raju (85) used LEFM concepts that were modified to 

account for crack closure behavior. They examined two aluminum alloys (7075-T651 and 

7050-T73). Under constant amplitude loading, the cracks geometries were assumed to grow 

in either a semi-elliptical or quarter-elliptical shape and points at the surface and at the 
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maximum depth point were monitored. They found that for R = 0 loading, small 

semicircular surface cracks tended to grow in a self-similar fashion, although the stress-

intensity factor at the surface was 10% higher than at the maximum depth. Although a 

constraint factor was introduced to account for these differences in K, growth rates and 

fatigue lives were only correlated within 30%. In addition, the shape of the crack front was 

not predicted well because the closure parameter did not account for residual stresses at the 

surface. Work by Trantina et al. (86) found that the K value was only 4% higher at the 

surface than in the depth. Their finite element analyses on 3-D small surface cracks 

provided stress-intensity factors for 3-D crack geometries and effective K values for 3-D 

elastic-plastic conditions. As found in the previous work by Newman and Raju (85), these 

changes in K along the surface was attributed to the lack of plane-strain constraint at the 

surface, therefore, self-similarity of small cracks in 3-D bodies cannot be assumed. 

In 1990, Dawicke et al. (87) experimentally quantified the three-dimensional closure 

effect for an aluminum alloy (2024-T351). Indeed, the global and surface crack opening load 

measurements only provide a 2-D view of a 3-D problem. With the exception of very thin 

sheets, where the constraint is entirely plane stress, a 3-D variation in plasticity-induced 

closure behavior exists along the crack front. This variation is due to the change in constraint 

from plane stress at the surface to plane strain in the interior. The shape changes are due to 

a combination of the 3-D variation of both fatigue crack closure and stress intensity factor 

along the crack perimeter and cannot be predicted with 2-D models. The crack opening loads 

( K ^ / K ^ ) were found to range from 0.35 to 0.4 near the surface while values of less than 
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0.2 were observed in the interior. Newman et al. (71) also performed 3-D elastic plastic 

finite element analyses to quantify these constraints in order to incorporate 3-D effects in 2-D 

crack analyses. They suggest a global constraint factor to account for three "local" constraint 

parameters along the crack front and are based on the normal, tangential, and hydrostatic 

stresses along the crack front. Although these results are mainly for cracks on the order of 

physically small cracks, including this influence improved the model's ability to predict 

fatigue crack growth data within 15%. This is a significant improvement to the initial model 

by Newman and Raju (85). Later studies by Newman (88) and Wu et al. (89) incorporated 

this constraint concept to better correlate fatigue data. 

Carlson et al. (90) present experimental studies of the fatigue growth of small corner 

crack emanating from small flaws in an aluminum alloy. A three-point bending state of 

loading was used and by virtue of the square cross-section of the specimen, the maximum 

tensile stress developed at the middle of the gage section and on a corner edge. For this 

geometry, grain boundaries were effective in curtailing crack growth; this is in line with 2-D 

assessments of small crack growth in that grains barriers are one of the barriers to continuing 

growth. However, it is more descriptive to visualize a 3-D geometry in which the advancing 

crack encounters a 'grain boundary wall' which introduces local barriers to continuing 

growth. In addition, since small thumbnail cracks, for the same crack depth, can be expected 

to have about twice as many grains along their fronts as small corner cracks, their growth 

behaviors may differ. The usual stress intensity factors which assume homogeneity, 

however, are insensitive to these differences. The anomalous growth rate of small cracks 
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may be due in part to the fact that surface grains, which are a large fraction of the total 

number of grains along the crack front of a small crack, are not subjected to the level of 

interior grains. 

In an effort to further bridge experimental and computational analyses, Zhang et al. 

(64) used in-situ SEM measurements and finite element analyses to determine the magnitude 

of fatigue crack closure due to the effect of plasticity- and roughness-induced closure. They 

found that the fatigue crack closure stress levels from the finite element analyses were lower 

than those from SEM data because roughness was not accounted for in the finite element 

model. This was due to the contact of asperities on the fatigue crack surfaces which was not 

accounted for in the finite element analysis. When a model was developed which accounted 

for both plasticity and roughness effects, it correlated well with experimental fatigue life data 

for A12Q24-T351. 

Most recently, Newman et al. (91) used a plasticity-induced closure model to predict 

fatigue lives of using 'small-crack theory' for various materials (aluminum alloys and steels) 

and loading conditions. The model included a 3-D constraint factor which accounted for the 

elevated flow stress at the crack tip and the influence of stress state. A distinguishing feature 

of this work is that smaller initial crack sizes were considered (2 u,m to 10 |im) as well 

microstructural features, such as inclusion-particles which served as crack initiation sites. 

as 
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1.6 Outstanding Issues to Be Addressed In This Work 

At present, small crack propagation laws are largely qualitative in nature due to the 

complexity of the local problem of propagation in heterogeneous microstructure and EPFM 

conditions. The current small crack growth laws have not fully incorporated the effects of 

periodic barrier interactions, non-propagating crack limits, and shakedown of microplasticity. 

Detailed micromechanical approaches that recognize local anisotropy and heterogeneity 

effects, such as crystal plasticity, can shed light on more appropriate and specific forms for 

such small crack propagation laws. While distributed dislocation theory-based approaches 

offer predictive capability, they are limited in addressing realistic, first order effects such as 

lack of constraint associated with the free surface, effects of surrounding grains, and crack 

face interference. The computational micromechanical approach used in this work will 

address these first order effects and will foster the development of improved forms of small 

fatigue crack growth laws. Although 3-D effects which account for additional constraints 

for small crack growth are potentially important, they will not be explicitly addressed in this 

work. 
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Figure 1.1 (a) Upper plate of rotor hubs (b) and sites of crack formation (17). 
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(a) (b) (c) 

Figure 1.2 Small crack sizes and characteristic dimensions (a) microstructurally small, 
(b) mechanically small, and (c) physically small. 

Figure 1.3 Schematic of Stage I and Stage II crack growth behavior for cyclic tensile 
loading. 
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Figure 1.4 Case A and Case B - under general multiaxial cyclic strain (6). 
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Figure 1.5 r - planes for lCr-Mo-V steel at 20°C showing Case A and Case B (6). 
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Figure 1.6 Kitagawa diagram for a low carbon steel with ferrite grain size of 55 urn (12), 

Figure 1.7 Predicted interaction behavior for completely reversed torsion followed by cyclic 
tensile sequences for three different constant amplitude fatigue lives for 1045 steel- in each 
case, N f corresponds to % = 1 mm (20). 
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CHAPTER II 

CRYSTAL PLASTICITY AND MODELING OBJECTIVES 

To facilitate necessary improvements in small fatigue crack growth models, 

micromechanical calculations based on computational cyclic crystal plasticity can provide 

a better understanding of the influence of microstructure. Since crystal plasticity models 

relate the macroscopically applied stress to the microscopic crystallographic slip response, 

they are appropriate to study heterogeneity and interactions across grains. Given that small 

crack growth is highly dependent on microstructure and the interaction of cyclic 

microplasticity among grains, a continuum slip idealization for response of grains seems 

appropriate. Models of this type can provide useful, quantitative information which serve 

as an important vehicle to study local behavior of microstructurally small cracks. This 

Chapter reviews the essential details and implementation of a continuum crystal plasticity 

model. 

II.1 Planar Double Slip 

The continuum theory of single crystal plasticity can be used to model the behavior 
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of FCC metallic crystals, which are known to plastically deform by slip on the close-packed 

{111} planes, and in the close-packed <110> directions. FCC crystals possess 12 separate 

slip systems (three possible <110> slip directions on four {111} planes). Figure ILla gives 

a slip system representation of the planar double slip idealization. Two of the four unique 

{111} planes are shown together with the four <110> slip directions that would be activated 

in (110) planar plastic flow defined by a condition of zero plastic strain rate normal to the 

plane. The top dashed arrow corresponds to the slip direction for the "effective slip system" 

that represents the (111) [101 ] and (111) [011 ] , whereas the bottom dashed arrow represents 

the ( l l l ) [ 0 l l ] and (111)[I01] slip systems (92). These four slip systems can therefore be 

characterized by two effective slip systems separated by 70.2 degrees in the crystal lattice 

(93-94). Figure II.lb illustrates the effective slip systems for the 2-D planar double slip 

idealization. 

The slip geometry for a 2-D plastic deformation can therefore be represented by a 

planar-double slip idealization in which all grains share a common plane of deformation. 

These effective slip systems in 2-D (plane-strain assumption) maintain a fixed orientation 

with respect to each other and rotate with respect to the continuum (94). Figure II. lb shows 

the geometry for the two effective slip systems and how they may be oriented. The bisector 

angle, 0, orients the slip system pair relative to the fixed specimen axis. The angle § defines 

the crystallographic close-packed planes in relation to the bisector angle, and § equals 35.1° 

for an FCC crystal. 

46 



Of course, such a planar double slip model is always an idealization because it only 

accounts for deformation by crystallographic dislocation slip alone. In reality, inelastic 

deformation is not only a result of crystallographic slip, it may also occur via twinning, 

diffusion, and grain boundary sliding (95). Planar double slip only accounts for deformation 

by crystallographic dislocation slide alone. The basic premise of the analysis is that with the 

decomposition of the deformation gradient, F = F e • F p , material flows through the crystal 

lattice via dislocation motion, whereas the lattice itself, with the material embedded on it, 

undergoes elastic deformation and rotations. The deformation gradient remaining after 

elastic unloading and upon returning the lattice to its orientation in the reference state is F e l 

F = F p . Of course, in real processes, removal of the loads alone will not return the lattice to 

its original state and thus what remains as a residual F after slip is more than just F p ; the 

lattice may be permanently reoriented, for example, as well as placed in a state of residual 

deformation. A 2-D model should be regarded as giving results of more qualitative value. 

Another limitation of F p is that it represents the collective effect of dislocation glide 

and is a continuously distributed field quantity. Therefore, it is not well-suited to describe 

localized plasticity and does not produce a 'banded' effect along slip systems representing 

preferential softening along a slip direction. For cracked body analyses from which crack 

tip sliding and opening displacements are obtained, the initially equal probability of slip of 

the two system for the planar double slip idealization likely yields an underestimation of the 

sliding displacement quantities. The issue of equal probability of slip is briefly investigated 

in Chapter VI where one slip system has reduced hardening in order to simulate the effect 
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of a less resistant slip direction which might represent slip band behavior. 

Glide of dislocations occurs along crystallographic slip planes and directions (96). 

The first quantitative description of plastic flow by crystallographic slip was made early this 

century by Taylor (97). With the introduction of computers, the use of incremental crystal 

plasticity theory has become more tractable. The rate of dislocation motion, or the rate of 

viscoplastic shearing, has often been represented by the phenomenological equation 

\8aJ (n.i) 

where y0 is the reference viscoplastic shear rate, %a is the resolved shear stress on slip system 

a, g a is the hardening or resistance to flow on the a ' h slip system, and Me represents the 

material strain rate sensitivity exponent (95, 98). Since the finest scale of microstructure 

processes considered in the present model is at the scale of the crystallographic slip system 

(CSS), it is assumed that all phenomena which are related to length scales below the grain 

level (e.g., atoms, molecules, discrete lattice defects) are modeled at the CSS level using this 

phenomenological approach. There are, however, two options when implementing crystal 

plasticity into continuum slip models to solve deformation problems - rate dependent and 

rate independent flow rules. 
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II.2 Rate Dependent and Rate Independent Crystal Plasticity 

Initial crystal plasticity models, intended for plastic flow at low homologous 

temperatures, idealized the crystallographic slip as rate independent (9). Rate independent 

models, however, suffer an inherent deficiency in that the combination of active slip systems 

necessary to accommodate an arbitrary deformation is not unique. Active slip systems refer 

to those slip systems for which the resolved shear stress, x a , equals g" , the resistance. An 

additional hypothesis is necessary in order to unambiguously specify which slip systems are 

active. The minimum work principle proposed by Taylor (97) resolves this deficiency, but 

replaces it with anew one - prohibitively expensive computational times. Anand and Kothari 

(99) and Schroder and Miehe (100) have addressed this issue by introducing iterative 

numerical procedures that substantially reduce the computational requirements. 

Rate dependent crystallographic slip was introduced to resolve the numerical 

challenges of rate independent crystal plasticity theory and to represent more realistic flow 

kinetics at higher homologous temperatures (cf. Pierce et al. (98) and Asaro and Needleman 

(101)). In this approach, there typically is no yield condition and no loading/unloading 

criterion is applied. Instead, all slip systems are assumed active with their shearing rates 

being related to the resolved shear stress by the flow rule given in Equation (II. 1), for 

example. Rate dependent crystal plasticity (RDCP) also introduces computational 

complexities in the form of very stiff differential equations that must be integrated 

numerically. RDCP formulations must, in tum, employ time steps in numerical integration 
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that remain very small to obtain accurate results (cf. Cuitino and Ortiz (102)), especially 

when there is low rate sensitivity and hardening rate. 

II.3 Structure of the Crystal Plasticity Algorithm 

In modeling a polycrystalline aggregate with crystal plasticity, there are a few options 

regarding the structure of the crystal plasticity algorithm. The first is within a finite element 

context for cases where each integration point in an element represents the behavior of a 

number of grains. For this case, it is usually necessary to make an assumption regarding 

grain-to-grain constraints and interactions. The second option is for the aggregate to be 

modeled with discrete grains, where each element or several elements represents a grain or 

part of a grain. Figure JI.2 gives examples of these modeling options. 

In this work, the second method is used. For uncracked cases, each grain is 

represented by one element. The advantage of using this option is that both compatibility 

and equilibrium are well-approximated. Each element deforms according to continuity with 

neighboring grains. A distribution of plastic strain is obtained within each grain by using 

higher order elements. For the cracked cases, the second method is also used, but instead of 

each grain being represented by one element, the grain is subdivided into numerous (2-400) 

elements. The variation in number of elements in each grain depends on the grain's 

proximity to the small crack tip - those grains which are closer to the crack tip have a finer 
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mesh, whereas those grains further from the crack tip are less refined. Each grain is given 

an orientation, 6, which orients the slip system pair relative to the fixed specimen axis. 

However, a constraint is imposed on the nearest neighbor orientation in that the 

misorientation cannot exceed 15° (103). 

The crystal plasticity algorithm begins with the kinematics of deformation by 

assuming a multiplicative decomposition (92,95,104) of the deformation gradient, F = Fe 

• Fp. Here, F is the total deformation gradient; F* is the elastic deformation gradient which 

represents the the elastic distortion of the lattice and the rigid rotation; Fp, the plastic 

deformation gradient, defines the cumulative effect of dislocation glide that leaves the lattice 

undisturbed. As discussed earlier, component Fp represents the collective effect of 

dislocation glide along crystallographic slip planes. It is assumed that slip is a continuously 

distributed field quantity in this approach, which is a limitation in describing localized cyclic 

plastic strain, for example in PSBs. Three configurations of the deformation are defined: 

undeformed (reference), intermediate, and deformed. Figure n.3 shows the kinematics of 

elastic-plastic deformation of a crystalline solid deforming purely by crystallographic slip and 

elastic deformation of the lattice. The resolved shear stress (RSS) on the a* slip system is 

given by T a = a: ( s a ® m a ) , where a is the Cauchy stress, s a is the vector along the direction 

of slip, and m a is the vector normal to the slip direction, all expressed in the current 

configuration. The RSS or Schmid stress is the component of shear stress resolved in the slip 

plane and in the slip direction. 
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The slip system level constitutive framework essentially follows that of Cailletaud 

et al. (105) and Jordan and Walker (106). Pure nonlinear kinematic hardening is employed 

to describe cyclically stable response. The rate of viscoplastic shear strain, y a , for the a* slip 

system is given by 

T A - XA 

sgn (T a - x a ) 01.2) 

where G represents isotropic strengthening and yo is the reference shearing rate. Isotropic 

hardening is held constant to represent cyclically stable behavior and pure nonlinear 

kinematic hardening is employed according to the Armstrong-Frederick form 

xa = C f - d xa I y a I (H.3) 

The backstress, xa, relates to dislocation interactions with, for example, dislocation walls 

produced by cyclic loading which serve to resist deformation. Equation (JJ.3) represents the 

nonlinear kinematic evolution of xa, where C and d are direct hardening and dynamic 

recovery coefficients, respectively. 

Given some known deformation history, one must determine the stress, crystal 
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orientation, and updated state variables for the entire deformation history, as in Ref (102). 

The numerical integration must solve a set of equations which enables F p to be determined 

from the history of deformation. An iterative technique, the Newton-Raphson (N-R) method 

(107), is used to solve for the system of coupled algebraic equations which arise in the course 

of this integration. A Fortran subroutine, UMAT (User MATerial), integrates the 

constitutive equations within the ABAQUS (108) finite element code. At each loading 

increment and gauss point within the finite element code, UMAT is called. It must provide 

updated stress and state variables at the end of the time step, given the updated deformation 

gradient. The N-R iteration technique was used to iteratively obtain the plastic shear strain 

rate, y a , for each slip system. The state variable update is reduced to a system of nonlinear 

equations for the increment of the plastic shear strain rate, Ay a , for each slip system. A 

backward Euler, fully implicit integration scheme was employed for the numerical 

integration. An incremental line search algorithm (110) and a time step subincrementation 

scheme (111) were both used to assist the rate of convergence (94) on Ay™ . Convergence 

conditions are satisfied within 2-3 iterations. Global equilibrium and compatibility are 

enforced at the end of each time step based on the variational principle of virtual work in 

ABAQUS (108). The incremental line search algorithm on the N-R step does the following: 

the increment of the plastic shear strain rate, Ay a , is halved until an optimal value is reached 

such that the sum of the squares of the error in the estimate is minimized. This is necessary 

if the initial estimate of y a is not a 'good' estimate - such that a minimum error results. The 

N-R iteration is again pursued towards the local minima. Figure n.4 illustrates the line 
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search algorithm. If the N-R procedure does not converge, the time step, At, is repetitively 

halved until convergence. The deformation gradient is also linearly interpolated during time 

step subincrementation (shown in Figure JI.5). 

The algorithm assumes small elastic strains and is comprised of four main 

components: (1) determine initial guess of y a , (2) perform N-R to solve for A y a , (3) perform 

line search and time step subincrementation (if necessary) for convergence criteria, (4) obtain 

converged y a , and (5) calculate the Jacobian for ABAQUS. An outline is given below to 

illustrate the algorithm: 

©Variables passed into UMAT from ABAQUS at the beginning of the current time 

step: F , F , a where n is the current time step 
— n ~ n+l ~ n 

•Define the elastic stiffness, Cijkl , Cijkl = X,8̂  5kl + M-(§rt5^ + 8 . ^ ) 

(1) Determine initial guess of yaby the following steps: 

Fe = F • Fp 1 

~ n ~ n — n 

Fp is assumed to be the Identity tensor for the very first time step, based on the 
~ n 

fact that there is initially no plastic deformation at the beginning of the first time step. 

•Calculate the Elastic Green strain, E6 , from 
~ n 

• C' - F ' T • F' 
~ „ ~ n ~ n 
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• Calculate 2nd Piola-Kirchoff Stress, s , with respect to the intermediate 
~ n 

configuration 

S = C : Ee 

~ n ~ ~ n 

Calculate resolved shear stress on a* slip system 

x„a = 0 : ( sa ® ma ) 

a 
_ e 

det F 
~ n 

, where a* = Fe S Fe 

~ ~ n ~ n ~ n 

Here, sa and m are the vectors along the slip direction and normal to the slip 

plane, respectively, in the current configuration. 

• Determine an estimate of the shearing rate, 

V = J0 

n o sgn (Jn

a - x0

a) 

where xa

a is the initial value of the backstress 
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(2) Perform N-R to solve for ya. Given ya, find Fp _ I , a 
~ n + * 

a n d f n + \ a by solving simultaneous equations for Aya 

a a , - - , ' T >* n + 1 ~ n + l ~ n + 1 ~ n + l 

Find F by 
~ n + l ' 

F = exp L * At 
\ ~ n + l ; 

where z/ is the plastic part of the velocity gradient in the intermediate 
~ n+l 

configuration and is calculated by 

~ n + l „ \ ~ ~ I 

Here, f and m are the vectors along the slip direction and normal to the slip 

plane, respectively, in the intermediate configuration. 

Continue with calculations for 

F' F • F 
~ n + l ~ n + 1 ~ n + 1 
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Ce =Fe T - Fe 

~ n + 1 ~ n+1 ~ n+1 

- « 1 / - e 
E = - C - / 
~ n+1 2 V ~ «+l 

5 = C : £ e 

~ n+1 « ~ n+1 

V i " = * ' ( sa ® ma) 

a _ *n° + C A f y ° 

1 + d A H y a I 

Begin Newton-Raphson iteration to determine Ay" by forming 

A t " ) = *„+i a " *n + l° " G 

• Do a linear expansion of / a ( y a ) 

dr".a 

4 i a = y ; a + E-^(Af p) 
p Sy11 

where i refers to the iteration 
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©Setting fM

a = Ogives 

df. a 

~ E ±r (AfP) = f* 
p dyp 

or in matrix form 

ML ML 
djl df Ay1 f 

ML ML Ay2 

J2. 
dyl dy2 

Solve simultaneous equation for Ayp 

Determine SSEIe{ = reference sum squares error 

S^Eref = E [ / " f 
a 

(3) Begin Line Search 

Av a 

• Begin with Ay" = —— 

• Form y . + ]

a = y. a + Ay a and recalculate 

Fp 1 , a , x \ x a , f n + 1

a ,andSSE linesearch by performing N-R to 
~ n + 1 ~ n + 1 ~ n+1 ~ n + 1 

solve for Ay a . 
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(4) Check the convergence of the line search by comparing the SSEs. 

4A. If SSEline search <, SSEref, Ay" has converged and go to Step 5 

4B. IS SSElinesearch > SSEref this step has not converged. The time increment 

is divided into two subincrements and start again at Step 2 with L P • 

(5) Calculate global Jacobian matrix, J (tangent stiffness matrix) 

8Aa 8DP 

J = — - = / + C : Af 
dAe ~ ~ da 

-l 

: C 

where 

Dp = £ y a s y m ( J B ® ft" ) 

II.4 Finite Element Model Based on Crystal Plasticity 

A planar double slip idealization (92,112) of cyclic crystal plasticity was implemented 

in ABAQUS (108) through UMAT. The 3-D implementation described above, developed 

and coded by R. M. McGinty (109), was modified for the 2-D case as well as for cyclic 

behavior. The crystal plasticity model provides a phenomenological description of 
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crystallographic slip and dislocation interactions at the grain level and offers insight into the 

nature of heterogeneous cyclic plasticity and driving forces for small crack growth due to 

intergranular misorientation. This micromechanical model is useful to (1) study the 

distribution of cyclic microslip amongst a set of grains in a polycrystal, (2) investigate the 

character of crack tip fields for small cracks in the presence of crystallographic anisotropy and 

heterogeneity, and (3) better understand the interaction of a crack with microstructural 

barriers. The 2-D nature of planar double slip renders these calculations of more qualitative 

value in assessing the influence of microstructure. Only a single phase metal is idealized 

where grain boundary misorientation is the only source of heterogeneity. Moreover, the effect 

of shear localization within slip bands is not entirely treated with this model without 

modification by introduction of bands of lesser resistance to flow. This formulation does, 

however, offer a more direct treatment of crystallographic dislocation glide and associated 

plastic anisotropy in order to address the small fatigue crack problem. Isotropic elasticity is 

assumed within each grain in order to isolate the role of plastic anisotropy due to 

crystallographic slip. 

Cuitifio and Ortiz (102) performed a numerical simulation of cracks in single crystals 

to assess the near-tip fields for monotonic loading by incorporating crystal plasticity within 

a finite element context. They computed the isocontours of slip activity in the small strain 

region ahead of the crack tip as well as dominant slip modes. The significance of the dominant 

slip modes is that they signify directions of rapid variations of displacements and stresses. 

These types of calculations are potentially very important for the understanding of small crack 
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behavior, even under complex loading conditions. The isocontours of slip are directly related 

to the plastic zones that develop around crack tips. Single crystal plasticity was extended to 

the polycrystalline realm by several investigators (113-115), enabling them to examine the 

effects of misorientation among neighboring grains. Analyses of this type provide evidence 

that the fundamental concepts of crystal plasticity can be extended in a straightforward 

manner to polycrystalline and crack problems. 

II.5 Crystal Plasticity and Cyclic Deformation 

The application of crystal plasticity to cyclic deformation problems has been 

undertaken by Cailletaud et al. (105), Jordan et al. (101), and Jordan and Walker (116). These 

studies have provided guidance for modeling with cyclic crystal plasticity. Cailletaud et al. 

(105) performed both microstructural observations and micromechanical modeling of cyclic 

multiaxial behavior of an austenitic stainless steel using a viscoplastic, rate dependent 

constitutive framework. Satisfactory correlations with experimental data were obtained for 

both uniaxial and nonproportional loading. The Cailletaud model predicted extra hardening 

and the extent to which multiplicity of slip occurred under nonproportional loading. By 

including the influence of multiple slip using interaction laws for cross hardening of slip 

systems, the response of the material was more accurately modeled. 

Jordan et al. (106) and Jordan and Walker (116) also applied crystal plasticity to cyclic 
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planar double slip crystal plasticity concepts to study the crystallographic behavior of 

microstructurally small cracks in single crystals. They varied the orientation of the two slip 

planes with respect to the crack growth direction in order to estimate the variation of growth 

rate of MSCs. Upper and lower bounds for the growth rate of MSCs as a function of the 

macroscopic load and the crack opening were obtained based on a linear crack growth rate law 

(with COD), with implications for variability of the crack growth rate. 

II.7 Application of Computational Crystal Plasticity: 2-D Analyses 

Two types of analyses are performed in this work. In the first type, the distribution 

of three different fatigue initiation criteria on uncracked, polycrystalline aggregates are 

evaluated. This work considers different realizations of grains (aggregates of grains with 

random orientations of slip systems). By examining different microstructure realizations at 

different strain amplitudes, statistical information is obtained which provides insight into the 

dependence of fatigue crack formation and early growth on the heterogeneity inherent in real 

metal polycrystals. 

The second type of analysis considers a polycrystalline aggregate with an embedded 

surface crack. This type of analysis is unique in that cyclic deformation of polycrystalline 

aggregates using crystal plasticity includes the effect of surrounding (not just adjacent) grains 

on the distribution of cyclic microplasticity. This work is distinctive from the work of Li 
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(121) on bi-crystals. Firstly, not only is the influence of the orientation of slip in the cracked 

grain and adjacent grain studied, but also the effect of surrounding grains on the distribution 

of cyclic microplasticity and crack tip driving forces. Secondly, the effects of both primary 

and secondary slip in the grain adjacent to the surface crack are studied. These adjacent grain 

orientations are selected to either promote primary or conjugate slip at the crack tip and as the 

crack grows across grain boundaries. 

Both conditions of loading and crack orientations are shown in Figure H6. For the 

remote tension-compression case (Figure JI.6a), a surface grain contains a crack which is 

oriented at 45° with respect to the tensile axis. The slip system in the surface grain is oriented 

such that one of the slip system directions is aligned with the crack's orientation. There are 

two cases for the orientation of slip in the adjacent grain (denoted by the shaded area). One 

case is where the adjacent grain is modeled with an orientation of the slip system which 

promotes single (or primary) slip; the other case is for the adjacent grain having an orientation 

which promotes conjugate (or secondary) slip. In Figure JX6b, the remote shear loading 

condition has a surface grain that contains a crack which is oriented at 90° with respect to the 

tensile axis. In a similar manner as the tension-compression case, the remote shear case also 

has adjacent grains which are modeled with orientations which promote single and conjugate 

slip. Note that the orientations which promote single and conjugate slip in the adjacent grains 

differ for each loading condition. 

Upper and lower bounds of the driving forces are determined for radically different 

orientations of the next grain ahead of the crack tip. These calculations are distinctive in that 
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they provide a direct method for determining what combination and to what extent orientation 

of adjacent and surrounding grains, crack length, and loading level contribute to driving forces 

for small surface fatigue cracks. Stationary crack analyses over a range of crack lengths are 

considered in this work rather than propagating the crack along predetermined crack paths 

using a nodal release criterion for crack growth. The former method was selected in order to 

focus more on first order microstructural influences (which are not yet well-characterized) 

rather than on complex crack paths and history effects which are more relevant to future work. 
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(a) 

(b) 

Figure II . l (a)Two of the four unique {111} planes are shown together with the four <110> 
slip directions that would be activated in (110) planar plastic flow. The top dashed arrow 
corresponds to the slip direction for the "effective slip system" that represents the 
(111)[I01] and (11 l)[0l 1], whereas the bottom dashed arrow represents the ( l l l ) [ 0 l l ] and 
(11 l ) [10l] slip systems, and (b) effective slip systems for 2-D planar double slip 
idealization. 
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(a) (b) 

Figure II.2 Modeling options for modeling a polycrystal using crystal plasticity within a 
finite element context (a) one finite element with each gauss point representing several grains 
and (b) finite element mesh with each element representing a grain or multiple elements 
within each grain. 

m « 

Figure II.3 Kinematics of elastic-plastic deformation showing undeformed (reference), 
intermediate, and deformed configurations. 
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Figure II.4 Line search procedure wherein the Newton-Raphson step is 
successively halved until an optimum value is reached. 

Fn'|5" At n+1» ^n+1 

8 

Figure IL5 Time step subincrementation procedure - if the Newton-Raphson 
procedure does not converge, the time step is repetitively halved until 
convergence does occur. 
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(a) Remote Tension-Compression 

Adjacent grain orientation Adjacent grain orientation 
promoting promoting 

Single (primary) Sl ip Conjugate (secondary) Sl ip 

(b) Remote Shear 

Adjacent grain orientation Adjacent grain orientation 
promoting promoting 

Single (primary) Sl ip Conjugate (secondary) Sl ip 

Figure II.6 Illustration of primary and secondary slip designations for adjacent grain 
orientation for a surface grain containing crack under remote (a) tension-compression in the 
x 2 (G 2 2 ) direction and (b) shear (x 1 2) loading. 
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CHAPTER III 

POLYCRYSTAL ORIENTATION DISTRIBUTION EFFECTS ON MICROSLIP 

In this Chapter, two-dimensional computational cyclic crystal plasticity results are 

presented for the distribution of cyclic microplastic slip and critical plane-type fatigue 

parameters among a polycrystalline ensemble. A material is examined with the nominal 

uniaxial stress-strain response of 4340 steel. Cases of applied cyclic tension-compression, 

cyclic shear, cyclic tension-compression with a tensile mean stress, and combined cyclic 

tension-compression and cyclic shear are analyzed at strain amplitudes ranging from well 

below to macroscopic yielding. Emphasis is placed on stress state and amplitude dependence 

of the distribution of these parameters among grains. The role of anisotropic plasticity is 

isolated by assuming that the elastic behavior of grains obeys homogeneous, isotropic linear 

elasticity. 

Studies of this type are significant because small crack formation and growth 

behavior, whether examined by crack tip displacement (CTD), plastic zone size, or 

misorientation of adjacent grains, cannot be considered in detail using macroscopic 

approaches that ignore microstructure. In this Chapter, three candidate fatigue initiation 

parameters are examined in order to quantify and interpret the distribution of each parameter 

over an aggregate polycrystal. 
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Fatigue Crack Initiation Parameters 

Fatigue crack initiation parameters are used as a means for relating macroscopic 

parameters, such as the applied stresses, to parameters such as the plastic shear strain 

amplitude on the plane of maximum shear. This permits one to assess the development of 

the distribution of damage within a material. These parameters are related to the initiation 

of damage (formation and very early crack growth). This work considers three such 

parameters and examines how these parameters are distributed throughout the aggregate as 

a function of stress state and stress amplitude. The HCF regime is the primary focus, and 

hence applied loading levels are at or below macroscopic yield. This Chapter focuses on 

fatigue crack initiation criteria and qualitatively compares the criteria with experimental 

observations. 

III. l . l Normalized Cyclic Microplasticity Parameter 

As discussed in Chapter I, the extent and distribution of plasticity among grains is an 

important factor in fatigue crack formation and early Stage I growth. A direct measure of the 

cyclic microplasticity is the maximum cyclic plastic shear strain on a slip system normalized 

by the global cyclic plastic strain averaged over all grains, defined here as the normalized 

cyclic microplasticity parameter (N-CM), i.e. 
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A Y " 

2 
max / / avg (m.i) 

where AY a

m a x is the maximum range of shear strain on either of the two slip systems and AP 

= As 2 2

p for the tension-compression case, and AP = Ayp = 2AEi2

p for cyclic shear. 

III.1.2 Mohr-Coulomb Parameter 

Another fatigue crack initiation parameter that has been used for the multiaxial HCF 

case involves a linear combination of the range of maximum resolved shear stress, Ax", and 

the peak hydrostatic stress, Phyd. Dang-Van (9) and Papadopoulos (122) have employed the 

Mohr-Coulomb (MC) parameter within individual grains, i.e. 

where C, is a constant for a given fatigue life. They asserted that HCF crack initiation takes 

place in grains which have local plastic strain within characteristic intracrystalline bounds 

while the entire aggregate is still macroscopically elastic (shakedown state). Although the 

MC parameter has often been employed to assess the behavior of soils or granular materials 
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(123), its extension to fatigue crack initiation in metals is related to the assumed influence 

of normal stress on decohesion along persistent slip bands, or opening of small Stage I 

fatigue cracks under predominately shear loading. 

III.1.3 Fatemi-Socie Parameter 

A macroscopic parameter proposed by Fatemi and Socie (F-S) (40), given by 

Ayp 

I max 

max 

(JJI.3) 

produced correlations very similar in the LCF regime to a corresponding fully plastic form 

of Equation (JJI.3) (2-3). Here, C 2 is a constant for a given number of cycles necessary to 

produce a surface crack length on the order of 0.5 to 1 mm in length. The peak tensile stress, 

G„ M A X , normal to the plane of maximum shear strain amplitude is normalized by the yield 

strength, cy, to essentially reflect the modifying influence of the normal stress on the crack 

tip displacement (CTD). The constant k* value of 0.5 is selected by correlating fully 

reversed uniaxial and torsional data sets and as being representative of correlations (39). The 

Fatemi-Socie parameter has been shown to correlate a wide range of multiaxial loading 

73 



conditions, including cases involving mean stress for 1045 steel and IN 718 (both extended 

Stage I-dominant materials) over a range of fatigue lives (10 3 to 10 6 cycles)(41-42). 

III.2 Distribution of Cyclic Microplasticity 

A phenomonological, micromechanical model based on crystal plasticity is employed 

to conduct two-dimensional (2-D) finite element analyses to assess the distribution of 

microslip among grains in a polycrystal. In determining an appropriate aggregate size, the 

works of Abdul-Latif and Saanouni (124-125) and Hoshide and Socie (126) were examined. 

Although these studies were not set within a finite element context, they not only serve to 

guide a selection of the number of grains to use in the analysis, but they also show how 

crystal plasticity concepts are used to model cyclic behavior and the development of fatigue 

damage. Abdul-Latif and Saanouni (124-125) quantitatively examined the fatigue life and 

micro-damage heterogeneity for FCC polycrystalline metals by employing a coupled 

phenomenological-micromechanical model of the early plastic fatigue damage initiation. 

Their model is based on slip theory (crystal plasticity) and employs a self-consistent 

homogenization technique. One of their studies (125) examined the influence of the number 

of grains (40, 48, 96, 200, 300, 504) in the aggregate on the direction and orientation of 

damage. They found that in modeling Waspaloy, the number of grains had a considerable 

effect on the micro-damage heterogeneity, mainly because damage phenomena are governed 
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by the void nucleation and growth in fatigue. However, between 200 and 504 grains, the 

predicted damage and resulting fatigue life values converged and one is assured of consistent 

results. Since their work was done outside the context of finite elements, a transgranular 

micro-damage variable was employed. This points to one of the advantages of using finite 

elements coupled with micromechanical concepts - no ad hoc assumptions are made 

regarding grain-to-grain interactions. Finite elements assure very good approximations of 

both compatibility and equilibrium. 

The model of Hoshide and Socie (126) also considered the driving force for fatigue 

crack nucleation and microstructurally small crack growth in a distribution of randomly 

oriented grains. A double primary-conjugate slip system was used with a total of 625 square 

grains in their analysis. They considered two regimes of shear cracking. The first regime 

was crack growth by nucleation within individual grains by coalescence. The dislocation 

model of Tanaka and Mura (67) was used to compute the nucleation of cracks with 

individual grains. In the second regime, cracks became large enough to generate their own 

stress fields and grow as a single dominant crack. This regime was analyzed using fracture 

mechanics concepts with an equivalent strain intensity factor. The model was used to 

simulate the fatigue behavior or SAE 1045 steel. Both crack distribution and fatigue life 

estimates were obtained under nominally LCF conditions. They were able to reproduce 

observed crack patterns reasonably well in addition to predicting fatigue life up to 10 s cycles 

for 1045 steel. In their model, the fatigue crack nucleation and growth were assumed to be 

governed by cyclic microplasticity, with mixed-mode contributions from the cyclic shear 
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strain and the cyclic normal strain to the microcracks within individual grains. Hoshide and 

Socie (126) assumed that each grain had the same stress as the surrounding material in the 

bulk. Their analysis is likely overly-simplistic because stresses vary considerably throughout 

the microstructure depending on grain orientation. 

In this research, 2-D (plane strain) finite element analyses are conducted to assess 

distribution of microslip and propensity for formation of small fatigue cracks. The grains are 

modeled as 8-noded quadrilateral, biquadratic elements and planar double slip models the 

cyclic plasticity. A total of 576 grains are used in the analyses with each grain represented 

by one element. Grain orientations are randomly assigned to describe an initially isotropic 

effective medium. Uniform vertical displacements are prescribed at the top and bottom 

boundaries in the uniaxial loading y-direction, with zero traction in the x-direction; the lateral 

sides were traction free. In shear, the x-direction displacements on the top and bottom 

surfaces are specified, with no y-direction traction on the upper surface, and traction free 

lateral boundaries. For each loading condition (stress state and stress amplitude), a set of 

three realizations are analyzed, each with a different, but randomly assigned, orientation 

distribution of grains. Two rings of elements are considered as surface grains, as shown in 

Figure in. 1. Only 16% of the total volume of the mesh are surface grains and were not 

included in the distribution calculations in order to minimize edge effects. Error bars are 

shown on plots, indicating differences in distribution of parameters among the various 

realizations. 

The plane strain tension-compression hysteresis loops in the 2-D simulation are 
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assigned a behavior typical of uniaxial behavior of a 4340 steel for illustrative purposes, as 

shown in Figure ITJ.2 for a 100 grain polycrystal. Constants for this fit are E = 175 GPa, 

v = 0.3, ME = 10, Y o = 10- 8S-', G = 60MPa, C = 1 0 0 M P a and d = 30 for a strain rate 

of 1.5xl0"3 s"1. Variables ME, j o , G, C , and d were defined in Equations (11.2 - JJ.3). A 

constant polycrystal effective strain rate is imposed in all calculations to avoid significant 

strain rate differences among the various cases evaluated, so the value of Me was selected 

more to promote computational stability than to mimic a realistic rate sensitivity. The elastic 

behavior in all calculations reported here is assumed to be isotropic and linear elastic. 

The strain amplitude levels for tension and shear range from well below to the cyclic 

yield strain of the polycrystal ensemble, corresponding to approximately 0.2% plastic strain 

(defined as e y = 0.0065 and yy = 0.0042, respectively) of the polycrystal and are applied at an 

effective strain rate of 1.5xlO"3 s Peak strain levels considered are fractions (0.3,0.5,0.7, 

0.9, and 1.0) of the cyclic total yield strain in each case in order to investigate the cyclic 

microstrain distributions under predominately HCF conditions. Two completely reversed 

strain cycles are applied to ensure a numerically repeated path in the simulation during the 

second cycle. The distribution of parameters among grains arising from microstructural 

inhomogeneity are assessed by discussion the overall shape of these as a function of stress 

amplitude and stress state. 
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III.2.1 Completely Reversed Cyclic Tension-Compression 

When using the crystal plasticity model as the constitutive model for the material 

stress-strain response, the contour plot of equivalent plastic strain for cyclic strain amplitude 

of 0.7 ty in Figure JJI.3a correctly shows bands along ± 45°. It is along these directions 

(planes of maximum shear) that small cracks develop. This appears to be consistent with 

experimental results reported by Socie (5) for small cracks which nucleate in surface grains 

under cyclic tension-compression. 

IIL2.1.1 Normalized Cyclic Microplasticity (N-CM) 

For each strain level, the distribution among grains for the N-CM parameter is shown 

in Figure DI.4a shows two peaks. The first peak is due to a percentage of grains (20-30%) 

which have a maximum shear strain on the slip system which is a small proportion of the 

applied plastic strain averaged over all grains. This initial peak decreases with increasing 

amplitude, but still remains a dominant feature for all distributions. The second peak is more 

apparent for increasing strain amplitudes. This occurs as an increasing number of grains 

have a closer proportion of the maximum shear strain on a slip system to the average applied 

plastic strain. For a strain amplitude of 0.3 £y, this second peak occurs near a N-CM value 

of 2.4, but with increasing strain, this peak is centered close to 1.0 and has a Gaussian type 
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distribution. Bars denote the range of the distribution obtained from three realizations of the 

orientation distribution of grains which show that there is little variation among simulations, 

except for the highest applied strain amplitude of 0.9 e y. Clearly, only a limited number of 

grains experience cyclic plastic strains that considerably exceed the average macroscopic 

plastic strain as evidenced by the narrow right-end tail of the distribution; these grains are 

expected to control fatigue crack formation and early Stage I growth. This parameter also 

shows a strong amplitude dependency. 

As a part of a study by Roven and Nes (127), quantitative observations were made 

of the nature of PSBs formed in the cyclic stress saturation condition. The number of PSBs 

in grains containing at least one PSB were analyzed. From a selection of 26 grains, an 

average value of 5 PSBs per grain was counted. It was further noted that the number of PSBs 

per grain, in grains containing at least one PSB, is well described by the Gaussian 

distribution. However, for the N-CM parameter considered here, the distribution tended 

more so towards a pseudo-log-normal type distribution for increased amplitudes. For LCF 

conditions, there are higher concentrations of the plasticity within the aggregate and 

increased compatibility of plastic deformation from grain-to-grain. The important point here 

is that a Gaussian type distribution may be more suited to describe LCF conditions, whereas 

the HCF conditions in this analysis show that there is not a homogeneous distribution of the 

normalized cyclic microplasticity. 
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111.2.1.2 Normalized Mohr-Coulomb Parameter (MC) 

The MC parameter is normalized by the average applied stress amplitude. A value 

of the parameter k = 0.2 is selected as representative of correlations reported by Dang-Van 

(9). As seen in Fig. DI.4b, the distribution tends towards Gaussian characteristics as general 

macroscopic yielding is approached. Hydrostatic stresses do not distinguish between stresses 

normal and parallel to the potential crack, so no amplitude dependency is reflected for this 

parameter and for this loading case. The peak values and shape of the distributions are quite 

similar with increasing strain. 

111.2.1.3 Normalized Fatemi-Socie (F-S) Parameter 

For all strain levels (0.3 e y through e y) shown in Figure JU.4c, the distributions show 

an initial peak for grains which have a small value of the normalized F-S parameter. The 

distributions are skewed to the left and the shape of the distribution reflects a dependence of 

strain amplitude, although to a lesser degree as compared to the N-CM parameter. The 

variability among multiple realizations of orientation distribution is nil. What is also 

observed is the narrow right-end tail of the distribution which has a small peak which shifts 

to the left with increasing strain amplitude. In comparison to the N-CM distribution, the 

distribution for the F-S case consistently has a higher percentage of grains with a higher 

value of the fatigue initiation parameter; this implies that a higher percentage of grains have 
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an increased propensity for initiating. 

III.2.2 Cyclic Shear 

As in the cyclic tension case, the contour plot of equivalent plastic strain for a shear 

strain amplitude of 0.7 y y is generated. Focusing on the interior grains and away from the 

boundaries, these bands appear to concentrate along 0° and 90° for cyclic shear, as shown in 

Figure JJJ.3b. This initial result agrees with experimental results reported by Socie (5) for 

the orientation of microcracks which nucleate in surface grains under cyclic shear. 

III.2.2.1 Normalized Cyclic Microplasticity (N-CM) 

The results for normalized cyclic microplasticity (presented in Figure IJJ.5a) are 

similar for all strain amplitudes, but exhibit a drop in the peak of the distribution with an 

increase of applied strain level. For all strain amplitudes, the distributions resemble an 

exponential decaying function which points to a highly inhomogeneous distribution of the 

cyclic microplasticity. About 50-60% of the grains experience a local maximum shear strain 

on a slip system that is less than half of the macroscopic plastic shear strain. However, a 

small percentage of the grains have two to three times the macroscopic plastic shear strain. 

Even though a significant amount of grains have a very small proportion of the macroscopic 

plastic shear strain, it is the few grains which have a larger value of the N-CM control the 
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initiation of small cracks. 

Note also that due to the extreme skewness of the distribution, smaller ranges of this 

parameter (as low as 0.01) were also examined to determine if a different shape of the 

distribution would become apparent, however, the extreme skewness of the distribution 

persisted. There is therefore, an assurance that this exponential decaying type of distribution 

does in fact properly assess this parameter for cyclic shear. 

III.2.2.2 Normalized Mohr-Coulomb (MC) Parameter 

The distribution for cyclic shear contrasts significantly from the distribution of the 

MC parameter for cyclic tension-compression. The cyclic tension-compression case showed 

minimal differences in the distribution as a function of strain amplitude, as given in Fig. 

m.4b. The MC parameter for cyclic shear in Figure UI.5b has lower peak values as 

compared to the cyclic tension-compression case. This parameter yields a more 

homogeneous distribution of the damage within the aggregate and shows a strong 

dependence on amplitude. With increasing applied strain, the peak increases slightly and 

becomes more distinct, with the parameter centering near a value of 1.0. 
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IH.2.2.3 Normalized Fatemi-Socie (F-S) Parameter 

The distribution in Fig. BI.5c shows some similarities to the cyclic tension-

compression case with both having an initial peak which is skewed to the left. This high 

initial peak persists for all strain amplitudes. The distribution also resembles an exponential 

decaying function which points to an inhomogeneous distribution of the damage. 

III.2.3 Cyclic Tension-Compression with Tensile Mean Stress 

As mentioned in the Introduction, many components are subjected to HCF loading 

conditions with a superimposed tensile mean stress. The goal of this set of calculations is 

to simulate this behavior and to identify the differences which arise as compared to the 

completely reversed tension-compression case. In order to achieve a stress ratio of R = 0, 

the mean stress level is chosen as 400 MPa. A plot of the hysteresis loops for this case, given 

in Fig. JH.6, shows material that has undergone some degree of mean stress relaxation. 

The distribution plots of the polycrystal aggregate are given in Figure IJJ.7. These 

distributions are very similar to the case of completely reversed tension-compression. The 

distributions for the N-CM and the F-S parameters are very similar to the case with no mean 

stress. For the MC parameter, the distributions for the case with and without the mean stress 

are quite similar as well, but the case with mean stress has a smaller range (0.0 - 0.6) as 

compared to the range (0.0 -1.0) for the case without a mean stress. This is perhaps due to 
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the overall increased homogeneity among grains as signified by the lower peaks. There are 

lower peaks of the distributions for all fatigue initiation parameters (as compared to the 

completely reversed case). 

It is also apparent that these parameters, when normalized, are not especially sensitive 

to mean stress effects because the distributions were very similar to the completely reversed 

case. These results appear to correlate with the work of Nisitani (47) who compared the 

changes of the surface states of 70/30 brass under different R ratios (R = - 1 , R = 0, and R = 

°°). He found that fatigue damage in the crack formation/initiation regime was almost 

independent of the mean stress value and the damage was primarily controlled by the stress 

amplitude. This signifies that the crack propagation process, as opposed to crack formation 

and initiation, was greatly affected by the values of mean stress. 

III.2.4 Combined Cyclic Tension-Compression and Shear 

For this loading case, a contour plot of equivalent plastic strain in Figure JH.3c shows 

several bands along many oblique directions (from the horizontal axis) for combined loading 

with strain amplitudes of 0.7 s y and 0.7 Yy. Orientations along the outer edge of this figure 

show one example of an orientation at approximately 20°. Although the darkest bands tend 

to align with the planes of maximum shear, there are other less intense contours which 

surface as a result of the combined effect of tension and shear loading. These less intense 

bands do not appear to align with neither the ± 45° nor with the 0° (or 90°) directions. It 
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appears that there are regions of grains which may have developed a 'handedness' along the 

± 45°direction when loaded in cyclic tension-compression, but when loaded in shear, the 

'handedness' which developed is then smeared by subsequent shear loading. This smearing 

effectively creates regions within the aggregate which are clearly a combination of the two 

loading states. The distributions of the fatigue initiation parameters for the combined case 

are evaluated for three realizations of random orientations of grains. Each parameter is now 

normalized by an effective stress or strain based on the average stress (or strain) over all 

grains. 

III.2.4.1 Normalized Cyclic Microplasticity (N-CM) 

For each strain level, the distribution among grains for the N-CM parameter, shown 

in Fig. JJI.8a, resembles an exponential decaying function. With increasing strain, the plots 

have the same shape, but has decreasing peak values. The distribution for the combined 

loading case resembles the cyclic shear case. There is increased variability between the three 

realizations for increasing strain amplitudes as signified by the wider range on the error bars. 

The log normal PDF is used to fit the distributions for each strain amplitude. At the highest 

strain levels, however, the PDF did not fit the distributions well due to the dual peaks. 

At higher strain amplitudes, a redistribution of normalized cyclic microplasticity 

occurs such that two values of N-CM dominate. In reality, bimodal grain size distributions 

have been observed when analyzing materials which have undergone heat treatment (131) 
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due to the presence of two dominant features of the microstructure. In a different work 

(132), the statistical distribution of the interfacial strength in ductile metal was also bimodal, 

showing the presence of both weakly and strongly bonded particles. Although these specific 

types of studies were not investigated in this work, they do suggest how bimodal 

distributions arise - two strongly opposing effects wherein one does not overshadow the 

other. This seems plausible for the case of combined loading since the planes of maximum 

shear for tension-compression loading (± 45°) and for cyclic shear loading (0° and 90°) are 

quite distinct. 

111.2.4.2 Normalized Mohr-Coulomb (MC) Parameter 

The distribution of the MC parameter appears to have a Gaussian type of distribution 

with values centered near 0.5. As seen in Fig. HJ.8b, increasing strain has a minimal effect 

on the change of the shape and peak values of the distribution. This behavior contrasts with 

the distributions of the MC parameter for the cyclic shear loading case wherein the peak of 

the distributions is more distinct with increasing strain. 

111.2.4.3 Normalized Fatemi-Socie (F-S) Parameter 

For all strain levels, the distributions for this parameter are fit with a three parameter 

log-normal PDF (in Figure DI.8c). 
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III.3 Fatigue Initiation Parameters: Implications 

The Fatemi-Socie critical plane fatigue parameter was previously discussed to have 

a stronger linkage to cyclic crack tip displacement for microstructurally small cracks (8). 

The F-S parameter has demonstrated a more direct correlation of mixed-mode, multiaxial 

fatigue crack formation and early growth than either maximum cyclic plastic shear strain (N-

CM) or the MC parameter. Although both the MC and the F-S parameters both provide 

information regarding the maximum cyclic shear stress and strain, the F-S parameter 

identifies the plane of maximum plastic shear strain combined with the effects of normal 

stress on that plane. It is well-known that plastic deformation of metals exhibits very weak 

dependence on hydrostatic stress. The MC parameter includes the peak hydrostatic stress 

which may not directly influence crack initiation, as discussed by Socie (4). Even though the 

hydrostatic stress reflects constraint that may either promote or hinder crack initiation, the 

directionality of the influence is lacking. 

In the computations performed in this research, it was found that the normalized 

cyclic microplasticity and Fatemi-Socie parameter both showed amplitude dependency for 

the cyclic tension-compress loading case, whereas the MC parameter showed amplitude 

dependency for the cyclic shear case. The F-S parameter, however, does show more of a 

consistent distribution for both stress states, especially at the higher strain amplitudes. It is 

also well-known that both uniaxial and torsional fatigue cannot be correlated, in general, 

using only the maximum plastic shear strain parameter (6,35). Socie (4) has effectively 
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shown that the F-S parameter correlates multiaxial fatigue behavior (small crack regime) that 

cannot be resolved by the MC parameter. These calculations may offer some understanding 

of why this is the case. The broadening of the shear distribution among grains for the MC 

parameter is in accordance with observations of higher surface crack density in cyclic shear 

relative to tension-compression (4). This suggests a fundamental difference between these 

two stress states in terms of the driving force for crack formation and early Stage I 

propagation, which is confirmed experimentally (6,35). Micromechanical FE calculations 

such as these provide useful information as to the propensity for initiation of small cracks. 
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Figure III.l Finite element model of polycrystal aggregate used in crystal plasticity 
analysis with surface grains indicated by arrows. 
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CHAPTER IV 

ANALYSIS OF MICROSTRUCTURALLY SMALL FATIGUE CRACKS 

One objective of this study is to perform micromechanical computations in order to 

qualitatively assess the effects of microstructural heterogeneity which contribute to 

anomalously high growth rates and oscillatory behavior for small cracks. Since the small 

crack growth regime can account for 50-90% of the total life of components, properly 

characterizing this regime is essential. One way to quantify the effects of microstructural 

heterogeneity on small crack behavior is to study the changes in crack tip driving forces as 

the cracks grow through grains of different orientations. As a first approximation, the 

changes in crack tip driving forces are examined by considering cracks of different lengths 

from the free surface with various crystallographic orientations of surrounding grains. Only 

stationary cracks are considered in this work. 

The 2-D micromechanical model used in the uncracked polycrystal analysis is now 

applied to the evaluation of CTSDs and CTODs for microstructurally small fatigue cracks 

under both monotonic and cyclic loading. These crack tip driving force parameters relate to 

the relative motion of the crack faces near the crack tip. A unique feature of these 

calculations is that these driving force parameters reflect the influence of the free surface as 
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well as surrounding grains within the microstructure. These two factors have often been 

neglected in previous continuously distributed dislocation models (82, 128) and slip band 

models (83). CTSD and CTOD computational results are presented as a function of the 

applied average strain, ranging from well below to slightly above nominal yielding for tensile 

and shear loading. The same nominal strain levels that were used in the uncracked 

polycrystal cases are utilized in these crack analyses. Crack tip displacements for a 

polycrystal with surface cracks are first evaluated for monotonic loading to understand 

shielding and redistribution effects, absent of slip band considerations in fatigue. Cyclic 

loading results are then presented, showing the nature of the crack tip sliding and opening 

displacements as functions of amplitude and including plasticity-induced closure effects. 

IV.l Use of Planar Double Slip for Determining CTOD and CTSD 

for Microstructurally Small Cracks 

Before discussing the results generated using the micromechanical crystal plasticity 

model, it is important to briefly review previous work and the results generated from similar 

models. Gall et al. (117) employed a planar double slip crystal plasticity model and 

compared their results of crack opening displacement (COD) and crack opening stress with 

initially isotropic elasto-plastic solutions for a plane strain center cracked panel loaded in 

tension. A range of orientations of the two slip directions with respect to each other and the 
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orientation of the crack were considered with R = 0 loading. Not surprisingly, the initially 

isotropic plasticity solutions significantly underestimated the COD (up to a factor of two) for 

many of the orientations considered. The COD measurements were made at a distance x 

behind the crack tip according to xIQ^Jg^2 = 0.1. Crystallographic orientations that 

promoted predominately single slip near the crack tip resulted in little plasticity-induced 

closure, while orientations that promoted double (conjugate) slip resulted in closure levels 

well above that computed with the initially isotropic plasticity theory ( S o p e n / S m a x = 0.37 rather 

than 0.17). The implication is that conjugate double slip, typical of Stage U propagation, is 

conducive to producing substantial plasticity-induced closure effects (18). 

IV.2 CTD as Driving Force for Microstructurally Small Fatigue Cracks 

In general, small cracks grow along 3-D paths, interacting with multiple barriers 

along the crack front. Certain segments of the crack front grow sequentially, while on the 

surface the growth appears intermittent. Idealizing the behavior as principally mixed mode 

I-II growth in 2-D, it is widely held that the crystallographic fatigue crack growth process is 

dictated by the local crack opening and sliding displacements. Li (129) proposed a vectorial 

crack tip displacement (CTD) relation 

= A (ACTD)" , ACTD = |A8 , + A 5 P | (IV.l) 
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where CTD is the magnitude of the vector comprised of all primary (8 p) and secondary (8S) 

slip vectors or band lengths ahead of the crack tip (see Fig. IV. 1). Exponent n is typically 

on the order of 1 to 2 (128, 130) to capture experimental results for small/short and long 

cracks. For small cracks in single and polycrystals, a linear dependence of da/dN on crack 

length has been commonly observed (131), suggesting that n ~ 1. The observed crack 

increment per cycle typically falls far short of the nominal CTD (129), due in part to the fact 

that the crack front has some segments which actively grow and others that are temporarily 

pinned by interactions with obstacles such as second phase particles or grain boundaries in 

a complex 3-D arrangement and in part to partially reversible slip. 

According to Li (132), for small crystallographic cracks in Stage I growth 

predominately under single slip (minimal cross slip or multislip ahead of the crack tip), the 

growth process is dominated by the CTSD on the primary slip system. The contribution of 

secondary slip becomes more prominent as the tendency for multislip sets in, or the crack 

encounters barriers that induce opening displacement. Microstructurally small cracks 

initially grow along the primary slip plane with little or no contribution from secondary slip 

(Stage I). Upon encountering constraints on continued propagation in single slip, secondary 

slip may become relevant to continued propagation. The onset of extended Stage I growth 

(Fig. IV. lb) is associated with development of secondary slip bands which are constrained 

by the coplanar primary slip ahead of the crack and hence are quite small compared to the 

primary slip band length. Li (132) also found that based on solutions by Koss and Chan 

(133), the ratio of the secondary to primary slip length is on the order of 5% to 10% during 
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extended Stage I growth. The extent of secondary slip depends upon the stress normal to the 

crack plane (primary slip plane). This process results in a net curvature of the crack path due 

to asymmetric slip, resulting in a transition to dual conjugate primary slip systems typical of 

Stage II growth (normal to the maximum principal stress), as shown in Fig. TV. lc. Even if 

the slip is not completely balanced each cycle, the net effect is to maintain a crack path which 

maximizes the CTOD. As the crack lengthens, it may grow either in extended Stage I if the 

slip is relatively unconstrained (as in planar slip single crystals or coarse grain polycrystals) 

or may shift to a Stage II alternating primary slip growth mode early if the slip is diffuse or 

wavy (e.g. Al alloys). 

In considering how the CTD is affected by secondary slip through the stages of crack 

growth, it is instructive to rewrite the CTD in Equation (IV. 1) in (18) as 

CTD 
( , 

1 + 1 + 
I S \ v 1 p 

1/2 

+ 2 -cos2a flV.2) 

where 2a is the angle between the primary and secondary slip systems. Clearly, in coplanar 

Stage I growth, I8SI / I8pl = 0 and CTD, = I8pl. During extended Stage I growth, the ratio 16,1/ 

I8pl may be roughly approximated as O 2 / 9T 2 , where a is the stress amplitude normal to the 

crack plane and T is the shear stress amplitude on the primary slip plane. Assuming 2a ~ 

70.5°, this leads to CTD n « 1.07 I8pl. In Stage It growth with symmetric conjugate slip, 

CTD i n ~ 1.6318pl. The primary slip band length is given, assuming small scale plasticity and 
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isotropic linear elasticity, as I8pl = 4(l-v 2)x 2a/(E T s), where xs is the cyclic shear yield stress 

in the primary slip band. These values establish the magnitude of CTD for different stages 

of crack growth in terms of the primary slip band length ahead of the crack. 

IV.3 Model Description for Crack Analysis 

Details of the computational model are given along with discussions of parallels and 

differences with the work of Li (129, 132) and Gall et al. (117). Li's (129, 132) work 

focuses on the interaction of the crack tip with bi-crystals of varying orientations, whereas 

Gall et al. (117) used planar double slip with varying crystal orientations in a single crystal 

to assess the CTOD and CTSD. Figure IV.2 shows the crack tip configuration utilized for 

this work. The CTSD and CTOD are determined by resolving the relative displacements of 

two nodes occupying the same location in space on the initial crack surface (but attached to 

upper and lower surfaces) into components along (CTSD) and normal (CTOD) to the original 

crack plane behind the crack tip. 

The grain ahead of the crack tip along the slip plane was assigned two orientations: 

either identical to that of the surface grain with the crack, or in a conjugate slip orientation 

with significant misorientation relative to the surface grain, as shown in Figure JI.6. The 

former assignment is to some extent analogous to a crack in a large surface grain and 

promotes shear localization or slip transfer to the next grain to the greatest extent, while the 
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latter is expected to produce maximum shielding of the CTD. Results for the CTSD and 

CTOD are reported at 2 p:m and 25 um behind the crack tip. The mesh at the crack tip is 

comprised of elements which are 0.5 p:m in length; therefore, at the point which 

displacements are taken at 2 |im, there are four elements behind the crack tip. For the 

smallest crack length ratio analyzed, a/d = 0.25, the CTSD and CTOD are reported at a 

distance 18 um behind the crack tip. The values CTOD and CTSD at 18 um for a/d = 0.25 

and 25 u,m for a/d = 0.5 are considered to be more so crack mouth displacement variables 

rather than crack tip values, but that distinction in nomenclature is not made here. 

IY.3.1 Description of Mesh and Location of Driving Force Measurements 

In devising an appropriate mesh, three possibilities were considered as shown in 

Figure IV.3. The first two cases were considered in order to reduce computational times 

associated with a fairly large mesh in addition to the incorporation of a UMAT subroutine 

for the material behavior. The polycrystal was initially modeled with crystal plasticity in the 

grain containing the crack and its adjacent grain, similar to the work of Li (132). This case 

was motivated by a micromechanics principle advocated by Kocks (134) which assumes that 

the action of all grains on the surrounding ones is equivalent to the action of an isotropic 

continuum on the grain. Consequently, only one additional grain was modeled with crystal 

plasticity ahead of the Stage I small crack tip. The surrounding elements were therefore 
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modeled initially with isotropic plasticity behavior, with constants selected to fit the 

macroscale behavior of the material. Second, three 'rings' of grains surrounding the cracked 

surface grain were modeled with the crystal plasticity model. Finally, the entire aggregate 

was modeled with crystal plasticity. The first two cases resulted in unacceptably high 

stresses between the boundaries of the grains having the crystal plasticity model and those 

which were modeled with macroscale plasticity. In addition, the CTOD and CTSD were not 

consistent between the first two cases, yielding results which differed by 20-40%. The final 

configuration produced values of CTOD and CTSD which did not deviate considerably when 

using another realization of grain orientations for the polycrystal (within 5-10%). Hence, the 

last option of using crystal plasticity through the entire model was adopted. 

The finite element analyses were performed using a two-dimensional, plane strain 

mesh with a height of 0.9 mm and width of 1 mm. The grains were rectangular with 

dimensions of d = 0.1 mm by h = 0.15 mm. Elongated grains were used in order to avoid 

having a crack at a triple point (crack crosses at a location in the mesh where the nodes of 

three grains coexist. This was especially a concern for the remote tension-compression 

loading case where the cracks were oriented at 45° to the tensile axis to lie along the Stage 

I maximum shear plane. The finite element program ABAQUS (108) was used to perform 

the analyses employing the UMAT formulation for crystal plasticity described in Chapter EL 

Two-dimensional, 8-noded quadrilateral, biquadratic (CPE8R) and 6-noded quadratic 

(CPE6) solid elements were used throughout the mesh. A less refined mesh was used as one 

progresses from the crack tip to the mouth of the crack. A typical mesh with a surface crack 
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is shown in Figures IV.4a and IV.4b where considerable mesh refinement was employed in 

and near this surface grain. The elements surrounding the crack tip were 0.5 um in dimension 

to resolve the near tip CTSD and CTOD properly and crack surfaces were assumed to be 

initially perfectly planar. 

Figures IV.4c and IV.4d show the boundary conditions for the remote tension and 

remote shear loading cases. In tension, uniform vertical displacements were prescribed at 

the top and bottom boundaries in the uniaxial loading y-direction, with zero traction in the 

x-direction; the lateral sides were traction free. In shear, the x-direction displacements on 

the top and bottom surfaces were specified (zero x-direction traction on the bottom, except 

for one point), with no y-direction traction on the upper surface, and traction free lateral 

boundaries. In shear, the upper surface was subjected to a multipoint constraint to maintain 

planarity, and the bottom surface was constrained against y-direction displacement. 

IV.3.2 Crack Geometries 

The crack was assumed to reside within a surface grain which is favorably oriented 

for single slip, with one of the two available slip systems aligned with the macroscopic 

maximum shear plane orientation. For the case of tensile loading, the surface crack is 

oriented at 45° to the tensile axis. For shear loading, the surface crack is oriented at 90° to 

the tensile axis. Six a/d ratios were analyzed in this study (0.25, 0.5, 0.97, 1.25, 1.97, and 

2.5) where a is defined as the crack length along the crack plane and d is the grain width (0.1 
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mm). For tensile loading (crack oriented at 45°) a is the length of the crack projected onto 

the horizontal plane. 

All cracks are stationary, i.e. introduced without prior effects of growth history. 

Stationary cracks were considered instead of allowing the propagation of the crack along a 

predetermined path because propagating a crack would require the selection of a critical 

condition for releasing nodes along the crack front. In contrast, the goal of these studies is 

to determine the dependence of driving forces of the crack tip driving force on microstructure 

for crack paths that represent typical observations, to within limitations of 2-D analysis. 

In the grain adjacent to the cracked surface grain and diagonally along the path of the 

crack plane (see Fig. U.6), labeled as Grain A, two different orientations of the slip systems 

are considered. These include an aligned orientation that promotes extended single slip on 

the plane of the crack and a conjugate slip orientation which promotes slip along both slip 

directions. Tables IV. la and IV. lb summarize the two cases. The angle of misorientation, 

T|, is defined as the minimum angle between the primary slip system in the surface grain and 

the nearest slip system in grain A. The remaining grains are constrained to have no more 

than a 15 degree difference in 6 (orientation of the planar double slip geometry described 

in Chapter U) relative to their nearest neighboring grain (Bassani (103)), but are otherwise 

randomly oriented. It should be recognized that while grain A provides the most capacity for 

orientation blockage, the surrounding grains also contribute, rendering these analyses 

different from that of a crack interacting with a bicrystal grain boundary (135). 
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IV.3.3 Loading Conditions 

This study considers a range of peak applied strain levels as fractions (0.3,0.5,0.7, 

0.9, 1.0) of the total strain at yield, e y = 0.0065 for tensile loading and y y = 0.0042 for shear 

loading, corresponding to the cyclic curve. In all cases, the applied stain is regarded as the 

nominal strain corresponding to the displacement controlled boundary conditions shown in 

Figure IV.4. Combined with the geometry of the overall mesh shown in Figure IV.4, this 

results in a decreased crack tip driving force relative to the solution for prescribed remote 

stress. Moreover, since this is a finite body, reference isotropic, homogeneous linear elastic 

solutions are conducted for each case to compare the behavior. 

A set of monotonic analyses were conducted to the end of the first half cycle. The 

intent was to consider the influence of the free surface, anisotropy and heterogeneity on 

CTOD and CTSD without effects of crack face interference or stress redistribution associated 

with cyclic microplasticity. A second set of analyses were conducted for three complete 

cycles to explore the nature of the ACTOD and ACTSD, including the influence of the free 

surface and reversed cyclic plastic strain as a function of crack length ratio, stress state, and 

applied strain amplitude. 

As just mentioned, reference elastic solutions were also performed in each case using 

precisely the same mesh and boundary conditions, but suppressing the plasticity. Effects of 

the free surface are reflected in the elastic solutions as well. The elastic behavior in both sets 
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of simulations is linear, isotropic and homogeneous; hence, there are no weak elastic 

singularities at junctions of grains. Of course, this is an approximation for crystals, but the 

intent here is to isolate the effects of anisotropic plasticity. 

IV.4 Results for Monotonic Loading 

IV.4.1 Remote Tensile Loading 

As described earlier, the remote tensile loading case contains a surface crack oriented 

at 45° to the tensile axis. Two cases are considered. First, the adjacent grain is oriented in 

a single slip mode, such that the surface grain and the adjacent grain are aligned. Next, the 

adjacent grain is oriented in a mode of conjugate slip, such that maximum shielding of the 

CTD is produced. CTODs and CTSDs are taken from nodes which are located 2 u\m and 25 

u.m (18 urn for a/d = 0.25) behind the crack tip. Calculations of this type serve to quantify 

the CTD as a function of stress state and amplitude. 

a/d = 0.25: For this case of a small surface crack well-oriented within a surface grain, Figure 

IV.5 shows plots of CTOD and CTSD for the elastic reference solutions and for the 

micromechanical model for single and conjugate slip. For both orientations of the adjacent 
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grain and at both locations behind the crack tip, the CTOD is on the order of two to four 

times greater than the elastic solution as general yielding is reached. For both distances 

behind the crack tip, the CTOD in the single slip case is nearly identical to that of the case 

of the conjugate slip orientation of grain A for applied strains less than 0.25 e y. Above 0.25 

e y, the CTSD and CTOD for the single slip case intensifies well above the elastic solution. 

This behavior differs considerably from that calculated based on slip band 

impingement on a grain boundary ahead of the crack as in distributed dislocation (82, 128) 

or finite element solutions that use a constraint argument to represent slip bands (132). 

Figure IV.5 clearly shows that the CTOD exceeds the CTSD even in the reference elastic 

solutions which do not depend in any way on the arrangement of grains or their orientation 

(due to elastic homogeneity), but does depend on the geometry and boundary conditions 

imposed. In particular, the CTOD near the tip departs significantly from the elastic solution 

well below 0.4 £ y, and then continues to intensify relative to the elastic solution as general 

yielding is approached. The intensification of the CTOD is at least that of the CTSD with 

increased applied strain for both adjacent grain orientations. This illustrates why applying 

elastic solutions to the analysis of small cracks can yield anomalous results, even in the HCF 

regime below general yielding, when microplasticity is considered. Surface measurements 

might not reflect crack tip mode mixity very well, as inferred by the significant differences 

in the ratios of CTOD and CTSD at 2 |iim and 18 UJTI behind the crack tip as well as large 

relative discrepancies in the ratio of the micromechanical solutions to the elastic CTOD and 
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CTSD values. It is clear that surface measurements would apparently provide little useful 

information regarding the near tip behavior. 

The CTOD solutions appear to be strongly influenced by the crack tip's proximity 

to the free surface, and to some extent, by the full set of nearest neighbor grains surrounding 

the cracked grain. This is a feature that has not been brought out in previous analyses by Li 

(132). Plots of contours of equivalent plastic strain support this assertion, as shown in Figure 

IV.5. By viewing these contours for each misorientation, T|, one can gain perspective on the 

CTOD and CTSD calculations. For r) = 0° and 35.1°, it is apparent that there is some 

transfer of plastic strain into the grain directly below the surface grain, more-or-less along 

the 45 ° maximum shear plane. There is multislip on the two systems in the cracked surface 

grain within this band of localized plastic strain. For T| = 0°, as expected, slip transfer is 

unhindered. In fact, cyclic plastic slip continues across not only the adjacent grain, but also 

into its next neighbor. This is an expected result, but it is intriguing that this process begins 

well below the yield strain (slightly more than 0.3 e y). Therefore, at strain values well below 

nominal yield, transgranular plastic strain occurs. For the case of conjugate slip in the 

adjacent grain, rj = 35.1 °, there is a suppression of the slip transfer into grain A, but not 

necessarily into others. It is also recognized that even with the redistribution of the plastic 

strain into neighboring grains, it does not overshadow the strong influence of the surface on 

the crack tip displacements. This is manifested by the dominant opening behavior of the 

crack plotted in Fig. TV.4. 
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Such effects have been reported in 3-D crystal plasticity analyses and observations 

of cracks approaching bicrystal interfaces by Li (135). Essentially, the overall dominance 

of the CTOD reflects the influence of the free surface and the assignment of multislip with 

equal hardening on the two systems. For materials that exhibit profuse multislip (i.e., 

pronounced secondary slip in Fig. IV. lc), even weak constraints on primary slip may trigger 

conjugate slip and early transition to mode I-dominated conditions. 

a/d = 0.5: Figure IV.7 shows plots of CTOD and CTSD. For both orientations of slip in the 

adjacent grain, the opening displacements exceed the sliding displacements. At 2 u,m behind 

the crack tip, the sliding displacements are more nearly equal to the opening displacements. 

Above 0.25 E y , the elastic-plastic solution starts to deviate from the elastic solution. Indeed 

the elastic solution is a very conservative estimate of the near tip CTOD, by nearly a factor 

of ten at the highest strain level of 0.9 E y . Again, it is observed that the effect of 

misorientation in the grain ahead of the crack tip plays a notable role at higher strain 

amplitudes in addition to the apparent loss of constraint on plasticity near the free surface, 

since the elastic-plastic CTOD is dominant. Multislip in the cracked surface grain is 

activated by stress redistribution associated with neighboring grains. 

At 25 u.m behind the crack tip, the opening displacements exceeding the sliding 

displacements by 2.5 times at 0.9 E y , whereas at 2 (xm, the opening displacements are only 

1.5 times higher than the sliding displacements. This again indicates the uncertainty of 
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interpreting surface values as indicative of near tip values. The conjugate slip case promotes 

a slightly increased opening mode at the crack tip and the single slip mode produces 

increased sliding displacements. Figure IV.7 also shows that the influence of the orientation 

of the adjacent grain has an increased effect on the sliding and opening displacements at 

larger a/d ratios. 

a/d = 0.97: Figure IV.8 shows plots of CTOD and CTSD computed 2 um and 25 jim behind 

the crack tip, along with the elastic reference solutions, as the crack approaches the grain 

boundary. The near tip (2 |im) CTSD is essentially 4-5 times greater than the elastic 

solution. The CTOD shows enormous intensification relative to the elastic solution for the 

single slip case, similar to the smaller crack length ratio solutions; however, the near tip 

CTSD for the conjugate slip case in the next grain has fallen off to the elastic solution, 

indicating a constraint of the adjacent grain on the sliding displacement in this case. As the 

crack approaches the grain boundary, the CTSD and CTOD have very similar magnitudes 

when the next grain shares the same orientation. There is a shift of the local mode mixity 

of the crack tip displacements as the crack lengthens. However, for the conjugate slip case, 

the sliding displacements are tremendously impeded. At 25 (im behind the crack tip, and for 

the conjugate slip orientation, more sliding displacements are evident as compared to near 

tip measurements. The influence of surrounding grains appears to relieve the some of the 

strong constraint caused by the shielding due to the orientation of the adjacent grain. 
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a/d= 1.25 and a/d = 1.97: For these a/d ratios, the crack remains oriented at 45° to the tensile 

axis. The CTOD and CTSD results are presented in Figures IV.9 and IV. 10, respectively. 

As for the previous a/d ratios, the CTOD is greater than the CTSD. At 2 urn behind the 

crack tip, the CTOD for conjugate slip is greater than the CTOD for the single slip 

orientation. The conjugate slip case promotes an opening mode that is evidenced at higher 

amplitudes and crack lengths. The conjugate slip orientation of grain A increases the crack's 

tendency to open at the crack tip and as pointed out previously, provides an increased 

influence of the adjacent grain for increasing crack length ratios. At 2 u,m behind the crack 

tip, the opening displacements for the conjugate slip case (at the highest strain amplitude) 

are 20% higher than the opening displacements for the single slip case. At 25 |im behind the 

crack tip, the trend is similar. For both a/d ratios and at both locations behind the crack tip, 

the sliding displacements for the conjugate slip and single slip cases are nearly identical to 

each other. At 25 u,m behind the crack tip, the opening displacements for the single slip case 

are greater than those of the conjugate slip case. At this location, there is perhaps a 

decreased effect of the grain just ahead of the crack and an increased influence of the 

surrounding grains. For both a/d ratios and at both locations behind the crack tip, the sliding 

displacements are 25% to 40% lower than the opening displacements. Recall that for smaller 

crack length ratios (a/d = 0.25 and 0.5), the opening displacements dominated the behavior. 

For the a/d ratios of 1.25 and 1.97, the sliding displacements now have values comparable 
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to the opening displacements. 

a/d = 2.5: Figure IV. 11 shows the CTODs and CTSDs for this a/d ratio. As the crack 

lengthens, the orientation of the embedded crack is still modeled at 45°, with the adjacent 

grain being oriented either in single or conjugate slip, the same as in the previous analyses. 

Again, the opening displacements are greater than the sliding displacements for both 

locations behind the crack tip. At this a/d ratio, the opening displacements for both the single 

and conjugate slip cases are nearly identical, with the sliding displacements being 

approximately 25% lower than the opening displacements. At 25 }im behind the crack tip 

and for both orientations, the opening displacements are about 1.5 times higher than the 

sliding displacements. Again, although the opening displacements are still greater than the 

sliding displacements, the sliding displacements are more comparable to the opening values 

at these increased a/d ratios. 

Also note how the elastic solutions appear to be very similar for a/d ratios of 1.25, 

1.97, and 2.5. This is due to the nature of the boundary conditions used for these analyses. 

As previously discussed, the top face remains planar such that the entire face must have the 

same vertical displacement. This boundary condition leads to nearly constant CTD for larger 

a/d ratios. 

a/d = 2.5 (kinked): At this a/d ratio, the crack was also modeled as a kinked crack, growing 

along one of the two available conjugate slip directions in the adjacent grain. Figure IV. 12 
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illustrates both cases, labeled as kinked-down (KD) and kinked-up (KU). The computed 

CTODs and CTSDs for the KD and KU cases are reported in Figures TV. 13 and IV. 14, 

respectively. The KD case in Fig. IV. 13 shows that the opening displacements dominate the 

sliding displacements for both the conjugate and single slip cases. In fact, the sliding 

displacements are only slightly higher than those for the elastic solution. At 25 u,m behind 

the crack tip, the behavior is nearly the same as at 2 jxm, but the elastic solution for the 

opening displacement is closer to the micromechanical calculations as compared to the 

smaller a/d ratios considered. For the KU case, the opposite behavior occurs - the sliding 

displacements dominate. Although this case is not actually observed in small crack 

experiments (129), it is interesting to see why this is the case from the standpoint of a 

micromechanistic analysis. Newman et al. (136) proposed that small cracks grow in a 

manner such that the opening or sliding mode is maximum. The calculations show that the 

CTD is much greater for the KD crack due in part to the dominance of the CTOD. This is 

one possible explanation for the crack to 'select' the path normal to the applied stress. The 

KD case also more closely resembles a Stage I-Stage II transition crack wherein the crack 

grows from shear-dominated behavior to one which is normal-stress dominated. This growth 

mode (change from Stage I to Stage II behavior) may also be associated with maintaining the 

maximum CTD. 
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IV.4.2 Remote Shear Loading 

The remote shear loading case examines a surface crack oriented at 90° to the 

longitudinal (vertical) axis. The effects of the two orientations of the adjacent grain are 

examined by computing the CTOD and CTSD. Table IV. lb shows the misorientation, r|, of 

the adjacent grain for remote shear loading. The case of single slip (r\ = 0°) in the adjacent 

grain allows for relatively unhindered progression of microplasticity into the adjacent grain. 

The second misorientation, TJ = 35.1°, reflects a conjugate slip orientation in the adjacent 

grain which imposes crack tip shielding. Boundary conditions for this loading case are 

shown in Figure IV.4d. 

a/d = 0.25 and 0.5: Figures IV. 15 and IV. 16 show the CTOD and CTSD for a/d ratios of 

0.25 and 0.5, respectively. For a/d = 0.25, the opening displacements are nearly 15 times 

higher than the sliding displacements. For a/d = 0.5 at 25 Jim behind the crack tip, the 

opening displacements are about 3 times higher than the sliding displacements. Even for a 

90° crack and at these crack lengths, the behavior is dominated by the nature of the imposed 

boundary conditions as evidenced by the dominance for opening of the elastic solution. 

Hence, this particular case differs substantially from that of an edge crack in a semi-infinite 

half-space loaded in shear at infinity. The sliding displacements are nearly the same (for 

Ay/2 < 0.5 yy) as those for the elastic solution. The orientation of the adjacent grain has 
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minimal effect on the displacements for these crack length ratios. 

Contour plots of the effective plastic strain for a/d = 0.5 are given in Figure IV. 17 for 

both the single and conjugate slip cases of orientation of the next grain ahead of the crack. 

For the conjugate slip case, note how the plasticity is concentrated not only ahead of the 

crack tip, but it is redistributed ahead of the crack tip and along the surface. The surface acts 

to relieve the stress that is shielded by the adjacent grain. Similar to the contours for a/d = 

0.25 for the remote tension case, although plasticity is concentrated ahead of the crack tip 

and into adjacent grains for the single slip case, the effect of the free surface dominates the 

behavior at the crack tip. 

a/d = 0.97: The behavior for this ratio is quite different from that observed for a/d of 0.25 

and 0.5. Figure rv.18 shows the CTOD and CTSD for the elastic as well as the 

micromechanical elastic-plastic solutions. For both locations behind the crack tip, the sliding 

displacements for the elastic solution exceed those of the opening. For single slip, the sliding 

and opening displacements are nearly the same for all strain amplitudes. The CTODs are 

greater than the CTSDs for the conjugate slip case after a strain amplitude of 0.7 y . This is 

an expected result because conjugate slip does promote an opening mode and multislip, 

although it was not clear when this effect would be manifested in the CTOD and CTSD for 

the shear loading case. 
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a/d =1.25: The CTOD and CTSD for this a/d ratio are shown in Fig. IV. 19. At 2 \im behind 

the crack tip, the single slip case promotes sliding displacements which are 40% greater than 

the opening displacements. For the conjugate slip case, the opening and sliding 

displacements are nearly the same for both locations behind the crack tip. For the single slip 

case and at 25 \im behind the crack tip, the sliding and opening displacements are nearly the 

same. As nominal cyclic yield is approached, both the CTOD and CTSD rapidly increase. 

a/d = 1.97: Figure IV.20 shows the results for this a/d ratio. At this a/d ratio, there is a 

complete reversal of the behavior as compared to a/d = 0.25. As plotted in Figure IV.20, the 

sliding displacements dominate in contrast to dominance of the opening displacements for 

a/d = 0.25. Starting from about 0.5 y y to yy, the sliding displacements increase from twice the 

opening displacements to three times the opening displacements. It is also observed that (for 

the first time) at 25 \xm behind the crack tip, the elastic solution provides a good 

approximation of the micromechanical sliding and opening displacements. 

a/d = 2.5: In Figure IV.21, the CTOD and the CTSD are plotted. For both locations behind 

the crack tip, the sliding displacements dominate the opening displacements by nearly a 

factor of five for both the single and conjugate slip orientations of the adjacent grain. At this 

ratio, the behavior of the two cases are nearly the same, suggesting relative insensitivity to 

local microstructure. As the crack lengthens, the driving forces are high enough such that 
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the orientation of the adjacent grain or surrounding grain has minimal effect on reducing the 

CTD for remote shear. 

IV.4.3 Implications for Small Crack Behavior 

For the remote tensile loading case, the differences in sliding and opening 

displacements are elucidated in Figure IV.22 which summarizes the behavior as a function 

of stress amplitude and crack length ratio at 2 u,m behind the crack tip. Trend lines are also 

drawn. This Figure shows two principal features for tensile loading. First, the opening 

displacements dominate for all crack length ratios and applied strain amplitudes. Second, 

there appears to be three regimes. The first is a more-or-less linear relationship between both 

the CTOD and CTSD and applied strain for a/d < 0.5. For all strain amplitudes considered 

and at a/d = 0.97, the sliding and opening displacements exhibit sensitivity to the grain 

boundary, especially for the conjugate slip case. In the second regime (0.97 < a/d < 1.97), 

there appears to be a parabolic increase. In the third regime (1.97 < a/d < 2.5), it is clear that 

the kinked down solution for a/d = 2.5 provides a much more consistent extension of the 

trend for a/d < 2 than for the cracked still oriented at 45° (as shown by the dotted line in 

Figure IV.22). 

Figure IV.23 summarizes the behavior of the CTOD and CTSD for remote shear 

loading. It shows a plot of the sliding and opening displacements for 2 \im behind the crack 
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tip as a function of crack length ratio and applied strain amplitude. Up to an a/d of 1.25, the 

sliding and opening displacements are nearly the same for all shear strain amplitudes. For 

a/d ratios greater than 1.25, the conjugate slip case does effectively promote increased 

opening displacements as compared to the single slip case. With the increased CTOD, this 

would increase the propensity for multislip such that the shear cracks might tend to branch 

towards secondary planes. At a/d ratios of 1.97 and 2.5, the sliding and opening 

displacements are significantly different, with the sliding displacements dominating the 

behavior, especially as the nominal yield strain is approached. This contrasts markedly to 

the tensile loading case where the sliding and opening displacements differ for all a/d ratios 

and strain amplitudes; for cyclic shear, the larger strain amplitudes and larger a/d ratios 

produce significant differences in the CTOD and CTSD values. The results for both cases 

are further discussed in Chapter V regarding their implications for small crack behavior and 

model development. 

IV.5 Results for Cyclic Loading 

For the cyclic loading cases, the polycrystal is subjected to strain amplitudes of 30%, 

60% and 90% of the cyclic yield strain, where e y = 0.0065 for tensile loading and yy = 0.0042 

for shear loading. Three completely reversed (R = -1.0) cycles are applied to determine the 

behavior of the sliding and opening displacements. Only three cycles of loading are 
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considered in view of the level of the idealization and necessary computation time. Elastic 

solutions are also plotted in order to show the relative differences in the crystal plasticity 

solutions. In the same manner as for the monotonic cases, the surface crack is oriented at 45° 

with respect to the tensile axis, with two orientations of the adjacent grain - single and 

conjugate slip. For the cyclic shear case, the surface crack is oriented at 90° to the tensile 

(vertical) axis. The results for ACTOD and ACTSD are discussed in terms of their 

dependence on crack length ratio, amplitude of the applied load, stress state, orientation of 

adjacent grain, degree of local phasing or nonproportionality, and crack closure behavior. 

As previously stated, the CTOD and CTSD values are determined by considering two 

nodes which have initially identical coordinates, but rest on opposite sides of the crack face. 

As for the monotonic solutions, the displacements are taken at 2 urn and 25 u\m behind the 

crack tip for all a/d ratios, except for a/d = 0.25, where the displacements are taken at 2 (im 

and 18 [im behind the crack tip. The CTODs and CTSDs throughout the loading cycles are 

found by resolving the coordinates of these nodes into components along (CTSD) and normal 

(CTOD) to the original crack plane. At the end of the third cycle, the range of the CTSD 

(ACTSD) and CTOD (ACTOD) are found from the absolute value of the difference between 

the maximum and minimum values of the displacements. 

The crack surface is assumed as traction free provided the surfaces do not contact. 

Once the crack faces do come into contact during the compressive part of the load, there are 

several options within ABAQUS (108) that are able to handle this condition. For these 
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studies, the option most appropriate for the cases considered is the use of contact elements 

along the crack face. This formulation allows for both small- and finite-sliding between the 

two surfaces which interact. For both tensile and shear loading, the crack surfaces are not 

allowed to 'overlap', but they are allowed to move along and normal to the crack plane. 

Crack face contact friction is not considered in these studies. 

The material constants were presented in Chapter JJ, but it is further noted here that 

the slip system backstress, JC", is included in the flow rule to account for the resistance to 

forward loading due, for example, to dislocation walls produced by cyclic loading. The 

evolution of xa is defined as 

xa = C ya - d xa I f I (TV.3) 

from Cailletaud et al. (107), where C and d are direct hardening and dynamic recovery 

coefficients, respectively. For these studies, C = 100 MPa and d = 30. 

IV.5.1 Cyclic Tension-Compression 

a/d = 0.25: For this a/d ratio, the cyclic behaviors of the CTOD and CTSD are shown in Fig. 

rV.24 for the three strain amplitudes. For 0.3 e y and at 2 u,m behind the crack tip, the elastic 

solution provides a good estimate of the CTOD and the CTSD for the first cycle. However, 

for increasing numbers of cycles, the crystal plasticity solution deviates from the elastic 
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solution by exhibiting greater sliding and opening values. After the third cycle, the elastic 

solution, which maintains the same maximum and minimum amplitudes throughout loading, 

has only half of the opening displacements as the micromechanical solution. Of course, the 

elastic solution for the CTOD and CTSD repeat identically regardless of the cycle number. 

The micromechanical model behaves quite differently, especially for the highest applied 

strain range. For both the single slip and conjugate slip cases, and for both locations behind 

the crack tip (at 0.3 e y and 0.6 e y), the ACTOD and ACTSD are nearly the same for all cycles. 

At the highest strain amplitude, the CTOD and more so the CTSD are quite distinct for each 

r|. These differences are also evident at 25 urn behind the crack tip. 

Another aspect of the cyclic behavior regarding the near crack tip displacements is 

that crack closure effects decrease with increased strain amplitude(at 2|i.m behind the crack 

tip and at 0.9 E y ) . The crack faces are not completely closed at zero load. The crack faces 

are only completely closed well into the compressive part of the loading cycle. This is 

evident by comparing the stress level when the crack faces are completely closed during the 

compressive part of the cycle. Note how for the last cycle, the amplitude of the effective 

stress increases with increasing amplitude. This is more easily demonstrated in Figure W.25 

with dashed lines comparing the range of the effective stress for cases of applied strain 

amplitude 0.3 £ y and 0.9 e y. There is also some evidence of complete opening at 18 urn 

behind the crack tip, but only for the highest strain amplitude. 

What is also intriguing is the highly nonlinear and nonproportional sliding and 
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opening displacements for 0.9 E y with respect to the loading with increasing maximum values 

of CTOD. This behavior continues for all cycles at this strain amplitude. For a/d = 0.25 and 

for 0.9 E y , the sliding displacements are approximately 60% of the opening displacements for 

the last two cycles whereas they are nearly the same values in the first half cycle. This 

indicates that there is perhaps a redistribution of cyclic microplasticity into surrounding 

grains which allows for more opening and sliding in the vicinity of the crack tip. At 2 |im 

behind the crack tip and for 0.9 E y , the CTSD develops a positive mean displacement. This 

relates to the amount of irreversible slip which develops due to reversed loading and the 

amount which contributes to the offset sliding displacement at the crack tip, a kind of cyclic 

ratchetting effect. In essence, a degree of plasticity-induced closure develops. At both 

locations behind the crack tip, there are pronounced differences in the sliding displacements 

for single and conjugate slip cases for 0.9 E y . For this a/d ratio of 0.25, the effect of the 

orientation of the adjacent is not manifested until the highest strain amplitude is applied. The 

studies will also show that at increased crack length ratios, the nonproportionality sets in at 

smaller applied strain amplitudes. 

For a/d = 0.5 and for all strain amplitudes, the sliding and opening displacements are 

nonproportional with respect to each other for strain amplitudes of 0.6 E y and 0.9 E y (Fig. 

IV.26). At these strain amplitudes, differences between the single and conjugate slip cases 

for sliding displacements are more pronounced. For a/d = 0.25, these differences are only 

evidenced at the highest strain amplitude. In fact, there is less crack closure at higher strain 
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amplitudes for small crack (Tanaka (60)). These computations support this because when 

comparing the closure behavior as a function of amplitude, Figure IV.24 (at 0.9 e y), shows 

that the crack is open for nearly the entire loading cycle. With increasing number of cycles, 

the oscillatory nature of the sliding and opening displacements for the crystal plasticity model 

is quite nonlinear and unsymmetric as compared to the elastic solution. For the lowest strain 

amplitude, the oscillatory behavior of the CTOD and CTSD is fairly linear and consistent 

with loading cycle. Another observation is that the two cases of adjacent grain orientation 

show greater differences in sliding displacements as compared to the opening displacement 

for strain amplitudes 0.6 e y and 0.9 e y. There is almost no closure for 0.6 e y and 0.9 e yfor the 

2 n d and 3 r d cycles, especially near the crack tip. No closure implies that more of the apparent 

driving forces are contributing to propagating the crack. 

There is also evidence for a/d = 0.5 of local ratchetting of the sliding and opening 

displacements at 2 |im behind the crack tip, even though the remote loading is completely 

reversed. This ratchetting apparently contributes to the decreased effects of crack closure. 

Whether it is an accurate portrayal of the actual behavior of the crack tip or a manifestation 

of the nonlinear kinematic hardening law is not completely clear, but these results are the 

first to suggest this possibility. It is very possibly related to asymmetry of crack tip plasticity 

induced by the variation of surrounding "hard" and "soft" grains in the microstructure. 

Figure IV.27 shows contour plots of the effective plastic strain for a/d = 0.5 after 

three cycles were applied for both the single and conjugate slip cases. These plots are similar 
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to the case of monotonic loading. For the cyclic case, there is blunting of the crack tip, 

related to the presence of two plastic zones (lobes) ahead of the crack tip. For the conjugate 

slip case, the progression of plasticity is blocked from entering the adjacent grain. As 

pointed out by Zhang and Edwards (77), it is more so the cyclic plastic zone which is blocked 

by adjacent (or surrounding) grains which cases retardation of crack propagation rather than 

the blockage of the crack tip at the grain boundary. Due to the constraint of the adjacent 

grain and the build-up of the cyclic microplasticity which develops, the surface acts to relieve 

that stress (e. g. by high plastic strain at the surface). 

The crack length ratio of 0.97, shown in Figure IV.28, exhibits CTOD and CTSD 

behaviors similar to those of the a/d = 0.5 case. There are, however, two distinguishing 

features. First, for the lowest strain amplitude, the sliding and opening displacements for the 

two adjacent grain orientations have different trajectories (or paths), although less 

ratchetting-like behavior develops. Of course, with the crack just short of the grain 

boundary, differences in the behavior are readily reflected in the calculations, even at this low 

strain amplitude. Secondly, the sliding displacements (at 2 ]im) for the single slip case at a 

strain amplitude of 0.6 e y are nearly 40% higher than the sliding displacements for the 

conjugate slip case. With increased cycling, there is a continuous accumulation and 

progression of plasticity ahead of the crack tip and into surrounding grains which is reflected 

in the increased sliding along the crack plane. As stated earlier, at longer crack lengths, 

nonproportionality in sliding and opening displacements sets in at lower strain amplitudes. 
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At this a/d ratio (0.97), these computations reveal that forthe last applied cycle, there 

is crack closure at the lowest strain amplitude. Note that on the first cycle at 0.6 £ y and at 

both locations behind the crack tip, the crack faces are completely closed during the entire 

compressive part of the loading cycle. Close to the crack tip and for the second and third 

cycles, the crack remains open for a significant fraction of the loading cycle. Further behind 

the crack tip at 25 mm, subsequent cycling shows that the crack faces close before the crack 

faces closer to the crack tip which signifies that there is a 'peeling off or sequential closing 

of the crack face. Portions of the crack furthest away from the crack tip tend to close first 

followed by a progressive closing down to the crack tip. Indeed as the applied strain 

amplitude increases to 0.9 e y, the crack tip exhibits less closure effects whereas farther away 

from the crack tip, the faces contact upon entering the compressive part of the cycle. These 

results relative to the sequential closing of the crack face are in line with the computational 

results by Zhang et al. (64). 

For an a/d ratio of 1.25 and at a strain amplitude of 0.9 e y (shown in Figure IV.29), 

the sliding and opening displacements exhibit differences at 2 \im and 25 fim behind the 

crack tip. The conjugate slip case produces more symmetric-type sliding displacements as 

compared to the single slip sliding displacements. Plasticity-induced closure effects develop 

almost immediately upon cycling near the crack tip for all strain amplitudes. At 25 u.m 

behind the crack tip and for 0.3 e y, the crack faces are closed for the entire compressive part 
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of the loading cycle. For 0.6 e y, the single slip case produces a positive mean sliding 

displacement, but the range of the CTSD for the conjugate slip is slightly greater than for the 

single slip case. This is perhaps due to multislip generated by the conjugate slip orientation 

in the adjacent grain. For 0.9 e y and at 2 u.m behind the crack tip, local nonproportionality 

of the CTOD and CTSD occurs almost immediately upon the first cycle. 

IV.5.2 Cyclic Shear 

A limited computational matrix was completed for this case. Ratios of0.25,0.97 and 

1.97 are used in these analyses with shear strain amplitudes of 0.3 y y and 0.9 yy. These cases 

are used based on the results of the monotonic analysis which showed that there was a linear 

dependence of CTOD and CTSD with respect to crack length ratio and amplitude for a/d 

ratios less than 2. The same mesh and crack geometry that was used for the monotonic case 

are also employed for the cyclic analyses. The crack is oriented at 90° with respect to the 

tensile axis with boundary conditions shown in Figure IV.4d. The crack faces were allowed 

to move relative to one another, although they were not allowed to 'overlap' or interpenetrate 

during cycling. 

For a/d = 0.25 and for both shear strain amplitudes considered, Figure IV.30 shows 

the resulting CTODs and CTSDs. In a similar fashion as the monotonic results, the opening 

displacements are dominant. As stated earlier, the dominant opening behavior at this a/d 
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ratio is primarily caused by the imposed boundary and free surface conditions. The range of 

the sliding displacements are nearly the same for all cycles, with symmetric sliding in the 

forward part and reversed part of the cycle. In addition, single and conjugate slip solutions 

produce the same sliding and opening displacements. The effect of the adjacent grain has 

not surfaced at this a/d ratio and for the strain amplitudes of 0.3 y y and 0.9 yy. 

For a/d = 0.97, the behavior of the CTOD and CTSD (in Figure IV.31) begins to 

reflect an influence of the adjacent and surrounding grains at the highest strain amplitude. 

At 2 |im behind the crack tip and at the highest strain amplitude, there is evidence of the 

development of a mean or offset sliding displacement. Crack closure also develops at both 

locations behind the crack tip as shown by the vertical dashed lines superimposed in Figure 

IV.31. Further down the crack face, the crack moves in more of a symmetric manner. 

Figure IV.32 shows the results for a/d = 1.97. At 2 um behind the crack tip, the range 

of the crack tip sliding displacements (ACTSD) is nearly 4 times the range of the opening 

displacement (ACTOD) for the conjugate slip case; for the single slip case, the ACTSD is 

nearly 8 times the range of the ACTOD. For this a/d ratio, the influence of the adjacent grain 

is reflected in the displacements. It would seem that the ACTSD would be greater for the 

single slip case as compared to the conjugate slip case. One explanation of this behavior is 

the increased multislip that is created at the crack tip due to the conjugate orientation of the 

adjacent grain; since the conjugate slip case promotes the opening mode at the crack tip, the 

increased opening also allows for additional sliding at the crack tip. Even though the ranges 
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of the sliding displacements are comparable for both instances of adjacent grain orientation 

for 0.3 Yy and at 2 \im, the closure levels are quite different. Since there is no misorientation 

between the cracked grain and adjacent grain for the single slip case, there is minimal 

unloading at the crack tip. The conjugate slip case does have a closure stress as compared 

to the single slip case which remains nearly closure free throughout cycling. 

At 2 u.m behind the crack tip and at 0.9 yy, the sliding displacements develop a 

nonproportional response with increased cycling. This points to the increased accumulation 

of cyclic microplasticity which attributes to the nonproportional sliding and opening 

displacements. For an amplitude of 0.9 y y and at 2 u,m behind the crack tip, the range of the 

sliding displacements for the conjugate and single slip case is nearly 4.5 times greater than 

the range of the opening displacements. For both cases of adjacent grain orientation, an 

offset, or mean displacement develops with increased cycling - somewhat of a ratchetting-

like behavior. This may be caused by the non-symmetric development of cyclic 

microplasticity due, in part, to the effect of the different orientations of surrounding grains. 

Both the single and conjugate slip cases are closure free after the first cycle. Further along 

the crack front (at 25 |im), nonproportional CTOD and CTSD are both evident. Just as for 

the cyclic tension-compression case, the cyclic shear case also shows evidence that there is 

a 'peeling off of the crack face, such that the crack tip is the last part of the crack to close 

upon reversed loading and the first part to open during the forward loading part of the cycle. 
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IV . 5 . 3 Implications for Understanding Small Crack Behavior 

Understanding the trends of the local CTSD and CTOD as a function of crack length 

and stress amplitude is an important factor in developing models for microstructurally small 

fatigue cracks. Some insight into these trends may be gained based on the micromechanical 

analyses from this study. The implications for small fatigue crack growth behavior are 

discussed in terms of the degree of local nonproportionality, closure behavior, and the 

influence of the free surface versus local microstructural effects. 

For the elastic solutions and for all a/d ratios considered, during the entire 

compressive part of the cycle for the cyclic tension-compression loading case, the crack faces 

are completely closed and remain closed until a forward, positive load is applied. This 

produces proportional CTOD and CTSD throughout the loading cycles. Cyclic shear elastic 

solutions also show proportional local CTOD and CTSD. Unlike the elastic solutions, the 

micromechanical analyses reveal a nonproportional variation of the local CTOD and CTSD 

with R = -1.0 and proportional applied loading primarily evidenced at higher strain 

amplitudes for small a/d at at small strain amplitudes for large a/d. This nonproportionality 

is a manifestation of many factors: (i) reversed plasticity which translates to restricted motion 

at the crack tip, (ii) microstructural heterogeneity, and (iii) multislip ahead of the crack tip. 

For both loading cases, evidence that all three influences have a tremendous impact on the 

development of local nonproportional CTOD and CTSD. The changing mode-mixity at the 

crack tip is the source of the nonproportionality. These calculations have provided a 
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qualitative means to elucidate the effects of stress state, amplitude, and crack length ratio on 

the development of this nonproportionality. It was found that this phenomenon develops at 

smaller cracks lengths for cyclic tension-compression as compared to cyclic shear. For cyclic 

tension-compression, it begins at a/d = 0.25 at a strain amplitude of 0.9 e y and is evidenced 

for the other crack length ratios for Ae/2 2:0.6 e y. One possible contributing factor to this is 

the normal stress across the 45° oriented crack plane. In addition, the sliding behavior 

develops a mean or offset displacement almost immediately (a/d = 0.25) for increasing strain 

amplitudes for cyclic tension-compression. Such complex phasing and ratchetting behavior 

have not come to light in previous computational studies based on homogeneous elasto-

plasticity. Nonproportional local CTOD and CTSD for cyclic shear loading is evidenced at 

a/d = 1.97 at a shear strain amplitude of 0.9 yy. Although higher a/d ratios were not 

considered, it is expected that the local nonproportionality will continue. 

These studies point to some possible deficiencies in an understanding of small cracks, 

such as: (a) surface measurements of CTSD and CTOD may be very misleading and 

unrepresentative, as also pointed out by Zhang et al. (64), (b) plasticity-induced closure need 

not occur first at the crack tip for initially planar cracks, and (c) sliding and opening 

displacements ratchet at the crack tip in a manner which appears to maximize the CTD and 

decrease closure effects. 

Some of the same influences which contribute to the nonporportional local CTOD 

and CTSD also contribute to the development of crack closure. In these computations, 
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closure is purely a result of plasticity effects. Plasticity-induced closure develops as cracks 

increase in length and have residual plasticity in the wake of the crack. Since small cracks 

are not long enough to develop appreciable residual plasticity, it is argued ( ) that small 

cracks have minimal to nil plasticity-induced closure effects under HCF conditions. These 

computations show that for cyclic tension-compression (with a crack oriented at 45°), and 

for a/d ratios of 0.25 and 0.5, the crack faces show evidence of crack closure, primarily due 

to the cyclic microplasticity which develops and the free surface effect. For larger a/d ratios, 

closure effects tend to decrease the effective CTD. For cyclic shear loading, there is 

evidence of plasticity-induced closure at longer crack length ratios (a/d = 1.97) with an 

amplitude dependency as well. 

Throughout the discussions in this section, distinctions may be made as to associating 

the effects of crack closure or local nonproportional CTOD and CTSD with the free surface, 

the local plasticity or a combination of both. The free surface directly contributes to the high 

mode I component due to lack of constraint at the surface for small a/d ratios (a/d = 0.25 and 

0.5) for cyclic tension-compression and for a/d = 0.25 for cyclic shear. Local microplasticity 

is indeed the cause of plasticity-induced closure and local nonproportionality. The dominant 

CTOD (mode I) for small a/d ratios may actually aid in propagating the small cracks (such 

that the CTD has a large component of CTOD). These computations reveal that closure and 

nonproportionality occurs from a combination of factors rather than one single factor. It is 

important to elucidate the effects of microplasticity and free surface effects by viewing them 

in terms of their propensity for contributing to the driving forces for small cracks. 
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Chapter V takes a look at the degree of local plasticity which develops as a function 

of applied strain amplitude and the implications for elastic shakedown for the uncracked 

cases. In addition, Chapter V provides a discussion on the merging the computational results 

for the CTSD and CTOD to critical plane concepts. This connection is key to developing 

more appropriate forms for the driving forces for small cracks as well as providing a means 

to enhance the development of a microcrack propagation law which spans the full range of 

crack growth from microstructurally small to the physically small crack regime. 
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Figure IV.10 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface 
crack (a/d = 1.97) in a favorably oriented grain with a range of nearest neighbor (Grain A) 
orientations evaluated (a) 2 um and (b) 25 um behind the crack tip. 
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Figure IV.11 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface 
crack (a/d = 2.5) in a favorably oriented grain with a range of nearest neighbor (Grain A) 
orientations evaluated (a) 2 urn and (b) 25 um behind the crack tip. 
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Figure IV.12 Schematic of kinked-up (KU) and kinked-down (KD) crack configurations. 
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Figure IV.13 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface 
crack (a/d = 2.5 - KD) in a favorably oriented grain with a range of nearest neighbor (Grain A) 
orientations evaluated (a) 2 um and (b) 25 urn behind the crack tip. 
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Figure IV.14 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface 
crack (a/d = 2.5 - KU) in a favorably oriented grain with a range of nearest neighbor (Grain A) 
orientations evaluated (a) 2 |im and (b) 25 u.m behind the crack tip. 
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Figure IV.15 CTSD and CTOD as a function of applied polycrystal shear strain for a surface 
crack (a/d = 0.25) in a favorably oriented grain with a range of nearest neighbor (Grain A) 
orientations evaluated (a) 2 um and (b) 18 p behind the crack tip. 
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Figure IV.16 CTSD and CTOD as a function of applied polycrystal shear strain for a surface 
crack (a/d = 0.5) in a favorably oriented grain with a range of nearest neighbor (Grain A) 
orientations evaluated (a) 2 um and (b) 25 um behind the crack tip. 
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Figure IV.19 CTSD and CTOD as a function of applied polycrystal shear strain for a surface 
crack (a/d = 1.25) in a favorably oriented grain with a range of nearest neighbor (Grain A) 
orientations evaluated (a) 2 um and (b) 25 um behind the crack tip. 

Figure IV.20 CTSD and CTOD as a function of applied polycrystal shear strain for a surface 
crack (a/d = 1.97) in a favorably oriented grain with a range of nearest neighbor (Grain A) 
orientations evaluated (a) 2 um and (b) 25 um behind the crack tip. 
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Figure IV.25 Cyclic CTOD and CTSD for cyclic tension-compression 
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CHAPTER V 

IMPLICATIONS FOR SMALL CRACK GROWTH MODELS 

This Chapter considers the micromechanical computations presented in Chapters 

in and IV and draws implications for more specific dependencies in small crack growth 

models. The uncracked polycrystal analyses (as presented in Chapter HI) are used to 

address shakedown of cyclic microplasticity and nonpropagating crack threshold or 

limits. The micromechanical calculations for embedded cracks, although 2-D in nature, 

provide a means to qualitatively understand the nature of the mode-mixity observed in 

small fatigue cracks as a function of amplitude, stress-state, and crack length. In addition, 

first order effects studied in this work - periodic barrier interactions and lack of constraint 

due to the surface - are utilized to assist in suggesting improved models for small fatigue 

crack growth. The micromechanical computations provide insight into various aspects 

of heterogeneous microplasticity and small crack growth behavior that is not attainable 

by macroscopic observation. In addition, interpretations are given on the relationships 

of the sliding and opening displacements to crack length ratio, stress state and amplitude. 
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V.l Shakedown Limits for Cyclic Microplasticity 

Shakedown refers to the stress or strain level below which there is either a 

cessation (elastic shakedown) or stabilization (elastic-plastic shakedown) of the 

accumulation of cyclic microplasticity upon subsequent cycling. Elastic shakedown 

limits are important quantities because they have a close relationship to nonpropagating 

crack limits for small cracks. Study of shakedown requires examination of the 

relationship between the macroscopically applied stress and the local plasticity on the slip 

(micro) system. It is also important to compare the level of microplasticity with the 

average plastic strain of the aggregate. 

For cyclic tension-compression and cyclic shear, the polycrystal model used in 

Chapter m was employed. As in Chapter EH, cyclic tension-compression and cyclic shear 

loading was applied at several fractions of the yield strain (30%, 50%, 70%, 90%, in 

addition to 200%). Figure V. 1 shows the relationship between the maximum shear stress 

amplitude (averaged over all grains) and the amplitude of plastic shear strain quantities 

for both loading cases. Figure V.l reveals that the separation between the local 

maximum slip system shear strain (maximum among all grains) and the average 

maximum plastic shear strain (averaged over all grains) occurs at a higher maximum 

average shear stress level for tension-compression as compared to cyclic shear. Trend 

lines are also drawn which show the relative differences in the local and macroscopic 

shear strain levels. For both cyclic tension-compression and cyclic shear, there is a 
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definite nonlinear relationship (even more so for cyclic tension-compression) between 

the maximum shear stress amplitude (averaged over all grains) and the amplitude of both 

plastic shear strain quantities considered. This Figure seems to indicate that elastic 

shakedown of cyclic microplasticity occurs in cyclic shear at a lower maximum shear 

stress level (=160 MPa) as compared to cyclic tension-compression (=300 MPa). The 

applied strain amplitude that corresponds to this level for cyclic tension-compression is 

approximately 0.4 e y (« 0.0026); this strain value is close to the smooth specimen fatigue 

limit in terms of strain for 4340 Steel (« 0.00274) (137). 

In Figure V.2 (log scale), three measures of the shear strain are shown - the 

amplitude of the maximum plastic shear strain on the slip system (among all grains), the 

amplitude of the maximum plastic shear strain (averaged over all grains), and the 

amplitude of the maximum shear strain (averaged over all grains). Two features of these 

plots are discussed as well as the significance for determining shakedown limits. One 

feature is the difference in the intensification (denoted by / on Figures V.2a and V.2b) of 

the maximum plastic shear strain on a slip system and the maximum plastic shear strain 

amplitude for both loading cases. For cyclic tension-compression, the amplitude of the 

maximum plastic shear strain on the slip system is about 2 times higher than the average 

plastic shear strain amplitude for all shear stress amplitudes; for cyclic shear, the 

intensification ranges from 4 to 6. The intensification is a measure of enhanced local 

microplasticity as compared to the average bulk plastic shear strain. One possible 

explanation of the higher density of microcracks for cyclic shear as compared to cyclic 
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tension-compression is this rather higher degree of intensification at the local level. This 

could not be predicted using traditional macroscale cyclic plasticity models. 

A second observation is the difference in the intersection of the macroscopic 

average shear strain and micro plastic shear strain amplitudes. For cyclic tension-

compression, the intersection occurs at a maximum shear stress range of approximately 

420 MPa, whereas for cyclic shear, the intersection occurs at 220 MPa. Both of these 

intersection points correspond to an applied strain amplitude of 90% of the cyclic yield 

strains for each loading cases. Table V.l summarizes the strain levels and shear stress 

levels which are representative of the elastic shakedown limit and fully plastic limits of 

cyclic microplasticity. The elastic shakedown values for microplastic strain can be 

argued to correspond to one type of smooth specimen fatigue limit, i.e. lack of sufficient 

inelastic driving force to either nucleate cracks or possibly grow them within grains. 

V.2 Evaluation of I CTSD/CTOD I. ACTD. ACTSD/ACTOD. and ACTOD 

After examining the uncracked polycrystalline aggregate to determine shakedown 

limits of cyclic microplasticity, it is important to next evaluate quantities which are 

directly related to the behavior at the crack tip and how amplitude, crack length ratio, and 

stress state play a role in that behavior. The analyses in Chapter rV provide the basis for 

these evaluations to shed light on the driving force parameter for small crack lengths (a/d 

<2) . 
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V.2.1 Ratio of I CTSD/CTOD I 

For cyclic tension-compression, the ratio of I CTSD/CTOD I defined as R c c is 

plotted for a/d ratios of 0.25,0.5, 0.97, 1.25, and 1.97 (for amplitudes of 0.3 e y, 0.6 e y, 

and 0.9 e y.); for cyclic shear loading, R c c is plotted for a/d ratios of 0.25, 0.97, and 1.97 

(for amplitudes of 0.3 y y and 0.9 yy). For both loading cases, both the single and 

conjugate slip cases as well as the elastic solutions are also provided to show the relative 

differences as compared to the micromechanical solutions. The R c c ratio is primarily 

shown for either the maximum or minimum amplitudes of the loading cycles. 

V.2.1.1 Cyclic Tension-Compression 

Figure V.3 (a/d = 0.25) shows that for the first cycle, the elastic solution and the 

crystal plasticity micromechanical solutions have quite comparable values for R c c for all 

strain amplitudes, whereas for subsequent cycling, the ratios are quite distinct. Note that 

the "A" on the x-axis in these figures denotes the applied strain amplitude. For a/d = 0.5 

in Figure V.4, amplitude and orientation dependencies are reflected in the R c c at the two 

higher strain amplitudes (0.6 e y and 0.9 e y). The lowest strain amplitude of 0.3 e y shows 

a similar result as for a/d = 0.25. Also note the differences in the R c c for the single and 

conjugate slip cases. As discussed in Chapter IV, the single slip case promotes increased 

sliding displacements, especially at the higher strain amplitudes, as signified by its higher 
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R c c values as compared to the conjugate slip case. For a/d ratios of 0.97 and 1.25 in 

Figures V.5 and V.6 respectively, even the first cycle shows differences in the R c c values 

for the elastic and micromechanical solutions for all strain amplitudes. Subsequent 

cycling for the micromechanical solution produces R c c values which shows distinctions 

for the single and conjugate slip cases. 

These plots reveal important results: (i) the elastic solution will primarily show 

an R c c of 0.5 for all a/d ratios and amplitudes (with a/d = 0.5 as the exception for 0.6 s y 

and 0.9 Ey) whereas the micromechanical solutions at the maximum and minimum load 

show R c c at much lower values and (ii) the behavior over much of the cycle is dominated 

by opening behavior. Continued cycling, not just the initial cycle, shows that the opening 

displacements contribute significantly to the driving forces for small crack behavior. 

V.2.1.2 Cyclic Shear 

For cyclic shear, two strain amplitudes are considered (0.3 y y and 0.9 y y). For this 

loading case, R n = 0 (Axn/2/Ayn/2) such that the product (3e R n = 0 in Equations (1.6) and 

(1.7). Since |3e was defined as relating to the mode-mixity of sliding and opening 

displacements, cyclic shear would, therefore, yield little to no mode-mixity of the CTOD 

and CTSD. However, for small cracks, as the micromechanical calculations indicate, 

sliding and opening displacements are evident for cyclic shear loading. Figure V.7 shows 

the R c c values for a/d = 0.25 and for both shear strain amplitudes. For this a/d ratio, the 
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R c c values for the micromechanical solutions and the elastic solutions are nearly the same 

with an R c c of approximately 0.3 at the maximum and minimum loads. For a/d = 0.97 

in Figures V.8a and V.8b, the R c c values are much higher because the sliding 

displacements are a much higher proportion of the opening displacements for cyclic 

shear, especially for larger a/d ratios and shear strain amplitudes. For a/d = 1.97 in 

Figures V.9a and V.9b, there are distinctions between the single and conjugate slip cases, 

especially for 0.3 y y, with the single slip case promoting on the order of twice the amount 

of sliding displacements as the conjugate slip case. At the higher strain amplitude of 0.9 

yy, the values for the single and conjugate slip cases are quite comparable. The results 

for the R c c cyclic shear loading case reveal that only at increased a/d ratios (a/d > 0.97) 

are sliding displacements significantly higher than the opening displacements. This also 

points to the constraints that the surface plays a significant role in the behavior of small 

cracks. 

Another interesting feature exhibited in Figure V.9 is that R c c for both single and 

conjugate slip cases is less than the elastic solution. This points to the effect of 

surrounding grains and their influence on the sliding and opening behavior at the crack 

tip. The elastic solution, which is completely homogeneous, shows an enhanced ratio due 

to the absence of constraint from surrounding grains. The cyclic tension-compression 

case also shows evidence of the elastic solution which yields higher R c c values as 

compared to the crystal plasticity micromechanical solutions. An additional comparison 

between the two loading cases reveals that for the cyclic tension-compression case, the 
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R c c ranges from 0.1 to 0.5, whereas for the cyclic shear case, Rcc ranges from 0.2 to 2.0. 

For the cyclic shear case, the sliding displacements become more dominant with 

increasing a/d ratios and applied strain, whereas for the cyclic tension-compression case, 

there is a greater contribution of the opening displacements. 

V.2.2 ACTD 

This calculation is made in order to understand the relative dependencies of crack 

length ratio and amplitude on ACTD for cyclic tension-compression and cyclic shear. 

The ACTD is defined as 

ACTD = V ACTOD 2 + ACTSD 2 (V.l) 

For these calculations, the ACTSD and ACTOD are the ranges of the sliding and opening 

displacements, respectively measured at 2 |xm behind the crack tip at the end of the third 

cycle in the loading sequence. The ACTD calculated in this manner reflects the 

magnitude of the vector sum of the sliding and opening displacements. The following 

sections will explore the ACTD for both loading cases. 
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V.2.2.1 Cyclic Tension-Compression 

Figure V.10 shows the ACTD over the third cycle of loading as a function of 

crack length ratio. Trend lines are also drawn for the different strain amplitudes. For 

cyclic tension-compression in Figure V.lOa, the ACTD shows a strong dependence on 

amplitude and crack length. What is striking is the strong dependence of the ACTD on 

applied load for the elastic-plastic solutions reflected by the increasing slopes for a/d < 

1 (given in Table V.2a). For the ACTD plot in Figure V. 10a, the minima at the first grain 

boundary (a/d = 0.97) is the lowest as compared to the next grain boundary at a/d = 1.97. 

The current micromechanical calculations differ from Li's (140) results. First, the 

ACTD found here (for a/d < 1) increases from zero (for a/d = 0.25) then reaches a 

maximum (around a/d = 0.5), then decreases (at a/d = 0.97). His results show a ACTD 

that begins at a maximum value (at a/d ~ 0.25) then decreases to nearly zero (at a/d = 

0.97). This mainly occurs because of the constraints he imposes for the displacements 

along the crack plane and only allow for sliding along the crack plane which leads to 

severe blockage of the sliding displacements. Further, he hasno means to account for a 

free surface, not does any other continuously distributed dislocation band model which 

mimics Hall-Petch type behavior (cf. Navarro and de los Rios (82-83)). 

Focusing on the behavior within the first grain, for each amplitude, there is a 

different slope which increases for increasing amplitude. The slopes, however, do not 

increase in proportion with the applied strain amplitude. The slopes and corresponding 
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amplitudes are given in Table V.2a. By doubling the strain amplitude from 0.3 s y to 0.6 

e y, the ACTD increases fivefold. By increasing the strain amplitude threefold, the ACTD 

increases by a factor of 13. This also points to the considerable lack of constraint 

afforded to small crack behavior due to the free surface. As the crack approaches the 

grain boundary, the ACTD parameter shows a pronounced decrease for increasing applied 

strains, especially for an adjacent grain which promotes conjugate slip. The crack length 

ratio and amplitude dependency of ACTD also persists into the next grain for strain 

amplitudes of 0.6 e y and 0.9 e y. The driving forces for 0.3 e y appear to be relatively 

constant throughout all applied strain amplitudes and crack length ratios, consistent with 

the elastic solutions for this dominantly displacement-controlled loading condition. 

V.2.2.2 Cyclic Shear 

For cyclic shear, the behavior is shown in Figure V.l0b. Within the first grain 

and for the shear strain amplitudes considered, there is little to no crack length ratio or 

amplitude dependency of the ACTD. The slope is nearly the same for both shear strain 

amplitudes showing minimal effect of the crack length ratio for a/d < 1. For a/d > 1, 

there is a marked difference in the ACTD as a function of amplitude. For the 45° crack 

loaded in tension, the normal stress across the crack plane evidently has a greater effect 

on the mode mixity at the crack tip for a/d < 1 as compared to the cyclic shear case. The 
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ACTD for a strain amplitude of 0.3 y y shows a significant increase in the second grain as 

compared to the first grain, an approximate 50% increase in the ACTD. For 0.9 yy, the 

ACTD increases by nearly a factor of 7 from an a/d = 0.97 to an a/d = 1.97. 

Another interesting observation of the ACTD is that cyclic tension-compression 

has consistently higher values of the ACTD as compared to the cyclic shear case. One 

explanation, as alluded to earlier, has to do with the normal stress across the crack plane. 

This factor contributes significantly to enhancing the opening displacements which are 

produced at the crack tip. As the previous R c c plots (cf. Figs. V.3 - V.9) revealed, there 

are proportionate contributions of the sliding and opening displacements for the cyclic 

tension-compression case, whereas for the cyclic shear case, the sliding displacements 

become dominant for increasing crack length ratios. It appears that although the sliding 

displacements do become dominant for cyclic shear, these displacements are not greater 

than the combined effect of the opening and sliding displacements that are produced for 

the cyclic tension-compression case. 

V.2.3 ACTSD/ACTOD 

The ratio of the ranges of the CTSD and CTOD and is examined for these 

calculations to elucidate the understand relative changes as a function of stress state and 

amplitude. 
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V.2.3.1 Cyclic Tension-Compression 

Figure V. 11 shows the ratio of the range of the sliding and opening displacements 

for cyclic tension-compression over the third cycle of loading. For the smallest strain 

amplitude, 0.3 e y (in Fig. V.l la) and within the first grain, the ratio is nearly unity. As 

the a/d ratio increases from 1.25 to 1.97, the range of the sliding displacements progresses 

from 10% to 40% higher than the range of the opening displacements. In Figures V. 1 lb 

and V. 1 lc for strain amplitudes of 0.6 e y and 0.9 e y respectively, the behavior in the first 

grain is much different than for 0.3 e y. As the first grain is approached, there is a steady 

decrease in the ratio which means that at this barrier, the range of the opening 

displacement is greater than the range of the sliding displacement. With increasing a/d 

ratios, the range of the sliding displacements recovers and increases from 10% to 40% 

higher than the range of the opening displacements for a/d ratios of 1.25 and 1.97. Of 

course, for long cracks, one would expect this ratio of the ACTSD and ACTOD to 

approach zero. 

This behavior is markedly different from that commonly assumed for small cracks 

in the first grain based on pile-up typ solutions. These results show a dominance of the 

opening displacement for elastic-plastic cases, whereas the elastic solution is opposite in 

nature. 
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V.2.3.2 Cyclic Shear 

Figure V. 12 shows the change of the ratio of the range of the sliding and opening 

displacements for cyclic shear loading. These results differ substantially from the cyclic 

tension-compression case. For the cyclic shear case, the ratio increases approximately 

linearly throughout all a/d ratios considered. The elastic solution shows are fairly good 

estimate of the ratio for both strain amplitudes (0.3 yy and 0.9 y y), although for 0.3 yy, the 

conjugate slip case shows an increased proportion of the range of the opening 

displacements. The results for the cyclic shear case appear to point to a minimal effect 

of the adjacent grain on this formulation of the driving force parameters since there is a 

linear increase in this quantity for both amplitudes and crack length ratios considered. 

Perhaps the driving force parameters are so high that the orientation of the surrounding 

and adjacent grains do not significantly affect the mixity. 

AT AY 
V.3 ACTD as a Function of P a r a m e t e r — 2 . —'JL 

2 2 
Ax Ay 

The evaluation of the ACTD as a function of the product — - — - for a given 
2 2 

crack length ratio potentially provides a direct correlation between this critical plane 

quantity and the crack tip CTD. The quantity Axn/2 is the amplitude of the shear strain 

on the plane of the maximum range of shear strain and Ayn/2 is the amplitude of the shear 
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strain acting on the plane of the maximum range of shear strain. ACTD has been used 

for correlating crack growth behavior under EPFM conditions. This parameter has also 

been shown to scale with the J-Integral according to 

A T Ao Ae 

~T T a (V,2) 

and as shown by McDowell and Berard 

AJ = v|/ 
/ Ao AE X 

2 2 
(V.3) 

The following sections report the relationship between the range of the CTOD and the 

product for different a/d ratios and stress states. 

V.3.1 Cyclic Tension-Compression 

Figures V.l 3a - V.13e show the variation of the ACTOD over the third cycle for 

increasing values of the critical plane product. These plots reveal a linear relationship 

which signifies that for increasing applied loads, the driving force increases in proportion, 

as expected. What may not have been anticipated is the semblance of the slope of this 

linear relationship for all a/d ratios considered. The average slope is approximately 
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0.00166. It is also observed that both the single and conjugate slip cases have the same 

behavior. 

V.3.2 Cyclic Shear 

Figures V. 14 a - V. 14c show the relationship between the DCTOD and the critical 

plane product. For this loading case, there is also a linear relationship between the 

driving force and the applied load. The slope however, for this loading case is markedly 

different from the cyclic tension-compression case. For the cyclic shear case, the slope 

for a/d = 0.25 is the same for both the single and conjugate slip cases. For a/d = 0.97 to 

1.97, the slop increases by nearly a factor of three. The changing slope is possibly due 

to the increasing driving forces which build up at the crack tip. Since there is no normal 

stress across the crack plane for cyclic shear which may enhance or deter the CTSD or 

CTOD, the driving forces accumulate and produces increased dependencies on crack 

length ratio. For the cyclic tension-compression case, the driving force was independent 

of crack length ratio. 
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V.4 Conclusions 

In evaluating the current form of the models for small crack growth, there appear 

to be several implications based on the crystal plasticity micromechanical analyses. First, 

the threshold regime was qualitatively evaluated using an uncracked polycrystal to 

determine the elastic shakedown limits of cyclic microplasticity. There was a nonlinear 

relationship between the maximum shear stress (averaged over all grains) and the local 

maximum plastic shear strain (averaged over all grains). From evaluating different 

relationships of the CTSD and CTOD, it was found that cyclic tension-compression 

showed a greater dependency on the amplitude and crack length ratio, whereas for the 

cyclic shear case, there was limited dependencies only for increased crack length ratios. 
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0.018 

Figure V. l Comparison of the maximum shear strain amplitude on a slip system 
and the maximum plastic shear strain amplitude (averaged over all grains) as a 
function of the average amplitude of themaximum shear stress for (a) cyclic 
tension-compression and (b) cylcic shear. 
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Figure V.2 Relationship between the amplitude of the maximum average shear 
stress and the shear strain amplitudes showing relative intensity between the 
maximum shear strain on a slip system and the maximum plastic shear strain 
(a) cyclic tension-compression and (b) cyclic shear. 
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Figure V.3 Ratio of ICTSD/CTODI for cyclic tension-compression loading for 
a crack oriented at 45° with respect to the tensile axis with a/d = 0.25 for strain 
amplitudes of (a) 0.3 e y, (b) 0.6 e y , and (c) 0.9 e y at a distance of 2 urn behind 
the crack tip. 
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amplitudes of (a) 0.3 e y , (b) 0.6 e y, and (c) 0.9 e y at a distance of 2 um behind 
the crack tip. 

179 

Q 



Q 
O 
H 

y 
D 
co 
H 
U 

8 
y 
Q 
co 

o Elastic Soln 
E-P Soln - single slip 

• E-P Soln - conj. slip 

0 A O - A O A 0 - A O A 0 - A 0 A 

(b) 
A A 
. A A A A 

A A 
A A 

• 

A = 0.6e„ 

— i 1 1 1 1 1 1 1 1 1 1 1— 
0 A 0 -A 0 A 0 -A 0 A 0 -A 0 A 

! 
Q 
co 
H 
U 

(c) 

B A 

• A 

A = 0.9 e„ 

, , , , , , , , , , , 1 

0 A 0 -A 0 A 0 -A 0 A 0 -A 0 A 

Figure V.6 Ratio of ICTSD/CTODI for cyclic tension-compression loading for 
a crack oriented at 45° with respect to the tensile axis with a/d = 1.25 for strain 
amplitudes of (a) 0.3 e y , (b) 0.6 E y , and (c) 0.9 e y at a distance of 2 |Lim behind 
the crack tip. 
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Figure V.7 Ratio of ICTSD/CTODI for cyclic shear loading for crack 
oriented at 90° with respect to tensile axis with a/d = 0.25 for strain amplitudes 
of (a) 0.3y and 0.(b) 9y at a distance of 2 um behind the crack tip. 
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oriented at 90° with respect to tensile axis with a/d = 0.97 for strain amplitudes 
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Figure V.10 ACTD as a function of crack length ratio at a distance of 
2 \im behind the crack tip after 3 cycles of loading for (a) cyclic tension-
compression and (b) cyclic shear. 
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Figure V . l l ACTSD/ACTOD as a function of crack length ratio for cyclic 
tension-compression and at 2 \im behind the crack tip over the 3 r d cycle of loading 
for applied strain amplitudes of (a) 0.3 e y , (b) 0.6 e y , and (c) 0.9 e y . 
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Figure V.12 ACTSD/ACTOD as a function of crack length ratio for cyclic 
shear and at 2 \im behind the crack tip after 3 cycles of loading for applied 
strain amplitudes of (a) 0.3 y y and (b) 0.9 y y. 
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Figure V.13 ACTOD as a function of product of Axn/2 (amplitude of shear 
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187 



0.0030 

0.0025 

0.0020 H 

0.0015 • 

0.0010 

0.0005 H 

0.0000 • 

0.01 

0.001 

0.0001 

0.0014 • 

0.0012 

0.0010 

0.0008 -

0.0006 -

0.0004 -

0.0002 • 

0.0000 

(e) 

0.0 0.2 0.4 0.6 

2 2 

A Single slip 
• Conj. slip 
O Elastic Soln 

0.8 1.0 

188 



6e-5 -f 

5e-5 -

1 4e-5 -
o 
Q 3e-5 -
O 

3e-5 -

H 2e-5 -U 2e-5 -
< 

le-5 -

0.00020 - i 

0.00016 -

1 0.00012 -

Q 

2 
0.00008 -

A
C

 

0.00004 -

0.00000 -

0.0005 

0.0004 -

0.0003 -

0.0002 -

0.0001 

0.0000 

(c) 

0.0 

• Single Slip 

• Conjugate Slip 
© Elastic Soln 

1.0 
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Table V.l Estimates of Shakedown Limits based on 
Micromechanical Solutions for 4340 Steel 

Loading Case 
Elastic Shakedown Fully Plastic Limits 

Loading Case A T 
max 
2 

Strain 
Amplitude 

AT 
max 
2 

Strain 
Amplitude 

Cyclic Tension-
Compression 160 MPa 0.4 e y « 0.0026 300 MPa 0.9 e y * 0.00585 

Cyclic Shear 220 MPa 0.4 y y = 0.00168 450 MPa 0.9 yy * 0.00378 

Table V.2a Relationship between the Applied Strain Amplitude and 
the Initial Slope of the ACTD vs. a/d for a/d < 1 for Cyclic Tension-Compression 

Strain Amplitude Approximate Slope 
(mm) 

0.3 e y 0.0005 

0.6 e y 0.0025 

0.9 e y 0.0066 

Table V.2b Relationship between the Applied Strain Amplitude and 
the Initial Slope of the ACTD vs. a/d for a/d < 1 for Cyclic Shear 

Shear Strain 
Amplitude 

Approximate Slope 
(mm) 

0.3 y y 0.00001 

0.9 yy 0.00001 
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Table V.3a Slope, I, for Cyclic Tension-Compression 
for different crack length ratios 

a/d Slope, I 

0.25 0.00101 

0.5 0.00212 

0.97 0.00176 

1.25 0.00214 

1.97 0.00127 

Avg. Slope 0.00166 

Table V.3b Slope, Z, for Cyclic Shear for different crack length ratios 

a/d Slope, / a/d 

Single 
Slip 

Conjugate 
Slip 

0.25 0.00006 0.00006 

0.97 0.000202 0.000156 

1.97 0.000547 0.000474 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

VI. l Conclusions 

The problem of estimating the remaining life in components under HCF conditions is 

the limiting factor of properly assessing the small crack regime. Since small cracks may 

account for 50-90% of the total life of the component (for N f = 1 mm), characterizing this 

regime with the correct dependencies is crucial. With many of the factors with affect small 

crack behavior such as the role of the free surface, microstructural barriers and 

inhomogeneities, surface roughness, and grain boundary blockage, developing and 'all-

inclusive' small crack model is indeed a challenge. Although there have been many 

advances through the work of many researchers (18,77), providing a mechanistic assessment 

of these factors has been lacking. This work is an effort to shed light on some of the first 

order effect such as the effect of the lack of constraint due to the free surface, effect of 

surrounding (not only adjacent) grains on the crack tip behavior, as well as the limits for 

cyclic microplasticity. A crystal plasticity micromechanical model embedded with a finite 

element context was used to assess these factors. This points to one of the advantages of 

using finite elements coupled with micromechanical concepts - no adhoc assumptions are 

made regarding grain-to-grain interactions. Using 2-D planar double slip crystal plasticity 

embedded in a finite element context allows for the assessment of heterogeneity effects 
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caused by plasticity within individual grains and the interactions among these grains. The 

primary goal of the proposed research is to address many of the outstanding issues which 

hinder development of a satisfactory theory for fatigue growth of small/short cracks in 

structures, including: 

(i) establishing a framework for correlation/prediction of fatigue crack growth of small 

fatigue cracks consistent with concepts of elastic-plastic fracture mechanics and 

critical plane theories of multiaxial fatigue, focusing on growth of microstructurally 

short cracks and physically short cracks; 

(ii) developing crack length-, amplitude- and stress state-dependent criteria for the 

transition from one regime to the next to denote limits of applicability of certain 

correlative forms: regimes include propagation of microstructurally small/short 

cracks where barriers control intermittent growth behavior, physically small/short 

cracks in Stage I shear-dominated growth under the weakening influence of 

microstructure, and Stage Et normal stress-dominated growth of physically 

small/short cracks and long cracks; 

(iii) understanding the propagation behavior of microcracks as a function of stress state 

and amplitude and developing appropriate modeling concepts; 

(iv) introducing threshold conditions for cyclic microplasticity and nonpropagating cracks 

(i.e. fatigue limit) into the framework of a multiaxial HCF fatigue theory; 

(v) incorporating distribution attributes of microplasticity and microcracks (i.e. 
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orientation and crack density) to facilitate prediction of propagation of microcracks 

under variable stress state loading conditions. 

The first set of analyses was determining the dependencies on the development of 

heterogeneity of the microstructure and its effect on the behavior of an uncracked polycrystal 

as well as small fatigue cracks. Understanding the nature of the heterogeneity of cyclic 

microplasticity and its effect on small crack behavior is an essential component in devising 

improved formulations for small fatigue crack growth laws ranging from the 

microstructurally small crack to the long crack regime. Although the micromechanical 

analyses mainly provide results which are qualitative in nature, analyses of this type are 

innovative in that they incorporate the effect of the free surface and the effect of nearest 

neighboring and surrounding grains. The outstanding issues addressed in this work are to 

fully incorporate the effects of periodic barrier interactions, non-propagating crack limits and 

shakedown of microplasticity. 

The uncracked analysis were utilized to determine the distribution of three candidate 

fatigue initiation parameters to determine which one correlates more closely correlates with 

the density and distribution of microcracks found experimentally. The Fatemi-Socie 

parameter produced distributions which were indicative of the nature of the accumulation of 

the cyclic microplasticity and it best correlated with fatigue data for nominally HCF 

conditions. Both elastic and elastic-plastic shakedown limits are qualitatively determined, 

where the elastic shakedown limit also corresponded with the smooth specimen fatigue limit 

for cyclic tension-compression. It was also found that there was an accentuation of the 

194 



maximum of the plastic shear strain amplitude above the average plastic shear strain for the 

aggregate. 

A distinguishing feature of the cracked analysis performed is the inclusion of the 

effect of the surface and the contribution of the surrounding (not only adjacent) grains to the 

behavior at the crack tip as opposed to Li (137) in his bicrystal analyses. What had not been 

explored up to this point are the effects of the relative orientation of the adjacent grain on 

directly influencing the mode-mixity of the CTOD and CTSD. The cyclic tension-

compression results showed that there is evidence of local ratchetting of the sliding and 

opening displacements, even though the applied stain level is completely reversed. Cyclic 

shear shows this behavior for 2 >a/d >7. The effects of plasticity-induced closure are readily 

demonstrated in the cyclic behavior of the CTOD and CTSD. 

An evaluation of the mode mixity of the sliding and opening displacements for stress 

state, amplitude, and crack length ratio dependency was performed. Mode mixity and 

nonproportional CTSD and CTOD is reflected sooner for cyclic tension-compression as 

compared to the cyclic shear case; mode-mixity does occurs for both stress states considered 

(tension-compression and shear). The formulation proposed has specific dependencies -

crack length ratio, stress state and amplitude - which are more physically based. 

In view of the strong amplitude and stress state dependence of crack growth in the 

first regime, the nonlinearity of crack length dependence in the growth law depends both on 

the strain range and the degree of biaxiality. The microcrack propagation law to be 

developed here is consistent with critical plane concepts for multiaxial stress states as 
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demonstrated previously by McDowell & Berard (1-2) as well as observations of fatigue 

crack growth behavior for short cracks (3-10). This is of practical significance since 

effective stress and strain concepts do not accurately correlate fatigue life, in general, over 

a wide range of stress states. The present approach offers treatment of nonlinear cumulative 

damage and sequence effects, similar to that of damage curve (11) and related continuum 

damage mechanics (12) approaches. 

The modelling effort was aimed at providing a physically consistent format for 

propagation of microcracks as influenced by microstructural barriers, amplitude and stress 

state. Several principal areas require development: 

1. The grain-to-grain variation of the amplitude and orientation of cyclic slip is expected 

to play an increasingly strong role in the distribution and growth rate of microcracks with 

decreasing stress amplitude. Under HCF conditions, a much less uniform field of 

microcracks is typically observed compared to LCF conditions. Accordingly, we will make 

use of continuum slip crystal plasticity theory to relate the macroscopic stress state and 

amplitude to a distribution of driving forces among grains. Such effects are expected to play 

a more significant role for cracks on the order of several grain sizes and below; as cracks 

lengthen in fatigue, they begin to significantly influence the local driving forces for 

propagation, with diminishing influence of microstructure. Calculations will be performed 

using a planar double slip idealization of crystal plasticity (17-18) for a random, initially 

isotropic ensemble of grains subject to a range of constant amplitude stress states to 
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understand the nature of the distribution of cyclic slip and normal stress to slip planes as a 

function of amplitude and stress state. Combined kinematic-isotropic hardening cyclic 

plasticity laws will be assumed at the slip system level (cf. (19)) to match the observed cyclic 

stress-strain response for the aggregate of grains. Moreover, the contribution of 

misorientation to blockage of fatigue crack growth under HCF conditions must be taken into 

account. 

2. Using two dimensional finite element solutions based on planar double slip as an 

approximation of three-dimensional crystal plasticity, the cyclic stress and strain distribution 

in the vicinity of the crack tip will be determined for cracks with length ranging from sub-

grain dimension to up to 10 grains in an equiaxed microstructure. It will be assumed that 

growth occurs in the orientation of one of the two slip systems in each grain (i.e. Stage I 

growth). Each grain will have one overall orientation of slip systems initially; to capture 

gradient effects of deformation within grains, it will be necessary to subdivide the grain into 

compatible elements with the same initial orientation which experience different degrees of 

slip. 

The resulting information will be used to develop an approach for propagation of 

small cracks in the presence of microstructure interactions, including amplitude and stress 

state effects. Furthermore, since the grain size appears explicitly in the calculations, it may 

be possible for the first time to quantify the elusive conditions for transition from Stage I to 

Stage II in terms of the ratio of crack length to grain size, including possible additional 

effects of stress state and amplitude. These calculations should also shed additional insight 
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into mechanisms of arrest for sub-grain size cracks and the occurrence of a fatigue limit as 

a function of stress state. Furthermore, the basis for transition from nonlinear, perhaps 

oscillatory, crack length dependence to approximately linear crack length dependence 

observed for crack lengths in excess of 3-5 grain diameters might be understood from these 

calculations. By considering the cyclic crack tip opening as a function of crack length, 

amplitude and stress state, these calculations might also serve to improve on the isotropic 

continuum finite element calculations (cf. (20)) which presently serve as a basis for 

accounting for plasticity-induced crack closure effects. 

VI.2 Recommendations 

The recommendations for this work are concerned with expanding the description of 

the microstructure as well as including a simulated roughness-induced closure effect for 

small fatigue cracks. Qualitative analyses of this type are crucial in providing an 

understanding of the mechanisms which contribute to the anomalous behavior of small 

cracks as well as the changing role of the microstructure and its effect on the crack growth 

rate. 
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VI.2.1 Slip Intensification 

In using 2-D planar double slip crystal plasticity concepts in simulating the 

microstructure, equal probability of slip on either slip system was assumed for all 

micromechanical analyses such that plasticity effects are only included in the model. For the 

crack analyses which align one of the two slip systems along the crack plane, additional 

analyses were performed such that the slip system that was aligned with the crack plane was 

modeled with a slip system resistance that was 20% lower than the resistance on the other 

slip system. This was done to determine if preferential softening along one slip system 

would have an effect on the amount of sliding and opening displacements as compared to the 

slip systems with equal resistance, G. In a similar work by Repetto and Ortiz ( ) , they used 

planar double slip crystal plasticity to simulate the behavior of a persistent slip band such that 

a "band" of material was given properties which allowed material along that direction to 

experience preferential softening, thereby producing increased sliding displacements along 

that direction. 

All cases considered for these analyses were performed at 90% of the yield strain and 

displacements were taken at 2 um behind the crack tip. Figure VI. 1 shows the cyclic CTSD 

and CTOD results for a crack oriented at 45° with respect to the tensile axis for a/d = 0.25. 

The sliding and opening displacements from the previous analyses with equal resistance on 

the slip systems are also plotted. The results show that at 2 um behind the crack tip, there 
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is nearly a 12% increase in the opening and sliding displacements for both the single and 

conjugate slip cases with preferential softening as compared to the cases with equal slip 

resistance. 

Figures VI.2-VI.4 show the cyclic CTSD and CTOD results for a crack oriented at 

90° with respect to the tensile axis for a/d = 0.25,0.97, and 1.97, respectively. For the two 

highest strain amplitudes, there was no appreciable difference in the CTSD and CTOD for 

cases of preferential slip and equal slip resistence. One explanation is that the driving forces 

for remote shear loading and at the amplitude of 0.9 y y (for a/d = 0.97 and 1.97) are high 

enough such that the resistence to slip has a minimal effect on accentuating driving forces 

which are already elevated. 

VI.2.2 Remeshing with Growing Small Crack 

Studying the effects of differing crack paths is another consideration in understanding 

the effects of heterogeneity on the behavior of small fatigue cracks. In recent work by 

Gardner and Qu ( ) , a remeshing technique in ABAQUS ( ) has been formulated which uses 

a K criterion to grow a small surface crack in a 2-D field. The model correctly shows the 

fatigue growth (under cyclic tensile loading) of a small crack from Stage I to Stage II crack 

growth. By combining planar double slip crystal plasticity within a finite element mesh with 

a remeshing algorithm, more of a statistical aspect for small crack growth behavior may be 

obtained. 
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VI.2.3 Frictional Contact along the Crack Face 

Since plasticity effects were considered for this work, a second order aspect of small 

crack growth is the consideration of frictional contact along the crack face. Friction would 

not only offer resistance to crack face motion, but would serve as a means to quantify 

roughness-induced closure effects for small fatigue cracks. A coefficient of friction of 0.4 

was used for all cases. 

VI.2.3.1 Cyclic Tension-Compression 

In Figures IV.7 - IV.8 is the plot for friction along the crack face. The addition of 

friction along the crack face does effectively reduce the amount of sliding displacements with 

a limited effect on the opening displacements. At the amplitude of 0.9 e y, the sliding 

displacements are effectively reduced by one half upon entering the third cycle of loading. 

VI.2.3.2 Cyclic Shear 

In Figures IV.9 - IV. 10 show the effect of friction for the cyclic shear case. For a/d 

= 0.25, there is minimal affect of the friction on the sliding and opening displacements. For 

a higher a/d value in Fig. IV. 10, there is a marked difference in the sliding behavior, 
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especially for increased cycling. 

VI.2.4 Numerical Simulations of Small Crack Growth 

In determining the remaining life of components under HCF, there are many tools at 

the disposal of the researcher. One of the numerical tools that has recently been applied to 

model small crack growth is expert systems. Steadman et al. (141) applied a novel numerical 

algorithm - an expert system methodology - which captures the distortion effects associated 

with the small crack front including trapping (retardation) as well as eventual circumvention 

of each obstacle. For cyclic loading conditions, a history of crack front shapes and associated 

growth rates are simulated as the crack front advances. Expert system methodologies can 

be thought of as the next generation of Monte Carlo simulations (142) for they provide 

another layer of detail for the microstructure and growth simulation capabilities. Although 

this method has only been applied to one layer or one dimension of crack expansion, it can 

be readily expanded to simulate a more three-dimensional crack front. Some constraints to 

the numerical simulations are closure levels cannot be properly determined. 
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Figure VL1 Cyclic CTOD and CTSD for cyclic tension-compression 
loading for crack oriented at 45° with a/d = 0.25 for a strain amplitudes 

of 0 .9Ey with preferential softening of 0.8*gl (along slip direction aligned 

with the crack plane) at a distance of 2 um behind crack tip for 
(a) single and (b) conjugate slip. 
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Figure VI.2 Cyclic CTOD and CTSD for cyclic tension-compression 

loading for crack oriented at 45° with a/d = 0.25 for a strain amplitudes 
of 0.9£y with preferential softening of 0.8*gl (along slip direction aligned 

with the crack plane) at a displacement of 18 urn behind crack tip for 
(a) single and (b) conjugate slip. 
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with the crack plane) at a distance of 2 um behind crack tip for 
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Figure VI.4 Cyclic CTOD and CTSD for cyclic shear loading for 
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the crack plane) at a distance of 2 urn behind crack tip for 
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Figure VI.5 Cyclic CTOD and CTSD for cyclic shear loading for 
crack oriented at 90° with a/d = 1.97 for a strain amplitudes of 0.9Yy 
with preferential softening of 0.8*gl (along slip direction aligned with 
the crack plane) at a distance of 2 um behind crack tip for 
(a) single and (b) conjugate slip. 
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Figure VI .7 Cyclic CTSD and CTOD for cyclic tension-compression 
loading for crack oriented at 45o with a/d = 0.25 for a strain amplitude 
of 0.9 E y with a coefficent of firction of 0.4 on the crack faces at a distance 

of 2 p:m behind the crack tip for single and conjugate slip cases 
(a) for all three cycles and (b) exploded view of first two cycles. 
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