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SUMMARY

The problem of estimating the remaining life in components under HCF conditions is
to properly assess and small crack regime, which may account for 50-90% of the total life (N,
= 1 mm). With many of the factors that affect smaﬂ crack behavior, such as interactions with
grain boundaries, material inhomogeneity, and surface roughness, incorporating these effects
into growth models which account for microstructurally small cracks to long cracks has been
a chalienge. This work is an effort to assess theée features and to understand amplitude and
stress state dependencies which enable more precise incorporation of these factors into
growth models. This was é.chieved through the use of a crystal plasticity micromechanical
model which was embedded within a finite element context. Plasticity effects are primarily
accounted for in this model.

For the uncracked cases considered on polycrystalline aggregate, it was found that
when assessing three candidate fatigue initiation parameters, the Fatemi-Socie parameter
produced the most descriptive assessment of the damage because it showed both amplitude
and stress state dependencies from the distribution plots. This results also correlates with its
ability to predict fatigue damage from components under multiaxial fatigue.

For the cracked analtyses performed, the local microplasticity which de;/elops behind

the crack under cyclic loading has a tremendous impact on the crack tip opening and sliding
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displacements “which are produced. With proportional, reversed loading applied
macroscopically, a local, nonproportionality develops at the crack tip. This nonproportional
develdps at smaller crack length ratios for cyclic tension-compression as compared to cyclic
shear. It also develops at lower strain amplitudes for the cyclic tension-compression case than
for the cyclic shear case. Plasticity induced-closure was found to have an influence on this
development. These computations have shown that the opening displacements for small
cracks account for a large proportion of the driving forces which attribute to crack growth.
Small crack behavior has been previously viewéd as being dominated by sliding displacements
along the crack plane. The increased opening displacements are primarily caused by the lack
of constraint from the surface and the surrounding qﬁcrostructure has an influence for
iﬁcreased crack lengths. This work quantified the influences of the free surface and the
surrounding microstructure through the utilization of the crystal plasticity micromechanical

model.
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CHAPTERI

INTRODUCTION

A major challenge in estimating the high cycle fatigue (HCF) life of components is
proper characterization of the small crack regime. This regime refers to the initial part of the
crack growth rate versus crack length curve wherein the crack growth rate is not correlated

by linear elastic fracture mechanics (LEFM) concepts based on long crack solutions for AK

in homogeneous materials and long crack growth rate data, The growth of sufficiently small
cracks is controlled by the local microstructure (grain boundaries, inclusions), and exhibit
growth rates higher than long cracks at the same apparent applied stress intensity fatigue
range based on long crack solutions (1). Under primarily HCF conditions and for the small
crack regime, long crack LEFM concepts have been used, although they lead to an
overestimation of fatigue life. Within the past few decades, critical plane approaches have
gained increasing sﬁppor’t for correlation of fatigue crack “initiation” lives and character of
small crack propagation under predominantly low cycle fatigue ( LCF) conditions for various
stress states (2-7). .‘

In addition, experimental studies of the propagation of microstructurally and
physically small cracks under both LCF and HCF conditions (8-15) have revealed that

elastic-plastic fracture mechanics (EPFM) concepts may be used to correlate the growth of

1



small fatigue cracks for various alloys. However, due to the persistent influence of
microstructural anisotropy and periodicity, complex mixed-mode loading conditions and
crack opening/closure behavior of small cracks, EPFM solutions and concepts for long
cracks do not uniquely carry over to small cracks. Small fatigue cracks show anomalously
high, irregular (oscillatory) growth rates in the early stage of crack propagation when
compared to large cracks at the same nominal AK based on long crack solutions. This high

crack growth rate occurs even under nominally elastic conditions, i.e. even when no
macroplasticity is involved. The irregular groivt}-l rate, in turn, is cansed by interactions with
microstructural inhomogeneities. This is considered as a major contributing factor to the so-
called “small crack problem” involving inapplicability of long crack LEFM AK solutions and
data.

It is important to incorporate small crack growth behavior into life assessment of
components limited by HCF performance. Examples include rotor hubs in helicopters, such
as the US Navy H-46 and H-53 platforms. The H-46 helicopter will be required to satisfy
the Navy and Marine corps mission requirements for the foreseeable future. Service life
extension of the aircraft is, therefore, dependent upon valid analysis of the useful life of the
aircraft’s components such as the rotor hub which must withstand several cyclic loading
modes - tension, compre.ssion, twisting, as well as corrosive environments. One of the most
prominent modes of loading is low amplitude cycling with high tensile mean stress. Due to

these types of loading conditions, detectable small cracks were found on the tie bar of rotor



hubs (16) and in the upper hub plate (17) (in Fig. 1.1). In this case, a redesign of tﬁe tie bér
was required. Premature cracks in the titanium H-53 main rotor hub upper plate spawned
-an investigation into the adequacy of inspection intervals of 10 flight hours (17). Analytical
and experimental tests were performed and it was recommended that the inspection interval
increase to 30 flight hours, assuming reliable ultrasonic detection of a 0.030 inch (762 pm)
flaw. Itis evident that loading conditions, flaw size detection, and correlative models all play
a major role in fatigue life assessment.

Comprehensive and robust models for i:he growth of cracks from a length on the order
of a grain size (or below) to reliably detectable dimensions (approximately 500 um to 1000
pm) do not currently exist, especially under general multiaxial loading conditions. Such
models would provide a fundamental advance relative to the current cyclic stress- and strain-
based crack initiation models. In addition, they should provide a consistent treatment of the
growth of fatigue cracks ran ging in length from microstructurally small to mechanically long
cra(;ks. The key goal of this research is to explore the effects of material inhomogeneity on
the driving forces for fatigue crack formation and small fatigue crack growth, as well as
conditions for the transition from crystallographic Stage I to Stage II growth. Using
computational models which incorporate planar double slip crystal plasticity, qualitative
forms for driying force parameters are examined that are consistent with critical plane
concépts and local mixed-mode crystallographic growth concepts for the 2-D case. This

research also considers the effects of the free surface, surrounding grains, and local plasticity



on crack tip opening and sliding displacements (CTOD and CTSD, respectively), which are
central to the crack propagation relation. In addition to computing CTOD and CTSD for
monotonic loading of cracks which are oriented on favorable crystallographic planes in
surface grains subjected to either remote tensile or shear loading, these parameters are also
dctcmﬁned for fatigue loading cases.

These results assist the development of small crack propagation models which respect
stress state, stress amplitude, and stress state sequence effects (cf. McDowell and Bennett
(18)). To verify the model’s capability for cbmpiex loading, baseline coﬁstant amplitude,
amplitude sequence, as well as stress state sequence experiments were performed on 304 SS
and 1045 steel. These materials were selected because ﬁey have two different cracking
mechanisims - shear stress-dominated versus normal stress-dominated - and were previously
well-documented in the work of Socie (4) for uniaxial and torsional loading conditions on
thin-walled tubular specimens.

This introductory chapter provides background for the thesis by: (i) defining small
cracks and related length scales; (ii) reviewing multiaxial theories with an emphasis on
critical plane approaches for fatigue crack formation and early growth; (iii) summarizing the
status of émall fatigue crack growth laws; and (iv) outlining the outstanding issues to be

addressed in this work.



1.1_Definitions of Small Cracks and Length Scales

Three categories of small fatigue cracks may be defined. The first category is
microstructurally small fatigue cracks. These cracks are chq:racterized as having all
dimensions on the order of a characteristic microstructural dimension, e.g. the grain size (19).
Cracks of this type often exhibit crystallographic crack growth, that is, crack growth
dominated by shear along crystallographic siip planes. If the applied stress is not high
enough, the crack growth rate decreases or the cracks even arrest as the crack tip encountérs
a grain boundary or other material inhomogeneity. The micrdstructurally small crack and its
crack tip cyclic plastic zone may be completely embedded within a single grain.
Microstructural Fracture Mechanics (MFM) (11) is a label that has been introduced for
médels that treat the distinct growth behavior of these cracks. MFM is a material-structure
sensitive approaéh that is characterized by the consideration of material attributes, e.g., grain
boundaries, inclusions, and persistent slip bands (PSBs).

The next category is that of mechanically small fatigue cracks (11). These cracks
have dimensions that are small compared to a characteristic dimension, such as the scale of
plasticity ét the root of some mechanical discontinuity (19) or a crack tip cyclic plastic zone.
Such cracks may be fully embedded within the cyclic plastic zone of a notch, or the cyclic
plastic zone size may simply be a large fraction of the crack size. A variant of EPFM, which
was termed EPFM,, has been suggested for cracks of this category (18).

Finally, fatigue cracks are considered physically small (11) when the crack size is
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small compared to the scale of the characteristic physical dimension. This term includes
mechanically small cracks as well, but generally applies to cracks that are small but still
larger than 5 to 10 grain diameters suéh that LEFM or EPFM applies (20). Such cracks may
exhibit anomalous behavior if analyzed based on LEFM because of the physical smallness
of the crack (21) relative to the cyclic plastic and damage process zones at the crack tip.
Physically small cracks eventually become long cracks which are described by LEFM.
Figure 1.2 illustrateslthese different crack sizes along with the characteristic dimensions. It
'1s emphasized that these categorizations depénd on both crack geometry and load level.
These characterizations of small cracks are presented within a context of stages of
growth. In ductile metallic materials, small cracks initiate on crystallographic planes of
intensified slip, a process which occurs on planes of maximum shear. Stage I cracks
propagate on these shear planes, due to slip processes and decohesion ahead of the crack tip.
Typically, microstructurally and mechanically small cracks are in this stage of crack grthh.
Stage II propagation occurs by processes of slip and decohesion in the plastic shear zone at
the crack tip. Figﬁre 1.3 shows a schematic of Stage I and Stage I crack growth behavior.
The slip and decohesion is again controlled by the maximum shear strain and the growth
increment depends on slip irreversibility. Another important effect is the tensile stress across
the maximum shear-strain plane, which influences dislocation mobility and the decohesion
associated with the slip process (22). Li (23) examined the effect of the normal stress on
extended Stage I growth, wherein it acts to offset the dominate crystallographic slip at the

crack tip by causing a balance of slip mechanisms. Long crack propagation in initially
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isotropic polycrystals is almost always observed to follow Stage Il growth, corresponding to

macroscopic Mode ¥ dominance.
Attempting to apply a correlation for small cracks by using da/dN versus AK (asin

showing the AK solution and LEFM precepts of mechanically long cracks), i.e.

da

22 = C (AR)*

T (AK) (LD
has resulted in the so-called anomalous behavior of microstructurally small cracks, first
reported by Pearson (24). In particular, the cyclic crack growth rate of small cracks may

significantly exceed that of long cracks at the same level of AK. One of the reasons for the

nonconformity of small crack behavior with that of mechanically long cracks has to do with
the violation of validity limits of LEFM. These limits are violated due to the lack of self-
similarity of growth and a cyclic plastic zone/process zone size which is on the order of crack
Jength. As small cracks grow further into the bulk material and away from the surface, the
crack is increasingly constrained by surrounding grains and statistically has more available
slip systems upon which to grow and local crack paths to choose. From a statistical
viewpoint, the small crack front samples an increasing number of microstructural barriers
with extension (e.g. grain boundaries, inclusions, etc.) (54) leading to a reduction of the
growth rate and to a decrease in the scatter of the growth rate (1). As'the crack increases in

length, it must maintain a coherent crack front across a growing number of grains. As the



number of grains sampled along the crack front increases, the probability of encountering
retarding grain orientations along the crack front increases (24). This change in
‘environment’ that the small crack undergoes accounts for such breakdowns of the
applicability of simple, homogeneous, self-similar LEFM and EPFM concepts to small
cracks. Furthermore, application of simple plasticity-induced or obstruction-induced closure

laws can only partially explain these microstructurally small crack effects.

L2 Critical Plane Muitiaxial Theories for Fatigue Crack Initiation

The local conditions at the tip of a Stage I small fatigue crack are mixed-mode
regardless of mixity of the remote loading due to crystallographic growth, local anisotropy,
and constraint of neighboring grains. Therefore, multiaxial beha\./ior with multiaxial fatigue
crack initiation mechanics is an inseparable feature of the-small crack problem. Various
approaches have been developed to model the small crack “initiation” regime under
multiaxial fatigue loading conditions. These approaches include equivalent stress-strain (26),
energy (27), damage mechanics/cumulative damage (28-33), and critical plane (34). Early
developments of multiaxial fatigue theories were based on static yield theories (von Mises,
Tresca, Rankine) but were later extended to more address complex states of stress (26).
Early LCF theories were based on parameters such as the maximum principal strain range,

maximum shear strain range, and maximum octahedral shear strain range (34). A more



detailed review of these approaches is given elsewhere (35). Inthese approéches there is no
distinction between nucleation, smal] crack propagation, and transition to mechanically lon g
crack growth, There is simply an effective stress or strain range quantity which was
correlated to “fatigue life.” These theories did not incorporate the effects of orientation of
the crack in relation to the 3-D stress/strain field - a crucial féctor when assessing multiaxial
behavior.

Critical plane approaches are of most relevance to the present research becanse of
their moré intimate connection to mixed-mode driving forces. In the early 1970's, critical
plane multiaxial fatigue theories were first formally introduced. These approaches are based
on observations that cracks form and grow on specific shear planes during the early stages
of fatigne; the approach considers the macroscopic stress and strain resolved onto such
‘critical’ planes as most directly influential in the nucleation and growth of cracks. Critical
planes refer to those planes within a material which undergo the most extensive range of
shear strain. From early multiaxial HCF fatigue research by Stulen and Cummings (36),
Findley et al. (37) and Findley (38), critical plane approaches have sought to include more
detajled information regarding the fatigue crackin g process. Based on physical observations
of the orientation of evolving fatigue cracks in stee] and aluminum, Findley et al. (37)
discussed the influence of the normal stress acting on the maximum shear stress plane. The

earliest critical plane model was then introduced (38) for HCF, i.e.

T, +ko =C (1.2)



for a given fatigue life, where the allowable alternating shear stress amplitude on the shear

stress plane, 1,,, decreases with an increase in the maximum normal stress amplitude, &

an ?

to this plane. Constant X is used to correlate experimental data and C is constant for a given
life. Equation (1.2) is discussed here to demonstrate the general philosophy of critical plane
approaches. Some combination of the shear and normal stresses that act on a certain
‘critical’ plane establishes a level function for a given life. The major advantage of critical
plane approaches is that they offer a two-parameter correlation to relate predicted fatigue life
to experimentally observed cracking behavié)r. As a result, this approach provides good
correlation with experimental results, a physical interpretation of the theory of small crack
initiation/growth, and the ability to predict the plane on which cracks occur. An analogy can
be drawn to two parameter approaches in elastic—i)lastic fracture, such as including both the
singularity strength and the triaxiality factor ahéad Qf the notch root. In the EPFM case, the
two-parameter approach is used to describe geometry effects on the R—curve.. In fatigue,
equations of this form help describe stress state dependence and planes of crack formation
along with the primary cyclic driving force.

In 1973, Brown and Miller (6) proposed an expression similar to that in Equation
(1.2) for LCF. They proposed that cracks initiated on the planes of maximum shear strain

range. They hypothesized that the amplitude of maximum shear strain, AY,.. , and the strain
amplitude normal to the plane of maximum shear strain amplitude, Ag, , were the critical

parameters governing damage. Brown and Miller (6) also developed the I'-plane
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representation for LCF as a means to obtain an empirical fit to experimental data. A so-
called I"-plane plot is a locus of points of constant fatigue life to a given crack length in the
space of Ag, versus Ay, . Brown and Miller (6) found that data from ail types of biaxial and
multiaxial fatigue tests can be plotted on such I'planes, i.e within the “wedge” formed by
uniaxial and equibiaxial test conditions (cf. Figure 14). When obtaining Ae, and Ay, for
several different types of tests, it is possible to draw contours of constant fatigue life to a
given crack length which separate out the torsion test, with its Case A type cracking system,
from the plane strain and equibiaxial tests, which produce Case B cracks. These two types
of cracking systems, illustrated in Figure 1.5, are indicated by the planes of maximum shear
and the directions of Stage I and Stage II crack growth, In this Figure, £, &, and g, are the
principal strains. Case A cracks propagate along the surface of the specimen, whereas Case
B cracks propagate inwards and away from the surface. In a uniaxial test, there are equal
proportions of Case A and Case B propagation modes, which consequently produces a nearly
circular crack front. In a torsion test, cracks propagate predominantly in the Case A mode,
giving long shallow Stage I cracks along the surface. |

Socie et al. (39) added a term to Equation 1.2 which would account for the effect of
mean nonna;l stress on the ¥,,, plane. Fatemi and Socie (40) were able to incorporate
nonproportional loading effects into the earlier model. This was significant because it was
found that shear-based approaches would not be applicable to all multiaxial fati gue situations

as had already been demonstrated under HCF conditions in the work of Goughetal. (41) and
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Findley (38). The increased damage during out-of-phase loading was attributed to the extra

cyclic hardening due to the rotation of the principal axes. Kurath and Fatemi (42) introduced

the parameter

A |1+ 8" =2—| =C" (13)

for a given life, where 6, ™ is the maximum normal stress to the plane of maximum shear
strain range, AY,,, ; here, k* is used to correlate experimental data, C* is constant for a given
life, and ©, is the cyclic yield strength.

A most recent development in critical plane formulations is incorporating the effects
of the transverse strain - the normal strain in the crack-line direction. Wang and Pan (43)
examined the effects of the transverse strain on the near-tip ficlds of small Case A cracks in
power-law hardening materials under ﬁﬂxed mode I and II conditions. For their finite
element analyses on a 2-D center cracked panel subjected to biaxial normal and shear strains,
they found that in addition to the cyclic plastic zone ahead of the craci( tip, a second
concentration of plastic straining occurred directly below the crack tip. This result indicated
that the presence of a tensile transverse strain produced increased opening stress ahead of the
crack tip. From their computational results, they suggest that the transverse strain be

included in critical plane formulations. Therefore, an additional normal (stress) strain term
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would be added in Equation (1.3). Clearly, more experimental and computational analyses
are required to properly determine how the transverse strain should be incorporated into
critical plane formulations in order to reflect increased opening stresses ahead of the crack
tip.

Even with these significant advances in LCF correlations, additional work is needed
to model the evolution of the crack length with increments of cycle under muitiaxial fatigue,
and to address the HCF regime. Propagation analyses, often treated using either LEFM or
EPFM, should be combined with critical plane concepts outlined above. Critical plane
approaches, to some degree, have been extended (2-3,20) to small crack propagation
formulations bécause of their ability to reflect the physical observations of crack growth
behavior. Such a physically-based approach is attractive in that modeling parameters can be
directly attributed to features of cracking mechanisms on the microscale; other empirical
approaches do not directly reflect such observations.

Small crack propagation formulations consistent with critical plane concepts were
introduced by McDowell and Berard (2-3) and Reddy and Fatemi (44), Reddy and Fatemj
(44) used a combination of AK and critical plane concepts for the propagation of cracks.
Since the two-parameter approach in Equation (I.3) correlated fatigue life to a 1 mm surface
crack under a wide variety of multiaxial loading conditions, Reddy and Fatemi (44)
postulated that these parameters can represent the driving force for crack propagation. They

defined a pseudo-AK as
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to correlate with da/dN. This parameter takes the form of an effective strain-based AK cpas
where G is the shéar modulus, and a is half the surface crack length. Here, AK, is used for
materials for which crack nucleation and small crack propagation occur along the planes of
maximum shear strain amplitude. The cons'-tant k* is determined by collapsing the fully
reversed uniaxial fatigue data to the fully reversed torsional fatigue data. It was found that
this formulatioﬁ gave promising results for both nonproportiona] and proportional tests, but
there was still significant scatter for low AK -, when compalring to experimental data.
Indeed there are problems in using LEFM concepts/parameters to characterize smali
crack growth. Dowling and Begley (44) first introduced the AJ -Integral for fatigﬁe crack
growth in an elastic-plastic cyclic deformation field. This parameter is perhaps a more
appropriate candidate than AK to be combined with critical plane concepts because AJ can
be applied to problems involving elastic-plastic deformation, and small fatigue cracks are
often characterized by substantial crack tip plasticity. Small crack propagation under
predominately LCF conditions has been treated within the framework of EPFM by a number
of researchers (13-14,46-48). The cyclic J-Integral (45,49-51), AJ, has been frequently

applied to correlate small crack propagation rate using the power-law relation
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% =C,(AD™ (15)

Hoshide and Socie (8) extended the J-Integral form presented by Shih and Hutchinson (52)
(pure Mode Iloading) to include mixed-mode loading. One of the shortcomings of Equation
(1.5) is that both the elastic and plastic components of the AJ-Integral have the same linear
dependence on crack length. Resulis of various studies (cf. (19,53-54)) conflicte_d with the
notion that the dependencies were the same for microstructurally small fatigue cracks. Such
cracks grow by traversing and re-encountering grain boundaries. Their growth depends on
microstructul;e, which renders the rate of grdwth of small cracks highly nonlinear, even
oscillatory. Once the small crack has extended over more grains and has become

mechanically small, the crack tends toward the applicability of Equation (L5).

1.3 Small Fatigue Crack Growth

By establishing physical atiributes of small crack behavior under HCF, a growth
equation which respects many of the these attributes can be proposed. A primary goal of
establishing- a crack growth law which traverses multiple regimes of crack growth is to
provide better estimates of the remaining life of components in fatigue. Naive treatments of

propagation have led to overestimations of fatigue life. A distinguishing feature of HCF is
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the high degree of heterogeneity of local cyclic slip processes. Under LCF conditions, PSBs
| and small cracks are fairly uniformly distributed among grains, leading to low variability of
fatigue crack nucleation and propagation processes. There is a regime of crystallographic
growth of small cracks roughly coincident with the orientation of maximum shear planes,
termed by Forsyth (55) as Stage I growth. For HCF conditions, the cyclic plastic slip
processes are highly heterogeneously distributed among grains and the surféce crack density
is sparse (56). For these conditions, there may also be an early transition to Stage II
behavior, characterized by propagation normial to the direction of the makimum principal
stress range. The following sections discuss in more detail tﬁe transition between stages of
small crack growth, intrinsic material resistance ahead of the crack, fatigue limits, the role

of the free surface and crack closure issues.
L3.1 Transition from Stage I to Stage Xl Crack Growth

Early assessments of the transition from Stage I to Stage II crack propagation were
made by Cox and Field (57) in 1952. They found that this occurred when the ratio of local
tensile stress to shear stress was about 1.6. Swensron (58) established that the transition for
FCC metals that exhibit disassociation into partial dislocations occurs when the separation
of partial dislocatic;ns is reduced to the order of the Burger’s vector. This disassociation is
influenced by the crack tip stress field and the materials’ stacking fault energy. In 1972,

Plumbridge (22) stated that the transition occurred when the ratio of tensile stress to shear
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stress at the crack tip reached a critical value. Miller (11) established that Stage 1
crystallographic (shear-dominated) small crack growth is typically observed to transition to
the Stage II growth (normal/tensilt;: dominated) regime for crack lengths on the order of 5-10
grains, depending on the strength of the material. The strength of the material itself is a
function of grain size and texture (11).

Li (23) studied the small crack transition behavior for aluminum alloys. The
transition condition was quantitativéfy proposed to occur when the CTSD of Stage I cracks
was equivalent to the CTOD of a Stage T crack, A physical basis of the transition crack size
can be interpreted as the point where the dislocation pile-up reaches a level sufficiently high
due to grain boundary blocking at the transition until new dislocation sources are activated.
The pIasti; zone then extends right through the grain boundary to re-develop in the next
grain. In Li’s (23) interpretation, fhe transition is not related to the grain size or several grain
sizes; rather the transition is closely related to the Jocal stress level, His dislocation-based
micromechanical model predicted both the crack growth transition and growth rates for small
fatigue cracks. Both the local stress level and local microstructure control the transition from
Stage I and Stage II. This transition depends on stress amplitude and stress state as well.
Precise conditions for the transition are not yet established, in general. Certainly, no
comprehensive models of cracks in polycrystals have been developed or studied to
understand effects of heterogeneitsf due to lattice misorientation on a broad scale rather than

single, planar bicrystal boundaries.
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1.3.2 [Fatigue Limits

One method to represent thresholds for small crack growth in HCF is to plot a
Kitagawa diagram which represents a locus of points of non-propagating crack length versus
stress amplitude. An example for a low carbon steel with a ferrite grain size of 55 um is
shown in Fig, 1.6 (12). Three regimes are labeled. In Regime I, small cracks do not
propagate. Regime I is bounded from above at very small créck lengths by the smooth
specimen fatigue limit, Ac,,. In reality, n%icrostructurally small cracks have complex
oscillatory growth rates below Ag,, (cf. Fig. 1.6), but these cracks arrest if the applied stress
amplitude lies below Ac,,, (10-11,59). In Regime II, cracks propagate at stress amplitudes
greater tﬁan Ao, or at crack lengths that exceed a, defined as the crack length
corresponding to the long crack threshold, AK,,. , at an applied stress of Ac,,.. The dashed
line between Regimes II and III corresponds to the asymptotic long crack threshold of LEFM
for a > a, Crack length a/ = 20.3 pm represents the non-propagating limit for
microstructurally small cracks for this material; for a > a,’ and at stress levels below AG,,,
small cracks propagate at crack lengths below that of the long crack threshold. This has been
attributed to decreased plasticity-induced closure effects for small cracks relative to long
cracks in the vicinity of threshold conditions, ﬁccounting for the gradual transition from
microstructurally small to long crack regimesl(54). Cracks in Regime Il grow until arrested

at the boundary of Regimes I and IIT, subject to EPFM, a plasticity-induced closure transient
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that develops with propagation.

The Kitagawa diagram has considerable relevance to threshold fati gue design
approaches for HCF because it distinguishes between thresholds for small and long cracks.
To a limited extent, the diagram also shows the change in fati gue crack growth mechanisms
as a functjon of stress amplitude and crack length. Such diagrams, however, are applicable
only to constant amplitude fatigue and may not be applied to overload conditions or
sequences of amplitudes (54). Detailed incremental models for crack propagation and arrest

. are therefore crucially important to treat history effects and multiaxial loading conditions.

Riemelmoser et al. (60) utilized dislocation arguments to describe fatigue limits for
an aluminum alloy (Al 7075-T6) and a steel (Steel A533). They assert that if the discrete
nature of plasticity is taken into account by a dislocation model, the conditions for the fatigue
threshold may be established. They found that this demarcation between applying a

continuum versus a discrete (or cycle-by-cycle) analysis occurred at when the ACTOD was

smaller than 150 Burgers vectors per cycle. Although their model neglected the influence
of microstructure, the existence of a threshold was expressed in terms of the discrete nature
and development of plasticity. |

In addition to the fatigue limit for nonpropagating cracks, shakedown may also lead
to a fatigue limit in HCF. The shakedown stress amplitude refers to the level at which
microplasticity within and among grains is suppressed. The elastic shakedown limit of the
heterogeneous cyclic microplasticity response may, in general, be lower than that associated
with grain boundary blockage of small cracks. An elastic-plastic shakedown limit may also
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exist which reflects an insufficient degree of cyclic microplasticity to nucleate cracks. In
both instances, the consideration of heterogeneity of the polycrystal is essential. The mode]
of Dang-Van (61), for example, accounts for the orientation distribution of grains, employing
a polycrystal plasticity analysis to assess the intensity of cyclic plasticity and constraint
between grains. A local critical slip plane failure criterion of Mohr-type, similar to Equation

(L2), is given by

At '
2‘ +kP=H (1.6)

to assess whether the fatiguerlimit (arrest threshold) of individual grains, H, is breached.
Here, At, is the range of the maximum resolved shear stress in the grain, and‘P is the peak
hydrostatic stress. Shakedown of cyclic microplasticity is explicitly taken into account,
although a crack length dependency is not included. Such local approaches recognize that
the description of threshold behavior of local mixed Mode I-II nucleation/propagation
behavior of Stage I small cracks must consider a combination of maximum shear stress range
and some measure of normal stress to this plane (62). This method has successfully
correlated HCF life for high strength components such as bearings.

From the discussions above, it is apparent that some combined approach which
utilizes stress state, crack length dependencies, and shakedown limits of cyclic
microplasticity would provide a more complete method for determining fatigue limits for
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small cracks. Chapter Il presents a micromechanical analysis on the distribution of
microplasticity in polycrystals. This serves in establishing the nature of the transfer function
between macroscopically applied stress to microcracking within an aggregate. Analyses of
this type enables one to comprehend the distribution and intensity of cyclic microplasticity
as a function of stress state and amplitude. Chapter V details a three-regime model which
accounts for the full range of growth from microstructuraily small to long cracks, includin g

small crack threshold limits.
L3.3 Roughness and Plasticity-Induced Crack Closure

There are other important mechanisms that affect the propagation of small cracks in
HCF, including roughness-induced (crack face aspefity interactions) and plasticity-induced
closure. Faceted crystallographic crack growth promotes crack surface roughness-induced
interference effects, particularly in low stacking fault energy FCC alloys and for coarse
grained meials (63). Roughness-induced crack closure is promoted by a tortuous crack path
associated with a mixed-mode crack growth mechanism and mismatch between the fatigue
crack face asperities (64). This is particularly important for small cracks in HCF since the
distribution of crack-like defects in cyclic plasticity is much less uniform than under LCF
conditions (54). Asperities form on surfaces of growing small cracks, and these asperities
may either bridge or wedge cracks open, leading to local éhielding or enhancement. Tong

et al. (63) addressed modeling sliding mode crack closure effects due to faceted fracture
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surfaces which may prevail in the propagation of small crystallographic cracks. They
performed analytical and finite element analyses to parametrically show the effects of
asperity height, friction coefficient and crack length on the near threshold propagation rate
in pure remote mode ITloading. The model revealed that the faceted crack surface generated
alocal wedging mode I displacement, while the frictional attenuation tended to decrease the

mode II displacements. Consequently, both the macroscopic mode I and local mode I AK

~ were reduced at the same time. In view of actual small crack profiles, an ideal mode I
loading condition may not be achieved due to the inevitable jocal mixed-mode loading
conditions at the crack tip. Stage I crack tips inherently involve mode mixity because of
local anisotropy and heterogeneity (54) ahead of the crack.

This behavior contrasts to plasticity-induced‘ closure of small cracks under constant
amplitude loading. Plasticity-induced closure is caused by residual plastic deformation left
in the wake of an advancing crack. Small cracks generally have a smaller plastic wake
behind the crack tip for the same crack tip driving force and decreases with decreasin g crack
size (65). Asthe crack lengthens, interactions between the crack and microstructural features
(such as asperity height) may diminish relative to plasticity-induced closure, particularly for
fine grain alloys. Effects of plasticity-induced closure on small crack behavior are explored

in the computational analyses in Chapter IV.
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L34 The Role of the Free Surface

Proximity of the small crack to the free surface has several implications. One aspect
of surface proximity is its effect on dislocation accumulation near the surface. Harvey et al.
(66) used atomic force microscope images of slip band emergenc;a at the free surface in both
HSLA steel and Ti to confirm their model for crack nucleation based on cumulative slip
offset which incorporates grain size and other factors. Dislocation models by Tanaka and
Mura (67) and Venkataraman et al. (68-70) assume that the forward and reverse (irreversible)
plastic flow within a PSB is modeled by dislocations with different signs moving on two
closely spaced layers. The theory of continuously distributed dislocations is used to account
for the monotonic buildup of dislocation dipoles piled up within the PSB. This buildup is
associated with the development of extrusions or intrusions which are crack nucleation sites.
These models, however, -do not consider the effect of surrounding grains and the spread of
cyclic plastic strain into those grains. This is a significant consideration, particularly for the
growth of cracks. The role of the dislocation density gradient near the surface in the
propagation of small cracks in HCF has not been studied.

| A second factor which influences small cracks growing from the surface is the lack
of constraint on crack opening/sliding. Constraint refers to the buildup of stress around a
crack front due to the restraint against in-plane and out of plane deformation (71). The in-
plane constraint has been associated with the closeness of the crack front to external

boundaries whereas the out-of-plane constraint is mainly influenced by plate (or specimen)
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thickness. Quantifying the level of constraint, therefore, is an important factor in modeling
fatigue crack growth of small cracks, This lack of constraint also leads to initially high crack
growth rates for small cracks unti) they grow into the surface where they experience more
coﬁstraint from surrounding grains and more available slip systems upon which to grow (72-
73). Keller and Gerberich (74) and Lin and Lin (75) made observations on the surface versus
bulk behavior of a HSLA steel and single and polycrystalline aluminum under cyclic
loadings, respectively. Keller and Gerberich (74) measured the surface layer to be

approximately 300 pum or 6-7 grain diameters and found that after an accumulated bulk strain

of 5% for high strength, low alloy (HSLA) steel, the surfacé experienced approximately three
times as much accumulated strain as the bulk of the material. Additional studies by Chen et
al. (76) reproduce similar results for single crystals of Fe-3wt%8i. Chen ez al. (76) explain
that this type of surface effect is due to the activation of multiple s]iin systems on the surface
which causes a higher strain level on the surface, thereby affecting the crystal orientation
locally. They found that the strain gradient disappeared after approximately 100 um below
the surface. This dimension is very crucial to small cracks because their dimension is on the
order of this surface layer. These observations have tremendous bearing as to why they grow

so rapidly in the MSC regime relative to long cracks with the same applied AK.
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I.3.5 Smail Crack Interactions with Microstructure

.Grain boundaries and second phase particles are the primary microstructural barriers
to small crack growth. The grain boundary is an amorphous interface where two single
crystals of different orientation are joined. Because of the plastic incompatibility due to
misorientation at the grain boundary, it is an effective barrier to dislocation glide. Likewise,
interphase boundaries resist dislocation motion in the softer phase unless the hard particles
are fractures or sheared, or the interface is decohered. Three observed small crack behaviors
provide evidence for interaction of the small crack tip with grain boundaries. First, small
fatigue crack propagation may slow down upon approaching a grain boundary due to
interaction of the plastic zone with the grain boundary. Deceleration of the growth rate is fhe
result of interaction of the crack tip cyclic plasticity with local barriers to plastic flow.
Secondly, due to misorientation between two neighboring grains, a small crack front may
deviate after penetrating the graip boundary. The deflection of the crack front is the result
of an orientation change of newly activated slip bands. Thirdly, the very first grain boundary
does not always lead to a severe drop of growth rate when a small fatigue crack penetrates
it, although it usually controls the scale of nonpropagating cracks of the fatigue limit (cf.
Miller (11), Li (23)). Some grain boundaries provide less blockage to small fatigue crack
propagation due to their orientation (22). The adjacent grain may have a favorable
orientation that promotes continuous slip without enhancing dislocation pile-ups and related

stress concentrations. After penetrating the grain boundary, the small fatigue crack
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propagates witﬁ reference to this preferred grain orientation.

Through the periodic measurement of plastic zone size (and shape) of growing small
fatigue cracks, Zhang and Edwards (77) found that cracks begin to decelerate when their
relatively large cyclic plastic zones (not the crack tips), were blocked by grain boundaries.
Further propagation of the crack required that the plastic zone extend in the next grain,
suggesting that the initiation of plasticity in the next grain controls the fatigue limit and
growth rate in the small crack regime. This is a similar description of the small crack
behavior as given by Li (23).

There is a subtle distinction of the interaction of the local lattice orientation of a long
crack tip and a small crack tip with barriers. In the long crack case, it may be said that the
crack tip field is influenced by barriers since it represents a bounded singular domain
enclosing a statistically significant set of barriers. For microstructurally small
crystallographic cracks, it is not clear that the tip obeys a singularity of long crack type since
the scale of inelastic deformation, surface roughness, and damage process zone in the vicinity
of the crack may be on the order of the crack length itself. Certainly, the embryonic stages
of crack nucleation along PSBs suggests that such cracks embark on growth with the scale
of cyclic plasticity and/or distributed damage as the dominant feature. Hence, there is a
significant perturbance of the stress and strain fields iﬁ the vicinity of the crack due to‘
interaction with microstructural obstacles. For long cracks, interaction with barriers along
the crack front tend to average out, leading to less variability in the crack growth rate and

therefore an apparent insensitivity to microstructural detail.
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1.3.6 Small Crack Propagation Approaches

Identification of the potential linﬁtations of LEFM/EPFM and direc'; experimental
obsewétions h#ve led to alternative small crack propagation approaches. Tomkins (78)
proposed a small crack propagation law for LCFbased on shear decohesion along conjugate
slip planes ahead of a Stage Il crack, resulting in linear dependence of da/dN on crack length.
In the transition from microstructuraily small to long crack behavior, da/dN is often observed
to be approximately linear with crack length"in LCF. Many of the applications of the AJ-
Integral have been reported for physically small cracks in LCF. Additional approaches for
miérostructurally and physically small cracks may be found in articles by Miller (10-11). Of
particular interest for this research are those approaches which address many of the details
of microstructural barrier interactions in Stage [ and early Stage I propagation. Hobson et
al, (79} developed empirical laws for deceleration of small fatigue cracks approaching a

microstructural barrier located at @ = d, i.e.

da

N =A 1" (d -~ a) (L7)

for a < d, where 1, is the amplitude of maximum shear stress, o and A, are constants (for a

given mean stress), and d is fitted by regression analysis of data. Often, d is on the order of
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a few mean grain diameters. The crack growth rate relation in Equation (1.7) averages

oscillatory behavior at individual grain boundaries. For mechanically small cracks, the

relation

— =Btfa-D (L8)

was proposed by Miller (10), where Dis a threshold' growth rate, and B is a constant fof a
given mean stress. This relation assumes that cracks on the order of 3-10 grain diameters
must be treated with an EPFM-type relation due to local large scale yielding effects. The
highest rate from Equations (1.7) or (1.8) is assumed to apply. Arrest may occur if the two
curves do not intersect prior to a=d |

In work by Hussain et al. (80), models of the small crack growth process were based
on dislocation blockage and slip transfer solutions that display significant microstructural
sensitivity and oscillatory growth behavior predicted ovef the first several grains. Tanaka
et al. (81} provide detailed solutions for crack tip sliding and opening displacements which
consider grain boundary blockage and slip transfer for Stage I and Stage IT small cracks.
They show that in addition to grain boundary blockage, large scale yielding and lower
effective yield strength near the surface contribute to higher growth rates for cracks on the

order of grain size. Depending on the degree of misorientation with nearest neighboring
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grains, the first grain boundary may serve as the most effective barrier against arrest, similar
to the assumptions of the Hobson et al. (79) and Navarro and de los Rios (83-84) models.
Local crack closure effects associated with discrete slip bands énd crack path fluctuations can
also alter the local crack tip opening displacements in Stage I. While distributed dislocation
theory-based approaches offer predictive capability, they are limited in addressing other
important effects such as crack branching, lack of constraint associated with the free surface,
effects of surrounding grains, and roughness-induced crack face interfex_'ence. In short, they

are highly idealized.

L4 McDowell-Berard Small Crack Propagation Law

To properly assess and provide correlative models for the small crack regime, stress
state, stress amplitude and crack length dependencies must be incorporated. McDowell and
Berard (2-3) introduced a growth law that addressed these dependencies by proposing
distinct growth laws for LCF and HCF. Under LCF conditions, McDowell and Berard (2-3)
assumed mixed mode I and II crack growth in the plane of the crack, associated with

crystallographic Stage I shear growth. They extended the AJ -Integral by analogy in the form

At Ay
da C’p(l + 1P)"(B,(ApE R, + )™ (-— o

- > > ] a™ =D, C, (¥)"a" (19)
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for completely reversed loading, where ‘¥, is defined as

ATn Ay pmax
F, = (0 +pp) BOGEIR, + 1) 5 5 (1.10)

Equation (1.9) applies in the limit as the plastic strains dominate the elastic strains, i.e. the
fully plastic case. Parameter B, introduces d;pendence of the crack tip fields and/or crack
tip opening and sliding displacements on stress biaxiality ratios A; and &,, where A_ = /0y, -
and £, = G0y, (T and o, are the far field shear and normal stresses, respectively; o,, is the
direct stress parallel to the crack). The constraint parameter, p, is nonzero only when

multiple normal stress components are operative as in biaxial loading. It is defined as

Ackk/Z
P Tan B (L11)

and introduces additional dependence of the small crack propagation rate on R, =

(Ac,/2)/(AT,/2). Here, R, is a biaxiality factor which varies from zero for completely
reversed torsional fatigue to unity for uniaxial or biaxial loading conditions. Also, Ac,, At,,

and Ay, are the ranges of normal stress, shear stress, and maximum plastic shear strain,
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respectively, on the plane of maximum range of plastic. shear strain. Constants W and m
control the influence of constraint and nonlinearity of small crack growth; ¢’ o 18 a fully
plastic coefficient which recovers the independent LCF Coffin-Manson and cyclic stress-
plastic strain la\-zvs for completely reversed loading in torsional and unjaxial fatigue.

The McDowell and Berard (2-3) law showed qualitative agreement with LCF
experimental results based on I'-plane plots (6-7) for completely reversed loading of both
Case A and Case B (6-7) histories for Stage I shear-dominated small cracks. Again, Case A
{e.g. torsion or combined axial-torsion or tuﬁes) cracks grow along the surface and Case B
' {e.g. equibiaxjal loading) cracks grow into the surface depending on the orientation of the
3-D strain field with respect to the surface. Their proposed law was able to correlate fatigue
life (toa 1 mm crack) to within a factor of two on life for a wide range of multiaxial loading
conditions. From these results and others (4-7), consideration of (i) the range of shear strain
and (ii) the stress or strain normal to the plane of maximum shear strain seem essential to
correlate fa.ti gue life.

Although separate forms for LCF and HCF small crack propagation were developed
(2-3), a unified law is desirable. Considering that the McDowell-Berard approach (i)

provided agreement with LCF experimental behavior in the I-plane, (ii) correlated the

fatigue life (1 mm crack) to within a factor of two for a wide range of multiaxjal loading
conditions, and (iii) included distinct small crack growth laws for LCF and HCF, it is a

viable candidate for extension to multiple regimes of small fatigue crack growth, especially
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with an enhancement of its treatment of the MSC regimes.

As afirst step, McDowell and Poindexter (aka Bennett) (20) extended the McDowell-
Berard model into a unified law for both LCF and HCF. In this case, the possibility of a
fatigue limit was neglected. The treatment of detailed nucleation and MFM growth concepts
for a < d (10-11,84) were not addressed, where a is the crack length and d is on the order of
the grain size. For this engineering model, the complexities of microstructural influence on
small cracks below the transition crack length, kd, were taken into account in an average
sense by assigning a nonlinear dependence on'crack len gth, amplitude and stress state, rather
than considering the vagaries of oscillatory growth past barriers. For a > kd, a linear
dependence of &a/dN on crack length was assumed up to validity of LEFM.

To represent the MFM and EPFM, regimes of small crack propagation, the

McDowell-Berard small crack propagation law was modified as

L= D,y RCMH)M + (1 - Re)cp<‘P,,)MI( E‘:;] " @12)

where

At Ay?
T OV m“) (L13)

‘P,,=(1+pp)(BpR,,+1){ >
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At Ay
Y, = (1 + up) B, R, + 1)[ K —'—V-z-'"ﬁ] (L14)

and R, is a non-dimensional ratio, 0 < R, < 1, representative of the relative degree of

macroscopic elastic straining

(I.15)

The effective crack length exponent, m,, is of a different form for each of two regimes of

propagation, i.e.

my = my Ry Ry M) for <1 5 m =1 for =l (L16)

In Equation (I.12), the coefficient D, is determined by integrating the expression for

constant amplitude loading conditions between given initial and final crack lengths, i.e.
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where it is understood that m, in the second term on the right-hand-side corresponds to the
regime a < kd. The decomposition into MFM (a < kd) and EPFM,, (a > kd) regimeé is
clearly reflected by the two terms of equation above. Since m, is a function of stress
amplitude and stress state, jt is apparent that D, depends on both stress state and amplitude.
The adoption of a constant kd in Equation (1.12) is purély empirical in nature, intended to

reflect experimental evidence. Likewise, the forms of 'V, and ¥, in Equation (1.12) are based

on the McDowell-Berard model from MFM concepts/solutions and micromechanical models.
Improvements in the forms of kd and m, are desired in order to reflect the changing driving
forces for small cracks.

Equation (I.12) compared well to experiments performed by Socie (4) 6n 1045 steel
and Inconel 718 concerning the growth of small cracks under completely reversed tension
and torsion. There are fundamental differences between propagation of small cracks in
cyclic torsion and tension-compression, Fpr lives on the order of 10° cycles under tension-
compression, most of the “initiation” life is spent in propagating cracks with lengths on the
order of the grain size. However, in torsion for N; = 10° cycles, most of the life is devoted
to propagation of cracks with lengths in excess of the grain size. At increasing lives, the
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fraction of life spent in growing cracks with lengths less than 100 um if} length increases, to
a much greater extent in uniaxial fatigue than in torsional fati gue. The crack growth behavior
is quite nonlinear with respect to crack length for cracks shorter than 100 wm under HCF
conditions, particularly fqr upiaxial fgti gue at lqnger lives. The point of departure from Stage
I'shear-dominated crack growth to Stage I normal stress-dominated growth occurs at higher
strain amplitudes for unjaxia] fatigue, likely due to the influence of the normal stress across
the Stage I crack in promoting secondary slip band formation and crack branching at the
crack tip. Torsional fatigue appears to promjote Stage I behavior at long lives for a givenr
crack length, perhaps associated with low symmetry sliﬁ (lower‘ Taylof factor and more
.primary slip) at the local level. This likely points to an enhanced microstmctura] roughness-
induced shielding effect in uniaxial HCF relative to torsion when ti‘le crack opening
displacement is on the scale of crack surface roughness.

Iso-crack length contours similé.r to those of Socie (4) were constructed for 1045
steel. Consistent and similar'differences are exhibited by the model for torsional and
uniaxial behavior. A major reason for writing Equation (I.12) in that form is to account for
sequence effects. Sequences of torsional fatigue followed by uniaxial fatigue for three
different loading levels are shown in Fig. 1.7, with N; corresponding to a;= 1 mm. The law
predicts relatively strong sequence effects for the case of decreasing stress amplitude (11).
The interaction curves plotted from stress state sequence effects exhibit a nearly bilinear

character, similar to the double-damage curve analysis introduced by Manson and Halford
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(32), especially for eyclic tension. The McDowell-Poindexter (20) law more adequately
correlates experimentally observed damage accumulation and interaction than a single
- power-law deséﬂption based on nonlinear cycle fraction summation. This ‘bilinear’ form
is a natural consequence of the decomposition of the crack growth process into two regimes
with different operative mechanisms. Even with the advances offered by this form of the
small crack propagation law, improvements are needed for the current empirical forms for

kd, ', '¥',, and crack length dependencies.

L5 Three-Dimensional Effects for Small Cracks

After small cracks initiate on the_ surface, they grow along the surface and into the
bulk material. By growing into the bulk, the small crack experience more constraint from
the surrounding material which can be characterized as a three-dimensional (3-D) effect. A
3-D description of small fatigue crack closure would be another factor that would improve
' the predictive capabilities of remaining life. To predict the fatigue crack growth patterns and
fatigue lives for surface cracks, and 3-D crack geometries such as surface cracks at holes and
corner cracks at holes, Newman and Raju (85) used LEFM concepts that were modified to
account for crack closure behavior. They examined two aluminum alloys (7075-T651 and
7050-T73). Under constant amplitude ioading, the cracks geometries were assumed to grow

in either a semi-elliptical or quarter-elliptical shape and points at the surface and at the
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maximum depth point were monitored. They found that for R = 0 loading, small
semicircular surface cracks tended to grow in a self-similar fashion, although the stress-
intensity factor at the surface was 10% higher than at the maximum depth. Although a
constraint factor was introduced to account for these differences in K, growth rates and
fatigue lives were only corrélated within 30%. In addition, the shape of the crack front was
not predicted well because the closure parameter did not account for residual stresses at the
surface. Work by Trantina et al, (86) found that the K value was only 4% higher at the
surface than in the depth. Their finite element analyses on 3-D small surface cracks
provided stress-intensity factors for 3-D crack geometries and effective K values for 3-D
elastic-plastic conditions. As found in the previous work by Newman and Raju (85), these
changes in K along the surface was attributed to the lack of plane-strain constraint at the
surface, therefore, self-similarity of small cracks in 3-D bodies cannot be assumed,

In 1990, Dawicke et al. (87) experimentaily quantified the three-dimensional closure
effect for an aluminum alloy (2024-T351). Indeed, the global and surface crack opening load
measurements only provide a 2-D view of a 3-D problem. With the exception of very thin
sheets, where the constraint is entirely plane stress, a 3-D variation in plasticity-induced
closure behavior exists along the crack front. This variat_ion is due to the change in constraint
from plane stress at the surface to plane strain in the interior. The shape changes are due to
a combination of the 3-D variatioﬁ of both fatigue crack closure and stress intensity fac;tor
along the crack perimeter and cannot be predicted with 2-D models. The crack opening loads

(Kopen/Kmex) Were found to range from 0.35 to 0.4 near the surface while values of less than
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0.2 were observed in the interior. Newman ef al. (71) also performed 3-D elastic plastic
finite element analyses to quantify these constraints in order to incorporate 3-D effects in 2-D
crack analyses. They suggest a global constraint factor to account for three “local” constraint
parameters along the crack front and are based on the nprmal, tangential, and hydrostatic
stresses along the crack front. Although these results are mainly for cracks on the order of
physically small cracks, including this influence improved the model’s ability to predict
fatigue crack growth data within 15%. Thisisa significant improvement to the initial model
by Newman and Raju (85). Later studies by Newman (88) and Wu er al. (89) incorporated
this constraint conéept to better correlate fatigue data.

Carlson et al. (90) present experimental studies of the fati gue growth of smail comer
crack emanating from small flaws in an aluminum al}oy; A three-point bending state of
loading was used and by virtue of the square cross-section of the specimen, the maximum
tensile stress developed at the middle of the gage section and onl a corner edge. For this
geometry, grain boundaries were effective in curtailing crack growth; this is in line with 2-D
assessments of small crack growth in that grains barriers are one of the barriers to continuing
growth. However, it is more descriptive to visualize a 3-D geometry in which the advancing
crack encounters a ‘grain boundary wall’ which introduces local barriers to ;ontinuing
grov?th. In addition, since small thumbnail cracks, for the same crack depth, can be expected
to have about twice as many grains along their fronts as small corner crécks, their growth
behaviors may differ. The usual stress intensity factors which assume homogeneity,

however, are insensitive to these differences. The anomalous growth rate of small cracks
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may be due in part to the fact that surface grains, which are a large fraction of the total
number of grains along the crack front of a small crack, are not subjected to the level of
interior grains.

In an effort to further bridge experimental and computational aﬁalyses, Zhang et al.
(64) used in-situ SEM measurements and finite element analyses to determine the magnitude
of fatigue crack closure due to the effect of plasticity- and roughness-induced closure. They
found that the fatigne crack closure stress levels from the finite element analyses were lower
than those from SEM data because roughnes;s was not accounted for in the finite element
model. This was due to the contact of asperities on the fati gue crack surfaces which was not
accounted for in the finite element analysis., When a model was developed which accounted
for both plasticity and roughness effects, it correlated well with experimental fatigue life data
for Al 2024-T351.

Most recently, Newman et al. (91) used a plasticity-induced closure model to predict
fatigue lives of using ‘small-crack theory’ for various materials (aluminum alloys and steels)
and loading conditions. The model included a 3-D constraint factor which accounted forthe
elevated flow stress at the crack tip and the influence of stress state. A distinguishing feature

of this work is that smaller initial crack sizes were considered (2 um to 10 pm) as well as

microstructural features, such as inclusion-particles which served as crack initiation sites.
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L6 Outstanding Issues to Be Addressed In This Work

At present, small crack propagation laws are largely qualitative in nature due to the
complexity of the local problem of propagation in heterogeneous microstructure and EPFM
conditions. The current small crack growth laws have not fully incorporated the effects of
. periodic barrier interactions, non-propagating crack limits, and shakedown of microplasticity.
Detailed micromechanical approaches that recognize local anisotropy and heterogeneity
effects, such as crystal plasticity, can shed light on more appfopriate and specific forms for
such small crack propagation laws. While distributed dislocation theory-based approaches
offer predictive capability, they are limited in addressing realistic, first order effects such as
lack of constraint associated with the free surface, effects of surrounding grains, and crack
face interference. The computational micromechanical approach used in this work will
address these first order effects and will foster the development of improved forms of small
fatigue crack growth laws. Although 3-D effects which account for additional constraints
for small crack growth are potentially important, they will not be explicitly addressed in this

work.
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Figure 1.1 (a) Upper plate of rotor hubs (b) and sites of crack formation (17). -
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Figure' L2 Small crack sizes and characteristic dimensions (a) microstructurally small,
(b) mechanically small, and (c) physically small.
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Figure 1.3 Schematic of Stage I and Stage II crack growth behavior for cyclic tensile
loading. '
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CHAPTER II

CRYSTAL PLASTICITY AND MODELING OBJECTIVES

To facilitate necessary improvements in small fatigue crack growth models,
micromechanical calculations based on computational cyclic crystal plasticity can provide
a better understanding of the influence of microstructure. Since crystal plasticity models
relate the macroscopically applied stress to the microscopic crystallographic slip response,
they are appropriate to study heterogeneity and interactions across grains. Given that small
crack growth is highly dependent on microstructure and the interaction of cyclic
microplasticity among grains, a continuum slip idealization for response of grains seems
appropriate. Models-of this type can provide useful, quantitative information which serve
as an important vehicle to study local behavior of microstructurally small cracks. This

Chapter reviews the essential details and implementation of a continuum crystal plasticity

model.

II.1 Planar Double Slip

The continuum theory of single crystal plasticity can be used to model the behavior
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of FCC metallic crystals, which are known to plastically deform by slip on the close-packed
{111} planes, and-in the close-packed <1 10> directions. FCC crystals possess 12 separate
slip systems (three possible <110> slip directions on four {111} planes). Figure I.1a gives
a slip system representation of the planar double slip idealiéation. Two of the four uniqﬁe
{111} planes are shown together with the four <110> slip directions that would be activated
in (110) planar plastic flow defined by a condition of zero plastic strain rate normal to the
plane. The top dashed arrow corresponds to the slip directiéﬁ for the “effective slip system”
that represents the (111)[101] and (11 D[01 lj » Whereas the bottom dashed arrow represents
the (111)[011] and (117)[101] slip systems (92). These four slip systems can therefore be
characterized by two effective slip systems separated by 70.2 degrees in the crystal lattice
(93-94). Figure IL1b illustrates the effective slip systems for the 2-D planar double slip
idealization.

The slip geometry for a 2-D plastic deformation can therefore be represented by a
planar-double slip idealization in which all grains share a common plane of deformation.
These effective slip systems in 2-D (plane-strain assumption) maintain a fixed orientation
with respect to each other and rotate with respect to the continuum (94). Fi gure I.1b shows
the geometry for the two effective slip systems and how they may be oriented. The bisector

angle, 8, orients the slip system pair relative to the fixed specimen axis. The angle ¢ defines
the crystallographic close-packed planes in relation to the bisector angle, and ¢ equals 35.1°

for an FCC crystal.
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Of course, such a planar double slip model is always an idealization because it only
accounts for deformation by crystaliographic dislocation slip alone. In reality, inelastic
deformation is not only a result of crystallographic slip, it may also occur via twinning,
diffusion, and grain boundary sliding (95). Planar double slip o_niy accounts for deformation
by crystallographic dislocation slide alone. The basic premise of the analysis is that with the
decomposition of the deformation gradient, F = F* - F®, material flows through the crystal
lattice via dislocation motion, whereas the lattice itself, with the material embedded on it,
undergoes elastic deformation and rotations. The deformation gradient remaining after
elastic unloading and upon returning the lattice to its orientation in the reference state is F©!
F=F*. Of course, in real processes, removal of the loads alone will not return the lattice to
its original state and thus what remains as a residual F after slip is more than just F?; the
lattice may be permanently reoriented, for example, as well as placed in a state of residual
deformation. A 2-D model should be regarded as giving results of more qualitative value.

Another limitation of FP is that it represents the collective effect of dislocation glide
and is a continuously distributed field quantity. Therefore, it is not well-suited to describe
localized plasticity and does not produce a ‘banded’ effect along slip systems representing
preferential softening along a slip direction. For cracked body analyses from which crack
tip sliding and opening displacements are obtained, the initially equal probability of slip of
the two system for the planar double slip idealization likely yields an underestimation of the
sliding displacement quantities. The issue of equal probability of slip is briefly investigated
in Chapter VI where one slip system has reducedhardening in order to simulate the effect
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of a Jess resistant slip direction which might fcpresent slip band behavior.

Glide of dislocations occurs along crystallographic slip planes and directions (96).
The first quantitative description of plastic flow by crystallographic slip was made early this
century by Taylor (97). With the introduction of computers, the use of incremental crystal
plasticity theory has become tﬁore tractable. The rate of dislocation motion, or the rate of

viscoplastic shearing, has often been represented by the phenomenological equation
. N I Al B
=7, (“—u} (IL1)

where ¥, is the reference viscoplastic shear rate, T is the resolved shear stress on slip system
o, g* is the hardening or resistance to flow on the o slip system, and M, represents the
material strain rate sensitivity exponent (95, 98). Since the finest scale of microstructure
processes considered in the present model is at the scale of the crystallographic slip system
(CSS), it is assumed that all phenomena which are related to length scales below the grain
level (e.g., atoms, molecules, discrete lattice defects) are modeled at the CSS level using this
phenomenological approach. There are, however, two options when implementing crystal
plasticity into continuum slip models to solve deformation problems - rate dei;endent and

rate independent flow rules.
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IL.2 Rate Dependent and Rate Independent Crystal Plasticity

Initial crystal plasticity models, intended for plastic flow at low homologous
temperatures, idéalized the crystallographic slip as rate independent (9). Rate independent
models, however, suffer an inherent deficiency in that the combination of active slip systems
necessary to accommodate an arbitrary deformation is not unique. Active slip systems refer

to those slip systems for which the resolved shear stress, 12, equals g%, the resistance. An

additional hypothesis is necessary in order to i-mambiguously specify which slip systems are
active. The minimum work principle proposed by Taylor (97) resolves this deficiency, but
replaces it with a new one - prohibitively expensive computational times. “Anand and Kothari
(99) and Schrider and Miehe (‘100) have addressed this issue by introducing iterative
numerical procedures that substantially reduce the computational requirements.

Rate dependent crystallographic slip was introduced to resolve the numerical
challenges of rate independent crystal plasticity theory and to represent fnore realistic flow
Kinetics at higher homologous temperatures (cf. Pierce et al. (98) and Asaro and Needleman
(101)). In this approach, there typically is no yield condition and no loading/unloading
criterion is applied. Instead, all slip systems are assumed active with their shearing rates
being related to the resolved shear stress by the flow rule given in Eguation (IL.1), for
example. Rate dependent crystal plasticity (RDCP) also introduces computational
complexities in the form of very stiff differential equations that must be integrated
numerically. RDCP formulations must, in turn, employ time steps in numerical integration
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that remain very small to obtain accurate results (cf. Cuitifio and Ortiz (102)), especially

when there is low rate sensitivity and hardening rate.

IL.3 Structure of the Crystal Plasticity Algorithm

In modeling a polycrystalline aggregate with crystal plasticity, there are a few options
regarding the structure of the crystal plasticity algorithm. The first is within a finite element
context for cases where each integration point in an element represents the behavior of a
number of grains. For this case, it is usually necessary to make an assumption regarding
grain-to-grain constraints and interactions. The second option is for the aggregate to be
modeled with discrete grains, where each element or several elements represents a grain or
part of a grain. Figure 1.2 gives examples of these modeling options.

In this work, the second method is used. For uncracked cases, each grain is
represented by one element. The advantage of using this option is that both compatibility
and equilibrium are well-approximated. Each element deforms accordin g to continuity with
neighboring grains. A distribution of plastic strain is obtained within each grain by using
higher order elements, For the cracked cases, the second method is also used, but instead of
each grain being represented by one element, the grain is subdivided into numerous (2-400)
elements. The variation in number of elements in each grain depends on the grain’s

proximity to the small crack tip - those grains which are closer to the crack tip have a finer

50



mesh, whereas those grains further from the crack tip are less refined. Each grain is given
an orientation, 0, which orients the slip system pair relative to the fixed specimen axis.
However, a constraint is imposed on the nearest neighbor orientation in ‘that the
misorientation cannot exceed 15° (103).

The crystal plasticity algorithm begins with the kinematics of deformation by
assuming a multiplicative decomposition (92, 95, 104) of the deformation gradient, F=F*
« F¥. Here, F is the total deformation gradient; F* is the elastic deformation gradient which
represents the the elastic distortion of the iattice and the rigid rotation; F?, the plastic
deformation gradient, defines the cumulative effect of dislocation glide that leaves the lattice
undisturbed. As discussed earlier, component F? represents the collective effect of
dislocation glide along crystallographic slip planes. It is assumed that slip is a contimiously
distributed field quantity in this approach, which is a limitation in describing localized cyclic
plastic strain, for example in PSBs. Three configurations of the deformation are defined:
undeformed (reference), intermediate, and deformed. Figure I3 shows the kinematics of
elastic-plastic deformation of a crystalline solid deforming purely by crystallographic slipand

elastic deformation of the lattice. The resolved shear stress (RSS) on the o slip system is
givenby 7 =a0': (s" ® m"), where G is the Cauchy stress, s* is the vector along the direction

of slip, and m® is the vector normal to the slip direction, all expressed in the current
configuration. The RSS or Schmid stress is the component of shear stress resolved in the slip

plane and in the slip direction.
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The slip system level constitutive framework essentially follows that of Cailletaud
et al. (105) and Jordan and Walker (106). Pure nonlinear kinematic hardening is employed
to describe cyclically stable response. The rate of viscoplastic shear strain, 7°, for the o slip

system is given by

sgn (t® - x% | (I.2)

where G represents isotropic strengthening and ¥, is the reference shearing rate. Isotropic
hardening is held constant to represent cyclically stable behavior and pure nonlinear

kinematic hardening is employed according to the Armstrong-Frederick form

= CF - dx® g (IL3)

The backstress, x°, relates to dislocation interactions with, for example, dislocation walls
produced by cyclicr loading which serve to resist deformation. Equation (I1.3) represents the
nonlinear kinematic evolution of x*, where C and d are direct hardening and dynamic
recovery coefficients, respectively.

Given some known deformation history, one must determine the stress, crystal
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orientation, and updated state variables for the entire deformation history, as in Ref (102).
The numerical integration must solve a set of equations which enables FP to be determined
from the history of deformation. An iterative technique, the Newton-Raphson (N-R) method
(107), is used to solve for the system of coupled algebraic equations which arise in the course

of this integration. A Fortran subroutine, UMAT (User MATerial), integrates the

constitutive equations within the ABAQUS (108) finite element code. At each loading
increment and gauss point within the finite element code, UMAT is called. It must provide
updated stress and state variables at the end of the time step, given the updated deformation
gradient. The N-R iteration technique was used to iteratively obtain the plastic shear strain
rate, ¥*, for each slip system. The state va_riable update is reducerd to a system of nonlinear
equations for the increment of the plastic shear strain rate, Ay* , for each slip system. A
backward Euler, fully implicit integration scheme was employed for the numerical
integration. An incremental line search algorithm (110) and a-time step subincrementation
scheme (111) were both used to assist the rate of convergence (94) on Ay . Convergence
~ conditions are satisfied within 2-3 iterations, Global equilibrivm and compatibility are
enforced at the end of each time step based on the variational principle of virtual work in
ABAQUS (108). The incremental line search algorithm on the N-R step does the followin g:
the increment of the plastic shear strain rate, AY® , is halved until an optimal value is reached
such that the sum of the squares of the error in the estimate is minimized. This is necessary
if the initial estimate of " is not a ‘good’ estimate - such that a minimum error results, The

N-R iteration is again pursued towards the local minima. Figure I1.4 illustrates the line

53



search algorithm. If the N-R procedure does not converge, the time step, At, is repetitively
halved until convergence. The deformation gradient is also linearly interpolated during time
step subincrementation (shown in Figure II.5).

The algorithm assumes small elastic strains and is comprised of four main
components: (1) determine initial guess of ¥, (2) perform N-R to solve for Aj®, (3) perform
line search and time step subincrementation (if necessary) for convergence criteria, {4) obtain
converged %, and (5) calculate the Jacobian for ABAQUS. An outline is given below to
illustrate the al gor‘.i'thm:

® Variables passed into UMAT from ABAQUS at the beginning of the current time

step:  F o F . o wheren is the current time step

~ n+l ~n

@Define the elastic stiffness, Cint - Cyg = M8 By + H(B,8;, + 8,8,)

(1) Determine initial guess of Y"by the Jollowing steps:

F? s assumed to be the Identity tensor for the very first time step, based on the

-~ n

fact that there is initially no plastic deformation at the beginning of the first time step.

@Calculate the Elastic Green strain, £ ) , from

~ R
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@ Calculate 2nd Piola-Kirchoff Stress, §

, With respect to the intermediate
~n

configuration

1L
1l

uey

tioh

® Calculate resolved shear stress on 0" slip system

G = = , where ¢* = F¢ § Fe
~ "y 4 ‘ ~ n ~n ~ n
det | F
~n

Here, _{a and m" are the vectors along the slip direction and normal to the slip

plane, respectively, in the current configuration.

® Determine an estimate of the shearing rate,

sgn (t.° - xo“)

where xa“ is the initial value of the backstress
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(2) Perform N-R to solve for ¥*. Given v, find E‘" , O T ,x °

¥
~ n+] ~ n+l =~ n+l

and f,.," by solving simultaneous equations for Ay®

®Find F’ by

where . © is the plastic part of the velocity gradient in the intermediate

~ n+l

configuration and is calculated by

u®@a)

]l
1t

P Z'Ya(
1 a

n+

Here, §

—~

and 7" are the vectors along the slip direction and normal to the slip

plane, respectively, in the intermediate configuration.

@ Continue with calculations for

F - F -FF

~ n+l ~ n+] =~ n+l
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® Begin Newton-Raphson iteration to determine Aj* by forming

1
Iu b
fu(?u) = Tn+1u B xn+1u - G l_ M!
1o
@ Do a linear expansion of %%
art .
f;"q.]q = j.}l] + Z (AYB)

B oy

where i refers to the iteration
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® Setting f,,* =0 gives

/T
oY Ay = f

>
B

or in matrix form

¥ ¥
o of| | [f‘}
7 o el " r
o o

® Solve simultaneous equation for Ay

® Determine SSE,; = reference sum squares error

SSE, ., = Z [Fo¥

(3) Begin Line Search

W 3
® Begin with Ay® = A7

2 -
® Form 7,," = ¢% + AY® and recalculate
p -l ] a . '
F PR S ST S f " »and SSE . ..., by performing N-R to

solve for A",
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(4) Check the convergence of the line search by comparing the SSEs.
4A. I SSE;, coreh < SSE, ;. AY® has converged and go to Step 5
4B. X SSEj; earch > SSE, , this step has not converged. The time increment
is divided into two subincrements and start again at Step 2 with {’, P

(5) Calculate global Jacobian matrix, J (tangent stiffness matrix)

-1
BAG ap’
J=—==11T + C : —=— At
aAg - ~ _ag

ey

where

9”: E"y“sym( §u®izzu)
X

IL4 Finite Element Model Based on Crystal Plasticity

A planar double slip idealization (92, 112) of cyclic crystal plasticity was implemented
in ABAQUS (108) through UMAT. The 3-D implementation deséribed above, developed
and coded by R. M. McGinty (109), was modified for the 2-D case as well as for cyclic

behavior. The crystai plasticity model provides a phenomenological description of
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crystallographic slip and dislocation interactions at the grain level and offers insight into the
nature of heterogeneous cyclic plasticity and driving forces for small crack growth due to
intergranular misorientation. This micromechanical model is useful to (1) study the
distribution of cyclic microslip amongst a set of grains in a polycrystal, (2) investigate the
character of crack tip fields for small cracks in the presence of crystallographic anisotropy and
heterogeneity, and (3) better understand the interaction of a crack with microstructural
bamcrs The 2-D nature of p}anar doubIe slip renders these calculations of more quahtatwe
value in assessing the influence of microstructure. Only a single phase metal is idealized
where grain boundary misorientation is the only source of heterogeneity. Moreover, the effect
of shear localization within slip bands is not entirely treated with this model without
mo‘dificﬁtion by introduction of bands of lesser resistance to flow. This formulation does,
however, offer a more direct treatment of crystallographic dislocation glide and associated
plastic anisotropy in order to address the small fatigue crack problem. Isotropic elasticity is
assumed within each grain in order to isolate the role of plastic anisdtropy due to
crystallographic slip.

Cuitifio and Ortiz (102) performed a numerical simulation of cracks in single crystals
to assess the near-tip fields for monotonic loading by incorporating crystal plasticity within
a finite element context. They computed the isocontours of slip activity in the small strain
region ahead of the crack tip as well as cIomiﬁam siip modes. The significance of the dominant
slip modes is that they signify directions of rapid variations of displacements and stresses.

These types of calculations are potentially very important for the understanding of small crack
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behavior, even under complex loading conditions. The isocontours of slip are directly related
to the plastic zones that develop around crack tips. Single cryétal plasticity was extended to
- the polycrystalline rea]mr by several investigators (113-115), enabling them to examine the
effects of misorientation among neighboring grains. Analyses of this type provide evidence
that the fundamental concepts of crystal plasticity can be extended in a straightforward

manner {o polycrystalline and crack problems.

I1.5_Crystal Plasticity and Cyclic Deformation

The application of crystal plasticity to cyclic deformation problems has been
undertaken by Cailletaud et al. (105), Jordan er al. (101), and Jordan and Walker (116). These
studies have provided guidance for modeling with cyclic crystal plasticity. Cailletaud er al.
(105) performed both microstructural observations and micromechanijcal modeling of cyclic
multiaxial behavior of an austenitic stainless steel using a viscoplastic, rate dependent
constitutive framework. Satisfactory correlations with experimental data were obtained for
both uniaxial and nonproportional loading. The Cailletand model predicted extra hardening
and the extent to which multiplicity of slip occurred under nonproportional loading. By
including the influence of multiple slip using interaction laws for cross hardening of slip
systems, the response of the material was more accurately modeled.

Jordan et al. (106) and Jordan and Walker (116) also applied crystal plasticity to cyclic

61



planar double slip crystal plasticity concepts to study the crysta.llogréphic behavior of
microstructurally small cracks in single crystals. They varied the orientation of the two slip
planes with respect to the ‘crack growth direction in order to estimate the variation of growth
rate of MSCs. Upper and lower bounds for the growth rate of MSCs as a function of the
macroscopic load and the crack opening were obtained based on a linear crack growth rate law

(with COD), with implications for variability of the crack growth rate.

IL7 Application of Computational Crystal Plasticity: 2-D Analyses

Two types of analyses are performed in this work. In the first type, the distribution
of three different fatigue initiation criteria on uncracked, polycrysfalline aggregates are
evaluated. This work considers different realizations of grains (aggregates of grains with
random orientations of slip systems). By examining different microstructure realizations at
different strain amplitudes, statistical information is obtained which provides insight into the
dependence of fatigne créck formation and early growth on the heterogeneity inherent in real
metal polycrystals.

The second type of analysis considers a polycrystalline aggregate with an embedded
surface crack. This type of analysis is unique in that cyclic deformation of polycrystalline
aggregates using crystal plasticity includes the effect of surrounding (not just adjacent) grains

on the distribution of cyclic microplasticity. This work is distinctive from the work of Li
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(121) on bi-crystals. Firstly, not only is the influence of the orientation of slip in the cracked
grain and adjacent grain studied, but also the effect of surrounding gfains on the distribution
of cyclic microplasticity and crack tip driving forces. Secondly, the effects of both primary
and secondary slip in the grain adjacent to the surface crack are studied. These adjacent grain
orientations are selected to either promote primary or conjugate slip a-t. the crack tip and as the
crack grows across grain boundaries. |

Both conditions of loading and crack orientations are shown in Figure IL.6. For the
remote tension-compression case (Figure ]I.Ga), a surface grain contains a crack which is
oriented at 45° with respect to the tensile axis. The slip system in the surface grain is oriented
such that one of the slip system directions is aligned with the crack’s orientation. There are
two cases for the orientation of slip in the adjacent grain (denoted by the shaded area). One
case is where the adjacent grain is modeled with an orientation of the slip system which
promotes single (or primary) slip; the other case is for the adjacent grain having an orientation
which promotes conjugate (or secondary) slip. In Figure IL6b, the remote shear loading
condition has a surface grain that contains a crack which is oriented at 90° with respect to the
tensile axis. In a similar manner as the tension-compression case, the remote shear case also
has adjacent grains which are modeled with orientations which promote single and conjugate
slip. Note that the orientations which promote single and conjngate slip in the adjacent grains
differ for each loading conditioﬁ.

Upper and lower bounds of the driving forces are determined for radically different

orientations of the next grain ahead of the crack tip. These calculations are distinctive in that
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they provide a direct method for determining what combination and to what extent orientation
of adjacent and siurounding grains, crack length, and loading level contribute to driving forces
for small surface fatigue cracks. Stationary crack analyses over a range of crack lengths are
considered in this work rather than propagating the crack along predetermined crack paths
using a nodal release criterion for crack growth., The former method was selected in order to
focus more on first order microstructural inﬂuence_s (which are not yet well-characterized)

rather than on complex crack paths and history effects which are more relevant to future work.
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Figure II.1 (2)Two of the four unique {111} planes are shown together with the four <110>
slip directions that would be activated in (110) planar plastic flow. The top dashed arrow
corresponds to the slip direction for the “effective slip system™ that represents the
(11 1 01] and (11 1)[011], whereas the bottom dashed arrow represents the (111)[011] and

(11D[101] slip systems, and (b) effective slip systems for 2-D planar double Sllp
idealization.
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Figure II.2 Modeling options for modeling a polycrystal using crystal plasticity within a
finite element context (a) one finite element with each gauss point representing several grains

and (b) finite element mesh with each element representing a grain or multiple elements
within each grain.

Figure 1.3 Kinematics of elastic-plastic deformation showing undeformed (reference),
intermediate, and deformed configurations.
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Figure 1.4 Line search procedure wherein the Newton-Raphson step is
successively halved until an optimum value is reached.

—

Figure IL.5 Time step submcrernentat;on procedure - if the Newton-Raphson
procedure does not converge, the time step is repetitively halved until

convergence does occur.
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Figure I1.6 Illustration of primary and secondary slip designations for adjacent grain
orientation for a surface grain containing crack under remote (a) tension -compression in the
X, (0y,) direction and (b) shear (1,,) loading.
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CHAPTER Il

POLYCRYSTAL ORIENTATION DISTRIBUTION EFFECTS ON MICROSLIP

In this Chapter, two-dimensional computational cyclic crystal plasticity results are
presented for the distribution of cyclic microplastic slip and critical plane-type fatigue
parameters among a polycrystalline ensemble. A material is examined with the nominal
uniaxial stress-strain response of 4340 steel. Cases of applied cyclic tension-compression,
cyclic shear, cyclic tension-compression with a tensile mean stress, and combined cyclic
tension-compression and cyclic shear are analyzed at strain amplitudes ranging from well
below to macroscopic yielding. Emphasis is placed on stress state and amplitude dependence
of the distribution of these parameters among grains. The role of anisotropic plasticity is
isolated by assuming that the elastic behavior of grains obeys homogeneous, isotropic linear
elasticity.

Studies of this type are significant because small crack formation and growth
behavior, whether examined by crack tip displacement (CTD), plastic zone size, or
misorientation of adjacent grains, cannot be considered in detail using macroscopic
approaches that ignore microstructure. In this Chapter, three candidate fatigue initiation
parameters are examined in order to quantify and interpret the distribution of each parameter

over an aggregate polycrystal.
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IIl.1 Fatigue Crack Initiation Parameters

Fatigue crack initiation parameters are used as a means for relating macroscopic
parameters, such as the applied stresses, to parameters such as the plastic shear strain
amplitude on the plane of maximum shear. This permits one to assess the development of
the distribution of damage within a material. These parameters are related to the initiation
- of damage (formation and very early crack growth). This work considers three such
parameters and examines how these parametérs are distributed throughout the aggregate as
a function of stress state and stress amplitude. The HCF regime is the primary focus, and
hence applied loading levels are at or below macroscopic yield. This Chapter focuses on
fatigue crack initiation criteria and qualitatively compares the criteria with experimental

observations.
II1.1.1 Normalized Cyeclic Microplasticity Parameter

As discussed in Chapter [, the extent and distribution of plasticity among grains is an
important factor in fatigue crack formation and early Stage I growth. A direct measure of the
cyclic microplasticity is the maximum cyclic plastic shear strain on a slip system normalized
by the global cyclié plastic strain averaged over all grains, defined here as the normalized

cyclic microplasticity parameter (N-CM), i.e.
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Ayt AP
= /(%)

where Ay*_,, is the maximum range of shear strain on either of the two slip systems and 4P

- = Agy,” for the tension-compression case, and AP = AyP = 2Ag,,? for cyclic shear.
I11.1.2 Mohr-Coulomb Parameter

Another fatigue crack initiation parameter that has been used for the multiaxial HCF
case involves & linear combination of the range of maximum resolved shear stress, At%, and

the peak hydrostatic stress, P,,. Dang-Van (9) and Papadopoulos (122) have employed the

Mohr-Coulomb (MC) parameter within individual grains, i.e.

AT
;ax +kP,,

¢, (I11.2)

where C, is a constant for a given fatigue life. They asserted that HCF crack initiation takes
place in grains which have locai plastic strain within characteristic intracrystalline bounds
while the entire aggregate is still macroscopically elastic (shakedown state). Although the
-MC parameter has often been employed to assess the behavior of sqils or granular materials
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(123), its extension to fatigue crack initiation in metals is related to the assumed influence
of normal stress on decohesion along persistent slip bands, or opening of small Stage 1

fatigue cracks under predominately shear loading,

1I1.1.3 Fatemi-Socie Parameter

A macroscopic parameter proposed by Fatemi and Socie (F-S) (40), given by

Ay? o
et [ B A = C, (IL.3)

produced correlations very similar in the L.CF regime to a corresponding fully plastic form
of Equation (II.3) (2-3). Here, C, is a constant for a given number of cycles necessary to
produce a surface crack length on the order of 0.5 to 1 mm in len gth. The peak tensile stress,
c,, normal to the plane of maximum shear strain amplitude is 'norma]ized by the yield
strength, 0, to essentially reflect the modifying influence of the normal stress on the crack
tip displacement (CTD). The constant * value of 0.5 is selected by correlating fully
reversed uniaxial and torsional data sets and as being representative of correlations (39). The

Fatemi-Socie parameter has been shown to correlate a wide range of multiaxial loading
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conditions, including cases involving mean stress for 1045 steel and IN 718 (both extended

Stage I-dominant materials) over a range of fatigue lives (10° to 10° cycles)(41-42),

I11.2 Distribution of Cyclic Microplasticity

A phenomonological, micromechanical model based on crystal plasticity is employed
to conduct two-dimensional (2-D) finite element analyses to assess the distribution of
microslip among grains in a polycrystal. In determining an appropriate aggregate size, the
works of Abdul-Latif and Saanouni (124-125) and Hoshide and Socie (126) were examined.
Although these studies were not set within a finite element context, they not only serve to
guide a selection of the number of grains to use in the analysis, but they also show how
érystal plasticity concepts are used to model cyclic behavior and the development of fatigue
damage. Abdul-Latif and Sa.anouni (124-125) quantitatively examined the fatigue life and
micro-damage heterogeneity for FCC polycrystalline metals by employing a coupled
phenomenological-micromechanical model of the early plastic fatigue damage initiation.
Their model is based on slip theory (crystal plasticity) and employs a self-consistent
homogenization technique. One of their studies (125) examined the influence of the number
of grains (40, 48, 96, 200, 300, 504) in the aggregaté on the direction and orientation of
damage. They found that in modeling Waspaloy, the number of grains had a considerable

effect on the micro-damage heterogeneity, mainly because damage phenomena are governed
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by the void nucleation and growth in fatigue. However, between 200 and 504 grains, the
predicted damage and resulting fatigue life values converged and one is assured of consistent
results. Since their work was done outside the context of finite elements, a transgranular
micro-damage variable was employed. This points to one of the advantages of using finite
elemenfs coupled with micromechanical concepts - no ad hoc assumptions are made
regarding grain—to-grain interactions. Finite clements assure very good approximations of
both compatibility and equilibrium.

The model of Hoshide and Socie (126) also considered the driving force for fatigue
crack nucleation and microstructurally small crack growth in a distribution of randomly
oriented grains. A double primary-conjugate skip system was used with a total of 625 square
grains in their analysis. They considered two regimes of shear cracking. The first regime
was crack growth by nucleation within individual grains by coalescence. The dislocation
model of Tanaka and Mura (67) was used to compute the nucleation of cracks with
individual grains. In the second regime, cracks became large enough to generate their own
stress fields and grow as a single dominant crack. This regime was analyzed using fracture
" mechanics concepts with an equivalent strain intensity factor. The model was used to
simulate the fatigue behavior or SAE 1045 steel. Both crack distribution and fatigue life
estimates were obtained under nominally LCF conditions. They were able to reproduce
observed crack patterns reasonably well in addition to prediéting fatigue life up to 10°cycles
for 1045 steel. In their model, the fatigue crack nucleation and growth were assumed to be

governed by cyclic microplasticity, with mixed-mode contributions from the cyclic shear
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strain and the cyclic normal strain to the microcracks within individual grains. Hoshide and
Socie (126) assumed that each grain had the same stress as the surrounding material in the
bulk. Their analysis is likely overly-simplistic because stresses vary considerably throughout
the microstructure depending on grain orientation.

In this research, 2-D (plane strain) finite element analyses afe conducted to assess
distribution of microslip and propensity for formation of small fatigue cracks. The grains are
modeled as 8-noded quadrilateral, biquadratic elements and planar double slip models the
cyclic plasticity. A total of 576 grains are used in the analyses with each grain represented
by one element. Grain orientations are randomly assigned to describe an initially isdtr()pic
effective medium. Uniform vertical displacements are prescribed at the top and bottom
boundaries in the uniaxial loading y-direction, with zero traction in the x-direction; the lateral
sides were traction free. In shear, the x-direction displacements on the top and bottom
surfaces are specified, with no y-direction traction on the upper surface, and traction free
lateral boundaries. For each loading condition (stress state and stress amplitude), a set of
three realizations are analyzed, each with a diffcrent,- but randomly assigned, orientation
distribution of grains, Two rings of elements are considered as surface grains, as shown in
Figure III.1. Only 16% of the total volume of the mesh are surface grains and were not
included in the distribution calculations in order to minimize edge effects. Error bars are
shown on plot;, indicating differences in distribution of parameters among the various
realizations.

The plane strain tension-compression hysteresis loops in the 2-D simulation are
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assigned a behavior typical of uniaxial behavior of a 4340 steel for illustrative purposes, as
shown in Figure III.2 for a 100 grain polycrystal. Constants for this fit are E = 175 GPa,
v =03M =10, 7, =10"s", G = 60 MPa, C= 100 MPa and d = 30 for a strain rate
of 1.5x10? s’ Variables M,, v,,G, C,andd were defiﬁed in Equations (IL.2 - IL.3). A
constant polycrystal effective strain rate is imposed in all calculations to avoid significant
strain rate differences among the various cases evaluated, so the value of M, was selected
more to promote computaﬁonal stability than to mimic a realistic rate sensitivity. The elastic
behavior in all calculations reported here is agsumed to be isotropic and linear elastic.

The strain amplitude levels for tension and shear range from well below to the cyclic
yield strain of the polycrystal ensemble, corresponding to approximately 0.2% plastic strain
(defined as £,= 0.0065 and v, = 0.0042, respectiveiy) of the polycrystal and are applied at an
effective strain rate of 1.5x10? s "\, Peak strain levels considered are fractions (0.3, 0.5, 0.7,
0.9, and 1.0) of the cyclic total yield strain in each case in order to investigate the cyclic
microstrain distributions under predominately HCF conditions. Two completely reversed
strain cycles are aﬁplicd to ensure a numerically repeated path in the simulation during the
second cycle. The distribution of parameters among grains arising from microstructural

- inhomogeneity are assessed by discussion the overall shape of these as a function of stress

amplitude and stress state.
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IIL2.1 Completely Reversed Cyclic Tension-Compression

" When using the crystal plasticity moﬂel as the constitutive model for the material
stress-strain response, the contour plot of equivalent plastic strain for cyclic strain amplitude
of 0.7 &, in Figure I.3a correctly shows bands along = 45°. It is along these directions
(planes of maximum shear) that small cracks develop. This appears to be consistent with

experimental results reported by Socie (5) for small cracks which nucleate in surface grains

under cyclic tension-compression.
II1.2.1.1 Normalized Cyclic Microplasticity (N-CM)

| For each strain level, the distribution among grains for the N-CM parameter is shown
in Figure Il1.4a shows two peaks. The first peak is due to a percentage of grains (20-30%)
which have a maximum shear strain on the slip system which is a small proportion of the
applied plastic strain averaged over all grains. ‘This initial peak decreases with increasing
amplitude, but still remains a dominant feature for all distributions. The second peak is more
apparent for increasing strain amplitudes. This occurs as an increasing number of grains
have a closer proportion of the maximum shear strain on a slip system to the average applie-d '

plastic strain, For a strain amplitude of 0.3 &, this second peak occurs near a N-CM value

of 2.4, but with increasing strain, this peak is centered close to 1.0 and has a Gaussian type
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distribution. Bars denote the range of the distribution obtained from three realizations of the
orientation ciistﬂbution of grains which show that there is little variation among simulations,
except for the highest applied strain amplitude of 0.9 g,. Clearly, only a limited number of
grains experience cyclic plastic strains that considerably exceed the average macroscopic
plastic strain as evidenced by the narrow right-end tail of the distribution; these grr;lins are
expected to control fatigue crack formation and carly Stage I growth. This parameter also
shows a strong amplitude dependency. |

As a part of a study b);'. Roven and NIC'-S (127), quantitative observations were made
of the nature of P3Bs formed in the cyclic stress saturation condition. The number of PSBs
in grains containing at least one PSB were analyzed. From a selection of 26 grains, an
average value of 5 PSBs per grain was counted. Tt was further noted thatrthe number of PSBs
per grain, in_ grains containing at least one PSB, is well described by the Gaussian
distribution, However, for the N-CM parameter coﬁsidered here, the distribution tended
more so towards a pseﬁdo-log-normai type distribution for increased amplitudes. For LCF
conditions,- there are higher concentrations of the plasticity within the aggregate and
increased compatibility of plastic deformation from grain-to-grain. The important point here
is that a Gaussian type distribution may be more suited to describe LCF conditions, whereas
the HCF conditions in this analysis show that there is not a homogeneous distribution of the

normalized eyclic microplasticity.
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[IL2.1.2 Normalized Mohr-Coulomb Parameter (MC)

The MC parameter is normalized by the average appliéd stress amplitude. A value
of the parameter & = 0.2 is selected as representative of correlations reported by Dang-Van
(9). As seen in Fig. IIL4b, the distribution tends towards Gaussian characteristics as general
macroscopic yielding is approached. Hydrostatic stresses do not distinguish between stresses
normal and parallel to the potential crack, so no amplitude dependency is reflected for this
parameter and for this loading case. The pealé values and shape of the distributions are quite

similar with increasing strain.
I11.2.1.3 Nermalized Fatemi-Socie (F-S) Parameter

For all strain levels (0.3 ¢, through €,) shown in Figure IIL4c, the distributions show
an initial peak for grains which have a small value of the normalized F-S parameter. The
distributions are skewed to the left and the shape of the distribution reflects a dependence of
strain amplitude, although to a lesser degree as compared to the N-CM parameter. The
variability among multiple realizations of orientation distribution is nil. What is also
observed is the narrow right-end tail of the distribution which has a small peak which shifts
to the left with increasing strain amplitude. In comparison to the N-CM distribution, the
distribution for the F-S case consistently has a higher percentage of grains with a higher
value of the fatigue initiation parameter; this implies that a higher percentage of grains have
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an increased propensity for initiating.
IIL.2.2 Cyclic Shear

As in the cyclic tension case, the contour plot of equivalent plastic strain for a shear
strain amplitude of 0.7 v, is generated. Focusing on the interior grains and away from the
boundaries, these bands appear to concentrate along 0° and 90° for cyclic shear, as shown in
Figure IIL.3b. This initial result agrees with éxperimental results reported by Socie (5) for

the orientation of microcracks which nucleate in surface grains under cyclic shear.
111.2.2.1 Normalized Cyclic Microplasticity (N-CM)

The results for normalized cyclic microplasticity (presented in Figure IIL.5a) are .
similar for all strain amplitudes, but exhibit a drop in the peak of the distribution with an
increase of applied strain level. For all strain amplitudes, the distributions resemble an
exponential decaying function which points to a highly inhomogeneous distribution of the
cyclic microplasticity. About 50-60% of the grains experience a local maximum shear strain
on a slip system that is less than half of the macroscopic plastic shear strain. However, a
small percentage of the grains have two to three times the macroscopic plastic shear strain.
Even though a significant arnouht of grains have a very small proportion of the macroscopic
plastic shear strain, it is the few grains which have a larger value of the N-CM control the
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initiation of small cracks.

Note also that due to the extreme skewness of the distribution, smaller ranges of this
parameter (as low as 0.01) were also examined to determine if a different shape of the
distribution would become apparent, however, the extreme skewness of the distribution
persisted. There is therefore, an assurance that this exponential decaying type of distribution

does in fact properly assess this parameter for cyclic shear.

I11.2.2.2 Normalized Mohr-Coulomb (MC) Parameter

The distribution for cyclic shear contrasts significantly from the distribution of the
MC parameter for cyclic tension-compression. The cyclic tension-compression case showed
minimal differences in the distribution as a function of strain amplitude, as given in Fig.
IL.4b. The MC parameter for cyclic shear in Figure IL5b has lower peak values as
compared to the cyclic tension-compression case. This parameter yields a more
homogeheous distribution of the damage within the aggregate and shows a strong
dependence on amplitude. With increasing applied strain, the peak increases slightly and

becomes more distinct, with the parameter centering near a value of 1.0.
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IIL.2.2.3 Normalized Fatemi-Socie (F-S) Parameter

The distribution in Fig. IL5c shows some similarities to the cyclic tension-
compression case with both having an initial peak which is skewed to the left. This high
initial peak persists for all strain amplitudes. The distribution also resembles an exponential

decaying function which points to an inhomogeneous distribution of the damage.

IIL.2.3 Cyclic Tension-Compression with Tensile Mean Stress

As mentioned in the Introduction, many components are subjected to HCF loading
conditions with a superimposed tensile mean stress, The goal of this set of calculations is
to simulate this behavior and to identify the differences which arise as compared to the
completely reversed tension-compression case. In order to achieve a stress ratio of R = 0,
the mean stress level is chosen as 400 MPa. A plot of the hysteresis loops for this case, given
in Fig. 1.6, shows material that has undergone some degree of mean stress relaxation.

The distribution plots of the polycrystal aggregate are given in Figure III.7. These
distributions are very similar to the case of completely reversed tension-compression. The
distributions for the N-CM and the F-S parameters are very similar to the case with no mean
stress. For the MC parameter, the distributions for the case with and without the mean stress
are quite similar as well, but the case with mean stress has a smaller range (0.0 - 0.6) as

compared to the range (0.0 - 1.0) for the case without a mean stress. This is perhaps due to
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the ovgrall increased homogeﬁeity among grains as signified by the lower peaks. There are -
lower peaks of the distributions for all fatigue initiation parameters (as compared to the
completely reversed case).

Itis also apparent that these parameters, when normalized, are not especially sensitive
to mean stress effects because the distributions were very similar to the completely reversed
case. These results appear to correlate with the work of Nisitani (47) who compared the
changes of the surface states of 70/30 brass under different R ratios (R=-1,R=0,and R =
=), He found that fatigue damage in the crack formation/initiation regime was almost
independent of the mean stress value and the damage was primarily controlled by the stress
amplitude. This signifies that the crack propagation process, as opposed to crack formation

and initiation, was greatly affected by the values of mean stress.
II1.2.4 Combined Cyclic Tension-Compression and Shear

For this loading case, a contour plot of equivalent plastic strain in Figure Il 3c shows
several bands along many oblique directions (from the horizontal axis) for combined loading
with strain amplitudes of 0.7 £, and 0.7 Y,- Orientations along the outer edge of this figure
show one example of an orientation at approximately 20°. Although the darkest bands tend
to align with the planes of maximum shear, there are other less intense contours which
surface as a result of the combined effect of tension and shear loading. These less intense
bands do not appear to align with neither the + 45° nor with the 0° (or 90°) directions, It
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appears that there are regions of grains which may have developed a ‘bandedness’ along the
+ 45°direction when loaded in cyclic tension—compression, but when loaded in shear, the
‘bandedness’ which developed is then smeared by subsequent shear loading. Thié smearing
effectively creates regions within the aggregate which are clearly a combination of the two
loading states. The distributions of the fatigue initiation parameters for the combined case
are evaluated for three realizations of random orientations of grains. Each parameter is now
normalized by an effective stress or strain based on the average stress (or strain) over all

grains.
II1.2.4.1 Normalized Cyclic Microplasticity (N-CM)

For each strain level, the distribution among grains for the N-CM parameter, shown
in Fig. II.8a, resembles an exponential decaying function. With increasing strain, the plots
have the same shape, but has decreasing peak values. The distribution for the combined
loading case resembles the cyclic shear case. There is increased variability between the three
realizations for increasing strain amplitudes as signified by the wider range on the error bars.
The log normal PDF is used to fit the distributions for each strain amplitude. At the highest
strain levels, however, the PDF did not fit the distributions well due to the dual peaks,

At higher strain amplitudes, a redistribution of normalized cyclic microplasticity
occurs such that two values of N-CM dominate. In reality, bimodal grain size distributions

have been observed when analyzing materials which have undergone heat treatment (131)
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due to the presence of two dominant features of the microstructure. In a different work
(132), the statistical distribution of the interfacial strength in ductile metal was also bimodal,
showing the presence of both weakly and strong'}y bonded particles. Although these specific
types of studies were not investigated in this work, they do suggest how bimodal
distributions arise - two strongly opposing effects wherein one does not overshadow the
other. This seems plausible for the case of combined loading since the planes of maximum
shear for tension-compression loading (+ 45°) and for cyclic shear loading (0° and 90°) are |

quite distinct,
I11.2.4.2 Normalized Mohi;-Coulomb (MC) Parameter

The distributipn of the MC parameter appears to have a Gaussian type of distribution
with values centered near 0.5. As seen in Fig. II.8b, increasing strain has a minimal effect
on the change of the shape and peak values of the distributibn. This behavior contrasts with
the distributions of the MC parameter for the cyclic shear loading case wherein the peak of

the distributions is more distinct with increasing strain.
IL.2.4.3 Normalized Fatemi-Socie (F-S) Parameter

For all strain levels, the distributions for this parameter are fit with a three parameter

log-normal PDF (in Figure II1.8c).
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HL3 Fatigue Initiation Parameters: Implications

The Fatemi-Socie critical plane fatigue parameter was previously discussed to have
a stronger linkage to cyclic crack tip displacement for microstructurally small cracks (8).
The F-S parameter has demonstrated a more direct correlation of mixed-mode, multiaxial
fatigue crack formation and early growth than either maximum cyclic plastic shear strain (N-
CM) or the MC parameter. Although both the MC and the F-$ parameters both provide
information regarding the maximum cyclic‘- shear stress and strain, the F-S parameter
identifies the plane of maximum plastic shear strain combined with the effects of normal
stress on that plane. It is well—knov;m that plastic deformation of metals exhibits very weak
dependence on hydrostatic stress. The MC parameter includes the peak hydrostatic stress
which may not directly influence crack initiation, as discussed by Socie (4). Even though the
hydrostatic stress reflects constraint that may either promote or hinder crack initiation, the
directionality of the influence is lacking.

In the computations performed in this research, it was found that the normalized
cyclic microplasticity and Fatemi-Socie parameter both showed amplitude dependency for
the cyclic tension-compress loading case, whereas the MC parameter showed amplitude
dependency for the cyclic shear case. The F-S parameter, however, does show more of a
consistent distributi;)n for both stress states, especially at the higher strain amplitudes. It is
also well-known that both uniaxial and torsional fatigue cannot be correlated, in general,

using only the maximum plastic shear strain parameter (6,35). Socie (4) has effectively
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shown that the F-S parameter correlates multiaxial fatigne behavior (small crack régirne) that
cannot be resolved by the MC parameter. These calculations may offer some understanding
of why this is the case. The broadening of the shear distribution among grains for the MC
parameter is in accordance with observations of higher surface crack density in cyclic shear
relative to tension-compression (4). This suggests a fundaxﬁcntal difference between these
two stress states in terms of the driving force for crack formation and early Stage I
propagation, which is confirmed experimentally (6,35). Micromechanical FE calculations

such as these provide useful information as to the propensity for initiation of small cracks.
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Figure IIL.1 Finite element model of polycrystal aggregate used in crystal plasticity
analysis with surface grains indicated by arrows,

1500

1000 4

500 A

G,, (MPa)

-500 4

«1000 1

-1500 v T T T T
-0.015  -0.010 -0.005 0.000 0.005 0.010 0.015

822

Figure IIL2 Hysteresis loops for cyclic tension-compression in the 2-D simulation.
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CHAPTER 1V
ANALYSIS OF MICROSTRUCTURALLY SMALL FATIGUE CRACKS

One objective of this study is to perforn micromechanical computations in order to
qualitatively assess the effects of microstructural heterogeneity - which contribute to
anomaloﬁsly high growth rates and oscil}atofy behavior for small cracks. Since the small
crack growth regime can account for 50-90% of the total life of components, properly
characterizing this regime is essential. One way to quantify the effects of microstructural
heterogeneity on small crack behavior is to study the changes in crack tip driving fofces as
the cracks grow through grains of different orientations. As a first approximation, the
changes in crack tip driving forces are examined by considering cracks of different lengths
from the free surface with various crystallographic orientations of surrounding grains. Only
stationary cracks are considered in this work.

The 2-D micromechanical model used in the uncracked polycrystal analysis is now
applied to the evaluation of CTSDs and CTODs for microstructurally small fatigue cracks
. under both monotonic and cyclic loading. These crack tip driving force parameters relate to
the relative motion of the crack faces near the crack tip. A unique feature of these

calculations is that these driving force parameters reflect the influence of the free surface as
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well as surrounding grains within the microstructure. These two factors havé often been
neglected in previous continuously distributed dislocation models (82, 128) and slip band
models (83), CTSD and CTOD computational results are presented as a function of the
applied average strain, ranging from well below to slightly above nominal yielding for tensile
and shear loading. The same nominal strain levels that were used in the uncracked
polycrystal cases are utilized in these crack analyses. Crack tip displacements for a
polycrygtal with surface cracks are first evaluated for monotonic loading to understand
shielding and redistribution effects, absent of slip band considerations in fatigue. Cyclic
loading results are then presented, showing the nature of the crack tip sliding and opening

displacements as functions of amplitude and including plasticity-induced closure effects.

IV.1 Use of Planar Double Slip for Determining CTOD and CTSD

for Microstructurally Small Cracks

Before discussing the results generated using the micromechanical crystal plasticity
model, it is important to briefly review previous work and the results generated from similar
models. Gall ef al. (117) employed a planar double slip crystal plasticity model and
compared their results of crack opening displacement (COD) and crack opening stress with
initially isotropic elasto-plastic solutions for a plane strain center cracked panel loaded in

tension. A range of orientations of the two slip directions with respect to each other and the
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orientation of the crack were considered with R = 0 loading. Not surprisingly, the initially
isotropic plasticity solutions significantly underestimated the COD (up to a factor of two) for
many of the orientations considered. The COD measurements were made at a distance x
behind the crack tip according to x/(K,,/c,)* = 0.1. Crystallographic orientations that
prorhoted predominately single slip near the crack tip resulted in little plasticity-induced
closure, while orientations that promoted double (conjugate) slip resulted in closure levels
well above that computed with the initi ally isotropic plasticity theory (8,,../S ., =0.37 rather
than 0.17). The implication is that conjugate-double slip, typical of Stage II propagation, is

conducive to producing substantial plasticity-induced closure effects (18).

IV.2 CTD as Driving Force for Microstructurally Small Fatigue Cracks

In general, small cracks grow along 3-D paths, interacting with multiple barriers
along the crack front. Certain segments of the crack front grow sequentially, while on the
surface the growth appears intermittent. Idealizing the behavior as principally mixed mode
I-II growth in 2-D, it is widely held that the crystallographic fatigue crack growth process is
dictated by the local crack opening and sliding displacements. Li (129) proposed a vectorial

crack tip displacernent (CTD) relation

3_; = A(MCTD)" , ACTD = |A, + A | (Iv.1)
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where CTD is the magnitude of the vector comprised of all primary (8,) and secondary (6,)
slip vectors or band lengths ahead of the crack tip (see Fig. IV.1). Exponent » is typically
on the order of 1 to 2 (128, 130) to capture experimental results for small/short and long
cracks. For small cracks in single and polycrystals, a linear dependence of da/dN on crack
length has been commonly observed (131), suggesting that » = 1. The observed crack
increment per cycle typically falls far short of the nominal CTD (129), due in part to the fact
that the crack front has some segments which actively grow and others that are temporarily
pinned by interactions with obstacles such as second phase particles or grain boundéries in
a complex 3-D arrangement and in part to partially reversible slip.

Accbrding to Li (132), for small crystallographic cracks in Stage I growth
ﬁredominately under single slip (minimal cross slip or multislip ahead of the crack tip), the
growth process is dominated by the CTSD on the primary slip system. The contribution of .
secondary slip becomes more prominent as the tendency for multislip sets in, or the crack
encounters barriers that induce opening displacement. Microstructurally small cracks
initially grow along the primary slip plane with little or no contribution from secondary slip
(Stage I). Upon encountering constraints on continued propagation in single slip, secondary
slip may become relevant to continued propagation. The onset of extended Stage I growth
(Fig. IV.1b) is associated with development of secondary slip bands which are constrained
by the coplanar primary slip ahead of the crack and hence are quite small compared to the
- primary slip band length. Li (132) also found that based on solutions by Koss and Chan

(133), the ratio of the secondary to primary slip length is on the order of 5% to 10% during
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extended Stage 1 growth. The extent of secondary slip depends upon the stress normal to the
crack plane (primary slip plane). This process results in a net curvature of the crack path due
to asymmetric slip, resulting in a transition to dual conjugate primary slip systems typical of
Stage IT growth (normal to the maximum principal stress), as shown in Fig. IV.1c. Even if
the slip is not completely balanced each cycle, the net effect is to maintain a crack path which
maximizes the CTOD. As the crack lengthens, it may grow either in extendéd Stage Tif the
slip is relatively unconstrained (as in planar slip single crystals or coarse grain polycrystals)
or may shift to a Stage II alternating primary élip growth mode early if the slip is diffuse or
wavy (e.g. Al alloys).

In considering how the CTD is affected by secondary slip through the stages of crack

growth, it is instructive to rewrite the CTD in Equation (IV.1) in (18) as

L A
CTID = 1+[ s] +2| “_cos2u ] |& (IvV.2)

where 2a. is the angle between the primary and secondary slip systems. Clearly, in coplanar
Stage I growth, 18] /18| =0 and CTD,; = 16,l. During extended Stage I growth, the ratio I8/
18,] may be roughly approximated as 6%/91%, where © is the stress amplitude normal to the
crack plane and 1 is the shear stress amplitude on the primary slip plane. Assuming 2a =
70.5°, this leads to CTDy = 1.07 I§,l. In Stage II growth with symmetric conjugate slip,
CTDy = 1.63 16 |. The primary slip .bz‘md length is given, assuming small scale plasticity and
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isotropic linear elasticity, as 18} = 4(1-v*)t*a/(E t,), where 1, is the cyclic shear yield stress
in the primary slip band. These values establish the magnitude of CTD for different stages

of crack growth in terms of the primary slip band length ahead of the crack.

IV.3_Model Description for Crack Analysis

Details of the computational model are given along with discussions of parallels and
differences with the work of Li (129, 132) and Gall ez al. (117). Li’s (129, 132) work
focuses on the interaction of the crack tip with bi-crystals of varying orientations, whereas
Gall et al. (117) used planar double slip with varying crystal orientations in a single crystal
to asseés the CTOD and CTSD. Figure IV.2 shows the crack tip configuration utilized for
this work. The CTSD and CTOD are determined by resolving the relative displacements of
two nodes occupying the same location in space on the initial crack surface (but attached to
upper and lower surfaces) intc components along (CTSD) and normal (CTOD) to the or_iginal
crack plane behind the crack tip.

The grain ahead of the crack tip along the slip plane was assigned two ofientations:
either identical to that of the surface grain with the crack, or in a conjugate slip orientation
with significant misorientation relative to the surface grain, as shown in Figure IL6. The
former assignment is to some extent analogous to a crack in a large surface grain and

promotes shear localization or slip transfer to the next grain to the greatest extent, while the
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-Iatter is expected to produce maximum shielding of the CTD. Resﬁlts for the CTSD and
CTOD are reported at 2 pm and 25 pm behind the crack tip. The mesh at the crack tip is
comprised of elements which are 0.5 pm in length; therefore, at the point which
displacements are taken at 2 pim, there are four elements behind the crack tip. For the
smallest crack length ratio analyzed, a/d = 0.25, the CTSD and CTOD are reported at a
distance 18 pm behind the crack tip. The values CTOD and CTSD at 18 um for a/d = 0.25
and 25 pm for a/d = 0.5 are considered to be more so crack mouth displacement variables

rather than crack tip values, but that distinction in nomenclature is not made here.
IV.3.1 Description of Mesh and Location of Driving Force Measurements

In devising an appropriate mesh, three possibilities were considered as shown in
Figure IV.3. The first two cases were considered in order to reduce computational times
associated with a fairly large mesh in addition to the incorporation of a UMAT subroutine
for the material behavior. The polycrystal was initially modeled with crystal plasticity in the
grain containing the crack and its adjacent grain, similar to the work of Li (132). This case
was motivated by a micromechanics principle advocated by Kocks (134) which assumes that
the action of all grains on the surrounding ones is equivalent to the action of an isotropic
continuum on the grain. Consequently, only one additional grain was modeled with crystal

plasticity ahead of the Stage I small crack tip. The surrounding elements were therefore
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modeled initially with isotropic plasticity behavior, with constants selected to fit the
macroscale behavior of the material. Second, three ‘rings” of grains surrounding the cracked
su-rface grain were modeled with the crystal plasticity model. Finally, the entire aggregate
was modeled with crystal plasticity. The first two cases resulted in unacceptably high
stresses between the boundaries of the grains having the crystal plasticity mode! and those
which were modeled with macroscale plasticity. In addition, the CTOD and CTSD were not
consistent between the first two cases, yielding results which differed by 20-40%. The final
configuration produced vaiues of CTOD and CTSD which did not deviate considerably when
using another realization of grain orientations for the polycrystal (within 5-10%). Hence, the
last option of using crystal plasticity through the entire mode] was adopted.

The finite element analyses were performed using a two-dimensional, plane strain
mesh with a height of 0.9 mm and width of 1 mm. The grains were rectangular with
dimensions of d =0.1 mm by h = 0.15 mm. Elongated grains were used in order to avoid
having a crack at a triple point (crack crosses at a location in the mesh where the nodes of
three grains coexist.l This was especially a concern for the remote tension-compression
loading case where the cracks were oriented at 45° to the tensile axis to lie along the Stage
I maximum shear plane. The finite element program ABAQUS (108) was used to perform
the analyses employing the UMAT formulation for crystal plasticity described in Chapter II.
Two-dimensional, 8-noded quadrilateral, biquadratic (CPESR) and 6—uoded quadratic
(CPE®) solid elements were used throughout the mesh. A less refined mesh was used as one

progresses from the crack tip to the mouth of the crack. A typical mesh with a surface crack
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is shown in Figures IV .4a and IV.4b where considerable mesh refinement was employed in
and near this surface grain. The elements surrounding the crack tip were 0.5 pm in dimension
to resolve the near tip CTSD and CTOD properly and crack surfaces were assumed to be
initially perfectly planar.

Figures IV.4c and IV.4d show the boundary conditions for the remote tension and
remote shear loading cases. In tension, uniform vertical displacements were prescribed at
the top and bottom boundaries in the uniaxial loading y-direction, with zero traction in the
x-direction; the lateral sides were traction free. In shear, the x-direction displacements on
the top and bottom surfaces were specified (zero x-direction traction on the bottom, except
for one point), with no y-direction traction on the upper surface, and traction free lateral
boundaries. In shear, the upi)er surface was subjected to a multipoint constraint to maintain

planarity, and the bottom surface was constrained against y-direction displacement.

1V.3.2 Crack Geometries

The érack was assumed to reside within a surface grain which is favorably oriented
for single slip, with one of the two available slip systems aligned with the macroscopic
maximum shear plane orientation. For the case of tensile loading, the surface crack is
oriented at 45°to the tensile axis. For shear loading, the surface crack is oriented at 90° to
the tensile axis. Six a/d ratios were analyzed in this study (0.25, 0.5, 0.97, 1.25, 1.97, and

2.5) where a is defined as the crack length along the crack plane and d is the grain width (0.1
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mm). For tensile loading (crack oriented at 45°) a is the length of the crack projected onto
the horizontal plane.

All cracks are stationary, i.e. introduced without prior effects of growth history.
Stationary cracks were considered instead of allowing the propagation of the crack along a
predetermined path because propagating a crack would require the selection of a critical
condition for releasing nodes along the crack front. In contrast, the goal of these studies is
to determine the dependence of driving forces of the crack tip driving force on microstructure
for crack paths that represent typical observaiions, to within limitations of 2-D analysis.

In the grain adjacent to the cracked surface grain and diagonally along the path of the
crack plane (see Fig. I.6), labeled as Grain A, two different orientations of the slip systems
are considered. These include an aligned orientation that promotes extended single slip on
the plane of the crack and a conjugate slip orientation which promotes slip along both slip
directions. Tables IV.1a and IV.1b summarize the two cases. The angle of misorientation,
7, is defined as the minimum angle between the primary slip system in the surface grain and
the nearest slip system in grain A. The remaining grains are constrained to have no more
than a 15 degree difference in € (orientation of the planar double slip geometry described
in Chapter II) relative to their nearest neighboring grain (Bassani (103)), but are otherwise
randomly oriented. It should be recognized that while grain A provides the most capacity for
orientation blockage, the surrounding grains also contribute, rendering these analyses

different from that of a crack interacting with a bicrystal grain boundary (135).
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IV.3.3 Loading Conditions

This study considers a range of peak applied strain levels as fractions (0.3, 0.5, 0.7,

0.9, 1.0) of the total strain at yield, £, = 0.0065 for tensile loading and Y, = 0.0042 for shear

loading, corresponding to the cyclic curve. In all cases, the applied stain is regarded as the
nominal strain corresponding to the displacement controlled boundary conditions shown in
Figure IV 4. Coﬁbined with the geometry of the overall mesh shown in Figure IV .4, this
results in a decreased crack tip driving force relative to the solution for prescribed remote
stress. Moreover, since this is a finite body, reference isotropic, homogeneous linear elastic
solutions are conducted for each case to compare the behavior.

A set of monotonic analyses were conducted to the end of the first half cycle. The
intent was to consider thé influence of the free surface, anisotropy and heterogeneity on
CTOD and CTSD without effects of crack face interference or stress redistribution associated
with cyclic microplasticity. A second set of analyses were conducted for three complete
cycles to explore the nature of the ACTOD and ACTSD, including the influence of the free
surface and reversed cyclic plastic strain as a function of crack length ratio, stress state, and
applied strain amplitude.

As just mentioned, reference elastic solutions were also performed in each case using
precisely the same mesh and boundary conditions, but suppressing the plasticity. Effects of

the free surface are reflected in the elastic sclutions as well. The elastic behavior in both sets
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of simulations is linear, isotropic and homogeneous; hence, there are no weak elastic
singularities at junctions of grains. Of course, this is an approximation for crystals, but the

intent here is to isolate the effects of anisotropic plasticity.

IV.4 Results for Monotonic Loading

IV.4.1 Remote Tensile Loading

As described earlier, the remote tensile loading case contains a surface crack oriented
at 45° to the tensile axis. Two cases are considered. First, the adjacent grain is oriented in
a single slip mode, such that the surface grain and the adjacent grain are aligned. Next, the

“adjacent grain is oriented in a mode of conjugate slip, such that maximum shielding of the

CTD is produced. CTODs and CTSDs are taken from nodes which are located 2 pim and 25

um (18 wm for a/d = 0.25) behind the crack tip. Calculations of this type serve to quantify

the CTD as a function of stress state and amplitude.

a/d =0.25: For this case of a small surface crack well-oriented within a surface grain, Figure
IV.5 shows plots of CTOD and CTSD for the elastic reference solutions and for the

micromechanical model for single and conjugate slip. For both orientations of the adjacent
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grain and at both locations behind the crack tip, the CTOD is on the order of two to four
times greater than the elastic solution as general yielding is reached. For both distances
behind the crack tip, the CTOD in the single slip case is nearly identical to that of the case
of the conjugate slip orientation of grain A for applied strains less than 0.25 g,. Above 0.25
g,, the CTSD and CTOD for the single slip case intensifies well above the elastic solution,

This behavior differs considerably from that calculated based on slip band
impingement on a grain boundary ahead of the crack as in distributed dislocation (82, 128)
or finite element solutions that use a constr;iint argument to represent slip bands (132).
Figure 1V.5 clearly shows that the CTOD exceeds the CTSD even in the reference elastic
solutions which do not depend in any way on the arrangement of grains or their orientation
(due to elastic homogeneity), but does depend on the geometry and boundary conditions
imposed. In particular, the CTOD near the tip departs significantly from the elastic solution
well below 0.4 £,, and then continues to intensify relative to the elastic solution as general
yielding is approached. The intensification of the CTOD is at least that of the CTSD with
increased applied strain for both adjacent grain orientations. This illustrates why applying
elastic solutions to the analysis of small cracks can yield anomalous results, even in the HCF
regime below general yielding, when microplasticity is considered. Surface measurements
might not reflect crack tip mode mixity very well, as inferred by the significant differences

in the ratios of CTOD and CTSD at 2 um and 18 pm behind the crack tip as well as large

relative discrepancies in the ratio of the micromechanical solutions to the elastic CTOD and
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CTSD values. It is clear that surface measurements would apparently provide little useful

information regarding the near tip behavior.

The CTOD solutions appear to be strongly influenced by the- crack tip’s proximity
to the free surface, and to some extent, by the full set of nearest neighbor grains surrounding
the cracked grain. This is a feature that has not been brought out in previous analyses by Li
(132). Plots of contours of equivalent plastic strain support this assertion, as shown in Figare
V.5, ‘By viewing these contours for each misorientation, 1, one can gain perspecﬁve on the
CTOD and CTSD calculations. For 1) = 0°: and 35.1°, it is apparent that there is some
transfer of plastic strain into the grain directly below the surface grain, more-or-less along
the 45° maximum shear plane. There is multislip on the two systems in the cracked surface
grain within this band of localized plastic strain. For 1 = 0°, as expected, slip transfer is
unhindered. In fact, cyclic plastic slip continues across not only the adjacent grain, but also
into its next neighbor. This is an expected result, but it is intriguing that this process begins
well below the yield strain (slightly more than 0.3 &,). Therefore, at strain values well below
nominal yield, transgranular plastic strain occurs. For the case of conjugate slip in the
adjacent grain, 1 = 35.1°, there is a suppression of the slip transfer into grain A, but not
necessarily into others. It is also recognized that even with the redistribution of the plastic
strain into neighboring grains, it does not overshadow the strong influence of the surface on

the crack tip displacements. This is manifested by the dominant opening behavior of the

crack plotted in Fig. IV 4.
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Such effects have been reported in 3-D crystal plasticity analyses and observations
of cracks approaching bicrfstai interfaces by Li (135). Essentially, the overall dominance
of the CTOD reflects the influence of the free surface and the assignment of multislip with
equal hardening on the two systems. For materials that exhibit profuse multislip (i.e.,
pronounced secondary slip in Fig. IV.1c), even weak constraints on primary slip may trigger

conjugate slip and early transition to mode I-dominated conditions.

a/d =0.5: Figure IV.7 shows plots of CTOD and CTSD. For both orientations of slip in the
adjacent grain, the opening displacements exceed the sliding displacements. At 2 jum behind
the crack tip, the sliding displacements are more nearly equal to the opening displacements.
Above 0.25 g, the elastic-plastic solution starts to deviate from the elastic solution. Indeed
the elastic solution is a very conservative estimate of the near tip CTOD, by nearly a factor
of ten at the highest strain level of 0.9 €. Again, it is observed that the effect of
misorientation in the grain ahead of the crack tip plays a notable role at higher strain
amplitudes in addition to the apparent loss of constraint on plasticity near the free surface,
since the elastic-plastic CTOD is dominant. Mu}tislip in the cracked surface grain is
activated by stress redistribution associated with neighboring grains.

At 25 um behind the crack tip, the opening displacements exceeding the sliding

displacements by 2.5 times at 0.9 €,, whereas at 2 um, the opening displacements are only

1.5 times higher than the sliding displacements. This again indicates the uncertainty of
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interpreting surface values as indicative of near tip values. The conjugate slip case promotes
a slightly increased opening mode at the crack tip and the single slip mode produces
increased sliding displacements. Figure IV.7 also shows that the influence of the orientation

of the adjacent grain has an increased effect on the sliding and opening displacements at

larger a/d ratios.

afd =0.97: Figure IV.8 shows plots of CTOD and CTSD computed 2 pm and 25 m behind
the crack tip, along with the elastic referencé solutions, as the crack approaches the grain
boundary. The near tip (2 um)_‘ CTSD is essenﬁally 4-5 times greater than the elastic
solution. The CTOD shows enormous intensification relative to the elastic solution for the
single slip case, similar to the smaller crack length ratio solutions; however, the near tip
CTSD for the conjugate slip case in the next grain has fallen off to the elastic solution,
indicating a constraint of the adjacent grain on the sliding displacement in this‘ case. Asthe
crack approaches the grain boundary, 'the CTSD and CTOD have very similar magnitudes
when the next grain sharés the same orientation. There is a shift of the local mode mixity
of the crack tip displacements as the crack lengthens. However, for the conjugate slip case,
| the sliding displacements are tremendously impederd. At 25 pm behind the crack tip, and for
the conjugate slip orientation, more sliding displacements are evident as compared to near
tip measurements. The influence of surrounding grains appears to relieve the some of the

strong constraint caused by the shielding due to the orientation of the adjacent grain.
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a/d=1.25 and a/d = 1.97: For these a/d ratios, the crack remains oriented at 45° to the tensile

axis. The CTOD and CTSD results are presented in Figures IV.9 and IV.10, respectively.
As for the previous a/d ratios, the CTOD is greater than the CTSD. At 2 um behind the
crack tip, the CTOD for conjugate slip is greater than the CTOD for the single slip
orientation. The conjugate slip case promotes an opening mode that is evidenced at higher
amplitudes and crack lengths. The conjugate slip orientation of grain A increases the crack’s
tendency to open at the crack tip and as péinted out previously, provides an increased

influence of the adjacent grain for increasing crack length ratios. At 2 pim behind the crack

tip, the opening displacements for the conjugate slip case (at the highest strain amplitude)
are 20% higher than the opening displacements for the single slip case. At25 pim behind the
crack tip, the trend is similar. For both a/d ratios and at both locations behind the crack tip,
the sliding displacements for the conjugate slip and single slip cases are nearly identical to
each other. At25 um behind the crack tip, the opening displacements for the single slip case
are greater than those of the conjugate slip case. At this location, there is perhaps a
decreased effect of the grain just ahead of the crack and an increased influence of the
surrounding grains. For both a/d ratios and at both locations behind the crack tip, the sliding
displacements are 25% to 40% lower than the opening displacements. Recall that for smaller
crack length ratios (a/d = 0.25 and 0.5), the opening displacements dominated the behavior.

For the a/d ratios of 1.25 and 1.97, the sliding displacements now have values comparable
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to the opening displacements.

a/d = 2.5: Figure IV.11 shows the CTODs and CTSDs for this a/d ratio. As the crack
lengthens, the orientation of the embedded crack is still modeled at 45°, with the adjacent
grain being oriented either in single or conjugate slip, the same as in the previous analyses.
Again, the opening displacements are greater than the sliding displacements for both
locations behind the crack tip. Atthis a/d ratio, the opening displacements for both the single
and conjugate slip cases are nearly identical, with the sliding displacements being
approximately 25% lower than the opening displacements. At 25 pm behind the crack tip
and for both orientations, the opening displacements are about 1.5 times higher than the
sliding displacements. Again, although the opening displacements are still greater than the
sliding displacements, the sliding displacements are more comparable to the opening values
at these increased a/d ratios.

Also note how the elastic solutions appear to be very similar for a/d ratios of 1.25,
1.97, and 2.5. This is due to the nature of the boundary conditions used for these analyses.
As previously discussed, the top face remains planar such that the entire face must have the

same vertical displacement. This boundary condition leads to nearly constant CTD for larger

a/d ratios.

a/d = 2.5 (kinked): At this a/d ratio, the crack was also modeled as a kinked crack, growing
along one of the two available conjugate slip directions in the adjacent grain. Figure IV.12
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illustrates both cases, labeled as kinked-down (KD) and kinked-up (KU). The computed
CTODs and CTSDs for the KD and XU cases are reported in Figures IV.13 and IV.14,
respectively. The KD case in Fig. IV.13 shows that the opening displacements dominate the
sliding displacements for both the conjugate and single slip cases. In fact, the sliding
displacements are only slightly higher than those for the elastic solution. At 25 wm behind
the crack tip, the behavior is nearly the same as at 2 pm, but the elastic solution for the
opening displacement is closer to the micromechanical calculations as compared to the
smaller a/d ratios considered. For the KU cz;se, the opposite behavior occurs - the sliding
displacements dominate. Although this case is not actually observed in small crack
experiments (129), it is interesting to see why this is the case from the standpoiht of a
micromechanistic analysis. Newman et al. (136) proposed that small cracks grow in a
manner such that the opening or sliding mode is maximum. The calculations show that the
CTD is much greater for the KD crack due in part to the dominance of the CTOD. This is
one possible explanation for the crack to ‘select’ the path normal to the applied stress. The
KD case also more closely resembles a Stage 1-Stage Il transition crack wherein the crack
grows from shear-dominated behavior to one which is normal-stress dominated. This growth
mode (change from Stage I to Stage Il behavior) may also be associated with maintaining the

maximum CTD.
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IV.4.2 Remote Shear Loading

The remote shear loading case examines a surface crack oriented at 90° to the
longitudinal (vertical) axis. The effects of the two orientgtions of the adjacent grain are
examined by computing the CTOD and CTSD. Table IV.1b shows the misorientation, 1y, of
the adjacent grain for remote shear loading. The case of single slip (m = 0°) in the adjacent
grain allows for relatively unhindered progression of microplasticity into the adjacent grain.
The second misorientation, rj = 35.1°, rcflect.s a conjugate slip orientation in the adjacent

grain which imposes crack tip shielding. Boundary conditions for this loading case are

shown in Figure IV.4d.

a/d = 0.25 and 0.5: Figures IV.15 and IV.16 show the CTOD and CTSD for a/d ratios of
0.25 and 0.5, respectively. For a/d = 0.25, the opening displacements are nearly 15 times
higher than the sliding displacements. For a/d = 0.5 at 25 um behind the crack tip, the
opening displacements are about 3 times higher thén the sliding displacements. Even for a
90° crack and at these crack lengths, the behavior is dominated by the nature of the imposed
boundary conditions as evidenced by the dominance for opening of the elastic solution.
Hence, this particular case differs substantially from that of an edge crack in a semi-infinite
half-space loaded in shear at infinity. The siiding displacements are negﬂy the same (for

Ay/2 < 0.5 v,) as those for the elastic solution. The orientation of the adjacent grain has
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minimal effect on the displacements for these crack length ratios.

Contour plots of the effective plastic strain for a/d = 0.5 are given in Figure IV.17 for
both the single and conjugate slip cases of orientation of the next grain ahead of the crack.
For the conjugate slip case, note how the plasticity is concentrated not only ahead of the
crack tip, but it is redistributed ahead of the crack tip and along the surface. The surface acts
to relieve the stress that is shielded by the adjacent grain. Similar to the contours for a/d =
0.25 for the remote tension case, although plasticity is concentrated ahead of the crack tip
and into adjacent grains for the single slip case, the effect of the free surface dominates the

behavior at the crack tip.

a/d = 0.97: The behavior for this ratio is quite different f1"0m that observed for a/d of 0.25
and 0.5. Figure IV.18 shows the CTOD and CTSD for the elastic as well as the
micromechanical elastic-plastic solutions. For both locations behind the crack tip, the sliding
displacements for the elastic solution exceed those of the opening. For single slip, the sliding
and opening displacements are nearly the same for all strain amplitudes. The CTODs are
greater than the CTSDs for the cc;njugate slip case after a strain amplitude of 0.7 y,. This is
an expected result because conjugate slip does promote an opening mode and multislip,
although it was not clear when this effect would be manifested in the CTOD and CTSD for.

the shear loading case.
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ald= 1.A25: The CTOD and CTSD for this a/d ratio are shown in Fig. IV.19. At2 pum behind
the crack tip, the single slip case promotes sliding displacements which are 40% greater than
the opening displacements. For the conjugate slip case, the opening and sliding
displacements are nearly the same for both locations behind the crack tip. For the singie slip

case and at 25 lm behind the crack tip, the sliding and opening displacements.are nearly the

same. As nominal cyclic yield is approached, both the CTOD and CTSD rapidly increase.

a/d = 1.97: Figure IV.20 shows the results for this a/d ratio. At this a/d ratio, there is a
complete reversal of the behavior as compared to a/d = 0.25. As plotted in Figure 1V.20, the
sliding displacements dominate in contrast to dominance of the opening displacements for
a/d= 6.25. Starting from about 0.5 v, to ,, the sliding displacements increase from twice the
opening displacements to three times the opening displacements. It is also observed that (for
the firsf time) at 25 pm behind the crack tip, the elastic solution provides a good

approximation of the micromechanical sliding and opening displacements.

a/d =2.5: In Figure IV.21, the CTOD and the CTSD are plotted. For both locations behind
the crack tip, the sliding displacements dominate the opening displacements by nearly a
factor of five for both the single and conjugate slip orientations of the adjacent grain. At this
ratio, fhe behavior of the two cases are nearly the same, suggesting relative insensitivity to

local microstructure. As the crack lengthens, the driving forces are high enough such that
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the orientation of the adjacent grain or surrounding grain has minimal effect on reducing the

CTD for remote shear.
IV.4.3 Implications for Small Crack Behavior

For the remote tensile loading case, the differences in sliding and opening
displacements are elucidated in Figure IV.22 which summarizes the behavior as a function

of stress amplitude and crack length ratio at 2 pm behind the crack tip. Trend lines are also

.drawn. This Figure shows two principal features for tensile loading. First, the opening
displacements dominate for all crack length ratios and applied strain amplitudes. Secoﬁd,
there appears to be three regimes. The first is a more-or-less linear relationship between bofh
the CTOD and CTSD and applied strain for a/d < 0.5. For all strain amplitudes considered
and at a/d = 0.97, the sliding and opening displacements exhibit sensiti\}ity to the grain
boundary, especially for the conjugate slip case. In the second regime (0.97 < a/d < 1.97),
there appears to be a parabolic increase. In the third regime (1.97 < a/d < 2.5), it is clear that
the kinked down solution for a/d = 2.5 provides a much more consistent extension of the
trend for a/d < 2 than for the cracked still oriented at 45° (as shown by the dotted line in
Figure IV.22).

Figure IV.23 summarizes the behavior of the CTOD and CTSD for remote shear

loading. It shows a plot of the sliding and opening displacements for 2 um behind the crack
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tipas a funcﬁon of crack length ratio and applied strain amplitude. Up to an a/d of 1.25, the
sliding and opening displacements are nearly the same for.ail shear strain amplitudes. For
a/d ratios greater than 1.25, the conjugate slip case does effectively promote increased
opening displacements as compared to the single slip case. With the increased CTOD, this

would increase the propensity for mﬁltislip such that the shear cracks might tend to branch
towards secondary planes. At a/d ratios of 1.97 and 2.5, the sliding and opening
displacements are significantly different, with the sliding displacements dominating the
behavior, especially as the nominal yield strain is approached. This contrasts markedly to
the tensile loading case where the sliding and opening displacements differ for all a/d ratios
and strain amplitudes; for cyclic shear, the larger strain amplitudes and larger a/d ratios
produce significant differences in the CTOD and CTSD values. The results for both cases
are further discussed in Chapter V regarding their implications for small crack behavior and

model development,

IV.5 Results for Cyclic Loading

For the cyclic loading cases, the polycrystal is subjected to strain amplitudes of 30%,
60% and 90% of the cyclic yield strain, where g,=0.0065 for tensile loading and vy, = 0.0042
for shear loading. Three completely reversed (R = -1.0) cycles are applied to determine the
behavior of the sliding and opening displaﬁements. Only three cycles of loading are
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considered in view of the level of the idealization and necessary computation time. Elastic
solutions are also plotted in order to show the relative differences in the crystal plasticity
solutions. In the same manner as for the monotonic cases, the surface crack is oriented at 45°
with respect to the tensile axis, with two orientations of the adjacent grain - single and
conjugate slip. For the cyclic shear case, the surface crack is oriented at 90° to the tensile
(vertical) axis. The results for ACTOD and ACTSD are discussed in terms of their
dependence on crack length ratio, amplitude of the applied load, stress state, orientation of
adjacent grain, degree of local phasing or noﬁproportionality, and crack closure behavior.

As previously stated, the CTOD and CTSD values are determined by considering two
nodes which have initially identical coordinates, but rest on opposite sides of the crack face.
As for the monotonic solutions, the displacements are taken at 2 tm and 25 um behind the
crack tip for all a/d ratios, except for a/d = 0.25, where the displacements are taken at 2 um
and 18 pm behind the crack tip. The CTODs and CTSDs throughout the loading cycles are
found by resolving the coordinates of these nodes into components along (CTSD) and normal
(CTOD) to the original crack plane. At the end of the third cycle, the range of the CTSD
(ACTSD) and CTOD (ACTOD) are found from the absolute value of the difference between
the maximum and minimum values of the displacements.

The crack surface is assumed as traction free provide'd the surfaces do not contact.
Once the crack faces do come into contact during the compressive part of the load, there are

several options within ABAQUS (108) that are able to handle this condition. For these
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studies, the option most appropriate for the cases considered is the use of contact elements
along the crack face. This formulation allows for both small- and finite-sliding between the
two surfaces which interact. For both tensile and shear loading, the crack surfaces are not
allowed to ‘overlap’, but they are allowed to move along and normal to the crack plane.
Crack face contact friction is not considered in these studies.

The material constants were presented in Chapter IT, but it is further noted here that
the slip system backstress, x*, is included in the flow rule to account for the resistance to
forward loading due, for example, to dislocation walls produced by cyclic loading. The

evolution of x® is defined as

A= Cf - dx® g Iv.3)

from Cailletaud et al. (107), where C and d are direct hardening and dynamic recovery

coefficients, respectively. For these studies, C' = 100 MPa and d = 30.
IV.5.1 Cyclic Tension-Compression

a/d = 0.25: For this a/d ratio, the cyclic behaviors of the CTOD and CTSD are shown in Fig.
IV.24 for the three strain amplitudes. For 0.3 €, and at 2 um behind the crack tip, the elastic
solution provides a good estimate of the CTOD and the CTSD for the first cycle. However,
for increasing numbers of cycles, the crystal plasticity solution deviates from the elastic
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solution by exhibiting greater sliding and opening values. After the third cycle, the elastic
solution, which maintains the same maximum and minimum amplitudes throughout loading,
has only half of the opening displacements as the micromechanical solution. Of course, the
elastic solution for the CTOD and CTSD repeat identically regardless of the cycle number.
The micromechanical model behaves quite differently, especially for the highest applied
strain range. For both the single slip and conjugate slip cases, and for both locations behind
the crack tip (at 0.3 €, and 0.6 € ), the ACTOD and ACTSD are nearly the same for all cycles.
At the highest strain afnplitude, the CTOD anﬁ more so the CTSD are quite distinct for each
N. These differences are also evident at 25 pim behind the crack tip.

Another a'sﬁect of the cyclic behavior regarding the near crack tip displacements is
that crack closure effects decrease with increased strain amplitude(at 2)um behind the crack
tip and at 0.9 £ ). The crack faces are not completely closed at zero load. The crack faces
are only completely closed well into the compressive part of the loading cycle. This is |
evident by comparing the stress level when the crack faces are completely closed during the
compressive part of the cycle. Note how for the last cycle, the amplitude of the effective
stress increases with increasing amplitude. This is more easily demonstrated in Figure IV .25
with dashed lines comparing the range of the effective stress for cases of applied strain
amplitude 0.3 €, and 0.9 €,. There is also some evidence of complete opening at 18 um
behind the crack tip, but only for the highest strain amplitude.

What is also intriguing is the highly nonlinear and nonproportional sliding and
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opening displacements for 0.9 g, with respect to the loading with incregsin g maximum values
of CTOD. This behavior_ continues for all cycles at this strain amplitude. For a/d = 0.25 and
for 6.9 €,, the sliding displacements are approximately 60% of the opening displacements for
the last two cycles whereas they are nearly the same values in the first half cycle. This
indicates that there is perhaps a redistribution of cyclic microplasticity into surrounding
grains which allows for more opening and sliding in the vicinity of the crack tip. AL 2 Lm
behind the crack tip and for 0.9 €, the CTSD 'develops a positive mean displacement. This
relates to the amount of irreversible slip which develops due to reversed loading and the
amount which contributes to the offset sliding displacement at the crack tip, a kind of cyclic
ratchetting effect. In essence, a degree of plasticity-induced closure develops. At both
locations behind the crack tip, there are pronounced differences in the sliding displacements
for single and conjugate slip cases for 0.9 €,. For this a/d ratio pf 0.25, the effect of the
orientatién of the adjacent is not manifested until the highest strain amplitude is applied. The

studies will also show that at increased crack length ratios, the nonproportionality sets in at

smaller applied strain amplitudes.

For a/d = 0.5 and for all strain amplitudes, the sliding and opening displacements are
nonproportional with respect to each other for strain amplitudes of 0.6 €, and 0.9 £, (Fig.
1V.26). At these strain amplitudes, differences between the single and conjugate slip cases
for sliding displacements are more pronounced. For a/d = 0.25, these differences are only

evidenced at the highest strain amplitude. In fact, there is less crack closure at higher strain

122



amplitudes for -'smalll crack (Tanaka (60)). These computations support this because when
comparing the closure behavior as a function of amplitude, Figure IV.24 (at 0.9 g,), shows
that the crack is open for nearly the entire loading cycle. With increasing number of cycles,
the oscillatory nature of the sliding and opening displacements for the crystal plasticity model
is quite nonlinear and unsymmetric as compared to the elastic solution. For the lowest strain
amplitude, the oscillatory behavior of the CTOD and CTSD is fairly linear and consistent
with loading cycle. Another bbscrvation is that the two cases of adjacent grain orientation
show greater differences in sliding dispIaceménts as compared to the opening displacement
for strain amplitudes 0.6 &, and 0.9 ,. There is almost no closure for 0.6 €, and 0.9 e for the
2" and 3" cycles, especially near the crack tip. No closure implies that more of the apparent
driving forces are contributing to propagating the crack.

There is also evidence for a/d = 0.5 of local ratchetting of the sliding and opening
displacements at 2 wm behind the crack tip, even though the remote loading is completely
reversed. This ratchetting apparently contributes to the decreased effects of cracl; closure.
Whether it is an accurate portrayal of the actual behavior of the crack tip or a manifestation
of the nonlinear kinematic hardening law is not complctelsr clear, but these results are the
first to suggest this possibility. It is very possibly related to asymmetry of crack tip plasticity
induced by the variation of surrounding “hard” and “soft” grains in the microstructure.

Figure IV.27 shows contour plots of the effective plastic strain for a/d = 0.5 after

three cycles were applied for both the single and conjugate slip cases. These plots are similar
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to-the case of monotonic loading. For the cyclic case, there is blunting of the crack tip,
related to the presence of two plastic zones (lobes) ahead of the crack tip. | For the conjugate
slip case, the progression of plasticity is blocked from entering the adjacent grain. As
poi-nted out by Zhang and Edwards (77), it is more so the cyclic plastic zone which is blocked
by adjacent (or surrounding) grains which cases retardation of crack propagation rather than
the blockage of the crack tip at the grain boundary. Due to the constraint of the adjacent
grain and the build-up of the cyclic microplasticity which develoﬁs, the surface acts to relieve
that stress (e. g. by high plastic strain at the surface).

The crack length ratio of 0.97, shown in Figure IV .28, exhibits CTOD and CTSD
behaviors similar to those of the a/d = 0.5 case. There are, however, two distinguishing
features. First, for the lowest strain amplitude, the sliding and opening displacéments for the
two adjacent grain orientations have different trajectories (or paths), although less
ratchetting-like behavior develops. Of course, with the crack just short of the grain
boundary, differences in the behavior are readily reflected in the c‘alculatlions, even at this low

strain amplitude. Secondly, the sliding displacements (at 2 pm) for the single slip case at a
strain amplitude of 0.6 &, are nearly 40% higher than the sliding displacements for the

conjugate slip case. With increased cycling, there is a continuous accumulation and
progression of plasticity ahead of the crack tip and into surrounding grains which is reflected
in the increased sliding along the crack plane. As stated earlier, at longer crack lengths,

nonproportionality in sliding and opening displacements sets in at lower strain amplitudes.
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At this a/d ratio (0.97), these computations reveal that forthe last applied cycle, there
is crack closure at the lowest strain amplitude. Note ihat on the first cycle at 0.6 €, and at
both locations behind the crack tip, the crack faces are completely closed during the entire
compressive part of the loading cycle. Close to the crack tip and for the second and third
cycles, the crack remains open for a significant fraction éf the loading cycle. Further behind
the crack tip at 25 mm, subsequent cycling shows that the crack faces close before the crack
faces closer to the crack tip which signifies thiat there is a ‘peeling off” or sequential closing
of the crack face. - Portions of the crack furthest away from the crack tip tend to close first
followed by a progressive closing down to the crack tip. Indeed as the applied strain
amplitude increases to 0.9 €, the crack tip exhibits less closure effects whereas farther away
from the crack tip, the faces contact upon entering the compressive part of the cycle. These
results relative to the sequential closihg of the crack face are in line with the computational
results by Zhang et al. (64).

For an a/d ratio of 1.25 and at a strain amplitude of 0.9 €, (shown in Figure IV.29),
the sliding and opening displacements exhibit differences at 2 pm and 25'um behind the
crack tip. The conjugate slip case produces more symmetric-type sliding displacements as
compared to the single slip sliding displacements. Plasticity-induced closure effects develop

almost immediately upon cycling near the crack tip for all strain amplitudes. At 25 um

behind the crack tip and for 0.3 g,, the crack faces are closed for the entire compressive part
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of the loading cycle. For 0.6 ¢, tﬁe single slip case produces a positive mean sliding
displacement, but the range of the CTSD for the conjugate slip is slightly greater than for the
single slip case. This is perhaps due to multislip generatéd by the conjugate slip orien-tation
in the adjacent grain. For 0.9 e, and at 2 im behind the crack tip, local nonproportionality

of the CTOD and CTSD occurs almost immediately upon the first cycle.
IV.5.2 Cyclic Shear

A limited computational matrix was completed for this case. Ratios of 0.25,0.97 and
1.97 are used in these analyses with shear strain amplitudes of 0.3 y, and 0.9 ,. These cases
are used based on the results of the monotonic analysis which showed that there was a linear
dependence of CTOD and CTSD with respect to crack length ratio and amplitude for a/d
ratios less than 2. The same mesh and crack geometry that was used for the monotonic case
are also employed for the cyclic analyses. The crack is oriented at 90° with respect to the
tensile axis with boundary conditions shown in Figure IV.4d, The crack faces were allowed
to move relative to one another, although they were not allowed to ‘overlap’ or interpenetrate
during cycling.

For a/d = 0.25 and for both shear strain amplitudes considered, Figure IV.30 shows
the resulting CTODs and CTSDs, In a similar fashion as the monotonic results, the opening

displacements are dominant. As stated earlier, the dominant opening behavior at this a/d
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ratio is primarily caused by the imposed Boundary and free surface conditions. The range of
the sliding displacements are nearly the same for all cycles, with symmetric sliding in the
forward part and reversed part of the cycle. In addition, single and conjugate slip solutions
produce the same sliding and opening displacements. The effect of the adjacent grain has
not surface& at this a/d ratio and for the strain amplitudes of 0.3 Y, and 0.9 v,.

For a/d = 0.97, the behavior of the CTOD and CTSD (in Figure IV.31) begins to
reflect an influence of the adjacent and surrounding grains at the highest strain amplitude.
At 2 pm behind the crack tip and at the higﬁest strain amplitude, there is evidence of the
. development of a mean or offset sliding displacement. Crack closure also develops at both
locations behind the crack tip as shown by the vertical dashed lines superimposéd in Figure
IV.31. Further down the crack face, the crack moves in more of a symmetric manner.

Figure IV.32 shows the resuits for a/d = 1.97. At2 pmbehind the crack tip, the range
of the crack tip sliding displacements (ACTSD) is nearly 4 times the range of the opening
displacement (ACTOD) for the conjugate slip case; for the single slip case, the ACTSD is
nearly 8 times the range of the ACTOD. For this a/d ratio, the influence of the adjacent grain
is reflected in the displacements. It would seem that the ACTSD would be greater for the

single slip case as compared to the conjugate slip case. One explanation of this behavior is
the increased multislip that is created at the crack tip due to the conjugate orientation of the
adjacent grain; since the conjugate slip case promotes the opening mode at the crack tip, the

increased opening also allows for additional sliding at the crack tip. Even though the ranges
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of the sliding displacements are comparable for both instances of adjacent grain orientation
for 0.3 y, and at 2 pm, the closure levels are quite different. Since there is no misorientation
between the cracked grain and adjacent grain for the single slip case, there is minimal
unloading at the crack tip. The conjugate slip case does have a closure stress as compared
to the single slip case which remains nearly closure free throughout cycling.

At 2 ﬁm behind the crack tip and at 0.9 v,, the sliding displacements develop a
nonproportional response with increased cycling. This points to the increased accumulation
of cyclic microplasticity which attributes té-) the nonproportional sliding and opening
displacements. For an amplitude of 0.9 v, and at 2 jtm behind the crack tip, the range of the
sliding displacements for the conjugate and single slip case is nearly 4.5 times greater than
the range of the opening displacements. For both cases of adjacent grain orientation, an‘
offset, or mean displacement develops with increased cycling - somewhat of a ratchetting-
like behavior. This may be caused by the non-symmetric development of cyclic
microplasticity due, in part, to the effect of the different orientations of surrounding grains.
Both the single and conjugate slip cases are closure free after the first cycle. Further along
the crack front (at 25 pum), nonproportional CTOD and CTSD are both evident. Just as _for
the cyclic tension-compression case, the cyclic shear case also shows evidence that there is
a ‘peeling off” of the crack face, such that the crack tip is the last part of the crack to close

upon reversed loading and the first part to open during the forward loading part of the cycle.
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IV.5.3 Implications for Understanding Small Crack Behavior

Understanding the trends of the local CTSD and CTOD as a function of crack length
and stress amplitude is an important factor in developing models for microstructurally small
fatigue cracks. Some insight into these trends may be gained based on the micromechanical
analyses from this study. The implications for small fatigue crack growth behavior are
discussed in terms of the degree of local nonproportionality, closure behavior, and the
influence of tﬁe free surface versus local microstructural effects.

For the elastic solutions and for all a/d ratios considered, during the entire
compressive part of the cycle for the cyclic tension-compression loading case, the crack faces
are completely closed and remain closed until a forward, positive load is applied. This
produces proportional CTOD and CTSD throughout the loading cycles. Cyclic shear elastic
solutions also show proportional local CTOD and CTSD. Unlike the elastic solutions, the
micromechanical analyses reveal a nonproportional variation of the local CTOD and CTSD
with R = -1.0 and proportional applied loading primarily evidenced at higher strain
amplitudes for small a/d at at small strain amplitudes for large a/d. This nonproportionality
is amanifestation of many factors: (i) reversed plésticity which translates to restricted motion
at the crack tip, (ii) microstructural heterogeneity, and (iii) multislip ahead of the crack tip.
For both loading cases, evidence that all three influences have a tremendous impact on the
development of local nonproportional CTOD and CTSD. The changing mode-mixity at the

crack tip is the source of the nonproportionality. These calculations have provided a
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qualitative means to elucidate the effects of stress state, amplitude, and crack length ratio on
the development of this nonproportionality. It was found that this phenomenon develops at
smaller craﬁks lengths for cyclic tension-compression as compared to cyclic shear. For cyclic
tension-compression, it begins at a/d = 0.25 at a strain amplitude of 0.9 g, and is evidenced
for the other crack length ratios for Ae/2 >0.6 g,. One possible contributing factor to this is
the normal stress across the 45° oriented crack plane. In addition, the sliding behavior
develops amean of offset displacement almost immediately (a/d =0.25) for increasing strain
amplitudes for cyclic tension-compression. S:uch complex phasing and ratchetting behavior
have not come to light in previous computational studies based on homogeneous elasto-
plasticity. Nonproportional local CTOD and CTSD for cyclic shear loading is evidenced at
a/d = 1.97 at a shear strain amplitude of 0.9 vy,. Although higher a/d ratios were not
considered, it is expected that the local nonproportionality will continue,

These studies point to some possible deficiencies in an understanding of smail cracks,
such as: (a) surface measurements of CTSD anci CTOD may be very misleading and
unrepresentative, as also pointed out by Zhang et al. (64), (b) plasticity-induced closure need
not occur first at the crack tip  for initially planar cracks, and (c) sliding and opening
displacements ratchet at the crack tip in a manner which appears to maximize the CTD and
decrease closure effects.

Some of the same influences which contribute to the nonporportional local CTOD

and CTSD also contribute to the development of crack closure. In these computations,
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closure is purely a result of plasticity effects. Plasticity-induced closure develops as cracks |
increase in length and have residual plasticity in the wake of the crack. Since small cracks
are not long enough to develop appreciable residual plasticity, it is argued () that small
cracks have minimal to nil plasticity-induced closure effects under HCF conditions. These
computations show that for cyclic tension-compression (with a crack oriented at 45°), and
for a/d ratios of 0.25 and 0.5, the crack faces show evidence of crack closure, primarily due
to the cyclic microplasticity which develops and the free surface effect. For larger a/d ratios,
closuré effects tend to decrease the effective CTD. For cyclic shear loading, there is
evidence of plasticity-induced closure at longer crack length ratios (a/d = 1.97) with an
amplitude dependency as well.

Throughout the discussions in this section, distinctions may be made as to associating
the effects of crack closure or local nonproportional CTOD and CTSD with the free surface,
the local plasticity or a combination of both. The free surface directly contributes to the high
mode I component due to lack of constraint at the surface for small a/d ratios (a/d = 0.25 and
0.5} for cyclic tension-compression and for a/d = 0.25 for cyclic shear. Local micrbplasticity
is indeed the cause of plasticity-induced closure and local nonproportionality. The dominant
CTOD (mode I) for small a/d ratios may actually aid in propagating the small cracks (such
that the CTD has a large component of CTOD). These computations reveal that closure and
nonproportionality occurs from a combination of factors rather than one single factor. It is
important to elucidate the effects of microplasticity and free surface effects by viewing them

in terms of their propensity for contributing to the driving forces for small cracks.
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Chapter V takes a look at the degree of local plasticity which develops as a function
of applied strain arhplitude and the implications for elastic shakedown for the uncracked
cases. In addition, Cﬁapter V provides a discussion on the merging the computational results
for the CTSD and CTOD to critical plane concepts. This connection is key to developing
more appropriate forms for the driving forces for small cracks as well as providing a means
to enhance the development of a microcrack propagation law which spans the full range of

crack growth from microstructurally small to the physically small crack regime.
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Figure IV.S CTSD and-CTOD as a function of applied polycrystal tensile strain for a surface
crack (a/d = 0.25) in a favorably oriented grain with a range of nearest neighbor grain (Grain A)

orientations given in Table IV.1a, evaluated (a) 2 pm and (b) 18 pm behind the crack tip.

SIS
£
i
Kl
b}
]

SEEE R
Ry,

(@)

2 biRd E7e ol
s et
nmg

Bl &
g oeen
GESR: i2eRNRone

AZEN,

R

e s—

BRESY oaungen

P 0;;" >,
atetiy %ﬁa—’ ¥
A e
Wt e
L 2,
psss ':;‘2“

53
oo stiSe

& s

&

%
5

5

0

>
L2

ABA
(>
X

;‘%.%35:‘
ol
1
Wl
s
NN

.

o

AR

HXth)
s
3
A

23

o

S \AWA by .:3.‘.'
N SR 7
R PSSR
e e e Toh e L
FEREREELE] jo]
numﬁ;mzam
55 mpooshon
5 ﬁ\;etgﬁzm
REE 1. - { T R T T
R L O R Ea TN

Figure IV.6 Contour plots of effective plastic strain for an applied tensile strain of 0.7 &, for

(2) single slip and (b) conjugate slip in Table IV 1a, a/d = 0.25; the peak strain intensity
has a threshold of 1% plastic strain, which is at least twice the polycrystal average applied strain.
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Figure IV.7 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface
crack (a/d = 0.5) in a favorably oriented grain with a range of nearest neighbor grain (Grain A)
orientations given in Table IV.1a, evaluated (a) 2 um and (b) 25 wm behind the crack tip.
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Figure IV.8 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface
crack (a/d = 0.97) in a favorably oriented grain with a range of nearest neighbor grain (Grain A)

orientations given in Table IV.1a, evaluated (a) 2 um and (b) 25 um behind the crack tip.
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Figure IV9 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface

crack (a/d = 1.25) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 wm and (b) 25 wm behind the crack tip.
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Figure IV.10 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface
crack (a/d = 1.97) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 pm and (b) 25 pm behind the crack tip.
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Figure IV.11 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface
crack (a/d = 2.5) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 pm and (b) 25 um behind the crack tip. '

Kinked-up (KU) crack Kinked-down (KD) crack

Figure IV.12 Schematic of kinked-up (K U) and kinked-down (KD) crack configurations.
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Figure IV.13 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface
crack (a/d =2.5 - KD) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 um and (b) 25 um behind the crack tip.
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Figure IV.14 CTSD and CTOD as a function of applied polycrystal tensile strain for a surface

crack (a/d =2.5 - KU) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 Wm and (b) 25 pm behind the crack tip.
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Figure IV.15 CTSD and CTOD as a function of applied polycrystal shear strain for a surface
crack (a/d = 0.25) in a favorably oriented grain with a ran ge of nearest neighbor (Grain A)
orientations evaluated (a) 2 m and (b) 18 wm behind the crack tip.
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Figure IV.16 CTSD and CTOD as a function of applied polycrystal shear strain for a surface
crack (a/d = 0.5) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 pm and (b) 25 im behind the crack tip.
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Figure IV.17 Contour plots of effective plastic strain for an applied shear
strain of 0.9 y, for the two cases in Table IV.1b, a/d = 0.5; peak strain intensity
has a threshold of 0.5% plastic strain for (a) single slip and (b) conjugate

slip in the adjacent grain.
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Figure IV.18 CTSD and CTOD as a function of applied polycrystal shear strain
for a surface crack (a/d = 0.97) in a favorably oriented grain with a range of

nearest neighbor (Grain A) orientations evaluated (2) 2 pm and (b) 25 pm
behind the crack tip.
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Figure IV.19 CTSD and CTOD as a function of applied polycrystal shear strain for a surface

crack (a/d = 1.25) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 wm and (b) 25 wm behind the crack tip.
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Figure IV20 CTSD and CTOD as a function of applied polycrystal shear strain for a surface
crack (a/d = 1.97) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 wm and (b) 25 pm behind the crack tip.
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Figure IV21 CTSD and CTOD as a function of applied polycrystal shear strain for a surface
crack (a/d = 2.5) in a favorably oriented grain with a range of nearest neighbor (Grain A)
orientations evaluated (a) 2 wm and (b) 25 pm behind the crack tip.
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Figure IV.23 CTSD and CTOD for remote shear loading case as a function
of crack length ratio at 2 pum behind the crack tip for strain amplitudes of
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differences in the effective stress amplitude, Ao, due to plasticity-induced

closure effects.
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CHAPTER V

IMPLICATIONS FOR SMALL CRACK GROWTH MODELS

This Chapter considers the micromechanical computations presented in Chapters
IH and IV and draws implications for more specific dependencies in small crack growth
models. The uncracked polycrystal analyses (as presented in Chapter III) are used to
address shakedown of cyclic microplasticity and nonpropagating crack threshold or
limits. The micromechanical calculations for embedded cracké, although 2-D in nature,
provide a means to qualitatively understand the nature of the mode-mixity observed in
small fatigue cracks as afunction of amplitude, stress-state, and crack length. In addition,
first order effects studied in this work - peribdic barrier interactions and lack of constraint
due to the surface'- are utilized to assist in suggesting improved models for smali fatigue
crack growth. The micromechanical computations provide insight into various aspects
of heterogeneous microplasticity and small crack growth behaviolr that is not attainable
by macroscopic observation. In addition, interpretations are given on the relationships

of the sliding and opening displacements to crack length ratio, stress state and amplitude.
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V.1l _Shakedown Limits for Cyclic Micr_onlasticitv

Shakedown refers to the stress or strain level below which there is either a
cessation (elastic shakedown) or stabilization (glastic—plastic shakedown) of the
accumulation of cyclic microplasticity upon subsequent cycling. Elastic shakedown
limits are important quantities because they halve a close relationship to nonpropagating
crack limits for small cracks. Study of shakedown requires examination of the
relationship between the macroscopically applied stress and the local plasticity on the slip
(micro) system. It is also important to compare the level of microplasticity with the
average plastic strain of the aggregate.

For cyclic tension-compression and cyclic shear, the polycrystal model used in
Chapter Il was employed. As in Chapter III, cyclic tension-compression and cyclic shear
loading was applied at several fractions of the yield strain (30%, 50%, 70%, 90%, in
addition to 200%). Figure V.1 shows the relationship between the maximum shear stress
amplitude (averaged over all grains) and the amplitude of plastic shear strain quantities
for both loading cases. Figure V.l reveals that the separation between the local
maximum slip system shear strain (maximum among all grains) and the average
maximum plastic shear strain (averaged over all grains) occurs at a higher maximum
average shear stress level for tension-compression as compared to.cyclic shear. Trend
lines are also drawn which show the relative differences in the local and macroscopic

shear strain levels. For both cyclic tension-compression and cyclic shear, there is a
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definite nonlinear reiationship (even more so for cyclic tension-compression) between
the maximum shear stress amplitude (averaged over all grains) and the amplitude of both
plastic shear strain quantities considered. This Figure seems to indicate that elastic
shakedown of cyclic microplasticity occurs in cyclic shear at a lower maximum shear
stress level (=160 MPa) as compared to cyclic tension-compression (=300 MPa). The
applied strain amplitude that corresponds to this level for cyclic tension-compression is
approximately 0.4 €, (= 0.0026); this strain value is close to the smooth specimen fatigue
limit in terms of strain for 4340 Steel (= 0.0(5274) (137).

In Figure V.2 (log scale), three measures of the shear strain are shown - the
amplitude of the maximum plastic shear strain on the slip system (among all grains), the
amplitude of the maximum plastic shear strain (averaged over all grains), and the
amplitude of the maximum shear strain (averaged over all grains). Two features of these
plots are discussed as well as the significance for determining shakedown limits. One

feature is the difference in the intensification (denoted by I on Figures V.2a and V.2b) of
the maximum plastic shear strain on a slip system and the maximum plastic shear strain
amplitude for both loading cases. For cyclic tension-compression, the amplitude of the
maximum plastic shear strain on the slip system is about 2 times higher than the average
plastic shear strain amplitude for all shear stress amplitudes; for cyclic shear, the
intensification ranges from 4 to 6. The intensification is a measure of enhanced local
microplasticity as compared to the average bulk plastic shear strain. One possible

explanation of the higher density of microcracks for cyclic shear as compared to cyclic
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tension-compression is this rather higher degree of intensification at the local level. This
could not be predicted using traditional macroscale cyclic plasticity models.

A second observation is the difference in the intersection of the macroscopic
average shear strain and micro plastic shear strain amplitudes. For cyclic tension-
compression, the intersection occurs at a maximum shear stress range of approximately
420 MPa, whereas for cyclic shear, the intersection occurs at 220 MPa. Both of these
intersection points correspond to an applied strain amplitude of 90% of the cyclic yield
strains for each loading cases. Table V. 1 summarizes the strain levels and shear stress
levels which are representative of the elastic shakedown limit and fully plastic limits of
cyclic microplasticity. The elastic shakedown values for microplastic strain can be
argued to correspond to one type of smooth specimen fatigue limit, i.e. lack of sufficient

inelastic driving force to either nucleate cracks or possibly grow them within grains.

V.2 Evaluation of | CTSD/CTOD |, ACTD., ACTSD/ACTOD, and ACTOD

After examining the uncracked polycrystalline aggregate to determine shakedown
limits of cyclic microplasticity, it is important to next evaluate quantities which are
directly related to the behavior at the crack tip and how amplitude, crack length ratio, and
stress state play a role in that behavior. The analyses in Chapter IV provide the basis for
these evaluations to shed light on the driving force parameter for small crack lengths (a/d

< 2).
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V.2.1 Ratio of | CTSD/CTOD |

For cyclic tension-compression, the ratio of | CTSD/CTOD | defined as R, is

plotted for a/d ratios of 0.25, 0.5, 0.97, 1.25, and 1.97 (for amplitudes of 0.3 ¢, 0.6 ¢,,
aqd 0.9 &,.); for cyclic shear loading, R, is plotted for a/d ratios of 0.25, 0.97, and 1.97
(for amplitudes of 0.3 7y, and 0.9 v,). For both loading casesl, both the single and
conjugate slip cases as well aé the elastic solutions are also provided to show the relative

differences as compared to the micromechanical solutions. The R_, ratio is primarily

shown for either the maximum or minimum amplitudes of the loading cycles.
V.2.1.1 Cyclic Tension-Compression

Figure V.3 (a/d = 0.25) shows that for the first cycle, the elastic solution and the
crystal plasticity micromechanical solutions have quite comparable values for R, for all
strain amiplitudes, whereas for subsequent cycling, the ratios are quite distinct. Note that
the “A” on the x-axis in these figures denotes the applied strain amplitude. For a/d =0.5
in Figure V.4, amplitude and orientation dependencies are reflected in the R at the two

higher strain amplitudes (0.6 £, and 0.9 £). The lowest strain amplitude of 0.3 g, shows

a similar result as for a/d = 0.25. Also note the differences in the R, for the single and
conjugate slip cases. As discussed in Chapter IV, the single slip case promotes increased

sliding displacements, especially at the higher strain amplitudes, as signified by its higher

163



R, values as compared to the conjugate slip case. For a/d ratios of 0.97 and 1.25 in
Figures V.5 and V.6 respectively, even the first cycle shows differences in the R, values
for the elastic and micromechanical solutions for all strain amplitudes. Subsequent
cycling for the micromechanical solution produces R . values which shows distinctions
for the single and conjugate slip cases.

These plots reveal important results: (i) the elastic solution will primarily show

an R, of 0.5 for all a/d ratios and amplitudes (with a/d = 0.5 as the exception for 0.6 €,
and 0.9 £,) whereas the micromechanical solutions at the maximum and minimum load

show R, at much lower values and (1i) the behavior over much of the cycle is dominated
by opening behavior. Continued cycling, not just the initial cycle, shows that the opening

displacements contribute significantly to the driving forces for small crack behavior,

V.2.1.2 Cyclic Shear

For cyclic shear, two strain amplitudes are considered (0.3 vy, and 0.9 y,). For this
loading case, R, = 0 (At /2/Ay,/2) such that the product B, R, = 0 in Equations (1.6) and
(L7). Since P, was defined as relating to the mode-mixity of sliding and opening

displacements, cyclic shear would, therefore, yield little to no mode-mixity of the CTOD
and CTSD. However, for small cracks, as the micromechanical calculations indicate,
sliding and opening displacements are evident for cyclic shear loading, Figure V.7 shows

the R, values for a/d = 0.25 and for both shear strain amplitudes. For this a/d ratio, the
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R, values for the micromechanical solutiong and the elastic solutions are nearly the same
with an R, of approximately 0.3 at the maximum and minimum loads. For a/d = 0.97
in Figures V.8a and V.8b, the R values are mut_:h higher because the sliding
- displacements are a much higher proportion of the opening displacements for cyclic
shear, especially for larger a/d ratios and shear strain amplitudes. For a/d = 1.97 in
Figures V.9a and V.9b, there are distinctions between the single and conjugate slip cases,
especially for 0.3 y,, with the single slip case promoting on the order of twice the amount
of sliding displacements as the conjugate slip '-case. At the higher strain amplitude of 0.9
¥, the R, values for the single and conjugate slip cases are quite comparable. The results
for the R, cyclic shear loading case reveal that only at increased a/d ratios (a/d > 0.97)
are sliding displacements si gnificahtly higher than the opening displacements. This also
points to the constraints that the surface plays a significant role in the behavior of small
cracks.

Another interesting feature exhibited in Figure V.9 is that R , for both single and
conjugate slip cases is-less than the elastic solution. This points to the effect of
surrounding grains and their influence on tﬁe sliding and opening behavior at thé crack
tip. The elastic solution, which is completely homogeneous, shows an enhanced ratio due
to the absence of constraint from surrounding grains. The cyclic tension-compression
case also shows evidence of the elastic solution which yields higher R values as
compared to the crystal plasticity micromechanical solutions. An additional comparison

between the two loading cases reveals that for the cyclic tension-compression case, the
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R, ranges from 0.1 to 0.5, whereas for the cyclic shear case, Rec ranges from 0.2 to 2.0.
For the cyclic shear case, the sliding displacements become more dominant with
increasing a/d ratios and applied strain, whereas for the cyclic tension-compression case,

there is a greater contribution of the opening displacements.

v.2.2 ACTD

This calculation is made in order to understand the relative dependencies of crack
length ratio and amplitude on ACTD for cyclic tension-compression and cyclic shear.

The ACTD is defined as

ACTD =y ACTOD * + ACTSD * V.5

For these calculations, the ACTSD and ACTOD are the ranges of the sliding and opening
displacements, respectively measured at 2 um behind the crack tip at the end of the third
cycle in the loading sequence. The ACTD calculated in this manner reflects the

magnitude of the vector sum of the sliding and opening displacements. The following

sections will explore the ACTD for both loading cases.
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V;2.2.1 Cyclic Tension-Compression

Figure V.10 shows the ACTD over the third cycle of loading as a function of
crack length ratio. Trend lines are also drawn for the different strain ampliiudes. For

cyclic tension-compression in Figure V.10a, the ACTD shows a strong dependence on
amplitude and crack length. What is striking is the strong dependence of the ACTD on
applied load for the elastic-plastic solutions reflected by the increasing slopes for a/d <
I (given in Table V.2a). For the ACTD plot iﬂ Figure V.10a, the minima at the first grain
boundary (a/d = 0.97) is the lowest as compared to the next grain boundary at a/d = 1.97.
- Thecurrent microrncchénicaj calculations differ from Li’s (140) results. Firsf, the
ACTD found here (for a/d < 1) increases from zero (for a/d = 0.25) then reaches a
maximum (around a/d = 0.5), then decreases (at a/d = 0.97). His results show a ACTD
that begins at a maximum value (at a/d = 0.25) then decreases to nearly zero (at a/d =
0.97). This mainly occurs because of the constraints he imposes for the displacements
along the crack plane and only allow for sliding along the crack plane which leads to
severe blockage of the sliding displacements. Further, he hasno means to account for a
free surface, not does any other continuously distributed dislocation band model which
mimics Hall-Petch type behavior (cf. Navarro and de los Rios (82-83)).
Focusing on the behavior within the first grain, for each amplitude, there is a
different slope which increases for increasing amplitude. The slopes, however, do not
increase in proportion with the applied strain amplitude. The slopes and corresponding

167



amplitudes are given in Table V.2a. By doubling the strain amplitude from 0.3 €,100.6
g,, the ACTD increases fivefold. By increasing the strain amplitude threefold, the ACTD

increases by a factor of 13. This also points to the considerable lack of constraint

afforded to small crack behavior due to the free surface. As the crack approaches the
grainboundary, the ACTD parameter shows a pronounced decrease for increasing applied
strains, especially for an adjacent grain which promotes conjugate slip. The crack length
,raﬁo and amplitude dependency of ACTD also persists into the next grain for strain
amplitudes of 0.6 &, and 0.9 ¢, The driving forces for 0.3 g, appear to be relatively

constant throughout all applied strain amplitudes and crack length ratios, consistent with

the elastic solutions for this dominantly displacement-controlled loading condition.

V.2.2.2 Cyclic Shear

For cyclic shear, the behavior is shown in Figure V.10b. Within the first grain
and for the shear strain amplitudes considered, there is little to no crack length ratio or
amplitude dependency of the ACTD. The slope is nearly the same for both shear strain
amplitudes showing minimal effect of the crack length ratio for a/d < 1. For a/d > 1,
there is a marked difference in the ACTD as a function of amplitude. For the 45° crack
loaded in tension, the normal stress across-the crack plane evidently has a greater effect

on the mode mixity at the crack tip for a/d < 1 as compared to the cyclic shear case. The
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ACTD for a strain amplitude of 0.3 v, shows a significant increase in the second grain as
compared to the first grain, an approximate 50% increase in the ACTD. For 0.9 Y, the
ACTD increases by nearly a factor of 7 from an a/d = 0.97 to an a/d = 1.97.

Another interesting observation of the ACTD is that cyclic tension-compression
has consistently higher values of the ACTD as compared to the cyclic shear case. One
explanation, as alluded to earlier, has to do with the normal stress across the crack plane.
This factor contributes significantly to enhancing the opening displacements which are
produced at the crack tip. As the previous R, plots (cf. Figs. V.3 - V.9) revealed, there
are proportionate contributions of the sliding and opening displacements for the cyclic
tension-compression case, whereas for the cyclic shear case, the sliding displacements
become dominant for increasing crack length ratios. It appears that although the sliding
displacements do become dominant for cyclic shear, these displacements are not greater

than the combined effect of the opening and sliding displacements that are produced for

the cyclic tension-compression case.
V.23 ACTSD/ACTOD
The ratio of the ranges of the CTSD and CTOD and is examined for these

calculations to elucidate the understand relative changes as a function of stress state and

amplitude.
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V.2.3.1 Cyclic Tension-Compression

Figure V.1 1 shows the ratio of the range of the sliding and opening displacements
for cyclic tension-compression over the third cycle of loading. For the smallest strain
amplitude, 0.3 €, (in Fig. V.11a) and within the first grain, the ratio is nearly unity. As
the a/d ratio increases from 1.25 to 1.97, the range of the sliding displacements progresses |
from 10% fo 40% higher than the range of the opening displacements. In Figures V.1 ib
and V.11c for strain amplitudes of 0.6 £, and 09 g, respectively, the behavior in the first
grain is much different than for 0.3 &,. As the first grain is approached, there is a steady
decrease in the ratio which means that at this barrier, the range of the opening
displacement is greater than the range of the sliding displacement. With increasing a/d
ratios, the raﬁge of the sliding displacements recovers and increases from 10% to 40%
higher than the range of the opening displacements for a/d ratios of 1.25 and 1.97. Of
course, for long cracks, one would expect this ratio of the ACTSD and ACTOD to
approach zero,

This behavior is markedly different from that commonly assumed for small cracks
in the first grain based on pile-up typ solutions. These results show a dominance of the

opening displacement for elastic-plastic cases, whereas the elastic solution is opposite in

nature,
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V.2.3.2 Cyclic Shear

Figure V.12 shows the change of the ratio of the range of the sliding and opening
displacementé for cyclic shear loading. These results differ substantially from the cyclic
tension-compression case. For the cyclic shear case, the ratio increases approximately
linearly throughout all a/d ratios considered. The elastic solution shows afe fairly good

estimate of the ratio for both strain amplitudes (0.3 ¥, and 0.9 v,), although for 0.3 Y, the

conjugate slip case shows an increased ﬁroportion of the range of the opening
displacements. The results for the cyclic shear case appear to point to a minimal effect
of the adjacent grain on this formulation of the driving force parameters since there is a
linear increase in this quantity for both amplitudes and crack length ratios considered.
Perhaps the driving force parameters are so high that the orientation of the surrounding

and adjacent grains do not significantly affect the mixity.

. Ar, Ay,
V.3 ACTD as a Function of Parameter

At A
The evaluation of the ACTD as a function of the product 2" mg’-'- for a given
crack length ratio potentially provides a direct correlation between this critical plane

quantity and the crack tip CTD. The quantity AT,/2 is the amplitude of the shear strain

on the plane of the maximum range of shear strain and Ay,/2 is the amplitude of the shear
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strain acting on the plane of the maximum range of shear strain. ACTD has been used

for correlating crack growth behavior under EPFM conditions. This parameter has also

been shown to scale with the J-Integral according to

Al o= — —q (V.2)

and as shown by McDowell and Berard

il

AJ

Ac As
S— - V.3
li’( > 5 J a (V.3)

The following sections report the relationship between the range of the CTOD and the

n

At
product —2-3 for different a/d ratios and stress states.

V.3.1 Cyclic Tension-Compression

Figures V.13a - V.13e show the variation of the ACTOD over the third cycle for
increasing values of the critical plane product. These plots reveal a linear relationship
which signifies that for increasing applied loads, the driving force increases in proportion,
as expected. What may not have been anticipated is the semblance of the slope of this

linear relationship for all a/d ratios considered. The average slope is approximately
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0.00166. It is also observed that both the single and conjugate slip cases have the same

behavior.
V.3.2 Cyclic Shear

Figures V.-14 a- V.14c show the relationship between the DCTOD and the critical
plane product. For this loading case, there is also a linear relationship between the
driving force and the applied load. The SIOpe?however, for this loading case is markedly
different from the cyclic tension-compreésion case. For the cyclic shear case, the slope
for a/d = 0.25 is the same for both the single and conjugate slip cases. For a/d =0.97 to
1.97, the Slop increases by nearly a factor of three. The changing slope is possibly due
to the increasing driving forcés which build up at the crack tip. Since there is no normal
stress across the crack plane for cyclic shear which may enhance or deter the CTSD or
CTOD, the driving forces accumulate and produces increased dependencies on crack

length ratio. For the cyclic tension-compression case, the driving force was independent

of crack length ratio.
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V.4 Conclusions

In evaluating the current form of the models for small crack growth, there appear
to be several implications based on the crystal plasticity fnicromechanical analyses. First,
the threshold regime was qualitatively evaluated using an uncracked polycrystal to
determine the elastic shakedown limits of cyclic microplasticity. There was a nonlinear
relationship between the maximum shear stress (averaged over all grains) and the local
maximum plastic shear strain (averaged over all grains). From evaluating different
relationships of the CTSD and CTOD, it was found that cyclic tension-compression
showed a greater dependency on the amplitude and crack length ratio, whereas for the

cyclic shear case, there was limited dependencies only for increased crack length ratios.

174



0.018
0.016 -
0.014 -
0.012 A
4Y  go10 -
0.008 -
0.006 -
0.004 -
0.002 -
0.000 -

AT '
2 avg

Figure V.1 Comparison of the maximum shear strain amplitude on a slip system
and the maximum plastic shear strain amplitude (averaged over all grains) as a
function of the average amplitude of themaximum shear stress for (a) cyclic
tension-compression and (b) cylcic shear,
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Figure V.2 Relationship between the amplitude of the maximum average shear
stress and the shear strain amplitudes showing relative intensity between the
maximum shear strain on a slip system and the maximum plastic shear strain
(a) cyclic tension-compression and (b} cyclic shear.
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Figure V.3 Ratio of ICTSD/CTOD! for cyclic tension-compression loading for
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Figure V.10 ACTD as a function of crack length ratio at a distance of

2 um behind the crack tip after 3 cycles of loading for (a) cyclic tension-
compression and (b) cyclic shear.
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Table V.1 Estimates of Shakedown Limits based on

Micromechanical Solutions for 4340 Steel

_ Elastic Shakedown Fully Plastic Limits
Leading Case At Strain At Strain
2 Amplitude 9 Amplitude
Cyelic Tension- | 46 Mpa | 0.4, = 00026 | 300MPa | 0.9¢, = 0.00585
Compression y
Cyclic Shear | 220MPa | 0.4y, =0.00168 | 450MPa | 0.9y, = 0.00378

Table V.2a Relationship between the Applied Strain Amplitude and

the Initial Slope of the ACTD vs. a/d for a/d < 1 for Cyclic Tension-Compression

Strain Amplituﬁe APPPOXme Slope
03¢, 0.0005
06¢, 0.0025
09¢e, 0.0066

Table V.2b Relationship between the Applied Strain Amplitude and
the Initial Slope of the ACTD vs. a/d for a/d < 1 for Cyclic Shear

Shear Strain Approximate Slope
Amplitude (mm)
0.3, 0.00001
0.9y, 0.00001
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Table V.3a Slope, /, for Cyclic Tension-Compression
for different crack length ratios

a/d Slope, [
0.25 0.00101
0.5 0.00212
0.97 000176
1.25 0.00214
1.97 _~ 0.00127

Avg. Slope 0.00166

Table V.3b Slope, /, for Cyclic Shear for different crack length ratios

a/d Slope, I
S'ingle Conjugate
Slip Slip
0.25 - 0.00006 0.00006
0.97 0.000202 | 0.000156
-1.97 0.000547 | 0.000474
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

YL.1__Conclusions

The problem of estimating the remaining life in components under HCF conditions is
the limiting factor of properly assessing the small crack regime. Since small cracks may
account for 50-90% of the total life of the cotmponent (for N; = 1 mm), characterizing this =~
regime with the correct dependencies is crucial. With many of the factors with affect small
crack behavior such as the role of the free surface, microstructural barriers and
inhomogeneities, surface roughness, and grain boundary blockage, developing and ‘all-
inclusive’ small crack model is indeed a challenge. Although there have béen many
advances through the work of many researchers (18, 77), providing a mechanistic assessment
of these factors has been lacking. This work is an effort to shed light on some of the first
order effect such as the effect of the lack of constraint due to the free surface, effect of
surrounding (not only adjacent) grains on the crack tip behavior, as well as the limits for
cyclic microplasticity. A crystal plasticity micromechanical model embedded with a finite
element context was used to assess these factors. This points to one of the advantages of.
using finite elements coupled with micrbmechanical concepts - no adhoc assumptions are
made regarding grain-to-grain interactions. Using 2-D planar double slip crystal plasticity

embedded in a finite element context allows for the assessment of heterogeneity effects

192



caused by plasticity within individual grains and the interactions among these grains. The

primary goal of the proposed research is to address many-of the outstanding issues which

hinder development of a satisfactory theory for fatigue growth of small/short cracks in

structures, including:

(i)

(i)

(1if)

(iv)

(v)

establishing a framework for correlation/prediction of fatigue crack growth of small
fatigue cracks consistent with concepts of elastic-plastic fracture mechanics and
critical plane theories of multiaxial fafigue, focusing on growth of microstructurally
short cracks and physically short cracks;

developing crack length-, amplitude- and stress state-dependent criteria for the
transition from one regime to the next to denote limits of applicability of certain
correlative forms: regimes include propagation of microstructurally small/short
cracks where barriers control intermittent growth behavior, physically small/short
cracks in Stage I shear-dominated growth under the weakening influence of
microstructure, and Stage II normal stress-dominated growth of physically
small/short cracks and long cracks;

understanding the propagation behavior of microcracks as a function of stress state
and amplitude and developing appropriate modeling concepts;

introducing threshold conditions for cyclic microplasticity and nonpropagating cracks
(i.e. fatigue limit) into the framework of a multiaxial HCF fatigue theory;

incorporating distribution attributes of microplasticity and microcracks (i.e.
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orientation and crack density) to facilitate prediction of propagation of microcracks

under variable stress state loading conditions.

The first set of analyses was determining the dependencies on the development of
heterogeneity of the microstructure and its effect on the behavior of an uncracked polycrystal
as well as small fatigue cracks. Understanding the nature of the heterogeneity of cyclic
microplasticity and its effect on small crack behavior is an essential component in devising
improved formulations for small fatigue crack growth laws ranging from the
microstructurally small crack to the long crack regime. Although the micromechanical
analyses mainly provide results which are qualitative in nature, analyses of this type are
innovative in that they incorporate the effect of the free surface and the effect of nearest
neighboring and surrounding grains. The outstanding issues addressed in this work are to
fully incorporate the effects of periodic barrier interactions, non-propagating crack limits and
shakedown of microplasticity.

The uncracked analysis were utilized to determine the distribution of three candidate
fatigue initiation parameters to determine which one correlates more closely correlates with
the density and distribution of microcracks found experimentally. The Fatemi-Socie
parameter produced distributions which were indicative of the nature of the accumulation of
the cyclic microplasticity and it best correlated with fatigue data for nominally HCF
conditions. Both elastic and elastic-plastic shakedown limits are qualitatively determined,
where the elastic shakedown limit also corresponded with the smooth specimen fati gue limit

for cyclic tension-compression. It was also found that there was an accentuation of the

194



maximum of the plastic shear strain amplitude above the average plastic shear strain for the
aggregate, -

A distinguishing feature of the cracked analygis performed is the inclusion of the
effect of the surface and the contribution of the surrounding (not only adjacent) grains to the
behavior at the crack tip as opposed to Li (137 ) in his bicrystal analyses. What had not been
explored up to this point are the effects ofrthe relative orientation of the adjacent grain on
directly influencing the mode-mixity of the CTOD and CTSD. The cyclic tension-
compression results showed that there is evidence of local ratchetting of the sliding and
opening displacements, even though the applied stain level is completely reversed. Cyclic
shear shows this behavior for 2 >a/d >7. The effects of plasticity-induced closure are readily
demonstrated in the cyclic behavior of the CTOD and CTSD.

An evaluation of the mode mixity of the sliding and opening displacements for stress
state, amplitude, and crack length ratio dependency was performed. Mode mixity and
nonproportional CTSD and CTOD is reflected sooner for cyclic tension-compression as
compared to the cyclic shear case; mode-mixity does occurs for both stress states considered
(tension-compression and shear). The formulation proposed has specific dependencies -
crack length ratio, stress state and amplitude - which are more physically based.

In view of the strong amplitude and stress state dependence of crack growth in the
first regime, the nonlinearity of crack length dependence in the growth law depends both on
the strain range and the degree of biaxia]ity. The microcrack propagation law to be

developed here is consistent with critical plane concepts for multiaxial stress states as
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demonstrated previously by McDowell & Berard (1-2) as well as observations of fatigue
crack growth behavior for short cracks (3-10). This is of practical significance since
effective stress and strain concepts do not accurately correlate fatigue life, in general, over
a wide range of stress states. The present approach offers treatment of nonlinear cumulative
damage and.sequence effects, simil.ar-to that of démage curve (11} and related continuum
damage mechanics (12) approaches.

The modelling effort was aimed at providing a physically consistent format for
propagation of microcracks as influenced by microstructural barriers, amplitude and stress

state. Several principal areas require development:

1. The grain-to-grain variation of the amplitude and orientation of cyclic slipis expected
to play an increasingly strong role in the distribution and growth rate of microcracks with
decreasing stress amplitude. Under HCF conditions, 2 much less uniform field of
microcracks is typically observed compared to LCF conditions. Accordingly, we will make
use of continuum slip crystal plasticity theory to relate the macroscopic stress state and
amplitude to a distribution of driving forces among grains. Such effects are expected to play
a more significant role for cracks on the order of several grain sizes and below; as cracks
lengthen in fatigue, they begin to significantly influence the local driving forces for
propagation, with diminishing influence of microstructure. Calculations will be performed
using a planar double slip idealization of crystal plasticity (17-18) for a random, initialliy

isotropic ensemble of grains subject to a range of constant amplitude stress states to
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understand the nature of the distribution of cyclic slip and normal stress to slip planes as a
function of amplitude and stress state. Combined kinematic-isotropic hardening cyclic

plasticity laws will be assumed at the slip system level (cf. (19)) to match the observed cyclic

stress-strain response for the aggregate of grains. Moreover, the contribution of
misorientation to blockage of fatigue crack growth under HCF conditions must be taken into

account.

2. Using two dimensional finite element solutions based on planar double slip as an

approximation of three-dimensional cfysta] plﬁsticity, the cyclic stress and strain distribution

in the vicinity of the crack tip will be determined for cracks with length ranging from sub-

grain dimension to up to 10 grains in an equiaxed microstructure. It will be assumed that

growth occurs in the orientation of one of the two slip systems in each grain (i.e. Stage I

growth). Each grain will have one overall orientatioﬁ of slip systems initially; to capture

gradient effects of deformation within grains, it will be necessafy to subdivide the grain into _
compatible elements with the same initial orientation which experience different degrees of
slip.

The resulting information will be used to develop an approach for propagation of
small cracks in the presence of microstructure interactions, including amplitude and stress
state effects. Furthermore, since the grain size appears explicitly in the calculations, it may
be possible for the first time to quantify the elusive conditions for transition from Stage I to
Stage II in terms of the ratio of crack length to grain size, including possible additional

effects of stress state and amplitude. These calculations should also shed additional insight
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into mechanisms of arrest for sub-grain size cracks and the occurrence of a fatigue limit as
a function of stress state. Furthermore, the basis for transition from nonlinear, perhaps
oscillatory, crack length dependence to approximately linear crack length dependence
observed for crack lengths in excess of 3-5 grain diameters might be understood from these
calculations. By considering the cyclic crack tip opening as a function of crack length,
amplitude and stress state, these calculations might also serve to improve on the isotropic
continuum finite element calculations (cf. (20)) which presently serve as a basis for

accounting for plasticity-induced crack closure effects.

VI.2 Recommendations

The recommendations for this work are concerned with expanding the description of
the microstructure as well as including a simulated roughness-induced closure effect for
small fatigue cracks. Qualitative analyses of this type are crucial in providing an
understanding of the mechanisms which contribute to the anomalous behavior of small

cracks as well as the changing role of the microstructure and its effect on the crack growth

rate.
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VI.2.1 Slip Intensification

In using 2-D planar double slip crystal plasticity concepts in simulating the
microstructure, equal probability of slip on either slip system was assumed for all
micromechanical analyses such that plasticity effects are only included in the model. For the
crack analyses which align one of the two slip systems along the crack plane, additional
analyses were performed such that the slip system that was aligned with the crack plane was
modeled with a slip system resistance that was 20% lower than the resistance on the other
slip system. This was done to determine if preferential softening along one slip system
would have an effect on the amount of slidiﬁg aﬂd opening displacements as compared to the
slip systems with equal resistance, G. In a similar work by Repetto and Ortiz ( ), they used
planar double slip crystal plasticity to simulate the behavior of a persistent slip band such that
a “band” of material was given properties which allowed material along that direction to
experience preferential softening, thereby producing increased sliding displacements along
that direction.

All cases considered for these analyses were performed at 90% of the yield strain and

displacements were taken at 2 jtm behind the crack tip. Figure VI.1 shows the cyclic CTSD

and CTOD results for a crack oriented at 45° with respect to the tensile axis for a/d = 0.25.
The sliding and opening displacements from the previous analyses with equal resistance on

the slip systems are also plotted. The results show that at 2 m behind the crack tip, there |
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is nearly a 12% increase in the opening and sliding displacements for both the single and
conjugate slip cases with preferential softening as compared to the cases with equal slip
resistance.

Figures V1.2-V1.4 show the cyclic CTSD and CTOD results for a crack oriented at
90° with fesﬁect to the tensile axis for a/d = 0.25, 0.97, and ‘l 97, respeétively. For the two
highest strain amplitudes, there was no appreciable difference in the CTSD and CTOD for
cases of preferential slip and equal slip resistence. One explanation is that the driving forces

for remote shear loading and at the amplitucie of 0.9 vy, (for a/d = 0.97 and 1.97) are high

\

4

enough such that the resistence to slip has a minimal effect on accentuating driving forces

which are already elevated.
VL.2.2 Remeshing with Growing Small Crack

Studying the effects of differing crack paths is another consideration in understanding
the effects of heterogeneity on the behavior of small fatigue cracks. In recent work by
Gardner and Qu (), a remeshing technique in ABAQUS () has been formulated which uses
a K criterion to grow a small surface crack in a 2-D field. The model correctly shows the
fatigue growth (under cyclic tensile loading) of a small crack from Stage I to Stage I crack
growth. By combining planar double slip crystal plasticity within a finite element mesh with
a remeshing algorithm, more of a statistical aspect for small crack growth behavior may be

obtained.
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V1.2.3 Frictional Contact along the Crack Face

Since plasticity effects were considered for this work, a second order aspect of small
crack growth is the consideration of frictional contact along the crack face. Friction would
not only offer resistance to crack face motion, but would serve as a means to quantify

roughness-induced closure effects for small fatigue cracks. A coefficient of friction of 0.4

was used for all cases.
V1.2.3.1 Cyeclic Tension-Compression

In Figures IV.7 - IV.8 is the plot for friction along the crack face. The addition of
friction along the crack face does effectively reduce the amount of sliding displacements with
a limited effect on the opening displacements. At the amplitude of 0.9 g,, the sliding

displacements are effectively reduced by one half upon entering the third cycle of loading,

VL.2.3.2 Cyclic Shear

In Figures IV.9 - IV.10 show the effect of friction for the cyclic shear case. For a/d
= (.25, there is minimal affect of the friction on the sliding and opening displacements. For
a higher a/d value in Fig. IV.10, there is a marked difference in the sliding behavior,
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especially for increased cycling.
V1.2.4 Numerical Simulations of Small Crack Growth

In determining the remaining life of components under HCF, there are many tools at
the disposal of the researcher. One of the numerical tools that has recently been applied to
model small crack growth is expert systems. Steadman et al. (141) applied a novel numerical
algorithm - an expert system methodology - which captures the dilstortion effects associated
with the small crack front including trapping (retardation) as well as eventual circumvention
of each obstacle. For cyclic loading conditions, a history of crack front shapes and‘associated
growth rates are simulated as the crack front advances. Expert system methodologies can
be thought of as the next generation of Monte Carlo simulations (142) for they provide
another layer of detail for the microstructure and growth simulation capabilities. Although
this method has only been applied to one layer or one dimension of crack expansion, it can
be readily expanded to simulate a more three-dimensional crack front. Some constraints to

the numerical simulations are closure levels cannot be properly determined.
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Figure V1.2 Cyclic CTOD and CTSD for cyclic tension-compression

loading for crack oriented at 45° with a/d = 0.25 for a strain amplitudes
of O.QEy with preferential softening of 0.8*g1 (along slip direction aligned

with the crack plane) at a displacement of 18 pm behind crack tip for

(a) single and (b) conjugate slip.
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with the crack plane) at a distance of 2 pm behind crack tip for
(a) single and (b) conjugate slip.
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with preferential softening of 0.8*g1 (along slip direction aligned with

the crack plane) at a distance of 2 pum behind crack tip for
(a) single and (b) conjugate slip.
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of 0.9 €, with a coefficent of firction of 0.4 on the crack faces at a distance

of 2 um behind the crack tip for single and conjugate slip cases
(a) for all three cycles and (b) exploded view of first two cycles.
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Figure VI8 Cyclic CTSD and CTOD for cyclic tension-compression
loading for crack oriented at 45° with a/d = 0.97 for a strain amplitude

of 0.9 g, with a coefficent of firction of 0.4 on the crack faces at a distance

of 2 um behind the crack tip for single and conjugate slip cases
(a) for all three cycles and (b) exploded view of first two cycles.
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Figure VI.9 Cyclic CTSD and CTOD for cyclic tension-compression
loading for crack oriented at 90° with respect to the tensile axis with

a/d = 0.25 for a strain amplitude of 0.9 Y, with a coefficent of firction

of 0.4 on the crack faces at a distance of 2 um behind the crack tip for
single and conjugate slip cases (a) for all three cycles and
(b) exploded view of first two cycles.
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Figure V1.10 Cyclic CTSD and CTOD for cyclic tension-compression
loading for crack oriented at 90° with respect to the tensile axis with

a/d = 0.97 for a strain amplitude of 0.9 Y, with a coefficent of firction

of 0.4 on the crack faces at a distance of 2 pm behind the crack tip for
single and conjugate slip cases (a) for all three cycles and
(b) exploded view of first two cycles.
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