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SUMMARY 

 

The objective of this research is to advance the field of rotor and load fault 

detection in brushless direct current (BLDC) motors operating under a variety of 

operating conditions ranging from constant speed to continuous transient operation.  This 

involves recognizing the rotor and fault signatures produced in BLDC motors, and 

estimating the severity of the fault both under stationary and non-stationary operating 

conditions.   

A description of various kinds of rotor and load faults that can occur in a BLDC 

motor operated system is presented.  The methods available to detect such faults in 

motors, including BLDCs operating at a constant speed, are discussed.  The effects of 

various rotor faults on the motor current spectra of a BLDC machine are investigated 

through experiments.  It is also theoretically as well as experimentally demonstrated that 

faults in gears coupled to electromechanical devices may be detected by monitoring 

either the voltage or current in the electromechanical device.  This may offer an 

inexpensive alternative to vibration-based diagnostics that require accelerometers, which 

are very expensive.   

Various current-based detection techniques available to detect rotor faults in 

electric motors operating in transient (non-stationary) operating conditions are reviewed.  

The techniques available in the mechanical engineering area to detect non-stationary fault 

signals are also discussed.  Three algorithms are proposed to track and detect rotor faults 

in BLDC motors operating in non-stationary conditions: the windowed Fourier ridge 

algorithm, the quadratic time-frequency distribution based fault detection algorithm, and 

 xx



finally the analytic wavelet based method.  The windowed Fourier ridges method is easy 

to implement in real-time and can provide all-time monitoring of motor health.  The 

quadratic time-frequency distribution also offers excellent tracking and may help in fault 

detection at lower motor speeds due to its better frequency resolution capabilities.  The 

concepts are validated experimentally using sinusoidal, triangular as well as random 

speed references. 

Some selected time-frequency distributions are also implemented on a digital 

signal processing (DSP) platform to demonstrate the viability of using them in a real-time 

commercial system.  A simple fault metric based on the RMS of the fault ridges is also 

proposed to aid in fault detection.  This fault classifier uses an adaptive thresholding 

scheme to warn the operator of an impending fault.  Finally, a comprehensive condition 

monitoring scheme to track and detect rotor/load faults in BLDC motors is suggested. 

 xxi



 

 

CHAPTER 1  

INTRODUCTION AND OBJECTIVE OF RESEARCH 

 

1.1  Problem Statement 

Brushless Direct Current (BLDC) motors are one of the motor types rapidly 

gaining popularity.  BLDC motors are used in industries such as appliances, automotive, 

aerospace, consumer, medical, industrial automation equipment and instrumentation.  As 

the name implies, BLDC motors do not use brushes for commutation; instead, they are 

electronically commutated.  BLDC motors have many advantages over brushed DC 

motors and induction motors.  A few of these are: better speed versus torque 

characteristics, high dynamic response, high efficiency, long operating life, noiseless 

operation, higher speed ranges.  In addition, the ratio of torque delivered to the size of the 

motor is higher, making it useful in applications where space and weight are critical 

factors [1].   

More BLDC machines are therefore being used, often in critical high performance 

applications. Fault diagnosis and condition monitoring of BLDC machines are therefore 

assuming a new importance. Early detection of faults and asymmetries could allow 

preventive maintenance to be performed and provide sufficient time for controlled 

shutdown of the affected process, thereby reducing the costs of outage time and repairs. 

Though considerable research has been reported in the diagnosis of induction motor 

faults, much research remains to be done in the diagnosis of particularly rotor faults in 

BLDC machines. 
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It is important to be able to detect faults while they are still developing.  This is 

called incipient failure detection.  Timely warning that can be followed by maintenance 

can avoid catastrophic failures and costly long down times.  The incipient detection of 

failures also results in a safer operating environment.  The high power density and high 

efficiency of the permanent magnet (PM) machine have led to the use of this machine in 

applications in which the high reliability of the machine is a key-feature.  Faults can 

occur in the stator, rotor, inverter, or the external systems connected to the machine.  

Redundancy and conservative design techniques have been widely adopted for improving 

the reliability of PM drives against a variety of failures that can occur [2].  However, 

these techniques are expensive to realize. As an alternative, considerable diagnostic 

strategies and control schemes can be devised to ensure a fault-tolerant control drive.  

Vibration monitoring is the most popular choice for condition monitoring but is preferred 

for use only in large machines where expensive accelerometers could be afforded.  

Electrical monitoring, which includes current based monitoring, is the most recent of all 

condition monitoring techniques and is inexpensive as electrical sensors are lower in cost 

compared to mechanical transducers.  The emphasis of this research is therefore on the 

development of a diagnostic scheme that uses readily available electrical signals in an 

electric motor, namely the motor stator current and terminal voltage. 

The particular application where a BLDC motor is used also plays an important 

role in the type of diagnostic scheme to be used.  Most of the available literature in the 

field of electrical motor diagnostics assumes that the motor is operating at a constant 

speed. This however is seldom the case in a real-life application and is even more so in 

BLDC motors which are often used in servo applications.  A motor operating in such a 
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non-stationary environment has a non-stationary voltage and current signal.  The term 

non-stationary in signal processing literature has a different connotation and is usually 

described statistically [3].  However, from an electric motor’s operating point of view, 

this term simply refers to an operation where the motor’s operating point is continuously 

changing with time and the motor is never operating at a constant speed throughout its 

operation.  Analysis of non-stationary signals is inherently complicated as simple and 

commonly used signal processing algorithms such as the fast Fourier transform (FFT) 

cannot be used.  This means that more sophisticated signal processing techniques often 

under assumptions of local or slow stationarity are needed.  Even under these 

assumptions it is difficult to arrive at a solution that may be effective over a wide range 

of operating conditions and faults.  This aspect of condition monitoring forms an 

important part of this research and is investigated in detail. 

1.2  Objective  

The objective of this research is to advance the field of rotor and load fault 

diagnosis in BLDC machines operating in a variety of operating conditions ranging from 

constant speed to continuous transient operation.  This objective is addressed as three 

phases in this research.   

The first phase experimentally characterizes the effects of rotor faults in the stator 

current and voltage of a BLDC motor operating at constant speed.  To achieve this, the 

various BLDC motor faults such as eccentricities, unbalanced rotors, and demagnetized 

rotor magnets are replicated in a laboratory and their effect on the spectrum of the motor 

voltage and current studied.  This helps in better understanding the behavior of rotor 

defects in BLDC motors. 
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The second phase investigates faults in loads coupled to a BLDC motor and their 

effect on the motor current and voltage spectrums.  Based on this investigation, methods 

to detect faults in loads coupled to BLDC motors by monitoring the motor stator current 

are proposed.  The load faults investigated occur in gear trains and coupling arrangements 

that are connected to a BLDC motor.  Several gear defects are replicated in the laboratory 

and their effect on the motor current and voltage spectrum is studied. 

As most BLDC applications involve non-stationary operating conditions, the 

diagnoses of rotor faults in non-stationary conditions form the third and most important 

phase of this research.  Several signal processing techniques are reviewed to analyze non-

stationary signals.  Several algorithms are proposed that can track and detect rotor faults 

in non-stationary or transient current signals.  These algorithms are also compared to 

suggest a recommendation to select an appropriate algorithm for a particular non-

stationary operation depending on the available computing power for processing these 

methods.  One common myth is that most of the signals processing techniques used for 

non-stationary signal analysis are not suitable for commercial implementation. This issue 

is addressed in detail. Optimal discrete time implementations of some of these techniques 

are explained. These techniques are also implemented on a digital signal processing 

(DSP) platform to demonstrate that the proposed methods can be implemented 

commercially. 

1.3  Outline of Dissertation 

To familiarize the reader with BLDC motor condition monitoring, Chapter 2 

briefly reviews the fundamentals of BLDC motors and the commonly occurring fault 
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mechanisms.  The need for condition monitoring as well as the more commonly used 

diagnostics techniques are also presented in this chapter. 

The previous work in BLDC motor condition monitoring is reviewed in Chapter 

3.  This includes existing research in academia and industry in the area of non-stationary 

motor fault diagnostics.  A detailed discussion of load fault, especially gear fault, 

detection is also presented. 

The first major contribution of this research is presented in Chapter 4 where the 

effect of rotor faults on a BLDC motor operating at constant speed, are analyzed. It is 

shown that different rotor faults such as eccentricities, unbalanced rotors, and 

demagnetized rotor magnets create unique fault signatures in the motor current spectrum 

and could be used to diagnose the health of the motor. 

Chapter 5 presents a new method to detect faults in loads such as gears connected 

to BLDC motors by simply monitoring either the stator current or the motor line-to-line 

voltage, or both.  Various gear and coupling faults are implemented.  The gear faults 

include broken teeth, loss of lubrication, and debris inside the gear.  The results are also 

compared with simulation results. It is also shown that the proposed method can 

distinguish gear and coupling defects from other motor related defects. 

Chapter 6 introduces the challenges behind the most important contribution of this 

research work, namely the detection of faults in BLDC motors operating under non-

stationary conditions.  A thorough review of the various signal processing techniques that 

could be used for non-stationary signal analysis is presented.  Three of these techniques 

are developed into fault detection algorithms and are presented in Chapters 7 – 9. 
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Chapter 10 discusses fault classification schemes that can discriminate a faulty 

motor from a good one.  A comprehensive condition monitoring scheme to classify rotor 

faults is also provided.  Finally, a thorough comparison of the various non-stationary 

motor diagnostic schemes is carried out that includes the implementation of some of 

these techniques on an actual digital signal processing (DSP) platform. 

Conclusions, contributions, and recommendations for future work are discussed in 

Chapters 11. 
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CHAPTER 2  

BACKGROUND 

 

To facilitate a clearer understanding of the proposed condition monitoring 

schemes, the operation of a BLDC motor is now considered in more detail.  The various 

modes by which BLDC motors and their loads fail, and the mechanisms by which they 

induce fault signatures into the machine vibration and stator current, are also discussed. 

2.1  Brushless DC Machines (BLDCM) 

The availability of efficient semiconductor switches has provided a means for 

eliminating the mechanical switching on commutator machines while retaining many of 

their useful properties.  This type of permanent magnet machine is called a brushless DC 

machine.  Figure 2.1 displays some BLDC motors along with a stators and a rotor.  These 

machines have a rectangular air-gap flux density and produce a trapezoidal back-emf in 

the stator.  Back-emf waveforms for an ideal case are shown in Figure 2.2.  The BLDC 

motor is specifically designed to develop nearly constant output torque when excited with 

six-step switched current waveforms, as shown in Figure 2.3 [4].  The stator windings are 

generally similar to those of an induction or a synchronous motor except that the 

conductors are distributed uniformly; that is, concentrated full-pitched windings are used 

to increase the width of the trapezoidal back-emf plateau region [5].  The rotor typically 

consists of surface-mounted permanent magnets that span 180-degree magnet arcs with 

non-overlapping phase belts of 60 degrees electrical.  

 
7



 

 

Figure 2.1:  BLDC motors including a stator and a rotor. 

 

 

Figure 2.2:  Induced emf in three phases. 
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Figure 2.3:  Typical back-emf and phase current waveforms for a BLDC motor. 

 

Figure 2.2 shows that during every 60-degree interval, two of the phases have emf 

waveforms that are flat [5].  In the operation of a BLDC machine, during each of these 

60-degree intervals, the two phases with the flat emf waveforms are effectively connected 

in series and the current through them is controlled, while the third phase is open. 

This produces a net electromagnetic torque that does not fluctuate with the rotor 

position.  The phase-to-phase back-emf for a two-pole BLDC machine is given by 

ph ph E me k ω
−

=   where  4E s fk N B lr= , (2.1)

and the net electromagnetic torque for a two-pole BLDC machine is given by 

em TT k= I lr where 4T s fk N B= , (2.2)

where kE is the voltage constant in V/(rad/s), ωM is the rotor speed in (rad/s), Ns is the 

total number of turns per phase in the concentrated winding, Bf is the average air-gap flux 
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density in Tesla, l is the length, r is the radius of the rotor in meters, kT is the torque 

constant in Nm/A, I is the converter’s DC link current in Amps, and kE = kT. 

Equation 2.2 is particularly significant since it indicates that the torque developed 

by the machine can be controlled directly by varying the current amplitude.  This 

similarity to a conventional DC motor gives the motor the name brushless DC.  Despite 

the popularity of this name, brushless DC is actually quite misleading since the 

trapezoidal back-EMF machine is fundamentally a synchronous AC machine and not a 

DC machine as the name implies [6].  Thus, the BLDC motor behaves like a commutator 

motor.  Its no-load speed is approximately proportional to the applied direct voltage, and 

the speed reduces somewhat with torque because of the voltage drop across the winding 

resistances.   

The process of switching the current to flow through only two phases for every 

60-degree rotation of the rotor is called electronic commutation.  The motor is supplied 

from a three-phase inverter.  The switching actions can be simply triggered by the use of 

signals from position sensors that are mounted at appropriate positions around the stator.  

One of the more common position sensors is a set of three Hall-effect sensor switches 

mounted in or near the machine’s air gap to detect the impinging magnetic field of the 

passing rotor magnets [7].  When mounted at 60-degree electrical intervals and aligned 

properly with the stator phase windings, these Hall switches deliver digital pulses that can 

be decoded into the desired three-phase switching sequence.  A BLDC motor drive with a 

six-step inverter and Hall position sensors is shown in Figure 2.4.  Such a drive usually 

also has a current loop to regulate the stator current, and an outer speed loop for speed 

control.  There are only six discrete inverter switching events during each electrical cycle. 
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Only two inverter switches, one in the upper inverter bank and one in the lower inverter 

bank, are conducting at any instant.  These discrete switching events ensure that the 

sequence of conducting pairs of stator terminals (Figure 2.5) is maintained.  In Figure 2.5, 

the conducting phases are indicated during each 60-degree interval, where one phase has 

a current, +I, (indicated by +), one phase has a negative current, -I, (indicated by -), and 

the third phase has zero current (open) [5].  Here, I is assumed to be a constant current 

through each of the three phases while the rotor is rotating (Ia =I).  Thus, during every 

60-degree interval a constant current, I, flows through any two of the motor phases 

resulting in a net constant electromagnetic torque [5].  This sequence of conducting pairs 

is essential to the production of a constant output torque. 

 

Figure 2.4:  Electronically commutated BLDC motor drive. 
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Figure 2.5:  Phase currents for a constant torque in a BLDC motor. 

 

The phase shift angle, α, indicated in Figure 2.3, is typically set by the physical 

alignment of the rotor angular position sensor that performs the self-synchronization, 

thereby controlling the electronic commutation.  The angle, α, is held as near to zero as 

possible to maximize the torque and the output power.  This corresponds to the standard 

practice of aligning the commutator brushes in a conventional DC motor, such that the 

brushes are orthogonal to the magnetic flux imposed by the stationary field. 

2.2  Need for Condition Monitoring in BLDC Machines 

The BLDC motors have many advantages over brushed DC motors and induction 

motors.  A few of these are better speed versus torque characteristics, high dynamic 

response, high efficiency, long operating life, noiseless operation, and higher speed 

ranges.  In addition, the ratio of the torque delivered to the size of the motor is higher, 
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making it useful in applications where space and weight are critical factors [1].  

Therefore, BLDC machines are being used more often in critical high-performance 

applications. Fault diagnosis and condition monitoring of BLDC machines are therefore 

assuming a new importance. 

Condition monitoring is defined as the continuous evaluation of the health of the 

plant and equipment throughout its service life [8].  It is important to be able to detect 

faults while they are still developing.  This is called incipient failure detection.  A timely 

warning that can be followed by maintenance can avoid catastrophic failures and costly 

long down times.  The incipient detection of motor failures also provides a safe operating 

environment.  

The high power density and high efficiency of the permanent magnet (PM) 

machine have led to its use in applications where the high reliability of the machine is a 

key-feature.  Redundancy and conservative design techniques have been widely adopted 

for improving the reliability of PM drives against the variety of failures than can occur 

[2].  However, these techniques are expensive to realize. As an alternative, considerable 

diagnostic strategies and control schemes can be devised to ensure a fault-tolerant control 

drive.  

2.3  Internal Faults in BLDC Motors 

Potential faults inside a BLDC motor can be categorized as stator faults, inverter 

faults, rotor faults, and bearing faults.  The detection of rotor and load-related faults in 

BLDC machines is the main focus of this research.   
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2.3.1  Stator Faults 

The most frequently occurring stator fault is the breakdown of the winding 

insulation.  This usually occurs in the region where the end windings enter the stator 

slots.  It is caused by large electrical voltage stresses, electro-dynamic forces produced by 

winding currents, thermal aging from multiple heating and cooling cycles, and 

mechanical vibrations from internal and external sources.  This winding insulation 

breakdown can result in turn-to-turn faults that eventually lead to short circuits to ground, 

resulting in the so-called grounded stator windings.  Recent research [9] has been done to 

detect the fault while it is still in the turn-to-turn fault stage, so that the machine can be 

shut down before the more catastrophic grounded stator winding faults occur. 

2.3.2  Inverter Faults 

Almost all permanent magnet motors including the BLDC motors are inverter-

fed.  There are also some machines that are line started.  However, the latter machines 

need damper windings.  Many faults can occur in the inverter, such as the loss of one or 

more of the switches of a phase, the short circuit of a switch, and the opening of one of 

the lines to the machine. 

2.3.3  Rotor Faults 

Potential rotor faults in BLDC machines are eccentricities, damaged rotor 

magnets, and damaged Hall sensors.  All of these rotor faults cause problems such as 

vibration and noise.  They also cause dynamic problems by adding on to the motor’s 

torque pulsations.  These faults are explained here in more detail. 
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2.3.3.1  Rotor Eccentricities 

In an ideal machine, the rotor is center-aligned with the stator bore, and the rotor’s 

center of rotation is the same as the geometric center of the stator bore as shown in Figure 

2.6.  A rotor eccentricity is a condition of unequal air gap that exists between the stator 

and the rotor.  Air-gap eccentricity can occur in the form of static or dynamic 

eccentricity.  In the case of a static eccentricity, the position of the minimum radial air-

gap length is fixed in space.  Typical causes of static eccentricity include stator core 

ovality or incorrect positioning of the rotor or the stator at the commissioning stage.  A 

dynamic eccentricity occurs when the center of the rotor is not at the center of rotation 

and the minimum air gap revolves with the rotor.  This means that a dynamic eccentricity 

is a function of space and time.  Typical causes of a dynamic eccentricity include bent 

shafts, mechanical resonances at critical speeds, and bearing wear.  Figure 2.7 shows an 

illustration of how the rotor would rotate in the presence of each type of air-gap 

eccentricity [10]. 

 

 

Figure 2.6:  Ideal electric motor (non-eccentric air-gap). 
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Figure 2.7:  Illustration of static and dynamic air-gap eccentricity. 

 

When the eccentricity becomes large, the resulting unbalanced radial forces (also 

known as unbalanced magnetic pull or UMP) can cause a stator-to-rotor rub, which can 

result in damage to the stator and the rotor [11].  In the case of static eccentricity, this is a 

steady pull in one direction.  This makes the UMP in a static eccentricity difficult to 

detect unless special equipment is used, which is impractical for motors in service [12, 

13].  A dynamic eccentricity on the other hand produces a UMP that rotates at the 

rotational speed of the motor and acts directly on the rotor.  This makes the UMP in a 

dynamic eccentricity easier to detect by vibration or current monitoring. 

2.3.3.2  Damaged Rotor Magnet 

An air-gap flux disturbance that results from some anomaly of the permanent 

magnets is also an important fault that occurs frequently in BLDC motors.  It is well 

known that some permanent magnets (Nd-Fe-B) corrode and can lead to disintegration 

[14].  Cracks that form during manufacturing can lead to disintegration at high speeds 
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[15].  A chipped magnet may also end up in the air gap, causing increased friction and 

potential damage to the stator insulation.  The flux disturbances can also be caused by 

partial demagnetization of the magnets, which occurs for various reasons [16].  These 

flux disturbances may cause unbalanced magnetic pull between the stator and the rotor 

resulting in more stress on the bearings.  This may eventually lead to bearing failures. 

2.3.3.3  Damaged Hall Sensors 

Another rotor fault that is encountered in BLDC motors is a Hall-sensor failure.  

Hall sensors are often used in BLDC motors for rotor position detection to determine the 

current commutation instances.  The loss of a Hall sensor results in torque pulsations 

when the rotor is moving.  During such a failure, the control is unable to start a BLDC 

motor. 

2.3.4  Bearing Faults 

The majority of electrical machines use rolling element bearings.  Each bearing 

consists of two rings called the inner and the outer rings.  A set of balls or rolling 

elements placed in raceways rotate inside these rings.  Bearing failures are responsible for 

the highest incidence of recorded motor failures [17].  A continued stress on the bearings 

causes fatigue failures, usually at the inner or outer races of the bearings [18].  Small 

pieces break loose from the bearing, called flaking or spalling.  These failures result in 

rough running of the bearings that generates detectable vibrations and increased noise 

levels.  This process is helped by other external sources, including contamination, 

corrosion, improper lubrication, improper installation, and brinelling.  The shaft voltages 

and currents are also sources for bearing failures [19].  These shaft voltages and currents 

result from flux disturbances such as rotor eccentricities. 
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2.4  External Faults in BLDC Machines 

Faults may also occur in systems external to the BLDC machine that may have an 

impact on its operation.  Motors are often coupled to mechanical loads and gears.  

Several faults can occur in this mechanical arrangement.  Examples of such faults are 

coupling misalignments and faulty gear systems that couple a load to the motor.  Faults in 

the loads can cause discontinuities in the production schedule, thus lowering 

manufacturing efficiency.  In some applications such as aircrafts, the reliability of gears 

may be critical in safeguarding human lives.  For this reason, the detection of load faults 

(especially related to gears) has been an important research area in mechanical 

engineering for some time [20-23].   

2.4.1  Gear Faults 

2.4.1.1  Common Types of Gears 

The most common types of gears in use are the spur gears, helical gears, bevel 

gears, worm gears, and straight (rack type) gears [24-27].  All these gears have a driving 

wheel and a driven wheel, but differ in the shape and arrangement of the wheels.  Spur 

gears are characterized by teeth that are perpendicular to the face of the gear.  These are 

by far the most commonly used gears and are generally the least expensive.  Spur gears 

cannot be used when a direction change between the two shafts is required [24, 26].  A 

helical gear is similar to the spur gear except that the teeth are at an angle to the shaft, 

rather than being parallel to it.  Therefore, the teeth on a helical gear are longer than the 

teeth on a spur gear of equivalent width.  Helical gears have the major disadvantage of 

being expensive.  They are used less frequently and are also slightly less efficient than a 

spur gear of the same size [24, 26].  The bevel gear is primarily used to transfer power 
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between intersecting shafts.  The teeth of these gears are formed on a conical surface. 

Standard bevel gears have teeth that are cut straight, and are all parallel to the line 

pointing to the apex of the cone on which the teeth are based.  However, they suffer from 

limited availability, cannot be used for parallel shafts, and can become noisy at high 

speeds [24, 26].  Worm gears are special gears that resemble screws, and can be used to 

drive spur gears or helical gears.  Worm gears, like helical gears, allow two non-

intersecting 'skew' shafts to mesh. Normally, the two shafts are at right angles to each 

other.  One important feature of the worm gear meshes is their irreversibility. When a 

worm gear is turned, the meshing spur will turn, but turning the spur will not turn the 

worm gear.  The resulting mesh is 'self-locking' and is useful in racheting mechanisms 

[24, 26].  However, they will tolerate large loads and are used in applications where high 

speed ratios are desired.  Straight gears or racks are used to convert the rotational motion 

to translational motion by means of a gear mesh.  They are in theory a gear with an 

infinite pitch diameter [24, 26]. 

2.4.1.2  Faults in Gear Trains 

Gears are unusual in that they experience a number of different forms of damage 

of widely varying severity and importance.  Roughly in order of importance, gear failures 

may be classified as follows: pitting, micropitting (gray staining), scuffing, root cracking, 

wear, scoring, plastic deformation, and case cracking [28].  Though pitting occurs most 

frequently, it is often not serious.  Damage resulting from wear can be further classified 

as local wear, distributed wear, and gear backlash because of tooth thinning.  Gear wear 

resulting from tooth thinning or an increase between the centers of the gears, is one of the 

more frequent failures.  The thinning of teeth results in an increased backlash, resulting in 
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improper gear operation.  Local gear wear involves damage to one or two teeth of a gear 

wheel.  Distributed gear wear on the other hand occurs over a long period of time and 

involves the wearing down of a large number of teeth as a result of prolonged gear use.  

A different kind of fault, scuffing, occurs when the oil film breaks down to allow metal-

to-metal contact.  This results in a local welding followed by a tearing of the surface as 

the welds are sheared because of the moving gears.  Scoring is a variant of scuffing, 

which occurs as a result of insufficient lubrication. 

2.4.2  Misalignments 

Misalignments are other common faults that occur in the shaft coupling of a 

motor that is not properly aligned or positioned with its mechanical load [29, 30].  

Misalignments are categorized into two types: angular (horizontal) and radial (vertical) 

misalignments.  These misalignments cause a slight unbalance in the rotor and produce 

undesired vibrations.  Such vibrations eventually weaken the coupling and cause it to fail.  

They also stress the motor bearings thereby lowering their life.   

2.5  Condition Monitoring Techniques 

The condition monitoring of electrical and mechanical devices has been in 

practice for quite some time now.  Several methods have evolved over time but the most 

prominent techniques are thermal monitoring, vibration monitoring, and electrical 

monitoring. 

2.5.1  Thermal Monitoring 

The thermal monitoring of electrical machines is accomplished either by 

measuring the local or bulk temperatures of the motor, or by parameter estimation.  The 
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former method requires the installation of thermocouples.  This is rarely done in small 

machines.  An example of thermal monitoring by parameter estimation for small PMSMs 

is given in [31].  Here, a thermal model of the electrical machine is first developed from 

the machine electrical quantities, namely the current and voltage.  This thermal model is 

then used to estimate the temperature of the motor and identify faults. Thermal 

monitoring can in general be used as an indirect method to detect some stator faults (turn-

to-turn faults) and bearing faults.  In a turn-to-turn fault, the temperature rises in the 

region of the fault, but this might be too slow to detect the incipient fault before it 

progresses into a more severe phase-to-phase or phase-to-neutral fault.  In the case of 

detecting bearing faults, the increased bearing wear increases the friction and the 

temperature in that region of the machine.  This is a slow process that can be detected by 

thermal monitoring. 

2.5.2  Vibration Monitoring 

A vibration monitoring is based on the concept that mechanical vibrations at 

various frequencies are related to identifiable sources in the machine and can be used to 

provide an indication of the condition of the machine.  Bearing faults, rotor eccentricities, 

gear faults and unbalanced rotors are the best candidates for vibration based diagnostics.  

Almost all the rotor and bearing faults cause mechanical vibrations at specific frequencies 

[18, 32].  A listing of possible machine faults and their related vibration frequencies is 

given in [30].   

The vibration energy of the machine is measured in units of one of three related 

quantities: displacement, velocity, or acceleration.  These measurements are 

accomplished using displacement probes, velocity transducers, or accelerometers 
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respectively.  The vibration monitoring of electric machines is accomplished through the 

use of broad-band, narrow-band, or spectral (signature) analysis of the measured 

vibration energy of the machine [30].  Vibration-based diagnostics is the best method for 

fault diagnosis, but needs expensive accelerometers and associated wiring.  This limits its 

use in several applications, especially in small machines where cost plays a major factor 

in deciding the condition monitoring method.  Another vibration-based method is to 

measure the acoustic vibration levels [30].  However, this is sensitive to changes in the 

measurement location because of reflections and reverberations of sound emanating from 

the machine and from other machines in the vicinity. 

2.5.3  Electrical Monitoring 

Monitoring the stator current, the stator voltage, sensing the air-gap flux, 

measuring shaft voltages and currents, and monitoring feedback signals (for example the 

Hall sensor position feedback of a BLDC motor), all fall under the category of electrical 

monitoring.  These methods are used to detect various kinds of machine and inverter 

faults.  The most common form of signal analysis technique used in electrical monitoring 

is the current spectra analysis, often termed as “Motor Current Signature Analysis 

(MCSA)” [33].  It has been shown that there is a relationship between the mechanical 

vibration of a machine and the magnitude of the stator current component at the 

corresponding harmonics [34].  For increased mechanical vibrations, the magnitude of 

the corresponding stator current harmonic components also increases.  This is because the 

mechanical vibration modulates the air gap at that particular frequency.  These frequency 

components then show up in the stator inductance, and finally in the stator current.  For 

this reason, the MCSA can be used to detect rotor and bearing faults.  As the flux density 
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in the air gap is defined as the product of the winding magneto-motive force (MMF) and 

the air-gap permeance, variations in either of these will cause anomalies in the flux 

distribution.  The changes in the winding MMF mainly depend on the winding 

distribution.  On the other hand, the air-gap permeance depends on numerous effects 

including stator slots, out-of-round rotors, air-gap eccentricities caused by mechanical 

unbalance and misalignment, and mechanical shaft vibrations caused by bearing or load 

faults [33].  The purpose of the MCSA is to detect changes in a machine’s permeance by 

examining the current signals [35].  The MCSA uses the current spectrum of the machine 

for locating characteristic fault frequencies.  The spectrum is obtained using a Fast 

Fourier Transformation (FFT) that is performed on the signal under analysis.  The fault 

frequencies that occur in the motor current spectra are unique for different motor faults.  

Electrical monitoring holds much promise for the future as it is inexpensive and reliable. 

2.6  Conclusions 

This chapter has briefly reviewed the construction and operation of a BLDC 

motor.  A description of various kinds of rotor and load faults that can occur in a BLDC 

motor operated system has been presented.  The more commonly used condition 

monitoring techniques available to detect such faults has also been presented.   

A review of the previous work in the condition monitoring of BLDC machines is 

presented next in Chapter 3. 
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CHAPTER 3  

PREVIOUS WORK ON CONDITION MONITORING OF BLDC 

MOTORS 

 

Electrical monitoring, which includes current based monitoring, is the most recent 

of all condition-monitoring techniques, and is the focus of the present research because of 

its low cost.  A literature survey revealed a number of methods that have been used to 

detect the many different faults discussed in Chapter 2.  This chapter reviews and 

summarizes the existing research that is pertinent to these topics and is limited to the 

detection of rotor and load related faults. 

3.1  Rotor Fault Detection 

3.1.1  Detecting Rotor Eccentricity 

The detection of rotor eccentricities in induction motors that operate at constant 

speed has been the focus of ongoing research activities in industry as well as academia.  

Several researchers have shown that rotor defects in induction motors operating at a 

constant speed affect certain characteristic frequency components in the machine stator 

current and such rotor defects can be identified by monitoring the amplitude of these 

harmonic components [11, 13, 35].  This popular method is called Motor Current 

Signature Analysis (MCSA) [33].  In MCSA, the frequency spectrum of the stator current 

is computed using a fast Fourier transform (FFT).  The rotor fault frequencies are then 

identified from the current spectrum and monitored to detect the severity of the fault.  For 
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example, a dynamic eccentricity in induction motors [35] causes current components at 

frequencies given by 

( )1
/ 2

e
de e

f s
f f k

P
−

= ± , (3.1)

where fde is the dynamic eccentricity frequency, fe is the fundamental frequency, s is the 

slip, and k is any integer 

A more general expression that predicts characteristic frequencies of both static 

and dynamic eccentricity in induction motors is given [11] by  

( ) ( )2 1⎧ ⎫−
= ± ±⎨ ⎬
⎩ ⎭

sh d

s
s ef kR n n f

P ω , (3.2)

where fsh is the frequency of the current component that has to be monitored to detect the 

eccentricity, nd = 1,2,3,… (the eccentricity order), s is the slip, P is the number of poles, 

nωs is the order of stator time harmonics that are present in the power supply driving the 

motor (nωs = ±1,±3,±5,…), R is the number of rotor slots, and k = 1, 2, 3,… is the order of 

slot harmonic produced due to rotor slots.  Setting nrt, nd, and nωs to the appropriate 

integers yields the frequencies that have to be monitored to detect dynamic eccentricity, 

while setting nd = 0 yields the principal slot harmonics that have to be monitored to detect 

static eccentricity. 

The proof for the equations (3.1 - 3.2) are based on the fact that the eccentricities 

cause changes in the permeance.  The flux density in the air gap is given as a product of 

the MMF and the air-gap permeance, Pg.  For the a-phase stator winding, this flux density 

can be expressed as 
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( ) ( ) ( ), .as s rm as s g s rmB MMF P ,ϕ θ ϕ ϕ= θ , (3.3)

where φs is the angular measure around the stator air-gap, and θrm is the mechanical rotor 

angular position.  The air-gap permeance can be considered to be a conductance to the 

MMF produced by the winding current and is inversely proportional to the length of the 

air gap.  Under the initial modeling assumption, the permeance is constant because of the 

uniform air gap.  However, any change in the air-gap length causes a variation of the 

permeance.  These variations can be expressed as a Fourier series [11] and are either 

stationary (static eccentricity), 

( ) 0 cosg s n s
n

P P P n nϕ ϕ α⎡ ⎤= + +⎣ ⎦∑ , (3.4)

or rotating (dynamic eccentricity), 

( ) ( )0, cosg s rm n s rm n
n

P P P nϕ θ ϕ θ α⎡ ⎤= + − +⎣ ⎦∑ , (3.5)

in nature where P0 is the average air-gap permeance and Pn is the magnitude of the n-th 

permeance.  An approximation of n=1 results in the equations (3.6) and (3.7); and is used 

to derive equation (3.1). The more general expression of (3.2) is obtained by directly 

using the above equations while also introducing the effects of the stator slots. 

( ) 0 1 cosg s sP P Pϕ ϕ= + , (3.6)
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( ) ( )0 1, cosg s rm s rmP P Pϕ θ ϕ= + −θ , (3.7)

The equations (3.6) and (3.7) are used to calculate the air-gap flux density from 

(3.3).  Once the air-gap flux density is calculated, it is possible to calculate the magnetic 

flux linking a single coil in the machine by integrating over the span of the coil as shown 

in (3.8) for a two-pole machine, 

( ) ( ), ,
s

s

lsas s rm as rmB  r l  d
ϕ π

ϕ

ϕ θ ξ θ
+

Φ = ∫ ξ , (3.8)

where r is the mean radius of the air-gap and l is the axial length of the rotor.  The flux 

linkage for the entire winding is then determined by summing the effects of each coil in 

the winding.  The derivation for the a-phase stator flux linkage will be explained here as 

an example.  The winding distribution, Nas(φs), of the a-phase stator winding of a two-

pole machine can be defined to be  

( ) ( )cos
2

s
as s s

N
N ϕ ϕ= , (3.9)

where Ns is the number of turns in the sinusoidally distributed winding.  The total a-phase 

stator flux linkage is the sum of two components: 

1. The flux linkage for the entire winding distribution of (3.9) produced as a result of the 

main flux of (3.8). 

2. The flux linkage because of the stator end winding leakage inductance. 

The total a-phase stator flux linking the a-phase stator winding of a two-pole machine is 

therefore given by 
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( ) ( )
2

,asas ls as as s lsas s rm sL i N d
π

π

λ ϕ ϕ= + Φ Φ∫ θ , (3.10)

where ias accounts for the a-phase stator current.  This flux linkage is finally used to 

calculate the inductances, which reflect the change in air-gap permeance.  The a-phase 

stator winding self inductance can be expressed as 

asas
asas ls ms

as

L L L
i
λ

= = + , (3.11)

These calculations are repeated for all the self and mutual inductances of a three-phase, 

two-pole induction motor with the eccentricity described by (3.6) and (3.7).  Once these 

inductances are calculated, they can be substituted into the d-q machine flux linkage 

equations, which yield the fault frequencies depicted in equations (3.1) and (3.2).  A more 

detailed derivation can be found in [11, 30]. 

Another method to detect the eccentricities using shaft signals has been proposed 

by Hsu and Stein [19].  The eccentricities cause the flux to link the shaft, inducing 

voltages across the shaft ends.  If there is an electrical path between the shaft ends, a 

current will flow (usually through the bearings).  This establishes a correlation between 

the shaft signals and eccentricities of salient-pole synchronous machines. The magnitude 

and the thickness of shaft-signal loci reflect steady and dynamic eccentricities and can be 

used for detecting these faults. 

In [36], Le Roux et al. have shown that the equations (3.1) and (3.2) can be 

adapted for use in the detection of rotor defects in permanent magnet synchronous 

machines (PMSMs).  They demonstrated through simulations and experiments that the 
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MCSA can be used to detect rotor eccentricities in a PMSM by monitoring unique 

frequency components (fde) given by, 

/ 2
e

de e

f
f f k

P
= ± . (3.12)

The same concept is extended to the BLDC machines in [36], where Le Roux has 

shown through finite-element (FE) simulations, the presence of similar frequency 

components in the stator current of a BLDC motor.  The 2D FE model of a six-pole 

BLDC motor designed in ANSOFT® RMxprt is shown in Figure 3.1.  With no current 

flowing in the windings, the magnetic fields are solved by ANSOFT® MAXWELL 2D 

for a specific rotor position.  This yields the parametric solution for the permanent 

magnet flux linking the stator windings and the winding inductances.  The rotor is then 

rotated by a pre-specified angle (3O mechanical) and the flux linkages and inductances re-

calculated.  This process is repeated until the rotor is rotated through a full revolution, 

which takes 120 steps.  This process gives flux linkages and inductances as a function of 

rotor position, which is used later in look-up tables during a transient simulation of the 

complete BLDC motor drive system executed in MATLAB®.  The parametric and the 

transient solutions are solved for the healthy motor, as well as for motors with rotor faults 

such as a static eccentricity, a dynamic eccentricity, and a demagnetized rotor magnet.   

The Fourier analysis of the stator current obtained from the MATLAB 

simulations have revealed that the fault harmonics (for a six-pole BLDC motor, the rotor 

fault frequencies occur at 1/3rd, 2/3rd, 4/3rd, and 5/3rd times the fundamental frequency as 

computed from (3.10)) for a defective motor are significantly different from a healthy 
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motor and this can be used to monitor the motor’s health [36].  However no experimental 

validation has been provided to verify the claim.   

 

 

Figure 3.1:  2D FE model of a six-pole BLDC motor in MAXWELL 2D®. 
 

3.1.2  Detecting Damaged Rotor Magnets 

In [36], Le Roux has again demonstrated through finite-element simulations that 

the flux disturbances as a result of damaged magnets in BLDC and PMSM motors 

produce fault frequencies similar to the ones produced by a dynamic eccentricity.  Again, 

no experimental verification has been provided to validate the claim. 

In [36], Le Roux has also demonstrated that the damaged rotor magnets in a 

BLDC motor can also be detected by estimating the strength of the permanent magnet.  

This is simply the mean value of the added back-EMFs of the two conducting phases in 
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any particular 60-degree rotor position region.  The estimated torque constant is then 

given by 

2ˆ s dc
t

r r

V r I EK
ω ω
−

= = , (3.13)

where the supply voltage (V) and the DC-link current (Idc) are averaged over every 60-

degree region of the rotor position during steady-state operation, rs is the stator resistance 

per phase, ωr is the rotational velocity of the BLDC motor, and E is the back-EMF.  This 

estimation neglects the effect of stator inductances, and works well when the back-EMF 

(E) is used directly, but this is not available on a physical machine.  However, the 

estimated magnet strength is independent of other faults such as the dynamic and static 

eccentricities, implying that this estimation could still be used to detect a decrease in the 

magnet strength. 

3.2  Load Fault Detection 

Load fault detection (especially related to gears), has been a popular research area 

in mechanical engineering for some time.  However, it has not attracted much attention 

from the electrical engineering community as most of the diagnostic strategies have 

focused on vibration analysis.  A few papers describe the use of the motor to detect load 

faults such as load imbalance, etc.  Even those however, typically, lump load faults as 

“unbalanced or misaligned load”, along with motor faults such as rotor eccentricity [37].  

As such, there has been little effort to use the motor as a tool to identify problems with 

the load it is driving, let alone to discriminate among various kinds of load faults. 
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3.2.1  Detection of Gear Faults 

The most common method of diagnosing gear faults is through the vibration 

produced by them.  Typically, the vibration can be measured using an accelerometer.  

The vibration spectrum is a good indicator of the various faults that occur in gear 

systems.  One important element of gearbox vibrations is the periodic signal at the tooth-

meshing rate.  This so-called gear meshing frequency is easily calculated by multiplying 

the number of teeth on a gear with the rotating speed of the gear [38].  If the gear 

meshing amplitude increases without any corresponding change in speed or load, it 

indicates a problem is developing in the gearbox.  Uniform or distributed wear tends to 

show up as an increase of the tooth-meshing component and its harmonics, more 

particularly the latter, and possibly as a simultaneous decrease in the ghost components 

[35, 36].  Local faults, such as cracked teeth, spalls, and localized pitting, give rise to 

components over a wide frequency range, partly by modulation (for the frequencies 

around and above the tooth meshing frequency) and partly as additive impulses.  More 

distributed faults like misalignments and eccentricities, tend to give higher level of 

sidebands more closely grouped around the tooth-meshing frequency.  Sidebands are 

produced simultaneously by amplitude and frequency modulation [39].  The interaction 

depends in a complex way on the dynamic response characteristics of the gearbox 

components.  The aforementioned changes in the vibration signals can be detected using 

a number of techniques, of which the most important are synchronous signal averaging, 

spectrum analysis, and cepstrum analysis [39, 40]. 

Even though vibration based diagnostic methods are reliable, the high cost of 

accelerometers and associated wiring used in measuring vibration is a disadvantage in 
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many cost-sensitive arenas such as the automotive sector.  In such cases, the detection of 

gear faults from the analysis of the motor current offers a cost-effective solution.  In [33], 

Kliman and Stein have reported gear tooth meshing frequencies in the current frequency 

spectrum of motor operated valves (MOVs) using induction motors at constant speed, but 

have not been able to explain the origin and nature of these frequencies.   

In [41], Attia et al. have demonstrated that damaged gear teeth can be detected by 

monitoring the stator current spectrum of an induction motor coupled to a gear system 

and operating at a constant speed.  It is also reported by the same authors that local and 

distributed teeth damages produces unique fault harmonics around the fundamental 

frequency component spaced at the gear frequency.  For example, a defect in the pinion 

causes stator current harmonics given by 

, *pin h s rf f k f  ,   k = 1, 2, 3,...= ±   , (3.14)

where fr is the pinion frequency and fs is the electrical supply frequency.  Similarly, a 

defect in the driven wheel produces fault frequencies at 

, *driw h s df f k f  ,   k = 1, 2, 3,...= ±   , (3.15)

where fd is the driven wheel frequency. 

3.2.2  Detection of Misalignments 

Misalignments are usually easy to spot in the vibration spectrum and appear as 

harmonics at twice the rotating speed of the system [29, 30].  These harmonics appear in 

the stator current as unique spectral components given by 
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2mis e rf f f= ± , (3.16)

where fr is the rotational speed of the motor, and fe is the electrical fundamental frequency 

of the stator current. 

3.3  Fault Detection in Non-Stationary Operating Conditions 

It has been assumed so far that the electric motor has been operating in a steady 

state condition (constant speed application).  This fundamental assumption of stationarity 

allows the use of the well known method of Fourier Transformation in the frequency 

analysis of currents, voltages, and vibration signals to detect various rotor and mechanical 

faults in an electrical machine.  However, there are several applications where the motor 

is never operating at a constant speed or load.  Such transient or non-stationary 

applications include automobile power steerings and emergency breakers.  In such 

applications, the motor is operating in a non-stationary state that may even include long 

spells of no activity (motor standing still).  The motor operating in such a non-stationary 

environment has a non-stationary voltage, current and vibration signal.  A typical 

segment of the stator current of a BLDC motor operating in such a non-stationary state is 

shown in Figure 3.2 in which both the frequency and amplitude are changing 

continuously.  Analysis of non-stationary signals is inherently complicated and 

sophisticated signal processing techniques are often needed as will be discussed later in 

this section. 

3.3.1  Non-Stationary Signal Analysis in Vibration-Based Fault Diagnostics 

There has been a significant amount of work in the mechanical engineering area, 

where researchers have used sophisticated signal processing techniques to identify faults 
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in gears operating in transient conditions.  As some of these techniques could be applied 

to electrical engineering, a brief review of them is presented here.   
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Figure 3.2:  Non-stationary stator current in a BLDC motor. 

 

Time-frequency distributions appear as a common choice of research in 

mechanical engineering.  The 1990s has shown an increase in Wigner-Ville analysis in 

gearbox fault detection.  The early application of these methods to gear faults in 

particular began with the work of Forrester [42-44].  He applied the Wigner-Ville 

distribution (WVD) to time domain averaged vibration signals of a helicopter gearbox 

and showed that different faults such as a tooth crack can be detected in the WVD 

contour plot.  McFadden and Wang [45-47] also apply the normal WVD and the 

weighted version of the WVD to gear failure to improve the detection capability of the 

 
35



 

method.  In [48] Staszewski, Worden, and Tomlinson apply the wavelet transformation 

(WT) and the WVD to detect a broken tooth in a spur gear operating under non-stationary 

conditions.  Statistics and neural networks are then used for classification of the fault 

condition.  Besides the Wigner-Ville distribution, several other time-frequency 

distributions have been tried for diagnostics of rotating machinery.  Several more similar 

applications of time-frequency distributions have been used for condition monitoring 

have been reported in [49-51]. 

3.3.2  Non-Stationary Signal Analysis in Electrical Signal Based Diagnostics  

There has been little research in the area of fault diagnostics of motors operating 

under non-stationary conditions and has been limited to induction motor applications.  In 

[52], Yazici and Kliman apply the Short Time Fourier Transform (STFT) to extract 

(preprocess) frequencies relevant to detecting broken bar and bearing defects, from the 

induction motor stator current.  The extracted features are segmented into constant 

operating modes of the motor using a probabilistic method (Figure 3.3).  The samples 

from each mode are then statistically analyzed to determine the fault.  However, this 

algorithm is based on the assumption that the change in speed and load occur slowly and 

there are sufficient intervals of time where the motor can be assumed to operate in a 

stationary condition.  This is common in applications such as rolling steel mills and the 

cement industry. 

Another approach to a similar application, through the use of wavelets, is 

presented in [53].  Here, a residual is calculated by subtracting the output of a multi-step 

ahead neuro-predictor from the actual current signal.  The neuro-predictor is developed 

using recurrent dynamic neural networks and predicts ahead in time, the stator current of 
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a healthy machine.  A wavelet packet transform algorithm is then used to separate the 

different harmonics from the residual signal and to compute the fault indicators (Figure 

3.4). 

 

Figure 3.3:  STFT-based fault diagnostics scheme for induction motor diagnostics. 

 

Rather than use artificial neural networks, some researchers apply the electrical 

models of induction motors to calculate the residual. In [54], the researchers use a Park 

model of the squirrel cage induction drive to predict the behavior of a healthy motor.  A 

residual is again calculated by subtracting the output of the Park model from the actual 

stator current.  Wavelets are then used to process the residual.  Thresholding of wavelet 

coefficients that are sensitive to motor faults allows detection of rotor and stator faults.  

The authors claim that this algorithm is more sensitive to stator faults than rotor faults, as 

rotor defects produce small changes in the stator current when compared to stator defects. 
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Figure 3.4:  STFT-based fault detection algorithm for induction motor diagnostics. 

 

Another area where non-stationary signal analysis has been attempted is in the 

diagnosis of machine faults from the starting current transients in induction motors.  This 

enables the detection of faults under no load condition.  In [55], Burnett et al. detect 

bearing faults by using discrete wavelet transforms and time-frequency distributions to 

analyze the starting current transient of an induction motor.  The frequency sub-bands for 

pre-fault and post-fault conditions are compared to identify the effects of bearing 

resonant frequencies as the motor starts.  Recently, time-frequency distributions are also 

being used for non-stationary load fault detection in induction motors [56].  Eren and 

Devaney, and Douglas et al. also use a similar method to detect broken rotor bars in 
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induction motors [57, 58].  However, none of these methods attempt to diagnose faults in 

applications where the motor is continuously in a non-stationary stage or where 

assumptions of local or slow stationarity may be questionable and unrealistic.   

3.4  Conclusions 

Various current-based detection techniques available to detect rotor faults in 

electric motors operating in transient (non-stationary) operating conditions have been 

reviewed.  Finally, techniques available in the mechanical engineering area to detect non-

stationary fault signals have also been discussed setting the stage for methods proposed in 

this research.   

The next chapter describes the first contributions of this research.  The effect of 

various rotor defects on the operation of a BLDC motor is studied experimentally and 

analyzed in Chapter 4. 
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CHAPTER 4  

ANALYSIS OF ROTOR FAULTS IN BLDC MOTORS OPERATING 

AT CONSTANT SPEED 

 

The objective of this chapter is to experimentally characterize the effects of 

potential BLDC motor rotor faults on the motor terminal quantities such as voltage and 

current.  The effects of unbalanced and pulsating loads on the ability to detect rotor faults 

from characteristic fault frequencies are also studied experimentally.  All experiments are 

conducted in steady-state conditions.   

4.1  Experimental Arrangement 

The experimental arrangement consists of a six-pole, 12 V, 1 kW BLDC motor 

with surface mount magnets coupled to a dynamometer load.  The BLDC motor is driven 

by an inverter that features an integrated current control loop and provides the electronic 

commutation necessary to operate the BLDC motor.  The inverter is supplied from a 12 V 

lead-acid deep cycle marine battery.  Hall sensors mounted on the rotor shaft provide 

position control feedback information to the drive.  An analog speed controller designed 

in the lab is added to the drive system to smooth out speed fluctuations and to provide 

speed control (Appendix A).  The circuit schematic of the analog speed controller and its 

functionality is provided in Appendix A.  The block diagram of the BLDC drive system 

is presented in Figure 4.1. 

 

 
40



 

 

Figure 4.1:  Block diagram of BLDC motor control system. 

 

A picture of the experimental arrangement is shown in Figure 4.2.  The 

dynamometer used is an 115V, 1/15 hp DC motor operated as a generator. The 

dynamometer is coupled to the BLDC motor using a backlash free coupling.  The 

coupled motors are bolted onto a steel base plate that is firmly clamped to the mount.  

The speed is sensed using a 1000 ppr A-B 1305 optical encoder manufactured by Allen 

Bradley, Inc.  A Wilcoxon Research Model 793 accelerometer with a sensitivity of 

100mV/G accelerometer is mounted on the base to sense the vibrations.  Hall-Effect 

sensors are used to sense two line currents and two line-to-line voltages in the BLDC 

motor.  The sensed voltages and currents are acquired through a National Instruments 

data acquisition system.  All data are sampled at a rate of 10 kHz and the data is recorded 

for 20 seconds to obtain a FFT frequency resolution of 0.05 Hz.  All frequencies above 2 

kHz are filtered using an eighth-order elliptic low pass anti-aliasing filter prior to the data 

acquisition.  The BLDC motor is operated at two constant speeds: 1800 rpm and 1200 

rpm.  Experiments are conducted for various load conditions ranging from light load 

(30% full load) to full load. 
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Figure 4.2:  BLDC motor - DC generator test rig. 
 

4.2  Dynamic Eccentricity 

In dynamic eccentricity, the centre of the rotor is not at the centre of the stator and 

the position of minimum air gap rotates with the rotor.  An actual dynamic eccentricity is 

implemented in the laboratory [55].  One end of the rotor is first removed from the 

bearing.  This end is selected as the one opposite to the end that houses the Hall position 

sensors.  The end of the rotor housing the Hall sensors is not disturbed.  In a machine 

shop, material is removed from one side of the rotor shaft at the non-sensor end of the 

motor and the rotor is then placed back onto the bearing.  Shims are now inserted 

between the bearing and the shaft on the side opposite to where the material was removed 

as shown in Figure 4.3, thus pushing the center of rotation of the rotor away from the 

center of the stator.  The nominal length of the air gap is 0.75 mm and the rotor is shifted 
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by approximately 0.25 mm (32% of nominal air-gap length) from its center by inserting a 

steel shim of thickness 0.001 inches (~ 0.25 mm).  The defect induced in this manner 

represents a realistic dynamic eccentricity fault that can occur during normal motor 

operation. 

 

 

Figure 4.3:  Experimental implementation of dynamic eccentricity. 

 

For a six-pole BLDC motor, the rotor fault frequencies occur at 1/3rd, 2/3rd, 4/3rd, 

and 5/3rd times the fundamental frequency, as computed from (3.10).  The experimental 

results for the light load (30% full load) and the full load cases are presented in Tables 

4.1 and 4.2 respectively.  This instrumentation accuracy is calculated from the individual 

sensor inaccuracies: Hall sensor accuracy = + 0.9%; Sensor electronics and cable drift 

accuracy = + 5%; Data acquisition and calibration accuracy = + 2.5%.  The total 

accuracy/error of the measurements is approximately the product of these individual 

accuracies and is about + 10%.  Under light load conditions in Table 4.1, the magnitude 

of the 2/3rd and the 4/3rd harmonics in the current spectrum of a faulty motor increases by 

585% and 229% respectively over that of a good motor.  Under full load conditions in 

Table 4.2, the magnitude of the 2/3rd harmonic in the current spectrum of the faulty motor 
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increases by 286% over that of a good motor operated under the same full load 

conditions.  However, the magnitude of the 4/3rd harmonic changes only by 31% under 

fully loaded conditions.  The reason for this different behavior under full load condition 

is that the motor is now more rigidly coupled to the load than it is under low load 

conditions.  Hence, the air-gap fluctuation because of the dynamic eccentricity is less 

pronounced in full load condition, as compared to a light load condition. 

Under light load conditions (Table 4.1), the magnitude of the 1/3rd and 5/3rd 

harmonics of a faulty motor decreases by 48% and 46% respectively when compared to 

that of a good motor under similar load conditions.  However, the large magnitude of the 

1/3rd and the 5/3rd harmonics (238 mA each) in a good motor operating under light load 

condition indicates that these harmonics are not caused by the dynamic eccentricity, but 

possibly because of other factors such as the coupling alignment.  The same phenomenon 

is seen under full load conditions too (Table 4.2), where the magnitude of the 1/3rd and 

the 5/3rd harmonic are 306 mA and 310 mA respectively.  It will indeed be demonstrated 

in Chapter 5, that these harmonics are significantly affected by the motor alignment.   

Figure 4.4 shows a portion of the current spectrum for both the normal and the 

faulty cases (dynamic eccentricity) under full load conditions.  The increase in the 2/3rd 

and 4/3rd harmonics is clearly visible in the case of the BLDC motor with dynamic 

eccentricity, just as predicted theoretically.  A similar change is also noticed in the stator 

voltage spectrum of Figure 4.5.  However, as the magnitude of the fault harmonic in the 

voltage spectrum is only a few milli-volts, it cannot be used as a reliable indicator to 

detect dynamic eccentricity. 
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Table 4.1:  Light load case: Harmonic amplitudes of stator current spectrum – dynamic 
eccentricity (Measurement Error = + 10%) 

Harmonic 
Good Motor 

(mA) 

Dynamic Eccentricity 

(mA) 

% change 

 

1/3rd fe 238 124 -48 

2/3rd fe 40 274 +585 

4/3rd fe 45 148 +229 

5/3rd fe 238 128 -46 

 

 

Table 4.2:  Full load case: Harmonic amplitudes of stator current spectrum – dynamic 
eccentricity (Measurement Error = + 10%) 

Harmonic 
Good Motor 

(mA) 

Dynamic Eccentricity 

(mA) 

% change 

1/3rd fe 306 119 -61 

2/3rd fe 86 332 +286 

4/3rd fe 58 76 +31 

5/3rd fe 310 110 -64 
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Figure 4.4:  Comparison of BLDC motor current spectrum (Dynamic Eccentricity) 
under light load conditions. 
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Figure 4.5:  Comparison of BLDC motor voltage spectrum (Dynamic Eccentricity) 
under light load conditions. 
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4.3  Static Eccentricity 

A static eccentricity in an induction motor can be detected from the magnitude of 

the principal slot harmonics (PSH) in the motor current spectrum [11].  However, in a 

BLDC motor, no PSH are produced in the current spectrum as the rotor is smooth and 

comprises of magnets that span an entire pole arc. 

Another method that could be used to detect static eccentricity is through the 

detection of negative sequence current components that are produced because of the 

motor eccentricity.  A static eccentricity results in unequal amounts of the magnet flux 

passing across the stator coils.  This results in an unbalance in the three phase currents, 

which should theoretically result in a negative sequence current.  However, in a 

permanent magnet motor such as the BLDC motor, the magnet behaves as air, the relative 

permeability of a magnet (µr = 1.09) being almost equal to that of air (µr = 1).  Therefore, 

permanent magnet machines effectively have large air gaps.  Hence, any physical shift an 

eccentricity may cause in the air-gap structure only has a small, even negligible effect on 

the flux distribution.  This is verified through simulations, where the static eccentricity is 

parametrically solved using Maxwell 2D and a transient simulation of the complete 

BLDC motor drive (with only the current control loop) is carried out in MATLAB to 

observe any change in the current spectrum.  Simulation results are presented in Table 

4.3.  Only a miniscule negative sequence current is noticed, which is not sufficient to act 

as an indicator to detect static eccentricity.  The same behavior is also noticed in the 

positive sequence component of the 5th harmonic and in the negative sequence 

component of the 7th harmonic, which are also a resultant of the unbalance.  Hence, it is 

concluded that detection of static eccentricity in BLDC motors is difficult if not 
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impossible, and all future eccentricity-related work in this research is limited to dynamic 

eccentricity. 

 

Table 4.3:  Effect of Static Eccentricity on the motor current spectrum of a BLDC motor 
from MATLAB simulations 

 Stator Current (A) Stator Voltage (V) 

Harmonic Normal Motor Static 
Eccentricity Normal (V) Static 

Eccentricity (V)

Fundamental 22.857 22.859 2.47 2.48 

Positive Seq. 22.857 22.857 2.47 2.48 

Negative Seq. 0.0052 0.0028 0.001 0.0028 

5th Harmonic 4.575 4.570 0.051 0.050 

Positive Seq. 0.0048 0.0025 0.0035 0.0030 

Negative Seq. 4.575 4.570 0.048 0.052 

7th Harmonic 3.264 3.268 0.107 0.1217 

Positive Seq. 3.264 3.264 0.1146 0.1217 

Negative Seq. 0.005 0.003 0.006 0.0035 

 

4.4  Damaged Rotor Magnet Fault 

The broken magnet defect is obtained by chipping off a part of the magnet on one 

pole of the BLDC machine, as shown in Figure 4.6.  This artificial damage is also 

representative of a local demagnetization of the magnet.  A damaged magnet causes an 

asymmetric flux distribution, which generates characteristic harmonics in the current 
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spectrum.  The fault frequencies for a six-pole BLDC motor are the same as in the case of 

a dynamic eccentricity, namely 1/3rd, 2/3rd, 4/3rd, and 5/3rd of the fundamental frequency.   

Experimental results are provided in Tables 4.4 and 4.5 for the light (30% full 

load) and full load cases at an operating speed of 1800 rpm.  The measurement accuracy 

is again about + 10%.  Under light load conditions in Table 4.4, the magnitude of the 

2/3rd and the 4/3rd harmonics in the current spectrum of a faulty motor increases by 64% 

and 883% respectively over that of a good motor with undamaged rotor magnets.  Under 

full load conditions in Table 4.5, the magnitude of the 2/3rd and the 4/3rd harmonics in the 

current spectrum of the faulty motor increases by 176% and 101% respectively, over that 

of a good motor operated under the same full load conditions.  This large change in the 

fault harmonics can be used to detect a defective motor.  However, the magnitude of the 

1/3rd and 5/3rd harmonics do not change significantly, as these harmonics are more 

affected by the motor alignment rather than the rotor defect. 

 

 

Figure 4.6:  Broken magnet defect. 
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Table 4.4:  Light load case: Harmonic amplitudes of stator current spectrum – damaged 
magnet (Measurement Error = + 10%) 

Harmonic 
Good Motor 

(mA) 

Damaged Magnet 

(mA) 

% change 

 

1/3rd fe 193 238 +23 

2/3rd fe 86 141 +64 

4/3rd fe 12 118 +883 

5/3rd fe 197 242 +22 

 

 

Table 4.5:  Full load case: Harmonic amplitudes of stator current spectrum – damaged 
magnet (Measurement Error = + 10%) 

Harmonic 
Good Motor 

(mA) 

Damaged Magnet 

(mA) 

% change 

1/3rd fe 196 202 +3 

2/3rd fe 88 243 +176 

4/3rd fe 82 165 +101 

5/3rd fe 203 204 0 
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4.5  Effect of Unbalanced Rotor 

An unbalanced rotor is implemented by mounting a slotted disk on the shaft of the 

motor (Figure 4.7).  A bolt can be positioned at any slot on the disk.  As the unbalanced 

disk rotates, the bolt pulls outward as a result of the centrifugal force.  The rotor is 

therefore being pulled continuously outward with a force that is dictated by both the mass 

of the bolt as well as the position of the bolt on the disk.  Such an unbalanced disk causes 

slight dynamic eccentricity besides vibration and pulsating torques.  The bolt is moved 

from the inner most point of the disk towards the outermost point on the radius of the 

disk in three discrete steps and the results are shown in Figure 4.8, where pos 1-3 

represent the position of the bolt on the disk with pos 3 being the outermost position.  The 

amplitude is normalized as a percentage of the fundamental.  A clear increase in the 

principal sidebands (2/3rd and 4/3rd fundamental frequency) is seen.  This shows that a 

mechanically unbalanced rotor can be detected by monitoring the principal sideband 

frequencies that occur around the fundamental frequency. 

4.6  Effect of Pulsating Load 

The effect of a pulsating load torque is similar to the one encountered in 

applications such as reciprocating compressors.  The frequencies in the BLDC stator 

current that are affected by such a pulsating load are given by 

rf f fevth = ± , (4.1)

where fvth is the harmonic frequency as a result of the pulsating load, fe is the fundamental 

frequency, and fr is the mechanical rotor frequency.  
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Figure 4.7:  Unbalanced disk experiment. 
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Figure 4.8:  Fault harmonics in a unbalanced rotor system. 
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The frequencies in (4.1) happen to be the same frequencies that are also affected 

by dynamic eccentricities and broken magnets.  A load torque varying at the rotor speed 

is implemented by modifying the dynamometer’s resistive load.  This is done by adding a 

resistor switched at the rotor frequency (30 Hz in this experiment) as shown in Figure 

4.9.  There are several ways a pulsating dyno load can be quantified.  It can be described 

in terms of the load torque ripple or in percentage of the pulsating power.  The latter 

approach is used here.  It is assumed that V is the terminal dyno voltage, Rfload is a fixed 

resistance, and Rpload is the pulsating resistor switching at 50% duty cycle.  The 

knowledge of the dyno parameters such as the armature resistance and the field resistance 

are needed only to convert the electric load power applied to the dyno into a mechanical 

torque load seen by the BLDC motor.  Hence, these dyno parameters are not used, as the 

pulsating load applied to the BLDC motor is just quantified based on the dyno’s electrical 

loading. A pulsed power of 10% of the total DC power is used in this experiment.  A 

detailed derivation for quantifying the pulsating load is provided in Appendix B. 

 

 

Figure 4.9:  Pulsating load torque generator. 
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The experimental results are provided in Tables 4.6 and 4.7 for the light (30% full 

load) and full load cases at an operating speed of 1800 rpm, with a measurement accuracy 

of about + 10%.  In this experiment, Rpload is switched at the rotor frequency.  This 

provides a pulsating load, with the load torque pulsating at the BLDC motor’s rotor 

frequency.  From (4.1), the only frequency components created by a load at pulsating at 

the rotor frequency are the 2/3rd and the 4/3rd fundamental frequency components, as 

3r

fef = . (4.2)

Under light load conditions in Table 4.5, the magnitude of the 2/3rd and the 4/3rd 

harmonics in the current spectrum of a BLDC motor with pulsating load torque increases 

by 707% and 5308% respectively over that of a BLDC motor with no torque pulsations.  

Similarly, under full load conditions in Table 4.7, the magnitude of the 2/3rd and the 4/3rd 

harmonics in the current spectrum of a BLDC motor with pulsating load torque increases 

by 536% and 533% respectively, over that of a good motor operated under the same full 

load conditions.  The magnitude of the 1/3rd and the 5/3rd harmonics do not change 

significantly, as they are not affected.  This large change in these frequency components 

has the potential to mask other rotor fault signatures that occur at the same frequency.  

For example, under full conditions, the magnitude of the 2/3rd and the 4/3rd harmonics in 

the current spectrum of a BLDC motor with pulsating load torque are 560 mA and 516 

mA respectively (Table 4.7).  This magnitude is large compared to the magnitude of the 

same 2/3rd and the 4/3rd harmonics in the current spectrum of a BLDC motor with 

dynamic eccentricity, which is measured to be 332 mA and 76 mA respectively (Table 

4.2). 
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Table 4.6:  Light load case: Harmonic amplitudes of stator current spectrum – load 
pulsating at rotor frequency (Measurement Error = + 10%) 

Harmonic 
Good Motor 

(mA) 

Pulsating Load 

(mA) 

% change 

 

1/3rd fe 193 225 +17 

2/3rd fe 86 694 +707 

4/3rd fe 12 649 +5308 

5/3rd fe 197 228 +16 

 

 

Table 4.7:  Full load case: Harmonic amplitudes of stator current spectrum – load 
pulsating at rotor frequency (Measurement Error = + 10%) 

Harmonic 
Good Motor 

(mA) 

Pulsating Load 

(mA) 

% change 

1/3rd fe 196 191 -3 

2/3rd fe 88 560 +536 

4/3rd fe 82 519 +533 

5/3rd fe 203 210 +3 
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4.7  Synthesis of Experimental Results 

The results obtained under a light load (30% full load) condition and a full load 

condition for the dynamic eccentricity, for the damaged magnet, and for the effect of a 

load torque varying at rotor frequency, are all summarized in Tables 4.8 and 4.9, 

respectively.  These faults are also compared with a BLDC motor having a normal rotor.  

In the Tables 4.8 and 4.9, the magnitude of the harmonics is normalized to the respective 

harmonic magnitude of a good motor. 

Table 4.8 (Light load case) shows that the two stator current sidebands at 2/3rd 

and 4/3rd the fundamental frequency changes by 6.5 and 3.2 times respectively in a 

dynamically eccentric motor when compared to a good motor.  The same sidebands 

increase by 1.6 and 9.1 times in the case of a damaged magnet fault, again when 

compared to a good motor.  These changes in magnitudes of these sidebands are 

significant when compared to those of a normal motor.  A similar change is also seen 

under full load conditions in Table 4.9.  Thus, the rotor defects in a BLDC motor can be 

distinctly identified. 

However, a load torque varying at the rotor frequency also affects the same 

sidebands and thus has the potential to mask the rotor defects.  For example, the results in 

Table 4.8 show that that a load pulsating at the rotor frequency can produce a 4/3rd fault 

harmonic that is 46 times larger than that of a motor with no load pulsation.  This 

increase is more than 5 times the increase in the same harmonic when the rotor defect is a 

damaged magnet.  Hence, pulsating loads can produce signatures that can be mistaken for 

real rotor faults.   
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Table 4.8:  Light load case: Normalized harmonic amplitudes of total (abc-frame) stator 
current (Individual Measurement Error = + 10%)* 

Harm. 

number 

Normal  

Rotor 

Dynamic 

Eccentricity

Broken 

Magnet 

Pulsating 

Torque 

1/3rd fe 1.0 0.5 1.1 1.0 

2/3rd fe 1.0 6.5 1.6 7.0 

4/3rd fe 1.0 3.2 9.1 46.0 

5/3rd fe 1.0 0.5 1.1 1.0 

 

 

Table 4.9:  Full load case: Normalized harmonic amplitudes of total (abc-frame) stator 
current (Individual Measurement Error = + 10%)* 

Harm. 

number 

Normal  

Rotor 

Dynamic 

Eccentricity

Broken 

Magnet 

Pulsating 

Torque 

1/3rd fe 1.0 0.4 0.9 1.0 

2/3rd fe 1.0 3.5 2.5 6.2 

4/3rd fe 1.0 1.2 1.8 6.2 

5/3rd fe 1.0 0.3 0.9 1.0 

 

*Normalized harmonic amplitudes in bold denote significant change in harmonic 

amplitudes even if individual measurement errors are included. 
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4.8  Conclusions 

The effect of various potential rotor faults on the motor current spectrum of a 

BLDC machine has been investigated through experiments.  Experimental results show 

that the rotor defects affect mainly the two sidebands at 2/3rd and 4/3rd of the fundamental 

frequency.  The two smaller sidebands at 1/3rd and 5/3rd the fundamental frequency are 

affected to a lesser extent and are influenced more by the alignment of the experimental 

arrangement than the actual rotor fault.  The misalignment defect is further investigated 

experimentally in Chapter 5 to validate this assertion.  The ability to detect rotor 

conditions such as dynamic eccentricity diminishes in the presence of vibrations and 

cyclically varying loads as seen in the unbalanced rotor and pulsating load experiments.  

The measurement accuracy in the experiments is about +10%.  While detailed statistical 

analysis is not conducted to conclusively determine that motor current signature analysis 

can be a robust fault detection technique, the experimental results suggest that motor 

current signature analysis may be applied to the diagnosis of BLDC motor rotor 

condition, particularly in applications where steady state operation will be encountered.  

Care must be taken while developing a condition-monitoring scheme, as it is shown 

experimentally that pulsating loads have the capability to mask rotor fault signatures.  

The detection of load related faults such as gear and coupling defects in steady state 

operating conditions is next addressed in Chapter 5. 
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CHAPTER 5  

DETECTION OF LOAD FAULTS IN BLDC MOTORS OPERATING 

AT CONSTANT SPEED 

 

The objective of this chapter is to diagnose faults in loads coupled to BLDC 

motors operating at constant speed.  Two common sources of faults in the load system 

are gears and couplings.  As gear faults are common and critical to the functioning of any 

electromechanical system, they form the main topic of discussion in this chapter.  This 

chapter investigates in detail the effects on the motor terminal voltage and current of 

various gear faults, including damaged gear teeth, loss of lubrication, and external debris 

in the gear train.  The most common coupling-related faults are misalignments, and these 

are briefly discussed toward the end of this chapter. 

5.1  Introduction 

Gears form an important part of many electro-mechanical systems.  In most 

systems, the gear forms a part of the mechanical load that is coupled to an electrical 

device, which usually is an electric motor.  Several faults can occur in the gear 

arrangement.  Faults in gears can cause discontinuities in production schedules in 

industries thus lowering productivity. The critical importance of a gear in most systems 

(for instance in aircraft such as helicopters) has led to the development of gear condition 

monitoring as an active research area in mechanical engineering for some time.  

However, most of the diagnostic strategies have focused on vibration analysis, and the 

monitoring of gear health has not attracted much attention from the electrical engineering 

community.  The different types of commonly used gears and the typical faults that occur 
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in them, has already been explained in Chapter 2.  This chapter proposes an alternative 

way of detecting faults in gears coupled to BLDC motors by monitoring either the motor 

current or the voltage.  It will be shown that the gear faults create unique spectral 

components in the voltage and current spectra that can be used to track and detect these 

faults. 

5.2  Detection of Gear Faults Through Current/Voltage - Theory 

A gear often consists of a pinion and a driven wheel.  When coupled to a motor, 

the pinion of a reduced speed gear rotates at the speed of the rotor, while the driven wheel 

rotates at the reduced speed that is set by the ratio of the number of teeth in the driven 

wheel to the number of teeth in the pinion.  Any fault in either the pinion or the driven 

wheel presents itself as a unique harmonic component in the motor stator current and 

voltage.  This can be explained as follows: A gear defect such as a damaged tooth 

produces an abnormality in the load torque “seen” by the motor.  This abnormality is 

transferred to the motor current from the load.  Depending on the abnormality, unique 

frequencies can be seen in the current frequency spectrum.  The most common 

mechanism of generation of the fault frequencies is through amplitude modulation (AM). 

5.2.1  Amplitude Modulation (AM) 

In amplitude modulation or AM, a carrier signal of frequency ωc is modulated by 

a signal of frequency ωm.  The resulting amplitude modulated signal has spectral 

components at frequencies ωc , ωc  + ωm , ωc  - ωm.  The same theory can also be applied to 

detect gear faults in the motor current spectrum where the two sidebands around the 

fundamental (carrier-frequency) represent certain gear faults uniquely.  In faults such as 

scoring, the increase in friction caused by the low level of lubricant, results in a low 

 
60



 

frequency modulating signal that resembles a slow sine wave.  In a speed reducing gear, 

this modulating frequency is the frequency of the reduced gear speed.  This modulating 

frequency, ωm, appears in the motor load torque as slow pulsations.  In BLDC motors, the 

torque produced is directly proportional to the armature current as given by 

L em TT T k I≈ = , (5.1)

where TL is the load torque containing the pulsating component, Tem is the 

electromagnetic torque produced by the BLDC motor that is almost equal to the load 

torque at steady speed conditions, kT is the motor torque constant, and I is the average 

BLDC motor current.  Hence the pulsating load torque component gets transferred into 

the BLDC motor current.  The BLDC stator current now has a low-frequency signal that 

modulates the normal current wave that consists of the fundamental and other inverter 

frequencies.  The stator current spectrum thus consists of the fundamental frequency ωc 

and the two gear fault sidebands at ωc  + ωm  and ωc  - ωm. 

In other defects such as a local tooth defect, the modulating signal is a periodic 

impulse train rather than a sine wave.  In such and other more complicated gear defects, a 

graphical rather than a purely mathematical treatment helps in determining the gear fault 

frequencies.  This is explained in detail in the next section. 

5.2.2  Determining Gear Fault Frequencies in BLDC Stator Current Through a 

Graphical Approach 

Gear faults such as a single damaged tooth in the driven gear or debris in the 

lubricant present themselves as a periodic impulse in the load torque whenever the pinion 

comes in contact with the damaged tooth.  These short-duration periodic torque impulses 
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transfer to the motor current, as illustrated in the waveform i(t) in Figure 5.1.  The 

fundamental frequency of the current is amplitude modulated by the impulse to produce a 

rich set of harmonic components around the fundamental.  The occurrence of unique 

frequencies in the current spectrum resulting from a defective gear can be explained 

through a graphical approach developed for analyzing vibration spectra in [60, 61] and 

adapted here to the stator current and voltage.  In Figure 5.1, the fault exists for a time τ 

and is repeated every T seconds as the driven gear completes one rotation.  The current 

i(t) is the amplitude modulation of the normal wave g1(t) and the short-duration impulse 

g2(t).  G1(f) and G2(f) are the Fourier transforms of g1(t) and g2(t), respectively. Since the 

modulating signal g2(t) is an impulse, the corresponding Fourier transform G2(f) is a 

series of discrete harmonics occurring at multiples of 1/T.  It is known from the 

convolution theorem [62] that 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2. *Fi t g t g t I f G f G f= ←⎯→ = , (5.2)

The graphical superposition of G1(f) and G2(f) results in the Fourier transform of 

the current, I(f), as shown in Figure 5.1, where a rich spectrum of harmonics spaced at fo 

+ k/T (k = 1, 2, 3,…) is produced around the fundamental  frequency fo.  This derivation 

can also be applied to the stator voltage. 

In other words, a localized fault in the pinion (driving wheel) will produce stator 

current/voltage harmonics given by 

, . ,pin h o rf f k f

For local teeth damage: k= 1, 2, 3,... ,

= ±
, (5.3)
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Figure 5.1:  Fault harmonic generation in stator current resulting from local tooth 
damage in gears. (Modified from [39]). 

 

where fr is the pinion frequency.  Similarly, the driven wheel will produce fault 

frequencies at 

, . ,driw h o df f k f

For scoring: k = 1,
For debris in gear, local teeth damage: k= 1, 2, 3,... 

= ±

, (5.4)

where fd is the driven wheel frequency given by 

.( / 2)
o

d

f
f

n P
= , (5.5)
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where n is the gear ratio and P is the number of motor poles.  Thus, the magnitude and 

the frequency of the fault harmonics in the current/voltage frequency spectrum are 

dependent on the type and location of the fault in the gear, which define the modulating 

wave g2(t). 

5.3  Experimental Setup for Gear Fault Detection 

A worm gear system (Figure 5.2) is used in the experiments.  The gear consists of 

a steel worm shaft that drives a 66-tooth plastic worm wheel gear, yielding a speed 

conversion ratio of 22:1.  The worm gear is coupled to a six-pole, 12 V, 1 kW BLDC 

motor, which is supplied from a three-phase inverter in current control mode.  This worm 

gear system is used in automobile power steering systems (Figure 5.3).  In the tests, the 

load on the gear is its own inertia and no external loading is used.  The line-line stator 

voltage and the stator current are sensed using closed loop hall sensors and the signals are 

acquired using a 16-bit data acquisition system.  The electrical and the mechanical 

parameters of the experimental system for a typical supply frequency of 180 Hz are 

 BLDC motor supply frequency (fo) = 180 Hz 

 Number of motor pole pairs ( p) = 3  

 Gear ratio (n) = 22:1 

 Rotating frequency of the driven wheel (fd) for a fo of 180 Hz = 2.73 Hz 

(calculated using (5.5))  

 Number of teeth on the plastic wheel = 66 

 Gear meshing frequency  = rotating frequency of driven gear X number of 

teeth on the gear = 180 Hz. 
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Figure 5.2:  Worm gear. 

 

 

Figure 5.3:  Worm gear-BLDC motor assembly. 
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5.4  Experimental Results for Gear Fault Detection 

Experiments are conducted to verify whether faults in gear systems coupled to 

electromechanical devices such as motors can be detected by monitoring the current in 

the BLDC motor. 

The following types of gear defects are implemented: 

i. Damaged tooth (Two teeth, local fault) 

ii. Scuffing, Scoring (loss of lubrication) 

iii. Debris in lubricant 

The gear meshing frequency of this worm gear coincides with the fundamental frequency 

of the BLDC motor stator current.  Hence, this frequency cannot be viewed separately. 

5.4.1  Damaged Tooth Fault 

A localized damaged tooth fault is implemented by deforming two adjacent teeth 

on the plastic driven wheel of the worm gear by compressing them with a pair of pliers.  

Motor current and voltage waveforms are recorded.  Whenever the deformed teeth reach 

the steel worm the BLDC motor experiences a “bump” in its load and since this is a 

periodic event, the BLDC motor experiences a pulsating load.  The modulating frequency 

component in the AM is thus a periodic pulse as explained in the previous section.  The 

stator current of one phase of the BLDC motor with this defective gear condition is 

shown in Figure 5.4.  Such a pulsating load should in theory give rise to a rich group of 

harmonics around the fundamental frequency in the current spectrum and spaced at the 

frequency of rotation of the toothed gear wheel.  This is verified by examining the current 

frequency spectrum in Figure 5.5.  The fundamental frequency is not fixed exactly at 180 

Hz because of the absence of speed control in the BLDC drive.  Two frequency sidebands 
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at 177.7 Hz and at 183.1 Hz are noticeable in the normal gear current spectrum.  This is 

because of the fact that all practical gear assemblies are non-ideal and exhibit some mild 

abnormality.  The BLDC current spectrum for a defective gear, however, exhibits a rich 

spectrum of harmonics spaced 2.8 Hz apart.  The frequency of 2.8 Hz is the driven wheel 

frequency fd obtained from (5.5) for a fundamental frequency (fo)of 187.2 Hz (Figures 5.4 

and 5.5).  The corresponding BLDC line-to-line voltage spectrum in Figure 5.6 also 

shows a rich spectrum of harmonics at the same frequencies that are present in the current 

spectrum. 

5.4.2  Scoring (Insufficient or Loss of Lubrication) 

Scoring occurs because of insufficient or loss of lubrication.  This defect is 

implemented for testing by removing the lubricant using soap and water.  The BLDC 

motor-gear combination is then operated with the BLDC motor rotating at a speed of 

about 3500 rpm.  The stator current of one of the phases of the BLDC motor is recorded 

and is shown in Figure 5.7.  The modulating frequency in Figure 5.7 is a low frequency 

sine wave as explained earlier.  The removal of the lubricant increases the friction 

between the gear wheels and this friction appears as a pulsating load to the BLDC motor.  

This pulsation is the sinusoidal modulation of the BLDC motor stator current seen in 

Figure 5.7. 

The lower plot of Figure 5.8 shows the BLDC current spectrum after about 10 

minutes of operation.  The gear is observed to be running hot because of friction.  This 

gear fault is characterized by the two sidebands in the current and voltage spectrums 

spaced at fo + fd and their magnitude increases because of friction.  The two sidebands in 

Figure 5.8  occur  at  170.9 Hz  and  176.1 Hz  for a fo of 173.5 Hz  and  a  fd  of  2.6 Hz 
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Figure 5.4:  Stator current of BLDC motor with two deformed teeth in gear. 
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Figure 5.5:  BLDC stator current spectrum for the damaged gear teeth case. 
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Figure 5.6:  BLDC stator line-line voltage spectrum for the damaged gear teeth case. 
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Figure 5.7:  BLDC stator current with lubricant removed from gear. 
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(calculated from (5.5)) and their magnitudes increase to almost 10% of the fundamental.  

Thus, it can be concluded that the friction associated with the loss of lubrication can be 

detected by monitoring the gear harmonics around the fundamental.  The fundamental 

itself also increases because the friction represents an increase in the load as the gear 

heats up with time.  The line-line voltage spectrum in Figure 5.9 also shows a clear 

increase in the gear harmonics at 170.9 Hz and 176.1 Hz, thus indicating that the loss of 

lubrication in gears can also be detected by monitoring the motor stator voltage. 

5.4.3  Debris in Gear Lubricant 

Foreign particles or debris such as dust or metal scrap could get trapped inside the 

gear and possibly lead to gear failure. Debris in the lubricant causes an effect similar to 

the localized gear tooth damage.  The BLDC motor experiences a pulsating load 

whenever the debris is trapped in between the worm and the wheel.  To experimentally 

evaluate the impact of debris in lubricant, small pieces of soft paper are inserted into the 

gear while it is running and Figure 5.10 shows the resulting stator current spectrum.  A 

rich spectrum of gear frequencies spaced 2.9 Hz apart appear around the fundamental and 

appears similar to the case of a localized teeth damage fault (Figure 5.5).  The frequency 

of 2.9 Hz is the driven wheel frequency fd obtained from (5.5) for a fo of 190.2 Hz (Figure 

5.10).  Similar trends also appear in the stator line-line voltage spectrum (Figure 5.11), 

where the fault frequencies are appear at the exact locations, as in the corresponding 

BLDC motor current spectra of Figure 5.10.   
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Figure 5.8:  BLDC stator current spectrum after 10 minutes of operating with lubricant 
removed from gear. 
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Figure 5.9:  BLDC stator line-line voltage spectrum after 10 minutes of operating with 
lubricant removed from gear. 
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Figure 5.10:  BLDC stator current spectrum with debris in lubricant. 
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Figure 5.11:  BLDC stator line-to-line voltage spectrum with debris in lubricant. 
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5.5  Simulation Results with Gear Load Model 

The effect of a faulty gear on the stator current of a BLDC motor is studied 

through simulations.  The six-pole, 12 V, 1 kW BLDC motor is first modelled using 

finite-element analysis.  The same BLDC motor drive used in the tests is studied through 

simulations.  The magnet flux linkages and machine inductances are obtained through 

finite element simulations using the Ansoft MAXWELL 2D and RMxprt packages.  The 

finite element analysis is done in two-dimensions because three-dimensional (3D) effects 

(end windings, etc.) have negligible effect on the problem at hand.  Magnet flux linkages 

and motor inductances are obtained from the finite element simulation using 120 steps for 

every complete rotor revolution.  This information is then used in the form of a lookup 

table in a MATLAB program to simulate the BLDC motor drive with torque control. 

The gear with a local damaged teeth fault is simulated using an impulsive load 

where the impulse lasts for half a current cycle and occurs at periodic intervals of time.  

While the experiments are conducted at no load conditions because of the limitations in 

the laboratory that restrict full load operation, no such restriction exists for simulations.  

The simulated gear fault operation at 50% full load motor operation is shown in Figure 

5.12 where impulses are applied on the load at regular intervals of time (in this case every 

0.3 seconds which corresponds to a frequency of 3.33 Hz that was chosen arbitrarily for 

this study).  This represents local gear damage, where one or two teeth are damaged on a 

gear wheel.  

This gear load is simple. The normal load torque applied by a gear is equivalent to 

a proportional load, where the load torque is proportional to the motor speed.  During a 

gear defect such as a broken tooth, an impulse is created in the load, as the broken tooth 
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on one gear wheel comes in contact with the second wheel.  This is approximately 

modeled as a load that has an impulse, every 0.3 seconds.  The load model is depicted as 

L(due to gear) motor

Normal Load Torque on BLDC motor
T  = 0.03.  Nm

Short Duration Impulsive Load Torque 
(due to gear defect, when the broken teeth 
comes in contact with the other gear wheel) 
every 0.3 se

ω

L(due to gear) motor

motor

conds for 50 ms
T  = 0.03. +0.4 Nm

where  is the mech. speed of the 
BLDC motor (rad/s)

ω

ω

, (5.6)

In Figure 5.12, the top plot shows the mechanical BLDC motor speed.  The speed 

dips, whenever the short duration impulse is felt by the current-controlled BLDC motor.  

The short impulse appears as an increased load to the motor.  The bottom plot in the same 

figure shows the load torque model that imitates a gear fault. 

The stator current spectrum of the simulated BLDC drive is shown in Figure 5.13 

which contains a rich spread of harmonics around the fundamental component of current.  

The motor has a steady state operating speed of 350 rpm. The gear fault harmonics 

visible in the stator current spectrum are spaced 3.33 Hz apart, as the impulsive load 

representing the contact of the damaged gear tooth occurs every 0.3 seconds.  It is thus 

demonstrated that such a pulsating load model adequately represents various gear defects 

and that most gear defects could therefore be detected by monitoring electrical quantities 

such as voltage and current. 
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Figure 5.12:  Top plot: Mechanical speed of BLDC motor (rad/s); Bottom plot: Load 
torque based gear fault model where the load torque varies as 0.03wmotor + 0.4 Nm. 
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Figure 5.13:  Simulated stator current spectrum of BLDC motor with defective gear 
(low speed-350rpm, 50% full load case). 
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5.6  Separation of Gear Faults from Rotor Related Faults in BLDC Motors 

Potential rotor faults in BLDC machines include eccentricities, demagnetized 

rotor magnets, misalignments, and asymmetries [18].  Rotor eccentricities occur when 

there is an unequal air-gap between the stator and the rotor and are classified into two 

main types: static and dynamic [11, 63].  In such cases, the stator current of a BLDC 

motor can be used to monitor the motor health.  It is known that certain rotor defects such 

as a dynamic eccentricities, a partially demagnetized magnet or even a misaligned rotor, 

can be detected by monitoring certain characteristic fault frequencies in the stator current 

of the BLDC motors operating at constant speed [59].  These frequencies are given by 

(3.16) (Chapter 3).  These rotor fault frequencies are usually different from the gear fault 

frequencies given by (5.3) and (5.4).   

The stator current spectrum of a BLDC motor-gear arrangement at a motor speed 

of around 3600 rpm is shown in Figure 5.14.  The rotor fault frequencies are clearly 

different from the gear fault frequencies.  This allows certain gear faults to be detected 

uniquely by simply monitoring the stator current or the voltage spectrum for 

characteristic frequencies, thus offering an inexpensive alternative to vibration-based 

diagnostics. 

5.7  Voltage-Based Detection of Faults 

In the research described in this paper, the BLDC motor drive is operated in a 

torque (current) control mode.  An interesting observation that is made is the presence of 

fault frequency signatures in both the motor current and voltage spectra (Figures 5.5, 5.6, 

5.8-5.11).  These fault frequencies occur at the same location as in both the cases.  This 

observation  points  out  that  voltage-based  condition  monitoring  is possible in current- 
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Figure 5.14:  BLDC gear fault frequencies are different from the rotor eccentricity 
related frequencies. 

 

controlled drive systems.  This raises interesting questions: Why are the harmonics 

present in the motor current in a current controlled system and what is the mechanism of 

the generation of harmonics in the motor voltage in such drive systems?” 

An ideal current-controlled motor with an infinite bandwidth current controller 

has no stator current harmonics, as the motor current is perfectly regulated to the 

reference value and any load perturbation is completely rejected in the stator current 

signal.  However, in such a case, the abnormality in the electric motor should appear 

instead in the stator voltage.  In reality, this is not completely true as practical current 

controllers have a finite bandwidth.  Hence, if the load torque has a low-frequency 

oscillating component, especially at a frequency that is smaller than the bandwidth of the 

practical current controller, then the perturbation passes on to the stator current through 
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the controller, though attenuated to some extent (i.e. in this case the current controller is 

not able to completely filter off the perturbation).  The current controller only partially 

attenuates or tries to correct for the perturbation (abnormality) by varying the voltage, 

resulting in some harmonics at the same frequencies being also present in the voltage.  

The magnitude of the harmonics in both the current and the voltage eventually depends 

on the current controller bandwidth.  This presence of fault harmonics in both the motor 

current and voltage provides additional tools for fault detection that could make a 

diagnostic scheme more flexible and more reliable.  This is useful for instance, if the fault 

signatures are too small to measure in the current. 

5.8  Coupling Misalignment (Angular) Faults 

An angular coupling misalignment causes fault harmonics similar to those caused 

by eccentricity related faults.  The angular misalignment is implemented by inserting 

some shims on one of the bolts that fixes the six-pole BLDC motor to the frame, thus 

causing a misalignment. The experimental result under a 60% full load condition is 

shown in Figure 5.15 and displays the change in harmonics caused by the angular 

misalignment.  It can be observed from Figure 5.15 that only the 1/3rd and 5/3rd 

harmonics increase as hypothesized by equation (3.14).  Measured results for an aligned 

and a misaligned coupling have indicated an increase in the 1/3rd fundamental frequency 

component from 206 mA to 520 mA (good coupling to a misaligned coupling) and a 5/3rd 

fundamental frequency component change from 135 mA to 464 mA (good coupling to a 

misaligned coupling).  It appears that the misalignment frequencies are represented by 

sidebands that occur at twice the rotor speed.  This has indeed been widely believed in 

the industry [29, 30]. 
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Figure 5.15:  BLDC stator current spectrum – angular misalignment. 
 

5.9  Conclusions 

It has been demonstrated through both theory and experiments that faults in gears 

coupled to electric motors may develop unique fault signatures in either the voltage or the 

current in the motor driving the gear.  This may offer a method an inexpensive and novel 

load-diagnostic alternative to vibration-based diagnostics that require accelerometers and 

associated sensor wiring.   

The gear fault frequency components are clearly visible in the motor current and 

voltage spectra for faulty gears.  These frequencies are different from the motor related 

faults such as eccentricities and can be uniquely identified.  They change with the 

presence of a fault in the gear and tracking these frequencies in the current or voltage 

spectrum can help monitor the health of the gears 
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Three kinds of faults localized tooth damage, scoring (loss of lubricant), and 

debris in the gear lubrication have been experimentally implemented.  The mechanism of 

generation of faults is further validated by simulation.  For simulation, the faulty gear has 

been modeled as a pulsating load.  Simulation results confirm that this model adequately 

represents the faulty gear behavior.  Another important observation is that the motor and 

load faults can also be detected from the motor voltage.  Detecting faults from the motor 

voltage is particularly helpful in applications that have only a current control loop, where 

the fault frequency components are more visible in the voltage than in the regulated 

motor current. 

Chapters 4 and 5 investigate the subject of motor and load fault detection under 

constant speed operation.  The third and most important part of this research investigates 

the problem of fault detection under non-stationary motor operation.  An introduction to 

this problem is provided in the next chapter, Chapter 6. 
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CHAPTER 6  

DETECTION OF ROTOR FAULTS IN BLDC MOTORS OPERATING 

IN NON-STATIONARY CONDITIONS 

 

The objective of this chapter is to evaluate methods that can be used to track and 

detect rotor faults in BLDC motors operating under transient (non-stationary) conditions.  

The term non-stationary in signal processing literature has a different connotation and is 

usually described statistically [3].  However, from an electric motor’s operating point of 

view, this simply refers to an operation where the motor’s operating points continuously 

change with time and the motor is never operating at a constant speed through out its 

operation.  Several significant challenges appear in the diagnostics of rotor faults in 

motors operating under non-stationary conditions and these will be discussed in detail in 

this chapter.  This chapter also reviews the several signal processing techniques that 

could be used in non-stationary signal analysis, which is a crucial element to detect motor 

faults in non-stationary operating conditions. 

6.1  Introduction 

It has been assumed so far that the motor is operating in a steady state condition 

(constant speed application).  This fundamental assumption of stationarity allows the use 

of the well known method of Fourier Transformation in the frequency domain analysis of 

currents, voltages, and vibration signals to detect the various rotor and mechanical faults 

in an electrical machine.  However, there are several applications where the motor is 

never operating at a constant speed or load.  Such applications are commonly 

encountered in the aerospace, appliances and automotive industries.  Diagnosis of motor 
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health in such applications could be critical to maintaining and improving process 

uptimes in industries, or providing increased safety to humans.   

A segment of a permanent magnet brushless DC motor (BLDC) stator current in a 

non-stationary state representing an automotive actuator application is shown in Figure 

6.1.  The top part of Figure 6.1 shows a BLDC stator current snapshot for 10 seconds 

sampled at 2 kHz.  A dynamometer representing a speed proportional load is used to load 

the BLDC motor in Figure 6.1.  The motor operates at full load at rated speed. One 

portion of the same current is zoomed for one second and is shown in the bottom part, 

clearly depicting the simultaneously changing motor frequency and amplitude.  In the 

non-stationary motor behavior under investigation in this research, an electric motor 

operates in conditions shown in Figure 6.1 throughout its operation. 

The motor operating in such a non-stationary environment has a non-stationary 

voltage, current, and vibration signal.  Analysis of non-stationary signals is inherently 

complicated as simple and robust techniques such as the FFT can no longer be used.  This 

means that more sophisticated signal processing techniques, often under assumptions of 

local or slow stationarity, are needed.  Even under these assumptions, it is difficult to 

arrive at a solution that may be effective over a wide range of operating conditions and 

faults.  These issues are further discussed in detail in this chapter. 

6.2  Challenges in Non-Stationary BLDC Motor Fault Diagnostics 

1. The stator current is a multi-component non-stationary signal containing many 

frequency components that have to be simultaneously monitored. 

2. The motor to be diagnosed is a six-pole 12 V BLDC (trapezoidal back-EMF) motor 

that is driven from a square-wave inverter.  
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Figure 6.1:  Top: Non-stationary stator current in a BLDC motor; Bottom: Zoomed 
section of top plot depicting continuously changing motor frequency and amplitude. 

 

The main frequency components in the square-wave current signal of a Y-connected 

stator of a six-pole BLDC motor can be described as 

a. Inverter frequencies fe, 5 fe, 7 fe, 11 fe, 13 fe … where fe is the fundamental 

frequency. 

b. Fault frequencies calculated from (3.10):  fe /3, 2 fe /3, 4 fe /3, 5 fe /3.  All the 

fault frequencies may or may not be present depending on the rotor defect. 

3. The fault frequency amplitudes are less than 1% of the fundamental amplitude.  Thus 

the rotor fault information in the stator current signal comprises a miniscule part of 

the total energy in the signal.  This makes the separation of the fault frequencies from 

the inverter frequencies difficult. 
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4. fe varies with time (over a range of 0 – 180 Hz in this case) as the signal is non-

stationary. 

5. The BLDC drive system does not have a speed sensor.  The only available speed 

sensor is a Hall position sensor that is used to determine the rotor position every 60 

degrees.  Hence, any speed measurement may have to be derived from the Hall 

position sensor. 

The focus of the present research is to develop a condition monitoring scheme 

that can detect incipient rotor faults under non-stationary operating conditions.  The 

development of such a scheme is divided into the following parts: 

 A fault feature extraction method that can extract information from the non-

stationary signal (the BLDC motor stator current in this case), such that it can be used 

to detect faults.  This is the most important and difficult part of any diagnostic scheme 

and would need sophisticated signal processing techniques. 

 A fault metric that can use the information extracted above to determine the severity 

of the fault. 

6.3  Signal Processing Techniques for Non-Stationary Fault Feature Extraction 

As mentioned in the previous section, the first step in developing a non-stationary 

diagnostic scheme is to develop an analysis technique that can be used to convert the raw 

current signal to more useful information, particularly in the frequency domain.  As the 

current is in a non-stationary state, the commonly used Fourier transformation can no 

longer be used, at least not in its original form.  Several techniques in the signal 

processing literature have been developed to analyze such signals.  The following 

methods are evaluated as potential solutions for this problem: 
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i. Time-frequency/time-scale methods: 

a. Windowed Fourier ridges (short time Fourier transform – STFT) 

b. Cohen class distributions 

i. Wigner-Ville distributions (WVD) 

ii. Choi-Williams distribution (CWD) 

iii. Zhao-Atlas-Marks distribution (ZAM) 

c. Wavelets 

ii. Hidden Markov Models (HMMs) 

iii. Time-series methods: 

a. Spectral estimation through ARMA models 

b. Adaptive filtering methods 

These are now discussed in more detail. 

6.3.1  Time-Frequency/Time-Scale Methods 

Time-frequency analysis is the three-dimensional time, frequency, and amplitude 

representation of a signal, which is inherently suited to indicate transient events in the 

signal.  Time-frequency (t-f) distributions are commonly used to diagnose faults in 

mechanical systems.  The t-f distributions can accurately extract the desired frequencies 

from a non-stationary signal.  In electric motors, the mechanical and electrical time 

constants are relatively large.  Hence, the stator current in non-stationary operation varies 

slow enough to preserve all frequencies including the fault frequencies and these can be 

extracted over time.  This makes the t-f distributions especially appealing to motor 

diagnostics. 
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The short time Fourier transform (STFT) is a mathematically linear t-f 

distribution.  T-f distributions also include quadratic distributions, such as the Wigner-

Ville distribution (WVD), the Choi-Williams (CWD) distribution and the Zhao-Atlas-

Marks distribution (ZAM) [60-62].  The quadratic t-f distributions offer more frequency 

resolution than the linear t-f distributions.  However, the price often paid is the generation 

of unwanted frequency components, ghosts, and artifacts; as well as the increased 

computation that is needed to suppress these unwanted spectral components. 

Time-scale methods often refer to wavelets.  In wavelet analysis, a signal is 

analyzed at different scales or resolutions: a large window is used to look at the 

approximate stationarity of the signal and a small window is simultaneously used to look 

for transients.  This multi-resolution or multi-scale view of the signal is the essence of 

wavelet analysis [67].  The choice of the wavelet is critical to proper a fault feature 

extraction.  A real wavelet does not possess separate phase information and hence is 

suitable only for detecting sharp transients [68].  This is not of much use in motor 

diagnostics where the fault information is spread throughout the signal.  However, a 

complex analytic wavelet can separate amplitude and phase components from a signal 

and is commonly used to measure instantaneous frequencies [69].  This offers a better 

choice for motor fault detection.   

6.3.2  Hidden Markov Models (HMM) 

A HMM is a stochastic signal model that has been widely used for 

communication and signal processing applications.  HMMs are based on an extension of 

the concept of Markov chains to include cases where the observation is a probabilistic 

function of the state [70].  Left-right HMMs have been most widely used for isolated 
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word recognition systems, where words are modeled by a series of phonetic states that 

occur as a one-way left to right sequence.  These HMMs are developed through training a 

lot of data.  These methods have also been widely used in vibration-based gear fault 

detection, tool wear diagnostics, and even in electrical machine monitoring, but again the 

underlying assumption in such applications has been local stationarity in the vibration 

signal [71-74].  However, in the present application the signal is continuously and 

randomly changing, and there is no local time period during which a stationary training 

data could be obtained.  It is therefore suggested that the HMMs may not be a suitable 

technique for non-stationary motor diagnostics. 

6.3.3  Time-Series Methods 

Time-series modeling is a parametric solution for spectral analysis [3, 75, 76].  An 

important advantage of this method over the non-parametric spectral techniques that use 

windowed/tapered periodograms is the possibility to automatically select the best model 

order and model type.  Moreover, the time-series spectra are more accurate when using 

stochastic processes, as compared to using periodograms [76].  The three model types 

that can be used for time-series modeling are the autoregressive (AR), the moving 

average (MA), and the combined ARMA models.  However, the key point in time-series 

modeling is that these models can characterize all stationary stochastic processes but 

cannot model non-stationary phenomena.  To overcome this, the non-stationary signal 

under analysis is divided into several segments such that each segment represents a 

stationary or a slowly varying waveform.  Each segment is then used to develop and 

adapt the time-series model over time.  The AR models are more suitable for modeling 

peaks in the spectrum and the MA models are better for modeling the valleys.  In 
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practice, most stationary processes can be described adequately by AR(p), MA(q) or 

combined ARMA(p,q) processes of finite orders p and/or q.  A typical ARMA(p,q) 

process has the form 
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where bq and ap are the coefficients of the numerator and denominator of the ARMA 

model.  A power spectrum of the model can be calculated from the estimated model 

parameters [3] as 
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where  and âqb p are the estimated coefficients of the numerator and denominator of the 

estimated ARMA model.  The roots of the denominator of H(z) directly yield the 

frequencies of the peaks in the corresponding power spectrum of (6.2) [77].  Thus, 

accurate and selective frequency estimation is possible.  However, the accuracy of the 

model plays a large part in the effectiveness of this solution.  

The parameters of the ARMA model can be estimated using either the Yule-

Walker method, the Prony’s method, the Shank’s method or using the iterative 

prefiltering technique (Steiglitz-McBride method) [3, 76, 78].  The model order can be 
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chosen through several methods and efficient model ordering methods exist that yield 

mean square error estimates approaching the optimal Cramer-Rao bound [79-81]. 

Though this method seems promising, several drawbacks appear when it is 

applied to non-stationary signals.  The first issue is stationarity.  The segmented data 

window needs to contain stationary data.  Time-varying waveforms affect the 

autocorrelation matrix upon which these models are based, thereby creating inaccurate 

models.  A window with sufficient stationary time data is often difficult to obtain.  

Another difficulty commonly encountered is the choice of optimum model order.  Over-

modeling (higher than necessary order) and under-modeling (lower than optimum order) 

can both cause inaccurate models with spurious frequency components that may not exist 

in the real signal [3].  A possible solution may be adaptive time-series techniques, but 

these are not considered at this time because of their complexity. 

6.4  Conclusions 

A comparison of different available techniques to analyze non-stationary signals 

has been done and the following conclusions are reached: 

a. Assuming that the electric motors and their loads have large mechanical time 

constants, any transient response to sudden changes in operating conditions is slow, 

resulting in the frequency information being preserved in the electrical signals of the 

motor.  Therefore, the time-frequency and time-scale distributions appear to be the 

best initial approach to the problem of motor fault diagnostics because of their ease of 

implementation and their ability to extract fault frequencies dynamically over time.  

These distributions are investigated further in Chapters 7 - 9. 
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b. Another significant issue in motor fault diagnostics is the small magnitudes of the 

rotor fault frequency components, which means that the fundamental frequency 

component and the other higher inverter harmonics have to be filtered prior to any 

signal processing.  If unfiltered, most signal processing methods would neglect these 

small fault magnitudes as noise.  This filtering has to be adaptive as the signal is non-

stationary. 
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CHAPTER 7  

NON-STATIONARY ROTOR FAULT DETECTION USING 

WINDOWED FOURIER RIDGES 

 

The objective of this chapter is to propose a windowed Fourier ridge algorithm for 

the detection of rotor faults in BLDC motors operating under continuous non-stationarity. 

A key assumption made here is that the stator current contains unique fault frequency 

components that can be used for rotor fault detection. The algorithm computes local 

maxima (or ridges) from the spectrogram (STFT) of an adaptively filtered motor current 

signal.  The proposed method allows continuous real-time tracking of rotor faults in 

BLDC motors operating under continuous non-stationary conditions, thus allowing the 

continuous monitoring of the motor health.  Although the method could be readily 

generalized, its presentation is limited in this chapter to BLDC motors. 

7.1  Introduction 

The first method proposed in this dissertation to detect rotor faults in a BLDC 

motor operating under transient conditions is based on the well-known STFT.  It is 

known that rotor defects such as dynamic eccentricity can be detected by monitoring 

certain characteristic fault frequencies in the stator current of BLDC motors operating at 

a constant speed [59].  These frequencies are given by (3.10).  These fault frequencies are 

also present when the current is non-stationary (dynamic motor operation).  In such a 

case, the fault components change in frequency and magnitude depending on the 

operating point (speed and load) of the motor.  These fault frequencies can be tracked 

continuously over time using the proposed algorithm. 
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7.2  Spectrogram And Windowed Fourier Ridges 

7.2.1  Windowed Fourier Transform And Spectrogram 

The windowed Fourier transform (WFT) was developed by Gabor in 1946, when 

windowed Fourier atoms were introduced to measure the “frequency variations” of 

sounds.  The windowed Fourier transform, Sf of a function s(t) is given by [68] 

( ) ( ) ( )  ,
+∞

−

−∞

= −∫ iSf t s g t e dξτξ τ τ τ , (7.1)

where g(τ) is a real and symmetric window translated by t and modulated by the 

frequency ξ , t is the instantaneous time, τ is the “running time”.  This transform is also 

called the short time Fourier transform (STFT) because of the multiplication by g(τ-u) 

localizes the Fourier integral in the neighborhood of t = τ.  The resolution in time and 

frequency of the WFT depends on the spread in time and frequency of the selected 

window type (Rectangle, Blackman, Hamming, Gaussian, Hanning, etc.). This spread is 

the smallest when the Gaussian window defined by (7.2) is used [68]. 

( ) ( )2 18tg t e −
= . (7.2)

The STFT can be implemented digitally and efficiently in real time using discrete 

Fourier transforms (DFT).  The energy density possessed by the WFT is called a 

Spectrogram, denoted by PSf and is given by [68] 

( ) ( ) ( ) ( )
2

2  , ,
+∞

−

−∞

= = −∫ i
SP f t Sf t s g t e dξτξ ξ τ τ τ . (7.3)
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7.2.2  Windowed Fourier Ridges (WFR) 

The spectrogram measures the energy of s(t) in the time-frequency neighborhood 

of (t,ξ).  The windowed Fourier ridges are the local maxima of the spectrogram that 

represent the instantaneous frequencies.  The instantaneous frequency of any function, 

s(t), is defined as a positive derivative of the phase, φ'(t) ≥ 0, where φ is the phase of s(t) 

[68].  If the signal, s(t), has only one frequency component, then the instantaneous 

frequency is ξ(t) = φ'(t), and the amplitude a can be calculated by 

( )
( )( )
( )

2 ,

ˆ 0
=

l

Sf t t
a t

s g

ξ
, (7.4)

where sl is the length and ĝ(ω) is the Fourier transform of the window, g(t), respectively.  

If ΦS(t,ξ) is the complex phase of Sf(t,ξ), then it can be shown that the ridge points are 

also the points of stationary phase [68], since 

( ) ( ),
0

∂Φ
′= − =

∂
S t

t
t
ξ

ϕ ξ . (7.5)

The equations (7.4) and (7.5) are based on a theorem that is explained in 

Appendix C.  The ridge algorithm thus computes the instantaneous frequencies of a 

signal s(t) from the local maxima of PSf (t,ξ).  This approach was introduced by Delprat et 

al. to analyze musical sounds [82]. 

The practical implementation of the ridge algorithm is as follows.  Generally, the 

number of instantaneous frequencies is unknown.  In such cases, all local maxima of PSf 

(t,ξ) that are also points of stationary phase are calculated.  These points define curves in 

the (t,ξ) planes, which form the ridges of the windowed Fourier transform.  Ridges that 
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have a small amplitude are often removed because they can be artifacts of noise 

variations or “shadows” of other instantaneous frequencies created by the side-lobes of 

ĝ(ω).  If the signal consists of only a few frequencies then all the local maxima are 

themselves the ridges and can be checked by computing the stationarity of their 

respective phases using (7.5).  The ridges will be distinct as long as the distance between 

any two instantaneous frequencies (φ´1 and φ´2) satisfies (7.6), where ∆ω is the 

bandwidth of the window [68]. 

( ) ( )1 2
∆′ ′− ≥

l

t t
s
ωϕ ϕ . (7.6)

7.3  Viability of Using WFR for Fault Detection 

To illustrate the concept, a test signal ia approximating a rotor fault, and having a 

fundamental of amplitude 0.05 A (corresponding to a filtered stator current) with two 

rotor fault sidebands of amplitude 0.07 A, is generated using 

( )( ) ( )( )
( )( )

0.05cos 2 0.07 cos 4 / 3
0.07 cos 8 / 3 .

ai p t t p
 p t t

π π
π

= +

+

t t
 (7.7)

The three frequencies in (7.7) are the fundamental frequency, p(t), and the two 

rotor fault frequencies at 2/3rd and 4/3rd of the fundamental frequency p(t).  The 

amplitudes in (7.7) are chosen arbitrarily to imitate a rotor fault scenario as close as 

possible.  A one second record with 2048 samples is used for comparing the various 

signal processing techniques.  The frequency, p(t), is varied sinusoidally between 0 and 

120 Hz as in (7.8). 
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( )( ) sin 2p t ft  where f = 120 Hzπ= . (7.8)

Figure 7.1 shows the two-dimensional time-frequency plot of the Fourier ridges 

(instantaneous frequencies) of the test signal extracted from the spectrogram computed 

using (7.3).  The time-frequency plot of Figure 7.1 describes the variation of the three 

frequencies (y-axis) in the signal, ia, over time (x-axis).  The Wavelab802 toolbox for 

MATLAB from Stanford University is used to implement the windowed Fourier ridge 

algorithm [83].  The choice of a windowing function can play an important role in 

determining the quality of the overall results.  The main role of the window is to damp 

out the effects of the Gibbs phenomenon that results from truncation of an infinite series 

[62, 84].  Different windows offer different trade offs between the ability to offer good 

frequency resolution and the introduction of undesired artifacts (Gibbs phenomenon) [62, 

84].  A Gaussian window of length 0.1 seconds is used in the present simulation example 

though other window types could be used.  This length is chosen through trial and error 

to obtain a good frequency resolution, while simultaneously maintaining time resolution.  

A larger window length produces a smaller frequency resolution, while not providing any 

significant improvement in the time resolution.  Similarly, a shorter time window 

provides a marginally improved frequency resolution while reducing the time resolution.  

The rotor fault frequencies at 2/3rd and 4/3rd of the fundamental frequency, along with the 

fundamental itself, are seen to be distinctly tracked over time in Figure 7.1, except in the 

low-frequency region of 0 to 40 Hz.  The frequency resolution is reduced at low 

frequencies and this is expected because of the relatively short window length.  Figure 

7.1 shows that the frequency components of the stator current waveform of a faulty 
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BLDC motor can be distinctly detected over a wide frequency range using the Fourier 

ridge method.  The simulation demonstrates the feasibility of the approach, but also 

underscores possible limitations such as the choice of the length and type of the window.  

However, the method is robust and easy to implement in practice. 

7.4  Windowed Fourier Ridge Fault-Detection Algorithm 

A block schematic of the proposed algorithm is shown in Figure 7.2.  The 

proposed algorithm to monitor developing rotor faults in a BLDC motor is as follows.  

Firstly, the fundamental and harmonics greater than two are adaptively filtered using an 

analog switch capacitor tracking filter (ATF) that is explained in more detail in section 

7.6.  As the amplitudes of the rotor fault frequencies in the stator current of a defective 

BLDC motor are small in comparison to the fundamental, the ridge algorithm will extract 

the fundamental frequency instead of the fault frequency.  Hence, the stator current has to 

be filtered to remove the fundamental and all other inverter harmonics, prior to the 

application of the ridge algorithm.  The adaptive filtering process removes all inverter 

harmonics and leaves only the fault frequencies behind in the signal. 

Next, a spectrogram is obtained using (7.5) from the filtered current signal. A 

Gaussian window is used as it provides the best frequency resolution among all windows.  

The length of the window is typically chosen heuristically through trial and error.  The 

Fourier ridges (amplitudes of the instantaneous frequencies of the spectrogram) are then 

extracted from the spectrogram by detecting the local maxima.  This is done by looking at 

the peaks of the spectrogram.  The peaks are determined to be actual frequency 

components if they satisfy the stationary phase condition of (7.5).  The components of the 

spectrogram that do not satisfy (7.5) are automatically neglected. 
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Figure 7.1:  Windowed Fourier ridges of simulated non-stationary stator current in a 
faulty BLDC motor. 

 

 

Figure 7.2:  Rotor fault detection in BLDC motors using windowed Fourier ridge 
algorithm. 
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In practice, the process of determining the stationary phase for every frequency 

component is difficult to implement as the number of actual frequency components in the 

signal could be large and is needed only if the magnitude of the actual frequency 

components is comparable to noise (i.e, the signal-to-noise (S/R) ratio is poor).  In the 

present application, the fault frequency components are much larger than the noise as 

shown in Figure 4.4 (Chapter 4).  Hence, the components of the spectrogram that are 

ghosts, artifacts, and noise are removed by simply using a small threshold. 

Fault classification is then done by using either a simple fault metric that directly 

monitors the magnitude of the fault frequencies (Fourier ridges) or by using more 

sophisticated classifiers such as an artificial neural network.  The thresholds can be set to 

determine the severity of the fault and to provide an indication to the operator to take 

some precautionary action.  Such thresholds can be set to vary with load and speed 

conditions.  The fault classification algorithm will be explained in more detail in Chapter 

10. 

7.5  Experimental Setup 

The experimental setup is shown in Figure 7.3.  A 12 V, 1 kW, six-pole BLDC 

motor with surface mount magnets is coupled to a DC generator (dyno) that acts as a 

load.  The dyno produces a load torque that is linearly dependent on the speed of the DC 

generator.  At low DC generator speeds, a low load is obtained.  Full load corresponding 

to 20 A of BLDC motor current is obtained at a speed of 1800 rpm. 

The BLDC motor is driven by an inverter that features an integrated current 

control loop.  The inverter is supplied from a 12 V deep cycle lead-acid battery as the 

intended application is an automobile power steering.  An analog speed controller 
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designed at the Georgia Institute of Technology is used to control speed.  A detailed 

block diagram of the complete BLDC motor controller is shown in Figure 7.4.  The speed 

signal is provided by a 1000 ppr optical encoder coupled to the DC generator.  Hall-

Effect sensors are used to sense the motor stator currents.  One of the phase currents is 

passed through the ATF as shown previously in Figure 7.2.  The filtered current, as well 

as the raw input current, are acquired at a sampling rate of 2 kHz using a 16-bit data 

acquisition system. 

For a six-pole BLDC motor, the rotor fault frequencies occur at 1/3rd, 2/3rd, 4/3rd, 

and 5/3rd times the fundamental frequency as computed from (3.10).  Rapid time-varying 

motor operation is obtained by varying the speed reference as shown in Figure 7.4.  

Experiments are conducted with sinusoidal, triangular, and randomly changing speed 

references.  The sinusoidal and triangular references are varied between 0 to 10 Hz and 

represent most practically occurring applications.  For example, the sinusoidal reference 

changes as in 

* 5sin(2 )ref

ref

f t
where f  is a frequency between 0 and 15 Hz
ω π=

. (7.9)

A signal generator is used to provide the sinusoidal and triangular reference 

signals.  The motor speed varies in the range of 600 rpm to 1800 rpm.  The values of fref 

selected for these experiments are 3 Hz, 5 Hz, 8 Hz, 10 Hz, 12 Hz, and 15 Hz.  The 

frequencies are selected to uniformly span over the range of 0 to 15 Hz.  Two fault cases 

are presented here: a mechanically unbalanced rotor and a dynamically eccentric rotor.  

Both the faults are implemented as explained in Chapter 4.  
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Figure 7.3:  Experimental arrangement to test fault detection in dynamically operating 
BLDC motors. 

 

Figure 7.4:  Detailed block diagram of BLDC motor controller. 
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7.6  Adaptive Tracking Filter (ATF) 

The analog tracking filter (ATF) removes the fundamental and all harmonics that 

are greater than two.  The ATF in Figure 7.5 consists of four components: a switch 

capacitor variable frequency elliptic notch filter, a switch capacitor variable frequency 

Butterworth low pass filter, a fixed frequency Butterworth low pass filter; and a Phase 

Locked Loop (PLL) clock.  T  The complete circuit is shown in Appendix D.  Two filter 

systems, ATF1 and ATF2, are developed. A test ATF (ATF1) with a notch depth of 30 

dB is initially prototyped on a vector board for evaluation.  The ATF2 has a higher 

attenuation and its construction is described in the following sections. 

 

 

Figure 7.5:  Block diagram of analog tracking filter (ATF). 
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7.6.1  Switch Capacitor Notch / Low Pass Filter 

The notch filter of ATF2 that removes the fundamental is a sixth-order elliptic 

switch capacitor filter designed using the software FilterCAD from Linear Technologies 

[85].  The sixth-order filter is implemented using the LTC1061 high performance triple 

universal integrated circuit [86].  The switch filter capacitor circuit of the ATF2 is shown 

in Figure 7.6.  The ratio of the 0 dB width to the notch width is 10:1 with a notch 

attenuation of 56 dB.  The response of the notch filter obtained from FilterCAD is shown 

in Figure 7.7.   

An eighth-order Butterworth low pass switch capacitor filter is then used to filter 

out all harmonics that are greater than two. The low pass switch capacitor filter is 

implemented using a monolithic eighth-order filter chip, MAX295 (Figure 7.6), available 

from Maxim [87].  A low pass attenuation of well over 80dB is achieved.  The MAX295 

also has an uncommitted operational amplifier that is used to finally amplify the filtered 

signal prior to data acquisition.  The pass band ripple is measured to be less than 100 

mdB.  A simple RC post-filter removes the clock feed-through. 

7.6.2  Fixed Low Pass Filter 

A 2 kHz cutoff, fourth-order Sallen-Key Butterworth analog active filter circuit 

(Figure 7.8) is used to remove the 20 kHz PWM frequency components from the input 

current signal.  This filter serves as an anti-aliasing pre-filter that is essential for all 

switch capacitor filters.  The Sallen-Key filter was designed using the software FilterPro 

that is available from Texas Instruments [88].  
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Figure 7.6:  Circuit diagram of the switch capacitor filter section of the ATF. 

 

 

Figure 7.7:  Frequency response of sixth-order Elliptic notch filter obtained using 
FilterCAD. 
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Figure 7.8:  Circuit diagram of the fourth-order Sallen-Key Butterworth analog filter.
 

7.6.3  Digital Phase Locked Loop (PLL) Tracking/Clock Circuit 

The switch capacitor filters need a clock frequency that is 100 times the 

fundamental frequency.  A PLL circuit (Figure 7.9) using the commonly available CMOS 

circuit CD4046 is used to track the fundamental frequency from the Hall position sensor 

output, whose frequency is the frequency of the motor rotation and thereby the stator 

current.  A divide-by-100 counter comprising of two CD4017 decade counters is inserted 

into the feedback loop of the PLL.  This provides a frequency multiplication of 100 times 

the fundamental frequency obtained from the Hall sensor.   

7.6.4  Filter Construction 

The filter ATF2, described in the previous sections, is fabricated on a four-layer 

printed circuit board to obtain superior noise-free performance.  Appendix D provides 

more details on the fabrication of this filter system.  Figure 7.10 shows the completed 

ATF2 that is used in the experiments (Figure 7.3). 
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Figure 7.9:  Circuit diagram of the digital PLL clock. 

 

 

Figure 7.10:  Analog tracking filter ATF2 designed at Georgia Institute of Technology.
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7.7  Experimental Results 

7.7.1  Mechanically Unbalanced Rotor – 3 Hz Sinusoidal Speed Reference 

Mechanically unbalanced rotors are usually caused by misaligned load.  This 

unbalance causes some dynamic eccentricity and motor vibration, eventually leading to a 

motor bearing failure.  A mechanically unbalanced rotor is implemented by mounting a 

slotted disk on the shaft of the motor (Figure 7.3).  The ATF1 with 30 dB notch 

attenuation is used in this experiment to remove the fundamental frequency and all 

frequencies above the second harmonic.  A dc generator load is used for the BLDC 

motor.  This provides full load to the BLDC motor at rated speed.  The full load for the 

BLDC motor used in the experiments corresponds to 20 A. 

A Gaussian window of length 0.25 seconds is used to compute the spectrogram 

using (7.3).  This length is chosen through trial and error to obtain the best compromise 

between frequency- and time-resolution.  The stator current of a mechanically unbalanced 

BLDC motor (with a bolt in one of the disc slots) operating with a 3 Hz sinusoidal speed 

reference and sampled at 2 kHz is shown in Figure 7.11.  The corresponding spectrogram 

of the filtered stator current calculated using (7.3) is also shown in Figure 7.11.  The fault 

frequencies are still not distinctly visible as the spectrogram extracts all spectral 

components including noise from the filtered current.  The instantaneous fault 

frequencies or fault ridges are now extracted from the local maxima of the spectrogram 

by testing all the extracted maxima for stationary phase using (7.5).  Thus, only the fault 

ridges (instantaneous fault frequencies) are extracted from the filtered current and are 

shown in Figure 7.12.  A fundamental component is also present in the extracted ridges 

of Figure 7.12, as the 30dB test ATF used here does not remove the fundamental 
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frequency component completely.  A color chart is provided in all the t-f plots that depict 

the relative magnitude of the amplitude of the frequency components. 

The bolt on the disc is now removed to obtain a mechanically balanced motor and 

the experiment is repeated again with the same 3 Hz sinusoidal speed reference.  The 

windowed Fourier ridges of the filtered current for this case are shown in Figure 7.13.  

The segment of the stator current analyzed in Figure 7.13 is selected to be similar to the 

one used in Figure 7.11.  A fundamental component is again present in Figure 7.13 

because of the reasons mentioned earlier.  The disk, even without the bolt, comprises a 

slight unbalance by itself.  This produces some fault harmonic frequencies even in the 

balanced rotor case, which are smaller than the case with a bolt on the disc, as shown 

previously in Figure 7.12.  
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Figure 7.11:  Non-stationary BLDC motor stator current and the spectrogram of the 
corresponding filtered BLDC motor (with mechanically unbalanced rotor) stator current 

with 3 Hz sine speed reference. 
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Figure 7.12:  Windowed Fourier ridges of filtered BLDC motor (with mech. unbalanced 
rotor) stator current and 3 Hz sine speed reference. 
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Figure 7.13:  Windowed Fourier ridges of filtered BLDC motor (with mech. balanced 
rotor) stator current and 3 Hz sine speed reference. 
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7.7.2  Dynamic Eccentricity – 3 Hz And 6 Hz Sinusoidal Speed Reference 

As mentioned earlier, in a dynamic eccentricity, the center of the rotor is not at 

the center of the stator and the position of minimum air gap rotates with the rotor.  This 

misalignment may be caused by several factors such as misalignment of bearings, 

mechanical resonance at critical speeds, a bent rotor shaft, or wear of bearings.  An actual 

dynamic eccentricity with the rotor moved by 32% of the air-gap length is implemented 

in the laboratory as explained in Chapter 4. 

The stator current is again sampled at 2 kHz and the load conditions remain 

exactly the same, as in the previous experiment.  The windowed Fourier ridges 

(instantaneous fault frequencies) of the filtered stator current of a motor with dynamic 

eccentricity and operating with a 3 Hz sinusoidal speed reference are shown in Figure 

7.14.  These Fourier ridges are extracted from the spectrogram of the filtered current 

signal using (7.3).  The 56 dB ATF2 explained in detail in section 7.6 is now used in this 

experiment.  The Fourier ridges in Figure 7.14 are determined to be the fault frequencies 

at 2/3rd and 4/3rd the fundamental frequency by comparing them with the Fourier ridge of 

the unfiltered signal that predominantly consists of only the fundamental component 

(Figure 7.15) as the fault frequencies are ignored as noise in relation to the fundamental 

component by the ridge algorithm.  As the fundamental has been almost completely 

suppressed, the ridge algorithm detects and tracks only the fault frequencies.  Again a 

Gaussian window of length 0.25 seconds is used in the experiments.  The data is 

processed offline in MATLAB using the Wavelab802 toolbox.  The fault frequencies are 

seen to be tracked over time.  The windowed Fourier ridges for a faulty BLDC motor 
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operating with a 6 Hz sinusoidal speed reference is shown in Figure 7.16.  Again, the 

fault frequencies are distinctly tracked over time. 

7.7.3  Dynamic Eccentricity – 8 Hz Triangular Speed Reference 

A triangular speed reference is also used in the experiments as a triangular speed 

variation causes more transient motor behavior than a sinusoidal speed reference which 

causes a smooth speed variation.  Again, a Gaussian window of length 0.25 seconds is 

used to compute the Fourier ridges.  The load condition remains the same as in the 

previous experiments.  The windowed Fourier ridges for a faulty BLDC motor operating 

with an 8 Hz triangular speed reference is shown in Figure 7.17.  The fault frequencies 

corresponding to a dynamic eccentricity can be seen to be distinctly tracked over time. 
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Figure 7.14:  Windowed Fourier ridges of filtered BLDC motor (with dynamic 
eccentricity) stator current and 3 Hz sine speed reference. 
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Figure 7.15:  Windowed Fourier ridges of unfiltered BLDC motor (with dynamic 
eccentricity) stator current and 3 Hz sine speed reference. 
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Figure 7.16:  Windowed Fourier ridges of filtered BLDC motor (with dynamic 
eccentricity) stator current and 6 Hz sine speed reference. 
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Figure 7.17:  Windowed Fourier ridges of filtered BLDC motor (with dynamic 
eccentricity) stator current and 8 Hz triangular speed reference. 

 

7.7.4  Dynamic Eccentricity – Random Speed Reference 

To validate the effectiveness of the algorithm, the BLDC motor with dynamic 

eccentricity is now operated with a speed reference signal that changes randomly.  Again 

the load conditions remain the same.  The load on the motor is similar to the one used I 

the previous experiments.  A Gaussian window of length 0.25 seconds is chosen to 

compute the windowed Fourier transform.  The non-stationary stator current and the 

spectrogram of the filtered stator current, computed using (7.3), are shown in Figure 7.18.  

The spectrogram does not clearly depict the instantaneous fault frequencies in the filtered 

current signal.  The windowed Fourier ridges (Figure 7.19) are then extracted from the 

local maxima of the spectrogram.  Figure 7.19 shows that the fault frequencies are 

distinctly detected over time.  The ridges in Figures 7.16, 7.17 and 7.19 are identified as 
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BLDC motor fault frequencies from the Fourier ridges of the corresponding unfiltered 

current waveforms as explained previously for the case of the 3 Hz sinusoidal speed 

variation. The random changes in the frequencies of the signal are now clearly visible in 

Figure 7.19.  This demonstrates the effectiveness of the windowed Fourier ridge 

algorithm to track faults during all types of non-stationary conditions. 

7.8  Comments on the Use of Windowed Fourier Ridges 

7.8.1  Non-Stationarity Range of Operation 

During the experiments, it is noted that the ridge algorithm is able to extract 

frequencies from the motor stator current up to a sinusoidal speed reference of 15 Hz and 

a triangular speed reference of 10 Hz.  Beyond these speed reference rates, the current is  
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Figure 7.18:  Non-stationary BLDC motor stator current and the spectrogram of the 
corresponding filtered BLDC motor (with dynamic eccentricity) stator current with 

random speed reference. 
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Figure 7.19:  Windowed Fourier ridges of filtered BLDC motor (with dynamic 
eccentricity) stator current and random speed reference. 

 

extremely non-stationary (especially with a triangular reference) and no longer possess 

any instantaneous frequency.  However, such non-stationarity does not commonly occur 

in motor applications and any non-stationary fault-detection method based on the 

windowed. Another possible reason for the absence of frequency information in such 

extreme non-stationary signals could be the limitation on the slew rate of the PLL, which 

could result in the PLL not able to follow such dynamically changing frequencies. A 

commercial implementation of the Fourier ridge algorithm should take into account the 

severity of the non-stationary behavior that may be encountered.  

7.8.2  Frequency Resolution, Sampling Frequency, and Window Length 

The windowed Fourier ridge algorithm strongly depends on the size and type of 

window.  At low frequencies, the frequency resolution may be poor because of the fixed 
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length of the window used in the algorithm.  Hence the choice of length of the window is 

a critical aspect of the windowed Fourier ridge algorithm.  The frequency resolution 

depends on the sampling frequency and on the amount of samples used for the 

transformation, that is, if the number of samples multiplied by the sampling frequency is 

1 the frequency resolution is 1Hz, if the product is 2 the resolution is 0.5 Hz and so on.  

The sampling frequency and the number of samples are thus chosen as a trade-off 

between the desired frequency resolution for a particular diagnostics problem and the 

computational capability available with the digital signal processor (DSP). 

The length of the chosen window is critical. For example, in this chapter, the 

Gaussian window length is chosen as 0.25 seconds.  This window length depends on the 

desired frequency resolution, which in turn depends on the dynamic range of operation of 

the motor.  The selection of this window length is a challenge.  An initial length can be 

first chosen, and can then be adjusted to obtain the best time and frequency resolution 

depending on the non-stationarity encountered.  A modified short-time Fourier transform 

with an adaptive window is also available in literature and can be used to improve the 

performance of the proposed algorithm [89].  However, this remains to be investigated. 

7.8.3  Influence of Inverter Noise 

The inverter switching frequency noise does not have an impact on the 

performance of the algorithm as this noise is more than a decade above the fundamental 

frequency, and is filtered out using the ATF prior to application of the algorithm. 

7.9  Conclusions 

The problem and solution to diagnosing rotor faults in BLDC motors operating 

under continuous non-stationary operation has been presented.  The windowed Fourier 
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ridge algorithm is proposed as a novel solution.  The windowed Fourier ridges are the 

local maxima computed from the spectrogram of a non-stationary signal.  The Fourier 

ridges can be detected for maxima of comparable magnitude in multi-component signals.  

The method is not limited to BLDC motors but can be applied to other motors as well.   

The ability of the method to track BLDC motor rotor faults such as unbalanced 

rotors and dynamic eccentricities in various cases of non-stationarity has been 

demonstrated.  The windowed Fourier ridge algorithm unfortunately depends on the type 

and length of the data window as it has to be chosen as a trade off between time and 

frequency resolution.  However, the method is simple to implement in real-time as will be 

shown in Chapter 10.   

The WFT is a mathematically linear time-frequency distribution. The linearity can 

be seen in (7.1), where the Fourier transform is obtained from the product of the signal, 

s(t), and the window, g(t). There are also quadratic time-frequency distributions, where a 

second order function of the signal, s(t), is used.  These are not limited by restrictions of 

the window and are investigated as a possible alternative to the WFT in Chapter 8. 
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CHAPTER 8  

NON-STATIONARY ROTOR FAULT DETECTION USING 

QUADRATIC TIME-FREQUENCY REPRESENTATIONS 

 

While Chapter 7 successfully investigated the use of windowed Fourier transform 

(WFT) as a tool for motor fault detection in non-stationary operation, several significant 

issues impede its use in a variety of non-stationary operating environments.  Foremost 

among its limitations, are its dependence on the size and the type of window used. This 

window is selected carefully to obtain a good time-frequency representation that can 

distinctly separate fault frequencies when the motor is operating at low speeds (low-

frequency operation).  While the WFT is a linear time-frequency representation (TFR), 

there is also available another class of quadratic time-frequency representations that are 

more suitable to non-stationary signal analysis.  This chapter discusses some of these 

quadratic time-frequency representations as a possible enhancement to more accurate 

transient motor fault detection. 

8.1  Generalized T-F Distributions 

Time-frequency analysis is the three-dimensional time, frequency, and amplitude 

representation of a signal, which is inherently suited to indicate transient events in a 

signal.  They thus combine time-domain and frequency-domain analysis to yield a more 

revealing picture of the temporal localization of a signal’s spectral component.  A special 

class of distributions, commonly referred to as Generalized Time Frequency distributions 

(GTFRDs) or members of the Cohen class have been recently reported in literature [64].  

 
117



 

These distributions can be used for the analysis of non-stationary signals without any 

underlying assumptions.  The Cohen class of distributions for a signal, s(t), are given by 

( ) ( ) ( ) *
2

1, ,
4 2 2

− −⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫∫∫ j u t jt e s u  s u e d dudθ ωττ τρ ω χ θ τ

π
θ τ , (8.1)

where χ(θ,τ) is an arbitrary function called the kernel.  Setting the kernel χ(θ,τ) = 1 yields 

the well-known Wigner-Ville distribution.  Table 8.1 lists some commonly used TFRs 

and their respective kernels, where h(τ) is a time window (Gaussian, Hamming,…).  

Equation (8.1) is called a quadratic TFR as a result of the second order time-shifted 

product of the signal, s(t), with itself.  However, the biggest drawback of quadratic 

distributions such as the WVD is the introduction of non-negligible cross-term artifacts in 

the time-frequency plot of the signal.  The cross-term can be suppressed by using more 

complicated kernels such as the PWVD (Pseudo WVD), the CWD (Choi-Williams 

distribution), or the ZAM (Zhao-Atlas-Marks distribution), but at the cost of frequency 

resolution.  These issues are explained for each of these distributions in detail in the 

following sections of this chapter. 

8.2  Wigner-Ville Distributions (WVD) and Its Variants 

The Wigner distribution and its various permutations is an analysis technique that 

has been widely used in the diagnostics of faults in mechanical systems, the most 

common being the gear train.  The Wigner-Ville distribution (WVD) is derived by 

generalizing the relationship between the power spectrum and the autocorrelation 

function for non-stationary time-variant processes. The Wigner-Ville distribution of a 

signal, s(t), is given by [64, 90, 91]   
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( ) *1,
2 2

∞
−

−∞

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ jW t e s t s t dωτ τ τ

2
ω τ

π
, (8.2)

where s* is the conjugate of s(t), t is the fixed time of interest, τ is the “running time” and 

ω is the angular frequency (corresponding to ω=2πf where f is the instantaneous 

frequency).  The frequency ω is similar to the instantaneous frequency ξ of Chapter 7, but 

has been given a different symbol to differentiate the fact that ξ is obtained from the 

positive phase derivative.  The WVD is a high-resolution technique that offers much 

better frequency resolution than the STFT [65].  Moreover, the distribution can be used 

for the analysis of non-stationary signals without any underlying assumptions [65]. 

 

Table 8.1:  Selected TFRs and their kernels 

TFR Kernel: χ(θ,τ) 

WVD 1 

PWVD (Windowed 
WVD) h(τ) 

CWD 2 2

/−e θ τ σ  

ZAM ( )sin 2 /
; 1=

a
 a

πθ τ
πθ

 

Spectrogram * 2

2 2
⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ j uh u  e h u duπθτ τ  
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The WVD is a bi-quadratic distribution that produces large undesirable frequency 

components called cross-terms that can hamper the interpretation of the distribution.  To 

elaborate on this, a signal, s(t), that is a sum of two sinusoids is considered [65], 

( ) 1 22 2
1 2= +j p t j p ts t A e A e π

, (8.3)

where A1 and A2 are the amplitudes of two sinusoids with frequencies p1 and p2 

respectively.  The WVD of (8.3) derived using (8.2) is [65] 

( ) ( ) ( )

( ) (( )

2 2
1 1 2 2

1 2 1 2 2 1

,

12 cos 2
2

= − + −

⎛ ⎞+ − + −⎜ ⎟
⎝ ⎠

W t p A p p A p p

)A A p p p p p t

δ δ

δ π
. (8.4)

Thus, the WVD of the sum of two signals is not only the sum of the WVD of each 

individual signal, but there also exists an extra term at the frequency ½(p1 + p2).  This 

extra term is called the “cross-term”. 

Ghosts and artifacts are also produced.  However, they are usually smaller in 

magnitude and can be removed by thresholding.  The cross-terms on the other hand are 

significantly larger in amplitude when compared to the actual spectral components (also 

called as auto-terms) in the signal.  Several variants of the WVD that attempt to suppress 

these cross-terms and the two prominent ones are 

1. Pseudo-Wigner Ville distribution (PWVD) or the Windowed Wigner distribution, and 

2. Smoothed Pseudo Wigner-Ville distribution (SPWVD). 

The PWVD is the windowed version of the Wigner-Ville distribution.  The 

PWVD may be defined in the time domain or in the frequency domain, though the former 
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is more common.  The PWVD has a much better resolution than the STFT [65] and is 

defined in (8.5), where h(τ) is the time smoothing window. 

( ) ( ) *1,
2 2

∞
−

−∞

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ j

PW t e h s t s t dωτ τ τ
2

+ω τ τ
π

, (8.5)

The smoothed WVD (SPWVD) uses a function that smoothes the distribution in 

both the time and frequency planes. The SPWVD offers better cross-term suppression 

than the PWVD, though at the cost of frequency resolution and is given by [64] 

( ) ( ) ( ), , ,SW t L t t W t dt dω ω ω ω ω
∞

−∞

′ ′ ′ ′ ′= − −∫ ′ , (8.6)

where L is the chosen smoothing window (usually Gaussian) applied to the Wigner-Ville 

distribution W(t,ω).  t´ and ω´ are time and frequency variables respectively over which 

the smoothing is carried out.  The most commonly used smoothing function used is a 

Gaussian function, 

( )
2 2

1, ,
t   

L t e  
ω

α βω
αβ

− −
=  (8.7)

and it has been known in quantum literature that for certain values of α and β, a positive 

distribution is obtained with many of the artifacts suppressed [64].  The condition to be 

satisfied is that 

1.αβ ≥  (8.8)

Other general windows such as the Hamming window also produce a good time-

frequency resolution that is similar to the Gaussian window. 
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8.3  Choi-Williams Distributions (CWD) 

The CWD is an exponential kernel that effectively suppresses cross-terms, and the 

kernel is given in Table 8.1 where the parameter σ determines the trade-off between the 

cross-term suppression and the frequency resolution [92].  A larger suppression of the 

cross-term results in a poorer frequency resolution, which is still better than that of the 

WVD and its variants [65].  Unlike the spectrogram (WFT), windows play no 

fundamental role here, and are required only because signals have limited durations. 

If σ is taken to be large, then the kernel is effectively one and results in the WVD.  

A smaller σ on the other hand enhances the actual frequency components in the signal 

(also termed as auto-terms) while suppressing the cross terms.  However, Choi and 

Williams have proved that there is some loss of frequency resolution in the auto terms 

when the value of σ becomes small (<0.1) [92]. 

8.4  Zhao-Atlas-Marks Distributions (ZAM) 

The ZAM distribution is a relatively new distribution [93].  While the emphasis 

on development of distributions such as the CWD is to meet marginal conditions and 

other properties that usually characterize the quadratic TFRs [66], the development of the 

ZAM “cone-kernel’ is aimed at introducing finite time-support and reducing the cross-

terms [93].  The kernel to be used in (8.1) to obtain a ZAM distribution is 

( ) ( ) ( )
1

sin 2 /
, =

aπθ τ
χ θ τ χ τ

πθ
, (8.9)

where χ1(τ) is a function to be specified (usually taken to be equal to one) and a is greater 

than or equal to two. 
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8.5  Comparison of Various TFRs 

A hypothetical test signal, ia, approximating a rotor fault scenario and having a 

fundamental of amplitude 0.05 A (corresponding to a filtered stator current) with two 

rotor fault sidebands of amplitude 0.07 A is generated using (8.10).  The three 

frequencies in (8.8) are the fundamental frequency p(t) and the two rotor fault frequencies 

at 2/3rd and 4/3rd of the fundamental frequency p(t). 

( )( ) ( )( )
( )( )

0.05cos 2 0.07 cos 4 / 3
0.07 cos 8 / 3 .

ai p t t p
 p t t

π π
π

= +

+

t t
, (8.10)

The amplitudes in (8.10) are chosen arbitrarily to imitate a rotor fault scenario as close as 

possible.  The frequency, p(t), is varied sinusoidally between 0 and 120 Hz.  The window, 

h(τ), of the spectrogram in Table 8.1 is chosen as a Gaussian window of length 0.25 

seconds.  A one second record with 2048 samples is used for comparing the various 

TFRs. 

Figure 8.1 shows the two-dimensional time-frequency plot of the spectrogram 

(WFT) of the test signal computed using (8.10).  The time-frequency (t-f) plot of Figure 

8.1 describes the variation of the three frequencies (y-axis) in the signal ia over time (x-

axis).The rotor fault frequencies at 2/3rd and 4/3rd of the fundamental frequency, along 

with the fundamental itself, are seen to be distinctly tracked over time in Figure 8.1, 

except in the low frequency region of 0 to 50 Hz.  The frequency resolution is reduced at 

low frequencies and this is expected as a result of the relatively short window length.  

The Rice University Time-Frequency Analysis toolbox [94] for MATLAB is used to 

compute the Wigner distributions for the simulated motor current signal.  This toolbox 

has specific functions tailor-made for time-frequency analysis. 
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|STFT|2 of simulated BLDC rotor fault
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Figure 8.1:  WFT of a simulated BLDC rotor fault using a hypothetical test signal ia. 

 

However, two significant problems arise when applying the WVD or its variants 

to diagnose rotor faults in BLDC motors:   

1. Interaction between the fundamental frequency and the fault frequencies in (8.8) 

produce cross-terms at the same values as some fault frequencies produced by (3.10).  

These cross-terms may be difficult to suppress even using the PWVD or the SPWVD.  

This is because of large cross-terms that arise resulting from the fundamental 

frequency that is several orders of magnitude larger than the fault components. 

2. The WVD spectrum of a real-valued signal has both a positive and a negative 

frequency part in the WVD spectrum and this produces cross-terms between the 

negative and the positive frequencies.  The stator current being a real-valued signal, 

suffers from this problem. These cross-terms can be eliminated by eliminating the 

negative-frequency terms. 
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The problem of reducing cross-terms can be solved by adaptively filtering the 

fundamental and other inverter harmonics.  In motors with large numbers of poles, 

certain harmonics may be selectively filtered (using an adaptive comb filter) prior to any 

signal processing.  Thus, the cross-terms that may occur at the motor fault frequencies 

can be avoided.  The PWVD or the SPWVD can then be used to suppress any remaining 

cross-terms that are produced as a result of the interaction with the filtered fundamental 

component. 

The negative-frequency terms that are mentioned in (2) as well as other artifacts 

can be removed by converting the real-valued signal to an analytic version of the same.  

This transformation is done using the Hilbert transform.  The use of the analytic signal 

also eliminates the need to sample the signal at twice the Nyquist rate [65].  The analytic 

signal of a real-valued signal, s(t), can be defined as 

( ) ( ) ( )A Hs t s t js t= + , (8.11)

where sH(t) is the Hilbert transform of the signal, s(t), and is given by 

( ) ( ) ( )1 1
HH s t s t s d

t
τ τ

π τ

∞

−∞

⎡ ⎤ = =⎣ ⎦ −∫ . (8.12)

The Fourier transform, SA(f), of the analytic signal in (8.11) does not possess 

negative-frequency components as can be seen from (8.13), where S(f) is the Fourier 

transform of s(t) and SH(f) is the Fourier transform of sH(t). 
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Figure 8.2 is a t-f plot that shows the WVD of the signal of (8.10), obtained using 

(8.2).  The PWVD and the SPWVD of the signal of (8.10) obtained using (8.5) and (8.6) 

respectively, are shown in the t-f plots of Figures 8.3 and 8.4.  The t-f plots show the 

variation of the multiple frequency components of the signal, ia, over time.  A Gaussian 

window of length 0.25 seconds is again used for both the PWVD and the SPWVD to 

facilitate a fair comparison with the WFT.  The WVD, the PWVD, and the SPWVD are 

calculated for the analytic version of the real-valued motor current signal.  The analytic 

signal is obtained from the real-valued current signal, ia, in (8.10) using (8.11) and (8.12).  

It can be seen from Figures 8.1 and 8.2 that the WVD provides better frequency 

resolution than the WFT at lower frequencies, but suffers from a large number of ghosts 

and artifacts.  The PWVD (Figure 8.3) of the Hilbert transformed signal shows that much 

of the interference is removed, thus offering excellent tracking of the fault signals.  

Nevertheless, some cross-terms are still present. 

On the other hand, the SPWVD in Figure 8.4 offers almost complete suppression 

of cross-terms while still offering better frequency resolution than the WFT of Figure 8.1.  

Figure 8.1 also shows that the spectral components produced by the WFT are smeared in 

the frequency domain.  Hence the fault frequencies are not localized but spread over a 

frequency range.  The PWVD and the SPWVD t-f plots in Figures 8.3 and 8.4 show a 

much better concentration of energy in the frequency domain.  This allows the PWVD  
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WVD of simulated BLDC rotor fault
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Figure 8.2:  WVD of a simulated BLDC rotor fault using a hypothetical test signal ia.

 

PWVD (Gaussian window) of simulated BLDC rotor fault
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Figure 8.3:  PWVD of a simulated BLDC rotor fault using a hypothetical test signal ia.
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SPWVD of simulated BLDC rotor fault
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Figure 8.4:  SPWVD of a simulated BLDC rotor fault using a hypothetical test signal 
ia. 

 

and the SPWVD to provide more accurate indication of the fault harmonic amplitudes, 

when compared to the WFT. 

 Similarly, the t-f plots of a CWD and a ZAM distribution for the signal of (8.10) 

are shown in Figures 8.5 and 8.6.  Again, the signal of (8.10) is Hilbert transformed into 

an analytic signal prior to the application of the CWD and the ZAM distributions.  The 

CWD in Figure 8.5 (σ =1) has better energy concentration than the STFT, but the 

frequency resolution in the low-frequency region (below 50 Hz) is compromised to 

obtain good cross-term suppression.  This performance of the CWD is therefore similar to 

that of the SPWVD.  However, the ZAM distribution in Figure 8.6 shows a strong energy 

concentration (low frequency smear), excellent cross-term suppression, and a good 

frequency resolution, all of which are better than even the SPWVD. 
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8.6  Proposed Fault-Detection Algorithm based on Quadratic TFRs 

The previous sections have demonstrated that quadratic time-frequency 

distributions are suitable for non-stationary fault diagnostics, and even offer superior 

frequency resolution and energy concentration than the WFT.  A quadratic TFR based 

fault-detection algorithm is now proposed to detect rotor faults in BLDC motors that 

operate under non-stationary conditions. 

A block diagram of the proposed scheme is shown in Figure 8.7.  The acquired 

BLDC stator current is first filtered adaptively to remove the fundamental frequency and 

other inverter harmonics.  This filtering serves two purposes. Firstly, the filtering 

removes the fundamental and all inverter harmonics which are several orders in 

magnitude larger than the fault frequency components. Secondly, the removal of all 

unwanted harmonics decreases the number and magnitude of the cross terms and other 

artifacts that are typically created by quadratic TFRs.  The filtering thus helps the TFRs 

to create a clean time-frequency representation of the BLDC motor current signal. 

The filtered stator current is then converted into an analytic signal using the 

Hilbert transformation explained in the previous section.  The analytic signal further 

improves the time-frequency representation of the BLDC motor current signal by 

removing negative-frequency components and its associated cross-terms.  This is done by 

calculating the Hilbert transform of the motor current signal using (8.12).  This term is 

phase shifted by 90 degrees and added on to the original signal as in (8.11) to create the 

analytic signal. 
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CWD (exponential kernel) of simulated BLDC rotor fault
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Figure 8.5:  CWD of a simulated BLDC rotor fault using a hypothetical test signal ia.

 

ZAM (conical kernel) of simulated BLDC rotor fault

Time [ms]

Fr
eq

ue
nc

y 
[k

H
z]

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

min

max

4/3 fundamental
rotor fault frequency

Fundamental
frequency

2/3 fundamental
rotor fault frequency

 

Figure 8.6:  ZAM of a simulated BLDC rotor fault using a hypothetical test signal ia.
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Figure 8.7:  Quadratic TFR based BLDC rotor fault detection. 

 

The TFR is then calculated for a time-slice of predetermined length using any of 

the kernels shown in Table 8.1.  In the case of an SPWVD, for example, (8.4) is used to 

calculate the time-frequency representation of the filtered analytic BLDC stator current.  

The fault frequencies obtained from the TFR calculation are then used to compute a fault 

metric that indicates the health of the motor.  The non-stationary motor operation is 

implemented as explained in section 7.5 of Chapter 7. 

8.7  Experimental Results 

The proposed fault-detection algorithm is implemented on a motor with a 

dynamic eccentricity as in Chapter 7.  This motor has its rotor displaced from the center 

by 32% of the air-gap length.  The stator current of the motor is again sampled at 2 kHz 

 
131



 

after being filtered using the adaptive tracking filter ATF2.  A DC generator is used in the 

load similar to the experiments in Chapter 7.  This provides dynamic load, where the load 

torque on the BLDC motor changes directly in proportion to the instantaneous motor 

speed.  An SPWVD/CWD is then calculated for the analytic signal using pre-built 

MATLAB functions available as part of the Rice University Time Frequency Analysis 

toolbox [94].  A color chart is provided in all the t-f plots that depicts the relative 

magnitude of the amplitude of the frequency components.  The length of the data sample 

is usually a power of two, to facilitate fast computation [94].  In the experiments, a data 

comprising of 4096 (212) samples is used.  Both the SPWVD/CWD is computed with a 

Hamming window as the smoothing functions.  The length of the time-smoothing 

Hamming window is 411 samples and the length of the frequency smoothing Hamming 

window is 513 samples.  These lengths are determined through trial and error to obtain 

the best possible time-frequency representation. 

8.7.1  Dynamic Eccentricity Detection Using SPWVD – 5 Hz Sinusoidal Speed 

Reference 

Figure 8.8 shows the t-f plot of the SPWVD of the analytic filtered stator current 

of a dynamically eccentric motor operating with a 5 Hz sinusoidal speed reference rate 

(fref = 5 in (7.8)).  The two dynamic eccentricity fault frequencies at 2/3rd and 4/3rd the 

fundamental frequency are tracked over time, indicating excellent frequency tracking 

with all cross-terms suppressed.  The fundamental is completely absent because of the 

high attenuation of the ATF2.  A relative comparison of the magnitude of the harmonics 

can be assessed from the color chart provided in the t-f plot. 
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8.7.2  Dynamic Eccentricity Detection Using ZAM – 5 Hz Triangular Speed 

Reference 

Figure 8.9 shows the ZAM distribution of the filtered stator current of the same 

dynamically eccentric BLDC motor, now operating with a 5 Hz triangular speed 

reference.  Again, the ZAM distribution tracks the fault frequencies distinctly over time.  

Unlike the WFT, no assumption of local stationarity is needed for the SPWVD and ZAM 

distributions.  These distributions are inherently suited for analyzing non-stationary 

signals, and do not suffer from the problems of window type and size as in the WFT.  The 

amplitude of the extracted fault frequencies can be monitored to detect the severity of a 

rotor fault. 

 

SPWVD of BLDC motor with dynamic eccentricity (5 Hz sine speed ref)
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Figure 8.8:  SPWVD of BLDC motor with dynamic eccentricity (5 Hz sinusoidal 
speed reference). 
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ZAM of filtered BLDC stator current (dynamic ecc., 5 Hz tri speed ref)
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Figure 8.9:  ZAM of filtered BLDC motor (with dynamic eccentricity) stator current 
and 5 Hz triangular speed reference. 

 

8.8  Conclusions 

The use of time-frequency distributions is suggested as an improved alternative to 

the windowed Fourier ridges, for the tracking of rotor faults in electric motors operating 

under continuous non-stationary conditions.  It is again assumed that the BLDC stator 

current may contain unique fault frequency components that can identify the type of rotor 

defect.  The quadratic TFRs provide much better frequency resolution and localization of 

energy than linear TFRs like the WFT.  The ZAM distribution exhibits the best 

performance.  The cross-terms and other artifacts can be suppressed by selective 

prefiltering of the current, and using the Hilbert transformed version of the real-valued 

stator current signal. 
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However, the need to provide high frequency resolution along with good cross-

term suppression leads to complicated kernels, requiring large amounts of processing 

power as will be shown later in Chapter 10.  The biggest advantage of using quadratic 

TFRs is their non-dependence on any window function, which on the other hand is one of 

the biggest limitations of the WFT.  The use of time-scale methods for non-stationary 

motor fault detection will be explored next in Chapter 9. 
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CHAPTER 9  

NON-STATIONARY ROTOR FAULT DETECTION USING 

ANALYTIC WAVELET TRANSFORMS 

 

While Chapters 7 and 8 investigated the use of time-frequency distributions, the 

possibility of using wavelets for motor fault detection in non-stationary operating 

conditions is explored in this chapter.  The challenges in using the wavelets for motor 

fault detection are investigated.  A novel Analytic Wavelet Transform (AWT) based 

detector for tracking the rotor faults such as dynamic eccentricity in BLDC motors is 

proposed.  The proposed method extracts the rotor fault frequencies from the stator 

current of the BLDC motor using the AWT.  A ridge detector is then applied to track the 

maxima of the wavelet-extracted fault frequencies over time, thus providing a method to 

detect rotor faults in motors operating under dynamic conditions. 

9.1  Introduction to Wavelets 

In wavelet analysis, a signal is analyzed at different scales or resolutions: a large 

window is used to look at the approximate stationarity of the signal and a small window 

is simultaneously used to look for transients.  This multi-resolution or multi-scale view of 

the signal is the essence of wavelet analysis [67].  The wavelet analysis is performed 

using a single prototype function called a wavelet.  This function is analogous to the sine 

function used in Fourier transforms, but is structured to suit transient applications.  Fine 

temporal analysis is performed using the compressed version (high-frequency) of the 

wavelet, while fine frequency analysis uses dilated versions (low-frequency) of the 
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wavelet [67].  The wavelet transform decomposes signals using scaled and translated 

(time-shifted) wavelets. A wavelet is a function ψ with a zero average [68] 

( ) 0
+∞

−∞

=∫ dψ τ τ . (9.1)

It is normalized ||ψ|| = 1, and centered in the neighborhood of τ = 0.  A family of 

time-frequency atoms is obtained by scaling ψ by m and translating it by t: 

( ),

1 −⎛ ⎞= ⎜ ⎟
⎝ ⎠t m

t
mm

τψ τ ψ , (9.2)

The wavelet transform of a signal s(t) at time t and scale m is given by 

( ) ( ) *
,

1, ,
+∞

−∞

−⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫t m

tWf t m s s d
mm

τψ τ ψ τ , (9.3)

The energy density of the signal is represented by the scalogram, PWf, given by [68] 

( ) ( ) 2
, ,=WP f t Wf t mξ , (9.4)

where ξ = η/m is the center frequency of the scaled wavelet, ψt,m, and η is the center 

frequency of the original mother wavelet, ψ. 

9.2  Choice of Wavelet 

Choosing an appropriate wavelet is similar to choosing a window in the STFT.  A 

real wavelet does not possess separate phase information, and hence, is suitable only for 

detecting sharp transients [68].  However, a complex analytic wavelet can separate 

amplitude and phase components from a signal, and is commonly used to measure the 
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instantaneous frequencies [69].  As measurement of the instantaneous frequency is a 

critical aspect of the proposed fault-detection algorithm, the analytic wavelet is chosen 

for this application.  An analytic wavelet, ψ(τ), can be constructed by modulating the 

frequency (exp(iητ)) with a real and symmetric window, g(τ) 

( ) ( )= ig e ητψ τ τ . (9.5)

In addition, the fault frequency is not an impulse shaped signal, but is spread over 

the sample window.  Hence, sharp wavelets such as the Daubechies that are more suited 

to pick up sharp transients, will not be able to pick up rotor fault frequencies that are 

spread throughout the signal.  A smoother window that can approximate the spread of the 

fault frequency in the current signal has to be chosen.   

A common smooth analytic wavelet is the Gabor wavelet.  It is obtained by 

frequency modulating a Gaussian window, g(τ) 

( )
( )

2

22
1/ 42

1 −
=

 
g e

τ
στ

σ π
, (9.6)

where σ2 is the variance.  The Fourier transform of this window is 

( ) ( )
2 2

1/ 42 2ˆ 4
 

g e
σ ω

ω πσ
−

= , (9.7)

where ω is the instantaneous frequency.  If σ2η2 » 1 then ĝ(ω)~ 0 for |ω|>η.  Such Gabor 

wavelets are thus considered to be approximately analytic [68]. 

 
138



 

9.3  Analytic Wavelet Ridges 

An AWT is calculated by using an analytic wavelet, ψ, in (9.5).  Such an analytic 

wavelet could be the Gabor wavelet explained in the previous section.  Its time-frequency 

resolution depends on the time-frequency spread of the wavelet atoms, ψt,m. 

The instantaneous frequencies in the signal, s, are measured from the ridges (local 

maxima) of the normalized form of the scalogram, PWf, computed using the analytic 

wavelet.  The instantaneous frequency is defined as a positive derivative, φ'(t), of the 

phase, φ(t), of the respective spectral component.  The normalized scalogram is  

( )
( ) 2

,
, =W

Wf t m
P f t

m
ξ ξ
η

 (9.8)

for ξ = η/m.  It can be shown that the scalogram is utmost at [68] 

( ) ( ) ( )′= =t t
m t
η ξ ϕ , (9.9)

The corresponding points, (t,ξ(t)), are called wavelet ridges.  Thus, the ridges are the local 

maxima of the scalogram.  In multi-component signals that have more than one 

frequency, the instantaneous frequencies can be discriminated as long as the bandwidth 

relations (9.10) and (9.11) are satisfied [68]. 

( ) ( )
( )

′ ′− ∆
≥

′
i j

i

t t

t

ϕ ϕ ω
ϕ η

. (9.10)

( ) ( )
( )

′ ′− ∆
≥

′
i j

j

t t

t

ϕ ϕ ω
ϕ η

. (9.11)
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In (9.10) and (9.11), ∆ω is the bandwidth of ĝ(ω), φi and φj are the phases of any two 

frequency components in the given signal.  Equations (9.10) and (9.11) are used to select 

the bandwidth and the number of scales for the wavelet.  The AWT can be practically 

implemented in real-time, and integrated into a motor drive system using a simple and 

fast method based on the well known Fast Fourier Transformation (FFT) [69]. 

9.4  Analytic Wavelet Ridges Based Fault-Detection Algorithm 

The AWT ridge based BLDC fault-detection strategy for detecting dynamic 

eccentricities in a BLDC motor is shown in Figure 9.1.  The sampled stator current is 

adaptively filtered to remove the fundamental and all harmonics above two, exactly as in 

the previous two chapters, leaving behind only the fault frequency components in the 

BLDC motor current signal.   

The AWT ridge extraction is shown in more detail in Figure 9.2.  The AWT 

Wf(t,m) with Gabor wavelet is then used to compute the scalogram of the current signal 

using (9.3).  The scalogram, which is similar to the spectrogram of the WFT, is then 

calculated from the Wf(t,m) using (9.4) as shown in Figure 9.2.  A discrete version of the 

AWT is used as it is difficult to calculate the continuous AWT of (9.3).  The computation 

of the continuous AWT in (9.3) assumes that the AWT is calculated for all values of the 

scale m from zero to infinity.  However, this is not possible practically.  In practice, the 

AWT is calculated for a range of predetermined scales, m.  For example, the discrete 

wavelet transform (AWT computed at discrete scale intervals of m) is usually computed 

at scales m = ak, with a=21/v, which provides v intermediate scales in each octave [2k, 

2k+1) [68].  The instantaneous fault frequencies are then extracted from the scalogram by 

using the wavelet ridge algorithm.  To achieve this, all the local maxima of the scalogram 
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are obtained by detecting the peaks of the scalogram. These local maxima are the ridges 

of the AWT.  The amplitudes of the extracted ridges can be monitored to estimate the 

health of the BLDC motor.   

 

 

Figure 9.1:  AWT ridge based BLDC rotor fault detector. 

 

 

Figure 9.2:  AWT ridge detection algorithm. 
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9.5  Experimental Results 

The same experimental arrangement explained in Chapter 7 is used here.  A six-

pole, 12 V, 1 kW BLDC motor is used to implement dynamic eccentricity.  Rapid time-

varying motor operation is obtained by varying the speed reference.  Experiments are 

conducted with sinusoidal, triangular, and randomly changing speed references.  The 

sinusoidal and triangular references vary over a range of 0 to 10 Hz, representing most 

practically occurring applications.  For a six-pole BLDC motor, the rotor fault 

frequencies occur at 1/3rd, 2/3rd, 4/3rd, and 5/3rd times the fundamental frequency (3.10).  

The load conditions are again exactly the same as in the previous experiments and the 

stator current is sampled at 2 kHz. 

The AWT ridge algorithm is implemented in MATLAB using the Wavelab802 

toolbox from Stanford University [83].  The discrete wavelet version of the AWT is 

computed at eight scales selected as powers of two, m-1 ={2,4,8,16,32,64,128,256}.  

Twelve intermediate scales are also computed in between each scale.   

Two important parameters of the Gabor wavelet play an important role in 

determining the quality of the method’s time and frequency resolutions, namely, the 

variance, σ2, and the wavelet center frequency parameter, η.  Both these parameters need 

to be tuned to obtain the best performance.  However, for the purpose of demonstrating 

the proposed AWT based fault-detection algorithm, the variance, σ2, of the analytic 

Gabor wavelet is initially chosen as one.  The frequency parameter, η, is then varied 

arbitrarily to obtain a good frequency resolution with as little interference terms as 

possible.  A η of 14 is found to offer a good frequency resolution while also maintaining 
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good time resolution.  The effect of both the variance and the center frequency will be 

further illustrated in section 9.6.b. 

9.5.1  Dynamic Eccentricity – 5 Hz And 8 Hz Triangular Speed Reference 

The stator current of the dynamically eccentric BLDC motor operating at a 5 Hz 

triangular speed reference and the scalogram (|Wf(t,m)|2 in Figure 9.2) of the filtered 

stator current are shown in Figure 9.3.  Darker zones in the scalogram represent higher 

amplitudes.  The local maximas (also called as the AWT ridges) are computed from the 

scalogram as previously explained in Figure 9.2.  These AWT ridges are the 

instantaneous frequencies of the signal.  The instantaneous fault frequencies (AWT 

ridges) in the filtered stator current of Figure 9.3 are shown in Figure 9.4.  The two 

dynamic eccentricity frequencies at 2/3rd and 4/3rd times the fundamental frequencies are 

distinctly seen to vary over time.  The ridge algorithm efficiently extracts only the fault 

frequencies, while suppressing noise and other artifacts.  The amplitude of these AWT 

ridges can be used to measure the health of the motor.  The AWT ridges of the filtered 

stator current of a dynamically eccentric BLDC motor, now operating with an 8 Hz 

triangular speed, reference are shown in Figure 9.5.  Again the AWT ridges are extracted 

from the scalogram (not shown here for this case) of the filtered stator current as 

explained in Figure 9.2.   

9.5.2  Dynamic Eccentricity – Random Speed Reference 

Similarly, the AWT fault ridges of the filtered stator current of a dynamically 

eccentric BLDC motor operating with a random speed reference are shown in Figure 9.6.  

Some interference terms are seen to be present in Figure 9.6.  These interference terms 

arise as the frequency resolution conditions (9.10) and (9.11) are not satisfied for the 
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value of η, chosen here to be 14.  However, these components are small and do not affect 

the rotor fault classification.  The interference terms can be removed by carefully fine 

tuning the value of η.  The fault ridges are tracked distinctly over time, thus confirming 

that AWT is a suitable tool for detecting faults in motors operating under rapidly varying 

speed conditions. 
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Figure 9.3:  AWT scalogram of filtered BLDC motor (with dynamic eccentricity) 
stator current with 5 Hz triangular speed reference. 
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Figure 9.4:  AWT ridge extraction from filtered stator current scalogram in BLDC 
motor operating with 5 Hz triangular speed reference. 
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Figure 9.5:  AWT ridges of filtered stator current in BLDC motor operating with 8 Hz 
triangular speed reference. 
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Figure 9.6:  AWT scalogram of filtered BLDC motor (with dynamic eccentricity) 
stator current with random speed reference. 

 

9.6  Limitations on Using Wavelets for Motor Fault Detection 

9.6.1  Choice of Wavelets 

The choice of the wavelet affects the fault detection process significantly.  As the 

rotor faults are low-frequency sinusoidal quantities, smooth wavelets are needed to 

approximate these components.  As a result, sharp discrete wavelets such as the 

Daubechies cannot be used for good accuracy.  Smooth continuous wavelets are needed, 

but these wavelets cannot be easily implemented in practice as discrete versions for many 

of them are not available.  The AWT offers a good compromise and is one of the few 

wavelets that can be used for motor fault detection.  The small choice of suitable wavelets 

restricts their widespread use in motor fault diagnostics. 
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9.6.2  Frequency Discrimination 

The wavelet ridge algorithm is subject to frequency resolution as is the WFT 

explained in Chapter 7. The frequency resolution of the Gabor analytic wavelet ridge 

algorithm is dependent on the parameters of the wavelet function, namely, the variance, 

σ2, and the wavelet center frequency, η.  The influence of the wavelet center frequency, η, 

is first investigated.  The bandwidth conditions (9.10) and (9.11) have to be satisfied for 

good frequency resolution.  This means that the AWT ridge method strongly depends on 

the parameter, η, which is the center frequency of the mother wavelet.  This parameter 

must be carefully chosen and is usually selected through trial and error.  In the 

experimental results of the previous section, η was carefully tuned to 14 to obtain a good 

performance (the value of σ2 is still assumed as 1).  Figure 9.7 shows the AWT for the 

same experimental result of Figure 9.4, but now for a η of value 6 (σ2 = 1).  The 

frequency discrimination in Figure 9.7 is poor and there are many interference terms. 

This illustrates the importance of carefully selecting η. 

The Gaussian parameter, σ, is the standard deviation or the width of the Gaussian.  

Hence, this parameter directly controls the shape of the wavelet, thereby directly 

affecting the wavelet transform’s time and frequency resolution.  For example, the 

previous case of the AWT with η = 6 is again considered for analysis.  The standard 

deviation, σ, is now increased to 2 (σ2 = 4).  Figure 9.8 now shows the AWT for the same 

experimental result of Figure 9.7, but with the new parameters.  The interference terms 

are almost absent, and the resolution in both the time and frequency is much better.  This 

demonstrates the importance of carefully selecting the standard deviation (or variance) in 

a Gaussian (Gabor) analytic wavelet. 
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Figure 9.7:  AWT scalogram of filtered BLDC motor (with dynamic eccentricity) 
stator current with 5 Hz triangular speed reference (η = 6, σ = 1) depicting poor 

frequency discrimination. 
 

9.7  Conclusions 

Assuming that BLDC rotor faults could be detected from the motor’s stator 

current, a novel analytic wavelet transform based detector has been proposed for 

detection of dynamic eccentricity in BLDC motors operating under never steady-state 

conditions.  The method does not need assumptions of local stationarity in the signal, as 

wavelets are multi-resolution tools developed for the analysis of non-stationary signals.  

Experimental results have shown that the AWT ridge method can track dynamic 

eccentricity frequencies under various types of non-stationary motor operation.  The 

proposed method may also be used for the detection of other faults such as bearing faults.  

The method can also be used for rotor fault detection in other types of motors such as 

induction motors besides BLDC motors. 
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Figure 9.8:  AWT scalogram of filtered BLDC motor (with dynamic eccentricity) 
stator current with 5 Hz triangular speed reference (η = 6, σ = 2) depicting good 

frequency discrimination. 

 

However, the AWT has a strong dependence on the choice and center frequency 

of the mother wavelet.  A careful selection of the wavelet and its frequency is essential 

for a good performance from this algorithm.  If the chosen wavelet is Gaussian, the 

performance of the AWT also depends on the variance of the Gaussian function.  These 

limitations, along with the increased computational complexity needed to implement the 

wavelets in real-time, greatly limits their use in online motor fault diagnostics.   

A performance comparison of all the three methods proposed in Chapters 7 – 9 is 

presented in the next chapter, Chapter 10.  The commercial implementation of these 

algorithms, and a comprehensive rotor condition monitoring method, will also be 

investigated. 

 

 
149



 

CHAPTER 10  

COMPREHENSIVE CONDITION MONITORING SCHEME 

 

Chapters 7 - 9 investigated the use of time-frequency distributions and wavelets to 

detect rotor faults in motors operating under non-stationary conditions.  This chapter 

compares the advantages and the disadvantages of the proposed methods.  Selected time-

frequency representations (TFRs) are implemented on a digital signal processor (DSP), 

and their computational time are compared in order to determine their suitability for 

implementation in a real system.  An important aspect of any condition monitoring 

scheme is the fault classifier that eventually discriminates between a good motor and a 

faulty motor.  This chapter presents a simple fault classifier that is developed for 

detecting rotor faults in BLDC motors.  Finally, a comprehensive condition monitoring 

scheme is suggested, which not only diagnoses the health of the motor but also identifies 

the origin of the fault. 

10.1  Real-Time Implementation and Computational Load 

The most important factor in designing any real-time condition monitoring 

scheme is the computational load.  The WFT, PWVD, and the CWD are compared for 

their suitability for implementation in a commercial system.  To this effect, the three 

algorithms are implemented on an ADSP-21061-SHARC DSP operating with a 50 MHz 

clock and capable of 150 MFLOPS [95].  The ADSP-21061 is a 32-bit floating point 

processor optimized for high performance DSP applications.  The algorithms are first 

written in C language using the Analog Devices Visual Studio environment [96]. 
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A flag is inserted in the C code that provides an output pulse at one of the ADSP-

210161’s data ports, every time a time slice of data is processed.  This pulse is observed 

on an oscilloscope and the time between two pulses is measured.  This time is the time 

taken by the ADSP-21061 processor to compute one time-slice of data.  The discrete 

implementation of the three selected signal processing techniques is explained in this 

section. 

10.1.1  Discrete Implementation of the WFT 

The WFT is implemented using a simple FFT.  A pre-built FFT function in the 

ADSP-21061 software library is used to calculate the WFT.  The FFT is a fast algorithm 

to solve the discrete Fourier transform (DFT), which is the discrete version of the WFT.  

The DFT of Q samples of a signal s (s0,…sQ-1)is given as  

21

0

0,..., 1

iQ kn
Q

k n
n

S s e

k Q

π− −

=

=

= −

∑ , (10.1)

where Sk is the kth frequency component of the signal, s. 

10.1.2  Discrete Implementation of the PWVD 

For practical implementation of distributions of the Cohen’s class described in 

Chapter 8, the generalized discrete-time discrete-frequency distribution (GDTDFD) is 

defined as [97, 98] 

( ) ( ) 2ˆ ˆ, ; j n
l

n
l R n e θθ

+∞
−

=−∞

Ρ Φ = ∑ , (10.2)
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where l is the instantaneous time (position), θ is the instantaneous frequency and is Φ̂  the 

discrete kernel of a quadratic TFR.  The auto-correlation sequence Rl is 

( ) ( ) ( ) ( )* ˆ , 2l
m

R n s l m n s l m n m n
+∞

=−∞

= + + + − Φ∑ . (10.3)

Φ̂ (m, 2n) is the discrete-domain kernel that defines the time-frequency representation 

[99].  In practice, only a finite span in time of the signal is available. This can be 

represented by applying a sliding window of length 2N+1 over the signal under analysis, 

so that equations (10.2) and (10.3) can be rewritten as 

( ) ( ) 2ˆ ˆ, ;
N

j n
l

n N

l R n e θθ
+

−

=−

Ρ Φ = ∑  (10.4)

and 

( ) ( ) ( ) ( )* ˆ , 2
N

l
m N

R n s l m n s l m n m n
+

=−

= + + + − Φ∑ . (10.5)

For the Wigner distribution, the discrete-domain kernel is given by 

( ) ( )ˆ , 2m n mδΦ = . (10.6)

Substituting (10.5) in (10.6) yields the auto-correlation sequence, 

( ) ( )*WD
lR s l n s l n= + − . (10.7)

The auto-correlation sequence is first computed.  The discrete Fourier transform 

(DFT) of the auto-correlation sequence is then computed to obtain the DWVD of the 

sequence.  The DWVD can be efficiently computed using standard Fast Fourier 
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transform (FFT) algorithms.  The computation is further optimized by evaluating two 

successive Rl sequences together [99] 

( ) ( )1 2
WD
comb l lR R n j R= + n . (10.8)

Thus, the discrete Fourier transform (DFT) of the individual sequences can be evaluated 

using a single DFT for the combined kernel, thereby halving the number of final FFTs 

used.  The Hilbert transform is implemented as a 79-tap finite impulse response (FIR) 

filter [99]. 

10.1.3  Discrete Implementation of the CWD 

Here, the exponential CWD kernel (Table 10) is selected in the original domain, 

and then a Fourier transform is performed along one of its axes to get the kernel in the 

ambiguity domain. Thus a new correlation vector is constructed, and from there the 

same algorithm used previously in the WVD, is applied. 

10.1.4  Comparing Load Computations 

A signal sample comprising of two fault frequencies and length 1024 samples is 

used to evaluate the load computations.  The TFRs are calculated using a 512-point FFT.  

The load computations for one time slice of data processed is measured on an 

oscilloscope and is compared in Table 10.1, which shows that the load computations 

increase as more complex kernels such as the CWD are used.  The WFT is implemented 

using a Gaussian window of length of 0.0625 seconds.  The length of the window is 

chosen heuristically to best fit this application.  While the WVD takes almost 4 times the 

computation time of the spectrogram, more sophisticated distributions like the CWD take 

about 50 times the computational time of the spectrogram.  However, the WVD and 
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CWD yield better frequency resolution and localization and do not suffer from the 

problems related to the type and size of the window as in the WFT. 

 

Table 10.1:  Computational time for selected TFR kernels 

TFR Computation time per time slice (µ-sec) 

WFT 0.46 

WVD 2.02 

CWD 27.93 

 

10.2  Comparison of Non-Stationary Motor Fault-Detection Algorithms 

Chapters 7 – 9 investigated three signal processing techniques that could be used 

for fault detection in motors operating under non-stationary conditions.  The advantages 

and disadvantages of all the proposed methods are summarized in Table 10.2. 

Among the three methods, the WFR is the simplest to implement and is widely 

used.  Hence, it is recommended as the first choice in non-stationary motor fault 

diagnostics.  This technique can be used for most of the non-stationary operation cases 

where high frequency resolution is not needed over a wide speed range.  As the WFR 

uses a window of fixed length to look closely for non-stationarity in the signal, the 

frequency resolution is fixed.  Hence this frequency resolution may be optimum only 

over a small range of motor speeds and may not be suitable at other ranges (usually at 

low frequency).  The size of the window has to be optimized for every application.  The 
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performance of the WFR also depends on the type of window.  The choice of window 

can affect the amplitude of the extracted fault frequencies because of the Gibb’s 

phenomenon as explained in Chapter 7.  The dependence of the WFR on the choice and 

length of the window is its greatest disadvantage, but the method can be implemented 

quickly and has a low computational time.   

In cases where more computational power is available, the quadratic TFRs could 

be used to obtain better performance.  The non-dependence of the quadratic TFRs on any 

window, and their inherent suitability to non-stationary signal analysis, make them an 

attractive choice for non-stationary motor fault diagnostics.  The increased computational 

load is the price paid if a better frequency resolution and good localization of energy is 

needed.  In spite of the increased complexity involved, the computation time of a CWD is 

still in the order of a few tens of micro-seconds, and hence is amenable to implementation 

in real-time. This computational time can be further decreased by paralleling several 

micro-programmed systems, and using more optimized software routines.  Newer 

processors run at much higher speeds and can decrease the computation time by as much 

as ten times.  Moreover, as motor diagnostics is performed over relatively long intervals 

of time, the computation time may not be critical, and hence most of the quadratic TFRs 

can be effectively used. 

While the analytic wavelets have been demonstrated to be effective in tracking the 

fault frequency components, the dependence of the method on the type and the centre 

frequency of the wavelet is a major limitation, especially considering the fact that these 

methods are complex to implement in practice.  Even though this method is promising, 

the wavelets take the last priority among all the evaluated signal processing conditions.  
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More work is eventually needed to develop a wavelet that is uniquely suitable for motor 

fault diagnostics.  Methods to simplify its practical implementation have to be explored 

further before the wavelets could be considered as a practically suitable condition 

monitoring scheme. 

 

Table 10.2: Comparison of non-stationary fault-detection algorithms 

 WFR Quadratic TFR AWT 

Frequency 
Resolution Good Excellent Good 

Dependence Window type/length None Wavelet type/center 
frequency 

Computational 
Complexity Low High High 

Suitability to non-
stationary signal 

analysis 
Good Excellent Excellent 

Artifact creation Low Medium Medium 

 

10.3  Fault Classification - Root Mean Square (RMS) Fault Metric Based Threshold 

Classifier 

Chapters 7 – 9 explain the process of fault feature extraction.  Once the fault 

frequencies are computed, the next step is to use the extracted frequency information to 

monitor the health of the motor.  This can be done by either using a simple RMS fault 

metric that monitors the magnitude of the fault frequencies over time, or by using more 

sophisticated fault classifiers such as artificial neural networks (ANN).  A simple RMS-

based fault classifiers is explained in more detail in this section.   
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Every motor has some small abnormality from the time of manufacture.  For 

example, typical eccentricity tolerances during manufacture are indicated by total 

indicative roundness (TIR) by motor manufacturers and are usually in the range from 5% 

to 20% [100].  The purpose of a fault classifier is to learn the behavior of a good motor 

and observe / track the deviation in the fault frequency components over time.  This 

learning process cannot be generalized for families of electric motors and must be 

performed for every individual motor whose health is to be diagnosed.  A large deviation 

in the magnitude of these fault frequencies, from what should have been the normal 

amplitudes for a good motor, is indicative of a progressing fault. 

A simple RMS fault metric that could be used to monitor the health of the motor 

is calculated from the RMS of the instantaneous amplitudes of the extracted fault 

frequencies and is given by  

( )2

1

1 ri N

i
ir

RMS Fault  Metric f t
N

=

=

= ∑ , (10.9)

where fi(t) is the amplitude of the instantaneous rotor fault frequencies extracted from the 

spectrogram of the filtered current using the ridge algorithm.  The Nr in (10.9) 

corresponds to the number of Fourier ridge frequencies extracted at any given time.  This 

metric is used to indicate a developing rotor fault and the proposed scheme is shown in 

Figure 10.1. 

As the motor’s operating condition, namely the speed and the load, vary 

continuously over time, the amplitudes of the fault frequency components vary too.  For 

this reason, a threshold that can adapt to instantaneous operating conditions is needed for 

fault discrimination in motors operating under non-stationary conditions. 
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Figure 10.1:  RMS fault classifier for BLDC motor fault detection. 

  

Figure 10.2 demonstrates the fault metrics calculated using (10.9) for a 

mechanically balanced and an unbalanced motor, using the instantaneous RMS of the 

WFR fault ridge amplitudes extracted from the spectrogram of the filtered stator current.  

The BLDC motor in this case is operating in a transient state, with a speed reference that 

is changing sinusoidally at a rate of 3 Hz.  A clear change can be seen in the fault metric 

of the mechanically unbalanced motor indicating a fault condition.  This fault metric can 

be used along with a predetermined threshold as an indicator for automatic detection of 

rotor faults in BLDC motors.   

 
158



 

Similarly, Figure 10.3 shows the RMS fault metric computed using (10.9) for 

fault frequencies extracted from the stator current of a dynamically eccentric BLDC 

motor operating with a 5 Hz triangular speed reference.  The RMS fault metric of the 

defective BLDC motor can be seen to be much higher than the RMS fault metric of a 

good motor. 

The fault metric computed for a motor with dynamic eccentricity and a good 

motor are shown for two different time segments in Figures 10.4 and 10.5.  The time 

scales have been normalized to obtain a common base for comparison, and hence 

represent a time from 0 to 2 seconds.  The dynamically eccentric motor in this case is 

again operating with a sinusoidal speed reference of 3 Hz and the fault frequencies are 

extracted using the WFR algorithm.  A significant difference in the fault metrics of the 

good and the faulty motor cases can be seen.  The fault can be automatically detected by 

setting a threshold.  An adaptive heuristic threshold that varies as 2% of the amplitude of 

the fundamental frequency component (Figures 10.4 and 10.5) is used to discriminate 

between the good and the bad motor.   

The amplitude of the fundamental frequency is obtained from the TFR/analytic 

wavelet computed on the unfiltered BLDC motor current signal.  This is done by 

computing the RMS metric of (10.9) for a small present band of frequencies around the 

fundamental (Figure 10.1).  Several individual bands with their respective RMS metrics 

can be computed to separate multiple fault frequencies.  This would help classify the 

actual defect in the BLDC-load system.  
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Figure 10.2:  RMS fault indicator computed from WFR discriminates BLDC rotor 
unbalance (3 Hz sine speed ref); Measurement Error = + 10%. 
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Figure 10.3:  RMS fault indicator computed from the CWD discriminates BLDC 
dynamic eccentricity (5 Hz triangular speed ref); Measurement Error = + 10%. 
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Figure 10.4:  Discriminating dynamic eccentricity with adaptive threshold set at 2% of 
fundamental amplitude (3 Hz sine speed reference); Measurement Error = + 10%. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Normalized Common Time Scale (sec)

R
M

S
 fa

ul
t i

nd
ic

at
or

RMS fault indicator with adaptive fault threshold (dynamic eccentricity)

Good motor
Dynamically eccentric motor
Adaptive fault threshold

 

Figure 10.5:  Discriminating dynamic eccentricity with adaptive threshold set at 2% of 
fundamental (3 Hz sine speed reference) for time segment different from Figure 10.4. 
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10.4  Comprehensive Rotor/Load Condition Monitoring Scheme 

Based on the information generated in this research, a comprehensive rotor/load 

condition monitoring scheme for BLDC motors is suggested.  A flow chart of this 

proposed scheme for a six-pole BLDC motor is shown in Figure 10.6.  The suggested 

scheme monitors the magnitude of several fault frequencies (3.10) in the instantaneous 

spectra of the filtered BLDC motor current.  Additionally, the BLDC torque constant, Kt, 

can also be monitored simultaneously.  A significant change in the torque constant 

usually indicates a damaged rotor magnet fault [36].  The presented algorithm is intended 

to not only track and determine a BLDC motor fault, but also accurately indicate the 

origin of the detected fault. 

The good motor is first operated under a variety of operating conditions prior to 

commissioning, in order to create a data base of fault frequency amplitudes as a function 

of motor speed and load.  This data base can be updated using intelligent fault classifiers 

like ANNs if needed. 

The condition monitoring scheme starts monitoring the BLDC motor health as 

soon as the motor is commissioned.  A significant change in both the stator current fault 

frequency magnitudes and the motor torque constant may indicate trouble in the BLDC 

motor magnets (possible demagnetization or cracks).  A change in only the stator current 

fault frequencies may indicate an eccentricity fault or misaligned couplings.  Similarly a 

change in gear fault frequencies may indicate trouble in the gear arrangement. 
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Figure 10.6:  Comprehensive BLDC motor rotor/load fault condition monitoring 
scheme. 
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Static eccentricity is not included, as it is difficult to detect especially in surface 

mount magnet BLDC motors.  This is because static eccentricity is typically detected 

using the magnitude of the principle slot harmonics which are absent in the smooth rotors 

of PM machines.  Detection of static eccentricity through negative sequence components 

is also difficult, as static eccentricity induced unbalance is miniscule because of the large 

air-gap and the magnet which almost behaves like air (µr = 1.09). 

10.5  Conclusions 

This chapter has compared the performance of all the condition monitoring 

algorithms developed for non-stationary motor fault diagnostics.  Some of the important 

TFRs have been implemented on a DSP platform. and their suitability for commercial 

implementation has been demonstrated.  A simple RMS based fault classifier with an 

adaptive fault thresholding scheme has been presented that can discriminate faults in non-

stationary motor operating conditions.  Finally, a comprehensive rotor/load fault 

monitoring scheme has been suggested that may not only detect developing motor faults, 

but can also accurately point to the origin of the fault. 

The conclusions and contributions of this research, and the recommendations for 

future research, are presented in the next chapter, Chapter 11. 

 

 

 
164



 

CHAPTER 11  

CONCLUSIONS, CONTRIBUTIONS, AND RECOMMENDATIONS 

 

11.1  Summary and Conclusions 

The purpose of this research is to advance the field of rotor and load fault 

diagnosis in BLDC machines operating in a variety of operating conditions ranging from 

constant speed to continuous transient operation.  The fast growth in applications of the 

BLDC motor in sensitive applications has increased the need for continuous condition 

monitoring of their health.  Diagnostics of rotor and load faults related to the BLDC 

motor are the focus of this research. 

11.1.1  Conclusions of Research Phase 1: Experimental Study of BLDC Faults 

Under Constant Speed Operation 

The fundamentals of BLDC operation and the production of rotor faults are 

reviewed.  A detailed literature survey is presented to summarize state of the art 

techniques that are pertinent to the methods proposed in this research.  The present 

research is organized into three phases.  The first phase of this research consists of 

experimental characterization of rotor faults in BLDC motors operating at constant speed.  

Rotor faults in BLDC motors operating at constant speed may be detected by monitoring 

certain characteristic fault frequencies in the motor current spectrum.  Every motor has 

some small abnormality from the time of manufacture and it has some of the fault 

frequency components.  Hence, in all the condition monitoring algorithms, base 

measurements are taken for a good motor at the time of commissioning.  Once 

commissioned the fault algorithm monitors the amplitudes of the fault frequencies and 
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tracks changes in their amplitudes over time. A significant change in the amplitudes 

indicates a developing fault. 

Three rotor faults (dynamic eccentricity, unbalanced rotors, and damaged rotor 

magnet) are practically implemented and their effects on the motor voltage and current 

are studied.  As a six-pole BLDC motor is used, the significant fault harmonics of interest 

in the motor stator current occur at 2/3rd and 4/3rd times the fundamental frequency.  In all 

the three rotor faults, these harmonics show a significant increase when faults are applied.  

The measurement accuracy in the experiments is about + 10%.  For example, in the case 

of a dynamically eccentricity BLDC motor operating at light load (30% full load) and 

with its rotor shifted by 33% of the air-gap length; the 2/3rd fundamental frequency 

harmonic increases from 40 mA to 274 mA (good motor to bad motor) and the 4/3rd 

fundamental frequency harmonic increases from 45 mA to 148 mA (good motor to bad 

motor).  Under full load conditions, these harmonics are a bit more damped because of 

the coupling between the load and the motor stiffens; nevertheless a strongly measurable 

change is still noticeable. For example, under full load the 2/3rd fundamental frequency 

harmonic increases from 86 mA to 332 mA (good motor to bad motor) and the 4/3rd 

fundamental frequency harmonic increases from 58 mA to 76 mA (good motor to bad 

motor).  A similar behavior is noticeable in the other two fault cases of unbalanced rotor 

and damaged rotor magnet fault.  It has also been demonstrated through simulations that 

static eccentricity may be more challenging and difficult to detect.  This is because, a 

smooth rotor motors lacks the principle slot harmonics that are usually used to detect the 

static eccentricity. 
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The role of pulsating loads (reciprocating compressors) in stator current based 

motor fault diagnostics is also investigated in this research. It is demonstrated that large 

pulsating loads produce harmonics that may mask rotor fault components in the current 

frequency spectrum.  Therefore, the separation of pulsating load from a rotor fault is 

essential for reliable condition monitoring.  For example, in the case of a pulsating load 

with an oscillating component that oscillates at the rotor speed, the 2/3rd and the 4/3rd 

times fundamental frequency fault harmonic in the motor stator current are measured to 

be 694 mA (30% full load) which is an order of magnitude higher than the BLDC motor 

with a dynamic eccentricity. 

11.1.2  Conclusions of Research Phase 2: Detection of Load and Coupling Faults in 

BLDC Motors Under Constant Speed Operation 

The second phase of this research proposes methods for detection of faults in 

loads, particularly gears coupled to BLDC motor using the stator current.  This offers an 

inexpensive alternative when compared to vibration based monitoring that use expensive 

accelerometers to sense the machine vibrations.  It is shown that various gear faults 

appear as different load perturbations to the electric motor and result in unique frequency 

patterns in the stator current spectrum.  Such frequency patterns are produced by 

amplitude modulation in the stator current signal.  Three gear defects are implemented in 

the laboratory: broken teeth defect, loss of lubrication, and debris in the gear.  Depending 

on the fault, the stator current harmonics indicate different patterns of fault harmonics.  

By way of an example, a worm gear (66 teeth and gear ratio of 22:1) with two damaged 

teeth and operated by a BLDC motor with a torque control, generates a rich spectrum of 

harmonics in the stator current spectrum spaced 2.8 Hz apart on both sides of the 
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fundamental frequency (180 Hz).  The 2.8 Hz (= 180/66) corresponds to the rotational 

frequency of the reduced speed gear.  A loss of lubrication on the other hand produces 

just two sidebands at 170.9 Hz and 176.1 Hz, one on each side of the fundamental 

frequency (173.5 Hz).  These harmonics are spaced at 2.6 Hz around the fundamental 

frequency and the 2.6 Hz happens to be the rotating frequency of the reduced speed worm 

gear.  These frequency sidebands can be used to identify a gear defect, its type and its 

severity (based on the change in harmonic magnitude from a good gear to bad gear). 

The gear fault frequencies noticed in the BLDC stator current are also noticeable 

in the line-to-line stator voltage and this can be used to improve fault detection in torque 

(current) controlled motors such as the one used in the experiments during this research.  

In theory, a current controlled motor should have no stator current harmonics as the 

motor current is controlled and corrected to follow the reference value.  Hence the 

abnormality should completely appear in the stator voltage.  However, in practice this is 

not completely true.  If the load torque perturbation occurs at a low frequency especially 

a frequency that is smaller than the current controller bandwidth, then the perturbation 

goes through the controller, although attenuated to some extent (i.e. in this case the 

current controller is not able to completely filter off the perturbation).  This results in the 

perturbation being transferred to the stator current, which results in the fault harmonics 

appearing in the motor stator current spectrum. As the current controller only partially 

attenuates or tries to correct the perturbation (abnormality) by varying the voltage, the 

same harmonics are also observable in the voltage.  The magnitude of the harmonics in 

both the current and the voltage eventually depends on the current controller bandwidth.  
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However, the knowledge of fault harmonics in the motor stator voltage provides an 

additional tool for fault detection that can make the diagnostic scheme more reliable. 

As a part of the second phase of this research, coupling defects have also been 

analyzed.  Coupling misalignments develop fault frequencies in the motor stator current 

at 1/3rd and 5/3rd the fundamental frequency in six-pole motors. An angular coupling 

misalignment is recreated in the laboratory and this yielded a 1/3rd fundamental frequency 

component change from 206 mA to 520 mA (good coupling to misaligned coupling) and 

a 5/3rd fundamental frequency component change from 135 mA to 464 mA (good 

coupling to misaligned coupling), under 60% full load condition.  This again 

demonstrates that coupling defects may be uniquely distinguished from other rotor and 

load defects. 

11.1.3  Conclusions of Research Phase 3: Non-stationary BLDC Motor Fault 

Detection 

The third and the most significant phase of this research is the diagnosis of rotor 

faults in BLDC motors operating in non-stationary conditions.  Diagnostics of motor 

health in transient operating conditions is challenging because of the fact that the well 

known Fourier transformation no longer applies to non-stationary signals.  This is 

particularly more challenging in a BLDC motor as the current is a square-wave that 

contains a large number of inverter harmonics besides the fundamental and rotor fault 

frequencies.  Three methods are proposed in this research to track rotor faults in non-

stationary motor operating: 

1. Method 1: Windowed Fourier ridges based fault detection. 

2. Method 2: Quadratic time-frequency distribution based fault detection. 
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3. Method 3: Analytic wavelet based fault detection. 

11.1.3.1  Method 1: Windowed Fourier Ridges Based Fault Detection 

Windowed Fourier ridges are local maximas computed from the spectrogram of a 

non-stationary signal.  The Fourier ridges can be detected for maximas of comparable 

magnitude in multi-component signals.  Experimental results have been conducted to 

reproduce several cases of non-stationarity.  Rapid time-varying motor operation is 

obtained by varying the speed reference.  Experiments are conducted with sinusoidal, 

triangular, and randomly changing speed references.  The sinusoidal speed variation is 

the least severe of the three types of non-stationarity implemented, with the triangular 

speed variation as the next more severe, and the continuous random speed variation being 

the worst case scenario.  The frequencies of these variations selected for these 

experiments are 3 Hz, 5 Hz, 8 Hz, 10 Hz, 12 Hz, and 15 Hz and they represent the range 

of most practically occurring scenarios.  During the experiments it is noted that the ridge 

algorithm is able to extract frequencies from the motor stator current up to a sinusoidal 

speed reference of 15 Hz and a triangular speed reference of 10 Hz.  Beyond these speed 

reference rates, the current is extremely non-stationary (especially with a triangular 

reference) and no longer possess any instantaneous frequency.  However, such non-

stationarity does not commonly occur in motor applications, and any non-stationary fault 

detection methods based on the windowed Fourier ridge algorithm should take into 

account the severity of the non-stationary behavior that may be encountered.  Moreover, 

the frequency resolution of the windowed Fourier ridge algorithm depends on the size 

and type of the window which has to be chosen carefully to obtain the best performance.  

Another limitation is the fundamental frequency tracking range of the adaptive tracking 
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filter (ATF) which in this case is from 30 Hz to 200 Hz.  The windowed Fourier ridge 

algorithm is not able to extract anything meaningful beyond these ranges as the 

performance of the filter deteriorates. 

11.1.3.2  Method 2: Quadratic Time-Frequency Distribution Based Fault Detection 

The second proposed method, method 2, involves the use of quadratic time-

frequency distributions.  Wigner-Ville distributions and its variants, namely the smoothed 

pseudo Wigner-Ville distributions are the basic examples of this kind of distribution.  The 

feasibility of using more sophisticated time-frequency methods such as the Choi-

Williams distribution or the Zhao-Atlas-Marks distribution has also been demonstrated. 

This method, method 2, has particular advantages in fault detection at lower operating 

frequencies because of its better frequency resolution; its most important advantage is its 

non-dependence on any window type or length.  Experiments and simulations have again 

been used to demonstrate the validity of this method.  The third method uses analytic 

wavelets to track and detect faults.  The quadratic TFRs however provide much better 

frequency resolution and localization of energy with the ZAM distribution exhibiting the 

best performance.  During the experiments, it is again noted that these algorithms are able 

to extract frequencies from the motor stator current up to a sinusoidal speed reference of 

about 15 Hz and a triangular speed reference of 10 Hz, beyond which the motor current 

no longer possesses any useful frequency information. 

11.1.3.3  Method 3: Analytic Wavelet Based Fault Detection 

Finally, the use of wavelets, method 3, in non-stationary motor fault diagnostics 

has also been explored.  Wavelets, especially discrete wavelets, such as the Daubechies, 

are not suitable for motor fault diagnostics as these are sharp wavelets and cannot 
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approximate the smooth sinusoidal rotor fault frequency components.  However, there is 

a special class of smooth wavelets called the Gaussian (Gabor) analytic wavelets that 

possess both frequency and magnitude information and could be potentially suitable for 

motor fault diagnostics.  This has indeed been seen in this research when the wavelets 

were put to test on the same data used for the previous two methods resulting in good 

frequency extraction and tracking.  However, these wavelets suffer from a frequency 

resolution problem that is similar to the windowed Fourier ridges.  The performance of 

the analytic wavelet in discriminating the fault frequencies depends on the choice of the 

centre frequency of the mother wavelet.  For example, in the present case of dynamic 

eccentricity, the analytic wavelet transform loses its frequency resolution as the centre 

frequency parameter, η,of the Gaussian function changes from 14 to 6.  The latter case 

generates many interference terms that mask or diminish the actual rotor fault frequency 

components. In addition to the centre frequency, the frequency resolution of the analytic 

wavelet also depends on the value of the variance (σ2), if the chosen wavelet is a 

Gaussian wavelet.  By way of an example, a change of variance from 1 to 4 with a 

wavelet center frequency of 6 Hz, significantly improves the frequency resolution. 

11.1.3.4  Commercial Implementation and Comparison of the Proposed Non-Stationary 

Fault-Detection Techniques 

As a part of the third phase of this research, some of the signals processing 

schemes are implemented on a DSP.  One common myth has been that the quadratic 

time-frequency distributions are not suitable for commercial implementation. This 

research has addresses this issue in detail.  The computational loads of some of the 

quadratic time-frequency distributions are studied. For example, it is measured that a 
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PWVD takes about 2.02 µs to compute one slice of time information containing about 

1024 samples sampled at 2 kHz.  This computational load is much larger for more 

sophisticated kernels such as the CWD which took 27.93 µs to compute the same time 

slice but provides much sharper frequency resolution.  It is thus demonstrated that the 

proposed signal processing methods can be used for real-time fault diagnostics since 

condition monitoring in electric motors n is performed only over long intervals of time, 

usually every 30 minutes or an hour. 

A comparison of the three proposed fault detection methods, leads to the 

conclusion that quadratic time-frequency methods are the best suited for motor fault 

diagnostics.  However all these methods assume that the extracted non-stationary motor 

current has time dependent frequency information which is true only to a certain limit of 

non-stationary operation (15 Hz of sinusoidal speed reference and 10 Hz of triangular 

speed reference). Even though this range represents most practical cases of motor 

operation, there are still applications that work outside this envelope. Beyond this 

envelope, the motor current no longer has any meaningful time-dependent frequency 

information.  In such cases, other techniques that are based only on time may have to be 

used. 

11.1.3.5  Fault Classification and Comprehensive BLDC Condition Monitoring Scheme 

Once the fault frequencies are computed, the next step is to use the extracted 

frequency information to monitor the health of the motor.  A simple root mean square 

(RMS) fault metric that could be used to monitor the health of the motor, is calculated by 

computing the root mean square value of the instantaneous amplitudes of the extracted 

fault frequencies.  This measure allows the motor operator to evaluate the health of the 
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motor over time.  As the motor’s operating condition, namely the speed and the load vary 

continuously over time, the amplitudes of the fault frequency components vary too.  For 

this reason, a threshold that can adapt to instantaneous operating conditions is needed for 

fault discrimination in motors operating under non-stationary conditions.  In the present 

research, an adaptive heuristic threshold that varies at 2.5% of the amplitude of the 

fundamental frequency is able to effectively discriminate a good motor from a bad one.  

This threshold depends on the individual motor and varies from motor to motor. 

The experience and information obtained in this research has also been put to use 

to finally suggest a comprehensive condition monitoring scheme that can both detect and 

identify specific rotor or load faults in BLDC motors.  Though the proposed methods are 

not perfect, they can be improved and fine tuned for commercial implementation.  

11.1.4  Commercial Viability of Using Motor Current Signature Analysis (MCSA) 

for BLDC Rotor Fault Detection 

The measurement accuracy in the experiments conducted as part of this research 

is about +10%.  Significant statistical data is needed to conclusively say that MCSA is a 

viable and robust fault detection technique for BLDC rotor fault detection. This statistical 

viability is defined in terms of Type I and Type II errors. A false positive, also called a 

Type I error, exists when a test incorrectly reports that it has found a positive (i.e. 

significant) result where none actually exists [101].  A false negative, also called a Type 

II error or miss, exists when a test incorrectly reports that a result was not detected, when 

it was really present [102].  A large amount of statistical data is needed to derive these 

error percentages, and has not been done in this research as the focus is to demonstrate 

new BLDC stator current based fault detection algorithms, assuming that the motor 
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current is an effective tool to detect faults. This assumption is made because of the 

widespread use of MCSA in motor fault detection for more than two decades [11, 13, and 

33].  However, it is suggested that these statistical errors be evaluated before 

commercializing the algorithms proposed in this research for BLDC rotor fault detection. 

11.1.5  Cost Trade-Offs in Electrical Diagnostics vs. Vibration-Based Diagnostics 

Electrical-based fault detection of BLDC motors using either the stator current or 

voltage is suggested in this research as an attractive alternative to vibration-based 

diagnostics. Although vibration-based motor fault detection is reliable, it suffers from the 

following important limitations: 

1. Accelerometers that are used to sense vibrations along with their wiring can be 

expensive. Good accelerometers may cost about a couple of hundred dollars.  

2. The location of the accelerometer on the BLDC motor has to be carefully chosen so 

as to obtain the vibration signal. This path of least resistance between the origin of the 

vibration and the place of mounting of the accelerometer has to be chosen carefully.  

3. Moreover, mounting a separate accelerometer on the motor may not be convenient in 

many applications. 

Electrical-based diagnostics on the other hand, may not need an extra sensor. Most 

BLDC inverters have current and voltage sensors already built into them. The signal 

acquired by these sensors can be used for motor diagnostics. These inverters also have 

microprocessors or DSPs for motion control.  The fault detection algorithm can be easily 

integrated into these pre-existing processors.  In non-stationary motor fault detection, an 

adaptive filter such as a switch capacitor filter may be needed. However, these filters are 

inexpensive to implement. For example, a good switch capacitor filter would cost less 
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than five dollars. This cost can also be avoided, by implementing the adaptive filter 

digitally in the BLDC inverter’s microprocessor/DSP.  Therefore, electrical-based motor 

diagnostics typically do not need any additional components and could be much cheaper 

than vibration diagnostics. 

11.2  Contributions 

A paper titled “Diagnosis of potential rotor faults in BLDC motors” has been 

presented at the Second Power Electronic, Machines and Drives Conference (PEMD) in 

March 2004 in Edinburgh, UK [59].  This paper has also been submitted for review to the 

IEEE Transaction on Power Electronics and reports the research explained in Chapter 4.   

Based on the research in Chapter 5, a paper titled “Current/voltage based 

detection of faults in gears coupled to Brushless DC (BLDC) motors” has been presented 

at the International Electric Machines and Drives Conference [103].  This paper has 

since been accepted for publication in the IEEE Transactions on Industry Applications. 

The research of Chapters 7 - 9 has been presented or is in the process of 

publication through five conference papers [104-108].  This work has also been accepted 

for journal publication in the IEEE Transaction on Industry Applications [109].  One 

other paper has also been submitted for review to the IEEE Transaction on Industrial 

Electronics [107]. 

A summary paper on rotor fault diagnostics in permanent magnet machines titled 

“On the detection of rotor faults in permanent magnet machines” has been presented at 

the Electric Machine Technology Symposium 2004 in Philadelphia, USA [110].  

Similarly, the application of the work done as a part of this research, for monitoring faults 
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in electric drive train components in hybrid electric vehicles, has been presented at the 

2006 SAE World Congress sponsored by the Society of Automotive Engineers [111]. 

The main contributions of this research to the field of electric machine condition 

monitoring are summarized as follows: 

 An experimental study of the effect of BLDC rotor faults on motor terminal 

quantities namely, the stator current and the stator voltage, has been 

conducted. 

 A method to detect gear faults and misalignments from the frequency 

spectrum of the BLDC current has been proposed. 

o A theoretical explanation for the occurrence of gear fault harmonics in 

motor current has been developed. 

o Practical gear faults such as damaged teeth and scoring have been 

implemented in the laboratory. 

 Three algorithms for detecting rotor faults in BLDC motors operating in non-

stationary conditions have been proposed.  These methods are: 

o A windowed Fourier ridge (spectrogram) based fault-detection 

algorithm. 

o A quadratic TFR based fault-detection algorithm that has better 

frequency resolution than the spectrogram. 

o An analytic wavelet based fault-detection algorithm that can detect 

faults in non-stationary environments. 

 The viability of using selected signal processing techniques for commercial 

implementation through a DSP development platform has been demonstrated. 
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 A simple RMS based metric for automatic fault-detection using an adaptive 

thresholding scheme has been developed. 

 A smart fault classifier scheme using ANNs has been suggested for more 

accurate fault classification. 

 Finally, a comprehensive rotor/load fault condition monitoring scheme for 

BLDC motors operating under both stationary and non-stationary conditions 

has been suggested. 

11.3  Recommendations for Future Research 

The purpose of a dissertation is to advance the science in a given field.  After this 

objective is achieved, there is generally still much work remaining to implement this new 

knowledge into widespread application.  Nevertheless, there is still additional work 

required to poise these new condition monitoring schemes for application in industry.  

Some of this work that could initiate interesting research in the future is as follows: 

11.3.1  Investigating Different Kinds of Non-Stationary Operation 

The non-stationary operation in this research is still rotational in nature, in other 

words the motor is rotating although with continuously changing speed and load 

conditions.  This results in some amount of frequency information being preserved over 

time that can be extracted using time-frequency/time-scale techniques. But, what if the 

non-stationary is oscillating in nature or if the application is a servo motor (robotic) 

where the motor stops, spins partially, and works in extremely short bursts of operation.  

In the first case, there may be no meaningful fault frequency information and techniques 

such as wavelets or pattern recognition techniques such as ANNs may have to be used to 

learn and characterize the deviation of a faulty motor from a good one.  In the latter case, 
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it may be impossible to use any frequency based technique as the time sample of 

operation may be too small to provide fine frequency resolution.  Time-series techniques 

may be an option here. These are interesting cases and should be looked into more detail. 

11.3.2  Non-Stationary Fault Diagnostics in other Permanent Magnet Motors 

The research in this paper has been limited to BLDC motors with surface mount 

magnets.  However, there are several other different kinds of permanent magnet motors 

which may result in different fault frequency characteristics in the stator current 

spectrum.  For example, permanent magnet motors in hard disk drives have a permanent 

magnet stator with a wound rotor.  Then, there are interior permanent magnet motors that 

represent non-salient rotor structures.  The fault diagnostics in this case may be possible 

by monitoring the d- and q- axis currents instead of the abc currents.  Other kinds of 

unique permanent magnet structures are pancake (axial-flux) motors, and even permanent 

magnet synchronous motors (PMSMs) with sinusoidally induced voltage waveforms. 

11.3.3  Developing Voltage-Based Condition Monitoring 

During the research into load fault detection in current controlled motors, it has 

been observed that these faults also generate harmonics in the stator voltage, and this 

could serve as an additional resource in fault detection in current (torque) control motors.  

This subject has to be investigated in detail.  The mathematical relationships between the 

current and the voltage harmonics have to be developed.  Both these harmonics are 

complimentary, in the sense that, in voltage source drives, the current harmonics 

dominate and in current source drives, voltage harmonics may dominate.  Hence, 

diagnostic schemes that utilize the fault information in both the current and voltage may 

provide a more reliable indication of motor fault and should be investigated further. 
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11.3.4  Smart Non-Stationary Fault Classifiers 

Fault classification is as important as fault feature extraction. In this research, a 

simple RMS based fault classifier with a heuristic adaptive threshold has been used to 

classify motor faults in non-stationary operating conditions.  This may not be accurate, as 

the magnitudes of the fault components depend on both the instantaneous speed as well 

as the instantaneous load conditions.  Under these circumstances, intelligent classifiers 

are needed that adapt the fault discriminating threshold based on the instantaneous load 

and speed conditions, thereby providing a more accurate fault classification. 

Moreover, such classifiers can intelligently learn the characteristics of a good 

motor and track the deviation in the fault frequency amplitudes to monitor the motor 

health.  Such intelligent fault classifiers are possible using techniques such as artificial 

neural networks (ANNs) and self-organizing maps [112, 113].  One possible scheme for 

using ANNs as a fault classifier for non-stationary BLDC motor fault diagnostics is 

shown in Figure 11.1.  Typically such a classifier is organized as follows: 

11.3.4.1  ANN Model and Offline Training 

The first step in using an ANN classifier for motor fault diagnostics is to select an 

ANN model and its inputs.  For performing diagnostics on a BLDC motor, these inputs 

could be selected as the inverter’s DC link current (Idc) which is directly proportional to 

load torque and the speed (w).  Based on these inputs, the ANN is trained offline, such 

that the output of the ANN estimates the RMS metric of the instantaneous fault 

frequencies of a good motor.  Commonly used training algorithms such as back 

propagation can be used.  The number of neurons and the number of inner layers needed 

are typically chosen through trial and error. 
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11.3.4.2  ANN Fault Classification and Online Adaptation 

The output of the ANN trained in the previous step is continuously compared to 

the actual RMS metric of the instantaneous fault frequencies in real-time.  A significant 

deviation indicates a progressing fault on the BLDC motor.  As it is almost impossible to 

train an ANN offline for every possible speed and load operating points, the ANN must 

be able to adapt and learn the characteristics of the motor online in real-time.  Hence, 

online training of the ANN is needed to update the model in real-time as new load and 

speed conditions are encountered. 

 

 

Figure 11.1:  ANN based fault classifier for BLDC motor fault detection. 
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11.3.5  Expansion to Other Faults 

The non-stationary fault-detection schemes can be extended to other kinds of 

faults, both rotor as well as stator. In permanent magnet rotor faults, damaged rotor 

magnets and bearing defects are other significant faults. In induction motors, broken rotor 

bars are common and develop fault frequencies close to the fundamental frequency.  This 

requires high frequency resolution, which conventional time-frequency techniques such 

as windowed Fourier transforms may not be able to detect.  High frequency non-

stationary signal analysis techniques such as newer quadratic time-frequency methods 

like the Zhao-Atlas-Marks distributions or adaptive filtering techniques may have to be 

used.  Non-stationary stator winding fault-detection is another open topic.  Artificial 

neural networks may be used to learn the pattern of the negative sequence components in 

stator currents in this case. 

11.3.6  Non-stationary Motor Fault Detection Using Synchronous Reference Frame 

Transformation 

The digital PLL developed in Chapter 7 produces 100 pulses for every 120 degree 

rotation of the rotor.  This in effect produces about 300 pulses per motor revolution.  This 

high resolution instantaneous frequency information can be used to transform the motor 

fault frequencies to a synchronous reference frame. For example, in a six-pole BLDC 

motor with dynamic eccentricity, the fault frequencies are given by 2fe/3 and 4fe/3, where 

fe is the fundamental frequency.  As the fundamental frequency is tracked by the PLL, the 

2fe/3 and 4fe/3 fault frequencies are known accurately.  The phase currents of the BLDC 

motor can then be transformed to two synchronous frames, one rotating at 2fe/3 and the 

other rotating at 4fe/3.  The effect of the synchronous frame transformation is that the 
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fault frequencies 2fe/3 and 4fe/3 are transformed to dc components in their respective 

synchronous frames.  Monitoring the amplitude of the dc component can then indicate the 

health of the BLDC motor.  This method is promising as it has the potential to replace the 

complicated t-f distributions proposed in this research with a simple alternative.  The 

practical issues regarding the implementation of this method have to be looked into in 

detail. 
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APPENDIX A  

ANALOG SPEED CONTROLLER 

 

The analog speed controller is designed to complement the BLDC motor 

controller provided by Delphi Inc., and is used in this research.  The BLDC controller 

incorporates an inverter and a current controller, but lacks a speed controller.  The analog 

speed controller is built around the voltage-to-frequency converter integrated circuit, 

VFC 32 [114].  The square-wave output from a 1000 ppr optical encoder is used as an 

input to the VFC 32.  The VFC 32 converts the frequency of the encoder’s pulse output 

into a voltage signal.  This voltage signal is then used as an input to an operational 

amplifier based analog proportional-integral (PI) controller.  The Delphi BLDC controller 

needs two inputs from the speed controller for interfacing: 

T1 = BLDC control signal 1 (< 2.5 V) 

T2 = BLDC control signal 2 (5 – T1 V) 

These signals are provided using operational amplifiers. The circuit schematic of the 

analog speed controller is shown in Figure A.1.  The connection diagram is shown in 

Figure A.2. The speed reference signal is set through a potentiometer in the circuit. 

 

 

 

 

 

 
184



 

 

Figure A.1:  Circuit schematic of analog speed controller. 
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Figure A.2:  Analog speed controller connection diagram. 
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APPENDIX B 

QUANTIFYING PULSATING LOAD POWER 

 

There are several ways a pulsating load can be quantified.  They can be described 

in terms of the load torque ripple or in percentage of pulsating power.  The latter 

approach is used here and is explained as follows. It is assumed that V is the terminal 

dyno voltage.  With reference to Figure 4.9, Rfload is the fixed resistance, and Rpload is the 

pulsating resistor switching at 50% duty cycle. 

The total DC load power (PDCpower) output by the dyno is 

2 2

4DCpower
fload pload

V VP
R R

= + . (B.1)

The pulsating power of the load is contributed by the pulsating AC component because of 

the switching Rpload and is calculated as 

2 22
2

2

rmspulse
pulse

pload pload

rmspulse

V VP
R R

Vas V for a square wave

π

π

= =

=

. (B.2)

The percentage of the pulsating AC power to the total DC power is then calculated as  

( )2

8
%

4
pulse fload

DCpower pload fload

P R
 pulsed power = 

P R Rπ
=

+
. (B.3)

The load torque can be optionally calculated as follows: 
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The total power output by DC generator is 

gen DCpower pulseP P P= + . (B.4)

Assuming fixed armature output voltage (reasonable assumption), the armature current of 

DC gen is 

gen
a

f

P
I

E
= , (B.5)

where Ef is the open-circuit armature terminal voltage. Thepulsed current and the DC 

generator current are given by, 

_ _
pulse DCpower

gen pulsed gen DC
f f

P P
I  and I

E E
= = . (B.6)

Now, Ef is calculated as in (B.7)  

* *f fE K I ω= , (B.7)

where ω is the speed (rad/s) and If  is the field amps.  TheDC motor torque constant, K, 

can be calculated from open-circuit measurements. Also, the torque is 

* *f aT K I I= . (B.8)

The pulsed and DC torque can be calculated from 

_* * * *pulsed f gen pulsed DC f gen DCT K I I  and T K I I= = _ . (B.9)

The total torque output by BLDC motor is therefore given by 
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BLDC pulsed DCT T T= + . (B.10)

Therefore, by varying Rfload and Rpload, any amount of desired torque pulsation can 

be obtained.   
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APPENDIX C 

WINDOWED FOURIER RIDGE THEOREM 

 

The WFR algorithm is based on the following theorem which relates ( ),Sf t ξ  to 

the instantaneous frequency of s [68] 

Theorem.  Let ( ) ( ) ( )cos=s t a t tϕ .  If 0≥ξ then 

( ) ( )( ) ( )( ) ( )( ), ,
ˆ, exp ,

2
′⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦l

l
s t l

s
f g a t i t t g s t tξ +ϕ ξ ξ ϕ ε ξ . (C.1)

The corrective term satisfies 

( )
( )

( ),1 ,2 ,2, sup
′≥

′≤ + + +
l

a a
s

t gϕ
ω ϕ τ

ε ξ ε ε ε ω . (C.2)

with 

( )
( ),1

′
≤ l

a

s a t
a t

ε ,  
( )

( )

2

,2
/ 2

sup
− ≤

′′
≤

l

l
a

t s

s a
a tτ

τ
ε . (C.3)

And if ( ) ( ) 1
1

−
′ ≤ls a t a t , then 

( )2
,2

/ 2
sup
− ≤

′′≤
l

l
t s

sϕ
τ

ε ϕ τ . (C.4)

If  then ( )′= tξ ϕ
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( )
( )

( )( ),1
ˆ 2

′
′ ′≤ l

a l

s a t
g s t

a t
ε ϕ . (C.5)

where ( )g τ is a real symmetric window with a Fourier transform of and gĝ s(τ)=sl
-

1/2g(τ/sl) with a support of size s and a norm of  unity. 

Expressions (C.3) and (C.4) show that the three corrective terms εa,1, εa,2, and εφ,1 

are small if a(t) and φ’(t) have small relative variations over the support of the window gs.  

The term 
( )

( )sup
′≥

′
ls t

g
ω ϕ

ω  is negligible if ( ) ∆′ ≥
l

t
s
ωϕ , where ∆ω is the bandwidth of the 

window . ĝ

Thus the corrective term ε(t,ξ) can be neglected in (C.1).  Since ( )ωĝ  is a 

maximum at ω = 0, (C.4) shows that for each u the spectrogram ( )
22

, ,, ,=
ls tSf t s g ξξ  

is a maximum at .  The corresponding time-frequency points (t, ξ(t)) are called 

ridges.  The ridge frequency gives the instantaneous frequency 

( )′= tξ ϕ

( ) ( )′=tξ ϕ t  and the 

amplitude is then calculated as follows 

( )
( )( )
( )

2 ,

ˆ 0
=

l

Sf t t
a t

s g

ξ
. (C.6)

If ( ,ΦS t )ξ is the complex phase of ( ),Sf t ξ , then it can be proven from [68] that the 

ridge points are points of stationary phase: 

( ) ( )
,

0
∂Φ

′= − =
∂

S t
t

t
ξ

ϕ ξ . (C.7)
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APPENDIX D 

ANALOG TRACKING FILTER 

 

The switch capacitor filter and the PLL circuit are integrated onto a single printed 

circuit board (PCB) to obtain the best performance.  This is necessary, as filter circuits 

are susceptible to parasitic capacitances and inductances.  Surface mount components are 

used to minimize the trace lengths.  The PCB is a four-layer board, designed using the 

software Eagle, and is fabricated at PCBExpress (www.pcbexpress.com).  Two isolated 

non-overlapping ground planes are used, one for the digital circuit comprising the PLL, 

and the other for the analog filter circuits.  The two planes are connected at a single point.  

Adequate decoupling is provided using 0.1 µF ceramic capacitors at all the power points 

in every integrated circuit package.  Additional 1 µF and 10 µF Tantalum capacitors are 

also provided for good power supply regulation.  The analog filter circuit and the PLL 

clock circuit are placed on opposite sides of the PCB to ensure the shortest possible clock 

trace.  One-percent resistors and NPO ceramic capacitors are used for accuracy and 

temperature stability.  The schematic of the complete circuit is shown in Figure D.1.  The 

top and bottom sides of the PCB are shown in Figures D.2 and D.3.  The filter provides 

56 dB notch attenuation. The harmonics that are greater than the second are attenuated by 

more than 80 dB.  The PLL circuit tracks the fundamental frequency from about 35 Hz to 

210 Hz. 

 

 

 
192



 

Figure D.1:  Circuit schematic of ATF. 
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Figure D.2:  ATF printed circuit board layout (Top side). 

 

 

Figure D.3:  ATF printed circuit board layout (Bottom side). 
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APPENDIX E 

C CODES FOR TFR IMPLEMENTATION ON ADSP-21061 

 

C Code Section to Implement WFT 

void main ( void ) 
{ 
 /* Initialize windowed sequence to zero */ 
 for (i = 0; i < N ; i++) 
    { 
     wfreal_output[i] = 0; 
     wfimag_output[i] = 0; 
     } 
     
     /* Generating Gaussian window of length L */  
    gen_gaussian(w, 2.5, 1, 2*L+1); 
     
    /*for (n = 0; n < N;  n++) 
    { */ 
    n=700; 
     /* Midlle of window index */ 
     m = L; 
      
     /* End of window index */ 
     q = 2*L; 
      
     /* Compute actual length of window to acount for insufficient */ 
     /* data lengths at ends of data                               */ 
     Mmin = min (n,L); 
     Mmax = min (0,N-n-L); 
     k=n; 
     for (i = m-Mmin; i <= q-Mmax ; i++) 
     { 
      wfreal_input[k] = real_input[k]*w[i]; 
      wfimag_input[k] = imag_input[k]*w[i]; 
      k++; 
      } 
       
      /* Compute FFT of windowed sequence */ 
      cfft1024 (wfreal_input, wfimag_input, wfreal_output, 
wfimag_output); 
     
      /* Calculate magnitude of spectrum */ 
  for (i = 0; i < N ; i++) 
     { 
      wf[i] = 
sqrt(wfreal_output[i]*wfreal_output[i]+wfimag_output[i]*wfimag_output[i
]); 
      } 
       
      /* Local maxima computation - ridge detection */ 
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 /* } */ 
 exit(0); 
} 
 

C Code Section to Implement PWVD 

#define M_2PI 6.283185307179586477 
#include"fircoef.h"  /* Coefficients for Hilbert Transform */ 
 
 
#define TAPS 81   /* Hilbert's Filter length */ 
#define SAMPLES 1024  /* Buffer Length */ 
#define LEN  1024 
#define LENT 8  
#define TIME_M 1100  /* After getting 1100 samples we 
        start obtaining the WVD 
*/ 
 
int done=0, done_t=0;  // for ezktv2a_com0 
float dm y,dline[TAPS+1],tindex[30]; 
float fr[LEN],fi[LEN],fx[LEN/2],fy[LEN/2]; 
float WVr[LENT][LEN/2],WVi[LENT][LEN/2]; 
main() 
{ 
 int i, j, k, c1,c2=0,c3,c4; 
  
// first we initialize the data 
 for(i=0;i<TAPS+1;i++) 
  dline[i]=0; 
 
 c1=1024-41; // this index takes into account the filter's delay 
  
 // Each data sample should pass through the fir filter 
 // This algorithm can be arranged to produce a WVD time slice 
 // after acquiring a new data sample. In here we just wait 
 // for M samples to be acquired before start measuring the WVD 
 // then we process two time slices at once 
  
 done=1;    // this should be 1 for ezktv2a_com0 
 i=0; 
 do 
  { 
//   y=sin(M_2PI*i*20.0/1024.0)+sin(M_2PI*i*40.0/1024.0); // New data 
input 
   fr[c2]=y; 
   y=fir(y, coefs, dline, TAPS); // Hilbert transformation 
   c1 = circindex(c1, 1, LEN);    // Increment the index 
   c2 = circindex(c2, 1, LEN); 
   fi[c1]=-y;   // now we have the analytic function 
    
   if(i>TIME_M) 
    { 
     set_flag(SET_FLAG1, CLR_FLAG);  
     // Here we build the auto-correlation 
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     c3=circindex(c1,-512,LEN); 
     c4=circindex(c1,-512,LEN); 
      
     for(j=1;j<=LEN/2;j++) 
      { 
       fx[j-1]=fr[c3]*fr[c4]+fi[c3]*fi[c4]; 
       fy[j-1]=fi[c3]*fr[c4]-fi[c4]*fr[c3]; 
       c3=circindex(c1,j,LEN); 
       c4=circindex(c1,-j,LEN); 
      } 
     // we wait for new data since we are processing two  
     // time slices at once 
     set_flag(SET_FLAG1, SET_FLAG); 
     i++; 
     y=sin(M_2PI*i*20.0/1024.0)+sin(M_2PI*i*40.0/1024.0); // New data 
input  
     fr[c2]=y; 
     y=fir(y, coefs, dline, TAPS); // Hilbert transformation 
     c1 = circindex(c1, 1, LEN);    // Increment the index 
     c2 = circindex(c2, 1, LEN); 
     fi[c1]=-y;   // now we have the analytic function 
     // here we build the auto-correlation 
     c3=circindex(c1,-512,LEN); 
     c4=circindex(c1,-512,LEN); 
     for(j=1;j<=LEN/2;j++) 
      { 
       fy[j-1]+=(fr[c3]*fr[c4]+fi[c3]*fi[c4]); 
       fx[j-1]-=(fi[c3]*fr[c4]-fi[c4]*fr[c3]); 
       c3=circindex(c1,j,LEN); 
       c4=circindex(c1,-j,LEN); 
      } 
     // Here we get the WVD for two time slices one in the real part 
and 
     // other in the imag part  
     cfft512(fx,fy,WVr[k],WVi[k]);      
     k++; 
     i = TIME_M; 
    } 
   i++; 
  }while (i<TIME_M+2*LENT); 
      
 done_t=5;   // this should be 5 for ezktv2a_com0 
 for(;;) 
  { 
   asm("nop;"); 
  } 
} 
Courtesy: Prof. Jose Restrepo (Univ. Simon Bolivar) 

 

C Code Section to Implement CWD 

#define M_2PI 6.283185307179586477 
#include"fircoef.h"  /* Coefficients for Hilbert Transform */ 
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#define TAPS 81   /* Hilbert's Filter length */ 
#define SAMPLES 1024  /* Buffer Length */ 
#define LEN  1024 
#define LENT 8  
#define TIME_M 1100  /* After getting 1100 samples we 
        start obtaining the WVD 
*/ 
#define NK  1024 
#define MK  128 
 
int done=0, done_t=0;  // for ezktv2a_com0 
float dm y,dline[TAPS+1],tindex[30]; 
float fr[LEN],fi[LEN],fx[LEN/2],fy[LEN/2]; 
float WVr[LENT][LEN/2],WVi[LENT][LEN/2]; 
float ker[NK][MK]; // the kernel is both an even and real function 
 
main() 
{ 
 int i, j, k, c1,c2=0,c3,c4; 
  
// first we initialize the data 
 for(i=0;i<TAPS+1;i++) 
  dline[i]=0; 
   
// then we calculate the kernel 
 for(j=0;j<NK/4;j++) 
  { 
   J0=2*j*(M_2+1); 
   J1=J0+(M_2+1); 
   for(i=0;i<=MK/2;i++) 
    { 
     r[J0+i]=(float)Ev_Fun2(stack2,contb,(double)i,(double)j*2.); 
     r[J1+i]=(float)Ev_Fun2(stack2,contb,(double)i,(double)(2.*j+1.)); 
    } 
  } 
 c1=1024-41; // this index takes into account the filter's delay 
  
 // Each data sample should pass through the fir filter 
 // This algorithm can be arranged to produce a WVD time slice 
 // after acquiring a new data sample. In here we just wait 
 // for M samples to be acquired before start measuring the WVD 
 // then we process two time slices at once 
  
 done=1;    // this should be 1 for ezktv2a_com0 
 i=0; 
 do 
  { 
   y=sin(M_2PI*i*20.0/1024.0)+sin(M_2PI*i*40.0/1024.0); // New data 
input 
   fr[c2]=y; 
   y=fir(y, coefs, dline, TAPS); // Hilbert transformation 
   c1 = circindex(c1, 1, LEN);    // Increment the index 
   c2 = circindex(c2, 1, LEN); 
   fi[c1]=-y;   // now we have the analytic function 
    
   if(i>TIME_M) 
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    { 
     // Here we build the auto-correlation 
     c3=circindex(c1,-512,LEN); 
     c4=circindex(c1,-512,LEN); 
      
     for(j=1;j<=LEN/2;j++) 
      { 
       fx[j-1]=fr[c3]*fr[c4]+fi[c3]*fi[c4]; 
       fy[j-1]=fi[c3]*fr[c4]-fi[c4]*fr[c3]; 
       c3=circindex(c1,j,LEN); 
       c4=circindex(c1,-j,LEN); 
      } 
     // we wait for new data since we are processing two  
     // time slices at once 
     i++; 
     y=sin(M_2PI*i*20.0/1024.0)+sin(M_2PI*i*40.0/1024.0); // New data 
input  
     fr[c2]=y; 
     y=fir(y, coefs, dline, TAPS); // Hilbert transformation 
     c1 = circindex(c1, 1, LEN);    // Increment the index 
     c2 = circindex(c2, 1, LEN); 
     fi[c1]=-y;   // now we have the analytic function 
     // here we build the auto-correlation 
     c3=circindex(c1,-512,LEN); 
     c4=circindex(c1,-512,LEN); 
     for(j=1;j<=LEN/2;j++) 
      { 
       fy[j-1]+=(fr[c3]*fr[c4]+fi[c3]*fi[c4]); 
       fx[j-1]-=(fi[c3]*fr[c4]-fi[c4]*fr[c3]); 
       c3=circindex(c1,j,LEN); 
       c4=circindex(c1,-j,LEN); 
      } 
     // Here we get the WVD for two time slices one in the real part 
and 
     // other in the imag part  
     cfft512(fx,fy,WVr[k],WVi[k]);      
     k++; 
    } 
   i++; 
  }while (i<TIME_M+2*LENT); 
      
 done_t=5;   // this should be 5 for ezktv2a_com0 
 for(;;) 
  { 
   asm("nop;"); 
  } 
} 

Courtesy: Prof. Jose Restrepo (Univ. Simon Bolivar) 
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