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Abstract

Nonnegative Matrix Factorization (NMF) is a dimension retibn method that has been widely used for
various tasks including text mining, pattern analysisstdting, and cancer class discovery. The mathematical
formulation for NMF appears as a non-convex optimizatiasbpgm, and various types of algorithms have been
devised to solve the problem. The alternating nonnegatizstisquares (ANLS) framework is a block coordinate
descent approach for solving NMF, which was recently shawlrettheoretically sound and empirically efficient.
In this paper, we present a novel algorithm for NMF based enANLS framework. Our new algorithm builds
upon the block principal pivoting method for the nonneggticonstrained least squares problem that overcomes
some limitations of active set methods. We introduce ideasfficiently extend the block principal pivoting
method within the context of NMF computation. Our algoritimherits the convergence theory of the ANLS
framework and can easily be extended to other constraineH fékinulations. Comparisons of algorithms using
datasets that are from real life applications as well asetlasficially generated show that the proposed new
algorithm outperforms existing ones in computational gpee

1 Introduction

Nonnegative Matrix Factorization (NMF) [12, 17] has attemt much attention during the past decade as a di-
mension reduction method in machine learning and data gunNMF is considered for high dimensional data
where each element has a nonnegative value, and it providegarank approximation formed by factors whose
elements are also nonnegative. Due to the nonnegativayfattiors of lower rank approximation give a natu-
ral interpretation: each object is explained by an addifivear combination of intrinsic ‘parts’ of the data [12].
Numerous successes were reported in application areaslingltext mining [19], text clustering [21], computer
vision [14], and cancer class discovery [4, 9].

A mathematical formulation of NMF is given as follows. Giveminput matrix4d € R™*™ where each element
is nonnegative and an integer< min {m,n}, NMF aims to find two factor$V € R™** andH € R**" with
nonnegative elements such tblats W H. The factordV andH are commonly found by solving the optimization
problem:

. 1 2
min f(W, H) = 5 | A - WH|| 1)
subject tOVij, Wij, Hij > 0.

The problem shown in Egn. (1) is a non-convex optimizatiothweéspect to the variablé®” and H, so one only
hopes to find a local minimum.

Many algorithms have been developed for solving Eqn. (1).revtban a decade ago, Paatero and Tapper
[17] initially suggested an algorithm for NMF (to be pregifesitive Matrix Factorization in their terms) based
on the alternating nonnegative least squares (ANLS) fraonewThey used a subroutine for the nonnegativity
constrained least squares which was not well optimizeddfeNMF context, resulting in a very slow algorithm.
Lee and Seung popularized NMF in their seminal work [12].iTimiltiplicative updating algorithm [13] has been
one of the most commonly used for NMF, but several pointedtsyoor performance [15, 8, 6] and problem with
convergence [7]. A simple algorithm that solves an uncairstd least squares at every iteration was devised [2],
but it also suffers from lack of convergence. Recently,regéein the ANLS framework was renewed, and several



fast algorithms were developed using this framework [13,088, This framework has a convergence property that
every limit point of the sequence of solutions in iterati@ma stationary point [15].

In this paper, we introduce a new and fast algorithm for NMiagis block principal pivoting method in the
ANLS framework. Previous NMF algorithms using the ANLS franork include the active set method [10],
the projected gradient method [15], and the projected eNagiton method [8]. The names of each method
tell how each algorithm solves the nonnegativity consedifeast squares subproblem. Projected gradient and
projected quasi-Newton methods apply traditional tech@sgfor unconstrained optimization with modifications
for nonnegativity constraints. The active set method s$esxéor the optimal active and passive sets by exchanging
a variable at each iteration. The block principal pivotingthod [20] tries to overcome the limitation of the active
set method by exchanging several variables per iteratiith,angoal of finding the optimal passive set of variables
faster. In this paper, we adopt the block principal pivotingthod in the NMF computation. We introduce ideas
that improve the block principal pivoting method and theiidba new algorithm for NMF.

Experimental comparisons among several NMF algorithmdpding the one proposed in this paper, will
follow the introduction of the new algorithm. As the fastalighms by Lin [15], Kim et al. [8], and Kim and Park
[10] appeared very recently, no proper comparison amony tias yet been completed. Experimental results using
commonly used datasets reveal their relative computdtifficiency and show that the proposed new algorithm
exhibits the best performance for NMF computation.

The rest of this paper is organized as follows. In Sectiom@ ANLS framework for NMF and related back-
ground are introduced. In Section 3, our new algorithm formiBldescribed in detail as well as its extensions. In
Section 4, we present the design of experiments that we nsamhipare several NMF algorithms, and the results
and their interpretation are provided in Section 5. We aatielthe paper in Section 6 with discussions.

2 Alternating Nonnegative L east Squares Framework for NMF

We describe the alternating nonnegative least squares $\ftamework for solving Egn. (1). The ANLS frame-
work is a simple Expectation Maximization type algorithmesé variables are divided into two groups that are
updated in turn. The framework is summarized as follows.

1. Initialize W € R™** with nonnegative elements.

2. Repeat solving the following problems until a convergeeriterion is satisfied:

. 2
min [WH — Al[f (2a)
whereW is fixed, and
min | HTWT — AT|% (2b)
W>0

whereH is fixed.

3. The columns of# are normalized to unif.-norm and the rows off are scaled accordingly.

Alternatively, one may initialize first and iterate Eqn. (2b) then Eqn. (2a). Note that eachrsiibgm is an
instance of the nonnegativity constrained least squarBk.8Y problem. Although the original problem in Eqn.
(1) is non-convex, the subproblems in Egns. (2) are convelslpms for which optimal solutions can be found.

It is important to observe that the NNLS problems in Egns. H@ye a special characteristic. NMF is a
dimension reduction algorithm which is applied to high divsienal data. The original dimension is very large,
e.g. several thousands, and the reduced dimension is smll,on the order of tens. Therefore, the matrix
W € R™*F is very long and thinsq > k), and the matrixi” € R”** is also long and thin{ >> k) depending
on the number of data points iA. These observations are critical in designing an efficiégbréchm for the
subproblems in Eqgns. (2), and we will revisit this point itelasections.

For convergence of any NMF algorithm based on the ANLS fraarkyit is important to find optimal solutions
of Eqns. (2) at each iteration. The ANLS framework is a twocklaoordinate descent algorithm, and a recent
result by Grippo and Sciandrone [7] shows that any limit poirthe sequence of optimal solutions of two block
subproblems is a stationary point. Thus, the ANLS framevimaika good optimization property that its limit point
is a stationary point. In a non-convex optimization, mogbathms only guarantee the stationarity of the limit
point. In the alternating least squares (ALS) algorithm {] the contrary, the subproblems are solved in a rather



ad-hoc fashion where an unconstrained least squaresso{utithout the nonnegativity constraint) is obtained and
every negative elements are set to zero. In this case, iffisulli to analyze convergence because the algorithm
updates, at each iteration, a solution which is not optimaitfe subproblem.

In order to fully describe a NMF algorithm, one has to devispacific method to solve the subproblems in
Eqgns. (2). A classic algorithm for the NNLS problem is thexacset method by Lawson and Hanson [11]. Active
set methods search for the optimal active and passive setzdhanging a variable between the two sets. Note
that if we know the passive (i.e., strictly positive) vat@bof the solution in advance, then a NNLS problem can
be easily solved by a simple unconstrained least squaresguce on the passive variables. Although the Lawson
and Hanson’s algorithm has been a standard for NNLS proB|énis extremely slow when it is used for NMF in
a straightforward way. Faster algorithms were recenthetiged by Bro and de Jong [3] and Van Benthem and
Keenan [1], and Kim and Park made them into a NMF algorithnj.[10

A major limitation of active set methods is that typicallylpwone variable is exchanged between active and
passive sets per iteration, making the algorithm slowemahe variable size becomes large. Methods based on it-
erative optimization schemes such as the projected gradieihod due to Lin [15] and the projected quasi-Newton
method due to Kim et al. [8] are free of the above limitatiorhe$e algorithms are modified from traditional
techniques in unconstrained optimization by providingciezed rules to choose step length and projecting the
solution to the feasible nonnegative orthant at everytiema

Block principal pivoting methods try to overcome the lintitg of active set methods in a different fashion.
We now describe this method in detail.

3 Block Principal Pivoting Algorithm

In this section, we present the block principal pivotingaaithm for NNLS problems. We will first describe the
algorithm for the NNLS with a single right-hand side vectof20] and then introduce methods that improve upon
this to handle multiple right-hand sides efficiently.

3.1 Singleright-hand side case
For the moment, let us focus on the NNLS problem with a sinigletthand side vector which is formulated as
. 2
min ||Cz — b, ®)
whereC € RPX9, b € RP*!1 andz € R9*!. The subproblems in Eqns. (2) are decomposed into several
independent instances of Eqn. (3) with respect to each-hight side vector. Thus, an algorithm for Eqn. (3) isa

basic building block for an algorithm for Eqns. (2).
The Karush-Kuhn-Tucker optimality condition for Eqn. (8iritten as follows.

y = CTCx—-C"b (4a)
y > 0 (4b)
z > 0 (4c)
xy; = 0,i=1,---,¢q (4d)

We assume that the matriX has full column rank. In this case the matd¥ C is positive definite, and the
problem in Eqn. (3) is strictly convex. Then, a solutiomhat satisfies the conditions in Egns. (4) is the optimal
solution of Egn. (3).

We devide the index sétl, - - - , ¢} into two subgroupg” andG whereF UG = {1,--- ,q} andF N G = ¢.
Letzp, z¢, yr, andys denote the subsets of variables with corresponding indioesletCr andCy denote the
submatrices of” with corresponding column indices. Initially, we assign = 0 andyr = 0. By construction,

z = (zp,zq) andy = (yr, yg) always satisfy Eqn. (4d) for any values:of andy;. Now, we compute:» and
ye using Eqn. (4a) and check whether the computed values ahdy satisfy Eqns. (4b) and (4c). Computation
of zr andyg is done as follows.

TP = argminHC’FxF—bHS (5a)
ya = CL(Crxzp —10) (5b)

1Lawson and Hanson’s algorithm is adopted as a MATLAB funrctaononneg.



Algorithm 1 Block principal pivoting algorithm for the NNLS with singhigght-hand side (Eqn. (3))

1. LetF=¢,G={1,--- g}, =0,y=-CTb,p=3,t=q+1

2. Computerr andyg by Eqgns. (5).

3. Repeatwhilézr, y¢) is infeasible
(@) If |[H, U Hy| < t,sett = |H, U Hy|,p = 3 and usefl; = H, andHy = H..
(b) If |[H, U Hy| > tandp > 1, setp = p— 1 and use; = H, andH, = Hs.

(c) If |H; U Hy| > t andp = 0, choose the largest index froff; U Hy| and exchange it.
(d) Updaterr andyg by Egns. (5).

One can first solve forr in Eqn. (5a) and substitute the result into Eqn. (5b). We ttedl pair (zr, ya) a
complementary basic solution if it is obtained by Eqns. (5).

If a complementary basic solutidm r, y) satisfiescp > 0 andys > 0, then itis calledeasible. In this case,
z = (zr,0) is the optimal solution of Egn. (3), and the algorithm congde Otherwise, a complementary basic
solution(zr, y¢) is infeasible, and we need to updafé andG by exchanging variables for which Eqn. (4b) or
Eqn. (4c) does not hold. Formally, we define the followingardets

Hy={ieF:x; <0} (6a)

Hy={ieG:y, <0} (6b)
and updatd’ andG by the following rules:

F = (F—ﬁl) UﬁQ (7a)

G = (G - ﬁQ) UH, (7b)

whereH; C Hy, Hy C Ho. If ‘ﬁl u ﬁg‘ > 1, then the algorithm is calledliock principal pivoting algorithm.

If ’ﬁl U H,| = 1, then the algorithm is calledsingle principal pivoting algorithm. The active set algorithm can

be understood as an instance of single principal pivotiggrithms. The algorithm repeats this procedure until the
number of infeasible variables (i.¢H; U Hs|) becomes zero.

In order to speed up the search procedure, one usuallyfﬁls% H, andH, = H, which we call the block
exchange rule. The block exchange rule means that we exelaingiriables of” andG that do not satisfy Eqns.
(4). However, contrary to the active set algorithm wherevilwgable to exchange is carefully selected to reduce
the residual, this exchange rule may lead to a cycle andddihtl an optimal solution although it occurs rarely.
Therefore, when the exchange rule fails to decrease the ewnfinfeasible variables, we use a backup exchange
rule [20] where only one variable is exchanged. As soon adé#uokup rule reduces the number of infeasible
variables, then we return to the block exchange rule. Withrttodification, the block principal pivoting algorithm
terminates in a finite number of iterations [20].

One might connect the two set8,andG, of the block principal pivoting algorithm to the passivedaactive
sets in the active set algorithm. However, they are not reciygidentical to each other. In the active set algorithm,
variablex; wherei is in the passive set is required to satisfy> 0 while in the block principal pivoting algorithm,
variablex,; with ¢ € F'is not required to do so. Therefore, the block principal pivgalgorithm does not need an
initial solution withz > 0 while the active set algorithm does.

The block principal pivoting algorithm for the NNLS problenith single right-hand side is summarized in
Alg. 1. The variable is used as a buffer on the number of the block exchange rudésthy be tried. If the block
exchange rule increases the number of infeasible variablesp is reduced by one. Once the valuepdiecomes
zero, we only exchange the infeasible variable with thedsrgndex in{1, - - - , ¢}, which is the backup exchange
rule mentioned earlier. We used three as a default valyewdfich means that we can try the block exchange
rule up to three times until it reduces the number of infdasilariables. Numerical experiments show that the
algorithm is very efficient for the NNLS [20, 5].



Figure 1: Reordering of right-hand side vectors. Dark delticate variables with indices i which need to be
computed by Eqn. (9). By grouping the columns that have a comfset, i.e., column$1,3,5},{2,6} and{4},
we can reduce the computational effort to solve Eqgn. (9).
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3.2 Multipleright-hand sides case

The subproblems in Eqns. (2) comprise of NNLS problems withitiple right-hand side vectors. Suppose we
need to solve the following NNLS problem:

. 2
min [CX — Bl 8)

whereC' € RP*4, B € RP*", andX € R?*". Itis possible to simply run the single right-hand side ailtpon (Alg.
1) for each right-hand side vectbr, - - - , b,.. However, this is not computationally efficient. Now, we kip how
we obtain an efficient algorithm for the multiple right-hagides case based on ideas from [3] and [1]. Bro and de
Jong [3] and Van Benthem and Keenan [1] suggested thesefuleastive set methods, and we employ them in
the context of block principal pivoting methods here.

In Alg. 1, the major computational burden is with updating andygs using Eqns. (5). We can solve Eqn.
(5a) by a normal equation

CLCpap = CLb, 9)

and Eqn. (5b) can be rewritten as
Yyg = CgCF,TF - Cgb (10)

Note that we only need to hav&lL.Cr, CLb, CLCr, andCLb for solving Egns. (9) and (10).

The first improvement is based on the observation mentiom&kction 2. For the NNLS problems arising
from NMF, the matrixC is typically very long and thin. In this particular case, stmcting matrice'=Cr,
CEb, CLCr, andCLb is computationally very expensive. Therefore, our algonicomputes” ¢ andC? B in
the beginning and reuses them in later iterations. One csily sge thaC%.Cr, CLb;, CLCp, andCLb;, j €
{1,---,r}, can be directly retrieved as a submatrix@fC andC”? B. Because the column size 6fis small,
storage needed far” C andC” B is not an issue.

The second improvement involves further exploiting comncomputations. Here we simultaneously run
Alg. 1 for many right-hand side vectors. At each iteratiom, ave the index sets; andG; for each column
je{l,---,r}, and we must computer, andyc, using Eqns. (9) and (10). The idea is to find groups of columns
that share the same index séisandG;. We reorder the columns with respect to these groups and &aja. (9)
for the columns in the same group. By doing this, we avoid aggmkcomputations in Cholesky factorization for
solving Egn. (9). Figure 1 illustrates this reordering idea

We summarize the improved block principal pivoting aldamitfor multiple right-hand sides in Alg. 2. The
first idea is also applicable to the single right-hand sidgecé&ut the impact is more dramatic in the multiple
right-hand sides case.

3.3 NMF by block principal pivoting NNLS

In the previous section, we presented the block principailtpig algorithm for the NNLS with multiple right-hand
sides (Alg. 2). We use Alg. 2 to solve the subproblems in E{R)s.and then we fully described our new algorithm
for NMF. Implementation issues such as a stopping critesi@discussed in Section 4.2.



Algorithm 2 Block principal pivoting algorithm for the NNLS with multip right-hand sides (Eqn. (8))

1. Precomput€”C andC” B.
2. LetF(e RI*") = 0,G(e R*")=1,X =0,Y = —CTB,P(e R") =3, T(e R") = ¢+ 1
3. ComputeXr andYy by Eqgns. (5) using column reordering.
4. Repeat whiléXr, Y ) is infeasible
(@) Forj's where|H, (j) U Ha(j)| < T(j) , setT(j) = [Hi(j) U H2(j)|, P(j) = 3 and usef; (j) =
Hy(j) andHz(j) = Ha2(j).

(b) Forj's where|H, (j) U Hy(j)| > T(j) andP(j) > 1, setP(j) = P(j) — 1 and usefd, (j) = Hy(j)
and s (j) = Ha()).

(c) Forj's where|Hy(j) U Ha(j)| > T(j) andP(j) = 0, choose the largest index frofi (j) U Ha(j)|
and exchange it.

(d) UpdateXr andY¢ by Eqgns. (5) using column reordering.

3.4 Extensions

So far, we developed a new algorithm for the original NMF fatation in Eqn. (1), and our results can easily be
extended to further constrained formulations. For exapgiéaining sparse factors might be of interest for some
applications [9]. Sparse NMF [9] is formulated as, when tha&rsity is considered falf factor,

g}ig{IIA—WHIfw+n|W|§+BZIIH(:J)IIf} (11)

j=1
subject toVij, W;;, Hi; > 0.
We can solve Eqn. (11), as shown in [9], by solving the follogvsubproblems alternatingly:

(ot )= (o)

wheree; «, IS a row vector having every element as one angd, is a zero vector with length, and

Com )= (o)

wherely is ak x k identity matrix and)y «.,, iS a zero matrix of sizé x m.
WhenW andH7™ are not necessarily of full column rank, a regularized fdatian can be considered [18]:

2
min
H>0

F

2
min
W>0

F

min { |4~ WH|Z +a| W5+ 5] HI7.} (12)
subject tOVij, Wij, Hij > 0.
As shown in [10], Egn. (12) can also be recast into the ANL&#aork. We can iterate solving

()=o)

where0; ., is a zero matrix of sizé& x n, and

HT T AT )
W+ —
< Valy ) ( Ok xm
until convergence.

The proposed new block principal pivoting algorithm is apgble to the problems shown in Egns. (11) and
(12), and therefore, can be used for faster sparse or réegpdddMF as well.

2
min
H>0

F

2
min
W>0

F



4 Comparison - Design and Issues

In this section, we describe the design of experiments atabdes used in our comparison along with a discussion
of implementation issues. Due to space limitations, we dgnesent details of other algorithms but only refer to
the papers where they are presented.

4.1 Algorithms
We compare the following algorithms for NMF.
1. (mult) Lee and Seung’s multiplicative updating algorithm [13]
2. (als) Berry et als alternating least squares algorithm [2]
3. (Isgnonneg) ANLS with Lawson and Hanson’s algorithm [11]
4. (projnewton) ANLS with Kim et al.’s projected quasi-Newton algorithm [8
5. (projgrad) ANLS with Lin’s projected gradient algorithm [15]
6. (activeset) ANLS with Kim and Park’s active set algorithm [10]
7. (blockpivot) ANLS with block principal pivoting algorithm which is praged in this paper

We includedmult, als, andlsgnonneg for the purpose of complete comparison but paid more deltaiteention
to algorithms that have not been compared in their entiregyipusly: projnewton, projgrad, activeset, and
blockpivot. In all executions that we show in Section 5, all algorithmesarovided with the same initial values.

4.2 Stopping criterion

Deciding when to stop a NMF algorithm is based on whether we heached a local minimum of the objective
function||A — W H|| .. We used the stopping criterion defined in [10] which is bamethe Karush-Kuhn-Tucher
(KKT) optimality condition for Eqn. (1).

According to the KKT condition(W, H) is a stationary point of Eqn. (1) if and only if

W > 0 (13a)
of (W, H)/OW > 0 (13b)
W.x (0f(W,H)/OW) = 0 (13c)
H > 0 (13d)
of(W,H)/OH > 0 (13€)
H.x(0f(W,H)/0H) = 0. (13f)
These conditions can be simplified as
min (W,0f(W,H)/OW) = 0 (14a)
min (H,0f(W,H)/0H) = 0 (14b)
where the minimum is taken component wise [6]. We use a nazeKKT residual as
)
— 15
ow + 0y (15)
where
m k
=33 ’min(Wiq, (O (W, H)[oW),,
=1 g=1
k n
+ 30 min(Hy, (9F (W, 1) /0H),, (16)

g=1j=1



Sw = # (min(W, (0f (W, H) /0W) # 0) (17)
51 = # (min(H, (9f (W, H)/0H) # 0). (18)

Note that the KKT residual is divided by the number of nonzsements in order to make the residual independent
of the sizes o/ and H. Using this normalized residual, the convergence criteisalefined as

A < el (19)

whereA is the value ofA using initial values o#/” andH ande is a chosen tolerance. We computigl using
the initial values instead of using the values after the fiesation as done in [10], because the latter is not fair in
comparing several algorithms.

4.3 Datasets

We use three datasets for comparisons: synthetic, textnzagke. The synthetic dataset is created in the following
way. We usedn = 300 andn = 200. Fork = 5,10, 20, 30, 40, 60, and80, we randomly constructeeh x k
matrix W andk x n matrix H with 40% sparsity. Then, we computetl= W H and added Gaussian noise to each
element where the standard deviatiors9 of the average magnitude of elementsdn Finally, we normalized
matrix A so that the average element-wise magnitude is the samel forvalues. Basically, we created small
synthetic matrices that have latent sparse nonnegatit@fac

For text dataset, the Topic Detection and Tracking 2 (TDE€R) torpus is used. The TDT2 dataset contains
news articles from various sources such as NYT, CNN, VOA, iat¢ 998. The corpus is manually labeled across
100 different topics, and it has been widely used for textingmesearch. From the corpus, we randomly selected
20 topics where the number of articles in the topic is gretitan 20. The term document matrix is created by
TF.IDF indexing and unit-norm normalization [16]. We olotadl a 12617% 1491 term-document matrix.

For image dataset, the Olivetti Research Laboratory (ORt® fmage databasis used. The database contains
400 face images of 40 different people with 10 images pergpergach face image has 9212 pixels in 8-bit
grey level. We obtained 10364100 matrix.

5 Comparison of the Experimental Results

In this section, we summarize our experimental results died imterpretation. We implemented our new block
principal pivoting algorithm in MATLAB. For other existingMF algorithms, we used MATLAB codes presented
in [10, 8, 15] after modifying them with our stopping criteni. All experiments were executed on 3.2 GHz
Pentium4 Xeon EMT64 machines with Linux OS.

5.1 Experimental resultswith synthetic datasets

We tested all seven algorithms presented in Section 4.1 @syththetic datasets. The same initial values were
shared in all algorithms, and the average results usingfidrelit initial values are shown in the Table 1.

As shown in Table 1multi andals easily exceeded the maximum number of iterations which \wasosbe
10,000. These results show that the algorithms have diiésulvith convergence. The failure to converge resulted
in worse approximations as the residual values show; when20, multi andals gave larger average residuals
compared to ANLS type algorithms. Since the number of itenatexceeded the limit and the execution times
were among the slowest, we did not include these algorithrtiss following experiments.

All ANLS type algorithms appeared to satisfy the convergeaiiterion within a reasonable number of itera-
tions, giving an empirical confirmation of convergence. finenbers of iterations for ANLS type algorithms were
more or less similar to each other exceppirojgrad method. This is because thaitojgrad and projnewton
are based on iterative optimization schemes. In their sutlbmes for the NNLS problem, another tolerance value
needs to be specified for a stopping criterion, and the tegsmf the solution in the subproblem depends upon
the tolerance value. On the other haadiiveset andblockpivot exactly solves the NNLS subproblem at every
iteration. The difference might lead to a variation in themoer of iterations of their NMF algorithms.

2http://projects.ldc.upenn.edu/TDT2/
Shttp:/ivww.cl.cam.ac.uk/research/dtg/attarchivegtimtabase. html



Table 1: Experimental results on 30200 synthetic datasets with latent nonnegative factors avit 10~%. For
eachk, all algorithms were executed with the same initial val@es] the average results from using 10 different
initial values are shown in the table. For the execution ttmparison, the shortest execution time is highlighted
in bold type. For slow algorithms, experiments with largevalues take too much time and are omitted. The
residual is computed asA — W H]|| . / || Al p-

k multi als Isgnonneg | projnewton | projgrad | activeset | blockpivot
time (sec)| 5 | 35.336 | 36.697 23.188 5.756 0.976 0.262 0.252
10 | 47.132 | 52.325 82.619 13.43 4.157 0.848 0.786
20| 72.888 | 83.232 45.007 9.32 441 4.004
30 127.33 62.317 17.252 14.384
40 81.445 | 22.246 16.132
60 128.76 | 37.376 21.368
80 276.29 | 65.566 30.055
iterations| 5 | 9784.2 | 10000 25.6 25.8 30 26.4 26.4
10 | 10000 | 10000 34.8 35.2 45 35.2 35.2
20 | 10000 | 10000 70.8 104 69.8 69.8
30 166 205.2 166.6 166.6
40 234.8 118 117.8
60 157.8 84.2 84.2
80 131.8 67.2 67.2
residual | 5 | 0.04035| 0.04043| 0.04035 0.04035 0.04035 | 0.04035| 0.04035
10 | 0.04345| 0.04379| 0.04343 0.04343 0.04344 | 0.04343| 0.04343
20 | 0.04603| 0.04556 0.04412 0.04414 | 0.04412| 0.04412
30 0.04313 0.04316 | 0.04327| 0.04327
40 0.04944 | 0.04943| 0.04944
60 0.04106 | 0.04063| 0.04063
80 0.03411 | 0.03390| 0.03390

Thelsgnonneg algorithm was implemented as a reference point althoughknown to be very slow. The
execution time oflsgnonneg as shown in Table 1 was much longer than in other ANLS algmsth Among
remaining ANLS type algorithms, i.eprojnewton, projgrad, activeset, andblockpivot, projnewton method
was computationally less efficient than others as can befsa@rirable 1. Its overall computation time was much
longer than those of other ANLS type algorithms while theuiegpg number of iterations was similar to others.
These results imply thair ojnewton is slower in solving the subproblems in Eqns. (2).

Among all algorithmsplockpivot showed the shortest execution time. Note that for smallesabfk up to
20, the execution time required factiveset or projgrad was comparable to that dilockpivot. However, as
k becomes larger, the difference betwdztockpivot and the other two growed to be nontrivial. As these three
algorithms show the best efficiency, we focus on compariegdhalgorithms with large real datasets below.

5.2 Experimental resultswith text and image datasets

Experimental results with text and image datasets are showables 2 and 3. As we learned that the three algo-
rithms, projgrad, activeset, andblockpivot, are the most efficient from the previous experiments usingllem
synthetic datasets, we focused on comparing the threeithig:

From Tables 2 and 3, it can be observed thatkpivot is often the most efficient algorithm for various values
of k. For small values of;, it appeared thaactiveset was slightly faster thamlockpivot, but the difference
was very small. This result agrees with a general understgritiat for solving a NNLS problem where the
number of variables is small, the active set method is prederor larger values df, blockpivot showed much
better performance than the other two algorithms. Since NivIBparse NMF was shown to work well as a
clustering method [21, 9] and the valuefois typically small in clustering problems, we recommetiveset or
blockpivot method for a clustering use. Exploratory analysis for texbmge database might often use relatively
largek values, and our results recommdsidckpivot in this case. Overall, the experimental results confirm that
blockpivot is generally superior to the other two algorithms.



Table 2: Experimental results 8617 x 1491 text dataset Table 3: Experimental results o304 x 400 image
with ¢ = 10~*. For eachk, all algorithms were executediataset with: = 5x 10—, For eachk, all algorithms were
with the same initial values, and the average results frerecuted with the same initial values, and the average re-
using 10 different initial values are shown in the tablsults from using 10 differentinitial values are shown in the

The residual is computed #sl — WH || / || Al table. The residual is computedjad — WH|| . / || Al ¢

k | projgrad | activeset | blockpivot k | projgrad | activeset | blockpivot

time (sec)| 5 107.24 81.476 82.954 time (sec)| 16 | 68.529 11.751 11.998
10| 131.12 | 87.012 88.728 25| 124.05 | 25.675 22.305
20| 161.56 154.1 144.77 36| 109.1 53.528 35.249
30| 355.28 | 314.78 234.61 49| 150.49 | 115.54 57.85
40| 618.1 753.92 479.49 64| 169.7 270.64 91.035
50| 1299.6 | 13334 741.7 81| 249.45 | 545.94 146.76
60 | 1616.05| 2405.76| 1041.78 iterations | 16 26.8 16.4 16.4

iterations | 5 66.2 60.6 60.6 25 20.6 15 15
10 51.8 42 42 36 17.6 13.4 13.4
20 45.8 44.6 44.6 49 16.2 12.4 12.4
30| 100.6 67.2 67.2 64 16.6 13.2 13.2
40 118 103.2 103.2 81 16.8 14.4 14.4
50| 120.4 126.4 126.4 residual | 16 | 0.1905 | 0.1907 0.1907
60| 154.2 171.4 172.6 25| 0.1757 | 0.1751 0.1751

residual | 5 0.9547 | 0.9547 0.9547 36| 0.1630 | 0.1622 0.1622

10| 0.9233 | 0.9229 0.9229 49| 0.1524 | 0.1514 0.1514
20| 0.8898 | 0.8899 0.8899 64 | 0.1429 | 0.1417 0.1417
30| 0.8724 | 0.8727 0.8727 81| 0.1343 | 0.1329 0.1329
40| 0.8600 | 0.8597 0.8597
50| 0.8490 | 0.8488 0.8488
60| 0.8386 | 0.8387 0.8387

Note that the relative efficiency betweaativeset andprojgrad may be reversed for a largér In Table 2,
projgrad appeared faster thattiveset for £ > 40, and in Table 3, fok > 49. In Table 1, howevermctiveset
appeared faster thgvojgrad throughout allk values. It seems that their relative efficiency depends fiardnt
datasets and different problem sizes although they areibfatior to blockpivot in all cases.

Although we explored various values fo from 5 to 81), it has to be understood that all these values are much
smaller than the original dimension, which wiE617 for the text dataset anth304 for the image dataset. This
trend is what we expect from a dimension reduction methodn@stioned in Section 2. We emphasize that the
long and thin structure of the NNLS problems arising from NiR key feature that enables us to use speed-up
techniques explained in Section 3.2 and consequently tieesuccessful experimental resultsédckpivot.

5.3 Execution time and tolerance values

We examined the efficiency of the three algorithms with resfretolerance values and show the results in Figure
2. Note thatprojgrad was comparable to or faster thhtockpivot when a loose tolerance was given. When
a tighter tolerance was used, howeMaigckpivot was clearly faster thaprojgrad. This result implies that
projgrad quickly minimizes the objective function in earlier ited@ts but becomes slower in achieving a good
approximation by a tight tolerance.

6 Discussion and Conclusion

In this paper, a new algorithm for computing Nonnegative idtactorization (NMF) based on the alternating
nonnegative least squares (ANLS) framework is proposee ridw algorithm is built upon the block principal

pivoting algorithm for the nonnegativity constrained lesguares (NNLS) problem. We introduced ideas for im-
provement in efficient handling of the multiple right-handes case of NNLS. The newly constructed algorithm
inherits the convergence theory of the ANLS framework andezsily be extended to other constrained NMF for-
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Figure 2: Execution time with respect to tolerance valued 2617 x 1491 text dataset. All algorithms were
executed with the same initial values, and the averagetsassihg 10 different initial values are presented.
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mulations such as sparse NMF or regularized NMF. Experiateomparisons with most of the NMF algorithms
presented in literature using synthetic, text, and imagesgds show that the new algorithm is generally the most
efficient method for computing NMF.

A limitation of a NMF algorithm based on active set or blockngipal pivoting method is that it may break
down if the matrixC' in Eqn. (3) does not have full column rank. However, the dthoris expected to behave well
in practice as observed in our experiments. The regulésizatethod mentioned in Section 3.4 can be adopted to
remedy this problem making these algorithms generallyiegiple for computations of NMF.
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