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 SUMMARY 
 
 

Product proliferation is a common challenge for firms providing customized 

products.  To cope with this challenge, firms usually incorporate strategies such as 

component commonality, postponement, and/or delayed differentiation in their supply 

chains.  In this dissertation, we study the effectiveness of these strategies.   

Component commonality (CC) is one of the most popular supply chain strategies 

to cope with challenges of product proliferation such as difficulties in estimating demand, 

controlling inventory, and providing high service levels for customers.  It advocates using 

a common component to replace a number of distinctive components in various products 

so that the safety stock can be reduced due to risk pooling.   

In this dissertation, we first evaluate three component commonality strategies in 

supply chain environment: Distinctive Part (DP), Pure Component Commonality (PCC), 

and Mixed Component Commonality (MCC) strategies.  DP is where all products consist 

of distinctive parts and no common component is used, while PCC is where one or more 

parts from different products are completely replaced by common components.  In MCC, 

unlike PCC, it allows partial substitution of distinctive parts with common components.  

We develop models to analyze these strategies for both the constant and stochastic 

demands.  The solution to minimize the total inventory cost is presented.   

For constant demand, MCC is the worst choice and PCC is the best for the case of 

low common component price, high ordering cost, or high interest rate.  For stochastic 

demand, PCC is the best for the case of low common component price, high demand 

variation, high ordering cost, long lead time, or high interest rate.  However, MCC can be 

used to reduce inventory cost if the demand variation is high.  Furthermore, we conclude 
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that when demand variation is moderate, unit shortage cost is not a significant factor in 

the choice of component commonality strategies.  In the case of high demand variation, 

the PCC strategy is preferred when shortage cost is high, and the MCC strategy can be 

adopted for a range of moderate shortage cost. 

Second, we study the performance of two postponement strategies and their 

relationship with product proliferation.  In order to meet increasing customer demands for 

more diverse product offerings, firms are revising their supply chain strategies to 

accommodate mass customization.  The revised strategies often involve delaying the 

delivery of the products until after the customer orders arrive, termed Time Postponement 

(TP), or delaying the differentiation of the products until later production stages, termed 

Form Postponement (FP).  We develop models representing the TP and FP strategies and 

compare their performance in total supply chain cost and expected customer waiting 

times.  We find that once the number of different products increases above some 

threshold level, the TP strategy is preferred under both performance metrics.   

For our most general model, we design a numerical experiment to investigate how 

different factors affect the performance of the TP and FP strategies.  Through this 

experiment we show that higher arrival time and process time variations make the FP 

strategy more favorable while increases in the number of products and higher interest 

rates make the TP strategy more favorable.  We also offer guidance to managers using 

either strategy on where to allocate resources for performance improvement.  For 

example, to improve the customer waiting times under the FP strategy, increasing the 

coverage of the generic component and reducing the number of products provide larger 

benefits than reducing the variability of the arrival and process times. 
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Third, we analyze the relevant costs and benefits of implementing delayed 

differentiation, an implementation of the FP, in a make-to-order environment and provide 

insights for managers choosing the optimal point along the supply chain they should 

differentiate their products.  

To achieve mass customization, many firms are shifting their supply chain structures 

from make-to-stock to make-to-order.  A make-to-order strategy comes at a price 

however, as customers must wait longer for their customized products.  Incorporating 

delayed differentiation in a make-to-order environment offers potential to reduce the 

customer’s wait since the generic part/component of the products can be made before the 

customer order is received.  In the third part of our study, we quantify the tradeoffs 

involved in implementing delayed differentiation in a make-to-order environment using 

both customer waiting time and cost as performance metrics.   We show that under 

common assumptions, the introduction of delayed differentiation results in shorter 

waiting times and higher cost over a pure make-to-order strategy.  However, we derive 

reasonable conditions where the introduction of delayed differentiation results in shorter 

customer waiting times and lower cost, thus dominating a pure make-to-order strategy on 

both performance dimensions.  We also provide insights to firms seeking the optimal 

place in the production process to differentiate their products.  For example, we show that 

the expected customer waiting time is convex in the point of the process that 

differentiation takes place.  Thus, for firms seeking to minimize customer waits, 

differentiating the product in the middle of the process may result in shorter customer 

waits than waiting until the end of the process than waiting until the end of the process. 



 1

CHAPTER 1 
 

INTRODUCTION 
 

Rapid changes in technology and increased globalization are two common trends 

of today’s business environment.  One of the immediate responses to this new 

environment is increased product proliferation (Lee 1996).  Companies experiencing 

product proliferation face increasing problems in forecasting demand, controlling their 

inventory, and providing high service levels for their customers. To deal with these 

problems, companies usually incorporate strategies such as component commonality, 

postponement, and/or delayed differentiation in their supply chains.  In this dissertation, 

we study the effectiveness of these strategies. 

Component commonality advocates using a common component to replace a 

number of distinctive components in various products so that the safety stock can be 

reduced due to risk pooling.  In this dissertation, we compare three component 

commonality strategies and evaluate their impact on inventory systems for both the 

constant and stochastic demand scenarios. 

In addition to the component commonality strategy, various supply chain 

strategies have been explored to provide a wide range of product varieties in a cost 

efficient way (also referred to as mass customization).  Many of these strategies involve 

either delaying the delivery of the products until after receiving the customer orders or 

delaying the differentiation of the products until later stages of the supply chain.  Zinn 

and Bowersox (1988) label the former as Time Postponement (TP) and the later as Form 

Postponement (FP).  Employing TP involves delaying the manufacturing and shipping of 

the product until after the customer order is received.  Production and distribution of the 
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product is most often centralized in a single facility.  An example of a company using TP 

is the Danish company Bang & Olufsen, a high-end television and stereo system 

manufacturer.  All of Bang & Olufsen’s products are made-to-order at a centralized plant 

and shipped directly to their customers.  The need for holding safety stock is eliminated 

when using TP but customers must be willing to wait the entire manufacturing lead-time 

for their customized products.    

In contrast to TP, employing FP involves shipping the products in a semi-finished 

state from the manufacturing facility to a downstream facility where final customization 

occurs.  In order to delay the final customization of the product, the firm stocks a generic 

(semi-finished) component from which it draws upon for final assembly.  A classic 

example of a company using FP is Hewlett-Packard’s (HP) postponement of the final 

assembly of their DeskJet printers to their local distribution centers (Lee et al. 1993). 

Although the viability of the postponement strategies has been discussed, the 

environments where one type of postponement strategy is outperforms the other have not 

received sufficient attention.  Also, despite the fact that increasing product proliferation is 

often a major factor behind a firm’s decision to incorporate a postponement strategy, its 

impact on the choice of strategy has not been addressed.  In this dissertation, we seek to 

fill these gaps. 

After comparing TP and FP, we study the costs and benefits of a new strategy 

which combines TP and FP, and compare it to a pure make-to-order strategy.  We first 

examine a popular FP strategy called Delayed Differentiation which advocates that a firm 

redesigns its products so that differentiation is postponed until later stages of the supply 

chain (Lee and Tang 1997).  In the past, research in delayed differentiation mainly 
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focuses on its implications in make-to-stock environment. However, more and more 

companies start to implement delayed differentiation in make-to-order environments.   

Consider the retail market for household paints as an example.  Retailers such as Home 

Depot and Lowe’s have shifted from stocking a wide variety of premixed colors to 

stocking paint in a neutral color (generic component) and mixing the final color only after 

receiving a specific customer order (the point of differentiation is delayed from the 

production site to the retail site).  Since delayed differentiation can also provide 

substantial benefits for companies choosing a make-to-order strategy, we analyze the 

costs and benefits of implementing delayed differentiation in a make-to-order 

environment and provide insights for managers choosing where along the supply chain 

they should differentiate their products. 

The remainder of this dissertation is organized as follows.  The review of the 

literature is present in Section 2.  Sections 3, 4 and 5 present the problems and results of 

our study in component commonality, postponement, and delayed differentiation, 

respectively.  Section 6 summarizes this dissertation and discusses potential areas for 

future research. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

In this section, we review the literature in component commonality, postponement, 

and delayed differentiation.  The research questions of this dissertation are motivated and 

identified. 

 

2.1 Component Commonality 

Much research has been done in component commonality.  Collier (1981) defines 

an index to measure the degree of component commonality. He finds that higher degree 

of component commonality is significantly associated with the reduction in 

manufacturing cost.  Baker et al (1986) present a two-product, two-level, single period 

inventory model to study the effect of commonality on the number of units in stock.  

Their model minimizes the number of units in stock with a specified service level under 

the normally distributed demand scenario.  They show that by introducing commonality 

the total number of units in inventory is reduced and the inventory level of the common 

component is lower than the total inventory level of the two components it has replaced.  

Gerchak et al (1988) extend Baker et al’s work and minimize the total material 

acquisition cost under the general demand distribution case.  Eynan and Rosenblatt (1996) 

extend Baker et al’s work by allowing the price of the common component to exceed the 

price of the common component that it replaces and analyze cases in which commonality 

is still economically justified.  Hillier (1999) extends the model of Eynan and Rosenblatt 

(1996) to consider the multiple-period case, and concludes that benefits of commonality 

are lessened in the multiple-period case. 
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Product A Product B

a b... ...
 

Figure 1: Distinctive Part Strategy. 

 

Product A Product B

... ...Common Component m

 

Figure 2: Pure Component Commonality Strategy 

Our study departs from the previous research in two aspects.  First, all of the 

previous research focuses on the comparison between Distinctive Part (DP) strategy and 

Pure Component Commonality (PCC) strategy.  The DP strategy is where all products 

consist of distinctive parts and no common component is used (see Figure 1).  The Pure 

PCC strategy is where one or more distinctive parts are completely replaced by a 

common component (see Figure 2).  We call those parts which can be replaced by the 

common component as the replaceable parts (e.g. parts a and b).   

In this dissertation, we propose partial substitution of replaceable parts by a 

common component and call this approach the Mixed Component Commonality (MCC) 

Strategy as shown in Figure 3.  An example of the MCC strategy can be observed from 
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the PC industry.  Most of the PC manufacturers utilize the Pentium CPU in their high-end 

PCs and the Celeron CPU in their low-end PCs.  There are generally three types of 

motherboard chip sets available: the chip set that supports only the Pentium CPU, the 

chip set that supports only the Celeron CPU, and the chip set that supports both CPUs.  

PC manufacturers often use combinations of these three types of chip sets in their PCs.   

Product A Product B

... ...
Common Component ma b

 

Figure 3: Mixed Component Commonality Strategy 

An inevitable outcome of the MCC strategy is an increase in the number of parts 

being inventoried.  In the past, it was very expensive to design, produce, and manage an 

extra part and was therefore impractical to adopt the MCC strategy.  However, the trend 

towards outsourcing has made the MCC strategy more feasible today.  A company can 

easily order different parts from its suppliers.  In addition, the adoption of the information 

technology in inventory management has reduced the cost and complexity of managing a 

very large number of parts.  For these reasons, it is important to consider the MCC 

strategy in this study. 

The second aspect distinguishing this study from the previous research is that we 

extend the previous models by considering all inventory related costs including the 
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ordering cost and shortage cost.  The detailed description of our models is presented in 

Section 3. 

 

2.2 Postponement Strategies 

Research on the concept of postponement originated from Bucklin (1965), who 

was the first to use the term “postponement” but did not provide any analytical results.  

Christopher (1992) provides case studies describing how postponement worked in the 

European market and Lee et al. (1993) presents the HP DeskJet printer case involving 

multiple international markets.  In both cases, the authors found that significant supply 

chain savings could be achieved in shorter lead-time and lower safety stocks by 

redesigning the product or process to delay the differentiation decision.  Feitzinger and 

Lee (1997) and Grag and Tang (1997) provide analytical models measuring the costs and 

benefits of delayed differentiation - a type of Form Postponement.  They show that 

reductions in safety stock levels due to risk-pooling is the key benefit while the cost of 

designing and manufacturing the generic component is the main drawback.   

Zinn and Bowersox (1988), Cooper (1993), and Pagh and Cooper (1998) 

overview different types of postponement strategies and discuss their potential benefits 

but do not provide models to compare the strategies analytically.  Although the viability 

of various postponement strategies has been discussed, the environments where one type 

of postponement strategy outperforms the other have not received sufficient attention.  

Also, despite the fact that increasing product proliferation is often a major factor behind a 

firm’s decision to incorporate a postponement strategy, its impact on the selection of the 
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optimal strategy to implement has not been addressed.  In this paper, we seek to fill these 

gaps. 

We compare the TP strategy and the FP strategy by using queuing models and 

derive conditions under which each strategy is preferred.  In addition, we show how 

product proliferation affects the supply chain performance of both strategies.  Two 

performance measures are employed in the evaluation.  The first is the total supply chain 

cost, which includes the amortized fixed cost and the periodic operating cost.  The second 

is the expected customer waiting time, i.e., the time to fulfill the orders.  These two 

measures are important evaluation criteria for most supply chain managers.  The model 

detail and results are presented in Section 4. 

 

2.3 Delayed Differentiation 

Previous research on delayed differentiation focuses mainly on make-to-stock 

(MTS) strategies, where the main benefit comes from savings in inventory holding cost 

while the main drawback is the cost of designing the generic component (Lee and Tang 

1997, Garg and Tang 1997, and Swaminathan and Tayur 1998).  Shown in the earlier 

customized paint example, delayed differentiation can also provide substantial benefits 

for companies choosing a make-to-order strategy.  Hence, we investigate the costs and 

benefits of implementing delayed differentiation in a make-to-order environment.  To do 

so, we model two supply chain strategies for meeting customized product demand:  a 

pure make-to-order (MTO) strategy and a configure-to-order (CTO) strategy where 

delayed differentiation is adopted in a make-to-order environment.  Both strategies are 

fully described in the next section.    
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Lee (1996) also presents a make-to-order model where the point of product 

differentiation can be delayed.  Lee shows that if the unit holding cost of the generic 

component is not increasing with respect to the degree of delayed differentiation, the total 

inventory holding cost may decrease the further down the differentiation takes place in 

the supply chain.  We extend Lee’s work in several ways.  First, production lead-times 

are an output of our model as opposed to Lee’s model where they are assumed to be 

constant and to be independent of the demand, the production capacity, and the structure 

of the supply chain.  Second, since the fixed cost of designing and manufacturing the 

generic component is often cited as the main drawback of delayed differentiation, we 

include this important factor in our cost function.  Third, we model all pertinent costs 

including the fixed cost, unit inventory holding cost, unit work-in-process (WIP) holding 

cost, and the unit production cost, as functions of the degree of delayed differentiation.  

The detailed description of models and results are presented in Section 5. 
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CHAPTER 3 
 

EVALUATION of COMPONENT COMMONALITY 
 

We develop two-product, two-level, and multiple period inventory models for 

both the constant and stochastic demand scenarios, to present the solution to minimizing 

the total inventory cost, and to derive managerial insight from our analysis.  In this 

section, the model, solution procedure, and the managerial insights for constant and 

stochastic demand scenarios are presented. 

Suppose that a firm manufactures a product family consisting of two products, A 

and B.  Product A is oriented for higher end market while product B is aimed at lower end 

market.  We use a to denote a subsystem of A and b to denote a subsystem of B.  

Subsystems a and b may be replaced by a common component, m.  The common 

component, m, generally equips with extended functions such as additional conjunction 

to attach to two different end products and has to meet the quality standard of the higher 

end product, A.  Hence, it is reasonable to assume the unit price of m is more expensive 

than the replaceable parts.  That is Pm ≥ Pa ≥ Pb, where Pj, j= m, a, b are the unit price for 

replaceable parts a and b, and common component, m, respectively. 

In this study, we focus on the internal choice of component commonality 

strategies; hence we assume that all components are outsourced from the same or similar 

suppliers and have the same constant delivery lead-time and ordering cost.  Since the 

components are outsourced, there is no additional cost involved in the design, 

development, and manufacturing of the components.  Therefore, inventory related costs - 

unit cost, ordering cost, inventory holding cost, and shortage cost – are the only ones of 

interest. 
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We study both the constant demand and stochastic demand problems.  The 

following notation is defined for use in this paper. 

Di Annual demand for end product i, i = A, B 
Pj Unit price of subsystem j, j=a, b, m 
A Ordering cost 
L Lead time 
xj Random variable representing demand for subsystem j over lead time 

with mean µj and standard deviation σj,  j=a, b, m 
ei Degree of commonality, i.e. percentage of the product i produced by 

using the common component, i= A, B 
Qj Order quantity of subsystem j, j=a, b, m 
I Annual interest rate 
hj = iPj, Unit inventory holding cost per period of time of subsystem j, j=a, b, m 

jb  Expected unit of shortage during lead time of subsystem j, j=a, b, m 

πj unit shortage cost of subsystem j, j=a, b, m 
 

 
3.1 Constant Demand Problem 

 In this basic model we assume the demands of products A and B are constant.  

The total material cost is: 

)()1()1( BbAamBbbAaa DeDePDePDeP ++−+−     (3.1) 

The first two terms represent the material cost of acquiring a and b; and the third terms 

denotes the material cost of acquiring m.  (1-ea) and (1-eb) are the percentages of 

demands fulfilled by replaceable parts a and b.  (eaDA + ebDB) is the quantity of the 

common component m ordered. 

Since all the components are outsourced, the only setup cost is ordering cost.  The 

total ordering cost is 

m

BbAa

b

Bb

a

Aa

Q
DeDeA

Q
DeA

Q
DeA )()1()1( +

+
−

+
−     (3.2) 

The total inventory holding cost is 
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The long-term average inventory position for part j is mbaj
Q j ,,,
2
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The total cost of the constant demand problem is the summation of Equations (3.1) 

(3.2), and (3.3).  We will solve for Qa, Qb, Qm, ea, and eb to minimize the total inventory 

cost in Section  

 

3.2 Solution Procedure of Constant Demand Problem 

 We present the procedure to minimize the inventory cost of the constant problems 

in this section. 

 Recall that the total cost function of this problem is: 
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To find the optimal order quantity, we first set 

0=
∂
∂

aQ
TC  and solve for Qa, and we obtain 

a

Aa
a h

DeAQ )1(2* −
=        (3.5) 

Similarly, we obtain 
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b

Bb
b h
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Substitute Qa
*, Qb

*, and Qm
* into Equation (3.4).  Now the total cost function is reduced 

to a function of ea and eb, i.e., ),( ba eefTC = . 

To find the optimal degree of commonality, we set 0=
∂
∂

ae
TC  and get 

0
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Again, we set 0=
∂
∂
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TC  and get 
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We solve Equations (3.8) and (3.9) simultaneously to determine the optimal degree of 

commonality, ea
* and eb

*.  However, there is no simple closed form solution.  

To find an alternative way to solve this problem analytically, we now exploit the 

concavity property of the cost function. 

Lemma 3.1: Total Cost Function is concave in ea and eb.   

Proof: 
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From Equations (3.10), (3.11), and (3.12), the total cost function is concave in ea 

and eb. ■  

Since the total cost function is concave in ea and eb, the optimal degree of 

commonality ea
* and eb

* may only assume either 0 or 1.  For this reason, the minimum 

cost must be among  f(0,0), f(0,1), f(1,0), or f(1,1). 

From Equation (3.4) we obtain  

bBaABbAa hADhADDPDPf 22)0,0( +++=     (3.13) 

mBaABmAa hADhADDPDPf 22)1,0( +++=     (3.14) 

bBmABbAm hADhADDPDPf 22)0,1( +++=     (3.15) 

mBABAm hDDADDPf )(2)()1,1( +++=      (3.16) 

Since Pm ≥ Pa ≥ Pb , then  f(0,1) and f(1,0) must be greater than or equal to f(0,0).  

Hence the candidates for an optimal solution are reduced to only two, i.e., f(0,0) or f(1,1).  
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In addition, numerical examples can be used to demonstrate that there is no definitive 

inequality relationship between f(0,0) and f(1,1).  Therefore, the optimal solution is either 

ea=eb=0 or ea=eb =1. In other words we only need to compute f(0,0) and f(1,1) and select 

the one with a lower cost as an optimal solution.  We summarized the above finding in 

the following lemma.     

Lemma 3.2: Assume Pm ≥ Pa ≥ Pb, the optimal degree of commonality is either 
ea=eb=0 or ea=eb =1.   

 

The optimal order quantity for a, b, and m can be calculated by substituting the 

optimal degree of commonality found by Lemma 3.2 into Equations (3.5), (3.6), and 

(3.7). 

From Lemma 3.2, since the minimum cost can be achieved by using DP strategy 

(ea=eb=0) or PCC strategy (ea=eb =1), so we can now conclude that MCC strategy is not 

useful in the constant demand problem. 

 

3.3 Strategy Comparison in Constant Demand Environments 

Besides solving the problem, it is important to learn which component 

commonality strategy is preferred under various conditions.  To do so, we first calculate 

the cost difference between the PCC strategy and DP strategy as follows: 

bBaABAm

bmBamA

hADhADDDAh

PPDPPD
ffTC

22)(2

))(())((
)0,0()1,1(

−−+

+−+−
=−=∆

     (3.17) 

 We assume the demands of products A and B are proportional to a total demand D; 

hence, DA = KAD and DB = KBD.  Since the unit holding cost is equal to the price times 

interest rate, i.e., hj = Pj·i, j = a, b, m.  Equation (3.17) becomes 
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   (3.18) 

We first study how change of Pm impacts the choice of the strategies. 

Lemma 3.3: ∆TC is an increasing function with respect to Pm. 

Proof: 
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From Lemma 3.3, when m is more expensive, the cost of PCC strategy is higher.  Thus, 

the DP strategy is preferred.  Next, we discuss how the ordering cost will impact the 

choice of the strategy. 

Lemma 3.4: ∆TC is a decreasing function with respect to A. 

Proof: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )






 −−+=

−−+=
∂
∆∂

−

−−−

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

)(2

22)(2

BbAaBAm

BbAaBAm

KPKPKKPDiA

DiKPADiKPADKDKiPA
A
TC

 

Because Pm ≥ Pa ≥ Pb, the above equation is less than or equal to 
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From Lemma 3.4, when the ordering cost is higher, the cost of the DP strategy is 

higher. Thus, the PCC strategy is preferred.  The rationale for the PCC strategy is that 

order pooling resulting from having to stock only a common component m helps lower 
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the ordering cost.  As a consequence, the larger that the ordering cost is, the larger the 

saving is. 

Lemma 3.5: ∆TC is a decreasing function with respect to i. 

Proof: 
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Similar to the proof of Lemma 3.4, where Pm ≥ Pa ≥ Pb, the above equation is less 

than or equal to 
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Theoretically, a higher interest rate increases the unit holding cost. Since the price 

of the common component is more expensive, so in a high interest rate environment, the 

unit holding cost for the common component increases more than that of the replaceable 

parts.  Consequently, the DP strategy is preferred.  On the other hand, a higher unit 

holding cost reduces the optimal order quantity which in turn reduces the average 

inventory level.  Since it is more expensive to hold the common component, lower 

inventory levels benefit the PCC strategy.  The bottom line is that without proof it 

remains unclear how the interest rate will impact the choice between these two strategies.  

From Lemma 3.5 we prove that when the interest rate is higher, the cost of the DP 

strategy is higher.  Therefore, the PCC strategy is preferred. 
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In short, we conclude that the PCC strategy is preferred when the price of 

common component is lower, the order cost is higher, or the interest rate is higher. 

 

3.4 Stochastic Demand Problem 

In real life the demand is rarely constant.  For this reason, it is important to study 

how the different component commonality strategies perform in the stochastic demand 

environment.  In this model, we assume the demands over lead time for components j, j = 

a, b, m, are normally distributed with mean µj and standard deviation σj. 

Since the demand over lead-time is stochastic, it is possible that there exists 

shortage during lead time.  The expected shortage during lead time is defined as 

mbajdxxfsxb j
s

jjjjj

i

,,,)()( =−= ∫
∞

    

where fj(xj) are probability density functions.  The shortage cost is calculated as 

m
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b
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Q
DeDeb

Q
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Db )( +

++
πππ      (3.19) 

Material cost and ordering cost are the same as the constant demand problem given as 

follows. 

Material cost: 

)()1()1( BbAamBbbAaa DeDePDePDeP ++−+−     (3.20) 

Ordering cost: 

m

BbAa

b

Bb

a

Aa

Q
DeDeA

Q
DeA

Q
DeA )()1()1( +

+
−

+
−     (3.21) 

To calculate the inventory holding cost, we first estimate the long-term average 

inventory position.  Obtaining an exact expression for average inventory level is difficult 
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and an approximation result will be used here, which is good if the time the system is in a 

backorder condition during a cycle is small compared to the cycle length (Johnson and 

Montgomery 1974).  In most reality, this is the case.  However, when backorder time is 

long, the approximation used here may lead to high error.  

Since the maximum inventory position during lead time is the order quantity plus 

safety stock or re-order point minus average demand over the lead time, i.e., 

jjj sQ µ−+ and the minimum inventory position during lead-time is safety stock or re-

order point subtract average demand over lead time, i.e., .jjs µ−   Hence, the expected 

long-term average inventory position is: 

mbajs
Q

jj
j ,,

2
=−+ µ        

The inventory holding costs are estimated as: 
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a sQhsQhsQh µµµ

222
    (3.22) 

The total cost of the stochastic demand problem is the summation of Equations 

(3.19), (3.20), (3.21), and (3.22).  We will solve for ,,, mba QQQ  ,,,, amba esss  and be  to 

minimize the total inventory cost in the next section. 

 

3.5 Solution Procedure of Stochastic Demand Problem 

From Equations (3.19), (3.20), (3.21), and (3.22), the total cost function for 

stochastic demand is: 
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Unlike the constant demand problem, the stochastic demand problem does not 

have a nice closed form solution.  We therefore solve this problem numerically. 

The stochastic demand problem carries two important properties: 

1. There is no singular point with respect to ea and eb when 0 < ea < 1 and 0 < eb < 1. 

2. Given ea and eb, solving the stochastic demand problem is equivalent to solving 

three independent (s, Q) problems. 

The first property ensures that there will be no sudden jump in total cost when we 

search along ea and eb.  For this reason, we can search our optimal solution along ea and 

eb in a discrete manner.  The interval chosen for each search is 0.01.  So the complete 

search consists of 10,000 possible combinations of ea and eb.  The solution of (s, Q) 

problem is based on the procedure discussed in Johnson and Montgomery (1974). 

 

3.6 Strategy Comparison in Stochastic Demand Environments 

Since there is no closed form solution to the stochastic demand problem, the 

managerial insights are derived by numerical studies.  Our study is based on a numerical 

example taken from Johnson and Montgomery (1974) in which DA = 10,000, DB = 20,000; 

the standard deviations of demands are set to 20%; the ordering cost is $70; the interest 

rate is 20%; Pm = $5.05, Pa = $5.00, and Pb = $4.95; the unit shortage cost is $1.50; and 
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the lead time is two weeks.  To test the effect of a given factor, we fix the other 

parameters and vary the factor to cover a very broad range.  We first study how the price 

of the common component impacts the choice of the strategy. 

Observation 3.1: The DP strategy is preferred when the price of the common 
component is high. 

 

We vary Pm from $4.00 to $5.50.  From Figure 4, when the price of the common 

component is higher, the DP strategy is preferred.  This observation is consistent with our 

analysis in Lemma 3.3.  However, Figure 4 also shows that it is not worthwhile to use 

the common component even when it is just a few cents more expensive than the 

replaceable parts. The reason is that unlike the single period model, the lower safety stock 

implies a firm can buy fewer components.  For a multiple period model, although the 

PCC strategy allows fewer safety stock inventories, the total number of components 

purchased is unchanged since all demands are eventually met. 
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Figure 4: The Effect of the Price of Common Component 

 
Observation 3.2: The PCC strategy is preferred when the demand variation is 
high. 
 
To test the effect of demand variation, we fix the values of other factors and vary 

the standard deviations of the total demand from 10% to 100%.  From Figure 5, when the 

demand variation is high, the PCC strategy is preferred because the benefit of using the 

common component to pool demand variation outweighs the extra cost of buying it.  It is 

also worth noting that for product B, when the demand variation is more than 70%, the 

minimal cost is achieved by using the MCC strategy; i.e., use both replaceable part b and 

common component m.  This leads to our next observation. 

Observation 3.3: The MCC strategy could be used to reduce total cost when 
demand variation is high. 

 
Observation 3.4: The PCC strategy is preferred when the ordering cost is high. 

  

Figure 5: The Effect of Demand Variation 
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To test the effect of ordering cost, we vary the ordering cost from $70 to $1,400.  

From Figure 6, when the ordering cost is high, the PCC strategy is preferred.  This 

observation is consistent with our finding in Lemma 3.5.  

Observation 3.5: The PCC strategy is preferred when the lead time is long. 

To test the effect of lead time, we vary the lead time from two weeks to forty 

weeks.  From Figure 7, when the lead time is longer, the PCC strategy is preferred.  The 

reason is that when lead time is longer, the unit of demand variation during lead time 

becomes larger and the benefit of using the common component to pool demand variation 

becomes larger. 

Observation 3.6: The PCC strategy is preferred when the interest rate is high.  

To test the effect of interest rate, we vary the interest rate from 20% to 100%.  

From Figure 8, when the interest rate is high, the PCC strategy is preferred.  This 

observation is consistent with our finding in Lemma 3.5. 
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Figure 6: The Effect of Ordering Cost 

 

Figure 7:  The Effect of Lead Time 
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Figure 8: The Effect of Interest Rate 

 
Observation 3.7: In a moderate demand variation environment, the unit shortage 
cost is not a significant factor in the choice of the strategies. 

 
To test the effect of shortage cost, we vary the unit shortage cost from $1.50 to 

$30.00 dollars.  However, from Figure 9, the effect of shortage cost is not significant in 

this scenario.  The DP strategy is always preferred no matter how high the shortage cost 

is.  To further verify this finding, we set up another scenario by reducing DA from 10,000 

to 1,000 and DB from 20,000 to 2,000. The PCC strategy is preferred when the unit 

shortage costs vary from $1.50 to $30.00.  Figure 10 again shows that the effect of 

shortage cost is not significant.  The PCC strategy is always preferred no matter how high 

the shortage cost is.  We therefore conclude that the unit shortage cost is not a significant 

factor in the choice of the strategies when the demand variation is moderate (20%).  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0 

0.5 

1 

ea 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0 

0.5 

1 

eb 

Interest Rate



 26

Theoretically, when the shortage cost is high, the (s, Q) system will automatically set a 

higher re-order point, s, to prevent the expensive shortages; consequently this will 

increase the inventory level.  Since it is more expensive to carry the common component, 

this phenomenon makes the DP strategy more attractive.  On the other hand, when the 

shortage cost is high, it is also important to pool the demand variation to minimize the 

number of shortages. This makes the PCC strategy more attractive.  From our observation, 

in a moderate demand variation environment, none of these two effects dominates the 

other; hence, the unit shortage cost becomes an insignificant factor. 

 

Figure 9: The Effect of Unit Shortage Cost in Moderate Demand Variation 
Environments (DP is preferred) 
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Figure 10: The Effect of Unit Shortage Cost in Moderate Demand Variation 
Environments (PCC is preferred) 

Observation 3.8: In a high demand variation environment, the PCC strategy is 
preferred when the unit shortage cost is high. 

 

In this experiment, we setup a high demand variation scenario (60%).  When the 

unit shortage cost is high, the benefit of using the common component to pool demand 

variation outweighs the cost of higher inventory level.  As shown in Figure 11, when the 

unit shortage cost is between $4.50 and $10.50, the MCC strategy is able to minimize the 

cost of product B.  The optimal strategy switches to the PCC strategy when the unit 

shortage cost is larger than $10.50.  Lastly, Table 1 summarizes the results of all eight 

observations. 
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Table 1: A Summary of Observations. 
 
 

Preferred 
Strategy 

 
Price of 

Common 
Component 

 
 

Demand 
Variation

 
 

Setup 
Cost

 
 

Lead 
Time

 
 

Interest
Rate 

Shortage Cost 
(moderate 
demand 

variation) 

Shortage 
cost (high 
demand 

variation) 
PCC Low High High Long High High 
DP High Low Low Short Low 

Not 
significant Low 

 

 

Figure 11: The Effect of Unit Shortage Cost in High Demand Variation 
Environments 
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CHAPTER 4 

EVALUATION OF POSTPONEMENT STRATEGIES 
 

To study the effectiveness of postponement strategies, we develop analytical 

models which present TP and FP postponement strategies under both M/M/1 and G/G/1 

assumptions. 

4.1 M/M/1 Models 

Consider a firm that supplies a product family consisting of N different 

customized products.  In the TP strategy, the products are manufactured in a make-to-

order (MTO) fashion and shipped directly to customers from a centralized facility 

following the order receipts.  We assume that for both TP and FP strategies, the demand 

arrivals and the production process both follow a random Poisson process.  Thus, we 

model the TP strategy as a multi-class single server queuing system with exponential 

interarrival times and exponential service times i.e. a multi-class M/M/1 system.  There 

are N types of customer orders (N different product types) of size one arriving at the 

centralized facility where the service rule is First Come First Serve.  The arrival 

processes are assumed to be independent and the interarrival times for type k 

orders, Nk ≤≤1 , come from a Poisson process with a mean arrival rate of λk.  The 

processing rates for all products are iid random variables from a Poisson distribution with 

a mean rate of µ.  This strategy is illustrated in Figure 12. 
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Figure 12:  The TP Strategy. 

 

The FP strategy consists of two general stages.  At Stage 1, a single generic 

component is made to stock at a centralized facility.  Thus, there is no setup cost at this 

stage, and a base-stock control policy is optimal for managing the generic component 

inventory (Zipkin 2000).  Stage 1 is therefore analyzed as a single class, single server 

base-stock system, i.e., an M/M/1 base-stock system (Buzacott and Shanthikumar 1993).  

Final customizations are then made to stock at Stage 2, consisting of a dedicated facility 

for each of the N different product configurations.  Our motivation for this supply chain 

strategy comes from the HP DeskJet Printer postponement example where the production 
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line at a regional distribution center is dedicated to the product distributed in that region 

and the final product is made to stock.  The FP strategy is illustrated in Figure 13. 
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Figure 13:  The FP Strategy. 

 

For both strategies, we assume that the raw materials are always available.  

Because all products belong to the same product family, we also assume a common 

distribution for their process times along with negligible changeover times between 

products.  For example, Dell Computer promises the same lead-time regardless of the 



 32

computer configuration chosen (Dell.com).  It is reasonable to assume that the cycle 

times required to install a larger or smaller hard drive come from the same distribution 

and the changeover times between assembling different configurations are minimal.   

To evaluate the two supply chain strategies, two performance measurements are 

used:  total cost (TC) and expected customer waiting time (ET).    For the TP strategy, the 

total cost (TCTP) for each period includes the amortized fixed cost (FTP), the production 

cost, and a WIP holding cost.  For the FP strategy, the Stage 1 cost (CFP, 1) for each 

period includes the production cost for the generic component and holding costs for both 

the WIP inventory and the finished generic component.  The Stage 2 cost (CFP, 2) for each 

period includes the production cost for the final assembly as well as the associated 

holding costs for the WIP inventory and the finished customized products.  

To implement the FP strategy, we assume the firm invests a fixed cost to develop 

and design the generic component and to set up machinery for both stages.  This 

amortized fixed cost for each period is represented by FFP.  In general, FFP is greater than 

FTP because of the increased expense of redesigning the product for delayed 

differentiation.   

4.1.1 The Model for the TP strategy 

The expected waiting time for type k products in the TP strategy (ETTP,k) can be 

derived using a birth-death process (pg. 77, Gross and Harris 1985), giving:   
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Because there is only one server, we use k
kk

λ
µρ =  to represent the average amount of 

WIP inventory for product k.  The total cost of the TP strategy is the sum of fixed cost, 

WIP holding cost, and production cost as shown in Equation (4.2). 
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11

λρ ,      (4.2) 

where wk and ck are the unit WIP holding cost and the unit production cost for the kth 

product respectively.  We separate these two costs because the unit production cost is 

incurred for each unit produced but the holding cost varies with the average number of 

units in the system. 

 

4.1.2 The Model for the FP Strategy 

As with the TP strategy, we assume exponential interarrival times and exponential 

process times.  Assume that orders for the generic component arrive with a mean rate of 

λg and are processed with a mean rate of µg.  The average utilization of the Stage 1 server 

is then  g

gg
λ

µρ = .   

For the generic component, let hg be the per unit holding cost, wg be the unit 

holding cost of the WIP, cg be the per unit production cost, and zg be the base-stock level.  

The expected waiting time and expected inventory level for Stage 1 are based on the 

analysis of Buzacott and Shanthikumar (1993), pages 103-105. 

The expected waiting time for Stage 1 is: 
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z
g
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ρ
−
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Let ][IE  be the expected inventory level of the generic component, where   
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is made up of  the base-stock level minus the expected production orders.  The cost at 

Stage 1 is:  

[ ] gggggFP cwIEhC λρ ++=1,  .      (4.5) 

The first term of Equation (4.5) is the inventory holding cost, the second term is the 

average WIP holding cost (for the M/M/1 system, the average WIP is equal to the 

utilization of the server; i.e., ρg), and the last term is the production cost. 

At Stage 2, each product type is customized by a dedicated production line.  We 

model this stage as N single-class M/M/1 base-stock systems, which are analyzed in the 

same way as Stage 1.  For a type k product, let zk be the base-stock level, λk be the mean 

arrival rate, and kµ  be the mean production rate.  We assume that all product types have 

the same production rate since they belong to the same product family.  The utilization of 

the server for the type k product is k
kk

λ
µρ = .  The expected waiting time for product k at 

Stage 2 is: 
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Let E[Ik] be the expected inventory level for product k at Stage 2, where 
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For a type k product, let hk be the unit holding cost, vk be the unit WIP holding 

cost, and bk the per unit production cost.  The total cost at Stage 2 is: 
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The first term of Equation (4.8) is the total holding cost for finished products, the second 

term represent the WIP holding cost, and the last term denotes the production cost.  The 

total expected waiting time for product k under the FP strategy is the sum of the waiting 

times for both stages 

 , ,1 ,2,
1g

FP k FP FP k
g g k k

ET ET ET
ρ

µ λ µ λ
= + = +

− −
    (4.9) 

and the total cost for the FP strategy is: 

 2,1, FPFPFPFP CCFTC ++= .                (4.10) 

4.1.3 Effect of Product Proliferation 
  

Product proliferation results when companies begin to customize their products 

for smaller customer groups or segments.  In this section, we study how product 

proliferation affects the cost and the responsiveness of the TP and FP strategies. 

We assume a constant overall utilization for the supply chain in order to isolate 

the impact of a change in the number of products from the impact of a change in the 

facility’s utilization.  To maintain a constant utilization, we use the throttle demand rate 

strategy (Gupta and Srinivansan 1998) where the total demand and total process capacity 

are held constant to maintain a constant system utilization rate, even though the total 

number of products may vary.  In the absence of such control, an increase in the number 

of products may worsen the performance simply as a consequence of the increased load 

on the facility.  Thus, the throttle demand rate is used to remove the effect of an increased 

utilization rate, allowing us to truly study the effect of increasing the number of products.   

Without loss of generality, we normalize the total demand rate for the N products 

to equal 1.  This allows us to simplify our notation and at the same time does not affect 



 36

the performance of our models because our utilizations are adjusted accordingly.  In order 

to isolate the effect of product proliferation, we also assume symmetric production, i.e., 

all the parameters of the different products are the same. Under this assumption, subscript 

k of all parameters disappears.  For example, λk=λ, µk =µ, and ck=c.  Since the total 

demand rate for the N products is 1, the mean time between arrivals for each product is N 

or
N
1

=λ .  In the TP strategy, setting the mean process time for each product to ρ or 

ρ
µ 1

= makes the system utilization rate∑
=

==
N

k k

k NN
1 1

1
ρ

ρµ
λ . 

To make a meaningful comparison between the TP and FP strategies, the same 

demand rate is employed for both strategies and we adjust the process times to ensure 

that both strategies have the same capacity.  In the FP strategy, the mean time between 

arrivals at the generic component stage is 1 since it includes the demand of all N products. 

The mean time-between-arrivals for each product at the second stage is N or
N
1

=λ , 

since each product has a dedicated production line.     

For the process time of the FP strategy, let ρ be the total process time of which a 

portion, : 0 1r r≤ ≤ , is consumed by the generic component.  We call r the percentage of 

generic component coverage.  At Stage 2, we divide the capacity available into N 

dedicated lines equally.  Therefore, each line takes N(1-r) ρ  time units to finish the final 

customization.  Based on the above assumptions and definitions, we derive the following 

lemmas before stating our main result on the effect of product proliferation.   

Lemma 4.1: As N increases, the expected waiting time of the TP strategy stays 
constant. 
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Proof: 

Applying the symmetric production system assumption to Equation (4.1), λk=λ. 

The total expected waiting time for the TP strategy becomes: 

( ) ρ
ρ

ρ
λµ −

=









−

=
−

=
1

11
11

N
ETTP  .    (4.11) 

Since ETTP is not a function of N then as N increases, ETTP stays the same.■  

 
Lemma 4.2: As N increases, the expected cost of the TP strategy stays constant. 

Proof: 

Under symmetric production, λk=λ, µk =µ, and ck=c.   From Equation (4.2), the 

total expected cost for the TP strategy becomes:  

.cNwNFTC TPTP λ
µ
λ

++=       (4.12) 

Substituting 
N
1

=λ  and 
ρ

µ 1
=  into equation (4.12), we get: 

.cwFTC TPTP ++= ρ        (4.13)  

Thus, TCTP is not a function of N. ■ 

 

Lemma 4.3: The expected waiting time of the FP strategy increases 
monotonically in N. 

Proof: 

Under symmetric production, from Equation (4.9), the total expected waiting 

time for the FP strategy becomes: 
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From the throttle demand strategy and the equal capacity assumption, we get 

1 1 1, 1, , , and 
(1 )g g gr

r N N r
ρ ρ λ µ λ µ

ρ ρ
= = = = =

−
.  Substituting these values 

into Equation (4.14) gives: 

( ) ( )[ ]
( )ρ

ρ
ρ

ρ
r

rN
r

rET
zz

FP

g

−−
−

+
−

=
++

11
1

1

11

.      (4.15) 

Thus, as the number of products (N) increases, the expected waiting time of 

the FP strategy (ETFP) increases monotonically. ■ 

Lemma 4.4: The cost of Stage 1 of the FP strategy is constant with respect to N. 

Proof: 

Substituting 1 1 1, 1, , , and 
(1 )g g gr

r N N r
ρ ρ λ µ λ µ

ρ ρ
= = = = =

−
 into 

equation (4.4) gives the Stage 1 cost of the FP strategy as follows: 

( )( ) .1
11, ggg

z
gFP cwrhr

r
rzC ++








−

−
−= ρρ

ρ
ρ      (4.16) 

Thus, CFP,1 is not a function of N. ■ 

   

Lemma 4.5: The cost of Stage 2 of the FP strategy increases monotonically in N. 

Proof: 

From Equation (4.8), assuming symmetric production gives 
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[ ] λ
µ
λ NbvNhINECFP ++=2,      (4.17) 

where )1(
1

][
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Substituting 1 1 and 
(1 )N N r

λ µ
ρ

= =
−

into equation (4.17) gives 

( )
( ) ( )( ) bvrNhr

r
rzNC z

FP +−+







−−

−−
−

−= ρρ
ρ

ρ )1(11
11

1
2, .  (4.18) 

Thus, as the number of products (N) increases, the Stage 2 cost of the FP strategy 

(CFP,2) increases monotonically. ■ 

Lemma 4.6: The total cost of the FP strategy increases monotonically in N. 

Proof: 

Since 2,1, FPFPFPFP CCFTC ++= , from Lemmas 4.4 and 4.5, the total cost of 

the FP strategy (TCFP) increases monotonically in N. ■ 

Based on the Lemmas given above, we conclude the following Proposition. 

 

Proposition: As N increases, there exists a threshold value of N above which TCTP 
< TCFP  and  ETTP < ETFP . 

 

Proof:  

As N increases, Lemmas 4.1 and 4.2 state that the expected waiting time 

(ETTP) and expected cost (TCTP) of the TP strategy stays constant.  From Lemmas 

4.3 and 4.6, the expected waiting time (ETFP) and expected total cost (TCFP) of 
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the FP strategy are monotonically increasing in N.  Therefore, as N increases, 

there exists a threshold value of N above which TCTP < TCFP and  ETTP < ETFP .■  

Example: 

We now give a numerical example to demonstrate the result stated in the 

Proposition.  First, let ρ = 0.5, r = 0.3, FTP = 10, and FFP = 12.  For the TP 

strategy, let w = 0.05, and c = 1.  For Stage 1 of the FP strategy, let zg = 2, hg = 

0.03, wg = 0.015, and cg = 0.3.  For Stage 2 of the FP strategy, let z = 1, h = 0.1, v 

= 0.065, and b = 0.7.  Figure 14 is a plot of the total cost and customer waiting 

time as the number of products offered, N, increases from 1 to 8.  An increase in 

the number of products greater than or equal to 6, results in the TP strategy 

requiring less cost and having a shorter customer waiting time than the FP strategy.  

Thus, the TP strategy dominates the FP strategy on both performance dimensions 

once the number of products exceeds five. 
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Figure 14: The Effect of Product Proliferation. 

 

Intuitively, increasing the number of products could complicate the operation of 

the supply chain and worsen its performance.  However, under the throttle demand and 

zero changeover time/cost assumptions, our analysis shows that the cost and time of the 

TP strategy stay constant as N increases. Gupta and Srinivasan (1998) also find that under 

the throttle demand assumption, there exist conditions where increasing the number of 

products decreases the number of back-orders and thus, reduces the expected customer 

waiting time. 

In our models, increasing the number of products in the FP strategy requires that 

the capacity at Stage 2 be divided into equal amounts for each dedicated line. Thus, the 

pooling effect is lost in the FP strategy (resulting in an increase in the WIP and final 
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product inventory levels as well as the average number of back-orders) but not in the TP 

strategy where all capacity is centralized.  Therefore, as N increases the cost and time of 

the FP strategy increases.  We expect that the proposition will still hold under a small 

positive setup time/cost for the TP strategy but the proof and specifications are left for 

future research. 

4.2 G/G/1 Models 

The M/M/1 models provide a means to study the effect of product proliferation on 

the choice between the TP and FP strategies.  However, more detail is needed to perform 

sensitivity analysis on how changes in the interarrival time variation and process time 

variation affect the choice of strategy.  The exponential distribution only has one 

parameter that determines both the mean and the variance.  It does not allow us to change 

the variance without changing the mean.  For this reason, we also model our supply chain 

strategies using G/G/1 queuing systems.   

4.2.1 The G/G/1 Approximation of the TP Strategy   

Let λ and µ be the mean arrival rate and mean process rate for a product, 
µ
λρ N

=  be 

the overall system utilization, and σd
2 and σp

2 be the variances of the interarrival times 

and process times respectively.  There are several G/G/1 approximations available 

(Marchal 1976, and Shore 1988).  We tested both and found their results to be very close.  

To our knowledge, there is no published study stating that one approximation is better 

than another.  Therefore, we use the one from Shore (1998).  From Shore’s 

approximation, the expected number of customers in the system is: 



 43

ρ
ρ

σµρσλ
σµρ
σµρ

+












−
+













+

+
=

)1(21
)1( 22222

222

222
pd

p

pL .    (4.19) 

By applying Little’s law, the expected customer waiting time using the TP strategy is: 
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Similar to the M/M/1 model, the total cost of the TP strategy is: 

cNwFTC TPTP λρ ++= .       (4.21) 

4.2.2 The G/G/1 Approximation of the FP Strategy 

The G/G/1 model for the FP strategy is based on the approximation developed by 

Buzacott and Shanthikumar (1993) on page 106.  Like the M/M/1 model, we first analyze 

Stage 1 where the production and stocking of the generic component occurs. 

Stage 1 

Let λg and µg be the mean arrival rate and mean processing rate for the generic 

component, and σd,g
2 and σp,g

2 be variances of the interarrival times and process 

times.  Define 
g

g
g µ

λ
ρ = to be the utilization of Stage 1, and following the notation 

of Buzacott and Shanthikumar (1993), let  

*

*

L
L gρ−

=Λ          (4.22) 
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The expected number of backorders of the generic component, [ ]BE , is: 
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The expected waiting time for Stage 1, using Little’s Law, is: 

[ ]BEET
g

FP µ
1

1, =  .       (4.25) 

Let E[I] be the expected inventory level: 
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Similar to (4.4), the cost of Stage 1 is:  

[ ] gggggFP cwhIEC λρ ++=1, .      (4.28) 

Stage 2 

Let λ and 'µ  be the mean arrival rate and mean process rate for a product at 

each dedicated line of Stage 2 and σd
2 and σp

2 be the variances of the interarrival 

times and process times. Similar to Stage 1, the approximate expected waiting 

times for a product at Stage 2 is: 
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Similar to (4.7), the cost of Stage 2 is:  

[ ]( )λρ bvhIENCFP ++=2, .      (4.30)       
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The total expected waiting time for a product under the FP strategy is 

2,1, FPFPFP ETETET +=        (4.31) 

and the total cost is  

2,1, FPFPFPFP CCFTC ++=  .      (4.32) 

4.3 Strategy Comparisons 

Using the G/G/1 approximations, we can evaluate the impact of customer arrival 

time variation and process time variation on the cost and the waiting time of the two 

strategies.  To compare the total costs and waiting times, we substitute in the parameter 

values for a particular scenario into equations (4.19) to (4.32) to see which strategy 

provides the lowest cost and/or shortest waiting time for those particular data values.  

However, there are many factors affecting the costs and waiting times and isolating the 

effect of each one analytically is intractable.  Therefore, we design a numerical 

experiment to provide a comparison of the two strategies under a wide range of parameter 

values.    
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Six factors are included in the experiment:  utilization rate, arrival time variation, 

process time variation, interest rate, percentage of generic component coverage, and the 

number of products.  We choose the interest rate as a factor and assume that the holding 

costs for both the generic component and the WIP inventory are directly proportional to 

the interest rate.  Any change in the interest rate changes the two holding cost 

proportionately, thus allowing us to analyze their impact through the use of a single 

factor.  There are other factors that are not included because their effects on the costs and 

waiting times are straightforward.  These include the fixed cost, the production cost, and 

the base-stock levels.  

We measured performance through changes in the total costs and the expected 

waiting times.  Initial tests showed that the utilization rate had the greatest impact of all 

the model parameters and significantly confounded the effects of the other factors.  

Therefore, we created three separate experiments corresponding to low, medium, and 

high utilization rates.  Each experiment covers the other five factors, at three levels for 

each factor.  A full factorial experiment would require 35 different runs.  By using the 

Taguchi’s L18(21 x 37) orthogonal array (Phadke 1989), the number of experimental runs 

is significantly reduced to only 18 for each experiment.  Taguchi’s L18(21 x 37) 

orthogonal array is designed to test the significance of up to eight different variables.  

Since our experiment only has five factors in each experiment, the remaining three are set 

as dummy factors. 

Each factor has three levels: low, medium, and high.  Values were chosen to 

cover the ranges of most realistic scenarios.  The values selected for each factor are 

summarized at Table 2. 
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Table 2: Factors and Their Level Values. 
Levels Factors Low Medium High 

Utilization rate 0.5 0.75 0.97 
Coefficient of variation 
of times between 
arrivals 

10% 200% 400% 

Coefficient of variation 
of process times 10% 50% 100% 

Interest rate 5% 25% 50% 
Percentage of generic 
component coverage (r) 30% 50% 70% 

Number of products 2 8 16 
 

Based on the factor levels, the other model parameters such as the demand rate 

(λ), process rate (µ), holding cost (h), and WIP cost (w) were set according to the throttle 

demand rate, symmetric production, and equal capacity assumptions described in Section 

2.3.  The two response variables are the expected customer waiting times given by (4.18) 

and (4.31) and the total costs given by (4.19) and (4.32).  ANOVAs were performed to 

test the significance of the factors and the results are summarized in Table 3. 

Table 3: Results of ANOVA Analysis. 
 Cost of FP Time of FP Cost of TP Time of TP 

Utilization L M H L M H L M H L M H 
Arrival time 
variation 

   ↑(a) 
0.030

     ↑(b) 
0.000 

↑(b) 
0.000

↑(b) 
0.000

Process time 
variation 

         ↑(b) 
0.000 

↑(b) 
0.000

↑(b) 
0.000

Interest rate ↑(b) 
0.001* 

↑(b) 
0.002 

↑(b) 
0.002

   ↑(b) 
0.000

↑(b) 
0.000

↑(b) 
0.000 

   

Percentage 
of coverage 

   ↓(a) 
0.017

↓(a) 
0.021

↓(a) 
0.028

      

Number of 
products 

↑(b) 
0.006 

↑(b) 
0.006 

↑(b) 
0.006

↑(a) 
0.016

↑(a) 
0.026

↑(a) 
0.042

      

 
↑: An increase in factor increases the value of the output 
↓: An increase in factor decreases the value of the output 
(a): P value less than 0.05 but greater than 0.01 
(b): P value less than 0.01 
* : Numbers represent p values 
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From the results in Table 3, we make observations to describe the impact of the 

design factors on strategy performances.  The first four observations are intended to 

inform firms of the environments where one supply chain strategy may be more attractive 

than the other.   

Observation 4.1: Under medium to high utilization levels, higher arrival time 
variation significantly increases the expected waiting time of the TP strategy 
(ETTP) but not that of the FP strategy (ETFP). 

  
An increase in the arrival time variation significantly increases the expected 

waiting time of the TP strategy at all utilization levels but only increases the expected 

waiting time of the FP strategy at low utilization levels.  The FP strategy is more robust 

to the increases of arrival time variation.  This is due to the stock of generic components 

that provide a buffering effect.  Thus, as the inter-arrival times become more variable, the 

FP strategy becomes more attractive.    

Observation 4.2: Higher process time variation significantly increases the 
expected waiting time of the TP strategy (ETTP) but not that of the FP strategy 
(ETFP). 

 
More variability in the process times significantly increases the expected waiting 

time of the TP strategy but has no significant impact on that of the FP strategy.  Similar to 

Observation 1, the FP strategy is more robust to increases in the variation because of its 

generic component inventory buffer.  Hence, an increase in the process time variability 

makes the FP strategy more attractive.  Combining Observations 1 and 2 suggests that 

companies in a highly uncertain environment should consider an FP strategy.   

Observation 4.3: A higher percentage of generic component coverage (r) 
significantly decreases the expected waiting time of the FP strategy (ETFP). 

 
A higher percentage of generic component coverage significantly reduces the 

expected waiting time of the FP strategy but has no significant effect on its cost.  The 
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magnitude of the reduction is increasing in the utilization rate.  Hence, a company 

seeking to reduce its customer waiting times and operating in an FP strategy under high 

utilizations should consider delaying the differentiation of its products as long as possible.  

Of course, the reduction in waiting times must be balanced against the possible increase 

in the fixed cost for redesigning the product or process.  The result is shown in Figure 15.  
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Figure 15: Effect of Generic Component Coverage on Waiting Time of FP.  

Observation 4.4: Increasing the number of products (N) significantly increases 
both the cost and the expected waiting time of the FP strategy but not those of the 
TP strategy. 

 
Increasing the number of products significantly increases the expected waiting 

time and expected cost of the FP strategy but has no significant impact on the TP strategy.  

Hence, increasing the number of products makes the TP strategy more attractive under 

both performance metrics.  This result, shown in Figure 16, is consistent with our 

analysis of product proliferation (stated in the Proposition) using the M/M/1 models. 
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Effect of Product Proliferation on Time of FP
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Effect of Product Proliferation on Cost of FP
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Figure 16: Effect of Product Proliferation. 

Some companies may already be established in a particular supply chain strategy 

and are more interested in improving the performance of the strategy they currently have.  

The next observation provides guidance to firms, operating in an FP strategy, seeking to 

allocate resources in order to improve performance. 

Observation 4.5: In the FP strategy, increasing the percentage of the generic 
component coverage (r) and reducing the number of products (N) significantly 
improve the expected waiting times.  In contrast, lowering the arrival time and 
process time variations does not significantly improve the waiting times except 
when the utilization level is low. 

  
Increasing the generic component coverage and reducing the number of different 

products offers significant improvement to the customer waiting times of the FP strategy.  

Alternatively, a decrease in the arrival time variation does not significantly improve the 

waiting times except under low utilization levels.  A decrease in the process time 
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variation does not significantly improve the waiting times under any utilization level.  

Hence, if a firm desires to improve its responsiveness in the FP strategy, allocating 

resources to product improvement (i.e., increasing r by a better designed generic 

component or reducing N by designing a product suitable for multiple market 

segments/regions) is more effective than process improvement (i.e., reducing the 

variation in arrival times and process times). 

The last observation compares the robustness of the two strategies to external 

shocks (in our case, increases in the firms’ interest rates).   

Observation 4.6: Increases in interest rate significantly increases both the cost of 
the TP and FP strategies.  However, it has a larger impact on the FP strategy than 
on the TP strategy. 

 
An increase in the interest rate significantly impacts the costs of both the TP and FP 

strategies.  However, by investigating the detailed results of its effect as shown in Figure 

17, we see that the slope of the cost increase for the FP strategy is greater than the slope 

of the cost increase for the TP strategy.  This is because the FP strategy (a make-to-stock 

strategy) has more inventory than the TP strategy (a make-to-order strategy).  Therefore, 

higher interest rates make the TP strategy more favorable.   
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Figure 17: The Effect of Interest Rate on Strategy Costs. 
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CHAPTER 5 
 

THE IMPACT OF DELAYED DIFFERENTIATION IN MAKE-TO-
ORDER ENVIRONMENTS 

 
To study the impact of delayed differentiation in make to order environments, we 

develop two queuing models to present the MTO and CTO strategies and derive the 

conditions under which one is better than the other.  In this section, the models for the 

MTO and CTO strategy are developed.  A simulation study is performed to validate the 

approximations and its result will be present.  Last, the managerial insights derived from 

our analysis are discussed. 

 

51. Supply Chain Models 

Consider a firm that supplies a product family consisting of N different 

customized products. To accomplish this, the firm usually operates its production process 

in some form of make-to-order fashion.  We consider two strategies the firm may choose: 

a CTO strategy and a pure MTO strategy. 

In the CTO strategy, production is split into two stages, the generic stage (Stage 1) 

and the final customization stage (Stage 2).  At Stage 1, the generic component 

manufacturing is triggered by the production orders at Stage 2 and is produced at a 

centralized facility.  Since there is only one component produced at Stage 1, we assume 

that the line remains set up for the component ensuring that any setup cost is negligible.   

Under this condition, a base-stock policy is the optimal control mechanism to manage the 

inventory of the generic component (Zipkin 2000).    Final customizations take place at 

Stage 2 where the products, once completed, are sent directly to the customers.  We 

define the degree of delayed differentiation (r : 10 ≤≤ r ) as the percentage of the total 
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process time consumed at Stage 1.  Thus, a value of r = 0 implies a pure make-to-order 

environment while a value of r approaching 1 implies that differentiation occurs at the 

last possible state.  The CTO strategy is illustrated in Figure 18. 
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Figure 18:  The CTO Strategy. 

In the special case of the pure MTO strategy (r = 0), we assume all product types 

are manufactured at the centralized facility and shipped directly to customers following 

the order receipt.  This strategy is illustrated in Figure 19. 
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Figure 19:  The MTO Strategy. 

For all strategies, we assume that the needed raw materials are always available.  

Because all products belong to the same product family, we assume a common 

distribution for their process times along with negligible changeover times between 

products.  This assumption is suitable for many business applications.  For example, Dell 

Computer promises the same lead-time regardless of the computer configuration that the 

customer chooses, implying that the process times for different computer configurations 

are similar.  It is reasonable to assume that the times to put in a larger or smaller hard 

drive will have the same distribution and that the change-over times between assembling 

different configurations are minimal.  Another example is idtown.com (McCarthy 2000), 

who allows their customers to choose their watches in different colors, dials, arms, bodies, 
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and bands.  Despite the large number of variations, identical lead-times are quoted for 

any configuration.  

To evaluate the two supply chain strategies, two performance measurements are 

used:  total cost (TC) and expected customer waiting time (ET).  For the CTO strategy, 

the per-period cost at Stage 1 (CCTO, 1) includes the production cost and holding costs for 

the WIP and the finished generic component inventory.  At Stage 2, the per-period cost 

(CCTO, 2) includes the production and holding cost for the WIP inventory.  

To incorporate delayed differentiation in the CTO strategy, we assume that the 

firm invests a fixed cost to develop and design the generic component and to set up 

machinery for both stages.  This amortized fixed cost for each period is represented by 

the parameter FCTO.  The total cost of the CTO strategy (TCCTO) is the sum of CCTO, 1, 

CCTO, 2, and FCTO.  For the special case of the pure MTO strategy, the total cost per period 

(TCMTO) includes the amortized fixed cost (FMTO) and the custom production stage of the 

CTO model, CCTO,2.     

5.1.1 The Model for the CTO Strategy 

Based on the queuing strategy shown in Figure 18, we model the CTO strategy as 

a queuing system.  Since the departure process out of Stage 1 is not a renewal process 

(Bai, Liu, Serfozo, and Shang 2003), the exact expressions for the expected customer 

waiting times and expected inventory levels of the generic component are not 

mathematically traceable.  Hence, we offer approximations for these measures by 

analyzing the two stages of the CTO strategy independently and later verify the 

approximations by comparing them against the results of a simulation study.   
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Stage 1 is analyzed as a single class, single server, base-stock system with 

exponential inter-arrival times and exponential service times, i.e., a base stock M/M/1 

system if the demand arrival pattern and the production process both follow Poisson 

processes.    Since Stage 1 produces a single product and there is no setup cost, a base-

stock control policy is optimal for managing the inventory (Zipkin 2000).  Let the 

demand of the generic component arrive with a mean rate of λg and the processing rate to 

produce the generic component has a mean of µg.  The utilization of the server producing 

the generic component is g

gg
λ

µρ = .   

Our analysis of the M/M/1 base-stock system is grounded on the model developed 

by Buzocott and Shanthikumar (1993).  For the generic component, let hg be the unit 

holding cost, wg be the unit cost of the WIP inventory, cg be the unit production cost, and 

z be the base-stock level.  The expected waiting time at Stage 1 is  

gg

Z
g

CTOET
λµ

ρ
−

=1, .          (5.1) 

The cost at Stage 1 is  

[ ] gggggCTO cwIEhC λρ ++=1, ,      (5.2) 

where ][IE is the expected inventory level given by: 

)1(
1

][ z
g

g

gzIE ρ
ρ

ρ
−

−
−= .       (5.3) 

The first term of Equation (5.2) is the holding cost for the finished generic 

component and the second term is the holding cost for the WIP inventory.  Since there is 

only one server in the system, the long run average number of WIP units is equal to the 

time the server is busy; i.e. ρg.  The last term represent the production cost. 



 57

Since all the products are customized at the centralized facility, Stage 2 is 

modeled as a multiple class M/M/1 system.  Orders for a type k product arrive at Stage 2 

independently with a mean rate of λk and are served according to the First Come First 

Serve rule.  The processing rates of all the products follow the same distribution and have 

a mean rate of µ .  The utilization of the server producing product type k is 

then µ
λρ k

k = .  Finally, let wk be the unit holding cost of the WIP inventory and ck be the 

unit production cost of a type k product. 

  The expected waiting time at Stage 2 for product type k, derived using a birth-

death process, is 


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The total cost at Stage 2 is 
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where the first term is the holding cost of the WIP inventory and the second term is the 

production cost.   

The total expected customer waiting time for product k under the CTO strategy is 
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The total cost for the CTO strategy can now be expressed as 
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Since the demand arrival rate for type k product is λk, the total demand of all the products 

is 

∑
=

=
N

k
kD

1

λ .         (5.8) 

The demand rate of the generic component λg is the combination of all the demands of 

the different products, i.e.  

∑
=

==
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k
kg D

1

λλ .        (5.9) 

Let S represent the total process time for both Stage 1 and Stage 2.  Since the portion of 

the total process consumed by the generic component is r, the process time at Stage 1 is 

rS and the process rate is  

rSg
1

=µ .         (5.10) 

The process time at Stage 2 is (1-r)S and the process rate is  

( )Sr−
=

1
1µ   .         (5.11) 

Combining (5.9) and (5.10) gives the utilization at Stage 1 as  

rDS
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g
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Substituting (5.9) through (5.12) into (5.6) and (5.7) gives an expected waiting time of 
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and a total cost of 
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To verify the accuracy of the approximations, we compare the expected waiting 

time calculated by (5.13) and the expected inventory of generic component calculated by 

(5.3) against the results from a simulation study.  We design an experiment by varying 

three factors (r, z and the utilization level) by three levels each, giving a total of 27 

different settings.  For each setting, we run the simulation 30 times and calculate the 

average customer waiting time and the average inventory after observing 10,000 demand 

arrivals.  The differences between the expected waiting times calculated by the 

simulation and the times calculated by (5.13) are less than 1 percent for most of the 

settings and are no more than 3.6 percent.  The differences between the expected 

inventory levels of the generic component calculated by the simulation and the levels 

calculated by (5.3) are close to zero for most of the settings and no more than 1.2 percent.  

The results of the experiment are shown in Table 4. 

Table 4: Comparison of Analytical Approximation with Simulation. 
r Utilizatio

n level z ETCTO from 
Simulation 

ETCTO from 
equation (13)

Percent 
Differences* 

E[I] from 
Simulation 

E[I] from 
equation (3) 

Percent 
Differences**

0.1 0.1 0 0.1093 0.1090 0.2752 0 0 0

0.1 0.5 0 0.8740 0.8708 0.3675 0 0 0

0.1 0.9 0 4.4254 4.3621 1.4511 0 0 0

0.5 0.1 2 0.0528 0.0528 0 1.9474 1.9475 0.0051

0.5 0.5 2 0.3480 0.3542 1.7504 1.6869 1.6875 0.0356

0.5 0.9 2 0.9491 0.9839 3.5369 1.3430 1.3475 0.3340

0.99 0.1 5 0.0010 0.0010 0 4.8900 4.8901 0.0020

0.99 0.5 5 0.0334 0.0342 2.3392 4.0471 4.0489 0.0445

0.99 0.9 5 4.5808 4.5994 0.4044 1.3997 1.4160 1.1511

0.1 0.1 5 0.0987 0.0989 0.2022 4.9899 4.9899 0

0.1 0.5 5 0.8198 0.8182 0.1956 4.9474 4.9474 0

0.1 0.9 5 4.3139 4.2632 1.1892 4.9008 4.9011 0.0061

0.5 0.1 0 0.1050 0.1053 0.2849 0 0 0

0.5 0.5 0 0.6661 0.6667 0.0900 0 0 0

0.5 0.9 0 1.6338 1.6364 0.1589 0 0 0

0.99 0.1 2 0.0021 0.0021 0 1.8911 1.8912 0.0052

0.99 0.5 2 0.2468 0.2452 0.6525 1.2608 1.2600 0.0635
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0.99 0.9 2 6.3869 6.4985 1.7173 0.3158 0.3151 0.2222

0.1 0.1 2 0.0989 0.0989 0 1.9899 1.9899 0

0.1 0.5 2 0.8242 0.8183 0.7210 1.9472 1.9475 0.0154

0.1 0.9 2 4.3187 4.2640 1.2828 1.9021 1.9019 0.0105

0.5 0.1 5 0.0525 0.0526 0.1901 4.9474 4.9474 0

0.5 0.5 5 0.3330 0.3337 0.2098 4.6696 4.6670 0.0557

0.5 0.9 5 0.8252 0.8333 0.9756 4.1960 4.1969 0.0214

0.99 0.1 0 0.1103 0.1109 0.5410 0 0 0

0.99 0.5 0 0.9782 0.9852 0.7105 0 0 0

0.99 0.9 0 8.0525 8.1834 1.5996 0 0 0
(*): Percent Differences is calculated by | ETCTO from Simulation - ETCTO from equation (13)| / ETCTO 
from equation (13) x 100 
(**): Percent Differences is calculated by | E[I] from Simulation – E[I] from equation (3)| / E[I] from 
equation (3) x 100  
 
5.1.2 The Model for the MTO strategy 
 

We now study the special case of the pure MTO strategy.  Since the MTO 

strategy only involves Stage 2 of the CTO strategy, we derive our expressions for its time 

and cost by setting r = 0 in (5.13) and (5.14).  Doing so in (5.13) gives and expected 

waiting time of  

D
S

ET kMTO

−
= 1

1
, .        (5.15) 

Setting r = 0, substituting FCTO for FMTO, and removing the cost associated with 

producing and storing the generic component in (5.14) gives a total cost of  
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where vk and bk are the unit WIP cost and the unit production cost for the kth product in 

the MTO strategy respectively. 

 

5.2 Analysis of Time and Cost 

In this section, we compare the cost and time of the MTO and CTO strategies to 

determine the conditions under which each strategy is preferred. To make a meaningful 
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comparison between the MTO and CTO strategies, we let both strategies have the same 

demand and process time distributions for all product types.  We begin by comparing the 

expected waiting times. 

Lemma 5.1: Assuming the same demand and process time distributions for any 
product, ETMTO,k ≥ ETCTO,k. 

 
All proofs are given in the Appendix. 

Lemma 5.1 shows that the CTO strategy has a shorter customer waiting time than 

that of the MTO strategy.  While this result may seem straight forward, (5.13) shows that 

the waiting time of the CTO strategy is dependent on the choice of the base-stock level, z.  

One might conjecture that a poorly chosen base-stock level may result in longer waits for 

the CTO strategy versus the MTO strategy because of excessive backorders for the 

generic component.  Nevertheless, Lemma 5.1 proves the result for any choice of the 

base-stock level.   

Next, we compare the costs between the CTO and MTO strategies.  To do so, we 

first make the following four assumptions: 

1. MTOCTO FF ≥ .  To set up the CTO strategy, a firm often needs to make additional 

investments such as designing the generic component and purchasing additional 

equipment (such as the paint mixers installed in the hardware stores). 

2. The production cost is proportional to the production time and   

maxrbcg = ,         (5.17) 

where ),max(max kbb k ∀= ,  bk is the unit production cost for a type k product in 

the MTO strategy, and cg is the unit production cost of the generic component.  

This assumption implies that the r portion of the total product production time is 
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spent at the generic component stage (Stage 1) and the generic component must 

be built to meet the highest standard in the product family. 

From (5.17), 

krbc kg ∀≥ , .        (5.18) 

In addition, since (1-r) portion of the production time is spent at Stage 2,   

ck = (1-r)bk.        (5.19)   

combining (5.18) and (5.19) gives 

kkg bcc ≥+ ,         (5.20) 

ensuring that the total unit production cost of the CTO strategy is no less than 

that of the MTO strategy.  We will revisit this assumption in Lemma 5.3.  

3. The demand and the process time distributions for both strategies are the same. 

4. The WIP has the average added value.  That is, for the MTO strategy the unit WIP 

holding cost is
2
ibv k

k = , where i is the firm’s interest rate.  Substituting the 

holding cost into (5.16) gives 
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For the CTO strategy, the unit WIP holding cost at Stage 1 is 
2

ic
w g

g =  and the 

unit WIP holding cost at Stage 2 is i
cc

w kg
k 2

2 +
= .  Substituting these costs 

into (5.14) gives 

[ ]
1

2
(1 ) .

2 2

N
g g k

CTO CTO g k g k
k

c i c c
TC F h E I rS c r S i cλ

=

+ 
= + + + + − + 

 
∑ (5.22) 



 63

Based on the four assumptions stated above, we now offer the following lemma to 

compare the cost between the CTO and MTO strategies. 

Lemma 5.2: Given assumptions 1 through 4, MTOCTO TCTC ≥ . 

Lemmas 5.1 and 5.2 show that when both strategies have the same demand and 

process time distributions and the conditions of assumptions 1-4 are met, the expected 

customer waiting time of the CTO strategy is always no worse than that of the MTO 

strategy while the total cost of the MTO strategy is always no worse than that of the CTO 

strategy.  These results help clarify the choice for a company implementing a delayed 

differentiation strategy.  For companies focusing on customer waiting times, CTO is a 

better strategy while companies focusing on cost savings may prefer a pure MTO strategy.  

Unlike in the make-to-stock environment where reducing inventory holding cost is the 

main benefit of implementing delayed differentiation, reductions in the expected 

customer waiting times is the main benefit in the make-to-order environment. 

We now take a critical look at the assumptions behind Lemma 5.2 to see if there 

are any conditions where a CTO strategy may dominate a pure MTO strategy in both 

time and cost.  In assumption 2, we state that maxrbcg = which implies that the unit cost of 

the generic component is proportional to the cost of the most expensive product offered.  

This assumption is reasonable if the generic component has to meet the quality standard 

of the most expensive product and quality is an increasing function of the production cost.  

However, replacing the individual parts with a single generic component could lead to 

economies of scale in the production of the generic component.  The example can be 

found in the automobile industry.  Despite the extra production processes needed to make 

the common platform that fits various models, automobile manufacturers such as Toyota, 
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Honda, Nissan, GM, and Ford are able to enjoy the economies of scale by adopting the 

common platform (Robinet, 2001).    In Lemma 5.3, we give conditions on the 

production cost of the generic component for which CTOMTO TCTC ≥ .  Under these 

conditions, the CTO strategy dominates the MTO strategy in both performance 

measurements. 

Lemma 5.3: Given assumptions 1, 3, 4, and ck = (1-r)bk , CTOMTO TCTC ≥  if 
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Numerical Example: 

We now give a numerical example to demonstrate the result stated in Lemma 5.3. 

First, we assume there are 3 distinct products in the product family being produced.  Let 

the demand rates for each product be λ1 = 2000, λ2 = 3000, λ3 = 4000 and the unit 

production cost be b1 = 1, b2 = 2, b3 = 4 respectively.  Also, choose z = 2, r = 0.7, S = 

1/1000, i = 0.1, FMTO = 1000, and FCTO = 1500.  Under the assumptions of Lemma 5.2, 

1.2max == rbcg .  From (5.21) and (5.22), we get TCMTO = 21000 and TCCTO = 26400.  

Thus, as shown in Lemma 5.2, TCCTO > TCMTO.  Now assume that economies of scale 

exist for the production of the generic component.  If cg can be reduced by 28.57% to less 

than 1.78 (calculated by the condition given by Lemma 5.3), TCMTO will be greater than 

TCCTO and the MTO strategy will be dominated by the CTO strategy in both time and 

cost. 

Several scenarios make the condition of the Lemma 5.3 easier to meet and hence 

the CTO strategy more beneficial.  We describe two of them below. 
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1. If the difference of the fixed cost between the CTO and the MTO strategy is small, 

the condition of Lemma 5.3 is easier to meet.  This finding can be easily verified 

by observing Lemma 5.3.  This result is consistent with Lee and Tang (1997). 

2. Smaller base-stock levels (z) make the condition of Lemma 5.3 easier to meet. 

The right hand side of the condition is decreasing in E[I].  From (5.3), 
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L .  It is easy to verify 

that E[I] is an increasing function in z.  Hence, smaller z will result in smaller 

E[I], and the condition of the Lemma 5.3 will be easier to meet. 

 

 5.3 Analysis of Degree of Delayed Differentiation (r) 

We now study how the time and cost of the CTO strategy behave with respect to 

the degree of delayed differentiation (r).  We begin with the expected waiting time.   

Lemma 5.4: ETCTO,k  is strictly convex in r. 

Since ETCTO,k  is strictly convex in r, the optimal r w.r.t. the expected waiting time  

can be obtained by solving its first order conditions. Let rt represent this global minimizer.  

Although there is no simple closed form solution for the first order condition, rt can be 

obtained by using a golden search type of algorithm on (5.13). 

To further study the behavior of rt, we numerically solve (5.13) using a golden 

search method for 10 different utilization rates (SD) and 5 different base-stock-levels (z).  

We normalize the process times (S) to 1 and vary the demand rates (D) from 0.1 to 0.99 

so that the utilization rate ranges from 0.1 to 0.99.  At each utilization rate, rt is calculated 

for 5 different base-stock levels, ranging from 1 to 5.  The results of this experiment are 

shown in Figure 20.   
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Two observations can be drawn from Figure 20.  First, rt is close to 1 when the 

utilization rate is very low, and is close to 0.5 when the utilization is very high.  This 

implies that the benefit of spreading the workload between the two stages is higher when 

utilizations are high.  Second, rt increases as the base-stock level increases.  Equation (5.1) 

shows that a higher base-stock level reduces the waiting time of Stage 1.  Hence, as the 

base-stock level increases, it is more desirable to move a higher portion of the total work 

to Stage 1 to reduce the expected waiting time. 
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Figure 20: The rt with Respect to Demand Rate and Base Stock Level. 

 
Lemma 5.4 presents a surprising result since intuitively one would expect that the 

larger the portion of the product (r) is made-to-stock, the shorter the waiting time is.  

However, our results shows that rt can be between 0 and 1.  The convexity of the 

expected waiting time is due to the queuing effect.  If r is very close to 1 or very close to 

0, the production workload is concentrated on just Stage 1 or Stage 2, and the utilization 

rate of that stage increases.  Since the expected waiting time increases exponentially with 
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the utilization rate, it is better to spread the workload between two stages rather than to 

concentrate most of it in just one of the stages. 

To study how the cost of the CTO strategy behaves with respect to r, we assume 

the fixed cost (FCTO) is a linear increasing function of r, i.e. 

rFFCTO =          (5.23)  

where F is a constant.  In other words, we assume that it becomes more expensive to 

delay the product differentiation further down the production process.  One of the reasons 

behind this assumption is that products are often over designed so that some functionality 

may be turned off if a customer is not willing to pay for it.  Building the product with the 

minimum amount of functionality needed for each product should require a smaller fixed 

cost.  Another reason is that supply chains tend to be tree like in strategy.  Thus, the 

further down the production process the differentiation takes place, the more the number 

of individual sites that will require equipment to perform the differentiation process.  

We also assume the holding cost for the generic component (hg) is equal to the 

production cost (cg) times the capital cost (i), i.e. 

ich gg = .         (5.24) 

Lemma 5.5: If FCTO = rF, ich gg = , and given assumptions 1 to 4, TCCTO is 
concave in r. 
 
For firms seeking to minimize cost, Lemma 5 shows that the best point to 

implement delayed differentiation is either r = 0, or r = 1.  Combining this result with the 

result of Lemma 5.2, if minimizing cost is the main objective, a firm should always 

choose the MTO strategy (r = 0).  On the other hand, Lemma 5.3 suggests that the cost of 

the CTO strategy may be less costly than that of the MTO strategy when the production 
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cost of the generic component can be reduced below a certain level due to economies of 

scale. 
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CHAPTER 6 
 

CONCLUSION AND FUTURE RESEARCH 
 

Component commonality is a good option for firms facing the increasing 

challenges due to product proliferation.  In Section 3, we evaluate three different 

component commonality strategies, i.e., DP, PCC, and MCC, and discuss the conditions 

under which one is preferred.  We develop two models to analyze both the constant and 

the stochastic demand scenarios.  The solution to minimizing the total inventory cost is 

presented and the managerial insights are derived from our analysis.  We find that when 

the demand is constant, the MCC strategy is never beneficial.  In addition, the PCC 

strategy is preferred when the price of the common component is low, the ordering cost is 

high, or the interest rate is high.  On the other hand, when the demand is stochastic, we 

find that the MCC strategy can be used to reduce inventory cost if the demand variation is 

high.  The PCC strategy is preferred when the price of the common component is low, the 

demand variation is high, the ordering cost is high, the lead time is long, or the interest 

rate is high.  Furthermore, we conclude that when demand variation is moderate, unit 

shortage cost is not a significant factor in the choice of component commonality 

strategies.  In the case of high demand variation, the PCC strategy is preferred when 

shortage cost is high, and the MCC strategy can be adopted for a range of moderate 

shortage cost. 

There are several opportunities to enrich our study in the future.  First, we assume 

all parts and modules are outsourced and all product design and development costs are 

excluded.  In future research, we will include these costs in our models and study the 

issues regarding the coordination between product development and component 
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commonality strategy.  Second, we assume that all components are outsourced from the 

same or similar suppliers and that the ordering costs are very similar.  Future research 

may extend our models to the multiple suppliers’ problem, where each supplier has 

different capacity; ordering cost; and quantity discount scheme, to examine the impact of 

vendor selection.  

In Section 4, we develop models representing two possible mass customization 

postponement strategies, TP and FP, and study their performance in terms of total supply 

chain cost and the expected customer waiting times.    We find that once the number of 

products increases above some threshold level, the TP strategy is preferred under both 

performance metrics.  We prove this analytically for the case of exponential arrival and 

process times and show it numerically for the general distribution case.   

For general arrival and process time situations, we use G/G/1 approximations and 

design a numerical experiment to investigate how different factors affect the performance 

and attractiveness of the TP and FP strategies.  Our experiment shows that higher arrival 

time and process time variation makes the FP strategy more favorable while increases in 

the number of products and higher interest rates make the TP strategy more favorable.   

For managers needing guidance on the allocation of resources for process 

improvement, we find that increasing the coverage of the generic component and 

reducing the number of products provide a larger impact on improving the customer 

waiting times of the FP strategy than do reductions in the variability of the arrival and 

process times.   

There are several opportunities to extend our study.  First, we use expected cost 

and expected waiting time as performance measures.  However, the variance of the cost 
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and waiting time could also be important in some business applications.  Our models can 

be extended to study these new measures.  Second, the optimal coverage of the generic 

component and the optimal number of products may be interesting to some managers.  

This will involve more detail regarding the relationship between the fixed cost and the 

amount of redesign effort required.  Third, we assume there is only one product family.  

Including multiple product families could lead to some interesting extensions including 

partial demand substitution and savings from product platforming.   Fourth, we assume a 

constant unit production cost.  In practice, high arrival and process time variation could 

increase production cost by increasing the possibility of rush orders and over time 

requirements to meet demand.  This could be an interesting extension to be addressed. 

In Section 5, we study the impact of delayed differentiation in make-to-order 

environments.  Previous research shows that in a make-to-stock environment, the main 

benefit of adopting delayed differentiation comes from savings in inventory holding cost 

due to risk pooling.  In contrast, we find that in a make-to-order environment, shorter 

expected customer waiting times provide the main benefit for implementing delayed 

differentiation.  We show that under common assumptions, the introduction of delayed 

differentiation results in shorter customer waiting times and higher cost over a pure 

make-to-order strategy.  However, we give reasonable conditions where the introduction 

of delayed differentiation results in shorter customer waiting times and lower cost, thus 

dominating a pure make-to-order strategy on both dimensions.  

We also address the choice of where in the production process a company should 

differentiate its product, i.e. in the beginning, middle or end of the process.  For 

companies seeking to minimize customer waits, we find that the expected waiting time is 
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a convex function of the point of the differentiation.  Surprisingly, the optimal (in terms 

of minimizing customer waiting times) point for differentiation in the process does not 

always occur at the end of process.  Through a numerical study, we show that the optimal 

point occurs earlier in the process with increases in the utilization rate and decreases in 

the stocking level of the generic component.   

There are several opportunities to extend our study.  First, we assume our cost 

parameters are linear increasing in the percentage of the process that differentiation 

occurs.  In some cases, however, these costs may increase nonlinearly.  For example, 

there may be diminishing returns on the investment required for designing the generic 

component such that differentiation may occur further down the production process.  

Second, we separate time and cost as two performance measurements.  A firm looking to 

globally optimize the point of differentiation in their product may do so by assigning a 

cost to the customer waiting time, thus consolidating the two performance measurements.   
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APPENDIX 

Lemma 5.1: Assuming the same demand and process time distributions for any product, 
ETMTO,k ≥ ETCTO,k. 

 

Proof: 

From Equations (5.13) and (5.15), let  
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−
−

−
=−=∆ 1

1
11

1
,,  

where, q = (1-r).  This can be expanded to 

)1)(1)(1(
)1)(1()1)(1()()1)(1(

qSDrSDSD
rSDSDqSqSDSDrDSrSqSDrSDST

z

−−−
−−−−−−−−

=∆  

let 
g
fT =∆          (5.25) 

and let us focus on the denominator, g first.  Since SD < 1 (total demand rate is less 

than the total process rate), (1-SD)> 0.  Furthermore, since both r and q are less than 1, 

both (1-rSD) and (1-qSD) are greater than 0.  Hence;  

g > 0          (5.26) 

For the numerator f, 

)1)(1()1)(1()()1)(1( rSDSDqSqSDSDrDSrSqSDrSDSf z −−−−−−−−=  

Because (rDS)z ≤ 1, 

)1)(1()1)(1()1)(1( rSDSDqSqSDSDrSqSDrSDSf −−−−−−−−≥  

if qr ≥  

)1)(1()1)(1()1)(1( rSDSDqSqSDSDrSqSDrSDSf −−−−−−−−≥  

)1)(1()1)(1()1)(1( qSDSDqSqSDSDrSqSDrSDS −−−−−−−−≥  
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))(1)(1()1)(1( qSrSqSDSDqSDrSDS +−−−−−=  

SqSDSDqSDrSDS )1)(1()1)(1( −−−−−=  

)11)(1( SDrSDqSDS +−−−=  

0)1()1( ≥−−= rSDqSDS       (5.27) 

Therefore, f ≥ 0 when qr ≥         

If rq ≥ , 

)1)(1()1)(1()1)(1( rSDSDqSqSDSDrSqSDrSDSf −−−−−−−−≥  

)1)(1()1)(1()1)(1( rSDSDqSrSDSDrSqSDrSDS −−−−−−−−≥  

))(1)(1()1)(1( qSrSrSDSDqSDrSDS +−−−−−=  
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0)1()1( ≥−−= qSDrSDS       (5.28) 

Therefore, f ≥ 0 when rq >         

From Equations (5.25) to (5.28), we get 0≥∆T ; hence ETMTO,k ≥ ETCTO,k.  ■ 

 

Lemma 5.2: Given assumptions 1through 4, MTOCTO TCTC ≥ . 

Proof: 

Let MTOCTO TCTCC −=∆ .  From Equations (5.21) and (5.22), 

( ) [ ] Η++−=∆ ∑
=
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k
kgMTOCTO IEhFFC
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λ      (5.29) 

where 
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From Equation (5.20), we get ( ) 0≥−+ kkg bcc , and  
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From Equation (5.18), krbc kg ∀≥ , , we get 
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2
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( )( ) 0)1(
2
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since both )1( r−  and ( )kkg bcc −+  are greater than or equal to zero. 

Since 0≥Η , and MTOCTO FF ≥ , Equation (5.29) shows that 0≥∆C .  Therefore 

MTOCTO TCTC ≥  and the cost of the CTO strategy is no less than that of the MTO 

strategy.■ 
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Lemma 5.3: Given assumptions 1,3, 4, and ck = (1-r)bk, CTOMTO TCTC ≥  if 
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From Equation (5.21) 
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[ ]

1

2
(1 ) .

2 2

CTO CTO g

N
g g k

k g k
k

TC F h E I

c i c c
rS c r S i cλ

=

= +

+ 
+ + + − + 

 
∑

 

[ ] ( ) ( )∑∑
== 














 +

−
+















 −++++=

N

k
kk

N

k
gkgCTO

SircSirrSicIEhF
11

1
2

111
2

λλ  

[ ] ( ) ( ) ( )( ){ }∑
=

+−−+−++++=
N

k
kkggCTO SirbrrSiSirSiDcIEhF

1

115.0115.0 λ  

[ ] ( ) ( ) ( )( ){ }∑
=

−+−+−+++=
N

k
kkggCTO rSirbrSiSiDcIEhF

1

2 115.05.01 λ  

Let 

( ) [ ] ( ) ( ) ( )( ){ }∑
=

−−−−++−+−−−=

−=∆
N

k
kkggCTOMTO

CTOMTO

rSirSibrSiSiDcIEhFF

TCTCTC

1

2 115.015.05.01 λ

 ( ) [ ] ( ) ( )( )( ){ }∑
=

+−−+−+−−−=
N

k
kkggCTOMTO rrSibrSiSiDcIEhFF

1

2115.05.01 λ  

 
We get 

( ) ( ) [ ] ( )( )( ){ }







+−−+−−

−+
≤

≥

∑
=

N

k
kkgCTOMTOg

CTOMTO

rrSibIEhFF
rSiSiD

c

TCTC

1

2115.0
5.01

11 λ
 

 
Lemma 5.3 is proved.■ 
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Lemma 5.4: ETCTO,k  is strictly convex in r. 

Proof: 

From Equation (5.13), 
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Hence, ETCTO,k  is strictly convex in r.  ■ 

 

Lemma 5.5: If FCTO = rF, ich gg = , and given assumptions 1 to 4, TCCTO is concave in r. 

Proof: 

From Equation (5.22) 

[ ] ∑
=









+

+
−++++=

N

k
k

kg
g

g
kgCTOCTO ci

cc
Src

ic
rSIEhFrTC

1 2
2

)1(
2

)( λ  

Let CTOFf =1 , [ ]IEhf g=2 , and     



 78

∑
=









+

+
−++=

N

k
k

kg
g

g
k ci

cc
Src

ic
rSf

1
3 2

2
)1(

2
λ .    (5.32) 

From Equation (5.23), f1 is a linear (and concave) function in r.   

Substituting Equation (5.24) into Equation (5.3) gives  
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Substituting Equation (5.17) into Equation (5.33) gives 
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For f3, substituting Equation (5.17) and (5.19) into Equation (5.32) gives 
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Therefore, f3 is concave in r. 

 Because f1, f1, and f3 are concave, TCCTO = f1+f2+f3 is concave in r.  ■ 
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