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SUMMARY 

T h e r e s e a r c h d e s c r i b e d h e r e i n i s a n a t t e m p t t o e s t a b l i s h a 

m e c h a n i s m f o r n o n a c t i v a t e d b i m o l e c u l a r a r o m a t i c n u c l e o p h i l i c s u b s t i t u ­

t i o n . A n u m b e r o f m e t h o d s w e r e u s e d f o r t h i s p u r p o s e . 

T h e r e a c t i o n o f f l u o r o b e n z e n e w i t h p i p e r i d i n e i n t r i e t h y l e n e 

g l y c o l a t 19^- t o 2kO°C f o l l o w s s e c o n d o r d e r k i n e t i c s . T h e r a t e c o n s t a n t 

w a s f o u n d t o d e c r e a s e a s t h e p i p e r i d i n e c o n c e n t r a t i o n i s i n c r e a s e d . 

T h e d e c r e a s e i n t h e r a t e c o n s t a n t w a s r a t i o n a l i z e d i n t e r m s o f a d i e l e c ­

t r i c c o n s t a n t e f f e c t . T h e s e r e a c t i o n s w e r e b e l i e v e d t o p r o c e e d b y a 

d i r e c t d i s p l a c e m e n t r e a c t i o n s i n c e p r o d u c t s t u d i e s g i v e n o e v i d e n c e o f 

r e a r r a n g e d p r o d u c t s . 

A H a m r n e t t p l o t w a s o b t a i n e d f r o m t h e r e a c t i o n s o f m - a n d p - s u b -

s t i t u t e d f l u o r o b e n z e n e s w i t h p i p e r i d i n e i n t r i e t h y l e n e g l y c o l a t 1 9 ^ « 5 ° C . 

T h e p l o t w a s l i n e a r w i t h a r h o v a l u e o f + k»k2 a n d a c o r r e l a t i o n c o ­

e f f i c i e n t o f 0 .995. T h e s u b s t i t u e n t s u s e d w e r e p_-N02, m-N0 s, m - C F 3 , 

m - C l , p _ - C l , m - B r , p _ - B r , m - I , p _ - I , m - F , p _ - F , m - O H , H , m - C I f e , £ - C H ^ ' . T h e 

r a t e c o n s t a n t a t 1 9 ^ » 5 °C f o r t h e p _ - n i t r o s u b s t i t u e n t w a s o b t a i n e d b y e x ­

t r a p o l a t i o n u s i n g e n e r g y o f a c t i v a t i o n d a t a . A l i n e a r H a m r n e t t p l o t 

i m p l i e s t h a t a l l t h e c o m p o u n d s r e a c t b y t h e s a m e m e c h a n i s m . S i n c e 

p _ - n i t r o - f l u o r o b e n z e n e h a s b e e n p o s t u l a t e d a s p r o c e e d i n g t h r o u g h a n i n t e r ­

m e d i a t e c o m p l e x m e c h a n i s m , t h e c o n c l u s i o n w a s t h a t i t a p p e a r e d a l l t h e 

r e a c t a n t s p r o c e e d b y a n i n t e r m e d i a t e c o m p l e x m e c h a n i s m * 

A n o t h e r m e t h o d w h i c h w a s u s e d f o r d e t e r m i n i n g m e c h a n i s m w a s t h e 

h a l o g e n o r d e r w h i c h i s t h e r a t e o f r e a c t i o n o f t h e d i f f e r e n t h a l o b e n z e n e s . 



The rates of reaction of the four unsubstituted halobenzenes were obtained 

along with activation data. By comparing the halogen order of activated 

and non-activated halobenzenes at 100°C, it was found in both cases that 

F > Cl. Br. and I. Since activated cases go through an intermediate com­

plex mechanism, and the same order F > Cl was found in nonactivated cases, 

the conclusion was that both cases go through an intermediate complex 

mechanism instead of a concerted S.̂ 2 type displacement. At 200°C the 

order I > Br » Cl was found. For these three halogens there were two 

conclusions. In an intermediate complex mechanism the order I > Br > Cl 

may be explained by a polarizability factor which is more effective 

I > Br > Cl. In terms of an S^2 concerted type displacement, this is 

the order if bond breaking were important. Therefore, the conclusion 

that fluorobenzene goes by an intermediate complex mechanism may not 

necessarily be extended to the other halogens. 

Bunnett used the element effect as a criterion for mechanism. 

This approach was also attempted in this work. If a number of leaving 

groups have approximately the same rate, then bond breaking is unimportant 

and the intermediate complex mechanism is indicated. Besides the halogens 

as leaving groups, an attempt was made to study the leaving ability of 

-HNCgHg, -0C6Hs, - N 0 3 > -S02C6Hs, and -SCeHg where these groups were 

attached to benzene. These compounds, excluding the halobenzenes, failed 

to give proper rate data because of no reaction, tar formation, or re­

action on sulfur. Therefore, the element effect could not be used. 

Another method which failed was an attempt to show base catalysis 

(which implies an intermediate complex mechanism) in the reaction of 

fluorobenzene with piperidine in triethylene glycol. Due to a 
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complicating solvent effect and the inability to obtain accurate enough 

rate constants at 195°C, the point of base catalysis is still unclarified. 

The last method was an attempt to trap the intermediate complex 

in the reaction of fluorobenzene -with piperidine. The intermediate com­

plex may be looked upon as a carbanion, and if the reaction of fluoro­

benzene with piperidine in triethylene glycol goes through an inter­

mediate complex, the carbanion should undergo proton exchange on the 

ring. The results showed that the reaction of p_-deuterio-fluorobenzene 

with piperidine in triethylene glycol at 225°C gave no exchange on the 

starting material and about six per cent on the product which was con­

cluded as occurring on the IC. With m-deuterio-fluorobenzene no exchange 

occurred on the reactant or product. 

Also, pentafluorobenzene reacted with sodium thiophenoxide in 

methanol-O-d at -30°C without exchange in the recovered product. Pre­

vious work has shown that reaction occurs greater than 90 per cent para 

to the hydrogen in pentafluorobenzene with various nucleophiles. If 

proton transfers to carbanions are diffusion controlled in this system 

these results are difficult to interpret. Since fluorobenzene showed 

deuterium exchange on the intermediate complex, it would appear that the 

activated pentafluorobenzene should also show deuterium exchange on the 

IC 

From the research presented the mechanism of activated and non-

activated aromatic nucleophilic substitution was indicated to be similar 

and to involve the intermediate complex mechanism. 



CHAPTER I 

HISTORICAL BACKGROUND 

Introduction 

Aromatic nucleophilic substitution emerged as an important area 

of physical organic chemistry with the publication of reviews by Bunnett 

(l) and Miller (2) in the early nineteen-fifties- Since then there 

have been a prolific number of publications- most of them in the area 

of activated nucleophilic substitution. Only a small per cent of the 

papers deal with nonactivated bimolecular aromatic nucleophilic substi­

tution- which may be defined as nucleophilic aromatic displacement on 

compounds having no substituent with a meta or para sigma value (<j) 

greater than 0.70. The value 0.70 allows one to omit most of the work 

in the activated case, especially with nitro substituted compounds. 

This definition is not a rigid one. For example, 3>5-bis-(trifluoro-

methyl)-chlorobenzene contains no substituent whose sigma value is 

greater than 0.70. But for displacement of chlorine the combined effect 

of two trifluoromethyl groups gives a sigma value 0.86. This compound 

is still considered in the nonactivated case. Table 1 organizes a 

number of substituents into four groups: activating, intermediate acti­

vating, halogens, and deactivating. Certain substituents in Table 1 can 

overlap two groups, yet these four classes provide a convenient basis 

for discussion. For example, although a m-C0CH3 has the same signa 

value as m-Cl, the P - C O C H 3 is a strongly activating substituent, whose 
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true effect in terms of a is + 0 „ 8 7 ^ - ' 

Table 1. Classification of Substituents 

Activating Intermediate Halogens Deactivating 
(cr > 0 , 7 0 ) Activating 

N 0 3 CN - F NHg 

NO C 0 2 H Cl p_-0H 

CCb Br o~ 
N(CHa )a C 0 2 C H 3 I alkyl 

S 0 2 C F 3 CHO H 

S 0 2 C H 3 COCsHg 

S 0 2C 6Hs S 0 C H 3 

S(CH3)2 SOCsHg 

SOgNHg 

so; 
m-OH 

Although the nonactivated case has received less attention, this 

area is important industrially. For example, phenol has been made by the 

hydrolysis of chlorobenzene or benzenesulfonic acid. Aniline is produced 

commercially by ammonolysis of chlorobenzene at 200°C. 

Therefore, this historical review emphasizes nonactivated bimole-

cular aromatic nucleophilic substitution. Copper catalyzed reactions 

are deleted. Other areas not included are activated nucleophilic substi­

tution, reviewed by Bunnett, (l, 3) Miller (2), Sauer (k), and Ross (5); 

photonucleophilic displacement, reviewed by Pietra (6); heteroaromatic 
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s u b s t i t u t i o n , r e v i e w e d b y I l l u m i n a t i (7) a n d S h e p h e r d (8); a n d b e n z y n e 

r e a c t i o n s , r e v i e w e d b y K a u f f m a n (9)« P e n t a h a l o b e n z e n e s , h e x a h a l o b e n -

z e n e s , a n d o t h e r p e r h a l o a r o m a t i c s a r e c o n s i d e r e d p a r t o f t h e a c t i v a t e d 

c a s e a n d a r e n o t d i s c u s s e d (10). 

N o n r e a r r a n g i n g R e a c t i o n s 

N u c l e o p h i l e s 

A m i n e s a n d A m i d e s . P i p e r i d i n e i s f r e q u e n t l y u s e d a s a n u c l e o p h i l e 

n o t o n l y b e c a u s e o f i t s h i g h n u c l e o p h i l i c i t y , b u t a l s o b e c a u s e o f i t s 

a b i l i t y t o s e r v e a s a s o l v e n t . T r o n o v ( l l ) e a r l y r e c o g n i z e d t h e u s e -

fullness of piperidine in a study of the relative rates of halobenzenes 

w i t h p i p e r i d i n e a t 210°C. B e r l i n e r (12) r e p e a t e d s o m e o f T r o n o v ' s w o r k 

a n d e x t e n d e d t h e s t u d y t o h a l o n a p h t h a l e n e s ( T a b l e 2). I n n a p h t h a l e n e s 

t h e a p o s i t i o n s h o u l d b e m o r e r e a c t i v e t h a n t h e y e t w i t h p i p e r i d i n e 

t h e £ i s o m e r o f t h e h a l o n a p h t h a l e n e s ( r e a c t i o n s o f f l u o r o n a p h t h a l e n e s 

w i t h p i p e r i d i n e h a v e n o t b e e n d e t e r m i n e d ) i s m o r e r e a c t i v e . P e t r e n k o -

K r i t s c h e n k o (13) f o u n d t h i s e a r l i e r i n t h e r e a c t i o n o f a a n d |3 c h l o r o -

n a p h t h a l e n e s w i t h p i p e r i d i n e . B e r l i n e r e x p l a i n e d t h e i n c r e a s e d r e a c t i v i t y 

o f t h e $_ i s o m e r a s a r e s u l t o f t h e h i g h t e m p e r a t u r e s u s e d . T h e c o m b i n a ­

t i o n o f t h e e n e r g y o f a c t i v a t i o n a n d p r e - e x p o n e n t i a l f a c t o r c a u s e s a r e ­

v e r s a l o f t h e r a t e s o f t h e a a n d § i s o m e r s a t a l o w e r t e m p e r a t u r e . H o w ­

e v e r , t h i s c a n n o t b e , s i n c e A m s t u t z (ih) f o u n d B e r l i n e r ' s v a l u e s f o r t h e 

a c t i v a t i o n e n e r g y a n d p r e - e x p o n e n t i a l f a c t o r t o b e i n e r r o r f o r t h e b r o -

m o n a p h t h a l e n e s ( T a b l e 3)- T h e v a l u e s f o r t h e a c t i v a t i o n e n e r g y a n d 

e n t r o p y o f a c t i v a t i o n a r e n o t s o d i f f e r e n t t o c a u s e a r e v e r s a l o f r a t e s 

a t a l o w e r t e m p e r a t u r e . A m s t u t z s u g g e s t e d t h a t t h e p e r i - C H c a u s e s a 



k-

T a b l e 2. R e a c t i o n o f H a l o b e n z e n e s a n d H a l o n a p h t h a l e n e s w i t h P i p e r i d i n e 
a t 1 6 5 ° C (12) 

S u b s t r a t e k x 1 0 4 ( h r " 1 ) 
A c t i v a t i o n 
E n e r g y ( k c a l / m o l e ) 

P r e - e x p o n e n t i a l 
F a c t o r ( l o g pz) 

I - I - C 1 0 H 7 1 7 . 1 23-1 ± 0.95 8.76 ± 0.^5 

2 - I - C l 0 H 7 2 1 . 1 2k.6 ± 0.9.5 9.60 ± 0.^5 

l - B r - C i o H ; 8.56 2k.'9 ± 0.7 9.36 ± 0.35 

2 - B r - C 1 0 H 7 lk.9 27-6 ± 0.7 10.95 ± 0.35 

1 — CI-C^QHIJ! l.kQ 

2 —Cl - C ^ Q H»7 1.86 

C e H g l 9-h 23.6 ± 1.0 8.75 ± 0.5 

C s H g B r 5.2 

C 6 H g C l 0.62 

T a b l e 3- A c t i v a t i o n D a t a f o r B r o m o n a p h t h a l e n e s w i t h P i p e r i d i n e (ik) 

C o m p o u n d A m s t u t z B e r l i n e r 

A E ^ A S ^ A E ^ A S ^ 

1 - B r o m o n a p h t h a l e n e 25-0 ± 0.8 -39-8 2U.9 ± 0 . 7 -39-7 

2 - B r o m o n a p h t h a l e n e 2^.9 ± 1 . 0 -39-0 27-6 ± 0 . 7 - 3 2 . k 
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s t e r i c h i n d r a n c e i n t h e a i s o m e r , w h i c h c o u l d i n c r e a s e t h e e n e r g y o f 

a c t i v a t i o n a n d e n t r o p y o f a c t i v a t i o n i n t h e a c t i v a t e d c o m p l e x s u c h t h a t 

t h e v a l u e s f o r t h e <x a n d . £ i s o m e r s b e c o m e t h e s a m e . C h a r a c t e r i s t i c o f 

t h e s e n o n a c t i v a t e d c o m p o u n d s i s a h i g h e n e r g y o f a c t i v a t i o n , 20 t o 30 

k i l o c a l o r i e s , a n d a v e r y n e g a t i v e e n t r o p y o f a c t i v a t i o n . . 

A m s t u t z (15) u s e d p i p e r i d i n e a s t h e n u c l e o p h i l e t o s t u d y t h e 

e f f e c t o f t h e s u b s t r a t e o n r e a c t i v i t y ( T a b l e k)• T h e a a n d £ p o s i t i o n s 

i n h a l o n a p h t h a l e n e s a n d h a l o a n t h r a c e n e s h a v e s i m i l a r r e a c t i v i t i e s . T h e 

a c t i v a t i o n e n e r g y d e c r e a s e s b u t o n l y t o a s l i g h t e x t e n t i n t h e s e r i e s 

c h l o r o b e n z e n e , 1 - c h l o r o n a p h t h a l e n e , a n d 1 - c h l o r o a n t h r a c e n e , w h i l e t h e 

r a t e i n c r e a s e s i n d i c a t i n g t h a t t h e a d d e d a r o m a t i c r i n g s e x h i b i t e s s e n ­

t i a l l y a n i n d u c t i v e e f f e c t . A m s t u t z ' s w o r k a d d e d m u c h t o t h e q u a l i t a ­

t i v e w o r k b y L e l l m a n (16) o n d i f f e r e n t n o n a c t i v a t e d a r o m a t i c b r o m i n e 

c o m p o u n d s . » 

A m s t u t z (17) a l s o p u b l i s h e d r e a c t i v i t y d a t a o f p i p e r d i n e w i t h 

h a l o f u r a n s ( T a b l e 5)« H a l o f u r a n s a r e v e r y u n r e a c t i v e t o w a r d n u c l e o p h i l i c 

d i s p l a c e m e n t , y e t a b o u t t e n t i m e s m o r e r e a c t i v e t h a n h a l o b e n z e n e s , w h i l e 

h a v i n g l o w e r a c t i v a t i o n e n e r g i e s t h a n h a l o b e n z e n e s . N o t e t h a t i t i s 

t h e e n t r o p y o f a c t i v a t i o n w h i c h d e t e r m i n e s t h e t e n f o l d d i f f e r e n c e i n 

t h e r a t e s o f c h l o r o f u r a n a n d b r o m o f u r a n . 

B a d g e r ( l8) a t t e m p t e d t o i n c l u d e b o t h a c t i v a t i n g a n d n o n a c t i v a t -

i n g s u b s t i t u e n t s i n a s t u d y o f p a r a s u b s t i t u t e d c h l o r o b e n z e n e s w i t h 

p i p e r i d i n e i n b e n z e n e u n d e r r e f l u x c o n d i t i o n s . T h e f o l l o w i n g g i v e s t h e 

s u b s t i t u e n t a n d p e r c e n t o f c h l o r i d e l i b e r a t e d : n i t r o , 1 2 . 9 ; c y a n o , 5 .0; 

a z o b e n z e n e , 1 . 7 9 ; h y d r o g e n , 1 .29 ; a n d a m i n o , 1 . 2 3 ' S i n c e a n u m b e r o f 

a u t h o r s h a v e n o t e d t h e u n r e a c t i v i t y o f c h l o r o b e n z e n e , e v e n a t t e m p e r a t u r e s 
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T a b l e 1+. E f f e c t o f t h e S u b s t r a t e o n R e a c t i v i t y w i t h P i p e r i d i n e a t 
200°C (15) 

S u b s t r a t e k ( h r _ 1 ) A E ^ ( k c a l / m o l e ) l o g p Z 

C h l o r o b e n z e n e 0.00022 26.8 + 1.1+ 7 - 7 1 

1 - C h l o r o n a p h t h a l e n e O.OOO87 2 5 . ^ + 1.0 7-71+ 

2 - C h l o r o n a p h t h a l e n e 0.0011 23 .1 + 0.5 6.67 

1 - C h l o r o a n t h r a c e n e O.OOO7I+ 23.8 + 1.7 6.85 

2 - C h l o r o a n t h r a c e n e 0.00187 - 26.5 + 2.0 8.1+8 

9 - C h l o r o a n t h r a c e n e 0.0155 20.1 + 1 . 1 ^•73 . 

B r o m o b e n z e n e O.OO38 . 2h.l + 0.1+ 7-73 

1 - B r o m o n a p h t h a l e n e 0.0059 25.0 + 0-35 8.21 

2 - B r o m o n a p h t h a l e n e 0.0105 25.0 + 0.81+ 8.52 

9 - B r o m o a n t h r a c e n e 0.063 . 16 .0 + 0.6 6.36 

T a b l e 5* R e a c t i v i t y D a t a f o r t h e R e a c t i o n o f P i p e r i d i n e w i t h H a l o f u r a n s 
a t 200°C (17) 

C o m p o u n d k f h r " 1 ) A E ^ ( k c a l / m o l e ) A S ^ ( e . u . ) 

2 - C h l o r o f u r a n 0.0025 21 .89 ± O . 3 6 -1+2.1 ± 1-5 

2 - B r o m o f u r a n 0.0230 21 .69 ± O . 3 3 -39-1 ± 1 - 3 

2 - I o d o f u r a n 0.050 23-6 -18 .8 ± 1 . 2 

5 - M e t h y l - 2 -
i o d o f u r a n 0.021 26.6 ± 0.75 -29-1 ± 2.1+ 
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greater than 200°C, Badger's data for chlorobenzene and p_-chloroaniline 

is subject to doubt and may refer only to the residual chloride in the 

blank titration. A similar study by Bunnett (19) bears this out. 

Piperidine reacted with p_-chlorobenzophenone and p_-chlorobenzotrifluoride 

only S.h per cent and 1.2 per cent in three and a half days at 99° c in 

benzene. Although these two compounds are much more activated than 

chlorobenzene, they are still somewhat unreactive. 

Aqueous ammonia reacts with nonactivated compounds at elevated 

temperatures. Chlorobenzene treated with aqueous ammonia at 300°C pro­

duces 30 per cent aniline, along with some phenol and phenyl ether (20). 

Shein (21, 22, 23) studied the ammonolysis of substituted chlorobenzenes 

at 250 to 300°C (Table 6) . Shein (23) also investigated the kinetics of 

the reaction of 1,2,k,5-tetrachlorobenzene with ammonia. At temperatures 

below 250°C only one chlorine is replaced, but at a rate 10 5 times that 

of chlorobenzene. Since there is only a difference of four kilocalories 

in their activation energies, the difference in rates is due to the pre-

exponential factor. 

Hydrazine was used as a nucleophile with the different tetraflu-

orobenzenes at 90-130°C (2k). 

Although aminations with potassium amide of haloaromatics usually 

proceed through benzyne intermediates, some react by direct nucleophilic, 

displacement.1 Bergstrom (25) showed that 1- and 2-fluoronaphthalenes 

with potassium amide produced only the corresponding amines. Phenyl 

trimethylammonium bromide reacted with potassium amide in liquid ammonia 

to give 95•8 per cent substitution at the Cx carbon in the aniline pro­

duced. Sodium hydrazide or sodium methylhydrazide reacts in ether or 
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Table 6.. Reaction of Substituted Chlorobenzenes with Aqueous Ammonia 
at 270°C (21-23) 

Substituent k(M~1min"1) AE^(kcal/mole) log A 

2,U-di-CF3 • k.8 x 10~ 3 29-5 

U-CHaSOg 1.9 x 10" 3 25.5 

2,5-di-CF3 1.0 x 10" 3 21.6 

2,k,5~trichloro 1.05 x 10~ 4 * 31.0 9.1 

U-SOgNRg 5«9 x 10" 4 22.9 6.3 

^-CF3 6.5 x 10~ 5 27.8 

2-CF3 5-1 x 10" 5 2^.3 

H .k. 5 x 10" 9 3^-7 5.6 

•̂ statistically corrected 

benzene at 30-35°C with p_-fluorotoluene by direct displacement, whereas 

sodium dimethylhydrazide reacts only through a benzyne intermediate (27 )• 

Sodium hydrazide also reacts with 2-chloronaphthalene without rearrange­

ment (28). 

A number of examples of direct substitution by sodium piperidide 

and sodium diethyl amide are known (Table R J ) . These reagent have a 

greater nucleophilicity compared to potassium amide. It would be of 

interest to study the relative rates of reactivity of halobenzenes with 

amides by direct displacement, but in the cases studied only fluorobenzene 

allowed direct displacement. 



Table 7* Reactions of Amides with Substituted Benzenes and Naphthalenes by Direct Displacement 

Compound Amine Solvent Base Temperature °C Reference 

(E-CUaCelOaS piperidine piperidine NaNHg reflux 29 

p _ - C H 3 C 6 H 4 S 0 2 C H 3 piperidine piperidine NaNHg reflux 30 

( p _ - C H 3 C 6 H 4 ) 3 S 0 2 piperidine piperidine NaNHg reflux 29 

C 6 H 5 S O 3 C 6 H 4 CH 3 -p_ piperidine piperidine NaNHg reflux 29 

1 - F - C 1 0 H 7 piperidine piperidine NaNHg reflux 31 

1-and 2 - C H - S 0 - < " ! - -H~ piperidine piperidine NaNHg reflux 31 

2_S0g H-C^QHJI piperidine piperidine NaNHg reflux 32 

2-and ^-F-CgR^OCHa piperidine HMPT-THF NaNHg 50 33 

2-and U-F-CgHiCHa piperidine HMPT-THF NaNHg 33 

2-and U-F-CgHiOCHa diethylamide HMPT-THF NaNHg 33 

2-and .^-F-CgH^CHa diethylamine HMPT-THF NaNHg 33 

1-and 2-F-C 1 0H 7 piperidine ether Li piperidide 30-35 

2—Cl—1—CH3 "C^^Hg piperidine ether Li piperidide 28 
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Alkoxides. The most often used nucleophilic reagents are the 

alkoxides. The different studies are summarized in Table 8 and are 

discussed later* Alkoxides in protic solvents react with nonactivated 

haloaromatics without rearrangement (6 l ) . However, Shein (39) has 

pointed out that it is important to use glass ampoules instead of steel 

autoclaves, since iron catalyzes not only rearrangement but also reduc­

tion of the halogen compound. Even in glass ampoules Shein found one 

per cent m-chlorophenol from the reaction of p-dichlorobenzene with 

sodium methoxide in methanol at temperatures greater than 230°C. 

Sodium Hydroxide and Sodium Cyanide Fusions. Fusions have a number 

of applications to synthesis, with the early work reviewed by Suter (63)« 

Unfortunately, few mechanistic studies are available. The extent of direct 

displacement involved in alkali fusion of sulfanilic acid to produce 

p-phenolsulfonic acid is unknown (6U). The same is true of alkaline 

fusion of benzenearsonic acid (65)* The alkaline fusion of benzenesul-

fonic acid has been known since the work of Wurtz (66) and Kekule (67 

yet the mechanism was only recently established as a direct displacement 

reaction (68). The benzyne mechanism was eliminated by using benzene-

sulfonic acid-l- 1 4C and finding 97 per cent activity in the C^. carbon of 

the resulting phenol. Fusion of p_-toluene sulfonic acid produced only 

p-cresol. Fusion of mesitylene sulfonic acid allowed a 30 per cent yield 

of mesitylenol, although, both ortho positions are blocked so that the 

benzyne mechanism cannot occur. The oxygen migration mechanism, involv­

ing initial hydroxyl attack on sulphur with subsequent migration of one 

of the sulfur oxygens, was also eliminated. When l 8 0 enriched potassium 

hydroxide was used, the l 8 0 activities of the resulting phenol and K l 80H 



Table 8. Reac t ions o f A lkox ides w i th Haloaromatics 

Compound Base So lven t S u b s t i t u e n t s (X) References 

CgHgX NaOCH3 CHg OH F , C l , B r , I 1 1 , 3 6 , 3 7 , 3 8 , 3 9 , 
1 + 0 , 1 + 1 , 1 + 2 , 1 + 3 , M+, 
^ 5 , ^ 6 

p - X - C e R ^ C l NaOCHs CBQOE Cl ,NHg, C H 3 , 0 ~ , COg", F , Br , C F 3 3 6 , 1 + 7 , 1 + 6 , 1 + 8 , 1 + 9 , 
5 0 , 5 1 , 5 2 

p - X - C g ^ C l NaOCH3 CHaOH. • HgO NOg^SO^SO^COg" 5 3 

p - X - C 6 H 4 C l NaOCHg C H 3 CH3CHgOH C 1 , F , C F 3 5 ^ 

m - X - C g l ^ C l NaOCHs CHa OH N 0 2 , C F 3 , C 1 , OjNHg 3 6 , 1 + 6 , 1 + 8 , 5 0 , 5 1 , 
y •— 

m - X - C g l ^ C l NaOCHg C H 3 CH 3 CHg OH C1,F,~CF 3 5 ^ 

o - X - C g l ^ C l NaOCH 3 CH 30H N 0 2 , C F 3 , COg", C l , 0 " , C H 3 , N H g 3 6 , U 7 , i + 8 , 5 0 , 5 1 , 
5 2 , 5 5 , 5 6 

o - X - C g l ^ C l NaOCHg CH 3 CHa CHg OH C1 ,F 5 ^ 

p-X-CgH^Br NaOCH3 CH 3 0H NOg, Br , C H 3 , NH 2 , OCHa, O - 3 6 , 3 8 , 5 0 

p - X - C 6 H 4 B r NaOCHg CH 3 CHa CHg OH C0C 6 H5,C0CH 3 5 7 , 5 8 

m-X-C 6 H4 NaOCH3 CH3 0H Br, COg" 3 6 , 3 8 

o - X - C 6 H 4 B r NaOCHg CH 30H B r , C H 3 , 0 C H 3 3 6 , 3 8 , 5 0 

o-X-CgH^Br NaOCHg CHg CH3CHgOH C0C 6 H5,C0CH 3 5 8 

m-and p - X - C 6 H 4 F NaOCHg CHg CH3CHgOH C F 3 5 ^ 



Table 8. Reactions of Alkoxides with Holodromatics (Continued) 

Compound Base Solvent Substituents (X) References 

2,U-di-Cl-l-X-C6B3 N a 0 C H 3 CHgOH ' CF 3 ,N0,CHC 

I,Cl,Br,F, 

,S0 3~,COC 6 

CN,CHg,0" 

H 5 , 

, N H 3 

3 6 , 5 2 , 5 5 , 5 9 

2,5-di-Cl-l-X-C 6H 3 NaOCH3 C H 3 0 H C F 3 , S 0 3 , F , CI, Br, I, C 0 ~ , NHg, CH 3, 0 " , S" 3 6 , U 9 , 5 5 

3,U-di-Cl-l-X-C6Ha NaOCH3 C H 3 0 H C N , N 0 , C 0 C 6 

CO^O^NHg 

HsF,Cl,Br , I , C H 3 , 6 0 

3,5-di-X-C 6H 3Br NaOCH3 CH 3 OH Br 3 6 

^.5-di-X-C«H.»Cl NaOCH3 CH 3 0 H CI 5 2 

2,4-di-X-C 6H 3Cl NaOCH3 CH 3 OH* Hg 0 S0a,CC£ 5 3 

2,U ,6-tri-X-C 6H 2Cl 
NaOCH3 CH 3 0 H CF 3 5 5 

1 , 2 , k,5-tetrachlo-
robenzene 

NaOCH3 CH 3 0 H 3 6 

tetrafluoroben-
zenes 

NaOCH3 C H 3 0 H 2k 

1-and 2 - X - C 1 0 H 7 NaOCH3 CH 3 0 H CI 6 1 

2-X-C 6H 4CH 3 K-t-BuO DMSO F 6 2 



13 

were .the same. The alkaline fusion of benzenesulfinic gives only benzene 

(69)-

The mechanism of alkaline fusion of diphenyisulfone (70) is not 

definitely established; however, evidence indicates that attack occurs 

both on sulfur and carbon and not by a benzyne mechanism. Both benzene-

sulfonic acid (71) and benzenesulfinic acid (72) have been isolated from 

this reaction. 

A more complex situation exists in the alkaline fusion of halo-

diphenylsulfones and halobenzenesulfonic acids (72). In halodiphenyl-

sulfones a nucleophilic attack on chlorine precedes attack at either the 

phenyl C1 carbon or at sulfur since the halogen is activated by a phenyl 

sulfonyl group. Halobenzenesulfinic acids involve a sulfinate benzyne 

as an intermediate. 

Fusion with sodium cyanide may occur by direct displacement since 

cyanide fusion of sodium 1-naphthalene sulfonate produces only 1-naphth-

onitrile (73)* 

Sodium Hydroxide Hydrolysis Reactions. Hydrolysis of nonactivated 

halobenzenes almost always produces rearranged products. This is true in 

the hydrolysis of chlorobiphenyls (7^), halotoluenes (75)J and haloalkyl-

benzenes (76). Hale and Britton summarized the early work (77). The 

question here is to what extent direct substitution is involved. By 
l 4 C labeling^experiments Roberts (78) found that in four molar sodium 

hydroxide chlorobenzene hydrolyses 16 per cent by direct displacement. 

Also, direct substitution is favored at lower temperatures and with the 

more ionizable halogen (Table 9)» 



Ill-

Table 9- Hydrolysis of p_-Substituted Halotoluenes at 250°C (78) 

Substituent NaOH(M) ^Conversion "£a 

ci k ^ 0 . 3 „ ^50-60 

Br k 17 25.8 7k.2 

I 1 + 1 + 5 < 3 < 97 

Important in the production of phenol from chlorobenzene is the 

hydrolysis of the by-product phenyl ether (79)° Although Ambros (80) 

favored a benzyne mechanism, Dalman and Neumann (8l) by using labeling 

techniques proved that the hydrolysis of phenyl ether occurs by a non-

rearranging S^2 type mechanism. Further, the hydrolysis of p_, jo'-ditolyl 

ether produces no m-cresol. The fact that ditolyl ethers hydrolyze less 

rapidly than phenyl ethers is consistent with an S^2 mechanism (75.) • 

Hydrolysis of p_-dichlorobenzene (77) gives only p_-chlorophenol, 

while p-difluorobenzene (82) gives only p_-fluorophenol. Calcium hydroxide 

hydrolysis of p_-bromofluorobenzene produces mainly p-fluorophenol (83)-

These alkaline hydrolyses are sometimes complicated by rearrangement 

of the reactant and the rearrangement is attributed to such processes 

illustrated by equations l-3» In the partial hydrolysis of o-chloro-

toluene, the recovered chlorotoluene contained ten per cent m-chloro-

toluene (78). 
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CI CI 

Halides. Displacement by! halides in aromatic nuclephilic sub­

stitution usually requires activation by one or more nitro or trifluro-

methylsulfonyl groups. The nonactivated case requires high temperatures 

for reaction. Iodide ion does not exchange with iodobenzene at 100°C 

in ethanol nor with m- and p_-iodobenzoic acids at 100° C in acetone (Qh). 

Iodide does exchange with iodobenzene (85), p_-iodophenol (86), p_-iodotol-

uene (87), p_-iodobenzoic acid (87), and 2-iodonaphthalene (88) at 185-

2k0°0 in either acetonitrile or 2-octanol. Iodide exchange of p-iodophenol 

in acetonitrile is bimolecular at 150°C and unimolecular at 200°C (87). 

Iodide exchange of p-iodophenol is second order in acetonitrile and first 
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order in 2-octanol (86). Interestingly, Roberts found that four molar 

sodium chloride effects direct displacement by chloride with p-iodotol-

uene (78). This is unusual in that the nucleophilic reactivity of the 

halides in protic solvents is I > Br > Cl > F. 

Diphenyl Phosphide. Lithium diphenyl phosphide, a weak base, re­

acts with nonactivated aryl bromides and iodides in tetrahydrofuran at 

room temperature to give unrearranged products (89)* The mechanism 

postulated (Eq. k) involves a "push pull" type with two molecules of 

LiP(Ph)3 participating. 

Acetates and Carbonates. Weak bases, such as potassium carbonate 

(90) and sodium carbonate (91), are able to react by direct substitution 

at high temperatures. Sodium acetate at 3̂ -°°C reacts mainly by an S^2 

mechanism with halotoluenes (78). p_-Bromotoluene gave 30 per cent 

p_-cresol and no m-cresol, while £-chlorotoluene gave a six per cent 

mixture of 95 per cent para and five per cent meta cresols when reacted 

with sodium acetate. 

Thiophenoxide. The only mention in the literature of using thio-

phenoxide as a nucleophile with nonactivated compounds is by Bunnett 

(92) who noted its unreactivity. 
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Carbanions• Refer to the topic of the Truce-Smiles rearrangement. 

Leaving Groups 

With the exception of the halogens which are discussed in the next 

section, the following is a discussion of the different leaving groups in 

nonactivated substitutions by an S^2 mechanism. 

Nitro. The Imown cases of displacement of nonactivated nitro 

groups involve intramolecular reactions. Hey and Rees (93) effected 

displacement of the nitro group in the biphenyl compound shown in Eq. 5 

to produce 3.A-benzocoumarin. 

Davis and Wetzel (9*0 found intramolecular displacement of the nitro 

group by thiophenoxide ion (Eq. 6). 
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Benzenesulfonate (0S03C6Hs). Benzenesulfonate is the leaving group 

in the reaction of p-cresyl benzenesulfonate with sodium amide in boiling 

piperidine (29)-

Ammonia. Carbazole is produced from 2,2'-diaminobiphenyl by 

heating it in the presence mineral acid (95) or by heating the dry hy­

drogen bromide salt (96). Although the mechanism is unknown, an S^i 

mechanism involving intermediate I is suggested (96). 

HgN N H 3 

Phenoxide. As noted earlier, phenyl ether (8l) is hydrolyzed by 

direct substitution. The intramolecular rearrangement of II involves 

loss of a phenoxy group (97)-

Br 
II 

Thiophenoxide. The reaction of di-(p-tolyl) sulfide with sodium 

amide in boiling piperidine, where -SC6H4CH3-p_ is lost, gives only para 

substituted compounds (29). 

Phenyl Sulfonyl and Methyl Sulfonyl. Phenyl sulfonyl is the leav­

ing group in the S^2 reaction of diphenylsulfone by alkaline fusion (70) 

and by amination (29). The Truce-Smiles rearrangement is an example of 

an intramolecular S02Ar leaving group. The methyl sulfonyl can also 
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leave by a S^2 mechanism (30,31)* 

Sulfonate ( S 0 3 ) . The alkaline fusion of benzene sulfonic acid 

occurs by an S^2 type mechanism (68). 

Phenyl Iodonium Group (+IC6H|5). Diaryl iodonium salts are 

important arylating agents, and reactions with numerous nucleophiles 

are known (98). These reactions have been explained as bimolecular 

nucleophilic dispacements (98) but little proof is available. Indeed, 

other mechanisms have been proven. With phenoxides (99) attack occurs 

on an ion pair or a complex [Ar 2I + 0 Ar], while with amines a radical 

mechanism is indicated (100). 

Halogen Order. 

The halogens are discussed together as leaving groups because 

the halogen order is used as a criterion for explaining the mechanism 

of aromatic nucleophilic substitution. In the activated case the order 

is usually F » Cl > Br > I. Since the loss of fluorine is faster than 

chlorine, there must be little bond breaking in the transition state. 

On the other hand, in the nonactivated case, the order is I > Br > Cl. 

Thus, one might conclude that a different mechanism is operating, possibly 

one similar to aliphatic S^2 reactions where bond breaking is important. 

Tronov and Krueger (ll) are often quoted for their early study of 

halobenzenes with piperidine and sodium methoxide (Table 10). These re­

actions occur by direct displacement. Tronov's data is subject to doubt. 

Later values for the relative rates of halobenzenes (12) with piperidine 

are iodine, lk.6; bromine, 8.2; and. chlorine, 1.0. For 1-halonaphthalenes 

(10) with piperidine the values are iodine, 11.h; bromine, 5*6; and 

chlorine, 1.0, and for 1-halofurans (17) , iodine, 20; bromine 10; and 
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chlorine, 1. With sodium methoxide, bromobenzene reacts 1+.5 times faster 

than chlorobenzene-at 200°C (38,1+5). 

Table-10. Relative Rates of Reaction of Halobenzenes with Piperidine and 
Sodium Methoxide (ll) 

Compound NaOCHg(165°C) Piperidine (210°C) 

CsHgF 1 1 

CsHgCl 1.8 1-9 
CsHgBr 1+.1+ 7 ^ 5 

C sHsI 35-6 132 

The relative rates of fluorine and chlorine are important and affect 

the mechanistic interpretation of the reaction. Although the relative 

order I > Br > CI > F which Tronov found was substantiated for I > Br > CI, 

the position of fluorine was not verified by Bunnett (3l)- Bunnett 

challenged the position of fluorine in Tronov's order when he found that 

1-fluoronapthalene reacted 36 per cent in 2h hours, while 1-bromonaphtha-

lene reacted 1+9 per cent in 1+8 hours at 230°C. With sodium methoxide 

Miller (1+2) found the rate ratio of fluorobenzene to chlorobenzene to 

be approximately 100 at 202.5°C This ratio compares favorably with the 

fluorine to chlorine ratio found in. activated cases at 200°C: mononitro, 

7^»5; dinitro, 26l (1+2). This fact is used as evidence for the inter­

mediate complex mechanism for nonactivated aromatic nucleophilic sub­

stitution. However, Miller's ratio is subject to considerable error 

since the chlorobenzene rate was only an estimate. Neither did Miller 
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take into account the consecutive demethylation reaction (ArOCR^ -» ArO ). 

Shein (h6) took this into account in obtaining his value of 2.0 x 10 6 

M 1 / sec 1 at 202.5°C for chlorobenzene. Thus, the relative rate ratio' 

of fluorine to chlorine is closer to forty. 

Miller and Wright son (5^-) looked at the fluorine to chlorine rate 

ratio as a function of the substituent on the ring. (Table ll). The 

data shows that with sodium ethoxide the loss of fluorine is consider­

ably faster than chlorine in all cases. 

Substituent Effects 

In aromatic nucleophilic substitution a substituent that is able 

to withdraw electrons mesomerically or inductively will activate, since 

a partial negative charge is developed in the ring in the transition 

state. Table 12 lists the activating powers of different substituents 

studied in the nonactivated case. Just as two nitro groups are more 

activating than one such group, addition of other substituents such 

as trifluoromethyl (Table 13) or chloro (Table Ik) greatly activate. 

Deactivating Substituents. These substituents include alkyl, 

amino, hydroxyl, and oxido. Little quantitative data is available with 

deactivating groups since in most cases no reaction is evident. With 

the methyl substituent, Van Lande (59) found that 2,U-dichlorotoluene 

reacted at l83°C with sodium methoxide 10.6 per cent while 1,3-dichloro-

benzene reacted 38»9 per cent. From Table 5 iodofuran reacts 2.5 times 

faster than 5-™-ethyl-2-io(iofuran, the difference being determined by the 

activation energy. Qualitatively, the hydrolysis of phenyl ether is 

faster than p-tolyl ether (75)* 
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Table 1 1 . Rate Constants for Substituted Fluoro or Chlorobenzenes 
with Sodium Ethoxide at 150°C (5k) 

Compound k (M~1 hr ~ 1) A c ± 

p_-CF3-CsH4 16 

P.-CF3-C6H4C1 0.021 

m-CFa-CgH^F O.39 

m-CFa-CeH^Cl 0 . 0 0 2 1 

m-Cl-Ce^F 0.20 

m-Cl-Cg-H^Cl* 0.00165 

p_-Cl-C6H4F 0.01+2 

P _ - C 1 - C 6 H 4 C 1 * 0 . 0 0 0 5 

760 

186 

118 

8k 

"^Statistically corrected. 



Table 12 . Activating Ability of Substituents 

Compound Base Temperature UC Activation Reference 

p_-X-C6H4Cl Na0CH3 150 CI > H > NHg^ CH 3~ 0" 50 

g-X-CelL^Cl NaOCHa 190 S0 2 C H 3 > CF 3 > CI > COg > H 

p_-X-C6H4Cl Na0CH3 200 COCHa > CF3 > CI > H 

E-X-Cel^Cl 270 S0 2CH 3 > S02NHg > CF 3 > H 21 

o-X-Ceh^Cl Na0CH3 150 CI > H > NHg > CH 3 50 

o - X-C 6H 4Cl NaOCH3 190 S0 2CH 3 > CF 3 > CI ~ C0 2 > H 46 , 47 ,51 

o-X-CsIL^Cl KOH 158 S0 2C 6Hs > SOCgHg 101 

^ - X-Ce^Br NaOCHa 150 Br > H~NHg > OCHa^ CH 3 50 

p_-X-C6H4Br NaOCHgCHa 81 SOgCHa > C0CH3 58 

o-X-CglL^Br piperidine 165 S0 2CH 3 > C0CH3 58 

^ - X - C Q H ^ C I NaOCHa 170 S0 2 > S O 3 > C0 2 53 

2,U-di-Cl-l--X-•Ce NaOCHa 183 S0 3 > C0~ > Br~ CI > H > CH3 59 

2,5-di-Cl-l--X- NaOCHa 180 S0 3 > COg > CHgOH > CgHg > F ~ CH 3 49 

3A-di-Cl-l-- X - •c e H 4 NaOCHa 180 I > Br > CI > CH 3 > 0" 60 

RO 00 
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Table 13- Kinetic Parameters of the Reaction of Substituted Chlorobenzenes 
with Sodium Methoxide at 120°C (55) 

Substituent k x 10 5(M" 1sec _ 1) log A 
Relative 
Rate 

H 1+.5 x 10" 5 37.3 ll.U .1 

1+-CF3 O0I26 30.0 10.8 2.8 x 10 s 

2,U(CF3)2 65 2h.O 10.1 1.1+ x 10 6 

2,^,6 (CF 3) 3 
6,600 20.X 10.0 1.5 x 10 8 

Table Ih. Kinetics of the Reaction 
Methoxide at 210°C (51) 

of Chlorobenzenes with Sodium 

Compound k x 10" 5(M _ 1sec" 1) AE ̂  log A 
Relative 
Rate 

Chlorobenzene 0.30 37.3 11.1+ 1 

1,1+-Di chlorobenzene 1+.6* 33.6 11.2 15.3 

1,2,^,5-Tetra-
chlorobenzene 525* 26,0 10.2 1,750 

Hexachloro-
benzene 23,330* 22.0 10.1 76,600 

^Statistically corrected. 
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The amino and oxido (0 ) groups are deactivating in all positions 

due to mesomeric release of electrons into the ring. No reaction occurs 

at 155° C with sodium methoxide with o- and p_-chloroaniline nor with o-

and p_-chlorophenol, while the meta-oxido group is not so extremely de­

activating (36). 

Halogen Substituents. In activated nucleophilic substitution the 

halogen substituents are activating in all positions, except in the case 

of para fluorine. They activate inductively (F > Cl > Br > i) and de­

activate mesomerically (F > Cl > Br > i) such that the relative strength 

of the two effects causes the order of reactivity to be meta greater than 

para. In the para position the order of activation is F < H < C l < Br ~ I. 

The para fluorine substituent is interesting in that the balance between 

its inductive mesomeric effect causes the fluorine to have an effect 

similar to hydrogen. 

In the nonactivated case halogens are activating in all positions, 

with the exception of para fluorine. With sodium methoxide at 190°C« 

the order of reactivity in dichlorobenzenes (51, 37, 102) and dibromo-

benzenes (38) is m > o > p_ (Table 15 )• In the para position the halogens 

activate in the order I > Br > Cl > H ~ F with nonactivated compounds (60). 

Another important aspect in the substitution of halogens is the 

result of pitting different halogens against each other, such as p-bromo-

fluorobenzene. The true effects in these competitive displacements of 

halogens are difficult to obtain in the activated ease except in 3,5-

dihalo-nitrobenzenes (103) or pentafluorohalobenzenes (lOU). In the 

nonactivated case little is known. In the reaction of p_-chlorofluorobenzene 
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Table 1 5 . Halogen Substituent Effects at 2 0 0 ° with Sodium Methoxide 

Compound k x l O ^ M ^ s e c - 1 ) AE^ log A Reference 

Cg H5 CI 0 . 1 6 3 7 . 3 1 1 . 4 46 . 
o-Cljg Cg H 4 3 - 4 * 3 5 . 6 1 2 . 3 5 1 

m-Cl 2C sH 4 5 . 2 5 * 3 5 . 1 1 2 . 2 5 1 

P_-Cl2CgH4 2 . 3 * 3 3 . 1 1 1 . 2 5 1 

CgHgBr 0 . 7 1 3 5 . 9 1 1 . 4 3 8 

o-Br2 C 6 H 4 lk.O* 3 3 - 1 1 1 . 7 3 8 

m-Br 2 C SH 4 1 9 . 8 * 3 4 . 6 1 2 . 7 3 8 

p-BrgCg^ 6 . 0 * 3 6 . 3 1 2 . 9 3 8 

^Statistically corrected. 

with sodium methoxide at 1 8 3 ° C , the fluorine is displaced 9 6 per cent 

and the chlorine 0 . 5 per cent ( 4 9 ) . This may be explained by the fact 

that fluorobenzene is faster than chlorobenzene and that the p_-fluorine 

substituent is deactivating toward nucleophilic displacement. In the 

same study p_-bromochlorobenzene gives 9 0 per cent bromide displacement 

and only a trace of chloride dispLacement. Table 1 5 shows bromobenzene 

to be 4 . 5 times faster than chlorobenzene. Thus this cannot alone explain 

why such a small amount of chloride ion is produced. The calcium hy­

droxide hydrolysis of p_-bromofluorobenzene produces mainly p_-f luorophenol 

( 8 3 ) . This reaction is postulated as an S 2 type displacement since no 
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meta products are obtained. Unless bromobenzene is much faster than 

fluorobenzene this mechanism is incorrect since fluorine deactivates 

nucleophilic displacement. Also, there are known cases of benzyne re­

actions occuring without rearrangement (see Miller, Ref. 1 1 2 , Chap. 2 ) . 

Intermediate Activating Substituents. The trifluoromethyl group 

activates strongly inductively. Reactivity data show that p_-CF3 is more 

activating than m-CF 3. In substituted trifluoromethylbenzenes the 

k /k for loss of fluorine with sodium ethoxide (5*0 is 1 + 1 , for loss of 

chlorine kpAm is 1 0 at 1 5 0°C, and for loss of chlorine at 2 0 0 ° C with 

sodium methoxide ( 1 + 6 ) k^/k^ is 5 . 9 . In the series of mono and poly-

trifluoromethylbenzenes ( 1 0 5 ) reacting with sodium alkoxides the follow­

ing is the order of decreasing activity: 2 , *+,6-tri-CF 3 > 2,*+-di-CF3 > 

2 ,6-di-CF 3 > 2 ,5-di-CF 3 > p_-CF3 > o-CF3 > 3 ,5~di-CF 3 ~ m-CF 3. 

The carboxylate group is weakly activating ortho and para with 

alkoxides. The 2-chlorine is principally displaced in 2,5-dichlorobenzene 
carboxylate ( 1 + 9 ) * p_-Bromobenzene carboxylic acid reacts Ik per cent 

with sodium methoxide at 1 5 5 ° C in 5 0 hours, while the m-bromo isomer 

does not react ( 3 5 ) * With sodium methoxide, p_-chlorobenzoic acid is only 

2 5 times more reactive than chlorobenzene at 1 9 0°C, while o-chlorobenzoic 

acid is 7 5 times faster than chlorobenzene ( * + 6 , 1 + 7 ) * 

The sulfonate group is only two to three times more activating 

than the carboxylate group in nonactivated compounds ( 5 3 ) * The sulfonate 

group activates ortho and para, since the k-chlorine is displaced in 

sodium 3 , *+-di chlorobenzene sulfonate ( 6 0 ) , and the 2-chlorine is dis­
placed in sodium 2,5-dichlorobenzene sulfonate ( 1 + 9 ) * Chlorobenzene-2, k,6-

trisulfonic acid is much less activated compared to 2,U,6-tris 
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(trifluoromethyl)chlorobenzene (53;> 5 5 ) ' 

Data on the remaining intermediate•activating substituents are 

sparse. The following is a list of these substituents along with 

references: aceto ( 1 9 , 46, 5 8 ) , COC6Ife ( 1 9 , 5 8 ) , N 2C 6Hs ( 1 8 ) , and phenyl 

(49)o. 

Side Reactions. In nonactivated compounds, many substituents are 

destroyed under the condition necessary for nucleophilic displacement. 

Other reactions may occur to complicate the kinetic picture» 

The reductive removal of halogen (Ar-Br -• Ar-H) has been found in 

many systems and is important in determining kinetics. In water, o-

chlorophenol is reduced to phenol up to 40 per cent in acidic, basic, 

or neutral conditions at 250° C ( 1 0 7 ) « p_-Dibromobenzene gives phenetole, 

bromobenzene, and benzene at l85°C with sodium ethoxide in ethanol ( 5 7 ) ° 

In the sodamide and boiling piperidine system iodonaphthalene gives six 

per cent naphthalene ( 31 .)• The mechanism is probably a nucleophilic dis­

placement on halogen, the order of reactivity being I > Br > CI. 

Saponification is a complicating side reaction with the cyano sub-

situent (59, 6 0 ) . Benzophenones with sodium methoxide at l80°C produce 
an amount of benzhydrol ( 4 9 ) . An aldehyde substituent undergoes a 

Canniffiazo reaction under the same conditions (49 , 59)• Substituted 

acetophenones undergo aldol condensations at 100°C in sodium methoxide. 
A general reaction occurring with sodium methoxide and other 

alkoxides, to a lesser extent, is demethylation of anisoles, initially 

formed from the halogen compound. The cleavage of anisoles proceeds by 

a bimolecular nucleophilic displacement; bond breaking occurs between 

the methyl group and the oxygen. This reaction must be accounted for in 
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the kinetics since base is used. With sodium methoxide at 150°C the 

rate of reaction of 1,2,k?5-tetrachlorobenzene is only twice as fast as 

demethylation of the anisole (109), while with sodium ethoxide cleavage 

of the phenetole produced is only l/20th as fast as aromatic nucleophilic 

substitution (l08)> 

Demethylation is kinetically important when an ortho or para tri-

fluoromethyl group is present, since o- and £-trifluoromethyphenols 

readily lose fluoride ion in base, Shein (110, 111) studied the effect 

of hydrolysis of the trifluoromethyl group on kinetics in aromatic nucleo­

philic substitution and confirmed the scheme in Equation 7° 

Cl O C H 3 OH OH 

Linear Free Energy Relationships. The Hammett plot is one method 

of correlating and predicting reactivity. This is: a plot of the log of 

the rate constant against the sigma value, a measure of the substituent 

effect. Table 16 accumulates the sigma values used in aromatic nucleo­

philic substitution. The a value is used for para substituents since 

a partial negative charge may be placed at the carbon attached to the 

substituent in the transition state. The a values found in aromatic 

nucleophilic substitution are classed according to whether the nucleo-

phile is piperidine or methoxide. 



Table 1 6 . Sigma Values (HI) 

Substituent m a"(NaOCHg) o*p (piperidine) o~ (other) 

CH 3 - 0 . 0 6 9 - 0 . 2 2 1 , « 0 . 2 3 7 - O . I 6 9 

C O C H 3 + 0 . 3 7 6 + O . 8 7 I + 

COCeHg + O . 7 6 7 , + 0 . 8 7 9 

CO^ - 0 . 1 0 + 0 . 1 6 , + 0 . 1 3 5 + 0 . 2 8 3 

CF 3 + 0 . 1 + 3 +0.746 + 0 . 6 6 8 

-0.16 -0.87 -0.789 

0 ~ - 0 . 7 0 8 

F + 0 . 3 3 7 - 0 . 0 1 5 - 0 . 1 1 8 - 0 . 0 5 1 1 3 

CI + 0 . 3 7 3 + 0 . 2 M + , + O . 2 6 5 + 0 . 1 5 1 , + O . I 9 6 * 

Br + 0 ' . 3 9 1 + 0 . 2 8 9 , + 0 . 3 3 8 + 0 . 1 8 1 , + 0 . 2 4 1 * 

I + 0 . 3 5 2 + 0 . 2 9 9 , + 0 . 3 1 8 + 0 . 1 4 8 , + 0 . 2 6 6 * 

SOCeHg 

S0 2C 6 H 5 + 1 . 1 1 7 

S0 2CH 3 + 0 . 6 0 + 1 . 0 5 

so; + 0 . 0 5 + 0 . 1 8 6 -

S02NH~ + O . 3 6 3 

*In benzene solvent 



Table 17" Hammett P l o t s 

Subs t r a t e Reagent So lven t Temperature U C Rho Reference S u b s t i t u e n t s 

m- and pj-X-CgR^F NaOCHg- CHg OH 0 9.2 37 £ - N g , £ - N 0 3 , H , m - N 0 2 

m- and jd-X-CqIL^F NaOCH 3 CHg OH 50 8.1+7 37 

p_-X-C 6I^Br p i p e r i ­
d ine 

CgHg 99 I+.87 19 N 0 2 , S 0 2 C H a , C N , C 0 C H 3 

p^-X-CeR^Cl NaOCHg CHg OH 50 • 8.1+7 1+5 C F 3 , C 0 C H 3 , N 0 2 , C 1 

m-: and pj-X-CglL^Br NaOCH 3 CH3 OH 100 5 = 2 38 H,p_-Br,p_-S0 2CHg,p_-N0 2, 
m-Br 

m- and p_-X-C 6H 4Br NaOCH 3 CHg OH 150 h.5 38 

m- and ^-X^CgR^Br NaOCHg CH 3 OH 200 3.9 
0 

JO 

m- and jD-X-CgR^Cl NaOCHg CHg OH 100 5.6 1+6 E - N O s ^ - S O g C H g ^ - C F g , 
m - C F 3 , m - C l 

m- and £-X -CgH 4 Cl NaOCHg CHg OH 150 1+.9 1+6 

m- and jd-X-CqR^CT NaOCHg CHg OH 200 1+6 

1+ and 5-X-2-CF3-
CgHgCl 

NaOCH 3 CHg OH 50 5.3 55 H,1+-CF 3,1+-N0 2,5-CF 3 

1+ and 5-X-2-CF 3~ 
Cg H3 C l 

NaOCHg CHg OH 100 ^ 7 55 

1+ and 5-X-2-CF3-
C 6 H 3 C l 

NaOCHg CH30H 150 1+.2 55 

u> 
H 
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Table 1 7 summarizes some Hamrnett plots -which include both activat­

ing and nonactivating substituents. In most cases the rho (p) values, 

measures of the effect of the substituent on the reaction center, are from 

plus four to plus five at temperatures greater than 1 5 0°C. These rho 

values decrease with increasing, temperatureo 

The ortho:para Ratio. 

The ortho:para ratio has received much attention in the activated 

case, especially the effect of the nitro group. When the ortho:para effect 

of another substituent is in question a nitro group may mask the true 

ortho:para ratio. The substituents discussed in this section are C0 2, CF 3, 

SOgCgHg, SOCgHg, Br, CH3,C0CH3,C0CsH5, and CI, in compounds containing no 

nitro groups. The substituents are discussed according to Miller's ( 1 1 2 ) 

classification: (l) attached by the positive end of a dipole (C02, C0CH3, 

COCsHg,: SOCgHg, SOjgCgHg), (2) electrically neutral-no unshared pairs 

(CF3, CH 3), and (3) electrically neutral-unshared pairs (CI, Br). 

(l) The first is carboxylate. Table 1 8 shows the data on the 

ortho:para effect of carboxylate with anoid nucleophiles. In activated 

cases carboxylate (ll4, 1 1 5 ) is weakly activating para but deactivating 

ortho with sodium methoxide. Miller has ascribed this ortho deactivation 

to the electrostatic repulsion between the negatively charge carboxylate 

and the negatively charged methoxide, along with an added steric effect. 

Whereas in the activated case the ortho:para ratio is less than one with 

alkoxides, in the nonactivated case the ortho:para ratio is greater than 

or equal to one. This reversal of the ortho:para ratio is due to the 

differences in reaction temperature. If the ortho:para ratio for the 

activated compounds are calculated at 1 9 0°C, the ratio becomes greater 



Table -18 . The ortho:para Effect of Carboxylate 

Compound Base Temperature °C k x 1 0 * (M"1 sec ~ 1 ) i Br" Reference 

o-BrC6H4CO; Na0CH3 1 5 5 1 4 . 4 3 6 

^-BrCelL^CO; Na0CH3 1 5 5 1 4 . 0 3 6 

o-ClCgH^CO; NaOCHa 1 9 0 0 . 5 4 7 

o-ClCsH^CO; NaOCHgCHs 1 9 0 0 . 7 4 7 

P_-C1C6H4C02" NaOCHa 1 9 0 0 . 1 7 4 7 

p_- C1CS H 4 CO^ NaOCH2 CH 3 1 9 0 0 . 0 6 4 4 7 

Table 1 9 - The ortho:para Ratio of SOCQHB and S02CQHs in Aqueous DMSO at 1 5 8°C (lOl) 

Compound Base k x 1 0 5(M~ 1sec" 1) 
o-Cl-Ce^SOCeHg - KOH 1 . 9 

£-Cl-C 6H 4S0C 6H5 KOH 3 - 3 

o-Cl-C 6H 4S0 2C 6H 5 KOH 1 9 3 

p^Cl-CeH^CsHg KOH 3 7 4 
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than one. 

The data on the SG 2C 6Hg and SOCgHg are in Table 19« Since the 

coplanarity of these substituents with the ring is unnecessary for valence 

shell expansion of the sulfur, the ortho compound should activate more 

than para. Since this is not the case in Table 19, there'must be a steric 

factor associated with the ortho substituent. 

The ortho;para effect of the C 0 C H 3 and COCgHg substituents is seen 

in Table 2 0 . The ortho;para effect of these substituents follows the 

pattern with nitro substituents, that of ortho activation with amines 

and para activation with alkoxides. Bunnett ascribes the ortho activation 

with amines to "built-in solvation"' (116) which is an electrostatic inter­

action between the developing positively charged amine nitrogen and the 

negatively charged oxygens of the nitro group. 

(2) The second classification deals with trifluoromethyl and 

methyl groups. The trifluoromethyl group should have a negligible steric 

effect with small nucleophiles. : The greater inductive effect of the 

ortho trifluoromethyl group should therefore be more activating than 

the para, and this is observed in activated compounds (37). Table 21 

shows that the ortho;para ratio is less than or equal to one in non-

activated compounds. Here again the ortho isomer will become faster than 

the para at some lower temperature due to the lower activation energy of 

the ortho compound» 

Data on the methyl group is limited to the findings of Lande (59), 

who noted that the 2-chlorine is displaced in 2,U-dichlorotoluene with 

sodium methoxide at l83°C, which parallels the activated cases (see Ref. 

112, p. 106). The cause of an ortho;para ratio greater than one with 



T a b l e - 2 0 . The o r tho :pa ra R a t i o o f C 0 C H 3 and C 0 C 6 H g ( 5 8 ) 

: , , : — : L 

.Compound Base Temperature 0 C k ( M ~ 1 s e c " 1 ) j , i Br 
o-Br-CeH^COCHa p i p e r i d i n e 1 6 5 81+. 0 

E-Br-CfcH^COCHa p i p e r i d i n e 1 6 5 26c 1 

o-Br-CeR^COCHa NaOCHgCH3 8 1 kok x 1 0 ~ 6 

^-Br-CeH^COCHa NaOCHg C H 3 8 1 3 5 * 0 x 1 0 ~ 6 

o-Br -Cs^COCgHg p i p e r i d i n e 1 6 5 2 5 ° 8 

^-Br-CeR^COCeHg p i p e r i d i n e 1 6 5 

o-Br-CsR^COCeHg NaOH 7 5 0 = 6 

^-Br-CsH^COCeHg NaOH 7 5 2 . 1 + 

Table 2 1 . The o r tho :pa ra R a t i o o f the Tr i f luo romethy l S u b s t i t u e n t 

Compound Base Temperature °C k x 1 0 4 ( M x s e c 1 . ) AE' l o g A Reference 

O-Gl-.Cg;!̂'... N a 0 C H 3 1 9 0 1 = 8 2 9 . 5 1 0 . 2 « 1+8 

o-Cl-CeR^CFa n'-CgH^ONa 1 9 0 1 . 1 + 3 2 » 7 1 1 = 6 1+8 

^-Cl-Ce^CFa NaOCHa 1 9 0 3 ° 9 3 0 . 0 1 0 . 8 1+8 

^-Cl-Cel^CFa n - C 5 H 1 1 0 N a 1 9 0 1 . 1 + 3 6 . 7 1 3 . 3 1+8 

o-Cl^CelL^CFa NIL^OH 2 7 0 0 . 0 0 8 1 + 2 l+=3 2 1 

p.-Cl-CeHfcCF3 NE^OH 2 7 0 Ool 2 7 * 8 2 1 



36 

methyl is uncertain. Bunnett has suggested a polarizability factor or 

a solvation favoring the ortho position ( 1 1 7 , l l 8 ) o 

(3) Table 22 lists the ortho:para effects of chlorine and bromine 

These halogens have a conjugative destabilization which operates better 

from the para position, and an inductive stabilization more effective 

from the ortho position. The result is greater ortho activation. p_-Dibro 

mobenzene has a higher energy of activation than the ortho compound, 

while the opposite is found in dichlorobenzene. 

Shein also studied solvent effects on the ortho:para ratio of sub­

stituted chlorobenzenes where the substituents are S 0 3 C H 3 , C 0 2 , GI, and 

CF3 ( U 7 , 1+8, 1 1 9 , 120). 

Solvent: Effects. 

Aromatic nucleophilic reactions are usually carried out in protic 

solvents. In the nonactivated case few solvent studies are available, 

and they are limited to alkoxide nucleophiles. Shein (38 , 1+7, 1+8, 1 1 0 , 

1 2 1 ) studied the rates of reaction of aromatic chloro and bromo deriva­

tives with sodium methoxide and higher alkoxides in their corresponding 

alcohols. The rates are determined by the hucieophilicity of the 

alkoxide and by the polarity of the medium. In all cases studied, except 

o-chlorobenzoic acid and o-chlorophenyl methyl sulfone, the rates de­

crease as the length of the alkoxide chain increases. A few other 

studies involve binary mixtures ( 1 1 9 , 2 1 0 ) of benzene, heptane, or 

p_-xylene with alcohols, with the corresponding alkoxides as nucleophiles. 

There is one study in methanol-water mixture ( 1 2 2 ) . The rates are ex­

plained by specific and nonspecific solvation by the alcohol. 

There has been recent interest in studying aromatic nucleophilic 



Table 22. The o r tho :pa ra R a t i o o f Chlor ine and Bromine 

Compound Base Temperature °C k x 10 5 ( M ° 1 s e c ° 1 ) AE^ l o g A Reference 

l , 2 - B r 8 C f l Hi NaOCH 3 190 13.0 33=1 11.7 38 

l , U - B r 8 C f l I i i NaOCH 3 190 5.6 36.3 12.9 38 

1, 2 - C l 2 CgH^ NaOCHg 190 3.6 35.6 12.3 39 

l ^ - C l g C e h ^ NaOCHg 190 1.5 33°0 10.7 39 

1,2-ClgCgH^ NaOCHg CH 3 150 2.2 5h 

l ^ - C L g C g R ^ NaOCHg CHg 150 1.7 5h 

2 - F - C e H 4 C l NaOCHgCHg 150 U80.0 5>k 

U - F - C g f ^ C l NaOCHg CHg 150 70.0 . 5k 

LO 
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substitutions in dipolar aprotic solvents. The only study in the non-

activated case is that of Cram ( 6 2 ) who found a marked rate enhancement 

in the reaction of o-fluorotoluene with sublimed potassium tert-butoxide 

in dimethyl sulfoxide over ordinary protic solvents. 

Mechanism 

Since there is proof that nonactivated halobenzenes can react by 

bimolecular nucleophilic substitution, the question remains as to 

whether the reaction occurs by an intermediate complex mechanism, as in 

activated cases, or by a mechanism similar to a one step S^2 aliphatic 

displacement. Many authors (l, 1 2 , 1 5 , 1 2 3 ) have concluded that 

metastable intermediates, such as the cyclopentadienyl anion, play little 

or no part in the reaction and that this should be reflected in the 

partial breaking of the carbon halogen bond in the transition state. 

As carbon halogen bond stretching becomes important, the rate of loss of 

fluorine and chlorine should become closer than in the activated case 

where formation of the intermediate complex is usually rate determining. 

But, as Miller and Shein have shown, the rate ratio of fluorobenzene and 

chlorobenzene is similar to the ratio in the activated case when compared 

at the same temperature. To incorporate this fact into any one step 

mechanism requires an early transition state where carbon halogen bond 

breaking is unimportant. Brower ( 1 2 U ) concluded from a pressure study 

that the transition state resembles the reactants. 

In an intermediate complex mechanism with nonactivated compounds 

the formation of the intermediate should be rate determining because of 

its instability compared to nitro activated intermediates. But, kinetic­

ally, three possibilities exist (Eq. 8 ) . The derived kinetic expression, 
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(Eq. 9 ) , indicates that if kg » k_ 1 ; the formation of the intermediate 

complex is rate determining and k' = kj• This case is kinetically in­

distinguishable from a one step S 2 mechanism. If k_x » kg, 

X X Y Y 

k = k^/tk-j. + kg) (9) 
then the overall rate is k = k 1kg/k- 1, and the rate is dependent on the 

concentration of the complex times the rate of conversion to products. 

If kg and k_x are comparable, the rate is affected by bond formation and 

bond rupture. In an intermediate complex mechanism an early transition 

state is unnecessary to fit the fluorine to chlorine rate ratio. 

Although there are a number of methods for distinguishing between 

these two mechanisms, only the halogen order has been studied. Whatever 

the mechanism, the high positive rho values from Table 1 7 show that sub­

stituents have a significant effect on the transition state. 

Rearranging Reactions 

Sommelet-Hauser Rearrangement 

This rearrangement reaction ( 1 2 5 , 1 2 6 ) has been included in a 

review ( 2 ) of aromatic nucleophilic substitution. This reaction will 
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not be discussed since evidence has shown -that this reaction actually in­

volves a tight ion pair mechanism (127)• 

Competitive (Benzyne: Addition-Elimination) 

In reactions involving benzynes the presence of rearranged products 

does not always mean that the benzyne reaction is the only mechanism. 

Listed here are methods of showing the presence of direct substitution. 

(1) One can use l 4 C labeling, as in C1 labeled chlorobenzene (78)° 

If benzyne is the only mechanism, then the one position of the product 

will be equally distributed, between labeled carbon and unlabeled carbon. 

(2) The whole series of halogens may be run (31, 3I+). If the ratio of 

products such as m- and p_~cresols from p_-halotoluenes is different for 

one halogen,. then this halogen involves some direct substitution. (3) 

In aminations, if the addition of free amine enhances the amount of direct 

substitution product (3*+) then some direct substitution is occurring due 

to the reversal of metalation. (k) If the addition of a proton source, 

such as methanol, to the system produces a greater per cent of unre-

arranged product then direct substitution is occurring due to reversal 

of metalation (128)» 

Truce-Smiles Rearrangement 

Although the Smiles (l) rearrangement usually occurs only with 

activating nitro groups present^ the Truce-Smiles reaction may be con­

sidered part of the nonactivated case. This reaction, first studied by 

Truce (129, 120^ 131), is a base induced intramolecular rearrangement of 

o-methyldiaryl sulfones to o-benzylbenzenesulfinic acids (Eq. 10). 
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Later, Drozd (132, 133) showed this reaction is more complex than 

simple direct displacement and involves more than one intermediate 

(Eq. 11, 12). 

0 0 

In almost all cases, compounds similar to III may he isolated. How­

ever, if a good leaving group (CI, O C H 3 ) is placed ortho to the S0 3 

H 

H 
III 

group in the ring not containing o-methyl groups, then the chlorine or 

methoxy group is displaced by the carbanion in an intramolecular 
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nucleophilic cyclization (13*0. This reaction occurs becausec of'.the 

strong ortho activation of the methoxy group by a phenylsulfonyl sub­

stituent. 

Interestingly, the•mesityl naphthyl sulfones (135, 136) with 

potassium tert-butoxide in dimethyl sulfoxide do not undergo the Truce-

Smiles rearrangement, but follow a cine mechanism, specifically the 

AE* (Eq. 13, Ik). 
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This reaction involves an intramolecular nucleophilic addition of the 

carbanion across the 1, 2 bond of naphthalene, followed by base catalyzed 

P_~ elimination of the sulf one group.. The AE mechanism has previously 
; a 

been shown to occur in some heterocyclic systems (130, 137)• 

Miscellaneous 

Azulene 

Azulene is interesting in that this aromatic compound needs no 

activating substituents to facilitate nucleophilic displacement.. The 

seven membered ring is activated by the negative polarization of the 

smaller ring, activating greatest at the 1+, 6, 8 positions (138)0 The 

compound 6-chloro-l+, 8»dimethylazulene reacts with piperidine, aniline, 

sodium ethoxide, sodium sulfide, or sodium azide at temperatures less 

than ll+0°C without rearrangement (139)* 

Nucleophilic Aromatic Alkylation 

This reaction involves methylation of condensed aromatic compounds 

by means of methylsulfinyl or methylsulfonyl carbanionso Table 23 gives 

the compounds methylated, excluding heterocyclics, and the conditions 

used. The mechanism proposed involves nucleophilic attack on the 

aromatic ring by the carbanion. The-resulting'sigma complex may break 

down by either a hydride shift, or by protonation of the sigma complex, 

elimination of methylsulfinic acid, and fast aromatization (Eq» 15, 16). 

The latter route is supported by the fact that 9-deuteriophenanthrene 

loses approximately 50 per cent deuterium.in the monomethylated product 

(H+0). 
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Table 23° Methylation of Aromatic Compounds 

Compound Base Methylated Product Reference 

Benzene NaH, DMSO 0 ll+O 

Anthracene NaH, DMSO 9 77 ll+O 

Anthracene NaH, DMSO 9,10 13 .11+0 

Phenanthrene NaH,,DMSO 9 86" ll+O ' 

Benzene K-t-BuO,DMSO 0 ll+l 

Anthracene "K-t-BuO^DMSO 9 k<? ll+l 

Naphthalene K-t-BuO,DMSO 1 1I+.5 ll+l 

Anthracene NaH, HMPA, C s Hg S0 2 C H 3 9 53 ll+2 

Anthracene NaH, HMPA, C 6 Hg S0 2 C H 3 9,10 10 ll+2 

Position 
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H CHgSOCHs .CHa 

Keto-enol Equilibrium 

The reactions of amines with l-halogeno-2-naphthols at 100°C 

yield the unrearranged l-amino-2-naphthols (l43, 144). Similarly, 4-

bromo-l-naphthol reacts with aniline at 100°C in diethylene glycol 

(l45)-> These compounds are much more reactive compared to 1-halonaphtha-

lenes and may be explained by a keto-enol pre-equilibrium (l46) where 

the reactive species is the keto tautomer (Eq. 17 )• 

Hydroxyl groups are very deactivating toward nucleophilic substitution. 

This reaction is not considered as an aromatic nucleophilic displacement 

but serves to illustrate the fact that in nonactivated cases other mechan­

isms may take precedence over direct displacement. 
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Anilenium Ion 

The reaction of N-chloro-N-methylaniline with methanolic silver 

perchlorate at -20°C produces chloro or methoxy substituted N-methylani-

lines in the ortho or para positions (l47)° This reaction proceeds by 

a loss of chloride ion with subsequent nucleophilic attack by methanol 

or chloride ion on the intermediate anilenium ion (Eq. l8)» 

CI CH3 

\ ^ C H 3 O H 

Although this reaction involves nucleophilic attack by chloride 

on an aromatic ring, there is no anoid leaving group but merely a proto-

tropic rearrangement to form the product. This mechanism is similar to 

the acid catalyzed rearrangement of phenyl hydroxylamine to p_-aminophenol 

(148, 149). 

Description of Research 

There is no extended study of the mechanism of nonactivated 

aromatic nucleophilic substitution. It is known that these reactions 

are second order when alkoxides are used as nucleophiles and that 
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displacement can occur without rearrangement on nonactivated compounds. 

Yet the details of this mechanism remain obscure. It is the intent of 

this research to help elucidate the mechanism of this reaction by using 

a number of methods. Also, previous to this research, there were no 

second order rate data on the reaction of nonactivated halobenzenes with 

amine nucleophiles. The data obtained show that solvent studies on non-

activated halobenzenes are certainly feasible with amine nucleophiles 

and should open up a broad area where research has been limited. 
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CHAPTER IT 

EXPERIMENTAL 

Chemicals 

Triethylene glycol (Fisher) was distilled using a distilling 

head fitted with 1 0 0 0 - m l round-bottomed flask containing about ^OO-ml 

of triethylene glycol. Rapid stirring with a one inch magnetic stirring 

bar was necessary to reduce bumping. Insulating the pot with cotton 

helped reduce bumping. . The colorless liquid was collected at 1 1 0 ° c / 5 mm. 

and was stored in a stoppered round-bottomed flask under nitrogen. 

Piperidine (Fisher) was purified by distillation from sodium. 

About 1 5 0 - m l of piperidine and five g of sodium was placed in a 2 5 0-ml 

round-bottomed flask and refluxed a minimum Of six hours through a two-

foot vacuum-jacketed column filled with glass beads. The amount of de­

composition in the pot was lessened if the apparatus was flushed with 

nitrogen previous to distillation. A middle third, b. p. 1 0 5 ° C / 7 3 6 ran, 

(lit. 1 0 5 ° C ) ( 1 1 5 ) was collected and stored in a brown bottle under nitro­

gen. There was always about one per cent pyridine in the distilled 

piperidine. 

The substituted liquid anilines (Table 2k) used to prepare the 

phenyl piperidines were purified by distillation using Bantam Ware 

apparatus. In all cases the compound was used immediately after dis­

tillation. 

£-Nitroaniline was not reacted with 1,5-dibromopentane. 
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Table 2 4 . Data on Substituted Anilines 

Substituent Boiling Point , Boiling Point (lit). Source 

p_-Methoxy 

m-Methoxy 

m-Methyl 

Hydrogen 

m-Fluoro 

p-Fluoro 

m-Chloro 

m-Bromo 

7 7 ° C @ 0 . 5 m m 

8 0 . 5 ° C @ 0 . 5 mm 

56°C @ 0 . 5 mm 

4 3 . 5 ° C @ 1 . 5 mm 

4 5 - 5 ° C @ 0 . 5 mm 

3 8 . 2 ° C @ 0 - 5 mm 

7 2 ° C @ 1 mm 

9 1°C @ 2 mm 

8 1 - 8 6 ° C @ 2 mm 
( 1 5 0 ) 

1 2 1 ° C @ 5 7 mm 
( 1 5 1 ) 

1 1 2 . 9 ° C A 7 5 - 8 mm 
( 1 5 1 ) 

64 -66°C @ 4 mm 
( 1 5 2 ) 

9 8 - 9 9 ° C @ 3 3 mm 
( 1 5 3 ) 

1 1 8 . 5 ° C @ 2 1 mm 
( 1 5 4 ) 

9 1 ° C @ 2 mm 
( 1 5 4 ) 

Eastman 

Aldrich 

Eastman 

Eastman 

Peninsular 

Peninsular 

Eastman 

Eastman 
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m-Aminobenzotrifluoride (Eastman) was used without purification. 

p_-Chloroaniline (Aldrich) was also used without purification, m.p. 68-70°C. 

m-Nitroaniline (Aldrich) was not purified, m.p. 112-113°C. 

p_-Toluidine (Matheson, Coleman, & Bell) was sublimed at room tem­

perature, m.p. 42-43- p_-Bromoaniline (Eastman) was recrystallized from 

ethanol-water, m.p. 56-58°C. 

A large number of halobenzenes was used in this research. Those 

liquid halobenzenes, purified by distillation, are listed in Table 25° 

These compounds were distilled using either a Nester Faust spinning band 

eight inch (stainless steel) column, or Bantam Ware. The purified material 

was collected and stored in brown bottles under nitrogen. They were then 

checked for purity by gas liquid chromatography. 

p_-Bromochlorobenzene (Eastman) was recrystallized from ethanol-

water, m.p. 62-65°C. p_-Fluorophenol (Pierce) was sublimed at room tem­

perature under 1 mm pressure, m.p. 45« 7-47°C. p_-Chlorophenol (Eastman) 

was also sublimed at room temperature, m.p. 38-40°C. Diphenylsulfone 

(Aldrich) was recrystallized from 60:40 v/v benzene-petroleum ether. ' 

The colorless crystals melted at 121.5-123°5° Diphenylamine (Eastman) 

was distilled (b.p. 136°C/3 mm) on Bantam Ware. Phenyl ether (b.p. 

26°C/l mm) and nitrobenzene (b.p. 4l°C/0.5 mm) were distilled using 

Bantam Ware. Biphenyl sulfide (Eastman) and p_- chloro toluene were also 

purified by distillation. Compounds not purified are in Table 26. The 

perchloric acid used in titrating was Baker Reagent: grade, 70-72 per cent. 

Isooctane, used as the solvent for UV samples, was Fisher Certified 

A. C. S. Spectraanalyzed. 

The Beckman pH meter was standardized at pH seven with Fisher Buffer 

Solution. 
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Table 25• Data on Distilled Halobenzenes 

Compound Boiling Point Source • 

Fluorobenzene 83° C @ 736 mm Eastman 

Chlorobenzene 128-129°C @ 737 mm Eastman 

Bromobenzene 153fl+-15l+.5°C @ 737 mm Columbia 

Iodobenzene 10i+°C @ 75 mm Eastman 

1+-Fluoronitrobenzene 3^°C @ 0 . 5 mm Peninsular 

3-Fluoronitrobenzene 33°C @ 0.1 mm Columbia 

3-Fluorobenzotrifluoride 93.5-9^°C @ 7h0 mm Peninsular 

3-Fluorophenol 30°C @ 0.5 mm Pierce 

l+~Chlorof luorobenzene 67°C @ 95 mm Columbia 

3-Chlo rofluorob enz ene 59°C @ 72 mm Eastman 

1,3-Difluorobenzene 81° C Eastman 

1, h-Dl fluo rob enz ene 87° C Peninsular 

k ~ Bromo fluo rob enz ene ll+8-ll+9°C @ 737 mm Eastman 

3-Bromofluorobenzene lMk-lk5*5 @ 737 mm Pierce 

k-Fluoroidob enz ene 36°C @ 2 mm 
-A 

Peninsular 

3-Fluoroiodobenzene 36-38°C @ 0c5 mm Peninsular 

3-Fluoroanisole 59°C @ 50 mm Pierce 

4-Fluoroanisole 58.5°C @ 1+5 mm Peninsular 

k-Fluorotoluene 115° C Eastman 

3-Fluorotoluene lli+.5-H5-5°C Eastman 

3-Bromo chlo rob enz ene 37°C @ 1 mm J Eastman 
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Table 2 5 . (Continued) 

Compound Boiling Point Source 

4-Bromotoluene 
1,3-Blbromobenzene 
3 - Br omo i dob enz en e 

3 - Chlo r o io dob enz ene 

3 5 ° C (§ 0 . 5 M 

5 2 ° C @ 0 . 5 mm 

5 9 * 6 1 ° C " 6 . 5 mm 

8 2 ° C @ 2 mm 

Columbia 

Eastman 

Eastman 

Eastman 
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Table 2 6 . Compounds Not Purified 

Compound Melting Point Source 

1,3-Biiodobenzene Eastman 

1,4-Diiodobenzene 1 2 5 - 5 - 1 2 7 ° C Eastman 

3-Bromonitrobenzene 5 2 - 5 3 - 6 ° C Eastman 

3-Iodonitrobenzene 3 4 . 8 - 3 6 . 0 ° C Eastman 

1,4-Dibromobenzene 84-85.7°C Eastman 

4-Bromoiodobenzene 8 6 - 8 7 . 5 ° "c - . Eastman 

4 - Chlor o i dob enz ene 5 5 - 5 6 ° C Eastman 

Pentafluorobenzene Peninsular 

Methanol-O-d was previously prepared by Dr. C L. Liotta and was 

shown to be of high deuterium content by n.m.r. 

Eastman labeled 1,5-dibromopentane was distilled (b.p. 6 5 ° C / 2 mm) 

with Bantam Ware. 

Instrumentation 

pH Meter and Titration Apparatus 

The titration of piperidine was done with a Beckman Zeromatic II 

with reference calomel and glass (Beckman) electrodes. A magnetic stirrer 

was used to speed up equilibrium in the titration vessel, a 50-ml beaker. 

The perchloric acid was delivered from a 5 0 ^ 1 burette with a Teflon 

stopcock. 
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Infrared Instrument 

The infrared spectra were obtained on a Per kin Elmer 457 Grating 

Infrared Spectrophotometer. The fast scan was used with a normal slit 

width. Calibration was by a factory supplied polystrene film and the 

1601.4 cm 1 peak was usually used. Liquids were run as a film and 

solids as a KBr pellet. 

Ultraviolet Spectrophotometer 

The UV spectra were run on a Cary Model 14 Recording Spectro­

photometer. All spectra were at room temperature and all in isooctane 

solvent-

Melting Point Apparatus 

A Mel-temp was used to get melting points- Fisher capillary tubes 

were used. The values obtained are uncorrected. 

Nuclear Magnetic Resonance Spectrophotometer 

The n.m.r. data were obtained on a Varian A-60 D with the RF 

field at 0.01 or less. 

Constant Temperature Baths 

For reactions at temperatures less than 100°C a Precision Scien­

tific water bath model l6l was used. A mercury thermoregulator capable 

of ± 0.03°C was used along with an NBS calibrated 100°C thermometer. 

For reactions greater than 100°C an American Instrument Company Type R 

oil bath was used. This bath holds about 20 gallons of Extra Hecla 

Super Cylinder Oil (Mobile Oil Company). This bath uses a bimetal , 

regulator capable of ± 0.2°C at 190°C. The oil bath must be well vented 

to protect against escaping vapors. The thermometer was a 360°C type 

in divisions of one °C. 
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Gas-Liquid Chromatography Instruments 

The gas chromatographs used were an Aerograph 9°-P and an F 

and M Model 700, both with thermal detectors. Most data was collected 

using an SE30 one-half or one-quarter inch column. 

Index of Refraction 

A Bausch and Lomb Abbe-3L refractometer was used to get the 

indexes of refraction. This instrument is fitted with a bath to main­

tain a 25°C reading. 

Weighing Balances 

Reaction samples were weighed out on a Mettler Type 15 balance 

and micro samples on a Mettler Type B 6 balance. 

Mass Spectrometer 

All mass spectra data was obtained on a Varian instrument. This 

instrument is fitted with a gas chromatograph such that combination 

MS-GLC may be run. 

Preparation of Solutions 

Sodium hydroxide solution was made up by weighing out a known 

amount of solid sodium hydroxide (Fisher) and dissolving in one liter of 

distilled water such that the resulting solution was 0.10-0.11 molar. 

The solution was kept in a tightly closed polyethylene bottle and checked 

regularly for changes in concentration. 

The sodium hydroxide solution was standardized with potassium 

acid phthalate which had been dried overnight in an oven at 100°C. 

Approximately 0.1 g of the solid was weighed into each of three 50-ml 

beakers. Fifteen milliters of distilled water was added to each beaker 
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and then stirred to dissolve the solid as rapidly as possible. These 

solutions were titrated with approximately 0 . 1 0 molar sodium hydroxide 

solution using a ten milliliter burette. One drop of O.yj0 phenolphthalein 

in ethanol was put in each beaker and titrated to a light pink color. 

Perchloric acid was used to titrate piperidine. Approximately 

0 . 1 2 and 0 . 2 4 molar perchloric acid solutions were prepared by adding 

about Ik g br 2 8 g of 7 0 - 7 2 $ HC10 4 to one liter of water. These solu­

tions were standardized with the standardized sodium hydroxide solution. 

The sodium hydroxide solution was placed into the ten milliliter burette 

and used to titrate five milliliters of perchloric acid solution in a 

25-ml beaker. A five milliliter pipette was used to measure HC10 4 solu­

tion. Using phenolphthalein indicator, three titrations were performed 

on each solution. 

Syntheses and Product Identification 

Reactions of 1,5-Dihromopentane with Substituted Anilines 

The products obtained from the reaction of substituted fluoro­

benzenes with piperidine were prepared by a different method. The pro­

cedures followed were those of Scholtz and Wasserman ( 1 5 5 ) and Sommers 

and Aaland ( 1 5 6 ) . The properly substituted anilines were reacted with 

1,5-dibromopentane with or without a solvent. The products were identi­

fied by n.m.r., IR, UV, index of refraction, and melting point. Two 

general procedures (A and B) were used. 

Procedure A is exemplified by p_-toluidine. In a Erlenmeyer 

flask was placed p_-toluidine ( 8 . 5 2 g, 0 . 0 7 9 5 mole) and 1,5-dibromopentane 
( 3 » 5 6 g, O.OI55 mole). The solution was mixed and stoppered with a cork. 
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The flask was placed on a steam bath for five minutes. (Reactions run at 

temperatures greater than 1 0 0 ° C were carried out in sealed glass ampoules.) 

The solution developed a dark brown color and as it cooled became a syrupy 

solid. Water was added to the mass to dissolve the hydrogen bromide salt 

and then was poured into a 1 0 0 - m l separatory funnel. Ether was added to 

the flask to dissolve the remaining material and was poured into the 

separatory funnel. Concentrated sodium hydroxide was added to the water 

in the separatory funnel until it became basic to litmus paper° The 

water was extracted twice with ether. The water was checked again.to be 

sure it remained basic. After placing the ether extract on a rotary 

evaporator, the ether was removed and the remaining oil distilled using 

Bantam Ware. A colorless liquid was collected at 1 0 2 ° C / l mm and was 

identified as N- (p_-tolyl)-piperidine. The yield, based on 1,5-dibromo-

pentane, was 4 2 per cent. 

Procedure B is exemplified by m-nitroaniline. In a 2 5 0-ml round-

bottomed flask was placed m-nitroaniline ( 1 3 » 3 5 g, O . O 9 6 5 mole), anhydrous 

sodium carbonate ( 1 0 . 7 4 g), 1,5-dibromopentane ( 1 9 « 5 2 g, O . O 8 5 mole), 

30^ml of o-xylene, and a one inch magnetic stirring bar. A reflex con­

denser was attached to the round bottom flask and the flask was placed 

in an oil bath at 1 3 5 ° C . The mixture was kept at the temperature for 1 7 

hours while stirring. It was then cooled and the pH adjusted to one with 

hydrochloric acid. The solution was extracted with ether and the ether 

discarded. The remaining aqueous layer was made basic with sodium hydroxide 

solution and extracted twice with 50-ml portions of ether. The ether was 

removed on a rotary evaporator and to the residue was added 50-ml of'light 

petroleum ether. This solution was warmed and filtered while warm to 
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remove most of the m-nitroaniline. The cooled petroleum ether solution 

•was placed on a rotary evaporator and then the remaining oil "was distilled 

on Bantam Ware. A bright red liquid [N-(m-nitrophenyl)-piperidine] was 

collected at 150°c/l mm in a 2 3 • 8 per cent yield. 

Data on compounds prepared by procedures A and B are in Table 2 7 " 

The p_-bromoaniline reaction was worked up differently from the 

rest. After reaction, 50-ml of water was added and adjusted to pH 

seven with dilute sodium hydroxide. The precipitated solid was filtered 

with a Buchner funnel. The solid collected was warmed in n-hexane. The 

n-hexane was separated from any undissolved liquid- The solution was 

cooled in an ice bath and filtered. The filtered, n-hexane was cooled in 

a dry ice-acetone bath and the resulting precipitate collected and sub­

limed in vacuo at 5 5 ° 0 . This compound was identified as N- (p_-bromophenyl) 

piperidine. 

The m- and p_-hydroxyl derivatives were prepared from the correspond 

ing methoxyl compounds by the reaction with aqueous hydrogen bromide. In 

a 1 0 0 - m l round-bottomed flask'was placed 4 . 1 8 g of N-(m-met'hoxyphenyl)-

piperidine and 50-ml of 48 per cent hydrogen bromide. This was refluxed 

1 6 hours while stirring. The solution was cooled and made neutral with 

concentrated sodium hydroxide solution. The solution was extracted with 

ether and the ether extract placed on a rotary evaporator. The resulting 

solid was sublimed at 1 1 0 ° C . The m-piperidino-phenol ( 1 5 7 ) was collected 

in a 3 6 per cent yield, m . p . . 1 2 0 - 1 2 2 ° C (lit. m.p. 1 2 3 - 1 2 4 ° C ) ( 1 5 6 ) . A 

similar reaction was run on N- (p_-methoxyphenyl.)-piperidine. The solid 

collected was sublimed at 1 1 0 ° C and identified as p_-piperidinophenol. 

The yield was 7 0 per cent, m.p. 1 5 8 - 1 6 0 ° C , ; d e c o m p . 



Table 2 7 • Preparation of N-(X-Phenyl)-Piperidines 

X 
Reaction 

Method Yield ($>) Temperature Reaction Boiling Point N 2 5 

Time 
Melting 
Point 

m-CF 3 ( 1 5 8 ) 

p_-Br ( 1 5 9 , 1 6 0 ) 

m-Br 

E-Cl ( 1 5 5 ) 

m-Cl 

m-F ( 1 6 2 ) 

p_-F 

H 

m-CH 3 ( 1 5 5 , 
1 6 5 ) 

p_-CH3 ( 1 5 5 , 
( 1 5 9 

A 

A 

5 0 

3 7 

8 2 

B 2 9 

A 54 

A 54 

A 6 8 

A 

64 

32 

42 

135 

Steam bath 

135 

125 

'.: 130 

125 

..." 105 

27 

30 min. 

15 min. 

30 min. 

10 hours 

15 min. 

15 min. 

5 min. 

2 hours 

Steam bath 3 0 min. 

Steam bath 5 min. 

106°C @ 2 mm I.5OO6 

113-115°C 
1 mm 

1.5949 

112°C @ 1 mm 

110°C @ 0.5 mm 1.5769 

90°C @ 1 mm 

8 2 . 5 ° C @ 1 mm 
(lit. b.p. 7 0°C 

@ 3 mm ( 1 6 8 ) 

1.5446 
1.5360 

71-72 
(lit. 
77°C 
(161) 

65-67°c 

82.5°C @ 1 mm I.562O 
(lit. 129-132°C (L.5601) 
@20 mm (164) (l65); 

103°C @ 2 mm 1.5549 
(lit.b.p. . (±°5555) 
132.5°C (166) 
@ 12 mm (166) 

102°C @ 1 mm I05526 
(1*5529)(166) 



Table 2 7 - (Continued) 

X Method Yield (°lo) 
Reaction 
Temperature 

(°c) 
Reaction 
Time 

Boiling Point N 2 5 

D 
Melting 
Point 

m-CF 3 ( 1 5 8 ) A 5 0 1 3 5 3 0 min. 1 0 6°C @ 2 mm 1 . 5 0 0 6 — -

m-OCHa A 5 7 Steam "bath 1 5 min. 1 0 2 ° C @ 0 . 5 mm . 1 . 5 5 7 6 

P_-0CH3 A 6 8 Steam bath 5 min. 1 1 1 ° C @ 1 . 0 mm 1 . 5 5 0 1 : — 
m-NO g B 2k 1 3 5 1 7 hours 1 5 0 ° C @ 1 mm 1 . 5 9 6 5 = = _ 

C A 
O 
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The N- (p_-nitrophenyl)-piperidine was not prepared from the aniline 

since this compound has been well characterized in the literatureo The 

reactions of m- and p_-iodoanilines with 1,5-dibromopentane produced only 

tarry material by either precedure A or B. 

Besides the data in Tables 2 7 and 2 8 , these products were identi­

fied also by n.m.r. and IR. For the n.m.r. spectra an external refer­

ence (tetramethylsilane in chloroform) was used. All the products 

showed a"broad absorption ( 0 . 4 T wide) with a maximum occurring around 

8 . 6 - 9 * 0 T which integrated to six protons. Another broad absorption 

(about O.h T wide) with a maximum occurring at 7 . 0 - 7 « 5 T integrated to 

four protons. These four protons are the methylene hydrogens attached 

to nitrogen. The aromatic protons show up in the area of 2 ° 6 - 3 ° 6 T and 

integrate to four protons. The IR spectra show bands for CHg bending 

and strecthing, aromatic'C-H bending and stretching, C-N aliphatic and 

aromatic, and C=C stretch. 

N-(m- or p_-R-Phenyl)-piperidines from Aromatic Nucleophilic Substitutions 

This procedure describes the! isolation of the products from the 

reactions of piperidine with the substituted fluorobenzenes which were 

used to construct the Hammett plot. Products were isolated in all cases 

except m-fluoroidobenzene and m-bromofluorobenzene. 

A reaction sample which was about 0 . 5 molar halobenzene a n d . 1 . 2 -

1 . 5 molar piperidine in triethylene glycol solvent was made up in a 50-ml 

volumetric flask. The solution was transferred to a glass ampoule ( 7 0-ml 

volume) and sealed. The reaction vessel was heated to 1 9 4 - 1 9 5 ° C (ex­

cept p_-nitrofluorobenzene) for a time which allows 4 0 - 6 0 per cent re­

action as determined from the kinetic data. After reaction the ampoule 
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Table 28. UV Data on N-(X-Phenyl)-Piperidines* 

Product from Piperidine with 
Prepared from the Anilines m- or p_- Fluorobenzenes 
X X max e max \ max e max 

m-CH 3 256 12,200 — 
£-Cl 261 17,000 261 16,800 

m-Cl 249 13,900 249 13,600 

P_-F 248 9,300 249 8,650 

m-F 254 14,800 254 13,400 

m-Br 261 13,300 -- . 

p_-Br 263 17,100 * 263 17,200 

m-CF 3 259.5 14,000 259.5 15,000 

m-N0 3 250 20,500 251 20,000 

H 254 12,300 254 12,100 

*Isoctane solvent. 

was opened, and the contents poured into a 250-ml separatory funnel and 

extracted twice with 50-ml portions of ether. The ether layer was 

collected and extracted with 20-ml of water to get rid of any triethylene 

glycol. The ether is then placed on a rotary evaporator and the re­

maining material was either distilled, sublimed, and/or analyzed by gas-

liquid chromatography. Those products which were distilled are in Table 

29. The W-^-feromophenyl)-piperidine was sublimed at 6l°C, m.p. 73_74°C. 
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Table'29» N-(m- or £-XrPhenyl)-piperidines Isolated from the Reaction of 
Piperidine -with the Corresponding m- or j)-Substituted 
Fluorobenzenes in Triethylene Glycol at 194.5°C. 

X~" . Boiling Point Melting Point 

H 92°C @ 0.5 mm 

m-F 8l.5°C @ 0-5 mm 

p-Cl 110°C @ 0.5 mm 64-66°C 

m-N02 157°C @ 2 mm 

P_-F 75°C @ 1 mm 

m-OH 120°C @ 1 mm 120-122°C 

m-Cl ! 70°C @ 1.5 mm 

p_-CH3 - 106°C @ 1-5 mm 

m-CF 3 81-83°C @ 0-5 mm 

m-CH 3 110°C @ 1 mm 

The reaction with p_-nitrofluorobenzene was over in about 20 minutes at 

room temperature. The product isolated was recrystalized from methanol, 

m.p. 99-101°C All of these products were compared to the products made 

from the anilines by means of n.m.r.,- IR, UV", and gas-liquid chromatog­

raphy. In all cases the corresponding products were identical, with no 

rearranged products indicated. In the cases of m-fluoroidobenzene and 

m-bromofluorobenzene the products were identified by gas-liquid chroma­

tography. 
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The products of similar reactions of substituted bromobenzenes 

(H, m-Br, P_-Br, m-Cl, £-Cl, m-I, p_»I, m-N0 2 ) at 205°C and m- and p_-

chloroidobenzenes, chlorobenzene, and iodobenzene at 195°C were identi­

fied by gas-liquid chromatography. 

In order to check for displacement by piperidine of both halogens 

in dihalobenzenes, m-dipiperidinobenzene was synthesized. Into a 70-ml 

glass ampoule was placed 3*8 g N-(m-fluorophenyl)-piperidine, 11.1 g 

piperidine, and 37•3 g of triethylene glycol. The ampoule was sealed 

and heated to 257°C for three days. After reaction the sample was 

worked up as the other fluorobenzenes had been and distilled on Bantam 

Ware. A yellow oil (0.5 g) "was collected at l85-190°C and 0.5 mm, a 

10% yield. The product m-dipiperidino-benzene was identified by n.m.r., 

mass spectrometry, and gas-liquid chromatography. 

Further Studies of the Products from Nucleophilic Displacements by 
Piperidine 

These studies are principally gas-liquid chromatography studies. 

In all the nucleophilic displacement reactions the products were checked 

by GLC with the known compounds made from the anilines. Checks were also 

made for rearranged products which would be indicative of a benzyne re­

action. No rearranged products were found. A GLC check was also made 

for reduction of the halobenzenes, e.g., iodobenzene to benzene. 

A GLC study was made to determine if rearranged products were 

present in the reaction of certain substituted fluorobenzenes (m-N02, 

m-F, £-F, m-I, P_-I, m-OR") since the corresponding m and £ isomers of the 

products could easily be separated on an SE30 column. A check for any 

o products was made only in the reaction of m-diiodobenzene with piperidine. 
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In no case was any rearranged products observed within one to three per 

cent accuracy. The m and p isomers of the chloro, bromo, and methyl 

products could not be separated by GLC A check was made for re­

arrangements in the reaction of m and p_-fluoro toluenes with piperidine 

by n.m.r. The methyl peaks of the m and p products appeared at differ­

ent tau values as shown by mixing the two products and determining the 

n.m.r. Within a few percent accuracy no rearranged products were found* 

It is possible that any benzyne intermediate may be intercepted by tri­

ethylene glycol. This aromatic ether would be readily dealkylated to 

the phenol by piperidine. Although no check was made for this reaction, 

it would be difficult to interpret any products observed as being pro­

duced by any benzyne intermediate since the corresponding alkoxide of 

triethylene glycol (ROH + CgR^ ̂  ^ RO* + C B H 1 2 N + ) could also react by 

direct substitution. 

Reductive halogen removal appeared to occur in all reactions where 

a bromine or iodine was present, the removal of iodine being faster than 

bromine. Wo chlorine or fluorine reductive removal was observed. The 

reduction occurred on both reactants and products. The mechanism is not 

a homolytic cleavage of the carbon halogen since no benzene was produced 

when iodobenzene and triethylene glycol were heated at 2kO°C for 2k hours. 

Also, the amount of reduction increased with time as the piperidine con­

centration decreased. Another point concerning reduction is that N-(p-I-

phenyl)-piperidine was reduced much faster than p_-diiodobenzene. When 

iodobenzene ( 0 . 6 ; g), piperidine hydrochloride ( 0 . 0 7 g), and TEG ( 5 . 7 g) 

were heated to 2.40°C for 2k hours a substantial amount of benzene, was • 

formed. • This data is more consistent with a mechanism (Eq. l) where there 
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is proton attack on the ring to form a sigma complex with subsequent 

nucleophilic displacement on iodine by iodide, rather than a mechanism 

of nucleophilic displacement on iodine in iodobenzene by piperidine 

which would go by a carbanion mechanism. 

I I H 

H H 

In the reactions where rate constants were obtained, reduction 

was no greater than 1 0 per cent on any reactant. The iodobenzene re­

action at 2 2 3 ° C gives about seven percent benzene. The reaction with 

bromobenzene at 2 2 3 ° C gives less than one per cent benzene. The reac­

tion of p_-dibromobenzene at 2 0 5 ° C with piperidine in TEG gives 1 0 

per cent bromobenzene. In other reactions where rate constants were 

obtained, the reduction of bromine or iodine in the reactant was less, 

usually one to two per cent. The reductive removal of bromine or 

iodine in the products was greater than in the reactants although the 

meta halogen was much less reductively removed than the para halogen in 

the products. The reaction of m-dibromobenzene at 2 0 5 ° gives less than 

one per cent N-phenylpiperidine, whereas p_-dibromobenzene gives more 

N-phenyipiperidine. The reduction in all these reactions was not 

enough to affect the rate plot since the plots remained linear. 

An extended GLC study was made of mixed dihalobenzenes in order 

to determine the amount of displacement of each halogen. In each case a 

reaction sample was made up about 0 . 5 0 molar in the dihalide and 1 . 2 - 1 . 5 
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molar in piperidine in triethylene glycol. These samples were heated up 

to 1 9 5 ° (except m- and p_-bromochlorobenzene at 2 0 5°C) to a time amount­

ing to kO-60 per cent reaction as determined from the kinetic data*. The 

samples were opened and poured into a round bottom flask and 1 5 0 - m l of 

water added and continuously extracted with ether for a minimum of 1 6 

hours. The extract was placed on a rotary evaporator and the residue 

subjected to a GLC analysis. The per cent of each product was deter­

mined by gas chromatography by cutting out the peaks and weighing rthe 

paper. Three GLC's were run for each reaction. 

A complication in determining accurate percentages was taking 

into account the reduction of a bromine or iodine in the products. In 

all the reactions except p_-halofluorobenzenes the products were well 

separated on the gas chromatograph. In the p_-halofluorobenzenes the 

products, (N- (p_-f luorophenyl)-piperidine produced from displacement of 

chlorine, bromine, or iodine and N»phenylpiperidine produced by reduction) 

could not be separated on GLC. Another procedure was used to check that 

peak. Since these two products don't separate on the gas chromatograph, 

one can inject the reaction mixture into the gas chromatograph connected 

to a mass spectrometer and take a spectrum of the peak containing N-

phenylpiperidine and/or N-(p_-fluorophenyl)-piperidine. The height of 

the parent ions gave the ratio of the two products from which a per cent 

may be calculated. It was shown that the mass spectrum of N- (p_-fluoro­

phenyl) -piperidine gave no peak at the parent ion of N-phenylpiperidine. 

The results showed no reduction occurred in the reaction of p_-chloro-

fluorobenzene. The only peak observed in the mass spectrum was that of 

N-(p_-fluorophenyl)-piperidine. In. the p_-bromofluorobenzene reaction 
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the mass spectrum sho-wed this peak to be 75• 6 per cent p_-fluoro product 

and 24.4 per cent N-phenylpiperidine. In the reaction of p-fluoroiOdo-

benzene the mass spectrum of this VPC peak showed 12.4 per cent p_-fluoro 

product and 87«6 per cent N-phenylpiperidine. From this data and the 

gas chromatograph data the actual percentage of N-(p-fluorophenyl)-

piperidine could be obtained. This GLC-MS technique was not necessary 

with m-halofluorobenzene since N-phenylpiperidine and N- (m-fluorophenyl)-

piperidine can be separated on the gas chromatograph. 

A check was made to see if the per cent N-phenylpiperidine calcu­

lated from the peak heights of the MS of N-phenylpiperidine and N-(p-F-

phenyl)-piperidine correlated with a known mixture of these two compounds 

N-Phenylpiperidine (0.0399g) and N-(p_-F-phenyl)-piperidine (O.O3989) 

were weighed into a vial and mixed. The GLC-MS was then run. From the 

known weights 52°7$ N-phenylpiperidine was calculated to be in the mix­

ture. From the parent peak heights in the MS an average value of 58$ 

N-phenylpiperidine was calculated. Thus, the MS gave a value 9»3$> too 

high for the N-phenylpiperidine. Hence, the correct values for the VPC 

peak containing these two compounds were (24.4$)(90.7) = 22$ for N-phenyl 

piperidine and 78$ for N-(p-F-phenyl)-piperidine in the p_-bromofluoro­

benzene reaction. For the p_-fluoroiodobenzene reaction the values be­

came 79$ for N-phenylpiperidine and 21% for N-(p-F-phenyl)-piperidine. 

In the reactions of m-bromofluorobenzene, m-chlorofluorobenzene, 

m-fluoroiodobenzene, m-bromochlorobenzene, and m-chloroiodobenzene no 

reduction product was observed. In the reaction of p_-bromochlorobenzene 

4.7 per cent of the total products was N-phenylpiperidine and was assumed 

to come from N- (pj-bromophenyl)-piperidine. In the reaction of p_- ' :*. 
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chloroiodobenzene, the N-phenylpiperidine was assumed to come from N-(p-

iodophenyl)-piperidine. In the reactions of m- and p_-bromoiodobenzenes 

the N-phenylpiperidine (less than 3 per cent of the total products) ob­

served was not taken into account since both the iodo and bromo products 

are capable of reductive removal of halogen. It was not necessary to 

consider reduction of the reactant, p-bromochlorobenzene to chloro­

benzene, in the product analysis since the monohalobenzenes react much 

slower than the dihalobenzenes. 

The results of this mixed dihalobenzene study are in Table 3 0 ° In 

all these reactions of dihalobenzenes there was a peak in the gas chromato 

graph for dipiperidinobenzene which was usually one to two per cent of 

the total products. 

There is good precision in the values in Table 3 0 - The value 

found for chlorine displacement in p_-chlorofluorobenzene varied 0 . 2 7 - 0 . 3 1 $ 

varied 7 3 • 4 - 7 5 " 2 $ . In m-fluoroiodobenzene the value for fluorine dis­

placement varied 8 8 . 0 - 8 9 « 2 $ . The attenuation factor was four which 

occurred between the peaks of the products of the p-chlorofluorobenzene 

reaction, the difference in attenuation for other reactions being two 

or one. Also, a mixture of N-(m-F-phenyl)-piperidine ( 1 9 « 5 mole $) and 

N-(m-Br-phenyl)-piperidine was made up and the GLC determined. The 

weight of the peaks cut out showed the mole $ of the fluoro compound to 

be 1 9 . 7 $ . 

As noted earlier, N- (m- and £-iodophenyl)-piperidine could not be 

prepared from the anilines. These products were prepared by the reaction 

of piperidine with diiodobenzene. In a small glass ampoule piperidine 

(6-ml) and p_-diiodobenzene ( 0 . 6 g) were placed and heated to 1 9 5°C for 
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Table 3 0 . Experimental Per Cent Displacements in Mixed Dihalobenzenes 

Para Compounds % Meta Compounds i 
Fluorine Displacement 9 9 . 7 1 Fluorine Displacement 9 7 . 0 9 
Chlorine " 0 . 2 9 Chlorine " 2 . 9 1 

Bromine " 8 0 0 8 7 Bromine " 8 3 . 3 1 
Chlorine " 1 9 . 1 3 Chlorine " 1 6 . 6 9 

Bromine " 1 . 0 6 Bromine " 1 0 . 6 
Fluorine " 9 8 . 9 ^ Fluorine " 8 9 . 1 + 

Iodine " 7 1 + « 5 Iodine " 8 3 . 7 2 
Chlorine " 2 5 . 5 Chlorine " 1 6 . 2 8 

Iodine " 3 . 0 0 Iodine " 1 1 . 3 
Fluorine " 9 7 . 0 0 Fluorine " 8 8 . 7 

Bromine " 6 0 . 6 Bromine " i+8.0 
Iodine " 394 Iodine " 5 2 . 0 

for 1 5 hours. The sample was then analyzed by GLC. The reaction was 

worked up by adding 50-ml of water and removing the solid by filtration. 

The solid was dissolved in ether and extracted with ten per cent hydro­

chloric acid. The aqueous layer was made neutral, cooled in an ice bath, 

and filtered. This solid is sublimed at 5 0 ° C in vacuo. There was-

collected 0 . 1 5 5 grams of N-(p_-iodophenyl)-piperidine, m.p. 7 3 - 7 ^ « 5 ° C . 

Similarly, in a 50-ml ampoule were placed 5 g m-diiodobenzene and 

33-ml piperidine, then sealed, and heated at 2 0 0 ° C for 1 9 hours. After 

reaction no work up was carried out but the reaction mixture was analyzed 

by gas liquid chromatography. It was shown that the product, N-(m-
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iodophenyl)-piperidine, contained no para product within three per cent 

accuracy.. The GLC also showed peaks for iodobenzene, N-phenylpiperidine, 

and m-dipiperidinobenzene. 

The last study of mixed dihalobenzenes was the reaction of sodium 

methoxide with p_-bromof luorobenzene. This reaction was run to show that 

P_-fluorine is deactivating not only with amine nucleophiles but also 

with alkoxides» Sodium (0.2 g) was reacted with anhydrous methanol 

(6-ml) and then 1.5 g of p_-bromofluorobenzene was added. This solution 

was sealed in a glass ampoule and heated_to l80°C for three hours. After 

reaction concentrated HC1 was added until the solution became acidic. 

Then the solution was analyzed on the gas chromatograph to get the per 

cent displacement of each halogen by weighing the peaks cut out of the 

gas chromatograph chart. The results showed 99«96 per cent displacement 

of fluoride and 0.04 per cent displacement of bromide. The products 

analyzed were the anisoles, since no measurable quantity of the phenols, 

p_-fluorophenol and p_-bromophenol, could be detected in the gas chromato­

graph. 

Deuterated Compounds 

The preparation of piperidine-l-d followed the procedure of Heacock 

and Marion (l67)« In a beaker containing cold piperidine (35-ml), 20 

per cent HC1 was added until about pH five (Litmus paper) was reached. 

This solution was put into a 500-ml round-bottomed flask and warmed to 

60°C and the water pulled off by a vacuum pump. A powdery white solid 

remained. To this solid was added 25-ml D 20 and warmed to 80°C for 15 

minutes, while shaking. Then the water was again removed under pressure. 

This was repeated twice. Then to the dry salt was added 15-ml» D s0 and 
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and then NaOD in D 20 until pH 12 was reached. This solution was poured 

into a dropping funnel. This dropping funnel was fitted to a 500-ml round 

bottom flask flushed with N 2 containing 200-ml of anhydrous ether and 

clean sodium (25 g)° The piper idi.ne-D20 solution was added to the ether 

dropwise, keeping the ether in an ice bath. After addition, the solu­

tion was distilled from sodium and 25-ml piperidine-l-d was collected 

at 104-105°C/745 mm. The n.m.r. showed 97 per cent deuteration. 

The NaOD in D 20 was prepared by adding D 20 dropwise to 100 ml of 

dry tetrahydrofuran containing sodium. After addition, the tetrahydro--

furan was removed by distillation. 

Thiophenol-8-d was prepared by shaking thiophenol (10-ml) with 

50-ml of D a0 and a few drops of concentrated hydrochloric acid at room 

temperature for 15 minutes. The thiophenol was separated with a separa­

tory funnel and distilled. The n.m.r. showed 92 per cent deuteration. 

Fluorobenzene-4-d (l68, 169) "was prepared by a Grignard reaction 

with p_-bromofluorobenzene. The apparatus consisted of a 250-ml round-

bottomed flask with three necks. In these necks was fitted a dropping 

funnel, a mechanical stirrer, and a condenser joined to the flask by an 

elbow which allowed the condenser to be used for refluxing or distillation. 

All the glass parts had previously been cleaned in basic cleaning solu­

tion and dried in an oven overnight at about 100°C. The magnesium turn­

ings were rinsed in anhydrous ether and placed in the oven overnight. 

The apparatus was assembled and magnesium (6.1 g) was added. The system 

was flushed with dry nitrogen which was bubbled through concentrated 

sulfuric acid. A crystal of iodine was added to the magnesium. Then 

100-ml of anhydrous ether (Fisher), which had been dried further over 
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sodium, was added to the flask and a drying tube containing P 2 0 B was 

fitted to the reflux condenser. The dropping funnel contained 2k*6 g of 

p_-bromof luorobenzene. The halide was added over a one hour period, 

maintaining a gentle reflux, and then the entire mixture refluxed for 

one additional hour. Another dropping funnel was put on containing 

DgO ( 2 . 5 - m l ) . The D 2 0 was added, maintaining a gentle reflux. Using 

a steam bath the ether and deuterated fluorobenzene were distilled 

off. This mixture was then distilled through a Wester Faust spinning 

band column to give -1+.5 g of fluorobenzene-^-d. By mass spectrometry 

the compound showed to be more than 9 9 per cent deuterated. 

A similar reaction was carried out on m-bromofluorobenzene ( 1 9 » 3 

g) and magnesium ( 1 2 g) to obtain fluorobenzene ( 6 . 1 g). This compound, 

fluorobenzene-3-d, distilled at 8 2 . 5 ° C - 8 3 . 0 ° C at 7 ^ 5 mm and was 9 8 per 

cent deuterated. 

A similar Grignard reaction was carried out on .N- (p_-bromophenyl)-

piperidine. This compound was prepared by heating piperidine ( 3 2 . 6 g) and 

p_-dibromobenzene ( 1 5 « 6 g) in a sealed glass ampoule at 1 9 5 ° C for two days* 

By distillation 1 5 . 2 g of W-(p-bromophenyl)-piperidine was obtained. For 

the Grignard reaction 3 0 g of the bromo compound was used and a 50-fold 

excess of magnesium. The setup was the same as before except that tetra­

hydrofuran was used as the solvent instead of ether.' After reaction and 

addition of D S 0 , the THF solution was poured off. The solid remaining 

in the flask was rinsed with THF and the two liquid portions were combined. 

The THF was removed on a rotary evaporator and the distillation with 

Bantam Ware gave 9 . 5 g of N-(phenyl-4-d:)-piperidine with 9 7 $ deuteration. 
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Kinetic. .Procedures and Related Studies 

This first procedure was used for all the second order rate data, 

except p_-fluoronitr ©benzene. The reaction solution was made up in a ^O-ml 

volumetric flask. The flask was weighed and then fluorobenzene, piperi­

dine, and triethylene glycol are then weighed, respectively, into the 

flask. Before getting the final weight, the flask was equilibrated for 

ten minutes at 2 5 » 0 ° C and then filled to the mark with TEG. The flask 

was shaken to insure mixing. From this solution seven ampoules were 

made up containing six to seven milliliters of solution. The ampoules 

were flushed with nitrogen and sealed. These ampoules were placed in 

the oil bath at the proper temperature and an initial sample was re­

moved after two minutes. Only in the reaction of m-fluoronitrobenzene 

at 1 9 5 ° C was it necessary to take into account the initial warm up 

period, which was determined to be 8 0 seconds. After the ampoules were 

taken out of the bath and. cooled, they were opened and approximately 

three milliliters of the sample were taken up with a pipette and placed 

in a 50-ml beaker which has been previously weighed. After obtaining 

the weight of the sample, a one inch stirring bar and 1 5-ml of water 

were added. The sample was titrated immediately with perchloric acid 

to pH 6 . 5 ° This was the end point determined for the titration of piperi­

dine. This end point was satisfactory because product titration was un­

important at that pH, except for the p_-amino or p_-hydroxy products. Each 

ampoule allowed two titrations. 

The reactions were allowed to proceed no more than h0% comple­

tion. This was necessary to minimize any salt effect produced by the 

build up of the piperidine hydrohalide salt. The concentration of the 
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aromatic halide-was 0.5-0.55 molar and piperidine was 1.3-2.5 molar. 

At these concentrations a significant amount of halide ion was produced. 

Very little decomposition was noted in these reactions. The solutions 

did develop a very pale yellow color when heated and it was this color 

which prohibited a colorimetric fluoride titration. A small amount of 

etching occurred when fluoride ion was produced. For this reason also 

the reactions were limited to k-0 per cent completion. 

The ampoules were made from Pyrex glass. At temperatures below 

230°C a 19 millimeter standard wall type was used while above 230°C a 

3/h inch heavy wall type was used. 

A few miscellaneous experiments were carried out which were 

related to the kinetic procedure. One was a check on the decomposition 

of the reaction solution. Piperidine and triethylene glycol were heated 

up to 195°C and the piperidine was titrated to determine if any base 

had been lost. In a 50-ml volumetric flask was placed piperidine (5«5g) 

and TEG (U8.8g) at 25°C, the volume of the solution being 50-ml. Six 

reaction ampoules were made up, each containing about six milliliters. 

An initial sample was titrated and a sample was taken out of the bath 

each day for five days and titrated. The difference between the first 

sample and the last was 0.18 ml out of 27-ml. Although the solution 

became light yellow, decomposition to any appreciable extent was not 

apparent. 

From activation energy data the rates of bromobenzene and fluoro­

benzene at 225°C are 5.9 x 10~3M~'1hr~1 and 5-25 x 10~3M" 1hr~ 1. These 

rate constants are based on titration of piperidine. It was of interest 

to check these rate constants by a method based on the products. This 
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was easily done by making up the reaction solutions of bromobenzene and 

fluorobenzene exactly the same. After reaction the same quantities of 

each solution were injected into the gas chromatograph. The relative 

peak areas of the product of each reaction gives the relative rates. 

Based on a 50-ml volume, the reaction solutions were made up exactly 

0.553 molar in halobenzene and I.58O molar in piperidine. The sealed 

ampoules were heated to 225°C for 68 hours. After reaction the two 

reaction solutions were analyzed by GLC. Three samples, each of two 

microliters, were injected into the GLC. The peak areas were cut out 

and weighed. The relative rate ratio obtained was Br/F = O.98. This 

is within 10 per cent error of the results of the titration method. 

A reaction was carried out to show that these high temperature 

reactions approach 100 per cent completion. A reaction ampoule was 

made up of m-difluorobenzene (2«8g), piperidine (ll.Ug), and TEG (38.8g). 

The ampoule was heated to 205°C for k2 hours. The sample was worked up 

by adding water and extracting with ether. After ,the ether was taken 

off the residue was analyzed by GLC, specifically the relative peak 

areas N-(m-fluorophenyl) piperidine and m-dipiperidinobenzene were ob­

tained. Then the residue was distilled on Bantam Ware and 4.06g of 

N-(m-fluorophenyl) piperidine was obtained. From this data and the GLC 

data, 97-7 per cent of the total products, calculated on the basis of 

m-difluorobenzene, was accounted for. This was good evidence that these 

reactions are well defined, barring the presence of reductive halogens 

(bromine and iodine). ' 

These data also shows that an equilibrium between TEG and piperi-

dine (R0H + CgH^N «- R0 + C 5H 1 2N ) is not appreciable, or the total 
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reaction products with piperidine would have been lowered by alkoxide 

reaction with m-difluorobenzene. This conclusion is also drawn from the 

fact that the dielectric constant of TEG is so low as not to favor any 

charge build up as in the above equilibrium. 

The next procedure describes the reaction of p_-nitrofluorobenzene 

with piperidine in TEG. A known amount of p_-nitrofluorobenzene was 

weighed into a 50-ml volumetric flask and filled to the mark with TEG, 

which had been equilibrated at 2 5 « 0 ° C . A similar flask was made up for 

piperidine. The two volumetric flasks were placed in the bath. For 

other reaction temperatures they were made up at those temperatures. Now 

two five milliliter syringes were calibrated for three milliliter volumes<> 

From the average weights of these volumes of TEG and the known density 

( 1 . 1 2 5 - + , Handbook of Chemistry and Physics, k l s t Ed.) of TEG, a true 

volume is calculated. From, the piperidine solution three milliliters 

were syringed into a 25-ml, Erlenmeyer flask which has a stopper and a 

magnetic stirring bar (water driven stirrer)» Then three milliliters of 

the fluoro solution is injected, the timer being started at half injec­

tion. The reaction mixture was quenched by quickly pouring 15-ml.of 

iced water into the reaction flask and then titrated immediately. This 

method does not require any density correction. 

The next procedure was one in which piperidine was the nucleophile 

and the solvent. Conditions were set up to run under pseudo-unimolecular 

conditions. For example, the relative rates of the monohalobenzenes in 

piperidine may be obtained by making up reaction ampoules which contain 

the same number of moles of halobenzene and piperidine. All samples 

react for the same time period. Since the product was the same in these 
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cases, the relative rates may be obtained by injecting the same sample size 

(two microliters) into the gas chromatograph. The weight of the cut out 

product peaks is proportional to the relative rates. 

There were two reaction samples for each compound and two GLC's 

run for each sample. The reaction samples were made up by weighing the 

materials directly into the ampoules. In the first series of reactions, 

monohalobenzenes (0.0051 mole) and piperidine (5»91go, 0.0695 mole) were 

heated to 196°C for 22 hours; in the second series m-nitroholobenzenes (0.00525 mole) and piperidine (O.O67 mole) were heated to l68°C for kO 

minutes; in the third series p-halotoluenes (0.00206 mole) except p_-

iodotoluene, and piperidine (0.0̂05 mole) were heated to 237°C for 2h 

hours. All these samples were analyzed by determining the GLC's, cutting 

out and weighing the product peaks. 

Treatment of Kinetic Data 

The kinetic expression used to calculate the second order rate 

constants is Eq. 2 (170), 
B A - x 

m =kt (2) 2 A - B A B - 2 x o o 00 
where 2 x is the decrease in piperidine concentration with time. Aq is 

initial halogen concentration and B is the initial piperidine concen­

tration. The stoichiometry of the reaction is A + 2 B .-* C + D, where A 

is halogen and B is piperidine and D is the piperidine salt. The kinetic 

expression may be simplified for plotting (Eq. 3)« Then one can plot 
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B A 
log + i 0g J 

A - x 
2x "2.303 

kt (2A - B ) o o (3) 
o o 

Then one can plot log (A - X / B q - 2x) against time and the slope is 

^ Q n Q (2A - B ). A typical rate data sheet is given in Table 31- T n e 

the solutions were made up on a weight basis. It is a simple matter to 

change to a volume basis. The weight and the volume at 25°C is known 

for the original solution; hence, the density is known. First a small 

volume correction is applied to correct the density to the reaction 

temperature. Then it is a simple matter to calculate how many milliliters 

are in three grams of solution (z). 

glycol to represent the reaction solution (see Appendix A). A 50-ml 

volumetric flask of TEG was made up at 22°C and weighed. It was then 

equilibrated at 48°C and the excess TEG above the mark was taken out and 
the flask weighed. This was also done at 72°C. The weight at each 

temperature was then plotted against temperature and extrapolated to 

the reaction temperatures. The weight of 50-ml of TEG at 25°C divided 

by the weight of 50-ml at the reaction temperature, say 195°0, is then 

the density correction factor. The values obtained at different tempera­

tures are 195°C, 1.128; 204.5°C, 1.135; 223.5°C, 1.142; 239.5°C, 1.167; 

257°C, I.183. 

One other kinetic expression must be explained. In the case of 

mixed dihalobenzenes, e.g., p_-bromofluorobenzene, either halogen is 

capable of being displaced. It is still possible to determine the rate 

The density correction factor was obtained using triethylene 
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Table 31. Rate Data Sheet 

Nucleophile (b): Piperidine ~~ 
Halide (a): p_-Difluorobenzene 

Temperature: 195°C 

M(b) 1.9107 
M(a) 0.5275 

Aliquot: 3 ° Q grams* 
Sam- Ml of 
pie HC10 4/ 

3g 
mm 
(B q-2X) 2x 

log 
A -x/ A Q-x/ Time 

2x/2 A -x/3g B°-2x B -2x (hr. ) 

1 23° 41 5.3181 0 0 1.4682 0.2761 0.5590 0 

2 22.45 5.1004 0.2177 0.1088 1.3594 0.2665 -0.5742 49.6 

3 21.36 4.8534 0.4647 0.2323 1.2359 0.2546 -0.5941 117.6 

4 20ol4 4.5769 0.7412 0.3706 1.0976 0.2398 -0.6201 197.5 

5 19 .11 4.3418 O.9762 0.4881 0.9801 0.2257 -0.6464 285.6 

6 18.03 4.0969 1.2212 0.6106 0.8576 0.2093 -0.6792 381.7 

Density Correction Factor = 1.128 Slope = 3.062 x:10~4hr 

x(g/50 ml) = 53.893 (25°C) k = S

2

l0/e_X

B

2'3°3 = 2.961 x 10~ 4 3g/mmxhr 
o o 

x'(g/50 ml) = ^ T | H = 47.777(195°C) k' = k-z = 9.294 x l O ^ M ^ h r - 1 

y(g/l ml) = 0.9555 kJ(stat.corr.) = 4.65 x lO^M^hr' 

Z(ml/3g.) = 3.139 

*Each aliquot was only approximately three grams. After titration the ml 

of HC10 4 used was then calculated for exactly 3"0 grams in order to put 

all samples on the same weight basis. 
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constant for each halide by knowing the total rate constant which comes 

from the titration of the total piperidine lost. The total rate constant 

is simply determined as in other reactions and this value is multiplied 

by the per cent of each product (Table 30) to obtain the individual rate 

constants. The total rate constant, obtained by titrating piperidine, is 

a true value whether the halogens react 99:1 or-50:50. This is true be­

cause both reactions depend on the same reactants. This is expressed 

in the following equations, using p_-bromofluorobenzene as an example. 

The value k^ is the rate constant for loss of fluoride, k ^ , the rate 

constant for loss of bromide, k T, the total rate constant, and A and B, 

the concentrations of piperidine and p_- fluo rob enz ene, respectively. 

|£ = ^ (A)(B) + k^. (A)(B) (h) 

i- + V (A)(B) (5) 

|f = (A)(B) (6) 

wher 

Reactions with Deuterated Compounds 

The purpose of these reactions is to look for deuterium exchange 

on the intermediate Meisenheimer complex. 

The first compound studied was fluorobenzene-4-d. The reaction 

studied was that of fluorobenzene-4-d with piperidine in triethylene 
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glycol. Five reaction ampoules were made up from a solution of fluoro-

benzene-4-d (2»3g°, 0.0237 mole), piperidine (4.6go, 0.0574 mole), and 

TEG (57°0g., O . 3 8 O mole). They were reacted at 223°C and samples taken 
out at 4, 7°6, 16.2 , 26.2, and 44 hours, the last sample corresponding 

to 35 per cent reaction. The last sample was cooled and opened. The 

ampoule was connected to a vacuum pump and the piperidine and unreacted 

fluorobenzene collected in a dry ice acetone trap. The trap was a pre­

parative gas chromatograph collection tube. This collected material 

was injected into the mass spectrometer. Compared to a pure sample of 

fluorobenzene-4-d there was no change in the relative heights of the m and 

m 1 peaks. No exchange occurred on the reactant. The solution left in 

the ampoule was poured on water, extracted with ether, and placed on a 

rotary evaporator. The residue was injected into the mass spectrometer 

and showed about 50 per cent deuterium exchange in the product. In 

order to determine if this was exchange on the product or the intermediate, 

it.was necessary to make a time study of the product. If a plot of per cent 

hydrogen in the product against time goes to zero, then exchange occurred 

in the intermediate. The remainder of the samples was :• analyzed and per 

cent hydrogen in the product was calculated to be 48 per cent at 44 hours, 

24.5 per cent at 26.2 hours, 12.6 per cent at 16.2 hours, 6.66 per cent 

at 7«6 hours, and 5° 75 per cent at 4 hours. A second reaction showed 

the following per cent hydrogen at the given times: 23-2 per cent at 

26.0 hours, 14.7 per cent at 15«9 hours, 9-25 per cent at 7«8 hours, and 

8.23 per cent at 4.2 hours. Ampoules were made up from a reaction solu­

tion of fluorobenzeye-4-d (2«3g°, 0.0237 mole), piperidine (4.4g, O.O518 

mole), and TEG (57»5g, 0.384 mole). Extrapolation to zero time showed 
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7.00 per cento The peak heights from the mass spectra were obtained from 

a five AMU expansion around the parent ion. The whole spectra included 

only six AMUo In the following mass spectral analysis use the assign­

ments below. The mass spectral analysis for the per cent hydrogen :". 

160 = (m - 2)D 

160 = (m - l)„ 

ii' 
161 = (m - 1)D 

162 =-m^ 1 

incorporation in the product N-(phenyl-4-d)-piperidine was complicated 

by the fact that the (m - l)^ peak was greater than the m^ peak. How­

ever, the per cent hydrogen could be found easily if the analysis is 

based on the (m - l)^ and (m - l)^. peaks. ' Since the (m - 2)̂ peak is 

negligible, any peak at 160 represents the (m - l)^. If the value at 

ii 

160 is multiplied by the m^/(m ratio in pure N-phenylpiperidine, 

the resulting value represents the amount of m^. peak in l6l. Subtract-
n 

ing the value from the total value at 161 gives the amount of (m - l)^ 

in l6l. Thus, the per cent hydrogen in the product is calculated from 
the (m - l ) ^ and (m - l)^ values. The plot of per cent hydrogen against H JJ 

time gave an average value of 6»31 per cent hydrogen at zero time. This 

number is small, but if real this does provide a new insight into deter­

mining intermediates in aromatic nucleophilic substitution. 

It was possible to show that exchange does indeed occur on the 

product. A reaction sample of piperidine (0.72g), N-(phenyl-4-d)-piper-
dince (0.29), piperidine hydrochloride (0.06g), and TEG (7»6g) was made 
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Figure 1 . Plot of the Per Cent Hydrogen Incorporation 
into N-(Phenyl-4-d)-piperidine vs. Time in the Reaction 
of Piperidine with Fluorobenzene-4-d at 2 2 5°C in TEG. 
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up» This sample was supposed to represent the concentrations of the 

compounds at about 20 per cent reaction, with the absence of fluoro­

benzene. Piperidine was used as the base because it did not react with 

N-(phenyl-4-d)-piperidine by nucleophilic displacement. The ampoule was 

heated to 223°C for 55 hours and the phenyl piperidine extracted and 

analyzed as before. The mass spectrum showed 50 per cent exchange. 

Fluorobenzene-3-d was also reacted with piperidine and checked 

for deuterium exchange. It was thought that the reaction intermediate 

could cyclize in a thermal disrotatory fashion to intermediate I. Here 

the higher charge densities are located at the arrows. It would have 

N F 

D 
I 

been preferred to have had fluorobenzene-3, 5-d2<> Six reaction samples 

were made up from a solution of fluorobenzene-3-d (2»3g)j piperidine 

(4.8g), and TEG (58.kg). An ampoule was run at 223°C for kk hours and the 

contents analyzed as before. The mass spectra showed no exchange on 

fluorobenzene-3-d or on N-(phenyl-3-d)-piperidine. 

Then the activated compound pentafluorobenzene was used. Since 

nucleophilic displacement on pentafluorobenzene occurs greater than 

90 per cent para (10, 171-176) to the hydrogen, the intermediate complex 

would prefer to protonate at the position of the hydrogen. Reaction 

samples were made up from a solution of pentafluorobenzene (4.51g), 

piperidine-l-d (5.6g), and methanol-0-d to make 50-ml. The samples were 
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run 80°C and samples taken out at 1«7, 7, 14.2 , and 24 hours, the last 

corresponding to 50 per cent reaction Each sample was analyzed by 

pouring onto cold water extracting with ether, and placing on a rotary 

evaporator to remove the ether- The residue was analyzed by mass spectrom­

etry- The spectra showed complete deuterium incorporation in the product, 

N-(2,3,5,6-tetrafluorophenyl)-piperidine, at all times; therefore, this 

reaction system could not be used. 

A reaction was also run with pentafluorobenzene and sodium 

methoxide in methanol-0-d at 25° C. The reaction solution was made up by 

reacting sodium (0.68g) with methanol-0-d (30-ml). Pentafluorobenzene 

(4°33g) "was added and the solution quickly made up to 50-ml.'with methanol-

0-d. The solution as immediately thermostated at 25°C. Samples (4-ml) 

were withdrawn at intervals up to 2k hours. By titration the reaction 

was shown to have proceeded 30 per cent at 2k hours- The samples were 

expelled into ice water (50-ml) and extracted with ether. The ether was 

rotovaped and the oily residue was run on the MS. In all the samples 

there appeared to be complete deuteration in the product k-d-2,3,5,6-

tetrafluoroanisole. The deuterium exchange was concluded as occurring 

on the product and/or reactant and not on the intermediate complex. 

This conclusion is based on a mass spectral analysis of the product. 

Let m̂ . = 180 and m^ = l8lo The pure protonated product gave values for 

the peak heights m^ = 64.0 and (m- l)^. = 32- The product isolated from 

the reaction in methanol-0-d gave values m^ = 64.0 and (m - l)^ = 4-0-

A simple calculation showed that there was 1.2 per cent hydrogen in the 

deuterated product. If exchange had occurred on the intermediate com­

plex, and assuming only one exchange on the IC, then 
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have "been necessary to cause 98°8 per cent exchange. This value is very 

high, so exchange is occurring on the product. This system did not prove 

fruitful to study deuterium exchange on the IC. 

Therefore, thiophenoxide was used as the nucleophile because of its 

high nucleophilicity and low basicity. It was found that thiophenoxide 

reacted with pentafluorobenzene only very slowly at 25°C in methanol. 

A higher temperature was undesirable for fear of deuterium exchange on 

the reactant. A temperature less than 25°C would be better since the 

intermediate complex should be more stable at lower temperatures. There­

fore, a mixed solvent of methanol and dimethylformamide (Fisher Spectra-

analyzed) was used which allowed reactions to be run at -30°C. The bath 

used for these low temperature reactions was an Ultra Kryomat TK30D from 

Lauda Instruments. 

Pentafluorobenzene (4.5g) was weighed into a 25-ml volumetric 

flask and filled to the mark with dimethylformamide. Another solution 

was made up by reacting 0.68g of sodium with 20-ml of methanol-0-d. 

After sodium reaction this was poured into a 25-ml volumetric flask and 

3°5g of thiophenol-0-d was added and filled to the mark with methanol-0-d. 

The reaction solution was made up in a ten milliliter volumetric flask. 

Into the flask is placed six milliliters of DMF and two milliliters of 

the pentafluorobenzene solution. This was cooled to -60°C in a dry ice 

acetone bath and two milliliters of the thiophenoxide solution is added. 

The resulting solutions have a 10 per cent excess of thiophenol. This 

reaction solution was then placed in the bath at -30°C and allowed to 

react 22 hours, which was about 50 per cent reaction. After reaction, 

the solution was poured on iced water (the pH remained about 7*5) and the 
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oil in the "bottom of the beaker was taken up by microliter syringe and 

injected into the mass spectrometer* The samples checked showed prac­

tically no deuterium incorporation in the product, 2,3,5*6 tetrafluoro­

phenyl phenyl sulfide. The MS values for the pure protonated product 

are m^, 98-0 and (m + l)^, 15«5j> while the values for the product obtained 

from the deuterated solvent are m^, 98*3 and (m + l)^-, 17*0 

The conclusion was that no exchange occurred, but the very first 

time this reaction was run, exchange, on the product (about 60 per cent) 

was observed. New solutions of thiophenoxide in methanol-0-d and penta-

fluorobenzene in dimethyl formamide were subsequently prepared a number 

of times and the reaction solution made up. Since no exchange was ever 

found with subsequent solutions, it may be possible that the first solu­

tion did not contain a 10 per cent excess of thiophenol over thiophen­

oxide such that some sodium methoxide was present to cause exchange. 

The last compound studied was that of p_-f luoronitrobenzene. It 

was thought that protonation could occur at the two or six positions on 

the intermediate complex II. A thiophenoxide solution was made up exactly 

N S 

N = Nucleophile 
S =,S0 

N0 S 

II 

as before. Also, a solution of p_-fluoronitrobenzene (3«lg) in 20-ml of. 

DMF was made up. The same procedure was used here as with pentafluoroben­

zene. Reactions were run at -30°C for eight hours and at 0°C for 30 
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minutes- The work up was the same as pentafluorobenzene and the mass 

spectra showed no deuterium incorporation into the product,-k-nitrophenyl 

phenyl sulfide-
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CHAPTER III 

DISCUSSION AND RESULTS 

Rate Data 

Table.32 gives the 2nd. order rate coefficients for the reaction 

of aryl halides with piperidine in triethylene glycol at temperatures 

ranging from 194-257°Co The error in temperature at 194-233°C was 

± Oo 5 and. at 240-257° C the error wa s ± 0o8°C. 

Table 32° Second Order Rate Data for Reactions Carried Out in Triethy-
lene Glycol** 

Compound Molarity Molarity Rate Constant Tempera-
(Halogen) (Piperidine ) (M^hr" 1) ture °C 

Fluorob enz ene 0*5774 I.T879 1.18 x 10~ 3 194.5 
Fluorob enz ene O.586O 2.5718 1.01 x 10" 3 194.5 
Fluorob enz ene 0.5983 1.8659 1.09 x 10~ 3 194.5 
Fluorobenzene 1.0881 2.5036 8.91 x 10~ 4 195.4 
Fluorobenzene 0.5387 1-3736 1.929 x 10~ 3 204.5 
Fluorobenzene 0.5781 1.3538 .1.958 x 10" 3 204.5 
Fluorobenzene ^ 0.5769 1.5060 1.144 x io~2 239.5 
Fluorobenzene 0.5781 1.3451 1.09 x 10~ 2 239.5 
Chlorobenzene 0.5693 1.4198 5.82 x 10" 4 223.5 
Chlor ob enz ene 0.5760 1.4986 1.622 x 10~ 3 239.5 
Chlorobenzene 0.5771 1.2938 I.389 x 10~ 3 239.5 
Chlorobenz ene 0.5715 1.4145 3.708 x 10~ 3 257 
Chlorobenzene O.565O 1.4030 3.829 x 10" 3 257 
Bromobenzene 0.5798 1l.3560 1.946 x 10~ 3 204.5 
Bromobenzene 0.5739 1.3708 ' 5.606 x 10~ 3 223.5 
Bromobenzene 0.5817 1.3701 50618 x 10" 3 223.5 
Bromobenzene 0.5745 1.4538 1.50 x 10~ 2 239.5 
Bromobenzene 0.5763 1.3481 1.842 x 10" 3 204.5 
lodobenzene O.5626 . 1.4108 I.589 x 10~ 3 195 
lodobenzene O.56OO 1.3774 1.593 x 10~ 3 195 
lodobenzene 0.5636 1.3482 2.99 x 10~ 3 205.5 
lodobenzene 0.5772 ., 1.3^34 3.02 x 10~ 3, 205.5 
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Table 32° 

Compound Molarity 
(Halogen) 

Molarity 
(Piperidine) 

Rate Constant 
(M^hr" 1) 

Tempera­
ture °C 

Iodobenzene 0 . 5 6 4 9 1 . 4 0 6 7 9 . 5 5 7 x 1 0 ~ 3 2 2 3 . 5 
Iodobenzene 0 . 5 7 3 0 1 . 4 3 8 0 8 . 6 9 5 x 1 0 ~ 3 2 2 3 . 5 
p_-Fluorotoluene 0 . 5 4 0 2 1 . 1 8 0 4 I . 9 6 5 x 1 0 ~ 4 1 9 4 . 5 
p_-Fluor o t o luen e 0.5^-12 1 . 7 7 4 7 2 . 0 1 5 x 1 0 ~ 4 1 9 4 . 5 
p_Fluorotoluene; 0 . 5 3 6 3 2 . 4 4 9 0 I . 9 3 1 x 1 0 " 4 1 9 4 . 5 
m-Fluorotoluene 0 . 5 3 8 2 1 . 2 7 6 4 7 . 7 2 x 1 0 ~ 4 1 9 4 . 5 
m-Fluorotoluene 0 . 5 3 7 5 1.6873 8 . 1 4 5 x 1 0 ~ 4 1 9 4 . 5 
m-Fluorotoluene 0 . 5 2 3 1 2 . 1 5 0 3 7 . 5 1 3 x 1 0 ~ 4 1 9 4 . 5 
p_-Difluorobenzene* 0 . 5 2 8 5 i . 1 8 2 4 7 . 5 1 4 x 1 0 ~ 4 1 9 4 . 5 
p_-Difluorobenzene* 0 . 5 2 1 2 2 . 5 5 0 3 4 . 6 3 x 1 0 ~ 4 1 9 4 . 5 
p_-Dif luorob enz ene* O . 5 2 7 5 1 . 9 1 0 7 4.64 x 1 0 " 4 1 9 4 . 5 
p_-Chloro fluorob enz ene 0.5476 1 . 2 1 6 7 1 . 0 0 x 1 0 " 2 1 9 4 . 5 
p_~ Chloro fluorob enz ene 0 . 5 2 9 5 1 - 9 7 5 5 9 . O I 8 x 1 0 " 3 1 9 4 . 5 
p_-Chlorof luorobenzene 0 . 5 1 9 6 2.6884 7 . 9 1 5 x 1 0 ~ 3 1 9 4 . 5 
p_-Bromof luorobenzene O . 5 0 9 8 1 . 3 8 4 7 1 . 6 8 1 x 1 0 " 2 1 9 4 . 5 
p_-Bromof luorobenzene 0 . 5 4 0 1 1 . 3 1 4 5 1 . 6 5 0 x 1 0 " 2 1 9 4 . 5 
p_-Fluoro iodobenzene ̂  0 . 5 H 7 1 . 4 3 8 0 2 . 5 9 2 x 1 0 ~ 2 1 9 4 . 5 
p_-Fiuoro iodobenzene 0 . 5 2 1 2 1 . 3 7 1 1 2 . 7 8 x 1 0 " 2 1 9 4 . 5 
m-Difluorobenzene* 0 . 5 2 6 4 1 . 1 7 2 8 2 . 8 9 5 x 1 0 " 2 1 9 4 . 5 
m-Difluorobenz ene* 0 . 5 3 3 6 1 . 8 7 4 0 2 . 7 4 x 1 0 ~ 2 1 9 4 . 5 
m-Difluorob enz ene* 0 . 5 2 8 6 2 . 5 7 7 8 2 . 3 9 4 x 1 0 ~ 2 1 9 4 . 5 
m-Chlorofluorobenzene 0 . 5 1 9 8 I . 2 0 9 6 4 . 7 8 1 x 1 0 ~ 2 1 9 4 . 5 
m-Chlorofluorob enz ene 0 . 5 0 5 0 [ 1 . 8 1 1 8 3 . 6 2 8 x 1 0 ~ 2 1 9 4 . 5 
m-Chlorofluorobenzene 0 . 5 4 0 2 2 . 5 3 7 4 3 . 6 5 3 x 1 0 " 2 1 9 4 . 5 
m-Bromofluorob enz ene 0 . 5 1 1 5 1 . 3 9 5 4 6 . 5 6 3 x 1 0 ~ 2 1 9 4 . 5 
m-Bromofluorob enz ene 0 . 5 0 3 1 1 . 3 6 3 7 6 . 5 0 5 x 1 0 ~ 2 1 9 4 . 5 
m-Fluoro idob enz ene 0 . 5 3 9 9 1 . 5 6 3 6 ^.66^ x 1 0 " 2 1 9 4 . 5 
m-Fluoroidobenzene 0 . 5 3 6 5 1 . 6 4 9 0 5 . 6 3 8 x 1 0 ~ 2 1 9 4 . 5 
m-Fluorophenol 0 . 5 5 3 5 1 . 1 9 4 4 4 . 5 7 6 x 1 0 ~ 3 1 9 4 . 5 
m-Fluorophenol 0 . 5 5 2 4 1 . 8 4 0 5 3 . 9 9 2 x 1 0 ~ 3 1 9 4 . 5 
m-Fluoropheno1 0 . 5 5 6 8 2 . 3 8 2 3 3 . 4 1 x 1 0 ~ 3 1 9 4 . 5 
m-Fluorobenzotrifluoride 0 . 5 5 8 8 1 . 3 5 4 0 6 . 6 1 x 1 0 ~ 2 1 9 4 . 5 
m-Fluorobenzotrifluoride 0 . 5 5 2 1 1 . 9 0 1 6 6 . 1 8 5 x 1 0 ~ 2 1 9 4 . 5 
m-Nitrofluorobenzene 0 . 5 2 3 0 1 . 2 1 0 6 5 . 9 6 6 x 1 0 ~ 4 6 7 . 8 
m-Nitrofluorobenzene 0 . 5 1 5 7 1 . 2 3 5 9 4 . 8 8 6 x 1 0 ~ 3 9 3 . 7 
m-Nitrofluorobenzene 0 . 5 1 5 1 1 . 1 4 4 1 . 5 5 4 x 1 0 ~ 2 1 1 5 
m-Nitrofluorobenzene 0 . 5 4 4 5 1 . 3 6 2 8 0 . 9 2 9 2 1 9 5 
m-Nitrofluorobenzene 0 . 6 5 7 1 1.7746 0 . 9 5 8 2 1 9 5 
p_-Nitrof luorobenzene 0 . 5 5 5 4 I . 1 9 6 9 5 . 0 x 1 0 " 1 2 5 . 0 
p_-Nitrof luorobenzene 0 . 5 4 0 3 1 . 2 1 0 8 5 * 0 6 x 1 0 " 1 2 5 . 0 
p_-Ni t r o f luo rob enz ene 0 . 5 4 5 9 O . 9 8 7 8 2 . 2 1 5 0 . 0 
p_-Nit r of luorob enz ene 0 . 5 5 4 1 1 . 1 7 2 1 2 . 1 0 5 0 . 0 
p_-Mtrof luorobenzene 0 . 5 1 8 0 1 . 2 7 0 0 5 . 5 0 7 6 7 . 0 
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Table 3 2 . 

Compound Molarity Molarity Rate Constant Tempera-
(Halogen) (Piperidine) (M^hr" 1) . ture °C 

m»Bromofluorobenzene 
m-Nitrobromobenzene 

p_-Bromochlorobenzene 
m» Bromo chlorob enz ene 
m-Dibromobenzene 

p_~Dibromobehzene*- 0 . 5 6 1 + 9 1 . 5 8 2 3 I . I67 x 1 0 " 2 2 0 4 * 5 
0 . 5 6 2 7 1 . 3 8 0 8 6.91k x 1 0 " 3 2 0 4 . 5 
O . 5 6 1 6 I . 3 8 O 8 2 . 2 3 x l O " 2 2 0 4 . 5 
0 . 5 6 4 0 1 . 4 8 0 9 2 . 0 3 x 1 0 " 2 2 0 4 . 5 
0 . 4 9 2 8 1 . 4 5 9 8 1 . 0 0 2 x 1 0 ' 1 2 0 4 . 5 
0 . 5 0 0 2 1 . 4 0 1 8 0 . 2 6 6 3 2 0 4 . 5 

^Statistically Corrected 
**The rate constants for mixed dihalobenzenes are total rate constants and 
have not been multiplied by the per cent fluorine displacement in 

The Hammett plot may be used as a mechanistic tool. If all the 

points lie on a straight line, all the compounds are assumed to proceed 

by the same mechanism. If one point is far off the line, this compound 

is regarded as having a different mechanism of reaction. If the plot is 

curved, then either a change in the rate determining step (concave down) 

or a change in the mechanism (concave up) has occurred ( 1 7 7 , 1 7 8 ) . Some 

explanation may be helpful at this point. Let Equation 1 represent a 

reaction where C is an intermediate complex in aromatic nucleophilic 

substitution. Then kj is increased, by electron withdrawing groups and 

has a positive slope in Figure 1 . The value kg is speeded up by electron 

Table 30. 

Hammett Plot 

k<L ^ 3 A+B-> C - D + E (1) 
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releasing groups since the intermediate complex is destabilized. The rate 

determining step is the slow step in Figure 2 . The concave down dotted 

line represents the slow step found for each sigma value and a curved 

plot similar to this would represent a change in the rate determining 

step. 

The concave up case is illustrated in Figure 3 , where a change in 

mechanism occurs. Assume a reaction can go by two different mechanisms 

to produce the same product, depending on the substituent which path is 

taken (Eqs. 2 , 3 ) -

r 

A + B - C - P (2) 

A + B - D - P ( 3 ) 

Let C and D represent the two mechanisms for reaction. Specifically, 

the two mechanisms are the intermediate complex mechanism and an S^2 

concerted type displacement in aromatic nucleophilic substitution. Sub­

stituents will affect the rates in a different manner for each reaction 

and may be illustrated by Figure 3 . The reaction path which predominates 

for each substituent is the fastest rate constant, and the concave up 

dotted line portrays the result. , 

In actual fact the lines in Figure 3 should appear as in Figure 

k since both reactions discussed are speeded up by electron withdrawing 

groups. Therefore, a Hammett plot. (Figure 6) was constructed from the 

data in Table 3 2 on the reaction of substituted fluorobenzenes with 

piperidine in TEG at 1 9 4 . 5 ° C ( 1 7 9 ) • The plot was found to be linear 
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with a rho value of + k*kl and a correllation coefficient (l80) of 0.99^5 

The rate constants and sigma values used are in Table 33« The rate con­

stants used for the Hammett plot are not an average of the three values 

for each substituent in Table 32 because of the solvent effect. The con-

centration of halobenzene was about the same for all cases. In order to 

negate the solvent effect and obtain the values in Table 33« the rate con 

stants were plotted against the piperidine concentration and the rate 

constant at 1.5 molar piperidine was chosen. The rate constants for 

halofluorobenzenes have also been multiplied by the per cent fluoride 

displacement found in Table 30. The rho value was determined by the com­

puter on linear least square plot. 

The conclusion from the Hammett plot is that the compounds react 

by the same mechanism since a straight line was obtained. The mechanism 

proposed is the intermediate complex mechanism since p_-nitrofluorobenzene 

falls on the Hammett plot. This compound has been postulated as proceed­

ing by an intermediate complex mechanism (l8l). 

There are a few points of criticism concerning the mechanism pro­

posed. Suhr (l8l) postulated that p_-nitrofluorobenzene reacts with 

piperidine by an intermediate complex mechanism based on the observation 

of base catalysis. Bunhett (182) has divided base catalyzed reactions 

into two classes on the basis of the catalyzed and uncatalyzed rates. 

Ratios of catalyzed to uncatalyzed rates of about five are considered as 

mild base catalysis and ratios, of 50 or greater are considered as strong 

base catalysis. The values Suhr found in protic solvents are four to 

five. These values are small and may not be base catalysis at all. 
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Table-33• Hamrnett Plot Data for Substituted Fluorobenzenes 

Substituent kCM^sec"1) Sigma Va 

£~N02 1.75 x lO"1 1.27 

m-N02 2.54 x 10~ 4 0.71 

m-CF 3 "I.83 x 10~ 5 0.43 

m-I I.38 x 10" 5 0.352 

m-Br I.37 x 10~ 5 0.391 

m-Cl 1.20 x 10~ 5 <• 0.373 

m-F* _ 7.81 x 10~ 6 0.337 

£-1 7.27 x 10~ 6 O.318 

£-Br: U.56 x 10~ 6 0.289 

m-OH 1.18 x 10~ 6 0.121 

E-C1 2.66 x 10~ 6 0.244 

H 3. 14 x 10" 7 0 

£-F* 1.38 x 10" 7 -0.05 

m - C H 3 2.21 x 10~ 7 -O.O69 

p_-CH3 5.55 x 10~ 8 -O.I7O 
1 

•^Statistically corrected 
**Taken from Table 16 
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A second criticism is illustrated in Figure 5 « If the mechanism 

does change on going from activating to nonactivating substituents,, the 

effect of the substituents may be closely the same for each mechanism. 

In this case the lines tend to overlap and it would be difficult to see 

any change in the mechanism. This is possible but the correlation: . 

coefficient ( 0 . 9 9 4 5 ) obtained is considered excellent and would indicate 

only one line may be drawn. 

The meta halogens (Table 3 3 ) activate inductively. The order of 

activation is I '= Br > Cl > F which indicates that within the series 

the relative rates are determined by the mesomeric effect of the halo­

gens. Fluorine has the greatest inductive effect of the halogens, yet 

the m-fluorine compound has the slowest rate. Other orders for meta 

halogens found in aromatic nucleophilic substitution are Br > I > Cl 

( 1 8 3 , 1 8 4 ) , Br > Cl > I ( 1 8 3 ) , and Br > Cl > I F ( 1 0 3 ) . The fact that 

iodine shifts around in the order indicates that this substituent has a 

greater temperature dependence than the others. 

The para: halogens in Table 3 3 are all activating except the p_-

fluoro substituent, which is deactivating. The para halogens are less 

activating than the meta halogens. The order of activation is 

I = Br > Cl > F« This is the order generally found in aromatic nucleo­

philic reactions ( 3 7 , 1 8 3 ~ 7 ) « The order within the para halogens is 

governed by the mesomeric effect, which is more effectively destabilizing 

in the para position than the meta. The result is that para fluorine is 

actually destabilizing. 

Substituent Effects 
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The position of p_-fluorine relative to a hydrogen substituent is 

particularly interesting. In aromatic nucleophilic reactions p_-fluorine 

is found to be deactivating ( 3 7 , 1 & 7 , 1 7 2 , 1 7 6 ) , activating ( 1 8 6 , l8k) 

and the same as hydrogen ( 1 8 5 ) . In similar reactions where a partial 

negative charge is placed into the ring in the transition state, such 

as the ionization of phenols ( 1 8 8 ) and anilines ( 1 8 8 , 1 1 2 ) , the p_-fluorine 

substituent is deactivating. The destabilizing effect of fluorine on -de-

localized carbanions appears to be a general phenomenon and has been 

observed by a number of authors ( 1 8 9-I92). One explanation is an orbital 

penetration which is a repulsive interaction between the filled p-or-

bitals on carbon and the filled rr-electrons on fluorine ( 1 9 3 - 1 9 5 ) » The 

other explanation ( 1 8 9 ) is a weakening of tne C-F bound due to the greater 

electronegativity of the sp 2 carbon compared to sp 3 carbon. It is 

Streitwieser's ( 1 9 0 ) contention that quantum mechanical calculations 

should distinguish between'the two explanations. 

It was hoped to have obtained some qualitative data on the extremely 

deactivating effects of the £-amino and p_-hydroxyl groups. When p_-fluoro-

aniline and p_-fluorophenol were heated separately in piperidine at 2 ^ 0 ° C 

for three days no reaction was observed as evidenced by gas chromatography 

analysis. It was thought that since these two groups are so deactivating, 

they might be displaced instead of fluorine but no W- (p_-F-phenyl)-piperi­

dine was observed by GLC. 

Related to substituent effects is the data in Table 3 0 which gives 

the per cent displacement of each halogen in mixed dihalobenzenes. It 

is necessary to bring some order to this data and show why one halogen 

is displaced over another. If the data can be explained by electronic 



101 

factors, then one can apply the Hammett equation (Eq. Although this 

is the usual form of the Hammett equation, a different situation exists 

with the mixed diahalobenzenes because the reaction centers are not the 

same. Consider m-bromofluorobenzene as an example. When fluorine is 

placed- The substituent is bromine, so the sigma value used is for m-Br. 

The reaction center is at fluorine, so the rho value is p_. When bromine 

is displaced the rate constant is kg •• The substituent is fluorine so 

the sigma value is for m-F. The reaction center is at bromine so the 

rho value is p B r « This is shown below (Eq. 5, 6) where k^ is the refer­

ence compound (fluorobenzene) for fluorine displacement and k^ is the 

reference compound for bromine displacement (bromobenzene). These two 

equations may be subtracted and rearranged to obtain Eq. 7« where the 

displaced the rate constant is k_ because fluorine is indeed being dis-

(5) 

' s kBr/ kBr = pBr C TF (6) 

l 0 S V V = pF aBr - PBr C TF " l 0 g (7) 

last term is simply the logarithm of the relative rates of the displace­

ment reaction of bromobenzene and fluorobenzene. If one calculates the 

ratio of'k^/k_ , this can easily be changed to a per cent displacement 
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for each halogen. ' • 

Since the sigma values and the rates of the unsubstituted halo­

benzenes are known, it is necessary to estimate the rho values p^,, p.̂  , 

^Cl^ ^1° "̂ "Le T*1° va-'-ue ^ o r fluorine displacement may be obtained from 

the data in Table 33° The rho value for bromine displacement can be 

obtained from the data in Table 32 on substituted bromobenzenes at 204.5°C 

The calculated rho value is + 3-05" Previously, Dr. C. L. Liotta had 

obtained a rho value of +2.78 for the reaction of substituted chloro­

benzene s with piperidine in triethylene glycol .at 2^2°C (unpublished). 

What is wanted is a rho value at 195°C. From Table 17 rho values increase 

with a decrease in temperature. An increase of 0.3 to 3°08 for the rho 

value at 195°C is reasonable. • A rho value for iodine displacement in 

triethylene glycol solvent could be obtained but would be difficult be­

cause reduction of iodine competes with displacement. An indirect method 

was used to get an approximation of a rho value for iodine displacement. 

: From Table 3̂ - the relative rates of displacement reaction of bromo-

and iodobenzene are known at 196°C and also the relative rates of reac­

tion of m-bromo- and m-iodonitrobenzene at l68°C with piperidine as the 

nucleophile and solvent are known. The rate of reaction of m-iodonitro­

benzene at 195°C could not be obtained because of iodine reduction. By 

plotting the logarithm of the values in Table 3^ against the sigma 

value for each substituent, the relative rho value for bromine and 

iodine displacement may be obtained- The difference in the slopes is 

+ 0.57 = Pg r - Pj° Since the rho value for substituted bromobenzenes 

with piperidine in TEG is known, one can calculate the rho value for 

iodine. The rho value calculated for iodine displacement is 3»05 -
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0 - 5 7 = 2.48. This rho value should be near the expected value. The fact 

that bromo- and lodobenzene were not run at the same temperature as 

m-bromo- and m-iodonitrobenzene-is not important since bromobenzene and 

iodobenzene have essentially the same activation energy (Table 3 5 ) . 

Also, the relative rates of reaction of bromo- and iodobenzenes in TEG 

and piperidine solvents are essentially the same. 

Using these rho values and the proper sigma values, a for 

para substituents, the calculated per cent displacement on each compound 

was obtained (Table 3 5 ) . 

Considering the accuracy of the values used to calculate the data 

in Table 35 • this method explains satisfactorily the per cent displace­

ments. With the para compounds a values work better than a values. 

This-method of explaining the per cent displacement in mixed 

dihalobenzenes may be presented graphically in Figure 7 » Consider 

m-bromofluorobenzene. Although the rates of fluorobenzene and bromo­

benzene are about the same with piperidine, in m-bromofluorobenzene the 

fluorine is displaced 89*4 per cent and bromine 1 0 . 6 per cent. The 

sigma values for m-Br and m-F differ only by less than 0 . 0 2 . Therefore, 

the high fluorine reactivity in m-bromofluorobenzene is due to a higher 

rho value for fluorine displacement. 

Halogen Order and Activation Data 

The halogen order is important in determining the mechanism of 

aromatic nucleophilic substitution. Table 3 5 gives the relative rates 

and activation data of the halobenzenes using the data in Table 3 2 . The 

error in the activation energy was determined from the known errors in 
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Table 34« Relative Rates of Substituted Halobenzenes in Piperidine 

m-N0 2 (i68°C) £-GHa (237°C) • H(196°C) 

F 48.7 
CI 1 
Br 5*9 
I 3-3 

T a b l e 35* C a l c u l a t e d P e r G e n t D i s p l a c e m e n t i n M i x e d D i h a l o b e n z e n e s * 

Para Compounds Using 

G~ 
Using a Meta Compounds 

Fluorine Displacement 
Bromine Displacement 

96.5 
3-5 

87.5 
12.5 

Fluorine Displacement 
Bromine Displacement 

84 
16 

Fluorine Displacement 
Chlorine Displacement 

99-4 
0.6 

99.0 
1.0 

Fluorine Displacement 
Chlorine Displacement 

97.8 
2.2 

Fluorine Displacement 
Iodine Displacement 

96 
4 

88.5 
11-5 

Fluorine Displacement 
Iodine Displacement H

 
CO

 
VJ

l 
VJ

l 
Bromine Displacement 
Chlorine Displacement 

89 
ll 

91.5 
8.5 

Bromine Displacement 
Chlorine Displacement 

90 
10 

Bromine Displacement 
Iodine Displacement 

53.5 
46.5 

57-1 
42.9 

Bromine Displacement 
Iodine Displacement 

50.5 
49.5 

Iodine Displacement 
Chlorine Displacement 

87.2 
12.8 

89.5 
10.5 

Iodine Displacement 
Chlorine Displacement 

92 
8 

*The values used to calculate these per cents are in Appendix B. 

2.1 
1 
9.21 

4.5 
1 

10.3 
14.9 
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Figure 7° Graphical Representation of the Reactivity in 
Mixed Dihalobenzenes. 
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rate constants and temperatures by the method found in Benson (see Ref. 

1 7 0 , p.- 9 4 ) o 

Table 3 6 0 Activation Data and Relative Rates of Halobenzenes with Piperi 
dine in TEG 

. A E ^(kcal/mole) log A a V 2 0 0 °C AS^200°C Relative 
Rates 

_ _ ( 1 9 5 ° C) 

F 2k..k2 ± 0 . 8 4". 9 2 4 3 . 7 ± 1 . 2 - 4 2 . 6 ± O . 8 5 1 1 . 4 
Cl 2 9 . 2 1 ± 1 . 1 6 . 0 3 46 . 1 ± 1 . 6 - 3 2 . 6 ± 1 . 2 1 . 0 
Br 2 8 . 1 7 ± 0 . 8 6 . 5 6 4 3 . 9 ± 1 . 2 - 3 4 . 8 ± 0 . 8 5 1 0 . 6 
I 2 8 . 5 8 ± 1 . 1 6 . 9 5 4 3 . 4 ± 1 . 6 - 3 3 . . 9 ± 1 . 2 1 6 . 6 

Also determined were the relative rates of halobenzenes in piperi­

dine where piperidine is the nucleophile and solvent (Table 3 4 ) . 

Although the activation energies and relative rates of chloro­

benzene, bromobenzene, and iodobenzene have been determined a number of 

times previously with piperidine, this is the first time that the correct 

position of fluorine has been determined quantitatively in the halogen 

order. The order obtained in Table 3 6 I > Br IT F » Cl is difficult to 

explain without the activation energies. It is important that the reac­

tion rate of fluorobenzene with piperidine is greater than chlorobenzene, 

since this implies that there is little bond breaking in the transition 

state. The activation energies show that the value for fluorine is about 

4 . 5 kilocalories less than the value for chlorine. This means that as 

the temperature is decreased the rate of fluorobenzene becomes even 

faster than chlorobenzene. The relative rates of fluorobenzene to chloro 

benzene calculated at 1 0 0°C is 3 8 which is comparable to activated 
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compounds in that F » CI-at 100°C» Comparing at the same temperatures, 

the relative rates of fluorobenzene to chlorobenzene will not be as high 

as the ratio of, say, p_-nitrofluorobenzene to p_-nitrochlorobenzene simply 

because the rho value for fluorobenzenes is higher than the rho value 

for chlorobenzene. Since the rate ratios (F/Cl) of activated and non-

activated cases are similar, it may be concluded that both cases go 

through an intermediate complex mechanism. 

The relative rates of the halobenzenes I > Br » CI may be ex­

plained by a polarizability factor which is more favorable I > Br > CI. 

Thus, to explain the whole order, I > Br ~ F » CI, a combination of in­

ductive effects and polarizability effects is necessary. 

One consequence of the halogen order is the reason why fluorine 

is usually much faster than the remaining halogens with hard nucleophiles. 

The usual explanation is that the high electronegatively of fluorine 

creates a partial positive charge at the attached carbon which makes it 

more susceptible to nucleophilic displacement. 

An attempt was made to place this question on a quantitative 

basis. The argument is based on the assumption that one is dealing with 

the intermediate complex mechanism with the first step rate determining. 

In the halobenzenes the halogen is attached to an sp carbon and in the 

intermediate complex the. halogen is attached to an sp 3 carbon. In a 

comparison of the whole series of halobenzenes with the same nucleophile, 

the only process necessary to compare is the change in energy in going 

from the halogen carbon sp 2 bond to the halogen carbon sp 3 bond. Since 

only hard nucleophiles are used, polarizability factors should not be 

very important. Thus, it is necessary to know the difference in bond 
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energy of a C 3 - X (where X is a halogen) bond and a C 3 - X bond-sp sp 
The difference for fluorine is greater than for the other halogens be­

cause it is this process which explains the greater reactivity of 

fluorine. The excess energy is related to the difference in the known 

activation energy of an aromatic nucleophilic displacement reaction of 

fluorine, and chlorine, bromine, or. iodine. 

From a number of aromatic nucleophilic substitution reactions 

where the activation energies of all the halogens are known, the acti­

vation energy of fluorine is 3 ° 9 - 4 ° 6 kilocalories less than chlorine, 

3 . 6 - U . 8 kilocalories less than bromine, and U . 3 - 5 » 5 kilocalories less 

than iodine. Based on the previous assumption, the lower activation 

energy for fluorine is reflected in its higher reactivity. 

One can calculate bond dissociation energies from the Pauling 

equation, Eq. 8 : 

BE. . + BE^ T> 

B EA-B =
 2

 1 + 2 3 (XA - X B ) 2 ( 8 ) 

where X is the electronegativity. Equations 9, 1 0 and 1 1 show the 

development of this procedure, 

BE - " • , - ' V " V + 2 3 ( X C 2 - X F ) 2
 ( 9 ) C 2 - -F 2 sp sp 

BE C c " + BE F F 

B E C 3 - F = 2 ^ — + 2 3 ( X C ( 1 0 ) 
sp J 
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< B EC 3 - F - B E , 

- U6 (x, (11) 

where Y is either chlorine, bromine, or iodine. Hines (189) value of 

O 0 O 9 3 for the difference in the electronegativity of an sp 2 carbon and 

an sp 3 carbon is used. The Pauling electronegativities used are 4.00, 

3.00, 2.80, and 2.50 for fluorine, chlorine, bromine, or iodine, respec­

tively. The values for Eq. 11 are + 4.3, + 5.1, + 6.4 for Y equal to 

chlorine, bromine, and iodine respectively. These values are larger 

than expected because the transition state occurs about 80 per cent 

along the reaction coordinate in going from sp 2 to sp 3. This means 

that the difference in the electronegativity of the sp 2 and sp 3 carbons 

is not O.O93 but about 80 per cent of O.O93. Eighty per cent of these 

values gives 3.4, 4.05, and 5°1 which agree well with the values from 

activation energy data. 

It was hoped to have found the leaving ability of other groups 

beside the halogens. Then it would have been possible to use the 

"element effect" as a criterion of mechanism (196). Bunnett found that 

the rates of reaction of six l-substituted-2,4-dinitrobenzenes with 

piperidine differed by only 4.7° Bunnett concluded that these compounds 

reacted by an intermediate complex mechanism and that bond breaking was 

not important in the transition state. A rate difference of only 4.7 

is incompatible with a concerted S 2 type mechanism where bond breaking 

Element Effect 
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is important. The Leaving group's involved five different elements (S, 

0 , Cl, Br, I) attached to the carbon at the reaction center. 

An attempt was made to use the "element effect" as a criterion 

for mechanism in nonactivated aromatic nucleophilic substitution. 

Reaction samples of phenyl ether and piperidine in TEG were made up 

and reacted at 2 ^ 0°C for ih days. About 1 0 per cent of the base was 

consumed and the solution became very dark brown, but no N-phenylpiperi­

dine could be observed by gas chromatography. A similar reaction was run 

with nitrobenzene for five hours at 2^0°Co Base was used up and a large 

amount of black tar was found, but no N-phenylpiperidine. A similar 

reaction was run on diphenyl sulfone at 2 U 0°C for 1 3 days. Base was 

used up and no N-phenylpiperidine was observed by gas chromatography. 

A large amount of benzene was observed indicating attack or sulfur. A 

reaction with diphenyl amine at 2 ^ 0 ° C for 1 2 days showed a 1 0 per cent 

loss of base but no N-phenylpiperidine. A reaction ampoule was made up 

with diphenyl sulfide and piperidine as nucleophile and solvent and 

heated at 1 9 6°C for 2 2 hours. No N-phenylpiperidine was observed by 

gas chromatography. Because of the inability of these - compounds to 

undergo aromatic nucleophilic substitution under these conditions, the 

"element effect" could not be used as a criterion for mechanism. 

Base Catalysis 

An attempt was made to show whether amine catalysis by piperi­

dine was present in the reaction of m-difluorobenzene with piperidine 

in TEG at 1 9 ^ ° 5 ° C - . It was necessary to circumvent the ..solvent effect. 

First, reactions were run at three different concentrations of piperi­

dine, say one, two, and three molar. Then a reaction was run which 
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was one molar piperidine and one molar dioxane (or tetrahydropyran). 

Also a reaction was run which was one molar in piperidine and two molar 

dioxane (or THP). Dioxane and tetrahydropyran are used because they 

have similar solvation properties as piperidine but were much less 

effective toward base catalysis* A plot was made of rate constant 

against'the concentration of piperidine, one, two, and three molar. On 

the same graph was plotted rate constant of one molar piperidine, of 

one molar piperidine plus one molar dioxane (plotted as "two, molar" piperi­

dine), and of one molar piperidine plus two molar dioxane (plotted as 

"three molar" piperidine). A more negative slope for the latter line 

than the former indicates base catalysis, while lines which overlap 

indicate no base catalysis. The pertinent data is in Table 3 7 ° 

Table 3 7 ° Amine Catalysis Data 

M(Halide) M (Piperidine) M (Dioxane) M ( T H P ) - ; k ( M" 1hr~ 1) 

0.5264 1 . 1 7 2 8 2 . 9 4 5 x 10" 2 

0.5336 1 , 8 7 4 0 2 . 7 9 x 10" 2 

0.5286 2 . 5 7 7 8 2 . 4 3 3 x 10" 2 

0 . 5 2 7 0 1.1756 0 . 6 7 9 9 2.645 x 10" 2 

0 . 5 2 1 8 1 . 1 7 4 2 1 . 4 1 5 5 2 . 7 2 2 x 10" 2 

O . 5 2 9 8 I.163O 0 . 6 7 9 0 3 . 3 2 x 10" 2 

O.518O 1 . 1 5 8 0 1 . 2 9 1 3 2 . 4 9 x 10" 2 

A plot of the data^ in Table 3 7 as outlined above showed no 

definite trend with either dioxane or tetrahydropyran. This may be due 

to the inability to obtain accurate enough rate constants. It was im­

possible to draw any concrete conclusions concerning amine catalysis 

from the data. 
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Deuterium Exchange 

The object of the deuterium exchange study was to.find exchange 

on the intermediate complex, which can be thought of as a conjugate 

base (carbanion) of a carbon acid. This was a novel idea. Deuterium 

exchange on carbanions have been studied for many years but deuteration 

produced a stable product. When deuteration of the intermediate com­

plex occurs, another metastable intermediate is formed which then de-

protonates to produce either reactant or product. The full reaction 

scheme is presented below« where N refers to the nucleophile. 

D ' D D 
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It is possible with this scheme to find deuterium in the reactant 

and/or product. If k x is rate determining, then no deuterium will be 

found in the reactant, but could be found in the product. This technique 

for detecting the intermediate complex is more useful than base catalysis 

since the observation of base catalysis can only be seen when the rate of 

decomposition of the intermediate complex depends on k and kg, or 

kg alone. 

Ideally, a system should be chosen where deuterium exchange does 

not occur on the reactant or product. Then.any exchange which occurs 

will be on the intermediate complex. A system should be chosen where 

proton, transfers to the conjugate base of carbon acids are known to be 

diffusion controlled or where the rates approach diffusion controlled 

rates. This eliminates the necessity of knowing the rates of decompo­

sition of the intermediate complex to reactant and product. 

If no deuterium exchange is found in an aromatic nucleophilic 

substitution reaction, then it can be said that the mechanism occurred 

by a concerted S^2 type mechanism. This means that the decomposition 

of any intermediate occurs faster than diffusion controlled rates, which 

is essentially a concerted S^2 mechanism. Deuterium exchange can not 

occur during this mechanism because there is only, one degree of freedom 

going across the barrier. 

The reaction of p_-deuterio-fluorobenzene with piperidine in TEG 

at 2 2 3°C showed 5 . 6 5 a n d- 7°° P e r e e r r t proton incorporation into the 

product. This was concluded as having been incorporated by proton ex­

change on the intermediate complex. An analysis of this system was 

necessary to show if the small amount of exchange has any real significance. 
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Proton transfer in this system to the conjugate base of a carbon 

acid was diffusion controlled.. Ritchie (197) showed that proton trans­

fers in methanol become diffusion controlled only when the ApK is 18 

or greater. The ApK in the fluorobenzene reaction refers to the differ­

ence in acidity of the protonated intermediate complex and TEG. The 

pK of TEG is about 14-15« The acidity of the, protonated intermediate a 
complex may be estimated to be about: 35 from the acidity of the a 

proton in propene (35°5) and cycloheptatriene which is 36 (198)» Thus, 

the ApK was about 20 which is greater than the value necessary for 

diffusion controlled proton transfers. Another point is that in the 

intermediate complex, positions 1, 3j or 5 may be protonated, yet 

deuterium is at only position 3-(for numbering of the intermediate com­

plex see I). 
I F 

To a first approximation, exchange is equally probable at the 1,. 3, or 

5 positions. Hence, a maximum of only 33-3 per" cent exchange may be 

seen in the k~d-fluorobenzene reaction. This value becomes even less 

when the ^./k^ isotope effect is considered,, since the loss of deuterium 

is being observed on the intermediate complex. If k^/k^ were ten, it 

would be difficult to see any exchange on the intermediate complex since 

the proton would be preferably lost. Fortunately, a maximum value for 

the k^/kp may be calculated at 225°C. Hine gives a value of four (l99)» 
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From Melander's book a maximum value of 3 ° 7 , considering only stretching 

frequencies, and 4 . 2 , considering stretching and bending, may be cal­

culated ( 2 0 0 ) . Although the calculated values vary, a choice of four for 

amount of deuterium exchange that can be observed is 3 3 ° 3 $ x 1 / 5 = 6 . 6 6 $ . 

The experimental values 5 ° 6 6 and 7 ° 0 0 per cent agree very well with the 

calculated values and indicated that exchange did occur on the inter­

mediate complex. 

In- the above argument the 1 , 3 , and 5 positions of the inter­

mediate complex were considered equally probable toward protonation. 

There is the possibility that protonation may prefer the 3 position, 

which would raise the calculated value of 6 . 6 6 per cent. Deuterium ex­

change on the 6 , 6-dimethyl-eyelohexadienyl anion showed exchange favors 
the 3 position at least eight to one over the 1 or 5 positions ( 2 0 1 , 

2 0 2 ) . Recent molecular orbital calculations show a higher charge 

density at the 3 position than the 1 or 5 positions ( 2 0 3 ) • This data 

indicates that the calculated value 6 . 6 6 per cent should be greater. 

But it must be pointed out that in 6,6-dimethyl-cyclohexadienyl anion 
the methyl groups are electron donating, whereas in the intermediate 

complex two electronegative groups (N and F) tend to increase the charge 

at the 1 and 3 positions. Therefore, there is actually no data which 

would eliminate a statistical proton attack at the 1 , 3 , or 5 positions. 

The similar reaction with m-deuterio-fluorobenzene showed no 

deuterium exchange. Based on the above conclusions, the intermediate 

complex II was not an intermediate in this reaction. In this intermedi­

ate the electron density is highest at the positions indicated. The 

the maximum value Therefore, the minimum 
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disrotatory cyclization (Figure 8) of a cyclohexadienyl anion to anion 

His thermally favored (2CA) and the thermal cyclization of a pentadienyl 

N F 

\ / 

II 

to a cyclopentenyl anion (Eq. 12) has been shown to occur (205). 

The reaction of pentafluorobenzene with sodium thiopenoxide in 

methanol-0-d and DMF showed no-deuterium exchange. Again the ApK is at 

least twenty since fluorine greatly destabilizes delocalized carbanions 

which makes the intermediate complex more basic-. Deuteration of the IC 

should prefer to occur at the hydrogen position, para to nucleophilic 

attack, since fluorine should destabilize the negative charge on the 

carbon to which it is attacked such that the greatest electron density 

is at the hydrogen position. The solvent used was DMF: methanol-O-d 

(80:20). Ritchie (197) has shown that proton transfers become diffusion 

controlled in DMSO at a ApK .of ten. Rates in DMSO and other dipolar 

aprotic solvents (206) such as N, N-dimethyl formamide approach 
1 
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diffusion control at a lower ApK than protic solvents "because the anion 

has a smaller solvation sphere and hence has to lose a smaller energy of 

solvation to accept a deuterium.. Certainly, in the solvent mixture used 

here, the intermediate complex should be less solvated than in pure 

methanol-O-d. 

The fact that no deuterium exchange occurred in the pentafluoro­

benzene reaction leads to the conclusion that the reaction does not 

proceed through an intermediate complex- This conclusion is tentative, 

since pentafluorobenzene is an activated compound and activated aromatic 

nucleophilic substitution reactions are generally thought of as pro­

ceeding through an intermediate complex. The same statements may be 

said concerning the reaction of thiophenoxide with p-nitrofluorobenzene 

in DMF: methanol-O-d, where no deuterium exchange was observed. There 

is the possibility of preferential deuteration on an oxygen of the nitro 

group in the intermediate complex. Neutral Meisenheimer complexes have 

been observed which contain the N0 gH function (207, 208). 

The true value of this deuterium exchange method has yet to be 

realized. It should.greatly extend the ability to detect intermediate 

complexes in aromatic nucleophilic substitution. 
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CHAPTER IV 

CONCLUSIONS 

The results in Chapter III indicate that the mechanism of 

nonactivated himolecular aromatic nucleophilic substitution goes 

through an intermediate complex. This is based on the evidence, 

firstly, that a linear Hammett plot was obtained from the rate con­

stants of the reaction of piperidine with activated and nonactivated 

meta and para substituted fluorobenzenes. Secondly, fluorobenzene 

reacts faster than chlorobenzene with piperidine. Thirdly, it appears 

that deuterium exchange was observed on the intermediate complex in 

the reaction of p_-deuterio-fluorobenzene with piperidine in TEG. 
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CHAPTER V 

RECOMMENDATIONS 

The Hamrnett plot (Figure 6 ) was constructed to observe curva­

ture in the line. It is possible that the curvature occurred in the 

neighborhood of the p_-N02 substituent since there are only two sub­

stituents in the range 0 . 6 a - 1.4 a. In order to look for curvature 

on this area, another Hamrnett plot should be constructed from the rates 

of reaction of m- and p-substituted fluorobenzenes with piperidine in 

TEG using substituents with o or a values greater than 0 . 7 0 . 
m p & 

In the deuterium exchange section, reactions might also be run 

with chlorobenzene, bromobenzene, and iodobenzene with piperidine in an 

effort to find intermediate complexes in these reactions. Another re­

action that could be run with fluorobenzene is that of fluorobenzene-2, 

6-d 2 with piperidine-1-d in deuterated (ROD) triethylene glycol." •' In 

this latter case the observation of incorporation of deuterium in the 

four position of the product is not hampered by the k^ -A^ ratio, and 

more exchange would be seen in the product. 
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APPENDIX A 

In making the density correction factor, the temperature depend­

ence of the density was obtained using triethylene glycol to represent 

the reaction solution. This was done because the reaction solution 

contained volatile piperidine and fluorobenzene which could evaporate 

causing inaccurate density data. It is necessary to see if the change 

in density with temperature of TEG is similar to the reaction solution. 

First, a check was made to see if the temperature dependence 

of the volume is affected by the piperidine concentration. Two TEG 

solutions were made up at 25°C, one 0.5 molar in fluorobenzene and 1.0 

molar in piperidine, and another 0-5 in fluorobenzene and 2.0 molar in 

piperidine. The weights of these solutions were obtained at temperatures 

up to 60°C. For each solution a plot was made of the weight of 50-ml 

of the solution against temperature, and the slopes obtained. The 

slopes were very similar for each solution, 3*57 for the.1.0 molar 

piperidine solution and 3*48 for the 2.0 molar piperidine solution. So, 

the piperidine concentration doesn't appreciably affect the density 

change with temperature. Since the slope for the pure TEG solution was 

3.45, the use of TEG to represent the reaction solution appears to be 

valid. 
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APPENDIX B 

a a a" p Relative 
m ti -n r 

F 0 . 3 3 7 0 . 0 6 2 - 0 . 0 5 +4.4l 1 1 . 4 
Cl 0 . 3 7 3 0.227 0 . 2 M + 3 - 0 8 1 . 0 

Br 0 . 3 9 1 0 . 2 3 2 0 . 2 8 9 3 . 0 5 1 0 . 6 

I 0 . 3 5 2 0.276 O . 3 1 8 2.48 1 6 . 6 

Below are the values used to calculate the per cent displacements 

in Table 3 5 . 
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