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SUMMARY 

 
In this thesis the history and technical details of isotopic (α,n) neutron sources are 

discussed. The use of 232U as part of dirty uranium was proposed as a new isotope for use 

in beryllium (α,n) neutron sources. A 232UBe13 neutron source was designed and modeled 

and the fluence and flux distributions were calculated. The 232U decay chain emits six 

high energy alpha particles in quick succession and is ideal for use in a beryllium (α,n) 

neutron source. 232U is an undesirable byproduct in the production of 233U in the thorium 

fuel cycle; its concentrations can vary from 5-3000 ppm in bred 233U. A 1.1018-cm 

diameter by 1.1018-cm tall cylinder of 233UBe13 with 300ppm 232U at 0.74 GBq (20 mCi) 

was modeled and found to have a peak yield of 3.5*105 n/s after 10.17 years. At this peak 

yield, the 232UBe13 source has better neutron production efficiency per initial alpha 

emission activity than other beryllide neutron sources.
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CHAPTER 1 

INTRODUCTION 

1.1 Historical Review of Isotopic (α,n) Neutron Sources 

The history of neutron sources is the history of modern nuclear engineering. The 

neutron was first discovered by Chadwick in 1932 when he bombarded a beryllium foil 

with alpha particles. In the years after his discovery other researchers produced neutrons 

by bombarding light elements with alpha particles from alpha emitting nuclides (isotopic 

(α,n) neutron sources) for their own experiments, until fission reactors were developed. 

Even these fission reactors required a neutron source to begin their chain reactions. 

Without these kinds of neutron sources there would be no nuclear power today, and 

nuclear applications would likely be limited to a mere scientific curiosity. 

The Manhattan Project of World War II and the Cold War that immediately 

followed were a golden age for nuclear science. Researchers all over the world were 

performing a multitude of experiments to better understand the nucleus of the atom. 

Many of these experiments required an efficient source of neutrons. There was a major 

effort to understand isotopic neutron sources and the way to make them more efficient, 

cost effective and safe. 

The first isotopic neutron sources utilized the alpha emissions of radium-226 

(226Ra) and its progeny incident on a beryllium mixture to produce neutrons. 226Ra was 

first used because it was well studied as a radioactive source and it was relatively 

plentiful compared with other high energy alpha emitting isotopes. Polonium-210 (210Po, 

RaF), which itself is a decay product of 226Ra, was also used as an isotope in early 
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neutron sources. Another early radioactive material used in isotopic neutron sources was 

actinium-227 (227Ac), but because of its relative scarcity, this source was rarely used.  

It was found early on that beryllium had the best neutron yields of the light 

elements. Therefore nearly all isotopic neutron sources after the 1950’s were a 

combination of an alpha emitter and beryllium. However some isotopic neutron sources 

used fluorine, boron or lithium instead of beryllium. As a matter of nomenclature, 

isotopic neutron sources have usually taken the form <alpha emitter (or dominant 

radionuclide) chemical symbol> - <light element chemical symbol>. Usually the exact 

isotopes of the nuclides are omitted from this notation. Ex: Ra-Be, Pu-Be, Ra-F. 

As time progressed transuranic elements were created and extracted, mostly from 

the waste streams of the nuclear weapon programs. These isotopes, for example 

plutonium-239 (239Pu) and americium-241 (241Am), were also found to have desirable 

traits for an isotopic neutron source. The low gamma emissions, high abundances and 

half lives of the new artificial alpha emitters ultimately made them more desirable for use 

as neutron sources and the older Ra-Be and Ac-Be sources were phased out. 

These neutron sources had been manufactured in large numbers and have been 

used reliably by researchers, oil expatiators, the nuclear power industry, the military and 

others since their creation. However political and security concerns in recent years have 

led to a global desire to retire isotopic neutron sources. Replacing these neutron sources 

are d-t neutron sources and accelerator based neutron sources. Both of these sources have 

their advantages over isotopic neutron sources, but they also have disadvantages such as 

very fast neutron energies and the devices themselves can often require a very large 

volume and energy to operate. 
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One of the goals of this thesis is to outline the science behind isotopic neutron 

sources and how they are manufactured. Presently most of this knowledge is spread 

throughout decades of journals. It is the hope of the author that this thesis may be used as 

an easy reference for those engineers in the future who wish to understand how to 

produce these neutron sources. Another goal of this paper is to outline the use of 

uranium-232 (232U), an isotope with superior qualities for use in future isotopic neutron 

sources. 

 

1.2 Historical Review of Uranium-232 

Uranium-232 was first discovered by Gossman in the Manhattan Project (Newton, 

1949). This isotope had no immediate engineering applications and it existed mostly as a 

scientific curiosity. It was briefly considered for use in the space program, but the hard 

gamma emissions of its progeny made its use in space based applications or most other 

applications very limited. 232U was the second isotope found to undergo cluster (exotic) 

decay (Bonetti et al., 1990) and was studied extensively for it decay properties. 

There has also been extensive study into the creation of 232U, specifically how it is 

inadvertently created when breeding uranium-233 (233U) in the thorium fuel cycle. 

Because of the hard gamma emissions of the 232U progeny, many engineers have 

proposed methods for breeding 233U with as little 232U production as possible. One of the 

principal reasons that the thorium fuel cycle is not in use today is because of the 232U 

content (IAEA TECDOC -1450, 2005). 
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CHAPTER II 

(α,n) Reactions 

2.1 (α,n) Reaction Theory 

 Perhaps one of the most well studied alpha (α) particle nuclear reactions is the 

reaction in which an α particle undergoes fusion with a light nuclei and the compound 

nucleus ejects a neutron when returning to a ground state.  

 

2.1.1 (α,n) Targets 

Several light nuclei are prone to undergoing the (α,n) reaction. The nuclei are 

referred to as targets and are listed in Table 1, along with the reaction energy (Q value), 

threshold energy for the reaction and relative neutron yield and neutron energy for a 5.5 

MeV α particle. 

Table 1: Traits of Common (α,n) Targets 
Target 

 
Q1 

(MeV) 
Threshold Energy1 

(MeV) 
Mean En

 2 for 
Eα= 5.5 MeV

Yield2 (n/106 α) 
Eα= 5.5 MeV 

6Li 
7Li 
9Be 
10B 
11B 
13C 
17O 
18O 
19F 

-3.975 
-2.79 
5.702 
1.06 

0.157 
2.215 
0.587 

-0.697 
-1.95 

6.620
4.382

exothermic
exothermic
exothermic
exothermic
exothermic

0.852
2.361

NA
0.5883
5.005
2.243
2.993
4.72

2.523
2.374
1.304

NA
3.156

80.073
5.72

23.724
9.904
0.152
0.333
0.106

1Values in MeV Source: Shultis and Faw, 2000 
2En in MeV, derived from SOURCES-4c 

 

As shown in Table 1, the greatest neutron yield is achieved when beryllium is 

used as a target material in the (α,n) reaction. Therefore, beryllium has usually been the 

material of choice when producing a neutron source. The full reaction is: 
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∗CnBe 12
6

9
4 ),(α      (1) 

Theoretically any nuclide above helium is prone to undergo the (α,n) reaction, but 

only those isotopes which can undergo an exothermic or low energy threshold (α,n) 

reaction are considered. Even under the best circumstances the likelihood of an (α,n) 

reaction is quite small. For instance the (α,n) cross section for an 8 MeV alpha particle 

incident on beryllium is on the order of 0.6 barns. Typically the probability for most 

target nuclei is on the order of a few reactions per million alpha particles. The (α,n) cross 

section generally increases with alpha particle energy, as shown on Figure 1. 

 

Figure 1: (α,n) cross sections, source: SOURCES-4c (tape3), 2002 

 



6 

When an alpha particle fuses with a target nucleus, the compound nucleus is in an 

energetic state. If this added energy is enough to overcome the threshold energy 

requirement for the (α,n) reaction, then a neutron will be emitted. Occasionally the α 

particle will bring in enough energy (often through its kinetic energy) that the compound 

nucleus will be left in an excited state after the neutron is emitted. Neutron emissions are 

characterized by the energy state in which they leave the nucleus (Van der Zwan, 1968). 

These neutron groups are identified by n0, n1, n2, etc. corresponding to the energy state of 

the nucleus. 

  

2.1.2 (α,n) Radionuclides 

Alpha emitting radionuclides or “emitters” or “source” are a necessary component 

of (α,n) neutron sources. Alpha particles are a natural decay mode for many nuclei with 

an atomic number greater than 82 (lead). Lanthanides are also prone to undergoing α 

decay but these nuclides typically have a very long half-life and low decay energy. As a 

rule of thumb, the decay energy of an isotope is inversely proportional to its half life. 

Ergo isotopes with very long half lives such as Th-232 and many lanthanides have low 

decay energies. Since the probability of an (α,n) reaction increases with α energy and the 

number of α emissions of an isotope is inversely proportional to its half-life, the ideal α 

emitters would have a relatively short half life. It should be noted though, that isotopes 

with too short a half life will become too impractical to produce and use effectively as an 

(α,n) neutron source. Therefore, a reasonable half-life for α emitters, for use in a neutron 

source, should be on the order of 1 to 25,000 years. Table 2 list many common (save 4n 

series) radionuclides used in (α,n) neutron sources today, along with their half-lives, 
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common decay energies and thick target yield with beryllium (in n/106 α). Neutron 

spectra of some targets can be found in Appendix C. 

 
Table 2: (α,n) Source Properties 

 
Source 

239Pu-Be 
210Po-Be 
241Am-Be 
238Pu-Be 
238Cm-Be 
244Cm-Be 
226Ra-Be 
 

227Ac-Be 
 

4n Series 
228Ra-Be 

 

 

228Th-Be 
232U-Be 

t1/2
1 

24110 yr
138.38 d
432.2 yr

87.7 yr
18.1 yr
162.8 d
1600 yr

 
21.8 yr

5.75 yr

1.911 yr
68.9 yr

Most Common Eα (MeV)2 

5.156
5.304
5.486
5.499
5.805
6.113

4.784, 5.490, 6.002, 7.687, 
5.304 

6.038, 5.716, 6.819, 7.386, 
6.623

 
5.4223, 5.686, 6.288, 

6.779, 6.051 (36%), 8.784 
(64%)

as 228Ra
5.320 + 228Ra
 

Yield (n/106α)3 

57.2 
63.7 
71.5 
72.1 

105.3 
88.1 

521.6 
 

736.8 
 
 

707.2 
 
 

707.2 
755.5 

1 Source: Tuli, 2005 
2 in MeV, Source: Stabin and de Luz, 2002 
3 in n/106 α, From eq. (14) 

 

Alpha decay is rarely the only decay method of a given isotope. Minor gamma (γ) 

or Auger electron emissions can accompany or follow an α emission. Furthermore the 

progeny of an α emitting nuclide is usually itself radioactive. Thus other emissions must 

be considered when handling or preparing the radionuclides with respect to radiation 

safety and other forms of radiation damage.  

Additional α emissions can also contribute to the neutron yield of a neutron 

source. For many of the α emitters list on Table 2, the half life of the immediate progeny 

is longer than that of the parent nuclide. Therefore these extra alpha emissions can 



8 

usually be neglected from neutron yield calculations. However for 226Ra, 227Ac and 4n 

Series, the progeny’s alpha emissions cannot be ignored. These isotopes are near the end 

of the uranium (4n+2), actinium (4n+3) and thorium (4n) decay chains, respectively; 

therefore as the long-lived 226Ra, 227Ac and 232U (and 228Ra/Th) decay, the activity of 

their progeny will rapidly build up and release additional α and beta (β) particles. The 

additional α emissions of the progeny will increase the total (α,n) output of the source by 

an order of magnitude. 228Th and 227Ac sources will come into secular equilibrium within 

a year of source assembly. 226Ra will come into secular equilibrium with all of it progeny 

through 210Pb (22.3 yr half-life) within one year. Only one α emission of 210Po remains 

after 210Pb. 228Ra and 232U sources take 5 and 10.17 years, respectively, for their α 

emitting progeny to come into equilibrium. The downside to using these kinds of neutron 

sources is the strong gamma emissions that usually accompany these decay chains. 

  

2.2 (α,n) Yield 

2.2.1 Solving for the Initial (α,n) Yield 

The (α,n) neutron yield and energy flux for a given source arrangement may be 

solved using complicated transport equations and solved through Monte Carlo Methods. 

Those equations can be simplified to algebraic and light calculus expressions. The 

algorithm for finding the exact neutron yield is explained in great detail in Wilson et. al 

(1999), but the important equations of that document are presented here. 

The probability of an alpha particle with energy Eα, undergoing an (α,n) reaction 

with target nucleus I, before it comes to rest, can be expressed by: 
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dE

dx
dE

EN
EP

E
ii

i ∫
⎟
⎠
⎞

⎜
⎝
⎛−

=
α σ

α
0

)(
)(     (2) 

Where Ni is the atom density of the target, σi(E) is the (α,n) cross section of the target at 

energy E, -dE/dx is the materials stopping power. 

 Since all (α,n) problems involve more than one material (emitters, target, 

impurities, progeny, additional targets and emitters), it is more accurate to describe the 

neutron output in terms of the stopping cross sections ε(E): 

dE
E
E

N
N

EP
E

igi
i ∫=

α

ε
σ

α
0 )(

)(
)(     (3) 

Where N is the total atom density of the system and ε(E) is defined as: 

∑
∑ =

=

−
≅

J

j
jJ

j
j

dx
dE

N
N

N
E

1

1

11)(ε     (4) 

and J is the number of elemental constituents. 

 It may be necessary to also separate the cross section σi
 into G cross sections each 

representing the (α,n) cross section of a neutron leaving the nucleus in energy level g: 

dE
E
E

N
N

EP
E

ig
G

g

i
i ∫∑

=

=
α

ε
σ

α
00 )(

)(
)(     (5) 

Where σig is the cross section of an (α,n) reaction leaving the nucleus in energy level g. 

An expression can be derived for the total (α,n) yield of an isotope k which has L 

unique alpha energy emissions. Where fα
kl is the fraction of all emissions of k with alpha 

emission of energy level l. The total neutron yield of the system per unit volume will be: 

)(
111

l

I

i
i

L

l
kl

K

k
k EPfY ∑∑∑

===

= αλ      (6) 
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Where K is the number of alpha emitting isotopes and λk is the decay constant of isotope 

k. 

2.2.2 Estimating the (α,n) Yield of an Aged Source 

 The above equations are very helpful in determining the initial (α,n) production of 

a neutron source. The neutron yield depends on the present activity of the alpha 

emitter(s). The activity of an isotope at a given time elapsed t is: 

)*exp(*)( 0 tAtA dλ−=     (7) 

Where A0 is the initial activity and λd is the decay constant of the decay driving isotope.  

The decay driving isotope is the usually the isotope with the highest activity in the 

system and is likely controlling the activity of its progeny. It need not be an α emitter 

itself, as in 227Ac-Be and 228Ra-Be sources. For a source with K decay driving isotopes 

and a time, t, after secular equilibrium is reached, the neutron yield can be estimated by: 

)*exp(*)( ,max,
1

tYtY kdk

K

k
λ−= ∑

=

   (8) 

Where Yk,max is the maximum number of (α,n) neutrons produced by alpha emissions of 

isotope k and its progeny at the peak (α,n) emission rate of the source, λd,k is the decay 

constant of the decay driving isotope. 

 

2.3 (α,n) Neutron Energy Distribution 

In an (α,n) reaction, an alpha particle will collide with a target nucleus and form a 

compound nucleus. Due to conservation of momentum the compound nucleus will be 

forced in a given direction and speed. But since the neutron is released in such a short 

period of time, velocity of the compound nucleus may be neglected. Therefore 
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momentum must be conserved for the before system (alpha and target) and after system 

(neutron and product (recoil) nucleus). Because of the conservation of momentum, the 

energy of the neutron is dependent on the direction from which it is emitted, relative to 

the incoming α particle. The neutron will have the most energy when it is released in the 

same direction of the incoming alpha particle. For simplicity, the emission of a neutron is 

assumed to be isotropic and therefore the neutron will be emitted in all directions equally. 

The range of energies of a neutron emitted from energy level m in the laboratory frame of 

reference is described by: 

2

32

2

32
1)( 1

1
11

1
1

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
+

+
±⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=±

aa
a

E
a

Q
a

aEE mmn αα   (9) 

Where: 

a

n

m
m

a =1      (10) 

a

t

m
m

a =2      (11) 

r

n

m
m

a =3      (12) 

exm EQQ −=      (13) 

and Eex is the excitation level of the recoil (compound) nucleus, mn is the mass of the 

nucleus, mr is the mass of the recoil (compound) nucleus, mα is the mass of the alpha 

particle and mt is the mass of the target nuclei. 

The minimum and maximum neutron energies can be found with equation (9).  
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SOURCES-4c is a computer code which calculates models (α,n) reactions. To 

simplify the calculations, SOURCES-4c assumes that the neutron emissions are isotropic 

and uniformly disperses the range of neutron energies into G evenly spaced energy 

groups (Wilson et. al, 1999).  

The emissions of neutrons in an (α,n) reactions are not isotropic. For better 

accuracy (Van der Zwan, 1968), each of the G energy groups can be weighted based on 

the probability of a neutron being emitted at a given angle for a given neutron energy. 

Van der Zwan (1968) published Figure 2, showing the neutron angular cross-sections 

(distribution) for neutron energy groups 0-2 at various α energies. 

 

 

Figure 2: Angular cross sections for 9Be(α,n)12C for n0, n1, n2  neutron groups (experimental) 
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2.4 Thick Target Yields 

 The simplest and most efficient method of producing (α,n) neutrons is by 

projecting a monoenergetic beam of alpha particles upon a thick target material. 

Accelerators are large, bulky and expensive and are therefore not a practical means of 

producing neutrons for simple applications. But this method of producing (α,n) reactions 

is an excellent way of determining (α,n) cross sections, as the beam energy is tightly 

controlled and there are rarely contaminants to interfere with the reaction. Ergo the thick 

target yield is also considered to be the theoretical maximum neutron yield. Since the 

Be(α,n) reaction is the most important to nuclear engineers, its thick target yields and 

cross sections are well studied.  

An empirical formula was developed by Anderson and Hertz (1971) to find the 

theoretical maximum number of neutrons that could be produced by alpha particles 

incident upon beryllium: 
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   (14) 

Where TTY  is the number of neutrons produced per 106 alpha particles and Eα is the 

energy in MeV of the incident alpha particle. Equation (14) was used to find the 

theoretical maximum neutron yield for Table 2. 

Similar approximations have been made and reworked by Geiger and Van der 

Zwan (1975): 

65.31444.0 αEYTT ∗=      (15) 

And by Shultis and Faw (2000): 



14 

64.2

82.3115.0

α

α

EY

EY

TT

TT

=

∗=
  

)0.105.6(
)5.65.3(

≤<
≤<

α

α

E
E

   (16) 

All three reaction yields very similar neutron yields outputs in the range of alpha 

energies of most concern to nuclear engineers, 5.14-6.10 MeV, the alpha energies 

available from 241Am through 242Cm. The yields for equations (14), (15) and (16) diverge 

from each other above 6.5 MeV. The equation by Anderson and Hertz best matches the 

experimental neutron output (Geiger and Van der Zwan, 1975) for higher energies. 

Using the data provided by Bair and del Campo (1979), several new empirical 

equations have been created to describe the thick target (α,n) neutron yield of beryllium 

and several other targets materials. Equations (17) – (22) are plotted against the source 

data in figure 3. 
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Fluorine: 
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Natural Boron: 

234.290179.9 −= αEYTT   )5.75.3( ≤< αE   (19) 

Boron-10: 

9779.3

4345.64

*007.

10*1

α

α

EY

EY

TT

TT

=

∗= −

  
)5.75.5(
)5.55.3(

≤<
≤<

α

α

E
E

   (20) 

Boron-11: 

163.31*0901.9 −= αEYTT   )5.75.3( ≤< αE   (21) 
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Natural Lithium: 

5.135*859.22

286.42*07.19*122.2 2

−=

+−=

α

αα

EY

EEY

TT

TT   
)0.90.6(
)0.65.5(

≤<
≤<

α

α

E
E

  (22) 

West and Sherwood performed an experiment in 1982, similar to Bair and del 

Campo (1979) and obtained the graph in Figure 4 as their results for the thick target (α,n) 

yields in several materials. 

 The relation between the thick target yield and the theoretical yield of a 

homogenous (α,n) system can be found by:  

∑
=

+
= I

i
iiett

ett
TTsource

SfSR

SR
YY

1
arg

arg

*

*
*     (23) 

Where R is the ratio of target to non-targets and Starget is the stopping power of the target 

and Semmit is the stopping power of the emitter and fi is the fraction of element i with 

stopping power Si. 

 

Figure 3: Neutron yields for various targets with plots of equations (17)-(22) 
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Figure 4: Thick target neutron yields for various materials. (Source: West and Sherwood, 1982, 

experimental) 

 

Equation (23) is a variation of the equation by Runnalls and Boucher (1957) 

generalized to systems with more than a single element of target and single isotope 

emitter. Most (α,n) neutron systems are not entirely homogenous (Van der Zwan, 1968) 

and, therefore, equation (23) alone is not valid. This is because emitters will tend to form 

clusters of their own in whatever compound they occupy. Therefore the neutron yield 

must be calculated within the clusters with equation (23) and then a thick target yield 

equation may be employed (or another variation on equation (23)) using the α flux 
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entering that system (target matrix). A further explanation on clusters and the material 

science of neutron sources can be found in section 2.8. 

 

2.5 Multiplication Reactions 

There are other reactions that may occur within an (α,n) neutron source. These 

reactions are split into two categories: neutron multiplication reactions and photonuclear 

reactions. Magnitudes of the neutron multiplying reactions are dependent on the source 

geometry. To maximize these reactions, the volume-to-surface area ratio should be as 

great as possible to facilitate more reactions for a given volume before the product 

particles can escape. Therefore both the volume and shape of the source play an 

important role in determining the magnitude of the multiplication and photonuclear 

reactions. 

 

2.5.1 Neutron Multiplying Reactions 

Within (α,n) sources, neutrons may also be created by multiplication reactions. 

Beryllium has a high (n,2n) cross section, as do many actinides currently used in 

beryllium (α,n) neutron sources. Some alpha emitters are also fissionable so they may 

undergo (n,f) reactions.  

 

2.5.2 Photonuclear Reactions 

Some isotopes are sensitive to the photonuclear (γ,n) reaction. At very high 

energies a photofission (γ,f) may occur in fissionable isotopes, but these reactions are 

quite rare and are not thoroughly discussed in this thesis. For photonuclear reactions to 
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occur, a nucleus must capture a gamma ray of energy greater than the separation energy 

of one of its neutrons. The two most common isotopes that are susceptible to 

photonuclear reactions are deuterium and beryllium at energies above 2.225 MeV and 

1.666 MeV (Profio, 1979) respectively. Some isotopic neutron sources are entirely 

dependent upon the (γ,n) reaction and are called photoneutron sources. In Table 3 

(Cierjacks, 1983) some common photoneutron sources and their properties are listed. The 

yields of Table 3 assumes a spherical (γ,n) source 2.38 cm in diameter, and a 3.2 mm 

thick blanket of target (Be or D) material. 

 

2.6 Breakaway Neutrons 

 Alpha particles may induce the release of a neutron without fusing with a target 

material. Beryllium is well-known for undergoing the breakaway reaction: 

nBeBeBe 1
0

8
4

9
4

9
4 '),( +→∗αα     (24) 

Unlike the reaction shown in equation (1) which is exothermic, the reaction 

shown in equation (24) is endothermic and has a threshold energy of 4.3 MeV. This 

becomes increasingly important as the α energy increases.  

At present a major hurdle in creating a reliable (α,n) computer code is finding the 

proper fraction of neutron producing reactions (Shores et al., 2003). 
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Table 3: (γ,n) Source Properties, Source: Cierjacks, 1983 
 

γ Source t1/2 Eγ (MeV) Target En (keV) Yield (n/1010 Bq)
24Na 

 
28Al 
38Cl 

56Mn 
 
 
 

72Ga 
 
 
 

76As 
 

88Y 
 
 

116mIn 
124Sb 
140La 

 
144Pr 

15 hr 
 

2.24 m 
37.3 m 
2.58 hr 

 
 
 

14.1 m 
 
 
 

26.3 hr 
 

107 d 
 
 

54.1m 
60.2 d 

40.3 hr 
 

17.3 m 

2.7541
2.7541
1.7787
2.1676
1.8107
2.1131
2.9598
2.9598
1.8611
2.2016
2.5077
2.5077
1.7877
2.0963
1.8361
2.734
2.734

2.1121
1.691

2.5217
2.5217
2.1856

Be 
D 
Be 
Be 
Be 
Be 
Be 
D 
Be 
Be 
Be 
D 
Be 
Be 
Be 
Be 
D 
Be 
Be 
Be 
D 
Be 

967
263
101
446
129
98

1149
365
174
476
748
140
109
383
152
949
253
397
23

760
147
462

340000
330000
32600
43100
91500
91500
91500

162
64900
64900
64900
25100
3050
3050

229000
229000

160
15600

210000
10200
6600
690

 

2.7 Contaminants 

2.7.1 Chemical Contamination 

Chemical contaminants can have two serious implications on a neutron source. 

First, they destroy the homogeneity of the source and can reduce the number of (α,n) 

reactions by increasing the stopping power of the system. This reduces the possibility of 

an α particle colliding with its intended target. Additionally some contaminant materials 

can themselves be targets. On Table 4, taken from West and Sherwood (1982), α particle 

interactions with several target materials and the γ emissions they often released in these 
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reactions are listed. These γ emissions add to the radiation dose of a neutron source. The γ 

emissions can be used as a method for determining what chemical contaminants exist in a 

material. 

 

2.7.2 Isotopic Contamination 

 Isotopic separation can never economically produce a pure sample of a given 

isotope in large quantities, but it can produce some nearly pure samples. For example, a 

239Pu-Be source may contain Pu-239 (91.6%), Pu-240 (7.7%), Pu-241 (0.7%) and trace 

amounts of Pu-238 and Pu-242. Pu-241 with a half-life of 14.4 years will beta decay to 

Am-241 which itself is an emitter of choice in many (α,n) sources.  

The decay of Pu-241 into Am-241 cannot be ignored because it will increase the 

neutron yield over time. For instance, Anderson (1967) claims that for the above isotopic 

composition the neutron yield will increase the first year by bout 2%. After 69.5 years the 

neutron yield will peak at about 33% more than the original neutron yield. A more 

thorough discussion of this phenomenon can be read in Anderson’s paper. 

The emissions of radioactive contaminants and their progeny should always be 

considered when they are present in appreciable quantities within an (α,n) neutron 

source. 

 

2.8 Material Science of (α,n) Sources 

As discussed in section 2.4, the (α,n) reaction is highest when the medium is 

primarily composed of the target isotope. To most efficiently utilize the α emissions, the  
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Table 4: α induced reaction in light elements 
Source: West and Sherwood, 1982 

Element Eγ (MeV) Origin Reaction 
Be 4.439 9Be(α,nγ)12C 
B 
 
 

0.718 
1.632 
2.313 

10B(α,α’γ)10B 
11B(α,nγ)14N 
11B(α,nγ)14N 

C 6.130 13C(α,nγ)16O 

O 
 
 

0.351 
1.395 
1.982 

18O(α,nγ)21Ne 
18O(α,nγ)21Ne 
18O(α,α’γ)18O 

F 
 
 
 
 
 

0.583 
0.891 
1.236 
1.275 
1.528 
1.555 
2.081 

19F(α,nγ)22Na 
19F(α,nγ)22Na 
19F(α,α’γ)19F 
19F(α,pγ)22Ne 
19F(α,nγ)22Na 
19F(α,pγ)22Ne 

Mg 
 
 
 

 

0.844 
1.014 
1.273 
1.369 
1.779 

24Mg(α,pγ)27Al 
24Mg(α,pγ)27Al 
26Mg(α,nγ)29Si 

24Mg(α,α’γ)24Mg 
25Mg(α,nγ)28Si 

Al 
 
 
 
 
 

0.709 
0.844 
1.014 
1.263 
1.264 
1.454 
2.236 

27Al(α,nγ)30P 
27Al(α,α’γ)27Al 
27Al(α,α’γ)27Al 
27Al(α,pγ)30Si 
27Al(α,nγ)30P 
27Al(α,nγ)30P 
27Al(α,pγ)30Si 

Si 1.266 
1.779 
2.230 
2.234 

28Si(α,pγ)31S 

28Si(α,α’γ)28Si 
29Si(α,nγ)32S 
28Si(α,pγ)31S 

 

ratio of target atoms to alpha emitter atoms should be as high as possible, typically in 

excess of 200:1 (Wauchope and Baird, 1959), with the α emitters distributed as 

homogenously as possible within the target mixture. Aside from the homogeneity of the 

source, the frequency of reactions shown in equations (1) and (23) are independent of the 

macroscopic source geometry.  
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In the case of the common target beryllium, homogeneity may be difficult to 

achieve. The radionuclide and target will tend to form segregated clusters of atoms within 

the mixture. This severely limits the collisions of α particles with beryllium if the α 

emitter cluster is wider than the range of the alpha particle. Runnalls and Boucher (1956) 

report that the range of a typical α particle is about 20 μm. They also explain that 

actinides will form an XBe13 intermetallic compound (crystal), where X is the chemical 

symbol for the given actinide.  

 

2.8.1 X Beryllide 

The XBe13 crystal is referred to as X beryllide. This crystal also forms its own 

clusters that can be quite large when they are in a large matrix of beryllium. This 

effectively reduces neutron production since the alpha emitters will be locally surrounded 

by more α emitters and less beryllium nuclei. The formations of XBe13 crystals are a 

cause for concern since most alpha emitters of value in the construction of beryllium 

(α,n) neutron sources are actinides.  

The positive side to the formation of the intermetallic compound XBe13 is that its 

density is much greater than the theoretical density of the emitter and beryllium 

combined (when not in crystal form). In the case of UBe13, McElfresh et al. (1990) 

reported the density to be 4.359 g/cm3. The theoretical density of the mixture, however, 

was calculated to be 3.070 g/cm3. Wauchope and Baird (1959) explain that the greater 

density of the XBe13 allows for the best neutron economy with regards to volume. For 

this reason, many modern neutron sources have a 13:1 ratio of beryllium to α emitter and 

are comprised almost entirely of XBe13 crystals.  
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CHAPTER 3 

ISOTOPIC NEUTRON SOURCE CONSTRUCTION  

3.1 Source Preparation 

 The most important aspect of creating an isotopic neutron source is the 

metallurgical and/or chemical process of creating the source material. The preparation of 

the source will vary depending on the target material and radionuclide. Older, and less 

efficient, neutron sources will have fine (≤200 mesh) particles of actinide metal or oxide 

compressed with fine particles of the target nuclide (or some compound containing the 

target nuclei). Michaud and Boucher (1960) found that 200 mesh particles were the most 

economical for achieving a high neutron yield.  

Presently most (α,n) sources are made of the intermetallic compound: XBe13. 

Radium sources made of RaCO3 in a fine beryllium powder (IAEA, 2003). 

To produce the most amount of (α,n) reactions, neutron sources should be as 

dense and homogenous as possible. Therefore ideal neutron sources are made entirely of 

a ceramic, crystal or metallic compound. Most (α,n) sources use an actinide and 

beryllium, so barring any major nuclear or metallurgical discovery, it is doubtful that new 

(α,n) sources will stop using the XBe13 composition. Therefore the procedures for 

creating an X-Be compound is summarized here. The process of creating an X-Be 

compounds are explained in more detail by Tate and Coffinberry (1958), Runnalls and 

Boucher (1956), and Michaud and Boucher (1960).  

Tate and Coffinberry (1958) created a Pu-Be mixture by melting the metals of the 

two elements together under inert atmospheric pressure and thoroughly mixing the two. 

While this is the simplest option, several chemical and safety concerns must be addressed 
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when using this method. First, plutonium metal is usually prepared through fluorination 

which is costly. Second, preparing and handling plutonium metal requires extensive 

safety precautions.  

 Runnalls and Boucher (1956) created X-Be alloys by fluorination reduction at 

1400 K using the reaction (in vacuum): 

)(2)()()()(3 32)3(2 sllss BeFnBeXBenXF ++→++    (25) 

Where n is a positive number and X represents an actinide element. 

Runnalls and Boucher (1956) write that the beryllium fluoride product were easily 

distilled away at these temperatures leaving the X and Be metals. The X-Be alloys were 

created by melting the metals together at about 1650 K. 

 Michaud and Boucher (1960) created a X-Be compound by reducing X-oxide 

with beryllium in vacuum at 1725 K. The reaction follows: 

BenBeOXBeBenXO

BenBeOBenXO

)15(2)(

)2(2)(

132

2

−++→+

−+→+

)15(
)15(

≥
>

n
n

  (26) 

Assuming the beryllium-to-actinide ratio was greater than 13:1, this resulted in an 

XBe13 embedded in a porous beryllium matrix. Sintering reduced the porosity of the 

beryllium and removed the BeO from the mixture. Michaud and Boucher (1960) wrote 

that Sintering was best achieved from 1673-1723 K to sinter mixtures with a beryllium to 

plutonium (actinide) ratio of 15:1. Ratios greater than 30:1 had to be sintered at a 

temperature no greater than 1473 K, lest the neutron output would drop. This is because 

the beryllium matrix would begin to melt around the solid PuBe13 (XBe13) clusters. These 

clusters would migrate near each other and form larger clusters. These larger clusters 
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would limit the effect beryllium-to-plutonium ratio of the system and thus reduce the 

neutron output. 

Michaud and Boucher (1960) reported that compressing the neutron source would 

have little effect on the volume of the source beyond sintering. 

Wauchope and Baird (1959) performed experiments using a method similar to 

Michaud and Boucher (1960). They reported two concerns when preparing X-Be 

compounds in this manner, the first being the tendency for the mixture to violently outgas 

at 393 K and 693 K. They recommended holding the temperature of the furnace at these 

temperatures until the pressure inside the furnace returned to atmospheric. They also 

found that the mixtures were “very porous and mushroom shaped at the top”. To remedy 

this outcome they recommended placing a weight atop the container in which the alloy is 

being prepared. Michaud and Boucher found that compound made with a 13:1 (exact) 

beryllium-to-actinide ratio did not sinter well at 1673 K. They believe this is due to the 

high melting point of the XBe13 compound. They found that adding a “small excess of 

beryllium” aided the sintering of the neutron source. Wauchope and Baird used 200 mesh 

beryllium powder to replicate this procedure.  

It is ideal to create a neutron source with a beryllium-to-actinide ratio of 13:1 

because it is the most volumetrically efficient. Wauchope and Baird (1959) explain that 

the ≥200:1 ratio causes the overall volume of the source to be quite large for many α 

emitters and sometimes impractical for many applications. If the application of the 

neutron source allows for a physically larger neutron source, then the engineer may create 

a mixture with a ratio in excess of 13:1, perhaps even as large a 300:1, as this allows a 

better neutron production per alpha particle.  
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Special care must be taken to ensure that the XBe13 clusters are as fine and 

homogenously spread throughout the mixture as possible. As mentioned in section 2.8 the 

range of an α in beryllium is about 20 μm; therefore the XBe13 clusters should be much 

smaller than this, and the distance between the XBe13 clusters should be about 20 μm. If 

the distance is any greater then this extra barrier would be a waste of beryllium and 

volume. 

It is also wise to make the source as dense as possible as this will increase the 

atom density of the source and all its constituents proportionately.  If the system is truly 

homogenous then equation (5) implies that the similar atom density increase in all 

materials will have no effect of the neutron output of the system. Rarely are neutron 

sources completely homogenous and therefore equation (2) can be applied in certain local 

areas (fractures, contaminants and other irregularities) of the source where the increase in 

atom density need not be proportional.  

While a theoretical density can be achieved, most neutron sources will only 

achieve about 60% theoretical density. This is because of the economic and safety 

concerns associated with sintering a dangerous radioactive material. 

Ansell and Hall (1971, a) write that beryllium powder will corrode stainless steel 

at temperatures above 873 K. Therefore beryllium powder should be avoided when 

preparing neutron sources with an inner cladding of stainless steel. Many early neutron 

sources used Monel-K for this reason, since many sources were used in fission reactors 

where temperatures could be very high. 
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3.2 Source Geometry and Cladding 

3.2.1 Cylindrical Sources 

 As mentioned in section 2.5, in order to maximize the secondary reactions of the 

(α,n) source and create more neutrons, the source should have as large a volume-to-

surface-area ratio as possible. The best geometry to use is a sphere. However spherical 

geometry is not always easy to produce or use in the lab or industry and therefore a 

cylinder is the next best choice. The source cylinder should have dimensions such that the 

diameter is equal to the height. 

 The large volume-to-surface-area ratio of this cylinder will maximize 

multiplication neutrons reactions. But it will also increase the number of elastic and 

inelastic collisions that occur within the source. Therefore the energy spectrum of the 

source will be different when viewed from the radial sides of the source than the top of 

bottom of the source. For larger sources Kumar and Nagarajan (1977) state that the flux 

may vary up to 20%. 

 It is also necessary to contain the radioactive material so that it does not escape. 

The method of containment is to doubly encase the source in a strong and chemically 

resistant metal. Wauchope and Baird (1959) surrounded their experimental sources in two 

layers of aluminum. The MDS Nordian catalogue (IAEA-TECDOC-1357, 2003) features 

a Ra-Be source double encased in Monel-K which was silver soldered together. The 

Numec Pu-Be source (Profio, 1976) has the source surrounded by tantalum then an outer 

shell of stainless steel. Lorch (1973) had two layers of stainless steel. All of the stainless 

steel shells were carefully welded shut.  
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 It should be noted that there must be some empty space between the source 

material and first encasing shell. This allows for the buildup of helium gas from α decay 

and prevents any warping or damage to the material. Ansell and Hall (1971, I) write that 

the gap between the source and the cladding should be sufficient to account for all of the 

helium (and fission gases) that will develop over the (indefinite) life of the source. This 

protective measure may not be applicable for some source loadings and geometries. 

Therefore the cladding must be strong enough to withstand the internal pressures that will 

build up for a wide range of temperatures. 

 Many cylindrical neutron source designs featured an optional hook or ring. If the 

application demands such an accessory, the design engineer must be certain that the hook 

or other attachment does not penetrate the outer encasement, for radiation leakage 

concerns. 

 

3.2.2 “Switchable” Neutron Source 

 Ansell and Hall (1971, I) provide a design for an isotropic neutron source, that 

may be turned “on” and “off”. Two half shells of an alpha-emitting foil and beryllium can 

be brought into contact with each other by means of a rotating spindle as shown in figure 

5.  More information about this kind of source can be found in their paper. 



29 

 
Figure 5: “Switchable”(α,n) source design, source: Ansell and Hall, 1971 a 

 

3.3 Photonuclear Neutron Source Creation 

 Photonuclear neutron sources are significantly easier to produce than the (α,n) 

counterparts. According to Cierjacks (1983) these sources are typically spherical. These 

sources have a center that is made up of the γ emitter (which is in a chemically stable 

state). For the sources listed in Table 3, these compounds are: NaF, Al, CCl4, MnO2, 

Ga2O3, As2O3, Y2O3, In, Sb, La2O3 and Pr2O3. 

This material is then encased in a single layer of aluminum. However it is not 

inconceivable that other materials such as stainless steel can also be used. The cladding 

should be thick enough to ensure that the radioactive material will not escape passively 

nor in an accident, but not too thick that it would greatly reduce the energy of the γ rays. 

The cladding is then surrounded by a spherical blanket containing deuterium or 

beryllium. While it is not included in Cierjacks’ description it would not be a bad idea to 
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also have a thin cladding surrounding the blanket with beryllium. This is to help reduce 

the number of toxic beryllium particles contaminate the nearby environment. 

 The half-life of most (γ,n) sources are quite short. Therefore a (γ,n) source is 

prepared with a stable isotope of the source element. The entire neutron source is 

bombarded by a strong neutron field. The stable isotopes will capture some of those 

neutrons to form the unstable γ source. As these atoms decay, they will emit the γ ray that 

may undergo the (γ,n) reaction. 
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CHAPTER 4 

URANIUM-232 

 The Brookhaven National Nuclear Database (Tuli, 2005) reports that 232U has a 

68.9 ±.4 year half-life and decays into 228Th, where it joins the thorium (4n) decay chain. 

After 228Th decays, the progeny (224Ra) will quickly decay to a stable 208Pb. The full 

decay scheme of 232U and its primary emissions can be found in Figure 6. The 232U decay 

chain requires 10.17 years to come into secular equilibrium. Other characteristics of 232U 

can be found in Appendix C. 

Uranium-232 was first created during the Manhattan project. It underwent more 

extensive study in the late 1950’s and early 1960’s when it was a candidate for use in 

space-based electricity generation systems (Rohrman, 1961). 232U was not selected for 

use in the space program largely because of the strong gamma emissions of it progeny, 

particularly 208Tl which emits a 2.615 MeV gamma ray.  

Currently there is a small push (Kang and Hipple, 2001) to mix 232U with uranium 

nuclear weapons in all of the established nuclear weapon nations. They claim that 

because of the strong gamma field associated with the progeny of short lived 232U, 

extensive shielding is required to shield against the radiation. This discourages the 

procurement of uranium nuclear weapons by independent groups because they will have 

to invest more resources into shielding against the radiation. Ideally, intelligence agencies 

should be able to detect when a rouge group or nation has 232U tainted material because 

the radiation is very easy to detect and the thick shielding required to hide the radiation is 

also quite noticeable as it requires a lot of dense material or a very deep hole or cave. 

Therefore it follows that the traffic of 232U tainted nuclear weapons is very easy to detect. 
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Figure 6: Uranium-232 decay chain with most common decay energies 

 

There are no other engineering or practical applications of 232U at this time.  

However the 232U decay chain emits six high-energy α emissions in quick succession, 

making it an ideal candidate for a beryllium neutron source if the strong gamma field can 

be tolerated and the user is willing to wait 3-5 years for the neutron source to mature to a 

very high neutron output. Using equation (3), the theoretical peak neutron output was 

found to be 782.1 n/106 α after summing over all six α emissions, following the example 
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of Geiger and Van der Zwan (1975). The theoretical (α,n) neutron yields of other 

common neutron sources mentioned in the above paper were recalculated using decay 

data compiled by Stabin and da Luz (2002) from Brookhaven National Laboratory and 

are listed on Table 1. It is clear from the table that the 232U decay chain has the highest 

neutron output. 

 

4.1 Historical Review of 232U and Thorium (4n) Decay Chain (α,n) Sources 

There has been no effort to use 232U as a driver for an (α,n) neutron source in the 

past. Nor has there been any papers written explicitly on the topic. There are very few 

mentions of 232U or the Thorium (4n) decay chain as an (α,n) neutron producer.  

The first mention was made by Arnold at the Second United Nations Atoms for 

Peace Conference in 1958. He presented a similar paper with ANS Conference (Nuclear 

Safety) in 1964. Unpublished results of his calculations were printed in Benedict, Pigford 

and Levi’s Nuclear Chemical Engineering (1981). Arnold discussed the potential of 

232U/228Th to produce neutrons in an (α,n) reaction, but discussed it only in a waste 

management context. Arnold showed preliminary results of the neutron output of several 

isotopes found in nuclear waste when there are contaminant light elements, such as 

beryllium and fluorine. 

Ansell and Hall (1971, II) included 232U in their table of potential (α,n) sources. 

This table showed that 232U had the greatest potential for producing (α,n) neutrons. They 

also discussed how limited 228Th (α,n) sources have been produced. 228Th-Be sources 

were produced by irradiating 226Ra with neutrons until it forms 228Th. 228Th is the first 
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progeny of 232U, and therefore a 228Th and 232U will have similar neutron yields and 

spectrums. 

228Th-Be (Ansell and Hall, 1971, II) and 228Ra-Be (Ansell and Hall, 1971, I) 

sources were described as being high intensity (α,n) sources which are best used in 

research and development reactors where their gamma emissions can be tolerated. Ansell 

and Hall concluded their paper (1971, II) by predicting that a demand for high intensity 

isotopic neutron sources would lead to increased development of 244Cm-Be, 227Ac-Be and 

232U-Be neutron sources. This thesis is the first work to develop a 232U-Be(α,n) source. 

In 1978, Kumar and Nagarajan published the neutron spectrum of a 228Ra-Be 

source. 228Ra beta decays into 228Ac with beta decays into 228Th. Therefore both a 228Ra-

Be and 232U-Be source would utilize most of the same alpha emissions, but a 232U-Be 

source would yield additional neutrons due to the α emission of 232U. 

 

4.2 Uranium-232 Production 

 232U was first created in 1943 by Gofman (and Seaborg) (Seaborg, Kathren and 

Gough, 1994) via the reaction (Newton, 1949): 

UPandTh 232
92

232
91

232
90 )()2,( −β      (27) 

 Today, commercial high purity U-232 is produced in the following reaction 

(Guglielmetti et al., 2000) : 

UPanpTh 232
92

232
91

232
90 )(),( −β      (28) 

Other modern techniques for creating 232U use the following reactions (Mann and 

Schenter, 1977): 

UPanPaThnTh 232
92

232
91

231
91

231
90

230
90 )(),()(),( −− βγβγ    (29) 



35 

UnnU fast
232
92

233
92 )2,(      (30) 

 The threshold energy for the reaction in equation (30) is about 6 MeV. 

The reaction in equation (29) requires that 230Th (ionium, Io) be isotopically 

separated from the much more prevalent 232Th. Ionium is a decay product in the 238U 

(4n+2) decay chain and is very prevalent in nature. However natural uranium is almost 

always found with natural thorium (232Th). According to Rohrman (1961) ionium makes 

up anywhere from 2%-40% of thorium, depending largely on where it is found. Ionium is 

usually less than 5% of thorium. This implies that isotopic separation, which is always 

difficult and expensive, will be needed to produce 232U without significant isotopic 

impurities from the neutron captures of 232Th. 

Kim et al. (1972) explain that isotopic separation is not necessary. Natural 

thorium is only found in two long lived forms, 232Th and 230Th (Io). Consider the 

following reactions: 

)000,32,()063.1,(),( 2/1
231
912/1

231
90

230
90 yrtPadtThnTh == −− ββγ    (31) 

)27,()3.22,(),( 2/1
231
912/1

233
90

232
90 dtPamtThnTh == −− ββγ     (32) 

After both 230Th and 232Th absorb a neutron, they will beta decay into 231Pa and 

233Pa, with half-lives of 32,000 yr and 27 d respectively. Therefore after a cool down 

period of 10 months all of the remaining protactinium will be 231Pa. The protactinium can 

then be chemically separated to again undergo neutron activation and decay into 232U: 

UPanPa 232
92

232
91

231
91 )(),( −βγ     (33) 

 Using the above procedure is more efficient than isotopically enriching the 

ionium in the thorium. 
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The production scheme of 232U is shown on Figure 7 (Kim et al.).  That scheme 

mentions a cool down period after each neutron irradiation. Because of the 27 day half-

life of 233Pa, the first cool down should last 270 days. After 10 half lives a radioisotope is 

considered to have completely decayed. Since the half-life of 231Pa is 32,800 years, 231Pa 

will be the only remaining protactinium isotope after 270 days.  The second cool down 

period is to allow the 232Pa created toward the end of the irradiation to decay to 232U. 

The scheme also recommends the time that each material should be irradiated 

with neutrons. This is found by deriving when the rate of isotope to be created will equal 

80% of destruction (by decay, neutron activation, fission, etc) of the same isotope.  

The production scheme will require two kinds of chemical separations as shown 

on Figures 8 and 9 (Kim et al., 1972). Each flowchart describes the procedure for the 

target material after the first and second kind of irradiation cycle respectively. 

According to Kim et al. (1972), the first chemical separation is largely to remove 

231Pa. However uranium and fission products will also have to be removed.  Fission 

products will be made from the fission of uranium, as well as fast fissions of thorium. 

The uranium extracted during this cycle will contain about 15% 232U. This is 

unsatisfactory for applications requiring pure 232U, but it can be used later on for other 

applications. Lastly thorium will also have to be extracted so that it may be subjected to 

several more cycles in the reactor. 
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Figure 7: 232U production flowchart, Source: J. I. Kim et al. 1972 
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Figure 8: Chemical removal of 231Pa and 232U flowchart , source: Kim et al. 1972 
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Figure 9: Chemical recovery of 232U flowchart ,source: Kim et al. 1972 
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Kim et al. (1972) explain that the second chemical separation is to remove 232U, 

now enriched to a high and very satisfactory 92%. Fission products and higher actinides 

will also have to be removed leaving only 231Pa. This material will also be placed back in 

the neutron flux. 

The uranium will exit the process in the form of (NH4)2U2O7. Considering the 

quantities of uranium to be extracted starting with 10 kg of thorium, this mixture and 

amount is safe from a criticality viewpoint. 232U has a critical radius of about 3.31 cm 

under normal pure-metal density.  

 

4.3 Dirty Uranium 

The reactions described in reactions (29) and (30) are the most important 

reactions when creating 232U, although they are unwanted reactions during the breeding 

of 233U in the thorium fuel cycle. According to the IAEA (2005) the 232U yields in bred 

233U can vary from 5-3000 ppm depending on the method by which 233U is bred. 233U 

with a high 232U contamination is said to be “dirty uranium”. The presence, short half-life 

and the strong gamma emissions of 232U and its progeny make the handling of 233U 

dangerous. Adequate shielding must be in place at any facility that handles bred 233U. 

Therefore there has been a great deal of effort to reduce the production of 232U when 

breeding 233U.  

The creation of 232U when breeding 233U is inevitable. But there exists methods to 

reduce the 232U yield. Most often, this requires recycling thorium from previous efforts to 

breed 233U. The reason why recycling thorium will reduce the 232U yield in subsequent 

breeding attempts is because most of the ionium will have been converted in the first 
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cycle of breeding. Therefore reaction in equation (30) will become the dominant producer 

of 232U after most or all of the ionium has been consumed. 

In addition to 232U production and related safety concerns, a report from Hanford 

Atomic Products Operation (Hanford Laboratories) (HW-78100, 1963) found that is was 

more economical to recycle thorium when breeding 233U than it was to create fresh 

thorium. 

Mann and Schenter (1977) found that relative impurities of 232U in bred 233U 

increase with neutron irradiation time. The impurity is also dependent on the neutron 

energy, geometry and target chemical and isotopic composition. More complete results of 

their investigation and that of other studies can be found in their paper and the IAEA 

report IAEA-TECDOC-1450. Generally, 232U production is reduced with En<6 MeV 

(reaction (30)) and when pure 232Th is used. Therefore a 232Th breeding blanket on the 

outskirts of a reactor is generally a superior method for breeding 233U with as little 232U 

impurity as possible, because the flux will be less energetic on the edges of the reactor 

than when the thorium is intimately mixed with the fuel. 
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CHAPTER 5  

232UBe13 NEUTRON SOURCE 

5.1 Description of Source 

 A neutron source comprised of 232UBe13 was designed and its performance 

simulated in the present work. Very little 232U exists in a pure form and what does exists 

is too expensive to produce an appreciably sized neutron source. However significant 

amounts of 232U are inadvertently created during the breeding of 233U can be used to 

construct a source. Therefore a source consisting dirty of 233UBe13 with a contamination 

of 300 ppm 232U, was modeled. Hereafter this source will be referred to as dirtyUBe13.  

 The source was modeled as a cylinder with its diameter equal to its height. This 

was done to maximize the multiplication reactions that occur within the cylindrical 

source, as these dimensions have the greatest volume-to-surface area ratio. Ideally a 

spherical geometry would be selected to maximize the multiplication reactions, but a 

cylinder was chosen for ease of potential manufacturing (Wauchope and Baird, 1959). 

The model source has a diameter and height of 1.1018 cm  

The source model contains 1.043 GBq (0.0282 Ci, 3.004 g) of 233U, 0.747 GBq 

(0.0202 Ci, 0.9019 mg) of 232U and 1.511 g of beryllium at construction. Anderson 

(1967) indicates that the PuBe13 compound may not form successfully for sources 

containing under a gram of plutonium. It was assumed that this condition also applies to 

all actinides when forming an XBe13 compound,, so the source was designed to have over 

one gram of uranium. The density of the source was set to the theoretical density of 

4.2975 g/cm3.  
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The source dimensions were selected so that this could be made into a 

demonstration source. It was small enough that very little material was needed, but large 

enough that the UBe13 could be sintered properly. 

There exists a 0.491 cm helium collection gap on all sides of the UBe13 source to 

contain the helium particle that will accumulate due to α decay. The source would be 

doubly encapsulated in stainless steel (modeled as iron) to prevent release of material. 

The diagram of the sample source can be found in Fig. 9. 

 

Figure 10: Design of example dirtyUBe13 neutron source 

  

The source design was evaluated to determine if the steel encapsulation would 

safely contain the accumulation of helium gas over the lifetime of the neutron source. It 

was predicted that the source would satisfy these requirements. The internal helium 

pressure will be 749 kPa (7.4 atm) over the lifetime of the 232U (~700 yrs). Assuming a 
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conservative yield strength of 250 MPa, the containment is expected to fail after about 

40,000 years. 

Heat generation from radioactive decay and reactions within the source is 

expected to be negligible. Therefore the source can passively maintain a safe temperature 

with its environment. 

  

5.2 Multiplication Blanket 

Simulations with a 6 cm diameter sphere surrounding the neutron source and 

cladding for the purpose of moderating the neutrons and creating additional neutrons by 

multiplication reactions were performed. The neutron spectrum was assumed to have 

come from a source aged 10.17 years or more. Several materials were selected for the 

sphere: Be, Be12W, BeHD, W and Pb. The beryllium compounds were selected because 

of the large (n,2n) and (γ,n) probability of beryllium. Deuterium can undergo a (γ,n) 

photonuclear reaction (Profio, 1979) at the source gamma-ray energies, which could 

possibly reduce the number of hard gamma rays leaving the source. Lead and tungsten 

were selected because they have reasonable (n,2n) probabilities at fast neutron energies 

and because they can be used to shield against the strong gamma emissions.  

 

5.3 Dirty Uranium Fuel 

A sample source of dirty uranium fuel UO2 was also modeled. It was assumed 

that the fuel was 10.17 years or older so that U-232 was in equilibrium with its daughters. 

 

 

 



45 

5.4 Computer Codes 

 Two computer codes were used to determine the total neutron yield and spectrum 

of the sample neutron source. The first code SOURCES-4c was used to find the (α,n) 

reactions. MCNP5 was used to determine the secondary reactions. 

 SOURCES-4c and its predecessor versions, is a statistical code that find the (α,n), 

(α,α’n), spontaneous fission and delayed neutron yields for a neutron source system. 

SOURCES-4c uses the equations outlined in section 2.2.1 and 2.3 of this thesis to solve 

for the (α,n) neutron yield and spectrum of a homogenous system. The code is also 

capable of performing thick and thin target problem and layered systems, (Wilson et. al, 

1999). 

 SOURCES-4c is presently considered the dominant (α,n) reaction code. ORIGEN 

(SCALE5) is also capable of performing (α,n) reactions, because the SOURCES code 

has been integrated into the ORGIEN code. The source code for SOURCES-4c is 

available and can be easily modified and recompiled. The source file for ORIGEN is not 

available. Since several data cards and lines of code had to changed to evaluate this 

problem, SOURCES-4c was selected. 

 MCNP5 is a deterministic transport code that is used to determine many neutron, 

electron and gamma reactions. It is very reliable and its solutions are universally 

considered correct within the calculated error. MCNP5 was selected to evaluate this 

problem because of its ease and widespread usage. 
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5.5 Evaluation 

5.5.1 (α,n) Yields 

The neutron yield is source was modeled using the SOURCES-4c computer code 

for source ages of 0, 1, 3, 5, 7.5, and 10.17 years. The composition of the source varied at 

these times due to the buildup of the 232U and 233U decay chains. All of the 232U and 233U 

progeny were included as they built in with time. The SOURCES-4c code returns the 

neutron output (in n/cm3), assuming an infinite homogenous medium. It computed the 

neutron energy distribution from 0 to 13.5 MeV in 54 evenly spaced energy groups 

(width 250 keV).  

The current release of SOURCES-4c was incapable of modeling this source, as it 

will cease functioning for alpha particle energies over 7.9 MeV since exact cross section 

data are only available up to that energy. The code and its data library were modified to 

allow energies up to 10 MeV by assuming a constant value of the cross section beyond 

the last available data point, as previously performed by Shores et al. (2003). This 

modification can be found in Appendix B. The extension of the data is required as 232U 

decay product 212Po emits an 8.7844 MeV alpha particle. This is a middling assumption 

since the total cross section for the Be(α,n) reaction measured by Gibbons and Macklin 

(1964) remains nearly constant from 7.9-8.5 MeV, but sharply increases from 8.5-8.8 

MeV. Therefore, the neutron yields may be underestimated for 212Po.  The data library 

was also modified to include the latest half-life data from Brookhaven National Lab 

(Tuli, 2005) for the isotopes found in the source. These modifications can be found in 

Appendix B. 

All input files used with SOURCES-4c can be found in Appendix A.1. 
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5.5.2 Multiplication Neutrons and Dose Calculations 

 The neutron energy spectrum and yield found by the SOURCE-4c code were used 

in an MCNP5 model of the source. The leakage neutron spectrum from the source was 

computed with the MCNP5 code. This calculated spectrum included any multiplication 

due to secondary nuclear reactions (n,2n), (n,f) and (n, γ) as well as energy-degrading 

interactions in the source for all SOURCES-4c evaluation at the various source ages. A 

separate MCNP5 run was used to calculate the leakage spectrum due to photonuclear 

neutron yield. The 2.615 MeV gamma rays from the decay of 208Tl and all other gamma 

emissions of the radionuclides were included in these calculations. The addition of the 

weaker gamma rays into the input decks served to find the gamma dose rate (calculated 

on a separate spreadsheet). This step was also done for all SOURCES-4c evaluated ages 

of the source.  

 All MNCP input decks for multiplication and photonuclear reactions can be found 

in Appendix A.2. 

A separate run to calculate the photonuclear yield of the 4.438 MeV gamma ray 

emitted from the excited 12C nucleus after reaction (1) (Profio, 1979). But because of the 

relative scarcity of the 4.438 MeV gamma rays and the rare improbable nature of the 

photonuclear reaction, the 4.438 MeV (γ,n) reactions were omitted from the results and 

future MCNP simulations. 
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5.5.3 Multiplication Blanket 

 An MCNP model was used also used to evaluate the multiplication and 

photonuclear reactions along with the spectra of the neutrons and gamma particles exiting 

the multiplication blanket describe in section 5.2. MCNP models were made for a 10.17 

year or older neutron source, surrounded by the blankets described in that section. These 

MCNP input decks can be found in Appendix A.2. 

 

5.5.4 Dirty Uranium Fuel 

A SOURCE-4c input file was also set up for UO2 fuel. This input deck was made 

to evaluate the (α,n) yield of dirty uranium fuel. No calculations were done for 

multiplication neutrons since the geometry of fuel pellets vary too greatly. So only the 

(α,n) production traits of spent dirty uranium fuel was evaluated. Further evaluation of 

spent dirty uranium fuel will have to be evaluated on a case-by-case basis. The 

SOURCES-4c input file for the dirty uranium fuel can be found in Appendix A.1. 
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CHAPTER 6 

RESULTS 

6.1 Neutron Source 

6.1.1 Source Neutron Output 

The source magnitude was found to vary with time starting at 6.7*104 

neutrons/sec and peaking 10.17 years later at about 3.5*105 neutrons/sec. The specific 

(α,n) neutron yields from 232U and its progeny were found to be 43 and 560 n/106 α at 

birth and after 10.17 years, respectively. After 10.17 years the neutron yield decreases in 

direct proportion to the 232U activity. The graph of neutron emission rate verses time can 

be found in Fig. 11. At the peak neutron emission, 90.08% of all the (α,n) reactions were 

from the 232U decay chain’s alpha emissions; the other 9.92% of the (α,n) reactions being 

from the 233U decay chains. The 232U decay chain (α,n) reactions account for 86.42% of 

the total neutron output. A break down of how each isotope contributed to the production 

of neutrons at 10.17 years can be found in Table 5 along with the contributions of the 

multiplication and photonuclear reactions. The probability of a photonuclear reaction is 

greater for the 4.438 MeV gamma from the 12C* atom than from 208Tl, but the limited 

number of 12C* gamma rays per unit time results in a smaller number of neutrons 

produced from the higher energy gamma rays.  

Including only the (α,n) reactions from 232U and its progeny, the source had a 

peak output of 561.1 n/106 α particles or 74.3% of the value predicted by equation (14). 

The shortcoming of reaching the predicted value is due to the low beryllium-to-alpha-

emitter atomic ratio; specifically because the alpha particles will have a smaller chance of 

interacting with a beryllium nucleus if there are more non-beryllium nuclei in its path.  
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Figure 11: Neutron emissions vs. time for dirtyUBe13 example source (calculated) 

 

Ergo the alpha particle is more likely to be slowed down by the Columbic force of the 

heavier atoms before interacting with a beryllium nucleus. Equation (23) can be used to 

predict the neutron output given the chemistry of the system. These results were 116% of 

the value predicted by equation (23). This is within the error of the SOURCES-4c code of 

±18% (See below). 
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Table 5: Neutron Yields for sample dirtyUBe13 Source (calculated) 

 Yield (n/sec) Fraction of (α,n) Fraction of Total
(α,n) Reactions 

Isotope 
212Bi 
213Bi 
212Po 
213Po 
216Po 
217At 
220Rn 
221Fr 
224Ra 
225Ac 
228Th 
229Th 
232U 
233U 

 
232U Chain 
233U Chain 
Total (α,n) 

 
Secondary Reactions 

(n,2n) 
(n,f) 

Photonuclear (γ,n) 
 

Total 

16374
1

77327
138

59544
105

50699
50

36881
6

30891
33

28967
32775

300683
33108

333791

1516
11738
3968

351010

 
 

4.91% 
0.00% 

23.17% 
0.04% 

17.84% 
0.03% 

15.19% 
0.02% 

11.05% 
0.00% 
9.25% 
0.01% 
8.68% 
9.82% 

 
90.08% 
9.92% 

 
 
 
 
 
 
 
 

4.66%
0.00%

22.03%
0.04%

16.96%
0.03%

14.44%
0.01%

10.51%
0.00%
8.80%
0.01%
8.25%
9.34%

85.66%
9.43%

95.09%

0.43%
3.34%
1.13%

100.00%

 
The source spectrum, normalized to a neutron emission of unity, is plotted in Fig. 

12  for varying times. At the loading of the neutron source, only 232U and 233U atoms are 

emitting alpha particles and, therefore, the 0 year spectrum is largely determined by the 

neutrons from 232U and 233U (α,n) reactions. As time progresses the contributions of other 

progeny’s alpha emissions build in and have an impact of the neutron energy spectrum.  
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Figure 12: Neutron energy spectrum for dirtyUBe13 example source at varying times (calculated) 

 

Peaks were predicted in the spectrum at 1.5, 3.75, 4.25, 6.75, 9.25 and a broad 

peak at 7.5 MeV. By comparison Ansell and Hall measured peaks in a 228Th (α,n) source 

at 3.5, 5.5, 6.25, 8.5 and 9.25 MeV. Figure 13 shows the spectrum of the two neutron 

sources at peak neutron production. The graph shows a rough correlation between the two 

spectra. The discrepancies are likely due to SOURCE-4c assuming the neutron emissions 

to be isotropic and it’s 18% overall error. 

 



53 

 

Figure 13: Comparison of calculated dirtyUBe13, 228ThBe13 and measured 228Th-Be source spectra 

 

Compared with measured results of Pu-Be neutron sources, Charlton et al. (1997) 

found that the spectrum derived by SOURCES-3A was correct within 18% for all 

energies. This benchmark was used for later versions of the SOURCES code. This rather 

large error, occurs mostly at lower energies where the spectrum is underestimated by the 

code. It was postulated in that paper that the large error was the result of the 

experimenters (who measured the flux spectrum of the neutron source) neglecting to 

report the contaminants in their sample. If these contaminants were neglected in the 

SOURCES input file, then it follows that the contribution of the contaminants to the 

neutron spectrum will also be omitted. Shores et al. (2003) show better agreement by 

modifying the fraction of breakup reactions (reaction in equation (24). However a final 
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version of the modified code was never released and the authors made no attempt to 

make such modifications. The final error from the SOURCES-4c, MCNP5 and 

spreadsheet calculations is about 20% for all energies and yields. 

 

6.1.2 Source Dose Rate 

Much like the neutron emission, the ambient dose equivalent rate from the source 

will vary with time and follows the total activity of the source. The peak total ambient 

dose rate (ICRP, 1996; ICRU, 1998) was calculated to be 0.105 mSv/hr at 1 meter; the 

neutron contribution accounted for 0.004 mSv/hr. The graph of ambient dose rate at one 

meter from the source as a function of time can be found in Fig. 14. Most (96.2%) of the 

dose rate comes from the intense gamma field surrounding the source. Because of the 

high dose rate, a 232U driven neutron source should only be used where there is adequate 

shielding. 

 

6.2 Multiplication Blanket 

As expected, it was found that the overwhelming factor influencing neutron 

multiplication was the (n,2n) reaction, accounting for at least 94.5% of all multiplication 

neutrons produced in the various blanket materials. The photonuclear reactions were most 

prevalent in the beryllium materials. The multiplication factors, fraction (γ,n) neutrons, 

and total relative dose can be found in Table 6 for these materials. The normalized 

neutron energy spectrum can be found in Figure 15.  
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Figure 14: Ambient dose rate at 1 m for dirtyUBe13 example source (calculated) 
 

Table 6: Neutron Multiplication for 6 cm diameter 
spherical blanket (calculated) 
Material Multiplication 

Factor 
Fraction Yield 

(γ,n) 
Relative 

Total Dose 

Bare 
Be 

BeHD 
Be12W 

W 
Pb 

1.0000 
1.0940 
1.0303 
1.0657 
1.0261 
1.0109 

1.1% 
5.5% 
4.5% 
3.7% 
1.1% 
1.1% 

100% 
93% 
76% 
98% 
23% 
37% 
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Figure 15: Neutron energy spectrum for dirtyUBe13 example source surrounded in a 6 cm spherical blanket 

(calculated) 

 

6.3 Dirty Uranium Fuel 

The homogenous (α,n) production rate of 10.17 year or older UO2 was found to be 725 

n/sec*cc.  
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CHAPTER VII 

DISCUSSION 

A 232UBe13 driven neutron source would make an excellent neutron source 

because of its superior neutron production capability. It will produce more neutrons than 

any other (α,n) or (γ,n) neutron source per unit activity and per unit gamma dose 

respectively. Its theoretical maximum from equation (14), 755.1 n/106 α is over a factor 

of 10 higher than many beryllium (α,n) neutron sources in use today (~57-100 n/106 α), 

and its simulated output (561.1 n/106 α) is still greater than the theoretical maximum for 

every other beryllium (α,n) neutron source, save 227Ac-Be (736.8 n/106 α) sources. 

However if the 227Ac-Be source were to have the same 13:1 beryllium-to-alpha-emitter 

ratio as the 232UBe13 source, then the 232UBe13 source would have a superior output. 

The density was assumed to be theoretical. In practice though, densities are 

typically around 60% of theoretical. It was found that the (α,n) neutron yield decreased 

by 17.3% (464 n/106 α). This is still a very respectable output that exceeds most other 

(α,n) sources. 

 

7.1 Applications in the Thorium Fuel Cycle 

A 232U driven neutron source will be very economical if and when the thorium 

fuel cycle is utilized, since only a few grams of bred 233U will be required to produce a 

strong neutron source – especially when 233U will be produced by the ton. A 232U driven 

neutron source could be best used in a thorium fuel cycle reactor. This is because the 

reactor and associated facilities will already be adequately shielded against the hard 

gamma emissions. Potentially fuel rods of dirtyUBe2 could be made to add to the fuel rods 
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in place in a thorium cycle reactor. These rods could be used as control rods in such a 

reactor. 

 

7.2 Generalizing Results for Dirty Uranium 

Since the concentrations of 232U will vary in dirty uranium, it is useful to have an 

approximation for finding the peak (α,n) neutron yield per unit volume for varying 

concentrations of 232U. Assuming a source was constructed with pure sample of a given 

compound (e.g. UBe13 or UO2), the peak (α,n) fluence is: 

( ) ( ) UUpeakY 233232 χυχυ +≈     (34) 

Where Y is the peak emission rate in n/cm3-sec, χ is the concentration of each respective 

isotope in ppm and ν is a constant that can be found in table 7 given in terms of n/cm3-

ppm-sec.  

Table 7 lists the constants for unit volume neutron production for UBe13 and UO2 

at theoretical density, since these are the most likely compounds for producing neutrons 

with dirty uranium. Note that these constants assume theoretical density and have an error 

of ±18%. Equation (34) only estimates the (α,n) yields. Multiplication reactions cannot 

be estimated easily per unit volume, and are not included in that equation. 

 

Table 7: ν values for Various 
Compounds with Dirty Uranium

(n/ppm*sec*cc) (calculated) 
Compound νU-232 νU-232

UBe13 
UO2 

954.09
2.163

.0315
6.56*10-5 
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Equation (34) can be easily modified to account for burn-up factors, B, in the case 

of spent fuel: 

( ) ( ) UUpeak BBY 233232 χυχυ +≈     (35) 

Similarly the specific volume neutron production in spent fuel waste products can 

be estimated over time by applying the decay equation after the 232U is in equilibrium 

with its progeny: 

( ) ( ) UU
t BeBtY 233232)( χυχυ λ +≈ −    (36) 

Where λ is the decay constant for 232U and t is the time elapsed after 232U-progeny 

equilibrium is achieved. 
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CHAPTER VIII 

CONCLUSIONS 

The physics and material science of the (α,n) reaction and neutron source were 

researched and discussed in this thesis. A new emitter was chosen, uranium-232, for what 

promises to be an inexpensive, easy-to-manufacture new choice of isotope for use in 

(α,n) neutron sources. 

Theoretical calculations suggest that a 232UBe13 driven neutron source should 

have a greater neutron output per alpha particle than other beryllium neutron sources. The 

calculated neutron yield was found to be greater than the theoretical yield of any other 

(α,n) neutron source except 227Ac. But with similar geometries, compositions and 

activities, a 232UBe13 source should be superior to other (α,n) neutron sources. The 

disadvantages fo the neutron source are that it takes about 5 years to achieve a very high 

neutron output and that the gamma field surrounding the source is very high. However if 

the gamma emissions can be tolerated and the source can be allowed to age, then this 

source should outperform any other isotopic neutron source aside from Cf-252.  
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dirtyUBe13 at 0 years Input Card (tape1) 

 
233UBe13 300ppm 232 @ 0.0 yr 
1  2  1   
12  0   
  004 .928571429      
  081 0.00e-00 
  082 0.00e-00 
  083 0.00e-00 
  084 0.00e-00 
  085 0.00e-00 
  086 0.00e-00 
  087 0.00e-00 
  088 0.00e-00 
  089 0.00e-00 
  090 0.00e-00 
  092 .07142648 
 54  13.5 0.0  
14   
  0832120  0.0000e00       
  0832130  0.0000e00 
  0842120  0.0000e00      
  0842130  0.0000e00     
  0842160  0.0000e00     
  0852170  0.0000e00   
  0862200  0.0000e00 
  0872210  0.0000e00        
  0882240  0.0000e00 
  0892250  0.0000e00 
  0902280  0.0000e00     
  0902290  0.0000e00     
  0922320  2.2015e18        
  0922330  7.3360e21 
1  4000 
  0040090  .928571429 
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dirtyUBe13 at 1 year Input Card (tape1) 
 
233UBe13 300ppm 232 @ 1.0 yr 
1  2  1   
12  0   
  004 .928571429      
  081 1.96e-13 
  082 3.36e-08 
  083 2.38e-11 
  084 4.32e-16 
  085 3.91e-20 
  086 1.66e-13 
  087 2.25e-16 
  088 9.45e-10 
  089 1.05e-12 
  090 4.91e-07 
  092 .07142648 
 54  13.5 0.0  
14   
  0832120  1.1130e12       
  0832130  3.4047e08 
  0842120  5.8681e01      
  0842130  4.4451e-1     
  0842160  4.4417e07     
  0852170  4.0203e03   
  0862200  1.7032e10 
  0872210  2.3151e07        
  0882240  9.6867e13 
  0892250  1.0754e11 
  0902280  1.8477e16     
  0902290  3.1942e16     
  0922320  2.1794e18        
  0922330  7.3360e21 
1  4000 
  0040090  .928571429 
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dirtyUBe13 at 3 years Input Card (tape1) 
 
233UBe13 300ppm 232 @ 3.0 yr 
1  2  1   
12  0   
  004 .928571429      
  081 4.23e-13 
  082 2.47e-07 
  083 1.50e-10 
  084 9.31e-16 
  085 1.26e-19 
  086 3.57e-13 
  087 7.25e-16 
  088 2.04e-09 
  089 3.37e-12 
  090 1.32e-06 
  092 .07142648 
 54  13.5 0.0  
14   
  0832120  2.3966e12       
  0832130  1.0951e09 
  0842120  1.2635e02      
  0842130  1.4297e00     
  0842160  9.5639e07     
  0852170  1.2931e04   
  0862200  3.6673e10 
  0872210  7.4464e07        
  0882240  2.0858e14 
  0892250  3.4590e11 
  0902280  3.9786e16     
  0902290  9.5889e16     
  0922320  2.1360e18        
  0922330  7.3359e21 
1  4000 
  0040090  .928571429 
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dirtyUBe13 at 5 years Input Card (tape1) 
 
233UBe13 300ppm 232 @ 5.0 yr 
1  2  1   
12  0   
  004 .928571429      
  081 5.26e-13 
  082 5.67e-07 
  083 3.86e-10 
  084 1.16e-16 
  085 2.13e-19 
  086 4.44e-13 
  087 1.22e-15 
  088 2.53e-09 
  089 5.69e-12 
  090 2.04e-06 
  092 .07142648 
 54  13.5 0.0  
14   
  0832120  2.9812e12       
  0832130  1.8499e09 
  0842120  1.5717e02      
  0842130  2.4152e00     
  0842160  1.1897e08     
  0852170  2.1844e04   
  0862200  4.5617e10 
  0872210  1.2579e08        
  0882240  2.5945e14 
  0892250  5.8430e11 
  0902280  4.9489e16     
  0902290  1.5977e17     
  0922320  2.0935e18        
  0922330  7.3359e21 
1  4000 
  0040090  .928571429 
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dirtyUBe13 at 7.5 years Input Card (tape1) 
 
233UBe13 300ppm 232 @ 7.5 yr 
1  2  1   
12  0   
  004 .928571429      
  081 5.75e-13 
  082 1.03e-06 
  083 8.41e-10 
  084 1.27e-15 
  085 3.21e-19 
  086 4.86e-13 
  087 1.85e-15 
  088 2.77e-09 
  089 8.59e-12 
  090 2.86e-06 
  092 .07142648 
 54  13.5 0.0  
14   
  0832120  3.2599e12       
  0832130  2.7932e09 
  0842120  1.7186e02      
  0842130  3.6468e00     
  0842160  1.3009e08     
  0852170  3.2983e04   
  0862200  4.9882e10 
  0872210  1.8993e08        
  0882240  2.8370e14 
  0892250  8.8227e11 
  0902280  5.4116e16     
  0902290  2.3965e17     
  0922320  2.0415e18        
  0922330  7.3358e21 
1  4000 
  0040090  .928571429 
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dirtyUBe13 at 10.17 years Input Card (tape1) 
 
233UBe13 300ppm 232 @ 10.17 yr 
1  2  1   
12  0   
  004 .928571429      
  081 5.86e-13 
  082 1.54e-06 
  083 3.24e-11 
  084 1.29e-15 
  085 4.38e-19 
  086 4.95e-13 
  087 2.52e-15 
  088 2.83e-09 
  089 1.17e-11 
  090 3.71e-06 
  092 .07142648 
 54  13.5 0.0  
14   
  0832120  3.3215e12       
  0832130  3.8096e09 
  0842120  1.7511e02      
  0842130  4.9737e00     
  0842160  1.3255e08     
  0852170  4.4984e04   
  0862200  5.0825e10 
  0872210  2.5904e08        
  0882240  2.8907e14 
  0892250  1.2033e11 
  0902280  5.5140e16     
  0902290  3.2578e17     
  0922320  1.9874e18        
  0922330  7.3357e21 
1  4000 
  0040090  .928571429 
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dirtyUBe13 (60% theoretical density) at 10.17 years Input Card (tape1) 
 

233UBe13 300ppm 232 @ 10.17 yr 60% theoretical density 
1  2  1   
12  0   
  004 .928571429      
  081 5.86e-13 
  082 1.54e-06 
  083 3.24e-11 
  084 1.29e-15 
  085 4.38e-19 
  086 4.95e-13 
  087 2.52e-15 
  088 2.83e-09 
  089 1.17e-11 
  090 3.71e-06 
  092 .07142648 
 54  13.5 0.0  
14   
  0832120  1.9929e12       
  0832130  2.2857609 
  0842120  1.0266e02      
  0842130  2.9842e00     
  0842160  0.7953e08     
  0852170  2.6990e04   
  0862200  3.0495e10 
  0872210  1.5542e08        
  0882240  7.7344e14 
  0892250  0.7220e11 
  0902280  3.3084e16     
  0902290  1.9547e17     
  0922320  1.1924e18        
  0922330  4.4014e21 
1  4000 

0040090  .928571429
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dirtyUO2 at 10.17 years Input Card (tape1) 
 
dirtyUO2 300ppm 232 @ 10.17 yr 
1  2  1   
12  0   
  008 .66666667      
  081 2.74e-12 
  082 7.21e-06 
  083 1.51e-10 
  084 6.02e-15 
  085 2.04e-18 
  086 2.31e-12 
  087 1.18e-14 
  088 1.32e-08 
  089 5.47e-11 
  090 1.73e-05 
  092 .33333333 
 54  13.5 0.0  
14   
  0832120  1.1054e13       
  0832130  1.2678e10 
  0842120  5.8275e02      
  0842130  1.6552e01     
  0842160  4.4110e08     
  0852170  1.4970e05   
  0862200  1.6914e11 
  0872210  8.6205e08        
  0882240  9.6197e14 
  0892250  4.0044e12 
  0902280  1.8350e17     
  0902290  1.0842e18     
  0922320  6.6136e18 
  0922330  2.4412e22 
2  1000 
  0080170  .0002533 
  0080180  .00205 
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228ThBe13 Neutron Source in Secular Equilibrium (tape1) 

228ThBe13 in secular equilibrium 
1  2  1   
8  0   
  004 .928571429      
  081 7.76e-08 
  082 4.51e-05 
  083 4.28e-06 
  084 1.71e-10 
  086 6.55e-08 
  088 3.72e-04 
  090 7.10e-02 
 54  13.5 0.0  
6   
  0832120  4.2292e17       
  0842120  2.2296e07      
  0842160  1.6877e13     
  0862200  6.4714e15 
  0882240  3.6806e19 
  0902280  7.0208e21     
1  4000 
  0040090  .928571429 
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dirtyUBe13 Source at 0 years Neutron Multiplication Input Deck 

c 233UBe13 300ppm U-232 Cylinder 0 years 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $  air 
4     0          3                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 1.5 
4     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 2.87E-04 6.36E-03 1.60E-02 1.85E-02 1.84E-02 1.60E-02 1.12E-02 
     1.67E-02 2.12E-02 2.55E-02 3.29E-02 4.95E-02 5.59E-02 5.28E-02 5.00E-02 
     4.63E-02 4.33E-02 4.11E-02 3.86E-02 3.56E-02 2.86E-02 2.09E-02 1.74E-02 
     1.72E-02 1.71E-02 2.28E-02 2.61E-02 2.65E-02 2.65E-02 2.64E-02 2.57E-02 
     2.39E-02 2.15E-02 1.92E-02 1.78E-02 1.68E-02 1.58E-02 1.34E-02 9.84E-03 
     5.82E-03 3.15E-03 1.39E-03 5.47E-04 5.80E-05 1.18E-12 9.46E-13 7.60E-13 
     6.11E-13 4.90E-13 3.93E-13 3.15E-13 2.52E-13 2.01E-13 1.62E-13 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
NPS 1000000  
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dirtyUBe13 Source at 1 year Neutron Multiplication Input Deck  
 
c 233UBe13 300ppm U-232 Cylinder 1 year 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $  air 
4     0          3                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 1.5 
4     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 2.87E-04 6.36E-03 1.60E-02 1.85E-02 1.84E-02 1.60E-02 1.12E-02 
     1.67E-02 2.12E-02 2.55E-02 3.29E-02 4.95E-02 5.59E-02 5.28E-02 5.00E-02 
     4.63E-02 4.33E-02 4.11E-02 3.86E-02 3.56E-02 2.86E-02 2.09E-02 1.74E-02 
     1.72E-02 1.71E-02 2.28E-02 2.61E-02 2.65E-02 2.65E-02 2.64E-02 2.57E-02 
     2.39E-02 2.15E-02 1.92E-02 1.78E-02 1.68E-02 1.58E-02 1.34E-02 9.84E-03 
     5.82E-03 3.15E-03 1.39E-03 5.47E-04 5.80E-05 1.18E-12 9.46E-13 7.60E-13 
     6.11E-13 4.90E-13 3.93E-13 3.15E-13 2.52E-13 2.01E-13 1.62E-13 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
NPS 1000000  
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dirtyUBe13 Source at 3 years Neutron Multiplication Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder 3 years 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $  air 
4     0          3                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 1.5 
4     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.53E-04 4.66E-03 1.08E-02 1.35E-02 1.43E-02 1.32E-02 1.05E-02 
     1.37E-02 1.63E-02 1.82E-02 2.18E-02 3.07E-02 3.68E-02 4.00E-02 4.09E-02 
     3.94E-02 3.78E-02 3.68E-02 3.56E-02 3.38E-02 2.97E-02 2.52E-02 2.31E-02 
     2.29E-02 2.33E-02 2.64E-02 2.75E-02 2.77E-02 2.80E-02 2.81E-02 2.75E-02 
     2.64E-02 2.49E-02 2.35E-02 2.25E-02 2.18E-02 2.10E-02 1.95E-02 1.71E-02 
     1.41E-02 1.14E-02 9.10E-03 7.08E-03 5.43E-03 4.21E-03 3.47E-03 2.89E-03 
     2.35E-03 1.85E-03 1.37E-03 9.09E-04 4.51E-04 1.42E-04 1.02E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
NPS 1000000 
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dirtyUBe13 Source at 5 years Neutron Multiplication Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder 5 years 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $  air 
4     0          3                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 1.5 
4     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.72E-04 4.57E-03 1.05E-02 1.33E-02 1.41E-02 1.31E-02 1.05E-02 
     1.36E-02 1.61E-02 1.79E-02 2.13E-02 2.97E-02 3.57E-02 3.93E-02 4.04E-02 
     3.90E-02 3.75E-02 3.66E-02 3.54E-02 3.37E-02 2.97E-02 2.54E-02 2.34E-02 
     2.31E-02 2.36E-02 2.66E-02 2.76E-02 2.77E-02 2.81E-02 2.82E-02 2.76E-02 
     2.65E-02 2.51E-02 2.37E-02 2.27E-02 2.20E-02 2.13E-02 1.98E-02 1.75E-02 
     1.46E-02 1.18E-02 9.50E-03 7.42E-03 5.72E-03 4.44E-03 3.65E-03 3.04E-03 
     2.48E-03 1.95E-03 1.45E-03 9.57E-04 4.75E-04 1.50E-04 1.08E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
NPS 1000000  
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dirtyUBe13 Source at 7.5 years Neutron Multiplication Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder 7.5 years 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $  air 
4     0          3                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 1.5 
4     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.80E-04 4.53E-03 1.04E-02 1.31E-02 1.40E-02 1.30E-02 1.04E-02 
     1.35E-02 1.60E-02 1.77E-02 2.10E-02 2.93E-02 3.53E-02 3.91E-02 4.03E-02 
     3.89E-02 3.74E-02 3.65E-02 3.53E-02 3.36E-02 2.98E-02 2.55E-02 2.35E-02 
     2.33E-02 2.38E-02 2.67E-02 2.76E-02 2.78E-02 2.81E-02 2.83E-02 2.76E-02 
     2.66E-02 2.52E-02 2.38E-02 2.28E-02 2.21E-02 2.14E-02 1.99E-02 1.77E-02 
     1.47E-02 1.20E-02 9.67E-03 7.56E-03 5.83E-03 4.53E-03 3.73E-03 3.11E-03 
     2.53E-03 1.99E-03 1.48E-03 9.77E-04 4.85E-04 1.53E-04 1.10E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
NPS 1000000  



80 

dirtyUBe13 Source at 10.17 years Neutron Multiplication Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder 10.17 years 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $  air 
4     0          3                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 1.5 
4     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.83E-04 4.53E-03 1.03E-02 1.31E-02 1.40E-02 1.30E-02 1.04E-02 
     1.35E-02 1.59E-02 1.77E-02 2.10E-02 2.92E-02 3.52E-02 3.90E-02 4.02E-02 
     3.88E-02 3.74E-02 3.64E-02 3.53E-02 3.36E-02 2.98E-02 2.55E-02 2.36E-02 
     2.33E-02 2.38E-02 2.67E-02 2.76E-02 2.78E-02 2.81E-02 2.83E-02 2.76E-02 
     2.66E-02 2.52E-02 2.38E-02 2.29E-02 2.22E-02 2.14E-02 1.99E-02 1.77E-02 
     1.48E-02 1.20E-02 9.72E-03 7.60E-03 5.87E-03 4.56E-03 3.75E-03 3.12E-03 
     2.54E-03 2.00E-03 1.49E-03 9.82E-04 4.87E-04 1.54E-04 1.11E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
NPS 1000000  
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dirtyUBe13 Source at 1 year Photon Interactions Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder 1 year 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.00397519 0.002768926 0.004674275 0.00206984 0.000243994 & 
     0.000420822 0.000945821 0.008649466 6.85378E-05 0.030979068 &  
     0.115828818 5.48302E-05 4.93472E-05 3.01566E-05 0.000275522 & 
     5.89425E-05 0.002481067 5.48302E-05 0.01702478 4.24934E-05 & 
     0.000179569 0.000278263 0.000548302 1.50783E-05 2.33028E-05 & 
     7.12793E-05 0.13592409 0.057495567 0.039599596 0.066633935 & 
     0.029737773 0.002254131 0.000197998 0.164871394 0.012489103 & 
     0.000544494 0.030461228 0.000224652 0.004036113 0.000219702 & 
     0.000372389 0.00014926 0.000250163 0.000164491 0.000112326 & 
     0.001283179 0.000475957 6.47301E-05 0.001382178 0.000190383 & 
     0.02505436 0.004196034 0.001439293 0.000647301 6.09225E-05 &  
     0.002147517 0.001104219 0.005673404 0.000220844 0.000342689 & 
     0.000434072 0.001561138 0.000498803 0.000826261 0.000376958 & 
     0.015611379 0.037374806 0.004700749 4.54663E-05 0.000502826 & 
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     0.000399178 7.55202E-05 0.00097868 0.151397751 0.002522034 & 
     0.000860444 
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056 1 
NPS 5e7 
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dirtyUBe13 Source at 3 years Photon Interactions Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder 3 years 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004360916 0.003037603 0.005127836 0.002270684 0.00026767 & 
     0.000461656 0.001037597 0.009488751 7.51882E-05 0.033985068 & 
     0.127068065 6.01506E-05 5.41355E-05 3.30828E-05 0.000302257 & 
     6.46619E-05 0.002721813 6.01506E-05 0.01867675 4.66167E-05 & 
     0.000196993 0.000305264 0.000601506 1.65414E-05 2.5564E-05 & 
     7.81957E-05 0.149113247 0.063074549 0.043442074 0.073099643 & 
     0.032623326 0.002472856 0.00021721 0.180869402 0.013700962 & 
     0.000597329 0.03341698 0.00024645 0.00442775 0.00024102 & 
     0.000408523 0.000163743 0.000274437 0.000180452 0.000123225 & 
     0.00140769 0.00052214 7.10111E-05 0.001516295 0.000208856 & 
     0.027485466 0.004603189 0.001578952 0.000710111 6.6834E-05 & 
     0.002355897 0.001211366 0.006223912 0.000242273 0.000375941 & 
     0.000476192 0.00171262 0.000547203 0.000906436 0.000413535 & 
     0.017126202 0.039516477 0.004970114 4.80716E-05 0.000531639 & 
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     0.000422052 7.98477E-05 0.001034761 0.07288857 0.001214202 & 
     0.00041425 
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056 1 
NPS 5e7 
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dirtyUBe13 Source at 5 years Photon Interactions Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder 5 Years 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004418567 0.00307776 0.005195625 0.002300702 0.000271209 & 
     0.000467759 0.001051314 0.009614192 7.61822E-05 0.034434347 & 
     0.12874789 6.09457E-05 5.48512E-05 3.35202E-05 0.000306252 & 
     6.55167E-05 0.002757795 6.09457E-05 0.018923654 4.7233E-05 &  
     0.000199597 0.0003093 0.000609457 1.67601E-05 2.59019E-05 & 
     7.92295E-05 0.151084507 0.063908387 0.044016373 0.074066012 & 
     0.033054603 0.002505547 0.000220082 0.183260475 0.013882087 & 
     0.000605225 0.033858748 0.000249708 0.004486284 0.000244206 & 
     0.000413923 0.000165908 0.000278065 0.000182837 0.000124854 & 
     0.0014263 0.000529043 7.19498E-05 0.001536341 0.000211617 & 
     0.02784882 0.004664043 0.001599826 0.000719498 6.77175E-05 & 
     0.002387042 0.00122738 0.006306192 0.000245476 0.000380911 & 
     0.000482487 0.001735261 0.000554437 0.000918419 0.000419002 & 
     0.017352609 0.04107787 0.005166495 4.9971E-05 0.000552646 & 
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     0.000438729 8.30027E-05 0.001075647 0.059722628 0.000994879 & 
     0.000339424 
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056 1 
NPS 5e7 
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dirtyUBe13 Source at 7.5 years Photon Interactions Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder 7.5 Years 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004448246 0.003098433 0.005230524 0.002316156 0.00027303 & 
     0.000470901 0.001058376 0.00967877 7.66939E-05 0.034665641 & 
     0.129612685 6.13551E-05 5.52196E-05 3.37453E-05 0.000308309 & 
     6.59568E-05 0.002776319 6.13551E-05 0.019050764 4.75502E-05 & 
     0.000200938 0.000311377 0.000613551 1.68727E-05 2.60759E-05 & 
     7.97617E-05 0.152099335 0.064337657 0.044312029 0.07456351 & 
     0.033276629 0.002522377 0.00022156 0.184491428 0.013975332 & 
     0.00060929 0.034086176 0.000251386 0.004516418 0.000245847 & 
     0.000416704 0.000167022 0.000279933 0.000184065 0.000125693 & 
     0.00143588 0.000532597 7.24331E-05 0.00154666 0.000213039 & 
     0.02803588 0.004695371 0.001610572 0.000724331 6.81724E-05 & 
     0.002403075 0.001235624 0.00634855 0.000247125 0.000383469 & 
     0.000485728 0.001746917 0.000558161 0.000924588 0.000421816 & 
     0.017469165 0.041329489 0.005198142 5.02771E-05 0.000556031 & 
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     0.000441416 8.35111E-05 0.001082236 0.053581644 0.000892581 & 
     0.000304522 
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056 1 
NPS 5e7 
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dirtyUBe13 Source at 10.17 years Photon Interactions Input Deck 
 

c 233UBe13 300ppm U-232 Cylinder 10.17 years/vacuum 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004459427 0.003106221 0.00524367 0.002321977 0.000273717 & 
     0.000472084 0.001061036 & 
     0.009703097 7.68867E-05 0.034752772 0.129938462 6.15093E-05 & 
     5.53584E-05 3.38301E-05 & 
     0.000309084 6.61225E-05 0.002783297 6.15093E-05 0.019098647 & 
     4.76697E-05 0.000201443 & 
     0.00031216 0.000615093 1.69151E-05 2.61415E-05 7.99621E-05 & 
     0.152481632 0.064499368 & 
     0.044423406 0.074750924 0.033360269 0.002528717 0.000222117 & 
     0.184955142 0.014010459 & 
     0.000610822 0.034171851 0.000252017 0.00452777 0.000246464 & 
     0.000417751 0.000167442 & 
     0.000280636 0.000184528 0.000126009 0.001439489 0.000533935 & 
     7.26152E-05 0.001550548 & 
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     0.000213574 0.028106347 0.004707172 0.00161462 0.000726152 & 
     6.83437E-05 0.002409115 & 
     0.00123873 0.006364507 0.000247746 0.000384433 0.000486949 & 
     0.001751307 0.000559564 & 
     0.000926911 0.000422877 0.017513074 0.041433369 0.005211207 & 
     5.04035E-05 0.000557428 & 
     0.000442525 8.3721E-05 0.001084956 0.051257776 0.000853869 & 
     0.000291315  
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056 1 
NPS 5e7 
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4.438 γ in dirtyUBe13 Source at 10.17 years Photon Interactions Input Deck 
 

c 233UBe13 300ppm U-232 Cylinder 10.17 years/vacuum 4.438 gammas 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     0         -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=4.438 EXT=D3 PAR=2 
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056 1 
NPS 5e7 
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Beryllium Blanket Neutron Multiplication Input Deck 

c 233UBe13 300ppm U-232 Cylinder Be Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -1.848  -3  2             $blanket 
4     0         -4  3             $  air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.83E-04 4.53E-03 1.03E-02 1.31E-02 1.40E-02 1.30E-02 1.04E-02 
     1.35E-02 1.59E-02 1.77E-02 2.10E-02 2.92E-02 3.52E-02 3.90E-02 4.02E-02 
     3.88E-02 3.74E-02 3.64E-02 3.53E-02 3.36E-02 2.98E-02 2.55E-02 2.36E-02 
     2.33E-02 2.38E-02 2.67E-02 2.76E-02 2.78E-02 2.81E-02 2.83E-02 2.76E-02 
     2.66E-02 2.52E-02 2.38E-02 2.29E-02 2.22E-02 2.14E-02 1.99E-02 1.77E-02 
     1.48E-02 1.20E-02 9.72E-03 7.60E-03 5.87E-03 4.56E-03 3.75E-03 3.12E-03 
     2.54E-03 2.00E-03 1.49E-03 9.82E-04 4.87E-04 1.54E-04 1.11E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
M3 4009 1 
NPS 1000000 
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Be12W Blanket Neutron Multiplication Input Deck 
 

c 233UBe13 300ppm U-232 Cylinder Be12W Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -3.2    -3  2             $blanket 
4     0         -4  3             $  air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.83E-04 4.53E-03 1.03E-02 1.31E-02 1.40E-02 1.30E-02 1.04E-02 
     1.35E-02 1.59E-02 1.77E-02 2.10E-02 2.92E-02 3.52E-02 3.90E-02 4.02E-02 
     3.88E-02 3.74E-02 3.64E-02 3.53E-02 3.36E-02 2.98E-02 2.55E-02 2.36E-02 
     2.33E-02 2.38E-02 2.67E-02 2.76E-02 2.78E-02 2.81E-02 2.83E-02 2.76E-02 
     2.66E-02 2.52E-02 2.38E-02 2.29E-02 2.22E-02 2.14E-02 1.99E-02 1.77E-02 
     1.48E-02 1.20E-02 9.72E-03 7.60E-03 5.87E-03 4.56E-03 3.75E-03 3.12E-03 
     2.54E-03 2.00E-03 1.49E-03 9.82E-04 4.87E-04 1.54E-04 1.11E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
M3 74000.21c .076923 4009.24c .9230769 
NPS 1000000 
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BeHD Blanket Neutron Multiplication Input Deck 
 
c 233UBe13 300ppm U-232 Cylinder BeHD Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -.694   -3  2             $blanket 
4     0         -4  3             $  air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.83E-04 4.53E-03 1.03E-02 1.31E-02 1.40E-02 1.30E-02 1.04E-02 
     1.35E-02 1.59E-02 1.77E-02 2.10E-02 2.92E-02 3.52E-02 3.90E-02 4.02E-02 
     3.88E-02 3.74E-02 3.64E-02 3.53E-02 3.36E-02 2.98E-02 2.55E-02 2.36E-02 
     2.33E-02 2.38E-02 2.67E-02 2.76E-02 2.78E-02 2.81E-02 2.83E-02 2.76E-02 
     2.66E-02 2.52E-02 2.38E-02 2.29E-02 2.22E-02 2.14E-02 1.99E-02 1.77E-02 
     1.48E-02 1.20E-02 9.72E-03 7.60E-03 5.87E-03 4.56E-03 3.75E-03 3.12E-03 
     2.54E-03 2.00E-03 1.49E-03 9.82E-04 4.87E-04 1.54E-04 1.11E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
M3 4009.24c .333 1002.24c .333 1001.24c .333 
NPS 1000000 
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Tungsten Blanket Neutron Multiplication Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder W Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -19.3   -3  2             $blanket 
4     0         -4  3             $  air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.83E-04 4.53E-03 1.03E-02 1.31E-02 1.40E-02 1.30E-02 1.04E-02 
     1.35E-02 1.59E-02 1.77E-02 2.10E-02 2.92E-02 3.52E-02 3.90E-02 4.02E-02 
     3.88E-02 3.74E-02 3.64E-02 3.53E-02 3.36E-02 2.98E-02 2.55E-02 2.36E-02 
     2.33E-02 2.38E-02 2.67E-02 2.76E-02 2.78E-02 2.81E-02 2.83E-02 2.76E-02 
     2.66E-02 2.52E-02 2.38E-02 2.29E-02 2.22E-02 2.14E-02 1.99E-02 1.77E-02 
     1.48E-02 1.20E-02 9.72E-03 7.60E-03 5.87E-03 4.56E-03 3.75E-03 3.12E-03 
     2.54E-03 2.00E-03 1.49E-03 9.82E-04 4.87E-04 1.54E-04 1.11E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
M3 74000.21c 1 
NPS 1000000 



96 

Lead Blanket Neutron Multiplication Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder Pb Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -11.35  -3  2             $blanket 
4     0         -4  3             $  air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 
SI1 0 53I 13.5 
SP1 0.00E+00 6.83E-04 4.53E-03 1.03E-02 1.31E-02 1.40E-02 1.30E-02 1.04E-02 
     1.35E-02 1.59E-02 1.77E-02 2.10E-02 2.92E-02 3.52E-02 3.90E-02 4.02E-02 
     3.88E-02 3.74E-02 3.64E-02 3.53E-02 3.36E-02 2.98E-02 2.55E-02 2.36E-02 
     2.33E-02 2.38E-02 2.67E-02 2.76E-02 2.78E-02 2.81E-02 2.83E-02 2.76E-02 
     2.66E-02 2.52E-02 2.38E-02 2.29E-02 2.22E-02 2.14E-02 1.99E-02 1.77E-02 
     1.48E-02 1.20E-02 9.72E-03 7.60E-03 5.87E-03 4.56E-03 3.75E-03 3.12E-03 
     2.54E-03 2.00E-03 1.49E-03 9.82E-04 4.87E-04 1.54E-04 1.11E-04 
SI2 .5509 
SI3 .5509 
c 
F1:N 3 
E0 0 55I 14 
FC1 number passing through 1.5 cm radius sphere 
c 
M1 4009 .928547421 92232.69c 2.142e-5 92233.69c 0.0711 90228.92C 5.37e-7 
     82208.60c 3.0104e-4 
M2 26056 1 
M3 82000.42c 1 
NPS 1000000 
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Beryllium Blanket Photon Interactions Input Deck 
 
c 233UBe13 300ppm U-232 Cylinder Be Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -1.848  -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004459427 0.003106221 0.00524367 0.002321977 0.000273717 & 
     0.000472084 0.001061036 & 
     0.009703097 7.68867E-05 0.034752772 0.129938462 6.15093E-05 & 
     5.53584E-05 3.38301E-05 & 
     0.000309084 6.61225E-05 0.002783297 6.15093E-05 0.019098647 & 
     4.76697E-05 0.000201443 & 
     0.00031216 0.000615093 1.69151E-05 2.61415E-05 7.99621E-05 & 
     0.152481632 0.064499368 & 
     0.044423406 0.074750924 0.033360269 0.002528717 0.000222117 & 
     0.184955142 0.014010459 & 
     0.000610822 0.034171851 0.000252017 0.00452777 0.000246464 & 
     0.000417751 0.000167442 & 
     0.000280636 0.000184528 0.000126009 0.001439489 0.000533935 & 
     7.26152E-05 0.001550548 & 
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     0.000213574 0.028106347 0.004707172 0.00161462 0.000726152 & 
     6.83437E-05 0.002409115 & 
     0.00123873 0.006364507 0.000247746 0.000384433 0.000486949 & 
     0.001751307 0.000559564 & 
     0.000926911 0.000422877 0.017513074 0.041433369 0.005211207 & 
     5.04035E-05 0.000557428 & 
     0.000442525 8.3721E-05 0.001084956 0.051257776 0.000853869 & 
     0.000291315  
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056.26u 1 
M3 4009.26u 1 
NPS 5e7 
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Be12W Blanket Photon Interactions Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder Be12W Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -3.2    -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004459427 0.003106221 0.00524367 0.002321977 0.000273717 & 
     0.000472084 0.001061036 & 
     0.009703097 7.68867E-05 0.034752772 0.129938462 6.15093E-05 & 
     5.53584E-05 3.38301E-05 & 
     0.000309084 6.61225E-05 0.002783297 6.15093E-05 0.019098647 & 
     4.76697E-05 0.000201443 & 
     0.00031216 0.000615093 1.69151E-05 2.61415E-05 7.99621E-05 & 
     0.152481632 0.064499368 & 
     0.044423406 0.074750924 0.033360269 0.002528717 0.000222117 & 
     0.184955142 0.014010459 & 
     0.000610822 0.034171851 0.000252017 0.00452777 0.000246464 & 
     0.000417751 0.000167442 & 
     0.000280636 0.000184528 0.000126009 0.001439489 0.000533935 & 
     7.26152E-05 0.001550548 & 
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     0.000213574 0.028106347 0.004707172 0.00161462 0.000726152 & 
     6.83437E-05 0.002409115 & 
     0.00123873 0.006364507 0.000247746 0.000384433 0.000486949 & 
     0.001751307 0.000559564 & 
     0.000926911 0.000422877 0.017513074 0.041433369 0.005211207 & 
     5.04035E-05 0.000557428 & 
     0.000442525 8.3721E-05 0.001084956 0.051257776 0.000853869 & 
     0.000291315  
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056.26u 1 
M3 74182.26u .02115 74183.26u .01177 74184.26u  
     .0235384 74186.26u .02185 4009.26u .9230769 
NPS 5e7 
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BeHD Blanket Photon Interactions Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder BeHD Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -.423   -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004459427 0.003106221 0.00524367 0.002321977 0.000273717 & 
     0.000472084 0.001061036 & 
     0.009703097 7.68867E-05 0.034752772 0.129938462 6.15093E-05 & 
     5.53584E-05 3.38301E-05 & 
     0.000309084 6.61225E-05 0.002783297 6.15093E-05 0.019098647 & 
     4.76697E-05 0.000201443 & 
     0.00031216 0.000615093 1.69151E-05 2.61415E-05 7.99621E-05 & 
     0.152481632 0.064499368 & 
     0.044423406 0.074750924 0.033360269 0.002528717 0.000222117 & 
     0.184955142 0.014010459 & 
     0.000610822 0.034171851 0.000252017 0.00452777 0.000246464 & 
     0.000417751 0.000167442 & 
     0.000280636 0.000184528 0.000126009 0.001439489 0.000533935 & 
     7.26152E-05 0.001550548 & 
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     0.000213574 0.028106347 0.004707172 0.00161462 0.000726152 & 
     6.83437E-05 0.002409115 & 
     0.00123873 0.006364507 0.000247746 0.000384433 0.000486949 & 
     0.001751307 0.000559564 & 
     0.000926911 0.000422877 0.017513074 0.041433369 0.005211207 & 
     5.04035E-05 0.000557428 & 
     0.000442525 8.3721E-05 0.001084956 0.051257776 0.000853869 & 
     0.000291315  
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056.26u 1 
M3 4009.26u .5 1002.24u .5 
NPS 5e7 
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Tungsten Blanket Photon Interactions Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder W Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -19.3   -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004459427 0.003106221 0.00524367 0.002321977 0.000273717 & 
     0.000472084 0.001061036 & 
     0.009703097 7.68867E-05 0.034752772 0.129938462 6.15093E-05 & 
     5.53584E-05 3.38301E-05 & 
     0.000309084 6.61225E-05 0.002783297 6.15093E-05 0.019098647 & 
     4.76697E-05 0.000201443 & 
     0.00031216 0.000615093 1.69151E-05 2.61415E-05 7.99621E-05 & 
     0.152481632 0.064499368 & 
     0.044423406 0.074750924 0.033360269 0.002528717 0.000222117 & 
     0.184955142 0.014010459 & 
     0.000610822 0.034171851 0.000252017 0.00452777 0.000246464 & 
     0.000417751 0.000167442 & 
     0.000280636 0.000184528 0.000126009 0.001439489 0.000533935 & 
     7.26152E-05 0.001550548 & 
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     0.000213574 0.028106347 0.004707172 0.00161462 0.000726152 & 
     6.83437E-05 0.002409115 & 
     0.00123873 0.006364507 0.000247746 0.000384433 0.000486949 & 
     0.001751307 0.000559564 & 
     0.000926911 0.000422877 0.017513074 0.041433369 0.005211207 & 
     5.04035E-05 0.000557428 & 
     0.000442525 8.3721E-05 0.001084956 0.051257776 0.000853869 & 
     0.000291315  
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056.26u 1 
M3 74182.26u .275 74183.26u .153 74184.26u  
     .306 74186.26u .284 
NPS 5e7 
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Lead Blanket Photon Interactions Input Deck  
 

c 233UBe13 300ppm U-232 Cylinder Pb Blanket 
c cell cards 
1     1 -4.2674 -1              $source proper 
2     2 -7.874  -2  1             $ encapsulation 
3     3 -11.35  -3  2             $ blanket 
4     0         -4  3             $air 
5     0          4                $outside universe 
c end of cell card 
 
c Beginning of Surfaces for UBe cylinder 
1     RCC  0.  0.  -0.5509  0.  0.  1.1018   0.5509   
2     RCC  0.  0.  -1.0    0.  0.  2.000  1.0 
3     SO 3.0 
4     SO 3.5 
5     SO 30 
c end of cube surfaces 
 
IMP:N 1 1 1 1 0 
SDEF pos=0 0 .5509 RAD=D2 CEL=1 ERG=D1 EXT=D3 PAR=2 
SI1  L  0.0106 0.0728042 0.0749694 0.0849 0.2114 0.23336 0.25261 & 
     0.277358 0.48595 0.51077 0.583191 0.5877 0.6501 0.7052 & 
     0.72204 0.7487 0.76313 0.8212 0.860564 0.8833 0.9276 & 
     0.9827 1.0939 1.1608 1.1852 1.2828 2.614533 0.0108 & 
     0.07481 0.07711 0.0873 0.115183 0.17668 0.238632 0.300087 & 
     0.4152 0.0103 0.0111 0.039857 0.0708319 0.0728715 0.076862 & 
     0.07929 0.0826 0.0898 0.2882 0.32803 0.4337 0.45298 & 
     0.473 0.72733 0.78537 0.893408 0.95212 1.0736 1.07862 & 
     1.5127 1.6205 1.6797 1.806 0.54973 0.0117 0.08107 & 
     0.08378 0.0949 0.240986 0.0123 0.084373 0.08847 0.131613 & 
     0.16641 0.20593 0.215983 0.013 0.05778 0.12908     
SP1 0.004459427 0.003106221 0.00524367 0.002321977 0.000273717 & 
     0.000472084 0.001061036 & 
     0.009703097 7.68867E-05 0.034752772 0.129938462 6.15093E-05 & 
     5.53584E-05 3.38301E-05 & 
     0.000309084 6.61225E-05 0.002783297 6.15093E-05 0.019098647 & 
     4.76697E-05 0.000201443 & 
     0.00031216 0.000615093 1.69151E-05 2.61415E-05 7.99621E-05 & 
     0.152481632 0.064499368 & 
     0.044423406 0.074750924 0.033360269 0.002528717 0.000222117 & 
     0.184955142 0.014010459 & 
     0.000610822 0.034171851 0.000252017 0.00452777 0.000246464 & 
     0.000417751 0.000167442 & 
     0.000280636 0.000184528 0.000126009 0.001439489 0.000533935 & 
     7.26152E-05 0.001550548 & 



106 

     0.000213574 0.028106347 0.004707172 0.00161462 0.000726152 & 
     6.83437E-05 0.002409115 & 
     0.00123873 0.006364507 0.000247746 0.000384433 0.000486949 & 
     0.001751307 0.000559564 & 
     0.000926911 0.000422877 0.017513074 0.041433369 0.005211207 & 
     5.04035E-05 0.000557428 & 
     0.000442525 8.3721E-05 0.001084956 0.051257776 0.000853869 & 
     0.000291315  
SI2 .5509 
SI3 .5509 
c 
PHYS:P J J J -1 J 
Mode N P 
F1:N 4 
E1 0 55I 14 
F11:P 4 
E11 0 26I 2.7 
FC1 number neutrons passing through 3.5 cm radius sphere 
FC11 number gamma passing through 3.5 cm radius sphere 
c 
M1 4009.26u .928571429 92233.27u .07142648 82208.24u 3.52e-6 
M2 26056.26u 1 
M3 82206.24u .241 82207.24u .221 82208.24u .524 
NPS 5e7 
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Critical Radius of 232U Input Deck 

c 232U Critical Radius 
1     1 -18.47298 -1 imp:n=1 
2     0 1           imp:N=0 
 
1     SO 3.31 
 
M1 92232 1 
KSRC 0 0 0 
KCODE 1e5 10 50 
PRINT 
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Critical Radius of 232UBe13 Input Deck 
 
c 232UBe13 Critical Radius 
1     1 -4.2674 -1 imp:n=1 
2     0 1           imp:N=0 
 
1     SO 10.774 
 
M1 92232 0.0714285714 4009 0.9285714286 
KSRC 0 0 0 
KCODE 1e5 10 50 
PRINT 
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Critical Radius of dirtyUBe13 Input Deck 
 

c dirtyUBe13 Critical Radius 
1     1 -4.2674 -1 imp:n=1 
2     0 1           imp:N=0 
 
1     SO 11.355 
 
M1 92232 2.1429e-5 92233 0.071407143 4009 0.9285714286 
KSRC 0 0 0 
KCODE 1e5 10 50 
PRINT 
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Changes to SOURCES-4c Source Code 

 
The lines below were changed in the code. These lines were changed to allow the code to 

evaluate alpha particle energies up to 10.0 MeV. The previous limit was 6.5 MeV. 

 
Line #  Replaced Code 
 
989      if (eamax.le.10.0) go to 860 

2162      if(eala(mm).gt.10.0)eala(mm)=10.0 

2595     if (eamax.le.10.0) go to 860 

3857     if(eala(mm,k).gt.10.0)eala(mm,k)=10.0 

3921     if(eala(mm,k).gt.10.0)eala(mm,k)=10.0 

4357     if (eamax.le.10.0) go to 860 
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Changes to tape3 

The following lines replaced the default lines in tape3. These lines added an additional 

data point to the data files for beryllium. These new data points allowed the code to 

evaluate alpha energies up to 10.0 MeV. 

 

Line #  Replaced Text 

59  00040090 130 be(nat)ge76 131 points    ge76  tab.4, be(alpha,n) xec-

sec,adj*.885 

92 7.8500e+006.0985e+027.9000e+006.0941e+0210.000e+006.0941e+02 

93 00040090 130 be(nat)ge76 131 points    ge76  tab.4, be(alpha,n) xec-sec 

126 7.8500e+006.8910e+027.9000e+006.8860e+0210.000e+006.8860e+02 
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Changes to tape4 

The following lines were added or replaced existing lines in tape4. These lines added an 

additional data point to the data files for beryllium. These new data points allowed the 

code to evaluate alpha energies up to 10.0 MeV. 

 

The following line replaced the default line in tape4. 

Line #  Replaced Text 

33  00040090  5131                Geiger and Van der Zwan     * 

 

A new line was added between 165 and 166 of this code.  

Add New Line  Added Text 

166     10.0      .054      .184      .055      .076      .631 
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Changes to tape5 

The following lines replaced the default lines in tape5. These lines were changed to 

reflect updated decay data. 

 

This line was changed to allow the code to utilize these very energy alpha particles, with 

the given alpha energy limit.  

Line #  Replaced Text 

2328   10.000  2.3714e-05  10.000  1.0420e-05  10.000  1.1030e-04 

 

This line was changed to match the current half life of 232U (Tuli, 2005). 

Line #  Replaced Text 

2476  3.19007e-10 0.00000e+0  1.71000e+00 8.92204e-01 3.72278e+00 
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Properties of Uranium-232 

 

 

 

 

 

 

Table 8: Properties of 232U 

Property Value Source 
Mass 

Density 
Melting Point 
Boiling Point 

Oxidation 
Spin 

Half-Life 
t1/2 SF 
t1/2 Ne 

λ 
λSF 

λNe 

α Emissions 
 
 

Critical Radius 

232.03713 
18.52 g/cc 

1408 K 
4404 K 

+3, +4, +5, +6 
0 

68.9 yr 
2.55*1015

 yr 
2.746*1012 yr 

3.1878*10-10 1/s 
8.6*10-24 1/s 
8.0*10-22 1/s 

5.139 MeV (.3%) 
5.26336 (31.55%) 
5.32012 (68.15%) 

3.31 cm 

Chart of the Nuclides, 2002 
Tuli, 2005 

Tuli, 2005 
Tuli, 2005 
Tuli, 2005 
Tuli, 2005 
Tuli, 2005 

Calculated1 from Bonetti et al. 2000 
Calculated1 from Bonetti et al. 1990 

Calculated1 from Tuli 
Bonetti et al. 2000 
Bonetti et al. 1990 

Stabin and de Luz, 2002 
 
 

Calculation with MCNP5 
1 Calculated with equation (37) 

 

2/1

)2ln(
t

=λ      (37) 
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Properties of UBe13 

 

 

 

 

 

 

Table 9: UBe13 Properties 

Property Value Source 

Melting Point 
 

Mass 
natUBe13 
232UBe13 
dirtyUBe13 

 
Density 
natUBe13 
232UBe13 
dirtyUBe13 

 
Critical Radius 

232UBe13 
dirtyUBe13 

2250 K 
 
 

355.187 
349.1954 
350.1976 

 
 

4.3590 
4.2852 

4.29750486
 
 

10.774 
11.355 

Predel and Maeling, 1998 
 
 

Calculated1 
Calculated1 

Calculated1 

 
 

McElfresh et al. 1990 
Calculated1 from McElfresh et al. 

Calculated1,2 from McElfresh et al. 
 
 

Calculated with MCNP5 
Calculated with MCNP5 

1 Isotopic mass data from Chart of the Nuclides, 2002 
2 dirtyU defined as 233U with 300 ppm 232U 
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Densities of Selected Nuclear Materials 

Table 10: Densities of Nuclear Materials 

Compound 
 

Density (g/cc) 
 

Source 
 

BeH2 
BeD2 
BeHD 
Be12W 

227AcBe13 
227ThBe13 
228ThBe13 
natUBe13 
232UBe13 
dirtyUBe13 
233UBe13 
238PuBe13 
239PuBe13 

241AmBe13 
242CmBe13 
244CmBe13 

natUO2 
dirtyUO2 
RaCO3 

NaF 
CCl4 
MnO2 
GaO3 
As2O3 
Y2O3 
La2O3 
Pr2O3 

 

0.63 
0.75 
0.69 
3.2 

4.2237 
4.2237 
4.2360 
4.3590 
4.2852 

4.29750486 
4.29750479 

4.3590 
4.3713 
4.3959 
4.4085 
4.4330 
10.96 
10.72 
8.3735 
2.558 
1.5900 
5.445 
6.44 
3.74 
5.01 
6.51 
7.07 

Smith et al. 1988 
Calculated1 from Smith et al. 
Calculated1 from Smith et al. 

Yamada et al. 2003 
Calculated1 from McElfresh et al. 
Calculated1 from McElfresh et al. 
Calculated1 from McElfresh et al. 

McElfresh et al. 1990 
Calculated1 from McElfresh et al. 
Calculated1,2 from McElfresh et al. 
Calculated1 from McElfresh et al. 
Calculated1 from McElfresh et al. 
Calculated1 from McElfresh et al. 
Calculated1 from McElfresh et al. 
Calculated1 from McElfresh et al. 
Calculated1 from McElfresh et al. 

Alfa Aesar 2004 a 
Calculated1,2 from Alfa Aesar 2004 a 
Calculated from Alfa Aesar 2004 b 

Alfa Aesar 2004 c 
Fisher Scientific 2004 

Alfa Aesar 2004 d 
Alfa Aesar 2004 e 
Alfa Aesar 2004 f 
Alfa Aesar 2003 

Strem Chemicals 2001 
Alfa Aesar 2004 g 

1 Isotopic mass data from Chart of the Nuclides, 2002, calculated with equation (38) 
2 dirtyU defined as 233U with 300 ppm 232U 

 
 

'
*'

mml
mmlρρ =      (38) 

 
Where ρ is the known density of a compound with mass mml, ρ’ is the theoretical density 
of a similar compound with different isotopic (or elemental) composition and mass mml’. 
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Neutron Spectrum of Various Target Materials 

 

Figure 16: 241Am-B neutron spectrum, Source: Lorch, 1973 

 

 

Figure 17: 241Am-Be neutron spectrum, Source: Lorch, 1973 
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Figure 18: 241Am-F neutron spectrum, Source: Lorch, 1973 

 

 

Figure 19: 239Pu-13C neutron spectrum, Source: Lorch, 1973 
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232U Power Curve 

 

Figure 20: 232U power curve, source: Corliss and Harvey, 1964
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