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SUMMARY 

It is well known that every finite dimensional 

subspace Y of a Banach space X is complemented in X. In 

general, this property does not hold for infinite 

dimensional subspaces. For example, no isomorph of c o  is 

complemented in &,. In many cases the fact that a subspace 

Y is not complemented in a Banach space X depends on 

isomorphic properties of X and Y. Hence the following 

problem arises naturally: Given a Banach space X, what are 

the isomorphic types of complemented subspaces of X? 

If K is a compact, metric, uncountable space then 

C(K) is separable and the isomorphic properties are well 

understood. But, if K is not metrizable C(K) is not 

separable and very little is known. In the first chapter a 

non-separable C(K) space is examined. Investigation of 

this space suggests that c o  is always complemented and that 

this space may even be primary as is the case with 

separable C(K) spaces. 

In Chapter II the classical Banach spaces E p  (1 < p 

< oo, p $ 2), Lp  (1 < p < oo, p 0 2), c o  and some C(K) 

spaces are examined to determine if there exist operators 

A,B on Z (where Z is one of the above named spaces) with 

the range of A contained in the range of B and yet A 0 BC 
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for any operator C on Z. The answer is positive and is 

based on the (isomorphic) types of complemented (and non-

complemented) subspaces of the space Z. 
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CHAPTER I 

THE GEOMETRY OF A NONSEPARABLE C(K) SPACE 

1.1. Background and Preliminaries  

Let K be a compact Hausdorff space; then the space 

C(K) is the set of continuous real-valued functions on K 

with norm: Ifl = suplf(x)I. A. Milutin [13, page 174] and 
xEK 

later A. Pelczynski has shown that for every compact, 

metric, uncountable space K, C(K) is isomorphic to C[0,1]. 

Thus, the isomorphic properties of such spaces C(K) may be 

studied through the more familiar spaces C[0,1] and C(A) 

where A denotes the Cantor set. Also, all of these spaces 

where K is compact, metric and uncountable are separable. 

J. Lindenstrauss and A. Pelczynski proved in [11] 

that whenever K is compact, metric and uncountable, C(K) is 

primary. In their proof they used the space C(A) and 

particularly its basis, the Haar system. 

A. 	Sobczyck 	[18] 	showed that 	c0 	is 	always 

complemented in any separable Banach space in which it 

embeds. As was pointed out in the introduction, c 0  is not 

complemented in the nonseparable space Coo  [15]. Veech's 

proof of Sobczyck's theorem (done much later in [19]) is 

based on fact that since X is separable, the w*-topology on 
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the unit ball of X' is metrizable. 	His proof extends to 

the case where X is weakly compactly generated. 	The 

nonseparable space C(TL), defined in Section 1.2, is not 

weak compactly generated. However, this work offers 

evidence that every isomorph of c o  contained in C(TL) is 

complemented and that C(TL) is primary. 

Throughout this work all Banach spaces are over the 

reals. We will need the following definitions. 

Definition 1.1.1. 	A subspace is a closed linear 

manifold of a Banach space. 

Definition 1.1.2. 	An operator is a bounded linear 

map. 

Definition 1.1.3.  Two Banach spaces X and Y are iso-

morphic if there is an invertible operator from X onto Y. 

Definition 1.1.4. 	The Banach-Mazur distance between 

two Banach spaces X and Y is defined to be infUTIOT -1 11: T 

is an invertible operator from X onto Y}. 

Definition 1.1.5. 	A subspace Y of a Banach space X 

is said to be complemented if there is a bounded linear 

projection P from X onto Y. In this case there is a 

subspace Z such that X is the direct sum of Y and Z, i.e., 

X = YE4Z (where Z = (I—P)X). 

Definition 1.1.6. 	A partially ordered set is a set 
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for which a transitive and reflexive binary relation is 

defined. 

Definition 1.1.7.  A partially ordered set is totally 

ordered if the ordering is antisymmetric and all elements 

are comparable. 

Definition 1.1.8. 	Let (X911 II) be a normed linear 

space and M a subspace of X. 	The quotient space of X 

modulo M is denoted X/M and defined to be the normed linear 

space ({x+M: x E XI 111'111) where IIx+MII1 = 
mEM 

Definition 1.1.9. 	Let (Xn'ildin)  be a sequence of 

Banach spaces. Then the infinite direct 
sumn=1 

 EDX n )
c0 
 is 

the normed linear space consisting of the set X 

f(xn) °,1° 1: xn E Xn and IIxnII n  

H(xn) c:_ il = suPlIxa n . 

0 as n 	ool with the norm: 

Definition 1.1.10. 	Let (Xn ,111 n ) be a sequence of 

Banach spaces. 	Then the infinite direct sum 	EDXn ),, 
n=1 

the normed linear space consisting of the set X 

{ (xn) °°  n1: x
n E Xn  and I.? 

n=1
Hxnn  n < col with the norm: 

= 

1.2. Description and Topological Properties  of C(TL)  

Consider two copies of the unit interval , say I 0 
 and 

I
. 

Let X =0U11 
where 

is 
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I 0  a--  {(x,0): x E [0,1]} and I I  -a--  [(x,1): x E [0,1]}. 

For each point p E I 0 , that is p = (p,O) define 

B(p;e) = {(x,0) E X: p—e < x < p} U {(x,1) E X: p--c -  < x < p} 

and for each point q E I, that is q = (q,1) define 

B(q;e) = {(x,0) EX: q <x <1.-1-e} U {(x,1) E X: q< x< q+e}. 

The set 	= {B(p;e): p E X} is a base for a topology on X 

with the two conditions (i) 	B E 531 = X and (ii) U,V E 

93 and x E U fl V 	there isaWE93 with W C U fl V and x E 

W, being trivially satisfied. Also, note that 

B((1,1);e) = { ( x,0 ) E X: 1 < x < x-Fe} U {(x,1) : 1 < x < 1+e} 

= {(1,1)}. 

and that B((0,0);e) = {(0,0)}. 

Let TL be defined to be the space X=I 0  UI 1  with 

the topology generated by 93. 

Define a relation G4 .<11 on TL as follows: 	(x,i) < 

(y,j) if and only if x < y or x = y with i < j. 
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B(q;E) 	 B(p;() 

I 1 

q 	q+( 	 P—( P 

	 1 0  

Figure 1. The Open Balls of TL. 

Theorem 1.2.1.  TL is totally ordered. 

Proof. 	The relation "<" defined above is the well 

known lexicographic ordering and is clearly a total 

ordering for this set just as it is for R 2 . 

The open intervals of TL are the non-empty sets 

((a,j),(b,k)) = {(x,i) E TL: (a,j) < (x,i) < (b,k)} (see 

Figure 2). These are all open sets since each one is 

either an open ball (Figures 2a and 2b), the intersection 

of two open balls (Figure 2c) or the union of two open 

balls (Figure 2d). 

The following theorem is well known for open sets of 

real numbers [8, page 207]. Because of the lexicographic 

ordering the same can be proven for open subsets of TL. 

Theorem 1.2.2. If G is an open set in TL then G may 

be expressed as a countable union of open intervals, say 

oo 

m, Jn = 4 or Jn  n Jm  = 0. 
G = U Jn  where for all n * 

n=1 



I 1 

I 1 

1 0 

I 1 

I 0  

I 1 

1 0  
a 	b 

((a,0),(b,1)) 

0 
1 

a 	b 
((a,1),(b,0)) 

0 1 

a 	b 	 1 
((a,1),(b,1)) 

0 

a 	b 
((a,0),(b,0)) 

0 1 

Figure 2. The Open Intervals of TL. 

1 0  

6 

(a)  

(b) 

(c)  

(d) 



Proof. 	First of all observe that the set QTL  = 

{(q,i) E TL: q is a rational number} is countable and meets 

every open ball of TL, i.e., is dense in TL. 

If (p,i) E G then for some f > 0 B((p,i);e) C G, thus 

G contains an interval ((a,j),(b,k)) containing (p,i). 

Now, let r i ,r2 ,... be a listing of the points of G n 0 -TL 

and define, for each n E N, J n  = U{((a,j),(b,k)): r n  E 

((a,j),(b,k)) C G}. Then clearly each J n  (n E N) is an 

open interval contained in G and U 
co 
 J n  C G. 

n=1 

It remains to be shown that G C U 
oo 
 J n . 	Suppose (s,i) 

n=1 

E G where s is an irrational number. 	Then (s,i) is 

contained in some ball B((s,i);e) C G which must contain a 

member rk  of QTL  which implies that (s,i) E J k . Therefore 

G = U 
oo 

	

 J n ; moreover, by construction if J n  and J m  (n 	m) 
n=1 

share any point they must coincide, that is J n  = Jm  or J n  

fl Jm  = 0. 

Theorem 1.2.3. TL is a separable, compact Hausdorff 

space which is not metrizable. 

Proof. 	It has already been observed that the 

countable set QTL  is dense in TL, hence its separability. 

To show that TL is Hausdorff, let (p,i) and (q,j) be 

two distinct points in TL. 	If p # q, take e = (p—q1 and 

then B((p,i);e/3) 	and B((q,j);f/3) 	separate 	(p,i) 	and 

••• 
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(q,j). 	If p=q then i* j, thus for any e > 0 B((p,i) ;f) fl 

B((q,j);c) = 0. 

In order to show that TL is compact consider a net 

{xa ;D} in TL. There is a cofinal subset Di  of D such that 

either {x,;D i }- C 1 0  or {x,;Di } C I. Consider ft, E R: 

(t,,i) = x, for some a E D i I. Then {t,;Di } is a net in the 

compact space [0,1]  and therefore has a cluster point, say 

to  E [0,1]. 	There is either a net ft ia l j t 0 or a net 

ftn- I-  t0  which will be a subnet of {ta ;D'}. 	In the case 

where ftn- j t0  the point (t0 ,1) will be a cluster point of 

fx,;DI since all open balls B((t0 ,1);€) will contain 

infinitely many points of the net. In the other case where 

ftn- j t0  to the point (t 0 ,0) will be a cluster point of 

fx,;Dl. 

Lastly to show that TL is not metrizable it suffices 

to show that it is not second countable. The proof of this 

fact is essentially the same as found in [20, page 76] 

where the Right Half Open topology on [0,1] is shown to be 

non-metrizable. 

Suppose s' is a countable base for TL. Let (x,1) and 

(y, 1 ) be distinct points of TL so that either x < y or Y < 

x. For any c > 0 B((x,1);e) and B((y,1);e) are 

neighborhoods of x and y respectively. 	Therefore, there 

are sets Bx  and By in 93 /  with x E Bx  C B((x,l);E) and y E 
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By 	B((y,1);e). 	However, Bx  0 By since (x,1) and (y,1) 

are their smallest elements; hence 93/  must contain 

uncountably many sets just to accommodate the points of 

This is a contradiction and leads to the conclusion that 

there is no countable base for TL. 

The Space C(TL)  

Since the space TL is not metrizable the space of 

continuous functions on TL, C(TL), is not separable. The 

following are examples of functions in C(TL). 

Example 1.2.3. 	If f E C[0,1] then clearly f may be 

thought of as a member of C(TL) where f(x,i) = f(x) for 

i = 0,1. Hence we may consider C[0,1] to be naturally 

isometric to a subspace of C(TL). 

Example 1.2.4.  Consider the function 

{ 5 	

for x < 1 

f(x,i) = 

Clearly f is continuous at all points of TL other than 

(1 • ) • Even at (1,0) f is continuous since given any e > 0 

we may take 0 < 6 < 2, say 6 = 4 and for all (t,i) in 

B((1,0);6), If(t,i)—f(1,0)1 = 0 < e. 	However, at (1,1) f 

is not continuous. 	If e = I no matter how small 6 is 
4 

1 	for x > 
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chosen, B((1,1):6) will contain (1,1) and (t 1 ,i) for some 

t 1  > 1 and lf(t i ,i)—f(1,1)1 = 1> c (see Figure 3). 

If we redefine the function above to be 1 at (:‘,i) 

the resulting function would be continuous at all points of 

TL except (1,0). In order to get a member of C(TL) f must 

be redefined as 

1 
2 if x < 2 

	

1 	if x > 1 

	

2 	if (x,i) = (1,0) 

	

1 	if (x,i) = (1,1) 

Recall the notion of right- and left-hand limits of 

real valued functions on R denoted f(x + ) and f(x - ) respec-

tively and defined 

f(x+ ) = lim f(t) 	and 	f(x-) = lim f(t) 

t..x+  

where t 	x+  (t 	x-) means t approaches x through values 

greater (less) than x. A function f: R--,R is right 

continuous at x0 if f(x0) = f(x) and left continuous at 

xo  if f(x0) = f(x6). Continuity on [0,1] implies both 

right and left continuity. 

Left- and right-hand limits for real-valued functions 

on TL may be defined in an analogous manner. From Example 
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(a) 	 f(x,0) 

1 •	 

I 1 

I 0 

1 0 	2 

V (x, i) E B((I,O) ;4) f(x,i) 

(b) 	f(x,1) 

2 

1 0 	  

• 
2 

f(i, 1 ) = 
but for all other (x,i) E B((1,1);f5) f(x,i) = 1. 

Figure 3. The Graph of f(x,i). 

I 0 

0 
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1.2.4 it is clear that continuity of a function g on TL 

requires that g i (x) = g(x,1) be right continuous on [0,1] 

and g0 (x) = g(x,0) be left continuous on [0,1]. 

Theorem 1.2.5. 	If f E C(TL) then the function f l : 

[0,1] 	R defined by f l (x) = f(x,1) is right continuous 

and f l (x-) = f(x,0) for all x E [0,1]. Also the function 

f0: [0,1] R defined by f0 (x) = f(x,0) is left continuous 

and fo (x+ ) = f(x,1) for all x E [0,1]. 

Proof. 	To see that f l  is right continuous at all 

points of [0,1] , let x0  be an arbitrary point in [0,1]. 

Since f E C(TL), it is continuous at (x 0 ,1) so that given 

any e > 0 we can find b > 0 such that if(x,i)—f(x 0 ,1)1 < c 

whenever (x,i) E B((x 0 ,1);6) 	If i (x) —f i (x0 )1 < c whenever 

x0  < x < x0 +6, hence the right continuity of f l . Since f 

is continuous at (x0' 
 0), given any e > 0, we can find 6 

such 	that 	If(x0 ,0)—f(x,1)I 	< 	e 	whenever 	(x,1) 

B((x0 ,0);6), i.e., whenever x0-6 < x < x0 ; or in terms of 

f l  we have If 1 (x)—f(x0 ,0)1 < e whenever x0 —e < x < xo , 

hence f i (x- ) = f(x0 ,0). 

The proof that f
0 

is left continuous and f0 
 (x + ) 

f(x,1) follows the same line of reasoning. 

Let D[0,1] be the set of all functions f on [0,1] 

that are right continuous with left hand limits and 	= 
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sup If(t)1. Then by Theorem 1.2.5 each member of C(TL) 
tE[0,1] 

determines a member of D. 	That is, given f E C(TL) the 

function f l (x) = f(x,1) for all x E [0,1] is a member of 

D, with f l (x-) = f(x,0). The mapping T: C(TL) D defined 

by Tf = f l  is clearly an isometry. Moreover, T is onto D 

since given any function g in D, the function 

f (x, i) = g(x) 

	
if i = 1 

g(x- ) 	if i = 0 

will be mapped to g. 	Therefore C(TL) is isometrically 

isomorphic to the space D[0,1]. 	In the remainder of this 

work a member of C(TL) will often be defined by its right 

continuous counterpart in D. 

Note that if a function f in C(TL) has image g in D 

then g will be continuous at all points of [0,1] except 

those where f(x,0) 0 f(x,1). Also, the identification of 

C(TL) with D in conjunction with the following lemma taken 

from [2] gives key properties of functions in C(TL). 

Lemma 1.2.6. 	For each g in D and each e > 0 there 

exists points t i ,t2 ,...,t k  such that 0 = t0  < t 1  < 

t
k 

= 1 and for each i = 1,2,3,...,k 

supflg(s)—g(t)1: s,t E [t i _ v t i )1 < e 	 (1) 
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Proof. 	Let r be the supremum of those t for which 

[0,t) can be decomposed into finitely many subintervals 

[t i _ v t i ) satisfying (1). Since g(0) = g(0+ ), r > 0. 

Since g(r-) exists [0,r) itself can be so decomposed. 

Also, if r < 1, since g(r) = g(r+) we would always be able 

to find 6 such that Ig(s)—g(r)1 < 6 whenever 0 < S-7 < 6, 

i.e., whenever r < s < r+s and then for all s,t E [r,r+s), 

Ig(s) —g(t)1 < Ig(s) —g(r)1 + Ig(r) —g(t)1 < e 

which implies that [0,7+6) can be decomposed into finitely 

many intervals satisfying (1). Thus r < 1 is impossible. 

From the above lemma we may conclude that all 

functions g in D[0,1] have the following properties: 

(i) There can be at most finitely many points t at 

which the jump Ig(t)—g(t - )1 exceeds a given positive 

number. 

(ii) g can have at most countably many discon-

tinuities. 

(iii) g may be approximated arbitrarily closely by a 

step function. 

By the above identification of C(TL) with D the above 

statements (i, ii, and iii) yield three key properties of 

C(TL) stated below: 
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(i') If f E C(TL) then there can be at most finitely 

many points (t,i) at which Ig(t,1)—g(t,0)1 exceeds a given 

positive number. 

(ii') A function f in C(TL) can have at most count-

ably many values of t such that f(t,0) 0 f(t,1). 

(iii') The step functions are dense in C(TL). 

From this point on when f E C(TL) is referred to as 

f = f(x) (vs. f = f(x,i)) it is being defined by its image 

in D (see Figure 4). 

1.3. Complementation  of C[0,1]  and c0 —Subspaces  of C(TL)  

In this section some of the subspaces of C(TL) 

isomorphic to C[0,1] and c 0  are examined to determine if 

they are complemented. As has been previously stated 

C[0,1] is isomorphic to every C(K) space where K is metric, 

uncountable and compact and c 0  is complemented in every 

separable C(K) space. It is shown below that the natural 

image of C[0,1] in C(TL) (see Example 1.2.3) is a closed 

but non-complemented subspace of C(TL). Evidence is given 

that every isomorph of c 0  is complemented with a proof for 

a special class of isomorphs. 

Theorem 1.3.1.  C[0,1] is a closed subspace of C(TL) 

which is not complemented in C(TL). 



3 
0 
	

ti 	t2 

0 t i  

(a) The graph of f E C(TL) 

f(t,i) 

1 0  

1 

• 
c 

I 1 

1 0  

1 

Figure 4. A Function f in C(TL) and Its Image in D. 

16 

t
3 

(b) The image of f in D: Y = f(x,1) 

• o 
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That C[0,1] is a linear manifold in C(TL) has already 

been established in Example 1.2.3 and clearly C[0,1] 

{f E C(TL): f(t,0) = f(t,l) for all t E [0,1]} is closed 

in C(TL). One needs to show that C(TL) is not complemented 

in C(TL). The following lemmas will be needed. 

Lemma 1.3.2. 	If F is a complemented subspace of the 

Banach space X then X = FIEDG where G is isomorphic to X/F. 

Proof. 	Consider the quotient map restricted to G, 

that is, T: G 	X/F defined by Tg = g + F. 

If x + F is an arbitrary element of X/F then x = f+g 

where f E F and g E G. Thus x+F = (f+g) + F = g + (f+F) 

= g+F so that Tg = x+F which shows that T is onto X/F. 

If g l  and g2  are arbitrary elements of G with Tg 1  = 

Tg2  this means that g l  + F = g2  + F. Let f
1 
 be a member 

of F. Then for some f 2 , also in F, gl +f 1  = g2 f2 

which implies that g1 g2 = f2 — f
1
. So either F and G 

have a common non-zero element, which is impossible since 

we have expressed X as FEDG, or g l  — g2  = 0 which implies 

that gl  = g2 ; therefore, T is one-to-one. 

By these arguments the map T is known to be a one-to-

one bounded linear operator of G onto X/F and thus by the 

open mapping theorem [17,  page 195] these spaces are 

isomorphic. 
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Lemma 1.3.3. 	C(TL)/C[0,1] is isometrically isomor- 

phic to the Banach space c 0 [0,1] where co [0,1 ] is the 

Banach space ff: f: [0,1]-.R and for all e > 0, #ft: If(t)1 

> 0- < cc} with Ilf11 = 	sup If(t)1 for all f in the space. 
tE[0,1] 

Proof. We can define .a linear map T: C(TL)/C[°,1] — 

c 0 [0,1] by T(g+C[0 , 1 ])(a) = '1Eg(a, 1 ) - g(a, 0 )]. 

To see that T is well-defined suppose g 1  + C[0,1] = 

g2 	
C[0,1] where gi # g2. Then g1 - g2  is a continuous 

function thus 

2(Tg1 -Tg2)(a) = (g 1 (a,1)-g 1 (a,0))-(g2 (a,1)-g2 (a,0)) 

V a E [0,1] 

(g1-g2)(a'1) 	(g1 -g2) (a, 0 ) 

= g(a,1) - g(a,0) for some g E C[0,1] C D 

= 0. 

As for continuity 

Hg+C [0 4]hP[S, 
	

fll>supflg(t,1) -g(t,0)1: tE[0,1]} 

= HT(g+C[0,1])11 	 (2) 

In fact for the class of step functions, which are dense in 

C(TL) we have equality in (2) so that T is an isometry. 
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Next, suppose T(g 1 +C[0,1]) = T(g2+C[0,1]). Then the 

two functions g 1  and g2  have exactly the same jumps at the 

same values of t. 	Moreover, this means that g 1 — g2  E 

C[0,1]. 	To see this, let t0  be one of the places where 

g1 (t0 ,0)—g1 (t0 ,l) = g2 (t0 ,0)—g2 (t0 ,1) 0 0. 	From this 

equation we get the following one for g 1 — g2  at (t0 ,i): 

(g l —g2)(t0 ,0) = g 1 (t0 ,0)—g2 (t0,0) = g 1 (t 0 ,1)—g2 (t 0 ,1) 

= (gi-g2 ) (t o , i). 

Thus, the function g1 —g2  does not have a jump at t o. 
So 

gl—g2 is 
a continuous function which implies that (g l —g2 ) 

+ C[0,1] = C[0,1] , i.e., g 1  + C[0,1] = g2  + C[0,1]. 

To show that T is onto c0 [0,1] one must first observe 

that the set of finitely supported functions are dense in 

c o  [0 ,1] • Given any x E c 0 [0,1] which is finitely 

supported, list the points t 1 ,...,tk  of [0,1] where x does 

not vanish. Then the function g in C(TL) defined on I, by 

g(t,l) = 1 and en (t) en(t)x [tn,t n+Dtk+i 
n=1 

will be mapped to x by T. 	Thus T is 
t2n),(1111(t—t n+1

), 

onto. 

Proof 	of 	Theorem 	1.3.1. 	Suppose 	C[0,1] 	is 

complemented in C(TL). Then C(TL) = C[0,1] 	G where G is 

isomorphic to C(TL)/C[0,1]. 	Let T: G 	C(TL)/C[0,1] be 
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the restriction of the usual quotient map to G. That is 

Tg = g + C[0,1] for all g E G. Tg = 0 = C[0,1] if and 

only if g = 0. 	Moreover, since C(TL)/C[0,1] 	is 

isometrically isomorphic to co[0,1 ] we may consider T: G 

c 0 [0,1] and from the above statements there is a bounded 

operator U from c 0 [0,1] to G such that TU is the identity 

on c0 [0,1]. 

Now let {r i } °.° 1  be a listing of the rationals in 
= 

[0,1]. 	Let xn  be the image in c0 [0,1] of the function in 

C(TL) which has a jump of +2 at exactly one point, namely 

rn . 	Note that each of these images in C(TL)/C[0,1] and 

thus 	also 	in 	c0 [0,1] 	will 	have 	norm 	1 	since 

Ilxrd1C0  [0 , 1] /C [0 , 1] = gEC 	11 1ixn — g11 • 

Next, taken1 = 1 and let f l  = Ux i . By passing to 

—x
1 
 (and thus to — f 1 ) 

if necessary assume, without loss of 

generality that max(f l (rt),f 1 (ri)) > 1. It follows that 

there is a non-degenerate interval J l  with r 1  as one 

endpoint such that f 1 (x) > afor all x E J1. 	
Let 

n2 be 

such that rn2  is an interior point of J 1 . Then f2  = Uxn2 

 is such that max(f2 (r+ ),f2 (r - )) > 1 and there is a non-

degenerate interval J2  C J l  with f2 (x) > z for all x E J 2 . 

Continuing this inductively, one constructs a decreasing 

sequence of intervals such that for every k and every x E 

J
k 

we have that 
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k 
2 	(f1 + f2  + ... + fk)(x) < HU(xn i  + xn 2 	 k ) II 	HuH 

which contradicts the fact that U is a bounded map. 

co  Subspaces  of C(TL)  

Example 1.3.4. 	Let {Jn}ni  be the collection of 

= r 1 	1  N 
1-2n'2n-1 ) 

 fn(t) = xjn , that is  

for n > 2 and J 1  intervals J n  Let 

fn(t ) = x jn  = 
f 1 	if t E J n  

10 	if t 0 J n  

be the I 1  definition of fn , that is f n  E D[0,1] , (from 

which its I 0 
 definition may be derived). Let 

F = {5! anfn: {an } E c0 }. 
n=1 

Consider the map T: c 0  . F defined by 

co 
Tx = E anfn  where {an } E co . 

n=1 

Then clearly T is linear, one-to-one, and onto F C C(TL). 

Moreover, it is clear that 11Tx11 = im since the intervals c o  

I n  are disjoint so that T is an isometric isomorphism of c 0 

 onto F. 

cc 
Define a map P: C(TL) . F by Pf = 	f(tk )fk  where 

k=1 
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t
k 

is a point chosen from J
k
. Then 

p2f  = P(Pf) = p(

j
i! 

1 
f(t.)f.) = 3! 

1 
 ( 
j
3!

1
fi et o f i( to )f k 

 = 	J J 	k==  

= ct°  f(t k )fk  = Pf 
k=1 

and 

HPfil=suP1(Pf)(t)1 =suP1 3!f(tk)fk(t)1 = suplf(tk)i 5_ MfM• 
t 	 t k=1 	 k 

Thus, P is a bounded projection of C(TL) onto F and F 

is therefore a subspace of C(TL) isometrically isomorphic 

to c 0  and complemented in C(TL). 
0 	

In fact, all isometric 

isomorphs of c 0  are complemented in C(TL). To show this we 

need the following simultaneous extension theorem. 

Lemma 1.3.5. Let Z be a closed subset of TL. Then 

there is a linear isometry T from C(Z) into C(TL) so that 

for every f E C(Z) the restriction of Tf to Z is equal to 

f. 

Proof. 	Since Z is closed Z' = TL\Z is open and by 

Lemma 1.2.2 this means that Z' = U 
co 
 ((an'in),(bn,kn)) where 

n=1 

any two of these intervals are either disjoint or coincide 

at all points. Define U: C(Z) ---. C(TL) by Uf = f on Z and 

on Z/  = U 
oo 

1
((an'in),(bn,kn)) define Uf as follows: 

n= 
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f(an,in) + 
• 	f(bn,k0—f(an,jn)  (x—an) 

bn—an 

for an  <x < bn  if j n  = kn  = 1 

f(bn,kn)
—a
—f(an'in)  

f(an,jn) + 	 b 	
(x—an) 

nn  

for an  <x < bn  if j n  = kn  = 0 

(Uf)(x,i) = 

f(bn,kn) 
—an
—f(an,in)  

f(an,jn) + 	 (x—an) 
bn  

for an  < x < b n  if i n  = 1 and k n  = 0 

f(an,jn) + 
f(bn,kn

b)  —a 
f(an,in)  (x—an ) 

nn  

for an  < x < b n  if j n  = 0 and k n  = 1 

Note that the four cases above determined by the values of 

in and kn  parallel the four cases given in Figure 2 which 

shows the open intervals of TL. 

Example 1.3.6. 	Let Z = 	 (3,1), (3,1), ( 1 , 1 ), 

(0,0),(3,0),(0,1)}. 	Suppose f(x,i) is known for all (x,i) 

E Z and we wish to use the scheme of Lemma 1.3.5 to define 

its extension, Uf, to all of TL. First of all Z' = 

((0,1),( 3 ,1)) U (( 3 ,1),(3,0)) U ((3,1),(1,0)). 
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f(x,i) 	 if (x,i) E Z 

f(0,1) + 3(f(A,1)—f(0,1)(x) 	for 0 < x < A 
(Uf) (x) 

f(3,1) + 3(f( 3 ,0).—f(3,1))(x-3) for A < x < 

(f(3,1) + 3(f(1,0)—f(3,1))(x-3) for i < x < 1 

(see Figure 5). 

Theorem 1.3.7. 	If F is a subspace of C(TL) which is 

isometrically isomorphic to c o  then F is complemented in 

C(TL). 

Proof. Let T be an isometric isomorphism mapping c 0 

 onto F. For each n E N, let fn  = Ten  where {e 1 }T' 1  is the 

	

c 0 . 
	

= 1 for each n, there unit vector basis of c 	Since 

is a number t o  E [0,1] and i n  E {0,1} such that If(t n , 

= 1 and let Z be the set of limit points of the sequence 

{t n ,i n )}. Then Ilfn+fmll = HT(en±em) II = Hen±emll = 1 for all 

n 	m which implies that 

fn(tm,im) = 

0 	if n 	m 1   

if n = m 

Hence, if (t,i) E Z then f n (t,i) = lim f n (tm  ,i m  ) = 0 and k _, 00 	k 	k 

since fn  is a basis for F this means that f(t,i) = 0 for 

all (t,i) E Z. Now let Z 1  be the subspace of C(TL) 

consisting of all functions vanishing at each point of Z. 

in) I 



(a) The Set Z 

41 

41 

I 1 

• . 	1 0 
1 

(b)  The Graph of Z — R 

g(Z) 

• 

34. 

• • 

I 1 

0 
1 0  

1 

Figure 5. 	The Extension of f in C(Z) to C(TL). 
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(c) The Graph of Uf on I i  

g(x,1) 
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I i  

1 0 

(d) The Graph of Uf on I o  

g(x,0) 

0 
	

1 
3 

2 
3 

I 1 

1 0 
1 

Figure 5. (Continued) 
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Define a map P: Z1 	F by 

00 
Px = Ex(tn ,i n )sgn fn (t n ,i n )f n • 

n=1 

Then it follows that P is a projection of Z 1  onto F since 

Pfn  = fn  for all n E N. P is bounded since 

1112 4 = 
 I

co 
I: x(t n ,i n )sgn f n (t n ,i n )f n l 
n=1 

00 
E x(t n ,i n )sgn fn (t n ,i n )e n )1 

n=1 

co 
= E x(tn,in)sgn 

n=1 
fn(tn,in)eni 

c o  

= sup lx(t n , in)I 
n 

< suplx(t,i)I 

Therefore P is a bounded projection of Z i  onto F. 

To finish the proof a projection Q: C(TL) 	Zi  must 

be defined and then the map PQ will be the sought after 

projection of C(TL) onto F. 

Let U be the extension map defined in Lemma 1.3.5. 

By the definition of Uf, U is an isometry. 	Define Qg = 
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g—URg where R is the restriction operator, i.e., Rg = gl z . 

Then Q is clearly linear and if g E Z 1  then Rg = 0 which 

implies URg = 0. Therefore, for all g E Z1  Qg = g which 

means Q is a projection onto Z 1 . Also 

gm = Hx - uR4 

< m + fluR4 

m (1 + WHHRH) 

44 . 

Theorem 1.3.8. 	(The Isomorphic Case). Let {f n } be a 

sequence from C(TL) such that: 

(i) There exists Ao  > 0 with 

IlEanenlic o 	ganfa 	AMEanenHc o  

for some A < Ao  and all {an } E Co . 

(ii) There is a sequence {tn ,i n} C TL with 

(a)fn (t n ,i n ) > 

(b)jiali f k (t n ,i n ) = 0 for all k. 

Then F = span {f n} is complemented in C(TL). 

Proof. 	Let X E {f E C(TL): lim 
4co f(tn, in) = 

0} where 
n--  

for each n E N, (t n ,i n ) is chosen so that If n (t n , in)I 

This is possible by condition (ii). 	Clearly X is a 
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subspace of C(TL). 	Next, consider the map Q: X ---, F 

defined by Qg = fg(tn,in)fn. Since 
n 
 lim 
- ■ oo g(tn , i n ) = 0 for 

n=1 

all g E X we have fg(tn , in)ncti E c0  which implies that Qg 

E F for all g, and 

KW = sup 
t 

ct°  g(tn, in)fn(t, 0 
n=1 

< A suplg(tn , in)I < Aligii 
n 

   

so that Q is a bounded linear map of X into F. Let Q be 

the restriction of Q to F. It shall be shown below that Q 

is invertible whenever (i) holds. First, an invertible map 

D will be defined. 	Next it shall be shown that 14-Dl) < 

1 	whenever (ii) holds from which it follows that Q is 

116-11 1 
invertible also [8, page 147]. 

Define an operator 

D: F -■ F by Df = cf (anfn(tn,in))fn 
n=1 

where f = Ea.
J
f.
J 
 E F. Then 

1115f11 = If (anfn(tn'in))fni 	
n 

A suPlanfil(tn,in)1 
n=1  

< A sup I an  1 .suP 1 fn(tn I in) 1 	1 1E1  anenl •A 	A 3HEanfni 
n 	n 	 n co 

= A3
M. 



The inverse of D is the operator i5 -1  which is defined by 

= 3! 	an  
• 	fn, 

n=1 fn(tn,ln) 

and 

kis  fnZ 	
A s i n ) fni 	r 

05-1f H 

< A2  suplanl < A3 11f11 n 

 

an 

 

 

fn(tn, in ) 
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so that 15 -1  is also a bounded linear map. Also 

Af-bfm = Ito f(tn, 
n=1 

n)fn 	(akfk (t k' i k )f k 
k=1 

 

   

= ct° ct)  aff i (t n , in))fn — 
n=1 j=1 

=E 	j(tn, in))fni 
E jOn 

t) akf k (t k' i k )f k 
k=1 

 

  

< A sup 
n 

E 	i (tn, in) 
jr1 

  

5 A supladsup E if 
J
.(t n , i n ) 

j    

< A2 HfIlsup 2: If i (tn,in)1 	 (3) n 

But 
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E == 3! If 	— ifn(tn,in)1 
;O n 	 j=1 

< sup 3! i f. ( t,i ) , — 	i = 1,2 
t j=1 

< A — 	 (4) 

Therefore, putting (3) and (4) together 

101 -15f)ii < A2 (A — 

i.e., II(Z4-15)11 < A 3  — A. 	Therefore, if Ao  > 1 is chosen so 

that it is a root of  A6 —\4 -1 = 0 then M(CI -15 )11 < — 1 	 . 
11 1) 11

1 
 

For these values of A, Q will be an invertible operator and 

the map ifi -1Q: X -4. F is a projection of X onto F. It is 

bounded and linear because both Q and Z1 -1  are bounded 

linear maps and clearly Q -1(1 = ?4 -1ifi = I on F, is 

idempotent. 

To finish the proof a projection P of C(TL) onto X 

must now be defined. Then the projection QP will map C(TL) 

onto F. 	To this end, let Z a the cluster points of the 

set f(t i ,i 1 ),(t 2 ,i 2 ),...}. 	Then Z is a closed subset of 

TL. For each g E C(TL) let Rg be the restriction of g to Z 

and let U(Rg) be the linear extension of Rg to all of TL as 

defined in Lemma 1.3.6. Then Pg = g—URg is clearly a 

linear map and is bounded since WW1 < 	2 11g11 	and 
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lim (Pg)(t n ,i n ) = 0 because g and URg agree on Z. 
n--■ co 

Also, 

if g E X, then Rg = 0 so that Pg = g for all g E X, hence 

P2g = Pg and P is a bounded projection of C(TL) onto X. 

There are many subspaces of TL isomorphic to c0  which 

do not satisfy conditions (i) and (ii) of Theorem 1.3.9. 

The following lemma by R. C. James [9] gives that every 

subspace of C(TL) containing an isomorph of Co  contains a 

subspace satisfying condition (i). So if condition (ii) 

which is more restrictive were removed the class of c 0 - 
0 

subspaces proven to be complemented in C(TL) would be 

greatly enlarged. 

Lemma 1.3.9. (James) 	If a normed linear space 

contains a subspace isomorphic to c 0  then for any number 

8>0, there is a sequence {Li} of members of the unit ball 

such that 

( 1 	 < IIEa i u i II < sup la i l 

for all finite sequences of numbers that are not all zero. 

Theorem 1.3.10. 	If F is a subspace of C(TL) 

isomorphic to c 0  then F contains a subspace F0  also 

isomorphic to c 0  and complemented in C(TL). 

Proof.  Choose 6 > 0 so that 1-8 = 	where 1 < A < 
A 
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A
0' 	

Then by Lemma 1.3.9 there is a sequence -[ -f4 of 

members of the unit ball of F such that 

supla i l < IIEa if i If < A supla i l 
	

(5) 

for all finite sequences of numbers, and thus for all 

members of c0 . Thus span ff il is a subspace of F 

isomorphic to c 0  satisfying condition (i) of Theorem 1.3.8. 

For the remainder of this proofthefunctionsf-shall be 

referenced by their image in D, that is we shall speak of 

them as functions f(t) (vs. f(t,i)) where f(t) = f(t,l) 

with left- hand limits f(t - ) = f(t,0). 

For each i, let t i  E [0,1] such that If(t i )1 > 	and 

let t0  be a cluster point of {t i }. 	There is either a 

decreasing subsequence ft ni l 1 t0  or an increasing sequence 

ft ni l I to . Without loss of generality assume that {t ni } 

t o , and from here on consider this sequence in [0,1] 

renamingitftjanditscorrespondingfunctions{f.}. 

By (5), 	c't)  Ifn (t0 )1 
n=1 

there is a positive integer 

by right continuity If ni (t)I 

[t 0 ,t 0 +7/ 1 ) for some 
	

> 0
. 

function g l  in C(TL) as follows 

n 1 
such that If n (t 0 )1 < e/2 and 

< e for all t E 

Let s 1  = t n1  and define a 

< oo so that given any e < 0 

( fn i (t) 
g1(t) = 	

0  

for t 0 

for t E 
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Next, by (5) there is an integer n 2  > nl  such that 

ifn 2 (t0)1 < 6/4 and by right continuity an interval 1 2  = 

[t0 ,t0 +712 ) C I I  such that for all t E 1 2  Ifn2 (t)I < 6/2. 

Let s2  = tn2  and define g2 = 0 on 1 2  and g2  = fn2  on 

[0, 1]\1[ 2 . Containing this process one obtains a sequence 

{g i} in C(TL) where 	 < e/2 1  and yet limgn (s.)= 0 
i 

for each integer n. 	Moreover if e is chosen to be less 

than 1  
32K 

If i I, then 

where K is the basis constant for the sequence 

3! Hgi-fnd 	AK 3! 2 - i = 16K 
i=1 	 i=1 

( 6 ) 

The sequence {g i } is then equivalent to the sequence 

{f n2} and satisfies conditions (i) and (ii) of Theorem 

1.3.8. From the proof of Theorem 1.3.8 there is a 

projection P of C(TL) onto span {g i } with IIPII < 2. Thus by 

(6) 

1  t Hg i -fnd 5- TuR - 8101 
i=1 

which implies that F0  = span {fni } is not only isomorphic 

to the complemented subspace span {g i} but is also 

complemented [14, page 6]. 

Corollary 1.3.11. C(TL) does not contain e00 . 
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Proof.  Since it is known [18] that no isomorph of c 0 

 is complemented in too, this result follows immediately from 

Theorem 1.3.10. 

1.4. Identifying  the Complement  of f0-Subspaces  of C(TL)  

If F is a complemented subspace of C(TL) isomorphic 

to c
0 
 then we would like to identify the space G such that 

C(TL) = FEDG. Consider the following example. 

Example 1.4.1.  Consider the space F = {Eanf n : {an } E 

c 0 } where fn  = x 1 	1 	
r 

for n > 1 and f l  = x 	. F is 
[2n' 2n-1 ) 	 E,1] 

an isometric isomorph of c 0  which is complemented in C(TL). 

Using the projection 

1  
Pg = 	g(tn )fn  where t o  = 1 

2n-1  n=1  

it can be shown that C(TL) = FEDG where G = ker P contains 

an isomorph of C(TL). 

Consider the interval 
[" 3 4] • 

If I is an interval 

define D(I) = {f E D[0,1] : f(t) = 0 for all t 0 I}. Then 

D[3,1] is naturally isomorphic to D[0,1] thus also to 

C(TL). 	Moreover, for all g E D[i,i], Pg = Eg(t n )f n  E 0 

since there are no t n 's in [3,u. 	Thus D[3,1] is contained 
in the space G. 

The following lemma shall be instrumental in using 
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the Pelczynski Decomposition method [12, page 54] to show 

that if F C C(TL) is an isometric copy of c o , not only is 

it complemented in C(TL) but that its complement is in fact 

C(TL) (up to an isomorphism). 

Lemma 1.4.2. 	C(TL) is isomorphic to the infinite 

direct sum (C(TL) 0C(TWED••)c o * 

Proof. 	Let X = {g E D[0,1]: g(0) = 0} and J n  

rl 	1  
L2n'2h-1' 

X 	[EeD(J11)]c o  

- [EeD [0 ,1)] c o  

- [EeD[0,1)] co  e [EeD[0,1)] co  

- X e X. 	 ( 7 ) 

Also, 

D[0,1) --XeR 
	

(8 ) 

since T: D[0,1) —+ (xeR) 00  by T: f 	(f(x)—f(0), f(0)) 

satisfies 

HTfll = max( Ilf (x) - f (0) 11, 1f( 0 ) 1) 	2 11f(x)M. 

Further T -1  : (g(x),a) 1-+ g(x) + a E D[0,1) and 
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Hg(x)--Fan = suplg(x) + at 
	

suplg(x)I + lal 

Next, 

< He + < 211(g(x),a)11• 

  

X — X e DE0,1) 
	

( 9 ) 

by the operator f 	(fl
CO , 	[54) 

1  ,fl 	). 	Putting (7), (8), 
 

and (9) together yields 

X — X® DE0,1} 

— X e (X e R) 

— X e R 

— DE0,1). 

(bY ( 8 )) 

(bY ( 7 )) 

Thus X e R 	DE0,1) e R 	DT0,1] and 

C(TL) ti  D[0,1] — D[0,1) — X 

- [E e Dp,i)], 0  

- [E e D[0,1]] co  

- [E e c(TL)] co . 

Theorem 1.4.3. 	If F is a subspace of C(TL) 

isometrically isomorphic to c 0  then C(TL) = FEDG where G is 

isomorphic to C(TL). 
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Proof. 	From Theorem 1.3.7 the composition map PQ 

will be a projection of C(TL) onto F where P: Z 1  -, F and 

Q: C(TL) —■ Z1  are defined 

Pg = 	g(t n ,i n )sgn f n (t n ,i n )f n  and Qg = g — URg. 
n=1 

Let [a,b] be an interval of [0,1] such that the set {(t,i): 

t E [a, b] 	does not meet the set f(t i ,i 1 ),(t 2 ,i 2 ),...1 and 

consider D[a,b] 
	

which 	is 	isomorphic to C(TL) 	and 

P
ID[a,b] C(TL) (where D[a,b] C(TL) {f E C(TL): f(t,1) = 

g(t) and f(t,0) = g(t - ) for some g E D[a,b]) will he the 

zero map. Thus D[a,b]C(TL)  is completely contained in G 

since for all g E D[a,b] C(TL)' glZ = 0 which means that 

URg = 0 and implies that Qg = g, therefore (PQ)g=Pg = O. 

Let R map D[0,1] to D[a,b] naturally. RI G  mapping G 

onto D[a,b] and thus onto D [a,b] 	is a bounded linear 

C(TL) 

projection and thus 
D[a,b]C(TL) 

is complemented in G. 

At this point it has been shown that C(TL) = FSG 

where F , c
0 

and G = ker QP is isomorphic to C(TL)®U. 

Using the Pelczynski Decomposition method and Lemma 1.4.2 

C(TL) S G --, C(TL) S (C(TL) S U) 

— (C(TL) S C(TL)) e U 

C(TL) S U 

.: C(TL) S G — G 



and 

C(TL) e G — [E e C(TL)] co  ® G 

— [E e (FeG)] co  

^-• 

 e G 

[E ED F] c o  63' [E  ED G] c o 

 ,•-• [E ® F] co  + [E e G] co  

— CE e (F e G)] co  

— [E e C(TL)] c o 

— C(TL). 

Thus C(TL) — C(TL) e G — G. Note that by Lemma 1.3.2 this 

is true not only for G = ker QP where QP is as defined 

above, but for any subspace G I  where F is isometrically 

isomorphic to c 0  if C(TL) = F e G I  then G I  is isomorphic to 

C(TL). 

The remainder of this section shall be devoted to 

showing that whenever C(TL) is projected onto an isomorph 

of c0  then the complementary space contains an isomorph of 

C(TL). 	We begin with a discussion of C(z) and an 

isometric copy of C(A) contained in D[0,1]. 	All of these 

theorems will use D[0,1] (vs. C(TL)) as the background 

space but will deal with isomorphic properties that carry 

over to C(TL). 

Recall the Haar system, which is known to be a 

monotone basis for C(s). Let 

39 
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An,k 
	0 < k < 2n -1 	n = 0,1,2,... 

be a collection of sets such that 

2n -1 
A  = kU1 ' An k 

=  

	

An,k n An,e = 0 	for k 	E 

An,k = An+1,2k U An+1,2k+1 

The Haar functions fO ri l are defined by 

cb o = xA0,0 ' 
	

4)2n-1  4- 1( = XAn,2k 	XAn,2k+1 

0 < k < 2n -1, n = 1,2,... 

For example, choose I 0,0  = [0,1] and for each n = 

1,2,3,... let In k = L2n rk 
 , 2n 
k+1) for 0 < k < 2n -1 and 

,  

I n2n-1 = [2112;;1,1]. Then put A
0,0  = I 0,0  n 

I n ,k n A for n = 1,2,3,... 0 < k < 2 n -1. 	Now, we can 

define the space D(A) to be the closed linear span of the 

functions {0}Z=0  where 00  = x][ 00 ; 02„_1, k  
+ 	= X I",zk X I,1,2k+1 ;  

0 < k 2n-1 -1; n = 0,1,2,... 	Clearly the map which takes 

O i  to O i  is an isometric isomorphism from C(s) onto D(A) C 

D[0,1]. 

A and An,k 
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The next three theorems were proven by J. 

Lindestrauss and A. Pelczynski in [11] for the space C(A). 

The arguments used to prove then for D(A) parallel those 

of Lindenstrauss and Pelczynski. 

	

Lemma 1.4.4. 	Let -fa.  I be step functions in 

D[a,b). Put (for 0 < k < 2n-1 , n = 1,2,...,p) 

A 	- -1 () 	 A 	 ( 

	

= 	 ( 10 ) 0,0 -  0 1 	A 	- 
n,2k 	

(1) 
-1-1,2k+1 

Assume that -1 < g i  < 1 and that each g i  

	

assumes the values 1 and -1 	 (11) 

Assume that for each 0 < k < 2 n , n = 1,2,...,p 

supp g1  C A0,0 , supp g2n+k  C An,k 	 (12) 

where supp f = 	 If(s)1 0 0}. 	Then the sequence 

{g.} 
1  0< i <2 1' 

and fO i l0<i<2p  are isometrically equivalent. 

Proof. Observe first by (10) and (12) 

the functions of the same level n have disjoint 

supports, i.e., g2n_i_ kg2n14  = 0 for 0 < k < Q < 2 n . 

ii) 	if, 0 < i < 2n  then g i  is constant on An k' 
 that ,  

constant being either 1, -1 or O. 

It shall be shown by induction on n that 

(i) 

(iii) for any choice of scalars ft i 10<i<2n, the maximum of 
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2"--1 
the function 	E t ig i

(.) 
i=0 

sets An k' 
 0 < k < 2n . 

, 	- 

is attained on one of the 

 

For n = 0, (iii) is obvious. 	Let n < p and let 

{t i } o<i<2n be scalars. 	By (ii) the function 	I: t ig i (•) 
i=1 

is constant on each of the sets A n-1,k' 	
Denote this 

constant by c 
n-1,k' 

 By (10), (12), and (i) 

sup 
sEAn _ i ,k 

2"-1 
E t ig i (s) 
i=1 

= 	sup 
sEAn _ i ,k 

c
n - 1,k 	t2n - 14.kg2,,--14.k (s) 

   

sup 

sE (An_i ,2kUAn-1,2k+1) 

= ic n _1,j1 + (t2"-+k 

c n-1 ,k +t2n+kg2n -l +k (s)  

(13) 

2"-1 
(12) 	E t ig i (s) 

i=0 

there is a k, 

2n - 1 
such that 	2: tigi(s) 5  cn - 1,k' 	

If s E 
i=0 

A
n-1,k 

then by equation (13) the max will be attained on 

one of the sets A
n k ' 

The lemma now follows from (iii) and the observation 

that g i  on Ap,k  is equal to Oi  on I p,k 
so that 	t ig i (-) 

i=0 

tob i (-). 
i=0 

Note: 	In the proof by Lindesntrauss and Pelczynski 

the sets Ap,k 
were clopen which insured that the maximum of 

the functions gi 
 would be attained on a non-empty set with 

2n-1 -1 
E t ig i (s) 
i=1 

0 < k < 2n-1  

If s ¢ 	kY1 An-1,k then by 

and by the induction hypothesis, 
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non-empty interior. 
	Because our functions are step 

functions assuming only finitely many values these pro-

perties still hold. 

Proposition 1.4.5. 	Let T: D[0,1] -+ X be such that 

(*) for every e > 0 and for every [a,b) of [0,1] there is 

an f E D[a,b) such that Ilf11 = 1 and IlTfll < e. 

Then for each f > 0 there is a sequence {g i } i
co  =0  in 

D[a,b) which is isometrically equivalent to the Haar system 

and such that fIlTe < f. 
- 	 i=1 

Proof. 	First observe that since the step functions 

are dense in D[a,b) (by Lemma 1.2.6) we may assume that f 

is a step function. Next, note that we may select a step 

function which assumes its norm. For if f does not attain 

one of the values 1 or -1 in the interval [a,b) there is 

an xo  E [a,b) such that either lim_f(x) = 1 or lim_f(x) 
x-i.x0 	 x-+x0  

= -1. Assume, without loss of generality, that lim f(x) 
x-,x(-5-  

= 1. Then given f f  > 0 there is an interval [x0 -b,x0 ) such 

that If(x)-11 < 02. The function f may be approximated 

by a step function defined to be 1 on [x 0 -(5,x0 ). 

Now, if the step function above does not assume both 

valus +1 or -1 divide the interval [a,b) into two 

subintervals [a,b 1 ) and [b1 ,b). Then pick a step function 

f l  on [a,b i ) and a step function f2  on [b i ,b) each of which 

attains the values 1 or -1. Either f1+f2 
or  f1-f2 will 
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then be a step function satisfying (*) and achieving both 

values +1 and -1 on the given interval [a,b). 

By using (*) and taking f to be a step function 

attaining both values 1 and -1 as outlined above a 

sequence fg i l of step functions may be defined for any 

given e > 0 so that for i = 0,1,2,... < 2- 1e; and 

for 0 < k < 2n-1 ,
1  

n = 1,2,... gl  E C(go  (1)) 	E 
-2n+2k E  

r(40,- 11 
 

+k (1)) ' g2n+2k+1 E C(g
2 ,.. 1 _0( (-1)). 	Thus by Lemma 

1.4.4 the sequence {gi} is isometrically equivalent to {0 j } 
 

and by construction Egg < E. 

Theorem 1.4.6. 	If C(TL) = FEDG then either F 

contains an isomorph of C(A) or G contains an isomorph of 

C(TL). 

Proof. 	Suppose C(TL) = FEDG. 	Let Q: C(TL) 	G be 

the projection of C(TL) onto G. If Q satisfies (*) then by 

Proposition 1.4.5 there is for every e > 0 a sequence {g i } 

in C(TL) such that {g i} is isometrically equivalent to the 

Haar basis of D(z) and 	 = flIt1/411 < e (where P = 
i=1 	 i=1 

I-Q is a projection of C(TL) onto F). span {Pg } C F and 

is equivalent to span {g i } 	D(A) by the Paley-Wiener type 

stability theorem [12, page 5]. 	Thus F has a subspace 

isomorphic to D(z). 

If Q does not satisfy (*), then there is an interval 

[a,b) C [0,1] such that HUH > ellfH for all f E D[a,b)- 
u(TL) 
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with IIfII=1.  Thus QI 	 is an isomorphism and hence Dca,b  
) 
c 
 (TL) 

defines a subspace of G isomorphic to D[a,b) and thus to 

D[0,1] and C(TL). 

Corollary 1.4.7. 	If C(TL) = FIT,G where F is 

isomorphic to c 0  then G contains an isomorph of C(TL). 
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CHAPTER II 

RANGE INCLUSION AND FACTORIZATION 

OF OPERATORS ON BANACH SPACES 

2.1. Background Theorems 

The following theorem by Douglas 	[5] 	is the 

motivation for the essence of this chapter. 

Theorem 2.1.1. 	(Douglas) 	If A and B are operators 

on a Hilbert space H then the following are equivalent: 

(i) A = BC for some operator C on H 

(ii) IIA*4 < klIB*4 for some k > 0 and all x E H 

(iii) Range A C Range B. 

Terminology. 	If (i) holds it is said that C is a 

right factor of A and that there is a factorization of the 

operator A. If (ii) holds it is said that B majorizes A. 

If (iii) holds it is said that there is range inclusion for 

operators A and B. The space Rn  with e 1 —norm is denoted by 

C l  

Douglas' theorem is generally not true in an 

arbitrary Banach space. Clearly (i) implies each of (ii) 

and (iii) even in Banach space and it can be shown that 

(iii) implies (ii) [7]. 	R. Bouldin [16] gave an example 

illustrating that (ii) does not imply (iii). 	The correct 
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generalization of Douglas' theorem to Banach spaces was 

given by Embry in [7] and is as follows. 

Theorem 2.1.2.  (Embry) Let D and E be operators on 

a Banach space X. The following conditions are equivalent: 

(i ') D = FE for some operator F: range E --. X 

(i i')IlDx11 < 1(11E4 for some k > 0 and all x in X 

(iii I ) range D* C range E*. 

To see that Embry's theorem is a generalization of 

Douglas' theorem let A = D* and B = E* which is possible 

since every Hilbert space operator is an adjoint. 

Condition (i ') then becomes A* = FB* for some operator F: 

Range B* --■ X. Since X is a Hilbert space we may extend F 

to all of X which yields (i) of Douglas' theorem. With the 

same assignment: A = D* and B = E*, statements (ii i ) and 

(iii') become (ii) and (iii) of Douglas' theorem. 

Embry also presented a counterexample in [7] , due to 

Douglas, of operators A and B on a non-separable, non-

reflexive Banach space for which range inclusion (iii) does 

not imply factorization (i). In this chapter Douglas' 

counterexample will be simplified and extended. On many of 

the classical Banach spaces counterexamples to (iii) (i) 

are shown to exist. 
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2.2. Classical Banach Spaces in which Range Inclusion  

Does not Imply Factorization  

The following lemma consists of a pair of sufficient 

conditions for a counterexample to be found in a given 

space; one of which is based on Douglas' counterexample 

[7] • 

Lemma 2.2.1. Let X and W be a Banach spaces. Let T: 

X W be a surjective map and let Z = X 03, W. If range 

inclusion implies factorization for operators on Z, then 

a) W is isomorphc to a subspace of X, and 

b) ker T is complemented in X. 

Proof. Define operators A and B on Z by 

A(x,w) = (O,w) 	and 	B(x,w) = (O,Tx). 

then range A C range B, so by assumption there exists an 

operator C on Z such that A = BC. Now define 

Q: Z 	X by Q(x,w) = x 

P: Z 	W by P(x,w) = w 

and 
	

is W 	Z by iw = (O,w). 

To prove a) define a map S = QCi from W into X. For 

any w E W, 
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(0,w) = A(0,w) = BC(0,w) 

= B(QCiw, PCiw) = (O,TQCiw) = (O,TSw) 

so that 	5- ilTin(Swii• 	Hence 1  114 5_ 11S4 < HQW111114, so S 

is an isomorphism from W into X. 

As for b), consider the operator R = I—QCiT. Since 

(O,Tx) = A(O,Tx) = BC(O,Tx) = B(QCiTx,PCiTx) = (O,TQCiTx) 

it follows that 

T(Rx) = T(I — QCiT)(x) = Tx — TQCiTx = 0. 

Thus R maps into ker T, 	range R C ker T. Also, if 

y E ker T, (I—QCiT)y = y. Thus ker T = range R and R 2x = 

Rx so that R is a projection of X onto ker T. 

The remainder of this section is devoted to showing 

that certain classical Banach spaces are not of the form 

discussed in the lemma which leads to the conlusion that 

range inclusion does not imply factorization in these 

spaces. 

Theorem 2.2.2. 	Let Z be L 1 , fp  (1 < p < oo, p 	2) 

or c0 . Then there exists operators A and B on Z with range 

A C range B, yet A 0 BC for any operator C on Z. 
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Proof.  In the case Z = L 1, we write Z = X ED W where 

X = 1 and W = L
1 

[6]. Since L
1 

is separable, there 

exists an operator T from e 1 onto L1 
[13, page 37]. Since 

L 1 is not isomorphic to any subspace of e range inclusion 

does not imply factorization for operators on L 1 . 

If Z = fp , let Y be a subspace of EP = Cq  which is 

ismorphic to eq and not complemented in eq. The existence 

of such a Y was proven in [16] for 2 < p < co and in [1] 

for 1 < p < 2. Now consider the space 1Y = {x E /2,: 

(x,y) = OT. Suppose 1Yis complemented in C P.  Then there 

is a projection P: ep ---ep with range 1Y and P*: eq --Cq  is 

also a projection. Moreover, 

P*x* = 0 a for all z E Z, (P*x 
	= 0 

(x*,Pz) = 0 

x* E ( -I-Y) -1-  = Y 

Thus range (I—P*) = ker P* = Y which contradicts the fact 

that Y is uncomplemented. Therefore 1Y is not 

complemented in Cp . 

Now, by part b) of Lemma 2.2.1 range inclusion does 

not imply factorization for operators on Cp e(tp/ IY) since 

the canonical quotient map r: t p ---4 pP1-Y is surjective 

Since the subspace Y is weakly closed 
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(ep/ IY) *  ''" ( 1\1) 1  ''" Y — eq  

so that 

(ep eep/ -L Y) * — eq (Deq  — eq  

which implies that , 

e p  ® (ep/iy) — ep  

So range inclusion does not imply factorization for 

operators on ep  ( 1 < p < oo, p $ 2). 

The case of Z = c o  is basically the same as that of 

ep . Bourgain [4] has proven the existence of finite 

dimensional subspaces E n  C el (n) withEn  uniformly 
dim En 

isomorphic to e1 	yet 

i 	 d(n) lm infaPH: P: e l  n—oco 	 , En  is a projection} = oo. (1) 

00 
If Y= (2 eEn ) e  is complemented in el' there is a 

n=1 	1 
bounded linear projection P: e 1 .-■ Y. 	Let Pn : Y --0 En  be 

d(n) the natural projection of Y onto E n  and Qn: 
e1 

(Eee cil (i )) 	be the natural 	embedding of ea (n) into Je
l 

Rn: 4(n) 
(Ee)Ecil(i)) 	then a projection 	 ---, E n  may be defined 
i 	tl 

as the composition map PnPQ n . 	Since Anll = 1 and IiPnii 5_ 
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1111, for each n Rn  is a bounded linear projection ed (n)  onto 

En  whose norm is dominated by 1111 2  which contradicts (1). 

Therefore Y = (EEDEn )ei  is a noncomplemented subspace of 

(Eeell(n)\ 

)e l 

Since each En  is finite dimensional and weak* closed 

in 4(n) 
	 (Epedi(n))e 
and the weak* topology of 	 is the pro- 

/ 1  

duct topology, i.e., the topology of pointwise convergence, 

(EEBEn ) ei  is a weak* closed subspace of (Eee cii(n) ) e  . 
1 

As before 1y. 
C c o is noncomplemented also. 	It 

follows then that range 	inclusion does not 	imply 

factorization for operators on c o“co/ IY). Now 

( c 0/ 1y)' (±Y) 1  = {f E e l : (z,f) = 0 for all 1  z E 1Y} = Y, 

since Y is weak* closed. Since (c0/1Y)' 
	el' (co/1Y) is a  

Loo-space [see 13] , and since each quotient of c o  is 

isomorphic to a subspace of c0  [10] , (c 0/ 1Y) is isomorphic 

to a L. subspace of c 0 . However, every L. subspace of c 0 

 is itself isomorphic to c0  [10]. It follows that 

c0 El)  (co/ 1Y) — co El)  co — co ,  

so range inclusion does not imply factorization for 

operators on c0 . 

e l  
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Proposition 2.2.3. 	If Y is a complemented subspace 

of X and if range inclusion does not imply factorization 

for operators on Y then range inclusion does not imply 

factorization for operators on X. 

Proof. Suppose range inclusion implies factorization 

on X. Let A,B be operators on Y such that range A C range 

B. Then 

AY C BY 	A(PX) C B(PX) where P: X---+Y is a projection 

range AP C range BP 

AP = (BP)C for some operator C on X 

Ay = APy = B(PC)y for all y E Y 

A = BC where C = 

Since each separable C(K) and also C(TL) contains a 

complemented isomorph of c0 , and since each Lp space, 1 < 

p<oo contains a complemented subspace isomorphic to e 

range inclusion does not imply factorization on any of 

these spaces Also, it is clear that the proof presented 

above for Z 1  = L1  applies to any separable space X which 

is not isomorphic to a subspace of e 1 and which contains a 

complemented subspace isomorphic to e 1' 

The case of Z = e
1 

has also been considered in the 

above setting. 	The lifting property of e l  [13, page 38] 
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is: 	if X and Y are Banach spaces, if B: X -4 Y is a 

surjective linear operator and if A: e 1  -+ Y then there 

exists A: e l  --4. X such that A = BA. Thus if B is an 

operator on e
1 with closed range, and range A C range B, 

put X = e
1 and Y = range B then by the lifting property of 

E 1 there does exist an operator C with A = BC. Since the 

lemma always produces operators with closed ranges, it is 

not sufficient to determine the equivalence of range 

inclusion and factorization for operators on el. 



55 

REFERENCES 

[1] G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson, "On 

uncomplemented subspaces of L p , 1 < p < 2," Israel 

Journal of Math. 26 (1977) 178-187. 

[2] P. Billingsley, Convergence  of Probability Measures, 

 John Wiley and Sons, Inc., New York, 1968. 

[3] R. Bouldin, "A counterexample in the factorization of 

Banach space operators," Proceedings of the AMS 68 

(1978) 327. 

[4] J. Bourgain, "A counterexample to a complementation 

problem," Composito Mathematica 43 (1981) 133-144. 

[5] R. G. Douglas, "On majorization, factorization, and 

range inclusion of operators on Hilbert space," 

Proceedings of the AMS 17 (1966) 413-415. 

[6] L. E. Dor and T. Starbird, "Projections of L p  onto 

subspaces spanned by independent random variables," 

Composito Math. 39 (1979) no. 2, 141-175. 

[7] M. Embry, "Factorization of operators on Banach 

spaces," Proceedings of the AMS 38 (1973). 

[8] B. Epstein, Linear Functional Analysis,  W. B. Saunders 

Co., Philadelphia, 1970. 

[9] R. C. James, "Uniformly non-square Banach spaces," 

Annals of Math. 80 (1964) 542-550. 

[10] W. B. Johnson and M. Zippin, 	"On subspaces of 

quotients of (EGn)n and (EGn)c,"  Israel J. Math. 13 

(1972) 311-316. 	
c p  

[11] J. Lindenstrauss and A. Pelczynski, "Contributions to 

the theory of the classical Banach spaces," Journal of 

Functional Analysis 8 (1971) 225-249. 

[12] J. Lindenstrauss and L. Tzafriri, Classical Banach  

Spaces  I, Springer-Verlag, New York, 1977. 

[13] J. Lindenstrauss and L. Tzafriri, "Classical Banach 

Spaces," Lecture Notes in Mathematics No. 338, 

Springer-Verlag, New York, 1973. 



56 

[14] A. Pelczynski, "Projection in certain Banach spaces," 

Studia Math. 19 (1960) 209-228. 

[15] R. 	S. 	Phillips, 	"On 	linear 	transformations," 

Transactions of the AMS 48 (1940) 516-541. 

[16] H. P. Rosenthal, "On subspaces of LP  (p > 2) spanned 

by sequences of independent random variables," Israel 

J. Math. 8 (1970) 273-303. 

[17] H. L. Royden, Real Analysis, 2nd Ed., MacMillan, New 

York, 1972. 

[18] A. Sobczyck, "Projection of the space m on its 

subspace c 0 ," Bulletin of the AMS 47 (1941) 938-947. 

[19] W. A. Veech, "Short proof of Sobczyck's theorem," 

Proceedings of the AMS 28 (1971) 627-628. 

[20] A. Wilanski, Topology for Analysis, Robert E. Krieger 

Publishing Co., Inc., Florida, 1983. 





8/75-5/83 Instructor of Mathematics 

South Carolina State College 

Orangeburg, South Carolina 

58 

Submitted Papers 

"Range 	Inclusion 	and 	Factorization 	of 
Operators on Classical Banach Spaces" 

Submitted to Proceedings of the American 
Mathematical Society, May, 1988 

Professional Memberships: American Mathematical Society 

References: Will be furnishes upon request. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65



