HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND
IMPLEMENTATION

GIT-CC-02-46
SEPTEMBER 4, 2002
PUN HANG SHIU

ABSTRACT. This report introduces a new theorem and its proof about the problem of deadlock de-
tection. First, we examine how to represent the problem of deadlock with a directed graph. Then,
translation from a directed graph into a matrix is elaborated. The theorem and its proof are based on
this matrix representation. By applying this theorem, we present a novel parallel deadlock detection
algorithm, which we hypothesize has a run-time complexity of Op,, (min(m,n)) in a parallel hardware
implementation, where m, n are the number of processors and resources involved in deadlock detection

respectively.

1. THE DEADLOCK PROBLEM

Deadlock[1] is a system state when processors are waiting for resources held by other processors which,

in turn, are also waiting for some resources held by the previous processors.

Example 1. We have two processors p; and ps. In addition, we have two resources q; and ¢». Processor
p1 is holding a resource ¢; and makes a new request of resource ¢g>. At the same time, another processor
p2 is holding ¢» and makes a new request for resource ¢;. Processor p; needs both resources ¢; and ¢» to
complete its task, thus processor p; will not release resource ¢; unless processor p; obtains the resource
q2- The converse is true for processor ps: p2 needs both resources ¢; and g2 to proceed in its program
before releasing any resource. Therefore, both p; and p, are waiting for a never-released resource from

each other. At the end, neither processor p; nor ps are performing any useful work at all.

The situation of a system being in deadlock is also called a deadlock state[1]. In general, a “pro-
cessor” can be any entity capable of requesting a resource; in this technical report, however, we will
use “processor” to refer to either a standard Von Neumann style processor or to custom VLSI hardware
able to request other hardware (or, in some cases, software) resources. A system in a deadlock state

1

2 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Processor | request | release
| |
Resource | | grant |
|
Time f ! f -
10 tl 12

FIGURE 1. Some Terms

does not perform useful work because processors are blocked from either competing for other resources
or communicating with other processors.

Resources can be classified into two groups. A consumable resource is characterized by (1) no
fixed total number of units (units can be created or destroyed), (2) when the processor finishes using
the acquired resource, the resource ceases to exist, and (3) an unblocked processor of the resource may
release any number of units. These units then become immediately available to requesting processors.
An example of a consumable resource is a message. A reusable resource is characterized by (1)
fixed total inventory (units are neither created nor destroyed) and (2) units are requested and acquired
by processors from a pool of available units. When the processor finishes using the acquired reusable
resource, the resource is returned to the resource pool so that other processors can have a chance to
use the resource. Note that in this technical report, we only consider reusable resources. Therefore, all
further references to “resource” should be read as “reusable resource.” The number of reusable resources
can be classified into two classes. The first class is a multiple-resource system and has resources that
have multiple units per resource type. The second class is a single-resource system and has resources
that have one unit per resource type. This report will focus on a reusable single-resource systems which,
we predict, will be commonly found in future System-on-a-Chip (SoC) designs.

In general, a system assumes the following guidelines when sharing resources among processors: (1)
a processor must request a resource before using it; (2) a processor cannot proceed to use the resource
until the processor’s request is granted; (3) a processor must release the resource when the processor
finishes using the resource; and (4) a processor may request as many resources as it likes as long as the
requests do not exceed the total number of available resources.

From the hardware point of view, all the resources and processors are known to the system. Before
using any resources exclusively, a processor must first ask for permission to obtain exclusive access to
a particular resource. A processor is allowed to access a resource only after permission is given. A

processor can give up the right of exclusive access to a particular resource by releasing the resource. In

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 3

Figure 1, there are three time stamps: t0, t1, and ¢2. The initial request for a resource begins at time
t0. The resource is first granted at time ¢1. The moment of giving up exclusive access to the resource is
time ¢2. The period from t0 to t1 is called request. The period from ¢1 to ¢2 is called grant of usage or
grant.

From an Operating System (OS) point of view, request is an OS kernel routine, which enables
processors to obtain shared resources. Also, the OS can keep track of availabilities of resources. Following
the previously stated guidelines, a processor requests a resource and the OS schedules the resource to be
given to the processor. When a processor requests a busy resource, the processor is constantly waiting
for the busy resource to be assigned to the processor. During this time, the processor is unable to execute
important task(s) which require the resource in order to be executed. During such a waiting period, we
say that the processor is blocked. On the other hand, if the requested resource is available, a grant
routine is called to update the resource allocation data structure internal to the operating system. Once
the grant routine is completed, the processor can execute tasks requiring the obtained resource. Another

OS kernel routine is release; release explicitly terminates the exclusive access of a shared resource.

1.1. Motivation.

In a System-on-a-Chip (SoC), there may be several processors or processing elements on a single
chip. Besides processing elements, there are also a lot of hardware units for various functions, such as
telecommunication functions, image processing, and special hardware accelerators. deadlock detection in
hardware will also enhance hardware/software debugging. Each processing element can have a different
policy of using resources to meet a specific requirement.

Development of a real-time System-on-a-Chip (SoC) demands a deterministic and fast Real-Time
Operating System (RTOS), which provides services and manages resources between software and hard-
ware. However, the algorithms implementing RTOS services may be non-deterministic or may have long
execution times. Since the RTOS also competes for the shared CPU on which the RTOS executes, RTOS
services may be even less deterministic. For real-time systems, optimization beyond assembly code is
desired, such as a custom hardware unit similar to FASTCHART|[8]. Therefore, implementing deadlock
detection in hardware can provide a better alternative which not only reduces the load of a shared CPU

but also improves determinism of the overall SoC system.

4 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Furthermore, moving deadlock detection out of the RTOS and into custom hardware gives more
bandwidth to the rest of the RTOS services, allowing the RTOS to handle more services with faster run
time, more concurrency, and better utilization of the underlying SoC.

Note that in the previous section we could have discussed a specific task on each processor which
requests the resource(s); however, given our target architecture, we focus on a coarse level of granularity
where we represent the request as coming from the processor, even though a specific task or set of tasks

on the processor requires the resource(s).

1.2. Organization.

This report is organized as follows. A graph model applicable to deadlock detection is introduced in
Section 2. Deadlock definition and properties are discussed in Section 3. A theorem and novel algorithm
for parallel deadlock detection is presented in Section 4. Finally, this report is closed with an conclusion

in Section 5.

2. GRAPH MODELS

Before proceeding further to apply graph theory to a deadlock problem, basic terms are introduced

next and then some properties are pointed out.

2.1. Definitions of the Resource Allocation Graph.

Definition 1. Let P = {p1,pa,.-.,Pm} be a set of m requesters or processors which may request and/or

hold a number of resources at any time.

If a processor needs to use a resource, the processor has to make a request first. Once a request is

acknowledged by a grant, the processor can then safely use the resource exclusively.

Definition 2. Let Q = {q1,q2,.--,qn} be a set of n resources which provide a specific functions usable

by the processors. Each resource q; can serve only one processor at any given time.

Processors can obtain resources dynamically. Such an interaction between a processor and a resource
is carried out by requests (Definition 3), grants (Definition 4), and release routines, which are denoted

by various types of edges (except the releases, which only remove grant edges.).

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 5

Definition 3. Let R be the set of request edges. Let an ordered pair (p;,q;) be a request edge, where the
first node is a processor p; € P and the second node is a resource q; € Q. Thus a set of request edges R
can be written as follows:

R={(pi,g)lli € {1,2,3,...,m},j € {1,2,3,...,n}, and processor p; is requesting resource ¢;}.

An ordered pair (p;,q;) can also be represented by p; — q;, where the arrow represents a request edge.
Another notation for a request edge is r;;, where the first index represents the processor p; and the second

index represents the resource g;.

These three notations are used to facilitate interpretation. Notation (p;,g;) is used in a graph or
set expression. Notation p; — ¢; is used in diagrams illustrations. and square represents p; and g;
respectively. Notation r;; is used in a table or matrix, where the subindex ij is implicitly understood as

determined by the location of r in row ¢ and column j.

Example 2. Consider Figure 2. Processor p, makes one request of resource ¢;. This request is rep-
resented by an edge (p2,¢1) in set R, arrow p; — ¢ shown in the graph of Figure 2, and r2; in the
matrix on the right hand side of Figure 2. Note that r2; is the r located in row 2, column 1. Processor
p1 makes one request of resource gz. Such request is represented by an edge (p1,q3) in set R and by r
in row 1, column 3 of the matrix. Processor ps makes two requests of resource ¢; and ¢». Such requests
are represented by two edges (p3,q1) and (ps, ¢2) in the request set R, arrows in the graph of Figure 2,

and r entries in the matrix of Figure 2. The final resulting request set R is also shown in Figure 2.

R={(p;; q); q,19,]4,
(Py 9y p, r
(P39, AR
(p2’ ql)} q3 p3 rlor

Ficure 2. Example of Request

Definition 4. Let G be a set of grant edges. Let an ordered pair (q;,p;) be a grant edge, where the
first node is a resource and the second node is a processor. Thus a set of grant edges G can be written

as G = {(g;,pi), such that i € {1,2,3,...,m} and j € {1,2,3,...,n}}. An ordered pair (g;,p;) can

6 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

also be represented by a p; — q;, where the harpoon “—” represents a grant edge. Another notation
) j

is gij, where the first index represents the processor p; and the second index represents the resource g;.

G={(gjpi) | a€ QApE PA(p,q) ¢ R}

Several notations are used to facilitate interpretation. Notation (g;, p;) is used in graph or set expres-
sion. Notation p; «— g; is used in diagrams or figures illustration. Notation g;; is used in a table or a

matrix.

R={(p;. q))}

G={ (q27 p])7 q2 p] 8
(qp pz)’ q] pZ 8
gy py)} 9, Plr g

FI1GURE 3. Example of Grant and Request edges

Example 3. Consider Figure 3. Resource ¢; is granted to processor p,. This case is represented by
(q1,p2) in set G or go1 in the matrix (i.e., entry g in row 2, column 1 of the matrix in Figure 3). Resource
g2 is granted to processor p;; this grant is represented by (g2, p1) in set G, a harpoon arrow in the graph
of Figure 3, and g in row 1, column 2 of the matrix in Figure 3. Resource ¢3 is granted to processor
p3. Resource ¢ is currently granted to processor ps, thus processor ps has to wait for resource ¢; to
be free. Such grant and request edges are represented by two edges (¢3,p3) and (ps,q1) in the grant
set G and request set R respectively. Therefore, the request set R contains {(ps,q:1)} and the grant

set G contains {(g2,p1), (¢1,p2), (g3,p3)}. The union of the request edge set and the grant edge set is

{(p3,q1), (g2,p1), (q1,Pp2), (q1,p3)}-

Definition 5. If a grant edge ceases to exist in a graph, that we say that the grant edge is released.

Example 4. In this example, we start with the system state shown in Figure 3. Processor ps releases
resource ¢; which is immediately granted to processor ps, as shown in Figure 4. The release of resource ¢;
is represented by the removal (“release”) of grant edge (g1, p2) and the removal of g2; from the matrix of
Figure 4. Furthermore, processor p; releases resource ¢o, which is now available to serve other processors.

Thus grant edge (g2, p1) is removed (“released”) from the grant set G. Processor p; at the same time

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 7

makes a new request of resource g;, which is being used by processor p3 exclusively, and thus processor
p1 has to wait for resource g; to be available. Overall, this case is represented by replacing a request
edge (p3,q1) by a grant edge (g1, p3), by adding a request edge (p1,¢1), and by eliminating (“releasing”)
two edges. Note that “release” in the middle diagram of Figure 4 represents a release of a resource by a

processor.

R={(p, q,)} \ DIRCIRE
q

G=1(q, p) |
(q3’ p3)} & q pj’ 8 8

X
9
@) ?

FI1GURE 4. Example of Release, Grant, and Request Edges

Definition 6. A given system with processors and resources can be abstracted by a Resource Allocation
Graph (RAG). A RAG is a directed graph v = {V, E}, such that V is a non-empty set of nodes and E
is a set of ordered pairs or edges[10]. Note that the edge set E maybe empty. Using Definitions 1-5, a
RAG can be described as a bipartite graph v = {V,E}, where V. = {PUQ} and E = {RUG}. The set
V', the set of nodes in the RAG, can be divided into two disjoint subsets P and @ such that PN Q =,
where the processor subset is represented by P = {p1,p2,D03, - ,Pm} (Definition 8) and the resource
subset is represented by Q = {q1,92,43, - ,qn} (Definition 4). Therefore, graph ~y is bipartite. The
set E, the set of directed edges in the RAG, can be divided into two disjoint subsets R and G such that
RNG = 0, where the request subset is represented by R = {(pi,q;) | 1 <i <m,1 < j <n} and the grant
subset is represented by G = {(g;,p;) | 1 <i <m,1 < j<n}. The total number of nodes V in a system

v; 18 V = P+ Q = m + n, where the subindex i represents a particular set V of a RAG ~.

Definition 7. The edge set E is equal to RUG. An edge is represented by (v;,v;) such that v;,v; € V
and either v; € P and vj € Q, or v; € Q and v; € P. An edge (v;,v;) denotes a request edge ri; if the
first node v; is a processor node; e.g., (pi,q;) = rij. On the other hand, an edge (v;,v;) denotes a grant

edge g;; if the first node is a resource node; e.g., (¢;,p;) = gij-

In the figures in this report, a circle represents a processor, while a square represents a resource.

Hence, a group of circles forms a set P of processors and a group of boxes forms a set () of resources.

8 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Furthermore, as stated earlier, in the figures of this report, an arrow “—” represents a request edge

while a harpoon “~” (or “—”) represents a grant edge.

Definition 8. Given RAG 7, let function E(v) be defined as the set of edges E of RAG ~y. Note that,
from Definition 6, we know that E = {RUG}. The function R(7) is defined as the set of request edges R
of RAG ~. Similarly, the function G(v) is defined as the set of grant edges G of a RAG ~y. Let function
V(v) be defined as the set of nodes V.= {PUQ} of RAG «y. The function P(v) is defined as a set of
processors P of RAG ~y. The function Q() is defined as a set of resources Q of RAG .

Example 5. Let the RAG in Figure 4 having three processors and three resources be system ;. The
function E(v;) gives a set of edges {(p1,¢1), (¢1,p3), (¢3,p3)}. The function R(v;) gives a set of request
edges {(p1,¢1)}. The function G(v;) gives a set of grant edges {(p1,q1), (g3,p3)}. The function V (v;;)
gives a set of nodes {p1,p2,P3,41,92,93}. The function P(vy;;) gives a set of processor nodes {p1,p2,ps3}.

The function Q(v;;) gives a set of resource nodes {g1,¢2,q3}-

Definition 9. Flirst of all, note that for a given (fabricated) SoC or Printed Circuit Board (PCB), the
processors and resources are already decided upon and do not change. Therefore, a particular system
~vi = {V,E} representing this SoC or PCB will never change its set V of vertices (processors and
resources). We define ij, ,Yijo,Vijs, - -- to be different instances or states of the same SoC or PCB
(same set V). Note that the edge set E(v;;) is different for each j € {1,2,3,...}. Since the node set
V = {PUQ} is constant for a given system ~y;, the edge set E has enough information to represent a
current state v;;, defined by the function E(v;j) of a state v;; of a given system -y;, where the second
subindex j represents a particular set of E of a system ;. Thus a particular state 7;; is uniquely defined
relative to y; by E(vi;) = {RUG}. A system -y; changes from one state vy;; to another state vy;, when

handling requests, grants, and releases of resources[9).

Example 6. In Figure 5, a given system +; in a particular system state ;; is shown. V = {PUQ} is
the set of nodes and E = {RU G} is the set of edges in 7;;. A circle in Figure 5 represents a processor,
while a box represents a resource. The set P of processors are shown by three circle nodes, which
are {p1,p2,p3}. The set @ of resources are shown by three box nodes, which are {q1,¢2,¢3}. The set

E = {R,G} of edges has two disjunct sets. The set R = {(p1,42), (p2,q3)} of edges are requests shown

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 9

FI1GURE 5. An Example of RAG in Bipartite Graph.

by arrows from set P to set). The set G = {(q1,p2), (¢3,p3)} of edges are grants shown by harpoons

pointing from set @ to set P.

A SoC or PCB system is represented by a bipartite graph 7. A system +; defines a fixed set P of
processors and a fixed set @) of resources, while a system state 7;; represents the current actions (a set
of requests R and a set of grants G).

An adjacency matrix M;; is another representation of system state 7;;. The dimension of matrix M;
is m x n, m rows and n columns respectively. The set P of processors is mapped to the rows of matrix
M. And the set Q of resources is mapped to the column of matrix M. In other words, the st* row
of matrix M represents all the edges (requests from or grants to) belonged to processor p,. Similarly,
The t** column of matrix M represents all the edges (requests to or grants from) belonged to resource
q;- Each entry mg (at st row and t** column) in the matrix can be either request 74, grant gs, and
available (as empty or release). For clarity in the matrix M;;, rs; is written as r in the row s and column
t. Similarly, it is the same for gs. If there is a grant edge (g, ps) € G, there is a gs(or g at row s and
column ¢ in matrix M;;). If there is a request edge (ps,q:) € R, there is a rg (or r at row s and column

t in the matrix M;;).

Definition 10. This definition aims to define matrices which correspond to graph v, system ~y;, and
state ;5. A RAG matrix M represents an arbitrary system with processors and resources. A system
matriz M; is defined as a matriz representation of system +; where the rows (fized in size) of matriz M;
represent the fized set P of processor nodes of v;, and the columns (fized in size) of matriz M; represent
the fized set () of resource nodes of ;. A state matriz My; represents to a system state v;;. Edges in

system state vy;; are mapped into the array elements using the following rule:

Given E = {RUG} from ~;j,

10 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

for all rows 0 < s <m, and for all columns 0 <t <mn:
mst = rs (v for clarity), if there exists a request edge (ps,q:) € R
mst = gst (9 for clarity), if there exists a grant edge (g, ps) € G

mg = 0g¢ (blank for clarity), otherwise

Example 7. Example 4 shows an equivalent state matrix (on the right hand side of Figure 4) of the
system state ;; described in Example 4. The system state v;; and state matrix M;; corresponding to
Example 4 are shown below in Figure 6. The request (p1,¢1) from +;; is represented by mi; = ri; =rin
the top left entry of the matrix as shown in Figure 6. Similarly, the grant (g3, ps) from ~;; is represented

by mg3 = g33 = g in M;; as shown in Figure 6.

M‘j ql qZ q3
P, \m=rim=0\m=0

11 12 13
qZ
q] P, m=0\m;s0|mz=0
% D; \m=g\m-o0\m=
3 31 32 33 8
(a) system state graph (b) system state matrix M;;
Vij

FIGURE 6. Example of a system state graph ;; and the corresponding system state
matrix M”

Definition 11. We owverload the equality operator “=” in this technical report as follows: whenever an

expression M;; = vy;; is seen, this means that matriz M;; is created from -;; using Definition 10.

In summary, in this technical report, we use notation as follows. A RAG +, as defined in Definition 6,
represents a RAG, a directed bipartite graph with a set of nodes V' and a set of edges E. A system ~;
represents a particular system, where the node set V' = { P, Q} represents the system and does not change.
A state ;; represents a particular instance of interactions (requests and grants) between processors and
resources of a given system ;. Such interaction is captured in the edge set F = {RU G} which is used

to represent formally the state ;; of a given system ;.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 11

2.2. Definitions of Types of Deadlock or Near-Deadlock States.
Note that for some state 7;;, it may be possible to fulfill all requests in any arbitrary order without
ever entering into a deadlock, and all requests are fulfilled in a timely fashion. Such states {v;;} are

called secure.

Definition 12. For a particular system v;, T¥ = {7ij,, Yijo>Vijas- - -} 15 @ set of states, possibly empty,

such that all states in T* are secure.

Now, consider the case where there exists at least one request which is never fulfilled or is fulfilled so
seldomly that the processor requesting the resource(s) is unable to perform its tasks in a timely fashion.

Such a case does not lead to deadlock but is not a secure case either. This case is called starvation.

Definition 13. For a given system v;, we define I as to be a set of states {Yij,, Vija» Vijas-- -} POSSibly

empty, such that all states in T" are starvation states.

In this report, we refer to a sequence of resource allocations via requests and grants as a resource
scheduling. Now, consider a set of states IV where there exists at least one resource scheduling that

keeps a system out of deadlock. This case is called safe.

Definition 14. For a given system -y;, we define IV to be a set of states {Vij,,Vij»Vijss - - -}, NON-emMpty,

such that all states in T7 are safe states.

Note that all secure and starvation states are, by definition, safe states. More formally, I'* C TV and

I'" C TY. Some authors also refer to safe states as reducible[1].

U safe | semi DL r

: deadlock r”
(rh starvation) | (total DL r¢)
(rk secure)

FIGURE 7. Sets of System States I'*, '/, T'*, ', I'®, T'°.

Now, consider the case where a system will enter a deadlocked state regardless of in which order

requests are granted due to new requests in the near future. Note that the system may or may not

12 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

currently be deadlocked. This case is called semi-deadlock. Some authors also refer to semi-deadlock
states as “non-safe”[1]. Clearly, absent knowledge of the future requests, it is not possible to detect if a

system is in a semi-deadlock state.

Definition 15. For a given system vy;, we define I'* to be a set of states {7ij,,Yijo,Vijs,-- -}, POssibly

empty, such that all states in I'® are semi-deadlock states.

Now, consider the case where there are some processors and resources deadlocked. There may also

be some other processors or resources not part of the deadlock. This case is called deadlock.

Definition 16. For a given system v;, we define T® to be a set of states {Yij,, Yijs»Vijss- - -}, POSSibly

empty, such that all states in T'* are deadlock states.

Now, consider the case where all processors and resources are deadlocked. This case is called total-

deadlock.

Definition 17. For a given system +;, we define I'° to be a set of states {7ij,,Yijo:Vijs,-- -}, POssibly

empty, such that all states in I'° are total deadlock states.

Using Definitions 15, 16, and 17, note that ¢ C T® C I'*. We say that a state v;; is unsafe if state ;;
is in one of the semi-deadlock states I'* — note that, by definition, state v;; could possibly also be in T'®
or I'¢ as well. is a critical difference between deadlock and starvation. In a deadlock state, a processor
waits for resources held by other processor(s) that will never be released, while in a starvation state,
at least one processor never obtains enough to execute even though the resources periodically become
available (only to be snatched up by other processors first).

The set I' contains the union of the set of safe states and the set of semi-deadlock states. More

formally, T = TJ U T,

Example 8. Consider system ; as shown in Figure 8. In state -;;,, processor ps requests resource
g1, while at the same time p, is using resource g3 which has been granted to p,. State ;;, is defined
uniquely by P = {p1,p2,p3}, @ = {q1,¢2,93}, and the edge set E = {(ps3,q1), (¢3,p2)}. Now consider
what happens if processor p; requests resource go, resource ¢ is granted to processor ps, and ps releases
resource g3. The resulting state ;;, is represented by the edge set E = {(p1,¢2), (¢1,p3)} and is shown

in Figure 8(c).

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 13

pI requests q2

q2 q2
q, q, granted p, q,
i 12 releases 4 %
(a) State 7j4, (b) Actions (c) State 7ji,

FIGURE 8. Relationship between a State ;; (RAG) and edges E.

Now, let us put the previous definitions together and see the complexity of the deadlock detection

problem as shown in Table 1 and Figure 9 for a system -, with two processors and two resources.

Definition 18. Note that at any point in time a processor may request or release a resource. Further-
more, at any point in time, an outstanding request for a resource may be granted. We refer to any such
request, release, or grant as an action. Each action is associated with a time-stamp, which captures
the relative timing among actions. Thus, the timing of a sequence of actions can be represented concisely

by the sequence of time-stamps.

Example 9. Consider a system -~y with two processors {p1,p2} and two resources {gi,¢2}. At some
point in time, each processor requires both resources at the same time to perform certain tasks. In this
system, each processor performs the actions shown in Table 1 at the time-stamps shown in Table 1.
The processor p; will go from time-stamp so (p; has no action) to s;(an action that p; requests g)
and then from time-stamp s; to time-stamp ss(an action that ¢; is granted to p;). Finally, in our
example, processor p; goes from time-stamp s4(an action that ¢s is granted to p;) to time-stamp s5(no
action, but p; is holding ¢;). When the processor p; reaches time-stamp ss, the processor p; will go
back to time-stamp sg and will repeat the previous sequence of time-stamps. The processor ps will go
from time-stamp to(p2 has no action) to time-stamp t;(an action that ps requests ¢») and then from
time-stamp #; to time-stamp #2(an action that g is granted to p2). Finally, in our example, processor ps
goes from time-stamp ¢4 (an action that g is granted to p2) to time-stamp t¢5(no action but ps is holding
g2)- When the processor ps reaches time-stamp t5, the processor py will go back to time-stamp ¢y and

will repeat the previous sequence of time-stamps.

14 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

multicolumn2cActions of p; Actions of py
Time-Stamp Action Time-Stamp Action
So no action to no action
S1 request ¢; t1 request g2
So grant gp to grant go
S3 request g t3 request q1
S4 grant go ta grant g
release ¢ release ¢;
S5 no action ts no action
release ¢1 release ¢

TABLE 1. Action Sequence for Processors p; and ps

In Figure 9, both left and right horizontal arrows are action transitions due to actions by p;. Further-
more, in Figure 9, both up and down vertical arrows are action transitions due to actions by p». In state
~Ye2o in Figure 9, processor p; is at time-stamp s3: py is holding ¢; while requesting ¢o. At the same time,
in state k20 processor po is at time-stamp t3: po is holding ¢, while requesting ¢;. Clearly, processors
p1 and p, are deadlocked in state 29, which is also a total deadlock state in this system -, because all
the processors and resources are involved. States Y14, Ye19 and e15 are semi-deadlock states because
p2 and p; are going to deadlock in the future (given the known and unchanging execution patterns or
action sequences we have described for p; and p», we can prove that the system will definitely enter total
deadlock state 20). Although there are no secure states in Figure 9, there are safe states: namely, the

twenty-three states which are not total deadlock states (yg29) nor semi-deadlock states (Ve14, Vi15 and

'Yk:lg)-

In this report, we assume no knowledge about future execution patterns resulting in future requests
and grants. Therefore, we are unable to detect semi-deadlock states. However, we can detect any any
deadlock or total deadlock state. Similarly, we do not detect starvation states (note that starvation is
typically due to a poor resource scheduling policy which can possibly be changed to avoid starvation).

The scope of this report is limited to the fast detection of deadlock and total deadlock states.

2.3. Definitions and Properties of Various Edges.
This section further refines various relationships among edges. Such relationships of edges give the
properties and definition of a deadlock. In other words, a particular set of edges corresponds to a

particular system state, in which we would like to detect if there is a deadlocked scenario or not.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 15

FIGURE 9. System States of Table 1

Definition 19. The out-degree of a node v is the number of directed edges going to other nodes from

node v.

Definition 20. The in-degree of a node v is the number of directed edges coming in to node v from

other nodes.

Definition 21. The degree of node v is the total number of directed edges connected to node v. Note
that the sum of the out-degree of node v and the in-degree of node v equals the degree of node v. More

formally, degree(v)=out-degree(v) + in-degree(v).

Definition 22. A isolated node v, is a node that does not have any in-coming edges nor any out-going

edges; more formally, node v, is isolated if both EN{(v,v,) |v € V} =0 and EN (ve,v) |[v €V =0.

In other words, the number of edges of a isolated node is zero because the in-degree is zero and

out-degree is zero.

Definition 23. Given a RAG in state v;; (see Definition 9), let €(7y;;) be a function which returns a set
{Ve1,Veqs - .-, Ve, } of isolated vertices. Furthermore, let ¥¢ = {ve,,Ve,,-..,Vc, }. Note that it is possible

for X, to be empty, i.e., it may be the case that ¥, = (.

16 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Recall that a node in a RAG can be either a processor or a resource (Definition 6). If a processor
does not request nor hold any resource, that processor is said to be an isolated processor. Obviously,
an isolated processor cannot participate in any deadlock states. A resource is said to be isolated when
that resource is not requested nor held by any processor. Such isolated nodes need not be considered by
a deadlock detection algorithm. The advantage of identifying any isolated node(s) is that the problem

space can be shrunk by ignoring the isolated node(s).

Definition 24. If a node is not isolated, it is called non-isolated. The set of non-isolated node is

V-3

When a resource is being requested by a processor, that resource and the processor are said to be non-
isolated, because there is an action (interaction) between the processor and the resource. Specifically,

the processor has an outgoing edge, while the resource has an incoming edge.

Example 10. Consider the left hand side of Figure 10. Processor p; is not requesting nor holding any
resource, thus processor p; is an isolated processor node. Similarly, resource g3 is not being requested
nor held by any processor, thus resource g3 is an isolated resource node. It is easy to identify any isolated
node by checking either column j (for resource g;) or row i (for processor p;). On the right hand side
of Figure 10, row 1 (for processor p;) is empty; thus, processor p; is an isolated processor node. Again,
consider the matrix on the right hand side of Figure 10: column 3 (for resource g¢3) is empty and thus
resource g3 is an isolated node. Nodes p2, p3, g1, and g2 are non-isolated nodes, because there are edges
connected to or from each of these nodes. A non-isolated node is also easy to identify using the matrix:

when a row or column is not empty, the corresponding processor or resource is non-isolated.

q] qZ q3
q, P,
9 Blrls
q, P, s

®)

FI1GUuRE 10. Isolated and non-isolated nodes

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 17

Definition 25. A node v, is a sink node if node v, both does not have any out going edges (out-
degree(v,) = 0) and does have at least one incoming edge (in-degree(vy) > 1). More formally, v, is a

sink node if both EN {(ve,v) |[v €V} =0 and EN{(v,v,) |v €V} |>1.

Definition 26. Given a RAG in state v;; (see Definition 9), let a(v;;) be a function which returns a set
{Va1sVass---,Va, } Of sink vertices. Furthermore, let ¥o = {Vq,,Vaq,---,Va, }- Note that it is possible
for By to be empty, i.e., it may be the case that X, = 0. X,,; is used to denote the set of sink nodes in

state ;.

Definition 27. Given a RAG in state v;; and a set a(v;;) of sink vertices, let E,,; be the set of edges
connected to sink vertices vo € a(vi;). In other words, Ey;; = {(vs,vy) such that v, € a(vij)} — the tail

of the edge is the sink vertex. (Recall that edge (vy,vy) was defined by Definition 7.)

9,[%,]4,
q2 bl
1 Plsg|s
7, qj, Py r

FI1GURE 11. Sink nodes and edges

Example 11. Let the left hand side of Figure 11 define state +;;. Processor p» is a sink processor
node (p2 € a(vij) = Za,,;) with two grant edges: (g2,p2) and (g1,p2) both elements of E,, . Grant
edges {(g2,p2), (¢1,p2)} can be called sink edges with respect to the processor p2. Resource g3 is a sink
resource node (g3 € a(7;;)) with one request edge (ps, g3) which is in the set E,,;. Request edge (ps3,q3)
can be called a sink edge with respect to resource g3. One can easily identify a sink node using the
matrix on the right hand side of Figure 11. If a row 4 for processor p; contains only grant edges, then
the processor p; is a sink node and all the corresponding edges in that row ¢ are called sink edges with
respect to processor p;. If a column j for resource g; contains only one grant edge, then the resource g;

is a source node and the corresponding edge is called a source edge with respect to resource g;.

18 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Definition 28. A node vg is a source node if vg both has at least one outgoing edge (out-degree(vg) > 1)
and does not have any incoming edges (in-degree(vg) = 0). More formally, vg is a source node if both

En{(v,v3) |[veV} =0 and EN{(vg,v) |veV}|>1

Definition 29. Given a RAG in state y;; (see Definition 9), let B(v;;) be a function which returns a set
{v8,,V8,,---,v8,} of source vertices. Furthermore, let ¥ = {vg,,vg,,...,vg,}. Note that it is possible
for X to be empty, i.e., it may be the case that X3 = 0. g, is used to denote the set of source nodes

n state ;.

Definition 30. Given a RAG in state y;; and a set §(7;) of source vertices, let Eg,; be the set of edges
connected to source vertices vz € [(vij). In other words, Eg,; = {(vs,vy) such that v, € B(vi;)} — the

head of the edge is the source vertex.

Let us apply the sink and source definitions to an SoC scenario. A processor is a sink processor when
the processor only has grant edges. Alternatively, a resource is a sink resource when the resource only
has request edges. On the other hand, a processor is a source processor when the processor only has
request edges. A resource is a source resource when the resource only has one edge, a grant edge. In
such situations, sink or source processors or resources do not satisfy the four necessary conditions for

deadlock to occur[1].

/ @ q] q2 q3
q2 p] r r
9 P g
q, D[s

FI1GURE 12. Source Nodes and Edges

Example 12. Let the RAG on the left of Figure 12 define +y;;. Processor p; is a source processor node
(m € B(vi;) = Zp,;;) because p; has not been granted any resources and is making two requests: one
request is for resource g1 and the other request is for resource g». The request edges are (p1,g2) = 712
and (p1,q1) = ri1- We find that 715 € Eg,; and r1; € Eg,;. Resource g3 is a source resource node

(g3 € B(7i)) because g3 has only one edge: a grant edge (g3, p2) pointing to processor p. Grant edge

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 19

(g3,p2) = g32 is an element of Eg,. Using Definition 25, resources ¢ and q; are both sink resource

nodes because they only have incoming edges.
Definition 31. A node v, is a terminal node, if node v, is either a sink or a source node.

Definition 32. Given a RAG in state v;; (see Definition 9), let T(7v;;) be a function which returns a set
{vr1,Vry, ..., 05, } of terminal vertices. Furthermore, let ¥ = {v7,,Vr,,...,vs,}. Note that it is possible
for X, to be empty, i.e., it may be the case that L, = (. Also note that £, = X, U Xg. Finally, ¥, 8

used to denote the set of terminal nodes in state v;;.

Definition 33. Given a RAG in state ;; and a set 7(7;;) of terminal vertices, let E,; be the set of
edges connected to terminal vertices v; € T(v;;). In other words, E;,; = {(vy,vy)} such that either

vy € T(vij) or vy € T(vij) (or both).

Example 13. In Figure 12, let the RAG shown define ;;. The node p; in Figure 12 is a terminal node
because p; is a source node (p1 € B(7i;) and p1 € 7(i;)). The node ¢ is a terminal node because ¢; is

a sink node (g1 € a(v;) and g1 € 7(vi;)). The set of terminal nodes X, is {p1,p2,p3,q1, 42,93}

Now let the RAG in Figure 10 define -;;. In this case, the node p, is not a terminal node because it is
neither a sink nor a source node. Processor p; and resource g3 are not terminal nodes because they are

isolated nodes. The set of terminal nodes in Figure 10 is X, is {p3,q1,¢2}

Definition 34. A link node vy is a node that has exactly one in-coming edge and one out-going edge,
such that ||[E N {(v,vy) |v € V}|| =1 and ||[E N {(vx,v) | v € V}|| = 1. Clearly, the number of edges of

a link node is two (degree(vy) = 2).

Definition 35. Given a RAG in state v;; (see Definition 9), let A(vij) be a function which returns a
set {Uxn,,Uxny, ..., VN, } Of link vertices. Furthermore, let ¥\ = {vx,,vx,,...,vx, }. Note that it is possible

for Xy to be empty, i.e., it may be the case that Xy = 0.

Definition 36. Given a RAG in state v;; and a set X(vi;) of link vertices, let Ey,; be the set of edges
connected to link vertices vy € A(7ij). In other words, Ey;; = {(vz,vy)} such that either v, € A(vi;) or

vy € A(7ij) (or both).

A resource is said to be a link resource when that resource is being used by one processor and at the

same time is being requested by another processor. The concept of a link resource can also be applied

20 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

to a processor. When a processor is holding a resource and at the same time requesting an additional

resource, that processor is said to be link processor.

\ 119, 4;
q, AR

|

q3 P ¢

FIGURE 13. Link Nodes and Edges

Example 14. Let the system state shown in Figure 13 be ;;. Processor ps is a link processor node
(p2 € A(7ij)) because p, is involved in both a request (ps,q2) and a grant (gs,p»). With respect to
processor ps, edges (ps, ¢2) and (g3, p2) are link edges. Resource g; is also another link node (link resource
node) because there are a request edge from processor p; and a grant edge to ps. Processor p; is not a
link processor node: instead, p; is a source processor node. Similarly, processor ps is not a link processor
node but instead is a sink processor node. Edges (p1,¢1) and (g1, p3) are called link edges with respect to
resource ¢;. The result is as follows: A(vi;) = {p2,q1} and Ey,; = {(p2,2), (g3,P2), (p1,q1), (q1,p3)} =
{ra2, 932,711,913}

It is easy to identify link nodes using the matrix in Figure 13. For processor ps, row 2 contains requests
rog and grants go3, therefore, py is a link node. For resource ¢;, column 4 contains request r1; and grant

gs1; therefore, ¢; is a link node. Resource ¢, is a sink node. Similarly, resource ¢3 a sink node.

Definition 37. A branch node v, has one or more incoming edges and one or more outgoing edges,
such that the total number of edges is greater than or equal to three. More formally, three conditions
must hold for v, to be a branch node: (1) the in-degree of v, must be one or more (in-degree(v,,) > 1);
(2) the out-degree of v, must be one or more (out-degree(v,) > 1); and (8) the degree of v, must be

three or more (degree(v,) > 3).

Definition 38. Given a RAG in state v;; (see Definition 9), let w(vi;) be a function which returns a set
{Vw1sVuss-- -, V0, } Of branch vertices. Furthermore, let X, = {Vu,,Vuy, .- -,Vw, }. Note that it is possible

for ¥, to be empty, i.e., it may be the case that ¥, = 0.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 21

Definition 39. Given a RAG in state v;; and a set w(vi;) of branch vertices, let E,,,; be the set of edges
connected to branch vertices v, € w(vij). In other words, E,,; = {(vz,vy)} such that either v, € w(vi;)

or vy € w(v;;) (or both).

The difference between a branch node and a link node is that while a branch node must have three
or more edges, a link node must have only two edges. A resource is said to be a branch resource if the
resource is held by one processor and is being requested by two or more processors. A processor is said
to be a branch processor if the processor either holds one or more resources while requesting two or

more additional resources, or if the processor holds two or more resources while requesting one or more

@
(7) 19|95
bl

C]] pzrrg
/

9 B

resources.

Np)

.

FiGURE 14. Branch Nodes and Edges

Example 15. Let the system state shown in Figure 14 be v;;. Processor ps is a branch node because
the number of edges to and from p, is greater than two and there is at least one request edge and at
least one grant edge. Similarly, resource ¢ is also a branch node. The edges connected to a branch node
are called branch edges with respect to the branch node. Thus, {(p2, ¢2), (g3,p2), (p2,q1)} are branch
edges with respect to branch processor node ps, and {(p2,q1), (¢1,3), (P1,¢1)} are branch edges with
respect to branch resource node ¢;. We end up with the following for this example: w(vy;;) = {p2,¢1}
and E,,;; = E(v;;) (since all edges connect to the two branch nodes).

It is also easy to identify a branch node by examining the matrix on the right hand side of Figure 14.
A processor p; is a branch node if row ¢ has three or more entries with at least one r and one g entry.
Similarly, a resource g; is a branch node if the column j has three or more entries with at least one r

entry and one g entry.

Definition 40. A node v4 is a connect node if node vy is either a link node or a branch node.

22 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Definition 41. Given a RAG in state v;; (see Definition 9), let ¢(vi;) be a function which returns a set
{V¢15Vgs5--+,Vg,} of connect vertices. Furthermore, let Xy = {vg,,Vgs,---,Vg, }. Note that it is possible

for L4 to be empty, i.e., it may be the case that Ty = (.

Definition 42. A path (vi,vs,v3,...,05_1,Vk), k > 2, is a consecutive ordered sequence of alternating
request and grant edges (vi,vs), (v2,v3), ..., (Vk_1,vk) where every node in the path is distinct and
where every other node belongs to the same set. In other words, every odd node along a path belongs to

one node set of V' (either P or Q) and every even node along the same path belongs to the other node

set of V.
The “,” between two nodes can represent either a request edge or a grant edge. The “” represents
a request edge if the previous node is a processor node, while the “” represents a grant edge if the

previous node is a resource node. To explicitly illustrate the action (interaction) between nodes, the
arrow (request) and harpoon (grant) symbols can be used instead of the comma “”. Thus, a path
v] = Vs — w3 — --- — vE_1; — Vi can be another representation of a path (vy,vs,vs,..., vk 1,Vk)
where node v; is a processor node in set P. Similarly, path v; — vy = v3 = -+ — v;_1 — v, can be

used to represent a path (vi,v2,vs,...,Vk_1,V;) where node vy is a resource node in set Q.

Example 16. In Figure 5, resource ¢ is granted to processor ps. At the same time, processor p, requests
resource g3, which is granted to processor ps3. Thus, Figure 5 has the path (q1,p2, g3, p3). Resource ¢ is

a source node and processor ps3 is a sink node. The processor p; and resource q3 are link nodes in this

path. In short, the paths in Figure 5 are (qi,p2,¢3,p3), (¢1,P2,43), (P2,43,D3), (q1,D2), (P2,43), (q3,D3)

and (pl; QQ)

Definition 43. A simple path is a path (v;,viy1,-..,vr) such that both v; and vy are terminal nodes
and all other nodes are link nodes. Formally, a path (vi,viy1,...,vx) is simple if both v;,vx, € X, and
Vigly+--, V-1 € Y.

Definition 44. A dangling path is o path (v;,Vit1,...,v;) such that either v; is a terminal node and
vj is a branch node, or v; is a branch node and v; is a terminal node. Formally, a path (vi,vit1,...,v;)

is dangling if either (v; € ;) A (v; € Bg) or (v; €) A (v; € £;). In short, a dangling path either

begins with o terminal node and ends with a branch node, or vice versa.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 23

8
f§ q @ pzrrg

FI1GURE 15. Nodes and Edges of Dangling and Simple Paths.

Example 17. Consider Figure 15. Processor ps is a branch node, while resources g and ¢4 are link

nodes. Resources ¢; and ¢3 and processors p1, ps, and p4 are terminal nodes. There are three dangling

paths: (g3,p2), (P2,q1), and (p2, g2, p1). There is one simple path (p3,qs,ps)

The reason for defining a dangling path will become clear later on when we use it in a proof.

Definition 45. The reachable set 3, of a node v, is the set of nodes {v; | (v, ...,v;)}, which means

a set of nodes such that there exists a path from v, to node v;.

Example 18. In Figure 16 the reachable set ¥, of node pg is {gs,p1,94,P3,¢1,P5,92}. Note that

although g3 is connected to the node ps, nevertheless g3 is not reachable from pg.

Definition 46. A cycle C is an ordered sequence of vertices (vy,va,...,vx), k > 5, such that vy and

vk are the same and no other in C are the same. X, is the set of nodes involved in a path C.

Example 19. In Figure 16, nodes ¢4, ¢1, ps3, and ps form a cycle C of (g4, ps,q1,p5,494), starting and

ending with node g4. The set ¥ is {qs, p3,q1,P5}-

Definition 47. A state v;; of a system vy; is said to be an expedient state if v;; does not contain any
sink resources. In other words, there are no resources which are unallocated and have pending requests:
thus, all resources are either isolated (no requests) or are granted to some processors. In an expedient
system, all satisfiable requests are granted without delay. As soon as there is one request of a resource
which is an isolated resource, that resource will be granted to the requesting processor and will become a
source resource. If a resource has two requests, the resource will be granted to one processor and become
a link resource; the processor which was not granted the resource has to wait. If a resource has more

than two requests, the resource will be granted to one processor only and become a branch resource.

24 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Example 20. Figure 16 shows a given system -; in state ;;, -

FIGURE 16. An Example of RAG with Request(s), Grant(s), and Cycle(s).

In Figure 16, system ~y; has processors p1, p2, p3, P4, Ps, and pg. 7y; also has resources q1, g2, g3, ¢4, ¢,
and ge. State ;j, is not an expedient state, because the satisfiable request (ps, ¢2) has not been granted
yet. However v;;, can be transformed into expedient state v;;, when the request edge (ps, g2) is turned
into a grant edge (g2, ps3), which is possible since g is not allocated to any processor. In state vij, , pPa
is an isolated processor node, while the rest of the processor and resource nodes are either link, sink or
source nodes.

Example 21. In Figure 17, the graph +;;, is transformed into an expedient graph +;;, by changing
p3 — g2 into go — p3. In Figure 17 (b), since p2 and ¢s do not connect to the rest of the graph, the
existence of path gg — po will not affect the other subgraphs. Thus gg — po can be safely ignored when
searching for the deadlock condition.

(a) ps requests g2 in (b) ps acquires g2 in
Yij1 Yij2

F1GURE 17. RAG Reduction of Figure 16.

Lemma 1. The number of edges ||E|| in a system ~; is less than or equal ||E|| < m X n,

Proof: Since the graph +; is bipartite, each edge is permitted only to go from one set P of processor nodes

to the other set () of resource nodes or vice versa. A processor node p; can have one edge to each resource,

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 25

thus a processor node p; can have at most n = ||Q|| request edges {(p:,¢;) | ¢; € Q.5 = 1,2,3,...,n}.
Since there are m = ||P|| processor nodes, the maximum number of request edges is m x n. Since each
grant edge replaces the corresponding request edge, the total number of request edges will be decreased
by one whenever the total number of grant edges is increased by one. Thus, there is no change in the
maximum total number of possible edges if the system is maintained in an expedient state. Overall, the
total number of edges ||F|| is less than ((m xn —k)+ k) =m xn |k =0,1,2,...,n, where k is the
number of request edges that have been transformed into grant edges. Note that the maximum total
number of grants at any given time is k¥ < n, since at most all n resources can be granted.

The above property give us the approximate computational complexity of an algorithm based on
either edges or nodes. An edge based algorithm has O(e) run time complexity, where e is the number
of edges. Also, the fact that there do not exist edges (p;,p;) from one processor to another and that
there do not exist edges (g;, ;) from one resource to another is an important property for the hardware
architecture. In short, a two dimensional adjacency matrix of edges is sufficient to represent all the
possible different types of edges for the systems we consider. Such a two dimensional adjacency matrix
provides an efficient hardware architecture implementation.

Therefore, OS routines and a RAG together can be used to model both system states and state
transitions of an SoC or PCB with processors and resources. When a processor p; makes a request
for resource g;, the OS inserts a request edge r;; = (pi,¢;) into the edge set R. When a processor p;
obtains a resource g;, the OS removes the request edge r;; = (p;,¢;) from R and inserts a grant edge
9ji = (g;,p;) in the set G. When a processor p; releases a resource g;, the OS removes the grant edge

gji = (gj,p;) from the set G.

3. DEADLOCK PROPERTIES

This section describes various properties and theorems relating to deadlock. For a system -y;;, these
properties and theorems can be applied to the matrix representation M;; of ;;. In the systems we
consider — reusable single-resource systems (defined in Section 1) — a cycle is a sufficient condition for
deadlock[1]. Generally speaking, it is desirable to identify if a system state is deadlocked or not as
soon as possible. Finding and constructing a cycle is not computationally efficient because the run time
complexity of a cycle-search algorithm is similar to that of depth-first-search or breath-first-search. A

technique based on a reduction sequence applied to the RAG of the system has been shown previously[1].

26 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

In general, any algorithm based on a RAG has a computational complexity in software of O, (M X 1),

where the “sw” in “Og,,”

refers to the fact that the algorithm is run in software on a processor. We
introduce a new technique — based on the notion of a matriz reduction sequence — which provides a better

solution and can identify a deadlock state in linear time complexity in a hardware implementation.

Theorem 1. A cycle is a necessary and sufficient condition for deadlock in a reusable single-resource

expedient system with m > 2 requesters and n > 2 resources..
Proof: The proof is available in Chapter 4 of Operating Systems - Advanced Concepts[1].

Example 22. A system with three processors and three resources is shown in Figure 18. The existence
of a cycle C of path (ps, 4, 3,41, Ps) is necessary and sufficient to indicate a deadlocked system. The set
of nodes in cycle C'is ¥, = {ps, ¢4, 3, q1 }. Processor p; and resource g4 are branch nodes. The grant edge
(g3, ps) and request edge (p2, q4) are dangling paths. The reachable set of ps is ¥, = {ps,p3, 1,9} = Ze.
The reachable sets ¥,,, ¥,,, and X,, are equal to .. The reachable set ¥, is {X. U pa} but processor
p2 is not part of cycle C. Processor ps is connected to the cycle C. The node g3 has a reachable set of
{X.U g3} and resource g3 is not part of cycle C either. Since both processor p, and resource g3 are not
part of the ¥, the existence of the cycle C' is not affected by the absence of edges p2 — ¢4 and g3 — ps.
In such a single-resource expedient system, a cycle is necessary and sufficient condition to identify a

deadlocked state.

%

)
oNp

FicURrE 18. A Deadlock Cycle in RAG

Before formally defining the notion of a reduction step, we first give an informal description. One
can consider a reduction step as emulating processor p; either (i) releasing a held resource g;, or (ii)
releasing the resource g;.

A processor p; can complete its computation and then release all of the resources p; holds only if the

processor p; has been granted access to all the resources p; has requested. When a processor p; does

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 27

release all of the resources which p; holds, the processor p; is said to be reduced. Clearly, a reduced
processor which makes no more requests cannot participate in a deadlock. When a granted resource g;
is released by the last requester p;, that resource g; is said to be reduced. Clearly, a reduced resource
which receives no more requests also cannot participate in deadlock. This is why we are interested in

formally defining the notion of a reduction step.

Definition 48. A sink reduction step Osink is a unary operator dsink : Yij > YVij+1, where dsink
calculates the sink set a(vi;) of vij and returns ; j41 such that all sink edges E,,;; found are removed
and do not appear in v; j11. To determine the sink set, 0simp uses Definition 25: X, = a(vi;) which
returns a set sink nodes. Next, the sink reduction step dsiny, deletes all sink edges E,,;; found connected
to vertices in the sink set a(vy;;). Such deletions reduce the number of edges. The formula for dsink (7Vij)

is shown in the second line of FEquation 1:

Vij+1 = Osink(Vij)
= (Va (E(VZJ) - Eaij))

(1)

The function gk (i;) is called a sink reduction step because Equation 1 simply subtracts out (re-
duces) the set of sink edges. Note that the node set V is not changed. If the outgoing edge of a link
node connects to a sink node in +;;, then that link node will become a sink node in 7; j41 = dsink (Vij)-
If the outgoing edge of a branch node connects to a sink node, that branch node can become a link node
when that edge is removed (if the degree of the branch node is three). If the outgoing edges of a branch
node all connect to sink nodes, that branch node can become a sink node when those edges are removed.
Thus, the removal of sink edges may make the set ¥4 of connect nodes smaller and may create new sink
nodes. When 45, is applied again to the next system state 7; j41, any sink edges in +; j4+1 must have

been derived from the set of connect edges in ;;.

Definition 49. If a system state 7v;; can be transformed by a reduction step to another state v; j+1
resulting in v; j+1 7 7Vij, then the system state vy;; is said to be reducible. If a system state v;; cannot
be reduced to another different state v; j1+1 (because the resulting v; j+1 is equal to v;;), then system state

vij s said to be irreducible.

28 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Example 23. Assume we are given a system state v;; = (V,E), as shown in Figure 19(a), where

V={PUQ}and E={RUG}:

D ® ® @ n ® @
a1 14, [4)] |4, a1 [4,] T[4, 1[4,
(a) State 7i; (b) State i, j+1 = dsink (Vij)

FI1GURE 19. Apply a Sink Reduction Step dsinr to State 7;;.

P = {p1,p2,p3,ps} and Q = {q1, 42,93, ¢4 }-

R = {(p2,a1), (Ps @1), (3, 11), (p3,22)} and G = {(g2, 1), (a1, 1), (44, P3), (43,P4) }-
Ya;; = a7ij) = {p1} since p; is a sink processor node.

E,;; = {(g2,p1)} because there is only one edge into p1 = a(7s5).

Resource g2 is a link node in vy;; while ¢ is a sink node in ; j41:

Yij+l = Osink(Vij)

(V,E — Ea,-j)

(V,{RUG} — {(g2,p1)})

(V,{(p2,44), (P4, q4), (P3,q1), (P3,42) } U {(q1,P4), (q4,P3), (q3,P4) })

The result, 7; j+1, has a smaller set E because the sink reduction step dsink removed an edge, as can be
seen in Figure 19(b). Note that in state ;; there are no isolated nodes, while in state v; j+1 = dsink (Vij)

the set of isolated nodes is {p1 }.

Definition 50. A sink reduction sequence Ay, is defined as a finite sequence of sink reduction steps
Osink, such that (i) vij » Yij+1 = - = Yijtk; (i) Vijrr is irreducible; and (i) {vij+n,0 < h < k}
are all reducible. An equation expression of sink reduction sequence Agink 15 Vi j4k = Asmk(%j) =
Osink(- - - Osink(Osink (Vi) - - -), where the sink reduction step dsiny is applied recursively k > 0 times until

Vij+k s irreducible. The formula Agng(vij) is shown in Algorithm 1.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 29

Algorithm 1. Sink Reduction Sequence Algorithm

1 Agink (’Yz'j)q

2 k=0;

3 Yiterate = Yij;

4 while (a(Yiterate) 7 0) {

5 k=k+1;

6 Ytemp = (ssink ('yiterate)
= (V(’Yitemte); E(’Yitemte) - Eaitemte);

7 Yiterate = Ytemps

8 }

9 Yi,j+k = Yiterates

10 Teturn y; jyk;

11 }

The right hand side of line 6 in Algorithm 1 is the core of the algorithm: &g,k (Viterate) is calculated
recursively on itself until there are no more sink edges left in 7iterate- Equation 3 below shows another
way of expressing the execution of Algorithm 1 to perform a sink reduction sequence, where each Yigerate

is replaced with 7; j+n where h has the appropriate value corresponding to the algorithm iteration step:

if a (i) # {0}, Yig+1 = Osink(vi5) = (V, E(Vij) — Eay;)
if a(vijr1) {0}, vigrz = Gsink(Vigr1) = (V, E(Mij+1) — Bagjy)
®3) : :
if a(vijpn—1) Z{0}, viger = Isink(Vijar—1) = V,EMijar-1) — Bay jpney)

a(vij+k) = {0}

Definition 51. A system state ; jr is said to be completely reduced if E(v; i) = 0. Otherwise, a

system state 7; jr s said to be incompletely reduced if E(v; i) # 0.

Example 24. Let us apply the sink reduction sequence Ag;, to two examples. We will consider a
deadlocked example first and then a non-deadlocked case.

For the first example, 7;; is the same as in Example 23: v;; = (V, E) = ({PUQ}, {RUG}) as shown
in Figure 19.

P ={p1,p2,p3,ps} and Q = {q1,¢2, 43, ¢4}

For the request set, we have R = {(p2,q4), (P4,94), (P3,q1), (P3,42)},

For the grant set, we have G = {(q2,P1), (q1,P4), (94,P3), (43, P4), (g3, p4) }-

30 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

The result is shown as follows:

a(vij) = {m}
Eaij = {(q27p1)}
Yi,j41 = (V {(P27114), (P1,q4), (P3,q1), (P3,q2)} U {(Q2,P1), (q1,P4), (Q4,P3)} - {(Q2,p1)})

(4)
= (Va {(P27114)a (p47Q4)5 (p3aq1)7 (P3;Q2)} U {(CI17P4)7 (q47p3)})

a(vig41) = {0}
Therefore, we stop and find that k = 1. Note that the result +; ;41 is incompletely reduced since

E(Yi 1) # 0.

DEONONC

Ficure 20. Apply Sink Reduction Sequence A, to State «;;.

For the second example shown in Figure 20, the v;; = (V, E) = ({PUQ}, {RUG}) is given as follows:

P = {p1,p2,p3,ps} and Q = {q1,42, 93,44}
R ={(p3,q1),(p3,492)} and G = {(q2,p1), (q1,P4), (g3,P4) }-

The result of the first sink reduction step is shown as follows:

a(vig) = {p1,pa}

(5) Eq,; = {(a2,p1),(a1,p4),(g3,p4)}
Yig+r = (Vi{(ps, @), (03, @2), (42,P1), (a1, P4), (a3, P4) } — {a2,P1) (@1, P4), (43, P4))
Yig+r = (Vi{(ps; @), (ps,¢2)})

Figure 21 shows the result after one sink reduction step. Resources g; and g» have now become sink

nodes. Therefore, they are removed by the next sink reduction step:

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 31

& @& & &

FI1GURE 21. After one Sink Reduction Step dg;nk

a(Vij+1) = {a,}
Eai,j+1 = {@37q1)7(p37q2)}
©) Vi 2 = (Vi{(ps,q1), (p3,q2)} — {(p3, 1), (p3,92)})
Vi j+2 = (V,0)
a(Vijr2) = 0

We stop and find that k = 2. Note that the result ; ;12 is completely reduced since E(v; j42) = 0.
Also note that the second sink reduction step assumes that resources ¢; and g2 were both granted to

and then released by processor ps.

A sink reduction step g,k Of a state (thus removing edges to sink nodes) might unblock a waiting
processor, e.g., as happened to processor p3 in the example above. Depending on which order requests
are turned into grants, in fact deadlock could arise. Such an occurrence is equivalent to a safe state
becoming a deadlock state (see Section 2.2). The sink reduction step as we have defined it takes an
optimistic view about the future behavior of a system in state v;;; in other words, if a safe sequence of
requests and grants that keeps the system ~y; out of deadlock exists, then the sink reduction step assumes

that this safe sequence is in fact the sequence that will be chosen.

Theorem 2. A processor p; is not part of a deadlock cycle in state v;; iff there exists a sequence of sink

reduction steps in 7y;; which allows processor p; to be able to acquire all requested resources.

Proof: The proof is also available in Chapter 4 of Operating Systems - Advanced Concepts[1].

Lemma 2. A cycle C in system state v;; must contain alternating resource nodes and processor nodes.

32 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Proof: By Definition 6, ;; cannot have any edge from processor p; to processor p; for any two processors
Di, Pj € V(7). Similarly, by Definition 6, v;; cannot have any edge from resource g; to resource g;
for any two resources ¢;, ¢; € V(7). Therefore, since cycle C is composed of edges, any cycle C must

contain alternating resource nodes and processor nodes connected by edged.
Lemma 3. In a system state 7;;, the number of edges in a cycle must be a multiple of 2.
Proof: This lemma follows trivially from Lemma 2 and the definition of a cycle, Definition 46.

Theorem 3. Let 7;; be an expedient state of a reusable resource system ;. Sink reduction sequence
Agink(7ij) reduces the state 7;; to a state 7v; jir which is irreducible. State v;; is not a deadlock state if

and only if ; j1r is completely reduced (E(v; k) =0).

Proof: The proof is available as Theorem 4.3 in Chapter 4 of Operating Systems — Advanced Concepts[1].
By Theorem 3, if the state ;; is expedient, then detection of a cycle in «y;; will be a sufficient condition

for determining that <y;; is a deadlock state.

Corollary 1. If state v; j+r = Agink(Vij) s completely reduced (E(v;j+x) = 0), then v;; is not a

deadlock state.

Example 25. In Figure 22 (a), the system state is expedient. The set of sink nodes is ¥, = {p2}.
The set of link nodes is Xy = {gs,p1,94,P5,41,p3}, while the set of source nodes is ¥g = {¢3,¢6,92}-
Therefore, a sink reduction step i, removes an edge (gs, p2) incident to the sink node ps. The reduced
state is shown in Figure 22 (b). At that time, the sink set ¥, = {0}, and hence the state is irreducible.
Since the state in Figure 22 (b) contains non-empty set of connect nodes, X, # (), the original state
shown in Figure 22 (a) is deadlocked. Note that Figure 22 (b) contains two dangling paths which do not

participate in the deadlock cycle C.

Algorithm 2. Deadlock Detection Algorithm Reducing Sink Nodes
1 Deadlock_Detect_Sink (vi;) {

2 Yij+k = Asink (Vij);

S i (Blugen) = 0) {

4 return 0; /* no deadlock */

5 } else {

6 return 1; /* deadlock detected */

7

8

}

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 33

(a) Reducible State (b) Irreducible State

FIGURE 22. A System state that is Irreducible.

Algorithms 1 and 2 represent the classical solution for deadlock detection [2, 3, 1]. This solution and

” refers to the

all other solutions known to the author take time O, (m X n), where the “sw” in “Oy,,
fact that the algorithm is run in software on a processor. Although other authors give their algorithm

complexity in terms of e = ||E||, e < m x n so that Oy (e) = Ogw(m x n) [4, 6].

4. EQUIVALENT DEADLOCK DETECTION THEOREM

In this section we will define a new algorithm for deadlock detection with O, (m x n). The advantage
of this new algorithm will not be seen until the next section when we show how to implement the
algorithm in a matrix form. This matrix form can be implemented in hardware yielding complexity

Opnw(min(m,n)), where the “hw” in “Op,”

refers to the fact that the algorithm is run in a special
hardware configuration (to be explained in detail in Section 6).

For the proposed algorithm, Definitions 48 and 50 yield insight into how to check in parallel if a state
vi; is a deadlock state or not. The insight is that by recursively removing sink nodes (Algorithm 1),
we can determine if a cycle exists. From this insight, we will expand the notion of a reduction step to

include the removal of source nodes as well as sink nodes. Then we will prove that this does not alter

the resulting deadlock detection properties.

Definition 52. A reduction step 6 is a unary operator 0 : v;; — 7; j4+1, where & calculates the terminal
edge set T(7ij) of vij and returns y; j11 such that all terminal edges E.,; found are removed and do not
appear in v; j11. To determine the terminal set, § uses Definition 31: .. = 7(7;;) which returns a

set of edges connected to terminal (sink or source) nodes. Next, the reduction step & deletes all terminal

34 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

edges found in the terminal set a(v;;). Such deletions reduce the number of edges. The formula for

0(7i;) is shown in the second line of Equation 7:

Yig+1 = 0(vij)
= (VaE('YZJ) - ETij)

(7)

The function §(7;;) simply subtracts out (reduces) the set of terminal edges. The node set V' is not
changed. If only one edge of a link node connects to a terminal node in +;;, then that link node will
become a terminal node in v; j41 = d(7s;). If both edges of a link node connect to terminal nodes in
7ij, then the link node will become an isolated node in ; j4+1. If edges of a branch node connect to a
terminal node 7;;, then, in 7; j41, the branch node will either (i) remain a branch node, (ii) become a
link node, (iii) become a terminal node, or (iv) become an isolated node. Thus, all connect nodes (link
and branch nodes) either stay the same, convert to a different connect node, or become reduced to a
terminal node or an isolated node. Thus, the removal of edges to terminal nodes can only leave the set
Y4 of connect nodes the same size or smaller. When ¢ is applied again to the next system state -y; j11,

any edges to terminal nodes ((vz,vy) € E

ri.i+1) i Yi,j+1 must have been derived from the set of edges

to connect nodes ((vz,vy) € Eg,;) in ;.

Example 26. This example starts with the same system state v;; = (V,E) as in Example 23; the
system is redrawn in Figure 23(a), where V = {PUQ} and E = {RUG}:

n ®) @ ? ®» @ @

7] [4,] [4] 4, q [4,] [q] [q,
(a) State v;; (b) State vi,j+1 = 0(7ij)

FIGURE 23. Apply a Reduction Step § to State ;.

R ={(p2,q), (p1,94), (p3,q1), (P3,92) } and G = {(g2, 1), (q1,P4), (94,P3), (g3, P4) }-

Y= 7(vij) = {p1, P2, @3}

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 35

E;,; = {(a2,p1), (p2,04), (a3, P4) }-

Yig+r = 0(vi)

(V,E-E,,;)

(V,{RU G} = {(a2,p1), (P2, @), (a3, P4)})

(V. {(p1,44), (p3, @1), (p3, 42) } U {(q1,P4), (a4, p3)})

The result, 7; j+1, has a smaller set E because the reduction step § removed three edges, as can be
seen in Figure 23(b). Note that in state -y;; there are no isolated nodes, while in state v; j+1 = Osink (7ij)

the set of isolated nodes is {p1,p2,q3}.

Definition 53. A reduction sequence A is defined as a finite sequence of reduction steps &, such that
(1) Yij = Yigj+1 7 oo > YVigaks (8) Vi s irreducible; and (i3) {Yij+r,0 < h < k} are all reducible.
An equation expression of a reduction sequence A is 7; jir = A(yij) = 0(---0(6(vij))---), where the
reduction step § is applied recursively k > 0 times until y; j is irreducible. The formula A(v;;) is

shown in Algorithm 3.

Algorithm 3. Reduction Sequence Algorithm

1 Alyig) {

2 k=0;

3 Yiterate = Vij;

4 while (T(’Yiterate) 7é 0) {

5 k=k+1;

6 Ytemp = (5(7iterate)
= (V(’Yitemte); E(’Yitemte) - ETitr:mtc);

7 Yiterate = Ytemps

8

9 Yi,j+k = Yiterates

10 TetUTn i jik;

11}

The right hand side of line 6 in Algorithm 3 is the core of the algorithm: &(7iterate) is calculated

recursively on itself until there are no more terminal edges left in ~iterate-

Example 27. Let us apply the reduction sequence A to the previous example (Example 26). The first
application of d is exactly as shown in Example 26 and results in y; j41 as shown in Figure 24. Therefore,

we show the second application of 4.

36 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

B @ @ @) ® @ @

il 4] [4] [4, il 4] (4] [4,
(a) State Vi, j+1 (b) State Yi,j+2 = (5(’)’4;,]‘4_1)

Fi1GURE 24. Apply Reduction Operator A

The result is as follows (and is shown in the graph of ; j12 on the right hand side of Figure 24):

Y = T(hg1) = {2}
B = {(@ps)}
Yij+z = O6(Vij+1)

9) = (V,E(Vij+1) — Er, ;1)

= (V, {(p47q4)7 (p3;q1)a (‘Il:p4)7 (q4,p3)})

ZTi,j+2 = T(’Yi,j+2) = {@}
Therefore, we stop and find that k = 2. Note that the result v; j+o is incompletely reduced since

E(’Yi,j+2) #0.

Algorithm 4. Deadlock Detection Algorithm Reducing Sink and Source Nodes
Deadlock_Detect (v;;) {
Vi, ji+k = A(vij); /% call Algorithm 3 */
if (E(vij+r) =0) {
return 0; /* no deadlock */

} else {
return 1; /* deadlock detected */
}

YD TR o Do~

Algorithms 3 and 4 represent a slightly modified version of the classical solution for deadlock detection
explain in Section 3. We turn now to formally proving that the algorithm finds all deadlock conditions

accurately.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 37

Lemma 4. Given system ; in state v;; without any cycles, all nodes v, € V must have the property

that the reachable set ¥, of node v, cannot include v, .
Proof: If v, were reachable from itself, it would form a cycle C'.

Lemma 5. Given system -y; in state v;; with E > 1 and without any cycles, there must exist at least

one path (v1,v2,Vs,...,Vk—1,V) with both vi and v terminal nodes.

Proof: We will prove this lemma by contradiction. Suppose that state v;; with E > 1 and without
any cycles does not have any path (v1,vs,vs,...,v5_1,v;) with both v; and v, terminal nodes. Choose
any path (vy,vs,v3,...,05_1,v) (since E > 1 we know that there exists at least one path). Then
either v; or vy is a connect node. Suppose, without loss of generality, that vy is a connect node. Then
(v1,v2,v3,...,Vk_1,Vk, Vkt1) i a path. Again, either vy or vg41 is a connect node. Continuing in this
way, we will either find a path with both its first and last nodes as terminal nodes, or else we will come to
apath (v1,v2,v3,...,vy_;,vy). If we find a path with both its first and last nodes being terminal nodes,
then we have a contradiction and are finished with the proof. However, on the other hand, if we do not
find a path with both its first and last nodes being terminal nodes, then we will eventually come to path
(v1,v2,v3,...,vy_;,vy) without both v; and vy, terminal nodes. Without loss of generality, assume
that vy, is a connect node. Since all nodes have been used already in path (vi,vs,vs3,...,vy_;,0y),
and since all connect nodes have at least two edges, vy has an edge to v, where v, # vy/_;. In this
case, then, there exists a cycle beginning and ending with vy, which contradicts our assumption that -;;

does not have any cycles, and we are done. QED.

Lemma 6. Given system vy; in state v;; with a cycle C (i.e., 7v;; is a deadlock state), removing edges

connected to terminal nodes will not alter the cycle C'.

Proof: Every node in cycle C is a connect node. Furthermore, every node in cycle C' must have an edge
to another node in the cycle and from another node in the cycle. Therefore, if a node in cycle C has
an edge to a terminal node, the terminal node cannot be in the cycle. Thus, removal of the edge to the
terminal node leaves the cycle edges intact, since none of the edges to other nodes in cycle C are edges

to terminal nodes.

Theorem 4. Algorithms 3 and 4 detect deadlock in state vy;; iff there exists a cycle in 7;;.

38 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Proof: First let us prove the “if” part of Theorem 4: for the “if” part of this proof, we are given that
there exists a cycle C' in state v;;. By Lemma 6, each application of § does not remove cycle C'. Since
there are a finite number of nodes in v;;, at some point in the algorithm no more terminal nodes will
be found. By Lemma 6, the cycle C is left intact, and so E(v; j+k) # 0 since there are edges in cycle C.

The algorithm reports a deadlock state, which, by Theorem 1 is correct because +;; has a cycle.

Now for the “only if” part of the proof: for the “only if” part of the proof, we are given that Algo-
rithms 3 and 4 detected deadlock given state ;; as input. In order for deadlock to have been detected,
it must be the case that v; j1» = A(7s;) has a least one edge so that we have E(v; jyr) # 0. Note that
Algorithm 4 always executes 7; j+r = A(7;j). Now, note that Algorithm 3 (to calculate A(v;;)), cannot
exit until line 4 results in 7(Viterate) = O (where Yierate = 7vi,j+x for some value of k). The two possible
cases are (i) there is no cycle C or (ii) there is a cycle C. Suppose we have case (i): in this case, by
Lemma 5, as long as E > 1 we will continue to find a path with terminal nodes. Eventually, then, since
the number of edges is finite, we will find that E < 1 which implies that we much have E = 0. In this
case E(7; j+x) = 0 and the algorithm would indicate that there is not a deadlock. By Theorem 1 this
result is correct since ;; does not have a cycle. Now suppose we have case (ii): there is a cycle C. In
this case (ii), by Lemma 6, the cycle C is never affected. Therefore, since the number of edges is finite,
eventually no more terminal nodes are left and line 4 of Algorithm 3 results in 7(Yiterate) = @ causing an
exit with v; j+r = A(7;;) as a return value. In this case, since there are still edges in 7; j4, due to the
connect nodes of cycle C, ||E(vi,j+k)|| # 0. Thus E(v; j+x) # 0 causing the algorithm to indicated that
a deadlock has been detected. This proves the “only if” part of our proof since deadlock is detected by

the algorithm only when a cycle C exists. QED.

Theorem 5. Algorithms 3 and 4 detect deadlock in state v;; iff there exists a deadlock in ;;.

Proof: By Theorem 4, algorithms 3 and 4 detect deadlock in state ;; iff there exists a cycle in ;5.
By Theorem 1, this is equivalent to saying that algorithms 3 and 4 detect deadlock in state -y;; iff there
exists a deadlock in 7;;. QED.

Lemma 7. Given system vy; in state y;; with P =m and Q = n, the mazimum number of nodes in any

path is 2 x min(m,n) + 1.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 39

Proof: We will prove this by construction. By Definition 42, a path (v1,vs,vs,...,v5—1,Vk), k > 2, is a
consecutive ordered sequence of alternating request and grant edges { (v1,v2), (v2,v3), ..., (Vk—2,Vk—1),
(vk—1,vr) } where every vertex with an odd index (v1,vs,...) is a member of the same set (P or ()) and
every vertex with an even index (vs,v4,...) is a member of the other set (P or). Clearly, the smaller
set (P or Q) should have all of its nodes involved in the maximum sized path in ;;. Due to the required
sequence of alternating requests and grants, the larger set can at most have one more node in the path
than the smaller set. Thus, the maximum number of vertices in a path is twice min(m,n) plus one:

2 x min(m,n) +1. QED

5. PARALLEL DEADLOCK DETECTION THEOREM

So far we have covered deadlock detection using a graph model and have proposed a parallel algorithm
that reduces the run-time complexity in a parallel implementation. In this section we show how to
implement the proposed parallel algorithm in custom hardware. Similar to edge labeling[4], a RAG is
mapped into modified adjacency matrix edge by edge. Since a parallel algorithm can perform multiple
operations at the same time, the parallel run-time complexity is thus reduced. In the proposed algorithm,
the reduction step § borrows some ideas from Quine-McCluskey’s prime implicant chart.

The four necessary deadlock conditions are also mapped into the matrix representation. Only the
processor p; which has been granted a resource g; can release g; — in other words, holding of resources
is non-preemptive. If a processor p; requests resource g;, then a request r;; is recorded in matrix M.
If a processor p; is granted a resource g;, then the corresponding r;; is transformed into a grant g;;. A
release of resource g; by processor p; transforms the grant g;; into an empty edge. Resourceg; can only
be granted to one processor p; at any time. Thus, since each column in M corresponds to a unique
resource, there is at most one g in any column in M at any given time. Another processor py which
requests g; has to wait for the resource g; to be released by the owner p;. Furthermore, since each row
in M corresponds to a unique processor, a row containing both r and g forms a hold-and-wait condition
in an expedient system state (which means that all satisfiable requests have been granted). We say
that such a row has a horizontal link edge. This is because the processor corresponding to the row
is holding the resource corresponding to the g column while waiting for the resource corresponding to
the r column (which, since the system state is expedient, is granted to another processor). Similarly,

if a column has both an r and a g, then another hold-and-wait condition is also formed. We say that

40 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

such a column has a vertical link edge. Thus, in a given M;;, if we can find a circular path (circular
hold-and-wait condition) formed by alternative horizontal and vertical link edges, then a cycle is formed
and a given system state -y;; is in deadlock.

This section proposes an implementation of the Algorithms 3 and 4 where state v;; is represented by
the matrix M;; corresponding to state -y;;. The matrix representation will enable a custom hardware

implementation which perform each iteration of Algorithm 3 very fast.

Definition 54. A matriz reduction step du is a unary operator dpr = Mi; — M; j11, where Sy
calculates the terminal edge set T7(M;;) = 7(vi;) and returns M; j11 such that all terminal edges T(M;;)
found are removed and do not appear in M; ;1.

To determine the set of connect nodes, dnr uses Definition 31: L., = 7(7vij) = 7(My;) which returns
a set of edges connected to terminal (sink or source) nodes. Next, the matriz reduction step dpr deletes
all terminal edges found in the terminal set T(M;;) by removing corresponding entries in the matriz M;;.
Such deletions reduce the number of entries in M;;. The formula for dpr(M;j) is shown in the third line

of Equation 10 (see Definition 11 for what we mean by M; j411 = Vi j4+1):

Mij1 = 6m(Mij)
= dum (%‘j)
= (V,E(vij) — 7(vi5))

= Yij+1

(10)

Definition 54 is completely analogous to Definition 52. The only difference is that in Definition 54

the operations are on matrix M;; instead of directly on ~;;.

Definition 55. A matriz M;; is reducible if v;; corresponding to M;; is reducible (Definition 49).

Similarly, a matriz M;; is irreducible if v;; corresponding to M;; is irreducible.

Definition 56. A matrixz reduction sequence Ay is defined analogously to reduction sequence A
(Definition 53): a matriz reduction sequence Ay is a sequence of reduction steps dpr such that (i)
Mi; — M;jiq = - M jor; (i) M jir is irreducible; and (i) {M; j1n,0 < h < k} are all reducible.
Another representation of a matriz reduction sequence is M; jyr = Opr(--- (M j4100 (Mij))---)). A

matriz reduction sequence is called a complete matrixz reduction when the sequence of matriz reduction

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 41

steps corresponding to Ay results in M; j+r such that the irreducible state matriz M; ;i1 contains all
zero entries (note that this means that ~y; jir corresponding to M; jr has no edges: E(v;jr) = {0}).
A matriz reduction sequence is called an incomplete matrixz reduction when Ay returns M; 1 with
at least one non-zero entry (note that this means that v; jyr corresponding to M, jyr has at least one

edge: E(vij+k) # {0}). The formula for Ap(M;j) is shown in the second line of Equation 11:

Mijvr = Am(Mij)
= bl S (Ear(Mi)) ..)

(11)

Example 28. In Figure 25, we start with +;; shown in Figure 25 (a). +;; is reduced by the parallel
deadlock detection algorithm defined by Definition 56. In step 1.1, Figure 25 (a) has g3 — ps removed,
and the system state 7;; is transformed to Figure 25 (b). In step 1.2, g2 — ps is removed. In step 1.3,
D6 — g5 is removed, resulting system state <y; ;11 as can be seen in Figure 25 (d). In step 2, g5 — piis
removed. System state is 7;, j+5 as can be seen in Figure 25 (e). Finally, in step 3, p1 — g4 is removed.
Thus, all the dangling paths have been removed, and so we have that 7(v; j+3) = 0, as can be seen by
inspection of Figure 25 (f) where clearly no terminal (sink or source) nodes are present. The system
state M; j13 = 7,43 contains only link edges that form a cycle ¢;. The cycle ¢;, present in M;;, is

preserved intact in M; ;3. Thus, we will detect deadlock in this case.

Example 29. An equivalent example of Figure 25 is shown in Table 2. The matrix M;; represents the
system state -y;;. For this case, let M; ;1 be the first state derived by applying a reduction step to M;; —
note that we show three intermediate steps to derive M; ;1. M; j;3 is the non-empty irreducible matrix
found at the end of the algorithm. M; ;i3 preserves the cycle from M;;. Since M; i3 # 0, a deadlock
exists among processor nodes ps and ps and resource nodes ¢; and g4. Note that the matrix reduction
sequence is done sequentially to illustrate the idea. The proposed algorithm makes use of parallelism
to improve the run time performance, since multiple dangling paths are removed simultaneously and

independently of each other.

The algorithm find out if a given M;; contains cycles. If M;; has cycles, then a set Py of deadlocked
processors and a set Q4 of deadlocked resources can be identified.
We use the matrix representation to implement Algorithms 3 and 4. By Theorem 5, we always

correctly find out if deadlock exists or not.

42 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

®
®
L9 (%)
\./
®) o]
(c) step 1.2
® ® ®
® ® ®
(%) (%)
/ /
®)
(d) step 1.3 (e) step 2 (f) step 3

F1GURE 25. Graph Reduction Sequence of both Sinks and Sources

The following terms are defined for the matrix reduction sequence.

Definition 57. A terminal column 1¢; is a column t (recall that column t corresponds to resource q;)
of a matriz M with either (i) all non zero entries {ms # 0,1 < s < m} are request entries rs with at
least one non-zero (request) entry, or (ii) one entry mg,1 < s < m is a grant gs, ¢+ with the rest of the

entries {mst,1 < s < m,s # s} equal to zero.

Definition 58. A terminal row M, . is a row s (recall that row s corresponds to processor ps) of
matriz M with either (i) all non-zero entries {ms # 0,1 <t < n} are request entries r4 with at least
one non-zero (request) entry, or (ii) all non-zero entries {mg # 0,1 <t < n} are grant entries gs; with

at least one non-zero (grant) entry.

Definition 59. A connect column ¢¢ is a column t with ot least one request r and at least one grant

g in column t.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION

| Mi; lao |2 |as]aa] a5] g6]

b1

r

9

D2

D3

D4

Ds

9

9

De

r

[Step 1.2 | 1 [@2 | as | aa | a5 | a6]

D1

r

9

D2

D3

P4

D5

Ds

r

rsirararararara

P1 r
D2
Ps3 r g
Da
Ds g r
DPe

43
[Step 11 [1 a2 [a3 [aa [a5 [g6 |
y4! 19

D2

D3 Tl g g

D4

Ps g r

DPe T

[Mijn]la|e|alals] e

D1 19
D2

D3 r g

P4

Ps g r

De

Ermlirarararararg

b1

D2

D3

D4

D5

Ds

TABLE 2. Matrix Reduction Sequence of both Sinks and Sources

Definition 60. A connect row @, is a row s with at least one request v and at least one grant g in

row S.

We first show how to use the matrix representation to implement Algorithm 4.

Algorithm 5. Deadlock Detection Algorithm Reducing Sink and Source Nodes Using Matriz Represen-

tation

1 Deadlock_Detect_Matriz (vi;) {

2 M]s,t] = [ms], where

3 s=1,....mandt=1,...,n

4 mst =1, if A(ps, @) € E(7ij)

5 mst = g, if Iqs,pe) € E(vij)

6 mg = 0, otherwise.

7 M; jvr = A (Mij); /* call Algorithm 6 */
8 if (Mijr =1[0]) {

9 return 0; /* no deadlock */

10 } else {

11 return 1; /* deadlock detected */
12

44 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Next, in the following algorithm, we show a parallel implementation of Ays (Definition 56) imple-

mented by a version of Algorithm 3 suitably modified to operate on matrices.

Algorithm 6. Parallel Reduction Sequence Algorithm

1 A (Mij) {

2 k=0

3 Miterate = Mij;

4 while ((3s such that I7,s) or (3t such that I1)) {
5 k=k+1;

/¥ concurrently execute lines 6-8 and lines 9-11 at the same time */

6 for all s such that 3.5 { /* Definition 58 */

7 all entries in row s of Miterate are set to zero entries;

8 }

9 for all t such that 31, { /* Definition 57 */

10 all entries in column t of Miierqate are set to zero entries;
11 }

12}

13 Mi,j+k = Miterate 5
14 return M; iy, ;
15 }

Example 30. In Table 3, the previous example of Table 2 or Figure 25 is used to illustrate the parallel
algorithm. The system state 7;; is captured in matrix M;; in lines 2-6 of Algorithm 5. Next, line 7 of
Algorithm 5 calls Algorithm 6.

In M;;, there are several dangling paths. First, go — p3 is a dangling path with the terminal node in
the path being a source node (g» is a source). Second, g3 — ps is another dangling path, and it connects
to a cycle involving processor node ps. Third, there is a long dangling path (ps, g5, p1,q4), where g4 is
involved in a cycle.

Therefore, in line 4 of Algorithm 6, there do exist terminal columns (columns 2 and 3) and a terminal
row (row 6). Thus, in the first iteration, there are three terminal nodes which can be removed at the
same time, resulting in the removal of three edges: g3 2, g5 3 (sink edges) and r¢ 5 (a source edge), where
the subscript index pair denotes the processor node and the resource node in the matrix table coordinate.
The result of lines 7 and 10 of Algorithm 6 can be seen in matrix M; j4i of Table 2.

The second execution of line 4 of Algorithm 6 finds that there is one terminal column: column 5.
Thus, column 5 is set to zero thereby removing g; 5 corresponding to sink vertex gs. The result of line

10 of Algorithm 6 can be seen in matrix M; ;j» of Table 2.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 45

In the third iteration, row 1 is set to zero, deleting r; 4. The result is M; ;3. However, no more
terminal columns nor terminal rows exist, so Algorithm 6 returns non-empty and irreducible M; ;43 to
Algorithm 6.

Thus, a cycle has been revealed. The cycle is p3 = ¢1 — ps — g4 — p3. Note: In Table 3, the arrows
in the matrix M; jys are not request nor grant edges, they are used to illustrate the cycle path more

explicitly. We have discovered deadlock!

ERararararars rsmirarararararg

P1 149 P 19

P2 D2

ps rlg g b3 r g

P4 Da

Ps g g|r Ps g r

Pe T Ps

|Mz',j+2 ||Q1|Q2|(I3|Q4|q5|q6| |Mi,j+3 ||C_I1| Q2 |Q3 |q4|115|<16|

b r y41

D2 D2

P3 r g ps ri--|1=-19

P4 2 -

Ps g r b5 g |« ||

Ds De

TABLE 3. Matrix Reduction of both Sinks and Sources

Lemma 8. In RAG v with P = m and Q = n, the maximum number of edges in any path is k <

2 x min(m,n).

Proof: We start by repeating the definition of a path. A path (vi,v2,v3,...,0%_1,0¢), k > 2, is
a consecutive ordered sequence of alternating request and grant edges (v1,vs), (ve,v3), ..., (Vg_1,Vk)
where every node in the path is distinct and where every other node belongs to the same set. In other
words, every odd node along a path belongs to one node set of V' (either P or ()) and every even node
along the same path belongs to the other node set of V.

The number of nodes in a processor set is m = P and the number of nodes of a resource set is

n = Q. For an arbitrary graph of (m + n) nodes, the upper bound of the number of edges of a path is

m+n — 1 (note that by Definition 42, a path cannot have a cycle since all nodes are distinct), assuming

46 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

the graph is not a bipartite graph. We use k to represent the length of a path, i.e., the number of edges

along a path. Thus the upper bound of & is shown as follows:

(12) k=(m+n)—-1

However, a RAG is by Definition 6 a bipartite graph. For a bipartite graph, there exists three different
special cases that limit the upper bound of the length k even further. An edge (see Definition 7) is either
a request or a grant. A request edge begins with a processor node and ends with a resource node, while

a grant edge begins with a resource node and ends with a processor node.

Case 1 — P = Q@ : In this case, the number m of processor nodes and the number n of resource
nodes are the same. A path has maximum number of edges when it contains all nodes v € V.
If a path begins with a processor node, then the path must end with a resource node. On the
other hand, if a path begins with a resource node, then the path must end with a processor node.

Therefore, all nodes are covered by the longest path and the number of edges & is as follows:

(13) k=(m+n)—1=2xm—-1=2xn-1,f m=n

Case 2 — P > Q@ : In this case, the number m of processor nodes is greater than the number n
of resource nodes. A path has maximum number of edges when it contains all resource nodes
g € . Since there are more processor nodes than resource nodes the longest path starts with a
processor node and ends with another distinct processor node. Therefore, the number of nodes

in the longest path is n + 1 + n and the number of edges is as follows:

(14) k=(n+l)+n-1=2xn,ifm>n

Case 3 — P < Q@ : In this case, the number m of processor nodes is less than the number n of
resource nodes. This is an exact mirror case of Case 2 and therefore the number of edges & is as

follows:

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 47

(15) k=m+(m+1)—1=2xm,ifn>m

Summarizing all cases (Equations 13, 14, and 15) the length of the longest path, i.e., the number of

edges, is as follows:

2xm—-1=2xn-1, ifm=n
(16) k =42xn, ifm>n
2 x m, ifm<n

It can be seen from Equation 16 that % is always limited by the smallest subset of V' as follows:

(17) k <2 x min(m,n)

Lemma 9. An iteration of Algorithm 6 reduces the length of any path with at least one terminal node

by at least one.

Proof: The while-loop of Algorithm 6, i.e., lines 4 to 12, is referred to as an iteration. The iteration
is executed if and only if the condition in line 4 is true, i.e., if there exists at least one terminal node
(see Definition 31) which is a terminal column (see Definition 57) or a terminal row (see Definition 58).
The body of the iteration (lines 5 to 12) removes all edges corresponding to terminal nodes. A simple
path (Definition 43) has two terminal nodes, therefore the length of this path is reduced by two in an
iteration. At the same time, a dangling path (Definition 44) has only one terminal node, therefore its
length is reduced by one in an iteration. There are no cases of paths with terminal node(s) other than
simple paths and dangling paths. In the worst case, the graph has only one dangling path whose length
is reduced by one in every iteration of Algorithm 6.

Theorem 6 below assumes that the time complexity measure is the number of iterations of lines 4-12
of Algorithm 6. The statements in lines 6-8 and 9-11 of Algorithm 6 are executed in parallel in constant

time for the hardware implementation described in Section 6.

48 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

Theorem 6. Algorithm 6 completes operation on state v;; in time Opy(min(m,n)) for a parallel im-

plementation.

Proof:

Note that a path p without at least one terminal node is either (i) contained in another path with at
least one terminal node or (ii) not contained in an other path with at least one terminal node. Case (ii)
indicates the presence of at least one cycle some of whose nodes either are already part of the path p or
end up being included in the “expanded” paths which contain path p. Clearly, we need only consider
“expanded” paths defined by case (i) and may ignore paths defined by case (ii). The reason why we
need only consider “expanded” paths with terminal nodes is that paths contained in such “expanded”
paths clearly have less edges and thus will have edges removed in future iterations once the “expanded”
path(s) containing it has (have) enough edges removed. Finally, given the set of all paths with at least
one terminal node, according to Lemma 8, the maximum number of edges of any path in this set of
paths with at least one terminal node is k < 2 x min(m,n). According to Lemma 9, one iteration of
Algorithm 6 reduces the length of all of these paths by at least one. Therefore, the remaining set, of paths
with terminal nodes has no path with length greater than k£ — 1. Continuing in this way, Algorithm 6
terminates when there are no more paths with terminal nodes left in the graph. Hence Algorithm 6 has

time complexity of Op,, (min(m,n)).

6. PARALLEL HARDWARE DEADLOCK DETECTION ARCHITECTURE

The architecture described in this section will be able to perform all calculations of an iteration of
Algorithm 6 (lines 4-11) in parallel. First, we illustrate the architecture derivation using two examples.
Second, we generalize the architecture of the Deadlock Detection Unit (DDU) more formally. Third, we

describe the components of the architecture in detail.

6.1. Deriving Deadlock Detection Architecture.
We will illustrate the derivation of the architecture based on two examples. We will show how to
perform all calculations of an iteration of Algorithm 6 in parallel. The first example describes how a

deadlock state is detected, and the second example describes how a safe state is detected.

Example 31. Consider the example shown in Table 4 that has a deadlock situation. In this example,

we have the following initial M;; (Line 1 of Algorithm 6):

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 49

._ q
Ji
| P\Q | ¢1(IcP) | g2(PCI) | ¢3(WI) |
p1(DSP) g r 0
q, q, p2(VSP) r g g

TABLE 4. Example-I with Two Processors and Three Resources.

mi1 M1z Mi13 g r 0

m21 M2z Ma23 r g g
Each mg; can have a value either 0, g or r. A natural choice for my encoding would be one-hot
encoding [7] because it clearly distincts different types of edges. We define mg; as a pair of two bits
mg = (m%,,m?,). If an entry mg is a request ry;, then bit m?, is set to one and bit m?, is set to zero.
If an entry mg is a grant gs, then bit m7, is set to zero and bit mY, is set to one. If there is no edge
in entry ms;, then both bits m?, and m?, are set to zero. Hence, an entry mg; can be either one of the
following binary encodings 00 (no edge), 01 (grant edge), and 10 (request edge). We call the new binary

encoded matrix M;;; :

(19) Mij = Mier, 5 = (mi,mi;) (miy,miy) (miz,mi;) _ 01 10 00
(mhy,m3y) (mhy,m3y) (mbs, m3s) 10 01 01

The matrices Miterate and M; j1r are encoded in the same way. The encoded matrices are labeled as
Miter; B and M; ji . B, correspondingly.

In the beginning of the first iteration, the Mj¢er; p is equal to M;j; p. In order to find out whether a
system state matrix Miterqze is reducible or not (line 4 of Algorithm 6), we need to determine if there
exists any terminal column 7.; or any terminal row 7,5 in Miterate- If Miterate cOntains at least one 7,4
Or Tet, then Miierate iS reducible. Otherwise, Miterate iS irreducible. If Miierate is irreducible, then the

Algorithm 6 stops iterating. We use two vectors to indicate whether Mjierate is reducible or not. One

of the vectors (Miter; cBo) indicates the existence of edges on resources (columns). The second vector

50 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

(Miter; RBO) indicates the existence of edges on processors (rows). The vectors are calculated from the
binary encoded matrix Mi¢er; B-

Consider the column 1 in Mi¢er, B. The existence of a request edge means that at least one m[; is “1”
in Miter; B- The existence of a grant edge means that one m?; is “1” in Mijier, g- Therefore, we perform a
bitwise OR between all pairs (mf;,mJ,) to find the first element of Miter; cBO — (M7, 1, MY, ;). Similarly,
we use bitwise OR for other columns to find the other elements of Miter; cBO-

Consider the row 1 in Mjer; - The existence of a request edge means that at least one mf, is “1”
in Miter; B. The existence of a grant edge means that at least one mft is “1” in Miger; . Therefore, we
perform a bitwise OR between all pairs (m7,, m{,) to find the first element of Miter, RBO — (mﬁ; 15 mﬁ; 1)
Similarly, we use bitwise OR for other rows to find the other elements of Miter; RBO-

The resulting vectors Miter; cBO and Micer; cBO are as follows:

(20) Miter;cpo - = | (m;1,ml) (mf5,ml,) (mf3ms)] = [11 11 01]
2 2
where m[, , = Vlm;t, and m{, , = \/lmgt, for1<t<3

s= 8=

M . (m, l,mﬁ; 1) B 11
iter; RBO = =
(21) (m, 2>m£; 2) 11
3
where m[. = t_lmgt, and m{, , = t\—/1mgt7 for 1 <s<2

If there is an entry “00” in column ¢ of Miter, cBO, then there are no edges in column ¢ (resource
g¢ is neither requested nor granted). If there is an entry “01” in column ¢ of Miter; cBO, then there is
one grant edge in column ¢ (resource ¢; is granted to only one processor and is not requested by any
processor), and the corresponding resource is a terminal node. If there is an entry “10” in column ¢ of
Miter; cBO, then there is at least one request edge in column ¢ (resource g¢; is not granted to any processor
and is requested by at least one processor), and the corresponding resource is a terminal node. If there
is an entry “11” in column t of Miier; cBO, then there exists at least one request edge and exactly one
grant edge in column ¢ (resource ¢; is granted to one processor and requested by at least one processor),
and the corresponding resource is a connect node. Vector Mier; rBo is similarly interpreted. If there is

an entry “00” in row s of Miter; RBO, then there are no edges in row s (processor ps is not requesting

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 51

nor holding any resource). If there is an entry “01” in row s of Miter; RBO, then there is at least one
grant edge in row s (processor p; is holding at least one resource but is not requesting any resource),
and the corresponding processor is a terminal node. If there is an entry “10” in row s of Miter; RBO,
then there is at least one request edge in row s (processor ps is not holding any resource but requesting
at least one resource), and the corresponding processor is a terminal node. If there is an entry “11” in
column ¢ of Miter, cBO, then there exists at least one request edge and exactly one grant edge in column
t (processor p, is both holding and request at least one resource), and the corresponding processor is a
connect node.

It can be seen from the cases described above that the existence of terminal nodes is always indicated
by the fact that the bits differ in pairs (m[, ;,mZ ;) and (m]. ,,mg,). Therefore, we perform XOR
operation between the bits of these pairs.

Consider the column 1 in Miter; cBo- We perform XOR between (my, ; and mf; 1) to find the first
element 7.;. Similarly, we perform XOR for other columns to find other elements — 7.2, 7.3. We collect
all the resulting bits into vector Xiter; cB0. Analogously, we peform XOR between my. s and my. for
all rows to find all elements 7,5 of Xiter; RBO-

In this example, columns 1 and 2 of Miter; cBo have value “11”, which means that the resources g;
and ¢; are both granted to one processor and are requested by at least one processor. Column 3 of
Miter; cBo has value “01”7, which means that the resource g3 is granted to only one processor and is not
requested by any processor. Thus, column 3 is a terminal column. As shown in Mijer; RBO all processors

are requesting and holding at least one resource.

Xiter; CBO :[TC Tea T I=[0 0 1]
(22) e 1 2 T3
where 7y = my, , ®m?. ,
Tr1 0
Xiter; RBO = =
(23) Tr2 0

where 1; = m[, , ®mJ ,

The vector Xiter; cBO is used to identify which column(s) is (are) terminal column(s) 7.; — the cor-

responding column entry is (entries are) “1”. Similarly, the vector Xjier; RO is used to identify which

52 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

row(s) is (are) terminal row(s) 7,s — the corresponding row entry is (entries are) “1”. In this example,
there is only one “1” entry in the column 3 of Xjter, cBo- Thus, the column 3 of Mje, is a terminal col-
umn and according to line 10 of Algorithm 6, all entries in the column 3 will be set to zero. This means
that mao3 is changed from a grant edge to no edge (releasing resource ¢s3). In other words, resource g3 is
a terminal node while serving processor p2, and is reduced to an isolated node after serving processor
p2. The “0” entries in Xijer; RBO indicate that there are no terminal rows and thus line 7 of Algorithm 6
is not executed in this iteration. A new state matrix M; ;1 is obtained at the end of the first iteration.
The matrix reduction step dp(M;;) is represented by statements from Line 6 to Line 12 of Algorithm 6.

The content of the new matrix M; j11 is shown as follows:

01 10 00 g r 0
(24) M; 41, B = Miter; B = M; j41 = Migeration =
10 01 00 r g 0

At the same time when Xiier, cBo and Xiter; RBO are calculated, we can also determine whether Mjter
contains any connect column ¢; and connect row ¢, by generating another two vectors: (1) Ajter; cBO
from Miter; cBO, and (2) Aiter; RBO from Mier; RBO- The vectors Ajter; cBo and Aiter; RBO are used to
determine whether a reduction sequence A s is a complete reduction or an incomplete reduction (Line 8
to Line 12 of Algorithm 5). If a matrix Miie, is incompletely reduced, then M; ;i = Apr(M;;) must
contain at least one cycle (See Theorem 4 and Theorem 5), whose nodes are all connect nodes. Since the
nodes in a cycle of an irreduced state matrix M; ;i are not reduced, and are in the set ¥4 of connected
nodes, the connect row ¢,.s; and the connect column ¢, can be used to distinct between complete and
incomplete reductions of a matrix reduction sequence Ar(M;;). If state matrix M; ;44 contains connect
rows and connect columns at the end of a matrix reduction sequence, the matrix reduction sequence is
an incomplete reduction. Otherwise, the matrix reduction sequence is a completely reduction.

The vectors Ajter; cBo and Aiter; rBO are calculated according to Definitions 40, 59, and 60. A node
is a connect node if it has both request and grant edges, i.e., the value (m[, ;,,mZ ;) (or (m]. ;,mi.)) is
“11”. Thus, an element of the vector Ajer; co is AND of every two bits (my, , and mY, ;) of Miter; cBO,
and an element of the vector Ajier; RBO i3 AND of every two bits (m]. ; and m{. ,) of Miser; rpo- The

vector Ajter; cBo is used to identify which column ¢ is a connect column — ¢, is “1”. Similarly, the

vector Aiter; rBO is Used to identify which row s is a connect row — ¢, is “1”. In this example, there

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 53

are two “1”s in Ajter; cBo and two “1”s in Ajter; RBO- In other words, processors p; and p» are connect

nodes — they are either inside a path or a cycle. Similarly are connect nodes resources ¢; and gs.

Aiter; cBO =] g1 e be3 | = [11 0]

(25)
where ¢ =m[. , Aml ,, for 1<t<3
¢T1 1
Aiter; RBO = =
(26) ¢r2 1
where ¢ps =my. ;Am{, ., for 1 <s <2

In this iteration, Ajter; cBo and Aijer; RBO are ignored because the current values of Xjier; cBo and
Xiter; RBO Show that the current state matrix M, is reducible. It is still worth to calculate these vectors
at every iteration to speedup the decisions in Algorithm 5. This is similar to speculative excution [11]
found in modern computer architecturess.

Now we will show the calculations that occur in the second iteration. For this iteration, the matrix

Miter; B is as follows:

01 10 00 g r 0
Miter; B = Miterate =
(27) 10 0 00 r g 0

Vectors Miter; cBO, Miter; RBO, Xiter; CBO, Xiter; RBO, Aiter; cBO, and Ajter; RBO are calculated from

Miter; B like in the first iteration.

54 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

T
Miter; CBO — [11 11 00 :| Miter; RBO — [11 11 :|
(28) Xiter; cBO = [0 0 0] Xites kBO = [0 0]F
T
Ajter; cBO = [110] Aiter; RBO = [11]

Since there are only “0”s in vectors Xiter; cBO and Xiter; RBO, the state matrix Miier, p does not have
any terminal columns nor rows. In other words, the system state matrix Mi¢er; p is in an irreducible
state. Also, vectors Aiter; cBO and Aiter; RBO indicate that there exist connect nodes. Since the state
matrix Miter, B is irreducible (line 4 of Algorithm 6), the Algorithm 6 returns Mier, B a8 M; jtk; B-
Algorithm 5 then checks the vectors Ajter; cBO and Aiter; RBO to determine if the matrix reduction
sequence Apr(M;;) is completely reduced or not. Since vector Ajter; cBo contains “1”s in column 1 and
2, connect nodes exist (Line 11 of Algorithm 5). Therefore, a deadlock exists in state matrix M;;. Note

that the value k, which would help us to distinguish between state matrices, is not computed.

Pr—19,

|P\Q|(J1|Q2|Q3|
D1 glr |0
q p2 |70y

TABLE 5. Example-IT with 2 Processors and 3 Resources

Example 32. Consider another example shown in Table 5, which does not contain a cycle. There are
two processors, p; and po, and three resources, q1, g2, and ¢3. The state matrix Mijierate and its one-hot

encoded representation Miier; p are shown as follows:

g r 0 01 10 00
Miterate = Miter; B —

(29) r 0 g 10 00 01

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 55

In the first iteration, Xiter; cBo indicates that all entries in the second and third columns should be
set to zeros. However, there are no terminal rows because Xiter, RBO has only “0”s. Therefore, all entries

in second and third columns are replaced by zeros as shown in the next iteration.

T
Miter; cBO = [11 10 01] Miter; RBO = [11 11]
T
Xi r; = 1 1 :| Xi r; = |: :|
(30) ter; CBO [0 ter; RBO 0 0
T
Aiter; CBO — [1 0O] Aiter; RBO — [1 1]

In the beginning of the second iteration Miterate and Miter; B are as follows:

g 00 01 00 00
Miterate = Miter; B —
(31) r 0 0 10 00 00

In the second iteration Xjter; RBO has two “1”s which indicate that both rows should have their entries

set to zeros.

T

Miter; cBO = [11 00 00] Miter; RBO = [01 10]
T

Xiter; cBO = [0 00] Xiter; RBO = [11]
T

Ajter; cBO = [100] Ajter; RBO = [0 0]

The third iteration is not performed because Miterate is irreducible as shown by vectors Xiter; cBO and
Xiter; RBO — both contain only zeros. At the same time, the vectors Ajter; cBO and Aiter; RBO indicate

that there is no deadlock — both vectors contain only zeros.

56 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

0 0 0
Miterate =

0 00

Miter;, cBO = | 00 00 00] Miter, RBO =

Xiter; cBO = [0 0O]

Aiter; CBO =

000]

00 00 00
Miter; B =
00 00 00
T
00 00]
T
Xite; RBO=| 0 0]

T
Aiter; RBO — |: 0 0]

6.2. Generalization of Deadlock Detection Hardware Architecture.

In this subsection, we will generalize the equations used in the previous subsection. A given system

state «y;; is equivalently represented by a system state matrix M;;, which is used as the input to the DDU

to perform deadlock detection. The system state matrix M;; is explicitly represented in Equation 34.

Mm1

Based on the generalization of Equation 19,

Miter; B, where m?%, and m?, can have values “0”

mig -+ Mip
Mt e Msn
Mmt -+ Mmn

we derive the following binary encoded state matrix

and “17:

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 57

(miy,m{;) - (mipmi) - (mi,,m{,)
(35) Miter; B = (my,mdy) - (mi,miy) - (mG,,md,)
i (m:nlﬂmfnl) e (M mp) e (M mi,) i

Based on the generalization of Equation 20, we derive the following vector Miter; cBO:

Miter; ¢BO = (mg, 1> mg; 1) (mg, 25 mg; 2) T (mz, ts mg; t) T (mz, n’ mg; n)
(36) m m
where Vt, m} , = _/ my, and mi , = _/ mY,

s=1 s=1

Based on the generalization of Equation 21, we derive the following vector Miter; RBO:

T
(37) Miter; RBO = (m:, 1s mg; 1) (m:, 2:m£; 2) U (m:, s’mg; s) T (m:, n’mg; n)
n n
where Vs, m;. = \/mj, and mi =\ md,

t=1 t=1
Based on the generalization of Equation 22, we derive the following binary vector Xiter; cBO that

indicates the existence of terminal processor node(s):

Xiter; CBO = | Te1 Tea *++ Tt Ten
(38)

where 7,4 = m}, , @ mi, ,

Based on the generalization of Equation 23, we derive the following binary vector Xiter; RBO that

indicates the existence of terminal resource node(s):

Xiter; RBO = | Tp1 T2 '+ Trs ' Trm

(39)

where 7,5 = my, , @mi.

58 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

From the description in Examples 31 and 32, we have the following feedbacks from Xjier.cB0 and

Xiter:rBO Of iteration k to update Mier, p for the next iteration (k + 1):

(m:tﬂ mgt)ka if 7y =0and 7., =0

T k+1

(msta mgt) -
(40) o _
(0,0), ifrg=1orms=1

where k refers to k' iteration, and k + 1 refers to k + 1'" iteration

Based on the generalization of Equation 25, we derive the following binary vector Ajter; cBO that

indicates the existence of connect node(s) among processors:

Aiter; cBO = | ¢, 2 Pet cc Pen
(41) 1 Pe2 Pet ¢

where ¢4 = ml. , Am,
Based on the generalization of Equation 26, we derive the following binary vector Ajier; RBO that

indicates the existence of connect node(s) among resources:

(42) Aiter; RBO = d)rl ¢r2 Tt d’rs ¢Tm

where ¢rs =my, ; Ami,
From the description in Examples 31 and 32, we have the irreducability condition to terminate the

iteration of Algorithm 6 that is calculated from Xjier.co and Xiter-rBO:

n m
(43) d, =-1.AN-71,, wherer, = \/ 74, and 7. = \/ 70y 5
t=1 s=1

From the description in Examples 31 and 32, we also have the following deadlock detection condition

(line 8 of Algorithm 5) that is calculated form Ajter.c0 and AjterrBO:

dy =¢cV b, ifd, =1

where ¢ = \/ ¢¢; ¢, and ¢ = \/ ¢y 5
t=1 s=1

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 59

6.3. Components of the Deadlock Detection Unit.

In this subsection we describe the Deadlock Detection Unit (DDU): a hardware unit that deter-
mines whether a given state M;; (or it’s equivalent v;;) is a deadlock state or not.

We define some more equations to facilitate the description of DDU architecture. We define d as a

pair (d,,d;). From Equations 38 and 41 we define bottom weight vector as follows:

We = We1 We2 =+ Wet -+ Wen
(45)

where we; is a pair (7¢; ¢, ¢c; ¢)
Each element w.; in W, is called a column weight cell. From Equations 41, and 42 we define the row

weight vector as follows:

W = Wy Wy 0 Wes 0 Wem
(46) T 1 2

where w,; is a pair (7, s, ¢r; 5)

Each element w,s in W, is called a row weight cell. We refer to weight cell w as a column weight cell
wer or row weight cell w,s. Also, we refer to weight vector W as a column weight vector W, or a row
weight vector W,..

Putting together all equations described previously, the architecture of the DDU consists of three
parts. Part 1 is the system matrix M; consisting of an array of matrix cells m,; that represent (m7,,m%,).
Part 2 consists of two weight vectors: (i) one column weight vector W, below the system matrix M;,
and (ii) one row weight vector W, on the right hand side of the system matrix M;. Part 3 consists of
one decide cell d at the bottom right of the system matrix M;. All cells are interconnected via buses.

In Figure 26 the decide cell d calculates Equations 44 and 43. Each matrix cell my calculates
Equation 40. All column weight cells w; calculate Equations 36, 38, and 41, while all row weight cells
wyrs calculate Equations 37, 39, and 42.

The most straightforward way to store the state of an iteration is to implement the matrix cells as
FSMs that calculate Equation 40. That would require 4 x m x n flip-flops — half of them would be needed
to store the initial M;; and half of them would be needed to store the state Mi¢erate- From other side,

the extra information Mjerate carries is the list of terminal nodes. This can be avoided by storing the

60 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

| —e —»

matrix o, o matrix o o matrix
cell cell
I . T 3 D

- a— —

=}
)
=
.
L

L matrix 4 ¢ matrix
cell cell

- — a—

matrix 4 ¢ matrix ¢ matrix
cell cell cell

l A]

FIGURE 26. Deadlock Detection Architecture with three processors and three resources.

list of terminal nodes in weight cells because weight cells are actually determining the terminal nodes.
The number of needed flip-flops would be then 2 x (m + 1) x (n + 1). The following description of cells
follows the second possibility — the matrix cells are implemented as combinational functions and weight

cells are implemented as FSMs.

6.3.1. Matriz Cell.

Each matrix cell my in Figure 27 has two inputs Tet® and 7,5* as the current state of W, and W,,
respectively. The inputs from the initial state matrix M;; are implicitly understood by the indexes s
and t (mgt0 and mgto). Each matrix cell mg; in Figure 27 has four outputs: 5" on the top, bs:* on the

bottom, ;% on the left, and ry* on the right of each side of the matrix cell m .

[2 0 k ko _ 0 k
tst - m;t N Tprs lst - m,:t N Tet

() 0 0
k k k
b _mg /\7_ r _mg /\7-

Note that the superscript k£ denotes the current iteration.

6.3.2. Weight Cell.
Each column weight cell wg; in Figure 28 has two inputs I,;* and 7, as the current state of mg*.

Also, each column weight cell w,; in Figure 28 has two outputs: 7.;* on the top and ¢Ctk on the bottom.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 61

st T

bt
ISte mst %rst
v

FIGURE 27. Matrix Cell my in the matrix array M;;

Similarly, each row weight cell w,; in Figure 28 has two inputs t,;* and bstk as the current state of mg*

. Also, each row weight cell w,, in Figure 28 has two outputs: 7,,* on the left and ¢T5k on the right.

Tttt = (V lft) ® (V Tft)
s=1 t=1

Trsk+1 = (V tft) @ (V blsct>
t=1 t=1

Note that the superscripts, k& and k + 1, indicate that Equation 48 is the next station function of the

(48)

corresponding FSM.

t
Tet d; ft
I v
- | W
lst# WCt 4I‘St TI'S s 9(I)I‘S

.
¢¢ct dr bst

(a) weight cell wet (b) weight cell wys
in column weight in row weight ar-
array Wy ray Wy

FI1GURE 28. Weight Cells in W} and in UW,.

6.3.3. Decide Cell.
The decide cell d in Figure 29 has fours inputs 7.; and ¢, from W, and 7,s and ¢,; from W,.. The
decide matrix cell d in Figure 29 has two outputs: d. on the top left, d, on the bottom right. d, is

calculated according to Equation 43 and d, is calculated according to Equation 44.

62 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

dy

FIGURE 29. Decide Cell d

(a) A Chain of OR gates

%j pull up I:

l_ precharge

A

(b) A Dynamic Wired OR gate

Ficure 30. Different Implementations of Interconnections of DDU

6.4. Interconnections of DDU.

The number of inputs of each column weight cell (Figure 28) is proportional to the number of pro-
cessors m. The number of inputs of each row weight cell (Figure 28) is proportional to the number of
resources n. The number of inputs of the decide cell (Figure 28) is proportional to the number of pro-
cessors m and the number of resources n. Hence, the hardware implementation does not scale very well,
i.e., it has high fanin. One possible implementation is shown in Figure 30(a). A faster but significantly
larger would be to implement this as an OR gate tree. However, we can optimize both area and speed

futher by using either of the solutions shown in Figure 30(b).

6.5. Synthesized Result of DDU.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 63

We used Synopsys Design Compiler (DC) to synthesize all modules of DDU using American Micro-
systems Inc. AMI 0.3um standard cell library. The column “Gates” in Table 6 refers to the number of
typical gates (NAND, NOR, INV, and XOR) and to the number of registers (D, JK, and T flip-flop).
The column “Area” denotes that the area is relative to a 2 input NAND gate in AMI 0.3 library. The
unit of the Delay column is ns. The longest delay is feedback path between state register of the weight

cell. The area of DDU can be approximated as follows:

(49) A=(mxn)x Ay +(m+n) x Ay + Aqg

A, = 5.1 is the area of matrix cell my. A, = 13.9 is the area of weight cell wy; or w,s. Ag = 3.2
is the area of the decide cell \s. Besides logic optimization, DC replaces all wired OR gates with
ordinary OR gates, which increases the area and delay. Hence the difference between the Area from DC
and Equation 49. Table 6 shows a good correlation of the expected and synthesized results about the

scalability and speed of the DDU.

Module | Line | Area | Eq.49] Gates [Delay |

matrix 20 5.1 - 540 0.26
weight 60 13.9 - 7+1 0.64
decide 26 3.2 - 340 0.16

ie2x3 49 | 186.2.7 103 119+ 5 0.91
iedxd 73 364.1 270 197410 2.21
ie7x7 102 | 455.2 448 220414 2.51
iel0x10 | 162 | 621.5 791 382+20 3.66
ieb0x50 | 2682 | 14142.2 | 14143 | 13202+100 | 4.12

TABLE 6. Synthesis Results of DDU

6.6. Timing Performance.

Although the software cycle (mostly bus cycle) and the hardware cycle (delay between matrix cells and
decide cell throught weight cells) are different, it can still be used to compare the design performance in
a conservative way, since the hardware deadlock detection unit has less than 10 logic gate levels between
weight cells. The VCS simulation and ISA emulation are carried out assuming an ideal situation (ideal

CPI, no pipeline stalls, no cache misses, no bus arbitration or wait period, no memory read or write

64 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

cycles, no interrupts). This assumption is applicable to ISA emulator that does not have a cache,
memory, nor bus model. Also, such situation serves as the best case for comparison.

First, both hardware and software deadlock detections are modeled in Matlab to understand the
properties of the algorithm and to give a rough initial performance an estimation. This rough estimate

points out 2w (nxm) 5 performance improvement (see proof of Theorem 6), where m is the number

Onw(min(n,m))
of processors and n is the number of resources. Second, the software deadlock detection algorithm is
implemented and tested in C, and hardware deadlock detection algorithm is implemented and tested in
Verilog. Third, a codesign environment is developed using Tcl/Tk and “expect” to interact with and
extract information from VCS Verilog simulator and ISA ARM7TDMI emulator. The experiments show
that software algorithms has about 1000 to 800 software cycles and the hardware algorithm has about

10 cycles (which makes 99% run time improvement).

Deadlock Detect: Cycle vs Edge

10000 ¢ T T T T T T T T T
E 5 5 5 5 5 5 5 5 5 "2x2.sw" -+
| | | | | - | 1 "13x3sw"
S S T T - A R S S S SN
4 o O o 3 A X X K 3 a2 a A o X A { "5x5sw" O
« X % ¥ % e o o | ° 1 "d2x2.sw" =
; o o 6 ; ; ; "d3x3.sw" o
ool . £ F T e A N N T | vdaxasw e
I "] "d5x5.sw" &
: i i i i i h . .] "d6X6-sW" A
"I5x5.hw" ¥
o "d5x5.hw" v
©
>
o 3 3 3 3 3 3 3 3 3
o 100 T . b TEH R HEEE e e =
@ E s s s s s s s s s]
o] r ; ; : : : : : ! : b
IS
>
Z
b
v v v v ;
v v : :
v v v v v v
¥ v v v oy 1
’ i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20

Number of Edge

FIGURE 31. Hardware vs Software Run Time Complexity of the Deadlock Detection.

HARDWARE/SOFTWARE DEADLOCK DETECTION ALGORITHM AND IMPLEMENTATION 65

Note: In Figure 31 “Number of Cycles” means hardware cycles when used for hardware run time, and
software cycle when used for software run time. “Number of Edges” means the total number of both
request and grant edges in a given matrix representation. The plot in the top part, showing the run
time complexity of the software deadlock detection algorithm, is about 1000 cycles and more. Also the
range of run time complexity is about 1000 to 5000 cycles, which makes the timing characteristics of a
system hard to predict. The plot in the bottom half, showing the run time complexity of the hardware
deadlock detection, is about less then 10 cycles. The range of run time complexity is also less than 10

cycles.

7. CONCLUSION

In this report, a new parallel algorithm is proposed and proven. The main difference of the new
algorithm is that the new parallel algorithm deals with the dangling path instead of explicitly finding
out the exact cycles. Most of the previous algorithms [1]-[6] require back-tracking if a dead-end path
is found. That increases computation time. However, the proposed algorithm implicitly finds out if a
given system state contains a cycle without actually tracing a path. The proof of the new algorithm is

based on several observed properties that are not addressed by the path-based tracing algorithms.

REFERENCES

[1] M. Maekawa, A. E. Oldhoeft and R. R Oldehoeft, Operating Systems - Advanced Concepts, Benjamin-Cummings Pub.,
1987.

[2] R. C. Holt, Some Deadlock Properties of Computer Systems, ACM Computing surveys, Vol.4, No. 3, september 1972.

[3] A. Shoshani. and E. G. Coffman Jr., Detection, Prevention and Recover From Deadlocks in Multiprocess, multiple
resource systems, Proc. 4th Annual Princeton Conf. on Information Sciences and System, Mar. 1970.

[4] I. Cahit, Deadlock Detection Using (0,1)-Labeling of Resource Allocation Graphs, IEE Proceedings Compute. Digit.
Tech. Vol. 145, No. 1, January 1998.

[5] F. Belik, An Efficient Deadlock Avoidance Technique, Trans., 1990, C-38 (7), pp. 882-888.

[6] J. G. Kim and K. Hoh, An O(1) Time Deadlock Detection Scheme in Single Unit and Single Request Multiprocessor
System, IEEE TENCON’91, Vol 2, pp. 219-223, August , 1991.

[7] Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

[8] Lennard Lindh, FASTCHART = Idea and Implementation, IEEE, International Conference on Computer Design
(ICCD), Boston, USA, October 1991.

[9] http://www.cis.temple.edu/"ingargio/cis307/index.html

[10] Giovanni De Micheli, Chapter 2 of Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

66 GIT-CC-02-46 SEPTEMBER 4, 2002 PUN HANG SHIU

[11] David A. Patterson, John L. Hennessy, Computer Architecture: A Quantitative Approach, Second Edition Morgan
Kaufmann Pub., 1996.
[12] Pun H. Shiu, and Vincent J. Mooney III, The Pricinple of Parallel Deadlock Detection, technical report GIT-CC-00-30,

december 24, 2000, Georgia Institute of Technology.

