
An Efficient Robust Concept Exploration Method and Sequential

Exploratory Experimental Design

A Dissertation
Presented to

the Academic Faculty

By

Yao Lin

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy in Mechanical Engineering

Georgia Institute of Technology
July 2004

Copyright © 2004 by Yao Lin

An Efficient Robust Concept Exploration Method and Sequential
Exploratory Experimental Design

Approved:

Farrokh Mistree, Chair
Professor, Mechanical Engineering

Janet K. Allen
Senior Research Scientist
Mechanical Engineering

Kwok-Leung Tsui
Professor
Industrial and Systems Engineering

Victoria Chen
Associate Professor
Industrial and Manufacturing Systems
Engineering
The University of Texas at Arlington

David W. Rosen
Associate Professor
Mechanical Engineering

Wenjing Ye
Assistant Professor
Mechanical Engineering

Date Approved: July 29, 2004

ACKNOWLEDGMENTS

There are many I would like to acknowledge for contributing, in one form or

another, to the research in this dissertation. First and foremost, I would like to thank my

committee members for their comments and suggestions. Specially, I sincerely thank my

advisors Dr. Farrokh Mistree and Dr. Janet K. Allen for their extraordinary guidance,

inspiration, and support, which helped me grow both intellectually and personally. I also

appreciate the valuable expertise, insight, support, and recommendations that Dr. Kwok-

Leung Tsui offered for my dissertation. I would like to express my special thanks to Dr.

Victoria Chen, who has given me a lot of insightful thoughts and valuable instructions on

almost all aspects of the studies in this dissertation. I am also very grateful to Dr. David

Rosen and Dr. Wenjing Ye for serving as my dissertation reading committee members;

their insights and advice from viewpoints of Mechanical Engineering are very useful for

my research in this dissertation. I would like to thank Dr. Tim Simpson, whose kriging

computer codes are used to develop kriging metamodels in this dissertation.

I would like to express my gratitude to my colleagues in the Schools of

Mechanical Engineering and Industrial and Systems Engineering at Georgia Institute of

Technology. First I would like to thank my co-researcher Terrence Murphy in School of

Industrial and Systems Engineering, who listened to me, understood my ideas, and

provided insightful feedbacks. Thanks also go to Carolyn Conner Seepersad, Haejin

Choi and Marco Fernandez, who helped me a lot with the LCA design example in

iii

iv

Chapter 7. I am grateful to Carolyn Conner Seepersad and Jitesh Panchal for their

services on iSIGHT, ModelCenter, and other computer software used in this dissertation.

I would like to thank Dr. Angran Xiao and Hongqing Wang for their help in trouble-

shooting of technical problems with CAD/CAE software. Also, special thanks go to

Chris Williams, Matt Chamberlain, Scott Duncan, Andrew Schnell, Benay Sager, John

Reap, and all other students who have been or are currently in the Systems Realization

Laboratory, for helping build a pleasant and inspiring environment in which my research

is carried.

I owe great thanks to my family for their continual support and encouragement.

Thanks to my parents for not only giving me the chance to come to the world, but also

teaching me how to face and enjoy things in the world. I am very grateful to my

Godmother. She is my instructor in the life and will always be the person I respect most.

Thanks to my little sister and brother for so many happy memories. Special thanks go to

my girlfriend, Min Jin, who is caring and supportive; her love has always been an

encouragement to me. Also I would like to thank all my friends that helped me and spent

good times with me in the past years.

Finally, I would like to offer deep thanks to the National Science Foundation for

financial support under grants DMI-96-12365 and DMI-01-0100123 during my Master’s

and Ph.D. studies. I also appreciate the support from ONR Contract N00014-01-1-0267.

The Systems Realization Laboratory has underwritten the cost of computer time.

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

TABLE OF CONTENTS v

LIST OF FIGURES xi

LIST OF TABLES xxv

SUMMARY xxxiii

CHAPTER 1. FOUNDATIONS FOR SEQUENTIAL METAMODELING AND
SEQUENTIAL DESIGN SPACE EXPLORATION ..1

1.1 Motivation and background .. 2
1.1.1 Engineering Design Processes and Design of Large Scale Engineering

Systems in Early Stages ... 5
1.1.2 Information Handling in Design of Open Engineering Systems 10
1.1.3 Approximation-Based Robust Design and the Needs for Sequential

Metamodeling and Sequential Design Space Exploration 15
1.2 Frame of Reference... 21

1.2.1 Decision-Based Design, the Decision Support Problem Technique, and the
Compromise Decision Support Problem.. 21

1.2.2 The Robust Concept Exploration Method .. 26
1.3 Research Focus in the Dissertation... 30

1.3.1 Metamodeling and Design Space Exploration – Problems to be Addressed..
.. 31

1.3.2 Research Questions and Hypotheses in this Dissertation 34
1.3.3 Contributions from the Research .. 46

1.4 A Validation and Verification Strategy for this Dissertation 47
1.5 Organization of the Dissertation ... 53

CHAPTER 2. A LITERATURE REVIEW: DESIGN OF EXPERIMENTS,
METAMODELING, INFORMATION THEORY, AND ROBUST DESIGN SPACE
EXPLORATION..55

2.1 Our Research Objectives and Organization of References................................... 56
2.1.1 Research Motivations: Problems and Challenges in Approximation-Based

Robust Design .. 56

 v

2.1.2 Research Objectives ... 63
2.1.3 Organization of References .. 67
2.1.4 Organization of Research Questions: Removing Gaps Between Available

Resources and Proposed Design Space Exploration Methods 69
2.2 Robust Design Space Exploration .. 74

2.2.1 Taguchi’s Method... 76
2.2.2 Robust Design in the Early Design Stages... 81

2.3 Metamodeling Techniques and Deterministic Computer Experiments 86
2.3.1 Response Surface Methodology... 92
2.3.2 Deterministic Computer Experiments .. 94
2.3.3 Validation of Metamodels .. 98

2.4 Different Types of Metamodels .. 100
2.4.1 Response Surface Models .. 100
2.4.2 Kriging.. 104
2.4.3 Multivariate Adaptive Regression Splines... 110
2.4.4 Other Types of Metamodels ... 117

2.5 Design of Experiments.. 119
2.5.1 D-Optimal Experiments ... 120
2.5.2 Classical and Space-Filling Experimental Designs.................................. 122

2.6 Information Theory and Entropy Optimization Principles 124
2.7 A Look Back and a Look Ahead... 128

CHAPTER 3. METAMODEL VALIDATION WITH DETERMINISTIC
COMPUTER EXPERIMENTS..131

3.1 Metamodel Validation: Cross-Validation and Additional Validation Points 132
3.1 Theoretical Study of Leave-One-Out Cross-Validation 134
3.2 Impirical Study of Leave-One-Out Cross-Validation... 144
3.3 Metamodel Validation With Information from Additional Validation Points ... 154

3.3.1 Preliminary Methods of Metamodel Validation for Engineers 156
3.3.2 Metamodel Validation with the Branin Function..................................... 158

3.4 Summary of Research on Metamodel Validation... 163
3.5 A Look Back and A Look Ahead ..166

CHAPTER 4. SEQUENTIAL EXPLORATORY EXPERIMENTAL DESIGN...169

4.1 What Is Presented in This Chapter ... 170
4.2 Design of Sequential Experiments: Problem Overview 171
4.3 Construction of D-Optimal Designs ... 177
4.4 Bayesian Entropy Design.. 181

4.4.1 Prior and Posterior Distributions.. 183
4.4.2 The Stationary Assumption .. 185
4.4.3 The Entropy Criterion .. 187

4.5 The Sequential Exploratory Experimental Design Method................................ 190

 vi

4.5.1 Overview of the Sequential Exploratory Experimental Design Method.. 193
4.5.2 Identification of New Data Points through Utilization of Information at

Previous Data/Validation Points and Metamodels................................... 195
4.5.3 Mathematical Formulations of Entries in the Adjusted Covariance Matrix

in Sequential Exploratory Experimental Design...................................... 204
4.5.4 Flowchart and Steps of the Sequential Exploratory Experimental Design

Method.. 218
4.6 Application of The SEED Method – A Single-Variable Example 224

4.6.1 Single-Stage Experimental Design with A Single-Variable Function 224
4.6.2 Application of SEED in the Single-Variable Example – Formulation I .. 230
4.6.3 Application of SEED in the Single-Variable Example – Formulation II. 248

4.7 A Look Back and A Look Ahead ..261

CHAPTER 5. SEQUENTIAL METAMODELING ALONG THE DESIGN
TIMELINE ...265

5.1 What Is Presented in This Chapter ..266
5.2 A Comparison of Kriging and MARS Metamodels in Response Prediction267

5.2.1 An Observation and Analysis on the Performance of Kriging and
Univariate Regression Spline Metamodels in Response Prediction with
Space-Filling Experiments ..268

5.2.2 An Observation and Analysis on the Performance of Kriging and
Regression Spline Metamodels in Response Prediction with Unevenly
Spread Data Points ..281

5.2.3 An Observation and Analysis on the Performance of Kriging and MARS
Metamodels in Response Prediction with Unevenly Spread Data Points .293

5.3 Utilization of MARS Metamodels in the Sequential Exploratory Experimental
Design Method...298
5.3.1 Utilization of MARS in SEED ..299
5.3.2 Example: A Single-Variable Function ..301
5.3.3 Discussions on Applications of the SEED method322

5.4 An Approach for Sequential Metamodeling Along the Design Timeline327
5.5 Application of Sequential Metamodeling: Development of Metamodels in

Designing a Pressure Vessel ..333
5.5.1 Development of Metamodels for Multiple Responses in SEED...............336
5.5.2 Development of Metamodels for System Responses340
5.5.3 Comparison of Metamodels from SEED and Single-Stage Experiments

Designs ..363
5.5.4 Exploration of Solutions for the Design of Pressure Vessels....................367

5.6 A Look Back and A Look Forward ...371

 vii

CHAPTER 6. THE EFFICIENT ROBUST CONCEPT EXPLORATION
METHOD: INTEGRATION OF PROCESSES OF METAMODELING AND
DESIGN SPACE EXPLORATION ...377

6.1 Processes of Metamodeling and Design Space Exploration at Early Design Stages
 .. 378

6.2 Metamodeling with Consideration of Design Constratints................................. 383
6.2.1 Sequential Experimental Design and Metamodeling with Consideration of

Constraints on Design Variables .. 385
6.2.2 Sequential Experimental Design and Metamodeling with Consideration of

Constraints on Responses... 394
6.3 Metamodeling with Consideration of Design Goals... 402

6.3.1 The Efficient Global Optimization Method ... 403
6.3.2 Incorporation of Design Goals in SEED Metamodeling Processes 404

6.4 The Efficient Robust Concept Exploration Method ... 414
6.4.1 The Phase of Problem Initialization ... 419
6.4.2 The Phase of Metamodeling... 421
6.4.3 The Phase of Design Space Exploration .. 422
6.4.4 Different Design Processes in E-RCEM .. 423

6.5 Application of The E-RCEM Method: A Single-Variable Example.................. 426
6.6 A Look Back and A Look Ahead ..455

CHAPTER 7. ENGINEERING APPLICATION: DESIGN OF UNIT CELLS FOR
LINEAR CELLULAR ALLOYS ...459

7.1 Background of Design of Linear Cellular Alloys..460
7.1.1 Topology Design ...460
7.1.2 Linear Cellular Alloys ...463
7.1.3 Convectively Cooled Heat Sink for a Computer Chip466
7.1.4 Finite Element Modeling and Computer Simulation469

7.2 Example Problem: Design of Unit Cells for Linear Cellular Alloys...................471
7.3 Exploration of Design Solutions with RCEM ...483
7.4 Exploration of Design Solutions with SEED in RCEM490
7.5 Exploration of Design Solutions with E-RCEM..504
7.6 A Comparison and Discussion on RCEM, SEED, and the Integrated Design

Process in E-RCEM ...529
7.6.1 Comparison of Performance of Metamodels on Response Prediction......530
7.6.2 Comparison of Performance of Metamodels in Sequential Design Space

Exploration ..533
7.6.3 Selection of the Most Suitable Methods in Design: RCEM, SEED, or the

Integrated Design Process in E-RCEM...539
7.7 A Look Back and A Look Ahead ..542

CHAPTER 8. CLOSURE..545

 viii

8.1 Answering the Research questions ..546
8.1.1 Answering Research Question 1 ...548
8.1.2 Answering Research Question 2 ...551
8.1.3 Answering Research Question 3 ...556
8.1.4 Answering Research Question 4 ...561

8.2 Achievements: Review of research contributions ...565
8.3 Critical Review ..570

8.3.1 Metamodel Evaluation ..571
8.3.2 Metamodel Comparison and Selection..573
8.3.3 Sequential Exploratory Experimental Design ...575
8.3.4 The Efficient Robust Concept Exploration Method..................................578

8.4 Future Work ...581

APPENDIX A. SEQUENTIAL EXPLORATORY EXPERIMENTAL DESIGN:
CODES AND ORGANIZATION OF PROCESSES ..591

A.1 Exploration of Design Solutions with RCEM ...592
A.2 Implementation of SEED (FOrmulation I) in iSIGHT in Section 4.6.2621
A.3 Implementation of SEED (FOrmulation II) in iSIGHT in Section 4.6.3.............625

APPENDIX B. METAMODEL COMPARISON, SELECTION, AND
SEQUENTIAL METAMODELING..627

B.1 Comparison of Kriging and MARS Metamodels ..628
B.2 Utilization of Different Types of Metamodels in SEED633
B.3 Exploration of Design Solutions with SEED...645

B.3.1 MARS Metamodels Developed in Design of the Pressure Vessels645
B.3.2 Response Surface Metamodels Developed in Section 5.5.2654
B.3.3 FORTRAN Programs Used in SEED in Section 5.5.................................656
B.3.4 Implementation of SEED in iSIGHT in Section 5.5661

APPENDIX C. SUPPORTING MATERIALS FOR THE INTEGRATED
PROCESSES OF METAMODELING AND DESIGN SPACE EXPLORATION IN
E-RCEM ...663

C.1 FORTRAN Programs to Incorporate Design Goals in Metamodeling................664
C.2 Implementation of E-RCEM in iSIGHT in Section 5.5.......................................690

APPENDIX D. DESIGN OF UNIT CELLS FOR LINEAR CELLULAR ALLOYS:
EXPERIMENTS, SIMULATION RESULTS, PROGRAMS, METAMODELS, AND
PLOTS ..691

D.1 Exploration of Design Solutions with RCEM ...692
D.1.1 Latin Hypercube Design with 30 Data Points ...692

 ix

 x

D.1.2 MARS Metamodel of Responses Developed with 30 LH Experiments ...693
D.1.3 Formulating and Solving C-DSP in iSIGHT...695
D.1.4 Latin Hypercube Design with 40 Data Points ...698

D.2 Exploration of Design Solutions with RCEM ...700
D.2.1 Contour Plots of Metamodels of Responses..700
D.2.2 FORTRAN Programs Used in SEED in Section 7.4.................................708
D.2.3 Implementation of SEED in iSIGHT in Section 7.4736
D.2.4 Twenty Eight Points Identified with SEED ..739

D.3 Exploration of Design Solutions with E-RCEM..740
D.3.1 Contour Plots of Metamodels of Responses..740
D.3.2 FORTRAN Programs Used in E-RCEM in Section 7.5745
D.3.3 Implementation of E-RCEM in iSIGHT in Section 7.5756

REFERENCES 759

LIST OF FIGURES

Figure 1.1 An Assumption – Using Rigorous Analysis Tools in Concept Design Will
Reduce the Number of Design Changes (Chen, 1995) 9

Figure 1.2 Reducing Time-To-Market by Increasing Design Knowledge and
Maintaining Design Freedom (Simpson, 1995).. 12

Figure 1.3 What Might Happen After a Rigid Optimal Solution is Prescribed (Chen,
1995) ... 17

Figure 1.4 Robust with Respect to the Evolution of the Problem (Chen, 1995)........ 17

Figure 1.5 Design as a Transformation Between Requirements and Specifications
(Koch, 1998) ... 22

Figure 1.6 Compromise DSP Word Formulation... 23

Figure 1.7 Mathematical Form of a Compromise DSP (Mistree, et al., 1993b) 24

Figure 1.8 RCEM Computer Infrastructure (adapted from Chen, et al., 1996a) 27

Figure 1.9 Steps and Tools of the RCEM (adapted from Chen, et al., 1996a) 29

Figure 1.10 The Validation Square: Validating Design Theories or Methods (Pedersen,
et al., 2000) ... 48

Figure 1.11 Organization of the Dissertation Based on The Validation Square 50

Figure 1.12 Overview of Thesis Chapters.. 52

Figure 2.1 LTR Prediction for Maneuver ST Performed at 60 km/hr Using a 2-2
ANN (adapted from Goldman, 2001) ... 60

Figure 2.2 Suspension Response versus Frequency in Road Profiling (adapted from
Sayers and Karamihas, 1998) ... 60

Figure 2.3 Energy Dissipation for Various Yield Stress Values (adapted from
Holnicki-Szulc, et al., 2003) ... 61

Figure 2.4 Gaps and Bridges between Research Objectives and Existing Technical
Resources .. 69

 xi

Figure 2.5 Organization of References .. 73

Figure 2.6 P-Diagram of a Product/Process in Robust Design (adapted from Phadke,
1989) ... 75

Figure 2.7 Quadratic Loss Function... 77

Figure 2.8 A Comparison of Two Types of Robust Design (Chen, et al., 1995)....... 85

Figure 2.9 General Approach to Response Surface Metamodeling (Koch, et al., 1997)
... 88

Figure 2.10 Phases, Steps, and Corresponding Techniques in the Metamodeling
Process .. 89

Figure 2.11 Techniques for Metamodeling (Simpson, et al., 1997b)........................... 90

Figure 2.12 Deterministic and Non-Deterministic Curve Fitting (Simpson, et al., 1997)
... 94

Figure 2.13 Sample Two Variables Second-Order Response Surfaces (adapted from
Box and Draper, 1987).. 102

Figure 2.14 Example Classical and Space Filling Experimental Designs 120

Figure 3.1 A Single-Variable Function (Su and Renaud, 1996) 136

Figure 3.2 Kriging Models for the Single-Variable Function.................................. 137

Figure 3.3 Kriging Models for Calculating CVRMSE with Data Set I 139

Figure 3.4 Kriging Models for Calculating CVRMSE with Data Set II 139

Figure 3.5 Inaccurate Metamodel Due to the Correlation Among Data Points 142

Figure 3.6 Wire-Frame Plot of the Branin Function .. 145

Figure 3.7 Scatter Plot of RMSE and CVRMSE for Kriging Models for the Branin
Function .. 148

Figure 3.8 Scatter Plot of MAX and CVRMSE for Kriging Models for the Branin
Function .. 148

Figure 3.9 Correlation of Normalized CVRMSE and RMSE (Simpson, 1998) 153

Figure 3.10 Correlation of Normalized CVRMSE and MAX (Simpson, 1998)........ 153

 xii

Figure 3.11 Plot of Predicted Values Versus Actual Function Values for the Branin
Function with Data Set 15 .. 160

Figure 3.12 Normal Probability Plot for Standardized Residuals.............................. 160

Figure 3.13 Standard Residual Plot for the Branin Function with Data Set 15 161

Figure 3.14 Plot of Residuals versus Actual Function Values................................... 161

Figure 4.1 Data Points, Validation Points, and Candidate Points 174

Figure 4.2 Metamodeling Uncertainty at Nonlinear and Flat Regions (Modified from
Farhang-Mehr and Azarm, 2002) ... 198

Figure 4.3 Metamodeling Uncertainty at Regions with Large and Small Prediction
Errors .. 199

Figure 4.4 Flowchart of the Sequential Exploratory Experimental Design Method 219

Figure 4.5 A Single-Variable Function .. 225

Figure 4.6 Metamodel (I) – For Data Set I... 228

Figure 4.7 Metamodel (II) – For Data Set II .. 228

Figure 4.8 Initial Metamodel with 3 Data Points ... 232

Figure 4.9 Metamodel of Prediction Errors in the 1st Iteration 235

Figure 4.10 Kriging Metamodel with 4 Data Points .. 238

Figure 4.11 Metamodel Developed with 3 Validation Points in Iteration II – Step 3 239

Figure 4.12 Metamodel of Prediction Errors Calculated in Iteration II – Step 3....... 240

Figure 4.13 Metamodel of Prediction Errors with 5 Validation Points 241

Figure 4.14 Metamodel of Responses with 5 Data Points ... 243

Figure 4.15 Metamodel Developed with 5 Validation Points in Iteration III – Step 3
... 244

Figure 4.16 Metamodel of Prediction Errors Calculated in Iteration III – Step 3 245

Figure 4.17 Metamodel of Prediction Errors with 6 Validation Points 246

 xiii

Figure 4.18 Metamodel of Responses with 11 Points (SEED Formulation I) 247

Figure 4.19 Metamodel of Responses with 4 Data Points in the 1st Iteration 251

Figure 4.20 Metamodel Developed with 3 Validation Points in Iteration II – Step 3 252

Figure 4.21 Metamodel of Prediction Errors Calculated in Iteration II – Step 3....... 253

Figure 4.22 Metamodel of Prediction Errors in the 2nd Iteration 254

Figure 4.23 Metamodel of Responses with 5 Data Points ... 256

Figure 4.24 Metamodel of Responses Developed in Iteration III – Step 3................ 257

Figure 4.25 Metamodel of Prediction Errors Developed in Iteration III – Step 3 257

Figure 4.26 Metamodel of Responses with 11 Points (SEED Formulation II).......... 258

Figure 4.27 Application of SEED in RCEM.. 261

Figure 5.1 A Single-Variable Function .. 269

Figure 5.2 Kriging Metamodel with 6 Data Points .. 271

Figure 5.3 Regression Spline Metamodel with 6 Data Points.................................. 271

Figure 5.4 Kriging Metamodel with 12 Data Points .. 272

Figure 5.5 Regression Spline Metamodel with 12 Data Points................................ 273

Figure 5.6 Kriging Metamodel with 18 Data Points .. 275

Figure 5.7 Regression Spline Metamodel with 18 Data Points................................ 275

Figure 5.8 Regression Spline Metamodel with 24 Data Points................................ 276

Figure 5.9 Kriging Metamodel with 24 Data Points .. 277

Figure 5.10 Regression Spline Metamodel with 65 Data Points................................ 278

Figure 5.11 Kriging Metamodel with 65 Data Points .. 278

Figure 5.12 Regression Spline Metamodel with 201 Data Points.............................. 280

Figure 5.13 Kriging Metamodel with 201 Data Points .. 280

Figure 5.14 Regression Spline Metamodel with 13 Data Points................................ 284

 xiv

Figure 5.15 Kriging Metamodel with 13 Data Points (θ = 99.999999) 284

Figure 5.16 Kriging Metamodel with 13 Data Points (θ = 50) 285

Figure 5.17 Kriging Metamodel with 13 Data Points (θ = 500) 286

Figure 5.18 Kriging Metamodel with 13 Data Points (θ = 1000) 286

Figure 5.19 Kriging Metamodel with 13 Data Points (θ = 5000) 287

Figure 5.20 An Example of Metamodel and Prediction Errors.................................. 291

Figure 5.21 Regression Spline Metamodel for Prediction Errors with 21 Points 292

Figure 5.22 Surface Plot of the Two-Variable Function.. 294

Figure 5.23 Contour Plot of the Two-Variable Function ... 294

Figure 5.24 MARS Metamodel with 45 Data Points ... 297

Figure 5.25 Initial Kriging Metamodel with 4 Data Points.. 302

Figure 5.26 Metamodel of Prediction Errors in Iteration I .. 304

Figure 5.27 Kriging Metamodel with 6 Data Points .. 307

Figure 5.28 Regression Spline Metamodel with 6 Data Points.................................. 308

Figure 5.29 Metamodel of Responses Developed in Iteration II – Step 3 309

Figure 5.30 Regression Spline Metamodel of Prediction Errors in Iteration II – Step 3.
... 310

Figure 5.31 Regression Spline Metamodel of Prediction Errors in Iteration II 311

Figure 5.32 Regression Spline Metamodel with 8 Data Points.................................. 313

Figure 5.33 Regression Spline Metamodel of Responses Developed in Iteration III –
Step 3 .. 314

Figure 5.34 Regression Spline Metamodel of Prediction Errors in Iteration III – Step 3
... 315

Figure 5.35 New Regression Spline Metamodel of Responses in Iteration III – Step 3..
... 316

 xv

Figure 5.36 New Regression Spline Metamodel of Prediction Errors in Iteration III –
Step 3 .. 317

Figure 5.37 Regression Spline Metamodel of Prediction Errors in Iteration III........ 318

Figure 5.38 Regression Spline Metamodel of Responses with 16 Data Points 320

Figure 5.39 Regression Spline Metamodel of Responses with 19 Evenly-Spread Data
Points .. 321

Figure 5.40 Framework of Sequential Metamodeling (I) .. 332

Figure 5.41 Framework of Sequential Metamodeling (II) ... 332

Figure 5.42 Pressure Vessel ... 334

Figure 5.43 Main Effects Plot – Means for Cost.. 343

Figure 5.44 Actual Responses of Volume and Cost... 345

Figure 5.45 Initial Kriging Metamodel for Volume and Cost.................................... 347

Figure 5.46 MARS Metamodels of Prediction Errors in Iteration I........................... 349

Figure 5.47 Kriging Metamodel of Prediction Errors in Iteration I 350

Figure 5.48 Updated Metamodels of Responses with 6 Data Points 352

Figure 5.49 Kriging Metamodels of Responses Developed with 4 Validation Points in
Iteration II – Step 3 ... 353

Figure 5.50 MARS Metamodels of Prediction Errors Developed with 6 Data Points
and 4 Validation Points in Iteration II – Step 3 353

Figure 5.51 Kriging Metamodel of Prediction Errors for Volume in Iteration II – Step
3... 354

Figure 5.52 MARS Metamodels of Prediction Errors in Iteration II 356

Figure 5.53 Kriging Metamodels of Prediction Errors in Iteration II 358

Figure 5.54 Contour Plots of Metamodels of Prediction Errors for Vol and Cost..... 358

Figure 5.55 Final Kriging Metamodels for Vol and Cost .. 360

Figure 5.56 Final MARS Metamodels for Vol and Cost ... 361

 xvi

Figure 5.57 Contour Plots of Final Metamodels for Vol and Cost 362

Figure 5.58 Mathematical Formulation of C-DSP for Pressure Vessel Design......... 368

Figure 6.1 Traditional Organization of Processes of Metamodeling and Design Space
Exploration.. 378

Figure 6.2 The Robust Concept Exploration Method (adapted from Chen, et al.,
1996a) ... 380

Figure 6.3 Quasi-Feasible Design Space with 3 Constraints on Design Variables . 387

Figure 6.4 Data and Validation Points in the Quasi-Feasible Design Space 389

Figure 6.5 Contour Plot of Kriging Metamodels for Volume with 4 Data Points ... 390

Figure 6.6 Contour Plot of Predicted Prediction Errors (with 4 Data Points and 4
Validation Points) ... 391

Figure 6.7 Contour Plot of Kriging Metamodel of Vol with 10 Observed Points ... 392

Figure 6.8 Eight Data Points and Six Validation Points .. 393

Figure 6.9 Updated Metamodels of Responses with 6 Data Points 399

Figure 6.10 The Feasible Design Space and Boundaries ... 400

Figure 6.11 Infrastructure of the Efficient Robust Concept Exploration Method (I) 417

Figure 6.12 Infrastructure of the Efficient Robust Concept Exploration Method (II)418

Figure 6.13 Phase I – Problem Initialization.. 419

Figure 6.14 Phase II – Sequential Metamodeling .. 421

Figure 6.15 The Phase of Design Space Exploration (Integrated Processes of
Metamodel and Design Space Exploration) ... 422

Figure 6.16 A Single-Variable Function .. 427

Figure 6.17 Initial Metamodel with 3 Data Points ... 429

Figure 6.18 Metamodel of Prediction Errors Calculated in Iteration I – Step 4 430

Figure 6.19 Metamodel Developed with 7 Observed Points in Iteration I – Step 4 .. 431

 xvii

Figure 6.20 Values of goal.achievement at Points in the Design Space 432

Figure 6.21 Values of αiγi at Candidate Points in the Design Space in Iteration I – Step
5... 434

Figure 6.22 Kriging Metamodel of Responses Developed with 4 Data Points.......... 435

Figure 6.23 Metamodel of Responses Developed with 3 Validation Points in Iteration
II – Step 4.. 436

Figure 6.24 Metamodel of Prediction Errors Calculated in Iteration II – Step 4....... 437

Figure 6.25 Metamodel of Prediction Errors in Iteration II Developed with Information
at 9 Observed Points in Iteration II – Step 4... 438

Figure 6.26 Metamodel of Responses Developed with 9 Observed Points in Iteration II
– Step 4 ... 440

Figure 6.27 Values of goal.achievement at Points in the Design Space in Iteration II –
Step 4 .. 441

Figure 6.28 Values of αiγi at Candidate Points in the Design Space in Iteration II –
Step 5 .. 442

Figure 6.29 Metamodel of Responses Developed with 5 Data Points in Iteration II –
Steps 5, 6... 443

Figure 6.30 Metamodel of Responses Developed with 5 Validation Points in Iteration
III – Step 4 .. 444

Figure 6.31 Kriging Metamodel of Prediction Errors in Iteration III – Step 4 445

Figure 6.32 Univariate Regression Splines Metamodel of Prediction Errors in Iteration
III – Step 4 .. 446

Figure 6.33 Kriging Metamodel of Responses Developed with 10 Observed Points 447

Figure 6.34 Univariate Regression Splines Metamodel of Responses Developed with
10 Observed Points ... 448

Figure 6.35 Values of goal.achievement at Points in the Design Space 449

Figure 6.36 Values of αiγi at Candidate Points in the Design Space in Iteration III.. 450

Figure 6.37 Final Univariate Regression Splines Metamodel of Responses Developed
with Information at 11 Observed Points ... 451

 xviii

Figure 7.1 Dividing the Cantilever Beam Design Domain into Finite Elements (Choi
and Fernandez, 2003).. 462

Figure 7.2 Square-Cell Linear Cellular Alloy (Hayes, et al., 2001) 464

Figure 7.3 Compact, Forced Convection Heat Exchanger with Graded Rectangular
LCAs (Seepersad, et al., 2003) ... 468

Figure 7.4 Steps Involved in CPU/Heat Sink Assembly (Choi and Fernandez, 2003)..
... 468

Figure 7.5 Characteristics Fan Curve (Seepersad, et al., 2003) 469

Figure 7.6 General Step for Topology Design and Optimization (Adapted from Choi
and Fernandez, 2003).. 470

Figure 7.7 FEA Boundary Conditions (Adapted from Choi and Fernandez, 2003) 470

Figure 7.8 Contour Plot of Heat Transfer Rate (Q) vs. Wall Thickness (t) and Device
Width (W).. 479

Figure 7.9 Contour Plot of Heat Transfer Rate (Q) vs. Wall Thickness (t) and Mass
Flow Rate (MDot) ... 479

Figure 7.10 Contour Plot of Heat Transfer Rate (Q) vs. Device Width (W) and Mass
Flow Rate (MDot) ... 480

Figure 7.11 Contour Plot of Compliance (J) vs. Wall Thickness (t) and Width (W). 480

Figure 7.12 Contour Plot of Cross-Section Area of Solid Materials (As) vs. Wall
Thickness (t) and Device Width (W) .. 481

Figure 7.13 Compromise DSP for LCA Unit Design .. 482

Figure 7.14 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points485

Figure 7.15 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points
... 486

Figure 7.16 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points
... 486

Figure 7.17 Kriging Metamodel of Compliance J with 30 Data Points..................... 487

Figure 7.18 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Initial Kriging Metamodel with 8 Data Points)............................. 491

 xix

Figure 7.19 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with
Respect to Device Width (W) and Wall Thickness (t) Developed with
SEED... 501

Figure 7.20 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with
Respect to Wall Thickness (t) and Mass Flow Rate (Mdot) Developed
with SEED .. 501

Figure 7.21 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with
Respect to Device Width (W) and Mass Flow Rate (Mdot) Developed with
SEED... 502

Figure 7.22 Contour Plot of the Kriging Metamodel for Compliance (J) with Respect
to Device Width (W) and Wall Thickness (t) Developed with SEED 502

Figure 7.23 Boundaries from Constraints I and III in LCA Design........................... 510

Figure 7.24 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Initial Kriging Metamodel with 6 Data Points)............................. 511

Figure 7.25 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 8 Data Points) 515

Figure 7.26 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 6 Validation Points).............................. 517

Figure 7.27 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 6 Validation Points).............................. 522

Figure 7.28 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device Width
(Kriging Metamodel with 20 Points) .. 526

Figure 7.29 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 20 Points).. 526

Figure 7.30 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow Rate
(Kriging Metamodel with 20 Points) .. 527

Figure 7.31 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 20 Points) .. 527

Figure 8.1 Flowchart of the Sequential Exploratory Experimental Design Method 554

Figure 8.2 Application of SEED in RCEM.. 555

 xx

Figure 8.3 Flowchart of the Efficient Robust Concept Exploration Method (I) 560

Figure 8.4 Flowchart of the Efficient Robust Concept Exploration Method (II)..... 561

Figure 8.5 Framework of Sequential Metamodeling.. 564

Figure A.1 Implementation of SEED in iSIGHT – Iteration I, Step 3...................... 623

Figure A.2 Implementation of SEED (Formulation I) in iSIGHT – Iteration I, Step 7
... 624

Figure A.3 File Parsing in iSIGHT (Formulation I) – Iteration I, Step 7 624

Figure A.4 Implementation of SEED (Formulation II) in iSIGHT – Iteration I, Step 7.
... 626

Figure A.5 File Parsing in iSIGHT (Formulation II) – Iteration I, Step 7 626

Figure B.1 Implementation of E-RCEM in iSIGHT – Iteration II, Step 7 661

Figure B.2 Input Mapping for Covmat.f in SEED – Iteration II, Step 7 662

Figure B.3 Organization of Input and Output for Altcov.f in SEED – Iteration II, Step
7... 662

Figure C.1 Implementation of E-RCEM in iSIGHT – Iteration I, Step 7................. 690

Figure D.1 Solving C-DSP in iSIGHT – Overall Organization of Tasks 696

Figure D.2 Solving C-DSP – File Parsing for Input ... 697

Figure D.3 Solving C-DSP in iSIGHT – Calculation of the Design Goal 697

Figure D.4 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device Width
(Initial Kriging Metamodel with 8 Data Points)..................................... 700

Figure D.5 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow Rate
(Initial Kriging Metamodel with 8 Data Points)..................................... 701

Figure D.6 Contour Plot of Compliance vs. Device Width and Wall Thickness (Initial
Kriging Metamodel with 8 Data Points)... 701

Figure D.7 Contour Plot of Heat Transfer Rate vs. Device Width and Wall Thickness
(Kriging Metamodel with 11 Data Points – Iteration I, Step 8) 702

 xxi

Figure D.8 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 11 Data Points – Iteration I, Step 8) 702

Figure D.9 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow Rate
(Kriging Metamodel with 11 Data Points – Iteration I, Step 8) 703

Figure D.10 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 11 Data Points – Iteration I, Step 8) 703

Figure D.11 Contour Plot of Heat Transfer Rate vs. Device Width and Wall Thickness
(Kriging Metamodel with 8 Validation Points – Iteration II, Step 3)..... 704

Figure D.12 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 8 Validation Points – Iteration II, Step 3)
... 704

Figure D.13 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow Rate
(Kriging Metamodel with 8 Validation Points – Iteration II, Step 3)..... 705

Figure D.14 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 8 Validation Points – Iteration II, Step 3)..... 705

Figure D.15 Contour Plot of Heat Transfer Rate vs. Device Width and Wall Thickness
(Kriging Metamodel with 11 Validation Points – Iteration III, Step 3) . 706

Figure D.16 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 11 Validation Points – Iteration III, Step 3)
... 706

Figure D.17 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow Rate
(Kriging Metamodel with 11 Validation Points – Iteration III, Step 3) . 707

Figure D.18 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 11 Validation Points – Iteration III, Step 3) . 707

Figure D.19 Implementation of SEED in iSIGHT – Iteration I, Step 3...................... 737

Figure D.20 Implementation of SEED in iSIGHT – Iteration I, Step 7...................... 738

Figure D.21 File Parsing of Input in iSIGHT – Iteration I, Step 7 738

Figure D.22 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device Width
(Initial Kriging Metamodel with 6 Data Points)..................................... 740

 xxii

Figure D.23 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow Rate
(Initial Kriging Metamodel with 6 Data Points)..................................... 741

Figure D.24 Contour Plot of Compliance vs. Device Width and Wall Thickness (Initial
Kriging Metamodel with 6 Data Points)... 741

Figure D.25 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device Width
(Kriging Metamodel with 8 Data Points) ... 742

Figure D.26 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow Rate
(Kriging Metamodel with 8 Data Points) ... 742

Figure D.27 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 8 Data Points) ... 743

Figure D.28 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device Width
(Kriging Metamodel with 8 Validation Points) 743

Figure D.29 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow Rate
(Kriging Metamodel with 8 Validation Points) 744

Figure D.30 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 8 Validation Points) 744

Figure D.31 Implementation of E-RCEM in iSIGHT – Iteration I, Step 5................. 756

Figure D.32 Input Mapping for Covmat.f in E-RCEM – Iteration I, Step 5............... 757

Figure D.33 Organization of Input and Output for Altcov.f in E-RCEM – Iteration I,
Step 5 .. 757

 xxiii

 xxiv

LIST OF TABLES

Table 1.1 Relationship Between Hypotheses and Dissertation Chapters 45

Table 2.1 Error Measures for Kriging Metamodels (Simpson, 1998) 99

Table 2.2 Summary of Correlation Functions.. 107

Table 3.1 Response Values at Sample Data Points of the Single-Variable Function......
.. 136

Table 3.2 RMSE and MAX for Kriging Models ... 138

Table 3.3 CVRMSE Values for Kriging Models... 140

Table 3.4 Values of RMSE, MAX, and CVRMSE of Kriging Models for the Branin
Function ... 146

Table 3.5 Data Points for Data Set 5, 12, and 15... 150

Table 4.1 Data Set I for the Single-Variable Function – 11 Data Points Evenly Spread
Over the Design Space... 227

Table 4.2 Data Set II for the Single-Variable Function – 11 Data Points Identified in A
Single-Stage 6-Step Manner .. 227

Table 4.3 MAX and RMSE of Three Metamodels .. 230

Table 4.4 Initial Experiments... 232

Table 4.5 Validation Points in the 1st Iteration .. 233

Table 4.6 Four Data Points .. 237

Table 4.7 New Validation Point Added in the 2nd Iteration....................................... 240

Table 4.8 Prediction Errors at 5 Validation Points .. 241

Table 4.9 Five Data Points... 242

Table 4.10 Prediction Errors at 6 Validation Points .. 246

 xxv

Table 4.11 Points Obtained with SEED (Formulation I) – Data Set III 247

Table 4.12 Four Data Points Identified in the 1st Iteration .. 250

Table 4.13 New Validation Point Added in the 2nd Iteration....................................... 253

Table 4.14 Prediction Errors at 5 Validation Points in the 2nd Iteration...................... 254

Table 4.15 Five Data Points Used in the 2nd Iteration ... 255

Table 4.16 Prediction Errors at Five Validation Points ... 258

Table 4.17 Accuracy of Kriging Metamodels from Different Approaches 260

Table 5.1 Data Point Set I – 6 Points ... 270

Table 5.2 Data Point Set II – 12 Points.. 272

Table 5.3 Data Set III – 18 Points.. 274

Table 5.4 Data Set IV – 24 Points.. 276

Table 5.5 Effective Data Set – 13 Points ... 283

Table 5.6 Prediction Errors at 21 Points .. 292

Table 5.7 Experiments with 45 Data Points... 296

Table 5.8 Initial Experimental Design – 4 Data Points ... 302

Table 5.9 Five New Validation Points in Iteration I.. 303

Table 5.10 Prediction Errors at 4 Data Points and 5 Validation Points....................... 304

Table 5.11 Two Possible New Data Points in Iteration I... 306

Table 5.12 Six Data Points... 308

Table 5.13 Prediction Errors at 6 Data Points in Iteration II – Step 3 309

Table 5.14 New Validation Points Added in Iteration II ... 310

Table 5.15 Prediction Errors at Observed Points in Iteration II – Step 4 311

Table 5.16 New Data Points Added in Iteration II .. 312

Table 5.17 Eight Data Points in Iteration II... 313

 xxvi

Table 5.18 Prediction Errors at Observed Points in Iteration III – Step 3................... 314

Table 5.19 New Prediction Errors at Observed Points in Iteration III – Step 3 316

Table 5.20 New Validation Points Added in Iteration III.. 317

Table 5.21 Prediction Errors at Data and Validation Points.. 318

Table 5.22 Possible New Data Points in Iteration III .. 319

Table 5.23 Nineteen Observed Points.. 320

Table 5.24 Plus and Minus of Different Types of Metamodels................................... 328

Table 5.25 Initial Experimental Design with 8 Data Points .. 341

Table 5.26 Initial Experimental Design with 4 Data Points .. 346

Table 5.27 Four New Validation Points Added in Iteration I...................................... 348

Table 5.28 Prediction Errors at Validation Points in Iteration I 348

Table 5.29 Two New Data Points Added in Iteration I ... 351

Table 5.30 Prediction Errors of MARS Metamodels at Data and Validation Points in
Iteration II – Step 3 .. 354

Table 5.31 Two New Validation Points Added in Iteration II..................................... 355

Table 5.32 Prediction Errors at Validation Points ... 356

Table 5.33 True and Predicted Prediction Errors at Data/Validation Points 357

Table 5.34 Two New Data Points Added in Iteration II .. 359

Table 5.35 Observed Points ... 360

Table 5.36 Single-Stage Maximum Entropy Sampling with 14 Data Points 363

Table 5.37 Latin Hypercubes with 14 Data Points .. 364

Table 5.38 Accuracy of Metamodels from Different Experimental Designs 365

Table 5.39 Design Solutions Obtained by Solving the C-DSP.................................... 369

Table 6.1 Four Data Points .. 388

 xxvii

Table 6.2 Four Validation Points ... 388

Table 6.3 Prediction Errors at Validation Points ... 390

Table 6.4 Two New Data Points .. 392

Table 6.5 Initial Experiments – Six Data Points and Six Validation Points.............. 399

Table 6.6 Two New Data Points .. 401

Table 6.7 Two New Data Points Identified When the Constraint on Volume Is Not
Considered in SEED .. 401

Table 6.8 Initial Experiments... 428

Table 6.9 Validation Points in the 1st Iteration .. 431

Table 6.10 Four Data Points .. 435

Table 6.11 Prediction Errors at 4 Data Points in Iteration II – Step 4 436

Table 6.12 Validation Points in the 2nd Iteration ... 438

Table 6.13 Five Data Points... 443

Table 6.14 Prediction Errors at 5 Data Points in Iteration III – Step 4........................ 445

Table 6.15 Eleven Observed Points ... 451

Table 6.16 RMSE and MAX for Metamodels from SEED and E-RCEM 452

Table 6.17 Minimum Response Values in the Single-Variable Example 453

Table 7.1 Boundary Conditions for Design ... 481

Table 7.2 Actual Design Solution Obtained with Simulation Codes......................... 483

Table 7.3 Values of θ for Kriging Metamodels of Q and J 485

Table 7.4 The Design Solution Obtained with RCEM – 30 LH Experiments........... 488

Table 7.5 Values of θ for Kriging Metamodels of Q and J 488

Table 7.6 The Design Solution Obtained with RCEM – 40 LH Experiments........... 489

Table 7.7 Root Mean Squared Errors of Metamodels Developed in RCEM............. 489

 xxviii

Table 7.8 Initial Experimental Design with 8 Data Points .. 491

Table 7.9 Values of θ for the Initial Kriging Metamodels... 491

Table 7.10 Eight New Validation Points Identified in Iteration I................................ 492

Table 7.11 Prediction Errors at 8 Validation Points .. 493

Table 7.12 Values of θ for Kriging Metamodels of Prediction Errors in Iteration I ... 493

Table 7.13 Four New Data Points Identified in Iteration I .. 494

Table 7.14 Values of θ for Kriging Metamodels of Responses with 12 Data Points .. 494

Table 7.15 Values of θ for Kriging Metamodels of Responses with 8 Validation Points
.. 495

Table 7.16 Prediction Errors at 11 Data Points.. 495

Table 7.17 Values of θ for Kriging Metamodels of Prediction Errors in Iteration II –
Step 3 ... 496

Table 7.18 Three New Validation Points Identified in Iteration II.............................. 496

Table 7.19 Prediction Errors at 11 Validation Points .. 496

Table 7.20 Values of θ for Kriging Metamodels of Prediction Errors in Iteration II –
Step 4 ... 497

Table 7.21 Four New Data Points Identified in Iteration II... 497

Table 7.22 Values of θ for Kriging Metamodels of Responses with 12 Validation Points
.. 499

Table 7.23 Prediction Errors at 14 Data Points in Iteration III – Step 3...................... 499

Table 7.24 Values of θ for Kriging Metamodels of Prediction Errors in Iteration III –
Step 3 ... 499

Table 7.25 Three New Validation Points Identified in Iteration III 500

Table 7.26 Values of θ for Kriging Metamodels of Responses Developed with SEED
.. 500

Table 7.27 The Design Solution Obtained with SEED.. 503

 xxix

Table 7.28 Root Mean Squared Errors of Metamodels Developed in RCEM............. 503

Table 7.29 Initial Experiments with 6 Data Points in E-RCEM.................................. 511

Table 7.30 Values of θ for Initial Kriging Metamodels of Responses in E-RCEM 511

Table 7.31 Six Validation Points Identified in Iteration I – Step 4 in E-RCEM 512

Table 7.32 Prediction Errors of Initial Metamodels at 6 Validation Points 513

Table 7.33 Values of θ for Kriging Metamodels of Prediction Errors Developed with
Information at Observed 12 Points in Iteration I – Step 4 513

Table 7.34 Two New Data Points Identified in Iteration I – Step 5 in E-RCEM 514

Table 7.35 Values of θ for Kriging Metamodels of Responses Developed with 8 Data
Points in Iteration I – Step 6 .. 515

Table 7.36 Values of θ for Kriging Metamodels of Responses Developed with 6
Validation Points in Iteration II – Step 4 ... 516

Table 7.37 Prediction Errors of Metamodels at 8 Data Points in Iteration II – Step 4......
.. 517

Table 7.38 Values of θ for Kriging Metamodels of Prediction Errors Developed with 14
Points in Iteration II – Step 4 ... 518

Table 7.39 Two New Validation Points Identified in Iteration II – Step 4.................. 518

Table 7.40 Prediction Errors of Metamodels at 8 Validation Points Calculated in
Iteration II – Step 5 .. 519

Table 7.41 Values of θ for Kriging Metamodels of Prediction Errors Developed with 16
Points in Iteration II – Step 5 ... 519

Table 7.42 Two New Data Points Identified in Iteration II – Step 5 520

Table 7.43 Values of θ for Kriging Metamodels of Responses Developed with 6
Validation Points in Iteration II – Step 4 ... 521

Table 7.44 Prediction Errors of Metamodels at 8 Data Points in Iteration II – Step 4......
.. 522

Table 7.45 Values of θ for Kriging Metamodels of Prediction Errors Developed with 14
Points in Iteration II – Step 4 ... 523

 xxx

Table 7.46 Two New Validation Points Identified in Iteration III – Step 4 524

Table 7.47 All Points Identified in the Integrated Process in E-RCEM 525

Table 7.48 Values of θ for Final Kriging Metamodels of Responses Developed with 20
Points in Iteration III – Step 7.. 525

Table 7.49 Root Mean Squared Errors of Metamodels Developed in RCEM............. 528

Table 7.50 The Design Solution Obtained with the Integrated Design Process in E-
RCEM .. 528

Table 7.51 Root Mean Squared Errors of Metamodels Developed in RCEM, SEED, and
the Integrated Design Process in E-RCEM – Comparison in the Whole
Design Space.. 530

Table 7.52 Root Mean Squared Errors of Metamodels Developed in RCEM, SEED, and
the Integrated Design Process in E-RCEM – Comparison in the Feasible
Design Space.. 531

Table 7.53 The Design Solutions Obtained with Simulations, RCEM, SEED, and the
Integrated Design Process in E-RCEM ... 534

Table 8.1 Plus and Minus of Different Types of Metamodels................................... 563

Table 8.2 Contributions of Studies in this Dissertation ... 569

Table D.1 Latin Hypercube Design – 30 Data Points Used in RCEM in Section 7.3......
.. 692

Table D.2 Latin Hypercube Design – 40 Data Points Used in RCEM in Section 7.3......
.. 698

Table D.3 Twenty Eight Points Identified with SEED... 739

 xxxi

 xxxii

SUMMARY

Experimentation and approximation are essential for efficiency and effectiveness

in concurrent engineering analyses of large-scale complex systems. The approximation-

based design strategy is not fully utilized in industrial applications in which designers

have to deal with multi-disciplinary, multi-variable, multi-response, and multi-objective

analysis using very complicated and expensive-to-run computer analysis codes or

physical experiments. With current experimental design and metamodeling techniques, it

is difficult for engineers to develop acceptable metamodels for irregular responses and

achieve good design solutions in large design spaces at low prices. To circumvent this

problem, engineers tend to either adopt low-fidelity simulations or models with which

important response properties may be lost, or restrict the study to very small design

spaces. Information from expensive physical or computer experiments is often used as a

validation in late design stages instead of analysis tools that are used in early-stage

design. This increases the possibility of expensive re-design processes and the time-to-

market.

In this dissertation, two methods, the Sequential Exploratory Experimental

Design (SEED) and the Efficient Robust Concept Exploration Method (E-RCEM) are

developed to address these problems. The SEED and E-RCEM methods help develop

acceptable metamodels for irregular responses with expensive experiments and achieve

satisficing design solutions in large design spaces with limited computational or

 xxxiii

 xxxiv

monetary resources. It is verified that more accurate metamodels are developed and

better design solutions are achieved with SEED and E-RCEM than with traditional

approximation-based design methods. SEED and E-RCEM facilitate the full utility of the

simulation-and-approximation-based design strategy in engineering and scientific

applications.

Several preliminary approaches for metamodel validation with additional

validation points are proposed in this dissertation, after verifying that the most-widely-

used method of leave-one-out cross-validation is theoretically inappropriate in testing the

accuracy of metamodels. A comparison of the performance of kriging and MARS

metamodels is done in this dissertation. Then a sequential metamodeling approach is

proposed to utilize different types of metamodels along the design timeline.

Several single-variable or two-variable examples and two engineering example,

the design of pressure vessels and the design of unit cells for linear cellular alloys, are

used in this dissertation to facilitate our studies.

CHAPTER 1

FOUNDATIONS FOR SEQUENTIAL
METAMODELING AND SEQUENTIAL DESIGN

SPACE EXPLORATION

Experimentation and approximation are essential for efficiency and effectiveness

in concurrent engineering analyses of large-scale complex systems in which designers

have to deal with multi-disciplinary and multi-objective analysis using very complicated

and expensive-to-run computer analysis codes. This process of experimentation and

approximation is called metamodeling in which we need: (a) choosing an experimental

design for generating data, (b) choosing a model to represent the data, and (c) fitting the

model to the data. Sequential metamodeling and analyses are the development of series

of metamodels with different sets of data by realizing these steps sequentially and

repeatedly along the design timeline. It helps designers explore the design space to find

satisfacing solutions in early design stages.

The heart of the chapter lies in Section 1.3 wherein the research objectives,

hypotheses, and contributions for the work are described. Sections 1.1 and 1.2 contain

the motivation, foundation, and references for investigating the proposed research and

serve to establish context for the reader. The validation and verification strategy for this

dissertation is presented in Section 1.4. Finally, Section 1.5 contains an overview of the

dissertation.

1

1.1 MOTIVATION AND BACKGROUND

In the design of large-scale engineering systems, it is initially desirable to explore a

large design space. Much of today’s engineering analysis work consists of running

complex computer programs – supplying a vector of design variables (inputs) x and

receiving a vector of response (outputs) y. However, a complete examination of a large

design space can generate a substantial computational load. Many detailed analysis

programs are available in the later stages of design, but they are often too expensive to

use in exploring large design spaces. Furthermore, this mode of query-and-response

often leads to a trial and error approach to design, an iterative spiral compounded by the

requirements flowdown and feedback necessary in large-scale complex systems design.

Thus a designer may never uncover the functional relationship between x and y and never

identify the best settings for the input values. To solve this problem, metamodels, i.e.,

“model of the model” (Kleijnen, 1987), are created to predict system performance at

various sample points and then to develop a relationship between predicted performance

and the variables under study. This process of experimentation and approximation

consists: (a) choosing an experimental design for generating data, (b) choosing a model to

represent the data, and (c) fitting the model to the data. Notice that the predicted

performance is determined by the input variables and hence is deterministic and not

based on random variation. Design decisions are made based on the results of the

analysis of the metamodels. By using metamodels in design we sacrifice some

2

acceptable degrees of design “effectiveness” (accuracy) to gain more design “efficiency”

(speed), which is reasonable and highly recommended in the early design stages.

Metamodeling is very useful in robust design of open engineering systems.

Robust design is based on experimentation and development & analysis of metamodels.

Taguchi proposes exploring the design space at selected points determined by one type of

Design of Experiments (DOE), namely, orthogonal arrays (see, e.g., Taguchi, 1987);

actual design performance is analyzed at selected points and response surfaces are

generated to predict performance over the entire design space. In the literature, both the

method of sampling the design space with orthogonal arrays and the generation of

response surfaces to smooth the data have been questioned. Many variations of robust

design have been proposed with advanced metamodeling techniques. Development in

metamodeling and robust design techniques helps the design of open engineering

systems, e.g., product families, in early design stages (Simpson, et al., 1997a).

During the design processes, the design information increases exponentially along

the design timeline. At different points along the design timeline the design requirements

are different; designers’ knowledge also increases a lot from the beginning to the end of

conceptual design. At the beginning period the design efficiency is much emphasized

while as design goes on more and more focus is put on the design effectiveness. A

designer in the early stages of conceptual design knows little about the problem or the

design space and does not necessarily know which type of DOE or which metamodeling

methods will be most effective and efficient for that particular problem. As the design

evolves and more information becomes available, it may be possible to determine which

3

methods are appropriate for that particular problem. From the viewpoint of

metamodeling, this shift of design requirements corresponds to the development of more

accurate metamodels with sequential experiments. The Response Surface Methodology

(RSM) is such a method in which sequential experimental designs and sequential

metamodels are utilized to reflect the different information and requirements along the

design timeline. Although RSM has been widely applied and proved to be useful, it has

many weak points as well as strong points. It is confined to classical experimental

designs and regression polynomial models (which is referred as RS models in this

dissertation). This limits its usage in deterministic applications (for details, see, Welch,

et al., 1990; Simpson, et al., 1997b). How to design sequential computer experiments and

develop series of appropriate metamodels along the design timeline in accordance with

the changing design information is still an open problem.

The primary objective of the research in this dissertation is to develop a

systematic yet flexible method in which various metamodeling techniques are utilized in

building series of appropriate metamodels for robust design space exploration in

accordance with the change in information quality along the design timeline at the early

stages of design. Development of the method will be accomplished by (1) studying

measures for metamodel validation with deterministic computer experiments, (2)

developing methods for sequential experimental design in fixed design spaces, (3)

studying the integration of metamodeling and design space exploration within a fixed

design space, and (4) developing methods for model selection along the design timeline.

4

In this section, the motivation and background for the research are introduced.

An overview of the engineering design processes and the design of large-scale

engineering systems is first given in Section 1.1.1. Open engineering systems design is

then described in Section 1.1.2. Metamodeling techniques and its applications in robust

design are introduced in Section 1.1.3.

1.1.1 Engineering Design Processes and Design of Large Scale Engineering
Systems in Early Stages

To describe and improve engineering design processes, various theories and

methodologies have been developed in previous research. Finger and Dixon (Finger and

Dixon, 1989a; Finger and Dixon, 1989b) provide taxonomy distinctions among design

methods based on observing how designers go about their work, namely, descriptive

models of design processes (Ericsson and Simmon, 1980; Ericsson and Simon, 1984;

Laird, et al., 1987), methods based on formal grammars and axioms, namely, prescriptive

models of design processes (Hubka, 1982; Pahl and Beitz, 1986; Roth, 1982), and the

design of computer-based models (Nevill, 1989) which help a designer in whatever

methodology is used. Mistree and co-authors provide a comprehensive review of the

aforementioned works and other developments in the field of design theories and

methodologies (Mistree, et al., 1990a). Although models of design processes vary

significantly under these different streams of research, there are some models which are

widely acceptable and make intuitive sense to many designers. An example is the four

major design phases identified by Pahl and Beitz (Pahl and Beitz, 1984):

5

• Clarification of the task – collection of information about the requirements to

be embodied in the solution and also about the constraints.

• Conceptual design – establishment of function structures, the search for

suitable solution principles and their combination into concept variants.

• Embodiment design – starting from the concept, a designer determines the

layout and forms, and develops a technical product or system in accordance

with technical and economic considerations. Embodiment design is

sometimes called preliminary design.

• Detail design – all the details of the final design are specified and

manufacturing drawings and documentation are produced.

By “early design stages” we mean activities that happen in the first two phases:

clarification of the task and conceptual design. In the early design stages, design

concepts are synthesized at the system level based on mission requirements or market

opportunities. As a result, the conceptual baseline is developed and represented by a set

of top-level specifications. The conceptual baseline then becomes the configuration input

for preliminary design, where the system is decomposed for more sophisticated analysis

by discipline, subsystem, or component (Chen, 1995). Top-level design specifications

are the descriptions of system/subsystem concepts or the definitions of the complex

system at the system/subsystem level. They are used as the starting point for the

preliminary design at the subsystem level, and form the basis for the specifications

(functional properties) that are developed during the preliminary design phase. The top-

6

level design specifications can be continuous, which means any value within a specified

range can be used; they can also be discrete variables or different design concepts.

It has been shown that a significant portion of the total life cycle cost of systems

is determined during the early design stages where the top-level specifications are

generated. The quality engineering tools, e.g., the 7 management tools (Brassard and

Ritter, 1994) and Quality Function Deployment (QFD) (Clausing, 1994) have become

popular in the early stages of product design, while they are most frequently used in the

engineering management level. The Robust Concept Exploration Method (RCEM),

which was developed by Wei Chen in the Systems Realization Laboratory in 1995, offers

a systematic method for integrating and transforming the overall design requirements into

top-level design specifications in the early design stages. The RCEM has been

successfully used in designing solar power irrigation systems, engines, aircraft, etc.

Another important issue to be addressed about design in the early stages is how

engineers do tradeoffs between design effectiveness (accuracy) and design efficiency

(speed). Along a design timeline, design information increases and design knowledge for

design changes. In the early design stages where accurate analysis is unavailable or not

needed while design time is limited, more emphasis is put on design efficiency than on

design effectiveness. In the later design stages where more design knowledge is available

and accurate analysis is needed to insure the product performance, design effectiveness is

given much higher priority than design efficiency. In designing large-scale engineering

systems, this issue has been more apparent.

7

Most large-scale engineering systems are complex systems. A complex system is

a system composed of a number of subsystems where each subsystem is embodied by a

particular set of components, or sub-subsystems. Each component has its own working

principle. In addition, the system, subsystems, and components involve the interactions

of multiple disciplines. Decomposition or partitioning of complex systems has long been

viewed as beneficial to the efficient solution of a system. The decomposition schemes

historically have been hierarchical in nature (Renaud, 1992; Koch, 1998), while many

systems lend themselves to non-hierarchic decomposition schemes instead of hierarchical

ones (Renaud, 1992). The decomposition and synthesis of large-scale engineering

systems (especially complex systems) is not our research focus in this dissertation. We

are interested in sequential metamodeling and design space exploration of robust

solutions in designing such large-scale systems that have multi-disciplinary design

variables, constraints, and goals.

In designing large-scale engineering systems, we usually have to do tradeoffs

among various design goals and satisfy various design constraints in different disciplines

through leveraging lots of design variables. The analyses of system performance are

usually very complicated, which makes it necessary to introduce rigorous analysis tools

in design in early stages. Rigorous analysis tools are sophisticated computer analyses or

simulation programs to predict the behavior of product or process. Examples are finite

element programs for stress analysis, engine cycle analysis programs for thermodynamic

analysis, etc.

8

Traditional
Design

Using Rigorous
Analysis Tools

Concept
design

Full scale
development

Start of
production

Time

Number of
design
changes

Figure 1.1 An Assumption – Using Rigorous Analysis Tools in Concept Design Will
Reduce the Number of Design Changes (Chen, 1995)

The introduction of rigorous analysis tools in early design stages helps improve

the comprehensiveness and fidelity of design analyses and reduce the number of design

changes in later stages of design. The benefits of introducing rigorous analysis tools at

the early stages of design are schematically demonstrated. In traditional design most of

the design changes happen in late design stages (when and after the design is fully

developed), which results in a high design cost. By using the rigorous analysis tools in

the early design stages, product performance can be observed and evaluated so that great

changes in later design stages are avoided; total design changes are decreased and design

cost is reduced.

A significant property of most rigorous analysis tools is that they are deterministic

computer analysis codes, which means that with the same input we will hopefully always

9

get the same output. This property is important in building metamodels (Section 1.1.3)

for concept exploration.

1.1.2 Information Handling in Design of Open Engineering Systems

To develop complex engineering systems, such as engines, vehicles, etc., in the

Industrial Era, manufacturers used “dedicated” engineering systems to mass-produce

their products. While in today’s increasingly competitive markets, the trend is toward

mass customization, something that becomes increasingly feasible when modern

information technologies are used to create open engineering systems (Simpson, et al.,

1997a). The techniques studied in this dissertation aid designers to enhance product

flexibility and variety (if not fully customized products) through the development of open

engineering systems.

Open engineering systems are those of industrial products, services, and/or

processes that are readily adaptable to changes in their environment which enable

producers to remain competitive in a global marketplace through continuous

improvement and indefinite growth of an existing technological base (Simpson, et al.,

1997a). In essence, an open engineering system resembles a readily adapting system

whose benefits include increased quality, decreased time-to-market, improved

customization, and increased return on investment which are enhanced through the

system’s capability of being adapted to change. A system that cannot be adapted to a

changing marketplace becomes extinct. It would be a waste of time and effort if we

design new artifacts from scratch, but with open engineering systems we can easily adapt

our design to the new requirements and get quality products.

10

There are many examples of open engineering systems, e.g., the IBM PC and the

Boeing 747 series. Generations of IBM PCs have been developed (built around the Intel

80286, 80386, 80486, and Pentium chips, etc.), and the modularity of the components

allows many variations to occur within each generation. Similarly, the Boeing 747-200,

747-300, 74-400, and 747-SP share a strong technological family resemblance; few

would argue with Boeing’s view either of the family or the models within the family

(Simpson, et al., 1997a). Another example is from Zeneca. Zeneca Pharmaceutical

Research is preparing now for what is to come. They are adapting their structure and

management today to develop new drugs more than a decade away. They realize that the

healthcare industry is changing and these “agents of change” are willing to be flexible to

change with it to offer the best to patients and clinicians. They are accepting aspects and

tools from the open systems paradigm we explained before.

The basic premise in designing an open engineering system is to quickly get a

quality product to market and then remain competitive in the marketplace through

continuous development of the product line. It relies heavily on three important

requirements (as shown in Figure 1.2):

• Increasing design knowledge during early design phases,

• Maintaining design freedom during early design phases, and

• Increasing efficiency of the design process.

11

Pr
el

im
in

ar
y

C
on

ce
pt

D
et

ai
l

Design
Time-Line

Design
Freedom

Design
Knowledge

C
U

M
U

LA
TI

VE

100%

0%

Potential Time
Savings

Pr
ot

ot
yp

e

R
ew

or
k

Maintain
Freedom

Increase
Knowledge

Rework

D
et

ai
l

Pr
el

im
in

ar
y

C
on

ce
pt

Pr
ot

ot
yp

e

Figure 1.2 Reducing Time-To-Market by Increasing Design Knowledge and
Maintaining Design Freedom (Simpson, 1995)

By increasing design knowledge during early design phases we are able to

develop a better understanding of the system and get a feel for the system sensitivity.

This enables us to answer questions about reliability and manufacturability that are

usually posed in the later stages of product development and avoid rework. To maintain

design freedom means that we should not restrict the choices that are available quite early

in the design process. It is desirable to keep design freedom in designing complex

systems so that changes are implemented more easily. Increasing efficiency implies

12

making the process quicker in terms of the computations involved and making wise

approximations in order to increase the computational efficiency of the process.

Wherever possible the process should be automated.

These notions are graphically represented in Figure 1.2, where the changes of the

design knowledge and design freedom are shown as curves along the design timeline.

The curves in solid represent changes in the design of “closed” systems and the curves in

dash represent those changes in the design of open engineering systems. In switching

from closed systems to open ones we reduce time-to-market and gain profits by

compressing the design knowledge curve. We also want to maintain design freedom

longer, which results in a different curve with only a gradual decrease at the beginning.

By spending a larger amount of time in conceptual design as shown in Figure 1.2

and by maintaining design freedom and increasing design knowledge, design changes

(especially those which occur during later design stages) can be avoided, and a potential

time savings and greater return on investment can be achieved. A lot of flexibility is

provided for the later design stages and rework can be eliminated from the design process

because maintaining design freedom and increasing design knowledge helps prepare for

unforeseen changes in the later stages of design and facilitates adaptation to these

changes (Simpson, 1995).

We could achieve the design of open engineering systems through the following

three characteristics (Simpson, et al., 1997a): Robustness, Modularity, and Mutability.

Given these three characteristics, in this dissertation we focus on the robustness of the

complex systems. We propose to do sequential metamodeling along the design timeline

13

in approximation-based robust design to help increase design knowledge, increase design

freedom, and increase efficiency in the early design stages:

• Increase Design Knowledge in Early Design Stages. We achieve this by: 1).

Using rigorous analysis tools that abstract issues from later design stages to

early design stages; 2). Grasping maximum design information with least

effort through sequential experimentation and metamodeling; 3). Gaining

insight into the relationships among the design factors and system

performance; 4). Exploring the design space to study the system performance

and robustness; 5). Studying changes in the design factors due to different

scenarios or tradeoff studies; and 6). Answering “what-if” questions during

the design process.

• Increase Design Freedom. We propose to achieve this by: 1). Searching for

satisficing ranged sets of solutions rather than optimal or point solutions; 2).

Incorporating robustness into the design by making the design insensitive to

changes in the later design stages; 3). Enhancing concept exploration by not

restricting the number of parameters considered or limiting their ranges; 4).

Mathematically modeling the quality of information and not restricting the

feasible design space based on uncertain information; and 5). Developing

sequential metamodels with consideration of both metamodel uncertainty and

the achievement of design goals.

• Increase Efficiency. We achieve this by: 1). Using sequential experimental

design and sequential metamodeling to obtain design information quickly; 2).

14

Selecting and building appropriate metamodels for system performance to

improve computational efficiency; and 3). Utilizing distributed design

techniques to do computer experiments automatically.

As mentioned before, these proposed topics and methods are implemented in

approximation-based robust design, Section 1.1.3.

1.1.3 Approximation-Based Robust Design and the Needs for Sequential
Metamodeling and Sequential Design Space Exploration

As mentioned in Section 1.1.2, approximation-based robust design is preferred in

designing complex engineering systems to help make the system open. The fundamental

idea underlying robust design, originally proposed by Taguchi (1987), is to improve the

quality of a product or process by minimizing the effects of variation without eliminating

the causes of that variation while simultaneously striving to achieve performance targets.

It is commonly accepted that the principles associated with Taguchi’s approach are both

useful and very appropriate for industrial product design (see, e.g., Byrne and Taguchi,

1987; Phadke, 1989; Ross, 1988) though certain limitations associated with Taguchi’s

method have been identified (see, Nair, 1992; Tsui, 1992; Box, 1988). The difference

between “optimization” and “robust design” is shown in Figure 1.3 and Figure 1.4. In

this dissertation, Figure 1.3 and Figure 1.4 are attributed to David Craig in the class of

ME8104: Design Open Engineering System, Spring 1995. It is believed that the

difference between these two approaches stems from what are considered to be good for

the design in the context of the entire design process.

15

The possible result of design with “optimization” is illustrated in Figure 1.3. In

optimization, there is a best solution for design in each stage of the process and a rigid

optimal solution is prescribed. An unavoidable change made later in the design process

will shift the design away from the optimum point without a clear idea of what will

happen to the design as a whole. While in Figure 1.4, where robust design is illustrated,

each step is left somewhat open to ensure that the design is still good even after new

concerns for the design arise later.

To design open engineering systems we apply Taguchi’s robust design techniques

in the early stages of design, which helps us gain robustness in decision making and

reduce the number of design changes and iterations. In robust design parameters and

responses are identified to figure out the sources of variability. The focus in robust

design is to reduce the variation of system performance caused by uncertain design

parameters, or to reduce system sensitivity; solutions are sought to minimize response

variation in addition to achieving performance targets. By taking this approach, robust

solutions obtained for complex systems involving significant uncertainty are usually not

optimal in the traditional sense, but satisficing. Here Taguchi’s robust design principles

are consistent with the notion of satisficing which was coined by Simon (Simon, 1982) to

describe a particular form of less-than optimal solutions. Satisficing solutions are

solutions that are good enough to be acceptable but are neither exact nor optimal.

16

Figure 1.3 What Might Happen After a Rigid Optimal Solution is Prescribed
(Chen, 1995)

Figure 1.4 Robust with Respect to the Evolution of the Problem (Chen, 1995)

Another issue that is consistent with satisficing is the usage of approximation

models for the rigorous analysis tools in early stages of design. As stated in Section

1.1.1, rigorous analysis tools are used in designing complex engineering systems to help

increase both the design fidelity and design efficiency. The usage of simulations in the

initial stage of concept exploration of the design space helps us obtain an overview of the

system performance and get information about the feasible and satisficing regions of the

design space. Although rigorous analysis tools are needed to achieve a high level of

fidelity for concurrent system analysis, there are difficulties that must be overcome

17

before these tools can be used efficiently in the early stages of designing complex

systems. When faced with a complex real-world problem in design, we do not

recommend using the exact analysis codes to predict and plot the system behavior

because it will still be time-consuming and inconvenient to run the computer simulation

programs. Instead, we propose to generate and plot an approximation of the system

behavior using some kind of heuristics. This approximation, or model-of-the-model, is

called a metamodel (Kleijnen, 1987). A detailed description of metamodeling methods

can be found in (Simpson, et al., 1997b). The metamodeling techniques will be further

discussed in Chapter 2. When using metamodels in design the solutions obtained by the

approximate algorithm or heuristics are satisficing. These solutions may be less than

optimal, but they still meet the most important goals and constraints and at the same time,

they provide enough flexibility to make the system open to the uncertain changes in later

design without undue penalties in function, cost, time and other considerations.

In approximation based robust design, metamodeling techniques and robust

design principles are combined and applied to help designers make complex engineering

systems open in the early design stages by exploring for satisficing top-level

specifications. The Robust Concept Exploration Method (RCEM), which is developed in

the SRL in 1995, is a systematic approach to realize the approximation based robust

design of complex engineering systems. Study in this dissertation will be conducted in

the context of RCEM which is briefly introduced in Section 1.2.2.

In approximation-based robust design, we aim to achieve robust solutions

efficiently and effectively. This is very closely related to the maintenance of design

18

freedom and increase of design knowledge as described in Section 1.1.2. By using

experimentations and approximations, we are able to increase design knowledge quickly

and maintain maximum possible design knowledge in early design stages. However,

with different metamodeling techniques, the effects of approximation may be very

different. As mentioned before, design requirements and information may change

dramatically along the design timeline. Currently there are no systematic yet flexible

methods in which various metamodeling techniques are utilized in building series of

various types of appropriate metamodels for robust design space exploration in

accordance with the change in information quality along the design timeline at early

stages of design:

• The Response Surface Methodology (RSM) is a method in which sequential

experimental designs and sequential metamodels are utilized to reflect the

different information and requirements along the design timeline, while it is

confined to classical experimental designs and regression polynomial models

(referred to as response surface or RS models).

• Various types of design of experiments (DOE) have been proposed and

studied, however, these DOE’s are seldom used sequentially in metamodeling.

For example, orthogonal arrays, latin hypocubes, etc., are usually used in

single-stage experimental designs; it is difficult to add in new data points with

these DOE techniques. Traditional experiments used in RSM could be

designed sequentially, while their applications are limited as will be described

in Chapter 2. A one-stage experimental design does not help maintain

19

maximum design freedom; the amount of design information gained may not

be enough; and it is not efficient when additional data points are needed to

develop more accurate metamodels. A more detailed discussion on DOE

techniques will be presented in Chapter 2.

• Various types of metamodels have been used in engineering design, while

they are seldom used together (sequentially or simultaneously) in the design

process. Designers tend to stick to only one of these types of metamodels in

design, which may result in less-flexible strategies.

• The integration of metamodeling and design space exploration is still limited.

As will be discussed in Section 1.2.2 (RCEM) and Chapter 2, design space

exploration of robust solutions is usually conducted after the development of

metamodels. A more flexible strategy is needed to integrate the processes of

metamodeling and design space exploration – robust solutions are achieved in

the process of experimentation and metamodeling. This helps maintain

maximum possible design freedom, increase design knowledge quickly, and

save time and efforts in design.

To address the above problems, it is necessary to develop strategies for sequential

metamodeling that incorporate techniques of sequential experimental design, sequential

metamodel selection and development, and design space exploration. The goal is to

grasp maximum design information with least time and effort in early design stages;

design freedom could be maintained through management of the design information

properly. Before detailed descriptions of these ideas in Section 1.3, Research Foci in

20

This Dissertation, in the next section, the frame of reference for research in this

dissertation is presented and discussed.

1.2 FRAME OF REFERENCE

The technology base for the dissertation is described in this section. An overview

of Decision-Based Design and the compromise Decision Support Problem is given in

Section 1.2.1, followed by an overview of the Robust Concept Exploration Method

(which is the context for our research in this thesis) in Section 1.2.2.

1.2.1 Decision-Based Design, the Decision Support Problem Technique, and the
Compromise Decision Support Problem

Decision-Based Design (DBD) (Mistree, et al., 1990a; Shupe, et al., 1988), a

phrase coined to emphasize a different perspective from which to develop methods for

design, is used as the design paradigm for RCEM. This paradigm, which encompasses

systems thinking and embodies the ideas of concurrent engineering design for the life

cycle, is rooted in the notion that “the principal role of a designer, in the design of an

artifact, is to make decisions” (see, e.g., Muster and Mistree, 1988; Mistree, et al.,

1990b). This role is useful in providing a starting point to develop design methods based

on paradigms that spring from the perspective of decisions made by designers (who may

use computers) as opposed to design that is predicated on the use of computers,

optimization methods (computer-aided design optimization), or methods that evolve from

specific analysis tools such as finite element analysis.

The implementation of Decision-Based Design that is the Decision Support

Problem (DSP) Technique (Muster and Mistree, 1988; Bras and Mistree, 1991; Mistree,

21

et al., 1993a), a technique that supports human judgment in designing systems which can

be manufactured and maintained. As a foundation of the DSP Technique, designing is

defined as the process of converting information that characterizes the needs and

requirements for a product into knowledge about a product (Mistree, et al., 1990a). This

definition is consistent with the design transformation shown in Figure 1.5 if information

that characterizes the needs and requirements for a product is characterized simply as

requirements and knowledge about a product as specifications. The necessary

transformation of requirements for a design into design specifications within the DSP

Technique then becomes a series of decisions. For a better description of the DSP

Technique see (Mistree, et al., 1990a).

Requirements

(Functional Requirements)

Specifications

(Design Parameters)
T

Figure 1.5 Design as a Transformation Between Requirements and Specifications
(Koch, 1998)

Among the tools available within the DSP Technique, the compromise DSP

(Mistree, et al., 1993b) is a general framework for solving multi-objective, non-linear

optimization problems. In this dissertation, the compromise DSP is central to modeling

multiple design objectives and assessing the tradeoffs pertinent to robust design of

complex systems. Mathematically, the compromise DSP is a multi-objective decision

model which is a hybrid formulation based on Mathematical Programming and Goal

Programming (Mistree, et al., 1993b). The compromise DSP is used to determine the

22

values of the design variables which satisfy a set of constraints and bounds and achieve

as closely as possible a set of conflicting goals. The compromise DSP in this dissertation

is solved using the Adaptive Linear Programming (ALP) algorithm which is based on

sequential linear programming and is part of the DSIDES (Decision Support in Designing

Engineering Systems) software (Mistree, et al., 1993a).

Formulation of a compromise DSP begins with a word formulation and proceeds

to a mathematical formulation. The word formulation consists of the keywords given,

find, satisfy, minimize and their associated descriptors, as shown in Figure 1.6. Given an

alternative and domain information for a problem at hand, the objective in the

compromise DSP is to find the values of system design variables which satisfy a set of

constraints and bounds and achieve as closely as possible a set of conflicting goals while

minimizing a deviation function.

 Keywords Descriptors

 Given An alternative to be improved through modification;
 assumptions, system parameters, constraints,
 bounds, goals, and the deviation function.

 Find Values of system variables and deviation variables.

 Satisfy System constraints and bounds (feasibility), and goals
 (desired target values or objectives).

 Minimize A deviation function.

COMPROMISE DSP

Figure 1.6 Compromise DSP Word Formulation

23

Given
An alternative to be improved. Assumptions used to model the domain of interest.

 The system parameters:
 n number of system variables, q inequality constraints
 p + q number of system constraints,
 m number of system goals
 gi(x) system constraint function
 fk(di) function of deviation variables to be minimized at priority level kth for the
 preemptive case.
Find
 The values of the independent system variables:
 xi i = 1, …, n;
 The values of the deviation variables:
 di

-, di
+ i = 1, …, m

Satisfy
System constraints (linear, nonlinear)

 gi(x) = 0 for i = 1, .., p; gi(x) ≥ 0 for i = p+1, .., p+q
 System goals (linear, nonlinear)
 Ai(x) + di

- + di
+ = Gi i = 1, …, m

 Bounds
 xi

min ≤ xi ≤ xi
max i = 1, …, n

 di
-, di

+ ≥ 0 ; i = 1, …, m; di
- . di

+ = 0 ; i = 1, …, m
Minimize
 Preemptive deviation function (lexicographic minimum):
 Z = [f1(di-, di+), ..., fk(dk-, dk+)]

Figure 1.7 Mathematical Form of a Compromise DSP
(Mistree, et al., 1993b)

The generic mathematical formulation of the compromise DSP is presented in

Figure 1.7. The compromise DSPs are written in terms of n system variables, a vector X,

defining the physical attributes of an artifact that can be altered. A set of p+q system

constraints is used to model the limits placed on a system design, and must be satisfied

for feasibility. Mathematically, system constraints are functions of system variables only,

and may be a mix of linear and nonlinear functions. Bounds are specific limits placed on

the magnitude of each of the system variables. A set of m system goals is used to model

24

the aspirations for the design. It relates the goal target, Gi, to the actual performance,

Ai(X), of the system with respect to the goal. The deviation variables, di
- and di

+, are

introduced as a measure of achievement, the difference between Ai(X) and Gi. In the

compromise DSP the objective is to minimize a deviation function, Z(d−, d+), a function

of the deviation variables. The form of these formulations is given in Figure 1.7.

In the compromise DSP, goals may either be weighted in an Archimedean

solution scheme or rank-ordered into priority levels using a preemptive approach to affect

a solution on the basis of preference. For the preemptive approach, the lexicographic

minimum concept (Ignizio, 1985) is used to quickly evaluate different design scenarios

by changing the priority levels of the goals to be achieved. Differences between the

Archimedean and preemptive deviation functions and a description of the ALP algorithm,

design and deviation variables, system constraints, goals, and bounds are discussed in

(Mistree, et al., 1993b).

A solution to the compromise DSP is a satisficing solution since it is a feasible

point that achieves the system goals to the “best” extent that is possible. The efficacy of

the compromise DSP in creating ranged sets of top-level design specifications has been

demonstrated in both aircraft design (Lewis, et al., 1994; Simpson, et al., 1996) and ship

design (Smith and Mistree, 1994). By finding a ranged set of solutions rather than a

single point solution, greater design flexibility can be maintained during the design

process. Finally, the compromise DSP also provides the cornerstone of the Robust

Concept Exploration Method which is overviewed in the next section.

25

1.2.2 The Robust Concept Exploration Method

The Robust Concept Exploration Method (RCEM) has been developed to

facilitate the quick evaluation of different design alternatives and generation of top-level

design specifications with quality considerations in the early stages of design (see, e.g.,

Chen, et al., 1996a). It is primarily useful for designing complex systems which usually

utilize computationally expensive analyses. The RCEM is created by integrating several

methods and tools – robust design methods (see, e.g., Phadke, 1989), the Response

Surface Methodology (see, e.g., Myers and Montgomery, 1995), and Suh's Design

Axioms (Suh, 1990) — within the compromise DSP (Mistree, et al., 1993b). In applying

robust concept exploration, robust design specifications are identified for the design of

complex systems. In this context, robustness of specifications is measured in terms of

sensitivity to changes in requirements – thus the focus is on minimizing the effects on the

design of uncontrollable noise and/or downstream design changes. The computer

infrastructure for implementing RCEM is shown in Figure 1.8.

There are five generic processors (A, B, D, E, and F) surrounding a central “slot”

for inserting existing, domain-dependent analysis tools as simulation programs (C). The

simulation programs are used to evaluate the performance of a number of design

configurations. The RCEM processors increase computational efficiency and facilitate

the generation of robust design specifications. The point generator (processor B) is used

to design the necessary screening experiments. The experiments analyzer (processor D)

is used to evaluate the results of the screening and to plan additional experiments. The

response surface model processor (E) is used to create response surface models, and the

26

compromise DSP processor (F) is used to explore a design space and identify robust

design specifications.

Figure 1.8 RCEM Computer Infrastructure (adapted from Chen, et al., 1996a)

The RCEM is a four-step process as shown in Figure 1.9. The steps are described

as below:

Step 1 - Classify Design Parameters: Given the overall design requirements, this

step involves the use of Processor A, see Figure 1.8, to (a) classify different

design parameters as either control factors, noise factors, or responses following

27

the terminology used in robust design and (b) define the concept exploration

space.

Step 2 - Screening Experiments: This step requires the use of the point generator

(Processor B), simulation programs (Processor C), and an experiment analyzer

(Processor D) shown in Figure 1.8 to set up and perform initial screening

experiments and analyze the results. The results of the screening experiments are

used to (a) fit low-order response surface models, (b) identify significant main

effects, and (c) reduce the design region.

Step 3 - Elaborate the Response Surface Model: This step also requires the use of

the point generator (Processor B), simulation programs (Processor C), and

experiment analyzer (Processor D) to set up and perform secondary experiments

and analyze the results. The results from the secondary experiments are used to

(a) fit second-order response surface models (using Processor E) which replace

the original computer analyses, (b) identify key design drivers and the

significance of different design factors and their interactions, and (c) quickly

evaluate different design alternatives and answer "what-if" questions in Step 4.

Step 4 - Generate Top-Level Design Specifications with Quality Considerations:

Once accurate response surface models have been created, Step 4 involves the use

of the compromise DSP (Processor F in Figure 1.8) to determine top-level design

specifications with quality considerations. The original analysis or simulation

program(s) is replaced by response surfaces which are functions of both control

and noise factors. Different quality considerations and multiple objectives are

28

incorporated in the compromise DSP which is then solved to determine robust,

top-level design specifications.

STEP 4
Generate robust top-level design specifications

Overall Design Requirements
RCEM Steps: Methods, Tools, and Math Construct:

STEP 3
Elaborate response surface models

STEP 2
Conduct “screening experiments”

STEP 1
Classify design parameters

Robust Design Principle /
Techniques

Response Surface Methods /
DOE/ANOVA Statistical Methods

Compromise Decision Support
Problem

Figure 1.9 Steps and Tools of the RCEM (adapted from Chen, et al., 1996a)

In Figure 1.9 three categories of techniques or mathematical constructs are

utilized in implementing RCEM. The robust design principles/techniques are taken into

RCEM in Step 1 and 4 by classifying design parameters and formulating robust design

goals in the compromise DSP. Metamodeling techniques (the metamodeling techniques

used in RCEM are the Response Surface Methodology, which will be described in detail

in Chapter 2) are used in Step 2 and 3. Then in Step 4 robust top-level design

specifications are generated through solving compromise DSPs. Each step of the RCEM

corresponds not only with the implementing techniques but also with the processors

shown in the RCEM infrastructure (Figure 1.8).

29

A review of the wide variety of applications that have successfully employed the

RCEM is given in (Simpson, et al., 1997b). In (Chen, et al., 1996a) it is shown that

RCEM is used to explore airframe configurations and propulsion system designs and

determine robust top-level design specifications for the HSCT (High Speed Civil

Transport) system. In (Simpson, et al., 1996) the use of the RCEM in the conceptual

design of a family of products is illustrated with the specific example of a general

aviation aircraft. In (Rangarajan, 1998) the RCEM is used in designing automobile

engines with lubrication considerations.

1.3 RESEARCH FOCUS IN THE DISSERTATION

The research focus in this thesis is embodied in the following:

• a set of research questions that capture motivation and specific issues to be

addressed;

• a set of corresponding research hypotheses that offer context by which the

research proceeds, defining the structure of the verification studies

performed in this work; and

• a set of resulting research contributions that embody the deliverables from

the research in terms of intellectual value, a repeatable method of solution,

limitations, and avenues of further investigation.

In Section 1.3.1, a discussion on deficiencies of current metamodeling and

design space exploration techniques in RCEM is presented. This leads to the

proposed research as described in Section 1.3.2. A set of research questions and

corresponding research hypotheses are listed and discussed. The verification and

30

validation strategy is presented in Section 1.3.3. Contributions of the proposed

research summarized in Section 1.3.4; they are revisited in Chapter 8.

1.3.1 Metamodeling and Design Space Exploration – Problems to be Addressed

As illustrated in Figure 1.8 and Figure 1.9, metamodeling plays a significant role

in RCEM. Robust top-level specifications are achieved through the development and

elaboration of metamodels (specifically, RS models). However, the evolvement of

design and manipulation of design information through metamodeling are limited in

RCEM, as being explained in the following paragraphs.

Techniques used in metamodeling are confined to those from the Response

Surface Methodology (RSM). Only traditional experimental designs (i.e., factorial

design, central composite design, etc.) are used to develop a single type of metamodels,

the RS models (regression polynomials). This constrains the amount of design

information obtained in metamodeling; as design evolves, the experimental designs and

corresponding metamodels may fail to provide sufficient design information. Space-

filling experiments and kriging metamodels are used in recent applications of RCEM, but

as will be discussed in Chapter 2, the experiments are still conducted at a single stage and

there are still other types of metamodels that may be used to provide designers more

flexibility. A method needs to be developed to (1) integrate the usage of different types

of metamodels in accordance with different design requirements along the design

timeline, and (2) facilitate sequential experimental designs.

Metamodel validation methods used in RCEM are not suitable for deterministic

computer experiments. To validate the accuracy of a metamodel, in RCEM we use

31

various statistics such as F-statistics, etc. However, as is explained in Chapter 2, these

statistics are theoretically unsuitable for computer experiments. Thus new methods to

validate a metamodel are needed since our simulations are usually computer codes that

yield deterministic results.

No sequential metamodeling is involved in RCEM. Although experiments are

conducted in a sequential manner (from factorial design to central composite design), the

metamodel is developed only once after finishing all experiments. This is illustrated in

Figure 1.8 in which there is only one loop among Processors B, C, and D, and there is no

feedback from Processor E (development of metamodels) to the DOE loop B-C-D. It is a

single-stage metamodeling in which information gained in the development of

metamodels is not used in design of experiments and collection of future design

information. Further more, if no screening happens in the DOE loop B-C-D, the

experimental design could also be viewed as single-level experimental designs though it

is conducted sequentially, because information collected in previous experiments has no

influence on the conduction of future experiments. As a summary, the single-stage

metamodeling in RCEM is not suitable for large-scale engineering systems design in

which usually a series of metamodels are needed to meet the design requirements as the

design evolves along the design timeline.

The integration of metamodeling and design space exploration is not completed in

RCEM. As illustrated in Figure 1.8, there is no feedback from Processor F to the

metamodeling process B-C-D-E. Information flows one way from metamodeling to

design space exploration. This results in a single-stage conceptual design. However, in

32

the conceptual design of large-scale engineering systems, as design requirements and

information change along the design timeline, a series of metamodeling and design space

exploration processes are needed to help achieve robust top-level specifications. The

information from previous metamodeling and design space exploration should be used as

guidance in conducting future metamodeling and exploration of robust solutions. The

two processes of metamodeling and design space exploration should not be separated and

used sequentially, but rather integrated into one process. Metamodeling should be done

in the process of design space exploration; and on the other hand, we could also say that

design space exploration should be done in the process of metamodeling. The two

processes of metamodeling and design space exploration are done simultaneously and

interactively. Through this integration we are able to manipulate the design information

(in a seamless process) that was previously (in RCEM) managed in two separated,

sequential processes of metamodeling and design space exploration. This helps maintain

the design freedom (more flexible, more options keep open before the end of

metamodeling and design space exploration), increase design information (more

information is obtained in an “active” mode of information collection than that in a

“passive” mode), and improve the design efficiency (more information is gained with less

time and effort).

As discussed above, to maintain design freedom and increase design information

with less time and efforts, we must study and develop methods for metamodeling and

design space exploration based on current research achievements. These includes:

• Metamodel validation techniques for deterministic computer experiments;

33

• Comparison of different types of metamodels and usage of different

metamodels along the design timeline;

• Design of sequential computer experiments to achieve accurate metamodels;

and

• Integration of metamodeling and design space exploration processes.

The design process at conceptual design stage (including the metamodeling process,

design space exploration process, and their interactions) needs to be revised: information

flow needs to be redirected and techniques used in the process need to be studied.

Research questions of this dissertation are proposed in the next section based on our

discussions above.

1.3.2 Research Questions and Hypotheses in this Dissertation

The principal goal in this dissertation is to examine and develop techniques in

metamodeling and design space exploration. As discussed in previous sections, the

design process at conceptual design stage (metamodeling process + design space

exploration process) needs to be revised: information flow needs to be redirected;

feedbacks need to be added; and techniques used in the process need to be studied.

According to this, the primary objective of the proposed research is to develop a

systematic yet flexible method in which various metamodeling techniques are utilized in

building series of appropriate metamodels for robust design space exploration in

accordance with the change in information quality along the design timeline in the early

stages of design. Development of the method will be accomplished by (1) studying

34

measures for metamodel validation with deterministic computer experiments, (2)

developing methods for designing sequential computer experiments, (3) developing

methods to integrate the processes of metamodeling and design space exploration, and (4)

comparing and using different types of metamodels according to the changing design

requirements along the design timeline. Given these goals, the key question to be

addressed in this dissertation is presented as:

KEY QUESTION:

How to explore the design space efficiently and effectively for satisficing solutions

by employing sequential metamodeling and design space exploration

techniques in accordance with the changing design information along the

design timeline in early design stages?

This key question defines the scope and goals of the research documented in this

dissertation. Several research objectives are reflected in this key question. By using the

phase of “sequential metamodeling and analysis” three research objectives are defined:

(1) sequential experimental design – the core step in sequential metamodeling; (2)

sequential metamodels – comparison of different types of metamodels, and selection and

usage of different metamodels sequentially; and (3) metamodel validation – analysis of

the accuracy of metamodels. With the phase of “explore the design space … for robust

solutions … in early design stages”, the context of research in this dissertation is fixed,

i.e., the Robust Concept Exploration Method for developing top-level specifications.

35

Examples and case studies in this dissertation are designs at conceptual design stages;

techniques and methods are developed and applied in robust design though it is not

necessarily confined to this field. We aim at developing a systematic method similar to

but more general than the Response Surface Methodology; RCEM will be a platform that

we worked on with the proposed method. The usage of “explore the design space … by

employing sequential metamodeling” identifies the research objective of developing a

method to integrate the processes of metamodeling and design space exploration – to do

metamodeling and design space exploration simultaneously and interactively. By using

“in accordance with the changing design information” three issues are reflected: (1) the

uncertainty associated with design requirements should be considered in metamodeling

and design space exploration; (2) the uncertainty associated with metamodel accuracy

should be considered in metamodeling and design space exploration; and (3) a measure

of information uncertainty need to be developed. The words “efficiently” and

“effectively” indicates my focus in the proposed research: achievement of the design

goals and satisfy design requirements with least time and effort, by grasping and utilizing

maximum design information in sequential metamodeling and design space exploration.

The key question is expressed as four major research questions as listed below.

RESEARCH QUESTIONS:

R.Q.1: How to validate a metamodel with deterministic computer

experiments?

36

R.Q.2: How to design sequential computer experiments (how to select data

and validation points sequentially) to get an accurate metamodel?
R.Q.3: How to integrate the processes of metamodeling and robust design

space exploration?

R.Q.4: How to utilize different types of metamodels along the design timeline

in accordance with the changing design information? (How to do

sequential metamodeling to achieve robust design solutions?)

To answer the first research question it is necessary to study the widely used

technique, cross-validation, in deterministic applications; new approaches are developed

to help validate metamodels with additional validation points in the design space. To

answer the second research question, it is needed to study how to measure information

and the worth of a point in the design space, and then apply this in the identification of

new data points in sequential experimental design. A new method, the Sequential

Exploratory Experimental Design (SEED), is documented based on studies under this

research question. As for research under the third research question, design goals and

requirements are considered in designing experiments and developing metamodels. The

processes of metamodeling and robust design space exploration are integrated into one

process; new data points are those which yields great information worth and/or response

values close to target values. This results in a new robust design process in early design

stages, of which SEED is the basis. To answer the forth research question, first I need to

compare the performance of different types of metamodels in metamodeling, then

37

develop an approach to utilize these metamodels sequentially along the design timeline.

In the following sections the supporting research questions and hypotheses of the four

research questions are presented, respectively.

1.3.2.1 Research on Metamodel Validation

The research question to be explored in this section is the first research question:

How to validate a metamodel with deterministic computer experiments? As presented

below, this research question is studied and answered with work in two directions: one is

to prove the inappropriateness of the currently widely used method, leave-one-out cross-

validation, in deterministic applications, and the other is to develop new approaches of

metamodel validation. The first research question can be expressed as:

R.Q.1: How to validate a metamodel with deterministic computer experiments?

R.Q.1.1: Is leave-one-out cross-validation a suitable method of metamodel

validation with computer experiments?

R.Q.1.2: How to test the accuracy a metamodel in deterministic applications?

Hypothesis 1: Information from either previous additional validation points is

needed in testing the accuracy of a metamodel with deterministic computer

experiments.

38

Sub-Hypothesis 1.1: Leave-one-out cross-validation is not an appropriate

method of metamodel validation with deterministic computer experiments.

Sub-Hypothesis 1.2: The accuracy of a metamodel could be validated through

examining prediction errors at additional validation points.

As described above, Research Question 1 is separated into two supporting

research questions. To answer Research Question 1.1, Sub-Hypothesis 1.1 is tested and

verified. To answer Research Question 1.2, Sub-Hypotheses 1.2.1 and 1.2.2 are tested

and verified. In Chapter 2, some background knowledge related to deterministic

computer experiments and leave-one-out cross-validation is presented. Sub-Hypothesis

1.1 is primarily discussed and tested in Chapter 3. Sub-Hypothesis 1.2.1 is also primarily

tested in Chapter 3, in which an approach to validate metamodels with additional

validation points is developed for engineers. The “worth of possible new data points” is

closely related to the measurement of information, which is discussed in Research

Question 2 and will be studied in Chapter 4. Sub-Hypothesis 1.2.2 is then tested and

verified in Chapter 5. Sub-Hypotheses 1.2.1 and 1.2.2 are occasionally revisited in

Chapters 7 and 8.

1.3.2.2 Research on Sequential Exploratory Experimental Design

The research question to be addressed in this section is: How to design sequential

computer experiments (how to select data and validation points sequentially) to get an

accurate metamodel? To answer this research question we propose to develop a method

named Sequential Exploratory Experimental Design (SEED). In this method, data points

39

and validation points are added and metamodels are developed sequentially; information

from previous points and metamodels is used to help identify new data and validation

points. This research question could be expressed as:

R.Q.2: How to design sequential computer experiments (how to select data and

validation points sequentially) to get an accurate metamodel?

R.Q.2.1: How to measure the information worth of a point?

R.Q.2.2: How to select validation points to achieve a sequential design of

computer experiments?

R.Q.2.3: How to utilize information from previous points and metamodels in

identifying new data points?

Hypothesis 2: Sequential experiments could be designed through analysis of

information from data/validation points and metamodels.

Sub-Hypothesis 2.1: The information worth of a point could be measured with

entropy.

Sub-Hypothesis 2.2: Selection of validation points should follow similar rules

for selection of data points; information from validation points could be used

as guidance in identifying new data points.

Sub-Hypothesis 2.3: Through maximizing entropy (as formulated based on Sub-

Hypotheses 1.1 and 1.2) we are able to allocate new data points in the design

space that yield maximum potential information.

40

There is a one-to-one correspondence between each research question and

hypothesis. References for the proposed research include various types of Design of

Experiments (DOE), D-optimality in DOE, entropy optimization from Information

Theory, and maximum entropy sampling, which will be introduced in Chapter 2. The

hypotheses are tested and verified in Chapter 4, in which the Sequential Exploratory

Experimental Design method is developed. Information uncertainty of an experimental

design could be measured with entropy; the utilization of information from previous

data/validation points and metamodels could be used to adjust the formulation of entropy;

then sequential experiments are achieved by maximizing entropy. The SEED method is

further developed and tested in Chapter 5 and applied in Chapter 7 and 8. SEED is the

basis of the integration of processes of metamodeling and robust design space

exploration, for which a method is developed in Chapter 6.

1.3.2.3 Research on the Integration of Design Processes of Metamodeling and Robust
Design Space Exploration

The research question to be addressed in this section is: How to integrate the

processes of metamodeling and robust design space exploration? To put consideration of

design goals and requirements (constraints) in sequential metamodeling results in a new

design process in which metamodeling and design space exploration of robust solutions

are integrated and done simultaneously. One way to achieve this is to reduce the design

space in metamodeling based on previous information; this should be done after carefully

examining the whole design space, which may be very difficult when there are a lot of

design variables and goals and uncertainty on these goals. The other way is to keep the

41

design space unchanged but gradually add in points where design goals are met and

requirements are satisfied, and/or places with great prediction errors; this could be done

on the basis of SEED, with some adjustment. Research Question 3 could be expressed

as:

R.Q.3: How to integrate the processes of metamodeling and robust design space

exploration?

R.Q.3.1: How to design sequential experiments with consideration of design

constraints?

R.Q.3.2: How to reduce the design space with information from previous

metamodeling and design space exploration?

R.Q.3.3: How to do sequential metamodeling with consideration of design goals?

Hypothesis 3: The processes of metamodeling and robust design space

exploration could be integrated through building the information flow from C-

DSP to the metamodeling cycle in the Robust Concept Exploration Method.

Sub-Hypothesis 3.1: Consideration of design constraints could be incorporated

in the metamodeling process through construction irregular design spaces.

Sub-Hypothesis 3.2: Design space could be reduced through analysis of the

information from previous metamodels.

Sub-Hypothesis 3.3: Design goals can be taken into consideration in metamodeling

by formulating influential factors with the compromise DSP and using them in

maximum entropy sampling.

42

The basis of research in this category is the method of SEED that will be

developed in Chapter 4 and further verified in Chapter 5. Sub-Hypothesis 3.2 is studied

in Chapter 5, and Sub-Hypotheses 3.1 and 3.3 are to be studied and tested in Chapter 6.

A new process of robust design space exploration is developed based on the study under

Sub-Hypothesis 3.3. This new method is validated in Chapter 6, and then applied and

verified in Chapter 7 and 8 with more complicated engineering case studies.

1.3.2.4 Research on the Selection and Utilization of Metamodels along the Design
Timeline

The research question to be addressed in this section is: How to utilize different

types of metamodels along the design timeline in accordance with the changing design

information? In this dissertation, we will only focus on three types of metamodels, the

RS model (regression polynomials), kriging model, and Multivariate Adaptive

Regression Splines (MARS). To answer Research Question 4, first we need to answer

the supporting research questions 4.1 and 4.2, as presented below:

R.Q.4: How to utilize different types of metamodels along the design timeline in

accordance with the changing design information?

R.Q.4.1: How do different types of metamodels perform in engineering design?

R.Q.4.2: How to select different types of metamodels at different design stages?

43

Hypothesis 4: Different types of metamodels should be used at different design

stages in accordance with different requirements of design.

Sub-Hypothesis 4.1: Different types of metamodels have their strong and weak

points.

Sub-Hypothesis 4.2: As design evolves, more complicated types of metamodels

should be used to help yield good approximations with more computation

time and efforts.

The introduction of different types of metamodels is presented in Chapter 2. To

test Sub-Hypotheses 4.1 and 4.2, comparison of these metamodels is done in Chapter 5.

An approach to utilize these metamodels sequentially along the design timeline is also

proposed and tested in Chapter 5. This approach of selection and switch of types of

metamodels, together with the SEED method developed in Chapter 4, and the new robust

design space exploration process developed in Chapter 6, are applied in Chapter 7.

The relationship between hypotheses and chapters is shown in Table 1.1.

Hypothesis 1 is mainly discussed and tested in Chapter 3. Hypothesis 2 is mainly

discussed and tested in Chapter 4. Hypothesis 3 is mainly discussed and tested in

Chapter 6. Hypothesis is mainly discussed and tested in Chapter 5.

There are several examples and case studies in this dissertation. Very simple one-

variable or two-variable examples are used in Chapter 3, 4, 5, and 6 to help illustrate and

validate our ideas. In Chapter 5, several engineering case studies are used to help

44

compare the performance of different types of metamodels, and validate the SEED

method developed in Chapter 4. One of these case studies, the design of pressure vessels,

is used in Chapter 6 to help develop the new process of robust design space exploration.

The engineering example used in Chapter 7 is the design of cellular materials; our

emphasis in this chapter is the validation of integration of processes of metamodeling and

robust design space exploration.

Table 1.1 Relationship Between Hypotheses and Dissertation Chapters

 Hypothesis Chapters
Discussed

Chapters
Tested

H1 Metamodel Validation
 SH1.1 Leave-one-out cross-validation Chp 2, 3 Chp 3
 SH1.2.1 Validation with additional validation points Chp 3, 4, 5 Chp 5, 7
 SH1.2.2 Validation with possible new data points Chp 2, 4 Chp 4, 5, 7
H2 Sequential Exploratory Experimental Design
 SH2.1 Information worth of a point Chp 2, 4, 6 Chp 4, 5, 7
 SH2.2 Selection and usage of validation points Chp 2, 3, 4, 6 Chp 4, 5, 7
 SH2.3 Sequential experimental design Chp 2, 4 Chp 4, 5, 7

H3 Integration of Processes of Metamodeling
and Design Space Exploration

 SH3.1 Experiments in irregular design spaces Chp 2, 5, 6 Chp 6, 7
 SH3.2 Design space reduction Chp 5, 6 Chp 5

 SH3.3 Metamodeling with consideration of design
goals and requirements Chp 2, 6 Chp 6, 7

H4 Selection and Utilization of Metamodels
 SH4.1 Comparison of types of metamodels Chp 2, 5 Chp 5
 SH4.2 Sequential utilization of metamodels Chp 2, 5 Chp 5, 7

45

1.3.3 Contributions from the Research

The hypotheses and sub-hypotheses, taken together, define the research presented

in this dissertation and hence the contributions from the research. The expected

contributions from the thesis are the following:

Expected Contributions related to Hypothesis 1 and Sub-Hypotheses 1.1-1.2:

• Verification of the inappropriateness of leave-one-out cross-validation in

testing the accuracy of metamodels with deterministic computer experiments;

• An approach to validate the accuracy of metamodels with information from

additional validation points.

• An approach to validate the accuracy of metamodels based on information

worth of possible new points.

Expected Contributions related to Hypothesis 2 and Sub-Hypotheses 2.1-2.3:

• The method of Sequential Exploratory Experimental Design (SEED);

• Formulation of information uncertainty of metamodels with consideration of

prediction errors.

Expected Contributions related to Hypothesis 3 and Sub-Hypotheses 3.1-3.3:

• The integration of processes of metamodeling and robust design space

exploration;

• Design space reduction and sequential experimental design in irregular design

spaces.

Expected Contributions related to Hypothesis 4 and Sub-Hypotheses 4.1-4.2:

• The comparison of different types of metamodels (RS, kriging and MARS);

• An approach to utilize different types of metamodels sequentially along the

design timeline.

46

This being the first chapter of the dissertation, these contributions cannot be

substantiated; therefore, they are revisited in Chapter 8 after all of the research findings

have been documented and discussed. A validation and verification strategy for this

dissertation is presented next.

1.4 A VALIDATION AND VERIFICATION STRATEGY FOR THIS
DISSERTATION

The validation and verification strategy for this dissertation is based on the

validation square by Pedersen and coauthors (Pedersen, et al., 2000). As noted by

Pedersen and coauthors, validation (justification of knowledge claims, in a modeling

context) of engineering research has typically been anchored in formal, rigorous,

quantitative validation based on logical induction and/or deduction. As long as

engineering design is based primarily on mathematical modeling, this approach works

well. Engineering design methods, however, rely on subjective statements as well as

mathematical modeling; thus, validation solely by means of logical induction or

deduction is problematic. Pedersen and coauthors propose an alternative approach to the

validation of engineering design methods based on a relativistic notion of epistemology

in which “knowledge validation becomes a process of building confidence in its

usefulness with respect to a purpose.”

47

(1) and (2)
THEORETICAL
STRUCTURAL

VALIDITY

(3)
EMPIRICAL

STRUCTURAL
VALIDITY

(4) and (5)
EMPIRICAL

PERFORMANCE
VALIDITY

(6)
THEORETICAL
PERFORMANCE

VALIDITY

DESIGN
METHOD

I
Input:
•information
•resources

I Output:
•Design Solution

PURPOSE :
Defined based on

Intuitive Knowledge
(i.e., experience)

USEFULNESS :
METHOD Efficient and / or

Effective in achieving the
articulated purpose(s).

USEFULNESS :
METHOD Efficient and / or

Effective in achieving the
articulated purpose(s).

Effectiveness :
Qualitative Evaluation of

METHOD

Efficiency :
Quantitative Evaluation of

METHOD

METHOD VALIDITY
Criteria: USEFULNESS with

respect to a PURPOSE

METHOD VALIDITY
Criteria: USEFULNESS with

respect to a PURPOSE

Appropriateness of
example problems used to

verify METHOD
usefulness

Correctness of METHOD-
constructs, both Separately

and I ntegrated

Performance of Design
Solutions and Method

beyond example problems

Performance of Design
Solutions and Method with

respect to example
problems

“a Leap of Faith ”

Figure 1.10 The Validation Square: Validating Design Theories or Methods
(Pedersen, et al., 2000)

Pedersen and coauthors propose a framework for validating design methods in

which the “usefulness” of a design method is associated with whether the method

provides design solutions correctly (structural validity) and whether it provides correct

design solutions (performance validity). This process of validation is represented in the

Validation Square in Figure 1.10. With respect to the square, theoretical structural

validity involves accepting the individual constructs constituting a method as well as the

internal consistency of the assembly of constructs to form an overall method. Empirical

48

structural validity includes building confidence in the appropriateness of the example

problems chosen for illustrating and verifying the performance of the design method.

Theoretical performance validity involves building confidence in the generality of the

method and accepting that the method is useful beyond the example problems. Empirical

performance validity includes building confidence in the usefulness of a method using

example problems and case studies.

How can this validation framework be implemented in a dissertation?

Establishing theoretical structural validity involes searching and referencing the literature

related to each of the constructs employed in the design method. In addition, flow charts

are often useful for checking the internal consistency of the design method by verifying

that there is adequate input for each step and that adequate output is provided for the next

step. Establishing empirical structural validity consists of documenting that the example

problems are similar to the problems for which the methods/constructs are generally

accepted, that the example problems represent actual problems for which the method is

intended, and that the data associated with the example problems can be used to support a

conclusion. Empirical performance validity is established by using representative

example problems to evaluate the outcome of the design method in terms of its

usefulness. Metrics for usefulness should be related to the degree to which the method’s

purpose has been achieved. It is also important to establish that the resulting usefulness

is, in fact, a result of applying the method. For example, solutions obtained with and

without the construct/method can be compared and/or the contribution of each element of

49

the method can be evaluated in turn. An important part of empirical performance validity

is empirical verification of data used to support empirical performance validation.

Theoretical
Structural

Validity

Empirical
Structural

Validity

Theoretical
Performance

Validity

Empirical
Performance

Validity

Selection and Usage of
Different Types of
Metamodels; Sequential
Metamodels;
Application of SEED in
Simple Engineering
Case Studies

The method of SEED:
Sequential Exploratory
Experimental Design

Chapter 4

Chapter 5

Methods of
Metamodel
Validation

Theoretic Foundations

Case Study:
Design of Cellular
Materials

Background

Premises of Theory
and Method

Problem Identification

Chapter 2

Chapter 1

Chapter 8

Chapter 7

Chapter 6

Chapter 3

Closure

E-RCEM: Integration of
Processes of Metamodeling
and Robust Design Space
Exploration

Figure 1.11 Organization of the Dissertation Based on The Validation Square

Empirical verification is established by demonstrating the accuracy and internal

consistency of the data. For example, in optimization exercises, multiple starting points,

active constraints and goals, and convergence can be documented to verify that the

solution is stationary and robust. For any engineering model, it is important to verify that

50

data obtained from the model represent aspects of the real world that are relevant to the

hypotheses in question. The model should react to inputs in an expected manner or in the

same way that an actual system would react. Theoretical performance validity can be

established by showing that the method/construct is useful beyond the example problems.

This may involve showing that the problems are representative of a general class of

problems and that the method is useful for these problems; from this, the general

usefulness of the method can be inferred.

In Figure 1.11, an outline of the validation strategy for this dissertation is

provided. It is arranged according to the validation square as described above and

illustrated in Figure 1.10. An overview of this dissertation is presented in the next

section.

51

Chapter 3

Metamodel Validation:

Validation Points.

Chapters 5
Sequential Metamodeling;

Comparison of
Metamodels; Simple

Engineering Case Studies

Cross-Validation, Additional

Chapter 1
Foundations for Sequential
Exploratory Experimental

Design

• Introduction, motivation, and
technical foundation

• Identify research objectives,
hypotheses, and

t ib ti

Pr
ob

le
m

 Id
en

tif
ic

at
io

n

Chapter 2
Literature Review: Entropy,

Metamodeling, Design Space
Reduction, Robust Exploration

• Introduce entropy
• Introduce metamodeling

techniques
• Introduce robust design

space exploration, etc.

Relevance Hypotheses

Introduce

Elaborate

• Examine cross-validation
• Metamodel validation with

additional validation points
• Metamodel validation with

possible new data points
• SEED
• Selection of validation points
• SEED with kriging and MARS
• Review and verify hypotheses

Theoretical
Deduction
and
Empirical
Verification

Chapter 4
SEED;

Metamodel Validation with
Possible Data Points

Chapter 7
Design of Cellular

Materials

• Simple engineering case
studies: pressure vessel, etc.

• Comparison of different types
of metamodels

• Selection and usage of
sequential metamodels

• Design of cellular materials
• Application of SEED
• Application of E-RCEM
• Application of sequential

metamodeling

Chapter 8
Closing Remarks

• Summarize research findings,
contributions, and limitations

• Identify avenues of future
Summarize

Th
eo

rie
s,

 M
et

ho
ds

, a
nd

H

yp
ot

he
si

s
Te

st
in

g
C

lo
si

ng

Verification
with Case
Studies

• Integration of processes of
metamodeling and robust
design space exploration

• The Efficient Exploration
Method

Chapters 6
The Efficient Robust Concept

Exploration Method

Figure 1.12 Overview of Thesis Chapters

52

1.5 ORGANIZATION OF THE DISSERTATION

To facilitate this discussion, an overview of the chapters in the dissertation is

offered in Figure 1.12. Chapter 1 and 2 act as the first phase of the dissertation in which

the background and motivation are given, and research scope is defined. Research in

Chapter 3 is the foundation of research in Chapters 4, 5, and 6; thus we could view

Chapter 3 as a “warm-up” chapter that provides tools and ideas for work in later chapters.

Chapters 4, 5, and 6 are the heart of this dissertation in which several methods and

approaches are developed for metamodeling and design space exploration. The method

of Sequential Exploratory Experimental Design (SEED) is presented and verified with

simple examples in Chapter 4. The approach to utilize different types of metamodels

sequentially along the design timeline is proposed in Chapter 5. The new integrated

process of metamodeling and robust design space exploration is described in Chapter 6.

Several simple engineering case studies, e.g., the design of pressure vessels, are used in

Chapter 5 and 6 to help illustrate and verify the proposed methods. Chapters 7 and 8 are

validation of the proposed methods with more complicated engineering case studies, the

design of cellular materials and electrical vehicle body structures, respectively. A

summary of work in this dissertation is presented in Chapter 8.

Through this chapter the foundation for sequential metamodeling and robust

design space exploration is introduced and the scope of our research in this dissertaion is

defined. In the next chapter, our references are described in detail and the research in this

dissertation is further elaborated.

53

54

CHAPTER 2

A LITERATURE REVIEW: DESIGN OF
EXPERIMENTS, METAMODELING,

INFORMATION THEORY, AND ROBUST DESIGN
SPACE EXPLORATION

Given the research focus identified in Section 1.3, a survey of relevant work in

design of experiments, metamodeling, information theory, and robust design exploration

is presented in this chapter. A summary of problems and challenges in approximation-

based design, an introduction of our research objectives, a description of available

resources and a discussion on how the resources can be used to realize our research

objectives are presented in Section 2.1. A close look at robust design space exploration is

presented in Section 2.2. Taguchi’s robust design method, robust design at early design

stages, and the need of metamodeling are discussed. In Section 2.3 an overview of

metamodeling techniques in deterministic computer experiments is presented. Then in

Section 2.4 different types of metamodels are introduced and our focus is put on the

regression polynomials (RS models), kriging models, and the multivariate adaptive

regression splines (MARS). Various experimental designs are presented in Section 2.5;

optimal experiments are introduced. Then the information theory and maximum entropy

sampling are discussed in Section 2.6. Section 2.7 concludes the chapter with a summary

of what has been presented and a preview of what is next.

55

2.1 OUR RESEARCH OBJECTIVES AND ORGANIZATION OF
REFERENCES

This section is written to be a bridge between the discussion of research

motivations and objectives in Chapter 1 and the introduction of references in Chapter 2.

An overview of the researches in this dissertation and how these researches are done

based on well-organized literature reviews is given in this section. In Section 2.1.1, the

research motivations are re-emphasized with examples of problems in current research

and industry. Possible ways to solve these problems are discussed in Section 2.1.2,

which lead to the research questions and help define the research objectives for this

dissertation. A description of references is presented in Section 2.1.3. The gap between

the available knowledge and the desired metamodeling and design space exploration

methods is shown in Section 2.1.4, which leads to the research questions and

corresponding tasks.

2.1.1 Research Motivations: Problems and Challenges in Approximation-Based
Robust Design

As described in Section 1.1, approximation-based design are introduced because

the metamodels help designers 1) gain insight into the relationship between design

variables and responses, 2) integrate discipline-dependent analysis codes, and 3) avoid

usage of expensive analysis models. Metamodels have been widely used in early-stage

design and analysis. In approximation-based design, the design effectiveness is

sacrificed to gain efficiency; in other words, designers pursue the efficient exploration for

56

a satisficing solution instead of the expensive optimization for an optimal solution. This

is the basis of the RCEM method, which is introduced in Section 1.2.2.

Although the approximation-based design strategy facilitates efficient exploration

for satisficing design solutions, there are some problems that cannot be solved with

current metamodeling and design space exploration techniques. As will be explained in

detail, designers are strictly confined and thus real-world, industrial design applications

are limited because of these unsolved problems.

Metamodels are introduced to replace expensive computer simulations or physical

experiments. In the design space exploration process, designers may need to call the

analysis codes many times to find the solution with an optimization algorithm. The usage

of cheap-to-run metamodels facilitates the efficient examinations of response values, thus

design space exploration is not an expensive process in approximation-based design. In

approximation-based design, more time or money is spent on computer or physical

experiments in the metamodeling process, which is the process before design space

exploration in traditional design methods.

When the original computer simulation codes (or physical analysis experiments)

are very computationally (or monetarily) expensive, designers cannot efficiently grasp

the responses or achieve satisficing design solutions even with the assistance of

metamodels. For instance, one crash simulation of a full passenger car takes 36 to 120

hours to compute, according to engineers at Ford Motor Company (Gu, 2001). In case of

physical experiments, the experimental resources may be limited, e.g., engineers’ access

to some particular manufacturing facilities may be restricted, the experimental time may

57

be very long (this situation is similar to that with expensive computer simulations),

materials used in the experiments may be very expensive, etc. In such cases with

expensive experiments or simulations, the usage of metamodels helps greatly reduce the

possible high expense in a trial-and-error approach; however, the metamodeling cost

become so high that designers may not be able to develop acceptable metamodels at

acceptable prices with current experimental design and metamodeling techniques. Thus,

engineers may not be able to take enough information from the experiments or

simulations for design. This leads to a difficult question: how can engineers develop

acceptable metamodels and achieve good design solutions at low cost when the

experiments or simulations are very expensive?

Another problem is that in multi-disciplinary, multi-variable, and multi-objective

design cases, the actual responses are usually very nonlinear or irregular (which means

the response is nonlinear in some regions but flat in others), and thus it may be difficult to

develop acceptable metamodels with current single-stage experimental design and

metamodeling techniques. For example, in Figure 2.1 we present a single-variable

example in the development of a roller-warning device for road vehicles (Goldman,

2001). This single-variable simulation yields an irregular response of Load Transfer

Ratio (LTR) that is represented by solid line, and the artificial neural networks

metamodel is represented by the dotted line. Another single-variable example is

illustrated in Figure 2.2, the suspension responses versus frequency in road profiling

(Sayers and Karamihas, 1998). A two-variable example is illustrated in Figure 2.3,

which is taken from the study on high-performance impact absorbing materials in

58

(Holnicki-Szulc, et al., 2003). In Figure 2.3, the response is the plastic-like energy

dissipation, and two control variables are σ1 and σ2 describing the yield stresses on

different elements in a structure example used in (Holnicki-Szulc, et al., 2003).

We give examples with only one or two variables and only one response in Figure

2.1, Figure 2.2, and Figure 2.3 because it is easy to illustrate the non-linearity of the

response. In real-world industrial applications, which are characterized as multi-variable,

multi-response, and multi-objective, it is expected that more nonlinear or irregular

responses be involved in the studies and analyses. By using metamodels, engineers agree

not to focus on the details of fluctuations of the responses, but try to grasp an

approximated response-changing tendency with efficient and effective abstractions.

However, when the responses are highly nonlinear or irregular, it is dangerous to use

metamodels with low fidelity in early-design stages because designers may be led to a

totally wrong direction. Even a very small error in early design stages may evolve to a

huge mistake and result in expensive re-design processes. Thus in design, we suggest

development of “acceptable” metamodels, which means that the metamodels are accurate

enough to reflect major changes of the responses in the design space, and on the other

hand, smooth (or “abstract”) enough to ensure low cost in the metamodeling and design

space exploration processes. Thus another difficult question is posed: how can engineers

develop acceptable metamodels and achieve good design solutions with low cost when

the actual responses are highly nonlinear or irregular?

59

Figure 2.1 LTR Prediction for Maneuver ST Performed at 60 km/hr Using a 2-2
ANN (adapted from Goldman, 2001)

Figure 2.2 Suspension Response versus Frequency in Road Profiling (adapted from
Sayers and Karamihas, 1998)

60

Figure 2.3 Energy Dissipation for Various Yield Stress Values (adapted from
Holnicki-Szulc, et al., 2003)

In summary, it is difficult to utilize the approximation-based design strategy in

industrial applications because:

• In industrial applications, the experiments or simulations can be very

expensive. The metamodeling and design space exploration expense will be

too high to afford with current single-stage experimental design techniques.

• In industrial applications, the responses are usually nonlinear or irregular. To

develop acceptable metamodels and achieve good design solutions, current

metamodeling and design space exploration techniques require observations at

a lot of data points, and thus result in a high expense that may be

unacceptable.

61

Without satisfactory answers to the two questions posed above, engineers cannot

fully utilize an approximation-based design strategy in real-world industrial applications.

Designers’ freedom is strictly restricted, as listed below:

• To avoid expensive physical experiments, engineers have to develop computer

simulations to do analyses. This should be encouraged because it represents

the trend in the computerized world. However, not all physical experiments

can be replaced by computer simulations; the computer analysis model may

be inaccurate or even totally wrong when we do not fully understand the

system that we are modeling (usually it is because that the system is too

complicated, or the theory to describe and explain the system is incorrect).

Since engineers cannot afford the physical experiments with current

metamodeling and design space exploration techniques, they have to work

with the inaccurate (or even incorrect) computer analysis models because they

cannot do the expensive physical experiments at low expense.

• Since multiple runs of the expensive experiments or simulations cannot be

afforded, engineers may tend not to use these analyses in early-stage design.

Then the design becomes experience-based because the achievement of good

design solutions is mainly dependent on the designers’ knowledge. The

expensive experiments or simulations are only used as validation tools in very

late design stages. With such a design strategy, expensive re-design is very

likely to take place, and the time-to-market is greatly increased.

62

• Engineers are advised not to develop expensive computer simulations in order

to avoid intensive computation loads. Usually more abstractions and

assumptions are made in the development of inexpensive simulations than that

of expensive ones, and as a result, the inexpensive simulations can be very

inaccurate. To use such analysis codes designers may not be able to capture

important response properties in the design space, and thus are led to wrong

directions; this will result in re-design and increased time-to-market.

• In order to reduce the metamodeling and design space exploration expense,

designers usually choose a very small design space to ensure that the

responses in this design space are not highly nonlinear or irregular. The

selection of this design space is mainly based on designers’ experience. This

strategy confines designers’ freedom to explore a large design space, and

cannot ensure a good design solution.

2.1.2 Research Objectives

As discussed in Section 2.1.1, engineers cannot fully utilize an approximation-

based design strategy (experiments or simulations, metamodels, and exploration of the

design space) in early design stages of real-world industrial applications because of the

high experimental expense and irregular (or highly nonlinear) responses. Without

available methods and tools to address these concerns, engineers have to circumvent

these problems in design. This confines designers’ freedom; it is very likely that

expensive re-design process will take place and the time to market will be increased.

63

To save time and money spent on expensive physical experiments or computer

simulations, researchers proposed a lot of methods or heuristics to reduce the design

space or facilitate sequential metamodeling processes in a fixed design space. The aim of

these methods is to reduce the number of total observations or locate data points in

“meaningful” regions through intermediate analyses of the response surfaces in the

design space.

To reduce the design space, designers can either screen out unimportant design

variables or reduce the ranges of design variables. The identification and elimination of

unimportant design variables is an important step in the traditional Response Surface

Methodology (RSM) (Myers and Montgomery, 1995). Other methods are also developed

to reduce the dimensionality (e.g., see Box and Draper, 1969; Balabanov, et al., 1999;

Giunta, et al., 1996; Welch, et al., 1992). More research is done to reduce the ranges of

design variables. Chen and her co-authors developed heuristics to lead the surface

refinement to a smaller design space (Chen, et al., 1997). The adaptive RSM (ARSM)

method is developed to systematically reduces the size of the design space by discarding

portions of it that correspond to objective function values larger than a given threshold

value at each modeling-optimization iteration (Wang, 2001; Wang, 2003). Move limit

strategies or trust regions are often used to identify “meaningful” design spaces (Wujek

and Renaud, 1998a; Wujeck and Renuad, 1998b; Alexandrov, et al., 1998; Rodriguez, et

al., 1997). Wang and Simpson propose an intuitive methodology to systematically

reduce the design space to a relatively small region by incorporating the fuzzy c-Means

clustering technique in the metamodeling process (Wang and Simpson, 2004).

64

In this dissertation, we develop methods that do not adopt the design-space-

reduction strategy. Instead, we focus on problems in which the design space is fixed and

unchanged during the design process. In such cases, strategies are expected to locate data

points sequentially in the design space. With the sequential experimental design strategy,

information from previous points and metamodels are utilized in identifying new points;

new points are located at “critical” places. Such a strategy helps obtain maximum

possible information with limited resources, and thus achieve good design solutions with

acceptable computational or monetary expense. This helps answer the two questions

posed in Section 2.1.1, how can engineers develop acceptable metamodels and achieve

good design solutions at low cost when the experiments or simulations are very

expensive? And, how can engineers develop acceptable metamodels and achieve good

design solutions with low cost when the actual responses are highly nonlinear or

irregular?

To address the problems as discussed in Section 2.1.1, in this dissertation we

propose a systematic yet flexible method in which various metamodeling techniques are

utilized in building series of appropriate metamodels for robust design space exploration

in accordance with the change in information along the design timeline at the early stages

of design. With this method designers are able to design sequential experiments and thus

develop more accurate metamodels and achieve better design solutions with limited

resources. This will give designers the freedom of utilizing expensive experiments or

simulations in studies with a large design space in early design stages.

To develop the proposed method, we need to accomplish four tasks:

65

• Study measures for metamodel validation. This corresponds to Research

Question 1 of this dissertation. After accomplishing this task we are able to

judge whether a metamodel is acceptable or not. To accomplish this task we

need to study existing metamodel validation approaches, especially in cases

with deterministic computer experiments.

• Develop methods for sequential experimental design in fixed design spaces.

This corresponds to Research Question 2. Criteria and tools are needed to

define the “potential information” and identify “critical” regions. Then an

algorithm needs to be developed to locate new points in “critical” regions that

bring maximum “potential information”.

• Study the integration of metamodeling and design space exploration within a

fixed design space. This corresponds to Research Question 3. Through the

integration of the metamodeling and design space exploration processes, we

consider another criterion for “critical” regions – the achievement of design

goals. The algorithms developed in answering Research Question 2 are

further improved in this research.

• Develop methods for model selection along the design timeline. This

corresponds to Research Question 4. This supports the methods developed for

Research Questions 2 and 3. Metamodel comparison and selection are

needed to ensure that acceptable metamodels can be developed with

sequential experimental design methods.

66

Research objectives in this dissertation are to develop methods with which we are

able to answer the 4 research questions presented in Chapter 1. The proposed methods

should provide engineers with maximum freedom in the design process, help obtain

maximum design information and knowledge with limited resources, facilitate efficient

and effective metamodeling and design space exploration processes, reduce the

possibility of re-design, and thus decrease the time-to-market of new products.

2.1.3 Organization of References

In Section 2.1.2 we described our research objectives, which is to develop

systematic yet flexible methods to facilitate sequential experimental designs, with which

engineers are able to develop acceptable metamodels for irregular responses and achieve

satisficing design solutions with limited resources in early design stages. Such methods

are developed based on previous research, incorporating ideas and tools from various

fields, such as design of experiments, statistical modeling, information theory, and

decision support problems.

The proposed methods in this dissertation are developed based on the Robust

Concept Exploration Method (RCEM), which is introduced in Section 1.2.2. Robust

design space exploration in RCEM, which is realized by incorporating Taguchi’s robust

design, statistical metamodeling, and the compromise DSP (Section 1.2.1), provides the

framework for the proposed methods in this dissertation. The robust design space

exploration is introduced in Section 2.2.

It has been shown in previous studies that some types of metamodels are

theoretically appropriate for deterministic computer experiments, while others are not.

67

Some metamodel validation criteria used in physical experiments do not have statistical

meanings with computer experiments. To compare and validate the accuracy of

metamodels in such cases, leave-one-out cross-validation errors are widely used;

however, previous research suggests that alternate criteria be used because it is

empirically proved that leave-one-out cross-validation errors do not correlate with the

true prediction error. This leads to the studies for Research Question 1, metamodel

evaluation. The deterministic computer experiments and metamodel validation

techniques are introduced in Section 2.3.

The development of various types of metamodels is important in the

approximation-based design strategy. In this dissertation, we will study and use three

types of metamodels, the response surface metamodel, kriging, and the multivariate

adaptive regression splines. This study helps answer Research Question 4, metamodel

comparison and selection. Different types of metamodels are introduced in Section 2.4.

The sequential experimental design method is developed based on maximum

entropy sampling (which is an application of the information theory), which is actually a

D-optimal design. Designs of experiments are introduced in Section 2.5, with emphasis

on D-optimal experiments. The information theory and the maximum entropy sampling

method are introduced in Section 2.6. This, together with the compromise DSP, provides

the necessary basis for answers to Research Questions 2 and 3.

68

2.1.4 Organization of Research Questions: Removing Gaps Between Available
Resources and Proposed Design Space Exploration Methods

After introducing the motivations in Section 2.1.1, research objectives in Section

2.1.2, and existing technical resources in Section 2.1.3, the gaps between existing

technical resources and the research objectives are discussed in this section, which lead to

the research questions of this dissertation.

Gaps and
Bridges Metamodeling

for design space
exploration?

Type of
Metamodel

used?

Metamodel
acceptable?

Information
potential?

Critical
regions?

Compromise
DSP

RCEMMaximum
Entropy

Sampling

Information
Theory

Design of
Experiments

Metamodeling

SEED E-RCEM

Better solutions
with fewer points

Better metamodels
with fewer points

Proposed
Methods

Research
Objectives

Existing
Technical
Resources

Figure 2.4 Gaps and Bridges between Research Objectives and Existing Technical
Resources

69

The gaps between existing technical resources and research objectives are

illustrated in Figure 2.4. The research objectives of this dissertation are to develop

methods that facilitate efficient and effective approximation-based robust design, which

are represented by ovals at the top of Figure 2.4. The research objectives are achieved by

the development of two methods, SEED and E-RCEM, in this dissertation. As

introduced in Section 2.1.3, the available technical resources are RCEM, C-DSP, DOE

(Design of Experiments) techniques, Metamodeling Techniques, the information theory,

and maximum entropy sampling, which are presented in boxes at the bottom of Figure

2.4. The gaps between existing techniques and the research objectives are illustrated with

dashed boxes and arrows in Figure 2.4, which can also be viewed as bridges connecting

the “known” and “unknown”. The gaps (or bridges) are:

• Approaches to validate metamodel accuracy. Leave-one-out cross-validation

is widely used to test the accuracy of metamodels; however, previous

empirical studies shown that it may not be appropriate with deterministic

computer experiments. A theoretical study of leave-one-out cross-validation

in metamodel validation, and the development of appropriate metamodel

validation approaches is necessary for the development of sequential

metamodeling and design space exploration methods. This leads to Research

Question 1.

• A method to reflect and utilize information during the metamodeling process.

In order to save time and money spent on expensive experiments, a sequential

experimental design strategy is necessary in which information from previous

70

observations can be used as guidance in selecting new data points. To

develop such a method, we need to identify “critical regions” and evaluate the

“information potential” of points. This can be achieved through the utilization

of the information theory and maximum entropy sampling techniques. This

corresponds to Research Question 2.

• The consideration of design goals in the metamodeling process. The

integrated design process of metamodeling and design space exploration helps

achieve better design solutions faster; to realize this an algorithm is needed to

incorporate design goals in metamodeling. This algorithm can be developed

based on the compromise DSP and the SEED method. This leads to Research

Question 3.

• Utilization of appropriate types of metamodels. To identify and use the

appropriate type of metamodels is important in the application of SEED and

E-RCEM; thus a study is needed on the comparison and selection of different

types of metamodels in sequential metamodeling and design space

exploration. This leads to Research Question 4.

The organization of references, research questions (the gaps), and proposed

studies and methods is illustrated in Figure 2.5. The proposed methods and studies,

which are what we want to achieve in this dissertation, is illustrated at the top of Figure

2.5 (above two dashed lines). The existing technical resources are presented at the

bottom of Figure 2.5 (below two dashed lines). The gap between the available resources

71

and the desired achievements is reflected by the research questions, which are listed

between two dashed lines in Figure 2.5.

In Figure 2.5 the proposed studies and methods in this dissertation are illustrated

as four ovals on the top, which stand for metamodel evaluation, metamodel comparison,

sequential experimental design, and integration of design processes, respectively. The

references, which are resources we have with existing techniques, are shown in rectangles

at the bottom. Research Questions 1, 2, 3, and 4 provide the link between the existing

techniques and proposed methods and studies. To answer Research Question 1, computer

experiments and leave-one-out cross-validation are studied. To develop a sequential

experimental design method (the SEED method), we need to answer Research Question

2; R.Q. 2 is answered based on studies of Design of Experiments, D-Optimal Design,

Information Theory and Entropy, and Maximum Entropy Sampling. The comparison and

selection of metamodels in design are based on the knowledge of various types of

metamodels. The integration of design processes is realized by answering Research

Question 4; the compromise DSP plays an important role in the incorporation of design

goals and constraints in the metamodeling process.

72

R
.Q

.1
R

.Q
.2

R

.Q
.3

R
.Q

.4
R

es
ea

rc
h

Q
ue

st
io

ns

Proposed Studies and Methods Frame of References (Chapter 2)
Se

qu
en

tia
l

M
et

am
od

el
in

g,

M
et

am
od

el
 S

el
ec

tio
n

(C
ha

pt
er

 5
)

V
ar

io
us

 T
yp

es
 o

f
M

et
am

od
el

s (
2.

4)

Th
e

C
om

pr
om

is
e

D
SP

 (1
.2

)

R
ob

us
t D

es
ig

n
Sp

ac
e

Ex
pl

or
at

io
n

(2
.2

)

SE
ED

: S
eq

ue
nt

ia
l

Ex
pl

or
at

or
y

Ex
pe

rim
en

ta
l D

es
ig

n
(C

ha
pt

er
 4

)

M
ax

im
um

 E
nt

ro
py

Sa

m
pl

in
g

(2
.6

)

In
fo

rm
at

io
n

Th
eo

ry
,

En
tro

py
 (2

.6
)

D
-O

pt
im

al

D
es

ig
n

(2
.5

)

D
es

ig
n

of

Ex
pe

rim
en

ts
 (2

.5
)

E-
R

C
EM

: E
ff

ic
ie

nt

R
ob

us
t C

on
ce

pt

Ex
pl

or
at

io
n

M
et

ho
d

(C
ha

pt
er

 6
)

M
et

am
od

el

Ev
al

ua
tio

n
(C

ha
pt

er
 3

)

C
om

pu
te

r E
xp

er
im

en
ts

,
C

ro
ss

-V
al

id
at

io
n

(2
.3

)

73

Fi
gu

re
 2

.5
 O

rg
an

iz
at

io
n

of
 R

ef
er

en
ce

s

2.2 ROBUST DESIGN SPACE EXPLORATION

The fundamental motivation underlying robust design, as originally proposed by

Taguchi, is to improve the quality of a product or process not only by striving to achieve

performance targets but also by minimizing performance variation. Taguchi’s methods

have been widely used in industry, generally applied in the later stages of design to

implement parameter design and tolerance design (see, e.g., Byrne and Taguchi, 1987;

Phadke, 1989; Ross, 1988). Reviews of such applications are found in (e.g., Nair, 1992).

In robust design, the relationship between different types of design parameters or

factors are represented with a P-diagram as shown in Figure 2.6 where P represents either

product or process (Phadke, 1989). The three types of factors which serve as inputs to

the P-diagram and that influence the (output) response y are:

 Control Factors (x) – parameters which can be specified freely by a

designer; the settings for the control factors are selected to minimize the

effects of noise factors on the response y. It is a designer’s responsibility

to determine the best values for these parameters.

 Noise Factors (z) – parameters not under a designer’s control or whose

settings are difficult or expensive to control. Noise factors cause the

response, y, to deviate from their target and lead to quality loss through

performance variation. Noise factors may include system wear, variations

in the operating environment, uncertain design parameters, and economic

uncertainties.

74

 Signal factors (M) – parameters set by the designer to express the intended

value for the response of the product; signal factors are those factors used

to adjust the mean of the response but which no effect on the variation of

the response.

Product / Process

Noise Factors

ResponseSignal Factors

Control Factors
x

z

M y

µz , σz

µy , σy

Figure 2.6 P-Diagram of a Product/Process in Robust Design
(adapted from Phadke, 1989)

The terminology of robust design is used to classify design parameters and

responses and to identify sources of variability. The objective in robust design is to

reduce the variation of system performance caused by uncertain design parameters,

thereby reducing system sensitivity. Variations in noise factors, shown in Figure 2.6 as

normally distributed with mean µz and standard deviation σz, lead to variation in

performance responses, also represented in Figure 2.6 as normally distributed with mean

µy and standard deviation σy. In robust design, solutions (represented through settings of

the control factors) are usually sought that minimize response variation in addition to

achieving performance targets (mean, µy, on target, M). In taking this approach, robust

solutions obtained for complex systems involving significant uncertainty (or noise) are

75

usually not “optimal” in the traditional sense, but satisficing (Simon, 1982). When

building approximate system models based on data obtained from statistical

experimentation, models are required for the mean, µy, and standard deviation, σy, of each

response.

In robust design space exploration, we aim at identifying robust design solutions

at early design stages through the development of metamodels and trade-off among

design goals. We could achieve this with the robust concept exploration method

(RCEM), which is the hybrid of several methods and tools – robust design methods, the

response surface methodology (metamodeling techniques), Suh’s design axioms, and the

compromise DSP. In Section 2.1.1, Taguchi’s robust design is introduced and its

limitation pointed out. Implementations of robust design at early design stages for large-

scale engineering systems are presented in Section 2.1.2. Robust design space

exploration is the context for research in this dissertation.

2.2.1 Taguchi’s Method

What is of interest is Taguchi’s definition of the “goodness” of a design. Whereas

various other approaches assume that a good design meets a set of well-defined

functional, technical performance, and cost goals, Taguchi states that a good design

minimizes the quality loss over the life of a design. In Taguchi’s method the quality loss

is defined as the deviation from desired performance (Phadke, 1989; Ross, 1988;

Taguchi, 1978; Taguchi, 1987; Taguchi, et al., 1989).

Based on the concept that loss is incurred when a product’s functional quality

characteristic deviates from its target value regardless of the amount of deviations, the

76

quality loss is measured based using the quadratic loss function as shown in Figure 2.7.

As stated in (see, e.g., Phadke, 1989; Ross, 1988), the quality loss for being off-target by

means of a quadratic quality loss function can be represented as:

L(y) = k (y - T)2 , (2.1)

where

y is the quality characteristic of a product/process,

T is the target value for y, and

k is a constant, the quality loss coefficient.

L(y)
Quality
Loss

T
y

Figure 2.7 Quadratic Loss Function

Under this description, to maximize the quality the loss must be zero. The greater

the loss, the lower quality. The quality loss is zero at y = T in Figure 2.7 and increases

slowly near T but more rapidly farther from T. Equation (2.1) is the simplest

mathematical equation exhibiting this behavior and the constant k in it must be

determined to make the equation best approximates the actual loss in the region of

interest.

Using Taguchi’s robust method, a designer is concerned with the sensitivity of a

design to uncontrollable factors that may be encountered in both manufacturing and use.

77

Under robust design considerations, noise factors cause the response, y, to deviate from a

target specified by a signal factor, M, and therefore lead to quality loss. The objective of

robust design is to choose the levels of control factors to dampen the variation of

responses according to the criterion for robust ness criteria, e.g., “the target is best”, “the

larger the better”, and “the smaller the better”. Taguchi states the parameter design

concept as that the fundamental principle of robust design is to improve the quality of a

product by minimizing the effect of the causes of variation without eliminating the

causes.

Design of experiments, specifically orthogonal arrays (OA), are typically

employed in Taguchi’s robust design method to systematically vary and test the different

levels of each of the control factors. Taguchi advocates the use of an inner-array and

outer-array approach to implement robust design (e.g., Byrne and Taguchi, 1987). The

inner-array consists of an OA which contains the control factor settings; the outer-array

consists of the OA which contains the noise factors and their settings which are under

investigation. The combination of the inner-array and outer-array constitutes what is

called the product array. The product array is used to systematically test various

combinations of the control factor settings over all combinations of noise factors after

which the mean response and standard deviation may be approximated for each run using

the equations:

• Response mean: y =
1
n

yi
i =1

n

∑

78

• Standard deviation: S =
(yi − y)

n −1

2

i=1
∑

n

Preferred parameter values can then be determined through analysis of the signal-to-noise

(SN) ratio; factor levels that maximize the appropriate SN ratio are optimal. As stated in

previous paragraphs, there are three “standard” types of SN ratios (see, e.g., Phadke,

1989):

• Nominal the best (for reducing variability around a target):

 SNT =10 log
y 2

S2

 (2.2)

• Smaller the better (for making the system response as small as possible):

 SNL = −10log
1
n

1
yi

2
i =1

n

∑

 (2.3)

• Larger the better (for making the system response as large as possible):

 SNS = −10 log
1
n

yi
2

i =1

n

∑

 (2.4)

Once all of the SN ratios have been computed for each run of an experiment, there

are two common options for analysis: Analysis of Variance (ANOVA) and a graphical

approach. ANOVA can be used to determine which factors are statistically significant

and the appropriate setting for each. The graphical approach is an alternative approach in

which the SN ratios and average responses are plotted for each factor against its levels.

The usual approach, then, is to examine the graphs and “pick the winner,” i.e., pick the

79

factor levels which (1) best maximize SN and (2) bring the mean on target (or maximize

or minimize the mean, as the case may be).

After the foundation of robust design by Taguchi, robustness has been taken as a

design criterion to improve the qualities of both product and design process. Pignatiello

provides a comprehensive review of the Taguchi Method and summarizes ten triumphs

and tragedies (Pignatiello and Ramberg, 1991) and those relevant to engineering design

practices are listed here:

• Taguchi helps industries to reduce the cost and improve a product’s quality

using the robust design concept.

• Taguchi brings the consideration of sensitivity analysis into the stage when an

optimization problem is formulated.

• DOE techniques and many other statistical methods have become more and

more widely used in the engineering design field with the promotion of

Taguchi.

There are many criticisms of Taguchi’s implementation of robust design through

the inner and outer array approach (Montgomery, 1991; Nair, 1992; Otto and Antonsson,

1993; Shoemaker, et al., 1991; Tribus and Szonyi, 1989; Tsui, 1992). Consequently

many variations of the Taguchi method have been proposed and developed; many

researchers advocate modifications within the framework defined by Taguchi.

Ramakrishnan and Rao (1991) formulate robust design as a nonlinear optimization

problem using Taguchi’s loss function as the objective. Sundaresan and co-authors

(1993) incorporate a Sensitivity Index (SI) in the optimization procedure to determine a

robust optimum. Otto and Antonsson (1993) argue the necessity of incorporating

80

constraints in robust design. Parkinson and co-authors (1993) propose including

feasibility robustness as an important robust design category. Su and Renaud (1996)

provide an in-depth review of several different robust optimization techniques based on

the Taguchi method and investigate the computational costs associated with

implementing them. Simpson and co-authors (1997c) give an extensive review of robust

design formulations and use design capability indices to satisfy a “ranged set of

requirements”. Review of numerous robust design optimization methods can also be

found in (Simpson, et al., 1997b; Tsui, 1992; Yu and Ishii, 1998). In the next section, our

approach of robust design at early design stages for large-scale systems is presented.

2.2.2 Robust Design in the Early Design Stages

If we can model a concept variant in the conceptual design phase of a product,

then we can implement Taguchi’s robust design methods in the early stages of design. To

accomplish this though the model must represent a good approximation of the real life

product because it is necessary to have clearly defined target values that must be met for

the product to be robust. The objective of abstracting robust design to early design stages

is accomplished by integrating Taguchi’s principles with response surface methodology

and the compromise DSP which is elaborated in Section 1.2.1. As introduced in Section

1.2.2, the RCEM is developed to facilitate robust design of large-scale complex

engineering systems at early design stages. To facilitate the implementation of robust

design within the RCEM, second-order response surface models are created and used to

approximate the design space, replacing the computer analysis code or simulation routine

used to model the system. The major elements of the response surface model approach

81

for robust design applications are (see, e.g., Myers and Montgomery, 1995; Shoemaker,

et al., 1991):

• Combining control and noise factors in a single array instead of using

Taguchi's inner- and outer-array approach,

• Modeling the response itself rather than expected loss, and

• Approximating a prediction model for loss based on the fitted-response

model.

Instead of using Taguchi’s orthogonal array as the combined array for

experiments, central composite designs are employed in the RCEM to fit second-order

response surface models for integration with Taguchi's robust design. From the response

surface model, it is possible to estimate the mean and variance of the response. The

central composite design and the response surface model will be presented in detail as

useful metamodeling techniques in following sections of this chapter.

While Taguchi’s method is generally applied in later stages of design, we propose

to extend considerations of robustness to the early design stages to help both increase the

products’ quality and reduce time to market. With RCEM we are able to measure the

capability of meeting the specified range of overall design requirement in the concept

exploration process where there are varying design parameters. It has been suggested by

a number of researchers that separate goals be modeled for the response mean and

variance in a robust design formulation (e.g., Chen, 1995; Chen, et al., 1996a). Their

robust design methods can be represented as achieving the following goals

simultaneously at early design stages:

82

(i) The goal for the response mean: Optimize (minimize or maximize) Mean,

or Bring Mean on Target and

(ii) The goal for response variance: Minimize Variance (at the point under

study).

In brief these goals can be stated as “bringing the mean on target” and

“minimizing the deviation”. To achieve these goals simultaneously a trade-off is

necessary. This is accomplished with the compromise Decision Support Problem (C-

DSP) (Mistree, et al., 1993b).

In an effort to generalize robust design for product design, two broad categories,

or types, of robust design based on the source of variation are identified:

• Type I Robust Design: minimizing variations in performance caused by

variations in noise factors (uncontrollable parameters).

• Type II Robust Design: minimizing variations in performance caused by

variations in control factors (design variables).

Although the concepts behind the two major types of robust design are quite

different, robust design is always concerned with aligning the peak of the bell shaped

response distribution with the targeted quality (bringing the mean to the target), and

making the bell shaped curve thinner (reduce the deviation). The two types of robust

design are similar in that they both explore for a flat (or nearly flat) region (Chen, et al.,

1996b).

The logic behind the two major types of robust design applications is illustrated in

Figure 2.8 (Chen, et al., 1995). On the left-hand side of Figure 2.8, a P-diagram (Phadke,

1989) is used to represent different types of parameters in robust design, their

83

relationships with the whole system, and thus the differences in source of variation in

response for Type I and Type II applications. As stated before, Control factors (x) are

parameters which can be specified freely by a designer; noise factors (z) are parameters

that are not under the control of a designer; and the signal factor (M) is the intended

value for the response (y) of a product/process. In Type I applications, the deviation of

the response is caused by variations in the noise factor, z, the uncontrollable parameter.

Type II is different from Type I in that its input does not include a noise factor. The

variation in performance is caused solely by variations in control factors or design

variables in the region (±∆x).

As described in (Chen, 1995), on the right hand side of the figure is a schematic

of the different concepts behind the two types of robust design. Taguchi’s robust design

method deals with only the Type I robust design. Type I robust design is highlighted in

the upper right block of Figure 2.8. Basically, in the Taguchi method, a designer adjusts

control factors, x, to dampen the variations caused by the noise factor, z. The two curves

represent the performance variation as a function of noise factor when x is at two

different levels, x = a and x = b. If the design objective is to achieve a performance as

closely as possible to the target, M, the designs at both levels are acceptable because their

means are the target M. However, introducing robustness, when x = a, the performance

varies significantly with the deviation of noise factor, z; however, when x = b, the

performance deviates much less. Therefore, x = b is more robust than x = a as a design

solution because x = b dampens the effect of the noise factors more than x = a.

84

y
=

Re
sp

on
se

M
 =

 S
ig

na
l F

ac
to

rs
x = Control Factors

z =Noise Factors

Type I

x = Control Factors

M
 =

 S
ig

na
l F

ac
to

rs

Type II

y
=

Re
sp

on
se

²x ²x

y

x
robust µ

M

Optimizing
Solution

Robust
Solution

Design
Variable

Objective or
Deviation
Function

optx

Noise Factor, z

x = a

x = b

M

Control Factor

Objective or
Deviation
Function

y

(x = b)(x = a)

Figure 2.8 A Comparison of Two Types of Robust Design (Chen, et al., 1995)

The logic behind Type II robust design is represented in the lower right block of

Figure 2.8. For purposes of illustration, assume that performance is a function of only

one variable, x. In general, for this type of robust design, to reduce the variation of the

response caused by the deviations of design variables, instead of seeking the peak or

optimum value, a designer is interested in the flat part of a curve near the performance

target. It is in this manner that robustness can affect the compromise DSP, as stated

before. If the objective is to move the performance function towards target M and if a

85

robust design is not sought then obviously the point x = a is chosen. However, for a

robust design, x = b is a better choice. This is because if design variables vary within the

region ±∆x of their means, the resulting variation of response of the design at x = b is

much smaller than that at x = a, while the means of the response at two designs are close.

The robust solution, x = b, is more desirable since it helps bring the mean responses of

the system into the target values and minimizes deviation, which is a very important

factor when solving the compromise DSP for multiple responses.

In the next section, an overview of metamodeling techniques in deterministic

computer experiments is presented. Then different metamodels, design of experiments,

and their application in engineering design cases are discussed in following sections.

2.3 METAMODELING TECHNIQUES AND DETERMINISTIC COMPUTER
EXPERIMENTS

As stated in Section 1.1.1, much of today’s engineering analysis work consists of

running complex computer codes – supplying a vector of design variables (inputs) x and

receiving a vector of responses (outputs) y. The expense of running many of these codes

remains non-trivial despite continual advances in computing power and speed. Single

evaluations of aerodynamic or finite-element codes can take from minutes to hours, if not

longer. Furthermore, this mode of query-and-response often leads to a trial and error

approach to design, an iterative spiral compounded by the requirements flowdown and

feedback necessary in large-scale complex systems design. Thus a designer may never

86

uncover the functional relationship between x and y and therefore may never identify the

best settings for the input values.

Statistical techniques are widely used in engineering design to address these

concerns. The basic approach is to construct approximations of the analysis codes that

are much more efficient to run and that yield insight into the functional relationship

between x and y. This is where the approximation-based robust design comes from. To

facilitate the implementation of robust design, metamodeling techniques are often

employed to create approximations of the mean and variation of a response in the

presence of noise. A metamodel is a “model of a model” (Kleijnen, 1987) which is used

as a surrogate approximation for the actual analysis (i.e., computer code) during the

design process. The general approach to response surface modeling is shown in Figure

2.9. In statistical terms, design variables are factors, and design objectives are responses;

the factors and responses to be investigated for a particular design problem provide the

input for the approach of Figure 2.9, and the solutions (improved or robust) are the

output. To identify these solutions, this approach includes three sequential stages:

screening, modeling building, and model exercising.

The first step (screening) is employed only if the problem includes a large number

of factors (usually greater than 10); screening experiments are used to reduce the set of

factors to those that are most important to the response(s) being investigated. Statistical

experimentation is used to define the appropriate design analyses which must be run to

evaluate the desired effects of the factors. Often two level fractional factorial designs or

87

Plackett-Burman designs are used for screening (Myers and Montgomery, 1995), and

only main (linear) effects of each factor are investigated.

YESLarge # of
Factors?

Run Screening
Experiment

Reduce #
Factors

Run Modeling
Experiment(s)

Build Predictive
Model ()

Solutions

Search Design
Space

NO

Given:
Factors,

Responses

y

YES

NO

Noise
Factors?

Build Robustness
Model ()

Screening

Model
Building

Model
Exercising

(improved or robust)

µy , σy

Figure 2.9 General Approach to Response Surface Metamodeling (Koch, et al.,
1997)

In the second stage (model building) of the approach in Figure 2.9, response

surface models are created to replace computationally expensive analyses and facilitate

fast analysis and exploration of the design space. If little curvature appears to exist, a two

level fractional factorial experiment is designed, and the first-order polynomial is used to

approximate the response(s). If significant curvature exists, then a second-order

88

polynomial is commonly used. Among the various types of experimental design for

fitting a second-order response surface model, the central composite design (CCD) is

probably the most widely used experimental design for regularly shaped (spherical or

cuboidal) design spaces (Myers and Montgomery, 1995). In the case of irregularly

shaped design spaces, D-optimal designs have been successfully employed to build

second order response surface models (see, e.g., Giunta, et al., 1994).

Phases

4

3

2

1

Metamodel
Validation

Metamodel Fitting

Metamodel Choice

Design of
Experiments

Validate
Metamodel

Develop
Metamodel

Choose Type of
Metamodel

Run Simulation Program

Select Data Points

Verify Accuracy

Manipulate
Information

Get Information

Techniques Steps

Figure 2.10 Phases, Steps, and Corresponding Techniques in the Metamodeling
Process

As seen in Figure 2.10 and as evidenced by the preceding discussion, building

approximations of computer analysis and simulation codes involves: (a) choosing an

experimental design to sample the computer code, (b) choosing a model to represent the

data, and (c) fitting the model to the observed data. Usually a fourth step is needed to

89

validate the accuracy of metamodels, as illustrated in Figure 2.10. There are a variety of

options for each of these steps as shown in Figure 2.11, and some of the more prevalent

approximation techniques have been highlighted. For example, response surface

methodology usually employs central composite designs, second-order polynomials, and

least squares regression analysis. The reader is referred to (Simpson, et al., 1997b) for a

review of numerous mechanical and aerospace engineering applications of many of the

metamodeling techniques shown in Figure 2.11 with particular emphasis on response

surface methodology, neural networks, inductive learning, and kriging. An introduction

of various kinds of metamodels is presented in Section 2.3.

Best Linear
Unbiased Predictor

Realization of a
Stochastic Process

SAMPLE
APPROXIMATION

TECHNIQUES
MODEL

FITTING
EXPERIMENTAL

DESIGN
MODEL
CHOICE

Kriging

Neural
Networks
Inductive
Learning

(Fractional)
Factorial

Central Composite

Box-Behnken

Latin Hypercube

D-Optimal

Plackett-Burman

Hexagon

Hybrid

Polynomial
(linear, quadratic)

Splines
(linear, cubic)

Network of
Neurons

Rulebase or
Decision Tree

Radial Basis
Functions

Kernel Smoothing

Least Squares
Regression

Weighted
Least Squares

Regression

Backpropagation

Entropy
(info.-theoretic) Random Selection

Select By Hand

Log-Likelihood

G-Optimal

Orthogonal Array
Best Linear

Predictor

Response Surface
Methodology

Figure 2.11 Techniques for Metamodeling (Simpson, et al., 1997b)

90

Metamodels for the actual analysis in complex systems are essential for efficiency

and effectiveness in the early design stages in that:

• They yield insight into the relationship between responses, y, and design

variables, x.

• They provide fast analysis tools for design space exploration since cheap-to-

run approximations are used instead of the more expensive complete computer

analyses.

• They facilitate the integration of discipline dependent analysis codes into the

overall design strategy.

An additional advantage of typical metamodels is that they can smooth the data in

the case of numerical noise which may hinder the performance of some gradient-based

optimizers (see, e.g., Giunta, et al., 1994). This “smoothing” effect for different types of

metamodels is both good and bad, depending on the problem and the degrees of

“smoothness”. Su and Renaud (1996) present an example where a second-order response

surface smoothes out the variability in a response so that the robust solution is lost in the

approximating function; a “flat region” does not exist in a second-order response surface,

only an inflection point. Su and Renaud’s example is taken as an example for this

dissertation in Chapters 3 and 4.

In Section 2.2.1, the Response Surface Methodology is introduced as an

application of metamodeling techniques in engineering fields. The deterministic

computer experiment and its impact on metamodeling are discussed in Section 2.2.2.

Metamodel validation with computer experiments is discussed in Section 2.2.3.

91

2.3.1 Response Surface Methodology

In designing large scale engineering systems, the design information increases

dramatically along the design timeline. As stated in Section 1.1.1, at different stages of

design the design emphasis is different. At the beginning period the design efficiency is

much emphasized while as design goes on more and more focus is put on the design

effectiveness. From the viewpoint of metamodeling, this shift of design requirements

corresponds to the development of more and more accurate metamodels with sequential

experiments. The Response Surface Methodology (RSM) is such a method in which

sequential experimental designs and sequential metamodels are utilized to reflect the

different information and requirements along the design timeline.

Different authors describe Response Surface Methodology differently. Myers and

co-authors (1989) define RSM as “a collection of tools in design or data analysis that

enhance the exploration of a region of design variables in one or more responses.” Box

and Draper (1987) state that, “Response surface methodology comprises a group of

statistical techniques for empirical model building and model exploitation. By careful

design and analysis of experiments, it seeks to relate a response, or output variable to the

levels of a number of predictors, or input variables, that affect it.” Finally, Biles (1984)

defines RSM as the, “body of techniques by which one experimentally seeks an optimum

set of system conditions”.

RSM then encompasses and incorporates the design of experiments (particularly,

classical experimental designs, Section 2.4), response surface model building (Section

92

2.3), and “model exploitation” for exploring a factor space and seeking optimum factor

settings. The general RSM approach includes all or a subset of the following steps:

i) screening: when the number of factors is too large for a comprehensive

exploration and/or when experimentation is expensive, screening

experiments are used to reduce the set of factors to those that are most

important to the response(s) being investigated;

ii) first-order experimentation: when the starting point is far from an

optimum (or in general when knowledge about the space being explored is

sought), first order-models and an approach such as steepest-ascent are

employed to “rapidly and economically move to the vicinity of the

optimum” (Montgomery and Evans, 1975);

iii) second-order experimentation: after the best solution using first-order

methods is obtained, a second-order model is fit in the region of the first-

order solution to evaluate curvature effects and attempt to improve the

solution.

A more detailed description of RSM techniques and tools can be found in (Box

and Draper, 1987) and (Myers and Montgomery, 1995); a comprehensive review of RSM

developments and applications from 1966-1988 is given in (Myers, et al., 1989). These

sequential experiments in RSM are utilized in RCEM to facilitate building sequential

metamodels.

Although RSM has been widely applied and proved to be useful, it has many

weak points as well as strong points. It is confined to classical experimental designs and

regression polynomial models (which is referred as RS models). This limits its usage in

deterministic applications as will be discussed in the next section, and in engineering

93

design, particularly, the robust design, which is pointed out in this thesis and will be

studied more in future research.

2.3.2 Deterministic Computer Experiments

 Previous research in SRL and other research groups points out that the

deterministic property of computer experiments has a great influence in building

metamodels for engineering design (see, e.g., Simpson, et al., 1997b; Koch, 1997;

Simpson, 1998).

x

y

x

y

ε ~ N (0, σ 2)
(y i - y i)

 y = g(x) = second order
least squares fit y = g(x) = spline fit

ε = 0

L.S.E.= (yi - yi)
2

Σ
(yi - yi)

2
=0 Σ

 (a) Non-Deterministic Case (b) Deterministic Case

Figure 2.12 Deterministic and Non-Deterministic Curve Fitting (Simpson, et al.,
1997)

Given a response of interest, y, and a vector of independent factors x thought to

influence y, the relationship between y and x includes the random error term ε. To apply

least squares regression, the error values for each data point are assumed to have identical

94

and independent normal distributions with means of zero and standard deviations of σ, or

εi i.i.d. N(0,σ2). This scenario is shown in Figure 2.12(a). The least squares estimator

then minimizes the sum of the squared differences between the actual data points and the

values predicted by the model. It is acceptable if no data point actually lies on the

predicted model, because it is assumed that the model "smoothes out" the random error.

Of course, it is likely that the regression model itself is only an approximation of the true

behavior between x and y, so that the final relationship is

y = g(x) + εbias + εrandom (2.5)

where εbias represents the error of approximation. However, for deterministic computer

experiments as illustrated in Figure 2.12(b), εrandom has mean zero and variance zero, so

after model fitting we have the relationship

 y = g(x) + εbias (2.6)

The deterministic case of Equation (2.6) conflicts sharply with the methods of least

squares regression. First, unless εbias is i.i.d. N(0,σ2) the assumptions for statistical

inference from least squares regression are violated. Even further, because there is no

random error there is little justification for smoothing across data points; instead the

model should hit each point exactly and interpolate between them as shown in Figure

2.12(b). Finally, most standard tests for model and parameter significance are based on

computations using εrandom (the mean squared error) and are therefore impossible to

compute. These observations are supported by literature in the statistics community; as

95

Sacks, et al. (1989a) carefully point out, because deterministic computer experiments lack

random error:

• Response surface model adequacy is determined solely by systematic bias,

• The usual measures of uncertainty derived from least-squares residuals have

no obvious statistical meaning (deterministic measures of uncertainty exist,

e.g., max |y(x) - y(x)| over x and a class of y's, but they may be very difficult

to compute), and

• The classical notions of experimental blocking, replication and randomization

are irrelevant.

Similarly, according to Welch and his co-authors (1990), current methods for the

design and analysis of physical experiments (for example, (Box and Draper, 1987; Box,

et al., 1978)) are not ideal for complex, deterministic computer models. “In the presence

of systematic error rather than random error, statistical testing is inappropriate” (Welch,

et al., 1990). Finally, a discussion of how the model should interpolate the observations

can be found in (Sacks, et al., 1989b).

So where can these methods go wrong? Unfortunately it is very easy to

unthinkingly classify the εbias term from a deterministic model fit as εrandom and then

proceed with standard statistical testing. Several authors have reported statistical

measures such as the F-statistics and root MSE for verification of model adequacy, e.g.,

(Healy, et al., 1975; Koch, et al., 1996; Simpson, et al., 1997b; Unal, et al., 1994; Venter,

et al., 1996; Welch, et al., 1990). These measures have no statistical meaning since they

assume the observations include an error term which has mean of zero and a non-zero

standard deviation. Consequently, the use of stepwise regression for polynomial model

96

fitting is not appropriate since it utilizes F-statistic values when adding/removing model

parameters.

R-Squared (when defined as the model sum of squares divided by the total sum of

squares and thus varying from 0 to 1) is really the only measure for verifying model

adequacy for deterministic computer experiments, and often this measure not sufficient (a

high R-Squared value can be deceiving). Consequently, confirmation testing of model

validity through use of additional (different) data points becomes essential. Residual

plots may also be extremely helpful when verifying model adequacy for identifying

trends in data, examining outliers, etc.

Some researchers (e.g., (Giunta, et al., 1996; Giunta, et al., 1994; Venter, et al.,

1996)) have also employed metamodeling techniques such as RSM for modeling

deterministic computer experiments which contain numerical noise. This numerical

noise is used as a surrogate for random error, thus allowing the standard least-squares

approach to be applied. However, the assumption of equating numerical noise to random

error is questionable, and the appropriateness of their approach warrants further

investigation.

The initial motivation for introducing space filling experimental designs and

different types of metamodels (e.g., kriging, ANN, etc.) into engineering design has been

presented in this section. Though techniques used in RSM, such as RS models,

validation statistics, etc., receive theoretical criticize in deterministic cases, there are few

studies and applications in which they perform apparently weak. One exception are the

experimental designs, for which an intensive study is performed in (Simpson, 1998) and

97

the conclusion is that space filling experimental designs act better than classical ones in

deterministic applications.

2.3.3 Validation of Metamodels

As pointed out in Section 2.2.1, previously widely used statistics in RSM (e.g., F-

statistics, etc.) may be meaningless or inappropriate in deterministic computer

applications; other methods are needed to validate the metamodels. Mitchell and Morris,

(1992a) propose the leave-one-out cross validation approach. In this approach, each

sample point used to fit the model is removed one at a time, the model is rebuilt without

that sample point, and the difference between the model without the sample point and

actual value at the sample point is computed for all of the sample points. While study in

(Simpson, 1998) shows that this method does not provide a good assessment of model

accuracy, thus, additional validation points must be taken. A more detailed study on

leave-one-out cross-validation is included in Chapter 3 of this dissertation.

If additional validation points can be afforded, then the maximum absolute error

(MAX), average absolute error, and root mean square error (RMSE) for the additional

validation points can be calculated to assess model accuracy. Usually NRMSE and

NMAX are used; they refer to the values of RMSE and MAX when normalized against

the sample range. These measures are summarized in Table 2.1. In the table, nerror is the

number of random test points used, yi is the actual value from the computer

code/simulation, and is the predicted value from the approximation model. iŷ

98

Table 2.1 Error Measures for Kriging Metamodels (Simpson, 1998)

Name Error Measure Eqn. #

Max. abs. Error

 max. | yy ii ˆ− | i = 1, ..., nerror

(2.7)

Avg. abs. Error ∑ =
−errorn

i ii
error

yy
n 1

ˆ1

(2.8)

RMSE
error

n

i ii

n
yyerror∑ =

−1
2)ˆ(

(2.9)

To select the validation points is another problem of experimental designs and this

is where sequential experimental designs could take advantage. In previous research

(see, e.g., Simpson, 1998), the validation points are selected spreading across the design

space because 1). The problem is simple and it is possible to afford a great number of

sample points and validation points, and 2). In previous research the focus is to study the

properties of metamodeling techniques, but not the sequential development of

metamodels along the design timeline. While in engineering design of large-scale

complex systems, metamodeling must be considered to be a sequential process to fit the

product realization procedure. Sequential experimental designs are needed to help

develop sequential metamodels, and these sequential experimental designs must take the

selection of validation points into account.

As stated early in this section, classical experiments in RSM are designed in a

sequential manner to help gain efficiency, while few efforts are put on the sequential

usage of space filling experiments. Although a single space filling experiment is proved

to be more efficient than a single classical experiment (Simpson, 1998), it is possible that

99

classical experiments perform better than space filling experiments in a sequential case.

One of my aims in this dissertation is to develop a method for designing sequential

computer experiments in which information from previous data points and metamodels

could be used as a guide in identifying new data points.

Different types of metamodels are introduced in the next section. Our focus is on

the regression polynomials, kriging models, and multivariate adaptive regression splines.

2.4 DIFFERENT TYPES OF METAMODELS

In statistical modeling, the objective is to estimate the relationship between a

response variable, typically univariate, and several predictor variables. The response

surface represents the true mean response. In the case of metamodeling, it is assumed

that there is no error variability in the observed response values; thus, the “mean”

response coincides with the actual responses. There are several statistical methods

available for estimating the response surface. In this section we present six of them:

response surface (RS) models, kriging models, multivariate adaptive regression splines

(MARS), regression trees, artificial neural networks (ANN), and wavelets in Section

2.3.1 – 2.3.4, respectively. However, only the RS model, kriging model, and MARS are

used and studied in this dissertation.

2.4.1 Response Surface Models

RSM was first developed through the collaboration of a statistician and a chemist

(Box and Wilson, 1951). Many authors have compared Taguchi techniques with

traditional Response Surface Methodology (RSM) for different problems and advocate a

100

combined Taguchi-RSM approach (e.g., Lucas, 1994; Ramberg, et al., 1991; Unal, et al.,

1994; Mavris, et al., 1999). RSM incorporates the design of experiments, response

surface model building, and model exploitation to explore a factor space and seek optimal

factor settings. The general form of response surface (RS) models (see Box and Draper,

1987) is a polynomial function. Since this is a linear model (in parameters), the usual

linear model tools may be applied. Thus, RS models are very easy to use. The drawback

is that the rigid structure of a pre-selected polynomial model may not be flexible enough

to represent the true response surface.

The RS models studied in this thesis are second-order polynomials and expressed

as the following:

ji
i j

jiij

n

i
iii

n

i
ii xxbxbxbby

<
==

∑∑∑∑ +++=
1

2

1
0ˆ (2.10)

where b’s are coefficients. For details see (Myers and Montgomery, 1995).

Second-order RS models are easy to use and implement; however, they have

limited capability to model accurately non-linear functions of arbitrary shape. Some two

variable examples of the types of surfaces that a second-order response surface can model

are illustrated in Figure 2.13.

101

y x=80 -4x +12x -3x -12x -12 x1 2 1
2

2
2

1 2 y x=80 + 4x +8x -2x -12x -12 x1 2 1
2

2
2

1 2

y x=80 + 4x +8x -4x -12x -12 x1 2 1
2

2
2

1 2 y x=80 + 4x +8x -3x -12x -12 x1 2 1
2

2
2

1 2

x2 x1

x1

x1

x1

x2

x2

x2

Figure 2.13 Sample Two Variables Second-Order Response Surfaces
(adapted from Box and Draper, 1987)

Higher-order response surfaces can be used to model a non-linear design space;

however, instabilities may arise (see, e.g., Barton, 1992), or it may be too difficult to take

a sufficient number of sample points in order to estimate all of the coefficients in the

polynomial equation, particularly in high dimensions. Hence, many researchers advocate

the use of a sequential response surface modeling approach using move limits (see, e.g.,

Toropov, et al., 1996) or a trust region approach (see, e.g., Rodriguez, et al., 1997). More

generally, the Concurrent SubSpace Optimization procedure uses data generated during

concurrent subspace optimization to develop response surface approximations of the

design space which form the basis of the subspace coordination procedure (Renaud and

Gabriele, 1994; Renaud and Gabrielle, 1991; Wujek, et al., 1995). The Hierarchical and

102

Interactive Decision Refinement methodology uses statistical regression and other

metamodeling techniques to recursively decompose the design space into subregions and

fit each region with a separate model during design space refinement (Reddy, 1996).

Finally, the Model Management Framework (Booker, et al., 1995; Dennis and Torczon,

1995) is being developed collaboratively by researchers at Boeing, IBM, and Rice to

implement mathematically rigorous techniques to manage the use of approximation

models in optimization.

Many of the previously mentioned sequential approaches are being developed for

single objective optimization applications. Since much of engineering design is

multiobjective in nature, it is often difficult to isolate a small region of good design which

can be accurately represented by a low-order polynomial response surface model. Koch,

et al. (1997) discuss the difficulties encountered when screening large variable problems

with multiple objectives as part of the response surface approach. Barton (1992) states

that the response region of interest will never be reduced to a “small neighborhood”

which is good for all objectives during multiobjective optimization. Hence, there is a

need to investigate alternative metamodeling techniques which have sufficient flexibility

to build accurate global approximations of the design space and which are suitable for

modeling computer experiments which are typically deterministic, i.e., contain no

random error or variability, as discussed in Section 2.2. Alternative metamodels are

introduced in following sections.

103

2.4.2 Kriging

Kriging evolved in the field of geostatistics (Matheron, 1963) and has recently

become popular in the area of spatial statistics (Cressie, 1993). From a spatial

perspective, the values of the predictor variables are points in the multi-dimensional

predictor space. In kriging some form of spatial correlation between points in the

predictor space is assumed, and this correlation is used to predict response values

between observed points. The resulting estimated surface interpolates the observed

responses (though it is possible to induce smoothed kriging models which do not

interpolate).

Kriging is named after D. G. Krige, a South African mining engineer who, in the

1950’s, developed empirical methods for determining true ore grade distributions from

distributions based on sampled ore grades (Matheron, 1963). Several texts which

describe kriging and its usefulness for predicting spatially correlated data (see, e.g.,

Cressie, 1993) and mining (see, e.g., Journel and Huijbregts, 1978) exist. These

metamodels are extremely flexible due to the wide range of correlation functions which

can be chosen for building the metamodel. Furthermore, depending on the choice of the

correlation function, the metamodel can either “honor the data,” providing an exact

interpolation of the data, or “smooth the data,” providing an inexact interpolation

(Cressie, 1993). In this dissertation, as in most applications of kriging, the concern is

solely on spatial prediction; it is assumed that the data are not temporally correlated.

These days, kriging goes by a variety of names including DACE (Design and

Analysis of Computer Experiments) modeling—the title of the inaugural paper by Sacks,

104

et al. (1989a) — and spatial correlation metamodeling (see, e.g., Barton, 1994). There

are also several types of kriging (cf., Cressie, 1993): ordinary kriging, universal kriging,

lognormal kriging, and trans-Gaussian kriging. In this dissertation, ordinary kriging is

employed, following the work in (e.g., Booker, et al., 1995; Koehler and Owen, 1996;

Simpson, 1998), and only the term kriging is used.

Although there are more and more researches on kriging metamodels in

engineering design, the usage of kriging metamodels in real-world engineering design is

still limited after its introduction into the literature by Sacks, et al. (1989a). One reason

may be that the estimated parameters of a kriging model are computationally intensive to

obtain, and the assumptions related to the correlation function are difficult to verify.

Initial applications of kriging in engineering design include:

• Giunta (1997) and Giunta, et al. (1998) perform a preliminary investigation

into the use of kriging for the multidisciplinary design optimization of a High

Speed Civil Transport aircraft.

• Sasena (1998) compares and contrasts kriging and smoothing splines for

approximating noisy data.

• Schonlau, et al. (1997) use a global/local search algorithm based on kriging

for shape optimization of an automobile piston engine.

• Osio and Amon (1996) develop a multistage numerical optimization strategy

based on kriging which they demonstrate on the thermal design of embedded

electronic package which has 5 design variables.

• Booker (1996) and Booker, et al. (1996) using a kriging approach to study the

aeroelastic and dynamic response of a helicopter rotor during structural

design.

105

• Simpson (1998) compares second-order RS models and kriging models with

different correlation functions and applied kriging models in product family

design of nozzles, electric motors, and aircraft.

• Lin (2000) studied the performance of kriging models in robust design;

applications include design of electrical vehicle body structures and gear

trains, etc.

Some researchers have also employed kriging-based strategies for numerical optimization

(see, e.g., Cox and John, 1995; Trosset and Torczon, 1997). A look at the mathematics of

kriging is offered next.

Mathematics of Kriging

Kriging postulates a combination of a polynomial model and departures of the form:

 y(x) = f(x) + Z(x) (2.11)

where y(x) is the unknown function of interest, f(x) is a known polynomial function of x,

and Z(x) is the realization of a stochastic process with mean zero, variance σ2, and non-

zero covariance. The f(x) term in Equation 2.11 is similar to the polynomial model in a

response surface, providing a “global” model of the design space. In many cases f(x) is

simply taken to be a constant term β (cf., Koehler and Owen, 1996; Sacks, et al., 1989a;

Welch, et al., 1990). Only kriging models with constant underlying global models are

investigated in this work as well.

While f(x) “globally” approximates the design space, Z(x) creates “localized”

deviations so that the kriging model interpolates the ns sampled data points. The

covariance matrix of Z(x) which dictates the local deviations is:

106

 Cov[Z(xi),Z(xj)] = σ2 R([R(xi,xj)] (2.12)

where R is the correlation matrix, and R(xi,xj) is the correlation function between any two

of the ns sampled data points xi and xj. R is an ns × ns symmetric, positive definite matrix

with ones along the diagonal. The correlation function R(xi,xj) is specified by the user.

Table 2.2 Summary of Correlation Functions

Name Spatial Correlation Function # Deriv. Eqn. #

Exponential exp(−θk dk)k=1
n dv∏ 1 (2.13)

Gaussian exp(−θk dk
2)k=1

n dv∏ ∞ (2.14)

Cubic spline

1 − 6 θk dk()2
+ 6 θk dk()3

2 1− θk dk()3

0

θk dk <
1
2

1
2

≤ θk dk <1

θk dk ≥1

k=1
n dv∏ 1 (2.15)

Matérn linear
function

(1 + θk dk)exp(−θk dk)[]k=1
n dv∏ 1 (2.16)

Matérn cubic
function

(1 + θk dk +
θk
2 dk

2

3
)exp(−θk dk)

 k=1

n dv∏ 2 (2.17)

Five different correlation functions have been studied in previous work by the

author of this dissertation, see Table 2.2. In all the correlation functions listed in the

table, ndv is the number of design variables, θk are the unknown correlation parameters

used to fit the model, and dk = xk
i - xk

j which is the distance between the kth components of

sample points xi and xj. The correlation functions of Equations 2.13 and 2.14 are from

(Sacks, et al., 1989a); the correlation functions of Equations 2.15 – 2.17 are from

107

(Mitchell and Morris, 1992b). In this dissertation, only the Gaussian correlation function

(Equation 2.14) is used in developing kriging models because in the literature the

Gaussian correlation is by far the most popular one in use. Correlation functions with

multiple parameters per dimension exist; however, correlation functions with only one

parameter per dimension are considered in this dissertation to facilitate finding the

maximum likelihood estimates (MLEs) or “best guess” of the θk used to fit the model.

Once a correlation function has been selected, predicted estimates, (x), of the

response, y(x), at untried values of x are given by:

ŷ

 (2.18))ˆfy(R)x(rˆˆ 1 ββ −+= −Ty

where y is the column vector of length ns (number of sample points) which contains the

values of the response at each sample point, and f is a column vector of length ns which is

filled with ones when f(x) in Equation 2.11 is taken as a constant. In Equation 2.18, rT(x)

is the correlation vector of length ns between an untried x and the sampled data points

{x1, x2, ..., xns} and is given by:

rT(x) = [R(x,x1), R(x,x2), ..., R(x,xns)]T (2.19)

Finally, the in Equation 2.18 is estimated using the following expression. β̂

 (2.20) yRf)fRf(ˆ 1T11T −−−=β

108

When f(x) is assumed to be a constant, then is a scalar which simplifies the calculation

of Equation 2.20 and all others involving .

β̂

β̂

The estimate of the variance, , from the underlying global model (not the

variance of the randomness in the observed data itself) is:

2σ̂

s

T

n
)ˆfy(R)ˆfy(ˆ

1
2 ββσ −−

=
−

 (2.21)

where f is again a column vector of ones because f(x) is assumed to be a constant. The

maximum likelihood estimates (i.e., “best guesses”) for the θk used to fit the model are

found by maximizing Equation 2.22 over θk > 0 (Booker, et al., 1995):

2

|]R|ln)ˆln([2 +
−

σsn
 (2.22)

Both and |R| are functions of θ2σ̂ k. While any values for the θk create an interpolative

approximation model, the “best” kriging model is found by solving the k-dimensional

unconstrained nonlinear optimization problem given by Equation 2.22. It is worth noting

that in some cases using a single correlation parameter gives sufficiently good results

(Booker, et al., 1995; Osio and Amon, 1996; Sacks, et al., 1989a). In this dissertation,

however, a unique θ value for each dimension is always considered based on past

difficulties with scaling the design space to [0,1]k during the model fitting process.

109

2.4.3 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) were introduced by Friedman

(Friedman, 1991). It is known that pre-specified parametric models are limited in

flexibility and accuracy since accurate estimates are usually only possible when the true

function is close to the pre-specified parametric one. Thus, when the form of the

underlying true function is unknown, statisticians prefer methods like MARS that can

adaptively create a statistical model.

MARS is essentially a linear model with a forward and backward stepwise

algorithm to select the terms to include in the model. The piecewise-linear MARS

approximation is a linear combination of linear basis functions that are truncated at knots.

The knots determine where the approximation bends to model curvature, and one of the

objectives of the forward stepwise algorithm is to select appropriate knots. After a

reasonable piecewise-linear MARS approximation has been constructed, there is an

option to smooth the approximation to achieve first derivative (or higher) continuity.

MARS is both flexible and straightforward to implement with the computational effort

primarily dependent on the number of basis functions added to the model. This approach

has been successfully used in modeling the objective function in large-scale dynamic

programming problems (Chen, 1999; Chen, et al., 1999).

The MARS model is built by taking the form of an expansion in product spline

basis functions, where the basis functions are selected by the data. MARS uses the

multiple regression model:

110

sjjnjji njxxxgy
v

,...,1,),...,,(21 =+= ε (2.23)

where nv is the number of covariates x = (x1, …, xnv)T, ns is the number of data points, the

error εj is a random variable with mean equal to zero, and the “regression function” g is

smooth but otherwise arbitrary.

The MARS procedure for estimating g consists of three parts:

1. A forward stepwise algorithm to select basis functions,

2. A backward stepwise algorithm to delete basis functions until the “best”

set is found, and

3. A smoothing method which gives the final MARS approximation a certain

degree of continuity.

This is an adaptive procedure because the selection of basis functions is data-based and

specific to the problem in hand. The adaptive strategy has the ability to reduce the

dimensionality of high dimensional problems.

The forward and backward stepwise procedures described in Friedman’s paper are

restated in the following sections. The forward stepwise algorithm takes most of the

computational effort in MARS. One major focus on this research is to improve

computational performance. To demonstrate the potential of improvement, the MARS

forward stepwise algorithm will be explained step by step in Section 2.3.3.1. The

backward stepwise procedure prunes the MARS approximation attained from the forward

stepwise algorithm, by removing unnecessary basis functions one at a time. Robustness

may be improved by pruning, which was discussed in (Tsai, 2002). A brief introduction

111

on the backward stepwise procedure will be given in Section 2.3.3.2. At last, to give

MARS continuity and a continuous first and second derivative at the side knots, a MARS

approximation with quintic basis functions derived in (Chen, et al., 1999) is presented in

Section 2.3.3.3.

2.4.3.1 MARS Forward Stepwise Algorithm

The forward stepwise algorithm is the most computationally expensive

component of MARS. The algorithm is described below, and the notation is introduced

as follows. For more details, see (Tsai, 2002). Mmax is the maximum number of basis

functions, which is used to determine when to terminate MARS approximation. Bm is the

m-th basis function. The quantity Lm is the number of splits that gave rise to Bm, v(l,m)

label the predictor variables that are in the l-th split of the m-th basis function and k

represents values on the corresponding variables.

The forward stepwise algorithm starts with the constant basis function B1(x) = 1,

and initializes the counter variable M. Within the M-loop beginning on the second step,

basis functions M and M + 1 are added. The m-loop searches through the M – 1 basis

functions that have already been added for the best one to “split”. Univariate basis

functions “split” the constant basis function at a knot k for covariate xv in the form of

truncated linear functions,

,)]([)(,)]([)(+
−

+
+ −−=−−+=− kxkxbkxkxb vvvv (2.24)

where [q]+ = max{0,q}. Interaction basis functions are created by “splitting”

(multiplying) an existing basis function Bm(x) with a truncated linear function involving a

112

new covariate. Both the existing basis function and the newly created interaction basis

function are used in the MARS approximation. Then the designers select the next two

basis functions (M and M + 1) to add by loop through the possible choices for basis

function (m), covariate (v), and knot (k).

Possible basis functions are compared with the lack-of-fit (lof). There are various

options for lof, and the least-squared criterion is used in this dissertation and defined as:

∑
=

−=
N

i
iMiM xgygLOF

1

2)](ˆ[)ˆ((2.25)

The indices m, v, and k are stored for the “split” that currently yields the smallest lof.

The algorithm stops when a certain number of basis functions constrained by Mmax has

been accumulated, where Mmax is a user-specified constant. The MARS approximation

approaches interpolation as the number of basis functions increases, but there is a trade-

off between Mmax and computational time. To save MARS computational effort during

the forward stepwise search, instead of computing the least-squares lack-of-fit defined in

Equation (2.25), I(k) is used as the criterion to decide which knot would be added to the

new basis function. To be specific, let be the i-th fitted value using the current

set of orthonormal basis functions and be the i-th fitted value including basis

function M + 1. The decrease in the lack-of-fit is proportional to

)(ˆ iM xg

(ˆ 1 iM xg +)

∑∑
=

+
=

−−−=
N

i
iMi

N

i
iMi xgyxgykI

1

2
1

1

2))(ˆ())(ˆ()((2.26)

The MARS algorithm actually adds two basis functions at a time and the corresponding

I(k) is of the following form:

113

 (2.27) ∑∑
=

+
=

− −−−=
N

i
iMi

N

i
iMi xgyxgykI

1

2
1

1

2
1))(ˆ())(ˆ()(

Friedman pointed out that “I(k) is the improvement in the residual sum of squares

resulting from adding the corresponding basis function with knot location k,” and “The

decrease in the (least-squares) lack-of-fit to be evaluated in the innermost loop of the

forward stepwise algorithm at each potential knot location k is proportional to –I(k).”

2.4.3.2 MARS Backward Stepwise Algorithm

The backward stepwise starts with all Mmax basis functions derived from the

forward stepwise algorithm. It omits one basis function at a time and finds the best set of

basis functions for the MARS approximation.

At the beginning of the algorithm, J* is used to represent the entire basis function

set derived from the forward stepwise algorithm, and the lack-of-fit of this set is saved.

The best set of Mmax – 1 basis functions is found by deleting one basis function at a time.

It is the one whose removal either improves the fit the most or degrades it the least. Then

it loops again starting with that best set to find the best set of Mmax – 2 basis functions.

Throughout the algorithm, it keeps track of the overall best. After completion of the

backward stepwise algorithm, J* holds the best set of basis functions. The backward

stepwise algorithm can be used to ensure a best model as well as to make the MARS

approximation more robust.

114

2.4.3.3 Degree of Continuity

Since the resulting MARS estimate is nonlinear, in general the dynamic program

requires a nonlinear minimization method that uses first and second derivatives to find

the minimum. Friedman’s MARS replaces the truncated linear basis functions [±(x – k)]+

in the forward and backward stepwise algorithms with cubic functions, which provides a

continuous first derivative and a continuous second derivative everywhere except at the

side knots. To give MARS continuity and a continuous first and second derivative at the

side knots, quintic functions derived in (Chen, et al., 1994) in place of Friedman’s cubic

functions are shown below. For sing s and knots k−, k, and k+, quintic functions defined

as:

+

+−

−

−+−+−+

+−

≥
<<

≤

−
−+−+−=

=

kx
kxk

kx

kx
kxkxkx

kkksxQ

,
,)()()(

,0
),,,1|(

543 γβα (2.28)

+

+−

−

+−+−+−

+−

≥
<<

≤

−+−+−

−
=

−=

kx
kxk

kx
kxkxkx

xk
kkksxQ

,0
,)()()(

,
),,,1|(

543 γβα (2.29)

satisfy the constraints as requiring

115

,
)(
363

,
)(

7158

,
)(
4106

5

4

3

−+

−+
+

−+

−+
+

−+

−+
+

−
+−

=

−
−+−

=

−
+−

=

kk
kkk

kk
kkk

kk
kkk

γ

β

α

 (2.30)

,
)(

)363)(1(

,
)(

)7158)(1(

,
)(

)4106)(1(

5

4

3

+−

−+
−

+−

−+
−

+−

−+
−

−
+−−

=

−
−+−−

=

−
+−−

=

kk
kkk

kk
kkk

kk
kkk

γ

β

α

 (2.31)

Nonconvexities are produced in the cubic and quintic basis functions when the

center knot k is not close enough to the midpoint between k− and k+. When having

.1
5
2

,1
5
2

−=<
−
−

=<
−
−

−+

−

−+

+

sfor
kk
kk

orsfor
kk
kk

 (2.32)

Chen proves Equation (2.32) by considering four cases (Chen, 1993). For accurate

minimization, it is desirable for the objective function to be convex. To avoid this

potential cause for nonconvexity, the inequality shown in Equation (2.32) are to be

checked when k− and k+ are chosen. If the ratio does not meet the constraints, the

appropriate side knots need to be adjusted.

116

2.4.4 Other Types of Metamodels

In this section we briefly review other types of metamodels, say, Artificial Neural

Networks (ANN), Regression trees, and wavelets.

ANN models have been very popular for modeling a variety of physical

relationships. The original motivation for ANN comes from how "learning" strengthens

connections along neurons in the brain. Commonly, an ANN model is represented by a

diagram of nodes in various layers with weighted connections between nodes in different

layers. At the input layer, the nodes are the predictor variables and at the output layer,

the nodes are the response variable(s). In between, there is usually at least one "hidden"

layer which induces flexibility into the modeling. Mathematically, an ANN model is a

nonlinear statistical model, and a nonlinear method is used to estimate the parameters

(weights) of the model. There are two main issues in building a network: 1). Specifying

the architecture for the network, and 2). Training the network to perform well with

reference to a training set. To a statistician, this is equivalent to (i). Specifying a

regression model, and (ii). Estimating the parameters of the model given a set of data

(Cheng and Titterington, 1994). If the architecture is made large enough, a neural

network can be a nearly universal approximator (Rumelhart, et al., 1994).

Neural networks are best suited to approximate deterministic functions in

regression-type applications. Cheng and Titterington (1994) note that “In most

applications of neural networks that generate regression-like output, there is no explicit

mention of randomness. Instead, the aim is function approximation.” Typical

applications are speech recognition and handwritten character recognition. Although

117

ANN models are generally flexible enough to model any relationship, they are

computationally intensive, and a significant quantity of representative data is required to

both fit and validate the model. Very often the data is complex and of high

dimensionality. Networks with tens of thousands of parameters are not unheard of, and

the amount of training data is similar. Gathering the training data and determining the

model parameters is a process that can be very computationally expensive.

Consequently, neural networks are better suited for applications in which the models can

be used repeatedly; for a single design application, the cost of building the model may

outweigh the associated gain in exercising the model.

Regression trees (see Breiman, et al., 1984) are closely related to MARS. Instead

of a piecewise-linear approximation, regression trees form a piecewise-constant

approximation. Wavelet modeling is a relatively new technique that has found great

success in image and signal processing (Mallet, 1998). A wavelet is a special form of

basis function that is particularly effective in modeling sharp jumps in the response

surface. The continuous wavelet transform maybe used to identify the locations of these

jumps. Similar to ANN, wavelets are best used when a large quantity of data is available.

Various metamodels are introduced in this section and we emphasized on the RS,

kriging, and MARS models in this dissertation. To compare the performance of RS,

kriging, and MARS models in design, which we propose to do in this thesis, will help

designers develop appropriate metamodels in their design activities. Note that in design

(particularly for early stages of design), typically it is expensive to obtain lots of data for

building metamodels. Thus the design of experiments for data points is very important.

118

In the next section, several experimental designs are presented in two categories: classical

DOE and space filling DOE.

2.5 DESIGN OF EXPERIMENTS

Properly designed experiments are essential for effective computer utilization.

The traditional approach in engineering is to vary one parameter at a time within a

computer analysis code and observe the effects or to randomly assign different

combinations of factor settings to be used as alternative parametric analyses for

comparisons. Design of Experiments (DOE) represents techniques with which we are

able to reasonably select data point in the design space for fitting a model.

An experimental design formally represents a sequence of experiments to be

performed, expressed in terms of factors (design variables) set at specified levels, or

predefined values. An experimental design is represented mathematically by a matrix X

where the rows denote experimental runs and the columns denote the particular factor

setting for each run.

There are essentially two categories of experimental designs, say, the classical

DOE and space filling DOE. Booker (1996) summarizes the difference between classical

experimental designs and new space filling designs well. In the classical design and

analysis of physical experiments, random variation is accounted for by spreading the

sample points out in the design space and by taking multiple data points (replicates), see

Figure 2.14a. In deterministic computer experiments, replication at a sample point is

meaningless; therefore, the points should be chosen to fill the design space. One

119

approach is to minimize the integrated mean square error over the design region (cf.,

Sacks, et al., 1989b); the space filling design illustrated in Figure 2.14b is an example of

such a design.

After generally talking about the D-optimal designs in Section 2.4.1, several kinds

of classical DOE and space filling DOE are briefly introduced in Section 2.4.2.

0.0x2

0.5
1.0

-0.5

-1.0

x1
0.0 0.5-0.5-1.0 1.0

0.0x2

x1
0.0

0.5
1.0

-0.5

-1.0
0.5-0.5-1.0 1.0

 (a) Classical design w/replicates (b) Space filling design w/o replicates

Figure 2.14 Example Classical and Space Filling Experimental Designs

2.5.1 D-Optimal Experiments

Selecting the appropriate design is essential for effective experimentation.

Experimenters must balance the desire to gain as much information as possible about the

response-factor relationships with the cost of experimentation and need for efficiency

(measured in numbers of runs). There are several available measures of merit, useful for

evaluating and comparing experimental designs to ensure the appropriate experiment is

designed, while in this section, we will focus on the D-optimal experiments.

Much of the development of computer-generated designs is an outgrowth of work

by Kiefer (1959, 1961) and Kiefer and Wolfowitz (1959) in the theory of optimal

designs. An optimal design is a design that is “best” with respect to some criterion. The

120

usual approach is to specify a model, determine the region of interest, select the number

of runs to make, specify the optimality criterion, and then choose the design points from a

set of candidate points that the experimenter would consider using. Typically, the

candidate points are a grid of points spaced over the feasible design region.

There are several popular design optimality criteria, and D-optimality criterion is

perhaps the most widely used one. Unlike standard classical designs such as factorials

and fractional factorials, D-optimal design matrices are usually not orthogonal and effect

estimates are correlated. These types of designs are always an option regardless of the

type of model the experimenter wishes to fit or the objective specified for the experiment

(for example, screening, response surface, etc.). D-optimal designs are straight

optimizations based on a chosen optimality criterion and the model that will be fit. The

optimality criterion used in generating D-optimal designs is one of maximizing |X'X| (or

det(X'X)), the determinant of the information matrix X'X. In the case of D-optimality for

regression designs, X is the expanded design matrix that has n rows (one for each design

setting) and p columns (one column for each coefficient to be estimated plus one column

for the overall mean). It was proved that a D-optimal design is also minimax, and on ther

other hand, a minimax design is D-optimal (Kiefer and Wolfowitz, 1960).

This optimality criterion results in minimizing the generalized variance of the

parameter estimates for a pre-specified model. As a result, the “optimality” of a given D-

optimal design is model dependent. That is, the experimenter must specify a model for

the design before a computer can generate the specific treatment combinations. Given

the total number of treatment runs for an experiment and a specified model, the computer

121

algorithm chooses the optimal set of design runs from a candidate set of possible design

treatment runs. This candidate set of treatment runs usually consists of all possible

combinations of various factor levels that one wishes to use in the experiment.

Design of D-optimal experiments will be discussed in detail in Chapter 4. D-

optimal experiments and maximum entropy sampling are basis of the method of

Sequential Exploratory Experimental Design (SEED) developed in this dissertation.

2.5.2 Classical and Space-Filling Experimental Designs

Classical experimental designs are so named because they have been developed

for what are considered to be the more “classical” applications of response surface

metamodeling: physical experiments which are plagued by variability and random error

(see, e.g., Box and Draper, 1987; Myers, et al., 1989; Myers and Montgomery, 1995).

Among these designs, the factorial design, the central composite design (CCD), and face-

centered central composite design (CCF) which is a special type of CCD, are well known

and easily generated; thus they are utilized in designing experiments for the case studies

in this thesis. A brief description of these three classical experimental designs could be

found in (Lin, 2000).

As stated in Section 2.2, fractional factorial and central composite designs are

integrated in RSM to help explore the design space and build RS models efficiently

because of their sequential inherit property mentioned in the previous paragraph. This

has been a plus of the RSM and also the classical experimental designs since space filling

experiments are seldom designed for sequential usage.

122

Many researchers (see, e.g., Currin, et al., 1991; Sacks and Schiller, 1988) argue

that classical experimental designs, such as the central composite designs and Box-

Behnken designs, are not well-suited for sampling deterministic computer experiments.

Sacks, et al. (1989) state that the “classical notions of experimental blocking, replication

and randomization are irrelevant” when it comes to deterministic computer experiments

which have no random error; hence, designs for deterministic computer experiments

should “fill the space” as opposed to possess properties for estimating the variability in

the data, as discussed in Section 2.2.

Numerous space filling experimental designs have been developed in an effort to

provide more efficient and effective means for sampling deterministic computer

experiments. For instance, Koehler and Owen (1996) describe several Bayesian and

Frequentist types of space filling experimental designs, including maximin and minimax

designs, maximum entropy designs, integrated mean squared error (IMSE) designs,

orthogonal arrays, Latin hypercubes, scrambled nets and randomized grids. Latin

hypercube designs were introduced in (McKay, et al., 1979) for use with computer codes

and compared to random sampling and stratified sampling. Minimax and maximin

designs were developed by Johnson, et al. (1990) specifically for use with computer

experiments. Sherwy and Wynn (1987; 1988) and Currin, et al. (1991) use the maximum

entropy principle to develop designs for computer experiments. Similarly, Sacks et al.

(1989a) discuss entropy designs in addition to IMSE designs and maximum mean

squared error designs for use with deterministic computer experiments. Finally, a review

123

of several Bayesian experimental designs for linear and nonlinear regression models is

given in (Chaloner and Verdinelli, 1995).

Exploration of methods for sequential experimental design, together with the

consideration of validation point selection (Section 2.2), is an important issue in

metamodeling. In this dissertation, a method of Sequential Exploratory Experimental

Design is proposed based on work in D-optimal design as discussed in this section and

the maximum entropy sampling as will be introduced in the next section.

2.6 INFORMATION THEORY AND ENTROPY OPTIMIZATION
PRINCIPLES

Information theory and entropy optimization are introduced in this section. The

word entropy originated in the literature on thermodynamics around 1865 A.D. in

Germany and was coined by Rudolf Clausius (Clausius, 1865) to represent a measure of

the amount of energy in a thermodynamic system as a function of the temperature of the

system and the heat that enters the system. The word entropy had belonged to the

domain of physics until 1948 when Claude Shannon, while developing his theory of

communication, used the term to represent a measure of information (Shannon, 1948).

Since then, the concept of Shannon’s entropy has penetrated a wide range of disciplines,

including statistical mechanics (Jaynes, 1957), statistical inference (Tribus, 1969),

business and finance (Cozzolino and Zahner, 1973; Yamada and Rajasekera, 1993),

nonlinear spectral analysis (Shore, 1981), pattern recognition (Wang and Lu, 1992),

transportation (Fang and Tsao, 1995), urban and regional planning (Kumar, et al., 1989;

Scott and Jefferson, 1977), queueing theory (Guiasu, 1986), information theory (Shannon

124

and Weaver, 1962; Guiasu, 1977), parameter estimation, and linear and nonlinear

programming (Fang and Tsao, 1993; Rajasekera and Fang, 1992). It is worth noting that,

at the time when Shannon introduced his concept of entropy, no relationship, except for

the similar mathematical expressions, was known to exist between Shannon’s entropy

and thermodynamics entropy. The relationship was only established later (Kapur and

Kesavan, 1992).

The concept of entropy is closely tied to the concept of uncertainty embedded in a

probability distribution. In fact, entropy can be defined as a measure of probabilistic

uncertainty (the uncertainty associated with the probability of outcomes). Let p ≡ (p1, p2,

…, pn)T be a probability distribution associated with n possible outcomes, Shannon’s

entropy is defined as (Shannon and Weaver, 1962):

∑
=

−=
n

j
jjn pppS

1
ln)((2.33)

where , 0ln0 = 0, p1
1

=∑
=

n

j
jp

H

j ≥ 0 for j = 1,…,n. Another formulation of Shannon’s

entropy, used as a measure of the uncertainty of the transmission of information, is:

 , (2.34) ∫ Ω−= dsspsp)(ln)(

where p(s) is a Gaussian density function over the space Ω of the information signals

transmitted. Such formulations of entropy can not only be used to measure “uncertainty”

but can also be used to measure other concepts such as equality, disorder, diversity, lack

of concentration, similarity, objectivity, unbiasedness, randomness, etc., and many other

characteristics that do not even require probabilistic concepts for their description and

125

that have no relationship with uncertainty (Kapur and Kesavan, 1992). Thus, the word

“entropy” has different meanings in different contexts, depending on how we define the

pi or p(s) in its formulation.

Given the formulation of entropy, we can mathematically describe uncertainty in

terms of entropy. We can choose the distribution that maximizes uncertainty subject to

the given moment constraints. In this way, we make full use of all the information given

to us but avoid making any assumption about any information that is not available. Such

reasoning leads to the Maximum Entropy Principle: Out of all possible distributions that

are consistent with the moment constraints, choose the one that has the maximum

entropy.

Suppose now that, in addition to the constraints used in formulating Maximum

Entropy Principle, we have an a priori probability distribution p0 that we think our

probability distribution p should be close to. In fact, in the absence of the moment

constraints, we might choose p0 for p. However, with the presence of the moment

constraints, we would choose the probability distribution that is the “closest” to the a

priori distribution among those that satisfy the moment constraints. To be able to do so,

we need a precise definition of “closeness” or “deviation”. A simple measure for this

“deviation” is the cross-entropy, also known as the Kullback-Liebler measure, which is

defined as:

 ∑
=

=
n

j j

j
j p

p
pppD

1
0

0 ln),((2.35)

126

Note that whenever pj
0 is 0, pj is set to 0 and 0

0
0ln0 = . With cross-entropy interpreted

as a measure of “deviation”, we state the Minimum Cross Entropy Principle as: Out of all

possible distributions that are consistent with the moment constraints, choose the one

that minimizes the cross-entropy with respect to the given a priori distribution.

Mathematical formulations of the entropy optimization principles can be found in (Fang,

et al., 1997).

There is a diversity of entropy optimization principles besides the two mentioned

above. To apply entropy and entropy optimization principles help solve many problems

in various fields. In the field of design of experiments, entropy is usually used as a

criterion (same role as IMSE, MMSE, minimax and maximin distance, discrepancy, etc.)

to select an optimal design from a group of experimental designs (Ye, 1997), or choose a

most informative subset of s random variables a set of n random variables (Lee, 2001).

For details about maximum entropy designs, see (Lindley, 1956; Koehler and Owen,

1996; Sherwy and Wynn, 1987; Sherwy and Wynn, 1988; Currin, et al., 1991).

In this dissertation, entropy is used to help measure the information uncertainty

associated with metamodels’ prediction errors and achievement of design goals in

engineering design. This leads to a sequential experimental design method with

mathematical formulations similar to those from D-optimal designs. More details of

entropy, and the application of entropy optimization in experimental design will be

discussed in Chapter 4 in which the method of Sequential Exploratory Experimental

Design (SEED) is developed based on research in D-optimal experiments and the

maximum entropy sampling.

127

2.7 A LOOK BACK AND A LOOK AHEAD

Through the review of the literature which is presented in this chapter, the

necessary knowledge for understanding and performing the proposed research in this

dissertation is provided. The relationship between the research questions (and

hypotheses) introduced in Section 1.3.2 and the techniques introduced in this chapter will

be presented in this section, and the basis for studies in following chapters is laid.

As mentioned in Chapter 1, our research in this dissertation focuses on the

development of sequential metamodeling and sequential design space exploration

techniques. We propose to study the metamodeling techniques in the context of

engineering design. The robust design space exploration as introduced in Section 2.1

provides the necessary engineering context of our proposed research.

The first step in our research is to examine the current metamodel validation

techniques and develop new approaches to test the accuracy of metamodels. As

illustrated in Section 2.2, metamodeling is necessary in early stages of design when there

are expensive simulation programs. To validate the accuracy of a metamodel is needed

to assure the achievement of right solutions. With deterministic computer experiments,

statistics based on random errors, such as F-statistics, etc., are inappropriate. Our

preliminary study also shows that the widely used method, leave-one-out cross-

validation, may be incapable of testing the accuracy of metamodels. Thus, a close

examination of leave-one-out cross-validation and development of new approaches to

validate metamodels are necessary. This is mainly done in Chapter 3; some research in

this direction is put in Chapter 4 and 5.

128

Various types of metamodels and their mathematics are presented in Section 2.3.

This builds the foundation of our research on selection and usage of sequential

metamodels along the design timeline, which will be discussed in Chapter 5.

D-optimal experiments and entropy optimization are briefly introduced in

Sections 2.4 and 2.5, respectively. Design of D-optimal experiments and maximum

entropy sampling will be discussed in detail in Chapter 4, as the basis for the proposed

method of Sequential Exploratory Experimental Design. They are also the foundation of

sequential design space exploration which will be studied in Chapter 6.

129

130

3.
CHAPTER 3

METAMODEL VALIDATION WITH
DETERMINISTIC COMPUTER EXPERIMENTS

In this chapter our focus is on the study of metamodel validation techniques in

deterministic computer applications. Hypothesis 1 and its sub-hypotheses, SH1.1 and

SH1.2.1, are tested in this chapter. A brief review of metamodel validation is put in

Section 3.1. Sub-Hypothesis 1.1 is tested in Sections 3.2 and 3.3, in which we examine

the performance of leave-one-out cross-validation from different viewpoints: our study in

Section 3.2 is more theoretical and that in Section 3.3 more empirical. After proving that

leave-one-out cross-validation is inappropriate for deterministic experiments in Sections

3.2 and 3.3, an approach to validation metamodels with additional validation points is

proposed and tested in Section 3.4, where Sub-Hypothesis 1.2.1 is tested. A summary of

research on metamodel validation is presented in Section 3.5.

The type of metamodel used in study in this chapter is the kriging model.

However, we expect that our studies on cross-validate in this chapter are valid with other

types of metamodels.

 131

3.1 METAMODEL VALIDATION: CROSS-VALIDATION AND ADDITIONAL
VALIDATION POINTS

As discussed in Chapter 2, for computer experiments the predicted performance is

determined by the input variables and hence is deterministic and not based on random

variation. This has a great influence in building metamodels for engineering design

because, “In the presence of systematic error rather than random error, statistical testing

is inappropriate” (Welch, et al., 1990). Several authors have reported statistical

measures, such as the F-statistics and root MSE for verification of model adequacy, have

no statistical meaning since they assume the observations include an error term which has

mean of zero and a non-zero standard deviation.

When additional validation points can be afforded, the most important measures

of model accuracy will be the root mean square error (RMSE) and the maximum absolute

error (MAX) for the additional validation points. Formulations of RMSE and MAX are

presented in the following equations:

()

error

n

i
ii

n

yy
RMSE

error

∑
=

−
= 1

2ˆ
 (3.1)

 ii yyMAX ˆmax −= , i=1,…,nerror (3.2)

where nerror is the number of random test points used, yi is the actual value from the

computer simulation, and is the predicted value from the approximation model at

validation points. The lower the value of RMSE and/or MAX, the more accurate the

metamodel. RMSE is used to gauge the overall accuracy of the model; high values of

iŷ

 132

RMSE can lead a design space exploration into a region of bad design. MAX is used to

gauge the local accuracy of the model; high values of MAX will cause local model

inaccuracy (Lin, et al., 1999) and prevent the optimization algorithm from finding true

solutions. Though previous experience recommends that a metamodel with normalized

RMSE (RMSE divided by the sample range of responses) less than 5% and normalized

MAX (MAX divided by the samples range of responses) less than 10% is acceptable for

design space exploration at early design stages, there is no rigorously-defined guidance

on model selection. Currently, with RMSE and MAX we cannot tell “how accurate” one

metamodel is, and whether it meets the requirement of designers; what we can do is only

to compare the accuracy of different models.

Leave-one-out cross-validation is probably the simplest and most widely used

method for metamodels verification when additional validation points cannot be afforded.

Leave-one-out cross-validation is a special case of cross-validation (Hastie, et al., 2001).

In this approach, each sample point used to fit the model is removed one at a time, the

model is rebuilt without that sample point, and the difference between the model without

the sample point and actual value at the sample point is computed for all of the sample

points. The cross-validation root mean square error (CVRMSE) is computed as below:

()

s

n

i
ii

n

yy
CVRMSE

s

∑
=

−
= 1

2ˆ
 (3.3)

Note that only information from the ns data points is needed in calculating

CVRMSE; there is no need to collect information from additional validation points as we

 133

do in Equations (3.1) and (3.2). The metamodel used in this chapter is the kriging model.

In developing kriging models, unless there are very few data points or major outliers,

usually we do not rebuild the kriging model since dropping a single observation usually

has a negligible effect on the maximum likelihood estimates. The parameters estimated

using all data points are used, together with the correlation matrix R and vectors r and y

from the remaining (ns – 1) points, to calculate the cross-validation root mean square

error (Jones, et al., 1998). Similar to RMSE and MAX, it is believed that a smaller

CVRMSE values indicates a more accurate metamodel.

3.2 THEORETICAL STUDY OF LEAVE-ONE-OUT CROSS-VALIDATION

The research question to be answered in this section is R.Q.1.1: Is leave-one-out

cross-validation a suitable method of metamodel validation with computer experiments?

The corresponding hypothesis is Sub-Hypothesis 1.1: Leave-one-out cross-validation is

not an appropriate method of metamodel validation with deterministic computer

experiments.

As stated in Section 3.1, the root mean square error (RMSE) in Equation (3.1) is

the most reliable measurement for model accuracy when we have sufficient additional

validation points. Leave-one-out cross-validation is used with the purpose of saving

computation expense since it deals with only information from sample data points. In

this section, we will study the performance of leave-one-out cross-validation in

measuring accuracy of metamodels and illustrate its weakness with two single-variable

 134

functions. These functions are treated as computer simulations; information at sample

data points is collected, then kriging models are developed and validated.

The first single-variable function used in our study is originally taken from (Su

and Renaud, 1996). The function is:

∑
=

−−=
9

1

)1()900()(
i

i
i xaxf (3.4)

where:

a1 = −659.23
a2 = 190.22
a3 = −17.802
a4 = 0.82691
a5 = −0.021885
a6 = 0.0003463
a7 = −3.2446 × 10−6
a8 = 1.6606 × 10−8
a9 = −3.5757 × 10−11

In this study we select the design space from x = 912 to x = 1000. In this design

space, the maximum response value is 182.77 at x = 1000, and the minimum response

value is around 13.96 at around x = 932; the response range is 168.81. A graph of this

function is shown in Figure 3.1.

 135

Figure 3.1 A Single-Variable Function (Su and Renaud, 1996)

To facilitate our study two kriging models are developed based on information

from two different sets of data points, as shown in Table 3.1. For Data Set I, sample data

points are “clustered” in the intervals of x = [912, 922] and [990, 1000], while data points

in Data Set II are more evenly spreading over the whole design space. It is expected that

Data Set II conveys more information and will afford more accurate metamodels.

Table 3.1 Response Values at Sample Data Points of the Single-Variable Function

Data Set I
x 912 917 922 990 995 1000
y 112.08 84.43 43.98 97.98 137.56 182.77

Data Set II
x 912 932 945 960 986 1000
y 112.08 13.96 25.20 32.92 77.31 182.77

 136

Values of θ for kriging models are obtained by maximizing Equation (2.22)

subject to θ >0. In this case, we get θ = 28.4626 for Data Set I and θ = 14.49733 for Data

Set II. The kriging models contain matrix expressions and are complicated; thus they are

not listed here. However, the graphs of the two metamodels, which could help us get an

idea on models’ accuracy, are shown in Figure 3.2.

subject to θ >0. In this case, we get θ = 28.4626 for Data Set I and θ = 14.49733 for Data

Set II. The kriging models contain matrix expressions and are complicated; thus they are

not listed here. However, the graphs of the two metamodels, which could help us get an

idea on models’ accuracy, are shown in Figure 3.2.

It is clearly seen from Figure 3.2 that the kriging model with Data Set II

approximates the actual function better than the one with Data Set I. Comparison of

RMSE and MAX for both models gives more concrete judgments. In order to calculate

RMSE and MAX to validate the metamodels, for each kriging model we select 875

validation points evenly spreading from x = 912 to x = 1000 (not including the sample

data points). RMSE and MAX values are listed in Table 3.2.

It is clearly seen from Figure 3.2 that the kriging model with Data Set II

approximates the actual function better than the one with Data Set I. Comparison of

RMSE and MAX for both models gives more concrete judgments. In order to calculate

RMSE and MAX to validate the metamodels, for each kriging model we select 875

validation points evenly spreading from x = 912 to x = 1000 (not including the sample

data points). RMSE and MAX values are listed in Table 3.2.

Actual Function

Data Set I

Data Set II

Figure 3.2 Kriging Models for the Single-Variable Function

 137

Table 3.2 RMSE and MAX for Kriging Models

 RMSE MAX
Data Set I 37.78 69.79
Data Set II 11.93 27.84

RMSE and MAX values listed in Table 3.2 support our claims that the kriging

model with Data Set II is more accurate than the one with Data Set I since it has

significantly smaller RMSE and MAX values. It is in accordance with our expectations

too. The poor experimental design for Data Set I fails to reflect information in the middle

of the design space.

Now let us compare the accuracy of these two kriging models with leave-one-out

cross-validation, in which only information at sample data points are used with Equation

(3.3). Information at 875 additional validation points is not used for cross-validation. In

the calculation of CVRMSE for each kriging model in cross-validation, since there are

only six sample data points as listed in Table 3.1, we decide to rebuild kriging models to

predict responses at each data point using the other five data points. Graphs of these

kriging models (one original kriging model plus six secondary kriging models for each

data set) are shown in Figure 3.3 and Figure 3.4. Values for CVRMSE are listed in Table

3.3.

 138

Original Kriging Model

Figure 3.3 Kriging Models for Calculating CVRMSE with Data Set I

Original Kriging Model

Figure 3.4 Kriging Models for Calculating CVRMSE with Data Set II

 139

Table 3.3. CVRMSE Values for Kriging Models

 Data Set I Data Set II
CVRMSE 24.21 69.60

From Table 3.3, we see that CVRMSE for Data Set I, which is 24.21, is much

smaller than that for Data Set II, 69.60. This suggests that the kriging model with Data

Set I is more accurate than the one with Data Set II. This is contrary to our conclusions

with RMSE and MAX. Given that RMSE and MAX are the most reliable measurements,

this observation shows that leave-one-out cross-validation may be insufficient for model

validation.

Examination of kriging model plots in Figure 3.3 and Figure 3.4 helps us see the

weakness in leave-one-out cross-validation. For Data Set I, since the data points are

more clustered (only in the intervals [912, 922] and [990, 1000]), there is more “overlap”

in the information they convey. Thus in leave-one-out cross-validation, to remove any

one point may not significantly reduce the total amount of information conveyed and will

not change the metamodel greatly. This “clustering” or “information overlap” of the data

points results in a metamodel that is insensitive to removal of data points – which means

lost information at any data point could be retrieved with only the model and the other

data points. This idea is illustrated in Figure 3.3, in which we see that all models with

five data points share curves similar to that of the model with six data points;

consequently, we get a small CVRMSE for the original kriging model with Data Set I.

For Data Set II, data points spread all over the design space and there is little

“information-overlap” among them. In this case the corresponding metamodel is more

 140

affected by the removal of some data points – it is unlikely to retrieve the lost

information with the metamodel. As shown in Figure 3.4, kriging models with five data

points are very different from the original kriging model; consequently, we get a large

CVRMSE for the original kriging model with Data Set II.

Observations above suggest that leave-one-out cross-validation is an insufficient

measurement for metamodel accuracy. On the other hand, leave-one-out cross-validation

is a good method for measuring the sensitivity of a metamodel to lost information due to

the removal of some of its data points. A small value of CVRMSE indicates a

metamodel that is more insensitive to lost information; a large value of CVRMSE

indicates a metamodel that is sensitive to removal of data points. A discussion is

conducted later in this paper on the sensitivity of metamodels to lost information at data

points.

In the case above, clustering data points (information overlap) is the cause of an

inaccurate metamodel that is also insensitive to lost information at data points. The

insensitivity here may mislead designers since small CVRMSE values may be obtained

for inaccurate metamodels in leave-one-out cross-validation. A space-filling

experimental design for allocating data points may help avoid this situation because data

points in a space-filling design tend to spread over the whole design space and this

minimizes the information overlap. However, clustering data points (information

overlap) is not the only cause for inaccurate metamodels which are also insensitive to lost

information at data points, as shown in the following paragraphs with another single-

variable function:

 141

()(55.0sin2)+−= xy π (3.5)

In our study we set the continuous variable x = [0, 10]. If five data points are to

be selected, following the “space-filling” rule, we may select x = 1, 3, 5, 7, 9, as

presented by solid stars in Figure 3.5, which have the same response value, y = 7. It is

apparent that the corresponding kriging model is a constant y = 7, shown as a horizontal

line in Figure 3.5.

Metamodel

Actual Function

Figure 3.5 Inaccurate Metamodel Due to the Correlation Among Data Points

The kriging metamodel shown in Figure 3.5 is by no means acceptable.

However, leave-one-out cross-validation (actually, not only leave-one-out cross-

validation, but also kth-folder cross-validation with k less than 4 in this case) shows that

this metamodel is perfectly accurate because the value of CVRMSE is zero. The kriging

model is totally insensitive to lost information at data points, i.e., information at any

 142

missing data point can be 100% retrieved with the metamodel itself. Though in the real

world it is very rare to meet such situations as in Figure 3.5, this extreme example helps

illustrate how great a mistake that leave-one-out cross-validation is possible to make in

assessing metamodels.

There is no clustering of data points (little information overlap) in this example.

The metamodel’s insensitivity to lost information at data points is the result of another

cause, which could be called “inappropriately correlated data points”, representing a set

of points whose x’s and y’s share a similar pattern and this pattern is very different from

the actual function for which we develop metamodels. There may be various types of

“inappropriate correlations” between data points, e.g., x’s and y’s of a set of data points

may follow a quadratic or an exponential function, while the actual function may be

much more complicated. In the case of Figure 3.5, the “inappropriate correlation”

among data points is that they share the same response value – here the pattern is a

constant-response function which is much different from the actual sin function.

Not all correlations among data points are bad. Actually, an accurate metamodel

can only be developed with “appropriately correlated” data points whose x’s and y’s

follow a pattern similar to (or ideally, the same as) the original actual function. The only

difference, between “appropriately correlated” and “inappropriately correlated” sets of

data points, is whether they follow a pattern that gives a similar response surface to the

actual function or not. Unfortunately, with information only from some data points it is

very difficult to tell whether a data set is appropriately correlated or not; additional

validation points are necessary. This also shows that leave-one-out cross-validation is an

 143

insufficient method for metamodel assessment; RMSE and MAX are more appropriate

since they employ information at not only data points but also validation points.

To avoid employing inappropriately correlated sets of data points, it is very

helpful to increase the total number of data points and design space-filling experiments.

In this way we expect to have data points provide as much information as possible for

regions as large as possible – though we still cannot assure the data points are

appropriately correlated.

Leave-one-out cross-validation, insensitivity of metamodels to lost information at

data points, and clustering and inappropriately correlated data points will be further

discussed in the next section with a two-variable function.

3.3 IMPIRICAL STUDY OF LEAVE-ONE-OUT CROSS-VALIDATION

In this section, discussions on leave-one-out cross-validation in model assessment

are further conducted with the case of a two-variable function – the Branin function

(Dixon and Szego, 1978):

()
2

2
2 1 1 12

5.1 5 16 10 1 cos 1
4 8

f x x x x
π π π

 = − + − + − +

0 (3.6)

where x1 = [–5, 10] and x2 = [0, 15]. The 3-D wire-frame plot for Equation (3.6) is shown

in Figure 3.6. In the design space the Branin function has three local minima at x =

{3.1416, 2.2750}, {9.4248, 2.4750}, and {–3.1416, 12.2750} with identical function

values of 0.3979. The maximum response is y = 308.1291 at x = {–5, 10}. The response

range is 307.7312.

 144

Figure 3.6 Wire-Frame Plot of the Branin Function

To facilitate our study with the Branin function, 18 sets of data points are selected

and kriging models are developed for each data set. The numbers of data points in the

data sets range from 9 to 22, as shown in Table 3.4. Thirteen of these 18 experimental

designs, Data Sets 1, 3, 4, 6 – 11, 13, 14, 16, and 17, are Latin Hypercube (LH), one

Orthogonal Array (OA) – Data Set 18, and four randomly selected points (S) – Data Sets

2, 5, 12, and 15. The LH and OA experiments are designed with iSIGHT®. Data Sets 5

and 12 are experimental designs with clustered or inappropriately-correlated data points,

as will be shown later. Data points in Data Sets 2 and 15 are identified to convey critical

information about the actual response surface given that we know the actual function.

 145

Detailed information about the experiments and corresponding kriging models is not

presented here due to space limitation.

Table 3.4 Values of RMSE, MAX, and CVRMSE of Kriging Models for the Branin
Function

Data Set DOE # of Data Points CVRMSE RMSE MAX
1 LH 10 58.23 20.56 65.26
2 S 18 27.71 7.09 19.39
3 LH 12 62.09 20.31 72.37
4 LH 19 5.62 4.79 24.66
5 S 13 8.31 54.49 206.47
6 LH 15 22.54 46.62 263.49
7 LH 16 10.03 27.83 183.47
8 LH 17 39.78 28.23 101.22
9 LH 18 9.18 6.89 34.25
10 LH 13 26.39 18.75 76.56
11 LH 14 28.85 27.07 100.27
12 S 18 2.08 76.67 298.59
13 LH 22 3.85 9.65 85.42
14 LH 11 37.77 31.78 165.64
15 S 15 64.27 9.06 25.07
16 LH 20 2.46 8.46 54.35
17 LH 21 8.41 4.00 25.55
18 OA 9 74.37 41.65 118.81

The accuracy of kriging models is examined with information from 255 validation

points that are spread all over the design space; however, for some data sets the number

of validation points may be less because some points are already listed in those data sets

and cannot be used to validate the corresponding metamodels. We assume that: 1) in this

case 255 validation points are enough for model validation, and then 2) the RMSE and

MAX calculated with these points are regarded as unbiased measurement of model

accuracy. CVRMSE for each kriging model are also calculated. Values of RMSE,

 146

MAX, and CVRMSE for 18 kriging models are listed in Table 3.4. To fit in the table,

values in Table 3.4 are rounded to two decimals. Note that with RMSE, MAX, or

CVRMSE, we cannot decide whether a kriging model is acceptable or not; we can only

compare two kriging models – the ones with smaller RMSE, MAX, or CVRMSE are

considered to be more accurate as stated in our frame of reference.

In Table 3.4 we see that there is no critical relationships between CVRMSE and

RMSE (or MAX). Kriging models with small values of CVRMSE, e.g., Data Set 5 and

12, may have very large values for RMSE and MAX, while those with large values of

CVRMSE, e.g., Data Set 15, may have very small values for RMSE and MAX. The

correlation coefficients between CVRMSE and RMSE/MAX are nearly zero, which

shows that they have no significant linear correlations. To use CVRMSE to compare the

accuracy of two metamodels may lead us to a wrong answer since RMSE and MAX are

believed to be most reliable measurements.

Plots of RMSE and MAX versus CVRMSE are given in Figure 3.7 and Figure

3.8. If CVRMSE is linearly correlated with either RMSE or MAX, points in these

figures should lie on a straight line. Since the data is widely scattered, CVRMSE is not

correlated with either RMSE or MAX.

 147

Figure 3.7 Scatter Plot of RMSE and CVRMSE for Kriging Models for the Branin
Function

Figure 3.8 Scatter Plot of MAX and CVRMSE for Kriging Models for the Branin
Function

 148

Now let us look at Data Set 5 and 12, whose kriging models have small values of

CVRMSE and large values of RMSE and MAX. Information about the data points for

Data Set 5, 12, and 15 is listed in Table 3.5 (only one decimal is shown in the table due to

space limitation). These two metamodels for Data Sets 5 and 12 are inaccurate and also

insensitive to lost information at data points. Data Set 5 is a clustered experimental

design in which data points are clustered in two regions, around points [0, 5] and [7, 11].

Data Set 12 is not only clustered, but also inappropriately correlated; the response range

of its data points is less than 15 (note that the range of actual function values in the

design space is about 308). This observation indicates: 1) with leave-one-out cross-

validation designers are in danger of accepting an inaccurate metamodel that is

insensitive to lost information at data points, and 2) inaccurate and insensitive

metamodels are the results of poor experimental designs (clustering points or correlated

data points) – space-filling experimental designs are recommended.

The case of Data Set 15 is different from those of Data Sets 5 and 12. Data points

in this set are so well distributed that most waves in the response surface are captured

with very few points. Each data point is set at a very critical position on the actual

response surface where “waves” take place. Information overlap between data points is

very little, thus each of them conveys a great deal of information and to lose any of them

will substantially affect the metamodel. Without information from one data point the

predicted response surface will be very different from the actual one. This is why the

kriging model for Data Set 15 has a very large value for CVRMSE and small values for

RMSE and MAX. Actually it is an accurate model that is also sensitive to lost

 149

information at data points. The observation here indicates: 1) with leave-one-out cross-

validation we are in danger of rejecting an accurate metamodel that is also sensitive to

lost information at data points, and 2) a good metamodeling process (both efficient and

effective, or get most accurate metamodel with least effort) may have large CVRMSE

values and small RMSE and MAX values.

Table 3.5 Data Points for Data Set 5, 12, and 15

Data Set 5 Data Set 12 Data Set 15
x1 x2 y x1 x2 y x1 x2 y
0 5 20.6 -2.5 12.5 5.2 -3.5 15 4.4
1 7 21.3 -3 13 1.6 -2 14 24.5
2 6 13.1 -4 14 4.0 6.5 14.5 198.6
3 8 32.0 -2 12 11.3 -3 12 0.5
-1 2 47.9 -2.5 13.5 9.7 -2.5 6 25.2
-2 3 50.9 -3.5 12.3 1.7 -5 0 308.1
-3 4 63.5 3.5 2.5 1.2 3 2.5 0.5
8 10 80.3 3 2 0.6 0 5.5 19.9
7 11 113.5 4 3 5.4 9.5 3 0.6
6 8 66.8 3.5 1.5 1.3 6 4 27.6
5 14 174.7 2.5 4 3.7 10 0 11.0
9 15 166.6 4.5 2.2 8.5 4.5 6 28.6
10 13 101.9 9.5 3 0.6 10 7.5 22.2
 9 4 4.7 0 0 55.6
 8 3 10.7 2 0 17.1
 8.5 3.5 7.1
 9.5 4 2.6
 8.2 3.6 10.6

Now let us have a look at the performance of space-filling experiments. By

removing Data Sets 2, 5, 12, 15, and 18, we have only Latin Hypercube experiments (a

type of space filling experiments) left. In this case, Figure 3.7 and Figure 3.8 will not

 150

change a lot; we still cannot see strong correlation between CVRMSE and RMSE (or

MAX). We also observe that as the number of data points increases the corresponding

metamodel becomes more and more accurate. When we have more than 20 data points in

this case, both CVRMSE and RMSE (or MAX) become small; these metamodels are

accurate, and also insensitive to lost information at data points. The metamodels’

insensitivity to lost information indicates that we may have used redundant data points –

it is possible to develop metamodels at the same level of accuracy with fewer data points,

as we do with Data Sets 2 and 15. However, in this case, with sufficient data points in a

space filling experimental design, we avoid either clustered or inappropriately correlated

data points and are able to develop accurate metamodels.

In (Simpson, 1998) the author performs an empirical study on the relationship

between CVRMSE and RMSE (or MAX). For six simple engineering problems he

applied fifteen different types of experimental designs (for each type of experimental

design there are various options on how many data points to be allocated) and developed

corresponding kriging models with five different types of correlation functions. Overall,

11535 kriging models are constructed and values of CVRMSE, RMSE, and MAX are

calculated. To eliminate effects of different units from different responses, the

normalized CVRMSE, RMSE, and MAX are calculated by dividing the original values

with the sample range of each data set. Plots of normalized RMSE (MAX) versus

normalized CVRMSE are shown in Figure 3.9 and Figure 3.10. These plots indicate that

there are no correlations between CVRMSE and RMSE (MAX); this supports our claims

 151

that leave-one-out cross-validation is insufficient for model assessment and information

from additional points is essential in validating metamodels.

In this section, our studies and observations show that leave-one-out cross-

validation is insufficient for metamodel assessment. The reason is that leave-one-out

cross-validation is actually a measurement for degrees of insensitivity of a metamodel to

lost information at data points, while a metamodel which is insensitive to lost information

at its data points is not necessarily an accurate metamodel. There are two causes for this

insensitivity: clustering or inappropriately correlated data points. Designing space-filling

experiments with sufficient number of data points is one way to prevent an inaccurate

metamodel that is insensitive to lost information. With the case of the Branin function,

we observe that with space filling experiments we may get accurate metamodels which

are insensitive to lost information at its data points.

The conclusion here does not mean that previous applications with leave-one-out

cross-validation are necessarily wrong. When the original actual function is not highly

nonlinear (or the design space is not very large) and there are enough data points spread

all over the design space, the danger of having clustering or inappropriately correlated

data sets is small. However, the success of leave-one-out cross-validation in those

examples is dependent on particular cases; real-world applications are usually more

complicated and cannot meet the requirements mentioned above. Given that cross-

validation is insufficient for assessing models, employing additional points is essential in

metamodel validation.

 152

Figure 3.9 Correlation of Normalized CVRMSE and RMSE (Simpson, 1998)

Figure 3.10 Correlation of Normalized CVRMSE and MAX (Simpson, 1998)

 153

3.4 METAMODEL VALIDATION WITH INFORMATION FROM
ADDITIONAL VALIDATION POINTS

As discussed in the previous section, it is necessary to use additional validation

points for metamodel validation with computer experiments since leave-one-out cross-

validation is insufficient. In this section, we will explore how to use this additional

information to validate metamodels. Research question to be answered in this section is

R.Q.1.2: How to test the accuracy a metamodel in deterministic applications? To answer

this research question Sub-Hypothesis 1.2.1 needs to be tested: the accuracy of a

metamodel could be validated through examining prediction errors at additional

validation points.

Without information from additional points, the general formula for the prediction

mean squared error at any new point for a kriging model is (Sacks, et al., 1989a):

()

 −
+−= −

−
−∗

fRf
rRfrRrxs T

T
T

1

21
122 11)(σ (3.7)

The term –rTR–1r represents the reduction in prediction error due to the fact that x* is

correlated with the sampled points. The σ2 here is the same as in Equation (2.21). The

term (1–fTR-1r)2/fTR-1f reflects the uncertainty that stems from our not knowing µ exactly,

but rather having to estimate it from the data. The prediction error in Equation (3.7) is σ

reduced by an amount that depends on how correlated the new point is to the sampled

points. However, the prediction error in Equation (3.7) is based on the kriging model

with no-random error only; it is more reliable to take information from validation points

into account when assessing the accuracy of a kriging model.

 154

Though one important benefit of using metamodels is to save expense in

experiments, the addition of validation points, which eventually increases time and effort

on computer simulations, does not hurt the importance of metamodeling very much.

First, in computer experiments, moderate increases of computational expenses are usually

affordable with fast computers in a distributed design environment. The situation here is

different from that of physical experiments, e.g., collision analysis for vehicles, etc., in

which the total number of experiments may be strictly restrained due to limits on material

expenses. Second, as stated in our frame of reference, the use of metamodels not only

helps us save experimental expenses but also integrates simulation codes from different

disciplines to give insight into the relationships between input variables and output

responses.

Two problems in metamodel validation with additional points are: 1) how many

additional validation points should be used, and 2) how to allocate these validation

points. The number of validation points should not be large in order to save computation

time and effort, and it should not be too small to assure an “accurate” assessment.

Information from the current kriging model may provide useful guidance: for a design

space with highly nonlinear response surfaces where a single point provides little

information, we should use a large number of validation points to gain enough

information, while for a design space with smoother actual response surfaces we may use

less. To decide where to put the additional validation points is a difficult problem under

study by many researchers; tools from statistics, information theory, etc., may help

develop methods for point allocation. To identify a reasonable number of validation

 155

points is beyond our discussion here; in this chapter we will use large number of random

points to validate the metamodels. The selection of validation points is studied in

Chapter 4 in which a method for sequential experimental design is developed by utilizing

validation points.

3.4.1 Preliminary Methods of Metamodel Validation for Engineers

In this section we present some ideas for engineers to gain knowledge in

assessing the metamodels’ accuracy with additional validation points. We assume that

the number of validation points is large and the residuals at validation points follow

normal distributions (though in some cases this needs to be verified). With kriging

models we also assume that the parameters in kriging equations are known.

Assuming the degrees of freedom to be nerror (note that the additional validation

points are not used in model fitting), the RMSE value from Equation (3.1) can be taken

as the standard deviation s with E(s2) = σv
2. Note that σv here represents the population

standard deviation in model validation. We use spred to represent the prediction standard

deviation at a new point; since we assume the distribution to be normal, the value
preds

yy −ˆ

is distributed as t(nerror). Then the (1 – α) prediction limits are:

prederror snty);2/1(ˆ α−± (3.8)

If we have some preset bounds, ±∆, for the prediction error, the average

confidence level that our predictions will fall in this range can be calculated using:

 156

pred
error s

nt ∆
≤−);2/1(α (3.9)

In practice, we could use RMSE calculated from Equation (3.1) to replace Spred in

Equation (3.8). In making this replacement, we are actually seeking an approximate

reference on how the kriging model performs on average in prediction at testing points;

we also assume Spred to be the same for new points, and thus Equation (3.8) gives the

same size of prediction intervals for any new point. This is not a perfect method, but it is

very simple and provides preliminary inspection of the kriging model we are studying.

A more accurate method is to study the validity of Equation (3.7) in calculating

prediction errors by studying several plots. It is claimed that with a kriging model, we

are approximately 99.7% confident (calculated based on normal distribution) that the

predicted value at a new point lies in the interval of , in which s(x*) is

calculated from Equation (3.7). Thus it is important to see whether the observed at

validation points lie in this interval or not. Instead of drawing confidence intervals, we

can compute the number of standard errors that the actual value is above or below the

predicted value, which we call the standardized residual:

)(3ˆ ∗± xsy

ŷ

)(
)(ˆ)(

∗

∗∗ −
xs

xyxy (3.10)

Since we have nerror prediction points, there will be nerror standardized residuals

from Equation (3.10). If these values are roughly in the interval [–3, +3], we say the

kriging model correctly anticipates the magnitude of the prediction errors – thus we can

use Equation (3.7) to calculate prediction errors. As shown later, a plot of standardized

 157

residuals versus predicted values is very helpful in this study. To assure normal

distribution, a normal probability plot of the standardized residuals versus the values that

would be expected from a random sample of nerror independent standard normal variables

needs to be drawn. The correlation coefficients of standardized residuals and normal

distributed samples may also be calculated. Another useful plot is the plot of actual

function values versus predicted values. Plots of predicted standard errors calculated

from Equation (3.7), or actual residuals)ˆ(yy − , versus actual function values may help

in study the performance of kriging models in prediction over the whole design space.

These methods are illustrated in the next subsection with the Branin function.

3.4.2 Metamodel Validation with the Branin Function

In this study we use Data Set 15 as presented in Table 3.5. The RMSE value

(spred) for the kriging model is 9.057 based on nerror = 248 validation points. At early

design stages we need a metamodel with prediction errors in the range of ±15 on average;

thus the value of ∆ is about 5% of the sample range 307.63. The value of
preds
∆ is about

1.67. With the information above, our calculation shows that we have about 90%

confidence that on average the prediction value falls in the required limits. If we want to

obtain the same level of confidence for the kriging model with Data Set 5 whose RMSE

value is 54.49, the acceptable bound is about ±90.

To facilitate further study, mean squared errors for prediction at 248 validation

points are calculated with Equation (3.7) using only information from the kriging model

and the data points. The standardized residuals are then calculated for all validation

 158

points following Equation (3.10). This information is then used in our study to help test

whether the kriging model is good in prediction of both response values and variances.

Three plots are drawn, as shown in Figure 3.11, Figure 3.12, and Figure 3.13. In

Figure 3.14, we see that the points follow the 45o line; the Pearson product moment

correlation coefficient between these two sets of values is 0.993. These roughly show

that the metamodel is not bad in prediction of response values. In Figure 3.12 we see that

the standardized residuals act roughly like normal deviates; the Pearson product moment

correlation coefficient of standardized residuals with normally distributed samples is

0.99. Figure 3.13 provides two important pieces of information. First, all points fall

within the three-standard-error limit – actually most of the standardized residuals at

validation points are less than two standard errors (note that the standard errors are

calculated with Equation 15, and are different at different validation points), which shows

that to predict response errors with Equation 15 is acceptable. Second, points in Figure

3.13 follow a quadratic curve trend; ranges of the standardized residuals tend to increase

when the predicted function values increase. This suggests a systematic bias in

prediction with the kriging model, thus the plot of actual residuals versus actual

function values, as shown in Figure 3.14, is very important for further analysis.

)ˆ(yy −

 159

Figure 3.11 Plot of Predicted Values Versus Actual Function Values for the Branin
Function with Data Set 15

Figure 3.12 Normal Probability Plot for Standardized Residuals

 160

Figure 3.13 Standard Residual Plot for the Branin Function with Data Set 15

Figure 3.14 Plot of Residuals versus Actual Function Values

 161

In Figure 3.14 we see that apparently the points follow a trend of a quadratic

function. The ranges of residuals increase when actual function values increase from 0 to

about 200, and decrease when actual function values increase from 200 to 300. In

addition, for points with function values around 100, the actual function values are

smaller than predicted values by 0 to 20. The reason is that there are almost no data

points with mid-ranged function values in Data Set 5 for the kriging model (see Table

3.5). However, most of the actual residuals are within the acceptable limit of ±15 that we

set at the beginning of this subsection.

Based on the previous analysis, designers have several options for the next step:

• Accept this model. This is primarily because over the whole design space the

prediction errors are generally smaller than the acceptable limits (±15); the

systematic bias should not be fatal in this early design stages. Also note that

the model performs well when the actual function value is either very small or

large, thus this kriging model will be very suitable when we want to minimize

or maximize the Branin function. The prediction error at new points can be

estimated with Equation 15. Designers need to notice that for function values

around 100 the predicted values are usually larger than the actual values by 0

to 20, and some adjustments may be helpful when using the metamodel in

design – this is very important.

• Transform the function. We can also improve the fit of the kriging model by

transforming the function, e.g., using the log transformation or the inverse

transformation, etc. Sometimes this works well.

 162

• Design sequential experiments to improve the metamodel. If the designers

decide not to accept the kriging model because of the systematic bias

illustrated in Figure 3.13 and Figure 3.14, the information obtained in the

model validation will be very helpful in identifying future data points. In this

case, since the kriging model has large prediction errors at points with mid-

ranged function values, we may try to add in data points which satisfy: 1) not

clustered with previous data points, and 2) having mid-ranged predicted

(using the previous kriging model) function values.

In this section we described our preliminary methods for engineers to validate

metamodels with additional validation points. The Branin function is used to help

illustrate our ideas. Applications with real-world problems will be presented later in this

dissertation.

3.5 SUMMARY OF RESEARCH ON METAMODEL VALIDATION

In this chapter first we studied the performance of leave-one-out cross-validation

method in validating metamodels with deterministic computer experiments. With several

simple functions we illustrated that cross-validation is an insufficient method, thus to use

additional validation points becomes essential in metamodel validation. Then we

describe some preliminary methods on how to utilize the information from additional

validation points. Our ideas are illustrated with the Branin function. Kriging

metamodels are used in this paper to facilitate our study.

 163

The reason why leave-one-out cross-validation is insufficient in metamodel

validation is that it is actually a measurement for degrees of insensitivity of a metamodel

to lost information at its data points, while an insensitive metamodel is not necessarily

accurate. There are two causes for this insensitivity: clustering or inappropriately

correlated data points. To design space-filling experiments with a sufficient number of

data points is one way to prevent an inaccurate and insensitive model, while this cannot

assure the validity of the leave-one-out cross-validation method. We recommend starting

with space filling experimental designs in the development of metamodels in engineering

applications.

The conclusion here does not mean that previous applications with leave-one-out

cross-validation are necessarily wrong. When the original actual function is not highly

nonlinear (or the design space is not very large) and there are enough data points

spreading all over the design space, the danger of having clustering or inappropriately

correlated data sets is small. However, the success of leave-one-out cross-validation in

those examples is dependent on particular cases; real-world applications are usually more

complicated and cannot meet the requirements mentioned above. Thus to use additional

validation points are necessary in metamodel validation.

Though one important benefit of using metamodels is to save expenses on

experiments, to add in additional validation points, which eventually increases time and

effort on computer simulations, does not hurt the importance of metamodeling very

much. First, in computer experiments, moderate increases of computational expenses are

usually affordable with fast computers in a distributed design environment. Second, to

 164

use metamodels not only helps us save experimental expenses but also integrates

simulation codes from different disciplines to give insight into the relationships between

input variables and output responses.

Several methods are described to help engineers gain insight into the performance

of metamodels over the whole design space. Equation (3.9) provides engineers a very

rough estimate of confidence levels on how well the metamodels performs on average in

response prediction.

An alternative method is to check whether we are able to use Equation 15, which

does not utilize information from additional validation points, to predict prediction errors

at new points. If a kriging model performs well in predicting its own prediction errors,

and its errors are acceptable, we may accept this metamodel. To test this various plots

may be drawn to help our analyses, as illustrated with the Branin function. These

analyses with plots provide much useful information for design along a timeline: 1) if we

decide to accept the kriging models, knowledge we get in these analyses tell us when and

where and how to make amends to our results in later design stages, and 2) if we decide

to develop a more accurate model, knowledge we obtain in these analyses provides

guidance on how to allocate future data points – this leads to possible methods for

sequential experimental designs.

One unsolved problem in research on model validation in this chapter is how to

select validation points, e.g., how many validation points should be used, and how to

allocate these points. This is closely related to sequential experimental design methods,

and is studied in Chapter 4 and 6. Also, a method for making decisions about metamodel

 165

validation and selection in multi-disciplinary, multi-response applications is another

possible avenue, for which some preliminary work is conducted in Chapter 5. Another

approach to validate metamodels with information from possible new data points will be

proposed in Chapter 4 and 5 during the process of testing Sub-Hypothesis 1.2.2.

3.6 A LOOK BACK AND A LOOK AHEAD

Studies in this chapter are the basis of ideas and methods developed in later

chapters. In this chapter we visited Research Question 1, its sub-questions, and the

corresponding hypotheses (except Sub-Hypothesis 1.2.2), as shown below:

R.Q.1: How to validate a metamodel with deterministic computer

experiments?

Hypothesis 1: Information from either previous additional validation points

is needed in testing the accuracy of a metamodel with deterministic

computer experiments.

R.Q.1.1: Is leave-one-out cross-validation a suitable method of metamodel

validation with computer experiments?

Sub-Hypothesis 1.1: Leave-one-out cross-validation is not an appropriate

method of metamodel validation with deterministic computer experiments.

R.Q.1.2: How to test the accuracy a metamodel in deterministic applications?

Sub-Hypothesis 1.2.1: The accuracy of a metamodel could be validated

through examining prediction errors at additional validation points

Research Question 1.1 and Sub-Hypothesis 1.1 are visited in Sections 3.2 and 3.3.

In Section 3.2 with two single-variable examples we observe that leave-one-out cross-

 166

validation is insufficient in metamodel validation because it is actually a measurement for

degrees of insensitivity of a metamodel to lost information at its data points, while an

insensitive metamodel is not necessarily accurate. After careful examination, we point

out that there are two causes for this insensitivity: clustering or inappropriately correlated

data points. To design space-filling experiments with a sufficient number of data points

is one way to prevent an inaccurate and insensitive model, while this cannot assure the

validity of the leave-one-out cross-validation method. Our conclusion is verified through

empirical study in Section 3.3. Research Question 1.1 is answered and Sub-Hypothesis

1.1 is tested.

Research Question 1.2 and Sub-Hypothesis 1.2.1 are visited in Section 3.4, in

which approaches are proposed for engineers to test the accuracy of metamodels. Several

methods are described to help engineers gain insight into the performance of metamodels

over the whole design space. Information from additional validation points is utilized in

these approaches. Examination of prediction errors in the design space leads to ideas on

sequential metamodeling (DOE) and design space exploration which will be studied in

Chapter 6.

In the next chapter, the usage of additional validation points leads to a sequential

experimental design method. Unsolved problems on validation points in this chapter,

e.g., the problem of selection of validation points as stated in Section 3.4 and 3.5, are to

be studied in Chapter 4 and 5. The focus of Chapter 4 is Research Question 2, its sub-

questions, and corresponding hypotheses; however, Research Question 1.2 and Sub-

Hypothesis 1.2.2 will also be visited as a side-product in Chapter 4.

 167

 168

 169

4.
CHAPTER 4

SEQUENTIAL EXPLORATORY EXPERIMENTAL
DESIGN

In this chapter, the method of Sequential Exploratory Experimental Design

(SEED) is developed based on D-optimal design and maximum entropy sampling.

Several simple examples are used to help illustrate the SEED method. The research

questions Q.2.1, 2.2, and 2.3 are answered and Sub-Hypotheses 2.1, 2.2, and 2.3 are

tested. A brief overview of the organization of this chapter is presented in Section 4.1.

The problem of sequential experimental design is defined in Section 4.2. In Sections 4.3

and 4.4, previous work on D-optimal design and maximum entropy sampling is

introduced. The method of Sequential Exploratory Experimental Design is then

developed in Section 4.5. The SEED method is then tested with a single-variable

example in Section 4.6. A look back and look forward is enclosed in Section 4.7.

 170

4.1 WHAT IS PRESENTED IN THIS CHAPTER

In Chapter 3 we studied techniques used in metamodel validation with

deterministic computer experiments. One important conclusion in Chapter 3 is that it is

necessary to use additional validation points in verifying the accuracy of metamodels.

Thus, in designing computer experiments, the designers need to consider the

identification of not only data points but also validation points.

To save time and effort in metamodeling, it is desirable to add in data points

sequentially; information from previous data points could be used as a guide for selecting

future data points. Given that it is necessary to have validation points in consideration,

our goal in this chapter is to develop a method with which sequential experiments (of data

points and validation points) could be designed. The research question to be addressed in

this chapter is Research Question 2: How to design sequential computer experiments

(how to select data and validation points sequentially) to get an accurate metamodel? To

answer this research question, we plan to test the hypothesis that sequential experiments

could be designed through analysis of information from previous data/validation points

and metamodels. This consists research in three steps: measurement of information,

utilization of information from validation points, and identification of new data points.

After introducing the definitions and nomenclatures of the problem of sequential

experimental design in Section 4.2, foundations of research in this chapter, D-optimal

design and maximum entropy sampling, are discussed in detail in Section 4.3 and 4.4.

This literature review helps answer the first sub-research question – Research Question

 171

2.1: How to measure the information worth of a point? The method of Sequential

Exploratory Experimental Design (SEED) is developed in Section 4.5, which help answer

Research Question 2.2: How to select validation points to achieve a sequential design of

computer experiments? and Research Question 2.3: How to utilize information from

previous points and metamodels in identifying new data points? Information from

validation points is utilized in evaluating the information worth of a point and thus new

data points with maximum potential information are selected to form sequential

experiments. A framework of the SEED method is presented in Section 4.5.

The example of a single-variable function is studied in Section 4.6 to help verify

and illustrate the SEED method. In Section 4.7 we revisit the research questions and

hypotheses discussed in this chapter.

4.2 DESIGN OF SEQUENTIAL EXPERIMENTS: PROBLEM OVERVIEW

In this section, the problems of experimental design, metamodeling, and

sequential experiments are defined. The notions and nomenclatures stated in this section

will be used later in Chapter 4 and across the whole dissertation (if not otherwise

defined).

Let p∈ ℜx denote the vector of input values chosen for the computer program.

In this chapter, we will write x as the row vector ()pxx ,1… using subscripts to denote

components of x. Here p is the number of design variables. We assume that each

component xj (j = 1,…,p) is continuously adjustable between a lower and an upper limit,

which after a linear transformation can be taken to be 0 and 1 respectively. The computer

 172

program is denoted by f and it computes q output quantities. In the studies here, we take

q = 1, i.e., only one output is taken into consideration. Thus the deterministic computer

simulation at each data point is illustrated as following:

 [] pfy 1,0),(∈= xx (4.1)

where x denotes a data point, defined as (based on previous discussions):

],...,,[21 pxxx=x (4.2)

where, again, p is the number of design variables. The design space as presented in

Equation (4.1) is [0,1]p, which means all the design variables have already been scaled to

[0,1] before the experimental design.

There are many different but related goals that arise in computer experiments,

including (Koehler and Owen, 1996): finding a good value for x according to some

criteria on y, finding a simple approximation f̂ that is accurate enough over a region R of

x values, estimating the size of the error)()(ˆ
00 xx ff − for some R∈0x , estimating

∫A fdx , sensitivity analysis of y with respect to changes in x, finding which xj are most

important for each response yk, finding which competing goals for y conflict the most,

visualizing the function f and uncovering bugs in the implementation of f. In this chapter,

I will focus on the problem of how to find good values of x’s so that as much information

as possible could be reflected and thus more accurate metamodels could be developed.

Based on previous discussions in Chapter 2 (Figure 2.5), metamodeling is actually

the process of designing experiments, collecting information, finding and fitting the

 173

appropriate approximation function f̂ for f , and finally, validating the accuracy of the

approximation. Among these steps in metamodeling, design of experiments (DOE) and

metamodel building are two most important steps. In this dissertation, the word

“metamodeling” is used at two levels: at higher level “metamodeling” represents the

whole process in Figure 2.5, which consists four steps as mentioned above; at lower level

“metamodeling” represents the steps of finding and fitting the appropriate approximation

functions, which corresponds Step 2 and 3 in Figure 2.5. For the exact meaning of

“metamodeling” in different cases, please pay attention to the context that

“metamodeling” is used.

In DOE, the points where information is collected for developing metamodels are

called data points, which is an aggregation of x as defined in Equation (4.2). Validation

points are also defined with the same equation, while information collected from these

points is not used for developing metamodels but for testing the accuracy of the

metamodels. A possible data or validation point in the design space is called a candidate

point.

The aggregation of all points (data points, validation points, and candidate points)

is denoted by U, and in this dissertation, U is defined as [0,1]p as illustrated in Equation

(4.1). In most common cases where the design variables are continuous, U contains

infinite number of points; while in traditional design methods, U is restricted to have

finite number of points that are pre-selected in the design space, which helps save time

and effort in finding out the “best” set of data points. In our studies in Chapters 4, 5, and

 174

6, the U with infinite number of points is used to ensure the appropriateness of the

proposed research; while in real-world case studies where information at large number of

points is to be examined, we should use U with finite number of points.

The aggregation of data points, denoted by D, is a subset of U. An experimental

design with n data points is specifically defined as an n-design, denoted by Dn. Dn is a

design of size n with the set of responses represented by:

{ }),(,),,(,),,(11 nniiD yxyxyxy ……= (4.3)

where x again is a data points as defined in Equation (4.2), and y is a vector that

represents q responses. In our study in this chapter, we have q = 1, i.e., only one response

is considered.

In this dissertation, the aggregation of validation points, denoted by A, is also a

subset of U. The number of validation points is denoted by nerror. The complement of D

in U, denoted by D , is the aggregation of candidate points and validation points. The

relationship between data points, validation points, and candidate points is illustrated in

the following figure.

Figure 4.1 Data Points, Validation Points, and Candidate Points

D:
Data Points

A:
Validation Points

Candidate Points

U

 175

The problem of Design of Experiments (DOE) is on how to identify the

aggregation of D in U to best reflect response information in the whole design space. In

designing deterministic computer experiments, based on research in Chapter 3, it is also

necessary to identify the aggregation of A in U to test the accuracy of metamodels

developed with D. In sequential DOE, data points are selected in iterations; information

from previous data points and metamodels could be used as guidance in identifying future

data points. Thus in sequential experiments, the aggregation of D grows gradually along

the design timeline.

Various techniques are proposed to help identify the aggregation of D in designing

computer experiments. As discussed in (Koehler and Owen, 1996), there are two main

statistical approaches to computer experiments, one based on Bayesian statistics and a

frequentist one based on sampling techniques. The frequentist approach to prediction and

inference in computer experiments is based on numerical integration. Without anything

known about the distribution of the output data in the region of interest, intuitively there

is no general guideline for selecting good sample points. However, statistically there are

some sampling techniques that are in general better than the others. Such sampling

techniques include Grids, Good Lattice Points, Latin Hypercube Sampling, Randomized

Orthogonal Arrays, and Scrambled Nets, etc.

In the Bayesian framework, one sets a prior distribution on the space of all

functions from inputs (design variables) to outputs (responses). Given the values of

inputs and outputs, a posterior distribution is generated. The prior distribution is usually

taken to be Gaussian so that any finite list of function values has a multivariate normal

 176

distribution (Koehler and Owen, 1996). Given observed function values, the posterior

distribution is also multivariate normal. The posterior mean interpolates the observed

values and the posterior variance may be used to give 95% posterior probability intervals

(Koehler and Owen, 1996). The method extends naturally to incorporate measurement

and prediction of derivatives, partial derivatives and definite integrals of the function.

The Bayesian framework is well developed but as is common with Bayesian methods

there may be difficulty in finding an appropriate prior distribution. Such Bayesian

experimental design techniques include Maximum Entropy Sampling, Mean Squared-

Error Designs, Maximin, and Minimax Designs, etc. Mathematics behind such Bayesian

techniques as Maximum Entropy Sampling, etc. is the same as that behind the kriging

metamodel which was introduced in Chapter 2.

There are also other ways to classify experimental design methods. As discussed

in Chapter 2, classical DOE’s, e.g., factorial designs, CCD, etc., are widely used in

designing physical experiments. Classical experiments as used in the Response Surface

Methodology (RSM) are conducted in a sequential manner; fractional factorial

experiments are used first to help screen out unimportant design variables, then central

composite designs are constructed for developing quadratic regression metamodels.

However, in a fixed design space, i.e., when no screening is allowed, DOE in RSM

becomes a single-stage experimental design. Space-filling experiments are proved to be

suitable for designing deterministic computer experiments, while these designs are

usually in a single-stage manner in that information from previous data points and

metamodels have no influence on the selection of future data points. The selection and

 177

usage of validation points are not discussed yet in designing sequential computer

experiments. In this chapter, a method of Sequential Exploratory Experimental Design is

developed in which information from previous data/validation points and metamodels are

used as guidance in identifying new data/validation points. The aggregations of D and A

grow gradually along the design timeline; they are selected to ensure that information at

D could be predicted with maximum confidence based on information from D and thus

accurate metamodels could be developed with the data points. Research in this chapter is

based on two DOE techniques, D-optimal designs and Bayesian Entropy Sampling, as

will be discussed in Sections 4.3 and 4.4.

4.3 CONSTRUCTION OF D-OPTIMAL DESIGNS

In DOE, an optimal design is one that has some optimum properties. A

systematic study of the specification of optimum experimental designs was undertaken in

(Kiefer 1958; Kiefer, 1959), where he introduced various optimality criteria (A, D, E, L,

M), and discussed interrelations amongst these and established the optimality property of

some well-known designs in some particular problems.

D-optimal designs are straight optimizations based on a chosen optimality

criterion and the model that will be fit. The optimality criterion used in generating D-

optimal designs is one of maximizing |X'X| (or det(X'X)), the determinant of the

information matrix X'X. This criterion of maximizing the determinant of X'X is

proposed as a means of maximizing the local power of the F-ratio for testing a linear

hypothesis on the parameters of certain fixed-effects analysis of variance models (Wald,

 178

1943). The matrix X'X is called the information matrix. It is proportional to the inverse

of the covariance matrix of the parameters. So maximizing det(X’X) is equivalent to

minimizing the determinant of the covariance of the parameters. In the case of D-

optimality for regression designs, X is the expanded design matrix that has n rows (one

for each design setting) and p columns (one column for each coefficient to be estimated

plus one column for the overall mean). It was proved that a D-optimal design is also

minimax, and on ther other hand, a minimax design is D-optimal (Kiefer and Wolfowitz,

1960).

To construct the information matrix is an important step in building D-optimal

designs. As discussed in (Zacks, 1996), let { }χ∈Θ∈⋅= x,θθx);,|(.. FFA be a regular

family of distribution functions of random variables yx, where x are design variables in

the design space χ, χ is a subset in ℜ p, θ are unknown parameters of the distribution in the

parameter space Θ, and Θ is an open set in ℜ k. The regularity of A.F. means that all its

elements satisfy the well known Cramer-Rao regularity conditions (Wijsman, 1973). Let

),;(θxyf be a p.d.f. of),|(θx⋅F with respect to some σ-finite measure µ. The

information matrix is formulated as:

∂
∂=),;(log);(, θxy
θ

xθ fVarI xθ (4.4)

where, in the k-parameter case,);(xθI denotes a k×k covariance matrix, and

),;(log θxy
θ

f
∂
∂

 is a gradient vector (score vector). A design is called optimal with

respect to the information, if it maximizes some functional of the information matrix in

 179

Equation (4.4). In the case of D-optimal design, the determinant of the information

matrix);(xθI is maximized.

Since this D-optimality criterion results in minimizing the generalized variance of

the parameter estimates for a pre-specified model, as a result, the “optimality” of a given

D-optimal design is model dependent. That is, the experimenter must specify a model for

the design before a computer can generate the specific treatment combinations.

Generally speaking, for linear models the optimum designs (including D-optimal

designs, of course) do not depend on the values of the parameters of the metamodel.

However, for nonlinear metamodels, the optimum experimental designs depend heavily

on the values of the unknown parameters. One way to accommodate the dependence of

optimum design on the chosen parameter values is to introduce a prior distribution on the

parameters and to incorporate this distribution into appropriate design criteria. Bayes

formula is a useful equation from probability theory that expresses the conditional

probability of an event A occurring, given that the event B has occurred (written P(A|B)),

in terms of unconditional probabilities and the probability the event B has occurred, given

that A has occurred. In other words, Bayes formula inverts which of the events is the

conditioning event. For more details, see (Bernardo and Smith, 1994; Congdon, 2001,

etc.)

Bayesian D-optimality design is thus developed in this regard (see, Chaloner and

Verdinelli, 1995; Bernardo and Smith 1994; Pilz, 1991; Pukelsheim, 1993). In Bayesian

D-optimal design, the expectation of the logarithm of the determinant of the information

matrix as represented below is maximized (Atkinson and Haines, 1996):

 180

 () () ()E log det , log det ,I I p dθ θ ξ θ ξ θ θ= ∫ (4.5)

where p(θ) is the prior distribution on θ, ξ is a probability measure for an n-trial design

over the design space χ as introduced in the approximate or continuous design theory in

(Kiefer, 1985). In Bayesian optimal design, to maximize Equation (4.5) is also cited as

maximizing the expected utility for the particular experiment. A formal justification for

the criterion as stated in Equation (4.5) within the Bayesian paradigm is provided in

(Chaloner and Verdinelli, 1995).

Based on the well-done previous work on optimal design (especially D-optimal

design), our aim in this chapter is to develop some method to design sequential

experiments. In designing optimal experiments, given the total number of treatment runs

for an experiment and a specified model, the computer algorithm chooses the optimal set

of design runs from a candidate set of possible design treatment runs. This candidate set

of treatment runs usually consists of all possible combinations of various factor levels

that one wishes to use in the experiment. A good review on how to develop D-optimal

designs for regression metamodels is done in (John and Draper, 1975). Many algorithms

and systems are developed for designing D-optimal experiments (e.g., see Clyde, 1994;

Dumouchel and Jones, 1994; Steinberg, 1985, etc.). Sequential designs of D-optimal

experiments are also studied. For example, in (Berry and Fristedt, 1985) the authors

studied sequential experiments with bandit problems; Freeman (1970) solved the

Bayesian sequential design problem exactly for a very small and simple binary regression

experiment.

 181

In this chapter, we will develop the method of Sequential Exploratory

Experimental Design (SEED) through utilizing information at previous validation points

and metamodels, which is not seen in literature. To reflect this information, the key issue

is how to formulate the information matrix as appeared in Equations (4.4) and (4.5). An

intuitive method is proposed in this chapter based on maximum entropy sampling that

will be introduced in the next section. As stated in many literatures (e.g., see Sebastiani

and Wynn, 2000; Chaloner and Verdinelli, 1995; Sebastiani and Wynn, 2001; Sebastiani

and Wynn, 1997; Pukelsheim, 1993; Bernardo, 1979, etc.) and will be described in the

next section, Shannon information has been widely used in the statistical literature of

Bayesian design as formulation for the utility function in Equation (4.5).

4.4 BAYESIAN ENTROPY DESIGN

As introduced in Chapter 2, the word entropy first originated in the literature on

thermodynamics to represent a measure of the amount of energy in a thermodynamic

system as a function of the temperature of the system and heat that enters the system. It

was first used as a measure of information in 1948 when Claude Shannon developed his

theory of communication (Shannon, 1948). The relationship between Shannon’s entropy

and thermodynamic entropy was established in (Kapur and Kesavan, 1992). The concept

of entropy is closely tied to the concept of uncertainty embedded in a probability

distribution. In fact, entropy can be defined as a measure of probabilistic uncertainty (the

uncertainty associated with the probability of outcomes). Let p ≡ (p1, p2, …, pn)
T be a

 182

probability distribution associated with n possible outcomes, Shannon’s entropy is

defined as (Shannon and Weaver, 1962):

∑
=

−=
n

j
jjn pppS

1

ln)((4.6)

where 1
1

=∑
=

n

j
jp , 0ln0 = 0, pj ≥ 0 for j = 1,…,n. Another formulation of Shannon’s

entropy, used as a measure of the uncertainty of the transmission of information, is:

 ∫ Ω−= dsspspH)(ln)(, (4.7)

where p(s) is a Gaussian density function over the space Ω of the information signals

transmitted. The word “entropy” has different meanings in different contexts, depending

on how we define the pi or p(s) in its formulation.

To use information theoretic ideas in experimental design has a considerable

history, with definite papers by Lindley (1956), Stone (1959), and Renyi (1961). An

elegant summary appears in (Renyi, 1970). Many of the ideas have been absorbed into

the flourishing area of Bayesian optimal design as talked about in Section 4.3. The

Bayesian information theoretic approach, which states that the optimal design maximizes

the expected information worth of the experiments, has been well studied in literature in

the past 20 years (see, e.g., Chaloner and Verdinelli, 1995; Pilz, 1991; Bernardo and

Smith, 1994, etc.). As introduced in the optimal designs, Bayesian design requires a

specification of a utility function, and Shannon’s information theoretic formulation of

entropy has been widely used in literature. It is stated that the Bayesian entropy design,

 183

which maximizes the entropy of the prior design, is able to simplify the formulation of

the design criterion while keeping the computational complexity manageable compared to

most other techniques.

Shannon’s entropy was first introduced in the field of design of experiments in

(Lindley, 1956), in which the author interpreted entropy as the amount of information

gained by a data point. With the aim of maximizing the gain in information for

prediction at new data points, maximum entropy sampling (MES) was used as a criterion

for the choice of experiments in (Shewry and Wynn, 1987). This criterion was then

adopted as one of the main methods for computer experiments in (Sacks, et al., 1989a).

Based on these studies, a maximum entropy design strategy is proposed in (Currin, et al.,

1991) in which new data points are added sequentially in the design space such that

maximum expected information is gained from the set of experiments. A good paper on

computer experiments and maximum entropy sampling is (Koehler and Own, 1996).

These papers as mentioned above represent previous work in Bayesian entropy design,

which is the basis of our SEED method of designing sequential experiments with

consideration of prediction errors in previous metamodeling processes. In the following

paragraphs, I will describe how Bayesian entropy design works; for more details, please

refer to the papers mentioned above.

4.4.1 Prior and Posterior Distributions

In Bayesian methods, we need to specify a prior knowledge about a function. In

our research, prior uncertainty about the function y is expressed by means of a random

 184

function Y, which is taken to be a Gaussian stochastic process. The mean of the posterior

process is used as the prediction function ˆ()y x , and the variance can be used as a

measure of uncertainty. This kind of approach is strongly related to the kriging methods

as introduced in Chapter 2. Thus in this chapter, we will use kriging metamodels in

developing the Sequential Exploratory Experimental Design (SEED) method.

As mentioned above, the prior knowledge about the unknown function y(x) is set

to be Gaussian process Y. Given an n-design Dn (as defined in Section 4.2), the prior

distribution of the design is multivariate normal with mean vector and the positive

definite covariance matrix as:

[] []D D iE Y µ= =µ (4.8)

cov(,)D D DD ij n n
Y Y σ

×
 = = σ (4.9)

where i and j corresponds two points xi and xj ∈ D. Elements in the vector of []iµ is

defined as the expected mean of the normal distribution Yi at a point xi ∈ D:

 ()i iE Y µ= (4.10)

And the entries of the covariance matrix is defined as:

cov(,) () cov(,)ii i i i ij i jY Y Var Y Y Yσ σ= = = (4.11)

In Equation (4.11) we see that two prior distributions at xi and xj are not statistically

independent; we will talk about this correlation later.

As defined in Section 4.2, D is a subset of all the possible points in the design

space, denoted as D ⊂ U. Based on the discussion above, the posterior process, given the

 185

vector of observed response yD on Dn, is well known and is also Gaussian. Suppose we

want to examine responses at a finite number of new points S ⊂ U, the mean and variance

at S is given by:

 [] 1
| | ()S D S D S SD DD D DE −= = + −Y y yµ µ σ σ µ (4.12)

 [] 1
| |cov , |SS D S S D SS SD DD DS ij Dσ− = = − = Y Y yσ σ σ σ σ (4.13)

where ' cov(,)SD DS S D= = Y Yσ σ . In Equation (4.13), i and j corresponds two points xi

and xj ∈ D ; please note the difference between this definition and that for Equation (4.9).

With Equation (4.13) we are able to estimate the posterior covariance matrix based on

prior distributions. From a Bayesian viewpoint, the posterior process is very important; a

Bayesian estimate for y at new observation sites (new points) is the mean of the posterior

distribution:

 1
|ˆ() ()D D DD D Dy yµ µ σ σ µ−= = + −x x xx (4.14)

where x is a new point to observe in the design space U. Given an experimental design

D, the response value at a new point x could be estimated with Equation (4.14). This is

actually the essence of Gaussian interpolation and kriging metamodels; see Equation

(2.18) in Chapter 2 for analogy. This analogy is explained below with the stationary

assumption.

4.4.2 The Stationary Assumption

As explained in (Currin, et al., 1991), the stationary assumption is introduced to

help develop a general method without eliciting and implementing problem-specific prior

 186

information. With this goal some conditions of stationarity are needed to produce prior

processes that are non-informative, or at least impartial in some respects. In particular,

the prior mean and variance is required to be constant for all x in U: 2,µ µ σ σ= =x xx ,

and at any two points xi and xj in U, the prior correlation ijρ between Yi and Yj depends

only on their Euclidian distance i jd = −x x through a suitable correlation function R.

The correlation function R must satisfy that () ()ij i jR R dρ = − =x x , and R(0) = 1; for

any finite set of points S, the correlation matrix SSρ generated by R must be positive

definite.

With the stationary assumption mentioned above, the covariance matrix DDσ is

invariant to any isometric transformation in the points in U. The prior distribution for Ys

at points S does not change if S is shifted – the correlation is only related to the relative

distance between points but not the absolute location of the points. Thus Equations

(4.12) and (4.13) become:

 1
| ()S D SD DD D

−= + −f fyµ µ ρ ρ µ (4.15)

 2 1
|SS D SS SD DD DSσ − = − σ ρ ρ ρ ρ (4.16)

where f is a vector of 1’s. For prediction at a single site x, we have

 1
|ˆ() ()D D DD Dy µ µ µ−= = + − fx xx yρ ρ (4.17)

 2 1
| 1D D DD Dσ − = − xx x xσ ρ ρ ρ (4.18)

 187

Equation (4.17) is the same as Equation (2.18), calculation of predicted estimates in

kriging metamodeling. The covariance of prior distributions at two points xi and xj is:

 () ()2cov ,i j ij i j i jY Y R D i jσ σ= = − ∈ ≠x x x , x (4.19)

 () 2var i iiY σ σ= = (4.20)

Equations (4.19) and (4.20) are used to formulate entries of the covariance matrix as used

in maximum entropy sampling (Section 4.4.3).

There are several choices for the correlation function R. In (Simpson, 1998; Lin,

2000), we have studied five types of correlation functions, namely, the exponential

function, the Gaussian function, cubic spline, Matérn linear function, and Matérn cubic

function. However, in this dissertation, we will use the Gaussian correlation function

(Equation (2.14)), which is by far the most popular one in use.

4.4.3 The Entropy Criterion

Assuming that we have an n-design Dn in the design space U. Once we got

information at the data points, knowledge of the function y at other points will be

embodied in the multivariate normal distribution of |S DY generated by the predictive

process. The mean |S Dµ and the covariance matrix |SS Dσ of this distribution could be

calculated with Equations (4.15) and (4.16). The problem of experimental design here is

actually to choose D to minimize the “amount of uncertainty” in |S DY . Shannon’s entropy

could be used to help achieve this goal. For a continuous multidimensional random

variable X, Shannon’s entropy formulation is:

 188

[]() ln () lnxH X E p X dx= − − (4.21)

where px(x) is the density of X at x and dx is the volume element in an arbitrarily fine

discretization of the design space. The formulation of entropy in Equation (4.21) is

always nonnegative; the lower the entropy, the more precise is the knowledge represented

by X. In practice, we ignore the second term of (–lndx) since it does not depend on the

distribution of X.

In (Lindley, 1956), the author proposed using the expected reduction in entropy as

a criterion for design. Experiments that minimize the entropy of the posterior

distributions |()S DH Y should be chosen as the design. This idea is further developed in

(Shewry and Wynn, 1987) in which the authors showed that the posterior entropy could

be minimized by choosing D that maximizes the prior entropy, ()DH Y . For Gaussian

priors, the design dependent part of ()DH Y is ()1
ln det

2 DDσ . Thus, to maximize the

Gaussian prior entropy is equivalent to maximize the determinant of the covariance

matrix. Given the stationary assumption, this is the same as maximizing the determinant

of the correlation matrix. Thus, here is the maximum entropy DOE strategy:

In order to achieve maximum entropy sampling, the designers should

choose data points Dn with maximum determinant of the prior covariance

matrix ()det DDσ .

 189

This could be viewed as D-optimality because it minimizes the posterior

generalized variance of the unknowns, as the usual D-optimality criterion in the linear

model does. In (Johnson, et al., 1990), the authors show that when the prior correlation

between points is extremely weak and is a decreasing function of an appropriately defined

distance, the entropy criterion maximizes the minimum distance among design points.

The tendency of D-optimality to maximize distances between points is evident in

augmenting existing designs.

As defined in Section 4.2, the design space is denoted by U, which contains

infinite number of possible data points in [0,1]p. In literature, in order to save time and

effort in building experiments, a grid is constructed in the design space, with each node

represents a possible input vector. The grid should not be very large to ensure

achievement of “best” experimental designs, and it should not be too small so that

remarkable computation time and effort could be saved. In this way the design space is

reduced from one with infinite number of points (continuous) to one with limited number

of points (discrete). Then the problem of experimental design becomes that how to select

a certain number of points in the pool of all possible points to convey maximum

information of the response surface. Currently, this usage of grid to save computation

time is used in nearly all Bayesian entropy designs in literature. In our research in this

chapter, in order to prove the feasibility and effectiveness of our SEED method, we will

use a continuous design space as defined in Section 4.2, instead of the discrete design

space that is used in the Bayesian entropy sampling introduced in this section.

 190

Currin et al. (1991) took advantage of the Shewry and Wynn’s result (Shewry and

Wynn, 1987) for a one-point augmentation to an existing n-design: Should one desire to

augment one more experiment to an existing set of experiments, the new experiment must

be conducted at a point ni D∈x , with the largest variance of the posterior distribution. In

other words, the best xi to conduct a new experiment is the one at which
nDii|σ is

maximum. In the algorithm suggested by (Currin, et al., 1991), experiments are

augmented one-by-one to the current set. A multiple-search is conducted over U to

identify ni D∈x that maximizes
nDii|σ . A “hikers” method for optimization is proposed

to help save computation time and effort while global optimum is not guaranteed. In our

research in this chapter, we try several global optimization algorithms to find the set of

points with maximum determinants of the covariance matrix; computation time for the

optimization is not considered here since our focus is on verifying our ideas and methods

for sequential experimental design.

4.5 THE SEQUENTIAL EXPLORATORY EXPERIMENTAL DESIGN
METHOD

As introduced in Sections 4.3 and 4.4, in Bayesian entropy design, information

uncertainty is reflected with the Bayesian method and the most informative experiments

are designed with maximizing the entropy of prior distributions. This helps answer our

Research Question 2.1: How to measure the information worth of a point? Based on the

literature review, our answer is that: given the prior distributions of a current set of data

points, the new point which helps maximizes the determinant of the covariance matrix for

 191

prior distributions is most informative (or maximizes the prior entropy). Points that help

achieve larger determinants are more informative than those with smaller determinants.

Assuming we already have an n-design Dn, and our aim is to find out and add in a

new point that yields maximum information potential. Assuming Gaussian priors,

suppose we have two candidate points, xi and xj, with i k j k
σ σ≤x x x x for all xk∈ D.

The question is: which point, xi or xj, is more informative? From Equations (4.13) and

(4.18), we got that:

2 1

|i i i iD D DD Dσ σ σ σ σ−= −x x x x (4.22)

2 1
|j j j jD D DD Dσ σ σ σ σ−= −x x x x (4.23)

Since we have 0 i k j k
σ σ< ≤x x x x for all xk∈ D, from Equations (4.22) and (4.23) we

could deduct that i jD Dσ σ>x x . Since the point xi helps achieve a larger prior

variance (if xi is added to D), our conclusion is that the point xi is with more information

potential. Thus, our answer here to Research Question 2.1 is that: Given two candidate

points, xi and xj, and a current set of data points, D, assuming Gaussian priors, the point xi

is more informative than xj, if i k j k
σ σ≤x x x x for all xk∈ D. This will be revisited and

further explained after the development of the SEED method.

Given that we have answered Research Question 2.1 and propose to use Bayesian

entropy method to measure the information potential of candidate points in the design

 192

space, our next step is to develop a sequential experimental design method to answer

Research Questions 2.2 and 2.3, as listed below:

R.Q.2.2: How to select validation points to achieve a sequential design of

computer experiments?

R.Q.2.3: How to utilize information from previous points and metamodels

in identifying new data points?

As mentioned in Section 4.4, Currin, et al., (1991) suggest an algorithm to

successively augment new data points to an existing experimental design. In our

viewpoint, Currin’s method is actually not a “sequential” experimental design method

since information from previous data points and metamodels is not used as a major

guidance in identifying new data points. In maximum entropy sampling, the designers

tend to add in new points that are as far away from current points as possible; information

of the response values takes no place in the decision making process. In this sense, the

method proposed by Currin, et al., (1991) is not flexible since it does not affiliate to

specific simulations (or say, problems). We say that it is not a sequential method – a

sequential experimental design method is capable of placing new data points at positions

that are believed to yield maximum information potentials based on analysis of

information from observations at previous data points and metamodels. For example,

intuitively, given a simulation (or function), more data points should be located in regions

that are highly nonlinear, and fewer data points should be located in flat regions. A

single-stage maximum entropy sampling method, as Currin’s, cannot achieve this goal

 193

A new sequential approach for DOE, named Sequential Exploratory Experimental

Design (SEED) is introduced in this section to address the above-mentioned

shortcomings. Information at previous data/validation points and metamodels is updated

sequentially during the process, and it is utilized in identifying new data points in the

design space. This is the core of Chapter 4.

4.5.1 Overview of the Sequential Exploratory Experimental Design Method

At the beginning of metamodeling, the designers have no information about the

response surface in the design space. The simulation code is totally a “black box” that

designers have no idea what outputs it will generate with specific inputs. In this case, the

maximum entropy sampling method introduced in (Currin, et al., 1991) could be used to

design starting experiments. This is a non-informative method since the stationary

assumption is used and no information of response values is involved in allocating the

points. All candidate points in the design space U have the same distribution a priori.

The starting experiments could also be designed in other ways. Designers could

start with other types of experiments. Frequentist experiments are usually preferred at

this stage so that designers could avoid having to specify a distribution for f (Koehler and

Owen, 1996). Sometimes designers may already have some knowledge of the response

surface, i.e., observations of responses at some points in the design space have already

been done; in this case, these points could be used as the starting experiments though they

may not be most informative (from the entropy viewpoint) or space-filling (from the

frequentist viewpoint).

 194

After running the first-round experiments, the first-round metamodel could be

developed. The next step is to identify validation points. This step is necessary because

1). We need to study the prediction accuracy of the metamodel to decide whether further

experimentation and metamodeling is necessary, 2). Our study in Chapter 3 suggests that

additional validation points are necessary in testing metamodels, and 3). in a sequential

experimental design it is very possible that we convert these validation points to data

points in the future. In selecting validation points, two issues are essential: the number of

validation points and the location of validation points. In this study, we do not consider

too much on the number of validation points (except for the “possible last” round)

because in sequential experiments, we do not really “validate” metamodels in the mid-run

– what we seek with the validation points is the information of prediction errors they

provide. With an existing set of data points and a corresponding metamodel, there are

several ways that help identify validation points, e.g., Maximum-Scaled-Distance-

Approach, Cross-Validation-Approach (Jin, et al., 2002). In this chapter, as will be

discussed later, we will select validation points that are “most informative”, similar to the

selection of new data points.

After observation at validation points, we get information of the prediction errors

of the current metamodel at validation points. If the errors are relatively small and

suggest ending of experimentation and metamodeling (refer to Lin, et al., 2002), we may

need to collect information at more validation points (to have enough validation points is

essential for statistical validation; also, refer to Lin, et al., 2002). If prediction errors are

large, next round experiments are to be designed with the information at hand. In

 195

iterations, new data points are to be identified, new metamodels built, and new validation

points observed for new validations. Ideas on how to utilize the information in

identifying new data points are discussed in Section 4.5.2, while the realization of these

ideas with mathematical formulations are presented in Section 4.5.3.

4.5.2 Identification of New Data Points through Utilization of Information at
Previous Data/Validation Points and Metamodels

There are various ideas on how to select future data points. The first one is to

select future data points that “best spread over” the design space with current data points.

In this method no information from current data points and metamodels is considered; the

new experimental design is still a maximum entropy sampling, or a space-filling design

that have all points spread over the whole design space as evenly as possible. Of course

this idea is not suitable for sequential experimental design in which we seek to maximize

information with limited resources. This is explained in the following paragraph.

In maximum entropy sampling (Currin, et al., 1991), the key issue is the

correlation function used to calculate the correlation between points and build the

covariance matrix. Through maximizing entropy, new points are added as far away as

possible from current data points. This results from the properties of the correlation

function under the stationary assumption described in Section 4.4.2. As introduced in

Section 4.4, the correlation function must satisfy that () ()ij i jR R dρ = − =x x , and R(0)

= 1; for any finite set of points S, the correlation matrix SSρ generated by R must be

positive definite. Under the stationary assumption as described in Section 4.4.2, the

 196

correlation between points is dependent only on their distance (relative positions), but not

on their absolute locations in the design space. It is defined to be a decrease function of

the Euclidian distance between points: as the distance between two points increases, their

correlation decreases. This correlation is used in kriging metamodels to predict response

values at unobserved points. To understand this, we could assume that each point, xi, in

the design space conveys information about the response values in its vicinity; for

prediction of the response value at its very location this point reflects 100% information,

while for points nearby (xj), it transmits only a certain amount of information. The farther

xj is from xi, the less information that xi transmits at xj because of the decreasing

correlation function. Thus, in the one-stage maximum entropy sampling (Currin, et al.,

1991), this correlation is dependent on the value of θ and the Euclidian distance only; the

location of xi and xj is not considered. This maximum entropy sampling is actually a

space-filling design in which points are selected to “spread over” the design space.

In sequential experiments, information from previous observations should be used

as a guide in identifying new data points. Thus, the stationary assumption of equal

variance in (Currin, et al., 1991) should be modified to reflect the property of different

locations in the design space. After designing the starting experiments and developing

the original metamodel, new data points should be added not to spread over the design

space (as maximum entropy sampling does); instead, they should be located at “crucial”

locations where more potential information about the response surface could be reflected.

How to identify “crucial” locations is the problem to be studied in following paragraphs.

 197

Given information from previous experiments and metamodels, there are

generally two philosophies on how to use this information for a sequential experimental

design, one is to identify and add more points in the most-likely-to-succeed regions, the

other is to add more points to regions with large model uncertainty. At early design

stages where uncertainties on design requirements may not be controlled, it is reasonable

not to reduce the design space, and thus in this chapter, we seek methods based on the

second philosophy, i.e., to add in new points to help reduce overall uncertainty of the

metamodel. Studies on methods based on the first philosophy, or the combination of the

first and second, is done in Chapter 6.

There are also two ideas on how to identify “crucial” locations in the design space

where more potential information is to be reflected. One is that the “crucial” region

should be one with irregular (or highly nonlinear) response surfaces. With this belief

designers should locate more future data points in regions with great response changes (or

large numbers of peaks/bottoms). This is intuitive; in the interpretation of Equation

(4.11) we could imagine that points in “flat” regions should have more information

influence on neighborhoods than ones in “steep” regions. This idea is illustrated in

(Farhang-Mehr and Azarm, 2002), as described below.

As illustrated in Figure 4.2, there are two candidate points, A and B, in the design

space [0,1]. In Bayesian entropy sampling, both of these two points have influence in

their neighborhoods; this influence is reflected by the correlation between them and

nearby points (A’ and B’). Intuitively, we see that the influence of Point A on Point A’ is

weaker than that of Point B on Point B’, i.e., the correlation between A and A’ should be

 198

smaller than that between B and B’. This is because Point A is located in a highly

nonlinear region while Point B is located in a flat region. It is intuitive and reasonable to

locate more data points in the multi-modal region around Point A to enable a more

accurate modeling of the response function. In contrast, not that many data points are

needed in the less irregular region around Point B. In this sense, the region around Point

A is a “crucial” region where more potential information could be reflected, while the

region around Point B is not.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 4.2 Metamodeling Uncertainty at Nonlinear and Flat Regions (Modified from
Farhang-Mehr and Azarm, 2002)

The observation above is intuitive and sounds reasonable. However, we claim

that a “crucial” region with great potential information is one with great prediction errors

A A’ B B’

 199

(given information from current points and metamodel), not necessarily a highly

nonlinear one with great response changes. The key issue in identifying new data points

is the study and improvement of the prediction ability of current metamodels, which is

not necessarily related to studies of the non-linearity of the response surface. This idea is

incorporated in our method of Sequential Exploratory Experimental Design, in which

designers are engaged in identifying regions with large prediction errors to find out points

with great potential information. This idea is illustrated in Figure 4.3.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 4.3 Metamodeling Uncertainty at Regions with Large and Small Prediction
Errors

In Figure 4.3 the original function is the same as at shown in Figure 4.2. Suppose

now we have developed a metamodel for this function; as illustrated in Figure 4.3, this

Original Function

Metamodel

A A’ B B’

 200

metamodel is very accurate in the region around Point A but has large prediction errors in

the region around Point B. Such a metamodel could be developed through placing quite a

few data points in the multimodal region around Point A. For example, selecting data

points at each peak/bottom may yield a metamodel that is very accurate around Point A –

this could be a result of the application of “locating more points in multimodal regions”

as explained with Figure 4.2. Now the question is, given the metamodel in Figure 4.3,

where should we locate new data points?

Following the idea of “locating data points in highly-nonlinear regions”, it is

apparent that we should add new data points in the multimodal region around Point A

because the correlation between points in this region dampens very quickly as the

distance between points increases; it is expected that points in this region have greater

potential information. However, from Figure 4.3 we see that, given the metamodel in this

case, points in the flat region (around Point B) is more informative than those in the

multimodal region (around Point A). If the metamodel and some knowledge on its

prediction errors in the design space were given, we would add in new points around

Point B, in the region where large prediction errors take place instead of the region with

high nonlinearity.

Where could be wrong with the idea of “locating data points in highly-nonlinear

regions”? To answer this question, first we should look deeper into the motivation for

sequential experiments. In designing sequential experiments, our aim is to add in new

data points with greatest potential information about the response surface; in this way we

could save time and effort on expensive simulations. New data points should be in the

 201

regions where we have greatest uncertainty with the current experimental design and

corresponding metamodel. With the natural and intuitive idea of “locating data points in

highly-nonlinear regions” the assumption is that regions with high nonlinearity are those

we could not predict very accurately with current metamodels. This assumption is not

necessarily valid, as we see in Figure 4.3. Though in many cases, we do have greater

uncertainty on response surfaces in highly nonlinear regions, the link between “high

nonlinearity” and “high uncertainty with current metamodels” is not stable for all cases.

Thus it is very dangerous to follow the idea of “locating data points in highly-nonlinear

regions” blindly. On the other side, the idea of “locating data points in regions with large

expected prediction errors” is more appropriate. The assumption behind this idea is that a

region of great uncertainty is one with great prediction errors given the current

metamodel. This assumption is always true since we could just express “great

uncertainty” as “large prediction errors”.

Another way to answer the question why “locating data points in regions with

great prediction errors” is preferred to “locating data points in highly-nonlinear regions”

is to study the correlation among points in these regions. The region around Point A in

Figure 4.3 is highly nonlinear, so if we build a kriging metamodel for response surfaces in

this region, the value of θ in the Gaussian correlation function (Equation (2.14)) should

be very large; the region around Point B in Figure 4.3 is very flat, and the value of θ in the

Gaussian correlation function for the kriging metamodel in this region is small. Based on

this observation, the idea of “locating data points in highly-nonlinear regions” is proposed

since the information that one point conveys dampens quickly in its neighborhood in a

 202

nonlinear region, while it dampens slowly in a flat region. This is a good strategy based

on very direct observations; however, a closer look would reveal its shortcomings.

Suppose now we already have two data points, A and A’, in Figure 4.3. For either of these

two points, we would say that it transmits only a little information in its neighborhood.

While by locating them together, much more information is transmitted – they reflect the

response surface between them very well. In this case, no more data points should be

added between A and A’. This simple example clearly shows that once we have reflected

information in a region very well (with small prediction errors), it is of little value to add

in new data points though it may be highly nonlinear in this region. In sequential

experiments, given current metamodels, whether the correlation among points is great or

not should not be used as a guide for identifying new data points (as in “locating data

points in highly-nonlinear regions”); instead, whether the correlation is explained well or

not could be used in identifying new data points (as in “locating data points in regions

with large prediction errors”).

Generally speaking, more data points should be located in highly nonlinear

regions. To build an accurate metamodel, in Figure 4.3, more data points should be

located on the left half than on the right half of the design space. In this sense, the idea of

“locating data points in highly nonlinear regions” sounds reasonable. This is because that

the highly nonlinear regions are often with large prediction errors with current

metamodels – but on the other hand, it is not always the case. Thus, in our method for

designing sequential experiments, we advocate the idea of “locating data points in regions

 203

with large prediction errors”. The problem here is how to figure out the “expected

prediction errors” of the current metamodel throughout the design space.

For kriging metamodels, without information from validation points, the general

formula for prediction mean squared error at any new points is presented in Equation

(3.7). This could be used in identifying points with great potential information of the

response surface. However, in SEED we do not adopt this equation because:

1. It works only for kriging metamodels,

2. Our research in Chapter 3 suggests that only information from validation

points could be used to verify the metamodel (i.e., calculate the prediction

errors), and

3. Equation (3.7) is developed based on the stationary assumption (in each

dimension). As we discussed before, with the stationary assumption in

maximum entropy sampling, data points are selected so that minimum

distances among them are maximized. Thus it is not surprising that with

Equation (3.7), a candidate point far away from previous data points is usually

with larger prediction mean squared errors. This is not a good estimate of real

prediction errors in the design space.

In the SEED method, we propose to gather information from current data and

validation points to estimate prediction errors at points throughout the design space.

After developing the metamodel with current set of data points, validation points are

identified to help validate the metamodel. If the metamodel is not accurate enough,

prediction errors at the data points (with values of 0’s if we use kriging metamodel) and

 204

the validation points are used to build a metamodel for predicting prediction errors.

Predicted prediction errors at points in the design space are then calculated to facilitate

the identification of new data points. Like data points, validation points are also added

sequentially to help yield more accurate estimates of prediction errors. In iteration, more

and more metamodels for both response prediction and corresponding prediction errors

are developed until finally we stop our process with an acceptable metamodel. Our

approach is explained in detail with mathematical formulations in the next section.

4.5.3 Mathematical Formulations of Entries in the Adjusted Covariance Matrix in
Sequential Exploratory Experimental Design

Mathematical realization of our ideas on sequential experimental design is

described in this section. As introduced in Sections 4.3 and 4.4, the key issue in

designing D-optimal experiments and Bayesian maximum entropy experiments is the

formulation of the information matrix (the covariance matrix). Basically, our discussions

in this section are built directly on maximum entropy sampling (and D-optimal

experiments also, though indirectly, according to our discussions in previous sections).

In a design of sequential experiments, suppose currently we have n data points Dn,

a corresponding metamodel for responses f̂ , and nerror validation points Ane. The

metamodel f̂ is not accurate enough and a certain number (suppose to be m) of new data

points are to be added to update the metamodel. The number of new data points is

decided arbitrarily by designers after contemplating the simulation complexity,

computational expense, and accuracy of the current metamodel. Our task here is then

 205

how to identify these m new data points given current data/validation points and

metamodels.

In the SEED approach, given current data points and the metamodel for responses,

prediction errors at the validation points could be calculated and a metamodel could be

developed for predicting prediction errors across the entire design space, denoted by êf .

Now we got two metamodels, one for predicting response values, and the other for

predicting prediction errors.

As discussed at the beginning of Section 4.5 with Equations (4.20) and (4.21), we

have: given two candidate points, xi and xj, and a current set of data points, D, assuming

Gaussian priors, the point xi is more informative than xj, if i k j k
σ σ≤x x x x for all

xk∈ D. According to this theorem, in maximum entropy sampling, given the stationary

assumption as introduced in Section 4.4.2, new data points are allocated far from current

data points (Euclidian distance) which means that the correlation between new data points

and current data points is managed to be small. In (Currin, et al., 1991), the authors point

out that this is equivalent to maximizing the determinant of the prior covariance matrix in

Bayesian entropy design, as expressed in Section 4.4.3.

The discussion above enables us to develop a method in which prediction errors

could be accounted in sequential experimental design. In maximum entropy sampling,

given the Gaussian priors, with the stationary assumption, the correlation between points

is merely based on their Euclidian distance. The farther the distance is, the smaller the

correlations are. A point with weak correlations with other data points is one with large

 206

potential information. In a single-stage Bayesian entropy design, by maximizing the

determinant of the covariance matrix, the information content of a set of data points is

maximized and as a result, data points are allocated to spread over the design space. In

SEED, since we have information on both response prediction and error prediction, we

could assign weaker correlations in the regions with large prediction errors, which

increase the informational worth of an experiment conducted in those regions.

In the SEED method, the stationary assumption of the covariance matrix used in

single-stage maximum entropy sampling, as introduced in Section 4.4.3, is no longer hold

valid. Prior to the design of the first set of experiments, no information is available about

the actual response function and as reasoned before, the stationary assumption is

appropriate for the prior distribution. Thus a set of maximum entropy experiments, or as

stated before, a space-filling experiment or a previous set of data points, could be used to

develop the first-round metamodel. However, in selecting new data points, prediction

errors are considered and the covariance will be modified to reflect this information; in

this case, the stationary assumption no longer holds.

How to modify the formulation of entries of the covariance matrix to reflect the

information on prediction errors in the design space? As introduced in Section 4.4.2,

entries of the covariance matrix in maximum entropy sampling is formulated after

Equations (4.19) and (4.20). In the SEED method, following the idea of “locating new

data points in regions with large prediction errors”, we decrease the correlations between

points in regions with large prediction errors. This decreased correlation ensures that new

data points will be “dragged” to the corresponding regions through entropy maximization.

 207

There are two ways to modify the formula of entries in the covariance matrix (Equation

(4.19)), one is to modify the formula of the correlation function R, the other is to

introduce a correcting factor in Equation (4.19) without changing the correlation function.

This is described in following paragraphs.

4.5.3.1 Formulation of Entries in the Covariance Matrix without Changing the
Correlation Function

The information influence of a data points in its neighborhood is small when the

predicted prediction error is large; thus we introduce some correcting factor for the

covariance to incorporate prediction errors and update the covariance of two points

(Equation (4.19)) as:

()2adj
ij i j ij i j i jRσ α α σ α α σ= = −x x (4.24)

In Equation (4.24), αi is the coefficient to reflect the current metamodel’s uncertainty

(prediction errors) at point xi, and αj is the coefficient to reflect the current metamodel’s

uncertainty at point xj. Theoretically, αi and αj should have values between (0, 1]. A

value close to 1 means that the prediction error is small, and thus no much adjustment is

needed on covariance between this point and others. A value close to 0 means that with

the current metamodel we can hardly tell the actual response value at this point, and thus,

correlations of this point with other points should be greatly decreased. To use Equation

(4.24) in SEED is like “pulling” data points to regions with large metamodel uncertainty

through assigning small correlations to points in those regions.

 208

The formulation of coefficients (αi and αj) should satisfy the following criteria

and ideas:

 1,0 ≤< ji αα .

 αi (and αj) should be a decreasing function of predicted prediction errors,

i.e., larger values should be assigned to αi (and αj) for points with smaller

prediction errors.

 In the process of designing sequential experiments, since the information

from current metamodels of response values and prediction errors is

usually inaccurate, we should balance between “locating points in regions

with large prediction errors” and “having points spread over the design

space”. New data points may not be those with largest predicted

prediction errors with current metamodels; they should also have as long

distance from current data points as possible. A trade-off is needed. This

is like “twisting” the data points with two forces, one pulling points to

regions with large predicted prediction errors, and the other to regions far

from current data points. Based on the discussions above, it may be better

not to define αi ∈ (0,1] in practice. Points with very large predicted

prediction error should not have values of αi close to 0; otherwise the

trade-off between “removing prediction error” and “spreading over the

design space” will be damaged because new data points will tend to be

located where the covariance (Equation (4.24)) is close to 0.

 209

 As will be shown later, a factor λ is introduced in SEED to balance the

weight of consideration of “prediction errors” and “space-filling” in the

identification of new data points. In practice, we have

 −∈ 1,

1
1

λ
α i .

In this dissertation, we calculate αi with the following equation:

max

1 . 1 | |i
i

e
relative uncert

e
α

λ
= − = − (4.25)

where realive.uncert is the measurement of relative uncertainty on prediction, which

should range in [0,1), representing high uncertainty with values close to 1 and low

uncertainty with values close to 0. ei is the predicted prediction error at the current point,

and emax is the maximum predicted prediction error in the design space. In practice, it

may be difficult to find the global maximum predicted prediction error with the

metamodel, thus, we may just use emax from a certain optimization; when ei at some

particular points exceeds emax, we may force the value of
maxe

ei =1. In some cases we may

use a value of emax that is smaller than the known value to remove sharp peaks and

increase the number of points with “maximum prediction errors”. λ is the coefficient

used to adjust the value of αi. As discussed before, in our entropy optimization process,

the allocation of new data points is affected by two factors: one is to make points “spread

over” the design space as evenly as possible, and the other is to locate points in “regions

of interest” (or “regions with large prediction errors”). As it is often the case, in the

beginning of metamodeling (usually first iteration) we do not have much information, and

 210

our estimation of prediction errors is also with great uncertainty; thus at this time we

should not emphasize too much on “regions of interest” and try to have points spread over

the design space. A large value of λ helps achieve this. When design evolves and we

have more information and confidence on our prediction of prediction errors of the

metamodel, we may emphasize more on “regions of interest”; a small value of λ helps

achieve this goal. In this dissertation we use λ=2, which makes αi ranging in [0.5,1]; in

this way we do not “exaggerate too much” in adjusting the covariance. Equation (4.24) is

extended as:

()
max max

1 | | 1 | | ,jadj i
ij ij i j i j

ee
R

e e
σ σ α α σ σ

λ λ

= = − −

x x (4.26)

Note that Equation (4.26) is only used for calculating the covariance between one

candidate point and one current data point. Suppose we have a set of data points Dn and

m candidate points Cm. The (n+m)×(n+m) covariance matrix is expressed as:

 Cov = σ2 (4.27)

n×n

n×m

m×n

m×m

 211

In the covariance matrix as presented in Equation (4.27), the n×n sub-matrix

contains the covariance between current data points, and the m×m sub-matrix represents

covariance between candidate points. Note that the diagonal entries of the covariance

matrix are filled with 1’s (see Equation (4.20)). Equation (4.26) is only used to calculate

entries in the n×m and m×n sub-matrices in Equation (4.27). Thus, in SEED, entries of

the covariance matrix is calculated as below:

() ()

()

()

max max

2

,
1 1 . . 1

,

,
1 . . 1

,

,

,

1

ji
i j i j

i j
ij

i j

e i n j ne
R when and R

i n j ne e

i n j n
when and R

i n j n

i n j n
R when i j

i n j n

when i j

λ λ

σ σ

 ≤ >
− − − − ≠ > ≤

 ≤ > − = = ⋅ > ≤

≤ ≤ − ≠ > >
=

x x x x

x x

x x

 (4.28)

In Equations (4.27) and (4.28), we see that the covariance among current data

points (the n×n sub-matrix) is not adjusted; it remains the same as in Equation (4.19).

This is natural since there is no prediction error at data points (supposing we are using the

kriging metamodels) and there will be no adjustment following Equation (4.26). We also

see that the covariance among candidate points (the m×m sub-matrix) also remains

unadjusted. This is because we do not want to have multiple new data points clustering

in the region with large prediction errors – if the formulation of covariance among

candidate points follows Equation (4.26), it is very likely that all new data points are

identical (or very close to one another). To formulate the covariance among candidate

points in the normal way (following Equation (4.19)) is actually to force new data points

spread all over the design space. To use the covariance matrix in sequential experiments,

 212

the focus is on the correlations between current data points and candidate points, i.e., the

n×m and m×n sub-matrices in Equation (4.27). We only adjust entries in these two sub-

matrices.

As for the correlation function ()ji xxR , in Equation (4.28), we use the Gaussian

function, as shown below:

() 2

1
exp()dvn

i j k kk
R dθ

=
− = −∏x x (4.29)

where dvn is the number of design variables, θk are the unknown correlation parameters

used to fit the model, and dk = xk
i - xk

j which is the distance between the kth components of

points xi and xj.

In single-stage maximum entropy sampling, the covariance matrix is built by

using identical values for all θk’s. This is reasonable because no information is available

at the very beginning of design. While in sequential experimental design, when kriging

metamodel is used, θk’s from current kriging metamodel could be used in next round of

experimental design, i.e., values of θk’s in Equation (4.29) keep being updated in

accordance with the kriging metamodels.

Equations (4.27) and (4.28) are used to formulate the covariance matrix in SEED

(without changing the correlation function). In the next section, we will discuss

formulations of the covariance matrix in SEED through changing the correlation function.

 213

4.5.3.2 Formulation of Entries in the Covariance Matrix through Changing the
Correlation Function

In Section 4.5.3.1, we discussed methods to formulate entries of the covariance

matrix without changing the correlation function. The idea is expressed in Equation

(4.24) and the mathematical formulation of the covariance matrix is presented in

Equations (4.27) and (4.28). In this section, we explore the method of adjusting entries in

the covariance matrix through modifying the correlation function between points.

In Section 4.5.3.1, the adjustment of entries in the covariance matrix is done by

adding correcting coefficients, αi and αj, in Equation (4.24). In that method, the

correlation function, ()i jR −x x , is not changed (except that the values of θk’s are

updated in accordance with the kriging metamodels); the adjustment happens outside of

the correlation function. Now let us explore ways to adjust the entries in the covariance

matrix through modification of the correlation function.

Since we use the Gaussian correlation function as shown in Equation (4.29), the

covariance between two points (Equation (4.19)) could be expressed as:

() ∏ =
−== dvn

k kkjiij dxxR
1

222)exp(, θσσσ (4.30)

The values of θk’s in Equation (4.30) are actually indicators of degrees of correlations

between the points. The larger the value of θk is, the less covariance between two points

in the direction of the kth component (as indicated in Equation (4.30)), and thus the less

information that one point transmits in its neighborhood. As discussed in Section 4.5.3.1,

in designing sequential experiments, we should adjust entries in the covariance matrix to

 214

incorporate the information of prediction errors. Points in regions with large prediction

errors should have smaller covariance (thus, correlations) than in regions with small

prediction errors. This could be achieved through modifying the formulation of

correlation functions (Equation (4.29)) to:

() ∏∏ ==
−=−= dvdv n

k kkji

n

k kji
adj ddxxR adj

k 1

2

1

2
)exp()exp(, θθ ββ (4.31)

As we see in Equation (4.31), two correcting coefficients, iβ and jβ , are added in

the correlation function to reflect information on prediction errors. Similar to αi and αj in

Equation (4.24), iβ is the coefficient to reflect the current metamodel’s uncertainty

(prediction errors) at point xi, and jβ is the coefficient to reflect the current metamodel’s

uncertainty at point xj. The formulation of coefficients iβ and jβ should satisfy the

following criteria and ideas:

 When the prediction error at a point xi is 0 (e.g., current data points with

kriging metamodels), the corresponding coefficient iβ should have the

value of 1, which means no adjustment is needed at this point. This could

be viewed as the lower bound of iβ .

 When the prediction error at a point xi is large, correlation with this point

should be adjusted to a smaller value, which means that the corresponding

coefficient iβ should have a value larger than 1.

 The upper bound for iβ (and jβ) is decided arbitrarily by the designers.

Based on previous experience, usually, the value of θk
adj should not be too

 215

large or small to yield efficient and effective computation results in

maximum entropy sampling (say, e.g., smaller than 100 and larger than 5).

This puts constraints on the upper bound for iβ . In order not to get too

large values of θk
adj (no larger than 100), designers may select smaller

upper bounds for iβ (and jβ).

 In some cases, when the difference between upper and lower bounds of iβ

are too small, designers may also want to lower the lower bound. This is

like “shifting” the range of iβ from [1, upper bound] to [lower bound,

upper bound], where lower bound is smaller than 1 and larger than 0. An

extreme example is to use iβ ∈ [lower bound, 1].

Based on discussions above, we could calculate iβ with the following equation:

max

1
e

ei
i λβ += (4.32)

where again, ei is the predicted prediction error at a candidate point, emax is the maximum

predicted prediction error with current metamodels. In practice, we get the value of emax

with optimization tools; global optimum is not guaranteed. When ei is larger than the

estimated emax at some candidate points, we force the value of
maxe

ei to be 1. Similar to

the method discussed in Section 4.5.3.1, λ is used to gauge how much the parameter θk
adj

is adjusted or “twisted”. Usually we set 1=λ . The range of iβ with Equation (4.32) is

[1, 1+λ].

 216

 There are also many other possible formulations for iβ . For example, if in some

case we want to have iβ ranged in [lower bound, 1], we could use the following

equation:

maxmax

11

e

e

e

e ii
i λλ

β −+= (4.33)

With Equation (4.33), the range of iβ is

1,
1

λ
. Equation (4.33) could be used in cases

where all θk’s are very large; thus instead of increasing values of θk’s for points with large

prediction errors, we decrease values of θk’s for points with small prediction errors.

Given the equations of iβ , entries of the adjusted covariance matrix (Equation

(4.27)) could be calculated as:

()

∏
∏

=

=

−=

−=

=

dv

dv

n

k kkji

n

k k

ji
adj

ij

d

d

xxR

adj
k

1

22

1

22

2

)exp(

)exp(

,

θ

θ

ββσ

σ

σσ

 (4.34)

iβ and jβ are calculated with Equations (4.32) or (4.33). Equations (4.27) and (4.34) are

the formulations of the adjusted covariance matrix with the modified correlation function

that reflects information of prediction errors in the design space. Note that Equation

(4.34) is appropriate for calculating all entries in the covariance matrix (Equation (4.27)).

This is different from the method discussed in Section 4.5.3.1, in which we have different

equations for entries in different sub-matrices in the covariance matrix. The reason is

that: the correcting coefficients, iβ and jβ , are multiplied by the distance kd (and then

 217

used in the exponential calculation) in the correlation function; maximum entropy

sampling with Equation (4.34) will not result in a clustering of new data points. As for

the method introduced in Section 4.5.3.1, the correcting coefficients, αi and αj, are put

outside of the exponential calculation; clustering could happen if we use the adjusted

equation (Equation (4.26)) to calculate the covariance among the candidate points.

In this section, we discussed two approaches to formulate entries of the adjusted

covariance matrix so that information of prediction errors in the design space could be

taken into consideration in identifying new data points. Correcting coefficients are used

in the mathematical formulation to “drag” candidate points to regions with large

prediction errors. After formulation of the adjusted covariance matrix, new data points

could be identified through maximizing the determinant of the covariance matrix. The

metamodel is then updated and new validation points are added to validate the

metamodel. Selection of new validation points could follow similar strategy to that of

new data points because we want to gain maximum possible information with every new

point, no matter it is used as a data point or a validation point. It is very possible that

some validation points change to data points in sequential experiments. This is

incorporated in the Sequential Exploratory Experimental Design method. Steps and

flowchart of the SEED are described in the next section with practical considerations and

discussions.

 218

4.5.4 Flowchart and Steps of the Sequential Exploratory Experimental Design
Method

The method of Sequential Exploratory Experimental Design is developed to

facilitate sequential design of computer experiments. In this dissertation, it is used in the

frame of RCEM (and later, the Efficient Robust Concept Exploration Method as will be

developed in Chapter 6) to help build appropriate metamodels in exploration of robust

solutions in the design space. The flowchart of SEED is presented in Figure 4.4.

As illustrated in Figure 4.4, appropriate metamodels of responses are developed

through designing sequential experiments in multiple iterations. Step 1 and Step 2 in

SEED are the initialization of the whole metamodeling process. Each iteration in SEED

consists six steps, from Step 3 to Step 8 as shown in Figure 4.4. Details of actions in

each step are described below.

Step 1 – Initial Experimental Design. As described earlier, there may be three

ways to design the initial experiments. If previous observations at some data points are

available, these points may be used as the first set of experiments. Space-filling

experiments or traditional experiments may also be used as the initial experiments. Or

we could design experiments following the maximum entropy sampling method with

stationary assumptions (no adjustment to the covariance matrix) – maximizes the

determinant of the prior covariance matrix, thus maximizes the expected reduction of the

entropy due to the experimentation, and maximum expected information is gained from

the set of experiments. The covariance matrix could be constructed using Equations

 219

(4.19) and (4.20). Assuming a rapidly decaying correlation, the value of θ could be set at

a large value, e.g., 10.

Figure 4.4 Flowchart of the Sequential Exploratory Experimental Design Method

Step 1:
Initial Experimental Design

Step 2:
Simulation and Initial

Metamodel of Responses

Step 3:
Identification of New

Validation Points

Step 5:
Metamodel Validation

Step 4:
Metamodel of Prediction

Errors

Step 6:
Formulation of Adjusted

Covariance Matrix

Step 7:
Identification of New Data

Points

Step 8:
Updated Metamodel of

Responses

Is the metamodel
acceptable?

Start of Sequential
Experimental Design

Appropriate Metamodel
of Responses

Yes

No

 220

Step 2: Simulation and Initial Metamodel of Responses. In this step,

observations are made at all data points in the initial experimental design, and the

corresponding initial metamodel of responses is developed based on information from

these observations.

Step 3: Identification of New Validation Points. In this step validation points

are identified and information at these points is collected. At the beginning of sequential

experimental design, when we still have great uncertainty with current metamodels we

had better select validation points to “spread over” the design space so that we could get

information of the responses across the design space instead of being constrained to some

narrow regions. Thus at the beginning of sequential metamodeling, we use the “single-

stage” maximum entropy sampling method (as discussed in Section 4.4 and quoted as an

optional approach in Step 1) to identify validation points. When there is sufficient

information – again, this is a decision made by designers arbitrarily – from previous

validation points, methods used to help identify new data points (as will be described in

Step 6, 7) could be used to identify validation points; differences from that of identifying

new data points lie in that:

1. When identifying new validation points we examine all possible points in the

design space except current observed points (data and validation points), while

when identifying new data points we examine all points that were not used as

data points (which means, current validation points are considered); and

2. In the process of identifying new validation points, the roles of validation

points and data points are temporarily switched. A metamodel of response is

 221

developed with all validation points, then prediction errors at data points are

calculated and a metamodel of prediction errors is built. In this way we expect

to bring in most informative new validation points given current observed data

and validation points.

We then try to put validation points in regions where we expect to have large

uncertainty on the response values based on the previous metamodel. However, this

approach should only to be used when we are quite certain about the metamodels for both

responses and prediction errors, i.e., observations at quite a lot points have been made.

The number of validation points is also a problem. In this chapter, in the intermediate

iterations, we try to maintain the number of validation points, nerror, equal to the number

of data points plus 1, i.e., nd + 1.

Step 4: Metamodel of Prediction Errors. In this step, prediction errors at data

and validation points are calculated, and a metamodel for predicting prediction errors is

developed. The maximum absolute predicted prediction error across the design space is

obtained. Information from the metamodel of prediction errors may help validating the

metamodel of responses.

Step 5: Metamodel Validation. In this step we follow the method discussed in

Chapter 3. If the result suggests that new data points be needed, we go to the next step,

Step 6. Otherwise we could stop and use the current metamodel in later design stages; in

this case we could also go back to Step 3 and add in more validation points if we could

afford more observations.

 222

Different stopping criteria may be used in sequential experimental design. We

could stop once an appropriate metamodel is built (based on some preset requirement of

metamodel accuracy), as discussed above and in Chapter 3. Or, we could preset the total

number of points (or data points) that we could afford; once we finish observations at

enough points, the process of sequential experiments and metamodeling will stop. This

stopping criterion is usually used when the simulation is very expensive.

After sequential experimental design finishes, the current metamodel of responses

could be used in future design processes (e.g., exploration for robust solutions). We

could also incorporate data and validation points and develop a new metamodel; it is

expected that a more accurate metamodel could be achieved with more data points.

However, this approach is inappropriate in some cases when enough data points have

been observed. Response development and prediction with a metamodel (especially the

kriging model) will be very time-consuming, which makes the multi-objective

exploration of the multivariable design space very expensive. In such cases, we prefer

using an appropriate metamodel with as few data points as possible.

Step 6: Formulation of the Adjusted Covariance Matrix. This step is the core

of the SEED method. As described in Section 4.5.3, we have two approaches to adjust

entries in the covariance matrix to reflect information from the metamodel of prediction

errors. Either approach could be used to formulate the adjusted covariance matrix.

Suppose the number of current data points is nd, and we decide to add in nnew data points.

The covariance matrix should be () ()d new d newn n n n+ × + . The first nd×nd rows and

 223

columns of the matrix correspond to current data points. The entries are updated

according to Equations (4.27), (4.28), and (4.34). For more details, see discussions in

Section 4.5.3.

In the formulation of the adjusted covariance matrix, we should pay much

attention to the selection of values of θ, λ, and emax. For discussions and instructions, see

Section 4.5.3.

Step 7: Identification of New Data Points. In this step, through maximizing the

determinant of the adjusted () ()d new d newn n n n+ × + covariance matrix developed in Step

6, we could identify a set of newn new data points.

Step 8: Updated Metamodel of Responses. In this step we develop a new

metamodel with information from the new set of data points. After development of the

new metamodel, we go to Steps 3 and 4 in the next iteration to validate its accuracy.

Metamodeling in the current iteration stops at this step.

The method of Sequential Exploratory Experimental Design is described in this

section through the overview of sequential experiments (Section 4.5.1), discussion on

selection of data and validation points (Section 4.5.2), mathematical formulations of the

adjusted covariance matrix in maximum entropy sampling (Section 4.5.3), and

presentation of the flowchart and steps of SEED (Section 4.5.4). In the next section, the

SEED method is tested with a single-variable function.

 224

4.6 APPLICATION OF THE SEED METHOD – A SINGLE-VARIABLE
EXAMPLE

Mathematical formulations and designing steps of the SEED method are described

in Section 4.5. In this section, the SEED method is tested with a single-variable function.

The single-variable function is introduced in Section 4.6.1. In Section 4.6.1, we also

presented two designs for comparison with the SEED method: in one of which we

identify all data points in one step, and in the other one we identify the data point

sequentially but without adjusting the covariance matrix (i.e., following the approach as

described in (Currin, et al., 1991)). The SEED method with Formulation I (as discussed

in Section 4.5.3.1) is applied with the single-variable function in Section 4.6.2. The

SEED method with Formulation II (as discussed in Section 4.5.3.2) is applied with the

single-variable function in Section 4.6.3. In this section, we use kriging metamodels.

4.6.1 Single-Stage Experimental Design with A Single-Variable Function

In this section, we use a single-variable function, presented in Equation (4.35), as

the deterministic computer simulation for which we develop kriging metamodels. A

graph of this function is shown in Figure 4.5. As we see from the equation and graph, the

design space is x = [0, 1]. In this design space, the maximum response value is y = 1.852

at x = 0.04, and the minimum response value is around y = −1.563 at around x = 0.14; the

response range is 3.415.

 225

()()10 0.01
0 0.19() 0.5

0 0.19 1

Sin x
x

f x x
x

π +
 ≤ ≤= +
 < ≤

 (4.35)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.5 A Single-Variable Function

To develop a kriging metamodel for this single-variable function, suppose that we

plan to use 11 observed points. In Sections 4.6.2 and 4.6.3, these 11 observed points are

identified with the SEED method. As a comparison, in this section the data points are

identified in a “single-stage” manner in which the covariance matrix is not adjusted with

 226

information on prediction errors. With the word “single-stage” we mean two approaches

as explained below:

• One is to identify 11 data points in one step; the easiest way is to have 11

points evenly spread over the design space, as listed in Table 4.1. We name

this set of points as Data Set I. Plot of the corresponding kriging metamodel is

illustrated in Figure 4.6. The value of θ for this kriging model is 99.99993.

• The other is to design “sequential” experiments following the approach in

(Currin, et al., 1991). First a 3×3 covariance matrix is built to help identify

the first 3 points. Then based on this information, a 7×7 covariance matrix is

built to help find out 4 more points. After this, we add in one new data point

and one new validation point in each iteration until finally we get 11 points.

We still use Equations (4.19) and (4.20) in this approach. With this approach,

we got two sets of points that are “equally” good – without information of

responses at the observed points we cannot tell which data set is better.

However, the first 11 data points identified in these two sets are the same

(though the sequence of the points are different). These 11 data points are

listed in Table 4.2. We name this set of points as Data Set II. Plot of the

corresponding metamodel is illustrated in Figure 4.7. The value of θ for this

kriging model is 99.9999.

As discussed at the end of Section 4.4, in this chapter, since we are dealing with

very simple examples (thus computation time on entropy optimization is not a problem),

 227

to ensure the correctness of our comparison and verification, we do not use the “hiker”

method as described in (Currin, et al., 1991) to find out the optimal set of data points.

Instead, various optimization algorithms, such as sequential quadratic programming,

simulated annealing, etc., are used to ensure the achievement of global optimum in

maximizing the determinant of the covariance matrix.

Table 4.1 Data Set I for the Single-Variable Function – 11 Data Points Evenly
Spread Over the Design Space

x 0 0.1 0.2 0.3 0.4 0.5
y 0.618 -0.515 0.0 0.0 0.0 0.0
x 0.6 0.7 0.8 0.9 1.0
y 0.0 0.0 0.0 0.0 0.0

Table 4.2 Data Set II for the Single-Variable Function – 11 Data Points Identified in
A Single-Stage 6-Step Manner

Data Set II Step Point
x y

1 0 0.618
2 0.5 0.0

I

3 1 0.0
4 0.167 -0.991
5 0.333 0.0
6 0.667 0.0

II

7 0.833 0.0
III 8 0.917 0.0
IV 9 0.417 0.0
V 10 0.083 0.374
VI 11 0.583 0.0

 228

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.6 Metamodel (I) – For Data Set I

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.7 Metamodel (II) – For Data Set II

Actual Function

Metamodel

 229

In the 3rd step of the “sequential” experiments as presented in Table 4.2, the new

data point is identified as x = 0.917. It could be proved that there exists another solution,

x = 0.083, which has the same (which is maximum) value of the determinant of the

covariance matrix as the solution of x = 0.917 does. Thus, in experimental design, the

designer may select another set of data points. However, after identifying 11 data points

we found that the two different ways yield the same result; the only difference lies in the

sequence that new points are added. It can be illustrated that starting from the 12th point,

there will also be two different sets of data points that are equally good from the

viewpoint of Currin’s single-stage experimental design.

In Figure 4.6 and Figure 4.7 we see that the kriging metamodels (I and II) with

“single-stage” experiments are accurate when values of the input variable x are not small.

When x is smaller than 0.2, the kriging metamodels are inaccurate – the peak and the

bottom of the response surface at low x values are not fully captured by the kriging

metamodels.

The maximum absolute error (MAX) and root mean squared error (RMSE) of

these three metamodels are calculated with Equations (2.7) and (2.9), and listed in Table

4.3. To calculate MAX and RMSE we use observations from 201 points that evenly

spread over the design space of [0,1]. As discussed in Chapter 2, the smaller the values

of MAX and RMSE, the more accurate the corresponding metamodel is. Values of MAX

and RMSE from Table 4.3 are consistent with our observations with Figure 4.6 and

Figure 4.7. These values will be further used in comparison with those of metamodels

developed in the following sections with the SEED method.

 230

Table 4.3 MAX and RMSE of Three Metamodels

 Metamodel (I) Metamodel (II)
MAX 1.730 1.711
RMSE 0.452 0.472

4.6.2 Application of SEED in the Single-Variable Example – Formulation I

In this section, the SEED method with Formulation I (as described in Section

4.5.3.1, Equations (4.27) and (4.28)) is applied to facilitate the development of an

acceptable kriging metamodel for the single-variable function as introduced in Section

4.6.1. In this design of sequential experiments, we plan to identify 3 data points and 4

validation points first; after this, we add in one new data point and one new validation

point in each iteration until finally we get 11 points. Stopping criteria on metamodel

accuracy will not be used in this example, thus no metamodel validation is done in Step 5

in SEED. In this example, at the end of the sequential experimental design and

metamodeling, we will develop a “final” metamodel with all 11 points and compare the

accuracy of the metamodel with Metamodels (I) and (II) that are developed in Section

4.6.1.

Iteration I – Step 1: Initial Experimental Design. In this step we design the

initial experiments. The number of data points to be identified is nd = 3. As discussed in

Section 4.5.4, there are three ways to design the initial experiments. In this case, we

decide to use the method of maximum entropy sampling as stated in (Currin, et al., 1991).

The stationary assumption holds and no adjustment is done to the covariance matrix.

Entries of the covariance matrix are calculated with Equations (4.19) and (4.20). Since

 231

there is no previous information available, we set the value of θ as 10 in building the

covariance matrix. The results (initial set of data points) are listed in Table 4.4.

We wrote a FORTRAN program to construct the covariance matrix given a

number of candidate points. Then the determinant of this covariance matrix is calculated

with another FORTRAN program. These FORTRAN programs are linked in iSIGHT,

and optimization is done to find out the set of candidate points with the largest value of

determinant of the covariance matrix. In our study, since the computation expense in

entropy optimization is not high with the single-variable example, we do not use the

“hiker” method as introduced in (Currin, et al., 1991). Instead, we use various

optimization techniques as implemented in iSIGHT to ensure the achievement of global

optimum. These optimization techniques include: Sequential Quadratic Programming

(DONLP, NLPQL), Method of Feasible Directions (CONMIN), Modified Method of

Feasible Directions, Mixed Integer Optimization (MOST), and Simulated Annealing

(SA). In real-world applications, we could either use the “hiker” approach or any of the

first 6 techniques listed above. When the computation expense is expected to be high, the

SA technique may not be used since it requires a long time for convergence. The C

programs, usage of iSIGHT, and introduction of these optimization techniques are

described in Appendix A in detail.

Iteration I – Step 2: Simulation and Initial Metamodel of Responses.

Response values are observed at 3 data points. Data points and the corresponding

response values are listed in Table 4.4. A kriging metamodel is then developed based on

 232

the information. The value of θ is 98.71232; the kriging metamodel is illustrated in

Figure 4.8.

Table 4.4 Initial Experiments

x 0.0 0.5 1.0
y 0.618 0.0 0.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.8 Initial Metamodel with 3 Data Points

Actual Function

Metamodel

 233

Iteration I – Step 3: Identification of New Validation Points. In the first

iteration, we only have information from data points and the initial metamodel. In this

step we need to identify validation points for the first iteration. As described before,

without enough information for metamodel validation, we will use the same method as

that for data points (in Step 1) to select validation points. In this sense, the validation

points could be viewed as “possible data points” if we had decided to select more data

points in Step 1. Since we have nd = 3 data points in the one-dimension problem, the

number of validation points could be nerror = nd + 1 = 4.

A covariance matrix is constructed with the first 3 rows and columns

corresponding to the 3 data points that we already decided, and the last 4 rows and

columns corresponding to 4 candidate points. Through maximization of the determinant

of this 7×7 covariance matrix, we could identify 3 validation points for the first iteration

as listed in Table 4.5.

Table 4.5 Validation Points in the 1st Iteration

x 0.167 0.333 0.667 0.833
ypred 0.232 0.193 0.193 0.193
yactual -0.991 0.0 0.0 0.0
yerror 1.223 0.193 0.193 0.193

Iteration I – Step 4: Metamodel of Prediction Errors. In this step, prediction

errors at both data and validation points are used to develop a metamodel to predict

prediction errors across the design space. The prediction errors are calculated following

 234

the equation of error pred actualy y y= − , and listed in Table 4.5. Note that prediction errors at

3 data points are zero, which is not shown in Table 4.5.

A kriging metamodel for predicting prediction errors is developed, and the plot for

predicted prediction errors ˆerrory vs. x is drawn in Figure 4.9. The value of θ is 99.99880.

The data points are represented by stars and validation points are presented by solid

circles in Figure 4.9. In Figure 4.9 we see that the predicted prediction error is large

when x values are small, and tend to be smaller when x values become larger. This is the

same as we observed from Figure 4.8. The usage of validation points not only helps us

know how accurate a metamodel is, but also provides us information on how the

metamodel performs in the design space. However, the metamodel of prediction error is

not very accurate because we have information at only 3 data points and 4 validation

points. The maximum absolute predicted prediction error, emax ≈ 1.3, is found through

optimization.

In Figure 4.9 we also see that local maximum predicted prediction errors tend to

locate at validation points. This is partly because that we do not have sufficient

validation points to provide more accurate information on prediction errors. Another

reason may be that the example is a single-variable function; in multivariable examples

validation points may not have (local) maximum predicted prediction errors because the

surface of prediction errors may be “twisted” due to interactions among the design

variables. In each step of the sequential experimental design, we should try to get as

accurate information as possible; however, it is not necessary to get very accurate

 235

metamodels (neither for responses nor for prediction errors) in early iterations. Usually,

more accurate metamodels (for both responses and prediction errors) could be obtained

through iterations, when we get more accurate information with more data and validation

points.

0.0

0.3

0.6

0.9

1.2

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.9 Metamodel of Prediction Errors in the 1st Iteration

Iteration I – Step 5: Metamodel Validation. Since in this study we do not use

the accuracy of the metamodel as the stopping criterion, we will not check the accuracy of

the metamodel before finishing designing sequential experiments. This step is then

skipped here.

 236

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix. To get

more accurate metamodels, we decide to add in nnew = 1 data points. As mentioned in

Iteration I – Step 4, the maximum absolute predicted prediction error of the metamodel

developed in Iteration I – Step 2 is about 29; this will be used to calculate entries of the

adjusted covariance matrix.

In this step, a 4×4 covariance matrix is first built with Equations (4.19) and (4.20)

– holding the stationary assumption; this is done with the same FORTRAN program as

mentioned in Iteration I – Step 1. The first 3 rows and columns of the covariance matrix

correspond to the 3 data points as identified in Iteration I – Step 1, and the last row and

column correspond to the candidate point. Then another FORTRAN program is used to

predict prediction errors, ei, at the candidate point using the kriging metamodel developed

in Iteration I – Step 4. These prediction errors are used to calculate correcting

coefficients following Equation (4.25), and the correcting coefficients are used to adjust

the covariance matrix following Equations (4.27) and (4.28). This is done in another

FORTRAN program. These FORTRAN programs are linked in iSIGHT.

Iteration I – Step 7: Identification of New Data Points. In this step, by

maximizing the determinant of the adjusted covariance matrix as developed in Iteration I

– Step 6, the new data point is identified as x = 0.180. Since the new data point, x =

0.180, is very close to one of the validation points, x = 0.167, we decide to use x = 0.167

as the new data point; this avoids clustering of data/validation points and ensures great

efficiency in the experimentation. To decide whether a candidate point is too close to an

existing point, we need to compare their distance with that between evenly allocated

 237

points. In this case, there are totally 8 points (4 data points plus 4 validation points) in a

one-dimension design space, thus the average minimum distance between evenly

allocated points should be around 0.143. We can use 10% of this distance as a standard

value in judging whether two points are too close or not; in cases where high nonlinearity

exists, this value may be smaller and in cases where the expected response surface is flat,

this value should be larger. In this case, the smallest distance between the candidate point

and existing points is 0.013, which is much smaller than 10% of 0.143, i.e., 0.0143.

Future research may be needed in determining whether two points are too close or not.

Iteration I – Step 8: Updated Metamodel of Responses. Now we have 4 data

points, as listed in Table 4.6. A new kriging metamodel is developed with information

from these 4 data points. We got θ as 99.99233. The kriging model is as illustrated in

Figure 4.10.

In Figure 4.10, we see that the new kriging metamodel is more accurate than the

initial metamodel as illustrated in Figure 4.8. However, the new kriging model still does

not catch the details of the actual responses at low x values (as illustrated in Figure 4.5).

Following the flowchart in Figure 4.4, we go to Step 3 of the 2nd iteration.

Table 4.6 Four Data Points

x 0.0 0.167 0.5 1.0
y 0.618 -0.991 0.0 0.0

 238

Figure 4.10 Kriging Metamodel with 4 Data Points

Iteration II – Step 3: Identification of New Validation Points. We need to

select 2 more validation points in order to have 9 observed points after this step.

Following the method described in Section IV, a metamodel of response is developed

with 3 validation points (as illustrated in Figure 4.11), and prediction errors of this

particular metamodel are observed at 4 data points. A metamodel of prediction errors is

then developed and illustrated in Figure 4.12. Note that in Figure 4.11 and Figure 4.12

stars represent data points (in order to bring in most informative new validation points,

the data points are used as validation points in Iteration II – Step 3), and solid dots

 239

represent validation points (in this step, these validation points are used to develop a

metamodel of response to help identify most informative new validation points).

A 9×9 covariance matrix is then formulated, with the first 3 rows and columns

corresponding to the validation points, the 4th to 7th rows and columns corresponding to

data points, and the last 2 rows and columns corresponding to new validation points.

Following the same method as used in Iteration I – Step 6 and Step 7, the covariance

matrix is adjusted and new validation points are identified, at x = 0.122, and x = 0.235, as

listed in Table 4.7.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.11 Metamodel Developed with 3 Validation Points in Iteration II – Step 3

 240

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.12 Metamodel of Prediction Errors Calculated in Iteration II – Step 3

Table 4.7 New Validation Point Added in the 2nd Iteration

x 0.122 0.235
y -1.357 0.0

Iteration II – Step 4: Metamodel of Prediction Errors. Prediction errors at 5

validation points are listed in Table 4.8 and illustrated in Figure 4.13 by solid circles. As

 241

shown before, prediction errors at 4 data points are all zero. A kriging metamodel of

prediction errors is built with information from these 9 points, and illustrated in Figure

4.13. The maximum absolute predicted prediction error is emax ≈ 0.8.

Table 4.8 Prediction Errors at 5 Validation Points

x 0.122 0.235 0.333 0.667 0.833
ypred -0.691 -0.684 -0.145 -0.085 -0.085
yactual -1.357 0.0 0.0 0.0 0.0
yerror 0.666 -0.684 -0.145 -0.085 -0.085

Figure 4.13 Metamodel of Prediction Errors with 5 Validation Points

 242

Iteration II – Step 5: Metamodel Validation. As explained in Iteration I – Step

5, this step is skipped because the accuracy of metamodels is not used as the stopping

criterion in SEED with the single-variable example.

Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix. In this

iteration we will add in nnew = 1 new data point. The maximum absolute predicted

prediction error is about 0.8 with the current metamodel (by finding out the maximum

absolute value of the metamodel developed in Iteration II – Step 4). To formulate the

adjusted covariance matrix we follow similar method to that in Iteration I – Step 6. A

5×5 correlation matrix is developed, with the first 4 rows and columns corresponding to

the 4 data points we already had, and the rest corresponding to the candidate point. The

value of λ in Equation (4.28) is set to be 2.

Iteration II – Step 7: Identification of New Data Points. By maximizing the

determinant of the adjusted correlation matrix as built in Iteration II – Step 6, we are able

to identify the possible new data point as x = 0.75. Since the possible new data points, x

= 0.75, is not very close to any of the validation points, we take it as the new data point.

All 5 data points are listed in Table 4.9.

Table 4.9 Five Data Points

x 0.0 0.167 0.5 1.0 0.75
y 0.618 -0.991 0 0 0

 243

Iteration II – Step 8: Updated Metamodel of Responses. A new kriging

metamodel is developed with information from the 5 data points as listed in Table 4.9.

We got θ as 99.99987. The kriging model is illustrated in Figure 4.14.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.14 Metamodel of Responses with 5 Data Points

Iteration III – Step 3: Identification of New Validation Points. Now we have

5 data points and 5 validation points. Because we have a limit on the total number of

points observed (11 points), we can only add in one more point in Iteration III. Following

 244

similar approach as in Iteration II – Step 3, in this step we first develop metamodel of

responses with 5 validation points (as illustrated in Figure 4.15), then prediction errors at

5 data points are observed and a metamodel of prediction errors is built (as illustrated in

Figure 4.16).

An 11×11 covariance matrix is then formulated, with the first 5 rows and columns

corresponding to the validation points, the 6th to 10th rows and columns corresponding to

data points, and the last row and column corresponding to the new validation point.

Following the same method as used in Iteration I – Step 6 and Step 7, the covariance

matrix is adjusted and new validation points are identified, at x = 0.047.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.15 Metamodel Developed with 5 Validation Points in Iteration III – Step 3

 245

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.16 Metamodel of Prediction Errors Calculated in Iteration III – Step 3

Iteration III – Step 4: Metamodel of Prediction Errors. Prediction errors at 6

validation points are listed in Table 4.10 and illustrated in Figure 4.17 by solid circles.

As shown before, prediction errors at 5 data points are all zero. A metamodel of

prediction errors is built with information from these 11 points, and illustrated in Figure

4.17. The value of θ for this kriging metamodel is 99.99995. The maximum absolute

predicted prediction error is emax ≈ 1.5.

 246

Table 4.10 Prediction Errors at 6 Validation Points

x 0.122 0.235 0.333 0.667 0.833 0.047
ypred -0.691 -0.684 -0.145 -0.085 -0.085 0.3
yactual -1.357 0 0 0 0 1.784
yerror 0.666 -0.684 -0.145 -0.085 -0.085 -1.484

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.17 Metamodel of Prediction Errors with 6 Validation Points

Iteration III – Step 5: Metamodel Validation. In this example, the SEED

method finally stopped in Iteration III when 11 points are observed. Data and validation

points are listed in Table 4.11. As stated at the beginning of this section, the final

metamodel is developed with all 11 observed points. We name this set of points as Data

Set III. The corresponding metamodel is illustrated in Figure 4.18.

 247

Table 4.11 Points Obtained with SEED (Formulation I) – Data Set III

x 0.0 0.5 1.0 0.167 0.75
Data Points

y 0.618 0.0 0.0 -0.991 0.0
x 0.333 0.667 0.833 0.122 0.235 0.047 Validation

Points y 0.0 0.0 0.0 -1.357 0.0 1.784

Figure 4.18 Metamodel of Responses with 11 Points (SEED Formulation I)

After validating this metamodel with 201 validation points that evenly spread over

the design space, we got the maximum absolute prediction error of this metamodel is

MAX = 0.371, and the root mean squared error is RMSE = 0.113. Comparison and

discussion of the result in this section with that from single-stage experiments (Section

 248

4.6.1) will be done after we demonstrate and study the application of Formulation II of

the SEED method with the single-variable example in Section 4.6.3.

4.6.3 Application of SEED in the Single-Variable Example – Formulation II

In this section, the SEED method with Formulation I (as described in Section

4.5.3.2, Equations (4.27) and (4.34)) is applied to facilitate the development of an

acceptable kriging metamodel for the single-variable function as introduced in Section

4.6.1. In this design of sequential experiments, similar to what have done in Section

4.6.2, we plan to identify 3 data points and 4 validation points first; 4 more points will be

added in following iterations until eventually we get 11 observed points. Stopping

criteria on metamodel accuracy will not be used in this example, thus no metamodel

validation is done in Step 5 in SEED.

Iteration I – Step 1: Initial Experimental Design. In this step, we use the same

approach as in Section 4.6.2 to design the initial experiments. Since all conditions are the

same, we got the same set of data points in the initial experimental design as listed in

Table 4.4.

Iteration I – Step 2: Simulation and Initial Metamodel of Responses. Since

the initial experiments are the same as that in Section 4.6.2, the initial metamodel is also

the same as that illustrated in Figure 4.8.

Iteration I – Step 3: Identification of New Validation Points. In this step, since

the information from current data points and metamodel is the same as that in Section

 249

4.6.2, new validation points should be the same as that in Iteration I – Step 3 in Section

4.6.2. This set of validation points is listed in Table 4.5.

Iteration I – Step 4: Metamodel of Prediction Errors. In this step, a

metamodel of prediction errors is developed with information from 3 data points and 4

validation points. The metamodel of prediction errors is the same as that developed in

Iteration I – Step 4 in Section 4.6.2.

Iteration I – Step 5: Metamodel Validation. Similar to our strategy in Section

4.6.2, the step of metamodel validation is skipped in the study of the single-variable

example.

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix. In this

iteration we decide to add in nnew = 1 new data point. In this step, entries of the adjusted

covariance matrix are calculated following Formulation II of the SEED method as

described in Section 4.5.3.2. The key equations here are Equations (4.27) and (4.34),

which are different from those used in Section 4.6.2 (Equations (4.27) and (4.28)).

In this step, a 4×4 covariance matrix is first built with Equations (4.19) and (4.20)

– holding the stationary assumption; this is done with the same FORTRAN program as

used in Iteration I – Step 6 in Section 4.6.2. The first 3 rows and columns of the

covariance matrix correspond to the 3 data points as identified in Iteration I – Step 1, and

the last row and column correspond to the candidate point. Then another FORTRAN

program is used to predict prediction errors, ei, at the two candidate points using the

kriging metamodel developed in Iteration I – Step 4. These prediction errors are used to

calculate correcting coefficients following Equation (4.32), and the correcting coefficients

 250

are used to adjust the covariance matrix following Equations (4.27) and (4.34). This is

done in another FORTRAN program. These FORTRAN programs are linked in iSIGHT.

For details, see Appendix A.

Iteration I – Step 7: Identification of New Data Points. By maximizing the

determinant of the covariance matrix developed in Iteration I – Step 6, we are able to

identify two possible new data points as x = 0.17.

Note that the possible new data point, x = 0.17, is very close to one of the

validation points, x = 0.167, thus we decide to use x = 0.167 as the new data point to

avoid clustering. Four data points are listed in Table 4.12.

Table 4.12 Four Data Points Identified in the 1st Iteration

x 0.0 0.5 1.0 0.167
y 0.618 0.0 0.0 -0.991

Iteration I – Step 8: Updated Metamodel of Responses. Now we have 4 data

points as listed in Table 4.12. In this step, a new metamodel of responses is developed

based on the information from Table 4.12. The value of θ for this metamodel is

99.99964. The new kriging metamodel is illustrated in Figure 4.19. Since we have only

7 observed points in this iteration, we will go to the next iteration for more points.

 251

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.19 Metamodel of Responses with 4 Data Points in the 1st Iteration

Iteration II – Step 3: Identification of New Validation Points. Now we have 4

data points and 3 validation points. In this step, we need to identify 2 new validation

points to ensure that we have one more validation points than data points. Following the

method described in Section IV, a metamodel of response is developed with 4 validation

points (as illustrated in Figure 4.20), and prediction errors of this particular metamodel

are observed at 4 data points. A metamodel of prediction errors is then developed and

illustrated in Figure 4.21. Note that in Figure 4.20 and Figure 4.21 stars represent data

points (in order to bring in most informative new validation points, data points are used

Actual Function

Metamodel

 252

as validation points in this step), and solid dots represent validation points (in this step,

these validation points are used to develop a metamodel of response to help identify most

informative new validation points).

A 9×9 covariance matrix is then formulated, with the first 4 rows and columns

corresponding to the validation points, the 5th to 7th rows and columns corresponding to

data points, and the last 2 rows and columns corresponding to the new validation points.

Following the same method as used in Iteration I – Step 6 and Step 7, the covariance

matrix is adjusted and new validation points are identified as listed in Table 4.13.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.20 Metamodel Developed with 3 Validation Points in Iteration II – Step 3

Actual Function

Metamodel

 253

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.21 Metamodel of Prediction Errors Calculated in Iteration II – Step 3

Table 4.13 New Validation Point Added in the 2nd Iteration

x 0.157 0.252
y -1.310 0.0

Iteration II – Step 4: Metamodel of Prediction Errors. In this step, a

metamodel of prediction errors is developed based on information of prediction errors at

4 data points (all are zero’s) and 5 validation points. Prediction errors at validation points

 254

are listed in Table 4.14. The metamodel of prediction errors is illustrated in Figure 4.22.

The value of θ for this metamodel is 99.99997. The maximum absolute predicted

prediction error is emax ≈ 1.87.

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.22 Metamodel of Prediction Errors in the 2nd Iteration

Table 4.14 Prediction Errors at 5 Validation Points in the 2nd Iteration

x 0.157 0.252 0.333 0.667 0.833
ypred -0.964 -0.55 -0.145 -0.085 -0.085
yactual -1.31 0 0 0 0
yerror 0.346 -0.55 -0.145 -0.085 -0.085

Iteration II – Step 5: Metamodel Validation. This step is skipped.

 255

Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix. In this

iteration we decide to add in nnew = 1 new data point. In this step, entries of the adjusted

covariance matrix are calculated following Formulation II of the SEED method as

described in Section 4.5.3.2. The key equations here are Equations (4.27) and (4.34).

Iteration II – Step 7: Identification of New Data Points. By maximizing the

determinant of the covariance matrix developed in Iteration II – Step 7, we are able to

identify the new data point as x = 0.758.

Iteration II – Step 8: Updated Metamodel of Responses. Now we have 5 data

points, as listed in Table 4.15. A new kriging metamodel is developed with this

information and illustrated in Figure 4.23. The value of θ for this metamodel is

99.99987.

Table 4.15 Five Data Points Used in the 2nd Iteration

x 0.0 0.5 1.0 0.167 0.758
y 0.618 0.0 0.0 -0.991 0.0

 256

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.23 Metamodel of Responses with 5 Data Points

Iteration III – Step 3: Identification of New Validation Points. Note that we

do not use the accuracy of metamodels as the stopping criterion in this example. Since

we have got 10 observed points, we will only add in one more point in this iteration.

Following similar approach as in Iteration II – Step 3, in this step we first develop

metamodel of responses with 5 validation points (as illustrated in Figure 4.24), then

prediction errors at 5 data points are observed and a metamodel of prediction errors is

built (as illustrated in Figure 4.16).

Metamodel

Actual Function

 257

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.24 Metamodel of Responses Developed in Iteration III – Step 3

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.25 Metamodel of Prediction Errors Developed in Iteration III – Step 3

 258

An 11×11 covariance matrix is then formulated, with the first 5 rows and columns

corresponding to the validation points, the 6th to 10th rows and columns corresponding to

data points, and the last row and column corresponding to the new validation point.

Following the same method as used in Iteration I – Step 6 and Step 7, the covariance

matrix is adjusted and new validation points are identified, at x = 0.045.

Table 4.16 Prediction Errors at Five Validation Points

x 0.045 0.157 0.252 0.333 0.667 0.833
ypred 0.322 -0.964 -0.539 -0.129 -0.036 -0.027
yactual 1.812 -1.31 0 0 0 0
yerror -1.49 0.346 -0.539 -0.129 -0.036 -0.027

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.26 Metamodel of Responses with 11 Points (SEED Formulation II)

 259

Since we already got 11 points, the SEED process stopped in this iteration.

Prediction errors at 6 validation points are presented in Table 4.16. Same as what we did

in Section 4.6.2, a final kriging metamodel is developed based on information at 11

observed points, and illustrated in Figure 4.26. The value of θ for this metamodel is 100.

After validating this metamodel with 201 validation points that evenly spread over the

design space, we got the maximum absolute prediction error of this metamodel is MAX =

0.622, and the root mean squared error is RMSE = 0.198.

In this section four approaches are used to design experiments and develop

kriging metamodels for the single-variable example. In Section 4.6.1, two “single-stage”

methods are studied, in one of which all the data points are identified in a single step

(Metamodel (I), Figure 4.6), and in the other the data points are added in sequentially but

without adjustment based on information from previous experiments (Metamodel (II),

Figure 4.7). The SEED method with Formulation I is applied in Section 4.6.2 and the

metamodel is illustrated in Figure 4.18. The SEED method with Formulation II is applied

in Section 4.6.3 and the metamodel is illustrated in Figure 4.26. Based on studies in this

section, the maximum absolute error (MAX) and root mean squared error (RMSE) of the

kriging metamodels from different approaches are calculated with information from 201

validation points and listed in Table 4.17. For more details of the information shown in

Table 4.17, see discussions in Sections 4.6.1, 4.6.2, and 4.6.3.

 260

Table 4.17 Accuracy of Kriging Metamodels from Different Approaches

Single-Stage Approach SEED
Points Added at

One Time
Points Added
Sequentially

Metamodel I Metamodel II
Formulation I Formulation II

MAX 1.730 1.711 0.371 0.622
RMSE 0.452 0.472 0.113 0.198

In Table 4.17, we see clearly that with the SEED approach, no matter which

formulation is used, values of MAX and RMSE of the metamodels are much smaller than

those of Metamodels I and II with single-stage approaches. This shows that metamodels

with the SEED approach are more effective than those with single-stage approaches.

With the SEED approach, data points are allocated in “crucial” regions where there are

large expected prediction errors; the information brought in by each new data point is

more than that in single-stage experiments. This could also be seen through comparison

of Figure 4.6, Figure 4.7, Figure 4.18, and Figure 4.26.

We also observe that designers may meet problem in selecting points at some

stages in the method by Currin and co-authors (Data Set II) because there may be two or

more points that are equally good with their criteria. In Data Set II, if the number of

observed points is not set to be 11 (for example, it could be set to be 12 or 13), designers

will not be able to select the “better” set of data points in experimental design. Dilemma

in design of experiments will be inevitable. Thus, with single-stage experimental design

method, the achievement of accurate metamodels is not guaranteed; the result of

experimental design is very sensitive to decisions made by designers in the metamodeling

 261

process. Our study shows the SEED method is robust to decisions made by designers in

the metamodeling process; the achievement of accurate metamodels is guaranteed.

The SEED method will be used in RCEM to facilitate efficient development of

accurate metamodels for design space exploration. To be specific, the SEED method will

replace Processors B, C, D, and E in RCEM, as illustrated in Figure 4.27. This is further

discussed in Chapters 5 and 6.

Figure 4.27 Application of SEED in RCEM

4.7 A LOOK BACK AND A LOOK AHEAD

The method of Sequential Exploratory Experimental Design (SEED) is developed

in this chapter. The SEED method is demonstrated and verified with a single-variable

example. Research in this chapter helps answer Research Question 2 and its sub-

questions; the corresponding hypotheses are tested. Research Question 2, its sub-

questions, and corresponding hypotheses are listed below.

 262

R.Q.2: How to design sequential computer experiments (how to select data and

validation points sequentially) to get an accurate metamodel?

Hypothesis 2: Sequential experiments could be designed through analysis of

information from data/validation points and metamodels.

R.Q.2.1: How to measure the information worth of a point?

Sub-Hypothesis 2.1: The information worth of a point could be measured with

entropy.

R.Q.2.2: How to select validation points to achieve a sequential design of

computer experiments?

Sub-Hypothesis 2.2: Selection of validation points should follow similar rules

for selection of data points; information from validation points could be used

as guidance in identifying new data points.

R.Q.2.3: How to utilize information from previous points and metamodels in

identifying new data points?

Sub-Hypothesis 2.3: Through maximizing entropy (as formulated based on Sub-

Hypotheses 1.1 and 1.2) we are able to allocate new data points in the design

space that yield maximum potential information.

To answer Research Question 2, the method of Sequential Exploratory

Experimental Design (SEED) is developed based on D-optimal design and maximum

entropy sampling. In this chapter, we verified that with the SEED method, designers are

able to add in new data points with large amount of potential information, and thus

 263

accurate metamodels could be achieved efficiently. Information from current data and

validation points and metamodels are used as guidance in identifying new data points.

Hypothesis 2 is verified; our answer to Research Question 2 is: Accurate metamodels can

be developed through iterations in sequential experimental design with the SEED

method, in which information from current data/validation points and metamodels is

used as guidance in identifying new data points.

Research Question 2.1 is answered primarily in Sections 4.3 and 4.4. The

application of Bayesian entropy design in SEED in Sections 4.5 and 4.6 supports our idea

from Sections 4.3 and 4.4. A clear statement on Research Question 2.1 is presented at the

beginning of Section 4.5. Sub-Hypothesis 2.1 is tested; our answer to Research Question

2.1 is: The entropy criterion could be used to measure the information worth of a new

point.

Research Question 2.2 is studied in developing and verifying the SEED method in

Sections 4.5 and 4.6; Sub-Hypothesis 2.2 is tested. The usage of validation points and

observation of prediction errors are necessary steps in the SEED method; it provides the

foundation for adjusting the covariance matrix, which is the core of the SEED method. In

the SEED method, validation points are added sequentially in iterations; as more and

more data and validation points are observed, designers are able to develop more and

more accurate metamodels for responses and prediction errors. In Section 4.6, different

strategies on selecting validation points are applied and studied in the SEED method.

Our answer to Research Question 2.2 is: Validation points should be added in iterations

 264

in sequential experimental design; information from validation points should be used as

guidance in identifying future data points.

Research Question 2.3 is answered and Sub-Hypothesis 2.3 is tested in the

development of the SEED method. To be specific, the method of maximum entropy

sampling is introduced in Section 4.4; in Section 4.5.2, strategies on how to utilize

information from previous points and metamodels are discussed; the mathematical

formulations in SEED is developed in Section 4.5.3, which enables designers to design

sequential experiments through maximizing entropy; Demonstration and verification is

enclosed in Section 4.6. Our answer to Research Question 2.3 is: Information from

current data/validation points and metamodels could be used to build the adjusted

covariance matrix; new data points could be identified through maximizing the

determinant of the adjusted covariance matrix.

Chapter 4 is the foundation of research in the following 2 chapters. In the next

chapter, the SEED method is further developed and tested with different types of

metamodels. In Chapter 5, as a support to the SEED method and the Efficient Robust

Concept Exploration Method (to be developed in Chapter 6), research is done on

comparison of different types of metamodels, sequential experimental design in irregular

design spaces, and metamodel selection along the design timeline. In Chapter 6, ideas

from the SEED method will be further developed and used in developing the Efficient

Robust Concept Exploration Method (E-RCEM), in which the design process of

metamodeling and design space exploration are integrated and efficient exploration of the

design space is facilitated.

265

5. 5
CHAPTER 5

SEQUENTIAL METAMODELING ALONG THE
DESIGN TIMELINE

In Chapter 4, the method of Sequential Exploratory Experimental Design (SEED)

is developed and studied with kriging metamodels and a very simple example. In this

chapter, studies on SEED are extended with the application of other types of metamodels,

i.e., Response Surface (RS) models and Multivariate Adaptive Regression Splines

(MARS) models. In this chapter, first we will study the performance of kriging and

univariate quintic regression spline (application of MARS in one-dimensional problems)

metamodels in response surface prediction in Section 5.2. The application of SEED with

MARS metamodels is described and studied in Section 5.3. Then the approach of

sequential utilization of RS, kriging, and MARS metamodels along the design timeline is

described in Section 5.4. This approach is illustrated with a simple engineering example

in Section 5.5. A look back and a look forward are enclosed in Section 5.6. Research

questions visited in this chapter are R.Q.2, R.Q.4, their sub- research questions, and

R.Q.3.2.

266

5.1 WHAT IS PRESENTED IN THIS CHAPTER

In Chapter 3 we studied metamodel validation techniques to answer Research

Question 1 in this dissertation. In Chapter 4, the method of Sequential Exploratory

Experimental Design (SEED) is developed and studied to help answer Research Question

2. In this chapter, the application of SEED is extended with other types of metamodel,

i.e., Response Surface (RS) models and Multivariate Adaptive Regression Splines

(MARS) models.

Research Question 2, How to design sequential computer experiments (how to

select data and validation points sequentially) to get an accurate metamodel?, is revisited

in this chapter with the utilization of MARS metamodels. This is specifically done in

Section 5.3, where kriging models and MARS models are used together in the application

of SEED with a simple example.

The comparison of kriging and regression spline (application of MARS in one-

dimensional problems) metamodels is done in Section 5.2, which helps answer Research

Question 4.1, How do different types of metamodels perform in engineering design?, and

Research Question 4.2, How to select different types of metamodels at different design

stages? Previous studies on RS metamodels and various types of kriging metamodels

also contribute to answers to these research questions.

Based on studies in Sections 5.2 and 5.3, an approach is developed in Section 5.4,

in which RS, kriging, and MARS metamodels are utilized together to help efficiently and

effectively develop acceptable metamodels in engineering design. This approach is then

267

illustrated through the application with a simple engineering example in Section 5.5.

This helps answer Research Question 4, How to utilize different types of metamodels

along the design timeline in accordance with the changing design information?

In Section 5.6 we revisit research questions and hypotheses discussed in this

chapter. Studies in Chapters 3, 4, and 5 build the foundation for research in Chapter 6, in

which the Efficient Robust Concept Exploration Method (E-RCEM) is developed and

studied to facilitate efficient exploration of the design space for robust solutions.

5.2 A COMPARISON OF KRIGING AND MARS METAMODELS IN
RESPONSE PREDICTION

Research questions to be studied in this section are R.Q. 4.1, How do different

types of metamodels perform in engineering design? and R.Q. 4.2, How to select different

types of metamodels at different design stages? The comparison of Response Surface

(RS) metamodels and kriging metamodels with various types of correlation functions has

been done in (Simpson, 1998) and (Lin, 2000), and will not be performed in this

dissertation. In order to answer R.Q. 4.1 and R.Q. 4.2, in this section first we observe and

analyze the performance of kriging and univariate quintic regression spline (application

of MARS in one-dimensional problems) metamodels with space filling experiments in

Section 5.2.1. Then in Section 5.2.2, the observation and analysis are extended to cases

in which non-space-filling data points are used (which is typical in sequential

experiments). The example used in this section is a single-variable function.

268

5.2.1 An Observation and Analysis on the Performance of Kriging and Univariate
Regression Spline Metamodels in Response Prediction with Space-Filling
Experiments

In this section, we observe and analyze the performance of kriging metamodels

and regression splines in response prediction with space filling data points. The kriging

metamodel is developed with the Gaussian correlation function as expressed in Equation

(2.14) in Chapter 2. The regression splines are actually applications of MARS in one-

dimensional problems. In building the regression splines, we use the implementation of

MARS in (Chen, et al., 1999). For regression splines metamodels in this chapter, if not

specifically pointed out, the number of maximum basis functions is set to be 50; the

number of knots is set equal to the number of data points; the maximum number of splits

is set to be 2, which is suitable for two-way interactions and apparently more than enough

for the single-variable function. Details of the kriging and regression splines will be

described later in this section.

In this study we use a single-variable function taken from (Farhang-Mehr and

Azarm, 2002):

22 7 2000(0.25)

2 2

() (1) 6 sin(10) 0.2

60min(0,| 0.14 | 0.08) [ln(0.2) 1.5sin (85)]

x x xf x e xe x e

x x x

− − − −= − + −
+ − − + +

 (5.1)

In our study in this section, the design variable x is set to be within the design space of

[0,1]. The actual response surface of Equation (5.1) with x = [0,1] is shown in Figure 5.1.

The global minimum happens at x = 0 with y = 0; the global maximum happens around x

= 0.165 with y = 0.953.

269

In Figure 5.1 we see that this single-variable function is very highly nonlinear in

the design space of x∈ [0.15,0.35], and very flat when x is large. This single-variable

function provides a very good platform with which we could compare the performance of

kriging metamodels and regression splines. Since there is only one design variable, we

could choose to have data points evenly spread over the whole design space of [0,1]. In

order to observe how kriging and regression splines works with different number of data

points, we choose three different sets of data points, one with 6 data points, another with

12, and the third with 18 data points. We use two software to develop the kriging

metamodels; one is the computer program written by Simpson (see, Simpson 1998) and

the other is commercial software named iSIGHT. The software used to develop

regression splines is from (Chen, et al., 1999).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Figure 5.1 A Single-Variable Function

270

The set of 6 data points is listed in Table 5.1. The corresponding kriging and

regression spline metamodels are illustrated in Figure 5.2 and Figure 5.3, respectively.

The value of θ for the kriging metamodel is 99.9999. To build the regression spline

metamodel, we use 6 knots in the x dimension, which is equal to the number of data

points; Backwards deletion is used in this metamodeling. Results of regression splines

approximation are saved in the file named qmars.dat, and the content is presented in

Appendix B. In Figure 5.2 and Figure 5.3 we see that with 6 data points both kriging and

regression spline metamodels performs well in grasping the response surface at regions

with very small and large x values. Both of them do not catch the high nonlinearity in x ∈

[0.15,0.35] since we do not have enough information in this region. The regression spline

metamodel is a little superior to the kriging metamodel as we see that there are two

“waves” around x = 0.7 and 0.9 in Figure 5.2, the kriging metamodel.

Table 5.1 Data Point Set I – 6 Points

x 0.0 0.2 0.4 0.6 0.8 1.0
y 0.0 0.87017 0.60729 0.88250 0.85041 0.86169

271

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.2 Kriging Metamodel with 6 Data Points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Regression Spline Metamodel

Figure 5.3 Regression Spline Metamodel with 6 Data Points

272

Now let us see how kriging and regression spline metamodels perform with 12

data points. Similar to that in Table 5.1, we select 12 data points evenly spread over x ∈

[0,1.0], as listed in Table 5.2. The corresponding kriging metamodel is illustrated in

Figure 5.4. The value of θ for the kriging metamodel is 19.49807. The regression spline

metamodel is illustrated in Figure 5.5. Details of this regression spline model are

presented in Appendix B.

Table 5.2 Data Point Set II – 12 Points

x 0.0 0.090909 0.181818 0.272727 0.363636 0.454545
y 0.0 0.694415 0.794018 0.674573 0.619361 0.628709
x 0.545455 0.636364 0.727273 0.818182 0.909091 1.0
y 0.718714 0.80075 0.840776 0.851326 0.854544 0.861688

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.4 Kriging Metamodel with 12 Data Points

273

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Regression Spline Metamodel

Figure 5.5 Regression Spline Metamodel with 12 Data Points

In Figure 5.4 and Figure 5.5 we see that the kriging and regression spline

metamodels perform approximately the same in response prediction. Compared to Figure

5.2 and Figure 5.3 in which only 6 data points are used, the metamodels in Figure 5.4 and

Figure 5.5 do not improve much even we used 12 data points. The reason is that all data

points are allocated evenly over the design space, thus there are no enough points in the

highly nonlinear region. As discussed in Chapter 4, this is the main shortcoming of

single-stage experimental design, and the SEED method could help achieve accurate

metamodels with relatively fewer data points.

Another thing to be noticed is that the kriging metamodel improves more than the

regression spline metamodel after using more data points. This is because that the kriging

274

metamodel with 6 data points (Figure 5.2) does not perform very well around x = 0.7 and

0.9. By using more data points in the flat region (with large x values), the kriging

metamodel is able to grasp the fluctuation on the response surface.

It is expected that an accurate kriging metamodel could be developed as long as

we have enough data points. Now let us see how kriging and regression spline

metamodels perform with 18 data points for the single-variable function. These 18 data

points are selected uniformly in [0,1], as listed in Table 5.3. The corresponding kriging

and regression spline metamodels are shown in Figure 5.6 and Figure 5.7, respectively.

The value of θ is 99.99999683, and this works in this case. Details about the regression

spline metamodel are attached in Appendix B. In Figure 5.6 and Figure 5.7 we see that

both kriging and regression spline metamodels are more accurate with 18 data points than

those with 6 or 12 data points.

Table 5.3 Data Set III – 18 Points

x 0.0 0.058824 0.117647 0.176471 0.235294 0.294118
y 0.0 0.51409 0.642286 0.83149 0.684104 0.702732
x 0.352941 0.411765 0.470588 0.529412 0.588235 0.647059
y 0.627525 0.608298 0.641646 0.701418 0.76189 0.807675
x 0.705882 0.764706 0.823529 0.882353 0.941176 1
y 0.83488 0.847302 0.0851541 0.85343 0.856438 0.861688

275

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.6 Kriging Metamodel with 18 Data Points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Regression Spline Metamodel

Figure 5.7 Regression Spline Metamodel with 18 Data Points

276

Now let us see how kriging and regression spline metamodels work with 24 data

points. Similar to previous studies, these data points spread over the design space

uniformly, as shown in Table 3.4. The corresponding regression spline metamodel is

illustrated in Figure 5.8. Details about this regression spline metamodel are presented in

Appendix B. As for the kriging metamodel, we got θ = 283.0647. The kriging

metamodel is illustrated in Figure 5.9.

Table 3.4 Data Set IV – 24 Points

x 0 0.0434783 0.0869565 0.1304348 0.1739130 0.2173913
y 0 0.422047 0.660364 0.930513 0.866839 0.816847
x 0.2608696 0.3043478 0.3478261 0.3913043 0.4347826 0.4782609
y 0.610096 0.688948 0.632174 0.608023 0.616353 0.64856
x 0.5217391 0.5652174 0.6086957 0.6521739 0.6956522 0.7391304
y 0.693114 0.739403 0.779896 0.810762 0.831379 0.843307
x 0.7826087 0.8260870 0.8695652 0.9130435 0.9565217 1
y 0.849152 0.851638 0.853004 0.854741 0.857589 0.861688

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Regression Spline Metamodel

Figure 5.8 Regression Spline Metamodel with 24 Data Points

277

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.9 Kriging Metamodel with 24 Data Points

Now let us see the last “space-filling” design with 65 data points – all these points

are evenly spreading over the design space of [0,1]. Details about these points will not be

put here. The regression spline metamodel is illustrated in Figure 5.10. The value of θ in

the kriging metamodel is 2099.77433. The corresponding kriging metamodel is

illustrated in Figure 5.11. In Figure 5.11 we see that though the kriging metamodel has

some fluctuations on the deep slope between [0,0.1] (note that in Figure 5.10 the

regression spline metamodel performs well on this slope – the predicted surface is very

smooth), it captures the highly nonlinear response surface in [0.1,0.3] better than previous

kriging metamodels do.

278

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Regression Spline Metamodel

Figure 5.10 Regression Spline Metamodel with 65 Data Points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.11 Kriging Metamodel with 65 Data Points

279

Suppose now we want to develop a very accurate metamodel for the single-

variable function, thus more data points should be used. This time we decide to use 201

data points evenly spread over [0,1]. The corresponding regression spline metamodel is

illustrated in Figure 5.12; details are presented in Appendix B. The kriging metamodel is

illustrated in Figure 5.13; the value of θ is 7016.42038.

Based on the examples above, we observe that when the number of data point

increases, the value of θ increases too. It has been stated by many researchers (see, e.g.,

Simpson, 1998; Farhang-Mehr and Azarm, 2002) that a value of 10 to 100 for θ implies

very rapid decaying correlation. In our examples, we meet θ values much larger than

their suggestions (actually, we had to modify Simpson’s code to increase its upper limit

on possible θ values). On a highly nonlinear response surface, each of the data points

conveys little information at its neighborhood; this yields a large value for θ. When there

are few data points, the high nonlinearity on the response surface is not captured and a

small θ value could explain the available information. However, when more data points

are used, the high nonlinearity on the response surface is sensed and as a result, larger

values of θ are needed to reflect this fluctuating surface. In this case, the response surface

in [0.1, 0.4] is the focus in our study; its high nonlinearity affects the value of θ.

280

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Regression Spline Metamodel

Figure 5.12 Regression Spline Metamodel with 201 Data Points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.13 Kriging Metamodel with 201 Data Points

281

Another thing to be noted is the computation time in developing kriging and

regression spline metamodels. It is expected that the computation time increase when the

number of design variables and that of data points increases. In this example of the

single-variable function, it takes little time (<< 1 second) to build the regression spline

metamodel with our P4, 196M computer. With Simpson’s code, it takes less than 1

second to build kriging metamodels for the single-variable function with fewer than 24

data points; in the case with 65 data points, kriging metamodel fitting costs 2 seconds,

and in the case with 201 data points, we spend 135 seconds to fit the kriging metamodel.

It seems that the regression spline is a little superior to kriging on saving the computation

time.

Observations above support the assertion that more accurate kriging and

regression spline metamodels could be developed with more data points spreading over

the design space; when enough data points are selected and placed evenly in the design

space, a metamodel could be developed as loyal to the actual function as possible. While

in the next section, our study shows that the assumption above is not always valid when

metamodels are developed with non-space-filling experiments (unevenly spread data

points).

5.2.2 An Observation and Analysis on the Performance of Kriging and Regression
Spline Metamodels in Response Prediction with Unevenly Spread Data
Points

In Section 5.2.1, we studied the performance of kriging and regression spline

metamodels with evenly spread data points in the design space. We observe that with

282

more data points evenly spreading over the design space, more accurate kriging and

regression spline metamodels could be developed. Values of θ in kriging metamodels

and the computation time to build a kriging metamodel increase as the number of data

points increases. In our examples, regression spline metamodels seems a little superior to

kriging metamodel since: 1). In some cases (with 8, 24, or 65 data points) the regression

spline metamodels are smooth while kriging metamodels have tiny fluctuations on the

predicted response surfaces, and 2). As the number of data points increases, it tends to

cost much more computation time to build a kriging metamodel than to build a regression

spline metamodel.

In this section, we study the performance of kriging and regression spline

metamodels when unevenly spread data points are used in metamodeling. As presented

in Chapter 4, in sequential exploratory experimental design, new data points are added

not to “spread over” the design space, but rather to “reduce predicted prediction errors”.

It is expected that more data points would be added in regions with high nonlinearity or

high prediction errors, thus in sequential experimental design, we may get sets of data

points that are not evenly allocated in the design space. It is important to study the

performance of kriging and regression spline metamodels with unevenly allocated data

points in sequential experiments.

In this study we still use the single-variable function as presented in Equation

(5.1). A wise designer (as expected in sequential experimental designs) might use the set

of data points as listed in Table 5.5. In Table 5.5 we see that the data points are

apparently unevenly allocated in the design space; a large portion of data points are put in

283

the highly nonlinear region of [0.09, 0.4] (7 data points in [0.09, 0.2]), and only two data

points in the flat region of [0.5, 1]. Data points in the region of [0.09, 0.4] are very close

to local peaks and bottoms on the highly nonlinear response surface. It is expected that

accurate kriging and regression spline metamodels could be developed with this set of

data points.

The corresponding regression spline metamodel is illustrated in Figure 5.14;

details about this metamodel are presented in Appendix B. However, we meet problems

in building the kriging metamodels. Simpson’s code gives the value of θ as 2.34233,

which is apparently incorrect because predicted response values at data points with the

corresponding kriging metamodel are totally different from true values, which should not

happen in deterministic kriging (note that prediction errors at data points should be zero).

The value of θ from iSIGHT is 99.999999. Predicted response values range from y ≈ –

1355 to y ≈ 550, while the actual function values are in [0, 0.95]. The corresponding

kriging metamodel is illustrated in Figure 5.15; as we see, compared with the kriging

metamodel, the actual function is like a horizontal line on the x-axis. However, designers

may not be able to see this because the predicted response values are the same as true

ones (note that designers may only have information at data points).

Table 5.5 Effective Data Set – 13 Points

x 0 0.095 0.11 0.13 0.145 0.165 0.185
y 0 0.71380 0.58279 0.93006 0.51582 0.95305 0.79902
x 0.2 0.25 0.29 0.4 0.67 1.0
y 0.87017 0.58812 0.70592 0.60728 0.82040 0.86169

284

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Regression Spline Metamodel

Figure 5.14 Regression Spline Metamodel with 13 Data Points

-1500

-1200

-900

-600

-300

0

300

600

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.15 Kriging Metamodel with 13 Data Points (θ = 99.999999)

285

One possible reason for the problem above may be the limitation of algorithms or

software; this caught our attention since Simpson’s code and iSIGHT yield different

results. This implies that the θ values we got might be incorrect. To study this

possibility, we develop several kriging metamodels with different θ values and analyze

their performance. Kriging metamodels with θ = 50, 500, 1000, and 5000 are illustrated

in Figure 5.16, Figure 5.17, Figure 5.18, and Figure 5.19, respectively. From these

figures we see that as values of θ increase, the range of predicted responses decreases and

the corresponding metamodel becomes more and more accurate – the highly nonlinear

response surface in [0.09, 0.4] is better reflected with large θ values.

-50000

-45000

-40000

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

5000

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.16 Kriging Metamodel with 13 Data Points (θ = 50)

286

-0.8

0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.17 Kriging Metamodel with 13 Data Points (θ = 500)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.18 Kriging Metamodel with 13 Data Points (θ = 1000)

287

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.19 Kriging Metamodel with 13 Data Points (θ = 5000)

In Figure 5.16, Figure 5.17, Figure 5.18, and Figure 5.19, we see that as θ values

increase, the predicted response surface becomes flat (horizontal) in [0.5,1] except several

sharp peaks at data points in this region. It seems that we are not able to get an acceptable

kriging metamodel with the set of data points as listed in Table 5.5. Kriging metamodels

do not work well with unevenly allocated data points. Possible drawbacks of kriging

software are not the very reason for the unreasonable kriging metamodel in Figure 5.15;

kriging metamodeling is constrained by its own limitations.

It is important to know why kriging metamodeling meets problems in modeling

this single variable function with data points listed in Table 5.5. The reason lies in the

global usage (in one dimension) of θ in the design space. As discussed in Chapter 2 and

288

Chapter 4, the parameter θ in maximum entropy sampling and kriging metamodeling

represents correlation between points in the design space. As the value of θ increases, the

correlation between two points becomes weaker and weaker (suppose the distance

between these two points is a constant). Thus the value of θ in a highly nonlinear design

space should be much larger than that in a flat one. In this sense, the parameter θ could

also be viewed as an indicator of how much information one data point could reflects in

its neighborhood. A small θ indicates that a data point in the design space reflects much

information in its neighborhood; or say, it has great influence on response values in its

neighborhood. As stated before, values of 10 to 100 for θ indicate a very rapid decaying

correlation between points. In the single-variable function as presented in Equation (5.1)

and Figure 5.1, the response surface in [0.09, 0.4] is highly nonlinear and could only be

reflected by kriging metamodels with very large θ values (e.g., 2099.77433 as in Figure

5.11). Data points in this region could reflect very little information in their

neighborhoods – and this is why we need to put more data points in this region in

sequential experiments. The responses surface in [0.5, 1] is very flat and could be

modeled by kriging metamodels with very small θ values. Data points in this region

could reflect much information in their neighborhoods, thus only a few data points are

needed in this region. In kriging, the value of θ is universal in one dimension; the various

demands of θ values as discussed above cause dilemma that cannot be compromised in

kriging metamodeling with unevenly allocated data points. This is the very reason why

289

we could not develop acceptable kriging metamodels with the set of data points in Table

5.5.

With large θ values, the highly nonlinear part of the actual response surface could

be modeled accurately, while in flat regions where we have few data points, the kriging

metamodel tends to rest at its constant β (see Equations (2.18) and (2.20)) and be

occasionally dragged to observed values at data points – this is why we see sharp peaks

on flat (horizontal) surfaces in Figure 5.17, Figure 5.18, and Figure 5.19.

To solve this problem, one method is to put more data points in the flat region;

data points should be very close to each other – a data point should be put where another

one’s influence demises. This results in an experimental design in which data points are

almost evenly allocated in the whole design space. As we see in Section 5.2.1, when

“space filling” experiments are used, accurate kriging metamodels could be developed as

long as we have enough data points. This selection of evenly allocated data points is not

desired in our sequential experimental design because a lot of effort is wasted on data

points in flat regions.

In our approach, we recommend replacing kriging with MARS in metamodeling

with sequential experiments when necessary. Kriging metamodels are still very useful

and could not be totally discarded in our approach because: 1). Kriging metamodels

predict the exact values at observed points while MARS metamodels smoothes the data –

and this is important in metamodeling with deterministic computer experiments as

explained in Chapter 2, and 2). As discussed in Chapter 4, in the SEED method, θ values

290

from current kriging metamodels could be used in the identification of new data points to

help distinguish dimensions with high nonlinearity – more data points could be

automatically put in dimensions with large θ values with our modified maximum entropy

sampling approach. Thus in conceptual design, when we want to develop metamodels for

system responses with sequential experiments, we may use:

 MARS metamodels only. The shortcomings are that the metamodel smoothes

the data (so the predicted value at data points may not be accurate), and we

may not be able to identify highly nonlinear dimensions quickly.

 Kriging metamodels only. This is when the actual response surface is not very

complicated. However, in practice designers do not know how the actual

response surface look; and it is very difficult to tell when kriging meets

difficulty in the metamodeling process.

 Kriging and MARS metamodels together. Kriging metamodels could be used

in early stages of design when the data points are nearly evenly allocated in the

design space. As the metamodeling process goes on, we may switch to MARS

metamodels whenever a problem is identified. One way to identify problems

is to develop both kriging and MARS metamodels and compare their

predictions for abnormal performance.

Besides metamodels for system responses, we also develop metamodels for

prediction errors in SEED. In SEED processes, metamodels for prediction errors are

expected to be more complicated than those for system responses because there are a lot

291

of points with zero prediction errors mixed with points with positive or negative

prediction errors. This could be illustrated with the example in Figure 5.20.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x

y

Actual Function Metamodel Prediction Errors

Figure 5.20 An Example of Metamodel and Prediction Errors

The example in Figure 5.20 is obtained when we tried to apply SEED (with

kriging metamodels only) in modeling the single-variable function in Equation (5.1). In

Figure 5.20 we see that since the actual function is highly nonlinear and the metamodel is

flat, the actual response surface for prediction errors is highly nonlinear. 10 validation

points are selected; prediction errors at these validation points and 11 data points are

listed in Table 5.6. The corresponding regression spline metamodel is shown in Figure

5.21.

292

Table 5.6 Prediction Errors at 21 Points

x 0.0 0.0542 0.0699 0.1038 0.1133 0.1748 0.1947
y_err 0.0 -0.21447 -0.19659 -0.10392 0.0 -0.21942 -0.22848

x 0.2377 0.2849 0.3557 0.3615 0.4320 0.5 0.5448
y_err 0.0 0.0 0.00361 0.0 0.0 0.0 -0.02285

x 0.5839 0.6362 0.6802 0.7623 0.8838 0.9054 1.0
y_err -0.02367 0.0 0.01256 0.0 0.0 0.0073 0.0

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

Regression Spline Metamodel for Prediction Errors

Actual Prediction Errors

Figure 5.21 Regression Spline Metamodel for Prediction Errors with 21 Points

In Figure 5.21 we see that the regression spline model captures the actual response

well, except for the highly nonlinear region where we may add in more validation points

in future stages. We failed to build an acceptable kriging metamodel in this case, partly

because of the highly nonlinear property of the actual surface of prediction errors which is

inherited from the single-variable function, partly because of the mixture of zero’s and

non-zero’s for prediction errors in the design space. For example, we notice that there are

293

three zero’s from x=0.36 to x=0.5, which implies a flat (horizontal) surface, while in other

regions the surface may not be flat – this is usual in modeling prediction errors in SEED.

When this confliction is intense enough, as shown in this case, we will fail in developing

an acceptable kriging metamodel.

5.2.3 An Observation and Analysis on the Performance of Kriging and MARS
Metamodels in Response Prediction with Unevenly Spread Data Points

In Section 5.2.2, we compared the performance of kriging and univariate

regression spline metamodels with a single-variable function. Our observations show that

the regression spline metamodels are more robust to irregular response surfaces while it is

difficult to use kriging to model irregular response surface that is highly nonlinear in

some regions but flat in other regions. In this section, we will extend this comparison to

kriging and MARS metamodels with a two-variable function. The two-variable function

is as presented in Equation (5.2).

2 2 2 24
1 2 1 2

2 2 2
1 2

2 72 2 2 2
1 2 1 2 1 2

2000(0.25) 2 2 2 2 2
1 2 1 2

2 2 2
1 2

(,) (1) 6 sin(10)

0.2 60 min(0,| 0.14 | 0.08) [ln(0.2)

1.5sin (85)]

x x x x

x x

f x x e x x e x x

e x x x x

x x

− + − +

− + −

= − + + +

− + + − − + +

+ +
 (5.2)

Equation (5.2) is a modified two-variable version of Equation (5.1); the modification is

done by substituting x in Equation (5.1) with 2 2
1 2x x+ . The surface plot and contour plot

of this function are illustrated in Figure 5.22 and Figure 5.23. As we see in Figure 5.22

294

and Figure 5.23 the two-variable function is highly nonlinear with small x1 and x2 values

and flat with large when x1 and x2 are large; the actual response surface is irregular.

Figure 5.22 Surface Plot of the Two-Variable Function

Figure 5.23 Contour Plot of the Two-Variable Function

295

According to our observations in Section 5.2.2, since the actual response surface

is irregular (i.e., highly nonlinear in some regions while flat in others; the property of the

response surface changes greatly), it is expected that: 1) it is difficult to get an accurate

kriging metamodel for this two-variable function with reasonable number of data points,

and 2) it is possible to build an accurate MARS (application of regression splines with

multiple variables in this example) metamodel with data points putting at “critical”

positions (unevenly spread data points, as developed in SEED).

Similar to what we did in Section 5.2.2, first we act as a “wise” designer here. As

a wise designer, we are able to put most data points at critical positions, as expected from

a sequential experimental design; in this example, we could achieve this by carefully

examining the plots of Figure 5.22 and Figure 5.23. A possible set of data points with 45

data points is listed in Table 5.7.

With the data points in Table 5.7, we are unable to develop a kriging metamodel

that is accurate; actually, the kriging metamodel we build, with θ1 = 2.84701 and θ2 =

1.97175, does not perform normally. We use 625 points (which spread over the design

space, with more being allocated in the region with small x values) to validate the kriging

metamodel. In Figure 5.22 and Figure 5.23 we see that the actual response values in the

design space are in the range of [0,1], while the values predicted with the kriging

metamodel at the validation points are very large (many are over −100,000,000). The

reason why we cannot develop an acceptable kriging metamodel in this example lies in

the irregularity of the actual response surface, as explained in Section 5.2.2.

296

Table 5.7 Experiments with 45 Data Points

X1 X2 Y X1 X2 Y X1 X2 Y
0 0 0 0.11 0 0.58279 0.2 0 0.87017
0 1 0.86169 0 0.11 0.58279 0 0.2 0.87017
1 0 0.86169 0.078 0.078 0.58112 0.141 0.141 0.87037
1 1 0.90773 0.13 0 0.93006 0.25 0 0.58812
0 0.5 0.67001 0 0.13 0.93006 0 0.25 0.58812

0.5 0 0.67001 0.092 0.092 0.93029 0.177 0.177 0.58758
1 0.5 0.87670 0.145 0 0.51582 0.3 0 0.69537

0.5 1 0.87670 0 0.145 0.51582 0 0.3 0.69537
0.5 0.5 0.83527 0.103 0.103 0.51171 0.212 0.212 0.69563
0.25 0.75 0.84978 0.165 0 0.95305 0.1 0.8 0.85076
0.75 0.25 0.84978 0 0.165 0.95305 0.8 0.1 0.85076
0.75 0.75 0.86900 0.117 0.117 0.95403 0.05 0.3 0.68927
0.05 0 0.46195 0.185 0 0.79902 0.3 0.05 0.68927

0 0.05 0.46195 0 0.185 0.79902 0.165 1 0.86319
0.035 0.035 0.45891 0.131 0.131 0.80017 1 0.165 0.86319

A MARS metamodel is developed with information from the data points listed in

Table 5.7. To build this MARS model, we set the number of knots in each dimension as

T = 100, the maximum number of MARS basis functions in approximation Mmax = 50,

the maximum number of splits per basis function maxIA = 2 to allow two-way

interactions. Backwards deletion is allowed in building the MARS metamodel. The

MARS metamodel is illustrated in Figure 5.24. In Figure 5.24 we see that the MARS

metamodel roughly grasps the irregular response surface. We examined the prediction

errors at 625 validation points and get RMSE = 0.0739 and MAX = 0.395 based on

Equations (2.7) and (2.9). The value of RMSE is small, which indicates that the overall

model fitting is satisfactory and the metamodel grasps the fluctuations of the whole

response surface; design space exploration with such a metamodel would probably

297

successfully lead us to regions in which the design solution lies. The value of MAX is

large, which implies that Local Model Inaccuracy (see Lin, et al., 1999) exists and it

might be difficult to precisely identify the final design solution with this metamodel

though we could have been led to the region where the solution lies.

Figure 5.24 MARS Metamodel with 45 Data Points

In this section, through the study of kriging and regression spline metamodels in

response prediction, we answered Research Question 4.1; our study shows that regression

spline metamodels (specifically, MARS in multi-dimensional cases and univariate

regression splines in one-dimensional problems) are more robust to fluctuations on the

298

response surface than kriging metamodels do. Studies of RS metamodels and different

types of kriging metamodels in engineering design are done in (Simpson, 1998) and (Lin,

2000). Research Question 4.2, How to select different types of metamodels at different

design stages?, is also visited in this section and will be further explored in Section 5.4.

Based on the study above, we recommend that: 1). At the beginning of metamodeling

processes, we could use kriging metamodels only or both kriging and MARS

metamodels; and 2). When more points are selected in a highly nonlinear design space,

we should use MARS to model prediction errors and both kriging and MARS to model

system responses in SEED. Both kriging and MARS metamodels have their own strong

and weak aspects. Thus, in real-world applications we should develop metamodels with

both techniques if possible; when we meet problems with one technique, we could always

switch to the other one. The application of MARS with SEED is discussed in the next

section.

5.3 UTILIZATION OF MARS METAMODELS IN THE SEQUENTIAL
EXPLORATORY EXPERIMENTAL DESIGN METHOD

As discussed in Section 5.2, we suggest using MARS in SEED. Since the SEED

method was initially developed with kriging metamodels, we need to do some small

modifications to have it work smoothly with MARS, which is to be done in this section.

The research questions to be visited in this section are R.Q. 2, How to design sequential

computer experiments (how to select data and validation points sequentially) to get an

accurate metamodel? and R.Q.4.2, How to select different types of metamodels at

299

different design stages? The utilization of MARS in SEED is discussed in Section 5.3.1,

and then demonstrated with a single-variable function in Section 5.3.2.

5.3.1 Utilization of MARS in SEED

To use MARS in SEED brings no significant change to the sequential

experimental design method as developed in Chapter 4. The flowchart of SEED remains

the same as that in Figure 4.4. Similar to the description in Chapter 4, there are still two

ways to formulate the modified covariance matrix (see Section 4.5.3), and mathematical

formulations remain the same as Equations (4.27), (4.28), and (4.34).

Since we suggest using MARS to model the prediction errors, it should be noted

that the MARS metamodel smoothes the data so the predicted values at data points may

not be accurate, thus we may have non-zero predicted prediction errors at data points.

This may bring problem when we use kriging metamodels for system responses and

MARS for prediction errors – even though the actual prediction errors at data points are

zero with kriging, the predicted prediction errors from MARS may be different. Usually

this difference is not large, and it should not affect the SEED process a lot. To be safe,

careful examinations of this difference are recommended in the SEED process; the cost of

this examination is negligible since only simple comparisons are involved.

Another important thing is the selection of values of θ in identifying new points

when we use MARS metamodels for system responses. When we use kriging

metamodels for system responses (as in Chapter 4), values of θ could be used in the

formulation of the covariance matrix (see Equations (4.29) and (4.34)). In multi-variable

300

problems, this approach helps us identify highly nonlinear dimensions (with large θ

values); more new points will be automatically put in these dimensions with SEED as

discussed in Chapter 4. When MARS is used to model system responses, it provides no

guidance on the selection of θ values for future sampling. In such cases, we could use a

universal θ value for all dimensions; usually we set θ as 10 (or larger values) to ensure a

rapid decaying correlation between points. In cases where there are already too many

data points in the design space, we may need to set extremely large θ values (e.g., 1000)

to ensure that the correlation decays fast enough and new points could be identified

through maximum entropy sampling (small θ values may result in negative values of

determinants of the covariance matrices, which implies that it is not worthwhile to add in

new points). Besides the selection of θ values, the selection of values for λ and emax is

also very important; this is introduced in Chapter 4, and will be further discussed in this

section after the application of MARS and SEED in developing metamodels for one

single-variable function; similar to our study in last section, in this single-variable

example, we are actually using the univariate quintic regression splines instead of MARS.

Since kriging has some desirable properties (loyal to data, providing guidance on

identification of new points, etc.), we may want to keep using kriging to model system

responses until it is necessary to switch to MARS. It may be helpful to develop both

kriging and MARS metamodels for response surfaces with same data in the design

process. Besides the comparison between previous and current metamodels, the

comparison between kriging and MARS metamodels could also help identify possible

301

problems in metamodeling as discussed in Section 5.2. Once such a problem is

identified, we will start to use MARS to replace kriging in future metamodeling stages.

Designers may also use MARS to model system responses at the very beginning of

SEED, as we will illustrate in Section 5.3.2 with the example of a single-variable

function.

5.3.2 Example: A Single-Variable Function

In this section we illustrate and study the usage of regression splines in SEED

with the single-variable example as used in Section 5.2. In this example, we follow the

same steps as presented in Figure 4.4. The method used to formulate the adjusted

covariance matrix is as described in Section 4.5.3.1, in which we adjust the covariance

matrix without modifying the correlation function. Equations (4.27) and (4.28) are used

in the formulation. In this sequential experimental design, we plan to use 4 data points

and 5 validation points as initial design, and add in 2 new validation and 2 data points

each time. We will stop with total 17 data points, i.e., after 3 iterations. Similar to the

example in Chapter 4, metamodel accuracy is not used as the stopping criteria, thus no

metamodel validation is needed in Step 4 during the sequential experimental design

process. In this example, we decide to use kriging and regression splines to model system

responses and regression splines to model prediction errors.

Iteration I – Step 1: Initial Experimental Design. As discussed in Chapter 4,

there are many ways to design the initial experiments in SEED. In this example, we

302

decide to use the single-stage method by Currin, et al. (1991). The initial data points are

listed in Table 5.8.

Table 5.8 Initial Experimental Design – 4 Data Points

x 0.0 0.331 0.669 1.0
y 0.0 0.6508 0.8199 0.8617

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel

Figure 5.25 Initial Kriging Metamodel with 4 Data Points

Iteration I – Step 2: Simulation and Initial Metamodel of Responses. The

corresponding kriging metamodel of system responses is illustrated in Figure 5.25; the

value of θ for this metamodel is 7.83290.

Iteration I – Step 3: Identification of New Validation Points. In this step, we

only have information from four data points and the initial metamodel developed in Step

2. We need to identify validation points for the first iteration. Similar to that in Chapter

303

4, when no enough information is available, we will use standard maximum entropy

sampling to identify validation points. In this step we decide to identify nerror = 5

validation points.

A 9×9 covariance matrix is constructed with the first 4 rows and columns

corresponding to the 4 data points in Table 5.8. In the formulation of covariance

matrices, we set θ = 20, which yields a rapid decaying correlation between points. By

maximizing the determinant of this 9×9 covariance matrix we identify 5 validation points

as listed in Table 5.9. Six optimization algorithms (same as those used in Chapter 4) are

used in iSIGHT to ensure the achievement of global optimum.

Table 5.9 Five New Validation Points in Iteration I

x 0.091 0.215 0.5 0.785 0.909
ypred 0.1301 0.4091 0.8088 0.8344 0.8604
yactual 0.6951 0.8262 0.6700 0.8494 0.8545

Iteration II – Step 4: Metamodel of Prediction Errors. In this step, a

metamodel of prediction errors of the kriging metamodel (Figure 5.25) is developed with

information from 4 data points and 5 validation points. Prediction errors at these points

are listed in Table 5.10. As described in Sections 5.2 and 5.3.1, a regression spline

metamodel is developed based on the information in Table 5.10, and the plot of predicted

prediction error yerror vs. x is drawn in Figure 5.26. The maximum absolute predicted

prediction error is about 0.6.

304

Table 5.10 Prediction Errors at 4 Data Points and 5 Validation Points

x 0.0 0.331 0.669 1.0
yerror 0.0 0.0 0.0 0.0

x 0.091 0.215 0.5 0.785 0.909
yerror -0.565 -0.4171 0.1388 -0.015 0.0059

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 5.26 Metamodel of Prediction Errors in Iteration I

In Figure 5.26 we see that given the 9 points spreading over the whole design

space, the regression spline metamodel grasps the prediction error very well. Peaks and

bottoms in [0.09, 0.3] are not precisely captured because we have no enough information

305

in this region. In the next step, the regression spline metamodel of prediction errors as

illustrated in Figure 5.26 will be used in the formulation of the covariance matrix.

Iteration I – Step 5: Metamodel Validation. Similar to the example in Chapter

4, the step of metamodel validation is skipped here. New data points are to be added.

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix. As

introduced before, we plan to add in nnew = 2 new data points each time. In this step,

entries of the 6×6 adjusted covariance matrix are calculated following Formulation I of

the SEED method as described in Section 4.5.3.1. The key equations here are Equations

(4.27) and (4.28).

A 6×6 covariance matrix is first built following Equations (4.19) and (4.20), with

the first 4 rows and columns corresponding to the six data points that we already have,

and the rest 2 rows and columns representing new data points. The value of θ is set to be

7.8329. All processes in this step are similar to those in Chapter 4; the only difference is

that we use a C program to calculate predicted prediction errors, ei, at candidate points

with the regression spline metamodel in Figure 5.26 (instead of the FORTRAN program

for kriging metamodels).

Iteration I – Step 7: Identification of New Data Points. In this step, we identify

two possible new data points through maximizing the determinant of the adjusted

covariance matrix developed in Iteration I – Step 6, as listed in Table 5.11. This is done

in iSIGHT with six optimization techniques as used in Chapter 4.

306

Since the possible new data points, x = 0.101 and x = 0.503, are very close to two

of the validation points, x = 0.091 and x = 0.5, we decide not to collect information at x =

0.101 and x = 0.503; instead, we use x = 0.091 and x = 0.5 as new data points. This helps

avoid clustering of data/validation points and ensures efficiency in sequential

experiments.

Table 5.11 Two Possible New Data Points in Iteration I

x 0.101 0.503

Iteration I – Step 8: Updated Metamodel of Responses. Now we have 6 data

points, as listed in Table 5.12. New metamodels are developed with information from

these data points. The kriging metamodel is illustrated in Figure 5.27; the value of θ is

99.99981.

As a comparison, we develop a regression metamodel with the six data points in

Table 5.12, as illustrated in Figure 5.28. Comparing Figure 5.27 and Figure 5.28 we see

that the regression spline metamodel performs better than the kriging metamodel. It is

apparent that the kriging metamodel in Figure 5.27 does not predict the response surface

in [0.6,1] well. In real-world applications, with information from only data points, we

may not be able to tell which metamodel is more accurate because we do not know

whether the bell-shape curve in [0.6,1] in Figure 5.27 reflects the actual surface or not.

However, with information from the validation points, we could figure out which model

is better. In this case, based on available information at x = 0.785 and x = 0.909, we

307

figure out that the unusual bell-shape curve in [0.6,1] of the kriging metamodel is far

from reality; further inspection shows that this unusual bell-shape curve is actually from

the large value of θ, which inherits from the highly nonlinear surface in regions with

small x values. This problem is similar to the one we discussed in Section 5.2. Since

kriging meets difficulty in modeling the object surface, we decide to use regression

splines to model both responses and prediction errors in later stages of experimental

design.

After finishing Step 8, following the flow chart in Figure 4.4, we will go to Step 3

of Iteration II to add in new validation points to test the current metamodels. The

regression spline metamodel in Figure 5.28 will be used in the next iteration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Actual Function Kriging Metamodel

Figure 5.27 Kriging Metamodel with 6 Data Points

308

Table 5.12 Six Data Points

x y x y x y
0.0 0.0 0.669 0.8199 0.091 0.6951

0.331 0.6508 1.0 0.8617 0.5 0.6700

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.28 Regression Spline Metamodel with 6 Data Points

Iteration II – Step 3: Identification of New Validation Points. Now we have 6

data points and 3 validation points. In this step we decide to add in nnew = 4 validation

points in order to have as many validation points as data points. To identify new

validation points, a kriging metamodel of response is first developed with 3 validation

points and illustrated in Figure 5.29. Prediction errors of this metamodel at 6 data points

are calculated and listed in Table 5.13; a regression spline metamodel of prediction errors

309

are then developed and illustrated in Figure 5.30. Using the method similar to Iteration I

– Step 6 to Step 8, we identify 4 new validation points as listed in Table 5.14.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Actual Function Kriging Metamodel

Figure 5.29 Metamodel of Responses Developed in Iteration II – Step 3

Table 5.13 Prediction Errors at 6 Data Points in Iteration II – Step 3

x 0 0.331 0.669 1 0.091 0.5
ypred 0.8178 0.8308 0.8446 0.8582 0.8213 0.8376
yactual 0 0.6508 0.8199 0.8617 0.6951 0.67
yerror 0.8178 0.1800 0.0247 -0.0035 0.1262 0.1676

310

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.30 Regression Spline Metamodel of Prediction Errors in Iteration II – Step
3

Table 5.14 New Validation Points Added in Iteration II

x 0.026 0.289 0.414 0.582
yactual 0.3091 0.7063 0.6087 0.7560

Iteration II – Step 4: Metamodel of Prediction Errors. Prediction errors at 7

validation points and 6 data points are listed in Table 5.15. A regression spline

metamodel of prediction errors is built with information from these 13 points, and

illustrated in Figure 5.31. The maximum absolute predicted prediction error is emax ≈

0.20.

311

Table 5.15 Prediction Errors at Observed Points in Iteration II – Step 4

x 0.000 0.091 0.331 0.500 0.669 1.000
ypred 0.0001 0.6940 0.6600 0.6984 0.7611 0.8839
yactual 0.0000 0.6951 0.6508 0.6700 0.8199 0.8617
yerr 0.0001 -0.0011 0.0092 0.0284 -0.0588 0.0222
x 0.026 0.215 0.289 0.414 0.582 0.785 0.909

ypred 0.2233 0.7061 0.6690 0.6691 0.7288 0.8041 0.8501
yactual 0.3091 0.8262 0.7063 0.6087 0.7560 0.8494 0.8545
yerr -0.0858 -0.1201 -0.0373 0.0604 -0.0272 -0.0453 -0.0044

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 5.31 Regression Spline Metamodel of Prediction Errors in Iteration II

312

Iteration II – Step 5: Metamodel Validation. As described before, this step is

skipped and we proceed to Step 6.

Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix. We

need to add in nnew = 2 new data points, thus we formulate an 8×8 covariance matrix

following the method as used in Iteration I – Step 6. The first 6 rows and columns

correspond to previous data points, and the rest 2 rows and columns representing new

data points. The value of θ is set to be 100.0, which is the limit of Simpson’s kriging

code.

Iteration II – Step 7: Identification of New Data Points. By maximizing the

determinant of the adjusted covariance matrix as built in Iteration II – Step 6, we are able

to identify 2 possible new data points at x =0.213 and x = 0.833. Since one of the

possible new data points, x = 0.213, is very close to one of the validation points, x =

0.215, we decide to use x = 0.215 instead of x = 0.213 as the new data point. New data

points added in this step are listed in Table 5.16.

Table 5.16 New Data Points Added in Iteration II

x 0.215 0.833
y 0.8262 0.8519

Iteration II – Step 8: Updated Metamodel of Responses. A new regression

spline metamodel is developed with information from the 8 data points as listed in Table

5.17. The regression spline metamodel for responses is illustrated in Figure 5.32.

313

Table 5.17 Eight Data Points in Iteration II

x y x y
0 0.0000 0.5 0.6700

0.091 0.6951 0.669 0.8199
0.215 0.8262 0.833 0.8519
0.331 0.6508 1 0.8617

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.32 Regression Spline Metamodel with 8 Data Points

Iteration III – Step 3: Identification of New Validation Points. Now we have

8 data points and 6 validation points. In this step, we need to add in 3 new validation

points. We build a regression spline metamodel of responses with 6 validation points;

this metamodel is illustrated in Figure 5.33. Then prediction errors of this metamodel at

314

8 data points and 6 validation points are calculated and listed in Table 5.18. A regression

spline metamodel of prediction errors is then developed and plotted in Figure 5.34.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.33 Regression Spline Metamodel of Responses Developed in Iteration III –
Step 3

Table 5.18 Prediction Errors at Observed Points in Iteration III – Step 3

x 0.000 0.091 0.215 0.331 0.500 0.669 0.833 1.000
ypred 0.2663 0.4162 0.6243 0.6844 0.6800 0.8026 0.8450 0.8879
yactual 0.0000 0.6951 0.8262 0.6508 0.6700 0.8199 0.8519 0.8617
yerr 0.2663 -0.2789 -0.2019 0.0336 0.0100 -0.0173 -0.0069 0.0262
x 0.026 0.289 0.414 0.582 0.785 0.909

ypred 0.3091 0.7064 0.6077 0.7636 0.8326 0.8645
yactual 0.3091 0.7063 0.6087 0.7560 0.8494 0.8545
yerr 0.0000 0.0001 -0.0010 0.0076 -0.0168 0.0100

315

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.34 Regression Spline Metamodel of Prediction Errors in Iteration III –
Step 3

Following similar approach used in SEED – Steps 6 to 8, three possible validation

points are identified at x = 0.0, x = 0.149, and x = 1.0. Since two of the possible

validation points are previously observed as data points, we need to redo the

identification of new validation points because we should not convert data points to

validation points in the SEED process. A new regression spline metamodel of responses

is developed with 6 validation points and 2 validation points (x = 0.0 and x = 1.0); this

metamodel is illustrated in Figure 5.35. Then prediction errors of this metamodel at 8

other data points and 6 validation points are calculated and listed in Table 5.19. A

316

regression spline metamodel of prediction errors is then developed and plotted in Figure

5.36. Following same processes as in Iteration II – Step 6 to Step 8, three new validation

points are identified and listed in Table 5.20.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Actual Function MARS Metamodel

Figure 5.35 New Regression Spline Metamodel of Responses in Iteration III – Step 3

Table 5.19 New Prediction Errors at Observed Points in Iteration III – Step 3

x 0.000 0.091 0.215 0.331 0.500 0.669 0.833 1.000
ypred 0.0000 0.4390 0.6312 0.6841 0.6750 0.8056 0.8550 0.8598
yactual 0.0000 0.6951 0.8262 0.6508 0.6700 0.8199 0.8519 0.8617
yerr 0.0000 -0.2561 -0.1950 0.0333 0.0050 -0.0143 0.0031 -0.0019
x 0.026 0.289 0.414 0.582 0.785 0.909

ypred 0.3091 0.7063 0.6087 0.7562 0.8475 0.8580
yactual 0.3091 0.7063 0.6087 0.7560 0.8494 0.8545
yerr 0.0000 0.0000 0.0000 0.0002 -0.0019 0.0035

317

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.36 New Regression Spline Metamodel of Prediction Errors in Iteration III
– Step 3

Table 5.20 New Validation Points Added in Iteration III

x 0.071 0.151 0.243
y 0.5732 0.5857 0.6193

Iteration III – Step 4: Metamodel of Prediction Errors. Now we have 8 data

points and 9 validation points. In this step, prediction errors at both data and validation

points are used to develop a regression spline metamodel to predict prediction errors in

the design space. The observed prediction errors are listed in Table 5.21, and the

318

corresponding metamodel is illustrated in Figure 5.37. The maximum absolute predicted

prediction error is emax ≈ 0.06.

Table 5.21 Prediction Errors at Data and Validation Points

x ypred yactual yerr x ypred yactual yerr
0 0.0000 0 0.0000 0.026 0.2193 0.3091 -0.0898

0.091 0.6951 0.6951 0.0000 0.071 0.5833 0.5732 0.0101
0.215 0.8262 0.8262 0.0000 0.151 0.8107 0.5857 0.2250
0.331 0.6508 0.6508 0.0000 0.243 0.7956 0.6193 0.1763
0.5 0.6699 0.67 -0.0001 0.289 0.7094 0.7063 0.0031

0.669 0.8208 0.8199 0.0009 0.414 0.6398 0.6087 0.0311
0.833 0.8504 0.8519 -0.0015 0.582 0.7444 0.7560 -0.0116

1 0.8624 0.8617 0.0007 0.785 0.8469 0.8494 -0.0025
 0.909 0.8558 0.8545 0.0013

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

Figure 5.37 Regression Spline Metamodel of Prediction Errors in Iteration III

319

Iteration III – Step 5: Metamodel Validation. This step is skipped.

Iteration III – Step 6: Formulation of the Adjusted Covariance Matrix. We

plan to add in nnew = 2 new data points. Since after this iteration we plan to get 19 points

and stop the SEED process, in this step we will consider the correlation between

candidate points and all observed points; note this is different from what we did in

Iteration II – Step 6 in which we only considered the correlation between candidate points

and data points. To achieve this, we build a 19×19 covariance matrix with the first 8

rows and columns corresponding to the current data points, the 9th to 17th rows and

columns corresponding to the validation points, and the last 2 rows and columns

corresponding to new data points. The value of θ is set to be 100.0.

Iteration III – Step 7: Identification of New Data Points. By maximizing the

determinant of the adjusted covariance matrix as developed in Iteration III – Step 6, two

new data points are identified and listed in Table 5.22.

Table 5.22 Possible New Data Points in Iteration III

x 0.126 0.254
y 0.8743 0.5871

Iteration III – Step 8: Updated Metamodel of Responses. Now we have 10

data points and 9 validation points as listed in Table 5.23. As stated at the beginning of

this section, we stop the SEED process since we have observed 19 points. A final

regression spline metamodel of responses is developed and illustrated in Figure 5.38.

320

Table 5.23 Nineteen Observed Points

x y x y
0 0.0000 0.026 0.3091

0.091 0.6951 0.071 0.5732
0.126 0.8743 0.151 0.5857
0.215 0.8262 0.243 0.6193
0.254 0.5871 0.289 0.7063
0.331 0.6508 0.414 0.6087
0.5 0.6700 0.582 0.7560

0.669 0.8199 0.785 0.8494
0.833 0.8519 0.909 0.8545

1 0.8617

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.38 Regression Spline Metamodel of Responses with 16 Data Points

321

As a comparison, a regression spline metamodel of responses is developed with

information from 19 evenly-spread data points in [0, 1]. This metamodel is illustrated in

Figure 5.39. Comparing the regression spline metamodel in Figure 5.38 and the one in

Figure 5.39, we see that in the single-variable example, using the SEED method, we are

able to develop a more accurate regression spline metamodel with the same number of

data points. More detailed discussions are presented in Section 5.3.3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.39 Regression Spline Metamodel of Responses with 19 Evenly-Spread Data
Points

322

5.3.3 Discussions on Applications of the SEED method

In this section, we further explored the application of the SEED method with

MARS (to be specific, it is actually univariate quintic regression splines in this example)

metamodels; this helped answer R.Q.2, How to design sequential computer experiments

(how to select data and validation points sequentially) to get an accurate metamodel?

and R.Q.4.2, How to select different types of metamodels at different design stages? Our

studies show that the SEED method is effective in allocating data points sequentially to

obtain an acceptable metamodel; the usage of both kriging and regression spline

metamodels provides sufficient flexibility in metamodeling. In Figure 5.38 we see that

with only 19 points we are able to grasp the high nonlinearity in [0.2,0.4] satisfactorily.

Data points are added in regions where large prediction errors exist; in this case, it is near

the lower band of the design space, i.e., [0.09,0.4].

In SEED, both kriging and regression splines could be used to develop

metamodels for system responses. Usually we use kriging metamodels in very early

stages; regression spline metamodels could be developed to test whether there is

abnormal behavior in kriging metamodeling (as discussed in Section 5.2). When kriging

meets difficulty in modeling, we should use regression spline metamodels in future stages

of metamodeling. To build metamodels for prediction errors, we suggest using regression

spline metamodels, as explained with Figure 5.20 and Figure 5.21 in Section 5.2.

The usage of two groups of points (data points and validation points) is very

important in SEED. In Section 5.3.2, finally we got a better metamodel with 19 data

points (compared to the metamodel with 19 evenly-spread data points) with the SEED

323

method. In SEED, data and validation points are added sequentially and the information

from previous points are used to guide the allocation of future data and validation points.

New points are added to decrease information uncertainty and thus should be in regions

with large prediction errors. In this way we are able to maximally utilize the available

resources and save the computation expense on some expensive computer simulations.

Besides sequential experiments and metamodeling, another option to develop

metamodels is to conduct parallel simulation. For example, one may run computer

simulation simultaneously on many computers; in this way, large amount of information

could be achieved by observing system responses at many data points. In this sense, the

parallel computing strategy seems superior to SEED because it is simpler. However, in

real-world applications, sequential experiments and metamodeling is necessary because

we may not have enough resources. To apply the parallel computation strategy, one may

need to have a lot of computers running at the same time – and usually one computer

could only afford one simulation (or a few) because the simulation may occupy a lot of

resource (memory, CPU time, etc.) in the computer. For example, in a simple industrial

case that has 8 design variables (see the vehicle body structural design in Lin, 2000), the

designers may need to run at least 64 simulations to develop the metamodels, and maybe

another 64 to validate them. To have 64 computer running at the same time may be

difficult even in large laboratories. To solve this problem, designers may want to do the

experiments sequentially, e.g., run 8 simulations simultaneously at one time and conduct

8 iterations; and this is where SEED is useful – it provides guidance on how to identify

future data points in sequential simulations.

324

Another possibility is to extend the usage of SEED in physical experiments. In

some cases we could only do physical experiments because computer simulations are not

available. In other cases, computer simulations are used as references: they could give

good estimations of system responses, while real-world experiments are needed to

validate solutions obtained from computer simulations. Usually these physical

experiments are expensive – not only computationally but also monetarily. Examples

include crash experiments in designing vehicle bodies, some bio-system experiments, etc.

In such cases, SEED could be applied and its advantage is apparent.

The discussion above is closely related to another topic – the cost of applying

SEED. To apply SEED, in addition to the simulation expense, a lot of time and effort is

spent on formulation of covariance matrices and search of maximum determinants of the

matrices. In the formulation of covariance matrices, designers’ decisions are involved

and human behaviors occupy most time; in the search of maximum determinants,

optimization algorithms are used and they usually require some time to get solutions. To

minimize time and effort wasted on designers’ decisions, a bunch of decision-support

tools are to be incorporated into a computer framework, which could be done as we

develop, verify, and improve the SEED method. This is a future work for this

dissertation. To minimize computation time spent on optimization, we could adopt faster

(though may be less effective) optimization algorithms, e.g., the “hiker” method used in

(Currin, et al., 1991). It is expected that the application of SEED should be very

inexpensive with all supporting tools are ready.

325

One drawback of SEED is the necessary human decisions in the formulation of

adjusted covariance matrices. Actually this is partly from D-optimal design and

maximum entropy sample, which is the basis of the SEED method: as introduced in

Chapter 4, prior distributions are usually needed in such experimental designs. As

discussed in Chapter 4 and our studies in this chapter, designers need to select values of

θ, λ, and emax in the formulation of the matrices. At the beginning of SEED, we usually

set θ =25, λ=2, and emax could be obtained with metamodels of prediction errors.

In cases where kriging metamodels work well, values of θ from previous kriging

metamodels could be used in the formulation of covariance matrices in future stages. In

cases where kriging meets difficulty, a large value of θ, e.g., θ =100, could be used in the

formulation of covariance matrices. In a design space with a few points, when other

factors (λ, and emax, etc.) holding constant, as values of θ increases over a very large

value, e.g., 100, solutions (new points) tend to spread over the design space instead of

being in regions with large errors. This is because that large θ values represent rapid

decaying correlations, thus in a design space with only a few points, most regions will be

a “desert” with little correlations with current points; in such cases the effect of the

adjustment based on prediction errors is usually negligible.

As discussed in Section 4.5.3.1, λ is used to gauge the balance between

“spreading over the design space” and “being in regions with large prediction errors”.

When large values of λ are used, the adjustment based on prediction errors is small and

new points tend to spread over the design space. When small values of λ are used, the

326

adjustment is large and new points tend to be in regions with great prediction errors. In

very early experimental design stages, since we do not have many points in the design

space and are not very confident on the prediction of prediction errors in the design space,

we tend to add in new points that spread over the design space to avoid being misled by

the inaccurate information. In later stages, as we have more accurate metamodel and

confidence on the prediction of prediction errors, we could use small λ values, e.g.,

λ=1.5, to force new points to be added in regions with great predicted prediction errors.

The selection of emax also affects the identification of new points. As pointed out

in Chapter 4, it may be very difficult to get the exact global maximum absolute predicted

prediction error emax in a real-world application with many design variables and

responses. When values of emax are much larger than the actual one, the adjustment on

the covariance matrices will be too small and thus new points tend to spread over the

design space. When values of emax are much smaller than the actual one, the adjustment

on the covariance matrices will be too large and new points tend to spread over the design

space too because too many candidate points in the design space are affected by this

adjustment and those in regions with large prediction errors do not receive more attention

compared with others. Usually we use a value of emax that is a bit smaller than the actual

maximum absolute prediction error, which generates small regions around points with

large prediction errors; in the formulation of adjusted covariance matrices, points in these

regions receive the same amount of adjustment. This allows more trade-off in identifying

new points and helps avoid clustering of new points with current points, especially in

selecting new validation points.

327

In this section, we revisited R.Q.2 and improved the SEED method by applying

MARS in the metamodeling processes. The usage of different types of metamodels in

SEED brings great advantage. In the next section, we will go further and explore the

utilization of more types of metamodels, i.e., RS, kriging, and MARS, along the design

timeline; this work will be closely related with the SEED method.

5.4 AN APPROACH FOR SEQUENTIAL METAMODELING ALONG THE
DESIGN TIMELINE

In this section, we plan to answer Research Question 4, How to utilize different

types of metamodels along the design timeline in accordance with the changing design

information? Only RS, kriging, and MARS metamodels are considered in our study in

this section. To answer Research Question 4, we have done comparisons among RS,

kriging, and MARS metamodels in Section 5.2 and previous studies (see, Simpson, 1998;

Lin, 2000; Lin, et al., 2000). In this section, an approach is proposed to incorporate and

utilize these metamodels sequentially in accordance with different requirements and goals

in different stages of experimental design. The development of this approach also helps

answer R.Q. 3.2, How to reduce the design space with information from previous

metamodeling and design space exploration? This approach is illustrated with a simple

engineering problem in Section 5.5.

In this dissertation we focus on the usage of three types of metamodels, the

Response Surface (RS) model, kriging model, and Multivariate Adaptive Regression

Splines (MARS). Fundamentals of these metamodels are presented in Chapter 2. The

328

comparison and usage of other types of metamodels in engineering design will be a future

work for this dissertation. In (Simpson, 1998), the author compared the performance of

RS and kriging metamodels in engineering design. In (Lin, 2000) the author studied the

performance of RS and kriging metamodels in robust design. The comparison of various

types of kriging metamodels could be found in (Simpson, 1998; Lin, 2000; Lin, et al.,

2000). The usage of kriging and MARS metamodels in SEED is studied in Sections 5.2

and 5.3 in this dissertation. Based on previous studies, properties of these metamodels

are listed and compared in Table 5.24. Items 1 – 3 in Table 5.24 correspond to the

mathematical and computational complexity of metamodels, 4 – 6 corresponding to the

accuracy (or the ability of prediction) of different metamodels, and 7 – 9 corresponding to

metamodels’ relationship with other techniques.

Table 5.24 Plus and Minus of Different Types of Metamodels

 RS (Regression) Kriging MARS
1. Mathematical complexity Simple Complicated Complicated
2. Computation time Short Long Medium
3. Problem size: # of design

variables and # of data points
Large, Medium, and

Small Problems
Small

Problems
Medium and

Small Problems
4. Metamodel accuracy Low High High
5. Loyalty to data

No Yes
No, with very

small bias
6. Ability to model irregular

surfaces (highly nonlinear or
flat in different regions)

No
Yes, but only

when with
lots of data

Yes

7. Suitable for existing
screening techniques

Yes No Yes

8. Preference to specific
experimental designs

Yes Yes No

9. Mathematical connectivity to
SEED (adapted maximum
entropy sampling)

No Yes No

329

In Table 5.24 we see that the RS metamodel has very apparent advantages and

drawbacks. Among the three types of metamodels, the RS model is easiest to develop; its

mathematical foundation is simple and the computation time (on both model building and

response prediction) is short. Since it is simple, its accuracy is not very satisfactory and it

cannot model irregular surfaces that are highly nonlinear or flat in different regions in the

design space. Usually the RS metamodels are developed with classical experiments, i.e.,

fractional factorial designs, CCD, etc. The usage of these experiments and the RS

metamodel in the Response Surface Methodology (RSM) provides an effective approach

to screen out unimportant design variables – though this technique is primarily suitable

for physical experiments that come with random errors.

The kriging metamodel is most difficult to develop because it involves matrix

calculations. This sacrifice on computation time enables kriging metamodels to predict

response values accurately with sufficient data. One appealing property of the kriging

metamodel used in this dissertation is that it is loyal to the existing data, which is suitable

for metamodeling with deterministic computer experiments. Previous studies show that

kriging works better with space-filling experiments than with classical experiments.

Kriging and maximum entropy sampling (the basis of SEED) share the same

mathematical foundation, which makes the application of kriging in SEED natural and

easy. For example, in SEED, values of θ from previous kriging metamodels could be

used in the formulation of covariance matrices in future maximum sampling steps. Major

limitations of kriging are: 1) it can only deal with small problems because the

computation time on both model building and response prediction increases dramatically

330

as the numbers of design variables and data points increase, and 2) it cannot model

irregular surfaces well, as discussed in Section 5.2.

The MARS metamodel is mathematically complicated but does not require as

much computation time as kriging because it does not require matrix calculations.

Without strict computation constraints, it is able to deal with more design variables and

data points than kriging. It smoothes the data, but the prediction errors at current data

points are very small. Our studies show that it works well with both evenly and unevenly

spread data points; this is attractive because in the SEED method data points tend not to

be evenly spread. As studied in Section 5.2, MARS could model irregular response

surfaces, which is also very attractive in metamodeling.

Since different types of metamodels all have their advantages and drawbacks, we

propose to develop an approach in which these metamodels are used in different stages of

experimental design so that we could take advantage from their strong points and avoid

their shortcomings. The incorporation of kriging and MARS metamodels in SEED has

already been studied in Sections 5.2 and 5.3, thus in this section, our focus is on the usage

of RS metamodels in early stages of experimental design and its incorporation with

kriging and MARS metamodels in SEED. Major advantages of the RS metamodel are its

simplicity and ability of identifying unimportant design variables. Thus, in very early

stages of sequential experimental design, classical experiments and RS metamodels could

be used to help reduce the size of the problem by screening out unimportant design

variables. As the experimental design evolves, more accurate metamodels are needed and

we should use kriging and MARS metamodels to replace the RS metamodel.

331

The framework of sequential metamodeling is illustrated in Figure 5.40 and

Figure 5.41 in different formats. The SEED method, which was presented in Figure 4.4,

is treated as an integrated and independent processor in this framework of sequential

metamodeling. The RS metamodel is not directly used in the SEED method; instead, it is

used before we apply the SEED method to develop accurate metamodels. Thus in this

approach the primary goal of using RS metamodels is to reduce the design space by

decreasing the number of dimensions of the problem. At early stages of sequential

metamodeling, we usually design fractional factorial experiments and develop first-order

regression models (RS Metamodels) to gain knowledge of the actually response surface

and eliminate unimportant design variables. Then we may augment more data points to

construct CCD experiments and second-order RS metamodels may be developed to help

grasp more details of the simulation program. We may also skip the development of

second-order RS metamodels, going directly to Processor D, in which we apply the SEED

method to get accurate kriging or MARS metamodels for system responses. The dash

arrows between Processors B and D indicate that the SEED method should call the

simulation program occasionally to collect information at new data/validation points in its

iterations.

332

Start of Sequential
Metamodeling

A. Point Generator

Design of classical
experiments

B. Simulation
Programs

C. Experiments Analyzer
Development of

regression models; factor
screening

D. SEED
Development of

accurate kriging and
MARS metamodels

Acceptable
Metamodels

Start of Sequential
Metamodeling

Design Space Reduction:
Elimination of

Unimportant Factors

Acceptable
Metamodels

SEED: Sequential
Experimental Design

with Kriging and MARS

Figure 5.40 Framework of Sequential Metamodeling (I)

Figure 5.41 Framework of Sequential Metamodeling (II)

333

The approach for sequential metamodeling helps answer R.Q.4.2 by using

different types of metamodels according to different requirements along the design

timeline. R.Q.3.2 is also answered in that the RS metamodels are used to help reduce the

design space by screening out unimportant design variables. To answer R.Q.3.2

completely, a future work is to develop approaches to reduce the ranges of the design

variables.

The approach of sequential metamodeling is introduced and illustrated in Figure

5.40 and Figure 5.41 in this section. Note that in this study we do not consider multiple

responses; the extension of this approach to multi-response problems is easy in cases

where we have clear ideas on the relative importance of each response. In Section 5.4.2,

we will apply this approach in an engineering problem. Further applications of this

approach are to be presented in following chapters with more complicated real-world case

studies.

5.5 APPLICATION OF SEQUENTIAL METAMODELING: DEVELOPMENT
OF METAMODELS IN DESIGNING A PRESSURE VESSEL

In this section, we use the example of design of pressure vessels to illustrate the

sequential metamodeling approach as described in Section 5.4. This example is taken

from (Li and Chou, 1994; Sandgren, 1990) with some modifications. The cylindrical

pressure vessel is shown in Figure 5.42. The shell is made in two halves of rolled steel

plate which are joined by two longitudinal welds. Available rolling equipment limits the

334

length of the shell to 20 ft. The end caps are hemispherical, forged, and welded to the

shell. All welds are single-welded butt joints with a backing strip. The material is carbon

steel ASME SA 203 grade B.

There are three design variables – radius (R) and length (L) of the cylindrical

shell, and the thickness (T) of the cylindrical shell and spherical head, which have the

following ranges of interest:

10 in. ≤ R ≤ 50 in.

10 in. ≤ L ≤ 100 in.

0.9 in. ≤ T ≤ 1.1 in.

R

1 T h

R

L

Figure 5.42 Pressure Vessel

The design objectives are to maximize the tank volume and minimize total system

cost which is a combination of welding, material, and forming costs. The tank volume is

written as:

335

32

3

4
. RLRVol ππ += (5.3)

The total system cost is given by:

 RLTRRLCost 84.191661.37781.16224.0 2 +++= (5.4)

Meanwhile, the constraints which limit the minimal wall thickness T are from the

ASME boiler and pressure vessel codes and are given as:

00193.01 ≥− R (5.5)

000954.0 ≥− RT (5.6)

Another constraint is put on the tank volume:

 Vol – 1.296E5 ≥ 0 (5.7)

Given the ranges of design variables, we see that the first two constraints (Equations (5.5)

and (5.6)) are automatically satisfied, thus we will not consider these constraints in our

design. The third constraint is only related to one of the system responses, Vol. As talked

about earlier, the design goals are also only related to Vol and Cost. Thus, in the

metamodeling process, we will only consider metamodels for two system responses, the

tank volume Vol and the system cost Cost. In Section 5.5.1, we will discuss on how to

develop metamodels for multiple system responses in our framework of sequential DOE

and metamodeling. Appropriate metamodels are then developed in Section 5.5.2, and the

design solution is obtained after exploration of the design space.

336

5.5.1 Development of Metamodels for Multiple Responses in SEED

In our previous studies on SEED, we only considered problems with one

response. In this section, our focus is on cases in which metamodels of multiple

responses are needed in design.

The identification of important design variables in a multi-response problem has

been studied by many researchers, most of which are with response surface metamodels.

The identification of important factors is not the focus of our study in this dissertation; for

case studies in this dissertation, we use the approach as used in (Ortega, 1998) to identify

and screen out unimportant design variables. Our interest is in the design of sequential

experiments and development of sequential metamodels (specifically, MARS and kriging

metamodels in SEED) in multi-response problems.

Suppose there are nr system responses for which we need to develop metamodels

in the design process. When there is only one response, we could easily calculate the

uncertainty associated with the metamodel accuracy following equations and methods

described in Chapter 4. In a multi-response problem, there may be trade-offs in the

allocation of new data points; different responses (and different metamodels with certain

amount of prediction errors) may “drag” candidate points to different directions because

candidate points with large prediction errors in one response may be with small prediction

errors in another response. To take this trade-off into consideration, we need to modify

the equations in SEED as presented in Chapter 4.

Suppose that we could assign the “degrees of importance” for each of the nr

system responses; there are many methods to achieve this, e.g., we could follow the

337

method as used in Selection Decision Support Problems (see, Mistree, et al., 1994). We

use the symbol ρk to represent the importance of the kth system response, which satisfies:

10 ≤≤ kρ , 1
1

=∑
=

rn

k
kρ , and rnk ,...,1= (5.8)

Following the constraints as described in Equation (5.8), we could assign larger

values of ρk to important responses (e.g., safety in some examples). In sequential

experimental design, we should pay more attention to these responses; the accuracy of

metamodels for these responses is given higher priority.

Note that in Chapter 4, we developed two methods to formulate entries in the

adjusted covariance matrix. Core equations for these two methods are Equations (4.27),

(4.28) and (4.34). To reflect the relative importance of different responses in sequential

experimental design in multi-response problems, we modify Equations (4.27) and (4.28)

as below:

()

()

()

=

≠

>>
≤≤

−

≤>
>≤

−

−

−

⋅=

−=

∑∑
==

jiwhen

ji
njni

njni
whenR

njni

njni
whenR

e

e

e

e

R

ji

ji

n

k k

kj

k

n

k k

ki
k

jijiij

rr

1
,

,

,

,1
1

1
1

1 max,

,

1 max,

,

2

2

xx

xx

xx

ρ
λ

ρ
λ

σ

αασσ

(5.9)

and

338

()
()

∏ ∑∑

∏
∏

=
==

=

=

+

+−=

−=

−==

dv
rr

dv

dv

n

m mm

n

k k

kj
k

n

k k

ki
k

n

m mmji

n

m mji
adj

ij

d
e

e

e

e

d

dxxR adj
m

1

2

1 max,

,

1 max,

,2

1

22

1

222

11exp

exp

exp,

θ

θ

θ

ρλρλσ

ββσ

σσσ

(5.10)

Equation (5.9) is used to formulate entries of the adjusted covariance matrix

without changing the correlation function (corresponding to Equation (4.28)), and

Equation (5.10) is to formulate entries of the adjusted covariance matrix through

changing the correlation function (corresponding to Equation (4.32)). Note there are nr

responses and the quantified importance of each response is ρk. emax,k is the maximum

predicted prediction error of the current metamodel for the kth system response, and ei,k is

the predicted prediction error of the current metamodel for the kth system response at

point xi. Meanings of other symbols are the same as those for Equations (4.28) and

(4.32). Note that in Equations (5.9) and (5.10) we use a single correlation function R,

which is not inherit from any previous metamodels. As described in the single-variable,

single-objective examples in Chapter 4 and previous sections of Chapter 5, when there is

only one system response, values of θ from the previous metamodel could be used in

formulation of the covariance matrix in the next sampling iteration. In cases with

multiple responses, to be simple, we decide not to adopt this approach; instead, based on

information from previous metamodels, the designers arbitrarily set the values of θ in the

339

correlation function R when formulating the covariance matrix. To develop a more

effective approach to address the concerns above is a future work for this dissertation.

Comparing Equations (5.9) and (5.10) to Equations (4.28) and (4.34), we see that

the only modification is on the formulations of the adjusting coefficients αi and βi.

Responses with greater weight ρk play more important roles in allocating new data points

because more of their prediction errors are reflected in Equations (5.9) and (5.10). There

may be other formulations of the entries of the adjusted covariance matrix that help

achieve the same goal. In this dissertation, we will only use Equations (5.9) and (5.10);

the study and comparison of possible formulations would be one of the future work of

this dissertation.

With Equations (5.9) or (5.10) we could build the adjusted covariance matrix;

new data points could be identified through maximizing the determinant of the adjusted

covariance matrix. In this dissertation, we develop metamodels for all system responses

with the same set of data points. This simplifies our method and enables us to focus on

the development and verification of the SEED method.

In real-world case studies, it is better to use different sets of data points to develop

metamodels for different system responses. However, to use totally different data points

in metamodeling requires much more computation time and effort than to use the same

set of data points. To solve this problem, a method could be developed based on the

usage of data and validation points. As described before, in sequential experimental

design, we have information of two sets of points, nd data points and nerror validation

points. In each iteration of SEED, a number of new data and validation points are added

340

to increase the accuracy of metamodels. When there are multiple system responses, we

may rearrange points in the large pool of observed points (data points + validation points)

and form different sets of data/validation points for different system responses, i.e., for a

particular observed point, we may use it as a data point for some responses, and as a

validation point for other responses at the same time. An algorithm needs to be

developed to help select the set of data points for a particular system response; one

possible criterion may be the prediction errors – we should use data points so that the

corresponding metamodel’s prediction errors at the rest points (validation points) are

smallest. This is closely related to the cross-validation method. Here we will not go

further in this direction; the development of such an approach is a future work of this

dissertation.

5.5.2 Development of Metamodels for System Responses

In this section, we will develop acceptable metamodels for the two system

responses, Vol and Cost. Following the approach described in Section 5.4 (see Figure

5.40 and Figure 5.41), we will first build RS metamodels and screen out unimportant

design variables, and then accurate metamodels (MARS or kriging) could be developed

with the SEED method.

Since there are only 3 design variables in this example, we need not use the

fractional factorial experiments as initial experimental design. The factorial experiments

with 8 points, as listed in Table 5.25, are used to help develop first-order RS metamodels.

341

The center point will not be observed and used to develop the initial metamodel. The

design variables are scaled to [−1, 1] when building the RS metamodels.

Table 5.25 Initial Experimental Design with 8 Data Points

R L T R_norm L_norm T_norm Vol Cost
10 10 0.9 −1 −1 −1 7330.38 452.33
50 10 0.9 1 −1 −1 602138.60 5335.59
10 100 0.9 −1 1 −1 35604.72 1297.44
50 100 0.9 1 1 −1 1308996.96 8421.34
10 10 1.1 −1 −1 1 7330.38 487.89
50 10 1.1 1 −1 1 602138.60 6224.64
10 100 1.1 −1 1 1 35604.72 1333.00
50 100 1.1 1 1 1 1308996.96 9310.39

Given the information in Table 5.25, we develop first-order regression model as

following:

Vol = 488518 + 467050 R + 183783 L + 0 T (5.11)

Cost = 4108 + 3215 R + 983 L + 231 T (5.12)

More details could be found in Appendix B. As introduced in Chapter 2, widely

used statistics in Response Surface Methodology (RSM), like MSE, F-statistics, etc., are

not suitable in deterministic applications with computer experiments because of the lack

of random errors. Only values of R-sq and adjusted R-sq could give some verification of

model adequacy, and often this measure is not sufficient (Simpson, et al., 1997). In this

example, the values of R-sq and adjusted R-sq for the metamodel of Vol are 89.7% and

82.1%, and those for the metamodel of Cost are 96.9% and 94.6%, respectively. This

342

shows that the first-order RS metamodels in Equations (5.11) and (5.12) are somewhat

“accurate”; thus we are confident to use it to identify and screen unimportant design

variables.

We notice that the design variable T has no influence in the metamodel of Vol (the

coefficient of T in Equation (5.11) is zero), and much smaller effect in the metamodel of

Cost. The coefficient of T in Equation (5.12) is about 1/4 and 1/15 of those of R and L.

The main effects plot is shown in Figure 5.43, in which we see clearly that the design

variable T has little influence on the response Cost. Values of t-ratio and p of Cost (see

Appendix B) give some reference on how importance a design variable is. The p-value

for T in Cost is 0.484, which is not small in a [0,1] range, and much larger than those for

R and L, which are 0.0 and 0.031, respectively. The t-ratio for T in Cost is 0.77, which is

much smaller than those for R and L, which are 10.73 and 3.28, respectively. Since a

small p-value and a large t-ratio imply significant influence of the corresponding design

variable on a response, we see that the design variable T has smaller influence on Cost

than R and L do. To decide whether T is unimportant or not, we need to set a confidence

level and perform mathematical tests as used in RSM or ANOVA (Analysis of

Covariance). However, these tests may not be appropriate in deterministic applications

which have no random errors. Thus in this example we will not do mathematical tests.

343

T LR

7 0 0 0

5 5 0 0

4 0 0 0

2 5 0 0

1 0 0 0

C
os

t

Figure 5.43 Main Effects Plot – Means for Cost

Based on our observations above, the design variable T is likely to be unimportant

since it has no influence on Vol and little influence on Cost. A first-order RS metamodel

of Cost is developed without the design variable T and shown in Equation (5.13); more

details of this metamodeling are presented in Appendix B. Values of R-sq and adjusted

R-sq for this RS model are 96.5% and 95.1%, respectively, which are almost the same as

those for Equation (5.12). This also implies that the design variable T has little effects on

Cost.

Cost = 4108 + 3215 R + 983 L (5.13)

344

In future processes of metamodeling and design space exploration, effects from

the design variable T are omitted and a constant value should be assigned to T. In RSM,

an unimportant design variable is usually set at the center of its factor range (i.e., a value

of zero in the [−1,1] interval). However, in sequential experimental design, in order to

save computation time and effort on simulation, we should keep as many current

observed points as possible. If the normalized value of the design variable T is set as

zero, none of the current observed points could be used in future metamodeling process.

Thus, we should set the normalized value of T as either 1 or −1; in this way we are able to

keep 4 observed data points for future use. In Figure 5.43 we see that the main effect of T

on Cost is positive, and our design goal is to minimize Cost, so we should set the

normalized value of T at its lower band −1 (or say, the value of T is set as 0.9in.) to help

obtain smaller values of Cost. Thus, the first 4 data points in Table 5.25 will be kept in

future metamodeling processes.

After building first-order RS metamodels and screening out unimportant design

variables, we could either build higher-order RS metamodels (more data points are

needed to realize CCD experiments) or go directly to the next step in Figure 5.41, the

Sequential Exploratory Experimental Design. In this example, since the actual response

functions (see Equations (5.3) and (5.4)) are not highly nonlinear, second-order RS

metamodels should be acceptable for design space exploration. However, in order to

illustrate our sequential experimental design and metamodeling approach, we decide not

345

to develop second-order RS metamodels and go directly to the SEED process to develop

kriging or MARS metamodels for the system responses Vol and Cost.

As a reference, 3-D plots of Vol and Cost with respect to the design variables R

and L are presented in Figure 5.44. In Figure 5.44 we see that since the actual function of

Vol and Cost are no more than cubic functions, the exact response surfaces are not highly

nonlinear. The response surface of Cost is more flat than that of Vol because the Cost is

calculated with a second-order function while Vol is calculated with a third-order

function. Our next goal in metamodeling is to develop acceptable metamodels to reflect

the actual response surfaces in Figure 5.44.

Figure 5.44 Actual Responses of Volume and Cost

In this example, besides the initial experiments with 4 data points and 4 validation

points, we plan to add in 4 more data points and 2 more validation points. Thus finally

we will have 14 observed points. Similar to our previous examples, to be simple, we will

not use the accuracy of metamodels as stopping criteria in the SEED sampling process.

346

Iteration I – Step 1: Initial Experimental Design. As discussed in Chapter 4,

there are many ways to design the initial experiments in SEED. In this example, since we

already observed responses at points when developing RS metamodels, we will use these

points as our initial experimental design. As discussed earlier, 4 data points could be kept

and used in SEED, as listed in Table 5.26. Note that since the design variable T has been

identified as an unimportant factor and will be set as 0.9 inch in all steps in the SEED

method. Note that in kriging and MARS metamodeling in SEED, we normalize design

variables to [0,1].

Table 5.26 Initial Experimental Design with 4 Data Points

R L R_norm L_norm Vol Cost
10 10 0 0 7330.38 452.33
50 10 1 0 602138.60 5335.59
10 100 0 1 35604.72 1297.44
50 100 1 1 1308996.96 8421.34

Iteration I – Step 2: Simulation and Initial Metamodel of Responses. Kriging

metamodels are developed based on the information in Table 5.26. For the kriging

metamodel of Vol, we got θ1=79.44092 and θ2=0.59025. For the kriging metamodel of

Cost, we got θ1=77.00927 and θ2=0.28594. In this study, if not specifically pointed out,

the symbol θ1 always corresponds to the design variable R, and θ2 corresponds to the

design variable L. The kriging metamodels are illustrated in Figure 5.45.

347

Figure 5.45 Initial Kriging Metamodel for Volume and Cost

Iteration I – Step 3: Identification of New Validation Points. In this step we

need to identify 4 validation points. In the first iteration, we only have information from

data points and the initial metamodel. Without previous information on metamodel

validation in this step, we will add in new points that are as far from current points as

possible. Maximum entropy sampling is directly applied without adjustment to the

covariance matrix to help identify the validation points. Values of θ in the correlation

function R are set as 20 in formulating the covariance matrix. New validation points are

listed in Table 5.27.

Note that in Table 5.27 the validation points are not strictly symmetrical to the

center point of the design space because of small computational errors in the calculation

and optimization of determinants of the covariance matrix. Also, similar to the single-

variable example in Chapter 4, in this example, there should be another set of validation

points that has the same value of determinant, i.e., are “equally” good in the optimization

348

of determinants of the covariance matrix. That set of validation points could be easily

obtained by switching the values for the two design variables, R and L. In Chapter 4, we

have shown that the SEED method is robust to the selection of points in each step, i.e., no

matter which set of points are selected when there are multiple choices, the designers are

assured to get acceptable metamodels after multiple iterations. Thus, in this section, we

will only consider the case with one possible set of validation points in this step, i.e., the

points listed in Table 5.27.

Table 5.27 Four New Validation Points Added in Iteration I

R L R_norm L_norm Vol Cost
30.036 10.108 0.5009 0.0012 142153.31 2260.6
18.968 55.225 0.2242 0.5025 91006.7 1778.9
41.448 55.081 0.7862 0.5009 595538.3 5166.86
29.984 99.982 0.4996 0.9998 395307.47 4216.03

Iteration I – Step 4: Metamodels of Prediction Errors. In this step, prediction

errors at both data and validation points are used to develop two metamodels to predict

prediction errors for the two system responses across the design space. The prediction

errors at data points are zero; prediction errors at validation points are listed in Table

5.28.

Table 5.28 Prediction Errors at Validation Points in Iteration I

R L R_norm L_norm Vol_err Cost_err
30.036 10.108 0.5009 0.0012 346364.4 1616.075
18.968 55.225 0.2242 0.5025 387949.3 2031.313
41.448 55.081 0.7862 0.5009 -93268.6 -1195.64
29.984 99.982 0.4996 0.9998 93210.2 -339.355

349

We first developed metamodels of prediction errors with MARS, as illustrated in

Figure 5.46. As mentioned in Section 5.3, since MARS metamodels smooth the data,

when developing MARS metamodels, to be safe it is better to check whether they have

big problems in prediction at observed points (though usually the prediction errors of

MARS at observed points are very small). In this case, we found that the MARS

metamodel of prediction errors for the system response Vol is not working as expected.

The prediction error at point [1,1] should be about zero since it is one of the data points

listed in Table 5.26, while in Figure 5.46 we see that the predicted error at [1,1] with the

MARS metamodel is around –900,000. The difference between actual and predicted

values is so large that we could not trust the MARS metamodel of prediction errors for

Vol as illustrated in the left plot of Figure 5.46. A kriging metamodel of prediction errors

for Vol is developed and illustrated in Figure 5.47. For this kriging metamodel, we got θ1

= 99.81484 and θ2 = 0.52487.

Figure 5.46 MARS Metamodels of Prediction Errors in Iteration I

350

Figure 5.47 Kriging Metamodel of Prediction Errors in Iteration I

As for the MARS metamodel of prediction errors for Cost, we do not observe any

abnormal features. Thus, in future steps of SEED, we will use the MARS metamodel of

prediction errors for Cost as illustrated in the right plot of Figure 5.46, and the kriging

metamodel of prediction errors for Vol as illustrated in Figure 5.47. The maximum

absolute predicted prediction errors are emax,vol ≈ 370000, and emax,cost ≈ 6290.

Iteration I – Step 5: Metamodel Validation. This step is skipped since we do

not use the accuracy of metamodels as the stopping criterion of the SEED method.

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix. To get

more accurate metamodels, we decide to add in nnew = 2 data points. The 6×6 adjusted

covariance matrix is formulated following Equation (5.9). Values of θ’s in the

351

correlation function are set as 20. The two responses, Vol and Cost, are considered to be

equally important, i.e., ρvol = ρcost = 0.5. The value of λ is set as 2.

To realize the formulation of adjusted covariance matrix with multiple responses,

the FORTRAN program used in Chapter 4 is modified and presented in Appendix B.

Iteration I – Step 7: Identification of New Data Points. In this step, by

maximizing the determinant of the adjusted covariance matrix as developed in the

previous step, two possible new data points are identified and listed in Table 5.29. This is

done in iSIGHT; the picture of task organization of this step in iSIGHT is illustrated in

Appendix B.

Table 5.29 Two New Data Points Added in Iteration I

R L R_norm L_norm Vol Cost
30.036 79.102 0.5009 0.7678 337736.41 3768.84

30 28.387 0.5 0.2043 193359.69 2655.38

Iteration I – Step 8: Updated Metamodels of Responses. Now we have 6 data

points, as listed in Table 5.26 and Table 5.29. Two new kriging metamodels are

developed with information from these 6 data points, and illustrated in Figure 5.48. For

the kriging metamodel of Vol, we got θ1=1.43075 and θ2=0.37732. For the kriging

metamodel of Cost, we got θ1=0.17743 and θ2=0.06426. In Figure 5.48 we see that

metamodels for both system responses are more accurate than the ones with 4 data points.

352

Figure 5.48 Updated Metamodels of Responses with 6 Data Points

Iteration II – Step 3: Identification of New Validation Points. In this step, we

need to add in 2 new validation points. Two kriging metamodels are developed for Vol

and Cost based on information from 4 validation points. For the kriging metamodel of

Vol, we got θ1=99.60797 and θ2=99.22609. For the kriging metamodel of Cost, we got

θ1=3.17433 and θ2=0.56250. Plots of these two metamodels are illustrated in Figure

5.49.

Prediction errors of these two metamodels at 6 data points and 4 validation points

are calculated and listed in Table 5.30. Two MARS metamodels of prediction errors are

then developed with information at 6 data points and 4 validation points, and illustrated

in Figure 5.50. From Figure 5.50 and Table 5.30 we see that the MARS metamodel of

prediction errors for Vol does not perform well; the predicted prediction errors at four

validation points are far from zero (since validation points are used to develop kriging

metamodels of responses in this step, prediction errors at these points should be zero).

353

The MARS metamodel of prediction errors for Cost works well. This suggests that we

should not use MARS metamodel to predict prediction errors for Vol in this step. A

kriging metamodel is developed to calculate prediction errors for Vol, as illustrated in

Figure 5.51. For this kriging metamodel, we got θ1=99.93684 and θ2=2.00708.

Figure 5.49 Kriging Metamodels of Responses Developed with 4 Validation Points in
Iteration II – Step 3

Figure 5.50 MARS Metamodels of Prediction Errors Developed with 6 Data Points
and 4 Validation Points in Iteration II – Step 3

354

Table 5.30 Prediction Errors of MARS Metamodels at Data and Validation Points in
Iteration II – Step 3

R L R_norm L_norm Vol_err Cost_err
10.00 10.00 0 0 134822.93 1808.27
50.00 10.00 1 0 -511131.90 -3556.69
10.00 100.00 0 1 559933.58 3869.41
50.00 100.00 1 1 -913689.49 -4205.31
30.04 79.10 0.5009 0.7678 -31268.38 67.38
30.00 28.39 0.5 0.2043 109907.60 -35.50
30.04 10.11 0.5009 0.0012 -103.25 -0.73
18.97 55.23 0.2242 0.5025 -5946.40 -2.20
41.45 55.08 0.7862 0.5009 -8028.14 -1.94
29.98 99.98 0.4996 0.9998 -8582.95 -0.24

Figure 5.51 Kriging Metamodel of Prediction Errors for Volume in Iteration II –
Step 3

355

To identify 2 new validation points, a 12×12 covariance matrix is built, with the

first 6 rows and columns corresponding to the data points, the 7th to 10th rows and

columns corresponding to the validation points, and the last two rows and columns

corresponding to the candidate points. Then the 12×12 adjusted covariance matrix is

formulated following Equation (5.9). Values of θ’s in the correlation function are set as

20. The two responses, Vol and Cost, are considered to be equally important, i.e., ρvol =

ρcost = 0.5. The value of λ is set as 2. By maximizing the determinant of this adjusted

covariance matrix, 2 new validation points are identified and listed in Table 5.31.

Table 5.31 Two New Validation Points Added in Iteration II

R L R_n L_n Vol Cost
17.48 28.15 0.1871 0.2017 49424.63 1231.57
42.38 83.39 0.8096 0.8154 789523.87 6179.38

Iteration II – Step 4: Metamodels of Prediction Errors. Prediction errors of

the updated kriging metamodels (Figure 5.48) are zero at data points. Prediction errors at

the 6 validation points are listed in Table 5.32. The predicted values of responses are

calculated with updated kriging metamodels in Figure 5.48. Note that some of the

predicted values are negative, which is apparently wrong since both Vol and Cost should

have positive values.

356

 Table 5.32 Prediction Errors at Validation Points

R_n L_n Vol Cost Vol_pred Cost_pred Vol_err Cost_err
0.5009 0.0012 142153.31 2260.60 171500.83 2347.96 29347.53 87.36
0.2242 0.5025 91006.70 1778.90 -2617.04 1643.15 -93623.74 -135.76
0.7862 0.5009 595538.30 5166.85 686754.27 5184.76 91215.97 17.90
0.4996 0.9998 395307.47 4216.03 415060.77 4297.58 19753.30 81.55
0.1871 0.2017 49424.63 1231.57 -30331.33 572.18 -79755.96 -659.40
0.8096 0.8154 789523.87 6179.38 1131853.75 7483.56 342329.88 1304.19

Two MARS metamodels of predicted errors are developed with information of

prediction errors at 6 data points and 6 validation points. These two metamodels are

illustrated in Figure 5.52; more details are presented in Appendix B.

Figure 5.52 MARS Metamodels of Prediction Errors in Iteration II

Similar to what we did in Iteration I, here we need to check whether these MARS

metamodels work properly at data and validation points; we expect the predicted

prediction errors from these metamodels to be very close to those “true” values that we

observed. The true and predicted prediction errors are listed in Table 5.33. In Table 5.33

357

we see that the MARS metamodel of prediction errors for Cost does not perform well; the

difference between actual and predicted values is very large at several points, e.g., there is

a difference of about 1600 at (0.8096, 0.8154). The MARS metamodel of prediction

errors for Vol performs not well; the difference between actual and predicted values is

very large (e.g., a difference of 4627 at (0.5009,0.7678) where the prediction error should

be zero), though this difference may seem to be small compared to the huge range of

prediction errors of Vol (from around –86274 to +94319). Thus, two kriging metamodels

of prediction errors for Vol and Cost are developed and illustrated in Figure 5.53. For the

kriging metamodel of prediction errors for Vol, we got θ1=99.99965 and θ2=6.49084. For

the kriging metamodel of prediction errors for Cost, we got θ1=99.99659 and

θ2=17.19953.

Table 5.33 True and Predicted Prediction Errors at Data/Validation Points

R_n L_n Vol_err Cost_err Vol_err_pred Cost_err_pred
0 0 0 0 391.61 1.23
1 0 0 0 -597.57 2.66
0 1 0 0 -363.31 -0.47
1 1 0 0 598.44 -2.64

0.5009 0.7678 0 0 -4627.24 2.76
0.5 0.2043 0 0 -1969.90 -5.70

0.5009 0.0012 29347.53 87.36 30193.33 83.65
0.2242 0.5025 -93623.74 -135.76 -86273.75 -141.00
0.7862 0.5009 91215.97 17.90 94318.65 23.17
0.4996 0.9998 19753.30 81.55 19181.00 85.10
0.1871 0.2017 -79755.96 -659.40 -32350.83 280.32
0.8096 0.8154 342329.88 1304.19 -25824.06 -283.06

358

Figure 5.53 Kriging Metamodels of Prediction Errors in Iteration II

Figure 5.54 Contour Plots of Metamodels of Prediction Errors for Vol and Cost

Contour plots of kriging metamodels of prediction errors for Vol and the MARS

metamodel of prediction errors for Cost are illustrated in Figure 5.54. These two

metamodels are used in future steps to help formulate the adjusted covariance matrix.

The maximum absolute prediction errors are emax,vol ≈ 93700 and emax,cost ≈ 258.

Iteration II – Step 5: Metamodel Validation. This step is skipped.

359

Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix. Two

new data points are to be added in this iteration. Since this is the last step in this SEED

process, a 14×14 adjusted covariance matrix is built following Equation (5.8). Values of

θ’s in the correlation function are set as 20. The two responses, Vol and Cost, are

considered to be equally important, i.e., ρvol = ρcost = 0.5. The value of λ is set as 2.

Iteration II – Step 7: Identification of New Data Points. In this step, by

maximizing the determinant of the adjusted covariance matrix, two possible new data

points are identified and listed in Table 5.34.

Table 5.34 Two New Data Points Added in Iteration II

R L R_norm L_norm Vol Cost
18.08 82.19 0.2021 0.8021 109213.48 2067.43
41.97 27.96 0.7993 0.1996 464482.31 4470.92

Iteration II – Step 8: Updated Metamodels of Responses. Now we have 8 data

points and 6 validation points as listed in Table 5.35. Since we already got 14 observed

points, the SEED process will stop in this iteration. Final metamodels of Vol and Cost

are developed based on the information in Table 5.35; these metamodels are illustrated in

Figure 5.55. For the kriging metamodel of Vol, we got θ1=0.19587 and θ2=0.00136. For

the kriging metamodel of Cost, we got θ1=0.00226 and θ2=0.00122. As a comparison,

two MARS metamodels are also developed for Vol and Cost, and illustrated in Figure

5.56.

360

Table 5.35 Observed Points

R L R_norm L_norm Vol Cost
10.00 10.00 0 0 7330.38 452.33
50.00 10.00 1 0 602138.60 5335.59
10.00 100.00 0 1 35604.72 1297.44
50.00 100.00 1 1 1308996.96 8421.34
30.04 79.10 0.5009 0.7678 337697.71 3768.84
30.00 28.39 0.5 0.2043 193359.69 2655.38
18.08 82.19 0.2021 0.8021 109213.48 2067.43
41.97 27.96 0.7993 0.1996 464482.31 4470.92
30.04 10.11 0.5009 0.0012 142153.31 2260.60
18.97 55.23 0.2242 0.5025 91006.70 1778.90
41.45 55.08 0.7862 0.5009 595538.30 5166.85
29.98 99.98 0.4996 0.9998 395307.47 4216.03
17.48 28.15 0.1871 0.2017 49424.63 1231.57
42.38 83.39 0.8096 0.8154 789523.87 6179.38

Figure 5.55 Final Kriging Metamodels for Vol and Cost

361

Figure 5.56 Final MARS Metamodels for Vol and Cost

In Figure 5.55 we see that the kriging metamodel for Vol works well, while that

for Cost is not acceptable. The Predicted values of Cost with the kriging metamodel are

all negative, which is far away from actual values. As discussed in Section 5.2.1 the

kriging algorithm may cause this problem. We should not use the kriging metamodel to

predict Cost in our later stages of this pressure vessel design. As to the MARS

metamodels, we see that the MARS metamodel does not work well in prediction of Vol

because the predicted values at observed points do not match with the actual values;

however, it works well when predicting values of Cost. Thus, in this problem, we will

use the kriging metamodel to predict responses of Vol and the MARS metamodel to

predict responses of Cost. Contour plots for these two metamodels are illustrated in

Figure 5.57. These two metamodels will be used in design space exploration for

solutions that satisfy design constraints and achieve design goals as described at the

beginning of Section 5.5.

362

Figure 5.57 Contour Plots of Final Metamodels for Vol and Cost

The approach of sequential metamodeling and its integration with the SEED

method are illustrated in this section. The initial experiments and RS metamodels are

used to identify and screen out the unimportant design variable, the wall thickness T.

Then the SEED method is applied and metamodels of system responses are updated as

new data points are added in. Both kriging and MARS are used in developing the

metamodels of responses and prediction errors in applying SEED. A very interesting

observation is that sometimes the MARS technique does not work well because it does

not necessarily predict accurately at observed points. In real-world applications,

designers could observe this problem by examining the difference between actual and

predicted values at observed points; in such cases, kriging may be used as a remedy to

develop the metamodel that met difficulty with the MARS technique. This will be

summarized and further discussed later.

363

5.5.3 Comparison of Metamodels from SEED and Single-Stage Experiments
Designs

To verify the strategy of sequential experimental design, we need to compare the

above results to that obtained with metamodels developed in a single-stage experimental

design. Two single-stage experimental designs are studied, one of which is Latin

Hypercubes, and the other is maximum entropy sampling as stated in Currin, et al., 1991

(without adjusting the covariance matrix); both of them have 14 data points, as listed in

Table 5.36 and Table 5.37. Kriging and MARS metamodels for both Vol and Cost are

developed with information from Table 5.36 and Table 5.37. For each experimental

design and each response, the more accurate metamodel is selected. As a result, MARS

metamodels of Vol and Cost developed with information from Table 5.36, and kriging

metamodel of Vol and Cost developed with information from Table 5.37, are selected and

used in our comparisons in this section.

Table 5.36 Single-Stage Maximum Entropy Sampling with 14 Data Points

R_n L_n R L Vol Cost
0 0 10.00 10.00 7330.38 452.33
1 0 50.00 10.00 602138.60 5335.59
0 1 10.00 100.00 35604.72 1297.44
1 1 50.00 100.00 1308996.96 8421.34

0.5009 0.0012 30.04 10.11 142153.31 2260.60
0.2242 0.5025 18.97 55.23 91006.70 1778.90
0.7862 0.5009 41.45 55.08 595538.30 5166.85
0.4996 0.9998 29.98 99.98 395307.47 4216.03

0 0.3141 10.00 38.27 16211.35 717.78
1 0.6927 50.00 72.34 1091779.39 7473.08
0 0.69 10.00 72.10 26839.67 1035.46
1 0.3067 50.00 37.60 818932.06 6281.99
0 0.5022 10.00 55.20 21529.75 876.74

0.6953 0.2135 37.81 29.22 357677.27 3818.25

364

Table 5.37 Latin Hypercubes with 14 Data Points

R_n L_n R L Vol Cost
0.0 0.9231 10.00 93.08 33430.42 1232.45

0.07692 0.8462 13.08 86.16 55652.71 1507.12
0.1538 0.7692 16.15 79.23 82586.28 1785.27
0.2308 0.0 19.23 10.00 41416.08 1124.82
0.3077 0.4615 22.31 51.54 127071.89 2117.67
0.3846 0.3846 25.38 44.61 158823.44 2380.87
0.4615 1.0 28.46 100.00 351019.21 3948.80
0.5385 0.3077 31.54 37.69 249220.62 3076.95
0.6154 0.1538 34.62 23.84 263500.23 3193.52
0.6923 0.6154 37.69 65.39 516135.63 4762.26
0.7692 0.2308 40.77 30.77 444496.07 4346.80
0.8462 0.5385 43.85 58.47 706271.52 5727.41
0.9231 0.07692 46.92 16.92 549847.47 5002.41

1.0 0.6923 50.00 72.31 1091496.64 7471.85

With information at data points in the single-stage maximum entropy sampling

(Table 5.36), we develop the MARS metamodels of Vol and Cost. With information at

data points in the Latin Hypercube design (Table 5.37), we develop the kriging

metamodel of Vol; the parameters are θ1=0.03776 and θ2=0.00252. A MARS metamodel

is developed to predict values of Cost with information from the Latin Hypercube design.

To compare the accuracy of metamodels from different experimental designs, the

values of NRMSE and NMAX are calculated and listed in Table 5.38 based on Equations

(2.7) and (2.9). As introduced in Chapter 2, the smaller the values of NRMSE and

NMAX, the more accurate the corresponding metamodel is. In the first row of Table 5.38

we see that metamodels for two system responses, Vol and Cost, are studied. In the

second row, designs of experiments (DOE) used are Sequential Exploratory Experimental

365

Design (SEED), single-stage maximum entropy sampling (S-MES), and Latin

Hypercubes (LH).

Table 5.38 Accuracy of Metamodels from Different Experimental Designs

Response Vol Cost
DOE SEED S-MES LH SEED S-MES LH

NRMSE 0.00009 0.0395 0.0039 0.0058 0.0295 0.0058
NMAX 0.00002 0.1055 0.0051 0.0262 0.0943 0.0262

In Table 5.38 we see that metamodels from SEED is most accurate since they

have smallest NRMSE and NMAX values for Vol and Cost. Single-stage maximum

entropy sampling performs better in modeling Cost than in modeling Vol; it performs

worst among these three methods because it has the largest values of NRMSE and

NMAX for both Vol and Cost. The Latin Hypercubes design performs better than single-

stage maximum entropy sampling, but worse than the SEED method.

Another issue to be noticed in comparison is the computation and handling

expense associated with SEED and the single-stage experimental designs. To design

Latin Hypercube experiments is very fast and simple. The SEED method requires a lot of

time, most of which is spent on human interference – handling input and output files,

transferring information, making decisions, etc. Maximum entropy sampling is very time

consuming when there are many design variables and/or when we want to allocate a lot of

data points in one step. This is the reason why the authors in (Currin, et al., 1991)

developed a method in which data points are identified “sequentially”, in which

information from previous data points is not used in identifying new points (this is why

366

we still call that method a “single-stage” method, as explained in Chapter 4). The SEED

method is similar to the method in (Currin, et al., 1991) except that information of

prediction errors is used in the metamodeling process. The computation expense of

SEED is slightly higher than that of the S-MES method, but the difference should not be

very significant. The handling expense (due to human interference) of SEED is much

higher than that of the S-MES method because human decisions have to be made in the

metamodeling process, and human activities are used in transferring information between

programs, developing metamodels of prediction errors, etc. The handling expense of

SEED could be reduced a lot by building SEED in a computer framework in which

transference of information, development of metamodels, etc., are done automatically

with the supervision of human beings; human decisions are still needed in some steps but

time spent on the decision-making could be minimized by providing a good human-

computer interface.

The comparison above shows that with equal number of data points, the SEED

method helps achieve more accurate metamodels than single-stage experimental designs

do. The reason is that in SEED, information from validation points is taken into account

during metamodeling, while in single-stage designs information from validation points is

wasted because it is collected and used only after the metamodels are developed.

367

5.5.4 Exploration of Solutions for the Design of Pressure Vessels

A compromise Decision Support Problem (C-DSP) is built for the design of

pressure vessels; design requirements and goals are described at the beginning of Section

5.5. The mathematical formulation of the C-DSP is presented in Figure 5.58. As

described in Section 5.5.2, the factor T is identified as unimportant and set as 0.9 inch in

metamodeling; thus, in C-DSP and design space exploration, it is not regarded as a design

variable but a constant with the value of 0.9 inch.

There are three system constraints. The first two system constraints, g1(x) and

g2(x), are automatically satisfied in the given design space, as we described at the

beginning of Section 5.5; thus in design space exploration, we only need to consider the

constraint of g3(x). The metamodel of response for Vol as developed in Section 5.5.2

could be used in g3(x).

There are two design goals, one is to maximize the tank volume, and the other is

to minimize the cost. The metamodels developed in Section 5.5.2 are used in the C-DSP

to replace the simulation code (in this example, Equations (5.3) and (5.4)). In this

example, the usage of metamodels does not help reduce computation time and effort;

actually, it increases the computation time because the kriging metamodel is more

complicated than the simple equations for system responses. However, this is a

demonstration of our sequential experimental design and metamodeling approach; saving

on computation time and effort is not a goal in this section. In this example, since we

want to maximize the tank volume and minimize the cost, we use different formulations

of the systems goals. We set Voltarget = 700,000, and Costtarget = 3000.

368

Figure 5.58 Mathematical Formulation of C-DSP for Pressure Vessel Design

In Figure 5.58, we show the Archimedean deviation function in which both design

goals are equally weighed. To obtain more general knowledge, we may need to study

different design scenarios, e.g., Archimedean deviation functions with unequally weighed

design goals, preemptive deviation functions, etc. However, in this study, we will only

Given:
System variables R, L, and their ranges.
System constraints and goals.
T = 0.9 inch.

Find:
• Values of independent system variables: Cylinder radius, R, Cylinder

length, L
• Values of deviation variables: di

-, di
+, i = 1, 2

Satisfy:

• System Constraints:
g1(x) = 1 - 0.0193R ≥ 0
g2(x) = T - 0.00954R ≥ 0
g3(x) = Vol(x) − 1.296E5 ≥ 0

• System Goals:
 To maximize Vol:
 Vol (x) / Voltarget + d1

- − d1
+ = 1

 To minimize Cost:
 Costtarget / Cost(x) + d2

- − d2
+ = 1

• Bounds:
10 in. ≤ R ≤ 50 in.
10 in. ≤ L ≤ 100 in.

 di
-, di

+
 ≥ 0, di

-·di
+ = 0; i = 1, 2

Minimize:
Preemptive deviation function (lexicographic minimum):

Z = w1*d1
- + w2* d2

-, where w1 = w2 = 0.5

369

explore for solutions with the given Archimedean deviation function since our focus here

is on the sequential experimental design and metamodeling process, not the acquiesce of

solutions for the pressure vessel design. Given the formulation of design goals in the

compromise DSP in Figure 5.58, d1
+ and d2

+ do not play roles in the Archimedean

formulation because their values are always zero before the design goals are achieved.

Solving the compromise DSP in Figure 5.58, we got the solution as presented in

Table 5.39. Note that this solution is obtained with metamodels developed in Section

5.5.2. As a comparison, the compromise DSP is re-solved with simulations, i.e.,

theoretical mathematical functions in Equations (5.3) and (5.4); no metamodel is used in

this formulation. The result is also listed in Table 5.39; note that this result could be

regarded as the “true” solution based on given design requirements and goals. The

compromise DSP are also solved with metamodels developed with single-stage

experimental designs as described in Section 5.5.3.

Table 5.39 Design Solutions Obtained by Solving the C-DSP

 R L T Vol Cost Vol_pred Cost_pred D1
− D2

−

C-DSP with
Simulation

44.746 51.625 0.9 699999.90 5693.05 − − 0.00 0.4730

C-DSP with
Metamodels
from SEED

44.75 51.62 0.9 700026.14 5693.18 699992.09 5640.52 0.00 0.4681

C-DSP with
Metamodels
from S-MES

44.76 48.86 0.9 683012.87 5609.31 699996.86 5616.18 0.00 0.4658

C-DSP with
Metamodels

from LH
46.72 55.32 0.9 806541.79 6203.87 699999.55 6062.94 0.00 0.5052

370

In Table 5.39 we see that solutions from C-DSP with metamodels are close to that

from C-DSP with simulation (the “true” solution), which indicates that the utilization of

sequential experiments and metamodels is effective in finding out the design solutions.

The sequential metamodeling approach described in Section 5.4 is effective; the

application of RS, kriging, and MARS metamodeling techniques is appropriate in the

example problem.

Comparing solutions based on metamodels from SEED, S-MES, and LH, we find

out that the best solution is achieved with the metamodel from SEED, which is very close

(within ±0.01) to the true solution. Metamodels from the Latin Hypercube design

perform worst because its design solution is very far from the “true” solution. The

solution with metamodels from SEED is closest to that obtained with “actual

simulations”; values of responses of Vol and Cost are also not far from those of the “true”

solution. The solution obtained with metamodels from the single-stage maximum

entropy sampling is also very close to the “true” solution. Since the actual response

surfaces are not highly nonlinear or irregular (note that Equations (5.3) and (5.4) are 2nd-

order or 3rd-order questions), difference between solutions from different metamodels is

not very huge. In cases with irregular responses, we expect to achieve more accurate

metamodels and better solutions with the sequential experimental design method.

Metamodels with LH are generally more accurate than those from S-MES (as

presented in Table 5.38), while the solution from metamodels with S-MES is better than

that from metamodels with LH. With the SEED method, we got the most accurate

metamodels and best solutions. This indicates that a more accurate metamodel may not

371

necessarily lead to a better solution, as in the case of LH and S-MES; while with more

accurate metamodels it is more likely that we will achieve better solutions, as in the case

of SEED.

In this chapter, our focus is on studies for R.Q.4, How to utilize different types of

metamodels along the design timeline in accordance with the changing design

information? An approach for sequential metamodeling is developed and illustrated

through studies in Sections 5.2, 5.3, 5.4, and 5.5. This approach is closely related to the

SEED method developed in Chapter 4. In Chapter 6, a new approach is to be developed

to help integrate processes of metamodeling and design space exploration; studies in

Chapter 4 (SEED) and this chapter (the approach of Sequential Metamodeling) will serve

as the foundation of the proposed research. Summaries of research in this chapter and its

connections with studies in future chapters are presented in the following section.

5.6 A LOOK BACK AND A LOOK FORWARD

The research in this chapter is partly based on our studies in Chapter 4. The

SEED method as developed in Chapter 4 serve as an important component in the

approach that is developed in this chapter. Work in this chapter, together with that in

Chapter 4, provides the foundation of studies in the next chapter (Chapter 6), in which an

approach is developed to efficiently explore the design space for design solutions through

the integration of the processes of metamodeling and design space exploration. Chapters

4, 5, and 6 are the core of this dissertation, which provide the methodological basis for

applications in Chapter 7 and 8.

372

In this chapter, our focus is on studies for R.Q.4, How to utilize different types of

metamodels along the design timeline in accordance with the changing design

information? To answer this research question, we posed two sub-research questions, as

listed below:

R.Q.4: How to utilize different types of metamodels along the design timeline in

accordance with the changing design information?

R.Q.4.1: How do different types of metamodels perform in engineering design?

R.Q.4.2: How to select different types of metamodels at different design stages?

R.Q.4.1 is studied and answered in Sections 5.2 and 5.4. A comparison between

kriging and MARS metamodels is done in Section 5.2 with some interesting

observations. The comparison between RS and kriging metamodels has been done in

previous work in (Simpson, 1998) and (Lin, 2000), and comparisons between more types

of metamodels could be a future work of this dissertation. In our studies we observe that

both kriging and MARS have their strong and weak points; kriging metamodels may not

perform appropriately when the properties of the response surface change greatly (i.e.,

highly nonlinear in some regions while flat in others), and MARS metamodels may meet

problems in deterministic applications because they smooth the data and thus the

predicted values at data points may not be accurate. A summary on comparison between

RS, kriging, and MARS metamodels is presented in Table 5.24 in Section 5.4, before the

373

development of the approach for sequential metamodeling. This could be viewed as the

answer to R.Q.4.1.

Based on the studies in Section 5.2, the SEED method is extended in Section 5.3

by utilizing both kriging and MARS metamodels. This helps answer R.Q.4.2. Kriging

and MARS may be appropriate, or, on the other hand, inappropriate, in different

situations; thus we recommend that both be used to develop metamodels in sequential

experimental design and metamodeling. Designers could make decisions only after

building the metamodels and observing their performance. A recommendation on how to

use kriging and MARS metamodels is described in Section 5.3.

R.Q.4.2 is further studied and answered in Sections 5.4 and 5.5, in which an

approach for sequential metamodeling is developed and illustrated with an engineering

example. The framework for the approach of sequential metamodeling is presented in

Figure 5.40 and Figure 5.41 in Section 5.4. In Section 5.5, we modified our SEED

mathematical formulations introduced in Chapter 4 to account for multiple system

responses. An engineering example of pressure vessel design is used to illustrate the

approach of sequential metamodeling introduced in Section 5.4 and the handling of

multiple responses described in Section 5.5.1.

In our studies in Section 5.5, one interesting observation is that MARS

metamodels may work abnormally in response prediction: in some cases the prediction

errors of MARS metamodels at observed points are dramatically large, while in our

previous studies, MARS metamodels used to have very small prediction errors at

observed points though theoretically they do not predict exactly at observed points. In

374

such cases, kriging metamodels are developed to overcome this shortcoming. This

confirms our previous recommendations made in Section 5.3, in which we propose to

develop metamodels with both kriging and MARS techniques and designers could select

appropriate ones in design.

R.Q.4 is answered based on all studies in Sections 5.2, 5.3, 5.4, and 5.5. Our

answer to R.Q.4 is: various types of metamodels could be developed and utilized in the

design process following the approach of sequential metamodeling as described in

Section 5.4 and 5.5.

Our research in this chapter not only helps answer R.Q.4, but also provides some

augments to the SEED method, which is related to R.Q.2:

R.Q.2: How to design sequential computer experiments (how to select data and

validation points sequentially) to get an accurate metamodel?

The approach of sequential metamodeling is developed partly based on the SEED method

(which is developed in Chapter 4); to some extent, it could also be viewed as an extension

of and augment to the SEED method. We propose to use both kriging and MARS

metamodels to handle information from current data/validation points. This is done and

illustrated in Section 5.3 and Section 5.5.

The development of the approach for sequential metamodeling also answers

Research Question 3.2:

375

R.Q.3.2: How to reduce the design space with information from previous

metamodeling and design space exploration?

The usage of RS metamodels at the very early stages of metamodeling helps identify and

screen unimportant design variables. This is described in Section 5.4, and illustrated with

the pressure vessel design problem in Section 5.5. Another way to reduce the design

space is to reduce the ranges of design variables; however, we will not go further on this

research and leave it as a future work for this dissertation.

Research in Chapters 4 and 5, i.e., development of the SEED method and the

approach for sequential metamodeling, provides the foundation for our work in the

following chapter (Chapter 6), in which the Efficient Robust Concept Exploration

Method (E-RCEM) is developed to facilitate efficient metamodeling and design space

exploration through the integration of these two processes. Chapters 4, 5, and 6 form the

core of this dissertation, which provides the methodological foundation of our

applications in Chapter 7.

376

6. 5
CHAPTER 6

THE EFFICIENT ROBUST CONCEPT
EXPLORATION METHOD: INTEGRATION OF

PROCESSES OF METAMODELING AND DESIGN
SPACE EXPLORATION

In this chapter, our focus is on the development of the Efficient Robust Concept

Exploration Method, in which the processes of metamodeling and design space

exploration are integrated. Research questions answered in this chapter are R.Q.3 and

two of its sub-research questions, R.Q.3.1 and R.Q.3.3. After a discussion on current

design and metamodeling processes and the proposal of the integration of these processes

in Section 6.1, Research Question 3.1 is answered in Section 6.2 through the study of

incorporating design constraints in the metamodeling process. This study is further

extended in Section 6.3 where Research Question 3.3 is answered. The Efficient Robust

Concept Exploration Method (E-RCEM), which enables designers to develop

metamodels and get design solutions efficiently and effectively at early design stages

through the integration of metamodeling and design space exploration, is then developed

in Section 6.4. An application of the Efficient Robust Concept Exploration Method is

presented in Section 6.5.

377

6.1 PROCESSES OF METAMODELING AND DESIGN SPACE
EXPLORATION AT EARLY DESIGN STAGES

As introduced in Chapter 2, the purpose of metamodeling is to develop acceptable

metamodels that helps designers integrate multi-disciplinary analysis codes, gain insights

into the relationship between inputs and outputs, and then explore the design space

efficiently for design solutions in later design stages. Metamodeling is a very important

process in early-stage design. Design space exploration is a process in which designers

explore the whole design space for solutions that satisfy design constraints and achieve

design goals; various optimization techniques could be used in this process, and the usage

of metamodels could help save a lot of computation time. Typically, the two processes,

metamodeling and design space exploration, are separated and conducted sequentially in

applications, as illustrated in Figure 6.1.

Process of Design
Space Exploration Metamodeling Process

SEED, Sequential Metamodeling

SolutionsInfo. Simulation:
Experiments

Meta-
models Design Space

Exploration:
Constraints and Goals

Metamodeling:
Development of

Metamodels

Figure 6.1 Traditional Organization of Processes of Metamodeling and Design
Space Exploration

As illustrated in Figure 6.1, given an expensive simulation, usually we should

design experiments, then develop metamodels for system responses based on the

378

information collected at data points. In the SEED method and the sequential

metamodeling approach as described in Chapter 4 and Chapter 5, we design experiments

and develop metamodels in iterations to ensure that acceptable metamodels be acquired.

This is the process of metamodeling. After finishing the metamodeling process, we enter

the process of design space exploration, in which the metamodels developed in the

previous process are used in the exploration of design solutions. System constraints and

goals are considered in the process of design space exploration.

This sequential organization of processes of metamodeling and design space

exploration is widely used in engineering design. For example, in many applications of

Taguchi’s robust design (Taguchi, 1987), physical experiments are first designed and

some statistics, e.g., signal-to-noise ratios, are developed (similar to our concept of

“metamodels”); then the robust design solutions are found by analyzing the signal-to-

noise ratios, which corresponds to the process of design space exploration in Figure 6.1.

In the Robust Concept Exploration Method (Figure 6.2), the sequential application of

metamodeling and design space exploration is apparent: the process metamodeling is

realized in Processors B, C, D, and E, and the process of design space exploration is

realized in Processor F.

One advantage of doing metamodeling and design space exploration sequentially

lies in its simplicity. The framework is clear and designers need only follow steps to get

design solutions, avoiding backward information flows. The objectives in each process

are also very clear: in the metamodeling process, the objective is to build acceptable

metamodels, and in the process of design space exploration, the objectives are to achieve

379

design goals and satisfying design constraints. As a result of this clarification of

objectives and steps, designers’ load is minimized because they need not deal with

tangled design requirements and information flows.

Process of
Metamodeling

Process of Design
Space Exploration

Figure 6.2 The Robust Concept Exploration Method (adapted from Chen, et al.,
1996a)

On the other hand, the sequential organization of processes of metamodeling and

design space exploration also has its disadvantages, as discussed below.

In the sequential organization of processes of metamodeling and design space

exploration, objectives of the two processes need to be clearly defined to ensure the

achievement of good design solutions efficiently and effectively. Since the objective of

380

the metamodel process (to build accurate metamodels) is different from that of the whole

design process (to get design solutions that achieve design goals and satisfy design

constraints), designers need to define the objective of metamodeling very clearly and

carefully. Two questions of importance are: which type of metamodels should be used?

How accurate the metamodels should be? The first question is related to the activities

that designers plan to do in the process of design space exploration, e.g., some type of

metamodels do not perform well in design space exploration of robust solutions (see, Lin,

et al., 1999), while others may be so complicated that it may cost a lot of time and effort

in design space exploration. The second question is still not well addressed in current

literature. It is also related to the first question on types of metamodels. Lin and co-

authors (Lin, et al., 1999) discussed on Local Model Inaccuracy and its effects on the

achievement of design solutions; similar ideas are presented in (Jin, et al., 2001), which

states more on the side of types of metamodels used. Designers have to answer these two

questions and clarify the objective of the metamodeling process before conducting a

successful and efficient design.

It is very possible that designers waste a lot of time, effort, and money on

experiments at infeasible points (points outside of the feasible design space) in the

metamodeling process since design constraints usually have no influence in design of

experiments. Usually, the initial design space used by designers in metamodeling is a

multi-dimensional “hyper cubes” with preset ranges for design variables. Most of current

widely used DOE techniques, e.g., factorial design, Latin Hypercubes, Orthogonal

Arrays, etc., are suitable for such design spaces; they are not suitable for experimental

381

designs in a feasible design space which is usually irregular as a result of the

consideration of various design constraints. Since design constraints are usually not

considered in the metamodeling process, it is very possible that designers spend a great

deal of time and money on experiments at infeasible points.

When there is no design constraint, (or say, the feasible design space is

“regular”), it is still very possible that a lot of time, effort, and money is wasted on

experiments at “unimportant” points. Note that the objective of the early-stage design

process in Figure 6.1 is to achieve a good design solution; points far from this solution

are considered “less important” than those close to the solution. What designers pursue

and eventually obtain in the early-stage design process is only the solution, while to

achieve this solution a lot of time, effort, and money have to be spent on observations at

numerous points in the feasible design space. Among these points some are close to the

design solution, while most others not. Since design goals are not considered in the

metamodeling process (note that there is no information flow from the process of design

space exploration to metamodeling), all points in the design space are considered to be

equally important in achieving design goals, and as a result, it may cost a lot to ensure the

metamodel accuracy in some local regions that are far from the solution – and this is a

waste when we review the design process after obtaining the design solution.

As discussed above, the sequential organization of processes of metamodeling

and design space exploration is inefficient and ineffective in the achievement of design

solutions, especially when the simulation (or physical experiment) is very expensive. To

overcome the discussed shortcomings, we need to develop a method in which the two

382

processes are integrated. To be specific, first we need to integrate the consideration of

design constraints in the metamodeling process, and second we need to integrate the

consideration of design goals in metamodeling; in other words, we can also say that we

should integrate metamodeling in exploring the design space for solutions that achieves

design goals and satisfy design constraints. Another requirement for this integration is

that the developed method should be organized clearly so that designers could follow it

step by step, without getting lost in the complicated information flow which is expected

to come with the integration.

The study of applying design constraints in metamodeling is done in Section 6.2,

and that of applying design goals in metamodeling is done in Section 6.3. The Efficient

Robust Concept Exploration Method (E-RCEM) is then developed and described as a

result of the research in Sections 6.2 and 6.3.

6.2 METAMODELING WITH CONSIDERATION OF DESIGN
CONSTRATINTS

There are basically two types of constraints in design space exploration. One is

the constraint put on design variables, e.g., in the design of pressure vessel in Chapter 5,

we have a constraint associated with the wall thickness T and the radius of the spherical

head R (see Equation (5.6)). The other type of constraints is put on the responses, e.g.,

also in the design of pressure vessel in Chapter 5, a constraint is associated with one of

the responses, Vol (see Equation (5.7)). In examples with constraints only associated

with design variables, the feasible design space is actually clearly defined though

sometimes it is not easy to draw the boundaries. In cases with constraints associated with

383

responses (and metamodels of these responses), the feasible design space could not be

clearly defined in design because of the uncertainty associated with the metamodel; with

current metamodel, the boundary of the feasible design space could be drawn but since

the metamodel is not 100% accurate, this boundary is “vague” with some degree of

uncertainty.

No matter which types of constraints are used in the problem, it is very possible

that the feasible design space is not “hyper cubes” as in most experimental designs.

Classical experiments, e.g., factorial designs, and some space-filling experiments, e.g.,

Latin Hypercubes, are most suitable with regular design spaces that we may regard as

“hyper cubes”. Maximum entropy sampling is still appropriate in dealing with irregular

design spaces; quite a lot research has been done (e.g., see Anstreicher, et al., 1996;

Vandenberghe, et al., 1998; Lee and Williams, 1999; etc.) to address this. The

Constrained D-Optimality Problem (CDOPTP) and the Constrained Maximum-Entropy

Sampling Problem (CMESP) are both fundamental problems in experimental design.

In this section, we will not do or follow the theoretical (mathematical) work on

Constrained Maximum Entropy Sampling. Instead, using the example of design of

pressure vessels in Chapter 5 (with small modifications), we empirically study the

application of the SEED method in designing experiments with two types of constraints.

In our study, the way to consider constraints is intuitive and direct (without complex

mathematical deduction or algorithms); it could be a future work to incorporate previous

results of Constrained Maximum Entropy Sampling in the SEED method.

384

In Section 6.2.1, we will incorporate constraints on design variables in designing

sequential experiments. The constraints on design responses are considered in designing

sequential experiments in Section 6.2.2.

6.2.1 Sequential Experimental Design and Metamodeling with Consideration of
Constraints on Design Variables

In the example of design of pressure vessels in Chapter 5, we identified two

important design variables, R and L; in our studies here, only these two variables are

considered to facilitate simple applications and illustrations. There were two responses

in our studies in Chapter 5, Vol and Cost; in this section, to be simple we only consider

the response of Vol. The original design space in the example in Chapter 5 is very small

and some of the system constraints (Equations (5.5) and (5.6)) are automatically satisfied;

in this section, the original design space is enlarged so that system constraints are active.

The ranges of design variables are:

25 in. ≤ R ≤ 150 in.

25 in. ≤ L ≤ 140 in.

The system response Vol could be calculated (simulated) with the following equation:

32

3
4. RLRVol ππ += (6.1)

Two system constraints are put on design variables:

00193.01 ≥− R (6.2)

000954.0 ≥− RT (6.3)

Since the design variable T is not used in this example, Equation (6.3) will not be

considered in the study. Instead, according to some customers’ requirements (e.g.,

385

assembling compatibility with other equipments, etc.), we may put other constraints on

design variables:

 (6.4) 0.5 0L R− ≥

 (6.5) 1.5 0L R− ≤

One system constraint is put on the response:

 Vol – 1.296E5 ≥ 0 (6.6)

In this section we will only study the incorporation of constraints on design variables in

designing sequential experiments, the constraint in Equation (6.6) will not be considered.

Now our aim is to develop an acceptable metamodel for the system response Vol in the

feasible design space that is decided by ranges of design variables and three system

constraints (Equations (6.2), (6.4), and (6.5)). First, let us have a look at the “feasible”

design space constructed based on the factor ranges and constraints in Equations (6.2),

(6.4), and (6.5).

The original design space is a 125in. × 115in. rectangular set by the ranges of the

two design variables. Three constraints are posed on the design variables and form clear

boundaries for the “quasi-feasible” design space; here we use “quasi-” because we do not

consider the effect of the constraint posed on the response (Equation (6.6)). The “quasi-

feasible” design space is illustrated in Figure 6.3 marked in red shadow. In Figure 6.3

Constraint I corresponds to Equation (6.2); Constraint II corresponds to Equation (6.4);

Constraint III corresponds to Equation (6.5). The “quasi-feasible” design space has clear

boundaries because the constraints considered in Figure 6.3 are posed on design variables

only. At the beginning of metamodeling, we have no information on the responses

386

(metamodels, simulations, etc.), thus the constraint associated with system responses

(Equation (6.6)) is not considered in Figure 6.3. Note that this design space is convex.

25

48

71

94

117

140

25 50 75 100 125 150

R

L

I

III

II

Figure 6.3 Quasi-Feasible Design Space with 3 Constraints on Design Variables

The initial experiments are designed within the quasi-feasible design space in

Figure 6.3. The data points in the initial experimental design are listed in Table 6.1. An

initial kriging metamodel is developed based on information from these 6 data points.

This corresponds to Step 1 and Step 2 of the SEED method. Six validation points are

then identified and listed in Table 6.2; this corresponds to Step 3 of the SEED method.

Note that in the metamodeling processes in this study, we normalized the initial ranges of

design variables to [0, 1]. Also, in these steps we use θ1 = θ2 = 20 to calculate entries of

the covariance matrices. To pose constraints in identifying data/validation points is easy

387

to realize in iSIGHT by eliminating points that do not satisfy the constraints (note that in

Chapter 4 and Chapter 5 we applied the SEED method is in iSIGHT); the organizations

of tasks, information flows, and the calculation of constraints, etc. in iSIGHT is presented

in Appendix C.

Table 6.1 Four Data Points

R L R_n L_n Vol
25 25 0 0 114537.23

51.8125 26.0235 0.2145 0.0089 802104.03
51.8125 77.716 0.2145 0.4584 1238063.89

35.6 53.3935 0.0848 0.2469 401577.67

Table 6.2 Four Validation Points

R L R_n L_n Vol
38.25 25 0.106 0 349322.33

44.7875 39.444 0.1583 0.1256 624889.11
25.125 37.512 0.001 0.1088 140829.54
51.7625 45.47 0.2141 0.178 963685.39

The data points and validation points are illustrated in Figure 6.4. In Figure 6.4,

black solid crosses represent data points, and red solid triangular represent validation

points. We successfully put data points (and validation points) in the irregular design

space through maximum entropy sampling.

After the initial experiments, a kriging metamodel is developed for Vol with

information from 4 data points in Table 6.1. For this kriging metamodel, we got θ1 =

27.47586 for the design variable R, and θ2 = 1.55966 for the design variable L. The

388

contour plot of this kriging metamodel is illustrated in Figure 6.5. To test the accuracy of

this metamodel, we collected information at 356 points; values of NMAX and NRMSE

are calculated, and we get NMAX = 0.111 and NRMSE = 0.051. The prediction errors of

this metamodel are zero at data points; prediction errors at validation points are listed in

Table 6.3.

25

48

71

94

117

140

25 50 75 100 125 150

R

L

Figure 6.4 Data and Validation Points in the Quasi-Feasible Design Space

389

184929
255321
325712
396104
466496
536888
607279
677671
748063
818454
888846
959238
1029630
1100021
1170413

184929

0.20.10.0

0.4

0.3

0.2

0.1

0.0

R

L

Contour Plot of Vol

Figure 6.5 Contour Plot of Kriging Metamodels for Volume with 4 Data Points

Table 6.3 Prediction Errors at Validation Points

R_n L_n Vol Vol_pred Prediction Error
0.106 0 349322.33 333084.24 -16238.09
0.1583 0.1256 624889.11 675782.52 50893.40
0.001 0.1088 140829.54 128348.83 -12480.71
0.2141 0.178 963685.39 978560.85 14875.45

Following the steps in SEED, after calculating prediction errors at validation

points, the next step is to develop the metamodel of prediction errors. As we did in

Chapter 5, a MARS metamodel is developed to predict prediction errors at candidate

points; this MARS metamodel of prediction errors is proved to be inappropriate since we

found that its predicted values at data and validation points are far from the actual ones.

390

Thus we develop a kriging metamodel for predicting prediction errors. For this kriging

metamodel, we got θ1 = 999.98841, and θ2 = 18.08955. The contour plot of this kriging

metamodel is illustrated in Figure 6.6.

-12080.7
-7573.7
-3066.7
1440.2
5947.2
10454.1
14961.1
19468.1
23975.0
28482.0
32988.9
37495.9
42002.9
46509.8
51016.8

-12080.7

0.20.10.0

0.4

0.3

0.2

0.1

0.0

R

L

Contour Plot of Vol_err

Figure 6.6 Contour Plot of Predicted Prediction Errors (with 4 Data Points and 4
Validation Points)

The maximum absolute value of predicted prediction errors is around 51020.

Following the steps in SEED as described in Chapter 4 and Chapter 5, we adjust the

covariance matrix and identify 2 new data points, as listed in Table 6.4. The 6 data

points and 4 validation points are illustrated in Figure 6.8.

A final kriging metamodel is developed for Vol with information from 10

observed points; the contour plot of this metamodel is illustrated in Figure 6.7. For this

391

kriging metamodel, we got θ1 = 1.77631, and θ2 = 0.03167. Based on information from

356 points we test the accuracy of this kriging metamodel and get NMAX = 0.0007 and

NRMSE = 0.0003. We see that new data points are successfully identified in the

irregular quasi-feasible design space with the SEED method to help obtain most potential

information.

220000
280000
340000
400000
460000
520000
580000
640000
700000
760000
820000
880000
940000
1000000
1060000

220000

0.20.10.0

0.4

0.3

0.2

0.1

0.0

R

L

Contour Plot of Vol

Figure 6.7 Contour Plot of Kriging Metamodel of Vol with 10 Observed Points

Table 6.4 Two New Data Points

R L R_n L_n Vol
45.3625 63.2145 0.1629 0.3323 799661.03
25.9375 38.9035 0.0075 0.1209 155315.80

392

25

48

71

94

117

140

25 50 75 100 125 150

R

L

Figure 6.8 Eight Data Points and Six Validation Points

In this practice we see that initial experiments could be designed in an irregular

quasi-feasible design space. New validation and data points could be identified

following steps in the SEED method. As discussed before, constrained maximum

entropy sampling is not the focus of our research in this dissertation, and the study in this

section is only a supportive step for our development of the Efficient Robust Concept

Exploration Method (E-RCEM) in this chapter. In this sub-section we have shown that

we are able to deal with irregular design spaces with constraints on design variables with

393

the algorithms developed for SEED. In Section 6.2.2, we will go further to study the

application of SEED algorithms in problems with constraints on system responses.

6.2.2 Sequential Experimental Design and Metamodeling with Consideration of
Constraints on Responses

In this section, we study the application of SEED in irregular design spaces

defined by constraints on responses. In cases where constraints are only put on design

variables, boundaries of design spaces are clear and fixed; there is no uncertainty

associated with the design space. In cases where constraints are put on responses,

boundaries of design spaces are vague and subject to change as the metamodels evolve;

uncertainty plays an important role here. Boundaries of design spaces tend to be less

vague (uncertainty of design spaces reduces) as more and more data points are added and

more and more accurate metamodels of system responses are obtained. In the

metamodeling process with consideration of system constraints on responses, we should

pay attention to the following things in this dissertation:

• With current metamodels we are able to define a small design space (expected

to be irregular). However, we need to consider the uncertainty associated

with boundaries of this design space.

• In sequential experimental design and metamodeling, metamodels should be

developed for responses in the whole (initial) design space instead of the

reduced design space, thus more and more accurate boundaries could be

identified in the metamodeling process.

394

• In our studies in this dissertation, we only deal with irregular design spaces

that are neither isolated nor concave. In other words, we only study and apply

our methods in problems with continuous, convex design spaces. Studies with

concave or discrete design spaces may be a future work for this dissertation.

There are many methods to address the uncertainty with boundaries of design

spaces in the metamodeling process, with the keywords of “reliability” or “uncertainty”

in literature. For example, in (Du and Chen, 2000) and (Du and Chen, 2001), the authors

examined several feasibility-modeling techniques and proposed a most probable point

(MPP) based importance sampling method for evaluating the feasibility robustness. In

(Gu, et al., 2000), the authors investigate how uncertainty propagates through a

multidisciplinary system analysis subject to the bias errors associated with the

disciplinary design tools and the precision errors in the inputs is undertaken; a method of

worst case estimation of uncertainty is then integrated into a robust optimization

framework. It is future work of research in this dissertation to incorporate such methods

in SEED or develop new methods that suits SEED better. In this section, a preliminary

observation is done in addressing boundaries of design space, which simply serves as a

support for the development of E-RCEM (the Efficient Robust Concept Exploration

Method) in this chapter.

To address the boundaries of an irregular design space, one possible way is to

develop confidence intervals for the boundaries, and new boundaries could be identified

with a certain confidence level; it is expected that the new boundaries be obtained by

pushing current boundaries outwards the design space, thus the new design space should

395

be a little larger than previous ones (all expected to be irregular). This method is not

studied here and may be a future work for this dissertation. Another method to address

the uncertainty with boundaries of design spaces is to utilize information from

metamodels of prediction errors. In identifying boundaries of the design space, we

should consider not only the information from metamodels of responses (e.g., values of

Vol should be larger than some preset constant), but also information from metamodels of

prediction errors; in this case, the prediction errors could be considered a measure (or

reflection) of uncertainty. Suppose we have an irregular design space with boundaries

identified by calculating response values with metamodels of responses, now we should

push the boundaries outwards to new ones whose points safely satisfy the constraints put

on responses, even when the effect of prediction errors (absolute prediction errors are

recommended) is added to the response values. More and more accurate boundaries

could be identified and used after iterations of metamodeling in SEED. Also, this

method is not studied and used in this dissertation because it is very likely that concave

or discrete design spaces would be developed, which is not in the scope of studies in this

dissertation.

In our studies in this section, we simply release the constraints on responses to

some extent to hopefully address a good portion of the uncertainty with boundaries of the

new design space. With information from data/validation points, the normalized root

mean squared error (NRMSE) could be calculated following Equation (2.9) and

discussions in Section 2.2.3. As explained in Section 2.2.3, usually NRMSE has a value

between 0 and 1 (though in some cases it could be larger), and this could be used as a

396

reference on how much we should push the boundaries outwards. For example, if the

constraint is to have a system response y larger than a fixed constant y0; the minimum

observed response value is ymin (suppose ymin ≤ y0) and the value of NRMSE is t%. What

we do is to release the constraint by t%, i.e., draw the boundary to satisfy

 y = y0 – (y0 – ymin)⋅t% (6.7)

It should be noted that this method is not theoretically solid because the uncertainty

associated with boundaries of the design space should be considered as Local Model

Inaccuracy (Lin, et al., 1999) and the value of NRMSE is a measure of Global Model

Inaccuracy (see, Lin, 2000). To avoid this problem, we may use the normalized

maximum absolute error (NMAX, Equation (2.7) and discussions in Section 2.2.3) to

replace NRMSE. Another way to solve this problem, and which is the most intuitive

way, is to calculate the average absolute error (AAE) or root mean squared error (RMSE)

for the response with Equations (2.8) or (2.9), and then release the constraint

correspondingly. Given the problem statement in the paragraph above, supposing the

value of AAE or RMSE is Err, we could draw the new boundary to satisfy:

y = y0 – Err (6.8)

The identified new boundaries with this method are not guaranteed to be accurate;

the uncertainty may be under- or over- estimated. However, after iterations of

metamodeling in SEED, it is expected that more accurate boundaries could be obtained,

which helps yield better results in sequential experimental design and modeling with

same effort because of the reduced design space.

397

Now let us look at the pressure vessel example in Chapter 5. In this section we

only consider two design variables R and L and one system response Vol. The original

design space is 10in.≤ R ≤50in. and 10in.≤ L ≤100in. In this design space, system

constraints put on design variables (Equations (5.5) and (5.6)) are automatically satisfied.

Thus we only need to consider the constraint posed on the system response Vol, i.e., Vol

– 1.296E5 ≥ 0 (Equation (5.7)). The actual feasible design space is illustrated by

shadows in Figure 6.10.

Suppose now we have got 6 data points and 6 validation points, as listed in Table

6.5 (the first 6 rows correspond to data points and last 6 rows correspond to validation

points). Now we have a kriging metamodel for the response Vol, as illustrated in Figure

6.9. For the kriging metamodel of Vol, we got θ1=1.43001 and θ2=0.37760. The

prediction errors of the metamodel at data and validation points are listed in Table 5.41.

Using Equation (2.7) and following descriptions in Section 2.2.3, we get the

normalized maximum absolute error with 6 validation points as NMAX = 7.2%.

Following Equation (6.7), we decide to release the constraint to Vol – 1.2E5 ≥ 0. We can

also calculate the value of root mean squared error with Equation (2.9) and get RMSE =

59507; following Equation (6.8), we can release the constraint to Vol – 7.0E4 ≥ 0. The

constraint can also be released to Vol – 7.83E4 ≥ 0 if we use the average absolute error

which is AAE = 51274 in this example. Thus, we have several possible new boundaries,

which are illustrated in Figure 6.10.

398

Table 6.5 Initial Experiments – Six Data Points and Six Validation Points

R L R_n L_n Vol
10 10 0 0 7330.38
50 10 1 0 602138.60
10 100 0 1 35604.72
50 100 1 1 1308996.96

30.036 79.102 0.5009 0.7678 337697.71
30 28.387 0.5 0.2043 193359.69

30.036 10.108 0.5009 0.0012 142153.31
18.968 55.225 0.2242 0.5025 91006.70
41.448 55.081 0.7862 0.5009 595538.30
29.984 99.982 0.4996 0.9998 395307.47

10 38.269 0 0.3141 16211.35
50 72.361 1 0.6929 1091920.76

Figure 6.9 Updated Metamodels of Responses with 6 Data Points

399

Figure 6.10 The Feasible Design Space and Boundaries

In Figure 6.10 stars represent data points and solid circles represent validation

points. In Figure 6.10 we see that boundaries calculated with metamodels do not comply

with the actual boundary (the curve on the very left when L=70). After releasing the

constraint, new boundaries are still not close to the actual one. It is hard to say which

boundary is better than others; in studies in this section, we will use the one calculated

400

with AAE, i.e., the third curve on the left when L=70, as the left boundary of the

constrained design space in this stage of experimental design.

Now we have 6 data points, 6 validation points, metamodels of responses and

prediction errors for Vol, and an irregular “feasible” design space. To identify 2 new data

points, we should follow steps in SEED, adjusting the covariance matrix and doing

optimization to maximize the determinant of the covariance matrix. In Figure 6.10 we

see that 2 of the data points fall far out of the feasible design space, thus we have only 4

observed data points formulating the 6×6 adjusted covariance matrix. Two new data

points are listed in Table 6.6.

Table 6.6 Two New Data Points

R L R_n L_n Vol
44.616 43.768 0.8654 0.3752 645723.3
18.748 99.964 0.2187 0.9996 137986.1

Table 6.7 Two New Data Points Identified When the Constraint on Volume Is Not
Considered in SEED

R L R_n L_n Vol
45.308 48.196 0.8827 0.4244 700416.14
18.996 57.79 0.2249 0.531 94225.68

In Figure 6.10 we see that the new data points (represented by solid crosses) are

allocated in the feasible design space (the shadowed region). If the constraints of

Equation (5.7) have not been considered in the process above, new data points will be

identified as in Table 6.7. The second point in Table 6.7, (R, L) = (18.996, 57.79), falls

401

out of the feasible design space in Figure 6.10. In this example, we see that by

considering the constraints on system responses, we avoid locating new points in

infeasible design space.

The application of SEED in irregular design spaces with two types of system

constraints is preliminarily studied in this section. In Section 6.2.1 and Section 6.2.2 we

see that with SEED we are able to save experimental time and effort by locating new

points in the feasible design space (typically irregular). In the next section, design goals

will be taken into consideration in the SEED process. Then the E-RCEM method will be

developed in Section 6.4 based on our observations in Section 6.2 and 6.3.

6.3 METAMODELING WITH CONSIDERATION OF DESIGN GOALS

In order to construct the information flow (or feedback) from the process of

design space exploration to the process of metamodeling in Figure 6.1, we need to taken

design constraints and goals into consideration in experimental designs and development

of metamodels. In Section 6.2, we identified two types of constraints and observed the

performance of SEED in irregular design spaces outlined by these constraints. When

system constraints are considered, the initial design space (usually a hypercube) is

reduced to an irregular one; some boundaries of this feasible design space are clear and

fixed, while others are vague and may change when more accurate metamodels are

obtained. In either case, the usage of SEED helps reduce experimental time and effort by

avoiding locating new points in infeasible regions. In this section, we consider another

possible information flow (feedback), i.e., the incorporation of design goals in

402

metamodeling process, to help achieve design solutions more effectively and efficiently.

One existing method, the Efficient Global Optimization (EGO) is briefly introduced in

Section 6.3.1, and our practice of metamodeling with consideration of design goals is

done in Section 6.3.2.

6.3.1 The Efficient Global Optimization Method

A remarkable and interesting method applying this idea is the Efficient Global

Optimization (EGO) developed in (Jones, et al., 1998). The idea of the EGO algorithm is

to first fit a metamodel (usually a kriging model) to data collected by evaluating the

objective function at a few points. Then, EGO balances between finding the minimum of

the surface (assume that the optimization goal is to minimize the response) and

improving the approximation by sampling where the prediction error may be high. The

prediction error used in EGO follows the equation to calculate prediction mean squared

error at any new point:

()

 −
+−= −

−
−∗

fRf
rRfrRrxs T

T
T

1

21
122 11)(σ (6.9)

The equation above is the same as Equation (3.7); note that it only has meanings with

kriging metamodels. The term –rTR–1r represents the reduction in prediction error due to

the fact that x* is correlated with the sampled points. The σ2 here is the same as in

Equation (2.21). The term (1–fTR-1r)2/fTR-1f reflects the uncertainty that stems from our

not knowing µ exactly, but rather having to estimate it from the data. The prediction

error in Equation (6.9) is σ reduced by an amount that depends on how correlated the

403

new point is to the sampled points. With the stationary assumption as stated in Chapter

4, points far from current observed data points have large prediction mean squared error

from Equation (6.9).

In EGO, the expected improvement of an experiment at one new point is a

combination of improvement on the optimization goal and improvement on metamodel

accuracy, which is calculated with the following equation:

() () min min
min

ˆ ˆˆ 0

0 0

f y f yf y s if s
E I x s s

if s

φ − − − Φ + > =
 =

 (6.10)

In Equation (6.10), fmin is the smallest response value at current data points, is the

predicted response value at a candidate point with mean and standard deviation given by

the kriging predictor (Equation (2.18)) and its standard error (Equation (6.9)), φ(⋅) and

Φ(⋅) are the standard normal density and distribution function, respectively. By

exploring for the largest value of the expected improvement, EGO locates the new point

where either the predicted value is close to the goal or the prediction standard error is

large. More discussion on EGO and its applications can be found in (Schonlau, 1997;

Sasena, et al., 2002; etc.).

ŷ

6.3.2 Incorporation of Design Goals in SEED Metamodeling Processes

The most valuable idea in EGO is the incorporation of optimization and

metamodeling processes. However, EGO has its limitations:

404

1. EGO only works with kriging metamodels since the expected

improvement is calculated based on the kriging predictor and standard

error.

2. The kriging standard error (Equation (6.9)), which is based on the

stationary assumption, is used to reflect prediction errors at a candidate

point in EGO. Our previous studies show that this may not be a reliable

way to estimate prediction errors.

SEED does not have the shortcomings stated above. In SEED, the stationary

assumption is relieved and more accurate estimated prediction errors are obtained in

iterations, which is discussed and illustrated in Chapter 4. The improvement and

application of SEED with kriging and MARS metamodels is shown in Chapter 5. In this

section, we express our method of incorporating design goals in the SEED metamodeling

processes.

In SEED, new points are identified in critical regions that are either far from

current data points or with large prediction errors. This is achieved by adjusting the

covariance matrix with Equation (4.28) or Equation (4.34). Correction coefficients (αi in

Equation (4.28) and iβ in Equation (4.34)) are introduced to address the effect of

prediction errors of current metamodels. As a result, weak correlations are given to

candidate points with large prediction errors, holding other criteria constant. In a similar

way, we can introduce some correction coefficients to represent the effect to design goals

in adjusting the covariance matrix. In this chapter, we will perform this study in the

405

context of SEED – Formulation I, which is based on Equation (4.28). The study with

SEED – Formulation II is a topic for future research.

There are many ways to formulate and insert these correction coefficients in the

sequential metamodeling process. When both prediction errors and design goals are

considered, the adjusted covariance between a candidate point and an existing point can

be calculated as:

()2adj
ij i j i j ij i j i j i jRσ η η α α σ η η α α σ= = x x− (6.11)

In Equation (6.11), αi is the coefficient to reflect the current metamodel’s uncertainty

(prediction errors) at point xi, and αj is the coefficient to reflect the current metamodel’s

uncertainty at point xj. They are calculated with Equation (4.25). ηi and ηj are

coefficients to reflect degrees of achievement of design goals at points xi and xj,

respectively. Theoretically, ηi and ηj should have values between [0,1). A value close to

0 means that the design goal is almost achieved at the candidate point; while a value

close to 1 means that the design goal is hardly achieved. To use Equation (6.11) in

SEED is like “pulling” data points to regions with both large prediction errors (effect of

αi) and response values that are close to the design goal (effect of ηi).

Another way is to formulate the adjusted covariance as:

()() ()jijjii
adj
ij xxR −++= 2

4
1 σηαηασ (6.12)

In Equation (6.12) the two coefficients, αi and ηi, are added instead of being multiplied

as in Equation (6.11). Since αi and ηi both have values between 0 and 1, their sum is

406

between 0 and 2; thus a coefficient of 1/4 is added to ensure that the whole coefficient

part has values between 0 and 1. When Equation (6.11) is used the designer expects to

add new points that “either have large prediction errors or achieve design goals” because

the covariance will be greatly adjusted when either criterion is satisfied. When Equation

(6.12) is used the designer expects to add new points that “both have large prediction

errors and achieve design goals” because the covariance will be greatly adjusted only

when both criteria is satisfied.

The third way is to modify the coefficient αi to reflect the effects from both

prediction errors and design goals. Note that in Equation (4.28), αi is calculated with the

following equation:

max

1 . 1 | i
i

erelative uncert
e

α
λ

= − = − | (6.13)

We may change Equation (6.13) to the following one:

 1 . .i relative uncert goal achievementα = − − (6.14)

Or,

 1 . .i relative uncert goal achievementα = − × (6.15)

In Equations (6.14) and (6.15) the term relative.uncert represents effect from prediction

errors, and goal.achievement represents effect from design goals.

The methods talked above are those in which the three criteria, “locating points in

regions with large prediction errors”, “having points spread over the design space”, and

“locating points in regions where design goals are (almost) achieved”, are considered in

one formulation of adjusted covariance; and in SEED, the tradeoffs among these three

407

criteria are done in one step. Another possible method is to do the tradeoffs in separate

steps, e.g., first we add in new points to minimize the prediction error, and then we add in

new points that achieve design goals better. In this method, the covariance will be

adjusted twice in a single iteration, following the equations below:

()1 2adj
ij i j ij i j i jRσ α α σ α α σ= = −x x (6.16)

()2 2adj
ij i j ij i j i jRσ η η σ η η σ= = −x x (6.17)

Due to the space and time limit, only one of the above ideas will be studied and

used in this dissertation. The method associated with Equations (4.28) and (6.11) will be

studied here because it is the simplest formulation. To study all formulations mentioned

above and compare their performance is future work to research in this dissertation.

When formulating the coefficient αi in Equation (6.11) and Equation (6.13), the

term relative.uncert is calculated using the same method as in Chapter 4:

max

. ierelative uncert
eλ

= (6.18)

When design goals are not considered in metamodeling processes (as in Chapter 4 and

Chapter 5), usually we take λ = 2, thus relative.uncert has values between 0 and 0.5. In a

similar way, the coefficient ηi is formulated as:

1 .i goal achievementη = − (6.19)

To formulate the term goal.achievement, we need to satisfy the following requirements:

 goal.achievement should have values between 0 and 1.

408

 goal.achievement should be a increasing function of degrees of achievement

of design goals, i.e., large values should be assigned to goal.achievement at

points where design goals are almost achieved.

 In the process of designing sequential experiments, since the information from

current metamodels of response values and prediction errors is usually

inaccurate, we should balance between “locating points in regions with large

prediction errors”, “having points spread over the design space”, and “locating

points in regions where design goals are (almost) achieved”. As discussed in

Chapter 4, the balance between the first two aims is controlled by the factor λ

(see Equation (4.25) or Equation (6.18)). After taking design goals into

consideration, new data points may not be those with largest predicted

prediction errors with current metamodels or those have long distance from

current data points; more points will also be added in regions where design

goals are expected to be achieved. More trade-off is needed. This is like

“twisting” the data points with three forces, one pulling points to regions with

large predicted prediction errors, another to regions far from current data

points, and the third to regions where design goals are expected to be

achieved. Based on the discussions above, in practice it may be better not to

define goal.achievement between 0 and 1. Points that almost achieve design

goals should not have goal.achievement close to 1; otherwise the trade-off

will be damaged. As design evolves, more points are observed and more

409

accurate metamodels are developed; designers intend to decrease the value of

γ to focus more on “achieving design goals” in the exploration of new points.

 As will be shown later, a factor γ is introduced (together with λ which is

introduced in Chapter 4) to balance the weight of consideration of “prediction

errors”, “space-filling”, and “design goals” in the identification of new data

points. For example, in practice, we may use 1. ,goal achievement
γ

∈

1

0

.

In this dissertation, to calculate goal.achievement, we follow formulations of

nonlinear design goals in the compromise DSP (Mistree, et al., 1993b). There may be

other ways to formulate goal.achievement; studies and comparisons on those possible

formulations will be future work to this research. In the compromise DSP, objective

functions are normalized using a target value for each goal and the deviation from this

target value is used to formulate the deviation function. There are two deviation

variables, d- and d+, for each goal that measure the deviation from the target value. Both

deviation variables take on only non-negative values. Nonlinear design goals are

formulated as:

() 0i i iA x d d− ++ − = (6.20)

where, and . In Equation (6.20) the target value is absorbed into

the definition of the function A

,i id d− + ≥ 0i id d− +⋅ =

i(x).

When the goal is to minimize a response y, first we choose a low target value, TL,

for the response based on experience. Then Equation (6.20) can be formulated as:

410

 1 0
()

L
i i

T d d
y x

− +− + − = , or,
()

max

max min

()1 0
max , i i

L

y y x d d
y y T

− +−
− + − =

−
 (6.21)

In this case, the deviation variable di
+ needs to be minimized to achieve minimum values

for y.

When the goal is to maximize a response y, first we choose a high target value,

TH, for the response based on experience. Then Equation (6.20) can be formulated as:

() 1 0i i
H

y x d d
T

− +− + − = , or,
()

min

max min

() 1
min , i i

H

y x y d d
T y y

− + 0−
− + − =

−
 (6.22)

In this case, the deviation variable di
- needs to be minimized to achieve maximum values

for y.

When the goal is to make a response y as close as possible to a preset value, TS,

Equation (6.20) can be formulated as:

() 1 i i
S

y x d d
T

− +− + − = 0 (6.23)

We see that the target value for the response is achieved exactly when both deviation

variables are equal to zero. Therefore, in this case we seek to minimize both di
- and di

+.

Based on the formulations of nonlinear design goals in compromise DSP as

presented above, we formulate goal.achievement as below:

() ()

()

max

max
min max

max min

min

0 (
()1. max

max ,
1 () max ,

L L
L

L

y y x
y y xgoal achievement T y y x y

y y T

y x T y

γ

γ

 ≤
 −= ⋅ < < −

≤

)

, () (6.24)

411

() ()

()

min

min
min max

max min

max

0 ()
1 (). (

min ,
1 min , ()

H
H

H

y x y
y x ygoal achievement y y x T y
T y y

T y y x

γ

γ

 ≤
 −= ⋅ < < −

≤

) min , (6.25)

min

min
min

min

max
max

max min

max

0 ()
1 () ()

1 ().

()1 ()

0 (

S
S

S

S

y x y
y x y y y x
T y

y x Tgoal achievement

y y x T y x y
y y

y y x

γ

γ

γ

≤
 −

)

T⋅ < <
−

 ==

 −

⋅ < −
 ≤

<

)

 (6.26)

Equation (6.24) is used when the design goal is to minimize the response. Equation

(6.25) is used when the design goal is to maximize the response. Equation (6.26) is used

when the design goal is to make the response as close to a preset value as possible. In

Equations (6.24), (6.25), and (6.26), ymax and ymin are the maximum and minimum

response values at all observed points, respectively. We can use the maximum and

minimum observed response values for ymax and ymin; sometimes we use values slightly

different from observed values to ensure that the goal.achievement is appropriately

weighted in the adjustment of covariance matrices. The expression is used

in Equation (6.24) is to make sure that the adjustment due to achievement of design goals

does not fade even when the design target value is not achieved. The term mi

is used in Equation (6.24) because of the same reason. T

(minmax ,LT y

n H()max,T y

L, TH, and TS have the same

412

meanings as in Equations (6.21), (6.22), and (6.23); they are target goal values selected

by designers based on experience. As stated before, a coefficient, γ, is used to help

balance the tradeoffs among three criteria in identifying new points. It should be noted

that the response values (ymax, ymin, TL, TH, and y(x)) in Equations (6.24), (6.25), and

(6.26) should satisfy ymax > TL and TH > ymin; y(x) typically has values larger than TL or

smaller than TH. In cases where this requirement is not met, designers should make

corresponding modifications; usually it is because of inappropriate problem initialization.

Equations (4.28), (6.11), (6.13), (6.19), (6.24), (6.25), and (6.26) will be used in

the SEED processes. From Equations (6.13) and (6.19) we see that 11 ,1iα
λ

 ∈ −
, and

11 ,1iη
γ

∈ −

 . When λ and γ are both given values of 2, the adjustment at point xi, αiηi,

is in [0.25, 1]. When λ and γ are both given values of 1.5, αiηi is in [0.1111, 1].

In this section, we discussed how to take design goals into consideration in the

metamodeling processes. Several possible ways are proposed; we focus on one of them

and developed detailed mathematical formulations for SEED applications. It should be

noted that these mathematical formulations are not necessarily perfect; future research

may be needed to study various possible formulations and identify the best or

theoretically sound one. Test of the proposed formulations will be done in Section 6.5, as

part of the validation for the Efficient Robust Concept Exploration Method (E-RCEM).

By considering design goals in metamodeling processes, we are able to facilitate

the information feedback from the process of design space exploration to the process of

413

metamodeling. It is expected that such information feedback will help designers locate

new points in more “critical” regions, i.e., regions where either (both) prediction errors

are large or (and) design goals are almost achieved. Based on the SEED method in

Chapters 4 and 5, experimental designs with constrained design spaces in Section 6.2,

and experimental designs with design goals in this section, we develop the Efficient

Robust Concept Exploration Method (E-RCEM) as will be discussed in detail in Section

6.4.

6.4 THE EFFICIENT ROBUST CONCEPT EXPLORATION METHOD

The Efficient Robust Concept Exploration Method (E-RCEM) is presented in this

section. E-RCEM is developed to integrate the two traditionally separated processes in

simulation-approximation-based design, i.e., the process of metamodeling and that of

design space exploration. It is expected that this integration will help achieve better

design solutions with less time and money spent on expensive experiments and

optimization processes.

As discussed in Section 6.1, in traditional early-stage design processes, the

information flow is one-way from metamodeling to design space exploration. The two

processes are not integrated and have different goals. The purpose of the metamodeling

process is to develop accurate metamodels, and that of the design space exploration

process is to obtain a satisficing (Mistree, et al., 1993b) design solution based on current

metamodels. To achieve a good design solution in the design space exploration process,

it is very important to have an accurate metamodel; while in the metamodeling process, it

414

is very hard to tell how accurate the metamodel should be in order to achieve good design

solutions, given that there is no information feedback from the design space exploration

process to the metamodeling process in traditional design methods. This conflict leads to

different strategies and behaviors in the two processes.

As what we do with SEED, from the viewpoint of metamodeling, designers

should make more observations in regions where prediction errors are large. While from

the viewpoint of design space exploration, designers should make more observations

where design solutions probably lie (i.e., design goals are achieved while design

constraints are satisfied) given that the metamodel is accurate. As a result, a lot of time

and money is wasted in the metamodeling process in “unimportant regions” (in infeasible

regions, or where design goals are hardly achieved) to help achieve more accurate

metamodels.

On the other hand, inaccurate metamodels may be misleading in the design space

exploration process. Thus designers need to balance between “increasing metamodel

accuracy” and “exploring in most-likely-to-succeed regions”. This can only be achieved

when the two processes, metamodeling and design space exploration, are integrated. In

other words, the information feedback flow from design space exploration to

metamodeling must be built. This idea of “metamodeling for design space exploration”

leads to the Efficient Robust Concept Exploration Method.

The Efficient Robust Concept Exploration Method (E-RCEM) is developed based

on the Robust Concept Exploration Method (RCEM), incorporating several new methods

and tools, e.g., the SEED method, metamodeling with irregular design spaces,

415

metamodeling with consideration of design goals, etc. The infrastructure of E-RCEM is

illustrated in Figure 6.11 and Figure 6.12. Comparing Figure 6.11 with Figure 1.8 (the

infrastructure for RCEM), we see that E-RCEM inherits RCEM’s design process

organization. Both RCEM and E-RCEM consists three main phases: Problem

Initialization, Metamodeling, and Design Space Exploration; this organization of design

process is well illustrated in Figure 6.1. In RCEM, Processor A (Step 1) corresponds to

the phase of Problem Initialization; Processors B, C, D, and E (Steps 2 and 3) correspond

to the Metamodeling phase; and Processor F (Step 4) corresponds to the phase of Design

Space Exploration. In E-RCEM, Processors A and B correspond to the phase of Problem

Initialization; the loop with Processors C, D, E, F, and G correspond to the phase of

Metamodeling; and the loop with Processors C, D, E, F, G, and H correspond to the

phase of Design Space Exploration. The inheritance from RCEM to E-RCEM is

apparent.

In Figure 6.12 we see that the phases of metamodeling and design space

exploration are not strictly separated. There is a flow back from the compromise DSP to

the beginning of the phase of metamodeling. Thus from a viewpoint at a higher level,

these two phases are “integrated” in E-RCEM; or in other words, we can say, we are

doing “metamodeling for design space exploration” in E-RCEM.

The implementation of the three phases in E-RCEM is discussed in details in

Sections 6.4.1 through 6.4.3. In E-RCEM, we can follow different types of design

processes, in which the three phases are organized in different ways. These processes are

discussed in Section 6.4.4, while our focus is on the description of the integrated design

416

process in which the metamodeling process and design space exploration process are

integrated.

Selection

Design
Specifications

G. Analysis for
Metamodeling

• Metamodel Validation
• Metamodel Comparison
• Metamodel Selection

F. Development of
Metamodels

Development of
Metamodels for Responses
and Prediction Errors:

• Response Surface
Models

• Kriging Models
• MARS
• Others

E. Physical
Experiments or

Computer
Simulations

D. Design of Experiments

• Traditional or Space-filling
Experiments

• Identification of New
Validation Points

• Identification of New Data
Points

H. The Compromise DSP
Given
Find Control Variables
Satisfy
Constraints
Goals

1. Mean on Target
2. Minimize Deviation, or

Explore for Stationary
and Flatness

3. Minimize Independence
Bounds
Minimize
Deviation Function

C. Analysis for Design
• Problem Synthesis
• Design Space Redefinition
• Metamodel Uncertainty –

Prediction Errors
• Achievement of Design

Goals
• Adjustment of Correlation

Between Points

B. Definition of Design
Space

• Design Factors and
Ranges

• System and Subsystem
Responses

A. Pre-Design Analysis

• Market Segmentation
Grid

• Problem Partition
(Decomposition)

• Design Concept

Problem
Statement

Figure 6.11 Infrastructure of the Efficient Robust Concept Exploration Method (I)

417

Phase of
Design Space
Exploration

Phase of
Metamodeling

Phase of
Problem

Initialization

Design
Specifications

Problem
Statement

D
es

ig
n

Sp
ac

e
E

xp
lo

ra
tio

n
L

oo
p

M
et

am
od

el
in

g
L

oo
p

G. Analysis for
Metamodeling

F. Development of
Metamodels

E. Experiments
Simulations

D. Design of
Experiments

C. Analysis for Design

H. The Compromise DSP

B. Design Space
Definition

A. Pre-Design Analysis

Figure 6.12 Infrastructure of the Efficient Robust Concept Exploration Method (II)

418

6.4.1 The Phase of Problem Initialization

As shown in Figure 6.13, the phase of Problem Initialization in E-RCEM consists

of two processors or steps, A: Pre-Design Analysis and B: Design Space Definition.

Figure 6.13 Phase I – Problem Initialization

Activities conducted in Processor A are listed in Figure 6.11. The market

segmentation grid (Meyer, 1997) is drawn to facilitate identifying leveraging strategies

for a product platform. This is inherited from the Product Platform Concept Exploration

Method (PPCEM, see Simpson, 1998); this analysis is useful when we are designing

product families. Problem partition or decomposition, together with problem synthesis in

Processor C, was studied in (Koch, 1998); this analysis is needed when we are dealing

with a complex engineering system with coupling subsystems. Design concept selection

is necessary when we have several optional design concepts; a most-likely-to-succeed

design concept can be selected and further studied in E-RCEM by formulating and

419

solving a selection DSP (Mistree, et al., 1994). In applications, not all mentioned

analyses should be conducted; the implementation varies from case to case.

The design variables and responses are clarified in Processor B. Factors are

classified in the following manner. Appropriate ranges for the control and noise factors

are identified during this step, and constraints and goal targets for the responses are also

identified.

 Responses are performance parameters of the system; in the problem

formulation, they may be constraints or goals or both and are identified

from the overall design requirements and the market segmentation grid.

 Control factors are variables which can be freely specified by a designer;

settings of the control factors are chosen to minimize the effects of

variations in the system while achieving desired performance targets and

meeting the necessary constraints. Signal factors are also lumped within

control factors since it is often difficult to know, a priori, which design

variables are control factors and can be used to minimize the sensitivity of

the design to noise variations and those which are signal factors and have

no influence on the robustness of the system.

 Noise factors are parameters over which a designer has no control or

which are too difficult or expensive to control.

 Scale factor is a factor around which a product platform is leveraged

either through vertical scaling, horizontal scaling, or a combination of the

two. This is inherited from the PPCEM (Simpson, 1998).

420

6.4.2 The Phase of Metamodeling

The whole process of sequential metamodeling as discussed in Chapter 5 (Figure

5.40 and Figure 5.41) is applied in this phase. As shown in Figure 6.14, processors

involved in this phase are Processor C, D, E, F, and G. The purpose of this phase is to

develop acceptable metamodels for the next phase, design space exploration.

The initial design space is redefined in Processor C. In the metamodeling phase,

this redefinition of design spaces is done by elimination of unimportant factors, as

illustrated in Figure 5.41. The loop of C-D-E-F-G corresponds to the SEED processes as

studied and applied in Chapters 4 and 5.

Figure 6.14 Phase II – Sequential Metamodeling

421

6.4.3 The Phase of Design Space Exploration

As shown in Figure 6.14, processors involved in this phase are Processor C, D, E,

F, G, and H. The purpose of this phase is to explore for robust design solutions with

acceptable metamodels.

In this phase, the redefinition of design space in Processor C corresponds to our

discussions in Sections 6.2, generation of irregular design spaces due to constraints on

design variables and system responses. Following the method developed in Section 6.3,

design goals are considered in analyses in Processor C. Note that the achievement of

design goals is calculated with Equations (4.28), (6.11), (6.13), (6.19), (6.24), (6.25), and

(6.26), which come from Processor H, the compromise DSP.

Figure 6.15 The Phase of Design Space Exploration (Integrated Processes of
Metamodel and Design Space Exploration)

422

6.4.4 Different Design Processes in E-RCEM

In E-RCEM, after initialization of the design problem, we can go through the

design processes in three ways following designers’ different decisions:

1. Traditional Process: develop accurate metamodels then explore for design

solutions in the compromise DSP without updating the metamodels. This is a

one-way process; thus there is no information feedback from Processor H to C

in Figure 6.11 (the design space exploration loop in Figure 6.12 is then

removed). Our studies and application in Chapters 4 and 5 follow this way.

2. Integrated Design Process: skip the phase of metamodeling and enter the

integrated design processes of metamodeling and design space exploration as

illustrated in Figure 6.15. In this case the SEED process is not conducted thus

the flow from Processor G to Processor C is removed. This corresponds to the

removal of the metamodeling loop in Figure 6.12. This method is usually

used with simple problems in which the actual responses are not highly

nonlinear or irregular.

3. Hybrid Process: develop metamodels first, and then explore the design space

for solutions as well as updating metamodels. The SEED method is applied to

ensure acceptable metamodels are obtained. Then the design space

exploration loop (in Figure 6.12) is adopted to help update the metamodel and

obtain better design solutions. This method is usually used with large-scale

problems with highly nonlinear or irregular responses.

423

In this chapter, since we use simple examples to illustrate the integrated design

process in E-RCEM, we will follow the 2nd way as mentioned above. The steps of this

integrated design process are explained below:

Step 1 – Problem Initialization. This is the first phase in design, and

corresponds to Processors A and B in Figure 6.11 and Figure 6.12.

Step 2 – Initial Experiments and Design Space Reduction. This corresponds to

Processor C in Figure 6.11 and Figure 6.12, or the process of elimination of unimportant

design factors in Figure 5.41. In this step we use classical experiments and the response

surface metamodels to identify important design variables.

Step 3 – Design Space Redefinition. This corresponds to Processor C in Figure

6.11 and Figure 6.12. In this step we identify the feasible design space (usually irregular)

due to the constraints on design variables and responses.

Step 4 – Identification of New Validation Points. This corresponds to

Processors H, C, and D in Figure 6.11 and Figure 6.12. In this step we identify new

validation points using the similar method in SEED; the only difference is that in

identifying the new points design goals are considered as well as prediction errors and

distances from existing points. After locating new validation points, metamodels of

prediction errors are developed and the achievement of design goals at points in the

feasible design space are calculated to facilitate the identification of new data points in

the next step.

Step 5 – Identification of New Data Points. The covariance matrix is adjusted

with information from the metamodels of prediction errors and the achievement of design

424

goals as obtained in Step 4. New data points are identified by maximizing the

determinant of this adjusted covariance matrix. This corresponds to Processor D in

Figure 6.11 and Figure 6.12.

Step 6 – Updated Metamodels and Metamodel Selection. This corresponds to

Processors E, F, and G in Figure 6.11 and Figure 6.12. New metamodels are developed

and the best metamodels are selected in future iterations and steps (as what we did in

Chapter 5 with kriging and MARS metamodels).

Step 7 – Analysis of Design. This corresponds to Processors H and C in Figure

6.11 and Figure 6.12. In this step, we either compare the achievement of design goals at

new identified points with that at old points (when designers wish to enter another design

space exploration iteration), or formulate and solve the compromise DSP for design

solutions (when designers wish to finish the design space exploration process). The E-

RCEM processes will stop in this step once the stopping criterion is met; otherwise

another iteration will start at Step 4. Besides the stopping criteria introduced in Chapter

4, we can also stop when the improvement of achievement of design goals is smaller than

some preset value; when this criterion is adopted, the design space exploration process in

E-RCEM becomes similar to the EGO, and can be viewed as an optimization algorithm.

In this section we developed the E-RCEM based on RCEM and our studies in

Chapter 4, Chapter 5, and Sections 6.1 – 6.3. In order to develop more accurate

metamodels with less time and money spent on expensive experiments, sequential

metamodeling and the SEED processes are used in E-RCEM to replace the metamodeling

425

phase in RCEM. Design goals are considered in the metamodeling process, which is

expected to help achieving better design solutions with fewer experiments. The actual

implementation of each step in the integrated design process is liable to vary from

problem to problem. This integration of metamodeling and design space exploration, in

which both computer simulations (or physical experiments) and empirical metamodels

are used in achieving design solutions, can also be viewed as a new optimization

algorithm that is best used in cases with expensive experiments. The integrated design

process in E-RCEM will be illustrated with a single-variable function in the next section.

6.5 APPLICATION OF THE E-RCEM METHOD: A SINGLE-VARIABLE
EXAMPLE

In this section, we apply the E-RCEM method in the single-variable example

similar to that we studied in Chapter 4. The single-variable function is:

()()10 0.01
0 0.() 0.5

0 0.19

Sin x
xf x x

x

π +
 ≤ ≤= +

19

1< ≤

 (6.27)

This function is the same as Equation (4.35) by adding a constant 2 to the response. A

graph of this function is shown in Figure 6.16. As we see from the equation and graph,

the design space is x = [0, 1]. In this design space, the maximum response value is y =

1.852 at x = 0.04, and the minimum response value is around y = -1.564 at around x =

0.138; the response range is 3.415.

426

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.16 A Single-Variable Function

The design goal in this example is to minimize the response f(x). The design

target is preset at TL = –1.6, which is unachievable (smaller than the minimum actual

response value); thus this design task is actually an optimization problem. There is no

constraint put on the design variable or the response. In Chapter 4 following the SEED

processes we are able to develop an acceptable metamodel with 11 observed points,

which is much more accurate than those developed with single-stage experimental design

methods. In this section, the design solution obtained with E-RCEM will be compared to

that obtained with SEED. Initially we will have 3 data points and 4 validation points; 4

more points will be added in 3 iterations of the integrated process of metamodeling and

427

design space exploration. The value of λ in Equations (6.13) and (6.18) is set to be 2.0

throughout the whole design process to balance “space-filling” and “reducing prediction

errors” in the exploration for new points. The value of γ will gradually decrease from 2.0

to 1.25 along the timeline. As discussed in Section 6.3, when more accurate metamodels

are obtained with more observed points in later iterations of the integrated process of

metamodeling and design space exploration, more weight should be put on the

“achievement of design goals”, instead of “space-filling” or “reducing prediction errors”,

in the exploration of new points. A small value of γ helps achieve this balance.

Iteration I – Step 1: Problem Initialization. This is done.

Iteration I – Step 2: Initial Experiments and Design Space Reduction. Since

there is only one design variable in this example, we do not reduce the design space by

screening out unimportant design factors. The initial experiments are the same as that in

Chapter 4; the three data points are listed in Table 6.8. The corresponding kriging

metamodel is illustrated in Figure 6.17; the value of θ for this kriging metamodel is

98.71232.

Table 6.8 Initial Experiments

x 0.0 0.5 1.0
y 0.618 0.0 0.0

428

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actual Function

Metamodel

Figure 6.17 Initial Metamodel with 3 Data Points

Iteration I – Step 3: Design Space Redefinition. Since there is no constraint on

design variables or responses, the design space is not redefined in this step.

Iteration I – Step 4: Identification of New Validation Points. Four new

validation points are identified to be as far from current observed points as possible.

These points are listed in Table 6.9. Predicted prediction errors are unavailable thus not

considered in this process. The design goal is not considered in identifying new

validation points in this step because we do not think the initial metamodel with only 3

data points is accurate enough. As design evolves and more points are observed we will

429

take the design goal into consideration. This prevents us from being misled to incorrect

directions by inaccurate metamodels in very early stages of design.

A kriging metamodel of prediction errors is developed based on the information

in Table 6.9. Note that prediction errors at 3 data points are zero. The value of θ is

99.99880. The maximum absolute predicted prediction error, emax ≈ 1.3, is found through

optimization. The predicted prediction error at a candidate point, ei, will be calculated

with the kriging metamodel of prediction errors and used in the formulation of αi in

Equation (6.13). This information is then further used in the adjustment of entries in the

covariance matrix in sequential experimental designs.

0.0

0.3

0.6

0.9

1.2

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.18 Metamodel of Prediction Errors Calculated in Iteration I – Step 4

430

Table 6.9 Validation Points in the 1st Iteration

x 0.167 0.333 0.667 0.833
ypred 0.232 0.193 0.193 0.193
yactual -0.991 0.0 0.0 0.0
yerror 1.223 0.193 0.193 0.193

Another task in this step is to calculate the goal.achievement at candidate points.

Since in this problem we want to minimize the response, Equation (6.24) will be used to

formulate goal.achievement. As discussed in Section 6.3, when using Equation (6.24),

we may or may not force goal.achievement to be 0 when the predicted response y(x) is

larger than or equal to ymax. In this case, we force goal.achievement to be 0 at points with

large predicted response values.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actual Function

Metamodel

Figure 6.19 Metamodel Developed with 7 Observed Points in Iteration I – Step 4

431

The value of ymax is 0.618 (when x = 0.0) and the value of ymin is –0.991 (when x =

0.167); in this step we use the actual observed response values for ymax and ymin. As

mentioned before, the design target value is set at TL = –1.6. The metamodel used in

Equation (6.24), y(x), is developed with all observed points in the feasible design space.

Since at the end of the design process we will use all observed points to develop a final

metamodel and explore the “final” design solution, it is reasonable to calculate the

achievement of design goals based on information from all observed points in

intermediate iterations. To predict prediction errors we will have to use two groups of

points; however, to calculate the achievement of design goals, we should utilize

information from as many points as possible to try not be misled to wrong directions.

The kriging metamodel developed with 7 observed points is illustrated in Figure 6.19.

The value of θ for this kriging metamodel is 99.99983.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.20 Values of goal.achievement at Points in the Design Space

432

A plot of goal.achievement at points in the design space is shown in Figure 6.20.

In this figure we set γ = 1; when adjusting the covariance matrix in the next step, we will

not set γ = 1 (we use large values for γ, e.g., γ = 1.5 or 2), as explained in Section 6.3. In

Figure 6.20 we see that when x is around 0.2 we have higher values of goal.achievement,

which means we are close to achieve the design goal.

Iteration I – Steps 5 and 6: Identification of New Data Points and Updated

Metamodels. In this step we need to identify 1 new data point. A 4×4 covariance matrix

is developed with the first 3 rows and columns corresponding to the 3 data points, and the

last row and column corresponding to the new data point. Entries of this covariance

matrix are then adjusted with information from the prediction errors and achievement of

design goals. This adjustment is done with Equations (4.28), (6.11), (6.13), (6.19), and

(6.24). The values of λ and γ are set as λ = γ = 2. Values of αiγi (the amount of

adjustment at point xi) in the design space are illustrated in Figure 6.21. Then the

determinant of this adjusted covariance matrix is calculated. The new data point is the

one that generates the adjusted covariance matrix with the largest determinant.

FORTRAN programs are written to facilitate the formulation and adjustment of the

covariance matrices and calculation of determinants of matrices.

The software iSIGHT is used to link the programs (formulation of covariance

matrices, calculation of prediction errors, calculation of degrees of achievement of design

goals, the adjustment of covariance matrices, and calculation of the determinant).

Various optimization techniques (as what we did in Chapter 4) built in iSIGHT are

utilized to find out the point with the maximum determinant of the corresponding

433

adjusted covariance matrix. The possible new data point is identified at x = 0.177. Since

this point is very close to one of the validation points, x = 0.167, we decide to use x =

0.167 as the new data point. The four data points are listed in Table 6.10. A new

metamodel is developed with 4 data points and illustrated in Figure 6.22. The value of θ

for this kriging metamodel is 99.99964. We do not make metamodel comparison and

selection in this example because only kriging metamodels are developed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.21 Values of αiγi at Candidate Points in the Design Space in Iteration I –
Step 5

434

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Actual Function

Metamodel

Figure 6.22 Kriging Metamodel of Responses Developed with 4 Data Points

Table 6.10 Four Data Points

x 0.0 0.167 0.5 1.0
y 0.618 -0.991 0.0 0.0

Iteration I – Step 7: Analysis of Design. Since the stopping criterion is not met,

we will go to the next iteration of integrated metamodeling and design space exploration

process.

Iteration II – Step 4: Identification of New Validation Points. In this step we

plan to add in 2 new validation points. Similar to the SEED process, in this step we will

switch the roles of data points and validation points. We first develop a metamodel of

responses with 3 validation points, which is illustrated in Figure 6.23. Prediction errors

435

of this metamodel at 4 validation points are listed in Table 6.11. A metamodel of

prediction errors is then developed with this information and illustrated in Figure 6.24.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actual Function

Metamodel

Figure 6.23 Metamodel of Responses Developed with 3 Validation Points in
Iteration II – Step 4

Table 6.11 Prediction Errors at 4 Data Points in Iteration II – Step 4

x 0.0 0.167 0.5 1.0
ypred 0.0 0.0 0.0 0.0
yactual 0.618 -0.991 0.0 0.0
yerror -0.618 0.991 0.0 0.0

436

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.24 Metamodel of Prediction Errors Calculated in Iteration II – Step 4

Since no new point is added in the past steps, the metamodel developed with all

observed points is the same as that in Figure 6.19. The values of goal.achievement at

points in the design space are as illustrated in Figure 6.20. Following the same method as

in Iteration I – Steps 5 and 6, we identify two new validation points at x = 0.111, and x =

0.243. All validation points and the prediction errors of the intermediate kriging

metamodel (in Figure 6.22) at these points are listed in Table 6.12. Prediction errors at

data points are zero.

437

A kriging metamodel of prediction errors is then developed based on this

information and is illustrated in Figure 6.25. The value of θ for this kriging metamodel is

99.99993. The maximum absolute predicted prediction error is emax ≈ 0.63. This

metamodel of prediction errors will be used in the next step to adjust the correlation

between points.

-1.0

-0.5

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.25 Metamodel of Prediction Errors in Iteration II Developed with
Information at 9 Observed Points in Iteration II – Step 4

Table 6.12 Validation Points in the 2nd Iteration

x 0.111 0.243 0.333 0.667 0.833
ypred -0.559 -0.62 -0.145 -0.085 -0.085
yactual -1.003 0.0 0.0 0.0 0.0
yerror 0.444 -0.62 -0.145 -0.085 -0.085

438

Before going to the next step we need to calculate the degree of achievement of

design goals at candidate points in the design space. At this design stage we observed a

lot of points with the response value of 0.0. These points spread all over the design

space, especially with large x values. This indicates that the actual response function

may be flat in most places, with response values close to 0.0. This is useful in our

formulation of design goals in the metamodeling process (or say, in the integrated

process of metamodeling and design space exploration). Since in this pure minimization

example, the response value, 0.0, is far from the target goal value (compared with other

observed points), we may set ymax as 0.0 instead of the maximum observed response

value in following steps. Note that in cases with more design goals (e.g., maximize some

other response, robust design goal, etc.), this operation may not be appropriate. In such

cases designers need to consider the combined effects from all design goals when trying

to set ymax or ymin at values different from observed ones.

The predicted response value, y(x), is calculated with the metamodel of responses

developed with all 9 observed points as illustrated in Figure 6.26. To calculate

goal.achievement, we set ymax = 0.0, ymin = -1.15, TL = -1.6, γ = 1.5. The value of ymin is

smaller than the observed value, which is –1.003; this is because that from the metamodel

of response in Figure 6.26 we observe that the minimum predicted response value is

around 0.85. At this stage of design we focus more on the achievement of design goals

since we are confident with the metamodel with 9 observed points, thus the value of γ is

set at 1.5 instead of 2.0 (note that a smaller value of γ yields larger weight on

achievement of design goals). The values of goal.achievement at candidate points are

439

calculated with Equation (6.24). We illustrate the values of goal.achievement calculated

with γ = 1 in Figure 6.27.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actual Function

Metamodel

Figure 6.26 Metamodel of Responses Developed with 9 Observed Points in Iteration
II – Step 4

Iteration II – Step 5 and 6: Identification of New Data Points and Updated

Metamodels. In this step we need to identify 1 new data point. A 5×5 covariance matrix

is developed with the first 4 rows and columns corresponding to the 4 data points, and the

last row and column corresponding to the new data point. Entries of this covariance

matrix are then adjusted with information from the prediction errors and achievement of

440

design goals. This adjustment is done with Equations (4.28), (6.11), (6.13), (6.19), and

(6.24). The values of λ and γ are set as λ = 2 and γ = 1.5. The adjustment of entries in

the covariance matrices due to prediction errors and achievement of design goals at

candidate points, αiγi, is illustrated in Figure 6.28. Then the determinant of this adjusted

covariance matrix is calculated. The new data point is the one that generates the adjusted

covariance matrix with the largest determinant. FORTRAN programs are written to

facilitate the formulation and adjustment of the covariance matrices and calculation of

determinants of matrices.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.27 Values of goal.achievement at Points in the Design Space in Iteration II –
Step 4

441

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.28 Values of αiγi at Candidate Points in the Design Space in Iteration II –
Step 5

The software iSIGHT is used to link the programs (formulation of covariance

matrices, calculation of prediction errors, calculation of degrees of achievement of design

goals, the adjustment of covariance matrices, and calculation of the determinant).

Various optimization techniques (as what we did in Chapter 4) built in iSIGHT are

utilized to find out the point with the maximum determinant of the corresponding

adjusted covariance matrix. Organizations and flowcharts of these programs in iSIGHT

are presented in Appendix C.

By pursuing the maximum determinant of adjusted covariance matrices, we

identify the new data point as x = 0.131. Now we have 5 data points as listed in Table

442

6.13. A kriging metamodel of responses is developed with information at these 5 points

and illustrated in Figure 6.29. The value of θ for this kriging metamodel is 99.99985.

We do not make metamodel comparison and selection in this example because only

kriging metamodels are developed.

Table 6.13 Five Data Points

x 0.0 0.131 0.167 0.5 1.0
y 0.618 -1.522 -0.991 0.0 0.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actual Function

Metamodel

Figure 6.29 Metamodel of Responses Developed with 5 Data Points in Iteration II –
Steps 5, 6

443

Iteration II – Step 7: Analysis of Design. Since the stopping criterion is not met

we will enter the next iteration of the integrated process of metamodeling and design

space exploration.

Iteration III – Step 4: Identification of New Validation Points. Now we have

5 data points and 5 validation points. In this step we plan to add in 1 new validation

point. Similar to what we did in Iteration II – Step 4, we switch the roles of data points

and validation points in this step. First we need to develop a metamodel of response with

5 validation points. This kriging metamodel is illustrated in Figure 6.30; the value of θ

for this metamodel is 99.99982.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.30 Metamodel of Responses Developed with 5 Validation Points in
Iteration III – Step 4

444

Prediction errors of this metamodel at 5 data points are listed in Table 6.14. A

kriging metamodel of prediction errors is then developed with information of prediction

errors at the data points and validation points. This metamodel is illustrated in Figure

6.31. The value of θ for this metamodel is 100.00. A univariate regression spline

metamodel of prediction errors is also developed and illustrated in Figure 6.32.

Table 6.14 Prediction Errors at 5 Data Points in Iteration III – Step 4

x 0.0 0.131 0.167 0.5 1.0
ypred -0.468 -0.932 -0.644 -0.206 -0.211
yactual 0.618 -1.522 -0.991 0.0 0.0
yerror -1.086 0.59 0.347 -0.206 -0.211

-2.5
-2.3
-2.0
-1.8
-1.5
-1.3
-1.0
-0.8
-0.5
-0.3
0.0
0.3
0.5
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.31 Kriging Metamodel of Prediction Errors in Iteration III – Step 4

445

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.32 Univariate Regression Splines Metamodel of Prediction Errors in
Iteration III – Step 4

Comparing Figures Figure 6.31 and Figure 6.32, we observe that the univariate

regression splines metamodel is more reliable because it does not have the dramatic

fluctuations in unobserved regions as the kriging metamodel (see the peaks or bottoms at

x = 0.5, 0.3, and 0.4 in Figure 6.31). Thus in the following steps we will use the

univariate regression splines metamodel to calculate prediction errors.

The predicted response value, y(x), can be calculated with the metamodel of

responses developed with all 10 observed points as illustrated in Figure 6.33. The value

of θ for this metamodel is 100.00. A univariate regression splines metamodel of

446

responses is also developed and illustrated in Figure 6.34. Comparing Figures Figure

6.33 and Figure 6.34 we see that the kriging metamodel does not work well; the

fluctuations around x = 0.3 and x = 0.4 is abnormal. As having been studied in Chapter 5,

kriging cannot model irregular responses well. The kriging metamodel works well in the

prediction with very small x values; however, the peak around x = 0.5 cannot be validated

when the actual response function is unknown and no observation in this region is done.

Thus the good performance of this kriging metamodel with small x values is not a

systematic solution but just lucky. The univariate regression splines metamodel in Figure

6.34 honestly reflects the response surface based on information from 10 observed points,

and will be used in future steps.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.33 Kriging Metamodel of Responses Developed with 10 Observed Points

447

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.34 Univariate Regression Splines Metamodel of Responses Developed with
10 Observed Points

An 11×11 covariance matrix is developed with the first 5 rows and columns

corresponding to the 5 data points, the 6th to 10th rows and columns corresponding to the

5 validation points, and the last row and column corresponding to the new validation

point. Entries of this covariance matrix are then adjusted with information from the

prediction errors and achievement of design goals. This adjustment is done with

Equations (4.28), (6.11), (6.13), (6.19), and (6.24). To calculate goal.achievement, we

set ymax = 0.0, ymin = -1.53, TL = -1.6, γ = 1.25. The value of γ is set as 1.25 because we

wish to focus more on the achievement of design goals since we have much confidence

448

on the accuracy of the metamodel. Values of goal.achievement calculated with γ = 1 are

illustrated in Figure 6.35. To calculate relative.uncert, we set λ = 2 and emax = 0.8. The

adjustment of entries in the covariance matrices due to prediction errors and achievement

of design goals at candidate points, αiγi, is illustrated in Figure 6.36. Then the

determinant of this adjusted covariance matrix is calculated. The new data point is the

one that generates the adjusted covariance matrix with the largest determinant.

FORTRAN programs are written to facilitate the formulation and adjustment of the

covariance matrices and calculation of determinants of matrices.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.35 Values of goal.achievement at Points in the Design Space

449

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.36 Values of αiγi at Candidate Points in the Design Space in Iteration III

By pursuing the maximum determinant of adjusted covariance matrices, we

identify the new validation point at x = 0.138. Now we have 5 data points and 6

validation points as listed in Table 6.15. Since we have already obtained information at

11 points, the stopping criterion is met and we will stop in this iteration. A univariate

regression splines metamodel of responses is developed with information from Table

6.15. This metamodel is illustrated in Figure 6.37. We cannot develop an acceptable

kriging metamodel for this example; the reason is explained in our studies in Chapter 5.

The univariate regression splines metamodel will be used as the final metamodel for this

example.

450

Table 6.15 Eleven Observed Points

x 0.0 0.131 0.167 0.5 1.0 Data Points y 0.618 -1.522 -0.991 0.0 0.0
x 0.111 0.138 0.243 0.333 0.667 0.833 Validation

Points y -1.003 -1.564 0.0 0.0 0.0 0.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actual Function

Metamodel

Figure 6.37 Final Univariate Regression Splines Metamodel of Responses Developed
with Information at 11 Observed Points

In Figure 6.37 we see that the final univariate regression splines metamodel is not

very accurate around x = 0.04; it does not grasp the bell shape in this region where the

451

global maximum response lies. Four points are clustered in the region [0.1, 0.17], while

others scatter in the whole design space. As a result, the regression splines metamodel

performs well around x = 0.14 where the global minimum response lies.

As a comparison, in Chapter 4 we developed a kriging metamodel with the SEED

method; the points are listed in Table 4.11 and the metamodel is illustrated in Figure

4.18. In that experimental design, the points are not clustered in the region where design

goals are achieved (or almost achieved). Instead, more points are located in regions with

large prediction errors; thus the peak around x = 0.04 and the bottom around x = 0.14 are

observed and grasped. The values of root mean squared error (RMSE) and maximum

absolute error (MAX) for both metamodels are calculated with information from 201

points and listed in Table 6.16. In Table 6.16 we see that the metamodel from SEED has

much smaller values of RMSE and MAX, which supports our impression that the

metamodel from SEED is more accurate than the metamodel from E-RCEM.

Table 6.16 RMSE and MAX for Metamodels from SEED and E-RCEM

 Metamodel from SEED
Formulation (I)

Metamodel from Integrated
Design Process in E-RCEM

RMSE 0.113 0.432
MAX 0.371 1.847

In the E-RCEM method, we focus more on the achievement of design goals. In

this example, the prediction error still affects the location of new points but its influence

is not strong enough to drag our attention from the “bottom” region to the “peak” region

on the actual response surface. As a result, the metamodel developed with SEED method

452

in Chapter 4 is more accurate than the one developed in the integrated process of

metamodeling and design space exploration in this chapter. However, a more accurate

metamodel does not ensure a better design solution. In Table 6.17 we see that the

minimum response of the metamodel developed in E-RCEM is at x = 0.138 with the

predicted response value of y = −1.564, which is the same as the true minimum. This is

better than the solution obtained with the metamodel developed with SEED, which is at x

= 0.136 with the predicted response value of y = −1.506. The solutions are subject to

round off errors within ±0.0005. In E-RCEM more points are observed around the

design solution so we are able to obtain a metamodel that is more accurate in the region

of interest. This metamodel may not perform well in “unimportant” regions (e.g., in this

example, the region around x = 0.04 and that with large x values), but its local accuracy

in the “important” region helps obtain a better solution with information from the same

number of experiments.

Table 6.17 Minimum Response Values in the Single-Variable Example

 Actual
Function

Metamodel from SEED
Formulation (I)

Metamodel from the
Integrated Design Process

in E-RCEM
xmin 0.138 0.136 0.138

ymin (predicted) N/A −1.506 −1.564
ymin (true) −1.564 −1.560 −1.564

The computational expense of the integrated design process in E-RCEM is only

slightly higher than SEED. Only one more program (the one to calculate predicted

453

response values) is called in the optimization iterations for maximum determinants of the

covariance matrices, and a little more calculations are added in the adjustment of

covariance matrices. There is no much human interaction in the integrated design

process once SEED is implemented. After successfully implementation of SEED in the

automatic running mode in the future, it requires little effort to realize an automatic

integrated design process in E-RCEM.

From the viewpoint of metamodeling, the traditional process with SEED is better

than the integrated design process in E-RCEM because it yields a more accurate

metamodel in the whole design space; while from the viewpoint of design space

exploration, the integrated design process in E-RCEM is better than the traditional

process with SEED because it yields a metamodel with higher local accuracy in critical

regions and thus possibly a better design solution. In cases with expensive computer or

physical experiments, both the traditional process with SEED and the integrated process

in E-RCEM help develop better metamodels with less time and money, and thus ensure

better design solutions than traditional experimental designs and design space exploration

approaches. When design goals are not well defined at the beginning of design (e.g., in

some cases the relative priorities of design goals may change greatly during the design

phrase) and it is hard to address this uncertainty, designers may prefer to use SEED to

develop globally accurate metamodels. When design goals are clearly defined, designers

may prefer to use the integrated design process of metamodeling and design space

exploration in E-RCEM to achieve better design solutions faster. In most cases where

design goals are defined but still subject to small changes in the future, designers may

454

prefer to use SEED first to achieve an acceptable metamodel, then use the integrated

design process in E-RCEM to explore for new experimental points and design solutions.

6.6 A LOOK BACK AND A LOOK AHEAD

The Efficient Robust Concept Exploration Method (E-RCEM) is developed in

this chapter. The integrated design process in E-RCEM is demonstrated and verified

with a single-variable example. Research in this chapter helps answer Research Question

3 and its sub-questions; the corresponding hypotheses are tested. Research Question 3,

its sub-questions, and corresponding hypotheses are listed below.

R.Q.3: How to integrate the processes of metamodeling and robust design space

exploration?

Hypothesis 3: The processes of metamodeling and robust design space

exploration could be integrated through building the information flow from C-

DSP to the metamodeling cycle in the Robust Concept Exploration Method.

R.Q.3.1: How to design sequential experiments with consideration of design

constraints?

Sub-Hypothesis 3.1: Consideration of design constraints could be incorporated

in the metamodeling process through construction irregular design spaces.

R.Q.3.3: How to do sequential metamodeling with consideration of design goals?

Sub-Hypothesis 3.3: Design goals can be taken into consideration in

metamodeling by formulating influential factors with the compromise DSP

and using them in maximum entropy sampling.

455

To answer Research Question 3, the Efficient Robust Concept Exploration

Method (E-RCEM) is developed based on the Robust Concept Exploration Method

(RCEM) and the method of Sequential Exploratory Experimental Design (SEED). In this

chapter, we verified that with the integrated design process in E-RCEM, designers are

able to incorporate considerations of metamodel accuracy and achievement of design

goals in the experimental design and metamodeling process. New points are identified in

regions where design goals are to be achieved or large prediction errors exist. With this

integrated design process in E-RCEM (or the metamodeling for design space exploration

approach), designers are able to achieve better design solutions with less time and money

spent on expensive computer or physical experiments. Hypothesis 3 is verified; our

answer to Research Question 3 is: Better design solutions can be achieved with fewer

experiments by integrating the processes of metamodeling and design space exploration;

this integrated design process is realized in E-RCEM, in which information about

metamodel uncertainty and achievement of design goals is used as guidance in

identifying new points in sequential metamodeling.

Research Question 3.1 is answered primarily in Section 6.2. Sequential

metamodeling with constraints on design variables is studied in Section 6.2.1, and

sequential metamodeling with constraints on responses is studied in Section 6.2.2. In this

section we show that design constraints can be taken into consideration in the SEED

method and the integrated design process in E-RCEM. After taking design constraints

into consideration, the design space is usually irregular; with SEED or E-RCEM, new

points will be identified only in the reduced irregular feasible design space, and this helps

456

save time and money spent on experiments wasted in infeasible regions. Our answer to

Research Question 3.1 is: Design constraints can be taken into consideration to define an

irregular design space, and SEED or E-RCEM can be used to identify new points in the

reduced irregular feasible design space.

Research Question 3.3 is studied and answered in Section 6.3. Based on the

compromise DSP, the degree of achievement of design goals at candidate points can be

formulated and scaled in [0,1]; a value close to 0 means that design goals are hardly

achieved, and a value close to 1 means that design goals are almost achieved at this point.

Usually we preset a target value for the design goal, and once this target value is met or

exceeded, we set the degree of achievement of design goals to be 1. This quantitative

expression of degree of achievement of design goals can be used in the adjustment of

covariance matrices in maximum entropy sampling, and “drag” new points to regions

where design goals are met or almost met. Our answer to Research Question 3.3 is: The

degree of achievement of design goals at a particular point can be quantitatively

formulated with the compromise DSP and used as an influential factor in SEED or E-

RCEM.

The Efficient Robust Concept Exploration Method (E-RCEM) is developed in

Section 6.4. There are three ways to organize design processes in E-RCEM: the

Traditional Process (SEED → design space exploration), the Integrated Design Process

(SEED + design space exploration), and the Hybrid Process (traditional → integrated).

The traditional process has already been studied and implemented in Chapters 4 and 5,

thus in this section we describe the integrated design process in detail. A single-variable

457

458

example is presented in Section 6.5, implementing the integrated design process in E-

RCEM. It is shown that with the integrated design process in E-RCEM, better design

solution is achieved than that obtained with the traditional process.

Research in Chapter 6 is built on that in Chapters 4 and 5, and should be viewed

from a higher level. In Chapters 4 and 5 we focus on the metamodeling process, while in

this chapter we consider the whole design process in the early stages: problem

initialization, metamodeling, and design space exploration. The E-RCEM is an

integrated robust design method developed for efficient and effective identification of

design solutions at early stages. It can also be viewed as or has the potential to be

developed to a new optimization algorithm or heuristic.

The SEED method introduced in Chapter 4, the sequential metamodeling strategy

studied in Chapter 5, and the integrated design process in E-RCEM developed in Chapter

6 will be implemented in Chapter 7 with a more complicated engineering problem.

459

6. 5
CHAPTER 7

ENGINEERING APPLICATION: DESIGN OF UNIT
CELLS FOR LINEAR CELLULAR ALLOYS

In this chapter, the method of Sequential Exploratory Experimental Design

(SEED), sequential metamodeling, and the Efficient Robust Concept Exploration Method

(E-RCEM), are applied in the engineering application of design of unit cells for linear

cellular alloys (LCA). The results are compared with that from the existing

approximation-based design method in the Systems Realization Laboratory (i.e., RCEM

without loops in metamodeling and information feedback from design space exploration

to metamodeling). Research questions visited in this chapter are R.Q.2, R.Q.3, R.Q.4 and

their sub-research questions. After an introduction to the thermal topological design of

unit cells for linear cellular materials in Section 7.1, the design problem is defined in

Section 7.2 and the traditional design method of RCEM is applied in Section 7.3. The

SEED method and sequential metamodeling approach is applied in Section 7.4. The

integrated design process in E-RCEM is applied in Section 7.5. Comparisons and

discussions are presented in Section 7.6.

460

7.1 BACKGROUND OF DESIGN OF LINEAR CELLULAR ALLOYS

The thermal topological design of unit cells for linear cellular alloys (LCA) is used

in this chapter as a case study with which we compare the performance of SEED, E-

RCEM and traditional robust design methods like RCEM. This design example is taken

from studies in (Seepersad, et al., 2003). The background of linear cellular alloys,

topology design, the example, and the finite element model and simulation are introduced

in this section.

7.1.1 Topology Design

In topology design designers simultaneously adjust both the external shape and the

number and shape of internal boundaries for a given 2D or 3D domain and associated

boundary conditions and design objectives (Eschenauer and Olhoff, 2001; Rozvany,

2001). Vastly different topologies can be obtained from an arbitrary initial domain with

topological design techniques. Important properties like compliance, stiffness, strength,

eigenfrequencies, convective coefficients, and other properties sensitive to material

arrangement can be tailored through the adjustment of the topology of a structure. It is

possible to distribute material strategically, resulting in lightweight structures with

desirable properties. Emerging manufacturing processes (e.g., additive fabrication and

processing of cellular materials) facilitate the fabrication of structures with nearly

arbitrary topologies.

In Topology Design the following question is to be addressed: How can material

be distributed efficiently in a given design region to tailor properties that are sensitive to

461

material distribution (e.g., compliance, stiffness, strength, convection, etc.)? In topology

optimization nothing is known about structure or shape a priori; the shape and number of

discontinuities (i.e., voids) are determined during the course of topology optimization. A

typical topology design approach, as proposed by Carolyn Conner Seepersad in her PhD

proposal involves the following steps:

Step 1 - Establish design requirements, objectives, and domain.

Step 2 - Divide domain into finite elements.

Step 3 - Assign density variable to each finite element (ρ
i
).

Step 4 - Modify density variables according to solution (optimization) algorithm.

Small density values for an element imply that the element is empty (i.e.,

part of a hole). Large density values imply solid material.

Step 5 - Calculate effective properties of structure.

A. Select penalization power, p>3. The penalization power penalizes

intermediate densities and encourages convergence to regions of solid

(full density) and void (minimum density).

B. Calculate effective properties in each element. For example, a

stiffness matrix (K) for an element becomes: K
i
= ρ

i

p

K
solid

C. Calculate effective properties for the structure.

Step 6 - Return to Step 4 until convergence is achieved.

Explorations of the appropriate topology are to be incorporated in our research as

a future direction. However, in this dissertation, our focus is on the synthesis of design

processes involving mechanical and material design.

The computational model for topology design used in the example in this chapter

stems from a 99 line MATLAB
® code for compliance minimization of statically loaded

462

structures, developed by Ole Sigmund from the Department of Solid Mechanics at the

Technical University of Denmark (Sigmund, 2001). The code was intended for

engineering education and contains both a mesh independency filter and a finite element

code. A number of simplifying assumptions are made to reduce the code complexity.

For example, the design domain is modeled as a rectangle and is discretized using square

finite elements, as indicated in Figure 7.1. Element and node numbering proceeds on a

column-by-column basis, starting in the upper left corner. The aspect ratio of the

structure to be optimized is determined by the number of horizontal (nelx) and vertical

(nely) elements as specified by the user.

Figure 7.1 Dividing the Cantilever Beam Design Domain into Finite Elements (Choi
and Fernandez, 2003)

The chosen implementation of topology optimization within this algorithm is

based on the “power law approach” or SIMP approach (Solid Isotropic Material with

Penalization), where properties are assumed constant within each element and design

463

variables are the element relative densities. For more information about this topology

optimization problem, please refer to (Sigmund, 2001).

7.1.2 Linear Cellular Alloys

Linear Cellular Alloys (see Figure 7.2) are metallic cellular materials with a

constant cross section, fabricated through a process developed by the Lightweight

Structures Group at Georgia Tech (Seepersad, et al., 2003). The process combines

extrusion of ceramic slurry, composed of metal oxides and water through a die, allowing

for the achievement of quasi-arbitrary two-dimensional cellular topologies. Extrusion of

the ceramic is followed by exposure to thermal and chemical treatments that cure the

composites. The inherent advantage in producing materials using this process is the

ability to tailor properties of the resulting structure such as the effective moduli of

elasticity and conductivity by altering the topologies of the cells. Structures may be

composed of either periodically repeating unit cells or functionally graded, non-uniform

cells of various topologies.

Linear or two-dimensional cellular materials are particularly suitable for

multifunctional applications that require not only structural performance but also

lightweight thermal or energy absorption capabilities. LCAs are superior to those of

metallic foams with equivalent densities. For example, LCAs exhibit greater in-plane

stiffness and strength and out-of-plane specific energy absorption than stochastic metal

foams (Evans, et al., 2001; Hayes, et al., 2001). LCAs are advantageous as heat

exchangers due to larger surface area density and lower pressure drop – two factors that

464

compensate for lower heat transfer coefficients for laminar forced convection than for

turbulent forced convection in stochastic metal foams with comparable relative densities

(Lu, 1999). Accordingly, LCAs have potential for use in applications such as actively

cooled supersonic aircraft skins or engine combustor liners (Seepersad, et al., 2002).

Figure 7.2 Square-Cell Linear Cellular Alloy (Hayes, et al., 2001)

In addition, the manufacturing process for linear cellular alloys facilitates the

fabrication of multi-functional cellular materials. Powder slurries are extruded through a

die and then exposed to thermal and chemical treatments in a process developed by the

Lightweight Structures Group at Georgia Tech (Cochran, et al., 2000). Extruded metallic

cellular structures can be produced with nearly arbitrary two-dimensional cellular

topologies limited only by paste flow and die manufacturability. Wall thicknesses and

465

cell diameters as small as fifty microns and several hundred microns, respectively, have

been manufactured (Church, et al., 2001).

As presented in (Seepersad, et al., 2003), several authors have reported

multifunctional analyses of two-dimensional cellular materials. “Torquato and coauthors

establish cross-property bounds on the thermal conductivities of periodic hexagonal,

triangular, and square cells in terms of elastic properties and vice versa (Torquato, et al.,

1998). Gu and coauthors present analytical models and dimensionless indices that enable

simultaneous evaluation of structural and heat transfer performance of periodic

hexagonal, square, and triangular cells (Gu, et al., 2001). Structural performance is

measured in terms of the effective shear modulus while a corrugated wall model (Lu,

1999) is recommended for heat transfer. The non-dimensional indices include a thermal

performance index—the ratio of total heat transfer rate to pressure drop—and a

thermomechanical index formulated by multiplying the thermal index by the ratio of

shear modulus to the modulus of elasticity of the solid material. Both Gu and coauthors

and Evans and coauthors (Evans, et al., 2001) employ the indices to evaluate the

performance of periodic triangular, square, and hexagonal topologies for

thermomechanical applications. Hayes and coauthors use theoretical estimates and

physical experiments to evaluate several thermal and mechanical characteristics of LCAs,

including total heat transfer rate, elastic properties, initial plastic buckling strengths, and

in-plane and out-of-plane compressive strength, collapse behavior, and energy absorption

for both quasi-static and dynamic loading (Hayes, et al., 2001). The steady state heat

transfer rate is evaluated for periodic square cells using a finite difference approach that is

466

more rigorous than closed-form estimates because it accounts for three-dimensional

temperature distribution throughout the LCA and the convective fluid. The finite

difference approach can accommodate functionally graded cell topologies, although

Hayes and coauthors did not leverage this capability” (Seepersad, et al., 2003).

In (Seepersad, et al., 2003), Seepersad and co-authors design multifunctional, two-

dimensional cellular structures for applications that require both structural and thermal

performance. While others have focused primarily on analysis of the structural and

thermal properties of cellular materials, the authors adopt a design perspective; given a

set of rigorous analytical models, their emphasis is on synthesis of cellular designs and

identification of superior design regions. The example used in this chapter is modified

from their studies in the referenced paper.

7.1.3 Convectively Cooled Heat Sink for a Computer Chip

LCAs are potentially well suited for heat exchanger applications, including

compact electronic cooling devices and ultralight, actively cooled, aerospace structures.

Unlike most heat exchangers, however, the two-dimensional cells that dissipate heat via

conduction and convection also have desirable structural properties.

The LCA example considered in this chapter is that of a convectively cooled heat

sink for a computer chip. A sample schematic of the structure is given in Figure 7.3. The

general requirements for a CPU heat sink are that it 1) remove enough heat from the chip

so as to ensure steady state operation and 2) withstand the relatively high compressive

forces exerted by clamps used to attached the heat sink to the chip as tightly as possible

467

(see Figure 7.4). With this in mind, it is important to note that constant temperature at the

chip interface is desired in this investigation. Although, it may seem more intuitive to

model constant heat flux instead, the idea is to design a heat sink that is capable of

removing enough heat to keep the chip below 1) its maximum operating temperature or 2)

its melting temperature (in the case of potential over-clocking).

In Figure 7.3, the device has fixed overall width (W), depth (D), and height (H) of

25 mm, 75 mm, and 25 mm, respectively. It is insulated on the left, right, and bottom

sides and is subjected to a heat source at constant temperature, Ts, on the top face. The

mechanism for heat dissipation is forced convection via air with entry temperature, Tin,

and total mass flowrate M . The flowrate is variable, but it is linked to the available

pressure head through a representative characteristic fan curve, illustrated in Fig, 2.

Steady state, incompressible laminar flow is assumed. The solid material in the device is

copper. The thermal conductivity, ks, of copper samples fabricated with the thermo-

chemical LCA extrusion process has been measured to be 363 W/m-K [5].

In (Seepersad, et al., 2003), the LCA is composed exclusively of rectangular cells,

but the size, shape, and number of cells are permitted to vary in a graded manner. Each

row of cells may assume a different height, hi, and each column a different width, wi. The

only restriction on cell height and width is that the cells must fit within the external

dimensions with sufficient remaining space for vertical cell walls of variable thickness, th,

and horizontal walls of variable thickness, tv. The numbers of cells in the horizontal and

vertical directions are designated Nh and Nv, respectively. The goal for the example in

468

(Seepersad, et al., 2003) is to achieve desirable values for two objectives: (1) overall rate

of steady state heat transfer and (2) overall structural elastic stiffness of the structure.

Figure 7.3 Compact, Forced Convection Heat Exchanger with Graded Rectangular
LCAs (Seepersad, et al., 2003)

Figure 7.4 Steps Involved in CPU/Heat Sink Assembly (Choi and Fernandez, 2003)

W

H

D

w1 w2 w3 wNh. . .

h2

h1

hNv

th

tv

Heat
Source
Tsource

Air Flow, Tin

.

.

.

x

y

z

469

Figure 7.5 Characteristics Fan Curve (Seepersad, et al., 2003)

7.1.4 Finite Element Modeling and Computer Simulation

As stated before, typically, topology design and optimization involve the general

steps outlined in Figure 7.6. As indicated, every change in geometry requires renewed

analysis to evaluate system performance with regard to desired objectives. Considering

that such changes in geometry also require the recalculation of temperature dependent

(i.e., inlet, outlet, and bulk) properties such as fluid viscosity µ, convective coefficient h,

Prandtl Number Pr, Reynolds Number Re, Hydraulic Diameter Dh, etc. and the

reevaluation of potentially huge stiffness matrices computational expense is considerable.

This is especially true when a number of different software applications are involved.

Through an adaptation of the 99 line topology optimization algorithm, developed

by Ole Sigmund and extended by Carolyn Conner Seepersad, as described in Section

7.1.1, Finite Element Thermal and Structural analysis has been developed and

successfully deployed in MATLAB.

fan

LCA
design

Flow Rate, kg/s, of Air
at T=293.15 K

Pressure
Drop
(Pa)

30

0.0113

470

Figure 7.6 General Step for Topology Design and Optimization (Adapted from Choi
and Fernandez, 2003)

Figure 7.7 FEA Boundary Conditions (Adapted from Choi and Fernandez, 2003)

471

The boundary conditions and coordinate system used for the thermal and

structural finite element analysis are provided in Figure 7.7. A number of simplifying

assumptions are made in implementing the thermal and structural analysis for multi-

objective topology design. The fluid temperature difference between inlet and outlet is

assumed to be very small.

In this chapter, the thermal analysis model is different from that used in

(Seepersad, et al., 2003). The simulation used in this chapter is not very accurate since it

is not the focus of studies in this dissertation; simulations with low-fidelity are used here

because the low cost enables us to observe thousands of points to illustrate the

effectiveness of the SEED and E-RCEM methods in this chapter. In the next section, this

simulation and structural and thermal analysis will be used to construct the example

problem to be used in this chapter.

7.2 EXAMPLE PROBLEM: DESIGN OF UNIT CELLS FOR LINEAR
CELLULAR ALLOYS

The example problem of design of unit cells for linear cellular alloys is defined in

this section. Structural and thermal models introduced in Section 7.1 will be used as

simulations in this example. The example here is slightly different from that in

(Seepersad, et al., 2003) because our focus is to illustrate and verify the SEED and E-

RCEM methods instead of exploring topology designs.

In this chapter, the convectively cooled heat sink for a computer chip in Figure 7.3

is used as the example problem. Steady state, incompressible laminar flow of air is

472

assumed. The temperature of the inlet flow is a constant, Tin = 293K. The temperature of

the heat source, which is put on the top of the LCA device as illustrated in Figure 7.3, is

considered to be a constant of Tsource = 373K. The thermal conductivity is set as

365W/mK, which is that of the copper samples fabricated with the thermal-chemical

LCA extrusion process in (Church, et al., 2001). The depth of the device is set as D =

0.075m. The width and height of the device is W = H. The number of cells in the

horizontal and vertical directions is set as Nh = Nv = N = 8. The overall structure of this

LCA is defined and will not change in our example. Identical rectangular cells are used,

with h1 = h2 = … = hnv = w1 = w2 = … = wnh = w in Figure 7.3. The wall thickness is set

as tv = th = t. The relationship between wall thickness, t, and cell size, w, follows

Equation (7.1):

() wtNwNtW 891 +=⋅++⋅= (7.1)

where as introduced earlier, N is the number of cells in the vertical or horizontal

direction, and W is the width of the device and in this example, W = H. The total area of

the cross section that the working fluid (air) passes the device is:

()222 9tWwNAf −=⋅= (7.2)

And the area of the cross section that is filled with solid materials is:

 ()22 2 2 9s fA A A W H N w W W t= − = ⋅ − ⋅ = − − (7.3)

In this example we consider 3 design variables, as described below:

• Wall thickness, t. The wall thickness is used as a control factor in our

example. The ranges for t is 0.0002m ≤ t ≤ 0.0008m.

473

• Width of the device, W. The width of the device is a control factor. The

ranges for W is 0.015m ≤ W ≤ 0.035m.

• Fluid velocity, V, or total mass flow rate, M . Air is the working fluid. We

assume that 1) the fluid velocity is the same at any places in the device, and 2)

as a noise factor, the air temperature does not change greatly so that a constant

density of air, ρf, can be used, we have the relationship between the fluid

velocity and total mass flow rate as:

VAM ff ⋅⋅= ρ (7.4)

Thus, in this example, we need to use only one of the two variables. The

density of air at 20 oC is ρf = 1.205 kg/m3. The mass flow rate, M , is used as

one of the control factors. In this example, we set the boundaries for M as

0.0005kg/s ≤ M ≤ 0.003kg/s.

There are three system constraints in this design:

• In this example we assume to have steady state, incompressible laminar flow

in the LCA device. Typically, a flow is laminar when the Reynolds number is

smaller than 2300, and this is the second constraint in this example:

2300<eR (Constraint I)

where the Reynolds number, Re, is calculated with Equation (7.5).

f

fh
e

VD
R

µ
ρ⋅⋅

= (7.5)

474

where Dh is the hydraulic diameter, V is the fluid velocity, ρf is the density of

air, and µf is the fluid dynamic viscosity. In this example, the dynamic

viscosity is calculated with the following equation:

 ()638.514415.00000001.0 +⋅×= averagef Tµ (7.6)

where Taverage is the average fluid temperature and in this example, we take the

fluid inlet temperature as the average temperature:

 inaverage TT = (7.7)

In Equation (7.5), the hydraulic diameter Dh is calculated with the following

equation:

meterWettedPeri

A
D f

h

4
= (7.8)

In this example, since we use Nh = Nv = 8 square cells along the horizontal

and vertical directions, Equation (7.8) can be simplified to:

 tWDh 9−= (7.9)

This constraint is very important in our example because the simulation code

in Section 7.1.4 is developed specifically for cases with laminar flows; the

results may not be valid when the flow is developing or turbulent. This

constraint puts limits on wall thickness, t, and fluid velocity, V. The fluid inlet

temperature, Tin, also affects the value of Reynolds number.

• As illustrated in Figure 7.5, there is a constraint associated with the pressure

drop and mass flow rate. It is required that we must design the LCA device

475

with pressure drop and mass flow rate (along the LCA curve) smaller than

those at the cross point in Figure 7.5. This can be expressed as:

MP 35.266330 −≤∆ (Constraint II)

where M can be calculated with Equation (7.4). The pressure drop in a

horizontal, steady state flow in a duct can be calculated with the following

equation:

2

2
f

h

VD
P f

D

ρ ⋅
∆ = ⋅ ⋅ (7.10)

where f is the friction coefficient, D is the length of duct or pipe (in this

example, the depth of the LCA device), ρf is the density of air, and V is the

fluid velocity. In this example, to be simple, we use the hydraulic diameter,

Dh, to calculate the pressure drop; it should be noted that to be accurate, the

equivalent diameter, De, should be used since LCA is a rectangular duct. For

fully developed laminar flow the friction coefficient depends only on the

Reynolds Number, Re, and can be expressed as:

64

e

f
R

= (7.11)

Pressure drop for non-laminar flows is not considered in this example because

design solutions with such flows are not considered due to Constraint I.

• Performance requirements include a constraint on the volume fraction of the

unit cell and goals for the elastic properties of the cellular material. The

476

volume fraction (or portion of the unit cell occupied by solid material), vf, is

limited to at most 30% by the manufacturing process.

()2

2

9
1 30%fs

A A W tA
vf

A A W

− − ⋅
= = = − ≤ (Constraint III)

There are three design goals considered in this example:

• Maximize the total heat transfer rate, Q. With the finite element model as

introduced in Section 7.1.4, we are able to calculate the exit temperatures of

the fluid in each cell, and the total rate of steady state heat transfer is then

calculated by a summation over all the cells (Incropera and DeWitt):

()
i ave i

n cells

cell p exit in

i

Q m c T T= −∑ (7.12)

The total heat transfer rate Q is directly obtained from the simulation code.

We desire to maximize the heat transfer rate of the LCA device to cool down

the computer chip. In this example, we formulate this goal in the compromise

DSP as:

 01 11
minarg

min =++−
−

− +− dd
QQ

QQ

ett

 (7.13)

In Equation (7.13), Q is the total heat transfer rate at the current point, Qmin is

the minimum observed total heat transfer rate, and Qtarget is the target value for

the heat transfer rate, which is set as 20W. Note that there are different ways

to formulate the goal (normalize the responses) in the compromise DSP, as

477

described in Chapter 6. The deviation variables, d1
− and d1

+, satisfy the

following requirements:

 00, 1111 =⋅≥ +−+− ddanddd (7.14)

To maximize Q, in the compromise DSP we need to minimize the deviation

variable d1
−.

• Minimize the compliance, J. Compliance is the measurement of softness as

opposed to stiffness of a material. It is the reciprocal of Young's modulus or

the inverse of the stiffness matrix. In this example, we use a simulation code

to calculate the compliance of the LCA device. Since we want to maximize

the stiffness of the device, in this example we minimize the compliance. In

the compromise DSP, this goal is formulated as:

max
2 2

max arg

1 0
t et

J J
d d

J J
− +−− + − =

−
 (7.15)

where Jmax is the maximum observed compliance, and Jtarget is the target value

for this goal, which we set as Jtarget = 0.0015m/N. To minimize the

compliance J, we need to minimize the deviation variable d2
+ in the

compromise DSP.

• Minimize the device weight. Since the material is selected as copper and the

depth of the device is fixed, this goal is the same as minimizing the cross-

section area that is filled with solid materials, As, as calculated in Equation

(7.3). . In the compromise DSP, this goal is formulated as:

478

max
3 3

max arg

1 0s s

s st et

A A
d d

A A
− +−

− + − =
−

 (7.16)

where Asmax is the maximum observed value of As, and Astarget is the target

value for As, which we set as Astarget = 0.00025m2. To minimize the

compliance J, we need to minimize the deviation variable d3
+ in the

compromise DSP.

Response contour plots are presented below. All plots are drawn with information

from 1573 points evenly spread over in the whole design space. The contour plots of Q

(total heat transfer rate) versus t (wall thickness) & W (device width), t & Mdot (mass

flow rate), and W & Mdot are illustrated in Figure 7.8, Figure 7.9, and Figure 7.10,

respectively. The contour plots of J (compliance) versus t and W is illustrated in Figure

7.11. The contour plots of the cross-section area of solid materials (As) versus t and W is

illustrated in Figure 7.12. From the plots we see that these responses are not highly

nonlinear or highly irregular.

LCA heat exchangers with desirable structural and thermal properties are designed

for the boundary conditions summarized in Table 7.1. Design is guided with the use of

the compromise DSP in Figure 7.13. Given a set of boundary conditions and techniques

for analyzing non-periodic LCA heat exchangers, the objective is to find the values of the

set of design variables that satisfy the set of constraints and bounds and achieve the

targets for one or more goals as closely as possible. After formulation of the compromise

DSP for the LCA design problem, design solutions can be achieved using the design

automation and exploration software of iSIGHT®. When the computation is not

479

expensive to run we may link the simulation code to iSIGHT to obtain the actual solution.

This actual design solution is listed in Table 7.2.

Figure 7.8 Contour Plot of Heat Transfer Rate (Q) vs. Wall Thickness (t) and Device
Width (W)

Figure 7.9 Contour Plot of Heat Transfer Rate (Q) vs. Wall Thickness (t) and Mass
Flow Rate (MDot)

480

Figure 7.10 Contour Plot of Heat Transfer Rate (Q) vs. Device Width (W) and Mass
Flow Rate (MDot)

Figure 7.11 Contour Plot of Compliance (J) vs. Wall Thickness (t) and Width (W)

481

Figure 7.12 Contour Plot of Cross-Section Area of Solid Materials (As) vs. Wall
Thickness (t) and Device Width (W)

Table 7.1 Boundary Conditions for Design

Structure Width (W), Height (H) W = H
Structure Depth (D) 0.075m

Heat Source Temperature (Tsource) 373K
Fluid Inlet Temperature (Tin) 293K

Working Fluid Air
Working Fluid Density 1.205 kg/m3

LCA Structure 64 square cells
Wall Thickness (t) Variable, tv = th

Thermal Conductivity of Solid
Materials (ks)

363 W/mK

Fluid Velocity (V)
Variable, tied to mass flow

rate and pressure drop

482

Given Control Factors and Noise Factors:
Three control factors.

Models:
Simulations for thermal and structural analyses.

Assumption:
Steady-state uncompressible laminar flow of air.
The average temperature of air in the device equals to the inlet temperature.
Air density is a fixed value of 1.205 kg/m3.
All walls have same thickness.
All square cells have identical sizes.

Find System Variables:

 Mass flow rate (M)
 Device Width (W)
 Wall thickness (t)

Deviation Variables:
The under and over achievement of the goal of maximizing total heat transfer rate:

d1
−, d1

+.
The under and over achievement of the goal of minimizing compliance: d2

−, d2
+.

The under and over achievement of the goal of minimizing device weight: d3
−, d3

+.

kg/s
m
m

Satisfy System Constraints:
Laminar flow: Re < 2300

Fan curve: MP 35.266330 −≤∆

Volume fraction: ()2

2
1 30%fs

A A W N tA
vf

A A W

− − ⋅
= = = − ≤

System Goals:
System Performance:

Maximize heat transfer rate Q:

01 11
minarg

min =++−
−

− +− dd
QQ

QQ

ett

Minimize compliance J:

max
2 2

max arg

1 0
t et

J J
d d

J J
− +−− + − =

−

Minimize weight:

max
3 3

max arg

1 0s s

s st et

A A
d d

A A
− +−

− + − =
−

Variable Bounds:

0.0005 ≤ M ≤ 0.003
0.015 ≤ W ≤ 0.035
0.0002 ≤ t ≤ 0.0008

di
-, di

+
 ≥ 0 ; di

-.di
+ = 0.

kg/s
m
m

Minimize Deviation Function:

1 1 2 2 3 3Z w d w d w d− + += ⋅ + ⋅ + ⋅ . w1 = w2 = w3 = 1.

Figure 7.13 Compromise DSP for LCA Unit Design

483

Table 7.2 Actual Design Solution Obtained with Simulation Codes

 Values
Mass flow rate, Mdot (kg/s) 0.00129

Device width, W (m) 0.0348
Wall thickness, t (m) 0.00042

Mdot_normalized 0.316
W_normalized 0.99
t_normalized 0.3667

Reynolds number, Re 2297.61
Volume fraction, vf 0.2054
30 2663.35M P− − ∆ 26.5141

Area of solid materials, As (m
2) 0.000249

Heat transfer rate, Q (W) -15.59
Compliance, J (m/N) 0.00139

1 2 3Z d d d− + += + + 0.31489

7.3 EXPLORATION OF DESIGN SOLUTIONS WITH RCEM

In this section, the compromise DSP in Figure 7.13 is solved with the Robust

Concept Exploration Method (RCEM). Since the problem has been defined in Section

7.2, our first step in this section is to design experiments and develop metamodels for

responses.

There are three design goals and three constraints in the compromise DSP. The

cross-section area of solid materials (As), the volume fraction (vf), the Reynolds number

(Re), and the pressure drop (∆P) are easy to get with simple equations, thus we will not

develop metamodel for them. The total heat transfer rate (Q) and compliance (J) are

obtained from the finite element simulation, and need to be modeled.

There are three design variables as stated in Section 7.2. In this example, we do

not perform any screening experimental design to identify unimportant design variables.

484

Thus a single-stage experimental design is needed to select data points. It is

recommended in (iSIGHT, 2003) that to ensure the achievement of acceptable

metamodels at least 3n data points should be used in cases with n design variables. Thus

in this example we use a Latin Hypercube design with 30 data points; values of design

variables at these points are normalized to [0,1] and listed in Table D.1 in Appendix

D.1.1. Total heat transfer rate and compliance are observed by running simulations at

these points. Note that the total heat transfer rate is negative because the heat is

transferred from the device to the air; in the compromise DSP, we multiply these values

with –1 so that we maximize positive values for Q.

With information from Table D.1 in Appendix D.1.1, two kriging metamodels are

developed for Q and J, respectively. Values of θ for these kriging metamodels are listed

in Table 7.3. In Table 7.3, θ1 corresponds to the design variable of mass flow rate (M or

Mdot), θ2 corresponds to the device width (W), and θ3 corresponds to the wall thickness

(t). In this chapter, if not particularly pointed out, we always use these denotations.

Contour plots of Q and J calculated from kriging metamodels versus t, W, and Mdot are

illustrated in Figure 7.14,Figure 7.15, Figure 7.16, and Figure 7.17, respectively.

Comparing plots with those in Figure 7.8, Figure 7.9, Figure 7.10, and Figure 7.11, we

see that the kriging metamodel for compliance, J, is acceptable, while that for total heat

transfer rate, Q, does not capture the actual responses very well. MARS metamodels are

also developed and the model files, qmars.dat, are presented in Appendix D.1.2. The

kriging metamodels are more accurate then the MARS metamodels in this example.

485

Without comparison to actual responses, we decide to use kriging metamodels in solving

the compromise DSP because it gives more reasonable predictions (predicted response

ranges from MARS are too large compared to what we observed with 30 data points).

Table 7.3 Values of θ for Kriging Metamodels of Q and J

 θ1 θ2 θ3
Q 2.75193 9.41537 8.58675
J 0.01004 0.00627 10.87170

Figure 7.14 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points

486

Figure 7.15 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points

Figure 7.16 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points

487

Figure 7.17 Kriging Metamodel of Compliance J with 30 Data Points

After developing the metamodels for responses, design solutions can be achieved

using the design automation and exploration software of iSIGHT®. We link the

metamodels directly in iSIGHT® to explore for solutions for the compromise DSP in

Figure 7.13. The implementation of C-DSP in iSIGHT® is illustrated in Appendix D.1.3.

The solution is presented in Table 7.4. In Table 7.4 we see that the solution obtained with

RCEM and single-stage metamodeling has small values of Mdot, and medium value of W

and t. Constraint I (Re < 2300) is active. Both Design Goals II (minimizing compliance)

and III (minimizing area) are met. The predicted objective function value at this solution

is 0.35357, while the actual value is 0.37351. The solution obtained with 30 data points

from Latin Hypercube design is far from the actual solution listed in Table 7.2.

488

Table 7.4 The Design Solution Obtained with RCEM – 30 LH Experiments

 Predicted Value Actual Value
Mass flow rate, Mdot (kg/s) 0.00097

Device width, W (m) 0.0278
Wall thickness, t (m) 0.00051

Mdot_normalized 0.1875
W_normalized 0.6406
t_normalized 0.5708

Reynolds number, Re 2300
Volume fraction, vf 0.29995
30 2663.35M P− − ∆ 27.30

Area of solid materials, As (m
2) 0.00023

Heat transfer rate, Q (W) −15.05 −14.77
Compliance, J (m/N) 0.00078 0.00080

1 2 3Z d d d− + += + + 0.35357 0.37351

In order to have more comparisons, a Latin Hypercube design with 40 data points

is also used in our study. This experimental design and corresponding response values

are listed in Table D.2 in Appendix D.1.4. Two kriging metamodels of responses for Q

and J are developed with this information; values of θ for these kriging metamodels are

listed in Table 7.5. The design solution obtained with these metamodels is listed in Table

7.6. From Table 7.6 we see that though information is collected from more points than

that in Table 7.4, the solution becomes further from the actual one. One possible reason

is that in this example the metamodels developed with 30 data points are more accurate

than those developed with 40 data points.

Table 7.5 Values of θ for Kriging Metamodels of Q and J

 θ1 θ2 θ3
Q 5.71612 10.49253 7.49590
J 0.00238 0.00614 10.31701

489

Table 7.6 The Design Solution Obtained with RCEM – 40 LH Experiments

 Predicted Value Actual Value
Mass flow rate, Mdot (kg/s) 0.0005

Device width, W (m) 0.0201
Wall thickness, t (m) 0.00036

Mdot_normalized 0.0
W_normalized 0.2532
t_normalized 0.2707

Reynolds number, Re 1644.18
Volume fraction, vf 0.29872
30 2663.35M P− − ∆ 28.44

Area of solid materials, As (m
2) 0.00012

Heat transfer rate, Q (W) −20.05 −11.21
Compliance, J (m/N) 0.00165 0.00167

1 2 3Z d d d− + += + + 0.01429 0.64419

Table 7.7 Root Mean Squared Errors of Metamodels Developed in RCEM

 Metamodels with LH 30 Points Metamodels with LH 40 Points
 Q J Q J
RMSE 9.2047 0.0003433 8.3527 0.000175

NRMSE 8.94% 3.00% 8.11% 1.53%

To compare the accuracy of the metamodels, root mean squared errors (RMSE)

are calculated with Equation (2.34) and listed in Table 7.7. The normalized root mean

squared errors (NRMSE) are calculated by dividing RMSE with the observed response

range; it gives the impression of how large the RMSE is compared with possible response

changes. All the information is calculated with information from 1573 evenly spread

points in the whole design space. The smaller RMSE (or NRMSE) is, the more accurate

the corresponding metamodel. Typically when NRMSE is smaller than 10% we consider

the metamodel to be acceptable (Simpson, 1998). In Table 7.7 we see that metamodels

developed with 40 data points are more accurate than those developed with 30 data

490

points, which is opposite to what we have expected in the analysis in the past paragraph.

Thus the question here is that: why we cannot obtain better design solutions with more

accurate metamodels? This question will be answered in the discussion in Section 7.6,

after we have applied and studied SEED and E-RCEM in Sections 7.4 and 7.5.

7.4 EXPLORATION OF DESIGN SOLUTIONS WITH SEED IN RCEM

In this section, the SEED method is used to facilitate sequential identification of

data points and develop accurate metamodels for design space exploration. After

defining the design problem in Section 7.2, here we design the sequential experiments

following the methods and steps described in Chapters 4 and 5. We plan to start with 8

data points and 8 validation points, then add in 3 data points or validation points each

time. We will stop this sequential experimental design process once 28 points (which is

fewer than that used in RCEM in Section 7.3) are observed, i.e., in Iteration III – Step 3.

We expect to develop more accurate metamodels and also achieve better design solutions

with fewer observed points using the SEED method.

Iteration I – Step 1: Initial Experimental Design. Eight data points are

identified at the “corners” of the hypercube, as listed in Table 7.8. This is actually a full

factorial experimental design.

Iteration I – Step 2: Simulation and Initial Metamodels of Responses. We run

the simulation codes and get response values of Q and J at eight data points. Kriging

metamodels are developed with this information, and values of θ are listed in Table 7.9.

Since at this very early stage of metamodeling, it is unlikely that kriging may behave

491

abnormally (as discussed in Chapter 5), we decide not to develop MARS metamodels and

use kriging as the initial metamodels for responses. The contour plot of Q versus t and

Mdot is illustrated in Figure 7.18; more contour plots are presented in Appendix D.2.1.

Table 7.8 Initial Experimental Design with 8 Data Points

Mdot W t Mdot_n W_n t_n Q J
0.0005 0.015 0.0002 0 0 0 -11.01 0.00749
0.0005 0.015 0.0008 0 0 1 -14.37 0.00022
0.0005 0.035 0.0002 0 1 0 -6.65 0.01167
0.0005 0.035 0.0008 0 1 1 -9.56 0.00027
0.003 0.015 0.0002 1 0 0 -42.24 0.00749
0.003 0.015 0.0008 1 0 1 -109.66 0.00022
0.003 0.035 0.0002 1 1 0 -19.86 0.01167
0.003 0.035 0.0008 1 1 1 -23.03 0.00027

Table 7.9 Values of θ for the Initial Kriging Metamodels

 θ1 θ2 θ3
Q 78.19556 3.11212 0.80947
J 0.00100 0.20111 71.32491

Figure 7.18 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow

Rate (Initial Kriging Metamodel with 8 Data Points)

492

Iteration I – Step 3: Identification of New Validation Points. In this step we

need to identify 8 validation points. Since no information of prediction errors is known in

this iteration, we do not adjust the covariance matrix and identify new validation points to

spread over the whole design space. A 16×16 covariance matrix is build with the first 8

rows and columns corresponding to 8 data points that we have, and the last 8 rows and

columns corresponding to the 8 validation points that we need to identify. In the

formulation of this covariance matrix, we set θ1 = 78.19556, θ2 = 3.11212, θ3 = 71.32491.

For each design variable we use the larger one (in columns) in Table 7.9. By maximizing

the determinant of the covariance matrix, we identify 8 validation points for the first

iteration as listed in Table 7.10.

Table 7.10 Eight New Validation Points Identified in Iteration I

Mdot W t Mdot_n W_n t_n Q J
0.00222 0.0235 0.00045 0.6865 0.4227 0.4100 -17.64 0.00098
0.00125 0.0350 0.00035 0.3008 1.0 0.2559 -14.85 0.00232
0.00239 0.0150 0.00065 0.7573 0.0 0.7573 -70.69 0.00034
0.00300 0.0250 0.00050 1.0 0.5 0.5 -18.94 0.00076
0.00053 0.0203 0.00041 0.0111 0.2663 0.3472 -11.79 0.00118
0.00175 0.0250 0.00080 0.5 0.5 1.0 -18.53 0.00025
0.00175 0.0250 0.00020 0.5 0.5 0.0 -15.92 0.00990
0.00146 0.0341 0.00057 0.3834 0.9532 0.6156 -17.53 0.00061

Iteration I – Step 4: Metamodel of Prediction Errors. Prediction errors of the

initial kriging metamodels (Table 7.9) at the validation points are listed in Table 7.11.

Prediction errors at data points are zero. Two kriging metamodels of prediction errors are

493

then developed for heat transfer rate and compliance. The values of θ are listed in Table

7.12. The maximum absolute prediction error is about 50 for Q, and 0.0078 for J.

Table 7.11 Prediction Errors at 8 Validation Points

Mdot_n W_n t_n Q J Q_pred J_pred Q_err J_err
0.6865 0.4227 0.4100 -17.64 0.00098 -20.11 0.00491 -2.47 0.00393
0.3008 1.0 0.2559 -14.85 0.00232 -20.39 0.00491 -5.54 0.00259
0.7573 0.0 0.7573 -70.69 0.00034 -20.73 0.00491 49.96 0.00457

1.0 0.5 0.5 -18.94 0.00076 -21.13 0.00491 -2.19 0.00415
0.0111 0.2663 0.3472 -11.79 0.00118 -21.56 0.00486 -9.77 0.00368

0.5 0.5 1.0 -18.53 0.00025 -22.03 0.00427 -3.5 0.00402
0.5 0.5 0.0 -15.92 0.00990 -22.53 0.00208 -6.61 -0.0078

0.3834 0.9532 0.6156 -17.53 0.00061 -23.03 0.00027 -5.5 -0.0003

Table 7.12 Values of θ for Kriging Metamodels of Prediction Errors in Iteration I

 θ1 θ2 θ3
Q_err 31.38770 14.31849 0.00395
J_err 7.72797 0.00100 32.19186

Iteration I – Step 5: Metamodel Validation. This step is skipped.

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix. We

need to add in 3 data points. An 11×11 covariance matrix is formulated, with the first 8

rows and columns corresponding to current data points, and the last 3 rows and columns

corresponding to new data points. Then the prediction errors calculated from metamodels

developed in Iteration I – Step 4 are used to calculate correcting coefficients following

Equation (5.9). In the formulation of this covariance matrix, we set θ1 = 78.19556, θ2 =

14.31849, θ3 = 71.32491. The two responses, Q and J, are considered to be equally

important, i.e., ρQ = ρJ = 0.5 in Equation (5.9). The value of λ is 2.

494

Iteration I – Step 7: Identification of New Data Points. In this step, by

maximizing the determinant of the adjusted covariance matrix as developed in the

previous step, 3 possible new data points are identified and listed in Table 7.13.

Table 7.13 Four New Data Points Identified in Iteration I

Mdot W t Mdot_n W_n t_n Q J
0.00175 0.0250 0.0005 0.5 0.5 0.5 -17.49 0.00076
0.00058 0.0321 0.00043 0.0333 0.8556 0.3769 -9.58 0.00126
0.00204 0.0237 0.00027 0.6143 0.4333 0.1167 -16.69 0.00405

Iteration I – Step 8: Updated Metamodels of Responses. Now we have 11 data

points and 8 validation points. Two new kriging metamodels of responses are developed

with information from the data points. The values of θ are listed in Table 7.14. Contour

plots of responses are presented in Appendix D.2.1.

Table 7.14 Values of θ for Kriging Metamodels of Responses with 12 Data Points

 θ1 θ2 θ3
Q 1.76888 1.16104 0.48836
J 0.00100 0.24056 84.62898

Iteration II – Step 3: Identification of New Validation Points. In this step, we

need to add in 3 new validation points. Two kriging metamodels are developed for Q and

J based on information from 8 validation points. The values of θ are listed in Table 7.15.

Prediction errors of these metamodels at data points are listed in Table 7.16.

495

Kriging metamodels of prediction errors are developed with information at 19

points. The values of θ are listed in Table 7.17. The maximum absolute prediction error

is about 60 for Q, and 0.003 for J. To identify 3 new validation points, a 22×22

covariance matrix is formulated with the first 19 rows and columns corresponding to

observed points and the last 3 rows and columns corresponding to new validation points.

In the formulation of this covariance matrix, we set θ1 = 0.83202, θ2 = 23.19746, θ3 =

25.33245. Then prediction errors calculated from metamodels in Table 7.17 are used to

adjust entries of the covariance matrix. By maximizing the determinant of this adjusted

covariance matrix, 3 new validation points are identified and listed in Table 7.18.

Table 7.15 Values of θ for Kriging Metamodels of Responses with 8 Validation
Points

 θ1 θ2 θ3
Q 0.01269 23.19746 0.00692
J 0.00103 0.00100 6.24017

Table 7.16 Prediction Errors at 11 Data Points

Mdot_n W_n t_n Q J Q_pred J_pred Q_err J_err
0 0 0 -11.01 0.00749 -70.07 0.00981 -59.06 0.00232
0 0 1 -14.37 0.00022 -70.27 0.00025 -55.90 0.00003
0 1 0 -6.65 0.01167 -14.83 0.00985 -8.18 -0.00182
0 1 1 -9.56 0.00027 -14.99 0.0003 -5.43 0.00003
1 0 0 -42.24 0.00749 -70.50 0.00995 -28.26 0.00246
1 0 1 -109.66 0.00022 -70.69 0.0002 38.97 -0.00002
1 1 0 -19.86 0.01167 -14.95 0.00999 4.91 -0.00168
1 1 1 -23.03 0.00027 -15.11 0.00025 7.92 -0.00002

0.5 0.5 0.5 -17.49 0.00076 -17.21 0.00073 0.28 -0.00003
0.0333 0.8556 0.3769 -9.58 0.00126 -23.48 0.00109 -13.90 -0.00017
0.6143 0.4333 0.1167 -16.69 0.00405 -16.96 0.00583 -0.27 0.00178

496

Table 7.17 Values of θ for Kriging Metamodels of Prediction Errors in Iteration II –
Step 3

 θ1 θ2 θ3
Q 0.83202 7.31764 0.32241
J 0.00160 0.63128 25.33245

Table 7.18 Three New Validation Points Identified in Iteration II

Mdot W t Mdot_n W_n t_n Q J
0.003 0.0294 0.00031 0.9998 0.7204 0.1767 -19.52 0.00314

0.00053 0.0290 0.00067 0.0123 0.7001 0.7850 -11.22 0.00039
0.0005 0.0210 0.00065 0.0015 0.2976 0.7563 -12.91 0.00037

Table 7.19 Prediction Errors at 11 Validation Points

Mdot_n W_n t_n Q J Q_pred J_pred Q_err J_err

0.6865 0.4227 0.41 -17.64 0.00098 -30.54 0.00097 -12.90 -0.00001
0.3008 1 0.2559 -14.85 0.00232 -3.31 0.00252 11.54 0.00020
0.7573 0 0.7573 -70.69 0.00034 -77.40 0.00306 -6.71 0.00272

1 0.5 0.5 -18.94 0.00076 -50.45 0.00076 -31.51 0.00000
0.0111 0.2663 0.3472 -11.79 0.00118 -11.70 0.00170 0.09 0.00052

0.5 0.5 1 -18.53 0.00025 -27.21 0.00009 -8.68 -0.00016
0.5 0.5 0 -15.92 0.0099 -9.02 0.00993 6.90 0.00003

0.3834 0.9532 0.6156 -17.53 0.00061 -3.76 0.00247 13.77 0.00186
0.9998 0.7204 0.1767 -19.52 0.00314 -27.53 0.00274 -8.01 -0.00040
0.0123 0.7001 0.785 -11.22 0.00039 -11.72 0.00303 -0.50 0.00264
0.0015 0.2976 0.7563 -12.91 0.00037 -12.74 0.00306 0.17 0.00269

Iteration II – Step 4: Metamodels of Prediction Errors. The prediction errors

of metamodels in Iteration I – Step 8 at 11 validation points are calculated and listed in

Table 7.19. Prediction errors at 11 data points are zero. Two kriging metamodels of

prediction errors are developed with this information and the values of θ are listed in

497

Table 7.20. The observed maximum absolute prediction error for Q is around 30, and

that for J is around 0.003.

Table 7.20 Values of θ for Kriging Metamodels of Prediction Errors in Iteration II –
Step 4

 θ1 θ2 θ3
Q 23.92013 0.00100 7.91005
J 0.00100 0.24284 72.55745

Iteration II – Step 5: Metamodel Validation. This step is skipped.

Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix. We

need to identify 3 new data points in this iteration. The adjusted covariance matrix is

formulated with the same method as described in Iteration I – Step 6. In the formulation

of this covariance matrix, we set θ1 = 23.92013, θ2 = 1.16104, θ3 = 84.62898. The two

responses, Q and J, are considered to be equally important, i.e., ρQ = ρJ = 0.5 in Equation

(5.9). The value of λ is 2.

Iteration II – Step 7: Identification of New Data Points. By maximizing the

determinant of the adjusted covariance matrix formulated in Step 6, three new data points

are identified and listed in Table 7.21.

Table 7.21 Four New Data Points Identified in Iteration II

Mdot W t Mdot_n W_n t_n Q J
0.00082 0.0157 0.00064 0.1276 0.0344 0.7252 -14.65 0.00036
0.00298 0.0245 0.00044 0.9925 0.4751 0.3961 -18.58 0.00106
0.00182 0.0321 0.00074 0.5290 0.8567 0.9059 -19.76 0.00031

498

Iteration II – Step 8: Updated Metamodels of Responses. Since we will stop

the SEED process after identifying 2 more new points in Iteration III – Step 3, and then

the final metamodels of responses will be developed with information from all observed

points, we do not need to update metamodels of responses in this step.

Iteration III – Step 3: Identification of New Validation Points. In this step, we

need to add in 3 new validation points. Two kriging metamodels are developed for Q and

J based on information from 11 validation points. The values of θ are listed in Table

7.22. Prediction errors of these metamodels at data points are listed in Table 7.23.

Prediction errors of these metamodels at validation points are zero.

Kriging metamodels of prediction errors are developed with information at 25

points. The values of θ are listed in Table 7.24. The observed maximum absolute

prediction error is about 60 for Q, and 0.0022 for J. To identify 3 new validation points,

a 28×28 covariance matrix is formulated with the first 25 rows and columns

corresponding to observed points and the last 3 rows and columns corresponding to new

validation points. In the formulation of this covariance matrix, we set θ1 = 0.46716, θ2 =

11.95818, θ3 = 17.40336. Then prediction errors calculated from metamodels in Table

7.24 are used to adjust entries of the covariance matrix. By maximizing the determinant

of this adjusted covariance matrix, 3 new validation points are identified and listed in

Table 7.25.

499

Table 7.22 Values of θ for Kriging Metamodels of Responses with 12 Validation
Points

 θ1 θ2 θ3
Q 0.01937 11.95818 0.00382
J 0.00100 0.00426 5.67512

Table 7.23 Prediction Errors at 14 Data Points in Iteration III – Step 3

Mdot_n W_n t_n Q J Q_pred J_pred Q_err J_err
0 0 0 -11.01 0.00749 -68.51 0.00977 -57.50 0.00228
0 0 1 -14.37 0.00022 -69.33 0.00031 -54.96 0.00009
0 1 0 -6.65 0.01167 -13.87 0.01032 -7.22 -0.00135
0 1 1 -9.56 0.00027 -13.79 0.00023 -4.23 -0.00004
1 0 0 -42.24 0.00749 -70.36 0.00947 -28.12 0.00198
1 0 1 -109.66 0.00022 -71.16 0.00028 38.50 0.00006
1 1 0 -19.86 0.01167 -17.45 0.01002 2.41 -0.00165
1 1 1 -23.03 0.00027 -17.37 0.00021 5.66 -0.00006

0.5 0.5 0.5 -17.49 0.00076 -17.21 0.00083 0.28 0.00007
0.0333 0.8556 0.3769 -9.58 0.00126 -17.45 0.00155 -7.87 0.00029
0.6143 0.4333 0.1167 -16.69 0.00405 -16.86 0.00478 -0.17 0.00073
0.1276 0.0344 0.7252 -14.65 0.00036 -60.53 0.00033 -45.88 -0.00003
0.9925 0.4751 0.3961 -18.58 0.00106 -18.88 0.00098 -0.30 -0.00008
0.529 0.8567 0.9059 -19.76 0.00031 -20.75 0.00037 -0.99 0.00006

Table 7.24 Values of θ for Kriging Metamodels of Prediction Errors in Iteration III
– Step 3

 θ1 θ2 θ3
Q 0.46716 3.81693 0.20295
J 0.00880 0.53704 17.40336

500

Table 7.25 Three New Validation Points Identified in Iteration III

Mdot W t Mdot_n W_n t_n Q J
0.0005 0.035 0.00068 0.0 1.0 0.7935 -8.92 0.0004
0.003 0.035 0.00046 1.0 1.0 0.4309 -21.65 0.00109
0.0005 0.025 0.00062 0.0 0.5 0.7 -11.68 0.00044

Now since we have already obtained 28 points (14 data points and 14 validation

points), the SEED process stops in this iteration. Information of responses at the 28

points is listed in Table D.3 in Section D.2.4. Two kriging metamodels are developed for

Q and J based on information from these 28 points. The values of θ are listed in Table

7.26. Contour plots of responses calculated with the kriging metamodels are illustrated in

Figure 7.19, Figure 7.20, Figure 7.21, and Figure 7.22.

With the kriging metamodels in Table 7.26, we solve the compromise DSP in

iSIGHT. The solution obtained in this section is listed in Table 7.27. We see that this

solution is closer to the actual solution (in Table 7.2) than those obtained in Section 7.3.

Constraint I is active, while other constraints are not. The design goals associated with J

and Af are achieved.

Table 7.26 Values of θ for Kriging Metamodels of Responses Developed with SEED

 θ1 θ2 θ3
Q 1.12370 2.69722 0.39064
J 0.00100 0.09403 13.84511

501

Figure 7.19 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with
Respect to Device Width (W) and Wall Thickness (t) Developed with SEED

Figure 7.20 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with
Respect to Wall Thickness (t) and Mass Flow Rate (Mdot) Developed with SEED

502

Figure 7.21 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with

Respect to Device Width (W) and Mass Flow Rate (Mdot) Developed with SEED

Figure 7.22 Contour Plot of the Kriging Metamodel for Compliance (J) with Respect

to Device Width (W) and Wall Thickness (t) Developed with SEED

503

Table 7.27 The Design Solution Obtained with SEED

 Predicted Value Actual Value
Mass flow rate, Mdot (kg/s) 0.00113

Device width, W (m) 0.0316
Wall thickness, t (m) 0.00048

Mdot_normalized 0.2535
W_normalized 0.8284
t_normalized 0.4694

Reynolds number, Re 2300
Volume fraction, vf 0.25578
30 2663.35M P− − ∆ 26.91

Area of solid materials, As (m
2) 0.00025

Heat transfer rate, Q (W) −16.61 −15.30
Compliance, J (m/N) 0.00089 0.00093

1 2 3Z d d d− + += + + 0.24180 0.35620

Root mean square error (RMSE) of metamodels are calculated with information

from 1573 points, and listed in Table 7.28. Values of RMSE and NRMSE for Q in Table

7.28 are much smaller than those in Table 7.7. Values of RMSE and NRMSE for J in

Table 7.28 are between those of the two metamodels for J with 30 or 40 points in Table

7.7. Generally speaking, we are able to develop more accurate metamodels and achieve

better design solutions with fewer observed points in the design space. Further discussion

and analyses will be done in Section 7.6, after the application of E-RCEM in Section 7.5.

Table 7.28 Root Mean Squared Errors of Metamodels Developed in RCEM

 Metamodels with 28 Points Identified with SEED
 Q J
RMSE 4.4767 0.0002304

NRMSE 4.35% 2.01%

504

7.5 EXPLORATION OF DESIGN SOLUTIONS WITH E-RCEM

In Section 7.4, we apply the SEED method in the design of unit cells for linear

cellular alloys; in this example we show that more accurate metamodels and better design

solutions can be achieved with fewer experiments using the SEED method in the

metamodeling process. In cases with very expensive computer simulations or physical

experiments, using the SEED method helps save significant amount of time or money,

and ensures a better solution as a starting point for design in later design stages. In this

section, we will apply the E-RCEM method to realize an integrated process of

metamodeling and design space exploration in the LCA design. As shown in Chapter 6,

E-RCEM ensures the identification of most-likely-to-succeed regions in the

metamodeling process and the development of metamodels with better local accuracy in

such critical regions. Uncertainty of global metamodel accuracy is addressed to avoid

being misled to wrong directions in the integrated process of metamodeling and design

space exploration, but global metamodel accuracy is not pursued or guaranteed. In the

integrated design process in E-RCEM, new points are added sequentially in regions with

large metamodel uncertainty and/or better achievement of design goals. In this LCA

design example, we expect to achieve a solution closer to the true solution identified in

Section 7.2 (Table 7.2) with fewer observed points using the integrated design process in

E-RCEM than with RCEM (Section 7.3) or SEED (Section 7.4).

As described in Section 6.4.4, there are three possible ways in implementing E-

RCEM: the traditional process, the integrated design process, and the hybrid process. In

the traditional process, designers develop acceptable metamodels and explore for design

505

solutions in two separated processes; there are no information feedbacks from the process

of design space exploration to metamodeling. The application of RCEM and SEED in

Sections 7.3 and 7.4 follows this way. In the integrated design process, prediction errors,

achievement of design goals, and satisfaction of design constraints are considered

simultaneously in the identification of new points. In the hybrid process, acceptable

metamodels are first developed, and then more points are added following the integrated

design process. In this section, we adopt the integrated design process in LCA design.

In E-RCEM, the integrated process of metamodeling and design space exploration

is realized by introducing the link (information feedback) from the compromise DSP to

design of experiments, as illustrated in Figure 6.11. This information feedback includes

two types of information, one of which is associated with design goals, and the other

associated with design constraints. The consideration of design constraints and

identification of points in irregular design spaces are discussed in Section 6.2. From the

viewpoint of design space exploration, infeasible regions in the design space are not

“critical” and designers should not waste time or money on experiments in these regions.

The feasible design space may be much smaller than the original design space (which is

usually a hypercube); to identify points in such small design spaces help save

experimental expense and achieve better design solutions. However, the feasible design

space may not have clear boundaries (when the constraints are associated with responses

for which we need to build metamodels), or the boundaries may be difficult to identify

and illustrate (when designers have a lot of design constraints in a multi-variable, multi-

506

response problem). E-RCEM helps address this concern and facilitate more efficient

designs of experiments in irregular feasible design spaces.

The consideration of design constraints helps identify feasible design spaces,

which gives metamodeling a good start because “absolute uncritical” regions are

removed. Design goals are then taken into consideration with prediction errors to help

identify critical regions in the feasible design space. Critical regions are those in which

design goals are achieved or nearly achieved and/or prediction errors are large with

current metamodels. By adding more points in critical regions in iterations, designers are

able to develop metamodels with better local prediction performance and thus achieve

better design solutions than using traditional design methods like RCEM.

In a multi-variable, multi-response, and multi-objective design case, the feasible

design space is constructed with boundaries from design variables and design constraints,

and the covariance matrix will be adjusted with information from both prediction errors

and the achievement of design goals. Based on the research in Chapters 5 and 6, entries

of the adjusted covariance matrix should be formulated with the equations below:

()
()

()

()

=−
≤>
>≤

>>
≤≤

−

≠−
≤>
>≤

−

⋅=

1
,

,

1

,

,

1
,

,

2

ji

ji

ji

jijiji

adj
ij

xxR
njni

njni

when

njni

njni
whenxxR

xxR
njni

njni

whenxxRηηαα

σσ
 (7.17)

507

where αi and αj are the coefficient to reflect the current metamodel’s uncertainty

(prediction errors) at point xi and xj, ηi and ηj are coefficients to reflect degrees of

achievement of design goals at points xi and xj, respectively. In multi-variable, multi-

response, and multi-objective cases, the coefficient αi (or αj) is formulated with the

following equation:

∑
=

−=−=

rn

k k

ki

k

k
i e

e
uncertrelative

1 max,

,1.1
λ
ρα (7.18)

where relative.uncert stands for the measurement of relative uncertainty at the candidate

point, nr is the number of responses for which we need to develop metamodels, ei,k is the

predicted prediction error of the metamodel for the kth response at the candidate point,

emax,k is the maximum absolute error observed with the kth response (from current

observations or from predictions with the metamodel), ρk is the weight designers assigned

to the kth response in metamodeling, and λk is the coefficient to balance “minimizing

prediction errors” and “spread over the design space” for the kth response in the

identification of new points. Usually we set:

 221 ==⋅⋅⋅==
rnλλλ (7.19)

and

r

n nr

1
21 ==⋅⋅⋅== ρρρ (7.20)

so that it satisfies that:

508

 1
1

=∑
=

rn

k
kρ (7.21)

The coefficients, ηi and ηj, are formulated with the following equation:

tachievemengoaltotali ..1−=η (7.22)

where total.goal.achievement is the measurement of degrees that the design goals are

achieved at the candidate point. In multi-objective cases, goal.achievement can be

formulated with Equation (7.23):

∑
=

⋅=
gn

k
kk tachievemengoalwtachievemengoaltotal

1

... (7.23)

where goal.achievementk is the measurement of degrees that the kth design goal is

achieved at the candidate point, ng is the number of design goals involved, and wk is the

weight assigned to the kth design goal. Usually, the formulation of total.goal.achievement

should be the same as that of the deviation function, z, in the compromise DSP (Figure

7.13). Thus, the formulation of goal.achievementk follows Equations (6.24), (6.25), and

(6.26) in Chapter 6.

In this section, we will follow the integrated design process in E-RCEM as

described in Section 6.4.4, starting with 6 data points and 6 validation points, and ending

with 20 observed points. Each time we plan to add in 2 new data or validation points,

thus the integrated design process will stop in Iteration III – Step 4.

Step 1: Problem Initialization. This step is finished in Section 7.2.

509

Steps 2 and 3: Initial Experiments, Design Space Reduction, and Design

Space Redefinition. In this example we do not screen out unimportant design variables.

The initial design space is defined in Section 7.2, Figure 7.13, and is refined in this step

by considering design constraints.

In this example, all design constraints are associated with design variables only,

thus the design space is fixed and clear. After examination of design boundaries, it can

be shown that Constraint II is satisfied at all points in the design space, thus it will not be

studied and taken into consideration in this section. Boundaries from Constraints I and III

are illustrated in Figure 7.23.

As shown in Figure 7.23, the initial design space is cubic; the surface in red (dark

color in black-white printouts) is the boundary calculated from Constraint I; the surface in

green (light color in black-white printouts) is that from Constraint III. Note that Figure

7.23 is just an illustration and the boundaries on design variables do not strictly follow

those in Figure 7.13, the compromise DSP. Constraints are not satisfied at points below

the boundaries contain points. The two design constraints separate the initial design

space into four regions, and the one above both boundaries is the feasible design space, as

illustrated in Figure 7.23.

It should be noted that design constraints could be easily accounted in E-RCEM

without much expense; the analysis in the above paragraphs is for illustration only. The

initial experiments are designed with the maximum entropy sampling method. All 6 data

points are constrained in the feasible design space; the points and corresponding response

values are illustrated in Table 7.29. Based on this information, initial kriging metamodels

510

are developed for the two responses, Q and J. Values of θ for the kriging metamodels are

listed in Table 7.30. The contour plot of the metamodel for total heat transfer rate (Q)

versus wall thickness (t) and mass flow rate (Mdot) is illustrated in Figure 7.24. More

contour plots are presented in Appendix D.3. Comparing Figure 7.24 with Figure 7.9 we

see that the initial metamodel is not accurate at all.

Figure 7.23 Boundaries from Constraints I and III in LCA Design

Boundary from
Constraint I

Boundary from
Constraint III

Feasible

Infeasible

Infeasible

Infeasible

511

Table 7.29 Initial Experiments with 6 Data Points in E-RCEM

Mdot W t Mdot_n W_n t_n Q J
0.00052 0.0348 0.00020 0.0072 0.9875 0.0028 -6.93 0.01164
0.00102 0.0266 0.00020 0.2067 0.5794 0.0013 -13.24 0.01022
0.00130 0.0347 0.00038 0.3201 0.9873 0.3026 -15.41 0.00184
0.00054 0.0217 0.00039 0.0147 0.3341 0.3169 -11.48 0.00139
0.00055 0.0152 0.00020 0.0195 0.0118 0.0073 -11.34 0.00754
0.00051 0.0308 0.00055 0.0023 0.7907 0.5806 -9.63 0.00065

Table 7.30 Values of θ for Initial Kriging Metamodels of Responses in E-RCEM

 θ1 θ2 θ3
Q 20.06353 0.94352 0.28535
J 0.00100 0.14830 15.84192

Figure 7.24 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Initial Kriging Metamodel with 6 Data Points)

Iteration I – Step 4: Identification of New Validation Points. Six new

validation points are identified in the feasible design space. There is no information

512

about prediction errors, and design goals are not considered in the identification of new

validation points in the first iteration. These points are added to be as far from existing

data points as possible. A 12×12 covariance matrix is formatted with the first 6 columns

and rows corresponding to existing data points and the last 6 columns and rows

corresponding to new validation points. Then the new validation points are identified

through maximization of the determinant of the covariance matrix. This is done in

iSIGHT, following the same process as in Iteration I – Step 3 of the SEED method in

Section 7.4 (see Figure D.15 in Appendix D.2.3). The new validation points and

corresponding response values are listed in Table 7.31.

Table 7.31 Six Validation Points Identified in Iteration I – Step 4 in E-RCEM

Mdot W t Mdot_n W_n t_n Q J
0.00057 0.0278 0.00024 0.0267 0.6424 0.0646 -9.41 0.00614
0.00107 0.0337 0.00059 0.2287 0.934 0.6533 -15.23 0.00056
0.00062 0.0266 0.00041 0.0479 0.5787 0.3527 -11.39 0.00133
0.00067 0.0332 0.00030 0.0668 0.9111 0.1586 -9.68 0.00351
0.00066 0.0240 0.00033 0.0626 0.4476 0.2195 -11.84 0.00231
0.00095 0.0268 0.00027 0.1798 0.5896 0.1209 -13.32 0.00430

Prediction errors of the initial metamodels (Table 7.30) at validation points are

then calculated and listed in Table 7.32. Prediction errors at data points are zero. Kriging

metamodels of prediction errors are then developed based on the information at 12

observed points. Values of θ for these metamodels are listed in Table 7.33. The

observed maximum absolute error for Q is about 1.14, and that for J is about 0.00315.

513

Table 7.32 Prediction Errors of Initial Metamodels at 6 Validation Points

Mdot_n W_n t_n Q J Q_krig J_krig Q_err J_err
0.0267 0.6424 0.0646 -9.41 0.00614 -9.32 0.00922 0.09 0.00308
0.2287 0.934 0.6533 -15.23 0.00056 -14.09 0.00129 1.14 0.00073
0.0479 0.5787 0.3527 -11.39 0.00133 -10.75 0.00089 0.64 -0.00044
0.0668 0.9111 0.1586 -9.68 0.00351 -8.66 0.00666 1.02 0.00315
0.0626 0.4476 0.2195 -11.84 0.00231 -11.21 0.00364 0.63 0.00133
0.1798 0.5896 0.1209 -13.32 0.00430 -12.81 0.00727 0.51 0.00297

Table 7.33 Values of θ for Kriging Metamodels of Prediction Errors Developed with
Information at Observed 12 Points in Iteration I – Step 4

 θ1 θ2 θ3
Q 27.09014 0.37486 0.23548
J 6.91046 0.01056 99.99883

Iteration I – Steps 5 and 6: Identification of New Data Points and Updated

Metamodels of Responses. In this step we plan to add in two new data points. A 14×14

covariance matrix is formulated with the first 6 rows and columns corresponding to the

data points, the 7th to 12th rows and columns corresponding to the validation points, and

the last 2 rows and columns corresponding to the new data points. In this formulation, we

set θ1 = 27.09014, θ2 = 0.94352, and θ3 = 99.99883, which are the largest values of θ’s in

metamodels of responses (Table 7.30) and those of prediction errors (Table 7.33).

To adjust entries of the covariance matrix, we need to have information of

prediction errors and achievement of design goals. Values of the coefficients, αi and αj,

are calculated with Equation (7.18). In this calculation, we have nr = 2, ρ1 = ρ2 = 0.5, λ1

= λ2 = 2, emax,1 = 1.14, emax,2 = 0.00315.

514

Values of ηi and ηj are calculated with Equations (7.22) and (7.23). There are ng

= 3 design goals with the same weights, i.e., w1 = w2 = w3 = 1. The first design goal is to

maximize the total heat transfer rate, Q (here we multiply it with –1 which makes the

response values positive). We calculate the degree of achievement of the 1st design goal,

goal.achievement1, with Equation (6.25). The target value is T1,H = 20; we set y1,max =

16.0, y1,min = 6.0, and γ1 = 2. The second design goal is to minimize the compliance, J.

We calculate the degree of achievement of the 2nd design goal, goal.achievement2, with

Equation (6.24). The target value is T2,L = 0.0015; we set y2,max = 0.012, y2,min = 0.00056,

and γ2 = 2. The third design goal is to minimize the cross-section area for solid materials,

As. We calculate the degree of achievement of the 3rd design goal, goal.achievement3,

with Equation (6.24). The target value is T3,L = 0.00025; we set y3,max = 0.00046, y3,min =

0.00005, and γ3 = 2.

After the calculation of correction coefficients, we adjust entries of the covariance

matrix with Equation (7.17). By maximizing the determinant of the adjusted covariance

matrix, 2 new data points are identified and listed in Table 7.34. The FORTRAN code

used to formulate the adjusted covariance matrix is presented in Appendix D.3.2, and the

implementation of the new-point-identification process is illustrated in Appendix D.3.3.

Table 7.34 Two New Data Points Identified in Iteration I – Step 5 in E-RCEM

Mdot W t Mdot_n W_n t_n Q J
0.00134 0.0350 0.00032 0.3355 1 0.1927 -15.23 0.00299
0.00127 0.0348 0.00049 0.306 0.9884 0.4764 -15.89 0.00092

515

Now we have 8 data points and 6 validation points. New kriging metamodels are

developed for responses Q and J. Values of θ for the kriging metamodels are listed in

Table 7.35. The contour plot of the metamodel for total heat transfer rate (Q) versus wall

thickness (t) and mass flow rate (Mdot) is illustrated in Figure 7.25. More contour plots

are presented in Appendix D.3. Comparing with Figure 7.25 we see that the initial

metamodel is not accurate at all.

Table 7.35 Values of θ for Kriging Metamodels of Responses Developed with 8 Data
Points in Iteration I – Step 6

 θ1 θ2 θ3
Q 3.46015 0.45474 0.14310
J 0.00100 0.10223 16.22954

Figure 7.25 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 8 Data Points)

516

Iteration I – Step 7: Analysis of Design. Since the stopping criterion is not

satisfied we will go to the next iteration of the integrated process of metamodeling and

design space exploration.

Iteration II – Step 4: Identification of New Validation Points. In this step we

plan to add in 2 new validation points. In this step, we temporarily switch the roles of

data points and validation points, and new validation points are identified to bring

maximum possible potential information about the actual response and achievement of

design goals.

Kriging metamodels are developed for responses Q and J with 6 validation points.

Values of θ for the kriging metamodels are listed in Table 7.36. The contour plot of the

metamodel for total heat transfer rate (Q) versus wall thickness (t) and mass flow rate

(Mdot) is illustrated in Figure 7.26. More contour plots are presented in Appendix D.3.

Prediction errors of these metamodels of responses (Table 7.36) at 8 data points

are calculated and listed in Table 7.37. Prediction errors at 6 validation points are zero.

Then kriging metamodels of prediction errors are developed with this information; values

of θ for these kriging metamodels are listed in Table 7.38. The observed maximum

absolute error for Q is about 1.30, and that for J is about 0.0038.

Table 7.36 Values of θ for Kriging Metamodels of Responses Developed with 6
Validation Points in Iteration II – Step 4

 θ1 θ2 θ3
Q 2.36289 0.21077 0.10405
J 0.09658 0.00100 8.72353

517

Figure 7.26 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 6 Validation Points)

Table 7.37 Prediction Errors of Metamodels at 8 Data Points in Iteration II – Step 4

Mdot_n W_n t_n Q J Q_krig J_krig Q_err J_err
0.0072 0.9875 0.0028 -6.93 0.01164 -7.45 0.00786 -0.52 -0.00378
0.2067 0.5794 0.0013 -13.24 0.01022 -13.40 0.00762 -0.16 -0.00260
0.3201 0.9873 0.3026 -15.41 0.00184 -15.28 0.00119 0.13 -0.00065
0.0147 0.3341 0.3169 -11.48 0.00139 -11.77 0.00146 -0.29 0.00007
0.0195 0.0118 0.0073 -11.34 0.00754 -12.64 0.00773 -1.30 0.00019
0.0023 0.7907 0.5806 -9.63 0.00065 -10.33 0.00089 -0.70 0.00024
0.3355 1 0.1927 -15.23 0.00299 -15.05 0.00239 0.18 -0.00060
0.306 0.9884 0.4764 -15.89 0.00092 -15.72 0.00108 0.17 0.00016

518

Table 7.38 Values of θ for Kriging Metamodels of Prediction Errors Developed with
14 Points in Iteration II – Step 4

 θ1 θ2 θ3
Q 30.92156 3.99810 0.23290
J 0.95488 1.05725 99.99985

A 16×16 covariance matrix is formulated with the first 8 rows and columns

corresponding to 8 data points, the 9th to the 14th rows and columns corresponding to 6

validation points, and the last 2 rows and columns corresponding to 2 new validation

points. In the formulation of this covariance matrix, we set θ1 = 30.92156, θ2 = 3.99810,

and θ3 = 99.99985.

Then entries of the covariance matrix are adjusted with similar methods to that

used in Iteration I – Step 5. In the adjustment we have nr = 2, ρ1 = ρ2 = 0.5, λ1 = λ2 = 2,

emax,1 = 1.30, emax,2 = 0.0038; ng = 3, w1 = w2 = w3 = 1, T1,H = 20, y1,max = 16.0, y1,min = 6.0,

T1,H = 0.0015, y2,max = 0.012, y2,min = 0.00056, T3,L = 0.00025, y3,max = 0.00046, y3,min =

0.00005, and γ1 = γ2 = γ3 = 2. By maximizing the determinant of the adjusted covariance

matrix, 2 new validation points are identified and listed in Table 7.39.

Table 7.39 Two New Validation Points Identified in Iteration II – Step 4

Mdot W t Mdot_n W_n t_n Q J
0.00078 0.0207 0.00020 0.1134 0.2837 0.0002 -12.27 0.00896
0.00132 0.0350 0.00038 0.3265 1 0.2924 -15.50 0.00184

519

Iteration II – Steps 5 and 6: Identification of New Data Points and Updated

Metamodels of Responses. In this step we plan to add in 2 new data points. To

formulate and adjust entries of the covariance matrix, we need information about

prediction errors and achievement of design goals. Prediction errors of the metamodels

of responses developed in Iteration I – Step 6 (in Table 7.35) at 8 validation points are

listed in Table 7.40. Prediction errors at 8 data points are zero. The observed maximum

absolute error for Q is about 0.78, and that for J is about 0.00131. Based on this

information, kriging metamodels of prediction errors are developed, and values of θ for

these kriging metamodels are listed in Table 7.41.

Table 7.40 Prediction Errors of Metamodels at 8 Validation Points Calculated in
Iteration II – Step 5

Mdot_n W_n t_n Q J Q_krig J_krig Q_err J_err
0.0267 0.6424 0.0646 -9.41 0.00614 -9.39 0.00745 0.02 0.00131
0.2287 0.934 0.6533 -15.23 0.00056 -15.04 0.00134 0.19 0.00078
0.0479 0.5787 0.3527 -11.39 0.00133 -11.09 0.00156 0.30 0.00023
0.0668 0.9111 0.1586 -9.68 0.00351 -8.90 0.00385 0.78 0.00034
0.0626 0.4476 0.2195 -11.84 0.00231 -11.59 0.00154 0.25 -0.00077
0.1798 0.5896 0.1209 -13.32 0.00430 -13.08 0.00452 0.24 0.00022
0.1134 0.2837 0.0002 -12.27 0.00896 -12.41 0.00902 -0.14 0.00006
0.3265 1 0.2924 -15.50 0.00184 -15.47 0.00187 0.03 0.00003

Table 7.41 Values of θ for Kriging Metamodels of Prediction Errors Developed with
16 Points in Iteration II – Step 5

 θ1 θ2 θ3
Q 53.44009 4.84689 99.99936
J 99.99713 99.99965 2.55718

520

An 18×18 covariance matrix is formulated, with the first 8 rows and columns

corresponding to 8 data points, the 9th to the 16th rows and columns corresponding to 8

validation points, and the last 2 rows and columns corresponding to the new data points.

In the formulation of this covariance matrix, we set θ1 = 99.99713, θ2 = 99.99965, and θ3

= 99.99936.

Then entries of the covariance matrix are adjusted with similar methods to that

used in Iteration I – Step 5. In the adjustment we have nr = 2, ρ1 = ρ2 = 0.5, λ1 = λ2 = 2,

emax,1 = 0.78, emax,2 = 0.00131; ng = 3, w1 = w2 = w3 = 1, T1,H = 20, y1,max = 16.0, y1,min =

6.0, T1,H = 0.0015, y2,max = 0.012, y2,min = 0.00056, T3,L = 0.00025, y3,max = 0.00046, y3,min

= 0.00005, and γ1 = γ2 = γ3 = 1.5. By maximizing the determinant of the adjusted

covariance matrix, 2 new validation points are identified and listed in Table 7.42.

Table 7.42 Two New Data Points Identified in Iteration II – Step 5

Mdot W t Mdot_n W_n t_n Q J
0.00056 0.0347 0.00044 0.0241 0.9868 0.4026 -8.67 0.00122
0.00063 0.0179 0.00031 0.0506 0.1438 0.183 -12.32 0.00238

Now we have 10 data points and 8 validation points. Since we will stop in

Iteration III – Step 4, which is the next iteration, and final metamodels will be developed

with all data and validation points, we do not need to update the metamodels of responses

in this step.

Iteration II – Step 7: Analysis of Design. Since the stopping criterion is not

satisfied we will go to the next iteration of the integrated process of metamodeling and

521

design space exploration. The analysis of achievement of design goals is not done here in

this example; it will be done after we finish the E-RCEM process in the next step.

Iteration III – Step 4: Identification of New Validation Points. In this step we

plan to add in 2 new validation points. In this step, we temporarily switch the roles of

data points and validation points, and new validation points are identified to bring

maximum possible potential information about the actual response and achievement of

design goals.

Kriging metamodels are developed for responses Q and J with 8 validation points.

Values of θ for the kriging metamodels are listed in Table 7.43. The contour plot of the

metamodel for total heat transfer rate (Q) versus wall thickness (t) and mass flow rate

(Mdot) is illustrated in Figure 7.27. More contour plots are presented in Appendix D.3.

Prediction errors of these metamodels of responses (Table 7.43) at 10 data points

are calculated and listed in Table 7.44. Prediction errors at 8 validation points are zero.

Then kriging metamodels of prediction errors are developed with this information; values

of θ for these kriging metamodels are listed in Table 7.45. The observed maximum

absolute error for Q is about 0.35, and that for J is about 0.0027.

Table 7.43 Values of θ for Kriging Metamodels of Responses Developed with 6
Validation Points in Iteration II – Step 4

 θ1 θ2 θ3
Q 2.36289 0.21077 0.10405
J 0.09658 0.00100 8.72353

522

Figure 7.27 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 6 Validation Points)

Table 7.44 Prediction Errors of Metamodels at 8 Data Points in Iteration II – Step 4

Mdot_n W_n t_n Q J Q_krig J_krig Q_err J_err
0.0072 0.9875 0.0028 -6.93 0.01164 -7.20 0.00896 -0.27 -0.00268
0.2067 0.5794 0.0013 -13.24 0.01022 -12.91 0.00899 0.33 -0.00123
0.3201 0.9873 0.3026 -15.41 0.00184 -15.52 0.00176 -0.11 -0.00008
0.0147 0.3341 0.3169 -11.48 0.00139 -11.44 0.00142 0.04 0.00003
0.0195 0.0118 0.0073 -11.34 0.00754 -11.39 0.00852 -0.05 0.00098
0.0023 0.7907 0.5806 -9.63 0.00065 -9.46 0.0006 0.17 -0.00005
0.3355 1 0.1927 -15.23 0.00299 -14.93 0.00294 0.30 -0.00005
0.306 0.9884 0.4764 -15.89 0.00092 -16.17 0.00091 -0.28 -0.00001
0.0241 0.9868 0.4026 -8.67 0.00122 -9.02 0.00128 -0.35 0.00006
0.0506 0.1438 0.183 -12.32 0.00238 -12.59 0.00273 -0.27 0.00035

523

Table 7.45 Values of θ for Kriging Metamodels of Prediction Errors Developed with
14 Points in Iteration II – Step 4

 θ1 θ2 θ3
Q 0.00102 99.99939 63.99243
J 0.52949 0.79194 56.07930

A 20×20 covariance matrix is formulated with the first 10 rows and columns

corresponding to 10 data points, the 11th to the 18th rows and columns corresponding to 8

validation points, and the last 2 rows and columns corresponding to 2 new validation

points. In the formulation of this covariance matrix, we set θ1 = 2.36289, θ2 = 99.99939,

and θ3 = 63.99243.

Then entries of the covariance matrix are adjusted with similar methods to that

used in Iteration I – Step 5. In the adjustment we have nr = 2, ρ1 = ρ2 = 0.5, λ1 = λ2 = 2,

emax,1 = 0.35, emax,2 = 0.0027; ng = 3, w1 = w2 = w3 = 1, T1,H = 20, y1,max = 16.0, y1,min = 6.0,

T1,H = 0.0015, y2,max = 0.012, y2,min = 0.00056, T3,L = 0.00025, y3,max = 0.00046, y3,min =

0.00005, and γ1 = γ2 = γ3 = 1.25. Note that in this iteration, the value of γ in this iteration

(which is 1.25) is smaller than those used in Iteration II – Step 5 (which is 1.5) or

Iteration I – Step 5 (which is 2.0). This is because that as we have more knowledge of the

actual responses and more confidence on the metamodel, more emphasis is put on the

achievement of design goals in identifying new points. By maximizing the determinant

of the adjusted covariance matrix, 2 new validation points are identified and listed in

Table 7.46.

524

Table 7.46 Two New Validation Points Identified in Iteration III – Step 4

Mdot W t Mdot_n W_n t_n Q J
0.00112 0.0305 0.00041 0.2462 0.7728 0.343 -14.94 0.00141
0.00121 0.0311 0.00020 0.2838 0.8058 0.0006 -13.94 0.01104

Now we have observed totally 20 points (10 data points and 10 validation points),

the integrated process of metamodeling and design space exploration in E-RCEM will

stop in this iteration. Steps 5 and 6 in this iteration are skipped because we do not plan to

add in more points. Thus, we will directly enter Step 7, the analysis of design.

Iteration III – Step 7: Analysis of Design. All 20 observed points are listed in

Table 7.47. All these points are in the feasible design space. In Table 7.47 we list not

only the response values but also the values of deviation variables and the deviation

function. When necessary we can select the point with the minimum value of the

deviation function z from Table 7.47, and take it as the design solution to be used in the

future design. In Table 7.47 we see that the smallest value of the deviation function at all

observed points is z = 0.35381, at the point of Mdot_n = 0.3265, W_n = 1.0, t_n = 0.2924.

Better design solutions can be found by exploring the feasible design space with

metamodels developed with all observed points. The final kriging metamodels are

developed for Q and J with information from Table 7.47; values of θ for these kriging

metamodels are listed in Table 7.48. Contour plots of the responses versus design

variables are illustrated in Figure 7.28, Figure 7.29, Figure 7.30, and Figure 7.31.

Comparing Figure 7.28, Figure 7.29, Figure 7.30, Figure 7.31 with Figure 7.8, Figure 7.9,

525

Figure 7.10, and Figure 7.11, we see that the kriging metamodels of responses developed

with the integrated design process in E-RCEM is not globally accurate.

Table 7.47 All Points Identified in the Integrated Process in E-RCEM

Mdot_n W_n t_n Q J As d1
– d2

+ d3
+ z

0.0072 0.9875 0.0028 -6.93 0.01164 0.00012 0.93357 0.96571 0.00000 1.89929
0.2067 0.5794 0.0013 -13.24 0.01022 0.00009 0.48286 0.83048 0.00000 1.31333
0.3201 0.9873 0.3026 -15.41 0.00184 0.00023 0.32786 0.03238 0.00000 0.36024
0.0147 0.3341 0.3169 -11.48 0.00139 0.00014 0.60857 0.00000 0.00000 0.60857
0.0195 0.0118 0.0073 -11.34 0.00754 0.00005 0.61857 0.57524 0.00000 1.19381
0.0023 0.7907 0.5806 -9.63 0.00065 0.00028 0.74071 0.00000 0.14485 0.88556
0.3355 1 0.1927 -15.23 0.00299 0.00019 0.34071 0.14190 0.00000 0.48262
0.306 0.9884 0.4764 -15.89 0.00092 0.00029 0.29357 0.00000 0.17851 0.47209
0.0241 0.9868 0.4026 -8.67 0.00122 0.00026 0.80929 0.00000 0.04354 0.85282
0.0506 0.1438 0.183 -12.32 0.00238 0.00009 0.54857 0.08381 0.00000 0.63238
0.0267 0.6424 0.0646 -9.41 0.00614 0.00012 0.75643 0.44190 0.00000 1.19833
0.2287 0.934 0.6533 -15.23 0.00056 0.00033 0.34071 0.00000 0.37951 0.72023
0.0479 0.5787 0.3527 -11.39 0.00133 0.00018 0.61500 0.00000 0.00000 0.61500
0.0668 0.9111 0.1586 -9.68 0.00351 0.00017 0.73714 0.19143 0.00000 0.92857
0.0626 0.4476 0.2195 -11.84 0.00231 0.00013 0.58286 0.07714 0.00000 0.66000
0.1798 0.5896 0.1209 -13.32 0.00430 0.00012 0.47714 0.26667 0.00000 0.74381
0.1134 0.2837 0.0002 -12.27 0.00896 0.00007 0.55214 0.71048 0.00000 1.26262
0.3265 1 0.2924 -15.50 0.00184 0.00023 0.32143 0.03238 0.00000 0.35381
0.2462 0.7728 0.343 -14.94 0.00141 0.00021 0.36143 0.00000 0.00000 0.36143
0.2838 0.8058 0.0006 -13.94 0.01104 0.00011 0.43286 0.90857 0.00000 1.34143

Table 7.48 Values of θ for Final Kriging Metamodels of Responses Developed with
20 Points in Iteration III – Step 7

 θ1 θ2 θ3
Q 27.64666 0.36657 0.32412
J 0.13692 0.47800 63.94798

526

Figure 7.28 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device
Width (Kriging Metamodel with 20 Points)

Figure 7.29 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 20 Points)

527

Figure 7.30 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow
Rate (Kriging Metamodel with 20 Points)

Figure 7.31 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 20 Points)

528

Root mean square error (RMSE) of metamodels are calculated with information

from 1573 points, and listed in Table 7.49. Values of RMSE and NRMSE for Q and J in

Table 7.49 are much larger than those in Table 7.7 and Table 7.28, which supports our

observation that the metamodels of responses developed in this section is not as accurate

as those developed with RCEM or SEED. The design solution is obtained by solving the

compromise DSP in Figure 7.13, and listed in Table 7.50.

Table 7.49 Root Mean Squared Errors of Metamodels Developed in RCEM

 Metamodels with 28 Points Identified with SEED
 Q J
RMSE 15.1906 0.0016713

NRMSE 14.75% 14.60%

Table 7.50 The Design Solution Obtained with the Integrated Design Process in E-
RCEM

 Predicted Value Actual Value
Mass flow rate, Mdot (kg/s) 0.00130

Device width, W (m) 0.0350
Wall thickness, t (m) 0.00043

Mdot_normalized 0.3183
W_normalized 0.9991
t_normalized 0.3810

Reynolds number, Re 2300.00
Volume fraction, vf 0.20836
30 2663.35M P− − ∆ 26.50

Area of solid materials, As (m
2) 0.00025

Heat transfer rate, Q (W) −15.72 −15.69
Compliance, J (m/N) 0.00124 0.00131

1 2 3Z d d d− + += + + 0.30545 0.33587

529

Usually a metamodel is acceptable when the value of NRMSE is smaller than 5%.

The final metamodels developed in this section have values of NRMSE around 15%,

which is unacceptable from the viewpoint of metamodeling. However, in the integrated

design process of E-RCEM, to achieve a globally accurate metamodel is not the goal; E-

RCEM aims at identifying most-likely-to-succeed regions in the feasible design space,

building locally accurate metamodels, and achieving robust design solutions with little

time or money spent on expensive computer simulations or physical experiments. The

achievement of better design solutions is the goal of E-RCEM, which is the same for all

designs. Acceptable metamodels help realize this goal, but they are not the goal. A

metamodel with higher global fidelity does not ensure a better design solution; in other

words, a metamodel with lower global fidelity may lead to a better design solution. It is

not surprising to see that the final metamodels developed in E-RCEM are not as accurate

as those developed with RCEM and SEED, while a fair comparison should only be done

on the achievement of good design solutions. More analysis will be done in Section 7.6.

7.6 A COMPARISON AND DISCUSSION ON RCEM, SEED, AND THE
INTEGRATED DESIGN PROCESS IN E-RCEM

Solutions are obtained for the LCA unit design with RCEM, the traditional

process with SEED in E-RCEM, and the integrated design process in E-RCEM in

Sections 7.3, 7.4, and 7.5, respectively. In this section, comparisons are done on the

performance of these three methods, and then recommendations are given on how to use

them in design.

530

7.6.1 Comparison of Performance of Metamodels on Response Prediction

First we compare the performance of the three methods in response prediction.

Based on information from 1573 evenly spread points in the whole design space, values

of RMSE and NRMSE are calculated for metamodels of responses developed in Sections

7.3, 7.4, and 7.5 using Equation (2.34) and listed in Table 7.51.

Table 7.51 Root Mean Squared Errors of Metamodels Developed in RCEM, SEED,
and the Integrated Design Process in E-RCEM – Comparison in the Whole Design

Space

Response Q J
Method RCEM SEED E-RCEM RCEM SEED E-RCEM
Points 30 40 28 20 30 40 28 20
RMSE 9.2047 8.3527 4.4767 15.1906 0.0003433 0.000175 0.00023040.0016713

NRMSE 8.94% 8.11% 4.35% 14.75% 3.00% 1.53% 2.01% 14.60%

In Table 7.51 we see that the metamodels developed in E-RCEM have largest

values of RMSE and NRMSE, which indicates that they are most inaccurate among all

metamodels. For the response Q, the metamodel developed in SEED is the most accurate

one. For the response J, the metamodel developed with 40 points in RCEM is most

accurate, but is only slightly better than the one developed in SEED. In Table 7.51 we

also see that when being compared in the whole design space, the metamodels developed

with 40 points in RCEM are more accurate than those developed with 30 points in

RCEM, which is reasonable. From the viewpoint of global metamodel accuracy, the

metamodels developed in SEED are best because they perform better (or nearly as well

as) than other metamodels in response prediction with fewer observed points (except E-

RCEM, which uses fewer points than SEED in this example). This is apparent when we

531

compare the metamodels from SEED with those with 30 points from RCEM: metamodels

from SEED have smaller values of NRMSE for both Q and J than those from RCEM

though fewer points are used in SEED. This observation proves that through the

identification of regions with large prediction errors, more globally accurate metamodels

can be developed with fewer observed points sequentially added with the SEED method.

It is not surprising to see that metamodels developed in SEED perform best in response

prediction in the whole design space.

A comparison is done among these metamodels on response prediction in the

feasible design space. Prediction errors at 159 points evenly spread in the feasible design

space are observed and used to calculate values of RMSE and NRMSE. The results are

listed in Table 7.52.

Table 7.52 Root Mean Squared Errors of Metamodels Developed in RCEM, SEED,
and the Integrated Design Process in E-RCEM – Comparison in the Feasible Design

Space

Response Q J
Method RCEM SEED E-RCEM RCEM SEED E-RCEM
Points 30 40 28 20 30 40 28 20
RMSE 4.6587 6.5112 1.0886 0.2128 0.0006787 0.00026310.00034570.0002355

NRMSE 49.35% 68.97% 11.53% 2.25% 6.10% 2.36% 3.12% 2.12%

In Table 7.52 we see that metamodels developed in E-RCEM perform much better

in the feasible design space than they do in the whole design space; their values of

NRMSE are a little larger than 2%, which are much smaller than those in Table 7.51. All

metamodels from RCEM and SEED perform much worse in the feasible design space

532

than in the whole design space. Among all metamodels, those developed in E-RCEM are

most accurate in the feasible design space.

An interesting observation is that the metamodels developed with 40 points in

RCEM are more accurate than those with 30 points when being compared in the whole

design space, but not as accurate as those with 30 points in the feasible design space.

This is because that more of the 40 points are put in the infeasible design space than those

of the 30 points. The metamodels developed in SEED perform worse in the feasible

design space than in the whole design space because there is high nonlinearity in the

infeasible design space and as a result, many points are added sequentially in these

regions to help grasp the nonlinearity. Even so, the metamodels developed in SEED are

still much more accurate than those developed in RCEM. Note that the values of

NRMSE of the RCEM metamodels for Q are about 50%, which means that the root mean

squared error of these metamodels is about half of the actual response range; Metamodels

with such large prediction errors can not be trusted in design. The metamodel from

SEED is much better with an error bound of about 10%.

If the values of NRMSE calculated with observations in the whole design space

(Table 7.51) are used to judge whether a metamodel is acceptable or not (using 5% or

10% as the criterion), the results are: 1). Metamodels from SEED are acceptable because

their values of NRMSE are smaller than 5%; 2). Metamodels from RCEM are acceptable

or nearly acceptable because their values of NRMSE are smaller than 5% for J and 10%

for Q; and 3). Metamodels from E-RCEM are unacceptable because their values of

NRMSE are larger than 10%.

533

If the values of NRMSE calculated with observations in the feasible design space

(Table 7.52) are used to judge whether a metamodel is acceptable or not (using 5% or

10% as the criterion), the results are: 1). Metamodels from SEED are unacceptable

because their values of NRMSE for Q are dramatically larger than 10%; 2). Metamodels

from RCEM are acceptable or nearly acceptable because their values of NRMSE are

smaller than 5% for J and only slightly larger than 10% for Q; and 3). Metamodels from

E-RCEM are acceptable because their values of NRMSE are smaller than 5%.

The judgments based on local metamodel accuracy in the feasible design space are

very different from that based on global metamodel accuracy in the whole design space.

Since the final design solution is obtained through exploration of the feasible design

space, we conclude that the metamodel accuracy in the feasible design space is a more

reliable criterion than that calculated with observations in the whole design space. This is

further proved by studies in Section 7.6.2.

7.6.2 Comparison of Performance of Metamodels in Sequential Design Space
Exploration

In this section we compare the performance of metamodels in design space

exploration, in other words, we compare the design solutions obtained with metamodels

developed in RCEM, SEED, and E-RCEM. The actual design solution is obtained in

Section 7.2 with original simulations. Design solutions from all methods are listed in

Table 7.53. Note that in Table 7.53, RCEM (I) stands for the solution obtained with

metamodels developed with 30 points in RCEM, and RCEM (II) stands for that with

metamodels developed with 40 points in RCEM. As described in Section 7.5, there are

534

two ways to identify the design solution in E-RCEM: 1). Final metamodels of responses

are developed with information at all observed points, and then the compromise DSP is

solved to identify the design solution, or 2). The design solution can be selected from the

observed points because the exploration of design solutions has already been incorporated

in the sequential metamodeling process through the formulation of design goals and

constraints in the compromise DSP in E-RCEM. The solution obtained in the first way in

E-RCEM is represented by E-RCEM (II) and that obtained in the second way is

represented by E-RCEM (I) in Table 7.53

Table 7.53 The Design Solutions Obtained with Simulations, RCEM, SEED, and the
Integrated Design Process in E-RCEM

RCEM E-RCEM

Actual
Solution (I) (II)

SEED
(I) (II)

Points Observed − 30 40 28 20 20
Mass flow rate,

Mdot (kg/s)
0.00129 0.00097 0.0005 0.00113 0.00132 0.00130

Device width, W (m) 0.0348 0.0278 0.0201 0.0316 0.0350 0.0350
Wall thickness, t (m) 0.00042 0.00051 0.00036 0.00048 0.00038 0.00043

Mdot_normalized 0.316 0.1875 0.0 0.2535 0.3265 0.3183
W_normalized 0.99 0.6406 0.2532 0.8284 1.0 0.9991
t_normalized 0.3667 0.5708 0.2707 0.4694 0.2924 0.3810

Reynolds number, Re 2297.61 2300 1644.18 2300 2300 2300
Volume fraction, vf 0.2054 0.29995 0.29872 0.25578 0.18588 0.20836

Constraint II 26.5141 27.30 28.44 26.91 26.44 26.50
Area of solid

materials, As (m
2)

0.000249 0.00023 0.00012 0.00025 0.00023 0.00025

Heat transfer rate,
Q (W)

-15.59 −14.77 −11.21 −15.30 −15.50 −15.69

Compliance, J (m/N) 0.00139 0.00080 0.00167 0.00093 0.00184 0.00131

1 2 3Z d d d− + += + + 0.31489 0.37351 0.64419 0.35620 0.35381 0.33587

535

In Table 7.53 we see that the solutions obtained from E-RCEM are closer to the

actual design solution than those obtained from RCEM or SEED; the solutions also have

smaller values of the deviation function, which means that they achieve design goals

better than those obtained with RCEM or SEED. This verifies that better design solutions

can be achieved with fewer observed points in the integrated design process in E-RCEM

than in the traditional process used in RCEM and SEED.

The solution of E-RCEM (II), which is obtained with the final metamodels of

responses developed with 20 points in E-RCEM, is better than that of E-RCEM (I), which

is selected among the 20 observed points in E-RCEM. Thus when the expense on

metamodel building and design space exploration is affordable, designers had better

explore for design solutions with final metamodels of responses developed with all

observed points. When the expense is not affordable (e.g., in cases with a lot of design

variables, responses, constraints, and goals, the computation expense on design space

exploration may be very high even with cheap-to-run metamodels), designers can skip the

step of solving the compromise DSP and select the design solution from the observe

points.

The solution obtained with SEED (the traditional process in E-RCEM) is better

than those obtained with RCEM but worse than those obtained with E-RCEM. The

solution obtained with 30 points is better than that obtained with 40 points in RCEM,

which seems a little unexpected because we are not able to get a better design solution

with more points observed in the design space in this example.

536

Here we can relate this comparison to that on metamodel accuracy in Section

7.6.1. Metamodels from E-RCEM perform worst on response prediction when being

compared in the whole design space, but they help achieve the best design solutions. The

metamodels developed with 40 points in RCEM performs second best on response

prediction when being compared in the whole design space, but the solution obtained

with these metamodels is the worst of all. This indicates that there is no clear positive

correlation between the global metamodel accuracy and the performance in design space

exploration. In other words, to obtain metamodels that perform well in response

prediction in the whole design space does not ensure the achievement of good design

solutions, while better design solutions could be achieved with metamodels with less

global metamodel accuracy.

On the other hand, the metamodel accuracy in the feasible design space, as

presented in Table 7.52, does have a positive correlation with the metamodels’

performance in design space exploration. The metamodels from E-RCEM, which are the

most accurate when, being compared in the feasible design space, facilitate the

achievement of best design solutions of all. The worst design solution is obtained with

the metamodels developed with 40 points in RCEM that perform worst on response

prediction when being compared in the feasible design space. Metamodels from SEED

are second best on response prediction in the feasible design space, and the solution

obtained with SEED is also second best to the ones obtained with E-RCEM. Metamodels

developed with 30 points in RCEM perform better in response prediction in the feasible

537

design space and thus help achieve a design solution than those developed with 40 points

in RCEM.

The observations above suggests that when judging whether a metamodel is

acceptable or not, we should examine the accuracy of metamodels in the feasible design

space instead of the whole design space. This conclusion is intuitive and reasonable.

However, there may not always be positive correlation between the metamodel accuracy

in feasible design spaces and the performance in design space exploration. In the single-

variable example in Chapter 6, the feasible design space is the same as the whole design

space because there is not system constraint. In that example, a better design solution is

achieved with a metamodel developed in E-RCEM than with that developed in SEED,

though the metamodel developed in E-RCEM is not as accurate as that developed in

SEED. Thus, when judging whether a metamodel is acceptable or not, we should focus

on the local metamodel accuracy in critical regions, which is measured in regions where

design goals are achieved or nearly achieved, instead of global metamodel accuracy,

which is measured in the whole design space or feasible design space. In the LCA unit

design example, because responses in the relatively small feasible design space are not

highly nonlinear, we do not need to identify smaller critical regions and can view the

feasible design space as a whole critical region. In this case, our conclusion holds valid

because the metamodels that are most accurate in the critical region, which are developed

in E-RCEM, facilitate the achievement of best design solutions. The judgment of

whether metamodels are acceptable can be done in Step 7 of the integrated design process

in E-RCEM, when the stopping criterion is to obtain good design solutions or accurate

538

metamodels, instead of being given a preset of maximum number of observed points as in

the examples in Chapters 4 to 7 in this dissertation.

With E-RCEM and SEED, we are able to achieve better design solutions as well

as save a lot of expense on simulations in this LCA design example. In cases with

expensive experiments, this reduction of experimental expense is very valuable. In E-

RCEM and SEED, we have additional expense on the calculation of prediction errors and

achievement of design goals, the formulation of adjusted covariance matrix, the

calculation of the determinant of the matrices, and the optimization to find out the matrix

with the maximum determinant value. These expenses can be categorized into two

categories:

• Manually operational expense. This includes the initialization of input,

output, and parameter files for FORTRAN or C codes used in the E-

RCEM or SEED process, the organization of analysis codes in iSIGHT,

and the documentation of experimental and analysis results.

• Computational expense. This includes the computational time spent on

the FORTRAN or C codes in E-RCEM or SEED and the optimization

process in iSIGHT.

To build the E-RCEM and SEED processes in an automated framework, which

means the exclusion of manual operations will help save a large portion of expense spent

in the examples in this dissertation. This is future research for this dissertation. As for

the computational expense, most time and effort is spent on the optimization to find the

matrix with maximum value of the determinant. This expense can be reduced by using

539

appropriate optimization algorithms in iSIGHT. The E-RCEM and SEED processes are

not as complicated or intensive as they appear in Sections 7.4 and 7.5. Some of the

information in these sections is for illustration only and thus unnecessary in the sequential

metamodeling and exploration process (e.g., the contour plots), and some can be easily

managed within an automated framework (e.g., the documentation of information at data

and validation points).

7.6.3 Selection of the Most Suitable Methods in Design: RCEM, SEED, or the
Integrated Design Process in E-RCEM

RCEM is best used in cases with very cheap experiments and/or when the

response surface is flat. When the expense of experiments or simulations is low,

designers are able to collect information at a lot of data points and develop very accurate

metamodels without adopting sequential metamodeling and design space exploration

strategies. With cheap-to-run computer simulation models (no physical experiments are

involved), designers even do not need to develop metamodels; the simulation codes can

be linked in iSIGHT or similar software, and optimal (or robust) solutions can be found

with optimization techniques. In some cases the experimental expense may be high, but

based on experience, designers may select very small design spaces in which the

responses are not nonlinear; RCEM is better in such cases because acceptable

metamodels can be developed with very few data points, and thus there is no need to

adopt a sequential strategy.

As described in this dissertation, SEED and E-RCEM are best used when: 1) the

computer simulations or physical experiments are expensive to conduct, and/or 2)

540

designers expect (or are not sure) that the responses are nonlinear in the given design

space. In such cases, SEED helps achieve more accurate metamodels in the whole design

space with fewer experiments (or simulations) than the RCEM method. E-RCEM helps

achieve more accurate metamodels in critical regions and thus obtain better design

solutions with fewer experiments or simulations than SEED or RCEM.

The consideration of design constraints in the integrated design process of E-

RCEM can also be used in SEED (or say, the traditional process of E-RCEM in which the

information flow from the process of metamodeling to the process of design space

exploration is one-way). In this way, designers are able to develop accurate metamodels

in the feasible design space with SEED, without wasting time or money on experiments

in infeasible design spaces. The corresponding metamodels may be more accurate in the

feasible design space; however, they still may not be as accurate in critical regions, and

the corresponding solutions may not be as good as those obtained with metamodels from

the integrated design process in E-RCEM.

In cases with clearly defined design goals, the integrated design process in E-

RCEM is better than the traditional process of SEED. Otherwise, SEED is better because

it helps achieve more accurate metamodels in the feasible design space. SEED is more

robust to changes of the design goals in later design stages because the accurate

metamodels ensure the achievement of good design solutions no matter how the design

goals are changed. The integrated design process in E-RCEM is not as robust as SEED,

because the “critical” regions may change as design goals change; the current metamodels

541

may not be acceptable in new critical regions after design goals are changed, and thus

may lead to design solutions that are not as good as those obtained with SEED.

Besides SEED (the traditional process in E-RCEM), the integrated design process

in E-RCEM, we can also adopt the hybrid process in E-RCEM, as introduced in Section

6.4.4. In most cases where design goals are defined but still subject to small changes in

the future, designers may prefer to the hybrid process in E-RCEM, in which SEED is first

used to achieve an acceptable metamodel, then the integrated design process in E-RCEM

is adopted to explore for new experimental points and design solutions.

The methods of SEED and E-RCEM give designers more design freedom to deal

with limited resources in early design stages. Engineers are able to design and utilize

expensive physical experiments or computer simulations in design. Previously,

expensive physical experiments are usually used to verify the final design solution, but

seldom used to assist the design from early stages; complicated simulations are

discouraged to avoid high computational expense. With the SEED and E-RCEM

methods, engineers can utilize expensive physical experiments in early design stages with

relatively low total cost, and are allowed to develop time-consuming but high-fidelity

computer simulations without worrying about their utilities. Engineers are also given the

freedom of defining and exploring a large design space without worrying about the

nonlinearity and irregularity of responses. They do not need carefully study the responses

and conservatively define the design space (as small as possible) before design – they

usually do these based on experience – and this experience, or previous information, is

542

not needed in SEED or E-RCEM, because engineers are able to grasp maximum

information with limited available resources.

7.7 A LOOK BACK AND A LOOK AHEAD

In this chapter, the methods of RCEM, SEED (the traditional process in E-

RCEM), and the integrated design process in E-RCEM are applied and compared with the

example of unit design for an LCA device. Research Questions 2 and 3 are answered and

the corresponding hypotheses are verified. These research questions and hypotheses are

listed below:

R.Q.2: How to design sequential computer experiments (how to select data

and validation points sequentially) to get an accurate metamodel?

Hypothesis 2: Sequential experiments could be designed through analysis of

information from data/validation points and metamodels.

R.Q.3: How to integrate the processes of metamodeling and robust design

space exploration?

Hypothesis 3: The processes of metamodeling and robust design space

exploration could be integrated through building the information flow

from C-DSP to the metamodeling cycle in the Robust Concept Exploration

Method.

543

The LCA design problem is described in Sections 7.1 and 7.2; the problem is

initiated, the compromise DSP is formulated, and the actual design solution is obtained

with the original computer simulation models in Section 7.2. Single-stage experimental

designs are applied and the solutions are obtained with RCEM in Section 7.3. The SEED

method (traditional process in E-RCEM) is applied in Section 7.4. The integrated design

process in E-RCEM is applied in Section 7.5. The metamodels developed in Section 7.3,

7.4, and 7.5 are compared on their performance in response prediction and achievement

of design solutions in Section 7.6. With the LCA design example we observe that more

accurate metamodels are developed and better design solutions are achieved with fewer

observed points in the methods of SEED and E-RCEM than in RCEM.

Sequential experiments can be designed with SEED through the analysis of

information from data and validation points and previous metamodels. Prediction errors

are used to adjust entries of the covariance matrices; by maximizing the determinant of

the adjusted covariance matrix, new points are identified in regions with fewer observed

points and/or large expected prediction errors. Thus after iterations in SEED, more points

are allocated at “critical” locations to reduce prediction errors; as a result, the final

metamodels are more accurate than those developed with single-stage experimental

designs in which information of responses from previous observations is not used as

guidance in the identification of new points. SEED ensures the achievement of

metamodels that are accurate in the whole design space (or the feasible design space

when design constraints are considered in the sequential metamodeling process).

544

The processes of metamodeling and design space exploration are integrated in the

integrated design process in E-RCEM. The information flow from the compromise DSP

to metamodeling is built in E-RCEM and this information feedback helps engineers find

“critical” regions, or regions of interest, and allocate more points in such regions to

ensure the achievement of good design solutions. The “critical” regions in the integrated

design process of E-RCEM are those in which design goals are achieved or nearly

achieved with current metamodels, and those in which we have large uncertainty with

current metamodels. This criterion of “critical” in E-RCEM is broader than that in

SEED, which defines the “critical” regions as those in which we have large uncertainty

with current metamodels.

SEED and E-RCEM are superior to RCEM in cases with expensive experiments

and nonlinear responses; they give engineers more freedom in design with limited

resources. However, the additional, relatively high expense in the complicated sequential

experimental design process brings trouble for the application of SEED and E-RCEM.

To build an automated computer framework for SEED and E-RCEM helps reduce the

complexity and expense, and this will be a future direction for research in this

dissertation. The methods of SEED and E-RCEM, their plus and minus, their

applications, and possible future improvements are further discussed in Chapter 8.

6.
CHAPTER 8

CLOSURE

Through this chapter significant issues addressed in this dissertation are

recapitulated. In this dissertation, the Sequential Exploratory Experimental Design

(SEED) and the Efficient Robust Concept Exploration Method (E-RCEM) are developed

and verified through the study of several single- or two- variable examples and an

industrial application of LCA design. Metamodel evaluation, comparison, and selection

are also studied as preliminary research for the development of the two proposed

methods. SEED and E-RCEM give engineers more freedom in design; they facilitate the

development of acceptable metamodels for irregular responses with limited

computational or monetary resources and the achievement of satisficing design solutions

in a large design space with expensive physical or computer experiments. Our study in

this dissertation is brought to a close in this chapter. In Section 8.1, closure is sought by

returning to the research questions posed in Chapter 1 and reviewing the answers that

have been offered. Then, the resulting contributions are discussed in Section 8.2.

Limitations of the research and future work are then described in Section 8.3.

 545

8.1 ANSWERING THE RESEARCH QUESTIONS

As stated in Chapter 1, the principal objective in this dissertation is to develop

systematic yet flexible methods that facilitate the development of acceptable metamodels

and achievement of satisficing design solutions with limited resources. With the

proposed methods engineers can fully utilize expensive physical or computer

experiments to grasp important properties of design responses in early design stages.

This helps avoid possible expensive re-design processes and thus reduce the development

time for new products. The key research question is proposed to motivate our study in

this dissertation:

How to explore the design space efficiently and effectively for satisficing solutions

by employing sequential metamodeling and design space exploration

techniques in accordance with the changing design information along the

design timeline in early design stages?

In Section 1.3.2, based on the key question two research questions, Research

Questions 1, 2, 3, and 4 are posed for investigation in this dissertation, each of which

corresponds to a category of techniques to be studied, developed, and utilized. The four

research questions are:

 546

R.Q.1: How to validate a metamodel with deterministic computer

experiments?

R.Q.2: How to design sequential computer experiments (how to select data

and validation points sequentially) to get an accurate metamodel?

R.Q.3: How to integrate the processes of metamodeling and robust design

space exploration?

R.Q.4: How to utilize different types of metamodels along the design timeline

in accordance with the changing design information? (How to do

sequential metamodeling to achieve robust design solutions?)

Research Question 1 is about metamodel validation techniques with deterministic

computer experiments. Research Question 2 is about the sequential identification of data

points. Research Question is about the integration of metamodeling and design space

exploration processes. Research Question 4 is about metamodel comparison and

selection. The relations between research questions, and research questions and proposed

methods in this dissertation are presented in Figure 2.5. To address these questions,

research hypotheses are introduced and identified in support of achieving the principal

objective for the dissertation. In this dissertation, according to the four questions and the

corresponding hypothesis, first we prove that the leave-one-out cross-validation is

inappropriate and proposed approaches to validate the accuracy of metamodels; then the

SEED method is developed based on maximum entropy sampling techniques; metamodel

 547

comparison and selection are studied to improve the SEED method; finally, E-RCEM is

developed based on SEED and the compromise DSP to integrate the processes of

metamodeling and design space exploration. The elaboration and verification of the

research questions and hypothesis provide the context in which the research work has

proceeded.

R.Q. 2 and R.Q. 3 are the most important research questions, which lead to the

development of SEED and E-RCEM in Chapters 4 and 6, respectively. Researches for

R.Q. 1 and R.Q. 4 provide supporting tools for the development and improvement of

SEED and E-RCEM.

As described in Section 1.3.2, each of the four research questions is divided into

several secondary research questions. Then the corresponding sub-hypotheses are

proposed. The secondary research questions operate at a lower level of abstraction in

comparison to the research questions posed earlier. In the rest of this section we answer

the research questions through revisiting and summarizing our work for the secondary

research questions.

8.1.1 Answering Research Question R.Q.1

The first research question, R.Q.1, leads to studies of metamodel validation

techniques with deterministic computer experiments, which is a preliminary research for

the development of SEED and E-RCEM. This research question is separated into two

supporting research questions leading to two studies, one of which is to prove the

inappropriateness of the currently widely used method, leave-one-out cross-validation, in

deterministic applications, and the other is to develop new approaches of metamodel

 548

validation. Research Question 1, two supporting research questions, and corresponding

hypotheses are:

R.Q.1: How to validate a metamodel with deterministic computer experiments?

Hypothesis 1: Information from either previous additional validation points is

needed in testing the accuracy of a metamodel with deterministic

computer experiments.

R.Q.1.1: Is leave-one-out cross-validation a suitable method of metamodel

validation with computer experiments?

Sub-Hypothesis 1.1: Leave-one-out cross-validation is not an appropriate

method of metamodel validation with deterministic computer experiments.

R.Q.1.2: How to test the accuracy a metamodel in deterministic applications?

Sub-Hypothesis 1.2: The accuracy of a metamodel could be validated through

examining prediction errors at additional validation points.

To answer Research Question 1 and test Hypothesis 1 two tasks need to be

accomplished, one is the theoretical study of the inappropriateness of leave-one-out

cross-validation in metamodel evaluation, and the other is the development of approaches

to test metamodels’ accuracy with information from additional validation points. These

correspond to studies for the supporting research questions and sub-hypotheses.

Research Question 1.1 and Sub-Hypothesis 1.1 are studied in Sections 3.2 and

3.3. In Section 3.2 with two single-variable examples we observe that leave-one-out

cross-validation is insufficient in metamodel validation because it is actually a

 549

measurement for degrees of insensitivity of a metamodel to lost information at its data

points, while an insensitive metamodel is not necessarily an accurate one. After careful

examination, we point out that there are two causes for this insensitivity: clustering or

inappropriately correlated data points. To design space-filling experiments with a

sufficient number of data points is one way to prevent an inaccurate and insensitive

model, while this cannot assure the validity of the leave-one-out cross-validation method,

and this is opposite to our idea of sequential experimental design and may result in great

waste of time or money on unnecessary experiments, which will increase the time of

bringing new products to market. Our conclusion is verified through empirical study in

Section 3.3. Sub-Hypothesis 1.1 is tested and Research Question 1.1 is answered: Leave-

one-out cross-validation is not an appropriate method to validate the accuracy of

metamodels.

Research Question 1.2 and Sub-Hypothesis 1.2 are studied in Section 3.4, in

which approaches are proposed for engineers to test the accuracy of metamodels. Several

methods are described to help engineers gain insight into the performance of metamodels

over the whole design space. Information from additional validation points is utilized in

these approaches. The sub-hypothesis is tested and Research Question 1.2 is answered:

The accuracy of metamodels can be tested with information from additional validation

points with the developed approaches.

After answering the supporting research questions and test the sub-hypotheses,

we are able to answer Research Question 1. We verify that leave-one-out cross-

validation is theoretically inappropriate in metamodel validation and information at

 550

additional validation points are needed. Several preliminary approaches are proposed for

engineers to utilize this information of prediction errors at validation points to validate

the accuracy of metamodels.

8.1.2 Answering Research Question R.Q. 2

To answer Research Question 2 we focus on the development of accurate

metamodels with a sequential experimental design strategy. Three secondary research

questions and their corresponding hypotheses are posed:

R.Q.2: How to design sequential computer experiments (how to select data and

validation points sequentially) to get an accurate metamodel?

Hypothesis 2: Sequential experiments could be designed through analysis of

information from data/validation points and metamodels.

R.Q.2.1: How to measure the information worth of a point?

Sub-Hypothesis 2.1: The information worth of a point could be measured with

entropy.

R.Q.2.2: How to select validation points to achieve a sequential design of

computer experiments?

Sub-Hypothesis 2.2: Selection of validation points should follow similar rules

for selection of data points; information from validation points could be

used as guidance in identifying new data points.

R.Q.2.3: How to utilize information from previous points and metamodels in

identifying new data points?

 551

Sub-Hypothesis 2.3: Through maximizing entropy (as formulated based on Sub-

Hypotheses 1.1 and 1.2) we are able to allocate new data points in the

design space that yield maximum potential information.

To answer Research Question 2, the method of Sequential Exploratory

Experimental Design (SEED) is developed based on D-optimal design and maximum

entropy sampling. The development of SEED is the foundation of research for Research

Questions 3 and 4. To develop the SEED method, we need to accomplish the following

tasks: definition and identification of “critical regions” and “information potential of

points”, consideration of “information potential” in the identification of data points, and

selection of validation points. These are done in Chapters 4 and 5.

In Chapters 4 and 5, we verified that with the SEED method, designers are able to

add in new data points in the design space with large amount of potential information,

and thus accurate metamodels could be achieved efficiently. Information from current

data and validation points and metamodels are used as guidance in identifying new data

points. Hypothesis 2 is verified; our answer to Research Question 2 is: Accurate

metamodels can be developed through iterations in sequential experimental design with

the SEED method, in which information from current data/validation points and

metamodels is used as guidance in identifying new data points.

Research Question 2.1 is answered primarily in Sections 4.3 and 4.4. The

application of Bayesian entropy design in SEED in Sections 4.5 and 4.6 supports our idea

from Sections 4.3 and 4.4. A clear statement on Research Question 2.1 is presented at

the beginning of Section 4.5. Sub-Hypothesis 2.1 is tested; our answer to Research

 552

Question 2.1 is: The entropy criterion could be used to measure the information worth of

a new point.

Research Question 2.2 is answered in developing and verifying the SEED method

in Sect

d and Sub-Hypothesis 2.3 is tested in the

develop

ions 4.5 and 4.6; Sub-Hypothesis 2.2 is tested. The usage of validation points and

observation of prediction errors are necessary steps in the SEED method; it provides the

foundation for adjusting the covariance matrix, which is the core of the SEED method.

In the SEED method, validation points are added sequentially in iterations; as more and

more data and validation points are observed, designers are able to develop more and

more accurate metamodels for responses and prediction errors. In Section 4.6, different

strategies on selecting validation points are applied and studied in the SEED method.

Our answer to Research Question 2.2 is: Validation points should be added in iterations

in sequential experimental design; information from validation points should be used as

guidance in identifying future data points.

Research Question 2.3 is answere

ment of the SEED method. To be specific, the method of maximum entropy

sampling is introduced in Section 4.4; in Section 4.5.2, strategies on how to utilize

information from previous points and metamodels are discussed; the mathematical

formulations in SEED is developed in Section 4.5.3, which enables designers to design

sequential experiments through maximizing entropy; Demonstration and verification is

enclosed in Section 4.6. Our answer to Research Question 2.3 is: Information from

current data/validation points and metamodels could be used to build the adjusted

 553

covariance matrix; new data points could be identified through maximizing the

determinant of the adjusted covariance matrix.

Figure 8.1 Flowchart of the Sequential Exploratory Experimental Design Method

The flowchart of the SEED method is illustrated in Figure 8.1. The SEED

method can be used to replace the metamodeling process in RCEM, as illustrated in

 554

Figure 8.2. Also, as shown in Chapter 6, the application of SEED method in E-RCEM

helps form the traditional process and hybrid process of the E-RCEM method. In

Chapters 4, 5, and 7, with several simple examples and a multivariable, multi-response

example, it is shown that more globally accurate metamodels can be developed with

fewer experiments and better design solutions can be achieved with the SEED method

than with traditional methods (such as RCEM). In cases with expensive experiments

and/or irregular responses, SEED helps designers grasp important response properties in

the whole (or feasible) design space with low cost, and thus enable engineers to fully

utilize the approximation-based design strategy and reduce the time of introducing new

products to the market.

Figure 8.2 Application of SEED in RCEM

 555

8.1.3 Answering Research Question R.Q. 3

To answer Research Question 3 we study the integration of processes of

metamodeling and design space exploration. Three secondary research questions and

their corresponding hypotheses are posed. The research question, supporting research

questions, and corresponding hypotheses are:

R.Q.3: How to integrate the processes of metamodeling and robust design space

exploration?

Hypothesis 3: The processes of metamodeling and robust design space

exploration could be integrated through building the information flow

from C-DSP to the metamodeling cycle in the Robust Concept

Exploration Method.

R.Q.3.1: How to design sequential experiments with consideration of design

constraints?

Sub-Hypothesis 3.1: Consideration of design constraints could be incorporated

in the metamodeling process through construction irregular design spaces.

R.Q.3.2: How to reduce the design space with information from previous

metamodeling and design space exploration?

Sub-Hypothesis 3.2: Design space could be reduced through analysis of the

information from previous metamodels.

R.Q.3.3: How to do sequential metamodeling with consideration of design goals?

Sub-Hypothesis 3.3: Design goals can be taken into consideration in

metamodeling by formulating influential factors with the compromise

DSP and using them in maximum entropy sampling.

 556

To answer Research Question 3, the Efficient Robust Concept Exploration

Method (E-RCEM) is developed in Chapter 6, and the screening of unimportant design

variables is built in the SEED method in Chapter 5. The integrated design process in E-

RCEM is demonstrated and verified with a single-variable example in Chapter 6 and in

the LCA unit design in Chapter 7.

E-RCEM is developed through the conduction of two tasks: consideration of

design constraints in metamodeling, and consideration of design goals in metamodeling.

E-RCEM is developed based on the Robust Concept Exploration Method (RCEM), the

method of Sequential Exploratory Experimental Design (SEED), and the Compromise

Decision Support Problems (C-DSP). In Chapters 6 and 7, we verified that with the

integrated design process in E-RCEM, designers are able to incorporate considerations of

metamodel accuracy and achievement of design goals in the experimental design and

metamodeling process. New points are identified in regions where design goals are to be

achieved or large prediction errors exist. With this integrated design process in E-RCEM

(or the metamodeling for design space exploration approach), designers are able to

achieve better design solutions with less time and money spent on expensive computer or

physical experiments. Hypothesis 3 is verified; our answer to Research Question 3 is:

Better design solutions can be achieved with fewer experiments by integrating the

processes of metamodeling and design space exploration; this integrated design process

is realized in E-RCEM, in which information about metamodel uncertainty and

achievement of design goals is used as guidance in identifying new points in sequential

metamodeling.

 557

Research Question 3.1 is answered primarily in Section 6.2. Sequential

metamodeling with constraints on design variables is studied in Section 6.2.1, and

sequential metamodeling with constraints on responses is studied in Section 6.2.2. In this

section we show that design constraints can be taken into consideration in the SEED

method and the integrated design process in E-RCEM. After taking design constraints

into consideration, the design space is usually irregular; with SEED or E-RCEM, new

points will be identified only in the reduced irregular feasible design space, and this helps

save time and money spent on experiments wasted in infeasible regions. Our answer to

Research Question 3.1 is: Design constraints can be taken into consideration to define an

irregular design space, and SEED or E-RCEM can be used to identify new points in the

reduced irregular feasible design space.

Research Question 3.2 is answered in Section 5.4 and illustrated in Section 5.5.

The usage of RS metamodels at the very early stages of metamodeling helps identify and

screen unimportant design variables. Another way to reduce the design space is to

reduce the ranges of design variables, which is not studied and incorporated with SEED

in researches in this dissertation; thus this study here is preliminary and future research is

needed to improve the design space reduction approaches that are built in the methods of

SEED and E-RCEM. Our answer to Research Question 3.2 is: The design space can be

reduced by eliminating unimportant design variables through the analysis of information

from previous data points and metamodels.

Research Question 3.3 is answered in Section 6.3. Based on the compromise

DSP, the degree of achievement of design goals at candidate points can be formulated

 558

and scaled in [0,1]; a value close to 0 means that design goals are hardly achieved, and a

value close to 1 means that design goals are almost achieved at this point. Usually we

preset a target value for the design goal, and once this target value is met or exceeded, we

set the degree of achievement of design goals to be 1. This quantitative expression of

degree of achievement of design goals can be used in the adjustment of covariance

matrices in maximum entropy sampling, and “drag” new points to regions where design

goals are met or almost met. Our answer to Research Question 3.3 is: The degree of

achievement of design goals at a particular point can be quantitatively formulated with

the compromise DSP and used as an influential factor in SEED or E-RCEM.

The flowchart for the Efficient Robust Concept Exploration Method is illustrated

in Figure 8.3 and Figure 8.4. With the integrated design process in E-RCEM, engineers

identify points sequentially in regions of interest, thus are able to develop metamodels

with more local accuracy in critical regions and achieve better design solutions than

SEED and RCEM. In cases with expensive experiments and irregular responses, E-

RCEM helps achieve efficient and effective designs with affordable cost, which may not

be accomplished with traditional approximation-based design methods such as RCEM.

 559

Figure 8.3 Flowchart of the Efficient Robust Concept Exploration Method (I)

 560

Figure 8.4 Flowchart of the Efficient Robust Concept Exploration Method (II)

8.1.4 Answering Research Question R.Q. 4

To answer Research Question 4 we study the comparison and selection of

different types of metamodels in the SEED and E-RCEM processes. Three secondary

 561

research questions and their corresponding hypotheses are posed. The research question,

supporting research questions, and corresponding hypotheses are:

R.Q.4: How to utilize different types of metamodels along the design timeline in

accordance with the changing design information?

Hypothesis 4: Different types of metamodels should be used at different design

stages in accordance with different requirements of design.

R.Q.4.1: How do different types of metamodels perform in engineering design?

Sub-Hypothesis 4.1: Different types of metamodels have their strong and weak

points.

R.Q.4.2: How to select different types of metamodels at different design stages?

Sub-Hypothesis 4.2: As design evolves, more complicated types of metamodels

should be used to help yield good approximations with more computation

time and efforts.

In this dissertation we consider three types of metamodels, the response surface

(RS) metamodels, kriging, and multivariate adaptive regression splines (MARS).

R.Q.4.1 is studied and answered in Sections 5.2 and 5.4. A comparison between kriging

and MARS metamodels is done in Section 5.2 with some interesting observations. The

comparison between RS and kriging metamodels has been done in previous work in

(Simpson, 1998) and (Lin, 2000), and comparisons between more types of metamodels

could be a future work of this dissertation. In our studies we observe that both kriging

 562

and MARS have their strong and weak points; kriging metamodels may not perform

appropriately when the properties of the response surface change greatly (i.e., highly

nonlinear in some regions while flat in others), and MARS metamodels may meet

problems in deterministic applications because they smooth the data and thus the

predicted values at data points may not be accurate. Hypothesis 4.1 is tested, and as an

answer to Research Question 4.1, a summary on comparison between RS, kriging, and

MARS metamodels is presented in Table 8.1. Particularly, in Table 8.1 we see that

MARS works better than kriging in modeling irregular responses, while kriging has a

native mathematical connectivity to SEED that MARS lacks.

Table 8.1 Plus and Minus of Different Types of Metamodels

 RS (Regression) Kriging MARS
1. Mathematical complexity Simple Complicated Complicated
2. Computation time Short Long Medium
3. Problem size: # of design

variables and # of data points
Large, Medium, and

Small Problems
Small

Problems
Medium and

Small Problems
4. Metamodel accuracy Low High High
5. Loyalty to data No Yes No, with very

small bias
6. Ability to model irregular

responses (highly nonlinear
or flat in different regions)

No
Yes, but only

when with
lots of data

Yes

7. Suitable for existing
screening techniques Yes No Yes

8. Preference to specific
experimental designs Yes Yes No

9. Mathematical connectivity to
SEED (adapted maximum
entropy sampling)

No Yes No

 563

Based on the studies in Section 5.2, the SEED method is extended in Section 5.3

by utilizing both kriging and MARS metamodels. This helps answer R.Q.4.2. Kriging

and MARS may be appropriate, or, on the other hand, inappropriate, in different

situations; thus we recommend that both be used to develop metamodels in sequential

experimental design and metamodeling. Designers could make decisions only after

building the metamodels and observing their performance. A recommendation on how to

use kriging and MARS metamodels is described in Section 5.3.

Start of Sequential
Metamodeling

Acceptable
Metamodels B. Simulation

Programs

A. Point Generator

Design of classical
experiments

C. Experiments Analyzer
Development of

regression models; factor
screening

D. SEED
Development of

accurate kriging and
MARS metamodels

Figure 8.5 Framework of Sequential Metamodeling

R.Q.4.2 is further studied and answered in Sections 5.4 and 5.5, in which an

approach for sequential metamodeling is developed and illustrated with an engineering

example. The framework for the approach of sequential metamodeling is presented in

Figure 8.5. This sequential metamodeling approach is incorporated in the method of E-

RCEM in Chapter 6. Hypothesis 4.2 is tested and Research Question 4.2 is answered:

Response surface metamodels should be used at the beginning of design to help gain

knowledge of responses and screen unimportant design variables; MARS and kriging

 564

should be used in later stages with SEED to help gain accurate interpretations of

irregular responses.

Answers to research questions, tasks, and verification of hypotheses are presented

in this section. This discussion leads to the research contributions of this dissertation,

which will be summarized in the next section.

8.2 ACHIEVEMENTS: REVIEW OF RESEARCH CONTRIBUTIONS

The expected contributions of this dissertation have been stated in Section 1.3.3

and Section 2.1. Here is a revisit of the achievements and contributions of the research in

this dissertation.

Contributions Related to the Sequential Exploratory Experimental Design Method:

• The development of the SEED method for sequential experimental design.

The SEED method is developed in Chapter 4 and then improved with the

utility of various types of metamodels in Chapter 5. The SEED method

facilitates the development of globally accurate metamodels with limited

number of observations in the whole design space. Its utility has been verified

with several examples.

• An approach to calculate and incorporate prediction errors in the identification

of regions of interest and data points. This is done in Section 4.5.2. The

 565

usage of two groups of points to calculate and incorporate prediction errors in

design is an original work of this dissertation.

• Two approaches to modify the mathematical formulations of entries of the

covariance matrix in maximum entropy sampling. This is done in Section

4.5.3. With the two developed approaches, the information of prediction

errors can be mathematically taken into consideration in the identification of

new points, thus this work helps solid the idea of sequential experimental

design.

Contributions Related to the Efficient Robust Concept Exploration Method:

• The development of the Efficient Robust Concept Exploration Method. E-

RCEM is developed in Chapter 6 and further improved with multi-variable

and multi-response examples in Chapter 7. E-RCEM facilitates efficient and

effective design space exploration for robust design solutions.

• The integration of traditionally separated processes of metamodeling and

design space exploration. The idea of consideration of design constraints and

design goals in the metamodeling process is innovative, and is realized in E-

RCEM based on the SEED algorithm and the compromise DSP. This is the

core of E-RCEM, and studied throughout Chapters 6 and 7.

• An approach to consider design constraints and design goals in the

identification of regions of interest and new data points. This is done in

 566

Sections 6.2 and 6.3. This work supports the integration of processes of

metamodeling and design space exploration.

• A preliminary design space exploration heuristic for designers with expensive

physical and computer experiments. The integrated design process in E-

RCEM (one of the three possible ways to apply E-RCEM, as stated in Section

6.4.4) can be viewed as a design space exploration heuristic for cases with

expensive experiments. Although only examples with computer experiments

are used in this dissertation, it is expected that E-RCEM is also suitable for

designs with expensive physical experiments.

Contributions Related to Metamodel Evaluation:

• A study shows that leave-one-out cross-validation is theoretically

inappropriate for metamodel validation. This is done in Section 3.2. This is

an original work of this dissertation. This conclusion is also supported with

empirical studies in Section 3.3.

• Preliminary approaches for engineers to validate metamodels’ accuracy with

information at additional validation points. This is done in Section 3.4. The

developed approaches, though may be complicated and somewhat non-solid

in applications, help designers gain knowledge of the responses and support

designers’ decisions in metamodel validation.

Contributions Related to Metamodel Comparison and Selection:

 567

• A comparison between kriging and MARS and an observation of kriging’s

limitation in modeling irregular responses. This is done in Section 5.2.

Previously kriging and MARS are only compared with space-filling

experiments. The comparison of kriging and MARS with unevenly spread

points from sequential experiments in this dissertation is original.

• An approach in which three types of metamodels are used sequentially along

the design timeline to facilitate effective and efficient exploration of

satisficing design solutions. In Section 5.3 recommendations are made on

how to use MARS and kriging in sequential experimental design. In Section

5.4, a sequential metamodeling approach is proposed in which response

surface models, kriging, and MARS are utilized in the metamodeling process.

The value of these contributions lies in the worth to be either an addition to the

fundamental knowledge of the field or a new and better interpretation of the facts already

known. Based on this criterion contributions of this dissertation are classified and listed

in Table 8.2. The most important contributions of this dissertation are the development

of the methods of SEED and E-RCEM, which are all original in this dissertation. These

contributions represent an addition to the fundamental knowledge of the field.

Some of the other contributions, e.g., the comparison of kriging and MARS in

modeling irregular responses, and the verification that leave-one-out cross-validation is

theoretically inappropriate for metamodel validation, are also original in this dissertation

and represent an addition to the fundamental knowledge. As to other contributions,

 568

previous work is available, while the studies in this dissertation are from different

viewpoints.

Table 8.2 Contributions of Studies in this Dissertation

Contributions Addition to the
Fundamental Knowledge

Better Interpretation of
Existing Ideas

SEED
Yes. A new method for
sequential experimental

design and metamodeling
Information theory

Calculation and
incorporation of prediction
errors in metamodeling

Yes

Mathematical formulations
to adjust entries of the
covariance matrix

Yes D-optimal design
Maximum entropy sampling

E-RCEM

Yes. A method with
integrated processes of

metamodeling and design
space exploration

Integration of processes of
metamodeling and design
space exploration

Yes

Incorporation of design
goals and constraints in
metamodeling

Yes

A preliminary optimization
heuristic for engineers Yes Efficient Global Optimization

Verification of the
inappropriateness of leave-
one-out cross-validation

Yes Simpson, 1998

Preliminary approaches to
validate metamodels Simpson, 1998; Jones, et al.,

1998
A comparison of kriging
and MARS in SEED Yes

An approach to utilize
three types of metamodels
along the design timeline

 Response Surface
Methodology

 569

With the methods of SEED and E-RCEM, engineers are able to develop more

accurate metamodels for irregular responses with limited resources and achieve better

design solutions in a large design space with expensive computer or physical experiments

than they do with traditional methods like RCEM. This gives engineers the freedom of

using expensive experiments to analyze irregular responses in large design spaces in

early design stage, thus enables the full utilization of the approximation-based design

strategy in industrial applications. However, there are several limitations in our studies

in this dissertation. In the next sections, after identifying the limitations of our work for

this dissertation and summarizing observations in our study, we point out some possible

directions for future work.

8.3 CRITICAL REVIEW

Answers to research questions are summarized in Section 8.1 and the

contributions of studies in this dissertation are listed in Section 8.2. In this section,

insights obtained from the studies, limitations of the developed methods, and

recommendations on how to use the methods in design are presented in four sub-sections

corresponding to four research questions in this dissertation. Studies of metamodel

evaluation are summarized in Section 8.3.1. Studies of metamodel comparison and

selection are summarized in Section 8.3.2. Studies of Sequential Exploratory

Experimental Design (SEED) are summarized in Section 8.3.3. Studies of the integrated

 570

design process in the Efficient Robust Concept Exploration Method (E-RCEM) are

summarized in Section 8.3.4.

8.3.1 Metamodel Evaluation

The outcome of studies of metamodel validation is documented in Chapter 3.

First we studied the performance of leave-one-out cross-validation method in validating

metamodels with deterministic computer experiments. With several simple functions we

illustrated that cross-validation is an insufficient method, thus to use additional validation

points becomes essential in metamodel validation. Then we describe some preliminary

methods on how to utilize the information from additional validation points.

The reason why leave-one-out cross-validation is insufficient in metamodel

validation is that it is actually a measurement for degrees of insensitivity of a metamodel

to lost information at its data points, while an insensitive metamodel is not necessarily

accurate. There are two causes for this insensitivity: clustering or inappropriately

correlated data points. To design space-filling experiments with a sufficient number of

data points is one way to prevent an inaccurate and insensitive model, while this cannot

assure the validity of the leave-one-out cross-validation method. We recommend starting

with space filling experimental designs in the development of metamodels in engineering

applications.

The conclusion here does not mean that previous applications with leave-one-out

cross-validation are necessarily wrong. When the original actual function is not highly

nonlinear (or the design space is not very large) and there are enough data points

spreading all over the design space, the danger of having clustering or inappropriately

 571

correlated data sets is small. However, the success of leave-one-out cross-validation in

those examples is dependent on particular cases; real-world applications are usually more

complicated and cannot meet the requirements mentioned above. Thus to use additional

validation points are necessary in metamodel validation.

Though one important benefit of using metamodels is to save expenses on

experiments, to add in additional validation points, which eventually increases time and

effort on computer simulations, does not hurt the importance of metamodeling very

much. First, in computer experiments, moderate increases of computational expenses are

usually affordable with fast computers in a distributed design environment. Second, to

use metamodels not only helps us save experimental expenses but also integrates

simulation codes from different disciplines to give insight into the relationships between

input variables and output responses. Third, and maybe the most important, with the

SEED method and the E-RCEM method developed in this dissertation, designers are able

to do more observations in the design space with relatively low expense, which makes it

possible to utilize validation points with expensive experiments.

Several methods are proposed in Chapter 3 to help engineers gain insight into the

performance of metamodels over the whole design space. However, these methods are

not very solid and sometimes they are too complex to use; future studies on metamodel

valuation are needed. One unsolved problem in model validation is how to select

validation points, e.g., how many validation points should be used, and how to allocate

these points. Validation points are identified and used in the methods of SEED and E-

RCEM; however, the selection of validation points in these methods are for the

 572

achievement of better metamodels, not for the validation of the current metamodel. Thus

the development of new strategies to validate a metamodel (either with or without

validation points) is future work of this dissertation. Currently, without better methods,

we recommend the method with Equations (3.8) and (3.9) because of its simplexity.

8.3.2 Metamodel Comparison and Selection

The outcome of studies of metamodel comparison and selection is documented in

Chapter 5. First we studied the performance of kriging and adaptive regression splines in

modeling the actual responses with unevenly located data points. Our observations show

that in cases with irregular responses (highly nonlinear in some regions while flat

elsewhere) and unevenly located data points (usually a result from sequential

experimental designs), kriging may work abnormally. The reason lies in the universal

usage of a constant value of θ in one dimension in our kriging algorithm; designers meet

difficulty when trying to model highly nonlinear surfaces and flat surfaces with the same

θ. Univariate or multivariate adaptive regression splines metamodels perform well in

modeling irregular responses.

Although kriging might not be appropriate in cases with irregular responses, it has

some desirable properties that adaptive regression splines metamodels do not have. First,

it yields the exact true value at data points, while adaptive regression splines may have

small deviations. This is important in deterministic computer applications. Second, in

SEED, values of θ from previous kriging metamodels can be used as a reference in

formulating and adjusting the covariance matrices. With this information designers are

 573

able to distinguish design variables with high uncertainties in response prediction, and

thus more future points will be automatically identified in these dimensions with the

SEED process. When adaptive regression splines metamodels are used we cannot get

such information as easily as with kriging.

Based on these observations, we propose to utilize both kriging and adaptive

regression splines in SEED. Usually both kriging and adaptive regression splines are

used to develop metamodels; careful examinations for abnormal performance are

necessary. We prefer to use kriging metamodels when abnormal behaviors are not

detected.

The implementation of kriging and adaptive regression splines with SEED is also

studied in Chapter 5. It is illustrated that with SEED, designers are able to develop

accurate kriging or adaptive regression splines metamodels. In the examples, kriging is

first used to develop a metamodel of responses then replace by the univariate (or

multivariate) adaptive regression splines because of abnormal performance in the design

space. The univariate (or multivariate) adaptive regression splines metamodels work

well in modeling both responses and prediction errors.

A limitation of the studies of metamodel comparison and selection is that only

three types of metamodels are studied in this dissertation. Other types of metamodels,

e.g., the artificial neural networks (ANN) or wavelets, need to be studied and compared

with the kriging and MARS metamodels in sequential metamodeling processes.

A sequential metamodeling approach is proposed in Chapter 5, which

incorporates the factor-screening techniques in the Response Surface Methodology

 574

(RSM) and the SEED method. The research surface metamodels (regression

polynomials) are used to identify and screen unimportant design variables, and then the

SEED method is applied to help develop accurate metamodels. It should be noted that

the design space reduction approach here is very preliminary; the development of new

methods to reduce the number and ranges of design variables should be future work for

this dissertation. The methods of SEED and E-RCEM, together with other references

(e.g., the fuzzy c-Means clustering technique), can be used in the development of such

design-space-reduction techniques.

8.3.3 Sequential Exploratory Experimental Design

One of our main contributions is the development of the Sequential Exploratory

Experimental Design (SEED) method in Chapter 4. SEED is based on Bayesian entropy

sampling by removing the stationary assumption and introducing correction factors in the

calculation of correlations between points. With the SEED method new points are

allocated in “crucial” regions (which are with large prediction errors) and as a result

more accurate metamodels can be developed with limited number of observed points. In

cases with computer experiments, SEED helps save time and effort spent on expensive

computer simulations. Though SEED was initially developed for designing computer

experiments, it can also be applied in physical experiments and may bring considerable

monetary benefits.

To develop the SEED method, the inappropriateness of “locating new points in

regions with more local optimums” is illustrated, and the criterion of expected prediction

errors is proposed and applied to help identify regions of interest where candidate points

 575

are expected to have more potential information. In order to calculate the expected

prediction errors, an approach is proposed in which two groups of points are used to help

grasp the information of responses and modeling errors. The usage of two groups of

points also facilitates the selection of appropriate sets of points when only a portion of

data points are required in building the final metamodel.

Leave-one-out cross-validation is widely used to model prediction errors. We

claim that the “cross-validated prediction errors” do not necessarily reflect “actual

prediction errors”, but leave-one-out cross-validation can still be used in SEED,

especially when there are strict limits on the number of total observed points. The

application of leave-one-out cross-validation in SEED is future work for this dissertation.

On relaxing the stationary assumption, two methods are proposed to adjust the

covariance matrix, as stated in Section 4.5.3. Prediction errors are taken into

consideration in the mathematical formulation of entries of the covariance matrix. There

may be different ways to incorporate expected prediction errors in sampling (formulation

of entries of the covariance matrix).

Kriging metamodels are used in Chapter 4 to illustrate the SEED method.

However, the SEED method is not developed for kriging and can be used with other

types of metamodels. The MARS metamodels are applied in SEED in Chapter 5. More

types of metamodels will be studied and applied in SEED, which is future work of this

dissertation.

In sequential experimental design, more time and effort is spent on the

comprehensive steps and iterations with SEED than with single-stage experiments. To

 576

develop an automated SEED routine with little human interface will help save significant

expense on human operations. In SEED, most computation time is spent on the entropy

optimization steps (Steps 3 and 7); adopting faster local optimization techniques (e.g., as

in Currin, et al., 1991) helps save computation time. Future work is needed in studying

the computational efficiency of the SEED method.

In the SEED method, the numbers of initial data points and validation points and

those of new points added in each iteration are determined arbitrarily by the designers.

This decision may be based on previous knowledge of the responses in the design space.

When previous knowledge of the responses is unavailable, we recommend starting with a

factorial (or fractional factorial) experimental design. The central point may be added to

help designers grasp more information at the beginning of the SEED process. In the

examples in this dissertation, the number of new points added in each iteration is set to be

the same as the number of design variables (nv) or one less than the number of design

variables (nv – 1). However, enough number (at least 2 or 3) of iterations in SEED

should be ensured so that information at previous points can be fully utilized; this affects

designers’ decisions on how many initial points and new points should be used in SEED.

Future theoretical or empirical studies are needed to compare different strategies and also

observe the flexibility of the SEED method.

The mathematical formulations in SEED in this dissertation are not necessarily

perfect. Values of parameters λ and θ in SEED are determined by designers. When

kriging metamodels are used, values of θ from kriging metamodels can be used in the

formulation of entries of the covariance matrix in later iterations. When no kriging

 577

metamodels are developed (e.g., at the beginning of the SEED process), a large number

can be assigned to θ; in such cases usually we set all θ’s as 10. The parameter λ is used

to balance the considerations of “relative distance between the candidate point and

current points” and “prediction errors at the candidate point” in the formulation of entries

of the adjusted covariance matrix. Usually we set λ as 2; as design develops and more

accurate metamodels are obtained, we can use smaller values for λ, e.g., 1.5. Future

theoretical or empirical studies are needed to compare different strategies and also

observe the flexibility of the SEED method.

8.3.4 The Efficient Robust Concept Exploration Method

The Efficient Robust Concept Exploration Method (E-RCEM) is developed in

Chapter 6 based on RCEM and SEED. The E-RCEM method can be used in three ways,

the traditional process, the integrated design process, and the hybrid process. In the

traditional process the two processes of metamodeling and design space exploration is

separated, and the E-RCEM method becomes the SEED method because globally

accurate metamodels are pursued. In the integrated design process of the E-RCEM

method, regions of interest are those with fewer points, large prediction errors, and also

points where design goals are achieved and constraints are satisfied. The two processes

of metamodeling and design space exploration are integrated; in other words, we realize a

process of metamodeling for design space exploration. In the integrated design process,

the focus is to achieve a good design solution; globally accurate metamodels are not

pursued. The hybrid process is a combination of the traditional process and the

 578

integrated design process, and is recommended in complicated applications with multiple

design variables and responses. In the hybrid process, the traditional process is first used

to help develop metamodels with acceptable accuracy, and then the integrated design

process is applied to help achieve design solutions efficiently and effectively.

From the viewpoint of metamodeling, the traditional process of SEED is better

than the integrated design process in E-RCEM because it yields a more accurate

metamodel in the whole design space; while from the viewpoint of design space

exploration, the integrated design process in E-RCEM is better than the traditional

process of SEED because it yields a metamodel with higher local accuracy in critical

regions and thus possibly a better design solution. In cases with expensive computer or

physical experiments, both the traditional process with SEED and the integrated process

in E-RCEM help develop better metamodels with less time and money, and thus ensure

better design solutions than traditional experimental designs and design space exploration

approaches. When design goals are not well defined at the beginning of design (e.g., in

some cases the relative priorities of design goals may change greatly during the design

phrase) and it is hard to address this uncertainty, designers may prefer to use SEED to

develop globally accurate metamodels. When design goals are clearly defined, designers

may prefer to use the integrated design process of metamodeling and design space

exploration in E-RCEM to achieve better design solutions faster. In most cases where

design goals are defined but still subject to small changes in the future, designers may

prefer to use SEED first to achieve an acceptable metamodel, then use the integrated

design process in E-RCEM to explore for new experimental points and design solutions.

 579

In the integrated design process in E-RCEM, the correction parameter γ is

introduced to balance the consideration of design goals, prediction errors, and relative

distances. The selection of γ is arbitrary in this dissertation; usually we set it as 2 at the

beginning of the E-RCEM process, and as design develops, smaller values of γ (e.g., 1.5)

may be adopted. Future studies are needed on the determination of values for γ, as well

as other parameters inherited from SEED.

Design constraints are considered in the metamodeling process in E-RCEM, thus

designers usually deal with irregular feasible design spaces. Only convex design spaces

are considered in this dissertation. This provides a reference for the identification of the

initial design space in engineering design. However, in complicated cases with a lot of

design variables, responses, and constraints, it may be difficult to identify and use the

feasible design space as the initial design space. In such cases designers can use a

hypercube design space that is large enough to enclose all possible-to-succeed regions

based on designers’ previous knowledge. To develop formal methods to define the initial

design space and re-define (design space shift and reduction) the design space is future

work for this dissertation.

8.4 FUTURE WORK

In carrying out the research that has led to the contributions reviewed in the

previous section, many lessons have been learned. The first is that there is always no end

for research. The more we study, the more we learn what we need to learn. Though from

 580

some aspects we could say that the study in this dissertation is complete by itself, we

could always find limitations here and there in our research; this awareness of limitations,

most possibly, leads to future improvements and achievements. Thus in this section we

list our possible future work below after having identified the limitations of our study in

Section 8.3.

A Flexible Computer Framework to Realize SEED and E-RCEM

Processes in the method of SEED and E-RCEM are complicated for engineers

who lack knowledge of maximum entropy sampling. The initialization and realization of

the SEED or E-RCEM processes in iSIGHT require tedious manual operations. These

two factors mentioned above limit the application of SEED and E-RCEM in academic

research and industrial applications. An automated computer framework to realize the

SEED and E-RCEM process will solve the two problems and ensure the utility of the

methods developed in this dissertation.

As illustrated in Chapters 4, 5, 6, and 7, automated processes of single steps in

SEED and E-RCEM have been realized in iSIGHT. However, the formulation of initial

input and output files for these steps is still done manually in this dissertation. It is not

technically difficult to realize an automated initialization process to formulate the

information flow between computer codes used in steps of the SEED and E-RCEM

method.

In addition to the automated process, a user-friendly interface is also desired to

make SEED and E-RCEM easy to implement. It is also desired that this automated, user-

 581

friendly system should run in a distributed environment, in which engineers from

different geological locations can work together during the SEED and E-RCEM design

processes.

An Design Space Exploration Heuristic for Engineers with Expensive Experiments

The E-RCEM method developed in this dissertation has great potential to be

developed into an optimization heuristic for engineers to use in real-world industrial

applications. Current the development of new products industrial applications is still

much dependent on designers’ experience, partly because of the lack of effective yet

efficient analytical, synthetic, and optimization tools for design in early stages. As

discussed in Chapter 1 and Section 2.1, designers’ freedom is confined and the

approximation-based design strategy is not fully utilized in industrial applications

because of the expensive experiments, large design spaces, and irregular responses. The

method of E-RCEM addresses these problems and facilitates the fast and effective

analysis of responses and helps achieve satisficing design solutions with very few runs of

the expensive analysis codes (or physical experiments).

E-RCEM is a preliminary design space exploration heuristic that is suitable for

engineers in industrial applications. We illustrated its utility with the LCA unit design in

Chapter 7. However, there are still many aspects of E-RCEM that can be improved or

modified. Besides the automated computer framework, work is needed on the

comparison and refinement of the mathematical formulations in E-RCEM. As discussed

in Section 6.3.2, based on our idea of incorporating degrees of achievement of design

 582

goals in metamodeling, several possible mathematical formulations are proposed to

adjust entries of the covariance matrix in the identification of new points, and finally we

adopt only one of them and apply in the E-RCEM process. Future research is needed to

study possible mathematical formulations, not limited to those presented in this

dissertation, and find out the best one (or ones) with either sound theoretical foundation

or good empirical results. Another topic to be considered is the application of E-RCEM

in cases with discrete or concave design spaces. The performance of E-RCEM in such

cases is not studied in this dissertation, and it is expected that modifications and

improvements of E-RCEM be needed in such problems.

It is expected that an optimization heuristic can be developed based on E-RCEM.

The proposed optimization heuristic will facilitate the study and achievement of good

solutions for engineers with complex responses and expensive experiments in industrial

applications.

Design Space Reduction

There are two ways to reduce a design space, one is to screen out unimportant

design variables (reduce the dimensionality), and the other is to reduce the ranges of

design variables. In this dissertation, the factor-screening technique in the Response

Surface Methodology is adopted and used in the sequential metamodeling approach in

Chapter 5. However, this technique is only suitable for response surface models, and

lacks theoretical foundations in deterministic computer experiments. Thus future studies

 583

are needed on how to reduce a design space, and how to incorporate the proposed

approach in the SEED and E-RCEM processes.

As described in the last paragraph, there are two directions in the study of design

space reduction. To identify and remove unimportant design variables, methods are

developed in (Myer and Montgomery, 1995; Box and Draper, 1969; Balabanov, et al.,

1999; Giunta, et al., 1996; Welch, et al., 1992), which can be used as a basis for the

proposed research. Kriging and MARS metamodels also provide qualitative information

of the relative importance of design variables, thus it is possible to develop an approach

for the identification of unimportant design variables within the sequential metamodeling

process.

An alternative way to reduce the design space is to reduce the ranges of design

variables. Chen and her co-authors developed heuristics to lead the surface refinement to

a smaller design space (Chen, et al., 1997). The adaptive RSM (ARSM) method is

developed to systematically reduces the size of the design space by discarding portions of

it that correspond to objective function values larger than a given threshold value at each

modeling-optimization iteration (Wang, 2001; Wang, 2003). Move limit strategies or

trust regions are often used to identify “meaningful” design spaces (Wujek and Renaud,

1998a; Wujeck and Renuad, 1998b; Alexandrov, et al., 1998; Rodriguez, et al., 1997).

Wang and Simpson propose an intuitive methodology to systematically reduce the design

space to a relatively small region by incorporating the fuzzy c-Means clustering

technique in the metamodeling process (Wang and Simpson, 2004). All these provide

good foundations for our proposed research on design space reduction; I expect the

 584

improvement and incorporation of some of the methods above (e.g., the fuzzy clustering

design space reduction approach) with SEED and E-RCEM.

Comparison and Utilization of More Types of Metamodels

In this dissertation only three types of metamodels, the response surface (RS)

model, kriging, and MARS, are studied and applied in the SEED and E-RCEM methods.

A future research direction is to study the performance of other types of metamodels,

e.g., the artificial neural networks (ANN) and wavelets, in metamodeling and design

space exploration with SEED and E-RCEM.

Metamodel Evaluation Methods

New approaches are needed to evaluate the metamodels with deterministic

computer experiments since the preliminary metamodel validation approaches developed

in Chapter 3 are not very solid and easy to use. To validate the metamodels with

additional points, engineers should decide the number and location of these validation

points. This should be accomplished with the improvement and application of SEED and

E-RCEM.

To validate the metamodels without additional points, criteria must be developed

to distinguish “good” metamodels from “bad” ones. One possible criterion is the

“smoothness” of the responses. Approaches to quantify such criteria are needed.

Application of Cross-Validation in SEED and E-RCEM

 585

Leave-one-out cross-validation is proved to be inappropriate as a method to

validate the accuracy of metamodels in Chapter 3 in this dissertation; however, it helps

designers judge whether a metamodel is robust to the lost of information due to removal

of particular data points. This means that if a metamodel has small leave-one-out cross-

validation errors, its performance in response prediction will not be greatly affected by

removing any of its data points.

In SEED and E-RCEM, two groups of points are used to test and supplement each

other. Prediction errors are calculated with this information and then entries of the

covariance matrix are adjusted. It is possible that the leave-one-out cross-validation

errors can be used to adjust the entries of the covariance matrix; in such cases only one

group of points are needed and a lot of operational and computational expense can be

saved. One possible shortcoming of such a strategy is that large leave-one-out cross-

validation errors tend to appear close to existing data points. To use k-folder cross-

validation may be helpful to avoid such problems; in fact, the two-group-point strategy

used in this dissertation is a specific situation of the k-folder cross-validation. Future

studies are needed on the possible utilization of cross-validation in SEED and E-RCEM.

Improvement of SEED and E-RCEM

The mathematics used SEED and E-RCEM in this dissertation is not perfect. As

discussed in Chapters 4 and 6, there are many ways to adjust entries of the covariance

matrix, while we only adopted and tested a few of them in this dissertation. Future

 586

research is needed on the theoretical and empirical studies of and comparisons between

these possible methods.

Values of some important parameters (θ, λ, and γ) in SEED and E-RCEM are

arbitrarily selected. The original design space, the number of initial data points and that

of new points added in each iteration, are also arbitrarily set. Recommendations are

given in this dissertation but more empirical studies are needed, not only to provide better

suggestions but also to test the flexibility of the SEED and E-RCEM methods.

The stopping criterion is another research topic. In this dissertation we use the

total number of observed points as the stopping criterion. Solid metamodel evaluation

approaches are desired to test the accuracy of metamodels, and thus may be used as a

stopping criterion. In E-RCEM, it is also possible to stop the integrated design process

by testing the existence of “cluster” in the sequential identification of data points; as

more data points are identified in E-RCEM and we are approaching the critical region

with the actual design solution, new identified points tend to cluster, and this may lead to

an effective stopping criterion.

Uncertainty of Design Goals and Constraints

To apply the integrated design process in E-RCEM, one premise is that the design

goals and constraints should be clear and fixed (or with small uncertainty). If the design

constraints and goals are changed during the metamodeling and design space exploration

process, the actual design solution will change and thus the identified data points may not

still be in “critical” regions. When great uncertainty of the design goals and constraints

 587

exists, we recommend the SEED method instead of the integrated design process in E-

RCEM because the globally accurate metamodels developed from SEED are robust to the

changes of design goals and constraints in the process of design space exploration.

When the uncertainty of design goals and constraints is not expected to be great,

the E-RCEM method may still be used. In such cases, methods to measure, model, and

control this uncertainty are needed. This is future work of this dissertation.

Concave and Discrete Design Spaces

Only examples with continuous and convex design spaces are used in this

dissertation. However, in real-world industrial applications, due to the complex design

constraints, the feasible design spaces are usually concave and/or discrete. It is an

interesting yet difficult research direction to study sequential metamodeling and design

space exploration in such cases. Design with concave design spaces studied in (Mistree,

et al., 1993b) can be very helpful in this proposed research.

Study and Application of SEED and E-RCEM in Large-Scale Engineering Problems

In this dissertation, the SEED and E-RCEM methods are developed, verified, and

illustrated with relatively simple examples. In large-scale real-world applications, the

design process can be described as multi-variable, multi-response, and multi-objective.

How do SEED and E-RCEM perform in cases with hundred or thousands of design

variables, responses, or design objectives? What modifications or improvements should

be done to SEED and E-RCEM to ensure an effective and efficient design in such cases?

 588

To apply and improve SEED and E-RCEM in large-scale industrial problems is one

possible future direction for research in the vein of studies in this dissertation.

Possible interesting and hot applications of SEED and E-RCEM include

biomechanical devices, energy and environment analysis, homeland security cases, and

medicine, etc. For example, as discussed in (), in biomedical studies, besides enabling

physicians to devise better treatments for individual patients, simulation-based

engineering methods could enable medical device manufacturers to predict the

performance of their devices in virtual patients prior to deployment in human trials.

Current physical and animal testing procedures (now used prior to human trials) have

significant limitations in representing variations in human anatomy and physiology.

Virtual prototyping of medical devices could be conducted by simulating the deployment

of alternate device-designs in a group of virtual patients representing the range of

conditions likely to be encountered. SEED and E-RCEM provide great utilities in such

applications.

 589

 590

A.
APPENDIX A

SEQUENTIAL EXPLORATORY EXPERIMENTAL
DESIGN: CODES AND ORGANIZATION OF

PROCESSES

This appendix is intended to supplement the development of the SEED method in

Chapter 4. The computer codes written to support the SEED method is presented in

Section A.1. The organization of the point-identification process of SEED is illustrated

in Sections A.2 and A.3.

591

A.1 EXPLORATION OF DESIGN SOLUTIONS WITH RCEM

The FORTRAN programs used in SEED in Sections 4.6.2 and 4.6.3 are enclosed

in this section. To formulate the covariance matrix we use covmat.f and

covdata.params.h; the input and output filenames are specified in covdata.params.h. To

adjust entries of the covariance matrix we use altcov.f and altcov.params.h. To calculate

the determinant of the covariance matrix we use detcov.f and detcov.params.h.

Covmat.f (Formulation I):
**
*
 program covmat
*
* This program invokes calculation of the correlation matrix given
* information of points and values of theta.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Yao Lin 26 March 2003 / Tim Simpson, 25 Feburary 1998
*
**
*
* Input files:
* ------------
* covdata.params.h - parameter file, specifying numdv, numsamp, fprefix
* .sam - x's of sample points
* .gau.fit - thetas
*
* Output files:
* -------------
* .cov - correlation matrix
*
* Variables:
* ----------
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
*
* Local Variables:
* ----------------
* DOUBLE PRECISION
* ----------------
* xmat = numdv x numsamp of sample site locations, scaled [0,1]
*
* INTEGER
* -------

592

*
**

 integer numdv,numsamp
 character*16 fprefix
C
C include parameter settings for numdv,numsamp,fprefix, e.g., in the
C one-variable problem: numdv=1,numsamp=5,fprefix='step1'
C
 include 'covdata.params.h'

 double precision xmat(numsamp,numdv),cov(numsamp,numsamp),
 & dummy2,thetaray(1,numdv),theta(numdv)
 integer i,j,dummy,lenstr
 character*16 ftitle
 character*20 deckfile,fitsfile,outfile

C
C open necessary .sam, .fit, and .cov files based on 'fprefix' name,
C e.g., in the one-variable problem:
C step1.sam, step1.gau.fit, step1.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix

 deckfile=ftitle(1:lenstr) // '.sam'
 fitsfile=ftitle(1:lenstr) // '.gau.fit'
 outfile=ftitle(1:lenstr) // '.cov'

 open(21,file=deckfile,status='old')
 open(22,file=fitsfile,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,fitsfile,outfile
 print *, numdv,numsamp
C
C initialize xmat and theta arrays
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (xmat(i,j),j=1,numdv)
 close(21)

 print *
 write(6,*) 'Reading in theta parameters...'
 do 20 i=1,1
 read(22,*) dummy,(thetaray(i,j),j=1,numdv),dummy2
 write(6,1000) dummy,(thetaray(i,j),j=1,numdv)
 1000 format(i2,8f9.5)
 20 continue
 close(22)

 do 50 j=1,numdv
 theta(j)=thetaray(1,j)
 50 continue
 write(6,1002) (theta(j),j=1,numdv)
 1002 format(8f9.5)

C
C call subroutine to calculate the correlation matrix

593

C
C input: xmat, theta, numsamp, numdv
C
C output: R - the correlation matrix
C

 call cormat (xmat,cov,numsamp,numdv,theta)

C
C write predicted values to specified .cov file
C
 do 90 i=1,numsamp
 write(27,79) (cov(i,j),j=1,numsamp)
 79 format(10(f13.5,1x))
 90 continue
 close(27)

 print *
 write(6,*) 'Correlation matrix written to specified .cov file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'covdata.params.h'.
*
* With this known, the .sam, .gau.fit, and .cov suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Yao Lin, 3/26/2003; Tim Simpson, 2/15/1998
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

*
 subroutine cormat (xmat,cov,numsamp,numdv,theta)
*
*

594

* This subroutine calculates the correlation matrix and its inverse
*
* Original code developed by:
* Yao Lin 26 March 2003 /
* Tim Simpson 15 February 1998 / Tony Giunta, 12 May 1997
*

*
* Inputs:
* -------
* DOUBLE PRECISION:
* -----------------
* xmat,theta
*
* INTEGER:
* --------
* numdv,numsamp
*
* Outputs:
* --------
* DOUBLE PRECISION:
* -----------------
* cov - the correlation matrix.
*
*

C
C passed variables
C
 integer numdv,numsamp

 double precision xmat(numsamp,numdv),cov(numsamp,numsamp),
 & theta(numdv),R
C
C local variables
C
 integer i,j
C
C calculate terms in the correlation matrix
C
 do 300 i = 1,numsamp
 do 305 j = i,numsamp
 if(i .eq. j) then
 cov(i,j) = 1.0d0
 else
C
C call subroutine to compute spatial correlation function for xmat
C
C input: xmat, theta, numdv, numsamp, i, j
C
C output: R
C
 call scfxmat(R,xmat,theta,numdv,numsamp,i,j)
 cov(i,j) = R
 cov(j,i) = cov(i,j)
 endif
 305 continue
 300 continue
 end

C**
C
 subroutine scfxmat(R,xmat,theta,numdv,numsamp,i,j)
C

595

C Origin: Tim Simpson Date: February 11, 1998
C Modified: Yao Lin Date: March 26, 2003
C
C subroutine to compute spatial correlation function (scf) for
C correlation matrix; NOT to compute scf for r_xhat.
C
C Output:
C -------
C R = value of correlation function between two sample points,
C given theta
C
C Input:
C ------
C xmat = matrix of sample points
C theta = array of theta values
C i,j = i_th and j_th elements of correlation matrix for which
C correlation function is being computed
C
C All variables except R are unchanged upon exiting
C
C**
C
C passed variables
C
 integer i,j,numdv,numsamp
 double precision R,xmat(numsamp,numdv),theta(numdv)
C
C local variables
C
 double precision sum,thetadist,dist
 integer k

 sum=0.0d0
 do 120 k = 1,numdv
 dist = ABS(xmat(i,k)-xmat(j,k))
 sum = sum + theta(k)*((dist)**2)
 120 continue
 R = exp(-1.0d0*sum)

 return
 end

Covdata.params.h (Formulation I):
C**
C *
C Parameter input file for 'covmat' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for calculating the covariance
C matrix and its determinant
C

 parameter (numdv=1,numsamp=11,fprefix='suit3valid')

C
C numdv = # design variables
C numsamp = # samples in data set
C

596

C fprefix = prefix of titles of files to opened/used
C
C**

Covmat.f (Formulation II):
**
*
 program covmat
*
* This program invokes calculation of the correlation matrix given
* information of points and values of theta.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Yao Lin 26 March 2003 / Tim Simpson, 25 Feburary 1998
*
**
*
* Input files:
* ------------
* covdata.params.h - parameter file, specifying numdv, numsamp, fprefix
* .sam - x's of sample points
* .gau.fit - thetas
*
* Output files:
* -------------
* .cov - correlation matrix
*
* Variables:
* ----------
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
* errmax = maximum predicted prediction error
* lambda = safety coefficient
*
* Local Variables:
* ----------------
* DOUBLE PRECISION
* ----------------
* xmat = numdv x numsamp of sample site locations, scaled [0,1]
*
* INTEGER
* -------
*
**

 integer numdv,numsamp,numold
 double precision lambda,errmax
 character*16 fprefix,fprefixe
C
C include parameter settings for numdv,numsamp,fprefix, e.g., in the
C one-variable problem: numdv=1,numsamp=5,fprefix='step1'
C
 include 'covdata.params.h'

 double precision xmat(numsamp,numdv),cov(numsamp,numsamp),
 & dummy2,thetaray(1,numdv),theta(numdv),errpred(numsamp)

597

 integer i,j,dummy,lenstr
 character*16 ftitle
 character*20 deckfile,fitsfile,outfile,errpredfile

C
C open necessary .sam, .fit, and .cov files based on 'fprefix' name,
C e.g., in the one-variable problem:
C step1.sam, step1.gau.fit, step1.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix

 deckfile=ftitle(1:lenstr) // '.sam'
 fitsfile=ftitle(1:lenstr) // '.gau.fit'
 outfile=ftitle(1:lenstr) // '.cov'

 call getlen(fprefixe,lenstr)
 ftitle=fprefixe
 errpredfile=ftitle(1:lenstr) // '.out'

 open(21,file=deckfile,status='old')
 open(22,file=fitsfile,status='old')
 open(23,file=errpredfile,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,fitsfile,outfile
 print *, numdv,numsamp
C
C initialize xmat and theta arrays
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (xmat(i,j),j=1,numdv)
 close(21)

 print *
 write(6,*) 'Reading in theta parameters...'
 do 20 i=1,1
 read(22,*) dummy,(thetaray(i,j),j=1,numdv),dummy2
 write(6,1000) dummy,(thetaray(i,j),j=1,numdv)
 1000 format(i2,8f9.5)
 20 continue
 close(22)

 print *
 write(6,*) 'Reading in and calculating errpred...'
 do 30 i=1,numsamp
 if (i.le.numold) then
 errpred(i)=0.0
 else
 read(23,*) errpred(i)
 endif
 if (abs(errpred(i)).gt.(errmax)) then
 errpred(i)=errmax
 endif
 30 continue
 close(23)

 print *
 do 50 j=1,numdv
 theta(j)=thetaray(1,j)

598

 50 continue
 write(6,*) 'theta'
 write(6,1002) (theta(j),j=1,numdv)
 1002 format(8f9.5)

C
C call subroutine to calculate the correlation matrix
C
C input: xmat, theta, numsamp, numdv
C
C output: R - the correlation matrix
C

 call cormat (xmat,cov,numsamp,numdv,theta,
 & errpred,errmax,lambda)

C
C write predicted values to specified .cov file
C
 do 90 i=1,numsamp
 write(27,79) (cov(i,j),j=1,numsamp)
 79 format(10(f13.5,1x))
 90 continue
 close(27)

 print *
 write(6,*) 'Correlation matrix written to specified .cov file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'covdata.params.h'.
*
* With this known, the .sam, .gau.fit, and .cov suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Yao Lin, 3/26/2003; Tim Simpson, 2/15/1998
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop

599

 end if
 return
 end

*
 subroutine cormat (xmat,cov,numsamp,numdv,theta,
 & errpred,errmax,lambda)
*
*
* This subroutine calculates the alternated correlation matrix (by
* changing values of theta between any two points,
* and the inverse of the alternated correlation matrix
*
* Original code developed by:
* Yao Lin 26 March 2003 /
* Tim Simpson 15 February 1998 / Tony Giunta, 12 May 1997
*

*
* Inputs:
* -------
* DOUBLE PRECISION:
* -----------------
* xmat,theta,errpred
*
* INTEGER:
* --------
* numdv,numsamp
*
* Outputs:
* --------
* DOUBLE PRECISION:
* -----------------
* cov - the correlation matrix.
*
*

C
C passed variables
C
 integer numdv,numsamp

 double precision xmat(numsamp,numdv),cov(numsamp,numsamp),
 & theta(numdv),R,errpred(numsamp),errmax,lambda
C
C local variables
C
 integer i,j
C
C calculate terms in the correlation matrix
C
 do 300 i = 1,numsamp
 do 305 j = i,numsamp
 if(i .eq. j) then
 cov(i,j) = 1.0d0
 else
C
C call subroutine to compute spatial correlation function for xmat
C
C input: xmat, theta, numdv, numsamp, i, j
C
C output: R
C

600

 call scfxmat(R,xmat,theta,numdv,numsamp,i,j,
 & errpred,errmax,lambda)
 cov(i,j) = R
 cov(j,i) = cov(i,j)
 endif
 305 continue
 300 continue
 end

C**
C
 subroutine scfxmat(R,xmat,theta,numdv,numsamp,i,j,
 & errpred,errmax,lambda)
C
C Origin: Tim Simpson Date: February 11, 1998
C Modified: Yao Lin Date: March 26, 2003
C
C subroutine to compute spatial correlation function (scf) for
C correlation matrix; NOT to compute scf for r_xhat.
C
C Output:
C -------
C R = value of correlation function between two sample points,
C given theta
C
C Input:
C ------
C xmat = matrix of sample points
C theta = array of theta values
C i,j = i_th and j_th elements of correlation matrix for which
C correlation function is being computed
C errpred = predicted prediction error at points
C errmax = maximum predicted prediction error
C lambda = safety coefficient
C
C All variables except R are unchanged upon exiting
C
C**
C
C passed variables
C
 integer i,j,numdv,numsamp
 double precision R,xmat(numsamp,numdv),theta(numdv),
 & errpred(numsamp),errmax,lambda
C
C local variables
C
 double precision sum,thetadist,dist,alttheta(numdv)
 integer k

 sum=0.0d0
 do 120 k = 1,numdv
 dist = ABS(xmat(i,k)-xmat(j,k))
 alttheta(k)=theta(k)*(1+lambda*abs(errpred(i))
 & /errmax)*(1+lambda*abs(errpred(j))/errmax)
 sum = sum + alttheta(k)*((dist)**2)
 120 continue
 R = exp(-1.0d0*sum)

 write(6,1003) (alttheta(1))
 1003 format(8f9.5)
 return
 end

601

Covdata.params.h (Formulation II):
C**
C *
C Parameter input file for 'covmat' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for calculating the covariance
C matrix and its determinant
C

 parameter (numdv=1,numsamp=4,numold=3,
 & fprefix='suit1newp',
 & fprefixe='errpred1_1.gau',
 & errmax=1.23,lambda=2)

C
C numdv = # design variables
C numsamp = # samples in data set
C
C fprefix = prefix of titles of files to opened/used
C
C**

Suit3valid.sam:
0
0.167
0.5
0.75
1
0.122
0.235
0.333
0.667
0.833
0.0472747809891277

Suit3valid.gau.fit:

1 63.78181 -16.55119

Altcov.f (Formulation I in Section 4.6.2):
**
*
 program altcov
*
* This program calculates the alternated correlation matrix, given the

602

* initial correlation matrix and predicted prediction errors at
* possible new data points.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997
*
**
*
* Input files:
* ------------
* altcov.params.h - parameter file, specifying numdv, numsamp,
* errmax, lambda, fprefix, fprefix2, fprefixnew
* fprefix.cov - initial correlation matrix
* fprefix2.out - predicted prediction errors at possible new data points
*
* Output files:
* -------------
* fprefixnew.cov - alternated correlation matrix
*
* Variables:
* ----------
* inicov = the initial correlation matrix
* newcov = the alternated correlation matrix
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
*
* Local Variables:
* ----------------
* DOUBLE PRECISION
* ----------------
* errpred = the predicted prediction errors associated with each data
* and possible new data points
*
**

 integer numsamp
 double precision lambda,errmax
 character*16 fprefix,fprefix2,fprefixnew
C
C include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew,
C errmax, lambda, e.g., in the one-variable problem, for the first step:
C numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1',
C fprefixnew='step1altnewp',errmax=0.50,lambda=2.0
C
 include 'altcov.params.h'

 double precision inicov(numsamp,numsamp),newcov(numsamp,numsamp),
 & errpred(numsamp)
 integer i,j,lenstr
 character*16 ftitle
 character*20 deckfile,deckfile2,outfile

C
C open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files,
C e.g., step1newp.cov, errpred1.out, step1altnewp.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix
 deckfile=ftitle(1:lenstr) // '.cov'

603

 call getlen(fprefix2,lenstr)
 ftitle=fprefix2
 deckfile2=ftitle(1:lenstr) // '.out'

 call getlen(fprefixnew,lenstr)
 ftitle=fprefixnew
 outfile=ftitle(1:lenstr) // '.cov'

 open(21,file=deckfile,status='old')
 open(23,file=deckfile2,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,deckfile2,outfile
 print *, numsamp
C
C initialize inicov
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (inicov(i,j),j=1,numsamp)
 close(21)

C
C initialize errpred
C
 print *
 write(6,*) 'Reading in and calculating errpred...'
 do 20 i=1,numsamp
 if (i.le.numold) then
 errpred(i)=0.0
 else
 read(23,*) errpred(i)
 endif
 if (abs(errpred(i)).gt.(errmax)) then
 errpred(i)=errmax
 endif
 20 continue
 close(23)

C
C calculate the alternated correlation matrix
C
 do 30 i=1,numsamp
 do 40 j=i,numsamp
 if (i.eq.j) then
 newcov(i,j)=1.0
 elseif (((i.gt.numold).AND.(j.le.numold)).OR.
 & ((i.le.numold).AND.(j.gt.numold))) then
 newcov(i,j)=inicov(i,j)*(1-abs(errpred(i)/lambda/errmax))
 & *(1-abs(errpred(j)/errmax/lambda))
 newcov(j,i)=newcov(i,j)
 else
 newcov(i,j)=inicov(i,j)
 newcov(j,i)=newcov(i,j)
 endif
 40 continue
 30 continue

C
C write alternated correlation matrix into specified .cov file
C

604

 do 50 i=1,numsamp
 write(27,79) (newcov(i,j),j=1,numsamp)
 79 format(10(f13.5,1x))
 50 continue
 close(27)

 print *
 write(6,*) 'Alternated correlation matrix written to .cov file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

Altcov.params.h:
C**
C *
C Parameter input file for 'altcov' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

605

 parameter (numdv=1,numsamp=11,numold=10,
 & fprefix='suit3valid',fprefix2='errpred3_1.gau',
 & fprefixnew='suit3altvalid',errmax=1.5,
 & lambda=2.0)

C
C numdv = # design variables
C numsamp = # samples in data set
C numold = # old data points in the data set
C
C fprefix = prefix of titles of file that stores the initial
C correlation matrix for both old and possible new
C data points
C
C fprefix2 = prefix of titles of file that stores the
C predicted prediction errors at possible new
C data points
C
C fprefixnew = prefix of titles of file that stores the
C alternated correlation matrix for both old and
C possible new data points, with prediction errors
C at these points considered
C
C errmax = maximum value of the absolute predicted prediction error
C
C lambda = coefficient used to gauge the adjustment to initial
C correlation matrix
C***

Detcov.f:
C***
C
 program detcov
C
C This program calculates the determinant given a matrix. Particularly,
C in SEED, it is used to calculate the determinant of the
C correlation matrix.
C
C Updated by: Yao Lin, March 26, 2003
C
C Original code developed by:
C Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997
C
C**
C
C Input files:
C ------------
C detcov.params.h - parameter file, specifying numdv, numsamp,
C coedet, fprefix
C .cov - correlation matrix
C
C Output files:
C -------------
C .det - determinant of the correlation matrix
C
C Variables:
C ----------
C cov = the input correlation matrix for which we calculate
C determinant
C
C Parameter Variables (to be specified by user in dace.params.h):

606

C --
C numsamp = number of data samples from which the correlation matrix
C is calculated
C
C Local Variables:
C ----------------
C DOUBLE PRECISION
C ----------------
C work = vector of length 'numsamp' used as temporary storage
C invmat = inverse of the correlation matrix (numsamp x numsamp)
C
C INTEGER
C -------
C ipvt = vector of length 'numsamp' of pivot locations
C
C***

 integer numsamp
 double precision coedet
 character*16 fprefix
C
C include parameter settings for numdv,numsamp,fprefix
C
 include 'detcov.params.h'

C***
C
C include LINPACK routines used to find determinant of correlation matrix
C
C***

C include 'dgefa.f'
C include 'dgedi.f'

C***

 double precision cov(numsamp,numsamp),work(numsamp),
 & dummy2,detR,det(2),rcond,z(numsamp)
 integer i,j,ipvt(numsamp),dummy,lenstr,info
 character*16 ftitle
 character*20 deckfile,outfile
 err=0.0000
C
C open necessary .cov and .det files based on 'fprefix' name,
C e.g., step1.cov, step1.det
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix

 deckfile=ftitle(1:lenstr) // '.cov'
 outfile=ftitle(1:lenstr) // '.det'

 open(21,file=deckfile,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,outfile
 print *, numsamp
C
C initialize cov
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp

607

 10 read (21,*) (cov(i,j),j=1,numsamp)
 close(21)

C
C Start to calculate the determinant of the correlation matrix;
C initialization.
C
 do 307 i=1,numsamp
 work(i)=0.0d0
 ipvt(i)=0
 307 continue

C
C If there is any error in the calculation in DGEFA (singular matrix),
C this program will set the determinant to 0.
C
 call dgeco(cov,numsamp,numsamp,ipvt,rcond,z)
 if(rcond .eq. 0) then
 write(27,78) err
 78 format(10(f13.5,1x))
 close(27)
 go to 1000
 endif
C
C In DGEDI, last flag is: 1 (inverse only), 10 (Det only), 11 (both)
C
 call dgedi(cov, numsamp, numsamp, ipvt, det, work, 10)
 detR=det(1)*10.0d0**det(2)
 detR=coedet*detR

C
C write predicted values to specified .det file
C
 write(27,79) detR
 79 format(10(f13.5,1x))
 close(27)

 print *
 write(6,*) detR
1000 write(6,*) 'Coefficient*Determinant written to .det file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank

608

 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

 subroutine dgeco(a,lda,n,ipvt,rcond,z)
 integer lda,n,ipvt(1)
 double precision a(lda,1),z(1)
 double precision rcond
c
c dgeco factors a double precision matrix by gaussian elimination
c and estimates the condition of the matrix.
c
c if rcond is not needed, dgefa is slightly faster.
c to solve a*x = b , follow dgeco by dgesl.
c to compute inverse(a)*c , follow dgeco by dgesl.
c to compute determinant(a) , follow dgeco by dgedi.
c to compute inverse(a) , follow dgeco by dgedi.
c
c on entry
c
c a double precision(lda, n)
c the matrix to be factored.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c on return
c
c a an upper triangular matrix and the multipliers
c which were used to obtain it.
c the factorization can be written a = l*u where
c l is a product of permutation and unit lower
c triangular matrices and u is upper triangular.
c
c ipvt integer(n)
c an integer vector of pivot indices.
c
c rcond double precision
c an estimate of the reciprocal condition of a .
c for the system a*x = b , relative perturbations
c in a and b of size epsilon may cause
c relative perturbations in x of size epsilon/rcond .
c if rcond is so small that the logical expression
c 1.0 + rcond .eq. 1.0
c is true, then a may be singular to working
c precision. in particular, rcond is zero if
c exact singularity is detected or the estimate
c underflows.

609

c
c z double precision(n)
c a work vector whose contents are usually unimportant.
c if a is close to a singular matrix, then z is
c an approximate null vector in the sense that
c norm(a*z) = rcond*norm(a)*norm(z) .
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c linpack dgefa
c blas daxpy,ddot,dscal,dasum
c fortran dabs,dmax1,dsign
c
c internal variables
c
 double precision ddot,ek,t,wk,wkm
 double precision anorm,s,dasum,sm,ynorm
 integer info,j,k,kb,kp1,l
c
c
c compute 1-norm of a
c
 anorm = 0.0d0
 do 10 j = 1, n
 anorm = dmax1(anorm,dasum(n,a(1,j),1))
 10 continue
c
c factor
c
 call dgefa(a,lda,n,ipvt,info)
c
c rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
c estimate = norm(z)/norm(y) where a*z = y and trans(a)*y = e .
c trans(a) is the transpose of a . the components of e are
c chosen to cause maximum local growth in the elements of w where
c trans(u)*w = e . the vectors are frequently rescaled to avoid
c overflow.
c
c solve trans(u)*w = e
c
 ek = 1.0d0
 do 20 j = 1, n
 z(j) = 0.0d0
 20 continue
 do 100 k = 1, n
 if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
 if (dabs(ek-z(k)) .le. dabs(a(k,k))) go to 30
 s = dabs(a(k,k))/dabs(ek-z(k))
 call dscal(n,s,z,1)
 ek = s*ek
 30 continue
 wk = ek - z(k)
 wkm = -ek - z(k)
 s = dabs(wk)
 sm = dabs(wkm)
 if (a(k,k) .eq. 0.0d0) go to 40
 wk = wk/a(k,k)
 wkm = wkm/a(k,k)
 go to 50
 40 continue
 wk = 1.0d0

610

 wkm = 1.0d0
 50 continue
 kp1 = k + 1
 if (kp1 .gt. n) go to 90
 do 60 j = kp1, n
 sm = sm + dabs(z(j)+wkm*a(k,j))
 z(j) = z(j) + wk*a(k,j)
 s = s + dabs(z(j))
 60 continue
 if (s .ge. sm) go to 80
 t = wkm - wk
 wk = wkm
 do 70 j = kp1, n
 z(j) = z(j) + t*a(k,j)
 70 continue
 80 continue
 90 continue
 z(k) = wk
 100 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
c
c solve trans(l)*y = w
c
 do 120 kb = 1, n
 k = n + 1 - kb
 if (k .lt. n) z(k) = z(k) + ddot(n-k,a(k+1,k),1,z(k+1),1)
 if (dabs(z(k)) .le. 1.0d0) go to 110
 s = 1.0d0/dabs(z(k))
 call dscal(n,s,z,1)
 110 continue
 l = ipvt(k)
 t = z(l)
 z(l) = z(k)
 z(k) = t
 120 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
c
 ynorm = 1.0d0
c
c solve l*v = y
c
 do 140 k = 1, n
 l = ipvt(k)
 t = z(l)
 z(l) = z(k)
 z(k) = t
 if (k .lt. n) call daxpy(n-k,t,a(k+1,k),1,z(k+1),1)
 if (dabs(z(k)) .le. 1.0d0) go to 130
 s = 1.0d0/dabs(z(k))
 call dscal(n,s,z,1)
 ynorm = s*ynorm
 130 continue
 140 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
 ynorm = s*ynorm
c
c solve u*z = v
c
 do 160 kb = 1, n
 k = n + 1 - kb
 if (dabs(z(k)) .le. dabs(a(k,k))) go to 150

611

 s = dabs(a(k,k))/dabs(z(k))
 call dscal(n,s,z,1)
 ynorm = s*ynorm
 150 continue
 if (a(k,k) .ne. 0.0d0) z(k) = z(k)/a(k,k)
 if (a(k,k) .eq. 0.0d0) z(k) = 1.0d0
 t = -z(k)
 call daxpy(k-1,t,a(1,k),1,z(1),1)
 160 continue
c make znorm = 1.0
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
 ynorm = s*ynorm
c
 if (anorm .ne. 0.0d0) rcond = ynorm/anorm
 if (anorm .eq. 0.0d0) rcond = 0.0d0
 return
 end

 subroutine dgedi(a,lda,n,ipvt,det,work,job)
 integer lda,n,ipvt(1),job
 double precision a(lda,1),det(2),work(1)
C
C dgedi computes the determinant and inverse of a matrix
C using the factors computed by dgeco or dgefa.
C
C on entry
C
C a double precision(lda, n)
C the output from dgeco or dgefa.
C
C lda integer
C the leading dimension of the array a .
C
C n integer
C the order of the matrix a .
C
C ipvt integer(n)
C the pivot vector from dgeco or dgefa.
C
C work double precision(n)
C work vector. contents destroyed.
C
C job integer
C = 11 both determinant and inverse.
C = 01 inverse only.
C = 10 determinant only.
C
C on return
C
C a inverse of original matrix if requested.
C otherwise unchanged.
C
C det double precision(2)
C determinant of original matrix if requested.
C otherwise not referenced.
C determinant = det(1) * 10.0**det(2)
C with 1.0 .le. dabs(det(1)) .lt. 10.0
C or det(1) .eq. 0.0 .
C
C error condition
C
C a division by zero will occur if the input factor contains

612

C a zero on the diagonal and the inverse is requested.
C it will not occur if the subroutines are called correctly
C and if dgeco has set rcond .gt. 0.0 or dgefa has set
C info .eq. 0 .
C
C linpack. this version dated 08/14/78 .
C cleve moler, university of new mexico, argonne national lab.
C
C subroutines and functions
C
C blas daxpy,dscal,dswap
C fortran dabs,mod
C
C internal variables
C
 double precision t
 double precision ten
 integer i,j,k,kb,kp1,l,nm1
C
C
C compute determinant
C
 if (job/10 .eq. 0) go to 70
 det(1) = 1.0d0
 det(2) = 0.0d0
 ten = 10.0d0
 do 50 i = 1, n
 if (ipvt(i) .ne. i) det(1) = -det(1)
 det(1) = a(i,i)*det(1)
C ...exit
 if (det(1) .eq. 0.0d0) go to 60
 10 if (dabs(det(1)) .ge. 1.0d0) go to 20
 det(1) = ten*det(1)
 det(2) = det(2) - 1.0d0
 go to 10
 20 continue
 30 if (dabs(det(1)) .lt. ten) go to 40
 det(1) = det(1)/ten
 det(2) = det(2) + 1.0d0
 go to 30
 40 continue
 50 continue
 60 continue
 70 continue
C
C compute inverse(u)
C
 if (mod(job,10) .eq. 0) go to 150
 do 100 k = 1, n
 a(k,k) = 1.0d0/a(k,k)
 t = -a(k,k)
 call dscal(k-1,t,a(1,k),1)
 kp1 = k + 1
 if (n .lt. kp1) go to 90
 do 80 j = kp1, n
 t = a(k,j)
 a(k,j) = 0.0d0
 call daxpy(k,t,a(1,k),1,a(1,j),1)
 80 continue
 90 continue
 100 continue
C
C form inverse(u)*inverse(l)
C

613

 nm1 = n - 1
 if (nm1 .lt. 1) go to 140
 do 130 kb = 1, nm1
 k = n - kb
 kp1 = k + 1
 do 110 i = kp1, n
 work(i) = a(i,k)
 a(i,k) = 0.0d0
 110 continue
 do 120 j = kp1, n
 t = work(j)
 call daxpy(n,t,a(1,j),1,a(1,k),1)
 120 continue
 l = ipvt(k)
 if (l .ne. k) call dswap(n,a(1,k),1,a(1,l),1)
 130 continue
 140 continue
 150 continue
 return
 end

 subroutine daxpy(n,da,dx,incx,dy,incy)
C
C constant times a vector plus a vector.
C uses unrolled loops for increments equal to one.
C jack dongarra, linpack, 3/11/78.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dy(*),da
 integer i,incx,incy,ix,iy,m,mp1,n
C
 if(n.le.0)return
 if (da .eq. 0.0d0) return
 if(incx.eq.1.and.incy.eq.1)go to 20
C
C code for unequal increments or equal increments
C not equal to 1
C
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dy(iy) = dy(iy) + da*dx(ix)
 ix = ix + incx
 iy = iy + incy
 10 continue
 return
C
C code for both increments equal to 1
C
C
C clean-up loop
C
 20 m = mod(n,4)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dy(i) = dy(i) + da*dx(i)
 30 continue
 if(n .lt. 4) return
 40 mp1 = m + 1
 do 50 i = mp1,n,4
 dy(i) = dy(i) + da*dx(i)
 dy(i + 1) = dy(i + 1) + da*dx(i + 1)

614

 dy(i + 2) = dy(i + 2) + da*dx(i + 2)
 dy(i + 3) = dy(i + 3) + da*dx(i + 3)
 50 continue
 return
 end

 subroutine dscal(n,da,dx,incx)
C
C scales a vector by a constant.
C uses unrolled loops for increment equal to one.
C jack dongarra, linpack, 3/11/78.
C modified 3/93 to return if incx .le. 0.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision da,dx(*)
 integer i,incx,m,mp1,n,nincx
C
 if(n.le.0 .or. incx.le.0)return
 if(incx.eq.1)go to 20
C
C code for increment not equal to 1
C
 nincx = n*incx
 do 10 i = 1,nincx,incx
 dx(i) = da*dx(i)
 10 continue
 return
C
C code for increment equal to 1
C
C
C clean-up loop
C
 20 m = mod(n,5)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dx(i) = da*dx(i)
 30 continue
 if(n .lt. 5) return
 40 mp1 = m + 1
 do 50 i = mp1,n,5
 dx(i) = da*dx(i)
 dx(i + 1) = da*dx(i + 1)
 dx(i + 2) = da*dx(i + 2)
 dx(i + 3) = da*dx(i + 3)
 dx(i + 4) = da*dx(i + 4)
 50 continue
 return
 end

 subroutine dswap (n,dx,incx,dy,incy)
C
C interchanges two vectors.
C uses unrolled loops for increments equal one.
C jack dongarra, linpack, 3/11/78.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dy(*),dtemp
 integer i,incx,incy,ix,iy,m,mp1,n
C
 if(n.le.0)return
 if(incx.eq.1.and.incy.eq.1)go to 20
C
C code for unequal increments or equal increments not equal

615

C to 1
C
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dtemp = dx(ix)
 dx(ix) = dy(iy)
 dy(iy) = dtemp
 ix = ix + incx
 iy = iy + incy
 10 continue
 return
C
C code for both increments equal to 1
C
C
C clean-up loop
C
 20 m = mod(n,3)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dx(i)
 dx(i) = dy(i)
 dy(i) = dtemp
 30 continue
 if(n .lt. 3) return
 40 mp1 = m + 1
 do 50 i = mp1,n,3
 dtemp = dx(i)
 dx(i) = dy(i)
 dy(i) = dtemp
 dtemp = dx(i + 1)
 dx(i + 1) = dy(i + 1)
 dy(i + 1) = dtemp
 dtemp = dx(i + 2)
 dx(i + 2) = dy(i + 2)
 dy(i + 2) = dtemp
 50 continue
 return
 end

 subroutine dgefa(a,lda,n,ipvt,info)
 integer lda,n,ipvt(1),info
 double precision a(lda,1)
C
C dgefa factors a double precision matrix by gaussian elimination.
C
C dgefa is usually called by dgeco, but it can be called
C directly with a saving in time if rcond is not needed.
C (time for dgeco) = (1 + 9/n)*(time for dgefa) .
C
C on entry
C
C a double precision(lda, n)
C the matrix to be factored.
C
C lda integer
C the leading dimension of the array a .
C
C n integer
C the order of the matrix a .

616

C
C on return
C
C a an upper triangular matrix and the multipliers
C which were used to obtain it.
C the factorization can be written a = l*u where
C l is a product of permutation and unit lower
C triangular matrices and u is upper triangular.
C
C ipvt integer(n)
C an integer vector of pivot indices.
C
C info integer
C = 0 normal value.
C = k if u(k,k) .eq. 0.0 . this is not an error
C condition for this subroutine, but it does
C indicate that dgesl or dgedi will divide by zero
C if called. use rcond in dgeco for a reliable
C indication of singularity.
C
C linpack. this version dated 08/14/78 .
C cleve moler, university of new mexico, argonne national lab.
C
C subroutines and functions
C
C blas daxpy,dscal,idamax
C
C internal variables
C
 double precision t
 integer idamax,j,k,kp1,l,nm1
C
C
C gaussian elimination with partial pivoting
C
 info = 0
 nm1 = n - 1
 if (nm1 .lt. 1) go to 70
 do 60 k = 1, nm1
 kp1 = k + 1
C
C find l = pivot index
C
 l = idamax(n-k+1,a(k,k),1) + k - 1
 ipvt(k) = l
C
C zero pivot implies this column already triangularized
C
 if (a(l,k) .eq. 0.0d0) go to 40
C
C interchange if necessary
C
 if (l .eq. k) go to 10
 t = a(l,k)
 a(l,k) = a(k,k)
 a(k,k) = t
 10 continue
C
C compute multipliers
C
 t = -1.0d0/a(k,k)
 call dscal(n-k,t,a(k+1,k),1)
C
C row elimination with column indexing

617

C
 do 30 j = kp1, n
 t = a(l,j)
 if (l .eq. k) go to 20
 a(l,j) = a(k,j)
 a(k,j) = t
 20 continue
 call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
 30 continue
 go to 50
 40 continue
 info = k
 50 continue
 60 continue
 70 continue
 ipvt(n) = n
 if (a(n,n) .eq. 0.0d0) info = n
 return
 end

 integer function idamax(n,dx,incx)
C
C finds the index of element having max. absolute value.
C jack dongarra, linpack, 3/11/78.
C modified 3/93 to return if incx .le. 0.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dmax
 integer i,incx,ix,n
C
 idamax = 0
 if(n.lt.1 .or. incx.le.0) return
 idamax = 1
 if(n.eq.1)return
 if(incx.eq.1)go to 20
C
C code for increment not equal to 1
C
 ix = 1
 dmax = dabs(dx(1))
 ix = ix + incx
 do 10 i = 2,n
 if(dabs(dx(ix)).le.dmax) go to 5
 idamax = i
 dmax = dabs(dx(ix))
 5 ix = ix + incx
 10 continue
 return
C
C code for increment equal to 1
C
 20 dmax = dabs(dx(1))
 do 30 i = 2,n
 if(dabs(dx(i)).le.dmax) go to 30
 idamax = i
 dmax = dabs(dx(i))
 30 continue
 return
 end

 double precision function dasum(n,dx,incx)
c
c takes the sum of the absolute values.
c jack dongarra, linpack, 3/11/78.

618

c modified 3/93 to return if incx .le. 0.
c modified 12/3/93, array(1) declarations changed to array(*)
c
 double precision dx(*),dtemp
 integer i,incx,m,mp1,n,nincx
c
 dasum = 0.0d0
 dtemp = 0.0d0
 if(n.le.0 .or. incx.le.0)return
 if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
 nincx = n*incx
 do 10 i = 1,nincx,incx
 dtemp = dtemp + dabs(dx(i))
 10 continue
 dasum = dtemp
 return
c
c code for increment equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,6)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dtemp + dabs(dx(i))
 30 continue
 if(n .lt. 6) go to 60
 40 mp1 = m + 1
 do 50 i = mp1,n,6
 dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2))
 & + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5))
 50 continue
 60 dasum = dtemp
 return
 end

 double precision function ddot(n,dx,incx,dy,incy)
c
c forms the dot product of two vectors.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c modified 12/3/93, array(1) declarations changed to array(*)
c
 double precision dx(*),dy(*),dtemp
 integer i,incx,incy,ix,iy,m,mp1,n
c
 ddot = 0.0d0
 dtemp = 0.0d0
 if(n.le.0)return
 if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dtemp = dtemp + dx(ix)*dy(iy)

619

 ix = ix + incx
 iy = iy + incy
 10 continue
 ddot = dtemp
 return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,5)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dtemp + dx(i)*dy(i)
 30 continue
 if(n .lt. 5) go to 60
 40 mp1 = m + 1
 do 50 i = mp1,n,5
 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
 & dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
 50 continue
 60 ddot = dtemp
 return
 end

Detcov.params.h:
C**
C *
C Parameter input file for 'detcov' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

 parameter (numdv=1,numsamp=11,fprefix='suit3altvalid',
 & coedet=1e4)
C
C numdv = # design variables
C numsamp = # samples in data set
C
C fprefix = prefix of titles of files to opened/used
C
C coedet = when the value of determinant is very small,
C this coefficient is used to magnify the value.
C**

620

A.2 IMPLEMENTATION OF SEED (FORMULATION I) IN ISIGHT IN
SECTION 4.6.2

Figures presented in this section illustrate how the SEED method (with

Formulation I) is implemented in iSIGHT. The organization of tasks in Iteration I – Step

3 is shown in Figure A.1. The organization of tasks in Iteration I – Step 7 is shown in

Figure A.2.

In Iteration I – Step 3, since the covariance matrix is not adjusted, there are only

two simulation codes used in iSIGHT, Covmat and Detcov. In Iteration I – Step 7, with

information from metamodels of prediction errors, we use four simulation codes in

iSIGHT, i.e., Covmat, Errpred, Altcov, and Detcov. Covmat is used to formulate the

covariance matrix, Errpred are metamodels to predict prediction errors, Altcov is used to

adjust entries of the covariance matrix, and Detcov is used to calculate the determinant.

The parameter and input/output files for the component Covmat in iSIGHT are:

• Input files: Inputfilename1.sam (containing ns + nnew data points)

Inputfilename1.gau.fit

• Output file: Outputfilename1.cov

• Parameter file: Covmat.params.h

621

The parameter and input/output files for the component Errpred in iSIGHT are:

• Input file: Inputfilename2.npt (containing ns + nnew data points)

• Output file: Outputfilename2.gau.out

• Parameter files: Dace.params.h

Inputfilename2.dek

Inputfilename2.gau.fit

The parameter and input/output files for the component Altcov in iSIGHT are:

• Input files: Outputfilename1.cov

Outputfilename2.gau.out

• Output file: AltOutputfilename1.cov

• Parameter file: Altcov.params.h

The parameter and input/output files for the component Detcov in iSIGHT are:

• Input file: AltOutputfilename1.cov

• Output file: AltOutputfilename1.det

• Parameter file: Detcov.params.h

622

Figure A.1 Implementation of SEED in iSIGHT – Iteration I, Step 3

623

Figure A.2 Implementation of SEED (Formulation I) in iSIGHT – Iteration I, Step 7

Figure A.3 File Parsing in iSIGHT (Formulation I) – Iteration I, Step 7

624

A.3 IMPLEMENTATION OF SEED (FORMULATION II) IN ISIGHT IN
SECTION 4.6.3

Figures presented in this section illustrate how the SEED method (with

Formulation II) is implemented in iSIGHT. The organization of tasks in Iteration I –

Step 7 is shown in Figure A.4. In Iteration I – Step 7, with information from metamodels

of prediction errors, we use three simulation codes in iSIGHT, i.e., Covmat, Errpred, and

Detcov. Covmat is used to formulate the adjusted covariance matrix, Errpred are

metamodels to predict prediction errors, and Detcov is used to calculate the determinant.

The parameter and input/output files for the component Errpred in iSIGHT are:

• Input file: Inputfilename2.npt (containing ns + nnew data points)

• Output file: Outputfilename2.gau.out

• Parameter files: Dace.params.h

Inputfilename2.dek

Inputfilename2.gau.fit

The parameter and input/output files for the component Covmat in iSIGHT are:

• Input files: Inputfilename1.sam (containing ns + nnew data points)

Inputfilename2.gau.out

• Output file: Outputfilename1.cov

• Parameter file: Covmat.params.h

Inputfilename1.gau.fit

The parameter and input/output files for the component Detcov in iSIGHT are:

• Input file: Outputfilename1.cov

• Output file: Outputfilename1.det

• Parameter file: Detcov.params.h

625

Figure A.4 Implementation of SEED (Formulation II) in iSIGHT – Iteration I, Step

7

Figure A.5 File Parsing in iSIGHT (Formulation II) – Iteration I, Step 7

626

A.
APPENDIX B

METAMODEL COMPARISON, SELECTION, AND
SEQUENTIAL METAMODELING

This appendix is intended to supplement the study of different types of

metamodels and the development of the sequential metamodeling approach in Chapter 5.

Supporting materials for studies in Section 5.2 are presented in Section B.1. Supporting

materials for studies in Section 5.3 are presented in Section B.2. Supporting materials for

studies in Section 5.5 are presented in Section B.3.

627

B.1 COMPARISON OF KRIGING AND MARS METAMODELS

The regression splines metamodels developed for the single-variable function in

Section 5.2 are presented here. These metamodels are developed with the computer

codes written by Dr. Victoria Chen. Only the files qmars.dat are presented.

QMARS.dat (6 Data Points):
 1 4
 0.500000000000000
 0.500000000000000
 1 1 1 1
 0.742514189859821 -3.782619142636539 0.078497782391407 1.852499728306856 -
0.592897867942160
 -1 1 -0.8000 -0.6000 -0.4000
 1 1 -0.8000 -0.6000 -0.4000
 -1 1 -0.4000 -0.2000 0.0000
 -1 1 0.0000 0.2000 0.5000

QMARS.dat (12 Data Points):
 1 8
 0.500000000000000
 0.500000000000000
 1 1 1 1 1 1 1 1
 0.804456738034367 -3.931699607694008 0.031300702570219 0.335180979819468 -
1.092464920190181 -0.166540234100570 0.465258270418457 -0.314632853306543
0.519951496439981
 -1 1 -0.909090909 -0.818181818 -0.7272727270
 1 1 -0.909090909 -0.818181818 -0.7272727270
 -1 1 -0.363636363 -0.272727272 -0.1818181810
 -1 1 -0.727272727 -0.636363636 -0.5454545450
 -1 1 0.363636363 0.454545454 0.5909090905
 -1 1 -0.181818181 -0.090909090 0.0454545465
 -1 1 0.090909091 0.272727272 0.3636363630
 -1 1 -0.545454545 -0.454545454 -0.3636363630

QMARS.dat (18 Data Points):
 1 15
 0.499999996500000
 0.499999996500000
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 0.769341991216719 -4.268794934636631 0.049066635497016 1.583636167930717
0.442740915755735 -3.974759760066522 -0.161586860187488 2.348742252830790 -
1.331732197131855 -0.071742968334441 0.687898025469788 0.227592654584590 -
0.140027007826507 -0.127598133593445 0.030241893070942 -0.009966859336800
 -1 1 -0.941176470588235 -0.882352941176471 -0.823529411764706
 1 1 -0.941176470588235 -0.882352941176471 -0.823529411764706
 -1 1 -0.823529411764706 -0.764705882352941 -0.705882352941176
 -1 1 -0.235294117647059 -0.176470588235294 -0.117647058823529

628

 -1 1 -0.705882352941176 -0.647058823529412 -0.588235294117647
 -1 1 0.235294117647059 0.294117647058823 0.352941176470588
 -1 1 -0.588235294117647 -0.529411764705882 -0.470588235294118
 -1 1 -0.470588235294118 -0.411764705882353 -0.352941176470588
 -1 1 0.470588235294118 0.529411764705882 0.588235294117647
 -1 1 -0.352941176470588 -0.294117647058823 -0.235294117647059
 -1 1 -0.117647058823529 -0.058823529411765 0.029411764705882
 -1 1 0.058823529411765 0.176470588235294 0.235294117647059
 -1 1 0.352941176470588 0.411764705882353 0.470588235294118
 -1 1 0.764705882352941 0.882352941176471 0.941176470588235
 -1 1 0.588235294117647 0.647058823529412 0.735294117647059

QMARS.dat (65 Data Points):
 1 26
 0.500000000000000
 0.500000000000000
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
 0.814748875040033 3.549664011717383 0.024521568179330
0.430340401178658 -9.134154080734954 -0.193694588044647 -
4.892401712101362 5.960830477768092 -1.570290211352681 -
0.438853117041401 -1.976226001655917 -23.619604594495684
17.710681769470721 19.282322168852357 -11.949572131038920 -
2.657872090330002 6.967264825385147 -4.752009346821804 -
1.643991566805389 0.230258560128408 -0.217743722561814
0.431372119205884 -0.083341921457411 0.077691137470582
0.158336056791558 0.296070952762389 0.081009268717310
 -1 1 -0.859375000000000 -0.843750000000000 -
0.828125000000000
 1 1 -0.859375000000000 -0.843750000000000 -
0.828125000000000
 -1 1 -0.265625000000000 -0.218750000000000 -
0.171875000000000
 -1 1 -0.671875000000000 -0.656250000000000 -
0.640625000000000
 -1 1 0.296875000000000 0.375000000000000
0.453125000000000
 -1 1 -0.984375000000000 -0.968750000000000 -
0.953125000000000
 -1 1 -0.515625000000000 -0.500000000000000 -
0.484375000000000
 -1 1 -0.703125000000000 -0.687500000000000 -
0.671875000000000
 -1 1 -0.421875000000000 -0.406250000000000 -
0.382812500000000
 -1 1 -0.578125000000000 -0.562500000000000 -
0.546875000000000
 -1 1 -0.765625000000000 -0.750000000000000 -
0.734375000000000
 -1 1 -0.734375000000000 -0.718750000000000 -
0.703125000000000
 -1 1 -0.796875000000000 -0.781250000000000 -
0.765625000000000
 -1 1 -0.828125000000000 -0.812500000000000 -
0.796875000000000
 -1 1 -0.453125000000000 -0.437500000000000 -
0.421875000000000
 -1 1 -0.640625000000000 -0.625000000000000 -
0.609375000000000
 -1 1 -0.609375000000000 -0.593750000000000 -
0.578125000000000

629

 -1 1 -0.906250000000000 -0.875000000000000 -
0.859375000000000
 -1 1 -0.171875000000000 -0.125000000000000 -
0.093750000000000
 -1 1 0.078125000000000 0.218750000000000
0.296875000000000
 -1 1 -0.359375000000000 -0.312500000000000 -
0.265625000000000
 -1 1 0.453125000000000 0.531250000000000
0.648437500000000
 -1 1 -0.953125000000000 -0.937500000000000 -
0.914062500000000
 -1 1 -0.093750000000000 -0.062500000000000 -
0.015625000000000
 -1 1 -0.484375000000000 -0.468750000000000 -
0.453125000000000
 -1 1 -0.546875000000000 -0.531250000000000 -
0.515625000000000

QMARS.dat (201 Data Points):
 1 26
 0.500000000000000
 0.500000000000000
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
 0.784491961559237 2.905122792062056 0.042860015545419
0.427947997651711 -3.760823714142479 -0.382420644801848
6.611500445700711 12.432798782937748 -15.005696487610892 -
10.259740596893510 12.252316879797418 -0.894864223631819 -
3.011698787841257 -20.865240202107969 -6.460929739742117 -
10.056190560758544 18.419131225604275 9.859346092078775 -
3.588518685680111 -1.418510120164459 -2.306032232475570
0.358212982095669 -10.642612994172065 0.442563362726601
5.410178765440429 9.941634063124194 -0.089060082973616
 -1 1 -0.860000000000000 -0.840000000000000 -
0.825000000000000
 1 1 -0.860000000000000 -0.840000000000000 -
0.825000000000000
 -1 1 -0.260000000000000 -0.210000000000000 -
0.155000000000000
 -1 1 -0.665000000000000 -0.660000000000000 -
0.652500000000000
 -1 1 0.260000000000000 0.350000000000000
0.485000000000000
 -1 1 -0.535000000000000 -0.500000000000000 -
0.470000000000000
 -1 1 -0.705000000000000 -0.700000000000000 -
0.692500000000000
 -1 1 -0.735000000000000 -0.730000000000000 -
0.725000000000000
 -1 1 -0.690000000000000 -0.680000000000000 -
0.675000000000000
 -1 1 -0.775000000000000 -0.770000000000000 -
0.762500000000000
 -1 1 -0.430000000000000 -0.420000000000000 -
0.405000000000000
 -1 1 -0.585000000000000 -0.570000000000000 -
0.547500000000000
 -1 1 -0.755000000000000 -0.740000000000000 -
0.735000000000000
 -1 1 -0.990000000000000 -0.980000000000000 -
0.965000000000000

630

 -1 1 -0.825000000000000 -0.810000000000000 -
0.795000000000000
 -1 1 -0.715000000000000 -0.710000000000000 -
0.705000000000000
 -1 1 -0.650000000000000 -0.640000000000000 -
0.625000000000000
 -1 1 -0.620000000000000 -0.600000000000000 -
0.585000000000000
 -1 1 -0.930000000000000 -0.880000000000000 -
0.860000000000000
 -1 1 -0.470000000000000 -0.440000000000000 -
0.430000000000000
 -1 1 -0.155000000000000 -0.100000000000000 -
0.017500000000000
 -1 1 -0.675000000000000 -0.670000000000000 -
0.665000000000000
 -1 1 -0.365000000000000 -0.310000000000000 -
0.260000000000000
 -1 1 -0.795000000000000 -0.780000000000000 -
0.775000000000000
 -1 1 -0.725000000000000 -0.720000000000000 -
0.715000000000000
 -1 1 0.035000000000000 0.170000000000000
0.260000000000000

QMARS.dat (13 Data Points):
 1 11
 0.280000000000000
 0.500000000000000
 1 1 1 1 1 1 1 1 1 1 1
 0.818148952861391 -10.592469590022956 0.024055246830793 1.141505735575954 -
19.190225735854213 36.236320885414720 -33.743756350529544 19.536054858076000
4.098478120463438 -2.546356064901451 -0.465685671146863 1.709644342307768
 -1 1 -0.465000000000000 -0.370000000000000 -0.355000000000000
 1 1 -0.392500000000000 -0.370000000000000 -0.355000000000000
 -1 1 0.130000000000000 0.240000000000000 0.405000000000000
 -1 1 -0.250000000000000 -0.230000000000000 -0.210000000000000
 -1 1 -0.285000000000000 -0.270000000000000 -0.250000000000000
 -1 1 -0.320000000000000 -0.300000000000000 -0.285000000000000
 -1 1 -0.355000000000000 -0.340000000000000 -0.320000000000000
 -1 1 -0.125000000000000 -0.060000000000000 -0.020000000000000
 -1 1 -0.020000000000000 0.020000000000000 0.080000000000000
 -1 1 0.510000000000000 0.780000000000000 1.110000000000000
 -1 1 -0.210000000000000 -0.190000000000000 -0.160000000000000

Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 13, 13, 50, 2, 1
v 1 count[v] 13 levels
T set to p-2 (11).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 7 value 0.026000
v 1 t 2 knot[v][t] 2 value 0.091000
v 1 t 3 knot[v][t] 8 value 0.215000
v 1 t 4 knot[v][t] 9 value 0.289000
v 1 t 5 knot[v][t] 3 value 0.331000
v 1 t 6 knot[v][t] 10 value 0.414000

631

v 1 t 7 knot[v][t] 4 value 0.500000
v 1 t 8 knot[v][t] 11 value 0.582000
v 1 t 9 knot[v][t] 5 value 0.669000
v 1 t 10 knot[v][t] 12 value 0.785000
v 1 t 11 knot[v][t] 13 value 0.909000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000192
m 0 v 1 t 1 I 33.889683071877734 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 6 I 40.171443343286093 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 9 I 65.506933558794287 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 3 I 89.350140883724464 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 2 I 57.490695569612832 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 5 I 3.907723530036343 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 10 I 1.184287438418364 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 8 I 0.253932969820230 zero 1 1 2 1 M=17, onM=9
m 0 v 1 t 7 I 1.099315592147945 zero 1 1 2 1 M=19, onM=10
m 0 v 1 t 11 I 0.025664992346307 zero 1 1 2 1 M=21, onM=11
m 0 v 1 t 4 I 0.000647036211367 zero 1 1 2 1 M=23, onM=12
m 0 v 1 t 4 I 0.000000000000000 zero 1 1 2 0 M=24, onM=12
For N=13, onM=12, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000000841432161 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12
 1 1 1 1 1 1 1 1 1 1 1 0
linear lof_bst is 0.000000841469089
quintic lof_bst is 0.000429884029849
quintic lof_bst without penalty is lof*0.005917159763314=0.000002543692484
m 1 split 1 cov 1 knots -0.868000 -0.842000 -0.803000 s -1
m 2 split 1 cov 1 knots -0.868000 -0.842000 -0.777000 s 1
m 3 split 1 cov 1 knots -0.149000 -0.066000 0.020000 s -1
m 4 split 1 cov 1 knots 0.357000 0.444000 0.560000 s -1
m 5 split 1 cov 1 knots -0.588000 -0.464000 -0.348000 s -1
m 6 split 1 cov 1 knots -0.777000 -0.712000 -0.614500 s -1
m 7 split 1 cov 1 knots -0.348000 -0.232000 -0.149000 s -1
m 8 split 1 cov 1 knots 0.560000 0.676000 0.800000 s -1
m 9 split 1 cov 1 knots 0.188000 0.270000 0.357000 s -1
m 10 split 1 cov 1 knots 0.020000 0.106000 0.188000 s -1
m 11 split 1 cov 1 knots 0.800000 0.924000 1.015000 s –1

632

B.2 UTILIZATION OF DIFFERENT TYPES OF METAMODELS IN SEED

The regression splines metamodels developed for the single-variable function in

Section 5.3 are presented here. Only the files qmars.dat are presented here.

REGRESSION SPLINE Metamodel of Prediction Errors in Iteration I – Step 4 (with 4 data
points and 5 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 9, 9, 30, 2, 1
v 1 count[v] 9 levels
T set to p-2 (7).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 5 value 0.091000
v 1 t 2 knot[v][t] 6 value 0.215000
v 1 t 3 knot[v][t] 2 value 0.331000
v 1 t 4 knot[v][t] 7 value 0.500000
v 1 t 5 knot[v][t] 3 value 0.669000
v 1 t 6 knot[v][t] 8 value 0.785000
v 1 t 7 knot[v][t] 9 value 0.909000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000278
m 0 v 1 t 1 I 2185.235914437491400 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 3 I 1779.564047921492600 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 2 I 211.881913968762090 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 4 I 70.600513313779658 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 5 I 70.390066900327525 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 6 I 1.153538313945575 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 7 I 0.992432478524021 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 7 I 0.000000000000000 zero 1 1 2 0 M=16, onM=8
For N=9, onM=8, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000893189952348 with J_bst:
 1 2 3 4 5 6 7 8
 1 1 1 1 1 1 1 0
lof_bst= 0.000482844283989 with J_bst:
 1 2 3 4 5 6 7 8
 1 1 1 1 1 1 0 0
linear lof_bst is 0.000482844295849
quintic lof_bst is 0.000223574353830
quintic lof_bst without penalty is lof*0.049382716049383=0.000011040708831
m 1 split 1 cov 1 knots -0.909000 -0.818000 -0.694000 s -1
m 2 split 1 cov 1 knots -0.909000 -0.818000 -0.694000 s 1
m 3 split 1 cov 1 knots -0.454000 -0.338000 -0.169000 s -1
m 4 split 1 cov 1 knots -0.694000 -0.570000 -0.454000 s -1
m 5 split 1 cov 1 knots -0.169000 0.000000 0.169000 s -1
m 6 split 1 cov 1 knots 0.169000 0.338000 0.591500 s –1

633

REGRESSION SPLINE Metamodel of Responses in Iteration I – Step 8 (6 data points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 6, 6, 50, 2, 1
v 1 count[v] 6 levels
T set to p-2 (4).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 5 value 0.091000
v 1 t 2 knot[v][t] 2 value 0.331000
v 1 t 3 knot[v][t] 6 value 0.500000
v 1 t 4 knot[v][t] 3 value 0.669000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000417
m 0 v 1 t 1 I 4803.027518465813000 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 2 I 67.979517786175649 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 4 I 18.226084000257934 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 3 I 28.470572680609678 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 3 I 0.000000000000000 zero 1 1 2 0 M=10, onM=5
For N=6, onM=5, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.010935660807123 with J_bst:
 1 2 3 4 5
 1 1 1 0 1
lof_bst= 0.007004537701781 with J_bst:
 1 2 3 4 5
 1 1 1 0 0
linear lof_bst is 0.007004537701936
quintic lof_bst is 0.007265056347063
quintic lof_bst without penalty is lof*0.111111111111111=0.000807228483007
m 1 split 1 cov 1 knots -0.772667 -0.681667 -0.545167 s -1
m 2 split 1 cov 1 knots -0.772667 -0.681667 -0.441667 s 1
m 3 split 1 cov 1 knots -0.441667 -0.201667 0.158333 s –1

REGRESSION SPLINE Metamodel of Prediction Errors in Iteration II – Step 3 (with 3
data points and 6 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 9, 9, 50, 2, 1
v 1 count[v] 9 levels
T set to p-2 (7).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 5 value 0.091000
v 1 t 2 knot[v][t] 7 value 0.215000
v 1 t 3 knot[v][t] 2 value 0.331000
v 1 t 4 knot[v][t] 6 value 0.500000
v 1 t 5 knot[v][t] 3 value 0.669000
v 1 t 6 knot[v][t] 8 value 0.785000
v 1 t 7 knot[v][t] 9 value 0.909000

634

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000278
m 0 v 1 t 1 I 5237.207545019747200 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 4 I 82.908493275196250 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 5 I 63.546597755261850 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 2 I 75.747176648623253 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 3 I 82.351740441337313 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 6 I 1.394399483913649 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 7 I 0.026953414014063 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 7 I 0.000000000000000 zero 1 1 2 0 M=16, onM=8
For N=9, onM=8, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000024258092213 with J_bst:
 1 2 3 4 5 6 7 8
 1 1 1 1 1 1 1 0
linear lof_bst is 0.000024258116828
quintic lof_bst is 0.000041249572296
quintic lof_bst without penalty is lof*0.012345679012346=0.000000509253979
m 1 split 1 cov 1 knots -0.909000 -0.818000 -0.694000 s -1
m 2 split 1 cov 1 knots -0.909000 -0.818000 -0.694000 s 1
m 3 split 1 cov 1 knots -0.169000 0.000000 0.169000 s -1
m 4 split 1 cov 1 knots 0.169000 0.338000 0.454000 s -1
m 5 split 1 cov 1 knots -0.694000 -0.570000 -0.454000 s -1
m 6 split 1 cov 1 knots -0.454000 -0.338000 -0.169000 s -1
m 7 split 1 cov 1 knots 0.454000 0.570000 0.744000 s –1

REGRESSION SPLINE Metamodel of Responses in Iteration II – Step 8 (with 8 data
points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 8, 8, 50, 2, 1
v 1 count[v] 8 levels
T set to p-2 (6).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 2 value 0.091000
v 1 t 2 knot[v][t] 3 value 0.215000
v 1 t 3 knot[v][t] 4 value 0.331000
v 1 t 4 knot[v][t] 5 value 0.500000
v 1 t 5 knot[v][t] 6 value 0.669000
v 1 t 6 knot[v][t] 7 value 0.833000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000313
m 0 v 1 t 1 I 5364.836771030441900 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 4 I 86.810040802686899 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 5 I 54.955163539854851 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 2 I 75.668742279855266 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 3 I 82.411207787488465 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 6 I 0.849650086301520 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 6 I 0.000000000000000 zero 1 1 2 0 M=14, onM=7
For N=8, onM=7, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000679720795882 with J_bst:

635

 1 2 3 4 5 6 7
 1 1 1 1 1 1 0
linear lof_bst is 0.000679720812870
quintic lof_bst is 0.000030046700078
quintic lof_bst without penalty is lof*0.015625000000000=0.000000469479689
m 1 split 1 cov 1 knots -0.818750 -0.727750 -0.603750 s -1
m 2 split 1 cov 1 knots -0.818750 -0.727750 -0.603750 s 1
m 3 split 1 cov 1 knots -0.078750 0.090250 0.259250 s -1
m 4 split 1 cov 1 knots 0.259250 0.428250 0.681750 s -1
m 5 split 1 cov 1 knots -0.603750 -0.479750 -0.363750 s -1
m 6 split 1 cov 1 knots -0.363750 -0.247750 -0.078750 s –1

REGRESSION SPLINE Metamodel of Responses in Iteration III – Step 3 (with 8 data
points and 6 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 6, 6, 50, 2, 1
v 1 count[v] 6 levels
T set to p-2 (4).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 2 value 0.289000
v 1 t 2 knot[v][t] 3 value 0.414000
v 1 t 3 knot[v][t] 4 value 0.582000
v 1 t 4 knot[v][t] 5 value 0.785000

Min/Max x-values:
v 1 min 0.026000 max 0.909000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000417
m 0 v 1 t 1 I 1970.567559425040800 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 2 I 75.588720887641529 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 3 I 29.659951455774380 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 4 I 6.802131324235522 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 4 I 0.000000000000000 zero 1 1 2 0 M=10, onM=5
For N=6, onM=5, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.004081281493572 with J_bst:
 1 2 3 4 5
 1 1 1 1 0
linear lof_bst is 0.004081281503242
quintic lof_bst is 0.002639744126298
quintic lof_bst without penalty is lof*0.027777777777778=0.000073326225731
m 1 split 1 cov 1 knots -0.777652 -0.479804 -0.338241 s -1
m 2 split 1 cov 1 knots -0.692148 -0.479804 -0.338241 s 1
m 3 split 1 cov 1 knots -0.338241 -0.196678 -0.006418 s -1
m 4 split 1 cov 1 knots -0.006418 0.183843 0.469234 s –1

qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 14, 14, 50, 2, 1

636

v 1 count[v] 14 levels
T set to p-2 (12).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 9 value 0.026000
v 1 t 2 knot[v][t] 2 value 0.091000
v 1 t 3 knot[v][t] 3 value 0.215000
v 1 t 4 knot[v][t] 10 value 0.289000
v 1 t 5 knot[v][t] 4 value 0.331000
v 1 t 6 knot[v][t] 11 value 0.414000
v 1 t 7 knot[v][t] 5 value 0.500000
v 1 t 8 knot[v][t] 12 value 0.582000
v 1 t 9 knot[v][t] 6 value 0.669000
v 1 t 10 knot[v][t] 13 value 0.785000
v 1 t 11 knot[v][t] 7 value 0.833000
v 1 t 12 knot[v][t] 14 value 0.909000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000179
m 0 v 1 t 2 I 1104.034446933376800 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 5 I 641.727010256131280 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 1 I 68.699732858564118 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 3 I 27.511075114669328 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 4 I 35.085611876807420 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 10 I 18.609337638162899 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 6 I 2.143573078245412 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 7 I 1.766371130643947 zero 1 1 2 1 M=17, onM=9
m 0 v 1 t 9 I 0.704470670560657 zero 1 1 2 1 M=19, onM=10
m 0 v 1 t 8 I 0.783995247638147 zero 1 1 2 1 M=21, onM=11
m 0 v 1 t 12 I 0.025600117142965 zero 1 1 2 1 M=23, onM=12
m 0 v 1 t 11 I 0.001473995613301 zero 1 1 2 1 M=25, onM=13
m 0 v 1 t 11 I 0.000000000000000 zero 1 1 2 0 M=26, onM=13
For N=14, onM=13, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000002063615280 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12 13
 1 1 1 1 1 1 1 1 1 1 1 1 0
linear lof_bst is 0.000002063753677
quintic lof_bst is 0.000005698330870
quintic lof_bst without penalty is lof*0.005102040816327=0.000000029073117
m 1 split 1 cov 1 knots -0.832143 -0.767143 -0.669643 s -1
m 2 split 1 cov 1 knots -0.832143 -0.767143 -0.643143 s 1
m 3 split 1 cov 1 knots -0.329143 -0.287143 -0.224143 s -1
m 4 split 1 cov 1 knots -0.923143 -0.897143 -0.858143 s -1
m 5 split 1 cov 1 knots -0.643143 -0.519143 -0.445143 s -1
m 6 split 1 cov 1 knots -0.445143 -0.371143 -0.329143 s -1
m 7 split 1 cov 1 knots 0.504857 0.620857 0.744857 s -1
m 8 split 1 cov 1 knots -0.204143 -0.121143 -0.035143 s -1
m 9 split 1 cov 1 knots -0.035143 0.050857 0.132857 s -1
m 10 split 1 cov 1 knots 0.301857 0.388857 0.504857 s -1
m 11 split 1 cov 1 knots 0.132857 0.214857 0.301857 s -1
m 12 split 1 cov 1 knots 0.744857 0.868857 0.959857 s –1

REGRESSION SPLINE Metamodel of Responses II in Iteration III – Step 3 (with 6 data
points and 2 data points and 6 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.

637

circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 8, 8, 50, 2, 1
v 1 count[v] 8 levels
T set to p-2 (6).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 3 value 0.026000
v 1 t 2 knot[v][t] 4 value 0.289000
v 1 t 3 knot[v][t] 5 value 0.414000
v 1 t 4 knot[v][t] 6 value 0.582000
v 1 t 5 knot[v][t] 7 value 0.785000
v 1 t 6 knot[v][t] 8 value 0.909000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000313
m 0 v 1 t 1 I 6301.198254006109900 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 2 I 310.957987054077080 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 3 I 57.583263028843767 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 5 I 50.498017544867572 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 4 I 10.043555448854978 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 6 I 0.026299124785490 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 6 I 0.000000000000000 zero 1 1 2 0 M=14, onM=7
For N=8, onM=7, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000021039316562 with J_bst:
 1 2 3 4 5 6 7
 1 1 1 1 1 1 0
linear lof_bst is 0.000021039355873
quintic lof_bst is 0.000155486029099
quintic lof_bst without penalty is lof*0.015625000000000=0.000002429469205
m 1 split 1 cov 1 knots -0.975250 -0.949250 -0.910250 s -1
m 2 split 1 cov 1 knots -0.975250 -0.949250 -0.686250 s 1
m 3 split 1 cov 1 knots -0.686250 -0.423250 -0.298250 s -1
m 4 split 1 cov 1 knots -0.298250 -0.173250 -0.005250 s -1
m 5 split 1 cov 1 knots 0.365750 0.568750 0.783750 s -1
m 6 split 1 cov 1 knots -0.005250 0.162750 0.365750 s –1

REGRESSION SPLINE Metamodel of Prediction Errors II in Iteration III – Step 3 (with 6
data points, 2 data points, and 6 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 14, 14, 50, 2, 1
v 1 count[v] 14 levels
T set to p-2 (12).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 9 value 0.026000
v 1 t 2 knot[v][t] 2 value 0.091000
v 1 t 3 knot[v][t] 3 value 0.215000
v 1 t 4 knot[v][t] 10 value 0.289000
v 1 t 5 knot[v][t] 4 value 0.331000
v 1 t 6 knot[v][t] 11 value 0.414000
v 1 t 7 knot[v][t] 5 value 0.500000
v 1 t 8 knot[v][t] 12 value 0.582000
v 1 t 9 knot[v][t] 6 value 0.669000
v 1 t 10 knot[v][t] 13 value 0.785000
v 1 t 11 knot[v][t] 7 value 0.833000

638

v 1 t 12 knot[v][t] 14 value 0.909000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000179
m 0 v 1 t 2 I 339.173680209830590 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 5 I 467.274744487073750 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 3 I 40.935521600356182 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 1 I 33.590584833269411 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 4 I 30.608378933262543 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 6 I 7.133305614126354 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 9 I 0.872305796962173 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 11 I 0.643541172744865 zero 1 1 2 1 M=17, onM=9
m 0 v 1 t 7 I 0.826719505032901 zero 1 1 2 1 M=19, onM=10
m 0 v 1 t 8 I 0.143614638849335 zero 1 1 2 1 M=21, onM=11
m 0 v 1 t 12 I 0.049901920769187 zero 1 1 2 1 M=23, onM=12
m 0 v 1 t 10 I 0.000054162747859 zero 1 1 2 1 M=25, onM=13
m 0 v 1 t 10 I 0.000000000000000 zero 1 1 2 0 M=26, onM=13
For N=14, onM=13, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000000075828957 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12 13
 1 1 1 1 1 1 1 1 1 1 1 1 0
linear lof_bst is 0.000000075954298
quintic lof_bst is 0.000000399706621
quintic lof_bst without penalty is lof*0.005102040816327=0.000000002039319
m 1 split 1 cov 1 knots -0.832143 -0.767143 -0.669643 s -1
m 2 split 1 cov 1 knots -0.832143 -0.767143 -0.643143 s 1
m 3 split 1 cov 1 knots -0.329143 -0.287143 -0.224143 s -1
m 4 split 1 cov 1 knots -0.643143 -0.519143 -0.445143 s -1
m 5 split 1 cov 1 knots -0.923143 -0.897143 -0.858143 s -1
m 6 split 1 cov 1 knots -0.445143 -0.371143 -0.329143 s -1
m 7 split 1 cov 1 knots -0.204143 -0.121143 -0.035143 s -1
m 8 split 1 cov 1 knots 0.301857 0.388857 0.519357 s -1
m 9 split 1 cov 1 knots 0.552857 0.716857 0.792857 s -1
m 10 split 1 cov 1 knots -0.035143 0.050857 0.132857 s -1
m 11 split 1 cov 1 knots 0.132857 0.214857 0.301857 s -1
m 12 split 1 cov 1 knots 0.792857 0.868857 0.959857 s –1

Intermediate REGRESSION SPLINE Metamodel of Responses (with 17 data points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 17, 17, 50, 2, 1
v 1 count[v] 17 levels
T set to p-2 (15).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 9 value 0.026000
v 1 t 2 knot[v][t] 10 value 0.071000
v 1 t 3 knot[v][t] 2 value 0.091000
v 1 t 4 knot[v][t] 11 value 0.151000
v 1 t 5 knot[v][t] 3 value 0.215000
v 1 t 6 knot[v][t] 12 value 0.243000
v 1 t 7 knot[v][t] 13 value 0.289000
v 1 t 8 knot[v][t] 4 value 0.331000
v 1 t 9 knot[v][t] 14 value 0.414000
v 1 t 10 knot[v][t] 5 value 0.500000

639

v 1 t 11 knot[v][t] 15 value 0.582000
v 1 t 12 knot[v][t] 6 value 0.669000
v 1 t 13 knot[v][t] 16 value 0.785000
v 1 t 14 knot[v][t] 7 value 0.833000
v 1 t 15 knot[v][t] 17 value 0.909000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000147
m 0 v 1 t 2 I 7269.432967947485800 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 9 I 75.293730914431393 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 5 I 93.431176329404067 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 12 I 111.320725496105170 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 4 I 70.560647626696408 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 6 I 126.027225668510250 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 3 I 64.635104556370621 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 1 I 63.947382383630810 zero 1 1 2 1 M=17, onM=9
m 0 v 1 t 7 I 50.840791638568675 zero 1 1 2 1 M=19, onM=10
m 0 v 1 t 8 I 2.945047030187512 zero 1 1 2 1 M=21, onM=11
m 0 v 1 t 13 I 1.568282759622121 zero 1 1 2 1 M=23, onM=12
m 0 v 1 t 10 I 0.316523842043537 zero 1 1 2 1 M=25, onM=13
m 0 v 1 t 11 I 1.173101721484663 zero 1 1 2 1 M=27, onM=14
m 0 v 1 t 15 I 0.025330077475867 zero 1 1 2 1 M=29, onM=15
m 0 v 1 t 14 I 0.001812327231944 zero 1 1 2 1 M=31, onM=16
m 0 v 1 t 14 I 0.000000000000000 zero 1 1 2 0 M=32, onM=16
For N=17, onM=16, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000003080989086 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
linear lof_bst is 0.000003098407401
quintic lof_bst is 0.000004917793013
quintic lof_bst without penalty is lof*0.003460207612457=0.000000017016585
m 1 split 1 cov 1 knots -0.739353 -0.694353 -0.674353 s -1
m 2 split 1 cov 1 knots -0.724353 -0.694353 -0.674353 s 1
m 3 split 1 cov 1 knots -0.091353 -0.008353 0.077647 s -1
m 4 split 1 cov 1 knots -0.470353 -0.406353 -0.378353 s -1
m 5 split 1 cov 1 knots 0.414647 0.501647 0.617647 s -1
m 6 split 1 cov 1 knots -0.594353 -0.534353 -0.470353 s -1
m 7 split 1 cov 1 knots -0.378353 -0.350353 -0.308353 s -1
m 8 split 1 cov 1 knots -0.674353 -0.654353 -0.624353 s -1
m 9 split 1 cov 1 knots -0.810353 -0.784353 -0.745353 s -1
m 10 split 1 cov 1 knots -0.304353 -0.258353 -0.216353 s -1
m 11 split 1 cov 1 knots -0.216353 -0.174353 -0.111353 s -1
m 12 split 1 cov 1 knots 0.617647 0.733647 0.857647 s -1
m 13 split 1 cov 1 knots 0.077647 0.163647 0.245647 s -1
m 14 split 1 cov 1 knots 0.245647 0.327647 0.414647 s -1
m 15 split 1 cov 1 knots 0.857647 0.981647 1.072647 s –1

REGRESSION SPLINE Metamodel of Prediction Errors in Iteration III – Step 4 (with 8
data points and 9 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 17, 17, 50, 2, 1
v 1 count[v] 17 levels
T set to p-2 (15).

640

Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 9 value 0.026000
v 1 t 2 knot[v][t] 10 value 0.071000
v 1 t 3 knot[v][t] 2 value 0.091000
v 1 t 4 knot[v][t] 11 value 0.151000
v 1 t 5 knot[v][t] 3 value 0.215000
v 1 t 6 knot[v][t] 12 value 0.243000
v 1 t 7 knot[v][t] 13 value 0.289000
v 1 t 8 knot[v][t] 4 value 0.331000
v 1 t 9 knot[v][t] 14 value 0.414000
v 1 t 10 knot[v][t] 5 value 0.500000
v 1 t 11 knot[v][t] 15 value 0.582000
v 1 t 12 knot[v][t] 6 value 0.669000
v 1 t 13 knot[v][t] 16 value 0.785000
v 1 t 14 knot[v][t] 7 value 0.833000
v 1 t 15 knot[v][t] 17 value 0.909000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000147
m 0 v 1 t 4 I 282.133557720369200 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 8 I 156.279296509230140 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 1 I 121.718667887611250 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 5 I 31.115971263869707 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 6 I 148.141265141702890 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 7 I 54.196704995797312 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 3 I 28.193625034420087 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 2 I 9.020780410731158 zero 1 1 2 1 M=17, onM=9
m 0 v 1 t 11 I 1.573669673836520 zero 1 1 2 1 M=19, onM=10
m 0 v 1 t 9 I 6.461532051825494 zero 1 1 2 1 M=21, onM=11
m 0 v 1 t 10 I 0.996209068593577 zero 1 1 2 1 M=23, onM=12
m 0 v 1 t 12 I 0.496281852568706 zero 1 1 2 1 M=25, onM=13
m 0 v 1 t 13 I 0.080533179549255 zero 1 1 2 1 M=27, onM=14
m 0 v 1 t 15 I 0.024430331786970 zero 1 1 2 1 M=29, onM=15
m 0 v 1 t 14 I 0.001454009081724 zero 1 1 2 1 M=31, onM=16
m 0 v 1 t 14 I 0.000000000000000 zero 1 1 2 0 M=32, onM=16
For N=17, onM=16, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000002471841746 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
linear lof_bst is 0.000002489316544
quintic lof_bst is 0.000000078125069
quintic lof_bst without penalty is lof*0.003460207612457=0.000000000270329
m 1 split 1 cov 1 knots -0.594353 -0.534353 -0.470353 s -1
m 2 split 1 cov 1 knots -0.594353 -0.534353 -0.470353 s 1
m 3 split 1 cov 1 knots -0.216353 -0.174353 -0.111353 s -1
m 4 split 1 cov 1 knots -0.810353 -0.784353 -0.745353 s -1
m 5 split 1 cov 1 knots -0.470353 -0.406353 -0.378353 s -1
m 6 split 1 cov 1 knots -0.378353 -0.350353 -0.308353 s -1
m 7 split 1 cov 1 knots -0.304353 -0.258353 -0.216353 s -1
m 8 split 1 cov 1 knots -0.674353 -0.654353 -0.624353 s -1
m 9 split 1 cov 1 knots -0.739353 -0.694353 -0.674353 s -1
m 10 split 1 cov 1 knots 0.245647 0.327647 0.414647 s -1
m 11 split 1 cov 1 knots -0.091353 -0.008353 0.077647 s -1
m 12 split 1 cov 1 knots 0.077647 0.163647 0.245647 s -1
m 13 split 1 cov 1 knots 0.414647 0.501647 0.617647 s -1
m 14 split 1 cov 1 knots 0.617647 0.733647 0.857647 s -1
m 15 split 1 cov 1 knots 0.857647 0.981647 1.072647 s –1

641

Final Regression Spline Metamodel of Responses in Iteration III – Step 8 (with 17 points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 19, 19, 50, 2, 1
v 1 count[v] 19 levels
T set to p-2 (17).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 11 value 0.026000
v 1 t 2 knot[v][t] 12 value 0.071000
v 1 t 3 knot[v][t] 2 value 0.091000
v 1 t 4 knot[v][t] 3 value 0.126000
v 1 t 5 knot[v][t] 13 value 0.151000
v 1 t 6 knot[v][t] 4 value 0.215000
v 1 t 7 knot[v][t] 14 value 0.243000
v 1 t 8 knot[v][t] 5 value 0.254000
v 1 t 9 knot[v][t] 15 value 0.289000
v 1 t 10 knot[v][t] 6 value 0.331000
v 1 t 11 knot[v][t] 16 value 0.414000
v 1 t 12 knot[v][t] 7 value 0.500000
v 1 t 13 knot[v][t] 17 value 0.582000
v 1 t 14 knot[v][t] 8 value 0.669000
v 1 t 15 knot[v][t] 18 value 0.785000
v 1 t 16 knot[v][t] 9 value 0.833000
v 1 t 17 knot[v][t] 19 value 0.909000

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000132
m 0 v 1 t 2 I 7168.542631419148200 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 11 I 205.645631822369320 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 4 I 151.450532648740650 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 5 I 314.886298981557500 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 6 I 95.209332861043208 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 7 I 260.087296180865560 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 14 I 77.475774020079555 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 9 I 71.272630255421504 zero 1 1 2 1 M=17, onM=9
m 0 v 1 t 1 I 62.989582271940449 zero 1 1 2 1 M=19, onM=10
m 0 v 1 t 8 I 15.840252941947378 zero 1 1 2 1 M=21, onM=11
m 0 v 1 t 10 I 2.944981081412627 zero 1 1 2 1 M=23, onM=12
m 0 v 1 t 15 I 1.568282702010469 zero 1 1 2 1 M=25, onM=13
m 0 v 1 t 3 I 0.998537593401555 zero 1 1 2 1 M=27, onM=14
m 0 v 1 t 12 I 0.316523281034097 zero 1 1 2 1 M=29, onM=15
m 0 v 1 t 13 I 1.173099698582701 zero 1 1 2 1 M=31, onM=16
m 0 v 1 t 17 I 0.025330077333144 zero 1 1 2 1 M=33, onM=17
m 0 v 1 t 16 I 0.001812327000035 zero 1 1 2 1 M=35, onM=18
m 0 v 1 t 16 I 0.000000000000000 zero 1 1 2 0 M=36, onM=18
For N=19, onM=18, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000003443458390 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
linear lof_bst is 0.000003464607892
quintic lof_bst is 0.000005476011637
quintic lof_bst without penalty is lof*0.002770083102493=0.000000015169007
m 1 split 1 cov 1 knots -0.691316 -0.646316 -0.626316 s -1
m 2 split 1 cov 1 knots -0.676316 -0.646316 -0.626316 s 1
m 3 split 1 cov 1 knots -0.043316 0.039684 0.125684 s -1
m 4 split 1 cov 1 knots -0.571316 -0.536316 -0.511316 s -1

642

m 5 split 1 cov 1 knots -0.511316 -0.486316 -0.448816 s -1
m 6 split 1 cov 1 knots -0.422316 -0.358316 -0.330316 s -1
m 7 split 1 cov 1 knots -0.330316 -0.302316 -0.291316 s -1
m 8 split 1 cov 1 knots 0.462684 0.549684 0.665684 s -1
m 9 split 1 cov 1 knots -0.245316 -0.210316 -0.168316 s -1
m 10 split 1 cov 1 knots -0.762316 -0.736316 -0.697316 s -1
m 11 split 1 cov 1 knots -0.291316 -0.280316 -0.263816 s -1
m 12 split 1 cov 1 knots -0.168316 -0.126316 -0.063316 s -1
m 13 split 1 cov 1 knots 0.665684 0.781684 0.905684 s -1
m 14 split 1 cov 1 knots -0.626316 -0.606316 -0.576316 s -1
m 15 split 1 cov 1 knots 0.125684 0.211684 0.293684 s -1
m 16 split 1 cov 1 knots 0.293684 0.375684 0.462684 s -1
m 17 split 1 cov 1 knots 0.905684 1.029684 1.120684 s –1

Single-Stage Experiments and Corresponding Regression Spline Metamodel of Responses
(with 19 points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 1, 0, 19, 19, 50, 2, 1
v 1 count[v] 19 levels
T set to p-2 (17).
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 2 value 0.055556
v 1 t 2 knot[v][t] 3 value 0.111111
v 1 t 3 knot[v][t] 4 value 0.166667
v 1 t 4 knot[v][t] 5 value 0.222222
v 1 t 5 knot[v][t] 6 value 0.277778
v 1 t 6 knot[v][t] 7 value 0.333333
v 1 t 7 knot[v][t] 8 value 0.388889
v 1 t 8 knot[v][t] 9 value 0.444444
v 1 t 9 knot[v][t] 10 value 0.500000
v 1 t 10 knot[v][t] 11 value 0.555556
v 1 t 11 knot[v][t] 12 value 0.611111
v 1 t 12 knot[v][t] 13 value 0.666667
v 1 t 13 knot[v][t] 14 value 0.722222
v 1 t 14 knot[v][t] 15 value 0.777778
v 1 t 15 knot[v][t] 16 value 0.833333
v 1 t 16 knot[v][t] 17 value 0.888889
v 1 t 17 knot[v][t] 18 value 0.944444

Min/Max x-values:
v 1 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000132
m 0 v 1 t 2 I 6380.515450402902400 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 7 I 480.547397715893790 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 3 I 533.166835128732490 zero 1 1 2 1 M=7, onM=4
m 0 v 1 t 1 I 282.444647093684690 zero 1 1 2 1 M=9, onM=5
m 0 v 1 t 12 I 210.694453772197110 zero 1 1 2 1 M=11, onM=6
m 0 v 1 t 4 I 51.861511452135410 zero 1 1 2 1 M=13, onM=7
m 0 v 1 t 5 I 5.817543824950742 zero 1 1 2 1 M=15, onM=8
m 0 v 1 t 8 I 8.042719105064752 zero 1 1 2 1 M=17, onM=9
m 0 v 1 t 14 I 1.236193941396714 zero 1 1 2 1 M=19, onM=10
m 0 v 1 t 11 I 0.952642915238477 zero 1 1 2 1 M=21, onM=11
m 0 v 1 t 13 I 0.253713461247394 zero 1 1 2 1 M=23, onM=12
m 0 v 1 t 9 I 0.130664484272747 zero 1 1 2 1 M=25, onM=13
m 0 v 1 t 10 I 0.079337049073314 zero 1 1 2 1 M=27, onM=14

643

m 0 v 1 t 6 I 0.066123847745227 zero 1 1 2 1 M=29, onM=15
m 0 v 1 t 17 I 0.024999987650532 zero 1 1 2 1 M=31, onM=16
m 0 v 1 t 15 I 0.001079991352833 zero 1 1 2 1 M=33, onM=17
m 0 v 1 t 16 I 0.002399987137368 zero 1 1 2 1 M=35, onM=18
m 0 v 1 t 16 I 0.000000000000000 zero 1 1 2 0 M=36, onM=18
For N=19, onM=18, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000002052000131 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
lof_bst= 0.000001653000115 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
linear lof_bst is 0.000001653096778
quintic lof_bst is 0.000000533730253
quintic lof_bst without penalty is lof*0.011080332409972=0.000000005913909
m 1 split 1 cov 1 knots -0.833333 -0.777778 -0.722222 s -1
m 2 split 1 cov 1 knots -0.833333 -0.777778 -0.722222 s 1
m 3 split 1 cov 1 knots -0.277778 -0.222222 -0.166667 s -1
m 4 split 1 cov 1 knots -0.722222 -0.666667 -0.611111 s -1
m 5 split 1 cov 1 knots -0.944444 -0.888889 -0.833333 s -1
m 6 split 1 cov 1 knots 0.277778 0.333333 0.388889 s -1
m 7 split 1 cov 1 knots -0.611111 -0.555556 -0.500000 s -1
m 8 split 1 cov 1 knots -0.500000 -0.444444 -0.388889 s -1
m 9 split 1 cov 1 knots -0.166667 -0.111111 -0.055556 s -1
m 10 split 1 cov 1 knots 0.500000 0.555556 0.638889 s -1
m 11 split 1 cov 1 knots 0.166667 0.222222 0.277778 s -1
m 12 split 1 cov 1 knots 0.388889 0.444444 0.500000 s -1
m 13 split 1 cov 1 knots -0.055556 0.000000 0.055556 s -1
m 14 split 1 cov 1 knots 0.055556 0.111111 0.166667 s -1
m 15 split 1 cov 1 knots -0.388889 -0.333333 -0.277778 s -1
m 16 split 1 cov 1 knots 0.722222 0.888889 0.944444 s –1

644

B.3 EXPLORATION OF DESIGN SOLUTIONS WITH SEED

All supporting materials and documents for studies in Section 5.5 are presented

here. The model files for MARS metamodels are listed in Section B.3.1. The RS

metamodels of responses developed in Section 5.5.2 are listed in Section B.3.2.

FORTRAN codes of the SEED method in the multi-response problem are presented in

Section B.3.3. The implementation of SEED in iSIGHT is illustrated in Section B.3.4.

B.3.1 MARS Metamodels Developed in Design of the Pressure Vessels

MARS Metamodel of Prediction Errors for Volume in Iteration II – Step 3 (with 6 data
points and 4 validation points):
The responses should be multiplied by 1k.
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 2, 0, 10, 10, 50, 3, 1
v 1 count[v] 7 levels
v 2 count[v] 8 levels
T set to p-2 (5).
Warning: Knots distributed asymmetrically over levels of covariate 2.
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 8 value 0.224200
v 1 t 2 knot[v][t] 10 value 0.499600
v 1 t 3 knot[v][t] 6 value 0.500000
v 1 t 4 knot[v][t] 5 value 0.500900
v 1 t 5 knot[v][t] 9 value 0.786200

v 2 t 1 knot[v][t] 7 value 0.001200
v 2 t 2 knot[v][t] 6 value 0.204300
v 2 t 3 knot[v][t] 8 value 0.502500
v 2 t 4 knot[v][t] 5 value 0.767800
v 2 t 5 knot[v][t] 10 value 0.999800

Min/Max x-values:
v 1 min 0.000000 max 1.000000
v 2 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000250
m 0 v 1 t 5 I 11657676488.734486000000000 zero 1 1 2 1 M=3, onM=2
m 1 v 2 t 5 I 1418662870.428122500000000 zero 1 1 2 1 M=5, onM=4
m 0 v 2 t 5 I 812614130.099333880000000 zero 1 1 2 1 M=7, onM=6
m 0 v 2 t 2 I 41187877.130973093000000 zero 1 1 2 1 M=9, onM=7
m 1 v 2 t 3 I 47085000.369751297000000 zero 1 1 2 1 M=11, onM=8
m 0 v 2 t 4 I 6859787.339947069100000 zero 1 1 2 1 M=13, onM=9
m 0 v 2 t 4 I 0.000000000000000 zero 1 1 2 0 M=14, onM=9

645

For N=10, onM=9, lof_all= 1.#INF00000000000
Alg3
lof_bst= 6859.801602373312600 with J_bst:
 1 2 3 4 5 6 7 8 9
 1 1 1 1 1 1 1 1 0
linear lof_bst is 6859.801648299139700
quintic lof_bst is 4832.855340449985300
quintic lof_bst without penalty is lof*0.010000000000000=48.328553404499864
m 1 split 1 cov 1 knots -0.216160 0.570040 0.783840 s -1
m 2 split 1 cov 1 knots 0.249340 0.570040 0.783840 s 1
m 3 split 1 cov 1 knots -0.216160 0.570040 0.783840 s -1
m 3 split 2 cov 2 knots 0.507000 1.004300 1.004500 s -1
m 4 split 1 cov 1 knots -0.216160 0.570040 0.783840 s -1
m 4 split 2 cov 2 knots 1.004000 1.004300 1.004500 s 1
m 5 split 1 cov 2 knots 0.208800 1.004300 1.004500 s -1
m 6 split 1 cov 2 knots 1.004000 1.004300 1.004500 s 1
m 7 split 1 cov 2 knots -0.791000 -0.586700 -0.280250 s -1
m 8 split 1 cov 1 knots -0.216160 0.570040 0.783840 s -1
m 8 split 2 cov 2 knots -0.492800 0.009700 0.507000 s –1

MARS Metamodel of Prediction Errors for Cost in Iteration II – Step 3 (with 6 data points
and 4 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 2, 0, 10, 10, 50, 3, 1
v 1 count[v] 7 levels
v 2 count[v] 8 levels
T set to p-2 (5).
Warning: Knots distributed asymmetrically over levels of covariate 2.
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 8 value 0.224200
v 1 t 2 knot[v][t] 10 value 0.499600
v 1 t 3 knot[v][t] 6 value 0.500000
v 1 t 4 knot[v][t] 5 value 0.500900
v 1 t 5 knot[v][t] 9 value 0.786200

v 2 t 1 knot[v][t] 7 value 0.001200
v 2 t 2 knot[v][t] 6 value 0.204300
v 2 t 3 knot[v][t] 8 value 0.502500
v 2 t 4 knot[v][t] 5 value 0.767800
v 2 t 5 knot[v][t] 10 value 0.999800

Min/Max x-values:
v 1 min 0.000000 max 1.000000
v 2 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000250
m 0 v 1 t 5 I 422716224254.840150000000000 zero 1 1 2 1 M=3, onM=2
m 1 v 2 t 5 I 50602287774.648834000000000 zero 1 1 2 1 M=5, onM=4
m 0 v 2 t 5 I 8253259926.488828700000000 zero 1 1 2 1 M=7, onM=6
m 0 v 2 t 4 I 14910739.498952884000000 zero 1 1 2 1 M=9, onM=7
m 0 v 2 t 2 I 24541784.041385669000000 zero 1 1 2 1 M=11, onM=8
m 0 v 1 t 4 I 2643745.749466502600000 zero 1 1 2 1 M=13, onM=9
m 0 v 1 t 4 I 0.000000000000000 zero 1 1 2 0 M=14, onM=9
For N=10, onM=9, lof_all= 1.#INF00000000000
Alg3
lof_bst= 2643.756863027096600 with J_bst:

646

 1 2 3 4 5 6 7 8 9
 1 1 1 1 1 1 1 1 0
linear lof_bst is 2643.761193983883000
quintic lof_bst is 198.886293763002160
quintic lof_bst without penalty is lof*0.010000000000000=1.988862937630022
m 1 split 1 cov 1 knots -0.216160 0.570040 0.783840 s -1
m 2 split 1 cov 1 knots 0.249340 0.570040 0.783840 s 1
m 3 split 1 cov 1 knots -0.216160 0.570040 0.783840 s -1
m 3 split 2 cov 2 knots 0.004500 1.004300 1.004500 s -1
m 4 split 1 cov 1 knots -0.216160 0.570040 0.783840 s -1
m 4 split 2 cov 2 knots 1.004000 1.004300 1.004500 s 1
m 5 split 1 cov 2 knots 0.772300 1.004300 1.004500 s -1
m 6 split 1 cov 2 knots 1.004000 1.004300 1.004500 s 1
m 7 split 1 cov 2 knots -0.023200 0.540300 0.772300 s -1
m 8 split 1 cov 2 knots -0.791000 -0.586700 -0.280250 s –1

MARS Metamodel of Prediction Errors for Vol in Iteration II – Step 4 (with 6 data points
and 6 validation points):
The responses should be multiplied by 1k.
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 2, 0, 12, 12, 50, 3, 1
v 1 count[v] 9 levels
v 2 count[v] 10 levels
T set to p-2 (7).
Warning: Knots distributed asymmetrically over levels of covariate 2.
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 11 value 0.187100
v 1 t 2 knot[v][t] 8 value 0.224200
v 1 t 3 knot[v][t] 10 value 0.499600
v 1 t 4 knot[v][t] 6 value 0.500000
v 1 t 5 knot[v][t] 5 value 0.500900
v 1 t 6 knot[v][t] 9 value 0.786200
v 1 t 7 knot[v][t] 12 value 0.809600

v 2 t 1 knot[v][t] 7 value 0.001200
v 2 t 2 knot[v][t] 11 value 0.201700
v 2 t 3 knot[v][t] 6 value 0.204300
v 2 t 4 knot[v][t] 8 value 0.502500
v 2 t 5 knot[v][t] 5 value 0.767800
v 2 t 6 knot[v][t] 12 value 0.815400
v 2 t 7 knot[v][t] 10 value 0.999800

Min/Max x-values:
v 1 min 0.000000 max 1.000000
v 2 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000208
m 0 v 1 t 7 I 621225387227118.620000000000000 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 6 I 563769260568713.000000000000000 zero 1 1 2 1 M=5, onM=3
m 0 v 1 t 2 I 143945428054018.940000000000000 zero 1 1 2 1 M=7, onM=4
m 0 v 2 t 3 I 7161540023987.430700000000000 zero 1 1 2 1 M=9, onM=6
m 0 v 2 t 6 I 2680587765498.110400000000000 zero 1 1 2 1 M=11, onM=7
m 9 v 1 t 5 I 304802422458.856750000000000 zero 1 1 2 1 M=13, onM=9
m 7 v 1 t 5 I 63536933803.304916000000000 zero 1 1 2 1 M=15, onM=11
m 8 v 1 t 3 I 0.000001552017532 zero 1 1 2 1 M=17, onM=11

647

For N=12, onM=11, lof_all= 1.#INF00000000000
Alg3
lof_bst= 35267651.525962584000000 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11
 1 1 1 1 1 1 1 1 1 1 0
lof_bst= 19061327.902506381000000 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11
 1 1 1 1 1 1 1 1 1 0 0
linear lof_bst is 19285221.624043379000000
quintic lof_bst is 319236200.270192330000000
quintic lof_bst without penalty is lof*0.027777777777778=8867672.229727564400000

m 1 split 1 cov 1 knots 0.594383 0.617783 0.652883 s -1
m 2 split 1 cov 1 knots 0.594383 0.617783 0.808183 s 1
m 3 split 1 cov 1 knots 0.008983 0.570983 0.594383 s -1
m 4 split 1 cov 1 knots -0.777217 -0.553017 -0.216717 s -1
m 5 split 1 cov 2 knots -0.794633 -0.590333 -0.283883 s -1
m 6 split 1 cov 2 knots -0.794633 -0.590333 0.020767 s 1
m 7 split 1 cov 2 knots 0.020767 0.631867 0.816467 s -1
m 8 split 1 cov 2 knots -0.183533 0.631867 0.816467 s -1
m 8 split 2 cov 1 knots -0.500517 0.000383 0.499483 s -1
m 9 split 1 cov 2 knots -0.183533 0.631867 0.816467 s -1
m 9 split 2 cov 1 knots -0.500517 0.000383 0.499483 s 1

MARS Metamodel of Prediction Errors for Cost in Iteration II – Step 4 (with 6 data points
and 6 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 2, 0, 12, 12, 50, 3, 1
v 1 count[v] 9 levels
v 2 count[v] 10 levels
T set to p-2 (7).
Warning: Knots distributed asymmetrically over levels of covariate 2.
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 11 value 0.187100
v 1 t 2 knot[v][t] 8 value 0.224200
v 1 t 3 knot[v][t] 10 value 0.499600
v 1 t 4 knot[v][t] 6 value 0.500000
v 1 t 5 knot[v][t] 5 value 0.500900
v 1 t 6 knot[v][t] 9 value 0.786200
v 1 t 7 knot[v][t] 12 value 0.809600

v 2 t 1 knot[v][t] 7 value 0.001200
v 2 t 2 knot[v][t] 11 value 0.201700
v 2 t 3 knot[v][t] 6 value 0.204300
v 2 t 4 knot[v][t] 8 value 0.502500
v 2 t 5 knot[v][t] 5 value 0.767800
v 2 t 6 knot[v][t] 12 value 0.815400
v 2 t 7 knot[v][t] 10 value 0.999800

Min/Max x-values:
v 1 min 0.000000 max 1.000000
v 2 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000208
m 0 v 1 t 7 I 6993899343.225333200000000 zero 1 1 2 1 M=3, onM=2
m 0 v 1 t 6 I 10478966729.657942000000000 zero 1 1 2 1 M=5, onM=3

648

m 3 v 2 t 2 I 2961799047.788775900000000 zero 1 1 2 1 M=7, onM=5
m 3 v 2 t 3 I 683032866.399371030000000 zero 1 1 2 1 M=9, onM=6
m 0 v 2 t 4 I 98909051.808867946000000 zero 1 1 2 1 M=11, onM=8
m 1 v 2 t 5 I 2757207.572606816400000 zero 1 1 2 1 M=13, onM=10
m 0 v 2 t 5 I 185920.509375761990000 zero 1 1 2 1 M=15, onM=11
m 0 v 2 t 5 I 0.000000000000000 zero 1 1 2 0 M=16, onM=11
For N=12, onM=11, lof_all= 1.#INF00000000000
Alg3
lof_bst= 53.417769237333374 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11
 1 1 1 1 1 1 1 1 1 0 1
linear lof_bst is 428.554112511562890
quintic lof_bst is 2094.049693607996700
quintic lof_bst without penalty is lof*0.006944444444444=14.542011761166643
m 1 split 1 cov 1 knots 0.594383 0.617783 0.652883 s -1
m 2 split 1 cov 1 knots 0.594383 0.617783 0.808183 s 1
m 3 split 1 cov 1 knots -0.215217 0.570983 0.594383 s -1
m 4 split 1 cov 1 knots -0.215217 0.570983 0.594383 s -1
m 4 split 2 cov 2 knots -0.797233 -0.595533 -0.592933 s -1
m 5 split 1 cov 1 knots -0.215217 0.570983 0.594383 s -1
m 5 split 2 cov 2 knots -0.599433 -0.595533 -0.592933 s 1
m 6 split 1 cov 1 knots -0.215217 0.570983 0.594383 s -1
m 6 split 2 cov 2 knots -0.592933 -0.590333 -0.586433 s -1
m 7 split 1 cov 2 knots -0.496433 0.006067 0.271367 s -1
m 8 split 1 cov 2 knots -0.391883 0.006067 0.271367 s 1
m 9 split 1 cov 1 knots 0.594383 0.617783 0.652883 s -1
m 9 split 2 cov 2 knots -0.026833 0.536667 0.768867 s -1
m 10 split 1 cov 2 knots 0.271367 0.536667 0.768867 s –1

Final MARS Metamodel of Responses for Vol (with 8 data points and 6 validation points):
The responses should be multiplied by 1k.
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 2, 0, 14, 14, 50, 3, 1
v 1 count[v] 11 levels
v 2 count[v] 12 levels
T set to p-2 (9).
Warning: Knots distributed asymmetrically over levels of covariate 2.
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 13 value 0.187100
v 1 t 2 knot[v][t] 7 value 0.202100
v 1 t 3 knot[v][t] 10 value 0.224200
v 1 t 4 knot[v][t] 12 value 0.499600
v 1 t 5 knot[v][t] 6 value 0.500000
v 1 t 6 knot[v][t] 5 value 0.500900
v 1 t 7 knot[v][t] 11 value 0.786200
v 1 t 8 knot[v][t] 8 value 0.799300
v 1 t 9 knot[v][t] 14 value 0.809600

v 2 t 1 knot[v][t] 9 value 0.001200
v 2 t 2 knot[v][t] 8 value 0.199600
v 2 t 3 knot[v][t] 13 value 0.201700
v 2 t 4 knot[v][t] 6 value 0.204300
v 2 t 5 knot[v][t] 10 value 0.502500
v 2 t 6 knot[v][t] 5 value 0.767800
v 2 t 7 knot[v][t] 7 value 0.802100
v 2 t 8 knot[v][t] 14 value 0.815400

649

v 2 t 9 knot[v][t] 12 value 0.999800

Min/Max x-values:
v 1 min 0.000000 max 1.000000
v 2 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000179
m 0 v 1 t 6 I 13964451127484424.000000000000000 zero 1 1 2 1 M=3, onM=2
m 2 v 2 t 2 I 3041069350555118.500000000000000 zero 1 1 2 1 M=5, onM=4
m 0 v 2 t 1 I 336570851093858.440000000000000 zero 1 1 2 1 M=7, onM=6
m 6 v 1 t 7 I 53706319880319.062000000000000 zero 1 1 2 1 M=9, onM=8
m 6 v 1 t 3 I 14911004903154.381000000000000 zero 1 1 2 1 M=11, onM=9
m 6 v 1 t 9 I 13637584247.136438000000000 zero 1 1 2 1 M=13, onM=10
m 0 v 1 t 4 I 538625124.816079740000000 zero 1 1 2 1 M=15, onM=11
m 13 v 2 t 5 I 24754069.548083205000000 zero 1 1 2 1 M=17, onM=13
m 0 v 2 t 6 I 0.001997870607497 zero 1 1 2 1 M=19, onM=13
For N=14, onM=13, lof_all= 1.#INF00000000000
Alg3
lof_bst= 15745.356707442419000 with J_bst:
 1 2 3 4 5 6 7 8 9 10 11 12 13
 1 1 1 1 1 1 1 1 1 1 1 0 1
lof_bst= 9372.505216306077300 with J_bst:
1 2 3 4 5 6 7 8 9 10 11 12 13
 1 1 1 1 1 1 1 1 1 1 1 0 0
linear lof_bst is 26676.326120175963000
quintic lof_bst is 4180792285.069392700000000
quintic lof_bst without penalty is lof*0.020408163265306=85322291.53202842200000
0
m 1 split 1 cov 1 knots -0.000914 0.000386 0.002336 s -1
m 2 split 1 cov 1 knots -0.000914 0.000386 0.499486 s 1
m 3 split 1 cov 1 knots -0.276314 0.000386 0.285686 s 1
m 3 split 2 cov 2 knots -0.798529 -0.600129 -0.302529 s -1
m 4 split 1 cov 1 knots -0.276314 0.000386 0.285686 s 1
m 4 split 2 cov 2 knots -0.798529 -0.600129 0.200271 s 1
m 5 split 1 cov 2 knots -0.998129 -0.996929 -0.995129 s -1
m 6 split 1 cov 2 knots -0.998129 -0.996929 0.001871 s 1
m 7 split 1 cov 2 knots -0.998129 -0.996929 -0.798529 s 1
m 7 split 2 cov 1 knots 0.285686 0.570986 0.594386 s -1
m 8 split 1 cov 2 knots -0.998129 -0.996929 -0.798529 s 1
m 8 split 2 cov 1 knots 0.535886 0.570986 0.594386 s 1
m 9 split 1 cov 2 knots -0.998129 -0.996929 -0.798529 s 1
m 9 split 2 cov 1 knots -0.777214 -0.553014 -0.276314 s -1
m 10 split 1 cov 2 knots -0.998129 -0.996929 -0.798529 s 1
m 10 split 2 cov 1 knots 0.594386 0.617786 0.652886 s -1
m 11 split 1 cov 1 knots -0.501814 -0.002214 -0.000914 s –1

Final MARS Metamodel of Responses for Cost (with 8 data points and 6 validation points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 2, 0, 14, 14, 50, 3, 1
v 1 count[v] 11 levels
v 2 count[v] 12 levels
T set to p-2 (9).
Warning: Knots distributed asymmetrically over levels of covariate 2.
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 13 value 0.187100
v 1 t 2 knot[v][t] 7 value 0.202100

650

v 1 t 3 knot[v][t] 10 value 0.224200
v 1 t 4 knot[v][t] 12 value 0.499600
v 1 t 5 knot[v][t] 6 value 0.500000
v 1 t 6 knot[v][t] 5 value 0.500900
v 1 t 7 knot[v][t] 11 value 0.786200
v 1 t 8 knot[v][t] 8 value 0.799300
v 1 t 9 knot[v][t] 14 value 0.809600

v 2 t 1 knot[v][t] 9 value 0.001200
v 2 t 2 knot[v][t] 8 value 0.199600
v 2 t 3 knot[v][t] 13 value 0.201700
v 2 t 4 knot[v][t] 6 value 0.204300
v 2 t 5 knot[v][t] 10 value 0.502500
v 2 t 6 knot[v][t] 5 value 0.767800
v 2 t 7 knot[v][t] 7 value 0.802100
v 2 t 8 knot[v][t] 14 value 0.815400
v 2 t 9 knot[v][t] 12 value 0.999800

Min/Max x-values:
v 1 min 0.000000 max 1.000000
v 2 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000179
m 0 v 1 t 6 I 562685817939.216190000000000 zero 1 1 2 1 M=3, onM=2
m 0 v 2 t 5 I 78881631025.950470000000000 zero 1 1 2 1 M=5, onM=4
m 3 v 1 t 8 I 12798869263.519903000000000 zero 1 1 2 1 M=7, onM=6
m 4 v 1 t 9 I 1677706339.461287700000000 zero 1 1 2 1 M=9, onM=8
m 0 v 1 t 3 I 123697458.871668280000000 zero 1 1 2 1 M=11, onM=9
m 9 v 2 t 3 I 535854.928281072290000 zero 1 1 2 1 M=13, onM=11
m 0 v 2 t 8 I 24580.374692539062000 zero 1 1 2 1 M=15, onM=12
m 0 v 2 t 4 I 83.420381156008816 zero 1 1 2 1 M=17, onM=13
m 0 v 2 t 4 I 0.000000000000000 zero 1 1 2 0 M=18, onM=13
For N=14, onM=13, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.116793045816546 with J_bst:
1 2 3 4 5 6 7 8 9 10 11 12 13
 1 1 1 1 1 1 1 1 1 1 1 1 0
linear lof_bst is 0.117325671701268
quintic lof_bst is 60.439011743304562
quintic lof_bst without penalty is lof*0.005102040816327=0.308362304812778
m 1 split 1 cov 1 knots -0.276314 0.000386 0.415436 s -1
m 2 split 1 cov 1 knots -0.276314 0.000386 0.499486 s 1
m 3 split 1 cov 2 knots -0.496829 0.005671 0.318571 s -1
m 4 split 1 cov 2 knots -0.463679 0.005671 0.318571 s 1
m 5 split 1 cov 2 knots -0.295129 0.005671 0.456871 s -1
m 5 split 2 cov 1 knots 0.022086 0.597186 0.607486 s -1
m 6 split 1 cov 2 knots -0.295129 0.005671 0.456871 s -1
m 6 split 2 cov 1 knots 0.581736 0.597186 0.607486 s 1
m 7 split 1 cov 2 knots -0.295129 0.005671 0.503171 s 1
m 7 split 2 cov 1 knots 0.607486 0.617786 0.633236 s -1
m 8 split 1 cov 2 knots -0.295129 0.005671 0.503171 s 1
m 8 split 2 cov 1 knots 0.607486 0.617786 0.808186 s 1
m 9 split 1 cov 1 knots -0.777214 -0.553014 -0.276314 s -1
m 10 split 1 cov 1 knots -0.777214 -0.553014 -0.216714 s -1
m 10 split 2 cov 2 knots -0.797629 -0.595929 -0.295129 s -1
m 11 split 1 cov 1 knots -0.777214 -0.553014 -0.216714 s -1
m 11 split 2 cov 2 knots -0.797629 -0.595929 -0.295129 s 1
m 12 split 1 cov 2 knots 0.318571 0.631471 0.816071 s –1

MARS Metamodel of Responses for Vol with Currin’s Method (with 14 data points):
The responses should be multiplied by 1k.

651

qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 2, 0, 14, 14, 50, 3, 1
v 1 count[v] 7 levels
v 2 count[v] 12 levels
T set to p-2 (5).
Warning: Knots distributed asymmetrically over levels of covariate 2.
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 6 value 0.224200
v 1 t 2 knot[v][t] 8 value 0.499600
v 1 t 3 knot[v][t] 5 value 0.500900
v 1 t 4 knot[v][t] 14 value 0.695300
v 1 t 5 knot[v][t] 7 value 0.786200

v 2 t 1 knot[v][t] 5 value 0.001200
v 2 t 2 knot[v][t] 12 value 0.306700
v 2 t 3 knot[v][t] 13 value 0.502200
v 2 t 4 knot[v][t] 11 value 0.690000
v 2 t 5 knot[v][t] 8 value 0.999800

Min/Max x-values:
v 1 min 0.000000 max 1.000000
v 2 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000179
m 0 v 1 t 4 I 21153270704470560.000000000000000 zero 1 1 2 1 M=3, onM=2
m 2 v 2 t 2 I 2871077576538964.000000000000000 zero 1 1 2 1 M=5, onM=4
m 0 v 2 t 1 I 226329607510409.160000000000000 zero 1 1 2 1 M=7, onM=6
m 6 v 1 t 1 I 93250906819148.141000000000000 zero 1 1 2 1 M=9, onM=8
m 0 v 2 t 2 I 20436006647032.305000000000000 zero 1 1 2 1 M=11, onM=9
m 0 v 1 t 5 I 2510813171017.603500000000000 zero 1 1 2 1 M=13, onM=10
m 1 v 2 t 4 I 0.153360606386285 zero 1 1 2 1 M=15, onM=11
m 0 v 2 t 5 I 0.085556872945454 zero 1 1 2 1 M=17, onM=12
m 0 v 2 t 5 I 0.071798856600192 zero 1 1 2 1 M=19, onM=12
For N=14, onM=12, lof_all= 0.000012327228356
Alg3
linear lof_bst is 864.330273024335720
quintic lof_bst is 615672484.325671430000000
quintic lof_bst without penalty is lof*0.005102040816327=3141186.144518731600000

m 1 split 1 cov 1 knots -0.262729 0.432571 0.523471 s -1
m 2 split 1 cov 1 knots 0.296221 0.432571 0.523471 s 1
m 3 split 1 cov 1 knots -0.024479 0.432571 0.737271 s 1
m 3 split 2 cov 2 knots -0.652614 -0.347114 0.036186 s -1
m 4 split 1 cov 1 knots -0.024479 0.432571 0.737271 s 1
m 4 split 2 cov 2 knots -0.652614 -0.347114 0.036186 s 1
m 5 split 1 cov 2 knots -0.959314 -0.958114 -0.956314 s -1
m 6 split 1 cov 2 knots -0.959314 -0.958114 -0.652614 s 1
m 7 split 1 cov 2 knots -0.959314 -0.958114 -0.652614 s 1
m 7 split 2 cov 1 knots -0.733829 -0.509629 -0.173329 s -1
m 8 split 1 cov 2 knots -0.959314 -0.958114 -0.652614 s 1
m 8 split 2 cov 1 knots -0.733829 -0.509629 -0.038529 s 1
m 9 split 1 cov 2 knots -0.652614 -0.347114 0.111136 s -1
m 10 split 1 cov 1 knots 0.523471 0.614371 0.750721 s -1
m 11 split 1 cov 1 knots -0.038529 0.432571 0.737271 s -1
m 11 split 2 cov 2 knots 0.036186 0.419486 0.729486 s -1
m 12 split 1 cov 2 knots 0.345986 1.039086 1.039286 s –1

652

MARS Metamodel of Responses for Cost with Currin’s Method (with 14 data points):
qmars.dat
Parameter file is data/marsparm.dat.
X data file is data/x.dat.
Y data file is data/y.dat.
Output file is data/qmars.dat.
circle,n,p,T,N,Mmax,maxIA,alg3
0, 2, 0, 14, 14, 50, 3, 1
v 1 count[v] 7 levels
v 2 count[v] 12 levels
T set to p-2 (5).
Warning: Knots distributed asymmetrically over levels of covariate 2.
Knots based on scaled/actual x-values:
v 1 t 1 knot[v][t] 6 value 0.224200
v 1 t 2 knot[v][t] 8 value 0.499600
v 1 t 3 knot[v][t] 5 value 0.500900
v 1 t 4 knot[v][t] 14 value 0.695300
v 1 t 5 knot[v][t] 7 value 0.786200

v 2 t 1 knot[v][t] 5 value 0.001200
v 2 t 2 knot[v][t] 12 value 0.306700
v 2 t 3 knot[v][t] 13 value 0.502200
v 2 t 4 knot[v][t] 11 value 0.690000
v 2 t 5 knot[v][t] 8 value 0.999800

Min/Max x-values:
v 1 min 0.000000 max 1.000000
v 2 min 0.000000 max 1.000000
mars.qls
EPS2 0.0000000002500 eps3 0.0000000000179
m 0 v 1 t 4 I 858846602267.893920000000000 zero 1 1 2 1 M=3, onM=2
m 0 v 2 t 2 I 64489801799.024834000000000 zero 1 1 2 1 M=5, onM=4
m 1 v 2 t 5 I 13010850810.562563000000000 zero 1 1 2 1 M=7, onM=6
m 4 v 1 t 1 I 1859203636.146642200000000 zero 1 1 2 1 M=9, onM=8
m 3 v 1 t 3 I 66559694.730898231000000 zero 1 1 2 1 M=11, onM=10
m 0 v 1 t 5 I 116668403.846223890000000 zero 1 1 2 1 M=13, onM=11
m 0 v 2 t 3 I 0.839298763277442 zero 1 1 2 1 M=15, onM=12
m 0 v 2 t 5 I 0.032245321227659 zero 1 1 2 1 M=17, onM=13
m 0 v 2 t 5 I 0.000000036194794 zero 1 1 2 1 M=19, onM=13
For N=14, onM=13, lof_all= 1.#INF00000000000
Alg3
lof_bst= 0.000045143582274 with J_bst:
1 2 3 4 5 6 7 8 9 10 11 12 13
 1 1 1 1 1 1 1 1 1 1 1 1 0
linear lof_bst is 1.296527187277450
quintic lof_bst is 651.881924728576340
quintic lof_bst without penalty is lof*0.005102040816327=3.325928187390695
m 1 split 1 cov 1 knots -0.262729 0.432571 0.523471 s -1
m 2 split 1 cov 1 knots 0.296221 0.432571 0.523471 s 1
m 3 split 1 cov 2 knots -0.653814 -0.347114 -0.151614 s -1
m 4 split 1 cov 2 knots -0.640364 -0.347114 -0.151614 s 1
m 5 split 1 cov 1 knots 0.238171 0.432571 0.724171 s -1
m 5 split 2 cov 2 knots 0.345986 1.039086 1.039286 s -1
m 6 split 1 cov 1 knots 0.238171 0.432571 0.724171 s -1
m 6 split 2 cov 2 knots 1.038786 1.039086 1.039286 s 1
m 7 split 1 cov 2 knots -0.653814 -0.347114 0.345986 s 1
m 7 split 2 cov 1 knots -0.733829 -0.509629 -0.232929 s -1
m 8 split 1 cov 2 knots -0.653814 -0.347114 0.345986 s 1
m 8 split 2 cov 1 knots -0.733829 -0.509629 -0.232929 s 1
m 9 split 1 cov 2 knots -0.653814 -0.347114 0.112936 s -1
m 9 split 2 cov 1 knots -0.232929 0.043771 0.238171 s -1
m 10 split 1 cov 2 knots -0.653814 -0.347114 0.112936 s -1
m 10 split 2 cov 1 knots -0.232929 0.043771 0.238171 s 1

653

m 11 split 1 cov 1 knots 0.523471 0.614371 0.750721 s -1
m 12 split 1 cov 2 knots -0.151614 0.043886 0.337136 s –1

B.3.2 Response Surface Metamodels Developed in Section 5.5.2

Regression Analysis for Vol versus R, L, and T:
The regression equation is
Vol = 488518 + 467050 R + 183783 L + 0 T

Predictor Coef Stdev t-ratio p
Constant 488518 84823 5.76 0.005
R 467050 84823 5.51 0.005
L 183783 84823 2.17 0.096
T 0 84823 0.00 1.000

s = 239916 R-sq = 89.7% R-sq(adj) = 82.1%

Analysis of Variance

SOURCE DF SS MS F p
Regression 3 2.01530E+12 6.71766E+11 11.67 0.019
Error 4 2.30238E+11 57559535616
Total 7 2.24553E+12

SOURCE DF SEQ SS
R 1 1.74509E+12
L 1 2.70210E+11
T 1 0

Regression Analysis for Cost versus R, L, and T:
The regression equation is
Cost = 4108 + 3215 R + 983 L + 231 T

Predictor Coef Stdev t-ratio p
Constant 4107.8 299.7 13.71 0.000
R 3215.2 299.7 10.73 0.000
L 982.7 299.7 3.28 0.031
T 231.2 299.7 0.77 0.484

s = 847.7 R-sq = 96.9% R-sq(adj) = 94.6%

Analysis of Variance

654

SOURCE DF SS MS F p
Regression 3 90851440 30283814 42.14 0.002
Error 4 2874456 718614
Total 7 93725896

SOURCE DF SEQ SS
R 1 82698160
L 1 7725829
T 1 427452

Regression Analysis for Cost versus R and L:
The regression equation is
Cost = 4108 + 3215 R + 983 L

Predictor Coef Stdev t-ratio p
Constant 4107.8 287.3 14.30 0.000
R 3215.2 287.3 11.19 0.000
L 982.7 287.3 3.42 0.019

s = 812.6 R-sq = 96.5% R-sq(adj) = 95.1%

Analysis of Variance

SOURCE DF SS MS F p
Regression 2 90423984 45211992 68.46 0.000
Error 5 3301908 660382
Total 7 93725888

SOURCE DF SEQ SS
R 1 82698160
L 1 7725829

B.3.3 FORTRAN Programs Used in SEED in Section 5.5

The FORTRAN program of altcov.f and altcov.params.h used in SEED in Section

5.5 are enclosed in this section. The programs of altcov.f and altcov.params.h are used to

655

adjust entries of the covariance matrix. Other programs used in the integrated process in

SEED are the same as those presented in Appendix A.

Altcov.f:
**
*
 program altcov
*
* This program calculates the alternated correlation matrix, given the
* initial correlation matrix and predicted prediction errors at
* possible new data points.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997
*
**
*
* Input files:
* ------------
* altcov.params.h - parameter file, specifying numdv, numsamp,
* errmax, lambda, fprefix, fprefix2, fprefixnew
* fprefix.cov - initial correlation matrix
* fprefix2.out - predicted prediction errors at possible new data points
*
* Output files:
* -------------
* fprefixnew.cov - alternated correlation matrix
*
* Variables:
* ----------
* inicov = the initial correlation matrix
* newcov = the alternated correlation matrix
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
*
* Local Variables:
* ----------------
* DOUBLE PRECISION
* ----------------
* errpred = the predicted prediction errors associated with each data
* and possible new data points
*
**

 integer numsamp,numdv,numold
 double precision lambda,errmax1,errmax2
 character*20 fprefix,fprefix2,fprefix3,fprefixnew
C
C include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew,
C errmax, lambda, e.g., in the one-variable problem, for the first step:
C numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1',
C fprefixnew='step1altnewp',errmax=0.50,lambda=2.0

656

C
 include 'altcov.params.h'

 double precision inicov(numsamp,numsamp),newcov(numsamp,numsamp),
 & errpred1(numsamp),errpred2(numsamp)
 integer i,j,lenstr
 character*16 ftitle
 character*20 deckfile,deckfile2,deckfile3,outfile

C
C open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files,
C e.g., step1newp.cov, errpred1.out, step1altnewp.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix
 deckfile=ftitle(1:lenstr) // '.cov'

 call getlen(fprefix2,lenstr)
 ftitle=fprefix2
 deckfile2=ftitle(1:lenstr) // '.out'

 call getlen(fprefix3,lenstr)
 ftitle=fprefix3
 deckfile3=ftitle(1:lenstr) // '.out'

 call getlen(fprefixnew,lenstr)
 ftitle=fprefixnew
 outfile=ftitle(1:lenstr) // '.cov'

 open(21,file=deckfile,status='old')
 open(23,file=deckfile2,status='old')
 open(24,file=deckfile3,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,deckfile2,deckfile3,outfile
 print *, numsamp
C
C initialize inicov
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (inicov(i,j),j=1,numsamp)
 close(21)

C
C initialize errpred
C

 print *
 write(6,*) 'Reading in and calculating errpred 1...'
 do 25 i=1,numsamp
 if (i.le.numold) then
 errpred1(i)=0.0
 else
 read(24,*) errpred1(i)
 endif
 if (abs(errpred1(i)).gt.(errmax1)) then
 errpred1(i)=errmax1
 endif
 25 continue
 close(24)

657

 print *
 write(6,*) 'Reading in and calculating errpred 2...'
 do 20 i=1,numsamp
 if (i.le.numold) then
 errpred2(i)=0.0
 else
 read(23,*) errpred2(i)
 endif
 if (abs(errpred2(i)).gt.(errmax2)) then
 errpred2(i)=errmax2
 endif
 20 continue
 close(23)

C
C calculate the alternated correlation matrix
C
 do 30 i=1,numsamp
 do 40 j=i,numsamp
 if (i.eq.j) then
 newcov(i,j)=1.0
 elseif (((i.gt.numold).AND.(j.le.numold)).OR.
 & ((i.le.numold).AND.(j.gt.numold))) then
 newcov(i,j)=inicov(i,j)*(1-1/lambda*(0.5*abs
 & (errpred1(i)/errmax1)+0.5*abs(errpred2(i)/errmax2)))
 & *(1-1/lambda*(0.5*abs(errpred1(j)/errmax1)+
 & 0.5*abs(errpred2(j)/errmax2)))
 newcov(j,i)=newcov(i,j)
 else
 newcov(i,j)=inicov(i,j)
 newcov(j,i)=newcov(i,j)
 endif
 40 continue
 30 continue

C
C write alternated correlation matrix into specified .cov file
C
 do 50 i=1,numsamp
 write(27,79) (newcov(i,j),j=1,numsamp)
 79 format(10(f13.5,1x))
 50 continue
 close(27)

 print *
 write(6,*) 'Alternated correlation matrix written to .cov file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003

658

*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

Altcov.params.h
C**
C *
C Parameter input file for 'altcov' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

 parameter (numdv=2,numsamp=14,numold=12,
 & fprefix='ch5pvit2newp',fprefix2='double1.gau',
 & fprefix3='errpred2_2.gau',
 & fprefixnew='ch5pvit2altnewp',errmax1=342400,
 & errmax2=1310,
 & lambda=2.0)

C
C numdv = # design variables
C numsamp = # samples in data set
C numold = # old data points in the data set
C
C fprefix = prefix of titles of file that stores the initial
C correlation matrix for both old and possible new
C data points
C
C fprefix2 = prefix of titles of file that stores the
C predicted prediction errors at possible new
C data points
C
C fprefixnew = prefix of titles of file that stores the
C alternated correlation matrix for both old and
C possible new data points, with prediction errors
C at these points considered
C

659

C errmax = maximum value of the absolute predicted prediction error
C
C lambda = coefficient used to gauge the adjustment to initial
C correlation matrix
C***

B.3.4 Implementation of SEED in iSIGHT in Section 5.5

Figures presented in this section illustrate how the SEED method is implemented

in iSIGHT. The organization of tasks in Iteration II – Step 7 is shown in Figure B.1.

660

In Iteration I – Step 5, with information from metamodels of prediction errors, we

use five simulation codes in iSIGHT, i.e., Covmat, KrigErrpred, MARSErrpred, Altcov,

and Detcov. Covmat is used to formulate the covariance matrix, KrigErrpred and

MARSErrpred are metamodels to predict prediction errors, Altcov is used to adjust

entries of the covariance matrix, and Detcov is used to calculate the determinant.

Figure B.1 Implementation of E-RCEM in iSIGHT – Iteration II, Step 7

661

Figure B.2 Input Mapping for Covmat.f in SEED – Iteration II, Step 7

Figure B.3 Organization of Input and Output for Altcov.f in SEED – Iteration II,

Step 7

662

A.
APPENDIX C

SUPPORTING MATERIALS FOR THE
INTEGRATED PROCESSES OF METAMODELING
AND DESIGN SPACE EXPLORATION IN E-RCEM

This appendix is intended to supplement the development of the E-RCEM method

in Chapter 6. The computer codes to incorporate design goals and constraints in the

metamodeling process are presented in Section C.1. The organization of the E-RCEM

method in iSIGHT with a single-variable example in Section 6.5 is illustrated in Section

C.2.

663

C.1 FORTRAN PROGRAMS TO INCORPORATE DESIGN GOALS IN
METAMODELING

The FORTRAN programs to incorporate design goals in metamodeling in

Sections 6.3 and 6.5 are listed in this section. To formulate the covariance matrix we use

covmat.f and covdata.params.h; the input and output filenames are specified in

covdata.params.h. To adjust entries of the covariance matrix we use altcov.f and

altcov.params.h. To calculate the determinant of the covariance matrix we use detcov.f

and detcov.params.h.

Covmat.f:
**
*
 program covmat
*
* This program invokes calculation of the correlation matrix given
* information of points and values of theta.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Yao Lin 26 March 2003 / Tim Simpson, 25 Feburary 1998
*
**
*
* Input files:
* ------------
* covdata.params.h - parameter file, specifying numdv, numsamp, fprefix
* .sam - x's of sample points
* .gau.fit - thetas
*
* Output files:
* -------------
* .cov - correlation matrix
*
* Variables:
* ----------
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
*
* Local Variables:
* ----------------
* DOUBLE PRECISION

664

* ----------------
* xmat = numdv x numsamp of sample site locations, scaled [0,1]
*
* INTEGER
* -------
*
**

 integer numdv,numsamp
 character*16 fprefix
C
C include parameter settings for numdv,numsamp,fprefix, e.g., in the
C one-variable problem: numdv=1,numsamp=5,fprefix='step1'
C
 include 'covdata.params.h'

 double precision xmat(numsamp,numdv),cov(numsamp,numsamp),
 & dummy2,thetaray(1,numdv),theta(numdv)
 integer i,j,dummy,lenstr
 character*16 ftitle
 character*20 deckfile,fitsfile,outfile

C
C open necessary .sam, .fit, and .cov files based on 'fprefix' name,
C e.g., in the one-variable problem:
C step1.sam, step1.gau.fit, step1.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix

 deckfile=ftitle(1:lenstr) // '.sam'
 fitsfile=ftitle(1:lenstr) // '.gau.fit'
 outfile=ftitle(1:lenstr) // '.cov'

 open(21,file=deckfile,status='old')
 open(22,file=fitsfile,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,fitsfile,outfile
 print *, numdv,numsamp
C
C initialize xmat and theta arrays
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (xmat(i,j),j=1,numdv)
 close(21)

 print *
 write(6,*) 'Reading in theta parameters...'
 do 20 i=1,1
 read(22,*) dummy,(thetaray(i,j),j=1,numdv),dummy2
 write(6,1000) dummy,(thetaray(i,j),j=1,numdv)
 1000 format(i2,8f9.5)
 20 continue
 close(22)

 do 50 j=1,numdv
 theta(j)=thetaray(1,j)
 50 continue
 write(6,1002) (theta(j),j=1,numdv)

665

 1002 format(8f9.5)

C
C call subroutine to calculate the correlation matrix
C
C input: xmat, theta, numsamp, numdv
C
C output: R - the correlation matrix
C

 call cormat (xmat,cov,numsamp,numdv,theta)

C
C write predicted values to specified .cov file
C
 do 90 i=1,numsamp
 write(27,79) (cov(i,j),j=1,numsamp)
 79 format(10(f13.5,1x))
 90 continue
 close(27)

 print *
 write(6,*) 'Correlation matrix written to specified .cov file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'covdata.params.h'.
*
* With this known, the .sam, .gau.fit, and .cov suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Yao Lin, 3/26/2003; Tim Simpson, 2/15/1998
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

666

*
 subroutine cormat (xmat,cov,numsamp,numdv,theta)
*
*
* This subroutine calculates the correlation matrix and its inverse
*
* Original code developed by:
* Yao Lin 26 March 2003 /
* Tim Simpson 15 February 1998 / Tony Giunta, 12 May 1997
*

*
* Inputs:
* -------
* DOUBLE PRECISION:
* -----------------
* xmat,theta
*
* INTEGER:
* --------
* numdv,numsamp
*
* Outputs:
* --------
* DOUBLE PRECISION:
* -----------------
* cov - the correlation matrix.
*
*

C
C passed variables
C
 integer numdv,numsamp

 double precision xmat(numsamp,numdv),cov(numsamp,numsamp),
 & theta(numdv),R
C
C local variables
C
 integer i,j
C
C calculate terms in the correlation matrix
C
 do 300 i = 1,numsamp
 do 305 j = i,numsamp
 if(i .eq. j) then
 cov(i,j) = 1.0d0
 else
C
C call subroutine to compute spatial correlation function for xmat
C
C input: xmat, theta, numdv, numsamp, i, j
C
C output: R
C
 call scfxmat(R,xmat,theta,numdv,numsamp,i,j)
 cov(i,j) = R
 cov(j,i) = cov(i,j)
 endif
 305 continue
 300 continue
 end

667

C**
C
 subroutine scfxmat(R,xmat,theta,numdv,numsamp,i,j)
C
C Origin: Tim Simpson Date: February 11, 1998
C Modified: Yao Lin Date: March 26, 2003
C
C subroutine to compute spatial correlation function (scf) for
C correlation matrix; NOT to compute scf for r_xhat.
C
C Output:
C -------
C R = value of correlation function between two sample points,
C given theta
C
C Input:
C ------
C xmat = matrix of sample points
C theta = array of theta values
C i,j = i_th and j_th elements of correlation matrix for which
C correlation function is being computed
C
C All variables except R are unchanged upon exiting
C
C**
C
C passed variables
C
 integer i,j,numdv,numsamp
 double precision R,xmat(numsamp,numdv),theta(numdv)
C
C local variables
C
 double precision sum,thetadist,dist
 integer k

 sum=0.0d0
 do 120 k = 1,numdv
 dist = ABS(xmat(i,k)-xmat(j,k))
 sum = sum + theta(k)*((dist)**2)
 120 continue
 R = exp(-1.0d0*sum)

 return
 end

Covdata.params.h:
C**
C *
C Parameter input file for 'covmat' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for calculating the covariance
C matrix and its determinant
C

 parameter (numdv=1,numsamp=11,fprefix='suit3valid')

668

C
C numdv = # design variables
C numsamp = # samples in data set
C
C fprefix = prefix of titles of files to opened/used
C
C**

Altcov.f:
**
*
 program altcov
*
* This program calculates the alternated correlation matrix, given the
* initial correlation matrix and predicted prediction errors at
* possible new data points.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997
*
**
*
* Input files:
* ------------
* altcov.params.h - parameter file, specifying numdv, numsamp,
* errmax, lambda, fprefix, fprefix2, fprefixnew
* fprefix.cov - initial correlation matrix
* fprefix2.out - predicted prediction errors at possible new data points
*
* Output files:
* -------------
* fprefixnew.cov - alternated correlation matrix
*
* Variables:
* ----------
* inicov = the initial correlation matrix
* newcov = the alternated correlation matrix
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
*
* Local Variables:
* ----------------
* DOUBLE PRECISION
* ----------------
* errpred = the predicted prediction errors associated with each data
* and possible new data points
*
**

 integer numsamp
 double precision lambda,errmax,gamma,TargetH,TargetL,TargetS
 double precision y1max,y1min,yconstant
 character TargetType
 character*16 fprefix,fprefix2,fprefixnew,fprefix3
C

669

C include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew,
C errmax, lambda, e.g., in the one-variable problem, for the first step:
C numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1',
C fprefixnew='step1altnewp',errmax=0.50,lambda=2.0
C
 include 'altcov.params.h'

 double precision inicov(numsamp,numsamp),newcov(numsamp,numsamp),
 & errpred(numsamp),goalachieve(numsamp),responsey1(numsamp),
 & response,goalachievement
 integer i,j,lenstr
 character*16 ftitle
 character*20 deckfile,deckfile2,deckfile3,outfile

C
C open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files,
C e.g., step1newp.cov, errpred1.out, step1altnewp.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix
 deckfile=ftitle(1:lenstr) // '.cov'

 call getlen(fprefix2,lenstr)
 ftitle=fprefix2
 deckfile2=ftitle(1:lenstr) // '.dat'

 call getlen(fprefixnew,lenstr)
 ftitle=fprefixnew
 outfile=ftitle(1:lenstr) // '.cov'

 call getlen(fprefix3,lenstr)
 ftitle=fprefix3
 deckfile3=ftitle(1:lenstr) // '.dat'

 open(21,file=deckfile,status='old')
 open(23,file=deckfile2,status='old')
 open(25,file=deckfile3,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,deckfile2,deckfile3,outfile
 print *, numsamp
C
C initialize inicov
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (inicov(i,j),j=1,numsamp)
 close(21)

C
C initialize errpred
C
 print *
 write(6,*) 'Reading in and calculating errpred...'
 do 20 i=1,numsamp
 if (i.le.numold) then
 errpred(i)=0.0
 else
 read(23,*) errpred(i)
 endif
 if (abs(errpred(i)).gt.(errmax)) then

670

 errpred(i)=errmax
 endif
 20 continue
 close(23)

 print *
 write(6,*)
 & 'Reading in responses and calculating goal.achievement...'
 do 60 i=1,numsamp
 read(25,*) responsey1(i)
 response=responsey1(i)+yconstant
 if (TargetType.eq.'H') then
 call Hgoalachievecal(goalachievement,TargetH,
 & response,y1max,y1min,gamma)
 goalachieve(i)=goalachievement
 else if (TargetType.eq.'L') then
 call Lgoalachievecal(goalachievement,TargetL,
 & response,y1max,y1min,gamma)
 goalachieve(i)=goalachievement
 else if (TargetType.eq.'S') then
 call Sgoalachievecal(goalachievement,TargetS,
 & response,y1max,y1min,gamma)
 goalachieve(i)=goalachievement
 endif
 60 continue
 close(25)

C
C calculate the alternated correlation matrix
C
 do 30 i=1,numsamp
 do 40 j=i,numsamp
 if (i.eq.j) then
 newcov(i,j)=1.0
 elseif (((i.le.numold).AND.(j.le.numold)).OR.
 & ((i.gt.numold).AND.(j.gt.numold))) then
 newcov(i,j)=inicov(i,j)
 newcov(j,i)=newcov(i,j)
 elseif (((i.le.numold).AND.(j.gt.numold)).OR.
 & ((i.gt.numold).AND.(j.le.numold))) then
 if (inicov(i,j).eq.1) then
 newcov(i,j)=inicov(i,j)
 newcov(j,i)=newcov(i,j)
 elseif (inicov(i,j).lt.1) then
 newcov(i,j)=inicov(i,j)
 & *(1-abs(errpred(i)/lambda/errmax))
 & *(1-goalachieve(i))
 & *(1-abs(errpred(j)/errmax/lambda))
 & *(1-goalachieve(j))
 newcov(j,i)=newcov(i,j)
 endif
 endif
 40 continue
 30 continue

C
C write alternated correlation matrix into specified .cov file
C
 do 50 i=1,numsamp
 write(27,79) (newcov(i,j),j=1,numsamp)
 79 format(10(f13.5,1x))
 50 continue
 close(27)

671

 print *
 write(6,*) 'Alternated correlation matrix written to .cov file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

*
 subroutine Hgoalachievecal(goalachievement,TargetH,
 & response,y1max,y1min,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetH,response

672

 double precision y1max,y1min,gamma

 if (response.le.y1min) then
 goalachievement=0.00000000
 else if (response.ge.min(TargetH,y1max)) then
 goalachievement=1.0/gamma
 else
 goalachievement=(response-y1min)/
 & (min(TargetH,y1max)-y1min)/gamma
 endif

 return
 end

*
 subroutine Lgoalachievecal(goalachievement,TargetL,
 & response,y1max,y1min,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetL,response
 double precision y1max,y1min,gamma

 if (response.ge.y1max) then
 goalachievement=0.0000000000
 else if (response.le.max(TargetL,y1min)) then
 goalachievement=1.0/gamma
 else
 goalachievement=(y1max-response)/
 & (y1max-max(y1min,TargetL))/gamma
 endif

 return
 end

*
 subroutine Sgoalachievecal(goalachievement,TargetS,
 & response,y1max,y1min,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003

673

*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetS,response
 double precision y1max,y1min,gamma

 if (response.ge.y1max) then
 goalachievement=0.00000000
 else if (response.le.y1min) then
 goalachievement=0.00000000
 else if (response.eq.TargetS) then
 goalachievement=1.0/gamma
 else if (response<TargetS.AND.response>y1min) then
 goalachievement=(response-y1min)/(TargetS-y1min)/gamma
 else if (response>TargetS.AND.response<y1max) then
 goalachievement=(response-TargetS)/(y1max-TargetS)/gamma
 endif

 return
 end

Altcov.params.h:
C**
C *
C Parameter input file for 'altcov' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

 parameter (numdv=1,numsamp=11,numold=10,
 & fprefix='suit3valid',fprefix2='marspline1',
 & fprefixnew='suit3altvalid',
 & fprefix3='marspline',
 & errmax=1.1,lambda=2.0,
 & y1max=0.0,y1min=-1.45,TargetL=-1.6,
 & TargetH=-1.0,TargetS=-1.0,
 & TargetType='L',
 & yconstant=0.0,
 & gamma=1.25)

C
C numdv = # design variables
C numsamp = # samples in data set
C numold = # old data points in the data set
C
C fprefix = prefix of titles of file that stores the initial
C correlation matrix for both old and possible new
C data points
C
C fprefix2 = prefix of titles of file that stores the
C predicted prediction errors at possible new
C data points
C
C fprefix3 = prefix of titles of file that stores the

674

C predicted response values at all points
C
C
C fprefixnew = prefix of titles of file that stores the
C alternated correlation matrix for both old and
C possible new data points, with prediction errors
C at these points considered
C
C errmax = maximum value of the absolute predicted prediction error
C
C lambda = coefficient used to gauge the adjustment to initial
C correlation matrix
C
C***

Detcov.f:
C***
C
 program detcov
C
C This program calculates the determinant given a matrix. Particularly,
C in SEED, it is used to calculate the determinant of the
C correlation matrix.
C
C Updated by: Yao Lin, March 26, 2003
C
C Original code developed by:
C Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997
C
C**
C
C Input files:
C ------------
C detcov.params.h - parameter file, specifying numdv, numsamp,
C coedet, fprefix
C .cov - correlation matrix
C
C Output files:
C -------------
C .det - determinant of the correlation matrix
C
C Variables:
C ----------
C cov = the input correlation matrix for which we calculate
C determinant
C
C Parameter Variables (to be specified by user in dace.params.h):
C --
C numsamp = number of data samples from which the correlation matrix
C is calculated
C
C Local Variables:
C ----------------
C DOUBLE PRECISION
C ----------------
C work = vector of length 'numsamp' used as temporary storage
C invmat = inverse of the correlation matrix (numsamp x numsamp)
C

675

C INTEGER
C -------
C ipvt = vector of length 'numsamp' of pivot locations
C
C***

 integer numsamp
 double precision coedet
 character*16 fprefix
C
C include parameter settings for numdv,numsamp,fprefix
C
 include 'detcov.params.h'

C***
C
C include LINPACK routines used to find determinant of correlation matrix
C
C***

C include 'dgefa.f'
C include 'dgedi.f'

C***

 double precision cov(numsamp,numsamp),work(numsamp),
 & dummy2,detR,det(2),rcond,z(numsamp)
 integer i,j,ipvt(numsamp),dummy,lenstr,info
 character*16 ftitle
 character*20 deckfile,outfile
 err=0.0000
C
C open necessary .cov and .det files based on 'fprefix' name,
C e.g., step1.cov, step1.det
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix

 deckfile=ftitle(1:lenstr) // '.cov'
 outfile=ftitle(1:lenstr) // '.det'

 open(21,file=deckfile,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,outfile
 print *, numsamp
C
C initialize cov
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (cov(i,j),j=1,numsamp)
 close(21)

C
C Start to calculate the determinant of the correlation matrix;
C initialization.
C
 do 307 i=1,numsamp
 work(i)=0.0d0
 ipvt(i)=0
 307 continue

676

C
C If there is any error in the calculation in DGEFA (singular matrix),
C this program will set the determinant to 0.
C
 call dgeco(cov,numsamp,numsamp,ipvt,rcond,z)
 if(rcond .eq. 0) then
 write(27,78) err
 78 format(10(f13.5,1x))
 close(27)
 go to 1000
 endif
C
C In DGEDI, last flag is: 1 (inverse only), 10 (Det only), 11 (both)
C
 call dgedi(cov, numsamp, numsamp, ipvt, det, work, 10)
 detR=det(1)*10.0d0**det(2)
 detR=coedet*detR

C
C write predicted values to specified .det file
C
 write(27,79) detR
 79 format(10(f13.5,1x))
 close(27)

 print *
 write(6,*) detR
1000 write(6,*) 'Coefficient*Determinant written to .det file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then

677

 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

 subroutine dgeco(a,lda,n,ipvt,rcond,z)
 integer lda,n,ipvt(1)
 double precision a(lda,1),z(1)
 double precision rcond
c
c dgeco factors a double precision matrix by gaussian elimination
c and estimates the condition of the matrix.
c
c if rcond is not needed, dgefa is slightly faster.
c to solve a*x = b , follow dgeco by dgesl.
c to compute inverse(a)*c , follow dgeco by dgesl.
c to compute determinant(a) , follow dgeco by dgedi.
c to compute inverse(a) , follow dgeco by dgedi.
c
c on entry
c
c a double precision(lda, n)
c the matrix to be factored.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c on return
c
c a an upper triangular matrix and the multipliers
c which were used to obtain it.
c the factorization can be written a = l*u where
c l is a product of permutation and unit lower
c triangular matrices and u is upper triangular.
c
c ipvt integer(n)
c an integer vector of pivot indices.
c
c rcond double precision
c an estimate of the reciprocal condition of a .
c for the system a*x = b , relative perturbations
c in a and b of size epsilon may cause
c relative perturbations in x of size epsilon/rcond .
c if rcond is so small that the logical expression
c 1.0 + rcond .eq. 1.0
c is true, then a may be singular to working
c precision. in particular, rcond is zero if
c exact singularity is detected or the estimate
c underflows.
c
c z double precision(n)
c a work vector whose contents are usually unimportant.
c if a is close to a singular matrix, then z is
c an approximate null vector in the sense that
c norm(a*z) = rcond*norm(a)*norm(z) .
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions

678

c
c linpack dgefa
c blas daxpy,ddot,dscal,dasum
c fortran dabs,dmax1,dsign
c
c internal variables
c
 double precision ddot,ek,t,wk,wkm
 double precision anorm,s,dasum,sm,ynorm
 integer info,j,k,kb,kp1,l
c
c
c compute 1-norm of a
c
 anorm = 0.0d0
 do 10 j = 1, n
 anorm = dmax1(anorm,dasum(n,a(1,j),1))
 10 continue
c
c factor
c
 call dgefa(a,lda,n,ipvt,info)
c
c rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
c estimate = norm(z)/norm(y) where a*z = y and trans(a)*y = e .
c trans(a) is the transpose of a . the components of e are
c chosen to cause maximum local growth in the elements of w where
c trans(u)*w = e . the vectors are frequently rescaled to avoid
c overflow.
c
c solve trans(u)*w = e
c
 ek = 1.0d0
 do 20 j = 1, n
 z(j) = 0.0d0
 20 continue
 do 100 k = 1, n
 if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
 if (dabs(ek-z(k)) .le. dabs(a(k,k))) go to 30
 s = dabs(a(k,k))/dabs(ek-z(k))
 call dscal(n,s,z,1)
 ek = s*ek
 30 continue
 wk = ek - z(k)
 wkm = -ek - z(k)
 s = dabs(wk)
 sm = dabs(wkm)
 if (a(k,k) .eq. 0.0d0) go to 40
 wk = wk/a(k,k)
 wkm = wkm/a(k,k)
 go to 50
 40 continue
 wk = 1.0d0
 wkm = 1.0d0
 50 continue
 kp1 = k + 1
 if (kp1 .gt. n) go to 90
 do 60 j = kp1, n
 sm = sm + dabs(z(j)+wkm*a(k,j))
 z(j) = z(j) + wk*a(k,j)
 s = s + dabs(z(j))
 60 continue
 if (s .ge. sm) go to 80
 t = wkm - wk

679

 wk = wkm
 do 70 j = kp1, n
 z(j) = z(j) + t*a(k,j)
 70 continue
 80 continue
 90 continue
 z(k) = wk
 100 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
c
c solve trans(l)*y = w
c
 do 120 kb = 1, n
 k = n + 1 - kb
 if (k .lt. n) z(k) = z(k) + ddot(n-k,a(k+1,k),1,z(k+1),1)
 if (dabs(z(k)) .le. 1.0d0) go to 110
 s = 1.0d0/dabs(z(k))
 call dscal(n,s,z,1)
 110 continue
 l = ipvt(k)
 t = z(l)
 z(l) = z(k)
 z(k) = t
 120 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
c
 ynorm = 1.0d0
c
c solve l*v = y
c
 do 140 k = 1, n
 l = ipvt(k)
 t = z(l)
 z(l) = z(k)
 z(k) = t
 if (k .lt. n) call daxpy(n-k,t,a(k+1,k),1,z(k+1),1)
 if (dabs(z(k)) .le. 1.0d0) go to 130
 s = 1.0d0/dabs(z(k))
 call dscal(n,s,z,1)
 ynorm = s*ynorm
 130 continue
 140 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
 ynorm = s*ynorm
c
c solve u*z = v
c
 do 160 kb = 1, n
 k = n + 1 - kb
 if (dabs(z(k)) .le. dabs(a(k,k))) go to 150
 s = dabs(a(k,k))/dabs(z(k))
 call dscal(n,s,z,1)
 ynorm = s*ynorm
 150 continue
 if (a(k,k) .ne. 0.0d0) z(k) = z(k)/a(k,k)
 if (a(k,k) .eq. 0.0d0) z(k) = 1.0d0
 t = -z(k)
 call daxpy(k-1,t,a(1,k),1,z(1),1)
 160 continue
c make znorm = 1.0
 s = 1.0d0/dasum(n,z,1)

680

 call dscal(n,s,z,1)
 ynorm = s*ynorm
c
 if (anorm .ne. 0.0d0) rcond = ynorm/anorm
 if (anorm .eq. 0.0d0) rcond = 0.0d0
 return
 end

 subroutine dgedi(a,lda,n,ipvt,det,work,job)
 integer lda,n,ipvt(1),job
 double precision a(lda,1),det(2),work(1)
C
C dgedi computes the determinant and inverse of a matrix
C using the factors computed by dgeco or dgefa.
C
C on entry
C
C a double precision(lda, n)
C the output from dgeco or dgefa.
C
C lda integer
C the leading dimension of the array a .
C
C n integer
C the order of the matrix a .
C
C ipvt integer(n)
C the pivot vector from dgeco or dgefa.
C
C work double precision(n)
C work vector. contents destroyed.
C
C job integer
C = 11 both determinant and inverse.
C = 01 inverse only.
C = 10 determinant only.
C
C on return
C
C a inverse of original matrix if requested.
C otherwise unchanged.
C
C det double precision(2)
C determinant of original matrix if requested.
C otherwise not referenced.
C determinant = det(1) * 10.0**det(2)
C with 1.0 .le. dabs(det(1)) .lt. 10.0
C or det(1) .eq. 0.0 .
C
C error condition
C
C a division by zero will occur if the input factor contains
C a zero on the diagonal and the inverse is requested.
C it will not occur if the subroutines are called correctly
C and if dgeco has set rcond .gt. 0.0 or dgefa has set
C info .eq. 0 .
C
C linpack. this version dated 08/14/78 .
C cleve moler, university of new mexico, argonne national lab.
C
C subroutines and functions
C
C blas daxpy,dscal,dswap

681

C fortran dabs,mod
C
C internal variables
C
 double precision t
 double precision ten
 integer i,j,k,kb,kp1,l,nm1
C
C
C compute determinant
C
 if (job/10 .eq. 0) go to 70
 det(1) = 1.0d0
 det(2) = 0.0d0
 ten = 10.0d0
 do 50 i = 1, n
 if (ipvt(i) .ne. i) det(1) = -det(1)
 det(1) = a(i,i)*det(1)
C ...exit
 if (det(1) .eq. 0.0d0) go to 60
 10 if (dabs(det(1)) .ge. 1.0d0) go to 20
 det(1) = ten*det(1)
 det(2) = det(2) - 1.0d0
 go to 10
 20 continue
 30 if (dabs(det(1)) .lt. ten) go to 40
 det(1) = det(1)/ten
 det(2) = det(2) + 1.0d0
 go to 30
 40 continue
 50 continue
 60 continue
 70 continue
C
C compute inverse(u)
C
 if (mod(job,10) .eq. 0) go to 150
 do 100 k = 1, n
 a(k,k) = 1.0d0/a(k,k)
 t = -a(k,k)
 call dscal(k-1,t,a(1,k),1)
 kp1 = k + 1
 if (n .lt. kp1) go to 90
 do 80 j = kp1, n
 t = a(k,j)
 a(k,j) = 0.0d0
 call daxpy(k,t,a(1,k),1,a(1,j),1)
 80 continue
 90 continue
 100 continue
C
C form inverse(u)*inverse(l)
C
 nm1 = n - 1
 if (nm1 .lt. 1) go to 140
 do 130 kb = 1, nm1
 k = n - kb
 kp1 = k + 1
 do 110 i = kp1, n
 work(i) = a(i,k)
 a(i,k) = 0.0d0
 110 continue
 do 120 j = kp1, n
 t = work(j)

682

 call daxpy(n,t,a(1,j),1,a(1,k),1)
 120 continue
 l = ipvt(k)
 if (l .ne. k) call dswap(n,a(1,k),1,a(1,l),1)
 130 continue
 140 continue
 150 continue
 return
 end

 subroutine daxpy(n,da,dx,incx,dy,incy)
C
C constant times a vector plus a vector.
C uses unrolled loops for increments equal to one.
C jack dongarra, linpack, 3/11/78.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dy(*),da
 integer i,incx,incy,ix,iy,m,mp1,n
C
 if(n.le.0)return
 if (da .eq. 0.0d0) return
 if(incx.eq.1.and.incy.eq.1)go to 20
C
C code for unequal increments or equal increments
C not equal to 1
C
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dy(iy) = dy(iy) + da*dx(ix)
 ix = ix + incx
 iy = iy + incy
 10 continue
 return
C
C code for both increments equal to 1
C
C
C clean-up loop
C
 20 m = mod(n,4)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dy(i) = dy(i) + da*dx(i)
 30 continue
 if(n .lt. 4) return
 40 mp1 = m + 1
 do 50 i = mp1,n,4
 dy(i) = dy(i) + da*dx(i)
 dy(i + 1) = dy(i + 1) + da*dx(i + 1)
 dy(i + 2) = dy(i + 2) + da*dx(i + 2)
 dy(i + 3) = dy(i + 3) + da*dx(i + 3)
 50 continue
 return
 end

 subroutine dscal(n,da,dx,incx)
C
C scales a vector by a constant.
C uses unrolled loops for increment equal to one.
C jack dongarra, linpack, 3/11/78.

683

C modified 3/93 to return if incx .le. 0.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision da,dx(*)
 integer i,incx,m,mp1,n,nincx
C
 if(n.le.0 .or. incx.le.0)return
 if(incx.eq.1)go to 20
C
C code for increment not equal to 1
C
 nincx = n*incx
 do 10 i = 1,nincx,incx
 dx(i) = da*dx(i)
 10 continue
 return
C
C code for increment equal to 1
C
C
C clean-up loop
C
 20 m = mod(n,5)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dx(i) = da*dx(i)
 30 continue
 if(n .lt. 5) return
 40 mp1 = m + 1
 do 50 i = mp1,n,5
 dx(i) = da*dx(i)
 dx(i + 1) = da*dx(i + 1)
 dx(i + 2) = da*dx(i + 2)
 dx(i + 3) = da*dx(i + 3)
 dx(i + 4) = da*dx(i + 4)
 50 continue
 return
 end

 subroutine dswap (n,dx,incx,dy,incy)
C
C interchanges two vectors.
C uses unrolled loops for increments equal one.
C jack dongarra, linpack, 3/11/78.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dy(*),dtemp
 integer i,incx,incy,ix,iy,m,mp1,n
C
 if(n.le.0)return
 if(incx.eq.1.and.incy.eq.1)go to 20
C
C code for unequal increments or equal increments not equal
C to 1
C
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dtemp = dx(ix)
 dx(ix) = dy(iy)
 dy(iy) = dtemp
 ix = ix + incx

684

 iy = iy + incy
 10 continue
 return
C
C code for both increments equal to 1
C
C
C clean-up loop
C
 20 m = mod(n,3)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dx(i)
 dx(i) = dy(i)
 dy(i) = dtemp
 30 continue
 if(n .lt. 3) return
 40 mp1 = m + 1
 do 50 i = mp1,n,3
 dtemp = dx(i)
 dx(i) = dy(i)
 dy(i) = dtemp
 dtemp = dx(i + 1)
 dx(i + 1) = dy(i + 1)
 dy(i + 1) = dtemp
 dtemp = dx(i + 2)
 dx(i + 2) = dy(i + 2)
 dy(i + 2) = dtemp
 50 continue
 return
 end

 subroutine dgefa(a,lda,n,ipvt,info)
 integer lda,n,ipvt(1),info
 double precision a(lda,1)
C
C dgefa factors a double precision matrix by gaussian elimination.
C
C dgefa is usually called by dgeco, but it can be called
C directly with a saving in time if rcond is not needed.
C (time for dgeco) = (1 + 9/n)*(time for dgefa) .
C
C on entry
C
C a double precision(lda, n)
C the matrix to be factored.
C
C lda integer
C the leading dimension of the array a .
C
C n integer
C the order of the matrix a .
C
C on return
C
C a an upper triangular matrix and the multipliers
C which were used to obtain it.
C the factorization can be written a = l*u where
C l is a product of permutation and unit lower
C triangular matrices and u is upper triangular.
C
C ipvt integer(n)
C an integer vector of pivot indices.

685

C
C info integer
C = 0 normal value.
C = k if u(k,k) .eq. 0.0 . this is not an error
C condition for this subroutine, but it does
C indicate that dgesl or dgedi will divide by zero
C if called. use rcond in dgeco for a reliable
C indication of singularity.
C
C linpack. this version dated 08/14/78 .
C cleve moler, university of new mexico, argonne national lab.
C
C subroutines and functions
C
C blas daxpy,dscal,idamax
C
C internal variables
C
 double precision t
 integer idamax,j,k,kp1,l,nm1
C
C
C gaussian elimination with partial pivoting
C
 info = 0
 nm1 = n - 1
 if (nm1 .lt. 1) go to 70
 do 60 k = 1, nm1
 kp1 = k + 1
C
C find l = pivot index
C
 l = idamax(n-k+1,a(k,k),1) + k - 1
 ipvt(k) = l
C
C zero pivot implies this column already triangularized
C
 if (a(l,k) .eq. 0.0d0) go to 40
C
C interchange if necessary
C
 if (l .eq. k) go to 10
 t = a(l,k)
 a(l,k) = a(k,k)
 a(k,k) = t
 10 continue
C
C compute multipliers
C
 t = -1.0d0/a(k,k)
 call dscal(n-k,t,a(k+1,k),1)
C
C row elimination with column indexing
C
 do 30 j = kp1, n
 t = a(l,j)
 if (l .eq. k) go to 20
 a(l,j) = a(k,j)
 a(k,j) = t
 20 continue
 call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
 30 continue
 go to 50
 40 continue

686

 info = k
 50 continue
 60 continue
 70 continue
 ipvt(n) = n
 if (a(n,n) .eq. 0.0d0) info = n
 return
 end

 integer function idamax(n,dx,incx)
C
C finds the index of element having max. absolute value.
C jack dongarra, linpack, 3/11/78.
C modified 3/93 to return if incx .le. 0.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dmax
 integer i,incx,ix,n
C
 idamax = 0
 if(n.lt.1 .or. incx.le.0) return
 idamax = 1
 if(n.eq.1)return
 if(incx.eq.1)go to 20
C
C code for increment not equal to 1
C
 ix = 1
 dmax = dabs(dx(1))
 ix = ix + incx
 do 10 i = 2,n
 if(dabs(dx(ix)).le.dmax) go to 5
 idamax = i
 dmax = dabs(dx(ix))
 5 ix = ix + incx
 10 continue
 return
C
C code for increment equal to 1
C
 20 dmax = dabs(dx(1))
 do 30 i = 2,n
 if(dabs(dx(i)).le.dmax) go to 30
 idamax = i
 dmax = dabs(dx(i))
 30 continue
 return
 end

 double precision function dasum(n,dx,incx)
c
c takes the sum of the absolute values.
c jack dongarra, linpack, 3/11/78.
c modified 3/93 to return if incx .le. 0.
c modified 12/3/93, array(1) declarations changed to array(*)
c
 double precision dx(*),dtemp
 integer i,incx,m,mp1,n,nincx
c
 dasum = 0.0d0
 dtemp = 0.0d0
 if(n.le.0 .or. incx.le.0)return
 if(incx.eq.1)go to 20
c

687

c code for increment not equal to 1
c
 nincx = n*incx
 do 10 i = 1,nincx,incx
 dtemp = dtemp + dabs(dx(i))
 10 continue
 dasum = dtemp
 return
c
c code for increment equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,6)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dtemp + dabs(dx(i))
 30 continue
 if(n .lt. 6) go to 60
 40 mp1 = m + 1
 do 50 i = mp1,n,6
 dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2))
 & + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5))
 50 continue
 60 dasum = dtemp
 return
 end

 double precision function ddot(n,dx,incx,dy,incy)
c
c forms the dot product of two vectors.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c modified 12/3/93, array(1) declarations changed to array(*)
c
 double precision dx(*),dy(*),dtemp
 integer i,incx,incy,ix,iy,m,mp1,n
c
 ddot = 0.0d0
 dtemp = 0.0d0
 if(n.le.0)return
 if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dtemp = dtemp + dx(ix)*dy(iy)
 ix = ix + incx
 iy = iy + incy
 10 continue
 ddot = dtemp
 return
c
c code for both increments equal to 1
c
c
c clean-up loop
c

688

 20 m = mod(n,5)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dtemp + dx(i)*dy(i)
 30 continue
 if(n .lt. 5) go to 60
 40 mp1 = m + 1
 do 50 i = mp1,n,5
 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
 & dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
 50 continue
 60 ddot = dtemp
 return
 end

Detcov.params.h:
C**
C *
C Parameter input file for 'detcov' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

 parameter (numdv=1,numsamp=11,fprefix='suit3altvalid',
 & coedet=1e4)
C
C numdv = # design variables
C numsamp = # samples in data set
C
C fprefix = prefix of titles of files to opened/used
C
C coedet = when the value of determinant is very small,
C this coefficient is used to magnify the value.
C
C**

C.2 IMPLEMENTATION OF E-RCEM IN ISIGHT IN SECTION 5.5

Figures presented in this section illustrate how the SEED method is implemented

in iSIGHT. The organization of tasks in Iteration I – Step 7 is shown in Figure C.1. In

Iteration I – Step 7, with information from metamodels of prediction errors, we use five

simulation codes in iSIGHT, i.e., Covmat, Errpred, Response, Altcov, and Detcov.

Covmat is used to formulate the covariance matrix, Errpred is the metamodel to predict

689

prediction errors, Response is the metamodel to predict response values, Altcov is used to

adjust entries of the covariance matrix, and Detcov is used to calculate the determinant.

Figure C.1 Implementation of E-RCEM in iSIGHT – Iteration I, Step 7

690

691

A.
APPENDIX D

DESIGN OF UNIT CELLS FOR LINEAR
CELLULAR ALLOYS: EXPERIMENTS,
SIMULATION RESULTS, PROGRAMS,

METAMODELS, AND PLOTS

This appendix is intended to supplement the application of SEED and E-RCEM

methods in designing unit cells for linear cellular alloys in Chapter 7. The experimental

designs, simulation results, metamodels, and plots developed in Section 7.3 are presented

in Section D.1. Supporting materials for the application of SEED (Section 7.4) and E-

RCEM (Section 7.5) are enclosed in Sections D.2 and D.3, respectively.

692

D.1 EXPLORATION OF DESIGN SOLUTIONS WITH RCEM

In this section we collect supporting materials for studies in Section 7.3.

D.1.1 Latin Hypercube Design with 30 Data Points

Table D.1 Latin Hypercube Design – 30 Data Points Used in RCEM in Section 7.3

Mdot (kg/s) W (m) t (m) Mdot_n W_n t_n Q (W) J (m/N)
0.0005 0.0219 0.0008 0 0.3448 1 -13.64 0.00024
0.00059 0.0171 0.00061 0.03448 0.1034 0.6897 -13.80 0.00041
0.00067 0.0309 0.00078 0.06897 0.7931 0.9655 -13.19 0.00028
0.00076 0.0233 0.00041 0.1034 0.4138 0.3448 -13.27 0.00126
0.00084 0.035 0.00045 0.1379 1 0.4138 -12.01 0.00116
0.00093 0.0295 0.00053 0.1724 0.7241 0.5517 -14.45 0.00070
0.00102 0.0247 0.00072 0.2069 0.4828 0.8621 -16.31 0.00031
0.0011 0.0205 0.00068 0.2414 0.2759 0.7931 -16.01 0.00034
0.00119 0.0191 0.00032 0.2759 0.2069 0.2069 -14.59 0.00225
0.00128 0.0198 0.00057 0.3103 0.2414 0.6207 -15.88 0.00050
0.00136 0.0288 0.0007 0.3448 0.6897 0.8276 -17.76 0.00035
0.00145 0.0322 0.0002 0.3793 0.8621 0 -15.14 0.01122
0.00153 0.0184 0.00051 0.4138 0.1724 0.5172 -15.77 0.00065
0.00162 0.0267 0.00055 0.4483 0.5862 0.5862 -17.69 0.00061
0.00171 0.015 0.0003 0.4828 0 0.1724 -14.53 0.00239
0.00179 0.0212 0.00076 0.5172 0.3103 0.931 -17.43 0.00026
0.00188 0.0157 0.00063 0.5517 0.03448 0.7241 -51.85 0.00037
0.00197 0.0164 0.00039 0.5862 0.06897 0.3103 -15.31 0.00123
0.00205 0.0281 0.00066 0.6207 0.6552 0.7586 -19.29 0.00040
0.00214 0.0226 0.00028 0.6552 0.3793 0.1379 -16.63 0.00356
0.00222 0.0274 0.00024 0.6897 0.6207 0.06897 -17.53 0.00610
0.00231 0.0178 0.00022 0.7241 0.1379 0.03448 -15.26 0.00627
0.0024 0.026 0.00049 0.7586 0.5517 0.4828 -18.67 0.00082
0.00248 0.0343 0.00074 0.7931 0.9655 0.8966 -21.73 0.00032
0.00257 0.0302 0.00026 0.8276 0.7586 0.1034 -18.80 0.00507
0.00266 0.0253 0.00037 0.8621 0.5172 0.2759 -18.31 0.00172
0.00274 0.0316 0.00034 0.8966 0.8276 0.2414 -19.87 0.00241
0.00283 0.0329 0.00043 0.931 0.8966 0.3793 -20.76 0.00128
0.00291 0.0336 0.00059 0.9655 0.931 0.6552 -21.75 0.00056
0.003 0.024 0.00047 1 0.4483 0.4483 -18.51 0.00088

693

D.1.2 MARS Metamodel of Responses Developed with 30 LH Experiments

Qmars.dat for Total Heat Transfer Rate Q:

 3 28
 0.499998333333333 0.499998333333333 0.499998333333333
 0.500000000000000 0.500000000000000 0.500000000000000
 1 1 1 1 1 2
1 2
 -0.339870036111432 -12.773472901115134 -19.863793680013131 -
46.524074229003666 35.691924559997979 13.394144037678506 -
1681.581052686991800 -184.515789535457710 -1198.261206478433200 -
6.568937120765133 -49.284612979016075 87.083329828075918
12.650147584392984 63.973544584529279 49.554777358052647 -
344.571366217510730 94.750374353128009 7.178640037521877 -
52.280639764008647 56.193684386954324 -109.039095462713310
220.209200073127250 30.784057093017406 69.569559469737314 -
50.105432708334561 -6.049454931256710 1.041273408861595
49.915412264619803 353.571628624746100
 -1 1 -0.448296666666667 0.103403333333333 0.551703333333333
 1 1 -0.448296666666667 0.103403333333333 0.551703333333333
 -1 3 0.413803333333333 0.448203333333333 0.499803333333333
 1 3 0.413803333333333 0.448203333333333 0.724103333333333
 -1 3 -0.310296666666667 0.379403333333333 0.413803333333333
 1 3 0.327803333333333 0.379403333333333 0.413803333333333
 -1 2 -0.724096666666667 -0.448196666666667 -0.241296666666667
 1 3 0.327803333333333 0.379403333333333 0.413803333333333
 1 2 -0.724096666666667 -0.448196666666667 -0.241296666666667
 1 1 -0.448296666666667 0.103403333333333 0.517203333333333
 -1 2 -0.862096666666667 -0.724196666666667 -0.517346666666667
 1 1 -0.448296666666667 0.103403333333333 0.517203333333333
 1 2 -0.862096666666667 -0.724196666666667 -0.517296666666667
 -1 3 0.413803333333333 0.448203333333333 0.499803333333333
 -1 2 0.620703333333334 0.724203333333333 0.758703333333333
 -1 3 0.413803333333333 0.448203333333333 0.499803333333333
 1 2 0.672453333333333 0.724203333333333 0.758703333333333
 -1 1 -0.448296666666667 0.103403333333333 0.517203333333333
 -1 2 0.103503333333333 0.379403333333333 0.689703333333333
 -1 1 -0.448296666666667 0.103403333333333 0.517203333333333
 1 2 0.103503333333333 0.379403333333333 0.689703333333333
 -1 3 -0.310296666666667 0.379403333333333 0.413803333333333
 -1 2 0.758703333333333 0.793203333333333 0.844953333333333
 -1 3 -0.310296666666667 0.379403333333333 0.413803333333333
 1 2 0.758703333333333 0.793203333333333 0.896603333333333
 -1 1 -0.034496666666667 0.103403333333333 0.310253333333333
 -1 3 -0.655196666666667 -0.310396666666667 0.000003333333333
 -1 1 -0.034496666666667 0.103403333333333 0.310253333333333

694

 1 3 -0.655196666666667 -0.310396666666667 0.000003333333333
 1 1 -0.034496666666667 0.103403333333333 0.551703333333333
 -1 3 0.000003333333333 0.310403333333333 0.344903333333333
 1 1 -0.034496666666667 0.103403333333333 0.551703333333333
 1 3 0.258653333333333 0.310403333333333 0.344903333333333
 1 3 0.413803333333333 0.448203333333333 0.724103333333333
 -1 2 -0.241296666666667 -0.034396666666667 0.000003333333333
 1 3 0.413803333333333 0.448203333333333 0.724103333333333
 1 2 -0.085996666666666 -0.034396666666667 0.000003333333333
 -1 3 0.344903333333333 0.379403333333333 0.431153333333333
 -1 1 -0.586196666666667 -0.172396666666667 -0.034496666666667
 -1 3 0.344903333333333 0.379403333333333 0.431153333333333
 1 1 -0.379246666666667 -0.172396666666667 -0.034496666666667
 -1 1 -0.448296666666667 0.103403333333333 0.517203333333333
 -1 2 -0.241396666666667 -0.172396666666667 -0.068896666666667
 -1 3 0.413803333333333 0.448203333333333 0.499803333333333
 -1 2 0.000003333333333 0.034403333333333 0.086003333333333
 -1 3 -0.310296666666667 0.379403333333333 0.413803333333333
 -1 2 0.275803333333334 0.517203333333334 0.620703333333334
 -1 2 -0.655196666666667 -0.310396666666667 0.206803333333333
 1 2 -0.413896666666667 -0.310396666666667 -0.241396666666667
 1 1 0.879253333333333 0.931003333333333 0.965503333333333

Qmars.dat for Compliance J:

 3 27
 0.499998333333333 0.499998333333333 0.499998333333333
 0.500000000000000 0.500000000000000 0.500000000000000
 1 1 2 2 1 2 2 1 1 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2
2
 0.001466407963489 -0.000192918064502 -0.001245038659639
0.009567743769789 0.144035227182990 0.016246182925700 -0.010048035980419
-0.032223805341409 0.008670185519562 0.000142024396652 -
0.000806115246652 0.000436531100816 -0.010530678740980 -0.065287694525146
0.007554843266843 -0.000978118081569 -0.015116318652959 0.000102440282160
0.000677603505063 -0.015011756040837 -0.000459155980944 0.000184045816162
0.000115606777776 -0.000320462363114 0.001366597092628 0.000152516546845
-0.000160190632074 -0.000211840744665
 -1 3 -0.827596666666667 -0.655196666666667 -0.517296666666667
 1 3 -0.827596666666667 -0.655196666666667 -0.517296666666667
 -1 3 -0.827596666666667 -0.655196666666667 -0.517296666666667
 -1 2 0.344803333333334 0.517203333333334 0.758603333333334
 -1 3 -0.827596666666667 -0.655196666666667 -0.517296666666667
 1 2 0.344803333333334 0.517203333333334 0.758603333333334
 -1 3 -0.137896666666667 -0.103396666666667 -0.051646666666667

695

 -1 3 -0.241396666666667 -0.103396666666667 -0.034496666666667
 -1 2 0.344803333333334 0.517203333333334 0.758603333333334
 -1 3 -0.241396666666667 -0.103396666666667 -0.034496666666667
 1 2 0.344803333333334 0.517203333333334 0.758603333333334
 -1 3 -0.517296666666667 -0.379396666666667 -0.275896666666667
 -1 3 0.310303333333333 0.448203333333333 0.655053333333333
 -1 2 -0.448296666666667 0.103403333333333 0.551703333333333
 1 2 -0.448296666666667 0.103403333333333 0.551703333333333
 -1 3 -0.827596666666667 -0.655196666666667 -0.413796666666667
 -1 1 0.344803333333333 0.448203333333333 0.603303333333333
 -1 3 -0.827596666666667 -0.655196666666667 -0.413796666666667
 1 1 0.344803333333333 0.448203333333333 0.689603333333333
 -1 2 -0.448296666666667 0.103403333333333 0.137903333333333
 -1 3 -0.034496666666667 0.034403333333333 0.137753333333333
 -1 2 -0.448296666666667 0.103403333333333 0.137903333333333
 1 3 -0.034496666666667 0.034403333333333 0.517203333333333
 -1 3 -0.275896666666667 -0.172396666666667 -0.137896666666667
 -1 3 0.034503333333333 0.172403333333333 0.310303333333333
 1 3 -0.413796666666667 -0.172396666666667 0.413803333333333
 -1 1 0.689603333333333 0.931003333333333 0.965503333333333
 1 3 -0.413796666666667 -0.172396666666667 0.413803333333333
 1 1 0.879253333333333 0.931003333333333 0.965503333333333
 1 3 -0.827596666666667 -0.655196666666667 -0.413796666666667
 -1 1 -0.379296666666667 0.241403333333333 0.344803333333333
 1 3 -0.827596666666667 -0.655196666666667 -0.413796666666667
 1 1 0.086303333333334 0.241403333333333 0.344803333333333
 -1 2 -0.448296666666667 0.103403333333333 0.551703333333333
 -1 1 -0.172396666666667 -0.034396666666667 0.172603333333333
 -1 2 -0.448296666666667 0.103403333333333 0.551703333333333
 1 1 -0.172396666666667 -0.034396666666667 0.482803333333333
 1 3 -0.517296666666667 -0.379396666666667 -0.241396666666667
 -1 2 0.137903333333333 0.172403333333334 0.224153333333334
 1 3 -0.517296666666667 -0.379396666666667 -0.241396666666667
 1 2 0.137903333333333 0.172403333333334 0.344803333333334
 1 2 -0.448296666666667 0.103403333333333 0.551703333333333
 -1 1 -0.655196666666667 -0.310396666666667 -0.172396666666667
 1 2 -0.448296666666667 0.103403333333333 0.551703333333333
 1 1 -0.517396666666667 -0.310396666666667 -0.172396666666667

D.1.3 Formulating and Solving C-DSP in iSIGHT

The compromise DSP is formulated in Figure 7.13. To solve this compromise

DSP, we use the automation and exploration software iSIGHT. Presented below are plots

696

illustrating the implementation of iSIGHT in solving the compromise DSP in Section 7.3.

The overall organization of tasks of C-DSP in iSIGHT is illustrated in Figure D.1 The

file parsing process for Q and the calculation of the design goal are illustrated in Figure

D.2 and Figure D.3, respectively. In Figure D.1, the simulation codes Q and J are kriging

metamodels to predict response values at the current point; the simulation code

Constraints is a model to calculate all 3 design constraints (as described in Section 7.2)

and the value of Af (cross-section area of the cells). Q, J, and Af are then used to calculate

the deviation variables.

Figure D.1 Solving C-DSP in iSIGHT – Overall Organization of Tasks

697

Figure D.2 Solving C-DSP – File Parsing for Input

Figure D.3 Solving C-DSP in iSIGHT – Calculation of the Design Goal

698

D.1.4 Latin Hypercube Design with 40 Data Points

Table D.2 Latin Hypercube Design – 40 Data Points Used in RCEM in Section 7.3

Mdot (kg/s) W (m) t (m) Mdot_n W_n t_n Q (W) J (m/N)
0.0005 0.03141 0.000646 0 0.8205 0.7436 -9.85 0.00043

0.000564 0.019616 0.000769 0.02564 0.2308 0.9487 -14.32 0.00025
0.000628 0.02218 0.000615 0.05128 0.359 0.6923 -13.61 0.00044
0.000692 0.01859 0.000477 0.07692 0.1795 0.4615 -13.58 0.00077
0.000757 0.018076 0.000446 0.1026 0.1538 0.4103 -13.74 0.00090
0.000821 0.026282 0.000754 0.1282 0.5641 0.9231 -15.34 0.00028
0.000885 0.020128 0.000523 0.1538 0.2564 0.5385 -14.67 0.00063
0.000949 0.02423 0.000662 0.1795 0.4615 0.7692 -15.70 0.00038
0.001013 0.020642 0.000431 0.2051 0.2821 0.3846 -14.74 0.00104
0.001077 0.02577 0.0008 0.2308 0.5385 1 -16.96 0.00025
0.001141 0.028334 0.000262 0.2564 0.6667 0.1026 -14.29 0.00484
0.001205 0.035 0.000569 0.2821 1 0.6154 -15.89 0.00062
0.001269 0.028846 0.000385 0.3077 0.6923 0.3077 -15.73 0.00164
0.001333 0.015 0.000677 0.3333 0 0.7949 -46.55 0.00031
0.001398 0.032948 0.000338 0.359 0.8974 0.2308 -15.89 0.00248
0.001462 0.022692 0.0004 0.3846 0.3846 0.3333 -16.07 0.00133
0.001526 0.016026 0.000492 0.4103 0.05128 0.4872 -15.18 0.00067
0.00159 0.029358 0.000415 0.4359 0.7179 0.359 -17.23 0.00134
0.001654 0.02782 0.000354 0.4615 0.641 0.2564 -16.98 0.00203
0.001718 0.021666 0.0002 0.4872 0.3333 0 -15.35 0.00919
0.001782 0.017564 0.000738 0.5128 0.1282 0.8974 -46.78 0.00027
0.001846 0.031924 0.0006 0.5385 0.8462 0.6667 -19.19 0.00052
0.00191 0.023718 0.000231 0.5641 0.4359 0.05128 -16.25 0.00636
0.001974 0.029872 0.000785 0.5897 0.7436 0.9744 -19.98 0.00027
0.002039 0.033974 0.000308 0.6154 0.9487 0.1795 -18.34 0.00330
0.002103 0.015513 0.000554 0.641 0.02564 0.5897 -51.65 0.00050
0.002167 0.017052 0.000708 0.6667 0.1026 0.8462 -55.53 0.00029
0.002231 0.025256 0.000462 0.6923 0.5128 0.4359 -18.16 0.00095
0.002295 0.032436 0.000369 0.7179 0.8718 0.2821 -19.30 0.00193
0.002359 0.019102 0.000631 0.7436 0.2051 0.7179 -43.92 0.00039
0.002423 0.016538 0.000508 0.7692 0.07692 0.5128 -48.67 0.00063
0.002487 0.030898 0.000323 0.7949 0.7949 0.2051 -19.19 0.00275
0.002551 0.024744 0.000246 0.8205 0.4872 0.07692 -17.45 0.00539
0.002616 0.026794 0.000723 0.8462 0.5897 0.8718 -19.85 0.00031

699

0.00268 0.021154 0.000538 0.8718 0.3077 0.5641 -17.52 0.00059
0.002744 0.030384 0.000692 0.8974 0.7692 0.8205 -21.02 0.00036
0.002808 0.034488 0.000292 0.9231 0.9744 0.1538 -20.22 0.00385
0.002872 0.027308 0.000585 0.9487 0.6154 0.641 -19.86 0.00053
0.002936 0.023206 0.000215 0.9744 0.4103 0.02564 -17.17 0.00768

0.003 0.033462 0.000277 1 0.9231 0.1282 -20.28 0.00443

700

D.2 EXPLORATION OF DESIGN SOLUTIONS WITH RCEM

All supporting materials and documents for studies in Section 7.4 are presented

here. Contours plots of metamodels of responses (initial metamodels, metamodels of

responses in Iteration I – Step 8 and Iteration II – Step 3) are illustrated in Section D.2.1.

FORTRAN codes of SEED are presented in Section D.2.2. The implementation of SEED

in iSIGHT is illustrated in Section D.2.3. Twenty-eight points identified from SEED and

their corresponding response values are listed in Section D.2.4.

D.2.1 Contour Plots of Metamodels of Responses

Contour plots illustrated below are drawn with predicted values from the kriging

metamodels of responses in Section 7.4. Contour plots of metamodels of prediction

errors are not drawn. The contour plots are drawn using Minitab® with default

parameters.

Figure D.4 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device
Width (Initial Kriging Metamodel with 8 Data Points)

701

Figure D.5 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow
Rate (Initial Kriging Metamodel with 8 Data Points)

Figure D.6 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Initial Kriging Metamodel with 8 Data Points)

702

Figure D.7 Contour Plot of Heat Transfer Rate vs. Device Width and Wall
Thickness (Kriging Metamodel with 11 Data Points – Iteration I, Step 8)

Figure D.8 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 11 Data Points – Iteration I, Step 8)

703

Figure D.9 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow
Rate (Kriging Metamodel with 11 Data Points – Iteration I, Step 8)

Figure D.10 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 11 Data Points – Iteration I, Step 8)

704

Figure D.11 Contour Plot of Heat Transfer Rate vs. Device Width and Wall
Thickness (Kriging Metamodel with 8 Validation Points – Iteration II, Step 3)

Figure D.12 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 8 Validation Points – Iteration II, Step 3)

705

Figure D.13 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow
Rate (Kriging Metamodel with 8 Validation Points – Iteration II, Step 3)

Figure D.14 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 8 Validation Points – Iteration II, Step 3)

706

Figure D.15 Contour Plot of Heat Transfer Rate vs. Device Width and Wall
Thickness (Kriging Metamodel with 11 Validation Points – Iteration III, Step 3)

Figure D.16 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow
Rate (Kriging Metamodel with 11 Validation Points – Iteration III, Step 3)

707

Figure D.17 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow
Rate (Kriging Metamodel with 11 Validation Points – Iteration III, Step 3)

Figure D.18 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 11 Validation Points – Iteration III, Step 3)

708

D.2.2 FORTRAN Programs Used in SEED in Section 7.4

The FORTRAN programs used in SEED, Iteration III – Step 3, in Section 7.4 are

enclosed in this section. To formulate the covariance matrix we use covmat.f and

covdata.params.h; the input and output filenames are specified in covdata.params.h. To

adjust entries of the covariance matrix we use altcov.f and altcov.params.h. To calculate

the determinant of the covariance matrix we use detcov.f and detcov.params.h.

Covmat.f:
**
*
 program covmat
*
* This program invokes calculation of the correlation matrix given
* information of points and values of theta.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Yao Lin 26 March 2003 / Tim Simpson, 25 Feburary 1998
*
**
*
* Input files:
* ------------
* covdata.params.h - parameter file, specifying numdv, numsamp, fprefix
* .sam - x's of sample points
* .gau.fit - thetas
*
* Output files:
* -------------
* .cov - correlation matrix
*
* Variables:
* ----------
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
*
* Local Variables:
* ----------------
* DOUBLE PRECISION
* ----------------
* xmat = numdv x numsamp of sample site locations, scaled [0,1]
*
* INTEGER
* -------
*
**

709

 integer numdv,numsamp
 character*16 fprefix
C
C include parameter settings for numdv,numsamp,fprefix, e.g., in the
C one-variable problem: numdv=1,numsamp=5,fprefix='step1'
C
 include 'covdata.params.h'

 double precision xmat(numsamp,numdv),cov(numsamp,numsamp),
 & dummy2,thetaray(1,numdv),theta(numdv)
 integer i,j,dummy,lenstr
 character*16 ftitle
 character*20 deckfile,fitsfile,outfile

C
C open necessary .sam, .fit, and .cov files based on 'fprefix' name,
C e.g., in the one-variable problem:
C step1.sam, step1.gau.fit, step1.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix

 deckfile=ftitle(1:lenstr) // '.sam'
 fitsfile=ftitle(1:lenstr) // '.gau.fit'
 outfile=ftitle(1:lenstr) // '.cov'

 open(21,file=deckfile,status='old')
 open(22,file=fitsfile,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,fitsfile,outfile
 print *, numdv,numsamp
C
C initialize xmat and theta arrays
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (xmat(i,j),j=1,numdv)
 close(21)

 print *
 write(6,*) 'Reading in theta parameters...'
 do 20 i=1,1
 read(22,*) dummy,(thetaray(i,j),j=1,numdv),dummy2
 write(6,1000) dummy,(thetaray(i,j),j=1,numdv)
 1000 format(i2,8f9.5)
 20 continue
 close(22)

 do 50 j=1,numdv
 theta(j)=thetaray(1,j)
 50 continue
 write(6,1002) (theta(j),j=1,numdv)
 1002 format(8f9.5)

C
C call subroutine to calculate the correlation matrix
C

710

C input: xmat, theta, numsamp, numdv
C
C output: R - the correlation matrix
C

 call cormat (xmat,cov,numsamp,numdv,theta)

C
C write predicted values to specified .cov file
C
 do 90 i=1,numsamp
 write(27,79) (cov(i,j),j=1,numsamp)
 79 format(10(f13.5,1x))
 90 continue
 close(27)

 print *
 write(6,*) 'Correlation matrix written to specified .cov file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'covdata.params.h'.
*
* With this known, the .sam, .gau.fit, and .cov suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Yao Lin, 3/26/2003; Tim Simpson, 2/15/1998
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

*
 subroutine cormat (xmat,cov,numsamp,numdv,theta)
*
*

711

* This subroutine calculates the correlation matrix and its inverse
*
* Original code developed by:
* Yao Lin 26 March 2003 /
* Tim Simpson 15 February 1998 / Tony Giunta, 12 May 1997
*

*
* Inputs:
* -------
* DOUBLE PRECISION:
* -----------------
* xmat,theta
*
* INTEGER:
* --------
* numdv,numsamp
*
* Outputs:
* --------
* DOUBLE PRECISION:
* -----------------
* cov - the correlation matrix.
*
*

C
C passed variables
C
 integer numdv,numsamp

 double precision xmat(numsamp,numdv),cov(numsamp,numsamp),
 & theta(numdv),R
C
C local variables
C
 integer i,j
C
C calculate terms in the correlation matrix
C
 do 300 i = 1,numsamp
 do 305 j = i,numsamp
 if(i .eq. j) then
 cov(i,j) = 1.0d0
 else
C
C call subroutine to compute spatial correlation function for xmat
C
C input: xmat, theta, numdv, numsamp, i, j
C
C output: R
C
 call scfxmat(R,xmat,theta,numdv,numsamp,i,j)
 cov(i,j) = R
 cov(j,i) = cov(i,j)
 endif
 305 continue
 300 continue
 end

C**
C
 subroutine scfxmat(R,xmat,theta,numdv,numsamp,i,j)

712

C
C Origin: Tim Simpson Date: February 11, 1998
C Modified: Yao Lin Date: March 26, 2003
C
C subroutine to compute spatial correlation function (scf) for
C correlation matrix; NOT to compute scf for r_xhat.
C
C Output:
C -------
C R = value of correlation function between two sample points,
C given theta
C
C Input:
C ------
C xmat = matrix of sample points
C theta = array of theta values
C i,j = i_th and j_th elements of correlation matrix for which
C correlation function is being computed
C
C All variables except R are unchanged upon exiting
C
C**
C
C passed variables
C
 integer i,j,numdv,numsamp
 double precision R,xmat(numsamp,numdv),theta(numdv)
C
C local variables
C
 double precision sum,thetadist,dist
 integer k

 sum=0.0d0
 do 120 k = 1,numdv
 dist = ABS(xmat(i,k)-xmat(j,k))
 sum = sum + theta(k)*((dist)**2)
 120 continue
 R = exp(-1.0d0*sum)

 return
 end

Covdata.params.h:
C**
C *
C Parameter input file for 'covmat' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for calculating the covariance
C matrix and its determinant
C

 parameter (numdv=3,numsamp=28,fprefix='suit3valid')

C

713

C numdv = # design variables
C numsamp = # samples in data set
C
C fprefix = prefix of titles of files to opened/used
C
C**

Suit3valid.sam:
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0.5 0.5 0.5
0.0333 0.8556 0.3769
0.6143 0.4333 0.1167
0.1276 0.0344 0.7252
0.9925 0.4751 0.3961
0.529 0.8567 0.9059
0.6865 0.4227 0.41
0.3008 1 0.2559
0.7573 0 0.7573
1 0.5 0.5
0.0111 0.2663 0.3472
0.5 0.5 1
0.5 0.5 0
0.3834 0.9532 0.6156
0.9998 0.7204 0.1767
0.0123 0.7001 0.785
0.0015 0.2976 0.7563
0.0 1.0 0.7927
1.0 1.0 0.4309
0.0 0.5 0.7007

Suit3valid.gau.fit:
1 0.46716 11.95818 17.40336 -16.55119

Altcov.f:
**
*
 program altcov
*
* This program calculates the alternated correlation matrix, given the
* initial correlation matrix and predicted prediction errors at
* possible new data points.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997
*
**
*

714

* Input files:
* ------------
* altcov.params.h - parameter file, specifying numdv, numsamp,
* errmax, lambda, fprefix, fprefix2, fprefixnew
* fprefix.cov - initial correlation matrix
* fprefix2.out - predicted prediction errors at possible new data points
*
* Output files:
* -------------
* fprefixnew.cov - alternated correlation matrix
*
* Variables:
* ----------
* inicov = the initial correlation matrix
* newcov = the alternated correlation matrix
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
*
* Local Variables:
* ----------------
* DOUBLE PRECISION
* ----------------
* errpred = the predicted prediction errors associated with each data
* and possible new data points
*
**

 integer numsamp,numgoal,numdv
 double precision lambda,errmax1,errmax2,gamma
 double precision TargetH1,TargetL1,TargetS1,
 & TargetH2,TargetL2,TargetS2,
 & TargetH3,TargetL3,TargetS3
 double precision ymax1,ymin1,
 & ymax2,ymin2,ymax3,ymin3,
 & yconstant1,yconstant2,yconstant3
 character TargetType1,TargetType2,TargetType3
 character*20 fprefix,fprefix2,fprefixnew
 character*20 fprefix3,fprefix4,fprefix5,fprefix6
C
C include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew,
C errmax, lambda, e.g., in the one-variable problem, for the first step:
C numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1',
C fprefixnew='step1altnewp',errmax=0.50,lambda=2.0
C
 include 'altcov.params.h'

 double precision inicov(numsamp,numsamp),
 & newcov(numsamp,numsamp),
 & errpred(numresp,numsamp),
 & goalachieve(numgoal,numsamp),
 & responsey(numgoal,numsamp),
 & alpha(2),eta(2),
 & response,goalachievement,
 & errmax(numresp),TargetH(numgoal),
 & TargetL(numgoal),TargetS(numgoal),
 & ymax(numgoal),ymin(numgoal),
 & yconstant(numgoal)
 character TargetType(numgoal)
 integer i,j,k,lenstr
 character*20 ftitle

715

 character*20 deckfile,deckfile2,deckfile3,outfile
 character*20 deckfile4,deckfile5,deckfile6

 errmax(1)=errmax1
 errmax(2)=errmax2
 TargetH(1)=TargetH1
 TargetL(1)=TargetL1
 TargetS(1)=TargetS1
 TargetH(2)=TargetH2
 TargetL(2)=TargetL2
 TargetS(2)=TargetS2
 TargetH(3)=TargetH3
 TargetL(3)=TargetL3
 TargetS(3)=TargetS3
 ymax(1)=ymax1
 ymin(1)=ymin1
 ymax(2)=ymax2
 ymin(2)=ymin2
 ymax(3)=ymax3
 ymin(3)=ymin3
 yconstant(1)=yconstant1
 yconstant(2)=yconstant2
 yconstant(3)=yconstant3
 TargetType(1)=TargetType1
 TargetType(2)=TargetType2
 TargetType(3)=TargetType3

C
C open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files,
C e.g., step1newp.cov, errpred1.out, step1altnewp.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix
 deckfile=ftitle(1:lenstr) // '.cov'

 call getlen(fprefix2,lenstr)
 ftitle=fprefix2
 deckfile2=ftitle(1:lenstr) // '.out'

 call getlen(fprefix3,lenstr)
 ftitle=fprefix3
 deckfile3=ftitle(1:lenstr) // '.out'

 call getlen(fprefix4,lenstr)
 ftitle=fprefix4
 deckfile4=ftitle(1:lenstr) // '.out'

 call getlen(fprefix5,lenstr)
 ftitle=fprefix5
 deckfile5=ftitle(1:lenstr) // '.out'

 deckfile6=fprefix6

 call getlen(fprefixnew,lenstr)
 ftitle=fprefixnew
 outfile=ftitle(1:lenstr) // '.cov'

 open(21,file=deckfile,status='old')
 open(23,file=deckfile2,status='old')
 open(25,file=deckfile3,status='old')
 open(28,file=deckfile4,status='old')
 open(29,file=deckfile5,status='old')

716

 open(30,file=deckfile6,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,deckfile2,deckfile3,
 & deckfile4,deckfile5,outfile
 print *, numsamp
C
C initialize inicov
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (inicov(i,j),j=1,numsamp)
 close(21)

C
C initialize errpred
C
 print *
 write(6,*) 'Reading in and calculating errpred...'
 do 15 j=1,numresp
 do 20 i=1,numsamp
 if (i.le.numold) then
 errpred(j,i)=0.0
 else
 if (j.eq.1) then
 read(23,*) errpred(j,i)
 else
 read(25,*) errpred(j,i)
 endif
 endif
 if (abs(errpred(j,i)).gt.(errmax(j))) then
 errpred(j,i)=errmax(j)
 endif
 20 continue
 15 continue
 close(23)
 close(25)

 print *
 write(6,*)
 & 'Reading in responses and calculating goal.achievement...'
 do 55 j=1,numgoal
 do 60 i=1,numsamp
 if (j.eq.1) then
 read (28,*) responsey(j,i)
 elseif (j.eq.2) then
 read (29,*) responsey(j,i)
 else
 read (30,*) responsey(j,i)
 endif
 response=responsey(j,i)+yconstant(j)
 if (TargetType(j).eq.'H') then
 call Hgoalachievecal(goalachievement,TargetH(j),
 & response,ymax(j),ymin(j),gamma)
 goalachieve(j,i)=goalachievement
 else if (TargetType(j).eq.'L') then
 call Lgoalachievecal(goalachievement,TargetL(j),
 & response,ymax(j),ymin(j),gamma)
 goalachieve(j,i)=goalachievement
 else if (TargetType(j).eq.'S') then
 call Sgoalachievecal(goalachievement,TargetS(j),

717

 & response,ymax(j),ymin(j),gamma)
 goalachieve(j,i)=goalachievement
 endif
 60 continue
 55 continue
 close(28)
 close(29)
 close(30)

C
C calculate the alternated correlation matrix
C
 do 30 i=1,numsamp
 do 40 j=i,numsamp
 if (i.eq.j) then
 newcov(i,j)=1.0
 elseif (((i.le.numold).AND.(j.le.numold)).OR.
 & ((i.gt.numold).AND.(j.gt.numold))) then
 newcov(i,j)=inicov(i,j)
 newcov(j,i)=newcov(i,j)
 elseif (((i.le.numold).AND.(j.gt.numold)).OR.
 & ((i.gt.numold).AND.(j.le.numold))) then
 if (inicov(i,j).eq.1) then
 newcov(i,j)=inicov(i,j)
 newcov(j,i)=newcov(i,j)
 elseif (inicov(i,j).lt.1) then
 alpha(i)=0
 alpha(j)=0
 do 50 k=1,numresp
 alpha(i)=alpha(i)+abs(errpred(k,i))/lambda/
 & errmax(k)/numresp
 alpha(j)=alpha(j)+abs(errpred(k,j))/lambda/
 & errmax(k)/numresp
 50 continue
 alpha(i)=1-alpha(i)
 alpha(j)=1-alpha(j)
 eta(i)=0
 eta(j)=0
 do 65 k=1,numgoal
 eta(i)=eta(i)+goalachieve(k,i)/numgoal
 eta(j)=eta(j)+goalachieve(k,j)/numgoal
 65 continue
 eta(i)=1-eta(i)
 eta(j)=1-eta(j)
 newcov(i,j)=inicov(i,j)
 & *alpha(i)*alpha(j)*eta(i)*eta(j)
 newcov(j,i)=newcov(i,j)
 endif
 endif
 40 continue
 30 continue

C
C write alternated correlation matrix into specified .cov file
C
 do 80 i=1,numsamp
 write(27,79) (newcov(i,j),j=1,numsamp)
 79 format(30(f13.5,1x))
 80 continue
 close(27)

 print *
 write(6,*) 'Alternated correlation matrix written to .cov file'

718

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*20 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

*
 subroutine Hgoalachievecal(goalachievement,TargetH,
 & response,ymax,ymin,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetH,response
 double precision ymax,ymin,gamma

719

 if (response.le.ymin) then
 goalachievement=0.00000000
 else if (response.ge.min(TargetH,ymax)) then
 goalachievement=1.0/gamma
 else
 goalachievement=(response-ymin)/
 & (min(TargetH,ymax)-ymin)/gamma
 endif

 return
 end

*
 subroutine Lgoalachievecal(goalachievement,TargetL,
 & response,ymax,ymin,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetL,response
 double precision ymax,ymin,gamma

 if (response.ge.ymax) then
 goalachievement=0.0000000000
 else if (response.le.max(TargetL,ymin)) then
 goalachievement=1.0/gamma
 else
 goalachievement=(ymax-response)/
 & (ymax-max(ymin,TargetL))/gamma
 endif

 return
 end

*
 subroutine Sgoalachievecal(goalachievement,TargetS,
 & response,ymax,ymin,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003

720

*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetS,response
 double precision ymax,ymin,gamma

 if (response.ge.ymax) then
 goalachievement=0.00000000
 else if (response.le.ymin) then
 goalachievement=0.00000000
 else if (response.eq.TargetS) then
 goalachievement=1.0/gamma
 else if (response<TargetS.AND.response>ymin) then
 goalachievement=(response-ymin)/(TargetS-ymin)/gamma
 else if (response>TargetS.AND.response<ymax) then
 goalachievement=(response-TargetS)/(ymax-TargetS)/gamma
 endif

 return
 end

Altcov.params.h:
C**
C *
C Parameter input file for 'altcov' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

 parameter (numdv=3,numsamp=20,numold=18,
 & numgoal=3,numresp=2,
 & fprefix='suit3valid',
 & fprefix2='Qit3st3err.gau',
 & fprefix3='Jit3st3err.gau',
 & fprefix4='Qit3val.gau',
 & fprefix5='Jit3val.gau',
 & fprefix6='repmoutput1.out',
 & fprefixnew='suit3altvalid',
 & errmax1=0.35,
 & errmax2=0.00268,
 & lambda=2.0,
 & ymax1=-6.9,ymin1=-16.0,
 & TargetL1=-20.0,
 & TargetH1=-1.0,TargetS1=-1.0,
 & ymax2=0.01164,ymin2=0.00056,
 & TargetL2=0.0015,
 & TargetH2=-1.0,TargetS2=-1.0,
 & ymax3=0.00033,ymin3=0.00005,
 & TargetL3=0.00025,
 & TargetH3=-1.0,TargetS3=-1.0,
 & TargetType1='L',
 & TargetType2='L',
 & TargetType3='L',
 & yconstant1=0.0,

721

 & yconstant2=0.0,
 & yconstant3=0.0,
 & gamma=1.25)

C
C numdv = # design variables
C numsamp = # samples in data set
C numold = # old data points in the data set
C
C fprefix = prefix of titles of file that stores the initial
C correlation matrix for both old and possible new
C data points
C
C fprefix2 = prefix of titles of file that stores the
C predicted prediction errors at possible new
C data points
C
C fprefix3 = prefix of titles of file that stores the
C predicted response values at all points
C
C
C fprefixnew = prefix of titles of file that stores the
C alternated correlation matrix for both old and
C possible new data points, with prediction errors
C at these points considered
C
C errmax = maximum value of the absolute predicted prediction error
C
C lambda = coefficient used to gauge the adjustment to initial
C correlation matrix
C***

Detcov.f:
C***
C
 program detcov
C
C This program calculates the determinant given a matrix. Particularly,
C in SEED, it is used to calculate the determinant of the
C correlation matrix.
C
C Updated by: Yao Lin, March 26, 2003
C
C Original code developed by:
C Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997
C
C**
C
C Input files:
C ------------
C detcov.params.h - parameter file, specifying numdv, numsamp,
C coedet, fprefix
C .cov - correlation matrix
C
C Output files:
C -------------
C .det - determinant of the correlation matrix
C

722

C Variables:
C ----------
C cov = the input correlation matrix for which we calculate
C determinant
C
C Parameter Variables (to be specified by user in dace.params.h):
C --
C numsamp = number of data samples from which the correlation matrix
C is calculated
C
C Local Variables:
C ----------------
C DOUBLE PRECISION
C ----------------
C work = vector of length 'numsamp' used as temporary storage
C invmat = inverse of the correlation matrix (numsamp x numsamp)
C
C INTEGER
C -------
C ipvt = vector of length 'numsamp' of pivot locations
C
C***

 integer numsamp
 double precision coedet
 character*16 fprefix
C
C include parameter settings for numdv,numsamp,fprefix
C
 include 'detcov.params.h'

C***
C
C include LINPACK routines used to find determinant of correlation matrix
C
C***

C include 'dgefa.f'
C include 'dgedi.f'

C***

 double precision cov(numsamp,numsamp),work(numsamp),
 & dummy2,detR,det(2),rcond,z(numsamp)
 integer i,j,ipvt(numsamp),dummy,lenstr,info
 character*16 ftitle
 character*20 deckfile,outfile
 err=0.0000
C
C open necessary .cov and .det files based on 'fprefix' name,
C e.g., step1.cov, step1.det
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix

 deckfile=ftitle(1:lenstr) // '.cov'
 outfile=ftitle(1:lenstr) // '.det'

 open(21,file=deckfile,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,outfile

723

 print *, numsamp
C
C initialize cov
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (cov(i,j),j=1,numsamp)
 close(21)

C
C Start to calculate the determinant of the correlation matrix;
C initialization.
C
 do 307 i=1,numsamp
 work(i)=0.0d0
 ipvt(i)=0
 307 continue

C
C If there is any error in the calculation in DGEFA (singular matrix),
C this program will set the determinant to 0.
C
 call dgeco(cov,numsamp,numsamp,ipvt,rcond,z)
 if(rcond .eq. 0) then
 write(27,78) err
 78 format(10(f13.5,1x))
 close(27)
 go to 1000
 endif
C
C In DGEDI, last flag is: 1 (inverse only), 10 (Det only), 11 (both)
C
 call dgedi(cov, numsamp, numsamp, ipvt, det, work, 10)
 detR=det(1)*10.0d0**det(2)
 detR=coedet*detR

C
C write predicted values to specified .det file
C
 write(27,79) detR
 79 format(10(f13.5,1x))
 close(27)

 print *
 write(6,*) detR
1000 write(6,*) 'Coefficient*Determinant written to .det file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98

724

* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

 subroutine dgeco(a,lda,n,ipvt,rcond,z)
 integer lda,n,ipvt(1)
 double precision a(lda,1),z(1)
 double precision rcond
c
c dgeco factors a double precision matrix by gaussian elimination
c and estimates the condition of the matrix.
c
c if rcond is not needed, dgefa is slightly faster.
c to solve a*x = b , follow dgeco by dgesl.
c to compute inverse(a)*c , follow dgeco by dgesl.
c to compute determinant(a) , follow dgeco by dgedi.
c to compute inverse(a) , follow dgeco by dgedi.
c
c on entry
c
c a double precision(lda, n)
c the matrix to be factored.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c on return
c
c a an upper triangular matrix and the multipliers
c which were used to obtain it.
c the factorization can be written a = l*u where
c l is a product of permutation and unit lower
c triangular matrices and u is upper triangular.
c
c ipvt integer(n)
c an integer vector of pivot indices.
c
c rcond double precision
c an estimate of the reciprocal condition of a .

725

c for the system a*x = b , relative perturbations
c in a and b of size epsilon may cause
c relative perturbations in x of size epsilon/rcond .
c if rcond is so small that the logical expression
c 1.0 + rcond .eq. 1.0
c is true, then a may be singular to working
c precision. in particular, rcond is zero if
c exact singularity is detected or the estimate
c underflows.
c
c z double precision(n)
c a work vector whose contents are usually unimportant.
c if a is close to a singular matrix, then z is
c an approximate null vector in the sense that
c norm(a*z) = rcond*norm(a)*norm(z) .
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c linpack dgefa
c blas daxpy,ddot,dscal,dasum
c fortran dabs,dmax1,dsign
c
c internal variables
c
 double precision ddot,ek,t,wk,wkm
 double precision anorm,s,dasum,sm,ynorm
 integer info,j,k,kb,kp1,l
c
c
c compute 1-norm of a
c
 anorm = 0.0d0
 do 10 j = 1, n
 anorm = dmax1(anorm,dasum(n,a(1,j),1))
 10 continue
c
c factor
c
 call dgefa(a,lda,n,ipvt,info)
c
c rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
c estimate = norm(z)/norm(y) where a*z = y and trans(a)*y = e .
c trans(a) is the transpose of a . the components of e are
c chosen to cause maximum local growth in the elements of w where
c trans(u)*w = e . the vectors are frequently rescaled to avoid
c overflow.
c
c solve trans(u)*w = e
c
 ek = 1.0d0
 do 20 j = 1, n
 z(j) = 0.0d0
 20 continue
 do 100 k = 1, n
 if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
 if (dabs(ek-z(k)) .le. dabs(a(k,k))) go to 30
 s = dabs(a(k,k))/dabs(ek-z(k))
 call dscal(n,s,z,1)
 ek = s*ek
 30 continue

726

 wk = ek - z(k)
 wkm = -ek - z(k)
 s = dabs(wk)
 sm = dabs(wkm)
 if (a(k,k) .eq. 0.0d0) go to 40
 wk = wk/a(k,k)
 wkm = wkm/a(k,k)
 go to 50
 40 continue
 wk = 1.0d0
 wkm = 1.0d0
 50 continue
 kp1 = k + 1
 if (kp1 .gt. n) go to 90
 do 60 j = kp1, n
 sm = sm + dabs(z(j)+wkm*a(k,j))
 z(j) = z(j) + wk*a(k,j)
 s = s + dabs(z(j))
 60 continue
 if (s .ge. sm) go to 80
 t = wkm - wk
 wk = wkm
 do 70 j = kp1, n
 z(j) = z(j) + t*a(k,j)
 70 continue
 80 continue
 90 continue
 z(k) = wk
 100 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
c
c solve trans(l)*y = w
c
 do 120 kb = 1, n
 k = n + 1 - kb
 if (k .lt. n) z(k) = z(k) + ddot(n-k,a(k+1,k),1,z(k+1),1)
 if (dabs(z(k)) .le. 1.0d0) go to 110
 s = 1.0d0/dabs(z(k))
 call dscal(n,s,z,1)
 110 continue
 l = ipvt(k)
 t = z(l)
 z(l) = z(k)
 z(k) = t
 120 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
c
 ynorm = 1.0d0
c
c solve l*v = y
c
 do 140 k = 1, n
 l = ipvt(k)
 t = z(l)
 z(l) = z(k)
 z(k) = t
 if (k .lt. n) call daxpy(n-k,t,a(k+1,k),1,z(k+1),1)
 if (dabs(z(k)) .le. 1.0d0) go to 130
 s = 1.0d0/dabs(z(k))
 call dscal(n,s,z,1)
 ynorm = s*ynorm

727

 130 continue
 140 continue
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
 ynorm = s*ynorm
c
c solve u*z = v
c
 do 160 kb = 1, n
 k = n + 1 - kb
 if (dabs(z(k)) .le. dabs(a(k,k))) go to 150
 s = dabs(a(k,k))/dabs(z(k))
 call dscal(n,s,z,1)
 ynorm = s*ynorm
 150 continue
 if (a(k,k) .ne. 0.0d0) z(k) = z(k)/a(k,k)
 if (a(k,k) .eq. 0.0d0) z(k) = 1.0d0
 t = -z(k)
 call daxpy(k-1,t,a(1,k),1,z(1),1)
 160 continue
c make znorm = 1.0
 s = 1.0d0/dasum(n,z,1)
 call dscal(n,s,z,1)
 ynorm = s*ynorm
c
 if (anorm .ne. 0.0d0) rcond = ynorm/anorm
 if (anorm .eq. 0.0d0) rcond = 0.0d0
 return
 end

 subroutine dgedi(a,lda,n,ipvt,det,work,job)
 integer lda,n,ipvt(1),job
 double precision a(lda,1),det(2),work(1)
C
C dgedi computes the determinant and inverse of a matrix
C using the factors computed by dgeco or dgefa.
C
C on entry
C
C a double precision(lda, n)
C the output from dgeco or dgefa.
C
C lda integer
C the leading dimension of the array a .
C
C n integer
C the order of the matrix a .
C
C ipvt integer(n)
C the pivot vector from dgeco or dgefa.
C
C work double precision(n)
C work vector. contents destroyed.
C
C job integer
C = 11 both determinant and inverse.
C = 01 inverse only.
C = 10 determinant only.
C
C on return
C
C a inverse of original matrix if requested.

728

C otherwise unchanged.
C
C det double precision(2)
C determinant of original matrix if requested.
C otherwise not referenced.
C determinant = det(1) * 10.0**det(2)
C with 1.0 .le. dabs(det(1)) .lt. 10.0
C or det(1) .eq. 0.0 .
C
C error condition
C
C a division by zero will occur if the input factor contains
C a zero on the diagonal and the inverse is requested.
C it will not occur if the subroutines are called correctly
C and if dgeco has set rcond .gt. 0.0 or dgefa has set
C info .eq. 0 .
C
C linpack. this version dated 08/14/78 .
C cleve moler, university of new mexico, argonne national lab.
C
C subroutines and functions
C
C blas daxpy,dscal,dswap
C fortran dabs,mod
C
C internal variables
C
 double precision t
 double precision ten
 integer i,j,k,kb,kp1,l,nm1
C
C
C compute determinant
C
 if (job/10 .eq. 0) go to 70
 det(1) = 1.0d0
 det(2) = 0.0d0
 ten = 10.0d0
 do 50 i = 1, n
 if (ipvt(i) .ne. i) det(1) = -det(1)
 det(1) = a(i,i)*det(1)
C ...exit
 if (det(1) .eq. 0.0d0) go to 60
 10 if (dabs(det(1)) .ge. 1.0d0) go to 20
 det(1) = ten*det(1)
 det(2) = det(2) - 1.0d0
 go to 10
 20 continue
 30 if (dabs(det(1)) .lt. ten) go to 40
 det(1) = det(1)/ten
 det(2) = det(2) + 1.0d0
 go to 30
 40 continue
 50 continue
 60 continue
 70 continue
C
C compute inverse(u)
C
 if (mod(job,10) .eq. 0) go to 150
 do 100 k = 1, n
 a(k,k) = 1.0d0/a(k,k)
 t = -a(k,k)

729

 call dscal(k-1,t,a(1,k),1)
 kp1 = k + 1
 if (n .lt. kp1) go to 90
 do 80 j = kp1, n
 t = a(k,j)
 a(k,j) = 0.0d0
 call daxpy(k,t,a(1,k),1,a(1,j),1)
 80 continue
 90 continue
 100 continue
C
C form inverse(u)*inverse(l)
C
 nm1 = n - 1
 if (nm1 .lt. 1) go to 140
 do 130 kb = 1, nm1
 k = n - kb
 kp1 = k + 1
 do 110 i = kp1, n
 work(i) = a(i,k)
 a(i,k) = 0.0d0
 110 continue
 do 120 j = kp1, n
 t = work(j)
 call daxpy(n,t,a(1,j),1,a(1,k),1)
 120 continue
 l = ipvt(k)
 if (l .ne. k) call dswap(n,a(1,k),1,a(1,l),1)
 130 continue
 140 continue
 150 continue
 return
 end

 subroutine daxpy(n,da,dx,incx,dy,incy)
C
C constant times a vector plus a vector.
C uses unrolled loops for increments equal to one.
C jack dongarra, linpack, 3/11/78.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dy(*),da
 integer i,incx,incy,ix,iy,m,mp1,n
C
 if(n.le.0)return
 if (da .eq. 0.0d0) return
 if(incx.eq.1.and.incy.eq.1)go to 20
C
C code for unequal increments or equal increments
C not equal to 1
C
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dy(iy) = dy(iy) + da*dx(ix)
 ix = ix + incx
 iy = iy + incy
 10 continue
 return
C
C code for both increments equal to 1

730

C
C
C clean-up loop
C
 20 m = mod(n,4)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dy(i) = dy(i) + da*dx(i)
 30 continue
 if(n .lt. 4) return
 40 mp1 = m + 1
 do 50 i = mp1,n,4
 dy(i) = dy(i) + da*dx(i)
 dy(i + 1) = dy(i + 1) + da*dx(i + 1)
 dy(i + 2) = dy(i + 2) + da*dx(i + 2)
 dy(i + 3) = dy(i + 3) + da*dx(i + 3)
 50 continue
 return
 end

 subroutine dscal(n,da,dx,incx)
C
C scales a vector by a constant.
C uses unrolled loops for increment equal to one.
C jack dongarra, linpack, 3/11/78.
C modified 3/93 to return if incx .le. 0.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision da,dx(*)
 integer i,incx,m,mp1,n,nincx
C
 if(n.le.0 .or. incx.le.0)return
 if(incx.eq.1)go to 20
C
C code for increment not equal to 1
C
 nincx = n*incx
 do 10 i = 1,nincx,incx
 dx(i) = da*dx(i)
 10 continue
 return
C
C code for increment equal to 1
C
C
C clean-up loop
C
 20 m = mod(n,5)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dx(i) = da*dx(i)
 30 continue
 if(n .lt. 5) return
 40 mp1 = m + 1
 do 50 i = mp1,n,5
 dx(i) = da*dx(i)
 dx(i + 1) = da*dx(i + 1)
 dx(i + 2) = da*dx(i + 2)
 dx(i + 3) = da*dx(i + 3)
 dx(i + 4) = da*dx(i + 4)
 50 continue
 return
 end

731

 subroutine dswap (n,dx,incx,dy,incy)
C
C interchanges two vectors.
C uses unrolled loops for increments equal one.
C jack dongarra, linpack, 3/11/78.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dy(*),dtemp
 integer i,incx,incy,ix,iy,m,mp1,n
C
 if(n.le.0)return
 if(incx.eq.1.and.incy.eq.1)go to 20
C
C code for unequal increments or equal increments not equal
C to 1
C
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dtemp = dx(ix)
 dx(ix) = dy(iy)
 dy(iy) = dtemp
 ix = ix + incx
 iy = iy + incy
 10 continue
 return
C
C code for both increments equal to 1
C
C
C clean-up loop
C
 20 m = mod(n,3)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dx(i)
 dx(i) = dy(i)
 dy(i) = dtemp
 30 continue
 if(n .lt. 3) return
 40 mp1 = m + 1
 do 50 i = mp1,n,3
 dtemp = dx(i)
 dx(i) = dy(i)
 dy(i) = dtemp
 dtemp = dx(i + 1)
 dx(i + 1) = dy(i + 1)
 dy(i + 1) = dtemp
 dtemp = dx(i + 2)
 dx(i + 2) = dy(i + 2)
 dy(i + 2) = dtemp
 50 continue
 return
 end

 subroutine dgefa(a,lda,n,ipvt,info)
 integer lda,n,ipvt(1),info
 double precision a(lda,1)
C

732

C dgefa factors a double precision matrix by gaussian elimination.
C
C dgefa is usually called by dgeco, but it can be called
C directly with a saving in time if rcond is not needed.
C (time for dgeco) = (1 + 9/n)*(time for dgefa) .
C
C on entry
C
C a double precision(lda, n)
C the matrix to be factored.
C
C lda integer
C the leading dimension of the array a .
C
C n integer
C the order of the matrix a .
C
C on return
C
C a an upper triangular matrix and the multipliers
C which were used to obtain it.
C the factorization can be written a = l*u where
C l is a product of permutation and unit lower
C triangular matrices and u is upper triangular.
C
C ipvt integer(n)
C an integer vector of pivot indices.
C
C info integer
C = 0 normal value.
C = k if u(k,k) .eq. 0.0 . this is not an error
C condition for this subroutine, but it does
C indicate that dgesl or dgedi will divide by zero
C if called. use rcond in dgeco for a reliable
C indication of singularity.
C
C linpack. this version dated 08/14/78 .
C cleve moler, university of new mexico, argonne national lab.
C
C subroutines and functions
C
C blas daxpy,dscal,idamax
C
C internal variables
C
 double precision t
 integer idamax,j,k,kp1,l,nm1
C
C
C gaussian elimination with partial pivoting
C
 info = 0
 nm1 = n - 1
 if (nm1 .lt. 1) go to 70
 do 60 k = 1, nm1
 kp1 = k + 1
C
C find l = pivot index
C
 l = idamax(n-k+1,a(k,k),1) + k - 1
 ipvt(k) = l
C
C zero pivot implies this column already triangularized

733

C
 if (a(l,k) .eq. 0.0d0) go to 40
C
C interchange if necessary
C
 if (l .eq. k) go to 10
 t = a(l,k)
 a(l,k) = a(k,k)
 a(k,k) = t
 10 continue
C
C compute multipliers
C
 t = -1.0d0/a(k,k)
 call dscal(n-k,t,a(k+1,k),1)
C
C row elimination with column indexing
C
 do 30 j = kp1, n
 t = a(l,j)
 if (l .eq. k) go to 20
 a(l,j) = a(k,j)
 a(k,j) = t
 20 continue
 call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
 30 continue
 go to 50
 40 continue
 info = k
 50 continue
 60 continue
 70 continue
 ipvt(n) = n
 if (a(n,n) .eq. 0.0d0) info = n
 return
 end

 integer function idamax(n,dx,incx)
C
C finds the index of element having max. absolute value.
C jack dongarra, linpack, 3/11/78.
C modified 3/93 to return if incx .le. 0.
C modified 12/3/93, array(1) declarations changed to array(*)
C
 double precision dx(*),dmax
 integer i,incx,ix,n
C
 idamax = 0
 if(n.lt.1 .or. incx.le.0) return
 idamax = 1
 if(n.eq.1)return
 if(incx.eq.1)go to 20
C
C code for increment not equal to 1
C
 ix = 1
 dmax = dabs(dx(1))
 ix = ix + incx
 do 10 i = 2,n
 if(dabs(dx(ix)).le.dmax) go to 5
 idamax = i
 dmax = dabs(dx(ix))
 5 ix = ix + incx

734

 10 continue
 return
C
C code for increment equal to 1
C
 20 dmax = dabs(dx(1))
 do 30 i = 2,n
 if(dabs(dx(i)).le.dmax) go to 30
 idamax = i
 dmax = dabs(dx(i))
 30 continue
 return
 end

 double precision function dasum(n,dx,incx)
c
c takes the sum of the absolute values.
c jack dongarra, linpack, 3/11/78.
c modified 3/93 to return if incx .le. 0.
c modified 12/3/93, array(1) declarations changed to array(*)
c
 double precision dx(*),dtemp
 integer i,incx,m,mp1,n,nincx
c
 dasum = 0.0d0
 dtemp = 0.0d0
 if(n.le.0 .or. incx.le.0)return
 if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
 nincx = n*incx
 do 10 i = 1,nincx,incx
 dtemp = dtemp + dabs(dx(i))
 10 continue
 dasum = dtemp
 return
c
c code for increment equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,6)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dtemp + dabs(dx(i))
 30 continue
 if(n .lt. 6) go to 60
 40 mp1 = m + 1
 do 50 i = mp1,n,6
 dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2))
 & + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5))
 50 continue
 60 dasum = dtemp
 return
 end

 double precision function ddot(n,dx,incx,dy,incy)
c
c forms the dot product of two vectors.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.

735

c modified 12/3/93, array(1) declarations changed to array(*)
c
 double precision dx(*),dy(*),dtemp
 integer i,incx,incy,ix,iy,m,mp1,n
c
 ddot = 0.0d0
 dtemp = 0.0d0
 if(n.le.0)return
 if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
 do 10 i = 1,n
 dtemp = dtemp + dx(ix)*dy(iy)
 ix = ix + incx
 iy = iy + incy
 10 continue
 ddot = dtemp
 return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
 20 m = mod(n,5)
 if(m .eq. 0) go to 40
 do 30 i = 1,m
 dtemp = dtemp + dx(i)*dy(i)
 30 continue
 if(n .lt. 5) go to 60
 40 mp1 = m + 1
 do 50 i = mp1,n,5
 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
 & dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
 50 continue
 60 ddot = dtemp
 return
 end

Detcov.params.h:
C**
C *
C Parameter input file for 'detcov' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

 parameter (numdv=3,numsamp=27,fprefix='suit3altvalid',
 & coedet=1e8)
C
C numdv = # design variables

736

C numsamp = # samples in data set
C
C fprefix = prefix of titles of files to opened/used
C
C coedet = when the value of determinant is very small,
C this coefficient is used to magnify the value.
C**

D.2.3 Implementation of SEED in iSIGHT in Section 7.4

Figures presented in this section illustrate how the SEED method is implemented

in iSIGHT. The organization of tasks in Iteration I – Step 3 is shown in Figure D.19. The

organization of tasks in Iteration I – Step 7 is shown in Figure D.20.

In Iteration I – Step 3, since the covariance matrix is not adjusted, there are only

two simulation codes used in iSIGHT, Covmat and Detcov. In Iteration I – Step 7, with

information from metamodels of prediction errors, we use five simulation codes in

iSIGHT, Covmat, Qerr, Jerr, Altcov, and Detcov. Covmat is used to formulate the

covariance matrix, Qerr and Jerr are metamodels to predict prediction errors, Altcov is

737

used to adjust entries of the covariance matrix, and Detcov is used to calculate the

determinant.

Figure D.19 Implementation of SEED in iSIGHT – Iteration I, Step 3

738

Figure D.20 Implementation of SEED in iSIGHT – Iteration I, Step 7

Figure D.21 File Parsing of Input in iSIGHT – Iteration I, Step 7

739

D.2.4 Twenty Eight Points Identified with SEED

Listed below are 28 points identified with SEED in Section 7.4.

Table D.3 Twenty Eight Points Identified with SEED

Mdot (kg/s) W (m) t (m) Mdot_n W_n t_n Q (W) J (m/N)
0.0005 0.0150 0.0002 0 0 0 -11.01 0.00749
0.0005 0.0150 0.0008 0 0 1 -14.37 0.00022
0.0005 0.0350 0.0002 0 1 0 -6.65 0.01167
0.0005 0.0350 0.0008 0 1 1 -9.56 0.00027
0.003 0.0150 0.0002 1 0 0 -42.24 0.00749
0.003 0.0150 0.0008 1 0 1 -109.66 0.00022
0.003 0.0350 0.0002 1 1 0 -19.86 0.01167
0.003 0.0350 0.0008 1 1 1 -23.03 0.00027

0.00175 0.0250 0.0005 0.5 0.5 0.5 -17.49 0.00076
0.00058 0.0321 0.00043 0.0333 0.8556 0.3769 -9.58 0.00126
0.00204 0.0237 0.00027 0.6143 0.4333 0.1167 -16.69 0.00405
0.00082 0.0157 0.00064 0.1276 0.0344 0.7252 -14.65 0.00036
0.00298 0.0245 0.00044 0.9925 0.4751 0.3961 -18.58 0.00106
0.00182 0.0321 0.00074 0.529 0.8567 0.9059 -19.76 0.00031
0.00222 0.0235 0.00045 0.6865 0.4227 0.41 -17.64 0.00098
0.00125 0.0350 0.00035 0.3008 1 0.2559 -14.85 0.00232
0.00239 0.0150 0.00065 0.7573 0 0.7573 -70.69 0.00034
0.003 0.0250 0.0005 1 0.5 0.5 -18.94 0.00076

0.00053 0.0203 0.00041 0.0111 0.2663 0.3472 -11.79 0.00118
0.00175 0.0250 0.0008 0.5 0.5 1 -18.53 0.00025
0.00175 0.0250 0.0002 0.5 0.5 0 -15.92 0.0099
0.00146 0.0341 0.00057 0.3834 0.9532 0.6156 -17.53 0.00061
0.003 0.0294 0.00031 0.9998 0.7204 0.1767 -19.52 0.00314

0.00053 0.0290 0.00067 0.0123 0.7001 0.785 -11.22 0.00039
0.0005 0.0210 0.00065 0.0015 0.2976 0.7563 -12.91 0.00037
0.0005 0.035 0.00068 0 1 0.7935 -8.92 0.0004
0.003 0.035 0.00046 1 1 0.4309 -21.65 0.00109
0.0005 0.025 0.00062 0 0.5 0.7 -11.68 0.00044

740

D.3 EXPLORATION OF DESIGN SOLUTIONS WITH THE INTEGRATED
DESIGN PROCESS IN E-RCEM

All supporting materials and documents for studies in Section 7.5 are presented

here. Contours plots of metamodels of responses (initial metamodels, metamodels of

responses in Iteration I – Step 8 and Iteration II – Step 3) are illustrated in Section D.3.1.

FORTRAN codes of the integrated design process in E-RCEM are presented in Section

D.3.2. The implementation of E-RCEM in iSIGHT is illustrated in Section D.3.3.

Twenty points identified from E-RCEM and their corresponding response values are

listed in Section D.3.4.

D.3.1 Contour Plots of Metamodels of Responses

Contour plots illustrated below are drawn with predicted values from the kriging

metamodels of responses in Section 7.5. Contour plots of metamodels of prediction

errors are not drawn. The contour plots are drawn using Minitab® with default

parameters.

Figure D.22 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device

Width (Initial Kriging Metamodel with 6 Data Points)

741

Figure D.23 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow
Rate (Initial Kriging Metamodel with 6 Data Points)

Figure D.24 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Initial Kriging Metamodel with 6 Data Points)

742

Figure D.25 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device
Width (Kriging Metamodel with 8 Data Points)

Figure D.26 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow
Rate (Kriging Metamodel with 8 Data Points)

743

Figure D.27 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 8 Data Points)

Figure D.28 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device
Width (Kriging Metamodel with 8 Validation Points)

744

Figure D.29 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow
Rate (Kriging Metamodel with 8 Validation Points)

Figure D.30 Contour Plot of Compliance vs. Device Width and Wall Thickness
(Kriging Metamodel with 8 Validation Points)

745

D.3.2 FORTRAN Programs Used in E-RCEM in Section 7.5

The FORTRAN program of altcov.f and altcov.params.h used in SEED, Iteration

III – Step 4, in Section 7.5 are enclosed in this section. The programs of altcov.f and

altcov.params.h are used to adjust entries of the covariance matrix. Other programs used

in the integrated process in E-RCEM are the same as those presented in Appendix D.2.2.

Altcov.f:
**
*
 program altcov
*
* This program calculates the alternated correlation matrix, given the
* initial correlation matrix and predicted prediction errors at
* possible new data points.
*
* Updated by: Yao Lin, March 26, 2003
*
* Original code developed by:
* Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997
*
**
*
* Input files:
* ------------
* altcov.params.h - parameter file, specifying numdv, numsamp,
* errmax, lambda, fprefix, fprefix2, fprefixnew
* fprefix.cov - initial correlation matrix
* fprefix2.out - predicted prediction errors at possible new data points
*
* Output files:
* -------------
* fprefixnew.cov - alternated correlation matrix
*
* Variables:
* ----------
* inicov = the initial correlation matrix
* newcov = the alternated correlation matrix
*
* Parameter Variables (to be specified by user in dace.params.h):
* --
* numsamp = number of data samples from which the correlation matrix
* is calculated
*
* Local Variables:
* ----------------
* DOUBLE PRECISION
* ----------------
* errpred = the predicted prediction errors associated with each data
* and possible new data points
*
**

746

 integer numsamp,numgoal,numdv
 double precision lambda,errmax1,errmax2,gamma
 double precision TargetH1,TargetL1,TargetS1,
 & TargetH2,TargetL2,TargetS2,
 & TargetH3,TargetL3,TargetS3
 double precision ymax1,ymin1,
 & ymax2,ymin2,ymax3,ymin3,
 & yconstant1,yconstant2,yconstant3
 character TargetType1,TargetType2,TargetType3
 character*20 fprefix,fprefix2,fprefixnew
 character*20 fprefix3,fprefix4,fprefix5,fprefix6
C
C include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew,
C errmax, lambda, e.g., in the one-variable problem, for the first step:
C numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1',
C fprefixnew='step1altnewp',errmax=0.50,lambda=2.0
C
 include 'altcov.params.h'

 double precision inicov(numsamp,numsamp),
 & newcov(numsamp,numsamp),
 & errpred(numresp,numsamp),
 & goalachieve(numgoal,numsamp),
 & responsey(numgoal,numsamp),
 & alpha(2),eta(2),
 & response,goalachievement,
 & errmax(numresp),TargetH(numgoal),
 & TargetL(numgoal),TargetS(numgoal),
 & ymax(numgoal),ymin(numgoal),
 & yconstant(numgoal)
 character TargetType(numgoal)
 integer i,j,k,lenstr
 character*20 ftitle
 character*20 deckfile,deckfile2,deckfile3,outfile
 character*20 deckfile4,deckfile5,deckfile6

 errmax(1)=errmax1
 errmax(2)=errmax2
 TargetH(1)=TargetH1
 TargetL(1)=TargetL1
 TargetS(1)=TargetS1
 TargetH(2)=TargetH2
 TargetL(2)=TargetL2
 TargetS(2)=TargetS2
 TargetH(3)=TargetH3
 TargetL(3)=TargetL3
 TargetS(3)=TargetS3
 ymax(1)=ymax1
 ymin(1)=ymin1
 ymax(2)=ymax2
 ymin(2)=ymin2
 ymax(3)=ymax3
 ymin(3)=ymin3
 yconstant(1)=yconstant1
 yconstant(2)=yconstant2
 yconstant(3)=yconstant3
 TargetType(1)=TargetType1
 TargetType(2)=TargetType2
 TargetType(3)=TargetType3

C
C open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files,
C e.g., step1newp.cov, errpred1.out, step1altnewp.cov

747

C
 call getlen(fprefix,lenstr)
 ftitle=fprefix
 deckfile=ftitle(1:lenstr) // '.cov'

 call getlen(fprefix2,lenstr)
 ftitle=fprefix2
 deckfile2=ftitle(1:lenstr) // '.out'

 call getlen(fprefix3,lenstr)
 ftitle=fprefix3
 deckfile3=ftitle(1:lenstr) // '.out'

 call getlen(fprefix4,lenstr)
 ftitle=fprefix4
 deckfile4=ftitle(1:lenstr) // '.out'

 call getlen(fprefix5,lenstr)
 ftitle=fprefix5
 deckfile5=ftitle(1:lenstr) // '.out'

 deckfile6=fprefix6

 call getlen(fprefixnew,lenstr)
 ftitle=fprefixnew
 outfile=ftitle(1:lenstr) // '.cov'

 open(21,file=deckfile,status='old')
 open(23,file=deckfile2,status='old')
 open(25,file=deckfile3,status='old')
 open(28,file=deckfile4,status='old')
 open(29,file=deckfile5,status='old')
 open(30,file=deckfile6,status='old')
 open(27,file=outfile,status='unknown')

 print *
 print *, deckfile,deckfile2,deckfile3,
 & deckfile4,deckfile5,outfile
 print *, numsamp
C
C initialize inicov
C
 print *
 write(6,*) 'Reading in sample data...'
 do 10 i=1,numsamp
 10 read (21,*) (inicov(i,j),j=1,numsamp)
 close(21)

C
C initialize errpred
C
 print *
 write(6,*) 'Reading in and calculating errpred...'
 do 15 j=1,numresp
 do 20 i=1,numsamp
 if (i.le.numold) then
 errpred(j,i)=0.0
 else
 if (j.eq.1) then
 read(23,*) errpred(j,i)
 else
 read(25,*) errpred(j,i)

748

 endif
 endif
 if (abs(errpred(j,i)).gt.(errmax(j))) then
 errpred(j,i)=errmax(j)
 endif
 20 continue
 15 continue
 close(23)
 close(25)

 print *
 write(6,*)
 & 'Reading in responses and calculating goal.achievement...'
 do 55 j=1,numgoal
 do 60 i=1,numsamp
 if (j.eq.1) then
 read (28,*) responsey(j,i)
 elseif (j.eq.2) then
 read (29,*) responsey(j,i)
 else
 read (30,*) responsey(j,i)
 endif
 response=responsey(j,i)+yconstant(j)
 if (TargetType(j).eq.'H') then
 call Hgoalachievecal(goalachievement,TargetH(j),
 & response,ymax(j),ymin(j),gamma)
 goalachieve(j,i)=goalachievement
 else if (TargetType(j).eq.'L') then
 call Lgoalachievecal(goalachievement,TargetL(j),
 & response,ymax(j),ymin(j),gamma)
 goalachieve(j,i)=goalachievement
 else if (TargetType(j).eq.'S') then
 call Sgoalachievecal(goalachievement,TargetS(j),
 & response,ymax(j),ymin(j),gamma)
 goalachieve(j,i)=goalachievement
 endif
 60 continue
 55 continue
 close(28)
 close(29)
 close(30)

C
C calculate the alternated correlation matrix
C
 do 30 i=1,numsamp
 do 40 j=i,numsamp
 if (i.eq.j) then
 newcov(i,j)=1.0
 elseif (((i.le.numold).AND.(j.le.numold)).OR.
 & ((i.gt.numold).AND.(j.gt.numold))) then
 newcov(i,j)=inicov(i,j)
 newcov(j,i)=newcov(i,j)
 elseif (((i.le.numold).AND.(j.gt.numold)).OR.
 & ((i.gt.numold).AND.(j.le.numold))) then
 if (inicov(i,j).eq.1) then
 newcov(i,j)=inicov(i,j)
 newcov(j,i)=newcov(i,j)
 elseif (inicov(i,j).lt.1) then
 alpha(i)=0
 alpha(j)=0
 do 50 k=1,numresp
 alpha(i)=alpha(i)+abs(errpred(k,i))/lambda/

749

 & errmax(k)/numresp
 alpha(j)=alpha(j)+abs(errpred(k,j))/lambda/
 & errmax(k)/numresp
 50 continue
 alpha(i)=1-alpha(i)
 alpha(j)=1-alpha(j)
 eta(i)=0
 eta(j)=0
 do 65 k=1,numgoal
 eta(i)=eta(i)+goalachieve(k,i)/numgoal
 eta(j)=eta(j)+goalachieve(k,j)/numgoal
 65 continue
 eta(i)=1-eta(i)
 eta(j)=1-eta(j)
 newcov(i,j)=inicov(i,j)
 & *alpha(i)*alpha(j)*eta(i)*eta(j)
 newcov(j,i)=newcov(i,j)
 endif
 endif
 40 continue
 30 continue

C
C write alternated correlation matrix into specified .cov file
C
 do 80 i=1,numsamp
 write(27,79) (newcov(i,j),j=1,numsamp)
 79 format(30(f13.5,1x))
 80 continue
 close(27)

 print *
 write(6,*) 'Alternated correlation matrix written to .cov file'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*20 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next

750

 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

*
 subroutine Hgoalachievecal(goalachievement,TargetH,
 & response,ymax,ymin,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetH,response
 double precision ymax,ymin,gamma

 if (response.le.ymin) then
 goalachievement=0.00000000
 else if (response.ge.min(TargetH,ymax)) then
 goalachievement=1.0/gamma
 else
 goalachievement=(response-ymin)/
 & (min(TargetH,ymax)-ymin)/gamma
 endif

 return
 end

*
 subroutine Lgoalachievecal(goalachievement,TargetL,
 & response,ymax,ymin,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,

751

* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetL,response
 double precision ymax,ymin,gamma

 if (response.ge.ymax) then
 goalachievement=0.0000000000
 else if (response.le.max(TargetL,ymin)) then
 goalachievement=1.0/gamma
 else
 goalachievement=(ymax-response)/
 & (ymax-max(ymin,TargetL))/gamma
 endif

 return
 end

*
 subroutine Sgoalachievecal(goalachievement,TargetS,
 & response,ymax,ymin,gamma)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 double precision goalachievement,TargetS,response
 double precision ymax,ymin,gamma

 if (response.ge.ymax) then
 goalachievement=0.00000000
 else if (response.le.ymin) then
 goalachievement=0.00000000
 else if (response.eq.TargetS) then
 goalachievement=1.0/gamma
 else if (response<TargetS.AND.response>ymin) then
 goalachievement=(response-ymin)/(TargetS-ymin)/gamma
 else if (response>TargetS.AND.response<ymax) then
 goalachievement=(response-TargetS)/(ymax-TargetS)/gamma
 endif

 return
 end

Altcov.params.h
C**
C *
C Parameter input file for 'altcov' *

752

C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

 parameter (numdv=3,numsamp=20,numold=18,
 & numgoal=3,numresp=2,
 & fprefix='suit3valid',
 & fprefix2='Qit3st3err.gau',
 & fprefix3='Jit3st3err.gau',
 & fprefix4='Qit3val.gau',
 & fprefix5='Jit3val.gau',
 & fprefix6='repmoutput1.out',
 & fprefixnew='suit3altvalid',
 & errmax1=0.35,
 & errmax2=0.00268,
 & lambda=2.0,
 & ymax1=-6.9,ymin1=-16.0,
 & TargetL1=-20.0,
 & TargetH1=-1.0,TargetS1=-1.0,
 & ymax2=0.01164,ymin2=0.00056,
 & TargetL2=0.0015,
 & TargetH2=-1.0,TargetS2=-1.0,
 & ymax3=0.00033,ymin3=0.00005,
 & TargetL3=0.00025,
 & TargetH3=-1.0,TargetS3=-1.0,
 & TargetType1='L',
 & TargetType2='L',
 & TargetType3='L',
 & yconstant1=0.0,
 & yconstant2=0.0,
 & yconstant3=0.0,
 & gamma=1.25)

C
C numdv = # design variables
C numsamp = # samples in data set
C numold = # old data points in the data set
C
C fprefix = prefix of titles of file that stores the initial
C correlation matrix for both old and possible new
C data points
C
C fprefix2 = prefix of titles of file that stores the
C predicted prediction errors at possible new
C data points
C
C fprefix3 = prefix of titles of file that stores the
C predicted response values at all points
C
C
C fprefixnew = prefix of titles of file that stores the
C alternated correlation matrix for both old and
C possible new data points, with prediction errors
C at these points considered
C
C errmax = maximum value of the absolute predicted prediction error
C
C lambda = coefficient used to gauge the adjustment to initial
C correlation matrix

753

Repmcal.f:
**
*
 program repmcal
*

 integer numsamp,ncell
 double precision density,totalwidth,length

 character*20 fprefix,fprefixnew,fprefixnew1

 include 'repmcal.h'

 double precision variable(numsamp,3),reynolds(numsamp)
 double precision mdot(numsamp),pdrop(numsamp),vf(numsamp)
 double precision thickness,width,velocity,tin,a,as(numsamp)
 double precision dh,viscosity,af,friction,constraint(numsamp)
 integer i,j,lenstr
 character*16 ftitle
 character*20 deckfile,outfile,outfile1

C
C open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files,
C e.g., step1newp.cov, errpred1.out, step1altnewp.cov
C
 call getlen(fprefix,lenstr)
 ftitle=fprefix
 deckfile=ftitle(1:lenstr) // '.dat'

 call getlen(fprefixnew,lenstr)
 ftitle=fprefixnew
 outfile=ftitle(1:lenstr) // '.out'

 call getlen(fprefixnew1,lenstr)
 ftitle=fprefixnew1
 outfile1=ftitle(1:lenstr) // '.out'

 open(21,file=deckfile,status='old')
 open(27,file=outfile,status='unknown')
 open(30,file=outfile1,status='unknown')

 print *
 print *, deckfile,outfile
 print *, numsamp
C
C initialize inicov
C
 print *
 write(6,*) 'Reading in points...'
 do 10 i=1,numsamp
 10 read (21,*) (variable(i,j),j=1,3)
 close(21)

C
C initialize errpred
C

 tin=293

 do 20 i=1,numsamp
 mdot(i)=0.0005+(0.003-0.0005)*variable(i,1)
 width=0.015+(0.035-0.015)*variable(i,2)

754

 thickness=0.0002+(0.0008-0.0002)*variable(i,3)
 a=width*width
 dh=width-(ncell+1)*thickness
 af=dh*dh
 as(i)=a-af
 vf(i)=(a-af)/a
 velocity=mdot(i)/density/af
 viscosity=(0.4415*tin+51.638)*0.0000001
 reynolds(i)=velocity*density*dh/viscosity
 friction=64/reynolds(i)
 pdrop(i)=friction*length/dh*density
 & *velocity*velocity/2
 constraint(i)=30-2663.35*mdot(i)-pdrop(i)
 write(27,76) reynolds(i),vf(i),constraint(i)
 76 format(3(f13.5,1x))
 write(30,79) as(i)
 79 format(f13.5,1x)
C 79 format(1(f13.5,1x))
 20 continue
 close(27)

 print *
 write(6,*) 'outputs written'

 stop
 end

*
 subroutine getlen(string,lenstr)
*
*
* This subroutine is used to determine the actual length of the
* filename prefix specified by the user in 'detcov.params.h'.
*
* With this known, the .cov and .det suffixes are
* concatenated onto the prefix, and the files are opened.
*
* Author: Tim Simpson, 2/15/98
* Modified: Yao Lin, 3/26/2003
*
* From: Koffman and Friedman, Fortran (5th ed.), Addison-Wesley,
* New York, pp. 537-538.
*

*
 character*1 blank
 character*16 string
 parameter (blank=' ')
 integer next
 do 10 next = LEN(string), 1, -1
 if (string(next:next).ne.blank) then
 lenstr=next
 return
 end if
 10 continue
 lenstr=0
 if (lenstr.eq.0) then
 write(6,*) 'You have not specified a file name prefix'
 stop
 end if
 return
 end

755

Repmcal.h
C**
C *
C Parameter input file for 'repmcal' *
C Author: Yao Lin *
C Date: 3/26/2003 *
C *
C**
C
C specify parameter values for dace modeling software
C

 parameter (numsamp=1,
 & fprefix='repminput',fprefixnew='repmoutput',
 & fprefixnew1='repmoutput1',
 & density=1.205,length=0.075,ncell=8)

C
C numsamp = # samples in data set

756

D.3.3 Implementation of E-RCEM in iSIGHT in Section 7.5

Figures presented in this section illustrate how the SEED method is implemented

in iSIGHT. The organization of tasks in Iteration I – Step 5 is shown in .

In Iteration I – Step 5, with information from metamodels of prediction errors, we

use eight simulation codes in iSIGHT, Covmat, Qerr, Jerr, Q, J, AsConstraint, Altcov,

and Detcov. Covmat is used to formulate the covariance matrix, Qerr and Jerr are

metamodels to predict prediction errors, Q and J are used to predict responses for total

heat transfer rate and compliance, AsConstraint is used to calculate the response of cross-

section area, As, and test design constraints. Altcov is used to adjust entries of the

covariance matrix, and Detcov is used to calculate the determinant.

Figure D.31 Implementation of E-RCEM in iSIGHT – Iteration I, Step 5

757

Figure D.32 Input Mapping for Covmat.f in E-RCEM – Iteration I, Step 5

Figure D.33 Organization of Input and Output for Altcov.f in E-RCEM – Iteration

I, Step 5

758

REFERENCES

Alexandrov, N. Dennis, J.E. Jr., Lewis, R.M. and Torczon, V., 1998, “A Trust Region
Framework for Managing the Use of Approximation Models in Optimization,”
Structural Optimization, 15(1), 16-23.

Anstreicher, K. M., Famps, M., Lee, J. and Williams, J., 1996, “Continuous Relaxations
for Constrained Maximum-Entropy Sampling”, Integer Programming and
Combinatorial Optimization, W. H. Cunningham, S. T. McCormick, and M.
Queyranne, eds., No. 1084, Springer-Verlag, New York, 1996, pp.234-248.

Atkinson, A. C. and Haines, L. M., 1996, “Designs for Nonlinear and Generalized Linear
Models,” Handbook of Statistics (Ghosh, S. and Rao, C. R., eds.), Elsevier Science,
New York, pp.437-475.

Balabanov, V.O., Giunta, A.A., Golovidov, O., Grossman, B., Mason, W.H. and Watson,
L.T., 1999, “Reasonable Design Space Approach to Response Surface
Approximation,” Journal of Aircraft, 36(1), 308-315.

Barton, R. R., 1992, December 13-16, "Metamodels for Simulation Input-Output
Relations," Proceedings of the 1992 Winter Simulation Conference (Swain, J. J.,
Goldsman, D., et al., eds.), Arlington, VA, IEEE, pp. 289-299.

Barton, R. R., 1994, “Metamodeling: A State of the Art Review,” Proceedings of the
1994 Winter Simulation Conference, Lake Beuna Vista, FL, IEEE.

Bernardo, J. M., 1979, “Expected Information as Expected Utility,” Ann. Statist., Vol. 7,
pp.686-690.

Bernardo, J. M. and Smith, A. F. M., 1994, Bayesian Theory, New York: Wiley.

Berry, D. A. and Fristedt, B., 1985, Bandit Problems: Sequential Allocation of
Experiments, Chapman and Hall, London.

759

Biles, W. E., 1984, "Design of Simulation Experiments," Proceedings of the 1984 Winter
Simulation Conference (WSC), Dallas, TX, IEEE, pp. 99-104.

Booker, A. J., 1996, "Case Studies in Design and Analysis of Computer Experiments,"
Proceedings of the Section on Physical and Engineering Sciences, American
Statistical Association.

Booker, A. J., Conn, A. R., Dennis, J. E., Frank, P. D., Serafini, D., Torczon, V. and
Trosset, M., 1996, "Multi-Level Design Optimization: A Boeing/IBM/Rice
Collaborative Project," 1996 Final Report, ISSTECH-96-031, The Boeing Company,
Seattle, WA.

Booker, A. J., Conn, A. R., Dennis, J. E., Frank, P. D., Trosset, M. and Torczon, V.,
1995, "Global Modeling for Optimization: Boeing/IBM/Rice Collaborative Project,"
1995 Final Report, ISSTECH-95-032, The Boeing Company, Seattle, WA.

Box, G., 1988, “Signal-to-Noise Ratios, Performance Criteria, and Transformations,”
Technometrics, Vol. 30, No. 1, pp. 1-18.

Box, G. E. P. and Draper, N. R., 1987, Empirical Model Building and Response Surfaces,
John Wiley & Sons, New York.

Box, G.E.P. and Draper, N.R., 1969, Evolutionary Operation: A Statistical Method for
Process Management, John Wiley & Sons, New York.

Box, G. E. P., Hunter, W. G. and Hunter, J. S., 1978, Statistics for Experimenters, John
Wiley &Sons, Inc., New York.

Box, G. E. P. and Wilson, K. B., 1951, “On the Experimental Attainment of Optimum
Conditions,” Journal of the Royal Statistical Society, Series B, 13, pp. 1-45.

Bras, B. A. and Mistree, F., 1991, "Designing Design Processes in Decision-Based
Concurrent Engineering," SAE Transactions, Journal of Materials & Manufacturing ,
SAE International, Warrendale, PA, pp. 451-458.

760

Brassard, M. and Ritter, D., 1994, “The Memory JoggerTM II – A Pocket Guide of Tolls
for Continuous Improvement & Effective Planning,” Methuen, MA, GOAL/QPC.

Breiman, L., Friedman, J. H., Olshen, R. and Stone, C. J., 1984, Classification and
Regression Trees, Wadsworth, Belmont, California.

Byrne, D.M. and Taguchi, S., 1987, “The Taguchi Approach to Parameter Design,” 40th
Annual Quality Congress Transactions, Milwaukee, WI, American Society for Quality
Control, pp. 19-26.

Chaloner, K. and Verdinelli, I., 1995, "Bayesian Experimental Design: A Review,"
Statistical Science, Vol. 10, No. 3, pp. 273-304.

Chen, V. C. P., 1993, Applying Experimental Design and Regression Splines to High-
Dimensional Continuous-State Stochastic Dynamic Programming, Ph.D. Dissertation,
School of Operations Research and Industrial Engineering, Cornell University, Ithaca,
NY.

Chen, V. C. P., 1999, “Application of Orthogonal Arrays and MARS to Inventory
Forecasting Stochastic Dynamic Programs,” Computational Statistics and Data
Analysis, 30, pp. 317-341.

Chen, V. C. P., Ruppert, D., and Shoemaker, C. A., 1999, “Applying Experimental
Design and Regression Splines to High-Dimensional Continuous-State Stochastic
Dynamic Programming,” Operations Research, Vol 47, pp. 38-53.

Chen, W., 1995, A Robust Concept Exploration Method for Configuring Complex
Systems, Ph.D. Dissertation, The George W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA.

Chen, W., Allen, J. K., Mistree, F. and Tsui, K. L., 1995, “Integration of Response
Surface Methods with the Compromise Decision Support Problem in Developing a
General Robust Design Procedure,” ASME Design Automation Conference, Boston,
Massachusetts, ASME, New York, pp. 485-492.

761

Chen, W., Allen, J. K., Mavris, D. and Mistree, F., 1996a, "A Concept Exploration
Method for Determining Robust Top-Level Specifications," Engineering
Optimization, Vol. 26, No. 2, pp. 137-158.

Chen, W., Allen, J.K., Tsui, K. L., and Mistree, F., 1996b, “A Procedure for Robust
Design: Minimizing Variations Caused by Noise Factors and Control Factors,” ASME
Journal of Mechanical Design, Vol. 118, No. 4, pp. 478-485.

Chen, W., Allen, J.K., Schrage, D.P. and Mistree, F., 1997, “Statistical Experimentation
Methods for Achieving Affordable Concurrent Systems Design,” AIAA Journal, 35(5),
893-900.

Cheng, B. and Titterington, D. M., 1994, “Neural Networks: A Review from a Statistical
Perspective,” Statistical Science, Vol. 9, No. 1, pp. 2-54.

Choi, H. and Fernandez, M. G., 2003, Towards Finite Element-Based Thermal
Topological Design of Unit Cells for Linear Cellular Alloys, Semester Project Report,
ME 6124, Spring, 2003.

Church, B. C., Dempsey, B. M., Clark, J. L., Sanders, T. H. and Cochran, J. K., 2001,
“Copper Alloys from Oxide Reduction for High Conductivity Applications,”
Proceedings of IMECE 2001, International Mechanical Engineering Congress and
Exposition, New York, 2001.

Clausing, D., 1994, Total Quality Development – A Step by Step Guide to World-Class
Concurrent Engineering, ASME, New York.

Clausius, R., 1865, “Ueber Verschiedene fur die Anwendung Bequeme Formen der
Hauptgleichungen der Mechanischen Warmetheorie,” Annalen der Physik und
Chemie, Vol.125, pp.353-400.Ericsson, K. A. and Simon, H. A., 1980, “Verbal
Reports as Data,” Vol. 87, No. 3, pp. 215-251.

Clyde, M. A., 1994, “A System for Bayesian Optimal Design Using XLISP-STAT,”
ISDS Discussion Paper, May 26, 1994.

Cochran, J. K., Lee, K. J., McDowell, D. L. and Sanders, T. H., 2000, “Low Density
Monolithic Honeycombs by Thermal Chemical Processing,” Proceedings of the 4th

762

Conference on Aerospace Materials, Processes, and Environmental Technology,
Huntsville, AL, 2000.

Congdon, P., 2001, Bayesian Statistical Modeling, Chichester, England; New York:
Wiley; 2001.

Cox, D. D. and John, S., 1995, March 13-16, “SDO: A Statistical Method for Global
Optimization,” Proceedings of the ICASE/NASA Langley Workshop on
Multidisciplinary Optimization (Alexandrov, N. M. and Hussaini, M. Y., eds.),
Hampton, VA, SIAM, pp. 315-329.

Cozzolino, J. M. and Zahner, M. J., 1973, “The Maximum Entropy Distribution of the
Future Market Price of a Stock,” Operations Research, Vol.21, pp.1200-1211.

Cressie, N. A. C., 1993, Statistics for Spatial Data, John Wiley & Sons, New York.

Currin, C., Mitchell, M., Morris, M., and Ylvisaker, D., 1991, “Bayesian Prediction of
Deterministic Functions, with Applications to the Design and Analysis of Computer
Experiments,” Journal of the American Statistical Association, Volume 86, pp.953-
963.

Dennis, J. E. and Torczon, V., 1995, March 13-16, "Managing Approximation Models in
Optimization," Proceedings of the ICASE/NASA Langley Workshop on
Multidisciplinary Design Optimization (Alexandrov, N. M. and Hussaini, M. Y., eds.),
Hampton, VA, SIAM, pp. 330-347.

Dixon, L. C. W. and Szego, G. P., 1978, The Global Optimisation Problem: An
Introduction, Towards Global Optimisation 2, North-Holland Publishing Company,
New York.

Du, X. and Chen, W., 2001, “A Most Probable Point Based Method for Uncertainty
Analysis,” Journal of Design and Manufacturing Automation, Vol. 4, No. 1, pp. 47-
66, 2001.

Du, X. and Chen, W., 2000, “Towards a Better Understanding of Modeling Feasibility
Robustness in Engineering,” ASME Journal of Mechanical Design, Vol. 122, No. 4,
pp. 357-583, 2000.

763

DuMouchel, W. and Jones, B., 1994, “A Simple Bayesian Modification of D-optimal
Designs to Reduce Dependence on an Assumed Model,” Technometrics, Vol. 36,
pp.37-47.

Ericsson, K. A. and Simon, H. A., 1980, “Verbal Reports as Data,” Vol. 87, No. 3, pp.
215-251.

Eschenauer, H. A. and Olhoff, N., 2001, “Topology Optimization of Continuum
Structures: A Review,” Applied Mechanics Reviews, Vol. 54, No. 4, pp. 331-389. 3.

Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F. and Wadley, H. N. G., 2001,
“The Topological Design of Multifunctional Cellular Materials,” Progress in
Materials Science, Vol. 46, No. 3-4, 2001, pp. 309-327.

Fang, S.-C. and Tsao, H.-S.J., 1993, “An Unconstrained Convex Programming Approach
to Solving Convex Quadratic Programming Problems,” Optimization, Vol. 27, pp.235-
243.

Fang, S.-C. and Tsao, H.-S.J., 1995, “Linear-Constrained Entropy Maximization Problem
with Quadratic Cost and its Application to Transportation Planning Problems,”
Transportation Science, Vol. 29, pp.353-365.

Fang, S.-C., Rajasekera, J. R. and Tsao, H.-S.J., 1997, Entropy Optimization and
Mathematical Programming, Kluwer Academic Publishers,
Boston/London/Dordrecht.

Farhang-Mehr, A. and Azarm, S., 2002, “A Sequential Information-Theoretic Approach
to Design of Computer Experiments,” 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Atlanta, Georgia, 2002.

Finger, S. and Dixon, J. R., 1989a, “A Review of Research in Mechanical Engineering
Design. Part 1: Descriptive, Prescriptive, and Computer-Based Models of Design
Processes,” Research in Engineering Design, Vol. 1, pp. 51-67.

Finger, S. and Dixon, J. R., 1989b, “A Review of Research in Mechanical Engineering
Design. Part 2: Representations, Analysis, and Design for the Life Cycle,” Research
in Engineering Design, Vol. 1, pp. 121-137.

764

Freeman, P. R., 1970, “Optimal Bayesian Sequential Estimation of the Median Effective
Dose,” Biometrika, Vol. 57, pp.79-89.

Friedman, J. H., 1991, “Multivariate Adaptive Regression Splines (with discussion),”
Annals of Statistics, Vol 19, pp.1-141.

Giunta, A. A., 1997, "Aircraft Multidisciplinary Design Optimization Using Design of
Experiments Theory and Response Surface Modeling," Ph.D. Dissertation and MAD
Center Report No. 97-05-01, Department of Aerospace and Ocean Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA.

Giunta, A.A., Balabanov, V., Kaufmann, M., Burgee, S., Grossman, B., Haftka, R.T.,
Mason, W.H. and Watson, L.T., 1996, “Variable-Complexity Response Surface
Design of An HSCT Configuration,” Multidisciplinary Design Optimization: State of
the Art – Proceedings of the ICASE/NASA Langley Workshop on Multidisciplinary
Design Optimization, SIAM, Hampton, VA, pp. 348-367.

Giunta, A. A., Balabanov, V., Haim, D., Grossman, B., Mason, W. H. and Watson, L. T.,
1996, “Wing Design for a High-Speed Civil Transport Using a Design of Experiments
Methodology,” 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Bellevue, WA, pp. 168-183.

Giunta, A. A., Dudley, J. M., Narducci, R., Grossman, B., Haftka, R. T., Mason, W. H.
and Watson, L. T., 1994, September 7-9, "Noisy Aerodynamic Response and Smooth
Approximations in HSCT Design," 5th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Panama City, FL, AIAA, Vol. 2, pp.
1117-1128. AIAA-94-4376-CP.

Giunta, A., Watson, L. T. and Koehler, J., 1998, September 2-4, "A Comparison of
Approximation Modeling Techniques: Polynomial Versus Interpolating Models," 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization,
St. Louis, MI, AIAA, AIAA-98-4758.

Goldman, R.W., 2001, Development of a Rollover-Warning Device for Road Vehicles,
Ph.D. Dissertation, Department of Mechanical and Nuclear Engineering, The
Pennsylvania State University, December, 2001.

765

Gu, L., 2001, “A Comparison of Polynomial Based Regression Models in Vehicle Safety
Analsysis,” ASME Design Engineering Technical Conferences – Design Automation
Conference, Pittsburgh, PA, Paper No. DETC2001/DAC-21063.

Gu, S., Lu, T. J. and Evans, A. G., 2001, “On the Design of Two-Dimensional Cellular
Metals for Combined Heat Dissipation and Structural Load Capacity,” International
Journal of Heat and Mass Transfer, Vol. 44, No. 11, 2001, pp. 2163-2175.

Gu, X., Renaud, J.E., Batill, S.M., Brach, R.M., and Budhiraja, A.S., 2000, "Worst Case
Propagated Uncertainty of Multidisciplinary Systems in Robust Design Optimization,"
Structural and Multidisciplinary Optimization , Vol.20, No.3, pp.190-213Guiasu, S.,
1977, Information Theory with Applications, McGraw-Hill, New York.

Guiasu, S., 1986, “Maximum Entropy Condition in Queueing Theory,” Journal of
Operational Research Society, Vol. 37, ppp.293-301.

Hastie, T., Tibshirani, R., and Friedman, J., 2001, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer Series in Statistics.

Hayes, A. M., Wang, A., Dempsey, B. M., and McDowell, D. L., 2001, “Mechanics of
Linear Cellular Alloys,” Proceedings of IMECE, International Mechanical
Engineering Congress and Exposition, New York, NY.

Healy, M. J., Kowalik, J. S. and Ramsay, J. W., 1975, "Airplane Engine Selection by
Optimization of Surface Fit Approximations," Journal of Aircraft, Vol. 12, No. 7, pp.
593-599.

Holnicki-Szulc, J., Pawlowski, P. and Wiklo, M., 2003, “High-Performance Impact
Absorbing Materials – The Concept, Design Tools and Applications,” Institute of
Physics Publishing, Smart Materials and Structures, 12 (2003) 461-467.

Hubka, V., 1982, Principles of Engineering Design, Butterworth & Co. (Publishers) Ltd.,
London.

Ignizio, J. P., 1985, Introduction to Linear Goal Programming, Sage University Papers,
Beverly Hills, CA.

766

Incropera, F. P. and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, John
Wiley & Sons, New York, 1996.

iSIGHT, Engineous Software, Inc., Cary, NC, Version 7.0, 2003.

Jaynes, E. T., 1957, “Information Theory and Statistical Mechanics II,” Physics Review,
Vol.108, pp.171-190.

Jin, R., Chen, W., and Sudjianto, A., 2002, “On Sequential Sampling for Global
Metamodeling in Engineering Design,” ASME 2002 Design Engineering Technical
Conferences and Computer and Information in Engineering Conference, Montreal,
Canada, September 29-October 2, 2002. Paper No. DETC2002/DAC-34092.

John, R.C. St. and Draper, N. R., 1975, “D-Optimality for Regression Designs: A
Review,” Technometrics, Vol. 17, No.1, February 1975.

Johnson, M. E., Moore, L. M. and Ylvisaker, D., 1990, "Minimax and Maximin Distance
Designs," Journal of Statistical Planning and Inference, Vol. 26, No. 2, pp. 131-148.

Jones, D. R., Schonlau, M., and Welch, W. J., 1998, “Efficient Global Optimization of
Expensive Black-Box Functions,” Journal of Global Optimization, 13:455-492.

Journel, A. G. and Huijbregts, C. J., 1978, Mining Geostatistics, Academic Press, New
York.

Kapur, J. N. and Kesavan, H. K., 1992, Entropy Optimization Principles with
Applications, Academic Press, Boston.

Kiefer, J., 1958, “On the Nonrandomized Optimality and Randomized Non-optimality of
Symmetrical Designs,” Ann. Math. Stat. Vol. 29, p675-699.

Kiefer, J., 1959, “Optimum Experimental Designs,” Journal of the Royal Statistical
Society B, Vol. 21, pp. 298-325.

Kiefer, J., 1961, “Optimum Designs in Regression Problems,” Annals of Mathematical
Statistics, Vol. 21, pp. 272-304.

767

Kiefer, J., 1985, Jack Carl Kiefer Collected Papers III, Springer, New York.

Kiefer, J. and Wolfowitz, J., 1959, “Optimum Designs in Regression Problems,” Annals
of Mathematical Statistics, Vol. 30, pp. 271-294.

Kiefer, J. and Wolfowitz, J., 1960, “The Equivalence of Two Extremum Problems,”
Canad. J. Math., Vol 12, 363.

Kleijnen, J.P.C., 1987, Statistics: Models and Tools for Simulation Practitioners, Marcel
Dekker, NY.

Koch, P. N., 1998, Hierarchical Modeling and Robust Synthesis for the Preliminary
Design of Large Scale Complex Systems, Ph.D. Dissertation, The G. W. Woodruff
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.

Koch, P. N., Barlow, A., Mistree, F. and Allen, J. K., 1996, "Configuring Turbine
Propulsion Systems Using Robust Concept Exploration," ASME Design Engineering
Technical Conferences, Irvine, CA, Paper No. 96-DETC/DAC-1472.

Koch, P. N., Allen, J. K., Mistree, F. and Mavris, D., 1997, September 14-17, "The
Problem of Size in Robust Design," Advances in Design Automation, Sacramento, CA,
ASME, Paper No. DETC97/DAC-3983.

Koehler, J. R. and Owen, A. B., 1996, “Computer Experiments,” Handbook of Statistics
(Ghosh, S. and Rao, C. R., eds.), Elsevier Science, New York, pp.261-308.

Kumar, V., Hoshino, K. and Kumar, U., 1989, “An Application of the Entropy
Maximization Approach in Shopping Area Planning,” International Journal of
General Systems, Vol. 16, pp.25-42.

Laird, J. E., Newell, A. and Rosenbloom, P. S., 1987, “SOAR: An Architecture for
General Intelligence,” Vol. 33, No. 1, pp. 1-64.

Lee, D., 2001, “Maximum Entropy Sampling,” In A.H. El-Shaarawi and W.W.
Piegorsch, editors, "Encyclopedia of Environmetrics". Wiley, 2001.

768

Lee, J. and Williams J., 1999, Generalized Maximum-Entropy Sampling, University of
Kentucky, Department of Mathematics, Technical report No. 99-10, July 1999.

Lewis, K., Lucas, T. and Mistree, F., 1994, September 7-9, "A Decision Based Approach
to Developing Ranged Top-Level Aircraft Specifications: A Conceptual Exposition,"
5th AIAA/USAF/NASA/ISSMOSymposium on Multidisciplinary Analysis and
Optimization, Panama City, FL, Vol. 1, pp. 465-481.

Li, H.-L. and Chou, C.-T., 1994, “A Global Approach for Nonlinear Mixed Discrete
Programming in Design Optimization,” Engineering Optimization, Vol. 22, pp. 109-
122.

Lin, Y., 2000, Robust Design Goal Formulations and Metamodeling Techniques, MS
Thesis, the George. W. Woodruff School of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, Georgia.

Lin, Y., Krishnapur, K., Allen, J. K. and Mistree, F., 1999, “Robust Design: Goal
Formulations and A Comparison of Metamodeling Methods,” 1999 ASME Design
Automation Conference, Las Vegas, Neveda, ASME DETC99/DAC-8608.

Lindley, D. V., 1956, “On a Measure of Information Provided by an Experiment,” The
Annals of Mathematical Statistics, Volume 27, pp. 986-1005.

Lu, T. J., 1999, “Heat Transfer Efficiency of Metal Honeycombs,” International Journal
of Heat and Mass Transfer, Vol. 42, No. 11, 1999, pp. 2031-2040.

Lucas, J.M., 1994, “Using Response Surface Methodology to Achieve a Robust Process,”
Journal of Quality Technology, Vol. 26, No. 4, pp. 248-260.

Mallet, C. G., 1998, A Wavelet Tour of Signal Processing, Academic Press, Boston.

Matheron, G., 1963, “Principles of Geostatistics,” Economic Geology, 58, pp. 1246-1266.

Mavris, D.N., Bandte, O., DeLaurentis, D.A., 1999, “Robust Design Simulation: A
Probabilistic Approach to Multidisciplinary Design,” AIAA Journal of Aircraft, Vol.
36, No. 1, pp. 298-307.

769

McKay, M. D., Beckman, R. J. and Conover, W. J., 1979, "A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code," Technometrics, Vol. 21, No. 2, pp. 239-245.

Mistree, F., Smith, W. F., Bras, B., Allen, J. K. and Muster, D., 1990a, “Decision-Based
Design: A Contemporary Paradigm for Ship Design,” Transactions, Society of Naval
Architects and Marine Engineers, Jersey City, New Jersey, pp. 565-597.

Mistree, F., Muster, D., Srinivasan, S. and Mudali, S., 1990b, “Design of Linkages: A
Conceptual Exercise in Designing for Concept,” Mechanism and Machine Theory,
Vol. 25, No. 3, pp. 273-286.

Mistree, F., Smith, W. F. and Bras, B. A., 1993a, “A Decision-Based Approach to
Concurrent Engineering,” Handbook of Concurrent Engineering, Paresai, H. R. and
Sullivan, W., ed., Chapman & Hall, New York, pp. 127-158.

Mistree, F., Hughes, O.F. and Bras, B.A., 1993b, “The Compromise Decision Support
Problem and the Adaptive Linear Programming Algorithm,” Structural Optimization,
Vol. 5, No. 3, pp. 141-144.

Mistree, F., Lewis, K. and Stonis, L., 1994, “Selection in the Conceptual Design of
Aircraft,” AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Panama City, Florida, September 7-9, 1994, 1153-1166, Paper No.
AIAA-94-4382-CP.

Mitchell, T. J. and Morris, M. D., 1992a, "Bayesian Design and Analysis of Computer
Experiments: Two Examples," Statistica Sinica, Vol. 2, pp. 359-379.

Mitchell, T. J. and Morris, M. D., 1992b, December 13-16, “The Spatial Correlation
Function Approach to Response Surface Estimation,” Proceedings of the 1992 Winter
Simulation Conference (Swain, J. J., Goldsman, D., et al., eds.), Arlington, VA, IEEE,
pp. 565-571.

Montgomery, D. C., 1991, Design and Analysis of Experiments, Third Edition, John
Wiley & Sons, New York.

770

Montgomery, D. C. and Evans, D. M., Jr., 1975, "Second-Order Response Surface
Designs in Computer Simulation," Simulation, Vol. 29, No. 6, pp. 169-178.

Muster, D. and Mistree, F., 1988, “The Decision Support Problem Techniques in
Engineering Design,” The International Journal of Applied Engineering Education,
Vol. 4, No. 1, pp. 23-33.

Myers, R. H. and Montgomery, D. C., 1995, Response Surface Methodology: Process
and Product Optimization Using Designed Experiments, John Wiley & Sons, New
York.

Myers, R. H., Khuri, A. I. and Carter, W. H., 1989, "Response Surface Methodology:
1966-1988," Technometrics, Vol. 31, No. 2, May, pp. 137-157.

Nair, V.N., 1992, “Taguchi’s Parameter Design: A Panel Discussion,” Technometrics,
Vol. 34, No. 2, pp. 127-161.

Nevill, G. E., 1989, “Computational Models of Design Processes,” Design Theory ’88:
Proceedings of the 1988 NSF Grantee Workshop on Design Theory and Methodology,
Springer-Verlag, New York.

Osio, I. G. and Amon, C. H., 1996, "An Engineering Design Methodology with
Multistage Bayesian Surrogates and Optimal Sampling," Research in Engineering
Design, Vol. 8, No. 4, pp. 189-206.

Otto, K. N. and Antonsson, E. K., 1993, "Extensions to the Taguchi Method of Product
Design," Journal of Mechanical Design, Vol. 115, No. 1, pp. 5-13.

Pahl, G. and Beitz, W., 1984, Engineering Design, The Design Council/Springer-Verlag,
London/Berlin.

Pahl, G. and Beitz, W., 1986, Konstruktionslehre – Handbuch fuer Studium und Praxis,
Springer – Verlag, Berlin.

Parkinson, A., Sorensen, C. and Pourhassan, N., 1993, “A General Approach for Robust
Optimal Design,” Transactions of the ASME, Vol. 115, pp. 74-80.

771

Pedersen, K., Emblemsvag, J., Allen, J. K., and Mistree, F., 2000, “Validating Design
Methods and Research – The Validation Square,” ASME Design Theory and
Methodology Conference, Baltimore, MD, ASME, DETC00/DTM-14579.

Phadke, M.S., 1989, Quality Engineering using Robust Design, Prentice Hall, Englewood
Cliffs, NJ.

Pignatiello, J. J. and Ramberg, J. S., 1991, “Top Ten Triumphs and Tragedies of Genichi
Taguchi,” Vol. 4, pp. 211-225.

Pilz, J., 1991, Bayesian Estimation and Experimental Design in Linear Regression
Models, New York: Wiley.

Pukelsheim, F., 1993, Optimal Design of Experiments, New York: Wiley.

Rajasekera, J. R. and Fang, S.-C., 1992, “Deriving an Unconstrained Convex Program for
Linear Programming,” Journal of Optimization Theory and Applications, Vol. 75,
pp.603-612.

Ramakrishnan, B. and Rao, S.S., 1991, “A Robust Optimization Approach using
Taguchi’s Loss Function for Solving Nonlinear Optimization Problems,” Advances in
Design Automation – Design Automation and Design Optimization, Miami, FL,
ASME, pp. 241-248.

Ramberg, J.S., Sanchez, S.M., Sanchez, P.J. and Hollick, L.J., 1991, “Designing
Simulation Experiments: Taguchi Methods and Response Surface Metamodels,”
Proceedings, 1991 Winter Simulation Conference, Phoenix, AZ, IEEE, pp. 167-176.

Rangarajan, B., 1998, Robust Concurrent Design of Automobile Engine Lubricated
Components, The George W. Woodruff School of Mechanical Engineering, Georgia
Institute of Technology, Atlanta, GA.

Reddy, S. Y., 1996, August 18-22, “HIDER: A Methodology for Early-Stage Exploration
of Design Space,” Advances in Design Automation (Dutta, D., ed.), Irvine, CA,
ASME, Paper No. 96-DETC/DAC-1089.

772

Renaud, J. E., 1992, August, Sequential Approximation in Non-Hierarchic System
Decomposition and Optimization: A Multidisciplinary Design Tool, Doctoral
Dissertation, Rensselear Polytechnic Institute, Troy, NY.

Renaud, J. E. and Gabrielle, G. A., 1991, September 22-25, "Sequential Global
Approximation in Non-Hierarchic System Decomposition and Optimization,"
Advances in Design Automation - Design Automation and Design Optimization
(Gabriele, G., ed.), Miami, FL, ASME, Vol. 32-1, pp. 191-200.

Renaud, J. E. and Gabriele, G. A., 1994, "Approximation in Nonhierarchic System
Optimization," AIAA Journal, Vol. 32, No. 1, pp. 198-205.

Renyi, A., 1961, “On Measures of Entropy and Information,” In Proc. 4th Berkeley Symp.
Mathematical Statistics and Probability, Volume 1, pp. 547-561. Berkeley:
University of California Press.

Renyi, A., 1970, Probability Theory, Amsterdam, North-Holland.

Rodriguez, J. F., Renaud, J. E. and Watson, L. T., 1997, September 14-17, "Trust Region
Augmented Lagrangian Methods for Sequential Response Surface Approximation and
Optimization," Advances in Design Automation (Dutta, D., ed.), Sacramento, CA,
ASME, Paper No. DETC97/DAC-3773.

Ross, P.J., 1988, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York,
NY.

Roth, K., 1982, Konstruieren mit Konstruktionskatalogen, Springer-Verlag, Berlin.

Rozvany, G. I. N., 2001, “Aims, Scope, Methods, History, and Unified Terminology of
Computer-Aided Topology Optimization in Structural Mechanics,” Structural and
Multidisciplinary Optimization, Vol. 21, pp. 90-108.

Rumelhart, D. E., Widrow, B. and Lehr, M. A., 1994, "The Basic Ideas in Neural
Networks," Communications of the ACM, Vol. 37, No. 3 (March), pp. 87-92.

773

Sacks, J. and Schiller, S., 1988, "Spatial Designs," Statistical Decision Theory and
Related Topics (Gupta, S. S. and Berger, J. O., eds.), Springer-Verlag, New York, pp.
385-399.

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P., 1989a, "Design and Analysis of
Computer Experiments," Statistical Science, Vol. 4, No. 4, pp. 409-435.

Sacks, J., Schiller, S. B. and Welch, W. J., 1989b, "Designs for Computer Experiments,"
Technometrics, Vol. 31, No. 1, February, pp. 41-47.

Sandgren, E., 1990, “Nonlinear Integer and Discrete Programming in Mechanical Design
Optimization,” Journal of Mechanical Design, Vol. 112, No. 2, pp. 223-229.

Sasena, M. J., 1998, Optimization of Computer Simulations via Smoothing Splines and
Kriging Metamodels, M.S. Thesis, Department of Mechanical Engineering, University
of Michigan, Ann Arbor, MI.

Sasena, M J, Papalambros, P.Y., and Goovaerts, P., 2002, “Exploration of Metamodeling
Sampling Criteria for Constrained Global Optimization,” Engineering Optimization,
34(3):263–278, 2002.

Sayers, M.W. and Karamihas, S.M., 1998, The Little Book of Profiling: Basic
Information about Measuring and Interpreting Road Profiles, The Regent of the
University of Michigan.

Schonlau, M., 1997, Computer Experiments and Global Optimization, Doctoral thesis,
University of Waterloo, Department of Statistics, Ontario, Canada.

Schonlau, M., Welch, W. J. and Jones, D. R., 1997, "Global Versus Local Search in
Constrained Optimization of Computer Models," Technical Report RR-97-11, to
appear in New Developments and Applications in Experimental Design (Fluornoy, N.,
et al., Eds.), Institute for Mathematical Statistics, Institute for Improvement in Quality
and Productivity, University of Waterloo, Waterloo, Ontario, Canada.

Scott, C. H. and Jefferson, T. R., 1977, “Entropy Maximizing Models of Residential
Location via Geometric Programming,” Geographical Analysis, Vol. 9, pp.181-187.

774

Sebastiani P. and Wynn H.P., 1997, “Bayesian Experimental Design and Shannon
Information,” Statistical Research Report, No.17, October 1997.

Sebastiani, P. and Wynn, H. P., 2000, “Maximum Entropy Sampling and Optimal
Bayesian Experimental Design,” J. R. Statist. Soc. B (2000), Vol. 62, Part 1, pp.145-
157.

Sebastiani, P. and Wynn, H. P., 2001, “Experimental Design to Maximize Information,”
Twentieth International Workshop on Bayesian Inference and Maximum Entropy in
Science and Engineering, AIP Conference Proceedings, pp.192-203.

Seepersad, C. C., B. M. Dempsey, J. K. Allen, F. Mistree and D. L. McDowell, 2003,
“Design of Multifunctional Honeycomb Materials,” AIAA Journal.

Seepersad, C.C., Dempsey, B.M., Allen, J.K., Mistree, F. and McDowell, D.L., 2002,
“Design of Multifunctional Honeycomb Materials,” 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Atlanta, GA, AIAA, Paper Number
AIAA-2002-5626.

Shannon, C. E., 1948, “A Mathematical Theory of Communication,” Bell System Tech.
J., 27:379–423, 623–659.

Shannon, C. E. and Weaver, W., 1962, The Mathematical Theory of Communication,
University of Illinois Press, Urbana, Illinois.

Shewry, M. C. and Wynn, H. P., 1987, “Maximum Entropy Sampling,” Journal of
Applied Statistics, Vol.14, No.2, pp.165-170.

Shewry, M. C. and Wynn, H. P., 1988, “Maximum Entropy Sampling with Application to
Simulation Codes,” Proceedings of the 12th World Congress on Scientific
Computation, IMAC88, Vol.2, pp.517-519.

Shoemaker, A. C., Tsui, K. L. and Wu, J., 1991, "Economical Experimentation Methods
for Robust Design," Technometrics, Vol. 33, No. 4, pp. 415-427.

775

Shore, J. E., “Minimum Cross-entropy Spectral Analysis,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-29, pp.230-237.

Shupe, J. A., Muster, D., Allen, J. K. and Mistree, F., 1988, “Decision-Based Design:
Some Concepts and Research Issues,” Expert Systems, Strategies and Solutions in
Manufacturing Design and Planning, Kusiak, A., ed., Society of Manufacturing
Engineeris, Dearborn, Michigan, pp. 3-37 (Chapter 1).

Sigmund, O., 2001, “A 99 Line Topology Optimization Code Written in Matlab,”
Structural Multidisciplinary Optimization, Vol. 21, pp. 120-127.

Simon, H. A., 1982, “Models of bounded rationality,” Cambridge, Massachusetts: MIT
Press, Vol. 2, 1982.

Simpson, T. W., 1995, Development of a Design Process for Realizing Open Engineering
Systems, MS Thesis, The G. W. Woodruff School of Mechanical Engineering, Georgia
Institute of Technology, Atlanta, GA.

Simpson, T. W., 1998, A Concept Exploration Method for Product Family Design, Ph.D.
Dissertation, The Georgia W. Woodruff School of Mechanical Engineering, Georgia
Institute of Technology, Atlanta, GA.

Simpson, T. W., Chen, W., Allen, J. K. and Mistree, F., 1996, September 4-6,
“Conceptual Design of a Family of Products Through the Use of the Robust Concept
Exploration Method,” 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Bellevue, WA, AIAA, Vol. 2, pp. 1535-1545. AIAA-96-
4161-CP.

Simpson, T. W., Lautenschlager, U., and Mistree, F., 1997a, “Mass Customization in the
Age of Information: The Case for Open Engineering Systems,” The Information
Revolution: Present and Future (Read, W. H., and Porter, A. L., eds.), Ablex
Publishing, Greenwich, CT, pp. 49-71.

Simpson, T.W., Peplinski, J., Koch, P.N. and Allen, J.K., 1997b, “On the Use of
Statistics in Design and the Implications for Deterministic Computer Experiments,”
ASME Design Engineering Technical Conferences, Sacramento, CA Paper No.
DETC97/DTM3881.

776

Simpson, T. W., Chen, W., Allen, J. K. and Mistree, F., 1997c, October 13-16,
"Designing Ranged Sets of Top-Level Design Specifications for a Family of Aircraft:
An Application of Design Capability Indices," SAE World Aviation Congress and
Exposition, Anaheim, CA, AIAA-97-5513.

Smith, W. F. and Mistree, F., 1994, May 24-27, "The Development of Top-Level Ship
Specifications: A Decision-Based Approach," 5th International Conference on Marine
Design, Delft, The Netherlands, pp. 59-76.

Steinberg, D. M., 1985, “Model Robust Response Surface Designs: Scaling Two-Level
Factorials,” Biometrika, Vol. 72, pp.513-26.

Stone, M., 1959, “Application of a Measure of Information to the Design and
Comparison of Regression Experiments,” Ann. Math. Statist., Vol. 30, pp.55-70.

Su, J. and Renaud, J. E., 1996, September 4-6, "Automatic Differentiation in Robust
Optimization," 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Bellevue, WA, AIAA, Vol. 1, pp. 201-215. AIAA-96-
4005-CP.

Suh, N. P., 1990, Principles of Design, Oxford University Press, Oxford, U.K.

Sundaresan, S., Isshii, K. and Houser, D.R., 1993, “A Robust Optimization Procedure
with Variations on Design Variables and Constraints,” Advances in Design
Automation, ASME DE-Vol. 69-1, pp. 379-386.

Taguchi, G., 1978, “Off-Line and On-Line Quality Control Systems,” Proceedings of
International Conference on Quality Control, Tokyo, Japan.

Taguchi, G., 1987, System of Experimental Design: Engineering Methods to Optimize
Quality and Minimize Costs, UNIPUB/Kraus International Publications.

Taguchi, G., Elsayad, E. A. and Hsiang, T., 1989, Quality Engineering in Production
Systems, McGraw-Hill, New York.

777

Toropov, V., van Keulen, F., Markine, V. and de Doer, H., 1996, September 4-6,
"Refinements in the Multi-Point Approximation Method to Reduce the Effects of
Noisy Structural Responses," 6th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Bellevue, WA, AIAA, Vol. 2, pp. 941-
951. AIAA-96-4087-CP.

Torquato, S., Gibiansky, L. V., Silva, M. J. and Gibson, L. J., 1998, “Effective
Mechanical and Transport Properties of Cellular Solids,” International Journal of
Mechanical Sciences, Vol. 40, No. 1, 1998, pp. 71-82.

Tribus, M., 1969, Rational Descriptions, Decisions, and Designs, Pergamon Press, New
York.

Tribus, M. and Szonyi, G., 1989, "An Alternative View of the Taguchi Approach,"
Quality Progress, Vol. 22, No. 5, pp. 46-52.

Trosset, M. W. and Torczon, V., 1997, “Numerical Optimization Using Computer
Experiments,” Report No. TR97-02, Department of Computational and Applied
Mathematics, Rice University, Houston, TX.

Tsai, J. C., 2002, Statistical Modeling of the Value Function in High-Dimensional ,
Continuous-State SDP, Ph.D. Dissertation, School of Industrial and Systems
Engineering, Georgia Institute of Technology.

Tsui, K–L., 1992, “An Overview of Taguchi Method and Newly Developed Statistical
Methods for Robust Design,” IIE Transaction, Vol. 24, No. 5, pp. 44-57.

Unal, R., Stanley, D.O., Engelund, W. and Lepsch, R., 1994, “Design for Quality using
Response Surface Methods: An Alternative to Taguchi’s Parameter Design
Approach,” Engineering Management Journal, Vol. 6 No. 3, pp. 40-48.

Vandenberghe, L., Boyd, S. and Wu, S. P., 1998, “Determinant Maximization with
Linear Matrix Inequality Constraints,” SIAM Journal on Matrix Analysis and
Application, Vol. 19 (1998).

778

Venter, G., Haftka, R. T. and Starnes, J. H., Jr., 1996, "Construction of Response Sufaces
for Design Optimization Applications," 6th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Bellevue, WA, AIAA, Inc., pp. 548-564.

Wald, A., 1943, “On the Efficient Design of Statistical Investigations,” Ann. Math.
Statist., Vol. 14, p134-140.

Wang, G., 2001, “Improvement on the Adaptive Response Surface Method for High-
Dimensional Computation-Intensive Design Problems,” ASME Design Engineering
Technical Conferences – Design Automation Conference, Pittsburgh, PA, Paper No.
DETC2001/DAC-21141.

Wang, G., 2003, “Adaptive Response Surface Method Using Inherited Latin Hypercube
Designs,” ASME Journal of Mechanical Design, 125(2), 210-220.

Wang, Y. and Lu, W., 1992, “Multicriterion Maximum Entropy Image Reconstruction
from Projections,” European Journal of Operational Research, Vol. 59, pp.324-329.

Wang, G. and Simpson, T.W., 2004, “Fuzzy Clustering Based Hierarchical
Metamodeling for Design Space Reduction and Optimization,” Engineering
Optimization, Vol.36, No.3, June 2004, 313-335.

Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J. and Morris, M.D., 1992,
“Screening, Predicting and Computer Experiments,” Technometrics, 34(1), 15-25.

Welch, W. J., Yu, T.-K., Kang, S. M. and Sacks, J., 1990, "Computer Experiments for
Quality Control by Parameter Design," Journal of Quality Technology, Vol. 22, No. 1,
pp. 15-22.

Wijsman, R. A., 1973, “On the Attainment of the Cramer-Rao Lower Bound,” Ann.
Statist., Vol. 1, pp.538-542.

Wilson, B., Cappelleri, D. J., Frecker, M. I. and Simpson, T. W., 2001, “Efficient Pareto
Frontier Exploration Using Surrogate Approximations,” Optimization and
Engineering, 2:1 (31-50).

779

780

Wujek, B.A. and Renaud, J.E., 1998a, “New Adaptive Move-Limit Management Strategy
for Approximate Optimization, Part 1,” AIAA Journal, 36(10), 1911-1921.

Wujek, B.A. and Renaud, J.E., 1998b, “New Adaptive Move-Limit Management Strategy
for Approximate Optimization, Part 2,” AIAA Journal, 36(10), 1922-1934.

Wujek, B. A., Renaud, J. E., Batill, S. M. and Brockman, J. B., 1995, September 17-21,
"Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed
Computing Environment," Advances in Design Automation (Azarm, S., Dutta, D., et
al., eds.), Boston, MA, ASME, Vol. 82, pp. 181-188.

Yamada, M. and Rajasekera, J. R., 1993, “Portfolio Re-balancing with the Entropy
Criteria,” Report No.310, QUICK Research Institute Corp., Tokyo.

Ye, Q., 1997, Orthogonal Latin Hypercubes and their Application in Computer
Experiments, Technical Report #305, University of Michigan.

Yu, J.-C. and Ishii, K., 1998, "Design Optimization for Robustness Using Quadrature
Factorial Models," Engineering Optimization, Vol. 30, No. 3-4, pp. 203-225.

Zacks, S., 1996, “Adaptive Designs for Parametric Models,” Handbook of Statistics
(Ghosh, S. and Rao, C. R., eds.), Elsevier Science, New York, pp.151-180.

