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SUMMARY 

Experimentation and approximation are essential for efficiency and effectiveness 

in concurrent engineering analyses of large-scale complex systems.  The approximation-

based design strategy is not fully utilized in industrial applications in which designers 

have to deal with multi-disciplinary, multi-variable, multi-response, and multi-objective 

analysis using very complicated and expensive-to-run computer analysis codes or 

physical experiments.  With current experimental design and metamodeling techniques, it 

is difficult for engineers to develop acceptable metamodels for irregular responses and 

achieve good design solutions in large design spaces at low prices.  To circumvent this 

problem, engineers tend to either adopt low-fidelity simulations or models with which 

important response properties may be lost, or restrict the study to very small design 

spaces.  Information from expensive physical or computer experiments is often used as a 

validation in late design stages instead of analysis tools that are used in early-stage 

design.  This increases the possibility of expensive re-design processes and the time-to-

market. 

In this dissertation, two methods, the Sequential Exploratory Experimental 

Design (SEED) and the Efficient Robust Concept Exploration Method (E-RCEM) are 

developed to address these problems.  The SEED and E-RCEM methods help develop 

acceptable metamodels for irregular responses with expensive experiments and achieve 

satisficing design solutions in large design spaces with limited computational or 

 xxxiii



 xxxiv

monetary resources.  It is verified that more accurate metamodels are developed and 

better design solutions are achieved with SEED and E-RCEM than with traditional 

approximation-based design methods.  SEED and E-RCEM facilitate the full utility of the 

simulation-and-approximation-based design strategy in engineering and scientific 

applications. 

Several preliminary approaches for metamodel validation with additional 

validation points are proposed in this dissertation, after verifying that the most-widely-

used method of leave-one-out cross-validation is theoretically inappropriate in testing the 

accuracy of metamodels.  A comparison of the performance of kriging and MARS 

metamodels is done in this dissertation.  Then a sequential metamodeling approach is 

proposed to utilize different types of metamodels along the design timeline. 

Several single-variable or two-variable examples and two engineering example, 

the design of pressure vessels and the design of unit cells for linear cellular alloys, are 

used in this dissertation to facilitate our studies. 



 
CHAPTER 1 

FOUNDATIONS FOR SEQUENTIAL 
METAMODELING AND SEQUENTIAL DESIGN 

SPACE EXPLORATION 

Experimentation and approximation are essential for efficiency and effectiveness 

in concurrent engineering analyses of large-scale complex systems in which designers 

have to deal with multi-disciplinary and multi-objective analysis using very complicated 

and expensive-to-run computer analysis codes.  This process of experimentation and 

approximation is called metamodeling in which we need: (a) choosing an experimental 

design for generating data, (b) choosing a model to represent the data, and (c) fitting the 

model to the data.  Sequential metamodeling and analyses are the development of series 

of metamodels with different sets of data by realizing these steps sequentially and 

repeatedly along the design timeline.  It helps designers explore the design space to find 

satisfacing solutions in early design stages.   

The heart of the chapter lies in Section 1.3 wherein the research objectives, 

hypotheses, and contributions for the work are described.  Sections 1.1 and 1.2 contain 

the motivation, foundation, and references for investigating the proposed research and 

serve to establish context for the reader.  The validation and verification strategy for this 

dissertation is presented in Section 1.4.  Finally, Section 1.5 contains an overview of the 

dissertation.  
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1.1 MOTIVATION AND BACKGROUND 

In the design of large-scale engineering systems, it is initially desirable to explore a 

large design space.  Much of today’s engineering analysis work consists of running 

complex computer programs – supplying a vector of design variables (inputs) x and 

receiving a vector of response (outputs) y.  However, a complete examination of a large 

design space can generate a substantial computational load.  Many detailed analysis 

programs are available in the later stages of design, but they are often too expensive to 

use in exploring large design spaces.  Furthermore, this mode of query-and-response 

often leads to a trial and error approach to design, an iterative spiral compounded by the 

requirements flowdown and feedback necessary in large-scale complex systems design.  

Thus a designer may never uncover the functional relationship between x and y and never 

identify the best settings for the input values.  To solve this problem, metamodels, i.e., 

“model of the model” (Kleijnen, 1987), are created to predict system performance at 

various sample points and then to develop a relationship between predicted performance 

and the variables under study.  This process of experimentation and approximation 

consists: (a) choosing an experimental design for generating data, (b) choosing a model to 

represent the data, and (c) fitting the model to the data.  Notice that the predicted 

performance is determined by the input variables and hence is deterministic and not 

based on random variation.  Design decisions are made based on the results of the 

analysis of the metamodels.  By using metamodels in design we sacrifice some 
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acceptable degrees of design “effectiveness” (accuracy) to gain more design “efficiency” 

(speed), which is reasonable and highly recommended in the early design stages. 

Metamodeling is very useful in robust design of open engineering systems.  

Robust design is based on experimentation and development & analysis of metamodels.  

Taguchi proposes exploring the design space at selected points determined by one type of 

Design of Experiments (DOE), namely, orthogonal arrays (see, e.g., Taguchi, 1987); 

actual design performance is analyzed at selected points and response surfaces are 

generated to predict performance over the entire design space.  In the literature, both the 

method of sampling the design space with orthogonal arrays and the generation of 

response surfaces to smooth the data have been questioned.  Many variations of robust 

design have been proposed with advanced metamodeling techniques.  Development in 

metamodeling and robust design techniques helps the design of open engineering 

systems, e.g., product families, in early design stages (Simpson, et al., 1997a). 

During the design processes, the design information increases exponentially along 

the design timeline.  At different points along the design timeline the design requirements 

are different; designers’ knowledge also increases a lot from the beginning to the end of 

conceptual design.  At the beginning period the design efficiency is much emphasized 

while as design goes on more and more focus is put on the design effectiveness.  A 

designer in the early stages of conceptual design knows little about the problem or the 

design space and does not necessarily know which type of DOE or which metamodeling 

methods will be most effective and efficient for that particular problem.  As the design 

evolves and more information becomes available, it may be possible to determine which 
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methods are appropriate for that particular problem.  From the viewpoint of 

metamodeling, this shift of design requirements corresponds to the development of more 

accurate metamodels with sequential experiments.  The Response Surface Methodology 

(RSM) is such a method in which sequential experimental designs and sequential 

metamodels are utilized to reflect the different information and requirements along the 

design timeline.  Although RSM has been widely applied and proved to be useful, it has 

many weak points as well as strong points.  It is confined to classical experimental 

designs and regression polynomial models (which is referred as RS models in this 

dissertation).  This limits its usage in deterministic applications (for details, see, Welch, 

et al., 1990; Simpson, et al., 1997b).  How to design sequential computer experiments and 

develop series of appropriate metamodels along the design timeline in accordance with 

the changing design information is still an open problem. 

The primary objective of the research in this dissertation is to develop a 

systematic yet flexible method in which various metamodeling techniques are utilized in 

building series of appropriate metamodels for robust design space exploration in 

accordance with the change in information quality along the design timeline at the early 

stages of design.  Development of the method will be accomplished by (1) studying 

measures for metamodel validation with deterministic computer experiments, (2) 

developing methods for sequential experimental design in fixed design spaces, (3) 

studying the integration of metamodeling and design space exploration within a fixed 

design space, and (4) developing methods for model selection along the design timeline.   

4 



In this section, the motivation and background for the research are introduced.  

An overview of the engineering design processes and the design of large-scale 

engineering systems is first given in Section 1.1.1.  Open engineering systems design is 

then described in Section 1.1.2.  Metamodeling techniques and its applications in robust 

design are introduced in Section 1.1.3. 

1.1.1 Engineering Design Processes and Design of Large Scale Engineering 
Systems in Early Stages 

To describe and improve engineering design processes, various theories and 

methodologies have been developed in previous research.  Finger and Dixon (Finger and 

Dixon, 1989a; Finger and Dixon, 1989b) provide taxonomy distinctions among design 

methods based on observing how designers go about their work, namely, descriptive 

models of design processes (Ericsson and Simmon, 1980; Ericsson and Simon, 1984; 

Laird, et al., 1987), methods based on formal grammars and axioms, namely, prescriptive 

models of design processes (Hubka, 1982; Pahl and Beitz, 1986; Roth, 1982), and the 

design of computer-based models (Nevill, 1989) which help a designer in whatever 

methodology is used.  Mistree and co-authors provide a comprehensive review of the 

aforementioned works and other developments in the field of design theories and 

methodologies (Mistree, et al., 1990a).  Although models of design processes vary 

significantly under these different streams of research, there are some models which are 

widely acceptable and make intuitive sense to many designers.  An example is the four 

major design phases identified by Pahl and Beitz (Pahl and Beitz, 1984): 
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• Clarification of the task – collection of information about the requirements to 

be embodied in the solution and also about the constraints. 

• Conceptual design – establishment of function structures, the search for 

suitable solution principles and their combination into concept variants. 

• Embodiment design – starting from the concept, a designer determines the 

layout and forms, and develops a technical product or system in accordance 

with technical and economic considerations.  Embodiment design is 

sometimes called preliminary design. 

• Detail design – all the details of the final design are specified and 

manufacturing drawings and documentation are produced. 

 
By “early design stages” we mean activities that happen in the first two phases: 

clarification of the task and conceptual design.  In the early design stages, design 

concepts are synthesized at the system level based on mission requirements or market 

opportunities.  As a result, the conceptual baseline is developed and represented by a set 

of top-level specifications.  The conceptual baseline then becomes the configuration input 

for preliminary design, where the system is decomposed for more sophisticated analysis 

by discipline, subsystem, or component (Chen, 1995).  Top-level design specifications 

are the descriptions of system/subsystem concepts or the definitions of the complex 

system at the system/subsystem level.  They are used as the starting point for the 

preliminary design at the subsystem level, and form the basis for the specifications 

(functional properties) that are developed during the preliminary design phase.  The top-

6 



level design specifications can be continuous, which means any value within a specified 

range can be used; they can also be discrete variables or different design concepts. 

It has been shown that a significant portion of the total life cycle cost of systems 

is determined during the early design stages where the top-level specifications are 

generated.  The quality engineering tools, e.g., the 7 management tools (Brassard and 

Ritter, 1994) and Quality Function Deployment (QFD) (Clausing, 1994) have become 

popular in the early stages of product design, while they are most frequently used in the 

engineering management level.  The Robust Concept Exploration Method (RCEM), 

which was developed by Wei Chen in the Systems Realization Laboratory in 1995, offers 

a systematic method for integrating and transforming the overall design requirements into 

top-level design specifications in the early design stages.  The RCEM has been 

successfully used in designing solar power irrigation systems, engines, aircraft, etc. 

Another important issue to be addressed about design in the early stages is how 

engineers do tradeoffs between design effectiveness (accuracy) and design efficiency 

(speed).  Along a design timeline, design information increases and design knowledge for 

design changes.  In the early design stages where accurate analysis is unavailable or not 

needed while design time is limited, more emphasis is put on design efficiency than on 

design effectiveness.  In the later design stages where more design knowledge is available 

and accurate analysis is needed to insure the product performance, design effectiveness is 

given much higher priority than design efficiency.  In designing large-scale engineering 

systems, this issue has been more apparent. 
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Most large-scale engineering systems are complex systems.  A complex system is 

a system composed of a number of subsystems where each subsystem is embodied by a 

particular set of components, or sub-subsystems.  Each component has its own working 

principle.  In addition, the system, subsystems, and components involve the interactions 

of multiple disciplines.  Decomposition or partitioning of complex systems has long been 

viewed as beneficial to the efficient solution of a system.  The decomposition schemes 

historically have been hierarchical in nature (Renaud, 1992; Koch, 1998), while many 

systems lend themselves to non-hierarchic decomposition schemes instead of hierarchical 

ones (Renaud, 1992).  The decomposition and synthesis of large-scale engineering 

systems (especially complex systems) is not our research focus in this dissertation.  We 

are interested in sequential metamodeling and design space exploration of robust 

solutions in designing such large-scale systems that have multi-disciplinary design 

variables, constraints, and goals.  

In designing large-scale engineering systems, we usually have to do tradeoffs 

among various design goals and satisfy various design constraints in different disciplines 

through leveraging lots of design variables.  The analyses of system performance are 

usually very complicated, which makes it necessary to introduce rigorous analysis tools 

in design in early stages.  Rigorous analysis tools are sophisticated computer analyses or 

simulation programs to predict the behavior of product or process.  Examples are finite 

element programs for stress analysis, engine cycle analysis programs for thermodynamic 

analysis, etc.   
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Figure 1.1  An Assumption – Using Rigorous Analysis Tools in Concept Design Will 
Reduce the Number of Design Changes (Chen, 1995) 

 

The introduction of rigorous analysis tools in early design stages helps improve 

the comprehensiveness and fidelity of design analyses and reduce the number of design 

changes in later stages of design.  The benefits of introducing rigorous analysis tools at 

the early stages of design are schematically demonstrated.  In traditional design most of 

the design changes happen in late design stages (when and after the design is fully 

developed), which results in a high design cost.  By using the rigorous analysis tools in 

the early design stages, product performance can be observed and evaluated so that great 

changes in later design stages are avoided; total design changes are decreased and design 

cost is reduced. 

A significant property of most rigorous analysis tools is that they are deterministic 

computer analysis codes, which means that with the same input we will hopefully always 

9 



get the same output.  This property is important in building metamodels (Section 1.1.3) 

for concept exploration. 

1.1.2 Information Handling in Design of Open Engineering Systems 

To develop complex engineering systems, such as engines, vehicles, etc., in the 

Industrial Era, manufacturers used “dedicated” engineering systems to mass-produce 

their products.  While in today’s increasingly competitive markets, the trend is toward 

mass customization, something that becomes increasingly feasible when modern 

information technologies are used to create open engineering systems (Simpson, et al., 

1997a).  The techniques studied in this dissertation aid designers to enhance product 

flexibility and variety (if not fully customized products) through the development of open 

engineering systems. 

Open engineering systems are those of industrial products, services, and/or 

processes that are readily adaptable to changes in their environment which enable 

producers to remain competitive in a global marketplace through continuous 

improvement and indefinite growth of an existing technological base (Simpson, et al., 

1997a).  In essence, an open engineering system resembles a readily adapting system 

whose benefits include increased quality, decreased time-to-market, improved 

customization, and increased return on investment which are enhanced through the 

system’s capability of being adapted to change.  A system that cannot be adapted to a 

changing marketplace becomes extinct.  It would be a waste of time and effort if we 

design new artifacts from scratch, but with open engineering systems we can easily adapt 

our design to the new requirements and get quality products. 
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There are many examples of open engineering systems, e.g., the IBM PC and the 

Boeing 747 series.  Generations of IBM PCs have been developed (built around the Intel 

80286, 80386, 80486, and Pentium chips, etc.), and the modularity of the components 

allows many variations to occur within each generation.  Similarly, the Boeing 747-200, 

747-300, 74-400, and 747-SP share a strong technological family resemblance; few 

would argue with Boeing’s view either of the family or the models within the family 

(Simpson, et al., 1997a).  Another example is from Zeneca.  Zeneca Pharmaceutical 

Research is preparing now for what is to come.  They are adapting their structure and 

management today to develop new drugs more than a decade away.  They realize that the 

healthcare industry is changing and these “agents of change” are willing to be flexible to 

change with it to offer the best to patients and clinicians.  They are accepting aspects and 

tools from the open systems paradigm we explained before. 

The basic premise in designing an open engineering system is to quickly get a 

quality product to market and then remain competitive in the marketplace through 

continuous development of the product line.  It relies heavily on three important 

requirements (as shown in Figure 1.2): 

• Increasing design knowledge during early design phases, 

• Maintaining design freedom during early design phases, and 

• Increasing efficiency of the design process. 
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Figure 1.2  Reducing Time-To-Market by Increasing Design Knowledge and 
Maintaining Design Freedom (Simpson, 1995) 

By increasing design knowledge during early design phases we are able to 

develop a better understanding of the system and get a feel for the system sensitivity.  

This enables us to answer questions about reliability and manufacturability that are 

usually posed in the later stages of product development and avoid rework.  To maintain 

design freedom means that we should not restrict the choices that are available quite early 

in the design process.  It is desirable to keep design freedom in designing complex 

systems so that changes are implemented more easily.  Increasing efficiency implies 
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making the process quicker in terms of the computations involved and making wise 

approximations in order to increase the computational efficiency of the process.  

Wherever possible the process should be automated. 

These notions are graphically represented in Figure 1.2, where the changes of the 

design knowledge and design freedom are shown as curves along the design timeline.  

The curves in solid represent changes in the design of “closed” systems and the curves in 

dash represent those changes in the design of open engineering systems.  In switching 

from closed systems to open ones we reduce time-to-market and gain profits by 

compressing the design knowledge curve.  We also want to maintain design freedom 

longer, which results in a different curve with only a gradual decrease at the beginning.   

By spending a larger amount of time in conceptual design as shown in Figure 1.2 

and by maintaining design freedom and increasing design knowledge, design changes 

(especially those which occur during later design stages) can be avoided, and a potential 

time savings and greater return on investment can be achieved.  A lot of flexibility is 

provided for the later design stages and rework can be eliminated from the design process 

because maintaining design freedom and increasing design knowledge helps prepare for 

unforeseen changes in the later stages of design and facilitates adaptation to these 

changes (Simpson, 1995). 

We could achieve the design of open engineering systems through the following 

three characteristics (Simpson, et al., 1997a): Robustness, Modularity, and Mutability.  

Given these three characteristics, in this dissertation we focus on the robustness of the 

complex systems.  We propose to do sequential metamodeling along the design timeline 
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in approximation-based robust design to help increase design knowledge, increase design 

freedom, and increase efficiency in the early design stages: 

• Increase Design Knowledge in Early Design Stages.  We achieve this by: 1). 

Using rigorous analysis tools that abstract issues from later design stages to 

early design stages; 2). Grasping maximum design information with least 

effort through sequential experimentation and metamodeling; 3). Gaining 

insight into the relationships among the design factors and system 

performance; 4). Exploring the design space to study the system performance 

and robustness; 5). Studying changes in the design factors due to different 

scenarios or tradeoff studies; and 6). Answering “what-if” questions during 

the design process. 

• Increase Design Freedom.  We propose to achieve this by: 1). Searching for 

satisficing ranged sets of solutions rather than optimal or point solutions; 2). 

Incorporating robustness into the design by making the design insensitive to 

changes in the later design stages; 3). Enhancing concept exploration by not 

restricting the number of parameters considered or limiting their ranges; 4). 

Mathematically modeling the quality of information and not restricting the 

feasible design space based on uncertain information; and 5). Developing 

sequential metamodels with consideration of both metamodel uncertainty and 

the achievement of design goals. 

• Increase Efficiency.  We achieve this by: 1). Using sequential experimental 

design and sequential metamodeling to obtain design information quickly; 2). 
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Selecting and building appropriate metamodels for system performance to 

improve computational efficiency; and 3). Utilizing distributed design 

techniques to do computer experiments automatically. 

 
As mentioned before, these proposed topics and methods are implemented in 

approximation-based robust design, Section 1.1.3.  

 

1.1.3 Approximation-Based Robust Design and the Needs for Sequential 
Metamodeling and Sequential Design Space Exploration 

As mentioned in Section 1.1.2, approximation-based robust design is preferred in 

designing complex engineering systems to help make the system open.  The fundamental 

idea underlying robust design, originally proposed by Taguchi (1987), is to improve the 

quality of a product or process by minimizing the effects of variation without eliminating 

the causes of that variation while simultaneously striving to achieve performance targets.  

It is commonly accepted that the principles associated with Taguchi’s approach are both 

useful and very appropriate for industrial product design (see, e.g., Byrne and Taguchi, 

1987; Phadke, 1989; Ross, 1988) though certain limitations associated with Taguchi’s 

method have been identified (see, Nair, 1992; Tsui, 1992; Box, 1988).  The difference 

between “optimization” and “robust design” is shown in Figure 1.3 and Figure 1.4.  In 

this dissertation, Figure 1.3 and Figure 1.4 are attributed to David Craig in the class of 

ME8104: Design Open Engineering System, Spring 1995.  It is believed that the 

difference between these two approaches stems from what are considered to be good for 

the design in the context of the entire design process. 
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The possible result of design with “optimization” is illustrated in Figure 1.3.  In 

optimization, there is a best solution for design in each stage of the process and a rigid 

optimal solution is prescribed.  An unavoidable change made later in the design process 

will shift the design away from the optimum point without a clear idea of what will 

happen to the design as a whole.  While in Figure 1.4, where robust design is illustrated, 

each step is left somewhat open to ensure that the design is still good even after new 

concerns for the design arise later. 

To design open engineering systems we apply Taguchi’s robust design techniques 

in the early stages of design, which helps us gain robustness in decision making and 

reduce the number of design changes and iterations.  In robust design parameters and 

responses are identified to figure out the sources of variability.  The focus in robust 

design is to reduce the variation of system performance caused by uncertain design 

parameters, or to reduce system sensitivity; solutions are sought to minimize response 

variation in addition to achieving performance targets.  By taking this approach, robust 

solutions obtained for complex systems involving significant uncertainty are usually not 

optimal in the traditional sense, but satisficing.  Here Taguchi’s robust design principles 

are consistent with the notion of satisficing which was coined by Simon (Simon, 1982) to 

describe a particular form of less-than optimal solutions.  Satisficing solutions are 

solutions that are good enough to be acceptable but are neither exact nor optimal. 
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Figure 1.3  What Might Happen After a Rigid Optimal Solution is Prescribed 
(Chen, 1995) 

 

Figure 1.4  Robust with Respect to the Evolution of the Problem (Chen, 1995) 

Another issue that is consistent with satisficing is the usage of approximation 

models for the rigorous analysis tools in early stages of design.  As stated in Section 

1.1.1, rigorous analysis tools are used in designing complex engineering systems to help 

increase both the design fidelity and design efficiency.  The usage of simulations in the 

initial stage of concept exploration of the design space helps us obtain an overview of the 

system performance and get information about the feasible and satisficing regions of the 

design space.  Although rigorous analysis tools are needed to achieve a high level of 

fidelity for concurrent system analysis, there are difficulties that must be overcome 
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before these tools can be used efficiently in the early stages of designing complex 

systems.  When faced with a complex real-world problem in design, we do not 

recommend using the exact analysis codes to predict and plot the system behavior 

because it will still be time-consuming and inconvenient to run the computer simulation 

programs.  Instead, we propose to generate and plot an approximation of the system 

behavior using some kind of heuristics.  This approximation, or model-of-the-model, is 

called a metamodel (Kleijnen, 1987).  A detailed description of metamodeling methods 

can be found in (Simpson, et al., 1997b).  The metamodeling techniques will be further 

discussed in Chapter 2.  When using metamodels in design the solutions obtained by the 

approximate algorithm or heuristics are satisficing.  These solutions may be less than 

optimal, but they still meet the most important goals and constraints and at the same time, 

they provide enough flexibility to make the system open to the uncertain changes in later 

design without undue penalties in function, cost, time and other considerations.   

In approximation based robust design, metamodeling techniques and robust 

design principles are combined and applied to help designers make complex engineering 

systems open in the early design stages by exploring for satisficing top-level 

specifications.  The Robust Concept Exploration Method (RCEM), which is developed in 

the SRL in 1995, is a systematic approach to realize the approximation based robust 

design of complex engineering systems.  Study in this dissertation will be conducted in 

the context of RCEM which is briefly introduced in Section 1.2.2. 

In approximation-based robust design, we aim to achieve robust solutions 

efficiently and effectively.  This is very closely related to the maintenance of design 
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freedom and increase of design knowledge as described in Section 1.1.2.  By using 

experimentations and approximations, we are able to increase design knowledge quickly 

and maintain maximum possible design knowledge in early design stages.  However, 

with different metamodeling techniques, the effects of approximation may be very 

different.  As mentioned before, design requirements and information may change 

dramatically along the design timeline.  Currently there are no systematic yet flexible 

methods in which various metamodeling techniques are utilized in building series of 

various types of appropriate metamodels for robust design space exploration in 

accordance with the change in information quality along the design timeline at early 

stages of design:   

• The Response Surface Methodology (RSM) is a method in which sequential 

experimental designs and sequential metamodels are utilized to reflect the 

different information and requirements along the design timeline, while it is 

confined to classical experimental designs and regression polynomial models 

(referred to as response surface or RS models).  

• Various types of design of experiments (DOE) have been proposed and 

studied, however, these DOE’s are seldom used sequentially in metamodeling.  

For example, orthogonal arrays, latin hypocubes, etc., are usually used in 

single-stage experimental designs; it is difficult to add in new data points with 

these DOE techniques.  Traditional experiments used in RSM could be 

designed sequentially, while their applications are limited as will be described 

in Chapter 2.  A one-stage experimental design does not help maintain 
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maximum design freedom; the amount of design information gained may not 

be enough; and it is not efficient when additional data points are needed to 

develop more accurate metamodels.  A more detailed discussion on DOE 

techniques will be presented in Chapter 2. 

• Various types of metamodels have been used in engineering design, while 

they are seldom used together (sequentially or simultaneously) in the design 

process.  Designers tend to stick to only one of these types of metamodels in 

design, which may result in less-flexible strategies. 

• The integration of metamodeling and design space exploration is still limited.  

As will be discussed in Section 1.2.2 (RCEM) and Chapter 2, design space 

exploration of robust solutions is usually conducted after the development of 

metamodels.  A more flexible strategy is needed to integrate the processes of 

metamodeling and design space exploration – robust solutions are achieved in 

the process of experimentation and metamodeling.  This helps maintain 

maximum possible design freedom, increase design knowledge quickly, and 

save time and efforts in design.  

 
To address the above problems, it is necessary to develop strategies for sequential 

metamodeling that incorporate techniques of sequential experimental design, sequential 

metamodel selection and development, and design space exploration.  The goal is to 

grasp maximum design information with least time and effort in early design stages; 

design freedom could be maintained through management of the design information 

properly.  Before detailed descriptions of these ideas in Section 1.3, Research Foci in 
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This Dissertation, in the next section, the frame of reference for research in this 

dissertation is presented and discussed. 

1.2 FRAME OF REFERENCE 

The technology base for the dissertation is described in this section.  An overview 

of Decision-Based Design and the compromise Decision Support Problem is given in 

Section 1.2.1, followed by an overview of the Robust Concept Exploration Method 

(which is the context for our research in this thesis) in Section 1.2.2.     

1.2.1 Decision-Based Design, the Decision Support Problem Technique, and the 
Compromise Decision Support Problem 

Decision-Based Design (DBD) (Mistree, et al., 1990a; Shupe, et al., 1988), a 

phrase coined to emphasize a different perspective from which to develop methods for 

design, is used as the design paradigm for RCEM.  This paradigm, which encompasses 

systems thinking and embodies the ideas of concurrent engineering design for the life 

cycle, is rooted in the notion that “the principal role of a designer, in the design of an 

artifact, is to make decisions” (see, e.g., Muster and Mistree, 1988; Mistree, et al., 

1990b).  This role is useful in providing a starting point to develop design methods based 

on paradigms that spring from the perspective of decisions made by designers (who may 

use computers) as opposed to design that is predicated on the use of computers, 

optimization methods (computer-aided design optimization), or methods that evolve from 

specific analysis tools such as finite element analysis.   

The implementation of Decision-Based Design that is the Decision Support 

Problem (DSP) Technique (Muster and Mistree, 1988; Bras and Mistree, 1991; Mistree, 
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et al., 1993a), a technique that supports human judgment in designing systems which can 

be manufactured and maintained.  As a foundation of the DSP Technique, designing is 

defined as the process of converting information that characterizes the needs and 

requirements for a product into knowledge about a product (Mistree, et al., 1990a).  This 

definition is consistent with the design transformation shown in Figure 1.5 if information 

that characterizes the needs and requirements for a product is characterized simply as 

requirements and knowledge about a product as specifications.  The necessary 

transformation of requirements for a design into design specifications within the DSP 

Technique then becomes a series of decisions.  For a better description of the DSP 

Technique see (Mistree, et al., 1990a).   

Requirements

(Functional Requirements)

Specifications

(Design Parameters)
T

 

Figure 1.5  Design as a Transformation Between Requirements and Specifications 
(Koch, 1998) 

Among the tools available within the DSP Technique, the compromise DSP 

(Mistree, et al., 1993b) is a general framework for solving multi-objective, non-linear 

optimization problems.  In this dissertation, the compromise DSP is central to modeling 

multiple design objectives and assessing the tradeoffs pertinent to robust design of 

complex systems.  Mathematically, the compromise DSP is a multi-objective decision 

model which is a hybrid formulation based on Mathematical Programming and Goal 

Programming (Mistree, et al., 1993b).  The compromise DSP is used to determine the 
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values of the design variables which satisfy a set of constraints and bounds and achieve 

as closely as possible a set of conflicting goals.  The compromise DSP in this dissertation 

is solved using the Adaptive Linear Programming (ALP) algorithm which is based on 

sequential linear programming and is part of the DSIDES (Decision Support in Designing 

Engineering Systems) software (Mistree, et al., 1993a). 

Formulation of a compromise DSP begins with a word formulation and proceeds 

to a mathematical formulation.  The word formulation consists of the keywords given, 

find, satisfy, minimize and their associated descriptors, as shown in Figure 1.6.  Given an 

alternative and domain information for a problem at hand, the objective in the 

compromise DSP is to find the values of system design variables which satisfy a set of 

constraints and bounds and achieve as closely as possible a set of conflicting goals while 

minimizing a deviation function.   

 

 Keywords  Descriptors 

 Given  An alternative to be improved through modification; 
  assumptions, system parameters, constraints,  
  bounds, goals, and the deviation function. 

 Find  Values of system variables and deviation variables. 

 Satisfy  System constraints and bounds (feasibility), and goals 
  (desired target values or objectives). 

 Minimize  A deviation function.

COMPROMISE DSP

 

Figure 1.6  Compromise DSP Word Formulation 
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Given 
An alternative to be improved. Assumptions used to model the domain of interest. 

 The system parameters: 
 n   number of system variables, q inequality constraints 
 p + q  number of system constraints,   
 m number of system goals 
 gi(x) system constraint function 
 fk(di) function of deviation variables to be  minimized at priority level kth for the  
  preemptive case. 
Find  
 The values of the independent system variables: 
  xi i  =  1, …, n;        
 The values of the deviation variables: 
  di

-, di
+   i  =  1, …, m 

Satisfy 
System constraints (linear, nonlinear) 

  gi(x)  =  0 for i  =  1, .., p;   gi(x)  ≥  0 for i  =  p+1, .., p+q 
 System goals (linear, nonlinear) 
  Ai(x) + di

- + di
+ = Gi  i  =  1, …, m 

 Bounds 
  xi

min ≤ xi ≤ xi
max  i =  1, …, n 

  di
-, di

+  ≥  0 ; i  =  1, …, m;    di
- . di

+  =  0 ; i  =  1, …, m  
Minimize 
 Preemptive deviation function (lexicographic minimum): 
  Z = [ f1(di-, di+), ..., fk(dk-, dk+) ] 

Figure 1.7  Mathematical Form of a Compromise DSP  
(Mistree, et al., 1993b) 

 
The generic mathematical formulation of the compromise DSP is presented in 

Figure 1.7.  The compromise DSPs are written in terms of n system variables, a vector X, 

defining the physical attributes of an artifact that can be altered.  A set of p+q system 

constraints is used to model the limits placed on a system design, and must be satisfied 

for feasibility.  Mathematically, system constraints are functions of system variables only, 

and may be a mix of linear and nonlinear functions.  Bounds are specific limits placed on 

the magnitude of each of the system variables.  A set of m system goals is used to model 
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the aspirations for the design.  It relates the goal target, Gi, to the actual performance, 

Ai(X), of the system with respect to the goal.  The deviation variables, di
- and di

+, are 

introduced as a measure of achievement, the difference between Ai(X) and Gi.  In the 

compromise DSP the objective is to minimize a deviation function, Z(d−, d+), a function 

of the deviation variables.  The form of these formulations is given in Figure 1.7. 

In the compromise DSP, goals may either be weighted in an Archimedean 

solution scheme or rank-ordered into priority levels using a preemptive approach to affect 

a solution on the basis of preference.  For the preemptive approach, the lexicographic 

minimum concept (Ignizio, 1985) is used to quickly evaluate different design scenarios 

by changing the priority levels of the goals to be achieved.  Differences between the 

Archimedean and preemptive deviation functions and a description of the ALP algorithm, 

design and deviation variables, system constraints, goals, and bounds are discussed in 

(Mistree, et al., 1993b). 

 
A solution to the compromise DSP is a satisficing solution since it is a feasible 

point that achieves the system goals to the “best” extent that is possible.  The efficacy of 

the compromise DSP in creating ranged sets of top-level design specifications has been 

demonstrated in both aircraft design (Lewis, et al., 1994; Simpson, et al., 1996) and ship 

design (Smith and Mistree, 1994).  By finding a ranged set of solutions rather than a 

single point solution, greater design flexibility can be maintained during the design 

process.  Finally, the compromise DSP also provides the cornerstone of the Robust 

Concept Exploration Method which is overviewed in the next section.   
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1.2.2 The Robust Concept Exploration Method 

The Robust Concept Exploration Method (RCEM) has been developed to 

facilitate the quick evaluation of different design alternatives and generation of top-level 

design specifications with quality considerations in the early stages of design (see, e.g., 

Chen, et al., 1996a).  It is primarily useful for designing complex systems which usually 

utilize computationally expensive analyses.  The RCEM is created by integrating several 

methods and tools – robust design methods (see, e.g., Phadke, 1989), the Response 

Surface Methodology (see, e.g., Myers and Montgomery, 1995), and Suh's Design 

Axioms (Suh, 1990) — within the compromise DSP (Mistree, et al., 1993b).  In applying 

robust concept exploration, robust design specifications are identified for the design of 

complex systems.  In this context, robustness of specifications is measured in terms of 

sensitivity to changes in requirements – thus the focus is on minimizing the effects on the 

design of uncontrollable noise and/or downstream design changes.  The computer 

infrastructure for implementing RCEM is shown in Figure 1.8.   

There are five generic processors (A, B, D, E, and F) surrounding a central “slot” 

for inserting existing, domain-dependent analysis tools as simulation programs (C).  The 

simulation programs are used to evaluate the performance of a number of design 

configurations.  The RCEM processors increase computational efficiency and facilitate 

the generation of robust design specifications.  The point generator (processor B) is used 

to design the necessary screening experiments.  The experiments analyzer (processor D) 

is used to evaluate the results of the screening and to plan additional experiments.  The 

response surface model processor (E) is used to create response surface models, and the 
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compromise DSP processor (F) is used to explore a design space and identify robust 

design specifications.   

 

 

Figure 1.8  RCEM Computer Infrastructure (adapted from Chen, et al., 1996a) 

The RCEM is a four-step process as shown in Figure 1.9.  The steps are described 

as below: 

Step 1 - Classify Design Parameters:  Given the overall design requirements, this 

step involves the use of Processor A, see Figure 1.8, to (a) classify different 

design parameters as either control factors, noise factors, or responses following 
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the terminology used in robust design and (b) define the concept exploration 

space. 

Step 2 - Screening Experiments:  This step requires the use of the point generator 

(Processor B), simulation programs (Processor C), and an experiment analyzer 

(Processor D) shown in Figure 1.8 to set up and perform initial screening 

experiments and analyze the results.  The results of the screening experiments are 

used to (a) fit low-order response surface models, (b) identify significant main 

effects, and (c) reduce the design region.   

Step 3 - Elaborate the Response Surface Model:  This step also requires the use of 

the point generator (Processor B), simulation programs (Processor C), and 

experiment analyzer (Processor D) to set up and perform secondary experiments 

and analyze the results.  The results from the secondary experiments are used to 

(a) fit second-order response surface models (using Processor E) which replace 

the original computer analyses, (b) identify key design drivers and the 

significance of different design factors and their interactions, and (c) quickly 

evaluate different design alternatives and answer "what-if" questions in Step 4.  

Step 4 - Generate Top-Level Design Specifications with Quality Considerations:  

Once accurate response surface models have been created, Step 4 involves the use 

of the compromise DSP (Processor F in Figure 1.8) to determine top-level design 

specifications with quality considerations.  The original analysis or simulation 

program(s) is replaced by response surfaces which are functions of both control 

and noise factors.  Different quality considerations and multiple objectives are 
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incorporated in the compromise DSP which is then solved to determine robust, 

top-level design specifications.  

 

STEP 4 
Generate robust top-level design specifications

Overall Design Requirements
RCEM Steps: Methods, Tools, and Math Construct:

STEP 3 
Elaborate response surface models

STEP 2 
Conduct “screening experiments”

STEP 1 
Classify design parameters

Robust Design Principle / 
Techniques

Response Surface Methods /  
DOE/ANOVA Statistical Methods

Compromise Decision Support 
Problem  

Figure 1.9  Steps and Tools of the RCEM (adapted from Chen, et al., 1996a) 

In Figure 1.9 three categories of techniques or mathematical constructs are 

utilized in implementing RCEM.  The robust design principles/techniques are taken into 

RCEM in Step 1 and 4 by classifying design parameters and formulating robust design 

goals in the compromise DSP.  Metamodeling techniques (the metamodeling techniques 

used in RCEM are the Response Surface Methodology, which will be described in detail 

in Chapter 2) are used in Step 2 and 3.  Then in Step 4 robust top-level design 

specifications are generated through solving compromise DSPs.  Each step of the RCEM 

corresponds not only with the implementing techniques but also with the processors 

shown in the RCEM infrastructure (Figure 1.8). 
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A review of the wide variety of applications that have successfully employed the 

RCEM is given in (Simpson, et al., 1997b).  In (Chen, et al., 1996a) it is shown that 

RCEM is used to explore airframe configurations and propulsion system designs and 

determine robust top-level design specifications for the HSCT (High Speed Civil 

Transport) system.  In (Simpson, et al., 1996) the use of the RCEM in the conceptual 

design of a family of products is illustrated with the specific example of a general 

aviation aircraft.  In (Rangarajan, 1998) the RCEM is used in designing automobile 

engines with lubrication considerations. 

1.3 RESEARCH FOCUS IN THE DISSERTATION 

The research focus in this thesis is embodied in the following: 

• a set of research questions that capture motivation and specific issues to be 

addressed; 

• a set of corresponding research hypotheses that offer context by which the 

research proceeds, defining the structure of the verification studies 

performed in this work; and  

• a set of resulting research contributions that embody the deliverables from 

the research in terms of intellectual value, a repeatable method of solution, 

limitations, and avenues of further investigation.   

In Section 1.3.1, a discussion on deficiencies of current metamodeling and 

design space exploration techniques in RCEM is presented.  This leads to the 

proposed research as described in Section 1.3.2.  A set of research questions and 

corresponding research hypotheses are listed and discussed.  The verification and 
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validation strategy is presented in Section 1.3.3.  Contributions of the proposed 

research summarized in Section 1.3.4; they are revisited in Chapter 8. 

1.3.1 Metamodeling and Design Space Exploration – Problems to be Addressed 

As illustrated in Figure 1.8 and Figure 1.9, metamodeling plays a significant role 

in RCEM.  Robust top-level specifications are achieved through the development and 

elaboration of metamodels (specifically, RS models).  However, the evolvement of 

design and manipulation of design information through metamodeling are limited in 

RCEM, as being explained in the following paragraphs. 

Techniques used in metamodeling are confined to those from the Response 

Surface Methodology (RSM).  Only traditional experimental designs (i.e., factorial 

design, central composite design, etc.) are used to develop a single type of metamodels, 

the RS models (regression polynomials).  This constrains the amount of design 

information obtained in metamodeling; as design evolves, the experimental designs and 

corresponding metamodels may fail to provide sufficient design information.  Space-

filling experiments and kriging metamodels are used in recent applications of RCEM, but 

as will be discussed in Chapter 2, the experiments are still conducted at a single stage and 

there are still other types of metamodels that may be used to provide designers more 

flexibility.  A method needs to be developed to (1) integrate the usage of different types 

of metamodels in accordance with different design requirements along the design 

timeline, and (2) facilitate sequential experimental designs. 

Metamodel validation methods used in RCEM are not suitable for deterministic 

computer experiments.  To validate the accuracy of a metamodel, in RCEM we use 
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various statistics such as F-statistics, etc.  However, as is explained in Chapter 2, these 

statistics are theoretically unsuitable for computer experiments.  Thus new methods to 

validate a metamodel are needed since our simulations are usually computer codes that 

yield deterministic results. 

No sequential metamodeling is involved in RCEM.  Although experiments are 

conducted in a sequential manner (from factorial design to central composite design), the 

metamodel is developed only once after finishing all experiments.  This is illustrated in 

Figure 1.8 in which there is only one loop among Processors B, C, and D, and there is no 

feedback from Processor E (development of metamodels) to the DOE loop B-C-D.  It is a 

single-stage metamodeling in which information gained in the development of 

metamodels is not used in design of experiments and collection of future design 

information.  Further more, if no screening happens in the DOE loop B-C-D, the 

experimental design could also be viewed as single-level experimental designs though it 

is conducted sequentially, because information collected in previous experiments has no 

influence on the conduction of future experiments.  As a summary, the single-stage 

metamodeling in RCEM is not suitable for large-scale engineering systems design in 

which usually a series of metamodels are needed to meet the design requirements as the 

design evolves along the design timeline. 

The integration of metamodeling and design space exploration is not completed in 

RCEM.  As illustrated in Figure 1.8, there is no feedback from Processor F to the 

metamodeling process B-C-D-E.  Information flows one way from metamodeling to 

design space exploration.  This results in a single-stage conceptual design.  However, in 
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the conceptual design of large-scale engineering systems, as design requirements and 

information change along the design timeline, a series of metamodeling and design space 

exploration processes are needed to help achieve robust top-level specifications.  The 

information from previous metamodeling and design space exploration should be used as 

guidance in conducting future metamodeling and exploration of robust solutions.  The 

two processes of metamodeling and design space exploration should not be separated and 

used sequentially, but rather integrated into one process.  Metamodeling should be done 

in the process of design space exploration; and on the other hand, we could also say that 

design space exploration should be done in the process of metamodeling.  The two 

processes of metamodeling and design space exploration are done simultaneously and 

interactively.  Through this integration we are able to manipulate the design information 

(in a seamless process) that was previously (in RCEM) managed in two separated, 

sequential processes of metamodeling and design space exploration.  This helps maintain 

the design freedom (more flexible, more options keep open before the end of 

metamodeling and design space exploration), increase design information (more 

information is obtained in an “active” mode of information collection than that in a 

“passive” mode), and improve the design efficiency (more information is gained with less 

time and effort). 

As discussed above, to maintain design freedom and increase design information 

with less time and efforts, we must study and develop methods for metamodeling and 

design space exploration based on current research achievements.  These includes: 

• Metamodel validation techniques for deterministic computer experiments; 
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• Comparison of different types of metamodels and usage of different 

metamodels along the design timeline; 

• Design of sequential computer experiments to achieve accurate metamodels; 

and 

• Integration of metamodeling and design space exploration processes. 

The design process at conceptual design stage (including the metamodeling process, 

design space exploration process, and their interactions) needs to be revised: information 

flow needs to be redirected and techniques used in the process need to be studied.  

Research questions of this dissertation are proposed in the next section based on our 

discussions above. 

 

1.3.2 Research Questions and Hypotheses in this Dissertation 

The principal goal in this dissertation is to examine and develop techniques in 

metamodeling and design space exploration.  As discussed in previous sections, the 

design process at conceptual design stage (metamodeling process + design space 

exploration process) needs to be revised: information flow needs to be redirected; 

feedbacks need to be added; and techniques used in the process need to be studied.  

According to this, the primary objective of the proposed research is to develop a 

systematic yet flexible method in which various metamodeling techniques are utilized in 

building series of appropriate metamodels for robust design space exploration in 

accordance with the change in information quality along the design timeline in the early 

stages of design.  Development of the method will be accomplished by (1) studying 
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measures for metamodel validation with deterministic computer experiments, (2) 

developing methods for designing sequential computer experiments, (3) developing 

methods to integrate the processes of metamodeling and design space exploration, and (4) 

comparing and using different types of metamodels according to the changing design 

requirements along the design timeline.  Given these goals, the key question to be 

addressed in this dissertation is presented as: 

 

KEY QUESTION: 

How to explore the design space efficiently and effectively for satisficing solutions 

by employing sequential metamodeling and design space exploration 

techniques in accordance with the changing design information along the 

design timeline in early design stages? 

 
This key question defines the scope and goals of the research documented in this 

dissertation.  Several research objectives are reflected in this key question.  By using the 

phase of “sequential metamodeling and analysis” three research objectives are defined: 

(1) sequential experimental design – the core step in sequential metamodeling; (2) 

sequential metamodels – comparison of different types of metamodels, and selection and 

usage of different metamodels sequentially; and (3) metamodel validation – analysis of 

the accuracy of metamodels.  With the phase of “explore the design space … for robust 

solutions … in early design stages”, the context of research in this dissertation is fixed, 

i.e., the Robust Concept Exploration Method for developing top-level specifications.  
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Examples and case studies in this dissertation are designs at conceptual design stages; 

techniques and methods are developed and applied in robust design though it is not 

necessarily confined to this field.  We aim at developing a systematic method similar to 

but more general than the Response Surface Methodology; RCEM will be a platform that 

we worked on with the proposed method.  The usage of “explore the design space … by 

employing sequential metamodeling” identifies the research objective of developing a 

method to integrate the processes of metamodeling and design space exploration – to do 

metamodeling and design space exploration simultaneously and interactively.  By using 

“in accordance with the changing design information” three issues are reflected: (1) the 

uncertainty associated with design requirements should be considered in metamodeling 

and design space exploration; (2) the uncertainty associated with metamodel accuracy 

should be considered in metamodeling and design space exploration; and (3) a measure 

of information uncertainty need to be developed.  The words “efficiently” and 

“effectively” indicates my focus in the proposed research: achievement of the design 

goals and satisfy design requirements with least time and effort, by grasping and utilizing 

maximum design information in sequential metamodeling and design space exploration.  

The key question is expressed as four major research questions as listed below. 

 

RESEARCH QUESTIONS: 

R.Q.1: How to validate a metamodel with deterministic computer 

experiments? 
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R.Q.2: How to design sequential computer experiments (how to select data 

and validation points sequentially) to get an accurate metamodel? 
R.Q.3: How to integrate the processes of metamodeling and robust design 

space exploration?   

R.Q.4: How to utilize different types of metamodels along the design timeline 

in accordance with the changing design information? (How to do 

sequential metamodeling to achieve robust design solutions?) 

 

To answer the first research question it is necessary to study the widely used 

technique, cross-validation, in deterministic applications; new approaches are developed 

to help validate metamodels with additional validation points in the design space.  To 

answer the second research question, it is needed to study how to measure information 

and the worth of a point in the design space, and then apply this in the identification of 

new data points in sequential experimental design.  A new method, the Sequential 

Exploratory Experimental Design (SEED), is documented based on studies under this 

research question.  As for research under the third research question, design goals and 

requirements are considered in designing experiments and developing metamodels.  The 

processes of metamodeling and robust design space exploration are integrated into one 

process; new data points are those which yields great information worth and/or response 

values close to target values.  This results in a new robust design process in early design 

stages, of which SEED is the basis.  To answer the forth research question, first I need to 

compare the performance of different types of metamodels in metamodeling, then 
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develop an approach to utilize these metamodels sequentially along the design timeline.  

In the following sections the supporting research questions and hypotheses of the four 

research questions are presented, respectively. 

1.3.2.1 Research on Metamodel Validation 

The research question to be explored in this section is the first research question: 

How to validate a metamodel with deterministic computer experiments?  As presented 

below, this research question is studied and answered with work in two directions: one is 

to prove the inappropriateness of the currently widely used method, leave-one-out cross-

validation, in deterministic applications, and the other is to develop new approaches of 

metamodel validation.  The first research question can be expressed as:  

 

R.Q.1: How to validate a metamodel with deterministic computer experiments? 

 

R.Q.1.1: Is leave-one-out cross-validation a suitable method of metamodel 

validation with computer experiments? 

R.Q.1.2: How to test the accuracy a metamodel in deterministic applications? 

 

 

Hypothesis 1:  Information from either previous additional validation points is 

needed in testing the accuracy of a metamodel with deterministic computer 

experiments. 
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Sub-Hypothesis 1.1:  Leave-one-out cross-validation is not an appropriate 

method of metamodel validation with deterministic computer experiments. 

Sub-Hypothesis 1.2:  The accuracy of a metamodel could be validated through 

examining prediction errors at additional validation points.    

As described above, Research Question 1 is separated into two supporting 

research questions.  To answer Research Question 1.1, Sub-Hypothesis 1.1 is tested and 

verified.  To answer Research Question 1.2, Sub-Hypotheses 1.2.1 and 1.2.2 are tested 

and verified.  In Chapter 2, some background knowledge related to deterministic 

computer experiments and leave-one-out cross-validation is presented.  Sub-Hypothesis 

1.1 is primarily discussed and tested in Chapter 3.  Sub-Hypothesis 1.2.1 is also primarily 

tested in Chapter 3, in which an approach to validate metamodels with additional 

validation points is developed for engineers.  The “worth of possible new data points” is 

closely related to the measurement of information, which is discussed in Research 

Question 2 and will be studied in Chapter 4.   Sub-Hypothesis 1.2.2 is then tested and 

verified in Chapter 5.  Sub-Hypotheses 1.2.1 and 1.2.2 are occasionally revisited in 

Chapters 7 and 8. 

1.3.2.2 Research on Sequential Exploratory Experimental Design 

The research question to be addressed in this section is: How to design sequential 

computer experiments (how to select data and validation points sequentially) to get an 

accurate metamodel?  To answer this research question we propose to develop a method 

named Sequential Exploratory Experimental Design (SEED).  In this method, data points 
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and validation points are added and metamodels are developed sequentially; information 

from previous points and metamodels is used to help identify new data and validation 

points.  This research question could be expressed as: 

R.Q.2: How to design sequential computer experiments (how to select data and 

validation points sequentially) to get an accurate metamodel? 

 

R.Q.2.1: How to measure the information worth of a point? 

R.Q.2.2: How to select validation points to achieve a sequential design of 

computer experiments? 

R.Q.2.3: How to utilize information from previous points and metamodels in 

identifying new data points?  

 

 

Hypothesis 2:  Sequential experiments could be designed through analysis of 

information from data/validation points and metamodels. 

Sub-Hypothesis 2.1:  The information worth of a point could be measured with 

entropy. 

Sub-Hypothesis 2.2:  Selection of validation points should follow similar rules 

for selection of data points; information from validation points could be used 

as guidance in identifying new data points.    

Sub-Hypothesis 2.3:  Through maximizing entropy (as formulated based on Sub-

Hypotheses 1.1 and 1.2) we are able to allocate new data points in the design 

space that yield maximum potential information. 
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There is a one-to-one correspondence between each research question and 

hypothesis.  References for the proposed research include various types of Design of 

Experiments (DOE), D-optimality in DOE, entropy optimization from Information 

Theory, and maximum entropy sampling, which will be introduced in Chapter 2.  The 

hypotheses are tested and verified in Chapter 4, in which the Sequential Exploratory 

Experimental Design method is developed.  Information uncertainty of an experimental 

design could be measured with entropy; the utilization of information from previous 

data/validation points and metamodels could be used to adjust the formulation of entropy; 

then sequential experiments are achieved by maximizing entropy.  The SEED method is 

further developed and tested in Chapter 5 and applied in Chapter 7 and 8.  SEED is the 

basis of the integration of processes of metamodeling and robust design space 

exploration, for which a method is developed in Chapter 6. 

1.3.2.3 Research on the Integration of Design Processes of Metamodeling and Robust 
Design Space Exploration 

The research question to be addressed in this section is: How to integrate the 

processes of metamodeling and robust design space exploration?  To put consideration of 

design goals and requirements (constraints) in sequential metamodeling results in a new 

design process in which metamodeling and design space exploration of robust solutions 

are integrated and done simultaneously.  One way to achieve this is to reduce the design 

space in metamodeling based on previous information; this should be done after carefully 

examining the whole design space, which may be very difficult when there are a lot of 

design variables and goals and uncertainty on these goals.  The other way is to keep the 
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design space unchanged but gradually add in points where design goals are met and 

requirements are satisfied, and/or places with great prediction errors; this could be done 

on the basis of SEED, with some adjustment.  Research Question 3 could be expressed 

as: 

R.Q.3: How to integrate the processes of metamodeling and robust design space 

exploration?   

 

R.Q.3.1: How to design sequential experiments with consideration of design 

constraints? 

R.Q.3.2: How to reduce the design space with information from previous 

metamodeling and design space exploration? 

R.Q.3.3: How to do sequential metamodeling with consideration of design goals? 

 

Hypothesis 3:  The processes of metamodeling and robust design space 

exploration could be integrated through building the information flow from C-

DSP to the metamodeling cycle in the Robust Concept Exploration Method. 

Sub-Hypothesis 3.1:  Consideration of design constraints could be incorporated 

in the metamodeling process through construction irregular design spaces. 

Sub-Hypothesis 3.2:  Design space could be reduced through analysis of the 

information from previous metamodels.    

Sub-Hypothesis 3.3:  Design goals can be taken into consideration in metamodeling 

by formulating influential factors with the compromise DSP and using them in 

maximum entropy sampling. 
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The basis of research in this category is the method of SEED that will be 

developed in Chapter 4 and further verified in Chapter 5.  Sub-Hypothesis 3.2 is studied 

in Chapter 5, and Sub-Hypotheses 3.1 and 3.3 are to be studied and tested in Chapter 6.  

A new process of robust design space exploration is developed based on the study under 

Sub-Hypothesis 3.3.  This new method is validated in Chapter 6, and then applied and 

verified in Chapter 7 and 8 with more complicated engineering case studies. 

 

1.3.2.4 Research on the Selection and Utilization of Metamodels along the Design 
Timeline 

The research question to be addressed in this section is: How to utilize different 

types of metamodels along the design timeline in accordance with the changing design 

information?  In this dissertation, we will only focus on three types of metamodels, the 

RS model (regression polynomials), kriging model, and Multivariate Adaptive 

Regression Splines (MARS).  To answer Research Question 4, first we need to answer 

the supporting research questions 4.1 and 4.2, as presented below: 

 

R.Q.4: How to utilize different types of metamodels along the design timeline in 

accordance with the changing design information? 

 

R.Q.4.1: How do different types of metamodels perform in engineering design? 

R.Q.4.2: How to select different types of metamodels at different design stages? 
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Hypothesis 4:  Different types of metamodels should be used at different design 

stages in accordance with different requirements of design. 

Sub-Hypothesis 4.1:  Different types of metamodels have their strong and weak 

points.  

Sub-Hypothesis 4.2:  As design evolves, more complicated types of metamodels 

should be used to help yield good approximations with more computation 

time and efforts.  

 
 

The introduction of different types of metamodels is presented in Chapter 2.  To 

test Sub-Hypotheses 4.1 and 4.2, comparison of these metamodels is done in Chapter 5.  

An approach to utilize these metamodels sequentially along the design timeline is also 

proposed and tested in Chapter 5.  This approach of selection and switch of types of 

metamodels, together with the SEED method developed in Chapter 4, and the new robust 

design space exploration process developed in Chapter 6, are applied in Chapter 7. 

The relationship between hypotheses and chapters is shown in Table 1.1.  

Hypothesis 1 is mainly discussed and tested in Chapter 3.  Hypothesis 2 is mainly 

discussed and tested in Chapter 4.  Hypothesis 3 is mainly discussed and tested in 

Chapter 6.  Hypothesis is mainly discussed and tested in Chapter 5. 

There are several examples and case studies in this dissertation. Very simple one-

variable or two-variable examples are used in Chapter 3, 4, 5, and 6 to help illustrate and 

validate our ideas.  In Chapter 5, several engineering case studies are used to help 
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compare the performance of different types of metamodels, and validate the SEED 

method developed in Chapter 4.  One of these case studies, the design of pressure vessels, 

is used in Chapter 6 to help develop the new process of robust design space exploration.  

The engineering example used in Chapter 7 is the design of cellular materials; our 

emphasis in this chapter is the validation of integration of processes of metamodeling and 

robust design space exploration.     

Table 1.1 Relationship Between Hypotheses and Dissertation Chapters 

 Hypothesis Chapters 
Discussed 

Chapters 
Tested 

H1 Metamodel Validation   
  SH1.1   Leave-one-out cross-validation Chp 2, 3  Chp 3 
  SH1.2.1   Validation with additional validation points Chp 3, 4, 5 Chp 5, 7 
  SH1.2.2   Validation with possible new data points Chp 2, 4 Chp 4, 5, 7 
H2 Sequential Exploratory Experimental Design   
  SH2.1   Information worth of a point Chp 2, 4, 6  Chp 4, 5, 7 
  SH2.2   Selection and usage of validation points Chp 2, 3, 4, 6 Chp 4, 5, 7 
  SH2.3   Sequential experimental design Chp 2, 4 Chp 4, 5, 7 

H3 Integration of Processes of Metamodeling 
and Design Space Exploration   

  SH3.1   Experiments in irregular design spaces Chp 2, 5, 6  Chp 6, 7 
  SH3.2   Design space reduction Chp 5, 6 Chp 5 

  SH3.3   Metamodeling with consideration of design 
goals and requirements  Chp 2, 6 Chp 6, 7 

H4 Selection and Utilization of Metamodels   
  SH4.1   Comparison of types of metamodels Chp 2, 5  Chp 5 
  SH4.2   Sequential utilization of metamodels Chp 2, 5 Chp 5, 7 
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1.3.3 Contributions from the Research 

The hypotheses and sub-hypotheses, taken together, define the research presented 

in this dissertation and hence the contributions from the research.  The expected 

contributions from the thesis are the following: 

Expected Contributions related to Hypothesis 1 and Sub-Hypotheses 1.1-1.2: 

• Verification of the inappropriateness of leave-one-out cross-validation in 

testing the accuracy of metamodels with deterministic computer experiments; 

• An approach to validate the accuracy of metamodels with information from 

additional validation points. 

• An approach to validate the accuracy of metamodels based on information 

worth of possible new points. 

Expected Contributions related to Hypothesis 2 and Sub-Hypotheses 2.1-2.3: 

• The method of Sequential Exploratory Experimental Design (SEED); 

• Formulation of information uncertainty of metamodels with consideration of 

prediction errors. 

Expected Contributions related to Hypothesis 3 and Sub-Hypotheses 3.1-3.3: 

• The integration of processes of metamodeling and robust design space 

exploration; 

• Design space reduction and sequential experimental design in irregular design 

spaces. 

Expected Contributions related to Hypothesis 4 and Sub-Hypotheses 4.1-4.2: 

• The comparison of different types of metamodels (RS, kriging and MARS); 

• An approach to utilize different types of metamodels sequentially along the 

design timeline. 
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This being the first chapter of the dissertation, these contributions cannot be 

substantiated; therefore, they are revisited in Chapter 8 after all of the research findings 

have been documented and discussed.  A validation and verification strategy for this 

dissertation is presented next. 

 

1.4 A VALIDATION AND VERIFICATION STRATEGY FOR THIS 
DISSERTATION 

The validation and verification strategy for this dissertation is based on the 

validation square by Pedersen and coauthors (Pedersen, et al., 2000).  As noted by 

Pedersen and coauthors, validation (justification of knowledge claims, in a modeling 

context) of engineering research has typically been anchored in formal, rigorous, 

quantitative validation based on logical induction and/or deduction.  As long as 

engineering design is based primarily on mathematical modeling, this approach works 

well.  Engineering design methods, however, rely on subjective statements as well as 

mathematical modeling; thus, validation solely by means of logical induction or 

deduction is problematic.  Pedersen and coauthors propose an alternative approach to the 

validation of engineering design methods based on a relativistic notion of epistemology 

in which “knowledge validation becomes a process of building confidence in its 

usefulness with respect to a purpose.” 
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Figure 1.10 The Validation Square: Validating Design Theories or Methods 
(Pedersen, et al., 2000) 

Pedersen and coauthors propose a framework for validating design methods in 

which the “usefulness” of a design method is associated with whether the method 

provides design solutions correctly (structural validity) and whether it provides correct 

design solutions (performance validity).  This process of validation is represented in the 

Validation Square in Figure 1.10.  With respect to the square, theoretical structural 

validity involves accepting the individual constructs constituting a method as well as the 

internal consistency of the assembly of constructs to form an overall method.  Empirical 
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structural validity includes building confidence in the appropriateness of the example 

problems chosen for illustrating and verifying the performance of the design method.  

Theoretical performance validity involves building confidence in the generality of the 

method and accepting that the method is useful beyond the example problems.  Empirical 

performance validity includes building confidence in the usefulness of a method using 

example problems and case studies. 

How can this validation framework be implemented in a dissertation?  

Establishing theoretical structural validity involes searching and referencing the literature 

related to each of the constructs employed in the design method.  In addition, flow charts 

are often useful for checking the internal consistency of the design method by verifying 

that there is adequate input for each step and that adequate output is provided for the next 

step.  Establishing empirical structural validity consists of documenting that the example 

problems are similar to the problems for which the methods/constructs are generally 

accepted, that the example problems represent actual problems for which the method is 

intended, and that the data associated with the example problems can be used to support a 

conclusion.  Empirical performance validity is established by using representative 

example problems to evaluate the outcome of the design method in terms of its 

usefulness.  Metrics for usefulness should be related to the degree to which the method’s 

purpose has been achieved.  It is also important to establish that the resulting usefulness 

is, in fact, a result of applying the method.  For example, solutions obtained with and 

without the construct/method can be compared and/or the contribution of each element of 
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the method can be evaluated in turn.  An important part of empirical performance validity 

is empirical verification of data used to support empirical performance validation.   
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Figure 1.11 Organization of the Dissertation Based on The Validation Square 

Empirical verification is established by demonstrating the accuracy and internal 

consistency of the data.  For example, in optimization exercises, multiple starting points, 

active constraints and goals, and convergence can be documented to verify that the 

solution is stationary and robust.  For any engineering model, it is important to verify that 
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data obtained from the model represent aspects of the real world that are relevant to the 

hypotheses in question.  The model should react to inputs in an expected manner or in the 

same way that an actual system would react.  Theoretical performance validity can be 

established by showing that the method/construct is useful beyond the example problems.  

This may involve showing that the problems are representative of a general class of 

problems and that the method is useful for these problems; from this, the general 

usefulness of the method can be inferred. 

In Figure 1.11, an outline of the validation strategy for this dissertation is 

provided.  It is arranged according to the validation square as described above and 

illustrated in Figure 1.10.  An overview of this dissertation is presented in the next 

section. 
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1.5 ORGANIZATION OF THE DISSERTATION 

To facilitate this discussion, an overview of the chapters in the dissertation is 

offered in Figure 1.12.  Chapter 1 and 2 act as the first phase of the dissertation in which 

the background and motivation are given, and research scope is defined.  Research in 

Chapter 3 is the foundation of research in Chapters 4, 5, and 6; thus we could view 

Chapter 3 as a “warm-up” chapter that provides tools and ideas for work in later chapters.    

Chapters 4, 5, and 6 are the heart of this dissertation in which several methods and 

approaches are developed for metamodeling and design space exploration.  The method 

of Sequential Exploratory Experimental Design (SEED) is presented and verified with 

simple examples in Chapter 4.  The approach to utilize different types of metamodels 

sequentially along the design timeline is proposed in Chapter 5.  The new integrated 

process of metamodeling and robust design space exploration is described in Chapter 6.  

Several simple engineering case studies, e.g., the design of pressure vessels, are used in 

Chapter 5 and 6 to help illustrate and verify the proposed methods.  Chapters 7 and 8 are 

validation of the proposed methods with more complicated engineering case studies, the 

design of cellular materials and electrical vehicle body structures, respectively.  A 

summary of work in this dissertation is presented in Chapter 8. 

Through this chapter the foundation for sequential metamodeling and robust 

design space exploration is introduced and the scope of our research in this dissertaion is 

defined.  In the next chapter, our references are described in detail and the research in this 

dissertation is further elaborated.   
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CHAPTER 2 

A LITERATURE REVIEW: DESIGN OF 
EXPERIMENTS, METAMODELING, 

INFORMATION THEORY, AND ROBUST DESIGN 
SPACE EXPLORATION 

Given the research focus identified in Section 1.3, a survey of relevant work in 

design of experiments, metamodeling, information theory, and robust design exploration 

is presented in this chapter.  A summary of problems and challenges in approximation-

based design, an introduction of our research objectives, a description of available 

resources and a discussion on how the resources can be used to realize our research 

objectives are presented in Section 2.1.  A close look at robust design space exploration is 

presented in Section 2.2.  Taguchi’s robust design method, robust design at early design 

stages, and the need of metamodeling are discussed.  In Section 2.3 an overview of 

metamodeling techniques in deterministic computer experiments is presented.  Then in 

Section 2.4 different types of metamodels are introduced and our focus is put on the 

regression polynomials (RS models), kriging models, and the multivariate adaptive 

regression splines (MARS).  Various experimental designs are presented in Section 2.5; 

optimal experiments are introduced.  Then the information theory and maximum entropy 

sampling are discussed in Section 2.6.  Section 2.7 concludes the chapter with a summary 

of what has been presented and a preview of what is next.   
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2.1 OUR RESEARCH OBJECTIVES AND ORGANIZATION OF 
REFERENCES 

This section is written to be a bridge between the discussion of research 

motivations and objectives in Chapter 1 and the introduction of references in Chapter 2.  

An overview of the researches in this dissertation and how these researches are done 

based on well-organized literature reviews is given in this section.  In Section 2.1.1, the 

research motivations are re-emphasized with examples of problems in current research 

and industry.  Possible ways to solve these problems are discussed in Section 2.1.2, 

which lead to the research questions and help define the research objectives for this 

dissertation.  A description of references is presented in Section 2.1.3.  The gap between 

the available knowledge and the desired metamodeling and design space exploration 

methods is shown in Section 2.1.4, which leads to the research questions and 

corresponding tasks.  

2.1.1 Research Motivations: Problems and Challenges in Approximation-Based 
Robust Design 

As described in Section 1.1, approximation-based design are introduced because 

the metamodels help designers 1) gain insight into the relationship between design 

variables and responses, 2) integrate discipline-dependent analysis codes, and 3) avoid 

usage of expensive analysis models.  Metamodels have been widely used in early-stage 

design and analysis.  In approximation-based design, the design effectiveness is 

sacrificed to gain efficiency; in other words, designers pursue the efficient exploration for 
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a satisficing solution instead of the expensive optimization for an optimal solution.  This 

is the basis of the RCEM method, which is introduced in Section 1.2.2. 

Although the approximation-based design strategy facilitates efficient exploration 

for satisficing design solutions, there are some problems that cannot be solved with 

current metamodeling and design space exploration techniques.  As will be explained in 

detail, designers are strictly confined and thus real-world, industrial design applications 

are limited because of these unsolved problems.   

Metamodels are introduced to replace expensive computer simulations or physical 

experiments.  In the design space exploration process, designers may need to call the 

analysis codes many times to find the solution with an optimization algorithm.  The usage 

of cheap-to-run metamodels facilitates the efficient examinations of response values, thus 

design space exploration is not an expensive process in approximation-based design.  In 

approximation-based design, more time or money is spent on computer or physical 

experiments in the metamodeling process, which is the process before design space 

exploration in traditional design methods. 

When the original computer simulation codes (or physical analysis experiments) 

are very computationally (or monetarily) expensive, designers cannot efficiently grasp 

the responses or achieve satisficing design solutions even with the assistance of 

metamodels.  For instance, one crash simulation of a full passenger car takes 36 to 120 

hours to compute, according to engineers at Ford Motor Company (Gu, 2001).  In case of 

physical experiments, the experimental resources may be limited, e.g., engineers’ access 

to some particular manufacturing facilities may be restricted, the experimental time may 
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be very long (this situation is similar to that with expensive computer simulations), 

materials used in the experiments may be very expensive, etc.  In such cases with 

expensive experiments or simulations, the usage of metamodels helps greatly reduce the 

possible high expense in a trial-and-error approach; however, the metamodeling cost 

become so high that designers may not be able to develop acceptable metamodels at 

acceptable prices with current experimental design and metamodeling techniques.  Thus, 

engineers may not be able to take enough information from the experiments or 

simulations for design.  This leads to a difficult question: how can engineers develop 

acceptable metamodels and achieve good design solutions at low cost when the 

experiments or simulations are very expensive? 

Another problem is that in multi-disciplinary, multi-variable, and multi-objective 

design cases, the actual responses are usually very nonlinear or irregular (which means 

the response is nonlinear in some regions but flat in others), and thus it may be difficult to 

develop acceptable metamodels with current single-stage experimental design and 

metamodeling techniques.  For example, in Figure 2.1 we present a single-variable 

example in the development of a roller-warning device for road vehicles (Goldman, 

2001).  This single-variable simulation yields an irregular response of Load Transfer 

Ratio (LTR) that is represented by solid line, and the artificial neural networks 

metamodel is represented by the dotted line.  Another single-variable example is 

illustrated in Figure 2.2, the suspension responses versus frequency in road profiling 

(Sayers and Karamihas, 1998).  A two-variable example is illustrated in Figure 2.3, 

which is taken from the study on high-performance impact absorbing materials in 
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(Holnicki-Szulc, et al., 2003).  In Figure 2.3, the response is the plastic-like energy 

dissipation, and two control variables are σ1 and σ2 describing the yield stresses on 

different elements in a structure example used in (Holnicki-Szulc, et al., 2003). 

We give examples with only one or two variables and only one response in Figure 

2.1, Figure 2.2, and Figure 2.3 because it is easy to illustrate the non-linearity of the 

response.  In real-world industrial applications, which are characterized as multi-variable, 

multi-response, and multi-objective, it is expected that more nonlinear or irregular 

responses be involved in the studies and analyses.  By using metamodels, engineers agree 

not to focus on the details of fluctuations of the responses, but try to grasp an 

approximated response-changing tendency with efficient and effective abstractions.  

However, when the responses are highly nonlinear or irregular, it is dangerous to use 

metamodels with low fidelity in early-design stages because designers may be led to a 

totally wrong direction.  Even a very small error in early design stages may evolve to a 

huge mistake and result in expensive re-design processes.  Thus in design, we suggest 

development of “acceptable” metamodels, which means that the metamodels are accurate 

enough to reflect major changes of the responses in the design space, and on the other 

hand, smooth (or “abstract”) enough to ensure low cost in the metamodeling and design 

space exploration processes.  Thus another difficult question is posed: how can engineers 

develop acceptable metamodels and achieve good design solutions with low cost when 

the actual responses are highly nonlinear or irregular? 
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Figure 2.1 LTR Prediction for Maneuver ST Performed at 60 km/hr Using a 2-2 
ANN (adapted from Goldman, 2001) 

 

Figure 2.2 Suspension Response versus Frequency in Road Profiling (adapted from 
Sayers and Karamihas, 1998) 
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Figure 2.3 Energy Dissipation for Various Yield Stress Values (adapted from 
Holnicki-Szulc, et al., 2003) 

In summary, it is difficult to utilize the approximation-based design strategy in 

industrial applications because: 

• In industrial applications, the experiments or simulations can be very 

expensive.  The metamodeling and design space exploration expense will be 

too high to afford with current single-stage experimental design techniques. 

• In industrial applications, the responses are usually nonlinear or irregular.  To 

develop acceptable metamodels and achieve good design solutions, current 

metamodeling and design space exploration techniques require observations at 

a lot of data points, and thus result in a high expense that may be 

unacceptable. 
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Without satisfactory answers to the two questions posed above, engineers cannot 

fully utilize an approximation-based design strategy in real-world industrial applications.  

Designers’ freedom is strictly restricted, as listed below: 

• To avoid expensive physical experiments, engineers have to develop computer 

simulations to do analyses.  This should be encouraged because it represents 

the trend in the computerized world.  However, not all physical experiments 

can be replaced by computer simulations; the computer analysis model may 

be inaccurate or even totally wrong when we do not fully understand the 

system that we are modeling (usually it is because that the system is too 

complicated, or the theory to describe and explain the system is incorrect).  

Since engineers cannot afford the physical experiments with current 

metamodeling and design space exploration techniques, they have to work 

with the inaccurate (or even incorrect) computer analysis models because they 

cannot do the expensive physical experiments at low expense. 

• Since multiple runs of the expensive experiments or simulations cannot be 

afforded, engineers may tend not to use these analyses in early-stage design.  

Then the design becomes experience-based because the achievement of good 

design solutions is mainly dependent on the designers’ knowledge.  The 

expensive experiments or simulations are only used as validation tools in very 

late design stages.  With such a design strategy, expensive re-design is very 

likely to take place, and the time-to-market is greatly increased. 
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• Engineers are advised not to develop expensive computer simulations in order 

to avoid intensive computation loads.  Usually more abstractions and 

assumptions are made in the development of inexpensive simulations than that 

of expensive ones, and as a result, the inexpensive simulations can be very 

inaccurate.  To use such analysis codes designers may not be able to capture 

important response properties in the design space, and thus are led to wrong 

directions; this will result in re-design and increased time-to-market. 

• In order to reduce the metamodeling and design space exploration expense, 

designers usually choose a very small design space to ensure that the 

responses in this design space are not highly nonlinear or irregular.  The 

selection of this design space is mainly based on designers’ experience.  This 

strategy confines designers’ freedom to explore a large design space, and 

cannot ensure a good design solution. 

2.1.2 Research Objectives 

As discussed in Section 2.1.1, engineers cannot fully utilize an approximation-

based design strategy (experiments or simulations, metamodels, and exploration of the 

design space) in early design stages of real-world industrial applications because of the 

high experimental expense and irregular (or highly nonlinear) responses.  Without 

available methods and tools to address these concerns, engineers have to circumvent 

these problems in design.  This confines designers’ freedom; it is very likely that 

expensive re-design process will take place and the time to market will be increased. 
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To save time and money spent on expensive physical experiments or computer 

simulations, researchers proposed a lot of methods or heuristics to reduce the design 

space or facilitate sequential metamodeling processes in a fixed design space.  The aim of 

these methods is to reduce the number of total observations or locate data points in 

“meaningful” regions through intermediate analyses of the response surfaces in the 

design space. 

To reduce the design space, designers can either screen out unimportant design 

variables or reduce the ranges of design variables.  The identification and elimination of 

unimportant design variables is an important step in the traditional Response Surface 

Methodology (RSM) (Myers and Montgomery, 1995).  Other methods are also developed 

to reduce the dimensionality (e.g., see Box and Draper, 1969; Balabanov, et al., 1999; 

Giunta, et al., 1996; Welch, et al., 1992).  More research is done to reduce the ranges of 

design variables.  Chen and her co-authors developed heuristics to lead the surface 

refinement to a smaller design space (Chen, et al., 1997).  The adaptive RSM (ARSM) 

method is developed to systematically reduces the size of the design space by discarding 

portions of it that correspond to objective function values larger than a given threshold 

value at each modeling-optimization iteration (Wang, 2001; Wang, 2003).  Move limit 

strategies or trust regions are often used to identify “meaningful” design spaces (Wujek 

and Renaud, 1998a; Wujeck and Renuad, 1998b; Alexandrov, et al., 1998; Rodriguez, et 

al., 1997).  Wang and Simpson propose an intuitive methodology to systematically 

reduce the design space to a relatively small region by incorporating the fuzzy c-Means 

clustering technique in the metamodeling process (Wang and Simpson, 2004). 
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In this dissertation, we develop methods that do not adopt the design-space-

reduction strategy.  Instead, we focus on problems in which the design space is fixed and 

unchanged during the design process.  In such cases, strategies are expected to locate data 

points sequentially in the design space.  With the sequential experimental design strategy, 

information from previous points and metamodels are utilized in identifying new points; 

new points are located at “critical” places.  Such a strategy helps obtain maximum 

possible information with limited resources, and thus achieve good design solutions with 

acceptable computational or monetary expense.  This helps answer the two questions 

posed in Section 2.1.1, how can engineers develop acceptable metamodels and achieve 

good design solutions at low cost when the experiments or simulations are very 

expensive?  And, how can engineers develop acceptable metamodels and achieve good 

design solutions with low cost when the actual responses are highly nonlinear or 

irregular? 

To address the problems as discussed in Section 2.1.1, in this dissertation we 

propose a systematic yet flexible method in which various metamodeling techniques are 

utilized in building series of appropriate metamodels for robust design space exploration 

in accordance with the change in information along the design timeline at the early stages 

of design.  With this method designers are able to design sequential experiments and thus 

develop more accurate metamodels and achieve better design solutions with limited 

resources.  This will give designers the freedom of utilizing expensive experiments or 

simulations in studies with a large design space in early design stages. 

To develop the proposed method, we need to accomplish four tasks: 
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• Study measures for metamodel validation.  This corresponds to Research 

Question 1 of this dissertation.  After accomplishing this task we are able to 

judge whether a metamodel is acceptable or not.  To accomplish this task we 

need to study existing metamodel validation approaches, especially in cases 

with deterministic computer experiments. 

• Develop methods for sequential experimental design in fixed design spaces.  

This corresponds to Research Question 2.  Criteria and tools are needed to 

define the “potential information” and identify “critical” regions.  Then an 

algorithm needs to be developed to locate new points in “critical” regions that 

bring maximum “potential information”. 

• Study the integration of metamodeling and design space exploration within a 

fixed design space.  This corresponds to Research Question 3.  Through the 

integration of the metamodeling and design space exploration processes, we 

consider another criterion for “critical” regions – the achievement of design 

goals.  The algorithms developed in answering Research Question 2 are 

further improved in this research. 

• Develop methods for model selection along the design timeline.  This 

corresponds to Research Question 4.  This supports the methods developed for 

Research Questions 2 and 3.  Metamodel comparison and selection are 

needed to ensure that acceptable metamodels can be developed with 

sequential experimental design methods. 

66 



Research objectives in this dissertation are to develop methods with which we are 

able to answer the 4 research questions presented in Chapter 1.  The proposed methods 

should provide engineers with maximum freedom in the design process, help obtain 

maximum design information and knowledge with limited resources, facilitate efficient 

and effective metamodeling and design space exploration processes, reduce the 

possibility of re-design, and thus decrease the time-to-market of new products. 

2.1.3 Organization of References 

In Section 2.1.2 we described our research objectives, which is to develop 

systematic yet flexible methods to facilitate sequential experimental designs, with which 

engineers are able to develop acceptable metamodels for irregular responses and achieve 

satisficing design solutions with limited resources in early design stages.  Such methods 

are developed based on previous research, incorporating ideas and tools from various 

fields, such as design of experiments, statistical modeling, information theory, and 

decision support problems. 

The proposed methods in this dissertation are developed based on the Robust 

Concept Exploration Method (RCEM), which is introduced in Section 1.2.2.  Robust 

design space exploration in RCEM, which is realized by incorporating Taguchi’s robust 

design, statistical metamodeling, and the compromise DSP (Section 1.2.1), provides the 

framework for the proposed methods in this dissertation.  The robust design space 

exploration is introduced in Section 2.2. 

It has been shown in previous studies that some types of metamodels are 

theoretically appropriate for deterministic computer experiments, while others are not.  
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Some metamodel validation criteria used in physical experiments do not have statistical 

meanings with computer experiments.  To compare and validate the accuracy of 

metamodels in such cases, leave-one-out cross-validation errors are widely used; 

however, previous research suggests that alternate criteria be used because it is 

empirically proved that leave-one-out cross-validation errors do not correlate with the 

true prediction error.  This leads to the studies for Research Question 1, metamodel 

evaluation.  The deterministic computer experiments and metamodel validation 

techniques are introduced in Section 2.3. 

The development of various types of metamodels is important in the 

approximation-based design strategy.  In this dissertation, we will study and use three 

types of metamodels, the response surface metamodel, kriging, and the multivariate 

adaptive regression splines.  This study helps answer Research Question 4, metamodel 

comparison and selection.  Different types of metamodels are introduced in Section 2.4. 

The sequential experimental design method is developed based on maximum 

entropy sampling (which is an application of the information theory), which is actually a 

D-optimal design.  Designs of experiments are introduced in Section 2.5, with emphasis 

on D-optimal experiments.  The information theory and the maximum entropy sampling 

method are introduced in Section 2.6.  This, together with the compromise DSP, provides 

the necessary basis for answers to Research Questions 2 and 3.   
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2.1.4 Organization of Research Questions: Removing Gaps Between Available 
Resources and Proposed Design Space Exploration Methods 

After introducing the motivations in Section 2.1.1, research objectives in Section 

2.1.2, and existing technical resources in Section 2.1.3, the gaps between existing 

technical resources and the research objectives are discussed in this section, which lead to 

the research questions of this dissertation. 
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The gaps between existing technical resources and research objectives are 

illustrated in Figure 2.4.  The research objectives of this dissertation are to develop 

methods that facilitate efficient and effective approximation-based robust design, which 

are represented by ovals at the top of Figure 2.4.  The research objectives are achieved by 

the development of two methods, SEED and E-RCEM, in this dissertation.  As 

introduced in Section 2.1.3, the available technical resources are RCEM, C-DSP, DOE 

(Design of Experiments) techniques, Metamodeling Techniques, the information theory, 

and maximum entropy sampling, which are presented in boxes at the bottom of Figure 

2.4.  The gaps between existing techniques and the research objectives are illustrated with 

dashed boxes and arrows in Figure 2.4, which can also be viewed as bridges connecting 

the “known” and “unknown”.  The gaps (or bridges) are: 

• Approaches to validate metamodel accuracy.  Leave-one-out cross-validation 

is widely used to test the accuracy of metamodels; however, previous 

empirical studies shown that it may not be appropriate with deterministic 

computer experiments.  A theoretical study of leave-one-out cross-validation 

in metamodel validation, and the development of appropriate metamodel 

validation approaches is necessary for the development of sequential 

metamodeling and design space exploration methods.  This leads to Research 

Question 1. 

• A method to reflect and utilize information during the metamodeling process.  

In order to save time and money spent on expensive experiments, a sequential 

experimental design strategy is necessary in which information from previous 
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observations can be used as guidance in selecting new data points.  To 

develop such a method, we need to identify “critical regions” and evaluate the 

“information potential” of points.  This can be achieved through the utilization 

of the information theory and maximum entropy sampling techniques.  This 

corresponds to Research Question 2. 

• The consideration of design goals in the metamodeling process.  The 

integrated design process of metamodeling and design space exploration helps 

achieve better design solutions faster; to realize this an algorithm is needed to 

incorporate design goals in metamodeling.  This algorithm can be developed 

based on the compromise DSP and the SEED method.  This leads to Research 

Question 3. 

• Utilization of appropriate types of metamodels.  To identify and use the 

appropriate type of metamodels is important in the application of SEED and 

E-RCEM; thus a study is needed on the comparison and selection of different 

types of metamodels in sequential metamodeling and design space 

exploration.  This leads to Research Question 4. 

The organization of references, research questions (the gaps), and proposed 

studies and methods is illustrated in Figure 2.5.  The proposed methods and studies, 

which are what we want to achieve in this dissertation, is illustrated at the top of Figure 

2.5 (above two dashed lines).  The existing technical resources are presented at the 

bottom of Figure 2.5 (below two dashed lines).  The gap between the available resources 
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and the desired achievements is reflected by the research questions, which are listed 

between two dashed lines in Figure 2.5. 

In Figure 2.5 the proposed studies and methods in this dissertation are illustrated 

as four ovals on the top, which stand for metamodel evaluation, metamodel comparison, 

sequential experimental design, and integration of design processes, respectively.  The 

references, which are resources we have with existing techniques, are shown in rectangles 

at the bottom.  Research Questions 1, 2, 3, and 4 provide the link between the existing 

techniques and proposed methods and studies.  To answer Research Question 1, computer 

experiments and leave-one-out cross-validation are studied.  To develop a sequential 

experimental design method (the SEED method), we need to answer Research Question 

2; R.Q. 2 is answered based on studies of Design of Experiments, D-Optimal Design, 

Information Theory and Entropy, and Maximum Entropy Sampling.  The comparison and 

selection of metamodels in design are based on the knowledge of various types of 

metamodels.  The integration of design processes is realized by answering Research 

Question 4; the compromise DSP plays an important role in the incorporation of design 

goals and constraints in the metamodeling process. 
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2.2 ROBUST DESIGN SPACE EXPLORATION 

The fundamental motivation underlying robust design, as originally proposed by 

Taguchi, is to improve the quality of a product or process not only by striving to achieve 

performance targets but also by minimizing performance variation.  Taguchi’s methods 

have been widely used in industry, generally applied in the later stages of design to 

implement parameter design and tolerance design (see, e.g., Byrne and Taguchi, 1987; 

Phadke, 1989; Ross, 1988).  Reviews of such applications are found in (e.g., Nair, 1992).   

In robust design, the relationship between different types of design parameters or 

factors are represented with a P-diagram as shown in Figure 2.6 where P represents either 

product or process (Phadke, 1989).  The three types of factors which serve as inputs to 

the P-diagram and that influence the (output) response y are: 

 Control Factors (x) – parameters which can be specified freely by a 

designer; the settings for the control factors are selected to minimize the 

effects of noise factors on the response y.  It is a designer’s responsibility 

to determine the best values for these parameters. 

 Noise Factors (z) – parameters not under a designer’s control or whose 

settings are difficult or expensive to control.  Noise factors cause the 

response, y, to deviate from their target and lead to quality loss through 

performance variation.  Noise factors may include system wear, variations 

in the operating environment, uncertain design parameters, and economic 

uncertainties. 
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 Signal factors (M) – parameters set by the designer to express the intended 

value for the response of the product; signal factors are those factors used 

to adjust the mean of the response but which no effect on the variation of 

the response.   

 

Product / Process

Noise Factors

ResponseSignal Factors

Control Factors
x 

z

M           y

µz , σz

µy , σy 

 

Figure 2.6  P-Diagram of a Product/Process in Robust Design  
(adapted from Phadke, 1989) 

The terminology of robust design is used to classify design parameters and 

responses and to identify sources of variability.  The objective in robust design is to 

reduce the variation of system performance caused by uncertain design parameters, 

thereby reducing system sensitivity.  Variations in noise factors, shown in Figure 2.6 as 

normally distributed with mean µz and standard deviation σz, lead to variation in 

performance responses, also represented in Figure 2.6 as normally distributed with mean 

µy and standard deviation σy.  In robust design, solutions (represented through settings of 

the control factors) are usually sought that minimize response variation in addition to 

achieving performance targets (mean, µy, on target, M).  In taking this approach, robust 

solutions obtained for complex systems involving significant uncertainty (or noise) are 
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usually not “optimal” in the traditional sense, but satisficing (Simon, 1982).  When 

building approximate system models based on data obtained from statistical 

experimentation, models are required for the mean, µy, and standard deviation, σy, of each 

response.   

In robust design space exploration, we aim at identifying robust design solutions 

at early design stages through the development of metamodels and trade-off among 

design goals.  We could achieve this with the robust concept exploration method 

(RCEM), which is the hybrid of several methods and tools – robust design methods, the 

response surface methodology (metamodeling techniques), Suh’s design axioms, and the 

compromise DSP.  In Section 2.1.1, Taguchi’s robust design is introduced and its 

limitation pointed out.  Implementations of robust design at early design stages for large-

scale engineering systems are presented in Section 2.1.2.  Robust design space 

exploration is the context for research in this dissertation. 

2.2.1 Taguchi’s Method 

What is of interest is Taguchi’s definition of the “goodness” of a design.  Whereas 

various other approaches assume that a good design meets a set of well-defined 

functional, technical performance, and cost goals, Taguchi states that a good design 

minimizes the quality loss over the life of a design.  In Taguchi’s method the quality loss 

is defined as the deviation from desired performance (Phadke, 1989; Ross, 1988; 

Taguchi, 1978; Taguchi, 1987; Taguchi, et al., 1989).   

Based on the concept that loss is incurred when a product’s functional quality 

characteristic deviates from its target value regardless of the amount of deviations, the 
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quality loss is measured based using the quadratic loss function as shown in Figure 2.7.  

As stated in (see, e.g., Phadke, 1989; Ross, 1988), the quality loss for being off-target by 

means of a quadratic quality loss function can be represented as: 

L(y) = k (y - T)2 ,       (2.1) 

where 

y  is the quality characteristic of a product/process, 

T  is the target value for y, and 

k  is a constant, the quality loss coefficient. 

L(y)
Quality 
Loss

T
y

 

Figure 2.7  Quadratic Loss Function 

Under this description, to maximize the quality the loss must be zero.  The greater 

the loss, the lower quality.  The quality loss is zero at y = T in Figure 2.7 and increases 

slowly near T but more rapidly farther from T.  Equation (2.1) is the simplest 

mathematical equation exhibiting this behavior and the constant k in it must be 

determined to make the equation best approximates the actual loss in the region of 

interest. 

Using Taguchi’s robust method, a designer is concerned with the sensitivity of a 

design to uncontrollable factors that may be encountered in both manufacturing and use.  
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Under robust design considerations, noise factors cause the response, y, to deviate from a 

target specified by a signal factor, M, and therefore lead to quality loss.  The objective of 

robust design is to choose the levels of control factors to dampen the variation of 

responses according to the criterion for robust ness criteria, e.g., “the target is best”, “the 

larger the better”, and “the smaller the better”.  Taguchi states the parameter design 

concept as that the fundamental principle of robust design is to improve the quality of a 

product by minimizing the effect of the causes of variation without eliminating the 

causes.   

Design of experiments, specifically orthogonal arrays (OA), are typically 

employed in Taguchi’s robust design method to systematically vary and test the different 

levels of each of the control factors.  Taguchi advocates the use of an inner-array and 

outer-array approach to implement robust design (e.g., Byrne and Taguchi, 1987).  The 

inner-array consists of an OA which contains the control factor settings; the outer-array 

consists of the OA which contains the noise factors and their settings which are under 

investigation.  The combination of the inner-array and outer-array constitutes what is 

called the product array.  The product array is used to systematically test various 

combinations of the control factor settings over all combinations of noise factors after 

which the mean response and standard deviation may be approximated for each run using 

the equations: 

• Response mean:  y =
1
n

yi
i =1

n

∑  
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• Standard deviation: S =
(yi − y )

n −1

2

i=1
∑

n

 

Preferred parameter values can then be determined through analysis of the signal-to-noise 

(SN) ratio; factor levels that maximize the appropriate SN ratio are optimal.  As stated in 

previous paragraphs, there are three “standard” types of SN ratios (see, e.g., Phadke, 

1989):  

• Nominal the best (for reducing variability around a target):   

  SNT =10 log
y 2

S2

 
 
  

 
       (2.2) 

• Smaller the better (for making the system response as small as possible): 

  SNL = −10log
1
n

1
yi

2
i =1

n

∑
 

 
  

 
       (2.3) 

• Larger the better (for making the system response as large as possible): 

  SNS = −10 log
1
n

yi
2

i =1

n

∑
 
 
  

 
      (2.4) 

Once all of the SN ratios have been computed for each run of an experiment, there 

are two common options for analysis: Analysis of Variance (ANOVA) and a graphical 

approach.  ANOVA can be used to determine which factors are statistically significant 

and the appropriate setting for each.  The graphical approach is an alternative approach in 

which the SN ratios and average responses are plotted for each factor against its levels.  

The usual approach, then, is to examine the graphs and “pick the winner,” i.e., pick the 
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factor levels which (1) best maximize SN and (2) bring the mean on target (or maximize 

or minimize the mean, as the case may be). 

After the foundation of robust design by Taguchi, robustness has been taken as a 

design criterion to improve the qualities of both product and design process.  Pignatiello 

provides a comprehensive review of the Taguchi Method and summarizes ten triumphs 

and tragedies (Pignatiello and Ramberg, 1991) and those relevant to engineering design 

practices are listed here: 

• Taguchi helps industries to reduce the cost and improve a product’s quality 

using the robust design concept. 

• Taguchi brings the consideration of sensitivity analysis into the stage when an 

optimization problem is formulated. 

• DOE techniques and many other statistical methods have become more and 

more widely used in the engineering design field with the promotion of 

Taguchi. 

There are many criticisms of Taguchi’s implementation of robust design through 

the inner and outer array approach (Montgomery, 1991; Nair, 1992; Otto and Antonsson, 

1993; Shoemaker, et al., 1991; Tribus and Szonyi, 1989; Tsui, 1992).  Consequently 

many variations of the Taguchi method have been proposed and developed; many 

researchers advocate modifications within the framework defined by Taguchi.  

Ramakrishnan and Rao (1991) formulate robust design as a nonlinear optimization 

problem using Taguchi’s loss function as the objective.  Sundaresan and co-authors 

(1993) incorporate a Sensitivity Index (SI) in the optimization procedure to determine a 

robust optimum.  Otto and Antonsson (1993) argue the necessity of incorporating 
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constraints in robust design.  Parkinson and co-authors (1993) propose including 

feasibility robustness as an important robust design category.  Su and Renaud (1996) 

provide an in-depth review of several different robust optimization techniques based on 

the Taguchi method and investigate the computational costs associated with 

implementing them.  Simpson and co-authors (1997c) give an extensive review of robust 

design formulations and use design capability indices to satisfy a “ranged set of 

requirements”.  Review of numerous robust design optimization methods can also be 

found in (Simpson, et al., 1997b; Tsui, 1992; Yu and Ishii, 1998).  In the next section, our 

approach of robust design at early design stages for large-scale systems is presented. 

2.2.2 Robust Design in the Early Design Stages 

If we can model a concept variant in the conceptual design phase of a product, 

then we can implement Taguchi’s robust design methods in the early stages of design. To 

accomplish this though the model must represent a good approximation of the real life 

product because it is necessary to have clearly defined target values that must be met for 

the product to be robust.  The objective of abstracting robust design to early design stages 

is accomplished by integrating Taguchi’s principles with response surface methodology 

and the compromise DSP which is elaborated in Section 1.2.1.  As introduced in Section 

1.2.2, the RCEM is developed to facilitate robust design of large-scale complex 

engineering systems at early design stages.  To facilitate the implementation of robust 

design within the RCEM, second-order response surface models are created and used to 

approximate the design space, replacing the computer analysis code or simulation routine 

used to model the system.  The major elements of the response surface model approach 
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for robust design applications are (see, e.g., Myers and Montgomery, 1995; Shoemaker, 

et al., 1991): 

• Combining control and noise factors in a single array instead of using 

Taguchi's  inner- and outer-array approach,  

• Modeling the response itself rather than expected loss, and  

• Approximating a prediction model for loss based on the fitted-response 

model.  

Instead of using Taguchi’s orthogonal array as the combined array for 

experiments, central composite designs are employed in the RCEM to fit second-order 

response surface models for integration with Taguchi's robust design.  From the response 

surface model, it is possible to estimate the mean and variance of the response.  The 

central composite design and the response surface model will be presented in detail as 

useful metamodeling techniques in following sections of this chapter. 

While Taguchi’s method is generally applied in later stages of design, we propose 

to extend considerations of robustness to the early design stages to help both increase the 

products’ quality and reduce time to market.  With RCEM we are able to measure the 

capability of meeting the specified range of overall design requirement in the concept 

exploration process where there are varying design parameters.  It has been suggested by 

a number of researchers that separate goals be modeled for the response mean and 

variance in a robust design formulation (e.g., Chen, 1995; Chen, et al., 1996a).  Their 

robust design methods can be represented as achieving the following goals 

simultaneously at early design stages:  
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(i) The goal for the response mean: Optimize (minimize or maximize) Mean, 

or Bring Mean on Target and  

(ii) The goal for response variance: Minimize Variance (at the point under 

study).   

In brief these goals can be stated as “bringing the mean on target” and 

“minimizing the deviation”.  To achieve these goals simultaneously a trade-off is 

necessary.  This is accomplished with the compromise Decision Support Problem (C-

DSP) (Mistree, et al., 1993b).   

In an effort to generalize robust design for product design, two broad categories, 

or types, of robust design based on the source of variation are identified:  

• Type I Robust Design: minimizing variations in performance caused by 

variations in noise factors (uncontrollable parameters). 

• Type II Robust Design: minimizing variations in performance caused by 

variations in control factors (design variables). 

Although the concepts behind the two major types of robust design are quite 

different, robust design is always concerned with aligning the peak of the bell shaped 

response distribution with the targeted quality (bringing the mean to the target), and 

making the bell shaped curve thinner (reduce the deviation).  The two types of robust 

design are similar in that they both explore for a flat (or nearly flat) region (Chen, et al., 

1996b). 

The logic behind the two major types of robust design applications is illustrated in 

Figure 2.8 (Chen, et al., 1995).  On the left-hand side of Figure 2.8, a P-diagram (Phadke, 

1989) is used to represent different types of parameters in robust design, their 
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relationships with the whole system, and thus the differences in source of variation in 

response for Type I and Type II applications.  As stated before, Control factors (x) are 

parameters which can be specified freely by a designer; noise factors (z) are parameters 

that are not under the control of a designer; and the signal factor (M) is the intended 

value for the response (y) of a product/process.  In Type I applications, the deviation of 

the response is caused by variations in the noise factor, z, the uncontrollable parameter.  

Type II is different from Type I in that its input does not include a noise factor.  The 

variation in performance is caused solely by variations in control factors or design 

variables in the region (±∆x). 

As described in (Chen, 1995), on the right hand side of the figure is a schematic 

of the different concepts behind the two types of robust design.  Taguchi’s robust design 

method deals with only the Type I robust design.  Type I robust design is highlighted in 

the upper right block of Figure 2.8.  Basically, in the Taguchi method, a designer adjusts 

control factors, x, to dampen the variations caused by the noise factor, z.  The two curves 

represent the performance variation as a function of noise factor when x is at two 

different levels, x = a and x = b.  If the design objective is to achieve a performance as 

closely as possible to the target, M, the designs at both levels are acceptable because their 

means are the target M.  However, introducing robustness, when x = a, the performance 

varies significantly with the deviation of noise factor, z; however, when x = b, the 

performance deviates much less.  Therefore, x = b is more robust than x = a as a design 

solution because x = b dampens the effect of the noise factors more than x = a. 
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Figure 2.8  A Comparison of Two Types of Robust Design (Chen, et al., 1995) 

The logic behind Type II robust design is represented in the lower right block of 

Figure 2.8.  For purposes of illustration, assume that performance is a function of only 

one variable, x.  In general, for this type of robust design, to reduce the variation of the 

response caused by the deviations of design variables, instead of seeking the peak or 

optimum value, a designer is interested in the flat part of a curve near the performance 

target.  It is in this manner that robustness can affect the compromise DSP, as stated 

before. If the objective is to move the performance function towards target M and if a 
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robust design is not sought then obviously the point x = a is chosen.  However, for a 

robust design, x = b is a better choice.  This is because if design variables vary within the 

region ±∆x of their means, the resulting variation of response of the design at x = b is 

much smaller than that at x = a, while the means of the response at two designs are close.  

The robust solution, x = b, is more desirable since it helps bring the mean responses of 

the system into the target values and minimizes deviation, which is a very important 

factor when solving the compromise DSP for multiple responses.  

In the next section, an overview of metamodeling techniques in deterministic 

computer experiments is presented.  Then different metamodels, design of experiments, 

and their application in engineering design cases are discussed in following sections. 

 

2.3 METAMODELING TECHNIQUES AND DETERMINISTIC COMPUTER 
EXPERIMENTS 

As stated in Section 1.1.1, much of today’s engineering analysis work consists of 

running complex computer codes – supplying a vector of design variables (inputs) x and 

receiving a vector of responses (outputs) y.  The expense of running many of these codes 

remains non-trivial despite continual advances in computing power and speed.  Single 

evaluations of aerodynamic or finite-element codes can take from minutes to hours, if not 

longer.  Furthermore, this mode of query-and-response often leads to a trial and error 

approach to design, an iterative spiral compounded by the requirements flowdown and 

feedback necessary in large-scale complex systems design.  Thus a designer may never 
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uncover the functional relationship between x and y and therefore may never identify the 

best settings for the input values. 

Statistical techniques are widely used in engineering design to address these 

concerns.  The basic approach is to construct approximations of the analysis codes that 

are much more efficient to run and that yield insight into the functional relationship 

between x and y.  This is where the approximation-based robust design comes from.  To 

facilitate the implementation of robust design, metamodeling techniques are often 

employed to create approximations of the mean and variation of a response in the 

presence of noise.  A metamodel is a “model of a model” (Kleijnen, 1987) which is used 

as a surrogate approximation for the actual analysis (i.e., computer code) during the 

design process.  The general approach to response surface modeling is shown in Figure 

2.9.  In statistical terms, design variables are factors, and design objectives are responses; 

the factors and responses to be investigated for a particular design problem provide the 

input for the approach of Figure 2.9, and the solutions (improved or robust) are the 

output.  To identify these solutions, this approach includes three sequential stages: 

screening, modeling building, and model exercising.   

The first step (screening) is employed only if the problem includes a large number 

of factors (usually greater than 10); screening experiments are used to reduce the set of 

factors to those that are most important to the response(s) being investigated.  Statistical 

experimentation is used to define the appropriate design analyses which must be run to 

evaluate the desired effects of the factors.  Often two level fractional factorial designs or 
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Plackett-Burman designs are used for screening (Myers and Montgomery, 1995), and 

only main (linear) effects of each factor are investigated. 
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Figure 2.9  General Approach to Response Surface Metamodeling (Koch, et al., 
1997) 

In the second stage (model building) of the approach in Figure 2.9, response 

surface models are created to replace computationally expensive analyses and facilitate 

fast analysis and exploration of the design space.  If little curvature appears to exist, a two 

level fractional factorial experiment is designed, and the first-order polynomial is used to 

approximate the response(s).  If significant curvature exists, then a second-order 
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polynomial is commonly used.  Among the various types of experimental design for 

fitting a second-order response surface model, the central composite design (CCD) is 

probably the most widely used experimental design for regularly shaped (spherical or 

cuboidal) design spaces (Myers and Montgomery, 1995).  In the case of irregularly 

shaped design spaces, D-optimal designs have been successfully employed to build 

second order response surface models (see, e.g., Giunta, et al., 1994).   
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Figure 2.10  Phases, Steps, and Corresponding Techniques in the Metamodeling 
Process 

As seen in Figure 2.10 and as evidenced by the preceding discussion, building 

approximations of computer analysis and simulation codes involves: (a) choosing an 

experimental design to sample the computer code, (b) choosing a model to represent the 

data, and (c) fitting the model to the observed data.  Usually a fourth step is needed to 
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validate the accuracy of metamodels, as illustrated in Figure 2.10.  There are a variety of 

options for each of these steps as shown in Figure 2.11, and some of the more prevalent 

approximation techniques have been highlighted.  For example, response surface 

methodology usually employs central composite designs, second-order polynomials, and 

least squares regression analysis.  The reader is referred to (Simpson, et al., 1997b) for a 

review of numerous mechanical and aerospace engineering applications of many of the 

metamodeling techniques shown in Figure 2.11 with particular emphasis on response 

surface methodology, neural networks, inductive learning, and kriging.  An introduction 

of various kinds of metamodels is presented in Section 2.3. 
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Figure 2.11  Techniques for Metamodeling (Simpson, et al., 1997b) 
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Metamodels for the actual analysis in complex systems are essential for efficiency 

and effectiveness in the early design stages in that: 

• They yield insight into the relationship between responses, y, and design 

variables, x. 

• They provide fast analysis tools for design space exploration since cheap-to-

run approximations are used instead of the more expensive complete computer 

analyses. 

• They facilitate the integration of discipline dependent analysis codes into the 

overall design strategy. 

An additional advantage of typical metamodels is that they can smooth the data in 

the case of numerical noise which may hinder the performance of some gradient-based 

optimizers (see, e.g., Giunta, et al., 1994).  This “smoothing” effect for different types of 

metamodels is both good and bad, depending on the problem and the degrees of 

“smoothness”.  Su and Renaud (1996) present an example where a second-order response 

surface smoothes out the variability in a response so that the robust solution is lost in the 

approximating function; a “flat region” does not exist in a second-order response surface, 

only an inflection point.  Su and Renaud’s example is taken as an example for this 

dissertation in Chapters 3 and 4.   

In Section 2.2.1, the Response Surface Methodology is introduced as an 

application of metamodeling techniques in engineering fields.  The deterministic 

computer experiment and its impact on metamodeling are discussed in Section 2.2.2.  

Metamodel validation with computer experiments is discussed in Section 2.2.3. 
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2.3.1 Response Surface Methodology 

In designing large scale engineering systems, the design information increases 

dramatically along the design timeline.  As stated in Section 1.1.1, at different stages of 

design the design emphasis is different.  At the beginning period the design efficiency is 

much emphasized while as design goes on more and more focus is put on the design 

effectiveness.  From the viewpoint of metamodeling, this shift of design requirements 

corresponds to the development of more and more accurate metamodels with sequential 

experiments.  The Response Surface Methodology (RSM) is such a method in which 

sequential experimental designs and sequential metamodels are utilized to reflect the 

different information and requirements along the design timeline. 

Different authors describe Response Surface Methodology differently.  Myers and 

co-authors (1989) define RSM as “a collection of tools in design or data analysis that 

enhance the exploration of a region of design variables in one or more responses.”  Box 

and Draper (1987) state that, “Response surface methodology comprises a group of 

statistical techniques for empirical model building and model exploitation.  By careful 

design and analysis of experiments, it seeks to relate a response, or output variable to the 

levels of a number of predictors, or input variables, that affect it.”   Finally, Biles (1984) 

defines RSM as the, “body of techniques by which one experimentally seeks an optimum 

set of system conditions”.   

RSM then encompasses and incorporates the design of experiments (particularly, 

classical experimental designs, Section 2.4), response surface model building (Section 
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2.3), and “model exploitation” for exploring a factor space and seeking optimum factor 

settings.  The general RSM approach includes all or a subset of the following steps: 

i) screening:  when the number of factors is too large for a comprehensive 

exploration and/or when experimentation is expensive, screening 

experiments are used to reduce the set of factors to those that are most 

important to the response(s) being investigated; 

ii) first-order experimentation:  when the starting point is far from an 

optimum (or in general when knowledge about the space being explored is 

sought), first order-models and an approach such as steepest-ascent are 

employed to “rapidly and economically move to the vicinity of the 

optimum” (Montgomery and Evans, 1975); 

iii) second-order experimentation:  after the best solution using first-order 

methods is obtained, a second-order model is fit in the region of the first-

order solution to evaluate curvature effects and attempt to improve the 

solution. 

A more detailed description of RSM techniques and tools can be found in (Box 

and Draper, 1987) and (Myers and Montgomery, 1995); a comprehensive review of RSM 

developments and applications from 1966-1988 is given in (Myers, et al., 1989).  These 

sequential experiments in RSM are utilized in RCEM to facilitate building sequential 

metamodels. 

Although RSM has been widely applied and proved to be useful, it has many 

weak points as well as strong points.  It is confined to classical experimental designs and 

regression polynomial models (which is referred as RS models).  This limits its usage in 

deterministic applications as will be discussed in the next section, and in engineering 
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design, particularly, the robust design, which is pointed out in this thesis and will be 

studied more in future research. 

2.3.2 Deterministic Computer Experiments 

  Previous research in SRL and other research groups points out that the 

deterministic property of computer experiments has a great influence in building 

metamodels for engineering design (see, e.g., Simpson, et al., 1997b; Koch, 1997; 

Simpson, 1998).   
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    (a) Non-Deterministic Case  (b) Deterministic Case 

Figure 2.12  Deterministic and Non-Deterministic Curve Fitting (Simpson, et al., 
1997) 

Given a response of interest, y, and a vector of independent factors x thought to 

influence y, the relationship between y and x includes the random error term ε.  To apply 

least squares regression, the error values for each data point are assumed to have identical 
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and independent normal distributions with means of zero and standard deviations of σ, or 

εi i.i.d. N(0,σ2).  This scenario is shown in Figure 2.12(a).  The least squares estimator 

then minimizes the sum of the squared differences between the actual data points and the 

values predicted by the model.  It is acceptable if no data point actually lies on the 

predicted model, because it is assumed that the model "smoothes out" the random error.  

Of course, it is likely that the regression model itself is only an approximation of the true 

behavior between x and y, so that the final relationship is 

y = g(x) + εbias + εrandom      (2.5) 

where εbias represents the error of approximation.  However, for deterministic computer 

experiments as illustrated in Figure 2.12(b), εrandom has mean zero and variance zero, so 

after model fitting we have the relationship 

 y = g(x) + εbias        (2.6) 

The deterministic case of Equation (2.6) conflicts sharply with the methods of least 

squares regression.  First, unless εbias is i.i.d. N(0,σ2) the assumptions for statistical 

inference from least squares regression are violated.  Even further, because there is no 

random error there is little justification for smoothing across data points; instead the 

model should hit each point exactly and interpolate between them as shown in Figure 

2.12(b).  Finally, most standard tests for model and parameter significance are based on 

computations using εrandom (the mean squared error) and are therefore impossible to 

compute.  These observations are supported by literature in the statistics community; as 
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Sacks, et al. (1989a) carefully point out, because deterministic computer experiments lack 

random error: 

• Response surface model adequacy is determined solely by systematic bias,  

• The usual measures of uncertainty derived from least-squares residuals have 

no obvious statistical meaning (deterministic measures of uncertainty exist, 

e.g., max |y(x) - y(x)| over x and a class of y's, but they may be very difficult 

to compute), and  

• The classical notions of experimental blocking, replication and randomization 

are irrelevant. 

Similarly, according to Welch and his co-authors (1990), current methods for the 

design and analysis of physical experiments (for example, (Box and Draper, 1987; Box, 

et al., 1978)) are not ideal for complex, deterministic computer models.  “In the presence 

of systematic error rather than random error, statistical testing is inappropriate” (Welch, 

et al., 1990).  Finally, a discussion of how the model should interpolate the observations 

can be found in (Sacks, et al., 1989b). 

So where can these methods go wrong?  Unfortunately it is very easy to 

unthinkingly classify the εbias term from a deterministic model fit as εrandom and then 

proceed with standard statistical testing.  Several authors have reported statistical 

measures such as the F-statistics and root MSE for verification of model adequacy, e.g., 

(Healy, et al., 1975; Koch, et al., 1996; Simpson, et al., 1997b; Unal, et al., 1994; Venter, 

et al., 1996; Welch, et al., 1990).  These measures have no statistical meaning since they 

assume the observations include an error term which has mean of zero and a non-zero 

standard deviation.  Consequently, the use of stepwise regression for polynomial model 
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fitting is not appropriate since it utilizes F-statistic values when adding/removing model 

parameters.  

R-Squared (when defined as the model sum of squares divided by the total sum of 

squares and thus varying from 0 to 1) is really the only measure for verifying model 

adequacy for deterministic computer experiments, and often this measure not sufficient (a 

high R-Squared value can be deceiving).  Consequently, confirmation testing of model 

validity through use of additional (different) data points becomes essential.  Residual 

plots may also be extremely helpful when verifying model adequacy for identifying 

trends in data, examining outliers, etc.  

Some researchers (e.g., (Giunta, et al., 1996; Giunta, et al., 1994; Venter, et al., 

1996)) have also employed metamodeling techniques such as RSM for modeling 

deterministic computer experiments which contain numerical noise.  This numerical 

noise is used as a surrogate for random error, thus allowing the standard least-squares 

approach to be applied.  However, the assumption of equating numerical noise to random 

error is questionable, and the appropriateness of their approach warrants further 

investigation.   

The initial motivation for introducing space filling experimental designs and 

different types of metamodels (e.g., kriging, ANN, etc.) into engineering design has been 

presented in this section.  Though techniques used in RSM, such as RS models, 

validation statistics, etc., receive theoretical criticize in deterministic cases, there are few 

studies and applications in which they perform apparently weak.  One exception are the 

experimental designs, for which an intensive study is performed in (Simpson, 1998) and 
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the conclusion is that space filling experimental designs act better than classical ones in 

deterministic applications.   

2.3.3 Validation of Metamodels 

As pointed out in Section 2.2.1, previously widely used statistics in RSM (e.g., F-

statistics, etc.) may be meaningless or inappropriate in deterministic computer 

applications; other methods are needed to validate the metamodels.  Mitchell and Morris, 

(1992a) propose the leave-one-out cross validation approach.  In this approach, each 

sample point used to fit the model is removed one at a time, the model is rebuilt without 

that sample point, and the difference between the model without the sample point and 

actual value at the sample point is computed for all of the sample points.  While study in 

(Simpson, 1998) shows that this method does not provide a good assessment of model 

accuracy, thus, additional validation points must be taken.  A more detailed study on 

leave-one-out cross-validation is included in Chapter 3 of this dissertation. 

If additional validation points can be afforded, then the maximum absolute error 

(MAX), average absolute error, and root mean square error (RMSE) for the additional 

validation points can be calculated to assess model accuracy.  Usually NRMSE and 

NMAX are used; they refer to the values of RMSE and MAX when normalized against 

the sample range.  These measures are summarized in Table 2.1.  In the table, nerror is the 

number of random test points used, yi is the actual value from the computer 

code/simulation, and  is the predicted value from the approximation model.   iŷ
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Table 2.1  Error Measures for Kriging Metamodels (Simpson, 1998) 

Name Error Measure Eqn. # 
 

Max. abs. Error 
 

 
 max. | yy ii ˆ− | i = 1, ..., nerror 

 
(2.7)

 
 

Avg. abs. Error ∑ =
−errorn

i ii
error

yy
n 1

ˆ1
 

 

 
(2.8)

 

 

RMSE 
error

n

i ii

n
yyerror∑ =

−1
2)ˆ(

 
 

(2.9)
 

 

To select the validation points is another problem of experimental designs and this 

is where sequential experimental designs could take advantage.  In previous research 

(see, e.g., Simpson, 1998), the validation points are selected spreading across the design 

space because 1). The problem is simple and it is possible to afford a great number of 

sample points and validation points, and 2). In previous research the focus is to study the 

properties of metamodeling techniques, but not the sequential development of 

metamodels along the design timeline.  While in engineering design of large-scale 

complex systems, metamodeling must be considered to be a sequential process to fit the 

product realization procedure.  Sequential experimental designs are needed to help 

develop sequential metamodels, and these sequential experimental designs must take the 

selection of validation points into account.   

As stated early in this section, classical experiments in RSM are designed in a 

sequential manner to help gain efficiency, while few efforts are put on the sequential 

usage of space filling experiments.  Although a single space filling experiment is proved 

to be more efficient than a single classical experiment (Simpson, 1998), it is possible that 
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classical experiments perform better than space filling experiments in a sequential case.  

One of my aims in this dissertation is to develop a method for designing sequential 

computer experiments in which information from previous data points and metamodels 

could be used as a guide in identifying new data points. 

Different types of metamodels are introduced in the next section.  Our focus is on 

the regression polynomials, kriging models, and multivariate adaptive regression splines. 

2.4 DIFFERENT TYPES OF METAMODELS 

 
In statistical modeling, the objective is to estimate the relationship between a 

response variable, typically univariate, and several predictor variables.  The response 

surface represents the true mean response.  In the case of metamodeling, it is assumed 

that there is no error variability in the observed response values; thus, the “mean” 

response coincides with the actual responses.  There are several statistical methods 

available for estimating the response surface.  In this section we present six of them: 

response surface (RS) models, kriging models, multivariate adaptive regression splines 

(MARS), regression trees, artificial neural networks (ANN), and wavelets in Section 

2.3.1 – 2.3.4, respectively.  However, only the RS model, kriging model, and MARS are 

used and studied in this dissertation. 

2.4.1 Response Surface Models 

RSM was first developed through the collaboration of a statistician and a chemist 

(Box and Wilson, 1951).  Many authors have compared Taguchi techniques with 

traditional Response Surface Methodology (RSM) for different problems and advocate a 
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combined Taguchi-RSM approach (e.g., Lucas, 1994; Ramberg, et al., 1991; Unal, et al., 

1994; Mavris, et al., 1999).  RSM incorporates the design of experiments, response 

surface model building, and model exploitation to explore a factor space and seek optimal 

factor settings.  The general form of response surface (RS) models (see Box and Draper, 

1987) is a polynomial function.  Since this is a linear model (in parameters), the usual 

linear model tools may be applied.  Thus, RS models are very easy to use.  The drawback 

is that the rigid structure of a pre-selected polynomial model may not be flexible enough 

to represent the true response surface. 

The RS models studied in this thesis are second-order polynomials and expressed 

as the following: 
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where b’s are coefficients.  For details see (Myers and Montgomery, 1995). 

Second-order RS models are easy to use and implement; however, they have 

limited capability to model accurately non-linear functions of arbitrary shape.  Some two 

variable examples of the types of surfaces that a second-order response surface can model 

are illustrated in Figure 2.13.   
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Figure 2.13  Sample Two Variables Second-Order Response Surfaces  
(adapted from Box and Draper, 1987) 

Higher-order response surfaces can be used to model a non-linear design space; 

however, instabilities may arise (see, e.g., Barton, 1992), or it may be too difficult to take 

a sufficient number of sample points in order to estimate all of the coefficients in the 

polynomial equation, particularly in high dimensions.  Hence, many researchers advocate 

the use of a sequential response surface modeling approach using move limits (see, e.g., 

Toropov, et al., 1996) or a trust region approach (see, e.g., Rodriguez, et al., 1997).  More 

generally, the Concurrent SubSpace Optimization procedure uses data generated during 

concurrent subspace optimization to develop response surface approximations of the 

design space which form the basis of the subspace coordination procedure (Renaud and 

Gabriele, 1994; Renaud and Gabrielle, 1991; Wujek, et al., 1995).  The Hierarchical and 
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Interactive Decision Refinement methodology uses statistical regression and other 

metamodeling techniques to recursively decompose the design space into subregions and 

fit each region with a separate model during design space refinement (Reddy, 1996).  

Finally, the Model Management Framework (Booker, et al., 1995; Dennis and Torczon, 

1995) is being developed collaboratively by researchers at Boeing, IBM, and Rice to 

implement mathematically rigorous techniques to manage the use of approximation 

models in optimization.   

Many of the previously mentioned sequential approaches are being developed for 

single objective optimization applications.  Since much of engineering design is 

multiobjective in nature, it is often difficult to isolate a small region of good design which 

can be accurately represented by a low-order polynomial response surface model.  Koch, 

et al. (1997) discuss the difficulties encountered when screening large variable problems 

with multiple objectives as part of the response surface approach.  Barton (1992) states 

that the response region of interest will never be reduced to a “small neighborhood” 

which is good for all objectives during multiobjective optimization.  Hence, there is a 

need to investigate alternative metamodeling techniques which have sufficient flexibility 

to build accurate global approximations of the design space and which are suitable for 

modeling computer experiments which are typically deterministic, i.e., contain no 

random error or variability, as discussed in Section 2.2.  Alternative metamodels are 

introduced in following sections. 
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2.4.2 Kriging 

Kriging evolved in the field of geostatistics (Matheron, 1963) and has recently 

become popular in the area of spatial statistics (Cressie, 1993).  From a spatial 

perspective, the values of the predictor variables are points in the multi-dimensional 

predictor space.  In kriging some form of spatial correlation between points in the 

predictor space is assumed, and this correlation is used to predict response values 

between observed points.  The resulting estimated surface interpolates the observed 

responses (though it is possible to induce smoothed kriging models which do not 

interpolate).   

Kriging is named after D. G. Krige, a South African mining engineer who, in the 

1950’s, developed empirical methods for determining true ore grade distributions from 

distributions based on sampled ore grades (Matheron, 1963).  Several texts which 

describe kriging and its usefulness for predicting spatially correlated data (see, e.g., 

Cressie, 1993) and mining (see, e.g., Journel and Huijbregts, 1978) exist.  These 

metamodels are extremely flexible due to the wide range of correlation functions which 

can be chosen for building the metamodel.  Furthermore, depending on the choice of the 

correlation function, the metamodel can either “honor the data,” providing an exact 

interpolation of the data, or “smooth the data,” providing an inexact interpolation 

(Cressie, 1993).  In this dissertation, as in most applications of kriging, the concern is 

solely on spatial prediction; it is assumed that the data are not temporally correlated. 

These days, kriging goes by a variety of names including DACE (Design and 

Analysis of Computer Experiments) modeling—the title of the inaugural paper by Sacks, 
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et al. (1989a) — and spatial correlation metamodeling (see, e.g., Barton, 1994).  There 

are also several types of kriging (cf., Cressie, 1993): ordinary kriging, universal kriging, 

lognormal kriging, and trans-Gaussian kriging.  In this dissertation, ordinary kriging is 

employed, following the work in (e.g., Booker, et al., 1995; Koehler and Owen, 1996; 

Simpson, 1998), and only the term kriging is used.   

Although there are more and more researches on kriging metamodels in 

engineering design, the usage of kriging metamodels in real-world engineering design is 

still limited after its introduction into the literature by Sacks, et al. (1989a).  One reason 

may be that the estimated parameters of a kriging model are computationally intensive to 

obtain, and the assumptions related to the correlation function are difficult to verify.  

Initial applications of kriging in engineering design include: 

• Giunta (1997) and Giunta, et al. (1998) perform a preliminary investigation 

into the use of kriging for the multidisciplinary design optimization of a High 

Speed Civil Transport aircraft.  

• Sasena (1998) compares and contrasts kriging and smoothing splines for 

approximating noisy data.   

• Schonlau, et al. (1997) use a global/local search algorithm based on kriging 

for shape optimization of an automobile piston engine.   

• Osio and Amon (1996) develop a multistage numerical optimization strategy 

based on kriging which they demonstrate on the thermal design of embedded 

electronic package which has 5 design variables.   

• Booker (1996) and Booker, et al. (1996) using a kriging approach to study the 

aeroelastic and dynamic response of a helicopter rotor during structural 

design.   
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• Simpson (1998) compares second-order RS models and kriging models with 

different correlation functions and applied kriging models in product family 

design of nozzles, electric motors, and aircraft. 

• Lin (2000) studied the performance of kriging models in robust design; 

applications include design of electrical vehicle body structures and gear 

trains, etc. 

Some researchers have also employed kriging-based strategies for numerical optimization 

(see, e.g., Cox and John, 1995; Trosset and Torczon, 1997).  A look at the mathematics of 

kriging is offered next. 

Mathematics of Kriging  

Kriging postulates a combination of a polynomial model and departures of the form: 

   y(x) = f(x) + Z(x)      (2.11) 

where y(x) is the unknown function of interest, f(x) is a known polynomial function of x, 

and Z(x) is the realization of a stochastic process with mean zero, variance σ2, and non-

zero covariance.  The f(x) term in Equation 2.11 is similar to the polynomial model in a 

response surface, providing a “global” model of the design space.  In many cases f(x) is 

simply taken to be a constant term β (cf., Koehler and Owen, 1996; Sacks, et al., 1989a; 

Welch, et al., 1990).  Only kriging models with constant underlying global models are 

investigated in this work as well.   

While f(x) “globally” approximates the design space, Z(x) creates “localized” 

deviations so that the kriging model interpolates the ns sampled data points.  The 

covariance matrix of Z(x) which dictates the local deviations is: 
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   Cov[Z(xi),Z(xj)] = σ2 R([R(xi,xj)]    (2.12) 

where R is the correlation matrix, and R(xi,xj) is the correlation function between any two 

of the ns sampled data points xi and xj.  R is an ns × ns symmetric, positive definite matrix 

with ones along the diagonal.  The correlation function R(xi,xj) is specified by the user.   

Table 2.2  Summary of Correlation Functions 

Name Spatial Correlation Function # Deriv. Eqn. # 

Exponential  exp(−θk dk )k=1
n dv∏  1 (2.13)

Gaussian exp(−θk dk
2 )k=1

n dv∏  ∞ (2.14)

Cubic spline 

1 − 6 θk dk( )2
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k=1
n dv∏ 1 (2.15)

Matérn linear 
function 

(1 + θk dk )exp(−θk dk )[ ]k=1
n dv∏  1 (2.16)

Matérn cubic 
function 

(1 + θk dk +
θk
2 dk

2

3
)exp(−θk dk )

 

 
 

 

 
  k=1

n dv∏ 2 (2.17)

 
 

Five different correlation functions have been studied in previous work by the 

author of this dissertation, see Table 2.2.  In all the correlation functions listed in the 

table, ndv is the number of design variables, θk are the unknown correlation parameters 

used to fit the model, and dk = xk
i - xk

j which is the distance between the kth components of 

sample points xi and xj.  The correlation functions of Equations 2.13 and 2.14 are from 

(Sacks, et al., 1989a); the correlation functions of Equations 2.15 – 2.17 are from 
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(Mitchell and Morris, 1992b).  In this dissertation, only the Gaussian correlation function 

(Equation 2.14) is used in developing kriging models because in the literature the 

Gaussian correlation is by far the most popular one in use.  Correlation functions with 

multiple parameters per dimension exist; however, correlation functions with only one 

parameter per dimension are considered in this dissertation to facilitate finding the 

maximum likelihood estimates (MLEs) or “best guess” of the θk used to fit the model.     

Once a correlation function has been selected, predicted estimates, (x), of the 

response, y(x), at untried values of x are given by:  

ŷ

        (2.18) )ˆfy(R)x(rˆˆ 1 ββ −+= −Ty

where y is the column vector of length ns (number of sample points) which contains the 

values of the response at each sample point, and f is a column vector of length ns which is 

filled with ones when f(x) in Equation 2.11 is taken as a constant.  In Equation 2.18, rT(x) 

is the correlation vector of length ns between an untried x and the sampled data points 

{x1, x2, ..., xns} and is given by: 

rT(x) = [R(x,x1), R(x,x2), ..., R(x,xns)]T    (2.19) 

Finally, the  in Equation 2.18 is estimated using the following expression. β̂

        (2.20) yRf)fRf(ˆ 1T11T −−−=β
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When f(x) is assumed to be a constant, then  is a scalar which simplifies the calculation 

of Equation 2.20 and all others involving .   

β̂

β̂

The estimate of the variance, , from the underlying global model (not the 

variance of the randomness in the observed data itself) is: 

2σ̂

   
s

T

n
)ˆfy(R)ˆfy(ˆ

1
2 ββσ −−

=
−

     (2.21) 

where f is again a column vector of ones because f(x) is assumed to be a constant.  The 

maximum likelihood estimates (i.e., “best guesses”) for the θk used to fit the model are 

found by maximizing Equation 2.22 over θk > 0 (Booker, et al., 1995): 

   
2
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−

σsn
     (2.22) 

Both  and |R| are functions of θ2σ̂ k.  While any values for the θk create an interpolative 

approximation model, the “best” kriging model is found by solving the k-dimensional 

unconstrained nonlinear optimization problem given by Equation 2.22.  It is worth noting 

that in some cases using a single correlation parameter gives sufficiently good results 

(Booker, et al., 1995; Osio and Amon, 1996; Sacks, et al., 1989a).  In this dissertation, 

however, a unique θ value for each dimension is always considered based on past 

difficulties with scaling the design space to [0,1]k during the model fitting process.   
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2.4.3 Multivariate Adaptive Regression Splines 

Multivariate Adaptive Regression Splines (MARS) were introduced by Friedman 

(Friedman, 1991).  It is known that pre-specified parametric models are limited in 

flexibility and accuracy since accurate estimates are usually only possible when the true 

function is close to the pre-specified parametric one.  Thus, when the form of the 

underlying true function is unknown, statisticians prefer methods like MARS that can 

adaptively create a statistical model. 

MARS is essentially a linear model with a forward and backward stepwise 

algorithm to select the terms to include in the model.  The piecewise-linear MARS 

approximation is a linear combination of linear basis functions that are truncated at knots.  

The knots determine where the approximation bends to model curvature, and one of the 

objectives of the forward stepwise algorithm is to select appropriate knots.  After a 

reasonable piecewise-linear MARS approximation has been constructed, there is an 

option to smooth the approximation to achieve first derivative (or higher) continuity.  

MARS is both flexible and straightforward to implement with the computational effort 

primarily dependent on the number of basis functions added to the model.  This approach 

has been successfully used in modeling the objective function in large-scale dynamic 

programming problems (Chen, 1999; Chen, et al., 1999).   

The MARS model is built by taking the form of an expansion in product spline 

basis functions, where the basis functions are selected by the data.  MARS uses the 

multiple regression model: 
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where nv is the number of covariates x = (x1, …, xnv)T, ns is the number of data points, the 

error εj is a random variable with mean equal to zero, and the “regression function” g is 

smooth but otherwise arbitrary. 

The MARS procedure for estimating g consists of three parts: 

1. A forward stepwise algorithm to select basis functions, 

2. A backward stepwise algorithm to delete basis functions until the “best” 

set is found, and 

3. A smoothing method which gives the final MARS approximation a certain 

degree of continuity. 

This is an adaptive procedure because the selection of basis functions is data-based and 

specific to the problem in hand.  The adaptive strategy has the ability to reduce the 

dimensionality of high dimensional problems. 

The forward and backward stepwise procedures described in Friedman’s paper are 

restated in the following sections.  The forward stepwise algorithm takes most of the 

computational effort in MARS.  One major focus on this research is to improve 

computational performance.  To demonstrate the potential of improvement, the MARS 

forward stepwise algorithm will be explained step by step in Section 2.3.3.1.  The 

backward stepwise procedure prunes the MARS approximation attained from the forward 

stepwise algorithm, by removing unnecessary basis functions one at a time.  Robustness 

may be improved by pruning, which was discussed in (Tsai, 2002).  A brief introduction 
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on the backward stepwise procedure will be given in Section 2.3.3.2.  At last, to give 

MARS continuity and a continuous first and second derivative at the side knots, a MARS 

approximation with quintic basis functions derived in (Chen, et al., 1999) is presented in 

Section 2.3.3.3. 

2.4.3.1 MARS Forward Stepwise Algorithm 

The forward stepwise algorithm is the most computationally expensive 

component of MARS.  The algorithm is described below, and the notation is introduced 

as follows.  For more details, see (Tsai, 2002).  Mmax is the maximum number of basis 

functions, which is used to determine when to terminate MARS approximation.  Bm is the 

m-th basis function.  The quantity Lm is the number of splits that gave rise to Bm, v(l,m) 

label the predictor variables that are in the l-th split of the m-th basis function and k 

represents values on the corresponding variables. 

The forward stepwise algorithm starts with the constant basis function B1(x) = 1, 

and initializes the counter variable M.  Within the M-loop beginning on the second step, 

basis functions M and M + 1 are added.  The m-loop searches through the M – 1 basis 

functions that have already been added for the best one to “split”.  Univariate basis 

functions “split” the constant basis function at a knot k for covariate xv in the form of 

truncated linear functions, 

,)]([)(,)]([)( +
−

+
+ −−=−−+=− kxkxbkxkxb vvvv   (2.24) 

where [q]+ = max{0,q}.  Interaction basis functions are created by “splitting” 

(multiplying) an existing basis function Bm(x) with a truncated linear function involving a 
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new covariate.  Both the existing basis function and the newly created interaction basis 

function are used in the MARS approximation.  Then the designers select the next two 

basis functions (M and M + 1) to add by loop through the possible choices for basis 

function (m), covariate (v), and knot (k). 

Possible basis functions are compared with the lack-of-fit (lof).  There are various 

options for lof, and the least-squared criterion is used in this dissertation and defined as: 
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1

2)](ˆ[)ˆ(      (2.25) 

The indices m, v, and k are stored for the “split” that currently yields the smallest lof.  

The algorithm stops when a certain number of basis functions constrained by Mmax has 

been accumulated, where Mmax is a user-specified constant.  The MARS approximation 

approaches interpolation as the number of basis functions increases, but there is a trade-

off between Mmax and computational time.  To save MARS computational effort during 

the forward stepwise search, instead of computing the least-squares lack-of-fit defined in 

Equation (2.25), I(k) is used as the criterion to decide which knot would be added to the 

new basis function.  To be specific, let  be the i-th fitted value using the current 

set of orthonormal basis functions and  be the i-th fitted value including basis 

function M + 1.  The decrease in the lack-of-fit is proportional to 
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The MARS algorithm actually adds two basis functions at a time and the corresponding 

I(k) is of the following form: 
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Friedman pointed out that “I(k) is the improvement in the residual sum of squares 

resulting from adding the corresponding basis function with knot location k,” and “The 

decrease in the (least-squares) lack-of-fit to be evaluated in the innermost loop of the 

forward stepwise algorithm at each potential knot location k is proportional to –I(k).”   

2.4.3.2 MARS Backward Stepwise Algorithm 

The backward stepwise starts with all Mmax basis functions derived from the 

forward stepwise algorithm.  It omits one basis function at a time and finds the best set of 

basis functions for the MARS approximation. 

At the beginning of the algorithm, J* is used to represent the entire basis function 

set derived from the forward stepwise algorithm, and the lack-of-fit of this set is saved.  

The best set of Mmax – 1 basis functions is found by deleting one basis function at a time.  

It is the one whose removal either improves the fit the most or degrades it the least.  Then 

it loops again starting with that best set to find the best set of Mmax – 2 basis functions.  

Throughout the algorithm, it keeps track of the overall best.  After completion of the 

backward stepwise algorithm, J* holds the best set of basis functions.  The backward 

stepwise algorithm can be used to ensure a best model as well as to make the MARS 

approximation more robust. 
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2.4.3.3 Degree of Continuity 

Since the resulting MARS estimate is nonlinear, in general the dynamic program 

requires a nonlinear minimization method that uses first and second derivatives to find 

the minimum.  Friedman’s MARS replaces the truncated linear basis functions [±(x – k)]+ 

in the forward and backward stepwise algorithms with cubic functions, which provides a 

continuous first derivative and a continuous second derivative everywhere except at the 

side knots.  To give MARS continuity and a continuous first and second derivative at the 

side knots, quintic functions derived in (Chen, et al., 1994) in place of Friedman’s cubic 

functions are shown below.  For sing s and knots k−, k, and k+, quintic functions defined 

as: 
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satisfy the constraints as requiring 

115 



,
)(
363

,
)(

7158

,
)(
4106

5

4

3

−+

−+
+

−+

−+
+

−+

−+
+

−
+−

=

−
−+−

=

−
+−

=

kk
kkk

kk
kkk

kk
kkk

γ

β

α

      (2.30) 

,
)(

)363)(1(

,
)(

)7158)(1(

,
)(

)4106)(1(

5

4

3

+−

−+
−

+−

−+
−

+−

−+
−

−
+−−

=

−
−+−−

=

−
+−−

=

kk
kkk

kk
kkk

kk
kkk

γ

β

α

     (2.31) 

Nonconvexities are produced in the cubic and quintic basis functions when the 

center knot k is not close enough to the midpoint between k− and k+.  When having 

.1
5
2

,1
5
2

−=<
−
−

=<
−
−

−+

−

−+

+

sfor
kk
kk

orsfor
kk
kk

    (2.32) 

Chen proves Equation (2.32) by considering four cases (Chen, 1993).  For accurate 

minimization, it is desirable for the objective function to be convex.  To avoid this 

potential cause for nonconvexity, the inequality shown in Equation (2.32) are to be 

checked when k− and k+ are chosen.  If the ratio does not meet the constraints, the 

appropriate side knots need to be adjusted.   
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2.4.4 Other Types of Metamodels 

In this section we briefly review other types of metamodels, say, Artificial Neural 

Networks (ANN), Regression trees, and wavelets. 

ANN models have been very popular for modeling a variety of physical 

relationships.  The original motivation for ANN comes from how "learning" strengthens 

connections along neurons in the brain.  Commonly, an ANN model is represented by a 

diagram of nodes in various layers with weighted connections between nodes in different 

layers.  At the input layer, the nodes are the predictor variables and at the output layer, 

the nodes are the response variable(s).  In between, there is usually at least one "hidden" 

layer which induces flexibility into the modeling.  Mathematically, an ANN model is a 

nonlinear statistical model, and a nonlinear method is used to estimate the parameters 

(weights) of the model.  There are two main issues in building a network: 1). Specifying 

the architecture for the network, and 2). Training the network to perform well with 

reference to a training set.  To a statistician, this is equivalent to (i). Specifying a 

regression model, and (ii). Estimating the parameters of the model given a set of data 

(Cheng and Titterington, 1994).  If the architecture is made large enough, a neural 

network can be a nearly universal approximator (Rumelhart, et al., 1994). 

Neural networks are best suited to approximate deterministic functions in 

regression-type applications.  Cheng and Titterington (1994) note that “In most 

applications of neural networks that generate regression-like output, there is no explicit 

mention of randomness.  Instead, the aim is function approximation.”  Typical 

applications are speech recognition and handwritten character recognition.  Although 
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ANN models are generally flexible enough to model any relationship, they are 

computationally intensive, and a significant quantity of representative data is required to 

both fit and validate the model.  Very often the data is complex and of high 

dimensionality.  Networks with tens of thousands of parameters are not unheard of, and 

the amount of training data is similar.  Gathering the training data and determining the 

model parameters is a process that can be very computationally expensive.  

Consequently, neural networks are better suited for applications in which the models can 

be used repeatedly; for a single design application, the cost of building the model may 

outweigh the associated gain in exercising the model. 

Regression trees (see Breiman, et al., 1984) are closely related to MARS.  Instead 

of a piecewise-linear approximation, regression trees form a piecewise-constant 

approximation.  Wavelet modeling is a relatively new technique that has found great 

success in image and signal processing (Mallet, 1998).  A wavelet is a special form of 

basis function that is particularly effective in modeling sharp jumps in the response 

surface.  The continuous wavelet transform maybe used to identify the locations of these 

jumps.  Similar to ANN, wavelets are best used when a large quantity of data is available. 

Various metamodels are introduced in this section and we emphasized on the RS, 

kriging, and MARS models in this dissertation.  To compare the performance of RS, 

kriging, and MARS models in design, which we propose to do in this thesis, will help 

designers develop appropriate metamodels in their design activities.  Note that in design 

(particularly for early stages of design), typically it is expensive to obtain lots of data for 

building metamodels.  Thus the design of experiments for data points is very important.  
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In the next section, several experimental designs are presented in two categories: classical 

DOE and space filling DOE. 

2.5 DESIGN OF EXPERIMENTS 

Properly designed experiments are essential for effective computer utilization.  

The traditional approach in engineering is to vary one parameter at a time within a 

computer analysis code and observe the effects or to randomly assign different 

combinations of factor settings to be used as alternative parametric analyses for 

comparisons.  Design of Experiments (DOE) represents techniques with which we are 

able to reasonably select data point in the design space for fitting a model.   

An experimental design formally represents a sequence of experiments to be 

performed, expressed in terms of factors (design variables) set at specified levels, or 

predefined values.  An experimental design is represented mathematically by a matrix X 

where the rows denote experimental runs and the columns denote the particular factor 

setting for each run.   

There are essentially two categories of experimental designs, say, the classical 

DOE and space filling DOE.  Booker (1996) summarizes the difference between classical 

experimental designs and new space filling designs well.  In the classical design and 

analysis of physical experiments, random variation is accounted for by spreading the 

sample points out in the design space and by taking multiple data points (replicates), see 

Figure 2.14a.  In deterministic computer experiments, replication at a sample point is 

meaningless; therefore, the points should be chosen to fill the design space.  One 
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approach is to minimize the integrated mean square error over the design region (cf., 

Sacks, et al., 1989b); the space filling design illustrated in Figure 2.14b is an example of 

such a design. 

After generally talking about the D-optimal designs in Section 2.4.1, several kinds 

of classical DOE and space filling DOE are briefly introduced in Section 2.4.2. 
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 (a) Classical design w/replicates (b) Space filling design w/o replicates 

Figure 2.14  Example Classical and Space Filling Experimental Designs 

2.5.1 D-Optimal Experiments 

Selecting the appropriate design is essential for effective experimentation.  

Experimenters must balance the desire to gain as much information as possible about the 

response-factor relationships with the cost of experimentation and need for efficiency 

(measured in numbers of runs).  There are several available measures of merit, useful for 

evaluating and comparing experimental designs to ensure the appropriate experiment is 

designed, while in this section, we will focus on the D-optimal experiments. 

Much of the development of computer-generated designs is an outgrowth of work 

by Kiefer (1959, 1961) and Kiefer and Wolfowitz (1959) in the theory of optimal 

designs.  An optimal design is a design that is “best” with respect to some criterion.  The 
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usual approach is to specify a model, determine the region of interest, select the number 

of runs to make, specify the optimality criterion, and then choose the design points from a 

set of candidate points that the experimenter would consider using.  Typically, the 

candidate points are a grid of points spaced over the feasible design region. 

There are several popular design optimality criteria, and D-optimality criterion is 

perhaps the most widely used one.  Unlike standard classical designs such as factorials 

and fractional factorials, D-optimal design matrices are usually not orthogonal and effect 

estimates are correlated.  These types of designs are always an option regardless of the 

type of model the experimenter wishes to fit or the objective specified for the experiment 

(for example, screening, response surface, etc.).  D-optimal designs are straight 

optimizations based on a chosen optimality criterion and the model that will be fit.  The 

optimality criterion used in generating D-optimal designs is one of maximizing |X'X| (or 

det(X'X)), the determinant of the information matrix X'X.  In the case of D-optimality for 

regression designs, X is the expanded design matrix that has n rows (one for each design 

setting) and p columns (one column for each coefficient to be estimated plus one column 

for the overall mean).  It was proved that a D-optimal design is also minimax, and on ther 

other hand, a minimax design is D-optimal (Kiefer and Wolfowitz, 1960). 

This optimality criterion results in minimizing the generalized variance of the 

parameter estimates for a pre-specified model. As a result, the “optimality” of a given D-

optimal design is model dependent.  That is, the experimenter must specify a model for 

the design before a computer can generate the specific treatment combinations.  Given 

the total number of treatment runs for an experiment and a specified model, the computer 
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algorithm chooses the optimal set of design runs from a candidate set of possible design 

treatment runs.  This candidate set of treatment runs usually consists of all possible 

combinations of various factor levels that one wishes to use in the experiment. 

Design of D-optimal experiments will be discussed in detail in Chapter 4.  D-

optimal experiments and maximum entropy sampling are basis of the method of 

Sequential Exploratory Experimental Design (SEED) developed in this dissertation. 

2.5.2 Classical and Space-Filling Experimental Designs 

Classical experimental designs are so named because they have been developed 

for what are considered to be the more “classical” applications of response surface 

metamodeling: physical experiments which are plagued by variability and random error 

(see, e.g., Box and Draper, 1987; Myers, et al., 1989; Myers and Montgomery, 1995).  

Among these designs, the factorial design, the central composite design (CCD), and face-

centered central composite design (CCF) which is a special type of CCD, are well known 

and easily generated; thus they are utilized in designing experiments for the case studies 

in this thesis.  A brief description of these three classical experimental designs could be 

found in (Lin, 2000). 

As stated in Section 2.2, fractional factorial and central composite designs are 

integrated in RSM to help explore the design space and build RS models efficiently 

because of their sequential inherit property mentioned in the previous paragraph.  This 

has been a plus of the RSM and also the classical experimental designs since space filling 

experiments are seldom designed for sequential usage.   

122 



Many researchers (see, e.g., Currin, et al., 1991; Sacks and Schiller, 1988) argue 

that classical experimental designs, such as the central composite designs and Box-

Behnken designs, are not well-suited for sampling deterministic computer experiments.  

Sacks, et al. (1989) state that the “classical notions of experimental blocking, replication 

and randomization are irrelevant” when it comes to deterministic computer experiments 

which have no random error; hence, designs for deterministic computer experiments 

should “fill the space” as opposed to possess properties for estimating the variability in 

the data, as discussed in Section 2.2. 

Numerous space filling experimental designs have been developed in an effort to 

provide more efficient and effective means for sampling deterministic computer 

experiments.  For instance, Koehler and Owen (1996) describe several Bayesian and 

Frequentist types of space filling experimental designs, including maximin and minimax 

designs, maximum entropy designs, integrated mean squared error (IMSE) designs, 

orthogonal arrays, Latin hypercubes, scrambled nets and randomized grids.  Latin 

hypercube designs were introduced in (McKay, et al., 1979) for use with computer codes 

and compared to random sampling and stratified sampling.  Minimax and maximin 

designs were developed by Johnson, et al. (1990) specifically for use with computer 

experiments.  Sherwy and Wynn (1987; 1988) and Currin, et al. (1991) use the maximum 

entropy principle to develop designs for computer experiments.  Similarly, Sacks et al. 

(1989a) discuss entropy designs in addition to IMSE designs and maximum mean 

squared error designs for use with deterministic computer experiments.  Finally, a review 
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of several Bayesian experimental designs for linear and nonlinear regression models is 

given in (Chaloner and Verdinelli, 1995). 

Exploration of methods for sequential experimental design, together with the 

consideration of validation point selection (Section 2.2), is an important issue in 

metamodeling.  In this dissertation, a method of Sequential Exploratory Experimental 

Design is proposed based on work in D-optimal design as discussed in this section and 

the maximum entropy sampling as will be introduced in the next section. 

2.6 INFORMATION THEORY AND ENTROPY OPTIMIZATION 
PRINCIPLES 

Information theory and entropy optimization are introduced in this section.  The 

word entropy originated in the literature on thermodynamics around 1865 A.D. in 

Germany and was coined by Rudolf Clausius (Clausius, 1865) to represent a measure of 

the amount of energy in a thermodynamic system as a function of the temperature of the 

system and the heat that enters the system.  The word entropy had belonged to the 

domain of physics until 1948 when Claude Shannon, while developing his theory of 

communication, used the term to represent a measure of information (Shannon, 1948).  

Since then, the concept of Shannon’s entropy has penetrated a wide range of disciplines, 

including statistical mechanics (Jaynes, 1957), statistical inference (Tribus, 1969), 

business and finance (Cozzolino and Zahner, 1973; Yamada and Rajasekera, 1993), 

nonlinear spectral analysis (Shore, 1981), pattern recognition (Wang and Lu, 1992), 

transportation (Fang and Tsao, 1995), urban and regional planning (Kumar, et al., 1989; 

Scott and Jefferson, 1977), queueing theory (Guiasu, 1986), information theory (Shannon 
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and Weaver, 1962; Guiasu, 1977), parameter estimation, and linear and nonlinear 

programming (Fang and Tsao, 1993; Rajasekera and Fang, 1992).  It is worth noting that, 

at the time when Shannon introduced his concept of entropy, no relationship, except for 

the similar mathematical expressions, was known to exist between Shannon’s entropy 

and thermodynamics entropy.  The relationship was only established later (Kapur and 

Kesavan, 1992). 

The concept of entropy is closely tied to the concept of uncertainty embedded in a 

probability distribution.  In fact, entropy can be defined as a measure of probabilistic 

uncertainty (the uncertainty associated with the probability of outcomes).  Let p ≡ (p1, p2, 

…, pn)T be a probability distribution associated with n possible outcomes, Shannon’s 

entropy is defined as (Shannon and Weaver, 1962): 

∑
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j ≥ 0 for j = 1,…,n.    Another formulation of Shannon’s 

entropy, used as a measure of the uncertainty of the transmission of information, is: 

  ,      (2.34) ∫ Ω−= dsspsp )(ln)(

where p(s) is a Gaussian density function over the space Ω of the information signals 

transmitted.  Such formulations of entropy can not only be used to measure “uncertainty” 

but can also be used to measure other concepts such as equality, disorder, diversity, lack 

of concentration, similarity, objectivity, unbiasedness, randomness, etc., and many other 

characteristics that do not even require probabilistic concepts for their description and 

125 



that have no relationship with uncertainty (Kapur and Kesavan, 1992).  Thus, the word 

“entropy” has different meanings in different contexts, depending on how we define the 

pi or p(s) in its formulation. 

Given the formulation of entropy, we can mathematically describe uncertainty in 

terms of entropy.  We can choose the distribution that maximizes uncertainty subject to 

the given moment constraints.  In this way, we make full use of all the information given 

to us but avoid making any assumption about any information that is not available.  Such 

reasoning leads to the Maximum Entropy Principle: Out of all possible distributions that 

are consistent with the moment constraints, choose the one that has the maximum 

entropy.   

Suppose now that, in addition to the constraints used in formulating Maximum 

Entropy Principle, we have an a priori probability distribution p0 that we think our 

probability distribution p should be close to.  In fact, in the absence of the moment 

constraints, we might choose p0 for p.  However, with the presence of the moment 

constraints, we would choose the probability distribution that is the “closest” to the a 

priori distribution among those that satisfy the moment constraints.  To be able to do so, 

we need a precise definition of “closeness” or “deviation”.  A simple measure for this 

“deviation” is the cross-entropy, also known as the Kullback-Liebler measure, which is 

defined as: 
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Note that whenever pj
0 is 0, pj is set to 0 and 0

0
0ln0 = .  With cross-entropy interpreted 

as a measure of “deviation”, we state the Minimum Cross Entropy Principle as: Out of all 

possible distributions that are consistent with the moment constraints, choose the one 

that minimizes the cross-entropy with respect to the given a priori distribution.  

Mathematical formulations of the entropy optimization principles can be found in (Fang, 

et al., 1997). 

There is a diversity of entropy optimization principles besides the two mentioned 

above.  To apply entropy and entropy optimization principles help solve many problems 

in various fields.  In the field of design of experiments, entropy is usually used as a 

criterion (same role as IMSE, MMSE, minimax and maximin distance, discrepancy, etc.) 

to select an optimal design from a group of experimental designs (Ye, 1997), or choose a 

most informative subset of s random variables a set of n random variables (Lee, 2001).  

For details about maximum entropy designs, see (Lindley, 1956; Koehler and Owen, 

1996; Sherwy and Wynn, 1987; Sherwy and Wynn, 1988; Currin, et al., 1991).   

In this dissertation, entropy is used to help measure the information uncertainty 

associated with metamodels’ prediction errors and achievement of design goals in 

engineering design.  This leads to a sequential experimental design method with 

mathematical formulations similar to those from D-optimal designs.  More details of 

entropy, and the application of entropy optimization in experimental design will be 

discussed in Chapter 4 in which the method of Sequential Exploratory Experimental 

Design (SEED) is developed based on research in D-optimal experiments and the 

maximum entropy sampling. 
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2.7 A LOOK BACK AND A LOOK AHEAD 

Through the review of the literature which is presented in this chapter, the 

necessary knowledge for understanding and performing the proposed research in this 

dissertation is provided.  The relationship between the research questions (and 

hypotheses) introduced in Section 1.3.2 and the techniques introduced in this chapter will 

be presented in this section, and the basis for studies in following chapters is laid.   

As mentioned in Chapter 1, our research in this dissertation focuses on the 

development of sequential metamodeling and sequential design space exploration 

techniques.  We propose to study the metamodeling techniques in the context of 

engineering design.  The robust design space exploration as introduced in Section 2.1 

provides the necessary engineering context of our proposed research. 

The first step in our research is to examine the current metamodel validation 

techniques and develop new approaches to test the accuracy of metamodels.  As 

illustrated in Section 2.2, metamodeling is necessary in early stages of design when there 

are expensive simulation programs.  To validate the accuracy of a metamodel is needed 

to assure the achievement of right solutions.  With deterministic computer experiments, 

statistics based on random errors, such as F-statistics, etc., are inappropriate.  Our 

preliminary study also shows that the widely used method, leave-one-out cross-

validation, may be incapable of testing the accuracy of metamodels.  Thus, a close 

examination of leave-one-out cross-validation and development of new approaches to 

validate metamodels are necessary.  This is mainly done in Chapter 3; some research in 

this direction is put in Chapter 4 and 5. 
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Various types of metamodels and their mathematics are presented in Section 2.3.  

This builds the foundation of our research on selection and usage of sequential 

metamodels along the design timeline, which will be discussed in Chapter 5. 

D-optimal experiments and entropy optimization are briefly introduced in 

Sections 2.4 and 2.5, respectively.  Design of D-optimal experiments and maximum 

entropy sampling will be discussed in detail in Chapter 4, as the basis for the proposed 

method of Sequential Exploratory Experimental Design.  They are also the foundation of 

sequential design space exploration which will be studied in Chapter 6. 
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3.  
CHAPTER 3 

METAMODEL VALIDATION WITH 
DETERMINISTIC COMPUTER EXPERIMENTS 

In this chapter our focus is on the study of metamodel validation techniques in 

deterministic computer applications.  Hypothesis 1 and its sub-hypotheses, SH1.1 and 

SH1.2.1, are tested in this chapter.  A brief review of metamodel validation is put in 

Section 3.1.  Sub-Hypothesis 1.1 is tested in Sections 3.2 and 3.3, in which we examine 

the performance of leave-one-out cross-validation from different viewpoints: our study in 

Section 3.2 is more theoretical and that in Section 3.3 more empirical.  After proving that 

leave-one-out cross-validation is inappropriate for deterministic experiments in Sections 

3.2 and 3.3, an approach to validation metamodels with additional validation points is 

proposed and tested in Section 3.4, where Sub-Hypothesis 1.2.1 is tested.  A summary of 

research on metamodel validation is presented in Section 3.5. 

The type of metamodel used in study in this chapter is the kriging model.  

However, we expect that our studies on cross-validate in this chapter are valid with other 

types of metamodels.   
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3.1 METAMODEL VALIDATION: CROSS-VALIDATION AND ADDITIONAL 
VALIDATION POINTS 

As discussed in Chapter 2, for computer experiments the predicted performance is 

determined by the input variables and hence is deterministic and not based on random 

variation.  This has a great influence in building metamodels for engineering design 

because,  “In the presence of systematic error rather than random error, statistical testing 

is inappropriate” (Welch, et al., 1990).  Several authors have reported statistical 

measures, such as the F-statistics and root MSE for verification of model adequacy, have 

no statistical meaning since they assume the observations include an error term which has 

mean of zero and a non-zero standard deviation.    

When additional validation points can be afforded, the most important measures 

of model accuracy will be the root mean square error (RMSE) and the maximum absolute 

error (MAX) for the additional validation points.  Formulations of RMSE and MAX are 

presented in the following equations: 
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where nerror is the number of random test points used, yi is the actual value from the 

computer simulation, and  is the predicted value from the approximation model at 

validation points.  The lower the value of RMSE and/or MAX, the more accurate the 

metamodel.  RMSE is used to gauge the overall accuracy of the model; high values of 

iŷ
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RMSE can lead a design space exploration into a region of bad design.  MAX is used to 

gauge the local accuracy of the model; high values of MAX will cause local model 

inaccuracy (Lin, et al., 1999) and prevent the optimization algorithm from finding true 

solutions.  Though previous experience recommends that a metamodel with normalized 

RMSE (RMSE divided by the sample range of responses) less than 5% and normalized 

MAX (MAX divided by the samples range of responses) less than 10% is acceptable for 

design space exploration at early design stages, there is no rigorously-defined guidance 

on model selection.  Currently, with RMSE and MAX we cannot tell “how accurate” one 

metamodel is, and whether it meets the requirement of designers; what we can do is only 

to compare the accuracy of different models. 

Leave-one-out cross-validation is probably the simplest and most widely used 

method for metamodels verification when additional validation points cannot be afforded.  

Leave-one-out cross-validation is a special case of cross-validation (Hastie, et al., 2001).  

In this approach, each sample point used to fit the model is removed one at a time, the 

model is rebuilt without that sample point, and the difference between the model without 

the sample point and actual value at the sample point is computed for all of the sample 

points.  The cross-validation root mean square error (CVRMSE) is computed as below: 
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Note that only information from the ns data points is needed in calculating 

CVRMSE; there is no need to collect information from additional validation points as we 
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do in Equations (3.1) and (3.2).  The metamodel used in this chapter is the kriging model.  

In developing kriging models, unless there are very few data points or major outliers, 

usually we do not rebuild the kriging model since dropping a single observation usually 

has a negligible effect on the maximum likelihood estimates.  The parameters estimated 

using all data points are used, together with the correlation matrix R and vectors r and y 

from the remaining (ns – 1) points, to calculate the cross-validation root mean square 

error (Jones, et al., 1998).  Similar to RMSE and MAX, it is believed that a smaller 

CVRMSE values indicates a more accurate metamodel. 

3.2 THEORETICAL STUDY OF LEAVE-ONE-OUT CROSS-VALIDATION 

The research question to be answered in this section is R.Q.1.1: Is leave-one-out 

cross-validation a suitable method of metamodel validation with computer experiments?  

The corresponding hypothesis is Sub-Hypothesis 1.1: Leave-one-out cross-validation is 

not an appropriate method of metamodel validation with deterministic computer 

experiments. 

As stated in Section 3.1, the root mean square error (RMSE) in Equation (3.1) is 

the most reliable measurement for model accuracy when we have sufficient additional 

validation points.  Leave-one-out cross-validation is used with the purpose of saving 

computation expense since it deals with only information from sample data points.  In 

this section, we will study the performance of leave-one-out cross-validation in 

measuring accuracy of metamodels and illustrate its weakness with two single-variable 
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functions.  These functions are treated as computer simulations; information at sample 

data points is collected, then kriging models are developed and validated. 

The first single-variable function used in our study is originally taken from (Su 

and Renaud, 1996).  The function is: 

∑
=

−−=
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)1()900()(
i

i
i xaxf       (3.4) 

where: 

a1 = −659.23 
a2 =   190.22 
a3 = −17.802 
a4 =   0.82691 
a5 = −0.021885 
a6 =   0.0003463 
a7 = −3.2446 × 10−6 
a8 =   1.6606 × 10−8 
a9 = −3.5757 × 10−11 

In this study we select the design space from x = 912 to x = 1000.  In this design 

space, the maximum response value is 182.77 at x = 1000, and the minimum response 

value is around 13.96 at around x = 932; the response range is 168.81.  A graph of this 

function is shown in Figure 3.1. 
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Figure 3.1  A Single-Variable Function (Su and Renaud, 1996) 

To facilitate our study two kriging models are developed based on information 

from two different sets of data points, as shown in Table 3.1.  For Data Set I, sample data 

points are “clustered” in the intervals of x = [912, 922] and [990, 1000], while data points 

in Data Set II are more evenly spreading over the whole design space.  It is expected that 

Data Set II conveys more information and will afford more accurate metamodels. 

Table 3.1  Response Values at Sample Data Points of the Single-Variable Function 

Data Set I 
x 912 917 922 990 995 1000 
y 112.08 84.43 43.98 97.98 137.56 182.77 

Data Set II 
x 912 932 945 960 986 1000 
y 112.08 13.96 25.20 32.92 77.31 182.77 
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Values of θ for kriging models are obtained by maximizing Equation (2.22) 

subject to θ >0.  In this case, we get θ = 28.4626 for Data Set I and θ = 14.49733 for Data 

Set II.  The kriging models contain matrix expressions and are complicated; thus they are 

not listed here.  However, the graphs of the two metamodels, which could help us get an 

idea on models’ accuracy, are shown in Figure 3.2. 

subject to θ >0.  In this case, we get θ = 28.4626 for Data Set I and θ = 14.49733 for Data 

Set II.  The kriging models contain matrix expressions and are complicated; thus they are 

not listed here.  However, the graphs of the two metamodels, which could help us get an 

idea on models’ accuracy, are shown in Figure 3.2. 

It is clearly seen from Figure 3.2 that the kriging model with Data Set II 

approximates the actual function better than the one with Data Set I.  Comparison of 

RMSE and MAX for both models gives more concrete judgments.  In order to calculate 

RMSE and MAX to validate the metamodels, for each kriging model we select 875 

validation points evenly spreading from x = 912 to x = 1000 (not including the sample 

data points).  RMSE and MAX values are listed in Table 3.2. 

It is clearly seen from Figure 3.2 that the kriging model with Data Set II 

approximates the actual function better than the one with Data Set I.  Comparison of 

RMSE and MAX for both models gives more concrete judgments.  In order to calculate 

RMSE and MAX to validate the metamodels, for each kriging model we select 875 

validation points evenly spreading from x = 912 to x = 1000 (not including the sample 

data points).  RMSE and MAX values are listed in Table 3.2. 

 

Actual Function 

Data Set I 

Data Set II 

Figure 3.2  Kriging Models for the Single-Variable Function 

 137



Table 3.2 RMSE and MAX for Kriging Models 

 RMSE MAX 
Data Set I 37.78 69.79 
Data Set II 11.93 27.84 

 

RMSE and MAX values listed in Table 3.2 support our claims that the kriging 

model with Data Set II is more accurate than the one with Data Set I since it has 

significantly smaller RMSE and MAX values.  It is in accordance with our expectations 

too.  The poor experimental design for Data Set I fails to reflect information in the middle 

of the design space. 

Now let us compare the accuracy of these two kriging models with leave-one-out 

cross-validation, in which only information at sample data points are used with Equation 

(3.3).  Information at 875 additional validation points is not used for cross-validation.  In 

the calculation of CVRMSE for each kriging model in cross-validation, since there are 

only six sample data points as listed in Table 3.1, we decide to rebuild kriging models to 

predict responses at each data point using the other five data points.  Graphs of these 

kriging models (one original kriging model plus six secondary kriging models for each 

data set) are shown in Figure 3.3 and Figure 3.4.  Values for CVRMSE are listed in Table 

3.3. 
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Original Kriging Model 

Figure 3.3  Kriging Models for Calculating CVRMSE with Data Set I 

 

Original Kriging Model 

Figure 3.4 Kriging Models for Calculating CVRMSE with Data Set II 
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Table 3.3. CVRMSE Values for Kriging Models 

  Data Set I Data Set II 
CVRMSE 24.21 69.60  

From Table 3.3, we see that CVRMSE for Data Set I, which is 24.21, is much 

smaller than that for Data Set II, 69.60.  This suggests that the kriging model with Data 

Set I is more accurate than the one with Data Set II.  This is contrary to our conclusions 

with RMSE and MAX.  Given that RMSE and MAX are the most reliable measurements, 

this observation shows that leave-one-out cross-validation may be insufficient for model 

validation. 

Examination of kriging model plots in Figure 3.3 and Figure 3.4 helps us see the 

weakness in leave-one-out cross-validation.  For Data Set I, since the data points are 

more clustered (only in the intervals [912, 922] and [990, 1000]), there is more “overlap” 

in the information they convey.  Thus in leave-one-out cross-validation, to remove any 

one point may not significantly reduce the total amount of information conveyed and will 

not change the metamodel greatly.  This “clustering” or “information overlap” of the data 

points results in a metamodel that is insensitive to removal of data points – which means 

lost information at any data point could be retrieved with only the model and the other 

data points.  This idea is illustrated in Figure 3.3, in which we see that all models with 

five data points share curves similar to that of the model with six data points; 

consequently, we get a small CVRMSE for the original kriging model with Data Set I. 

For Data Set II, data points spread all over the design space and there is little 

“information-overlap” among them.  In this case the corresponding metamodel is more 
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affected by the removal of some data points – it is unlikely to retrieve the lost 

information with the metamodel.  As shown in Figure 3.4, kriging models with five data 

points are very different from the original kriging model; consequently, we get a large 

CVRMSE for the original kriging model with Data Set II. 

Observations above suggest that leave-one-out cross-validation is an insufficient 

measurement for metamodel accuracy.  On the other hand, leave-one-out cross-validation 

is a good method for measuring the sensitivity of a metamodel to lost information due to 

the removal of some of its data points.  A small value of CVRMSE indicates a 

metamodel that is more insensitive to lost information; a large value of CVRMSE 

indicates a metamodel that is sensitive to removal of data points.  A discussion is 

conducted later in this paper on the sensitivity of metamodels to lost information at data 

points. 

In the case above, clustering data points (information overlap) is the cause of an 

inaccurate metamodel that is also insensitive to lost information at data points.  The 

insensitivity here may mislead designers since small CVRMSE values may be obtained 

for inaccurate metamodels in leave-one-out cross-validation.  A space-filling 

experimental design for allocating data points may help avoid this situation because data 

points in a space-filling design tend to spread over the whole design space and this 

minimizes the information overlap.  However, clustering data points (information 

overlap) is not the only cause for inaccurate metamodels which are also insensitive to lost 

information at data points, as shown in the following paragraphs with another single-

variable function: 
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( )( 55.0sin2 )+−= xy π       (3.5) 

In our study we set the continuous variable x = [0, 10].  If five data points are to 

be selected, following the “space-filling” rule, we may select x = 1, 3, 5, 7, 9, as 

presented by solid stars in Figure 3.5, which have the same response value, y = 7.  It is 

apparent that the corresponding kriging model is a constant y = 7, shown as a horizontal 

line in Figure 3.5.   

 

Metamodel

Actual Function 

Figure 3.5 Inaccurate Metamodel Due to the Correlation Among Data Points 

The kriging metamodel shown in Figure 3.5 is by no means acceptable.  

However, leave-one-out cross-validation (actually, not only leave-one-out cross-

validation, but also kth-folder cross-validation with k less than 4 in this case) shows that 

this metamodel is perfectly accurate because the value of CVRMSE is zero.  The kriging 

model is totally insensitive to lost information at data points, i.e., information at any 
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missing data point can be 100% retrieved with the metamodel itself.  Though in the real 

world it is very rare to meet such situations as in Figure 3.5, this extreme example helps 

illustrate how great a mistake that leave-one-out cross-validation is possible to make in 

assessing metamodels. 

There is no clustering of data points (little information overlap) in this example.  

The metamodel’s insensitivity to lost information at data points is the result of another 

cause, which could be called “inappropriately correlated data points”, representing a set 

of points whose x’s and y’s share a similar pattern and this pattern is very different from 

the actual function for which we develop metamodels.  There may be various types of 

“inappropriate correlations” between data points, e.g., x’s and y’s of a set of data points 

may follow a quadratic or an exponential function, while the actual function may be 

much more complicated.  In the case of Figure 3.5, the “inappropriate correlation” 

among data points is that they share the same response value – here the pattern is a 

constant-response function which is much different from the actual sin function. 

Not all correlations among data points are bad.  Actually, an accurate metamodel 

can only be developed with “appropriately correlated” data points whose x’s and y’s 

follow a pattern similar to (or ideally, the same as) the original actual function.  The only 

difference, between “appropriately correlated” and “inappropriately correlated” sets of 

data points, is whether they follow a pattern that gives a similar response surface to the 

actual function or not.  Unfortunately, with information only from some data points it is 

very difficult to tell whether a data set is appropriately correlated or not; additional 

validation points are necessary.  This also shows that leave-one-out cross-validation is an 
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insufficient method for metamodel assessment; RMSE and MAX are more appropriate 

since they employ information at not only data points but also validation points. 

To avoid employing inappropriately correlated sets of data points, it is very 

helpful to increase the total number of data points and design space-filling experiments.  

In this way we expect to have data points provide as much information as possible for 

regions as large as possible – though we still cannot assure the data points are 

appropriately correlated. 

Leave-one-out cross-validation, insensitivity of metamodels to lost information at 

data points, and clustering and inappropriately correlated data points will be further 

discussed in the next section with a two-variable function. 

3.3 IMPIRICAL STUDY OF LEAVE-ONE-OUT CROSS-VALIDATION 

In this section, discussions on leave-one-out cross-validation in model assessment 

are further conducted with the case of a two-variable function – the Branin function 

(Dixon and Szego, 1978): 
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where x1 = [–5, 10] and x2 = [0, 15].  The 3-D wire-frame plot for Equation (3.6) is shown 

in Figure 3.6.  In the design space the Branin function has three local minima at x = 

{3.1416, 2.2750}, {9.4248, 2.4750}, and {–3.1416, 12.2750} with identical function 

values of 0.3979.  The maximum response is y = 308.1291 at x = {–5, 10}.  The response 

range is 307.7312. 
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Figure 3.6 Wire-Frame Plot of the Branin Function 

To facilitate our study with the Branin function, 18 sets of data points are selected 

and kriging models are developed for each data set.  The numbers of data points in the 

data sets range from 9 to 22, as shown in Table 3.4.  Thirteen of these 18 experimental 

designs, Data Sets 1, 3, 4, 6 – 11, 13, 14, 16, and 17, are Latin Hypercube (LH), one 

Orthogonal Array (OA) – Data Set 18, and four randomly selected points (S) – Data Sets 

2, 5, 12, and 15.  The LH and OA experiments are designed with iSIGHT®.  Data Sets 5 

and 12 are experimental designs with clustered or inappropriately-correlated data points, 

as will be shown later. Data points in Data Sets 2 and 15 are identified to convey critical 

information about the actual response surface given that we know the actual function.  
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Detailed information about the experiments and corresponding kriging models is not 

presented here due to space limitation. 

Table 3.4 Values of RMSE, MAX, and CVRMSE of Kriging Models for the Branin 
Function 

Data Set DOE # of Data Points CVRMSE RMSE MAX 
1 LH 10 58.23 20.56 65.26 
2 S 18 27.71 7.09 19.39 
3 LH 12 62.09 20.31 72.37 
4 LH 19 5.62 4.79 24.66 
5 S 13 8.31 54.49 206.47 
6 LH 15 22.54 46.62 263.49 
7 LH 16 10.03 27.83 183.47 
8 LH 17 39.78 28.23 101.22 
9 LH 18 9.18 6.89 34.25 
10 LH 13 26.39 18.75 76.56 
11 LH 14 28.85 27.07 100.27 
12 S 18 2.08 76.67 298.59 
13 LH 22 3.85 9.65 85.42 
14 LH 11 37.77 31.78 165.64 
15 S 15 64.27 9.06 25.07 
16 LH 20 2.46 8.46 54.35 
17 LH 21 8.41 4.00 25.55 
18 OA 9 74.37 41.65 118.81 

 

The accuracy of kriging models is examined with information from 255 validation 

points that are spread all over the design space; however, for some data sets the number 

of validation points may be less because some points are already listed in those data sets 

and cannot be used to validate the corresponding metamodels.  We assume that: 1) in this 

case 255 validation points are enough for model validation, and then 2) the RMSE and 

MAX calculated with these points are regarded as unbiased measurement of model 

accuracy.  CVRMSE for each kriging model are also calculated.  Values of RMSE, 
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MAX, and CVRMSE for 18 kriging models are listed in Table 3.4.  To fit in the table, 

values in Table 3.4 are rounded to two decimals.  Note that with RMSE, MAX, or 

CVRMSE, we cannot decide whether a kriging model is acceptable or not; we can only 

compare two kriging models – the ones with smaller RMSE, MAX, or CVRMSE are 

considered to be more accurate as stated in our frame of reference. 

In Table 3.4 we see that there is no critical relationships between CVRMSE and 

RMSE (or MAX).  Kriging models with small values of CVRMSE, e.g., Data Set 5 and 

12, may have very large values for RMSE and MAX, while those with large values of 

CVRMSE, e.g., Data Set 15, may have very small values for RMSE and MAX.  The 

correlation coefficients between CVRMSE and RMSE/MAX are nearly zero, which 

shows that they have no significant linear correlations.  To use CVRMSE to compare the 

accuracy of two metamodels may lead us to a wrong answer since RMSE and MAX are 

believed to be most reliable measurements. 

Plots of RMSE and MAX versus CVRMSE are given in Figure 3.7 and Figure 

3.8.  If CVRMSE is linearly correlated with either RMSE or MAX, points in these 

figures should lie on a straight line.  Since the data is widely scattered, CVRMSE is not 

correlated with either RMSE or MAX. 
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Figure 3.7 Scatter Plot of RMSE and CVRMSE for Kriging Models for the Branin 
Function 

 

Figure 3.8 Scatter Plot of MAX and CVRMSE for Kriging Models for the Branin 
Function 
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Now let us look at Data Set 5 and 12, whose kriging models have small values of 

CVRMSE and large values of RMSE and MAX.  Information about the data points for 

Data Set 5, 12, and 15 is listed in Table 3.5 (only one decimal is shown in the table due to 

space limitation).  These two metamodels for Data Sets 5 and 12 are inaccurate and also 

insensitive to lost information at data points.  Data Set 5 is a clustered experimental 

design in which data points are clustered in two regions, around points [0, 5] and [7, 11].  

Data Set 12 is not only clustered, but also inappropriately correlated; the response range 

of its data points is less than 15 (note that the range of actual function values in the 

design space is about 308).  This observation indicates: 1) with leave-one-out cross-

validation designers are in danger of accepting an inaccurate metamodel that is 

insensitive to lost information at data points, and 2) inaccurate and insensitive 

metamodels are the results of poor experimental designs (clustering points or correlated 

data points) – space-filling experimental designs are recommended. 

The case of Data Set 15 is different from those of Data Sets 5 and 12.  Data points 

in this set are so well distributed that most waves in the response surface are captured 

with very few points.  Each data point is set at a very critical position on the actual 

response surface where “waves” take place.  Information overlap between data points is 

very little, thus each of them conveys a great deal of information and to lose any of them 

will substantially affect the metamodel.  Without information from one data point the 

predicted response surface will be very different from the actual one.  This is why the 

kriging model for Data Set 15 has a very large value for CVRMSE and small values for 

RMSE and MAX.  Actually it is an accurate model that is also sensitive to lost 
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information at data points.  The observation here indicates: 1) with leave-one-out cross-

validation we are in danger of rejecting an accurate metamodel that is also sensitive to 

lost information at data points, and 2) a good metamodeling process (both efficient and 

effective, or get most accurate metamodel with least effort) may have large CVRMSE 

values and small RMSE and MAX values. 

Table 3.5 Data Points for Data Set 5, 12, and 15 

Data Set 5 Data Set 12 Data Set 15 
x1 x2 y x1 x2 y x1 x2 y 
0 5 20.6 -2.5 12.5 5.2 -3.5 15 4.4 
1 7 21.3 -3 13 1.6 -2 14 24.5 
2 6 13.1 -4 14 4.0 6.5 14.5 198.6 
3 8 32.0 -2 12 11.3 -3 12 0.5 
-1 2 47.9 -2.5 13.5 9.7 -2.5 6 25.2 
-2 3 50.9 -3.5 12.3 1.7 -5 0 308.1 
-3 4 63.5 3.5 2.5 1.2 3 2.5 0.5 
8 10 80.3 3 2 0.6 0 5.5 19.9 
7 11 113.5 4 3 5.4 9.5 3 0.6 
6 8 66.8 3.5 1.5 1.3 6 4 27.6 
5 14 174.7 2.5 4 3.7 10 0 11.0 
9 15 166.6 4.5 2.2 8.5 4.5 6 28.6 
10 13 101.9 9.5 3 0.6 10 7.5 22.2 
   9 4 4.7 0 0 55.6 
   8 3 10.7 2 0 17.1 
   8.5 3.5 7.1    
   9.5 4 2.6    
   8.2 3.6 10.6    

 

Now let us have a look at the performance of space-filling experiments.  By 

removing Data Sets 2, 5, 12, 15, and 18, we have only Latin Hypercube experiments (a 

type of space filling experiments) left.  In this case, Figure 3.7 and Figure 3.8 will not 
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change a lot; we still cannot see strong correlation between CVRMSE and RMSE (or 

MAX).  We also observe that as the number of data points increases the corresponding 

metamodel becomes more and more accurate.  When we have more than 20 data points in 

this case, both CVRMSE and RMSE (or MAX) become small; these metamodels are 

accurate, and also insensitive to lost information at data points.  The metamodels’ 

insensitivity to lost information indicates that we may have used redundant data points – 

it is possible to develop metamodels at the same level of accuracy with fewer data points, 

as we do with Data Sets 2 and 15.  However, in this case, with sufficient data points in a 

space filling experimental design, we avoid either clustered or inappropriately correlated 

data points and are able to develop accurate metamodels. 

In (Simpson, 1998) the author performs an empirical study on the relationship 

between CVRMSE and RMSE (or MAX).  For six simple engineering problems he 

applied fifteen different types of experimental designs (for each type of experimental 

design there are various options on how many data points to be allocated) and developed 

corresponding kriging models with five different types of correlation functions.  Overall, 

11535 kriging models are constructed and values of CVRMSE, RMSE, and MAX are 

calculated.  To eliminate effects of different units from different responses, the 

normalized CVRMSE, RMSE, and MAX are calculated by dividing the original values 

with the sample range of each data set.  Plots of normalized RMSE (MAX) versus 

normalized CVRMSE are shown in Figure 3.9 and Figure 3.10.  These plots indicate that 

there are no correlations between CVRMSE and RMSE (MAX); this supports our claims 
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that leave-one-out cross-validation is insufficient for model assessment and information 

from additional points is essential in validating metamodels. 

In this section, our studies and observations show that leave-one-out cross-

validation is insufficient for metamodel assessment.  The reason is that leave-one-out 

cross-validation is actually a measurement for degrees of insensitivity of a metamodel to 

lost information at data points, while a metamodel which is insensitive to lost information 

at its data points is not necessarily an accurate metamodel.  There are two causes for this 

insensitivity: clustering or inappropriately correlated data points.  Designing space-filling 

experiments with sufficient number of data points is one way to prevent an inaccurate 

metamodel that is insensitive to lost information.  With the case of the Branin function, 

we observe that with space filling experiments we may get accurate metamodels which 

are insensitive to lost information at its data points. 

The conclusion here does not mean that previous applications with leave-one-out 

cross-validation are necessarily wrong.  When the original actual function is not highly 

nonlinear (or the design space is not very large) and there are enough data points spread 

all over the design space, the danger of having clustering or inappropriately correlated 

data sets is small.  However, the success of leave-one-out cross-validation in those 

examples is dependent on particular cases; real-world applications are usually more 

complicated and cannot meet the requirements mentioned above.  Given that cross-

validation is insufficient for assessing models, employing additional points is essential in 

metamodel validation. 
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Figure 3.9 Correlation of Normalized CVRMSE and RMSE (Simpson, 1998) 

 

Figure 3.10 Correlation of Normalized CVRMSE and MAX (Simpson, 1998) 
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3.4 METAMODEL VALIDATION WITH INFORMATION FROM 
ADDITIONAL VALIDATION POINTS 

As discussed in the previous section, it is necessary to use additional validation 

points for metamodel validation with computer experiments since leave-one-out cross-

validation is insufficient.  In this section, we will explore how to use this additional 

information to validate metamodels.  Research question to be answered in this section is 

R.Q.1.2: How to test the accuracy a metamodel in deterministic applications?  To answer 

this research question Sub-Hypothesis 1.2.1 needs to be tested: the accuracy of a 

metamodel could be validated through examining prediction errors at additional 

validation points. 

Without information from additional points, the general formula for the prediction 

mean squared error at any new point for a kriging model is (Sacks, et al., 1989a): 
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The term –rTR–1r represents the reduction in prediction error due to the fact that x* is 

correlated with the sampled points.  The σ2 here is the same as in Equation (2.21).  The 

term (1–fTR-1r)2/fTR-1f reflects the uncertainty that stems from our not knowing µ exactly, 

but rather having to estimate it from the data.  The prediction error in Equation (3.7) is σ 

reduced by an amount that depends on how correlated the new point is to the sampled 

points.  However, the prediction error in Equation (3.7) is based on the kriging model 

with no-random error only; it is more reliable to take information from validation points 

into account when assessing the accuracy of a kriging model. 
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Though one important benefit of using metamodels is to save expense in 

experiments, the addition of validation points, which eventually increases time and effort 

on computer simulations, does not hurt the importance of metamodeling very much.  

First, in computer experiments, moderate increases of computational expenses are usually 

affordable with fast computers in a distributed design environment.  The situation here is 

different from that of physical experiments, e.g., collision analysis for vehicles, etc., in 

which the total number of experiments may be strictly restrained due to limits on material 

expenses.  Second, as stated in our frame of reference, the use of metamodels not only 

helps us save experimental expenses but also integrates simulation codes from different 

disciplines to give insight into the relationships between input variables and output 

responses. 

Two problems in metamodel validation with additional points are: 1) how many 

additional validation points should be used, and 2) how to allocate these validation 

points.  The number of validation points should not be large in order to save computation 

time and effort, and it should not be too small to assure an “accurate” assessment.  

Information from the current kriging model may provide useful guidance: for a design 

space with highly nonlinear response surfaces where a single point provides little 

information, we should use a large number of validation points to gain enough 

information, while for a design space with smoother actual response surfaces we may use 

less.  To decide where to put the additional validation points is a difficult problem under 

study by many researchers; tools from statistics, information theory, etc., may help 

develop methods for point allocation.  To identify a reasonable number of validation 
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points is beyond our discussion here; in this chapter we will use large number of random 

points to validate the metamodels.  The selection of validation points is studied in 

Chapter 4 in which a method for sequential experimental design is developed by utilizing 

validation points. 

3.4.1 Preliminary Methods of Metamodel Validation for Engineers 

In this section we present some ideas for engineers to gain knowledge in 

assessing the metamodels’ accuracy with additional validation points.  We assume that 

the number of validation points is large and the residuals at validation points follow 

normal distributions (though in some cases this needs to be verified).  With kriging 

models we also assume that the parameters in kriging equations are known. 

Assuming the degrees of freedom to be nerror (note that the additional validation 

points are not used in model fitting), the RMSE value from Equation (3.1) can be taken 

as the standard deviation s with E(s2) = σv
2.  Note that σv here represents the population 

standard deviation in model validation.  We use spred to represent the prediction standard 

deviation at a new point; since we assume the distribution to be normal, the value 
preds

yy −ˆ
 

is distributed as t(nerror).  Then the (1 – α) prediction limits are: 

prederror snty );2/1(ˆ α−±       (3.8) 

If we have some preset bounds, ±∆, for the prediction error, the average 

confidence level that our predictions will fall in this range can be calculated using: 
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In practice, we could use RMSE calculated from Equation (3.1) to replace Spred in 

Equation (3.8).  In making this replacement, we are actually seeking an approximate 

reference on how the kriging model performs on average in prediction at testing points; 

we also assume Spred to be the same for new points, and thus Equation (3.8) gives the 

same size of prediction intervals for any new point.  This is not a perfect method, but it is 

very simple and provides preliminary inspection of the kriging model we are studying. 

A more accurate method is to study the validity of Equation (3.7) in calculating 

prediction errors by studying several plots.  It is claimed that with a kriging model, we 

are approximately 99.7% confident (calculated based on normal distribution) that the 

predicted value at a new point lies in the interval of , in which s(x*) is 

calculated from Equation (3.7).  Thus it is important to see whether the observed  at 

validation points lie in this interval or not.  Instead of drawing confidence intervals, we 

can compute the number of standard errors that the actual value is above or below the 

predicted value, which we call the standardized residual: 

)(3ˆ ∗± xsy

ŷ
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)(ˆ)(

∗

∗∗ −
xs

xyxy        (3.10) 

Since we have nerror prediction points, there will be nerror standardized residuals 

from Equation (3.10).  If these values are roughly in the interval [–3, +3], we say the 

kriging model correctly anticipates the magnitude of the prediction errors – thus we can 

use Equation (3.7) to calculate prediction errors.  As shown later, a plot of standardized 
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residuals versus predicted values is very helpful in this study.  To assure normal 

distribution, a normal probability plot of the standardized residuals versus the values that 

would be expected from a random sample of nerror independent standard normal variables 

needs to be drawn.  The correlation coefficients of standardized residuals and normal 

distributed samples may also be calculated.  Another useful plot is the plot of actual 

function values versus predicted values.  Plots of predicted standard errors calculated 

from Equation (3.7), or actual residuals )ˆ( yy − , versus actual function values may help 

in study the performance of kriging models in prediction over the whole design space.  

These methods are illustrated in the next subsection with the Branin function. 

3.4.2 Metamodel Validation with the Branin Function 

In this study we use Data Set 15 as presented in Table 3.5.  The RMSE value 

(spred) for the kriging model is 9.057 based on nerror = 248 validation points.  At early 

design stages we need a metamodel with prediction errors in the range of ±15 on average; 

thus the value of ∆ is about 5% of the sample range 307.63.  The value of 
preds
∆  is about 

1.67.  With the information above, our calculation shows that we have about 90% 

confidence that on average the prediction value falls in the required limits.  If we want to 

obtain the same level of confidence for the kriging model with Data Set 5 whose RMSE 

value is 54.49, the acceptable bound is about ±90. 

To facilitate further study, mean squared errors for prediction at 248 validation 

points are calculated with Equation (3.7) using only information from the kriging model 

and the data points.  The standardized residuals are then calculated for all validation 
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points following Equation (3.10).  This information is then used in our study to help test 

whether the kriging model is good in prediction of both response values and variances. 

Three plots are drawn, as shown in Figure 3.11, Figure 3.12, and Figure 3.13.  In 

Figure 3.14, we see that the points follow the 45o line; the Pearson product moment 

correlation coefficient between these two sets of values is 0.993.  These roughly show 

that the metamodel is not bad in prediction of response values.  In Figure 3.12 we see that 

the standardized residuals act roughly like normal deviates; the Pearson product moment 

correlation coefficient of standardized residuals with normally distributed samples is 

0.99.  Figure 3.13 provides two important pieces of information.  First, all points fall 

within the three-standard-error limit – actually most of the standardized residuals at 

validation points are less than two standard errors (note that the standard errors are 

calculated with Equation 15, and are different at different validation points), which shows 

that to predict response errors with Equation 15 is acceptable.  Second, points in Figure 

3.13 follow a quadratic curve trend; ranges of the standardized residuals tend to increase 

when the predicted function values increase.  This suggests a systematic bias in 

prediction with the kriging model, thus the plot of actual residuals versus actual 

function values, as shown in Figure 3.14, is very important for further analysis. 

)ˆ( yy −
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Figure 3.11 Plot of Predicted Values Versus Actual Function Values for the Branin 
Function with Data Set 15 

 

Figure 3.12 Normal Probability Plot for Standardized Residuals 
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Figure 3.13 Standard Residual Plot for the Branin Function with Data Set 15 

 

Figure 3.14 Plot of Residuals versus Actual Function Values 
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In Figure 3.14 we see that apparently the points follow a trend of a quadratic 

function.  The ranges of residuals increase when actual function values increase from 0 to 

about 200, and decrease when actual function values increase from 200 to 300.  In 

addition, for points with function values around 100, the actual function values are 

smaller than predicted values by 0 to 20.  The reason is that there are almost no data 

points with mid-ranged function values in Data Set 5 for the kriging model (see Table 

3.5).  However, most of the actual residuals are within the acceptable limit of ±15 that we 

set at the beginning of this subsection. 

Based on the previous analysis, designers have several options for the next step: 

• Accept this model.  This is primarily because over the whole design space the 

prediction errors are generally smaller than the acceptable limits (±15); the 

systematic bias should not be fatal in this early design stages.  Also note that 

the model performs well when the actual function value is either very small or 

large, thus this kriging model will be very suitable when we want to minimize 

or maximize the Branin function.  The prediction error at new points can be 

estimated with Equation 15.  Designers need to notice that for function values 

around 100 the predicted values are usually larger than the actual values by 0 

to 20, and some adjustments may be helpful when using the metamodel in 

design – this is very important. 

• Transform the function.  We can also improve the fit of the kriging model by 

transforming the function, e.g., using the log transformation or the inverse 

transformation, etc.  Sometimes this works well. 
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• Design sequential experiments to improve the metamodel.  If the designers 

decide not to accept the kriging model because of the systematic bias 

illustrated in Figure 3.13 and Figure 3.14, the information obtained in the 

model validation will be very helpful in identifying future data points.  In this 

case, since the kriging model has large prediction errors at points with mid-

ranged function values, we may try to add in data points which satisfy: 1) not 

clustered with previous data points, and 2) having mid-ranged predicted 

(using the previous kriging model) function values. 

In this section we described our preliminary methods for engineers to validate 

metamodels with additional validation points.  The Branin function is used to help 

illustrate our ideas.  Applications with real-world problems will be presented later in this 

dissertation. 

3.5 SUMMARY OF RESEARCH ON METAMODEL VALIDATION 

In this chapter first we studied the performance of leave-one-out cross-validation 

method in validating metamodels with deterministic computer experiments.  With several 

simple functions we illustrated that cross-validation is an insufficient method, thus to use 

additional validation points becomes essential in metamodel validation.  Then we 

describe some preliminary methods on how to utilize the information from additional 

validation points.  Our ideas are illustrated with the Branin function.  Kriging 

metamodels are used in this paper to facilitate our study. 
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The reason why leave-one-out cross-validation is insufficient in metamodel 

validation is that it is actually a measurement for degrees of insensitivity of a metamodel 

to lost information at its data points, while an insensitive metamodel is not necessarily 

accurate.  There are two causes for this insensitivity: clustering or inappropriately 

correlated data points.  To design space-filling experiments with a sufficient number of 

data points is one way to prevent an inaccurate and insensitive model, while this cannot 

assure the validity of the leave-one-out cross-validation method.  We recommend starting 

with space filling experimental designs in the development of metamodels in engineering 

applications. 

The conclusion here does not mean that previous applications with leave-one-out 

cross-validation are necessarily wrong.  When the original actual function is not highly 

nonlinear (or the design space is not very large) and there are enough data points 

spreading all over the design space, the danger of having clustering or inappropriately 

correlated data sets is small.  However, the success of leave-one-out cross-validation in 

those examples is dependent on particular cases; real-world applications are usually more 

complicated and cannot meet the requirements mentioned above.  Thus to use additional 

validation points are necessary in metamodel validation. 

Though one important benefit of using metamodels is to save expenses on 

experiments, to add in additional validation points, which eventually increases time and 

effort on computer simulations, does not hurt the importance of metamodeling very 

much.  First, in computer experiments, moderate increases of computational expenses are 

usually affordable with fast computers in a distributed design environment.  Second, to 
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use metamodels not only helps us save experimental expenses but also integrates 

simulation codes from different disciplines to give insight into the relationships between 

input variables and output responses. 

Several methods are described to help engineers gain insight into the performance 

of metamodels over the whole design space.  Equation (3.9) provides engineers a very 

rough estimate of confidence levels on how well the metamodels performs on average in 

response prediction. 

An alternative method is to check whether we are able to use Equation 15, which 

does not utilize information from additional validation points, to predict prediction errors 

at new points.  If a kriging model performs well in predicting its own prediction errors, 

and its errors are acceptable, we may accept this metamodel.  To test this various plots 

may be drawn to help our analyses, as illustrated with the Branin function.  These 

analyses with plots provide much useful information for design along a timeline: 1) if we 

decide to accept the kriging models, knowledge we get in these analyses tell us when and 

where and how to make amends to our results in later design stages, and 2) if we decide 

to develop a more accurate model, knowledge we obtain in these analyses provides 

guidance on how to allocate future data points – this leads to possible methods for 

sequential experimental designs. 

One unsolved problem in research on model validation in this chapter is how to 

select validation points, e.g., how many validation points should be used, and how to 

allocate these points.  This is closely related to sequential experimental design methods, 

and is studied in Chapter 4 and 6.  Also, a method for making decisions about metamodel 
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validation and selection in multi-disciplinary, multi-response applications is another 

possible avenue, for which some preliminary work is conducted in Chapter 5.  Another 

approach to validate metamodels with information from possible new data points will be 

proposed in Chapter 4 and 5 during the process of testing Sub-Hypothesis 1.2.2. 

3.6 A LOOK BACK AND A LOOK AHEAD 

Studies in this chapter are the basis of ideas and methods developed in later 

chapters.  In this chapter we visited Research Question 1, its sub-questions, and the 

corresponding hypotheses (except Sub-Hypothesis 1.2.2), as shown below: 

R.Q.1: How to validate a metamodel with deterministic computer 

experiments? 

Hypothesis 1:  Information from either previous additional validation points 

is needed in testing the accuracy of a metamodel with deterministic 

computer experiments. 

R.Q.1.1: Is leave-one-out cross-validation a suitable method of metamodel 

validation with computer experiments? 

Sub-Hypothesis 1.1:  Leave-one-out cross-validation is not an appropriate 

method of metamodel validation with deterministic computer experiments. 

R.Q.1.2: How to test the accuracy a metamodel in deterministic applications? 

Sub-Hypothesis 1.2.1:  The accuracy of a metamodel could be validated 

through examining prediction errors at additional validation points 

 

Research Question 1.1 and Sub-Hypothesis 1.1 are visited in Sections 3.2 and 3.3. 

In Section 3.2 with two single-variable examples we observe that leave-one-out cross-
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validation is insufficient in metamodel validation because it is actually a measurement for 

degrees of insensitivity of a metamodel to lost information at its data points, while an 

insensitive metamodel is not necessarily accurate.  After careful examination, we point 

out that there are two causes for this insensitivity: clustering or inappropriately correlated 

data points.  To design space-filling experiments with a sufficient number of data points 

is one way to prevent an inaccurate and insensitive model, while this cannot assure the 

validity of the leave-one-out cross-validation method.  Our conclusion is verified through 

empirical study in Section 3.3.  Research Question 1.1 is answered and Sub-Hypothesis 

1.1 is tested. 

Research Question 1.2 and Sub-Hypothesis 1.2.1 are visited in Section 3.4, in 

which approaches are proposed for engineers to test the accuracy of metamodels.  Several 

methods are described to help engineers gain insight into the performance of metamodels 

over the whole design space.  Information from additional validation points is utilized in 

these approaches.  Examination of prediction errors in the design space leads to ideas on 

sequential metamodeling (DOE) and design space exploration which will be studied in 

Chapter 6. 

In the next chapter, the usage of additional validation points leads to a sequential 

experimental design method.  Unsolved problems on validation points in this chapter, 

e.g., the problem of selection of validation points as stated in Section 3.4 and 3.5, are to 

be studied in Chapter 4 and 5.  The focus of Chapter 4 is Research Question 2, its sub-

questions, and corresponding hypotheses; however, Research Question 1.2 and Sub-

Hypothesis 1.2.2 will also be visited as a side-product in Chapter 4. 
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4.  
CHAPTER 4 

SEQUENTIAL EXPLORATORY EXPERIMENTAL 
DESIGN 

 

In this chapter, the method of Sequential Exploratory Experimental Design 

(SEED) is developed based on D-optimal design and maximum entropy sampling.  

Several simple examples are used to help illustrate the SEED method.  The research 

questions Q.2.1, 2.2, and 2.3 are answered and Sub-Hypotheses 2.1, 2.2, and 2.3 are 

tested.  A brief overview of the organization of this chapter is presented in Section 4.1.  

The problem of sequential experimental design is defined in Section 4.2.  In Sections 4.3 

and 4.4, previous work on D-optimal design and maximum entropy sampling is 

introduced.  The method of Sequential Exploratory Experimental Design is then 

developed in Section 4.5.  The SEED method is then tested with a single-variable 

example in Section 4.6.  A look back and look forward is enclosed in Section 4.7. 
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4.1 WHAT IS PRESENTED IN THIS CHAPTER 

In Chapter 3 we studied techniques used in metamodel validation with 

deterministic computer experiments.  One important conclusion in Chapter 3 is that it is 

necessary to use additional validation points in verifying the accuracy of metamodels.  

Thus, in designing computer experiments, the designers need to consider the 

identification of not only data points but also validation points. 

To save time and effort in metamodeling, it is desirable to add in data points 

sequentially; information from previous data points could be used as a guide for selecting 

future data points.  Given that it is necessary to have validation points in consideration, 

our goal in this chapter is to develop a method with which sequential experiments (of data 

points and validation points) could be designed.  The research question to be addressed in 

this chapter is Research Question 2: How to design sequential computer experiments 

(how to select data and validation points sequentially) to get an accurate metamodel?  To 

answer this research question, we plan to test the hypothesis that sequential experiments 

could be designed through analysis of information from previous data/validation points 

and metamodels.  This consists research in three steps: measurement of information, 

utilization of information from validation points, and identification of new data points. 

After introducing the definitions and nomenclatures of the problem of sequential 

experimental design in Section 4.2, foundations of research in this chapter, D-optimal 

design and maximum entropy sampling, are discussed in detail in Section 4.3 and 4.4.  

This literature review helps answer the first sub-research question – Research Question 
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2.1: How to measure the information worth of a point?  The method of Sequential 

Exploratory Experimental Design (SEED) is developed in Section 4.5, which help answer 

Research Question 2.2: How to select validation points to achieve a sequential design of 

computer experiments?  and Research Question 2.3: How to utilize information from 

previous points and metamodels in identifying new data points?  Information from 

validation points is utilized in evaluating the information worth of a point and thus new 

data points with maximum potential information are selected to form sequential 

experiments.  A framework of the SEED method is presented in Section 4.5. 

The example of a single-variable function is studied in Section 4.6 to help verify 

and illustrate the SEED method.  In Section 4.7 we revisit the research questions and 

hypotheses discussed in this chapter. 

4.2 DESIGN OF SEQUENTIAL EXPERIMENTS: PROBLEM OVERVIEW 

In this section, the problems of experimental design, metamodeling, and 

sequential experiments are defined.  The notions and nomenclatures stated in this section 

will be used later in Chapter 4 and across the whole dissertation (if not otherwise 

defined). 

Let p∈ ℜx  denote the vector of input values chosen for the computer program.  

In this chapter, we will write x as the row vector ( )pxx ,1…  using subscripts to denote 

components of x.  Here p is the number of design variables.  We assume that each 

component xj (j = 1,…,p) is continuously adjustable between a lower and an upper limit, 

which after a linear transformation can be taken to be 0 and 1 respectively.  The computer 
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program is denoted by f and it computes q output quantities.  In the studies here, we take 

q = 1, i.e., only one output is taken into consideration.  Thus the deterministic computer 

simulation at each data point is illustrated as following: 

 [ ] pfy 1,0),( ∈= xx       (4.1) 

where x denotes a data point, defined as (based on previous discussions): 

  ],...,,[ 21 pxxx=x        (4.2) 

where, again, p is the number of design variables.  The design space as presented in 

Equation (4.1) is [0,1]p, which means all the design variables have already been scaled to 

[0,1] before the experimental design. 

There are many different but related goals that arise in computer experiments, 

including (Koehler and Owen, 1996): finding a good value for x according to some 

criteria on y, finding a simple approximation f̂  that is accurate enough over a region R of 

x values, estimating the size of the error )()(ˆ
00 xx ff −  for some R∈0x , estimating 

∫A fdx , sensitivity analysis of y with respect to changes in x, finding which xj are most 

important for each response yk, finding which competing goals for y conflict the most, 

visualizing the function f and uncovering bugs in the implementation of f.  In this chapter, 

I will focus on the problem of how to find good values of x’s so that as much information 

as possible could be reflected and thus more accurate metamodels could be developed. 

Based on previous discussions in Chapter 2 (Figure 2.5), metamodeling is actually 

the process of designing experiments, collecting information, finding and fitting the 
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appropriate approximation function f̂  for f , and finally, validating the accuracy of the 

approximation.  Among these steps in metamodeling, design of experiments (DOE) and 

metamodel building are two most important steps.  In this dissertation, the word 

“metamodeling” is used at two levels: at higher level “metamodeling” represents the 

whole process in Figure 2.5, which consists four steps as mentioned above; at lower level 

“metamodeling” represents the steps of finding and fitting the appropriate approximation 

functions, which corresponds Step 2 and 3 in Figure 2.5.  For the exact meaning of 

“metamodeling” in different cases, please pay attention to the context that 

“metamodeling” is used. 

In DOE, the points where information is collected for developing metamodels are 

called data points, which is an aggregation of x as defined in Equation (4.2).  Validation 

points are also defined with the same equation, while information collected from these 

points is not used for developing metamodels but for testing the accuracy of the 

metamodels.  A possible data or validation point in the design space is called a candidate 

point.   

The aggregation of all points (data points, validation points, and candidate points) 

is denoted by U, and in this dissertation, U is defined as [0,1]p as illustrated in Equation 

(4.1).  In most common cases where the design variables are continuous, U contains 

infinite number of points; while in traditional design methods, U is restricted to have 

finite number of points that are pre-selected in the design space, which helps save time 

and effort in finding out the “best” set of data points.  In our studies in Chapters 4, 5, and 
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6, the U with infinite number of points is used to ensure the appropriateness of the 

proposed research; while in real-world case studies where information at large number of 

points is to be examined, we should use U with finite number of points. 

The aggregation of data points, denoted by D, is a subset of U.  An experimental 

design with n data points is specifically defined as an n-design, denoted by Dn.  Dn is a 

design of size n with the set of responses represented by: 

{ }),(,),,(,),,( 11 nniiD yxyxyxy ……=     (4.3) 

where x again is a data points as defined in Equation (4.2), and y is a vector that 

represents q responses.  In our study in this chapter, we have q = 1, i.e., only one response 

is considered. 

In this dissertation, the aggregation of validation points, denoted by A, is also a 

subset of U.  The number of validation points is denoted by nerror.  The complement of D 

in U, denoted by D , is the aggregation of candidate points and validation points.  The 

relationship between data points, validation points, and candidate points is illustrated in 

the following figure. 

 

 

 

 

 

Figure 4.1 Data Points, Validation Points, and Candidate Points 

D:  
Data Points 

A: 
Validation Points 

Candidate Points 

U 
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The problem of Design of Experiments (DOE) is on how to identify the 

aggregation of D in U to best reflect response information in the whole design space.  In 

designing deterministic computer experiments, based on research in Chapter 3, it is also 

necessary to identify the aggregation of A in U to test the accuracy of metamodels 

developed with D.  In sequential DOE, data points are selected in iterations; information 

from previous data points and metamodels could be used as guidance in identifying future 

data points.  Thus in sequential experiments, the aggregation of D grows gradually along 

the design timeline.   

Various techniques are proposed to help identify the aggregation of D in designing 

computer experiments.  As discussed in (Koehler and Owen, 1996), there are two main 

statistical approaches to computer experiments, one based on Bayesian statistics and a 

frequentist one based on sampling techniques.  The frequentist approach to prediction and 

inference in computer experiments is based on numerical integration.  Without anything 

known about the distribution of the output data in the region of interest, intuitively there 

is no general guideline for selecting good sample points.  However, statistically there are 

some sampling techniques that are in general better than the others.  Such sampling 

techniques include Grids, Good Lattice Points, Latin Hypercube Sampling, Randomized 

Orthogonal Arrays, and Scrambled Nets, etc. 

In the Bayesian framework, one sets a prior distribution on the space of all 

functions from inputs (design variables) to outputs (responses).  Given the values of 

inputs and outputs, a posterior distribution is generated.  The prior distribution is usually 

taken to be Gaussian so that any finite list of function values has a multivariate normal 
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distribution (Koehler and Owen, 1996).  Given observed function values, the posterior 

distribution is also multivariate normal.  The posterior mean interpolates the observed 

values and the posterior variance may be used to give 95% posterior probability intervals 

(Koehler and Owen, 1996).  The method extends naturally to incorporate measurement 

and prediction of derivatives, partial derivatives and definite integrals of the function.  

The Bayesian framework is well developed but as is common with Bayesian methods 

there may be difficulty in finding an appropriate prior distribution.  Such Bayesian 

experimental design techniques include Maximum Entropy Sampling, Mean Squared-

Error Designs, Maximin, and Minimax Designs, etc.  Mathematics behind such Bayesian 

techniques as Maximum Entropy Sampling, etc. is the same as that behind the kriging 

metamodel which was introduced in Chapter 2. 

There are also other ways to classify experimental design methods.  As discussed 

in Chapter 2, classical DOE’s, e.g., factorial designs, CCD, etc., are widely used in 

designing physical experiments.  Classical experiments as used in the Response Surface 

Methodology (RSM) are conducted in a sequential manner; fractional factorial 

experiments are used first to help screen out unimportant design variables, then central 

composite designs are constructed for developing quadratic regression metamodels.  

However, in a fixed design space, i.e., when no screening is allowed, DOE in RSM 

becomes a single-stage experimental design.  Space-filling experiments are proved to be 

suitable for designing deterministic computer experiments, while these designs are 

usually in a single-stage manner in that information from previous data points and 

metamodels have no influence on the selection of future data points.  The selection and 
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usage of validation points are not discussed yet in designing sequential computer 

experiments.  In this chapter, a method of Sequential Exploratory Experimental Design is 

developed in which information from previous data/validation points and metamodels are 

used as guidance in identifying new data/validation points.  The aggregations of D and A 

grow gradually along the design timeline; they are selected to ensure that information at 

D  could be predicted with maximum confidence based on information from D and thus 

accurate metamodels could be developed with the data points.  Research in this chapter is 

based on two DOE techniques, D-optimal designs and Bayesian Entropy Sampling, as 

will be discussed in Sections 4.3 and 4.4. 

4.3 CONSTRUCTION OF D-OPTIMAL DESIGNS 

In DOE, an optimal design is one that has some optimum properties.  A 

systematic study of the specification of optimum experimental designs was undertaken in 

(Kiefer 1958; Kiefer, 1959), where he introduced various optimality criteria (A, D, E, L, 

M), and discussed interrelations amongst these and established the optimality property of 

some well-known designs in some particular problems. 

D-optimal designs are straight optimizations based on a chosen optimality 

criterion and the model that will be fit.  The optimality criterion used in generating D-

optimal designs is one of maximizing |X'X| (or det(X'X)), the determinant of the 

information matrix X'X.  This criterion of maximizing the determinant of X'X is 

proposed as a means of maximizing the local power of the F-ratio for testing a linear 

hypothesis on the parameters of certain fixed-effects analysis of variance models (Wald, 
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1943).  The matrix X'X is called the information matrix.  It is proportional to the inverse 

of the covariance matrix of the parameters.  So maximizing det(X’X) is equivalent to 

minimizing the determinant of the covariance of the parameters.  In the case of D-

optimality for regression designs, X is the expanded design matrix that has n rows (one 

for each design setting) and p columns (one column for each coefficient to be estimated 

plus one column for the overall mean).  It was proved that a D-optimal design is also 

minimax, and on ther other hand, a minimax design is D-optimal (Kiefer and Wolfowitz, 

1960). 

To construct the information matrix is an important step in building D-optimal 

designs.  As discussed in (Zacks, 1996), let { }χ∈Θ∈⋅= x,θθx );,|(.. FFA  be a regular 

family of distribution functions of random variables yx, where x are design variables in 

the design space χ, χ is a subset in ℜ p, θ are unknown parameters of the distribution in the 

parameter space Θ, and Θ is an open set in ℜ k.  The regularity of A.F. means that all its 

elements satisfy the well known Cramer-Rao regularity conditions (Wijsman, 1973).  Let 

),;( θxyf  be a p.d.f. of ),|( θx⋅F  with respect to some σ-finite measure µ.  The 

information matrix is formulated as: 









∂
∂= ),;(log);( , θxy
θ

xθ fVarI xθ      (4.4) 

where, in the k-parameter case, );( xθI  denotes a k×k covariance matrix, and 

),;(log θxy
θ

f
∂
∂

 is a gradient vector (score vector).  A design is called optimal with 

respect to the information, if it maximizes some functional of the information matrix in 
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Equation (4.4).  In the case of D-optimal design, the determinant of the information 

matrix );( xθI  is maximized. 

Since this D-optimality criterion results in minimizing the generalized variance of 

the parameter estimates for a pre-specified model, as a result, the “optimality” of a given 

D-optimal design is model dependent.  That is, the experimenter must specify a model for 

the design before a computer can generate the specific treatment combinations.   

Generally speaking, for linear models the optimum designs (including D-optimal 

designs, of course) do not depend on the values of the parameters of the metamodel.  

However, for nonlinear metamodels, the optimum experimental designs depend heavily 

on the values of the unknown parameters.  One way to accommodate the dependence of 

optimum design on the chosen parameter values is to introduce a prior distribution on the 

parameters and to incorporate this distribution into appropriate design criteria.  Bayes 

formula is a useful equation from probability theory that expresses the conditional 

probability of an event A occurring, given that the event B has occurred (written P(A|B)), 

in terms of unconditional probabilities and the probability the event B has occurred, given 

that A has occurred.  In other words, Bayes formula inverts which of the events is the 

conditioning event.  For more details, see (Bernardo and Smith, 1994; Congdon, 2001, 

etc.) 

Bayesian D-optimality design is thus developed in this regard (see, Chaloner and 

Verdinelli, 1995; Bernardo and Smith 1994; Pilz, 1991; Pukelsheim, 1993).  In Bayesian 

D-optimal design, the expectation of the logarithm of the determinant of the information 

matrix as represented below is maximized (Atkinson and Haines, 1996): 
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 ( ) ( ) ( )E log det , log det ,I I p dθ θ ξ θ ξ θ θ= ∫     (4.5) 

where p(θ) is the prior distribution on θ, ξ is a probability measure for an n-trial design 

over the design space χ as introduced in the approximate or continuous design theory in 

(Kiefer, 1985).  In Bayesian optimal design, to maximize Equation (4.5) is also cited as 

maximizing the expected utility for the particular experiment.  A formal justification for 

the criterion as stated in Equation (4.5) within the Bayesian paradigm is provided in 

(Chaloner and Verdinelli, 1995). 

Based on the well-done previous work on optimal design (especially D-optimal 

design), our aim in this chapter is to develop some method to design sequential 

experiments.  In designing optimal experiments, given the total number of treatment runs 

for an experiment and a specified model, the computer algorithm chooses the optimal set 

of design runs from a candidate set of possible design treatment runs.  This candidate set 

of treatment runs usually consists of all possible combinations of various factor levels 

that one wishes to use in the experiment.  A good review on how to develop D-optimal 

designs for regression metamodels is done in (John and Draper, 1975).  Many algorithms 

and systems are developed for designing D-optimal experiments (e.g., see Clyde, 1994; 

Dumouchel and Jones, 1994; Steinberg, 1985, etc.).  Sequential designs of D-optimal 

experiments are also studied.  For example, in (Berry and Fristedt, 1985) the authors 

studied sequential experiments with bandit problems; Freeman (1970) solved the 

Bayesian sequential design problem exactly for a very small and simple binary regression 

experiment.   



 181

In this chapter, we will develop the method of Sequential Exploratory 

Experimental Design (SEED) through utilizing information at previous validation points 

and metamodels, which is not seen in literature.  To reflect this information, the key issue 

is how to formulate the information matrix as appeared in Equations (4.4) and (4.5).  An 

intuitive method is proposed in this chapter based on maximum entropy sampling that 

will be introduced in the next section.  As stated in many literatures (e.g., see Sebastiani 

and Wynn, 2000; Chaloner and Verdinelli, 1995; Sebastiani and Wynn, 2001; Sebastiani 

and Wynn, 1997; Pukelsheim, 1993; Bernardo, 1979, etc.) and will be described in the 

next section, Shannon information has been widely used in the statistical literature of 

Bayesian design as formulation for the utility function in Equation (4.5). 

4.4 BAYESIAN ENTROPY DESIGN 

As introduced in Chapter 2, the word entropy first originated in the literature on 

thermodynamics to represent a measure of the amount of energy in a thermodynamic 

system as a function of the temperature of the system and heat that enters the system.  It 

was first used as a measure of information in 1948 when Claude Shannon developed his 

theory of communication (Shannon, 1948).  The relationship between Shannon’s entropy 

and thermodynamic entropy was established in (Kapur and Kesavan, 1992).  The concept 

of entropy is closely tied to the concept of uncertainty embedded in a probability 

distribution.  In fact, entropy can be defined as a measure of probabilistic uncertainty (the 

uncertainty associated with the probability of outcomes).  Let p ≡ (p1, p2, …, pn)
T be a 
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probability distribution associated with n possible outcomes, Shannon’s entropy is 

defined as (Shannon and Weaver, 1962): 

∑
=

−=
n

j
jjn pppS

1

ln)(        (4.6) 

where 1
1

=∑
=

n

j
jp , 0ln0 = 0, pj ≥ 0 for j = 1,…,n.  Another formulation of Shannon’s 

entropy, used as a measure of the uncertainty of the transmission of information, is: 

  ∫ Ω−= dsspspH )(ln)( ,      (4.7) 

where p(s) is a Gaussian density function over the space Ω of the information signals 

transmitted.  The word “entropy” has different meanings in different contexts, depending 

on how we define the pi or p(s) in its formulation. 

To use information theoretic ideas in experimental design has a considerable 

history, with definite papers by Lindley (1956), Stone (1959), and Renyi (1961).  An 

elegant summary appears in (Renyi, 1970).  Many of the ideas have been absorbed into 

the flourishing area of Bayesian optimal design as talked about in Section 4.3.  The 

Bayesian information theoretic approach, which states that the optimal design maximizes 

the expected information worth of the experiments, has been well studied in literature in 

the past 20 years (see, e.g., Chaloner and Verdinelli, 1995; Pilz, 1991; Bernardo and 

Smith, 1994, etc.).  As introduced in the optimal designs, Bayesian design requires a 

specification of a utility function, and Shannon’s information theoretic formulation of 

entropy has been widely used in literature.  It is stated that the Bayesian entropy design, 
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which maximizes the entropy of the prior design, is able to simplify the formulation of 

the design criterion while keeping the computational complexity manageable compared to 

most other techniques. 

Shannon’s entropy was first introduced in the field of design of experiments in 

(Lindley, 1956), in which the author interpreted entropy as the amount of information 

gained by a data point.  With the aim of maximizing the gain in information for 

prediction at new data points, maximum entropy sampling (MES) was used as a criterion 

for the choice of experiments in (Shewry and Wynn, 1987).  This criterion was then 

adopted as one of the main methods for computer experiments in (Sacks, et al., 1989a).  

Based on these studies, a maximum entropy design strategy is proposed in (Currin, et al., 

1991) in which new data points are added sequentially in the design space such that 

maximum expected information is gained from the set of experiments.  A good paper on 

computer experiments and maximum entropy sampling is (Koehler and Own, 1996).  

These papers as mentioned above represent previous work in Bayesian entropy design, 

which is the basis of our SEED method of designing sequential experiments with 

consideration of prediction errors in previous metamodeling processes.  In the following 

paragraphs, I will describe how Bayesian entropy design works; for more details, please 

refer to the papers mentioned above. 

4.4.1 Prior and Posterior Distributions 

In Bayesian methods, we need to specify a prior knowledge about a function.  In 

our research, prior uncertainty about the function y is expressed by means of a random 
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function Y, which is taken to be a Gaussian stochastic process.  The mean of the posterior 

process is used as the prediction function ˆ( )y x , and the variance can be used as a 

measure of uncertainty.  This kind of approach is strongly related to the kriging methods 

as introduced in Chapter 2.  Thus in this chapter, we will use kriging metamodels in 

developing the Sequential Exploratory Experimental Design (SEED) method. 

As mentioned above, the prior knowledge about the unknown function y(x) is set 

to be Gaussian process Y.  Given an n-design Dn (as defined in Section 4.2), the prior 

distribution of the design is multivariate normal with mean vector and the positive 

definite covariance matrix as: 

[ ] [ ]D D iE Y µ= =µ        (4.8) 

cov( , )D D DD ij n n
Y Y σ

×
 = =  σ       (4.9) 

where i and j corresponds two points xi and xj ∈ D.  Elements in the vector of [ ]iµ  is 

defined as the expected mean of the normal distribution Yi at a point xi ∈ D: 

  ( )i iE Y µ=         (4.10) 

And the entries of the covariance matrix is defined as: 

cov( , ) ( ) cov( , )ii i i i ij i jY Y Var Y Y Yσ σ= = =    (4.11) 

In Equation (4.11) we see that two prior distributions at xi and xj are not statistically 

independent; we will talk about this correlation later. 

As defined in Section 4.2, D is a subset of all the possible points in the design 

space, denoted as D ⊂  U.  Based on the discussion above, the posterior process, given the 
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vector of observed response yD on Dn, is well known and is also Gaussian.  Suppose we 

want to examine responses at a finite number of new points S ⊂  U, the mean and variance 

at S is given by: 

 [ ] 1
| | ( )S D S D S SD DD D DE −= = + −Y y yµ µ σ σ µ     (4.12) 

 [ ] 1
| |cov , |SS D S S D SS SD DD DS ij Dσ−  = = − = Y Y yσ σ σ σ σ    (4.13) 

where ' cov( , )SD DS S D= = Y Yσ σ .  In Equation (4.13), i and j corresponds two points xi 

and xj ∈ D ; please note the difference between this definition and that for Equation (4.9).  

With Equation (4.13) we are able to estimate the posterior covariance matrix based on 

prior distributions.  From a Bayesian viewpoint, the posterior process is very important; a 

Bayesian estimate for y at new observation sites (new points) is the mean of the posterior 

distribution: 

  1
|ˆ( ) ( )D D DD D Dy yµ µ σ σ µ−= = + −x x xx      (4.14) 

where x is a new point to observe in the design space U.  Given an experimental design 

D, the response value at a new point x could be estimated with Equation (4.14).  This is 

actually the essence of Gaussian interpolation and kriging metamodels; see Equation 

(2.18) in Chapter 2 for analogy.  This analogy is explained below with the stationary 

assumption. 

4.4.2 The Stationary Assumption 

As explained in (Currin, et al., 1991), the stationary assumption is introduced to 

help develop a general method without eliciting and implementing problem-specific prior 
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information.  With this goal some conditions of stationarity are needed to produce prior 

processes that are non-informative, or at least impartial in some respects.  In particular, 

the prior mean and variance is required to be constant for all x in U: 2,µ µ σ σ= =x xx , 

and at any two points xi and xj in U, the prior correlation ijρ  between Yi and Yj depends 

only on their Euclidian distance i jd = −x x  through a suitable correlation function R.  

The correlation function R must satisfy that ( ) ( )ij i jR R dρ = − =x x , and R(0) = 1; for 

any finite set of points S, the correlation matrix SSρ  generated by R must be positive 

definite. 

With the stationary assumption mentioned above, the covariance matrix DDσ  is 

invariant to any isometric transformation in the points in U.  The prior distribution for Ys 

at points S does not change if S is shifted – the correlation is only related to the relative 

distance between points but not the absolute location of the points.  Thus Equations 

(4.12) and (4.13) become: 

 1
| ( )S D SD DD D

−= + −f fyµ µ ρ ρ µ       (4.15) 

 2 1
|SS D SS SD DD DSσ − = − σ ρ ρ ρ ρ       (4.16) 

where f is a vector of 1’s.  For prediction at a single site x, we have 

  1
|ˆ( ) ( )D D DD Dy µ µ µ−= = + − fx xx yρ ρ      (4.17) 

  2 1
| 1D D DD Dσ − = − xx x xσ ρ ρ ρ       (4.18) 
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Equation (4.17) is the same as Equation (2.18), calculation of predicted estimates in 

kriging metamodeling.  The covariance of prior distributions at two points xi and xj is: 

 ( ) ( )2cov ,i j ij i j i jY Y R D i jσ σ= = − ∈ ≠x x x , x     (4.19) 

 ( ) 2var i iiY σ σ= =         (4.20) 

Equations (4.19) and (4.20) are used to formulate entries of the covariance matrix as used 

in maximum entropy sampling (Section 4.4.3). 

There are several choices for the correlation function R.  In (Simpson, 1998; Lin, 

2000), we have studied five types of correlation functions, namely, the exponential 

function, the Gaussian function, cubic spline, Matérn linear function, and Matérn cubic 

function.  However, in this dissertation, we will use the Gaussian correlation function 

(Equation (2.14)), which is by far the most popular one in use. 

4.4.3 The Entropy Criterion 

Assuming that we have an n-design Dn in the design space U.  Once we got 

information at the data points, knowledge of the function y at other points will be 

embodied in the multivariate normal distribution of |S DY  generated by the predictive 

process.  The mean |S Dµ  and the covariance matrix |SS Dσ  of this distribution could be 

calculated with Equations (4.15) and (4.16).  The problem of experimental design here is 

actually to choose D to minimize the “amount of uncertainty” in |S DY .  Shannon’s entropy 

could be used to help achieve this goal.  For a continuous multidimensional random 

variable X, Shannon’s entropy formulation is: 
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[ ]( ) ln ( ) lnxH X E p X dx= − −      (4.21) 

where px(x) is the density of X at x and dx is the volume element in an arbitrarily fine 

discretization of the design space.  The formulation of entropy in Equation (4.21) is 

always nonnegative; the lower the entropy, the more precise is the knowledge represented 

by X.  In practice, we ignore the second term of (–lndx) since it does not depend on the 

distribution of X. 

In (Lindley, 1956), the author proposed using the expected reduction in entropy as 

a criterion for design.  Experiments that minimize the entropy of the posterior 

distributions |( )S DH Y  should be chosen as the design.  This idea is further developed in 

(Shewry and Wynn, 1987) in which the authors showed that the posterior entropy could 

be minimized by choosing D that maximizes the prior entropy, ( )DH Y .  For Gaussian 

priors, the design dependent part of ( )DH Y is ( )1
ln det

2 DDσ .  Thus, to maximize the 

Gaussian prior entropy is equivalent to maximize the determinant of the covariance 

matrix.  Given the stationary assumption, this is the same as maximizing the determinant 

of the correlation matrix.  Thus, here is the maximum entropy DOE strategy: 

 

In order to achieve maximum entropy sampling, the designers should 

choose data points Dn with maximum determinant of the prior covariance 

matrix ( )det DDσ . 
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This could be viewed as D-optimality because it minimizes the posterior 

generalized variance of the unknowns, as the usual D-optimality criterion in the linear 

model does.  In (Johnson, et al., 1990), the authors show that when the prior correlation 

between points is extremely weak and is a decreasing function of an appropriately defined 

distance, the entropy criterion maximizes the minimum distance among design points.  

The tendency of D-optimality to maximize distances between points is evident in 

augmenting existing designs. 

As defined in Section 4.2, the design space is denoted by U, which contains 

infinite number of possible data points in [0,1]p.  In literature, in order to save time and 

effort in building experiments, a grid is constructed in the design space, with each node 

represents a possible input vector.  The grid should not be very large to ensure 

achievement of “best” experimental designs, and it should not be too small so that 

remarkable computation time and effort could be saved.  In this way the design space is 

reduced from one with infinite number of points (continuous) to one with limited number 

of points (discrete).  Then the problem of experimental design becomes that how to select 

a certain number of points in the pool of all possible points to convey maximum 

information of the response surface.  Currently, this usage of grid to save computation 

time is used in nearly all Bayesian entropy designs in literature.  In our research in this 

chapter, in order to prove the feasibility and effectiveness of our SEED method, we will 

use a continuous design space as defined in Section 4.2, instead of the discrete design 

space that is used in the Bayesian entropy sampling introduced in this section. 
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Currin et al. (1991) took advantage of the Shewry and Wynn’s result (Shewry and 

Wynn, 1987) for a one-point augmentation to an existing n-design: Should one desire to 

augment one more experiment to an existing set of experiments, the new experiment must 

be conducted at a point ni D∈x , with the largest variance of the posterior distribution.  In 

other words, the best xi to conduct a new experiment is the one at which 
nDii|σ  is 

maximum.  In the algorithm suggested by (Currin, et al., 1991), experiments are 

augmented one-by-one to the current set.  A multiple-search is conducted over U to 

identify ni D∈x  that maximizes 
nDii|σ .  A “hikers” method for optimization is proposed 

to help save computation time and effort while global optimum is not guaranteed.  In our 

research in this chapter, we try several global optimization algorithms to find the set of 

points with maximum determinants of the covariance matrix; computation time for the 

optimization is not considered here since our focus is on verifying our ideas and methods 

for sequential experimental design.   

4.5 THE SEQUENTIAL EXPLORATORY EXPERIMENTAL DESIGN 
METHOD 

As introduced in Sections 4.3 and 4.4, in Bayesian entropy design, information 

uncertainty is reflected with the Bayesian method and the most informative experiments 

are designed with maximizing the entropy of prior distributions.  This helps answer our 

Research Question 2.1: How to measure the information worth of a point?  Based on the 

literature review, our answer is that: given the prior distributions of a current set of data 

points, the new point which helps maximizes the determinant of the covariance matrix for 
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prior distributions is most informative (or maximizes the prior entropy).  Points that help 

achieve larger determinants are more informative than those with smaller determinants.   

Assuming we already have an n-design Dn, and our aim is to find out and add in a 

new point that yields maximum information potential.  Assuming Gaussian priors, 

suppose we have two candidate points, xi and xj, with i k j k
σ σ≤x x x x  for all xk∈ D.   

The question is: which point, xi or xj, is more informative?  From Equations (4.13) and 

(4.18), we got that: 

 
2 1

|i i i iD D DD Dσ σ σ σ σ−= −x x x x      (4.22) 

2 1
|j j j jD D DD Dσ σ σ σ σ−= −x x x x      (4.23) 

Since we have 0 i k j k
σ σ< ≤x x x x  for all xk∈ D, from Equations (4.22) and (4.23) we 

could deduct that i jD Dσ σ>x x .  Since the point xi helps achieve a larger prior 

variance (if xi is added to D), our conclusion is that the point xi is with more information 

potential.  Thus, our answer here to Research Question 2.1 is that: Given two candidate 

points, xi and xj, and a current set of data points, D, assuming Gaussian priors, the point xi 

is more informative than xj, if i k j k
σ σ≤x x x x  for all xk∈ D.  This will be revisited and 

further explained after the development of the SEED method. 

Given that we have answered Research Question 2.1 and propose to use Bayesian 

entropy method to measure the information potential of candidate points in the design 



 192

space, our next step is to develop a sequential experimental design method to answer 

Research Questions 2.2 and 2.3, as listed below: 

R.Q.2.2: How to select validation points to achieve a sequential design of 

computer experiments? 

R.Q.2.3: How to utilize information from previous points and metamodels 

in identifying new data points? 

 

As mentioned in Section 4.4, Currin, et al., (1991) suggest an algorithm to 

successively augment new data points to an existing experimental design.  In our 

viewpoint, Currin’s method is actually not a “sequential” experimental design method 

since information from previous data points and metamodels is not used as a major 

guidance in identifying new data points.  In maximum entropy sampling, the designers 

tend to add in new points that are as far away from current points as possible; information 

of the response values takes no place in the decision making process.  In this sense, the 

method proposed by Currin, et al., (1991) is not flexible since it does not affiliate to 

specific simulations (or say, problems).  We say that it is not a sequential method – a 

sequential experimental design method is capable of placing new data points at positions 

that are believed to yield maximum information potentials based on analysis of 

information from observations at previous data points and metamodels.  For example, 

intuitively, given a simulation (or function), more data points should be located in regions 

that are highly nonlinear, and fewer data points should be located in flat regions.  A 

single-stage maximum entropy sampling method, as Currin’s, cannot achieve this goal 
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A new sequential approach for DOE, named Sequential Exploratory Experimental 

Design (SEED) is introduced in this section to address the above-mentioned 

shortcomings.  Information at previous data/validation points and metamodels is updated 

sequentially during the process, and it is utilized in identifying new data points in the 

design space.  This is the core of Chapter 4. 

4.5.1 Overview of the Sequential Exploratory Experimental Design Method 

At the beginning of metamodeling, the designers have no information about the 

response surface in the design space.  The simulation code is totally a “black box” that 

designers have no idea what outputs it will generate with specific inputs.  In this case, the 

maximum entropy sampling method introduced in (Currin, et al., 1991) could be used to 

design starting experiments.  This is a non-informative method since the stationary 

assumption is used and no information of response values is involved in allocating the 

points.  All candidate points in the design space U have the same distribution a priori. 

The starting experiments could also be designed in other ways.  Designers could 

start with other types of experiments.  Frequentist experiments are usually preferred at 

this stage so that designers could avoid having to specify a distribution for f (Koehler and 

Owen, 1996).  Sometimes designers may already have some knowledge of the response 

surface, i.e., observations of responses at some points in the design space have already 

been done; in this case, these points could be used as the starting experiments though they 

may not be most informative (from the entropy viewpoint) or space-filling (from the 

frequentist viewpoint). 
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After running the first-round experiments, the first-round metamodel could be 

developed.  The next step is to identify validation points.  This step is necessary because 

1). We need to study the prediction accuracy of the metamodel to decide whether further 

experimentation and metamodeling is necessary, 2). Our study in Chapter 3 suggests that 

additional validation points are necessary in testing metamodels, and 3). in a sequential 

experimental design it is very possible that we convert these validation points to data 

points in the future.  In selecting validation points, two issues are essential: the number of 

validation points and the location of validation points.  In this study, we do not consider 

too much on the number of validation points (except for the “possible last” round) 

because in sequential experiments, we do not really “validate” metamodels in the mid-run 

– what we seek with the validation points is the information of prediction errors they 

provide.  With an existing set of data points and a corresponding metamodel, there are 

several ways that help identify validation points, e.g., Maximum-Scaled-Distance-

Approach, Cross-Validation-Approach (Jin, et al., 2002).  In this chapter, as will be 

discussed later, we will select validation points that are “most informative”, similar to the 

selection of new data points. 

After observation at validation points, we get information of the prediction errors 

of the current metamodel at validation points.  If the errors are relatively small and 

suggest ending of experimentation and metamodeling (refer to Lin, et al., 2002), we may 

need to collect information at more validation points (to have enough validation points is 

essential for statistical validation; also, refer to Lin, et al., 2002).  If prediction errors are 

large, next round experiments are to be designed with the information at hand.  In 
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iterations, new data points are to be identified, new metamodels built, and new validation 

points observed for new validations.  Ideas on how to utilize the information in 

identifying new data points are discussed in Section 4.5.2, while the realization of these 

ideas with mathematical formulations are presented in Section 4.5.3. 

4.5.2 Identification of New Data Points through Utilization of Information at 
Previous Data/Validation Points and Metamodels 

There are various ideas on how to select future data points.  The first one is to 

select future data points that “best spread over” the design space with current data points.  

In this method no information from current data points and metamodels is considered; the 

new experimental design is still a maximum entropy sampling, or a space-filling design 

that have all points spread over the whole design space as evenly as possible.  Of course 

this idea is not suitable for sequential experimental design in which we seek to maximize 

information with limited resources.  This is explained in the following paragraph. 

In maximum entropy sampling (Currin, et al., 1991), the key issue is the 

correlation function used to calculate the correlation between points and build the 

covariance matrix.  Through maximizing entropy, new points are added as far away as 

possible from current data points.  This results from the properties of the correlation 

function under the stationary assumption described in Section 4.4.2.  As introduced in 

Section 4.4, the correlation function must satisfy that ( ) ( )ij i jR R dρ = − =x x , and R(0) 

= 1; for any finite set of points S, the correlation matrix SSρ  generated by R must be 

positive definite.  Under the stationary assumption as described in Section 4.4.2, the 
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correlation between points is dependent only on their distance (relative positions), but not 

on their absolute locations in the design space.  It is defined to be a decrease function of 

the Euclidian distance between points: as the distance between two points increases, their 

correlation decreases.  This correlation is used in kriging metamodels to predict response 

values at unobserved points.  To understand this, we could assume that each point, xi, in 

the design space conveys information about the response values in its vicinity; for 

prediction of the response value at its very location this point reflects 100% information, 

while for points nearby (xj), it transmits only a certain amount of information.  The farther 

xj is from xi, the less information that xi transmits at xj because of the decreasing 

correlation function.  Thus, in the one-stage maximum entropy sampling (Currin, et al., 

1991), this correlation is dependent on the value of θ and the Euclidian distance only; the 

location of xi and xj is not considered.  This maximum entropy sampling is actually a 

space-filling design in which points are selected to “spread over” the design space. 

In sequential experiments, information from previous observations should be used 

as a guide in identifying new data points.  Thus, the stationary assumption of equal 

variance in (Currin, et al., 1991) should be modified to reflect the property of different 

locations in the design space.  After designing the starting experiments and developing 

the original metamodel, new data points should be added not to spread over the design 

space (as maximum entropy sampling does); instead, they should be located at “crucial” 

locations where more potential information about the response surface could be reflected.  

How to identify “crucial” locations is the problem to be studied in following paragraphs. 
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Given information from previous experiments and metamodels, there are 

generally two philosophies on how to use this information for a sequential experimental 

design, one is to identify and add more points in the most-likely-to-succeed regions, the 

other is to add more points to regions with large model uncertainty.  At early design 

stages where uncertainties on design requirements may not be controlled, it is reasonable 

not to reduce the design space, and thus in this chapter, we seek methods based on the 

second philosophy, i.e., to add in new points to help reduce overall uncertainty of the 

metamodel.  Studies on methods based on the first philosophy, or the combination of the 

first and second, is done in Chapter 6. 

There are also two ideas on how to identify “crucial” locations in the design space 

where more potential information is to be reflected.  One is that the “crucial” region 

should be one with irregular (or highly nonlinear) response surfaces.  With this belief 

designers should locate more future data points in regions with great response changes (or 

large numbers of peaks/bottoms).  This is intuitive; in the interpretation of Equation 

(4.11) we could imagine that points in “flat” regions should have more information 

influence on neighborhoods than ones in “steep” regions.  This idea is illustrated in 

(Farhang-Mehr and Azarm, 2002), as described below. 

As illustrated in Figure 4.2, there are two candidate points, A and B, in the design 

space [0,1].  In Bayesian entropy sampling, both of these two points have influence in 

their neighborhoods; this influence is reflected by the correlation between them and 

nearby points (A’ and B’).  Intuitively, we see that the influence of Point A on Point A’ is 

weaker than that of Point B on Point B’, i.e., the correlation between A and A’ should be 
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smaller than that between B and B’.  This is because Point A is located in a highly 

nonlinear region while Point B is located in a flat region.  It is intuitive and reasonable to 

locate more data points in the multi-modal region around Point A to enable a more 

accurate modeling of the response function.  In contrast, not that many data points are 

needed in the less irregular region around Point B.  In this sense, the region around Point 

A is a “crucial” region where more potential information could be reflected, while the 

region around Point B is not. 
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Figure 4.2 Metamodeling Uncertainty at Nonlinear and Flat Regions (Modified from 
Farhang-Mehr and Azarm, 2002) 

The observation above is intuitive and sounds reasonable.  However, we claim 

that a “crucial” region with great potential information is one with great prediction errors 

A A’ B B’ 



 199

(given information from current points and metamodel), not necessarily a highly 

nonlinear one with great response changes.  The key issue in identifying new data points 

is the study and improvement of the prediction ability of current metamodels, which is 

not necessarily related to studies of the non-linearity of the response surface.  This idea is 

incorporated in our method of Sequential Exploratory Experimental Design, in which 

designers are engaged in identifying regions with large prediction errors to find out points 

with great potential information.  This idea is illustrated in Figure 4.3. 
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Figure 4.3 Metamodeling Uncertainty at Regions with Large and Small Prediction 
Errors 

In Figure 4.3 the original function is the same as at shown in Figure 4.2.  Suppose 

now we have developed a metamodel for this function; as illustrated in Figure 4.3, this 

Original Function 

Metamodel 

A A’ B B’ 
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metamodel is very accurate in the region around Point A but has large prediction errors in 

the region around Point B.  Such a metamodel could be developed through placing quite a 

few data points in the multimodal region around Point A.  For example, selecting data 

points at each peak/bottom may yield a metamodel that is very accurate around Point A – 

this could be a result of the application of “locating more points in multimodal regions” 

as explained with Figure 4.2.  Now the question is, given the metamodel in Figure 4.3, 

where should we locate new data points? 

Following the idea of “locating data points in highly-nonlinear regions”, it is 

apparent that we should add new data points in the multimodal region around Point A 

because the correlation between points in this region dampens very quickly as the 

distance between points increases; it is expected that points in this region have greater 

potential information.  However, from Figure 4.3 we see that, given the metamodel in this 

case, points in the flat region (around Point B) is more informative than those in the 

multimodal region (around Point A).  If the metamodel and some knowledge on its 

prediction errors in the design space were given, we would add in new points around 

Point B, in the region where large prediction errors take place instead of the region with 

high nonlinearity. 

Where could be wrong with the idea of “locating data points in highly-nonlinear 

regions”?  To answer this question, first we should look deeper into the motivation for 

sequential experiments.  In designing sequential experiments, our aim is to add in new 

data points with greatest potential information about the response surface; in this way we 

could save time and effort on expensive simulations.  New data points should be in the 
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regions where we have greatest uncertainty with the current experimental design and 

corresponding metamodel.  With the natural and intuitive idea of “locating data points in 

highly-nonlinear regions” the assumption is that regions with high nonlinearity are those 

we could not predict very accurately with current metamodels.  This assumption is not 

necessarily valid, as we see in Figure 4.3.  Though in many cases, we do have greater 

uncertainty on response surfaces in highly nonlinear regions, the link between “high 

nonlinearity” and “high uncertainty with current metamodels” is not stable for all cases.  

Thus it is very dangerous to follow the idea of “locating data points in highly-nonlinear 

regions” blindly.  On the other side, the idea of “locating data points in regions with large 

expected prediction errors” is more appropriate.  The assumption behind this idea is that a 

region of great uncertainty is one with great prediction errors given the current 

metamodel.  This assumption is always true since we could just express “great 

uncertainty” as “large prediction errors”. 

Another way to answer the question why “locating data points in regions with 

great prediction errors” is preferred to “locating data points in highly-nonlinear regions” 

is to study the correlation among points in these regions.  The region around Point A in 

Figure 4.3 is highly nonlinear, so if we build a kriging metamodel for response surfaces in 

this region, the value of θ in the Gaussian correlation function (Equation (2.14)) should 

be very large; the region around Point B in Figure 4.3 is very flat, and the value of θ in the 

Gaussian correlation function for the kriging metamodel in this region is small.  Based on 

this observation, the idea of “locating data points in highly-nonlinear regions” is proposed 

since the information that one point conveys dampens quickly in its neighborhood in a 
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nonlinear region, while it dampens slowly in a flat region.  This is a good strategy based 

on very direct observations; however, a closer look would reveal its shortcomings.  

Suppose now we already have two data points, A and A’, in Figure 4.3.  For either of these 

two points, we would say that it transmits only a little information in its neighborhood.  

While by locating them together, much more information is transmitted – they reflect the 

response surface between them very well.  In this case, no more data points should be 

added between A and A’.  This simple example clearly shows that once we have reflected 

information in a region very well (with small prediction errors), it is of little value to add 

in new data points though it may be highly nonlinear in this region.  In sequential 

experiments, given current metamodels, whether the correlation among points is great or 

not should not be used as a guide for identifying new data points (as in “locating data 

points in highly-nonlinear regions”); instead, whether the correlation is explained well or 

not could be used in identifying new data points (as in “locating data points in regions 

with large prediction errors”). 

Generally speaking, more data points should be located in highly nonlinear 

regions.  To build an accurate metamodel, in Figure 4.3, more data points should be 

located on the left half than on the right half of the design space.  In this sense, the idea of 

“locating data points in highly nonlinear regions” sounds reasonable.  This is because that 

the highly nonlinear regions are often with large prediction errors with current 

metamodels – but on the other hand, it is not always the case.  Thus, in our method for 

designing sequential experiments, we advocate the idea of “locating data points in regions 
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with large prediction errors”.  The problem here is how to figure out the “expected 

prediction errors” of the current metamodel throughout the design space. 

For kriging metamodels, without information from validation points, the general 

formula for prediction mean squared error at any new points is presented in Equation 

(3.7).  This could be used in identifying points with great potential information of the 

response surface.  However, in SEED we do not adopt this equation because: 

1. It works only for kriging metamodels,  

2. Our research in Chapter 3 suggests that only information from validation 

points could be used to verify the metamodel (i.e., calculate the prediction 

errors), and 

3. Equation (3.7) is developed based on the stationary assumption (in each 

dimension).  As we discussed before, with the stationary assumption in 

maximum entropy sampling, data points are selected so that minimum 

distances among them are maximized.  Thus it is not surprising that with 

Equation (3.7), a candidate point far away from previous data points is usually 

with larger prediction mean squared errors.  This is not a good estimate of real 

prediction errors in the design space. 

In the SEED method, we propose to gather information from current data and 

validation points to estimate prediction errors at points throughout the design space.  

After developing the metamodel with current set of data points, validation points are 

identified to help validate the metamodel.  If the metamodel is not accurate enough, 

prediction errors at the data points (with values of 0’s if we use kriging metamodel) and 
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the validation points are used to build a metamodel for predicting prediction errors.  

Predicted prediction errors at points in the design space are then calculated to facilitate 

the identification of new data points.  Like data points, validation points are also added 

sequentially to help yield more accurate estimates of prediction errors.  In iteration, more 

and more metamodels for both response prediction and corresponding prediction errors 

are developed until finally we stop our process with an acceptable metamodel.  Our 

approach is explained in detail with mathematical formulations in the next section.  

4.5.3 Mathematical Formulations of Entries in the Adjusted Covariance Matrix in 
Sequential Exploratory Experimental Design 

Mathematical realization of our ideas on sequential experimental design is 

described in this section.  As introduced in Sections 4.3 and 4.4, the key issue in 

designing D-optimal experiments and Bayesian maximum entropy experiments is the 

formulation of the information matrix (the covariance matrix).  Basically, our discussions 

in this section are built directly on maximum entropy sampling (and D-optimal 

experiments also, though indirectly, according to our discussions in previous sections).   

In a design of sequential experiments, suppose currently we have n data points Dn, 

a corresponding metamodel for responses f̂ , and nerror validation points Ane.  The 

metamodel f̂  is not accurate enough and a certain number (suppose to be m) of new data 

points are to be added to update the metamodel.  The number of new data points is 

decided arbitrarily by designers after contemplating the simulation complexity, 

computational expense, and accuracy of the current metamodel.  Our task here is then 
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how to identify these m new data points given current data/validation points and 

metamodels.   

In the SEED approach, given current data points and the metamodel for responses, 

prediction errors at the validation points could be calculated and a metamodel could be 

developed for predicting prediction errors across the entire design space, denoted by êf .  

Now we got two metamodels, one for predicting response values, and the other for 

predicting prediction errors.   

As discussed at the beginning of Section 4.5 with Equations (4.20) and (4.21), we 

have: given two candidate points, xi and xj, and a current set of data points, D, assuming 

Gaussian priors, the point xi is more informative than xj, if i k j k
σ σ≤x x x x  for all 

xk∈ D.  According to this theorem, in maximum entropy sampling, given the stationary 

assumption as introduced in Section 4.4.2, new data points are allocated far from current 

data points (Euclidian distance) which means that the correlation between new data points 

and current data points is managed to be small.  In (Currin, et al., 1991), the authors point 

out that this is equivalent to maximizing the determinant of the prior covariance matrix in 

Bayesian entropy design, as expressed in Section 4.4.3. 

The discussion above enables us to develop a method in which prediction errors 

could be accounted in sequential experimental design.  In maximum entropy sampling, 

given the Gaussian priors, with the stationary assumption, the correlation between points 

is merely based on their Euclidian distance.  The farther the distance is, the smaller the 

correlations are.  A point with weak correlations with other data points is one with large 
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potential information.  In a single-stage Bayesian entropy design, by maximizing the 

determinant of the covariance matrix, the information content of a set of data points is 

maximized and as a result, data points are allocated to spread over the design space.  In 

SEED, since we have information on both response prediction and error prediction, we 

could assign weaker correlations in the regions with large prediction errors, which 

increase the informational worth of an experiment conducted in those regions.   

In the SEED method, the stationary assumption of the covariance matrix used in 

single-stage maximum entropy sampling, as introduced in Section 4.4.3, is no longer hold 

valid.  Prior to the design of the first set of experiments, no information is available about 

the actual response function and as reasoned before, the stationary assumption is 

appropriate for the prior distribution.  Thus a set of maximum entropy experiments, or as 

stated before, a space-filling experiment or a previous set of data points, could be used to 

develop the first-round metamodel.  However, in selecting new data points, prediction 

errors are considered and the covariance will be modified to reflect this information; in 

this case, the stationary assumption no longer holds.   

How to modify the formulation of entries of the covariance matrix to reflect the 

information on prediction errors in the design space?  As introduced in Section 4.4.2, 

entries of the covariance matrix in maximum entropy sampling is formulated after 

Equations (4.19) and (4.20).  In the SEED method, following the idea of “locating new 

data points in regions with large prediction errors”, we decrease the correlations between 

points in regions with large prediction errors.  This decreased correlation ensures that new 

data points will be “dragged” to the corresponding regions through entropy maximization.  



 207

There are two ways to modify the formula of entries in the covariance matrix (Equation 

(4.19)), one is to modify the formula of the correlation function R, the other is to 

introduce a correcting factor in Equation (4.19) without changing the correlation function.  

This is described in following paragraphs. 

4.5.3.1 Formulation of Entries in the Covariance Matrix without Changing the 
Correlation Function 

The information influence of a data points in its neighborhood is small when the 

predicted prediction error is large; thus we introduce some correcting factor for the 

covariance to incorporate prediction errors and update the covariance of two points 

(Equation (4.19)) as: 

( )2adj
ij i j ij i j i jRσ α α σ α α σ= = −x x     (4.24) 

In Equation (4.24), αi is the coefficient to reflect the current metamodel’s uncertainty 

(prediction errors) at point xi, and αj is the coefficient to reflect the current metamodel’s 

uncertainty at point xj.  Theoretically, αi and αj should have values between (0, 1].  A 

value close to 1 means that the prediction error is small, and thus no much adjustment is 

needed on covariance between this point and others.  A value close to 0 means that with 

the current metamodel we can hardly tell the actual response value at this point, and thus, 

correlations of this point with other points should be greatly decreased.  To use Equation 

(4.24) in SEED is like “pulling” data points to regions with large metamodel uncertainty 

through assigning small correlations to points in those regions. 
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The formulation of coefficients (αi and αj) should satisfy the following criteria 

and ideas: 

 1,0 ≤< ji αα . 

 αi (and αj) should be a decreasing function of predicted prediction errors, 

i.e., larger values should be assigned to αi (and αj) for points with smaller 

prediction errors. 

 In the process of designing sequential experiments, since the information 

from current metamodels of response values and prediction errors is 

usually inaccurate, we should balance between “locating points in regions 

with large prediction errors” and “having points spread over the design 

space”.  New data points may not be those with largest predicted 

prediction errors with current metamodels; they should also have as long 

distance from current data points as possible.  A trade-off is needed.  This 

is like “twisting” the data points with two forces, one pulling points to 

regions with large predicted prediction errors, and the other to regions far 

from current data points.  Based on the discussions above, it may be better 

not to define αi ∈  (0,1] in practice.  Points with very large predicted 

prediction error should not have values of αi close to 0; otherwise the 

trade-off between “removing prediction error” and “spreading over the 

design space” will be damaged because new data points will tend to be 

located where the covariance (Equation (4.24)) is close to 0. 
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 As will be shown later, a factor λ is introduced in SEED to balance the 

weight of consideration of “prediction errors” and “space-filling” in the 

identification of new data points.  In practice, we have 



 −∈ 1,

1
1

λ
α i . 

In this dissertation, we calculate αi with the following equation: 

  
max

1 . 1 | |i
i

e
relative uncert

e
α

λ
= − = −      (4.25) 

where realive.uncert is the measurement of relative uncertainty on prediction, which 

should range in [0,1), representing high uncertainty with values close to 1 and low 

uncertainty with values close to 0.  ei is the predicted prediction error at the current point, 

and emax is the maximum predicted prediction error in the design space.  In practice, it 

may be difficult to find the global maximum predicted prediction error with the 

metamodel, thus, we may just use emax from a certain optimization; when ei at some 

particular points exceeds emax, we may force the value of 
maxe

ei =1.  In some cases we may 

use a value of emax that is smaller than the known value to remove sharp peaks and 

increase the number of points with “maximum prediction errors”.  λ is the coefficient 

used to adjust the value of αi.  As discussed before, in our entropy optimization process, 

the allocation of new data points is affected by two factors: one is to make points “spread 

over” the design space as evenly as possible, and the other is to locate points in “regions 

of interest” (or “regions with large prediction errors”).  As it is often the case, in the 

beginning of metamodeling (usually first iteration) we do not have much information, and 



 210

our estimation of prediction errors is also with great uncertainty; thus at this time we 

should not emphasize too much on “regions of interest” and try to have points spread over 

the design space.  A large value of λ helps achieve this.  When design evolves and we 

have more information and confidence on our prediction of prediction errors of the 

metamodel, we may emphasize more on “regions of interest”; a small value of λ helps 

achieve this goal.  In this dissertation we use λ=2, which makes αi ranging in [0.5,1]; in 

this way we do not “exaggerate too much” in adjusting the covariance.  Equation (4.24) is 

extended as: 

( )
max max

1 | | 1 | | ,jadj i
ij ij i j i j

ee
R

e e
σ σ α α σ σ

λ λ
      

= = − −      
      

x x   (4.26) 

Note that Equation (4.26) is only used for calculating the covariance between one 

candidate point and one current data point.  Suppose we have a set of data points Dn and 

m candidate points Cm.  The (n+m)×(n+m) covariance matrix is expressed as: 

 

 

 

 

 Cov = σ2         (4.27) 

 

 

 

n×n 

n×m 

m×n 

m×m 



 211

In the covariance matrix as presented in Equation (4.27), the n×n sub-matrix 

contains the covariance between current data points, and the m×m sub-matrix represents 

covariance between candidate points.  Note that the diagonal entries of the covariance 

matrix are filled with 1’s (see Equation (4.20)).  Equation (4.26) is only used to calculate 

entries in the n×m and m×n sub-matrices in Equation (4.27).  Thus, in SEED, entries of 

the covariance matrix is calculated as below: 
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  (4.28) 

In Equations (4.27) and (4.28), we see that the covariance among current data 

points (the n×n sub-matrix) is not adjusted; it remains the same as in Equation (4.19).  

This is natural since there is no prediction error at data points (supposing we are using the 

kriging metamodels) and there will be no adjustment following Equation (4.26).  We also 

see that the covariance among candidate points (the m×m sub-matrix) also remains 

unadjusted.  This is because we do not want to have multiple new data points clustering 

in the region with large prediction errors – if the formulation of covariance among 

candidate points follows Equation (4.26), it is very likely that all new data points are 

identical (or very close to one another).  To formulate the covariance among candidate 

points in the normal way (following Equation (4.19)) is actually to force new data points 

spread all over the design space.  To use the covariance matrix in sequential experiments, 
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the focus is on the correlations between current data points and candidate points, i.e., the 

n×m and m×n sub-matrices in Equation (4.27).  We only adjust entries in these two sub-

matrices. 

As for the correlation function ( )ji xxR ,  in Equation (4.28), we use the Gaussian 

function, as shown below: 

( ) 2

1
exp( )dvn

i j k kk
R dθ

=
− = −∏x x      (4.29) 

where dvn  is the number of design variables, θk are the unknown correlation parameters 

used to fit the model, and dk = xk
i - xk

j which is the distance between the kth components of 

points xi and xj.   

In single-stage maximum entropy sampling, the covariance matrix is built by 

using identical values for all θk’s.  This is reasonable because no information is available 

at the very beginning of design.  While in sequential experimental design, when kriging 

metamodel is used, θk’s from current kriging metamodel could be used in next round of 

experimental design, i.e., values of θk’s in Equation (4.29) keep being updated in 

accordance with the kriging metamodels. 

Equations (4.27) and (4.28) are used to formulate the covariance matrix in SEED 

(without changing the correlation function).  In the next section, we will discuss 

formulations of the covariance matrix in SEED through changing the correlation function. 
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4.5.3.2 Formulation of Entries in the Covariance Matrix through Changing the 
Correlation Function 

In Section 4.5.3.1, we discussed methods to formulate entries of the covariance 

matrix without changing the correlation function.  The idea is expressed in Equation 

(4.24) and the mathematical formulation of the covariance matrix is presented in 

Equations (4.27) and (4.28).  In this section, we explore the method of adjusting entries in 

the covariance matrix through modifying the correlation function between points. 

In Section 4.5.3.1, the adjustment of entries in the covariance matrix is done by 

adding correcting coefficients, αi and αj, in Equation (4.24).  In that method, the 

correlation function, ( )i jR −x x , is not changed (except that the values of θk’s are 

updated in accordance with the kriging metamodels); the adjustment happens outside of 

the correlation function.  Now let us explore ways to adjust the entries in the covariance 

matrix through modification of the correlation function. 

Since we use the Gaussian correlation function as shown in Equation (4.29), the 

covariance between two points (Equation (4.19)) could be expressed as: 

( ) ∏ =
−== dvn

k kkjiij dxxR
1

222 )exp(, θσσσ    (4.30) 

The values of θk’s in Equation (4.30) are actually indicators of degrees of correlations 

between the points.  The larger the value of θk is, the less covariance between two points 

in the direction of the kth component (as indicated in Equation (4.30)), and thus the less 

information that one point transmits in its neighborhood.  As discussed in Section 4.5.3.1, 

in designing sequential experiments, we should adjust entries in the covariance matrix to 
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incorporate the information of prediction errors.  Points in regions with large prediction 

errors should have smaller covariance (thus, correlations) than in regions with small 

prediction errors.  This could be achieved through modifying the formulation of 

correlation functions (Equation (4.29)) to: 

( ) ∏∏ ==
−=−= dvdv n

k kkji

n

k kji
adj ddxxR adj

k 1

2

1

2
)exp()exp(, θθ ββ  (4.31) 

As we see in Equation (4.31), two correcting coefficients, iβ  and jβ , are added in 

the correlation function to reflect information on prediction errors.  Similar to αi and αj in 

Equation (4.24), iβ  is the coefficient to reflect the current metamodel’s uncertainty 

(prediction errors) at point xi, and jβ  is the coefficient to reflect the current metamodel’s 

uncertainty at point xj.  The formulation of coefficients iβ  and jβ  should satisfy the 

following criteria and ideas: 

 When the prediction error at a point xi is 0 (e.g., current data points with 

kriging metamodels), the corresponding coefficient iβ  should have the 

value of 1, which means no adjustment is needed at this point.  This could 

be viewed as the lower bound of iβ . 

 When the prediction error at a point xi is large, correlation with this point 

should be adjusted to a smaller value, which means that the corresponding 

coefficient iβ  should have a value larger than 1.   

 The upper bound for iβ  (and jβ ) is decided arbitrarily by the designers.  

Based on previous experience, usually, the value of θk
adj should not be too 
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large or small to yield efficient and effective computation results in 

maximum entropy sampling (say, e.g., smaller than 100 and larger than 5).  

This puts constraints on the upper bound for iβ .  In order not to get too 

large values of θk
adj (no larger than 100), designers may select smaller 

upper bounds for iβ  (and jβ ).   

 In some cases, when the difference between upper and lower bounds of iβ  

are too small, designers may also want to lower the lower bound.  This is 

like “shifting” the range of iβ  from [1, upper bound] to [lower bound, 

upper bound], where lower bound is smaller than 1 and larger than 0.  An 

extreme example is to use iβ ∈ [lower bound, 1]. 

Based on discussions above, we could calculate iβ  with the following equation: 

max

1
e

ei
i λβ +=        (4.32) 

where again, ei is the predicted prediction error at a candidate point, emax is the maximum 

predicted prediction error with current metamodels.  In practice, we get the value of emax 

with optimization tools; global optimum is not guaranteed.  When ei is larger than the 

estimated emax at some candidate points, we force the value of 
maxe

ei  to be 1.  Similar to 

the method discussed in Section 4.5.3.1, λ is used to gauge how much the parameter θk
adj 

is adjusted or “twisted”.  Usually we set 1=λ .  The range of iβ  with Equation (4.32) is 

[1, 1+λ]. 
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 There are also many other possible formulations for iβ .  For example, if in some 

case we want to have iβ  ranged in [lower bound, 1], we could use the following 

equation: 

maxmax

11

e

e

e

e ii
i λλ

β −+=       (4.33) 

With Equation (4.33), the range of iβ  is 





1,
1

λ
.  Equation (4.33) could be used in cases 

where all θk’s are very large; thus instead of increasing values of θk’s for points with large 

prediction errors, we decrease values of θk’s for points with small prediction errors. 

Given the equations of iβ , entries of the adjusted covariance matrix (Equation 

(4.27)) could be calculated as: 
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∏
∏
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    (4.34) 

iβ  and jβ  are calculated with Equations (4.32) or (4.33).  Equations (4.27) and (4.34) are 

the formulations of the adjusted covariance matrix with the modified correlation function 

that reflects information of prediction errors in the design space.  Note that Equation 

(4.34) is appropriate for calculating all entries in the covariance matrix (Equation (4.27)).  

This is different from the method discussed in Section 4.5.3.1, in which we have different 

equations for entries in different sub-matrices in the covariance matrix.  The reason is 

that: the correcting coefficients, iβ  and jβ , are multiplied by the distance kd  (and then 
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used in the exponential calculation) in the correlation function; maximum entropy 

sampling with Equation (4.34) will not result in a clustering of new data points.  As for 

the method introduced in Section 4.5.3.1, the correcting coefficients, αi and αj, are put 

outside of the exponential calculation; clustering could happen if we use the adjusted 

equation (Equation (4.26)) to calculate the covariance among the candidate points. 

In this section, we discussed two approaches to formulate entries of the adjusted 

covariance matrix so that information of prediction errors in the design space could be 

taken into consideration in identifying new data points.  Correcting coefficients are used 

in the mathematical formulation to “drag” candidate points to regions with large 

prediction errors.  After formulation of the adjusted covariance matrix, new data points 

could be identified through maximizing the determinant of the covariance matrix.  The 

metamodel is then updated and new validation points are added to validate the 

metamodel.  Selection of new validation points could follow similar strategy to that of 

new data points because we want to gain maximum possible information with every new 

point, no matter it is used as a data point or a validation point.  It is very possible that 

some validation points change to data points in sequential experiments.  This is 

incorporated in the Sequential Exploratory Experimental Design method.  Steps and 

flowchart of the SEED are described in the next section with practical considerations and 

discussions. 
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4.5.4 Flowchart and Steps of the Sequential Exploratory Experimental Design 
Method 

The method of Sequential Exploratory Experimental Design is developed to 

facilitate sequential design of computer experiments.  In this dissertation, it is used in the 

frame of RCEM (and later, the Efficient Robust Concept Exploration Method as will be 

developed in Chapter 6) to help build appropriate metamodels in exploration of robust 

solutions in the design space.  The flowchart of SEED is presented in Figure 4.4. 

As illustrated in Figure 4.4, appropriate metamodels of responses are developed 

through designing sequential experiments in multiple iterations.  Step 1 and Step 2 in 

SEED are the initialization of the whole metamodeling process.  Each iteration in SEED 

consists six steps, from Step 3 to Step 8 as shown in Figure 4.4.  Details of actions in 

each step are described below.   

Step 1 – Initial Experimental Design.  As described earlier, there may be three 

ways to design the initial experiments.  If previous observations at some data points are 

available, these points may be used as the first set of experiments.  Space-filling 

experiments or traditional experiments may also be used as the initial experiments.  Or 

we could design experiments following the maximum entropy sampling method with 

stationary assumptions (no adjustment to the covariance matrix) – maximizes the 

determinant of the prior covariance matrix, thus maximizes the expected reduction of the 

entropy due to the experimentation, and maximum expected information is gained from 

the set of experiments.  The covariance matrix could be constructed using Equations 
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(4.19) and (4.20).  Assuming a rapidly decaying correlation, the value of θ could be set at 

a large value, e.g., 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Flowchart of the Sequential Exploratory Experimental Design Method 
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Step 2: Simulation and Initial Metamodel of Responses.  In this step, 

observations are made at all data points in the initial experimental design, and the 

corresponding initial metamodel of responses is developed based on information from 

these observations. 

Step 3: Identification of New Validation Points.  In this step validation points 

are identified and information at these points is collected.  At the beginning of sequential 

experimental design, when we still have great uncertainty with current metamodels we 

had better select validation points to “spread over” the design space so that we could get 

information of the responses across the design space instead of being constrained to some 

narrow regions.  Thus at the beginning of sequential metamodeling, we use the “single-

stage” maximum entropy sampling method (as discussed in Section 4.4 and quoted as an 

optional approach in Step 1) to identify validation points.  When there is sufficient 

information – again, this is a decision made by designers arbitrarily – from previous 

validation points, methods used to help identify new data points (as will be described in 

Step 6, 7) could be used to identify validation points; differences from that of identifying 

new data points lie in that:  

1. When identifying new validation points we examine all possible points in the 

design space except current observed points (data and validation points), while 

when identifying new data points we examine all points that were not used as 

data points (which means, current validation points are considered); and  

2. In the process of identifying new validation points, the roles of validation 

points and data points are temporarily switched.  A metamodel of response is 
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developed with all validation points, then prediction errors at data points are 

calculated and a metamodel of prediction errors is built.  In this way we expect 

to bring in most informative new validation points given current observed data 

and validation points. 

We then try to put validation points in regions where we expect to have large 

uncertainty on the response values based on the previous metamodel.  However, this 

approach should only to be used when we are quite certain about the metamodels for both 

responses and prediction errors, i.e., observations at quite a lot points have been made.  

The number of validation points is also a problem.  In this chapter, in the intermediate 

iterations, we try to maintain the number of validation points, nerror, equal to the number 

of data points plus 1, i.e., nd + 1.    

Step 4: Metamodel of Prediction Errors.  In this step, prediction errors at data 

and validation points are calculated, and a metamodel for predicting prediction errors is 

developed.  The maximum absolute predicted prediction error across the design space is 

obtained.  Information from the metamodel of prediction errors may help validating the 

metamodel of responses.  

Step 5: Metamodel Validation.  In this step we follow the method discussed in 

Chapter 3.  If the result suggests that new data points be needed, we go to the next step, 

Step 6.  Otherwise we could stop and use the current metamodel in later design stages; in 

this case we could also go back to Step 3 and add in more validation points if we could 

afford more observations.   



 222

Different stopping criteria may be used in sequential experimental design.  We 

could stop once an appropriate metamodel is built (based on some preset requirement of 

metamodel accuracy), as discussed above and in Chapter 3.  Or, we could preset the total 

number of points (or data points) that we could afford; once we finish observations at 

enough points, the process of sequential experiments and metamodeling will stop.  This 

stopping criterion is usually used when the simulation is very expensive. 

After sequential experimental design finishes, the current metamodel of responses 

could be used in future design processes (e.g., exploration for robust solutions).  We 

could also incorporate data and validation points and develop a new metamodel; it is 

expected that a more accurate metamodel could be achieved with more data points.  

However, this approach is inappropriate in some cases when enough data points have 

been observed.  Response development and prediction with a metamodel (especially the 

kriging model) will be very time-consuming, which makes the multi-objective 

exploration of the multivariable design space very expensive.  In such cases, we prefer 

using an appropriate metamodel with as few data points as possible. 

Step 6: Formulation of the Adjusted Covariance Matrix.  This step is the core 

of the SEED method.  As described in Section 4.5.3, we have two approaches to adjust 

entries in the covariance matrix to reflect information from the metamodel of prediction 

errors.  Either approach could be used to formulate the adjusted covariance matrix.  

Suppose the number of current data points is nd, and we decide to add in nnew data points.  

The covariance matrix should be ( ) ( )d new d newn n n n+ × + .  The first nd×nd rows and 
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columns of the matrix correspond to current data points.  The entries are updated 

according to Equations (4.27), (4.28), and (4.34).  For more details, see discussions in 

Section 4.5.3. 

In the formulation of the adjusted covariance matrix, we should pay much 

attention to the selection of values of θ, λ, and emax.  For discussions and instructions, see 

Section 4.5.3. 

Step 7: Identification of New Data Points.  In this step, through maximizing the 

determinant of the adjusted ( ) ( )d new d newn n n n+ × +  covariance matrix developed in Step 

6, we could identify a set of newn  new data points. 

Step 8: Updated Metamodel of Responses.  In this step we develop a new 

metamodel with information from the new set of data points.  After development of the 

new metamodel, we go to Steps 3 and 4 in the next iteration to validate its accuracy.  

Metamodeling in the current iteration stops at this step. 

The method of Sequential Exploratory Experimental Design is described in this 

section through the overview of sequential experiments (Section 4.5.1), discussion on 

selection of data and validation points (Section 4.5.2), mathematical formulations of the 

adjusted covariance matrix in maximum entropy sampling (Section 4.5.3), and 

presentation of the flowchart and steps of SEED (Section 4.5.4).  In the next section, the 

SEED method is tested with a single-variable function. 
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4.6 APPLICATION OF THE SEED METHOD – A SINGLE-VARIABLE 
EXAMPLE 

Mathematical formulations and designing steps of the SEED method are described 

in Section 4.5.  In this section, the SEED method is tested with a single-variable function.  

The single-variable function is introduced in Section 4.6.1.  In Section 4.6.1, we also 

presented two designs for comparison with the SEED method: in one of which we 

identify all data points in one step, and in the other one we identify the data point 

sequentially but without adjusting the covariance matrix (i.e., following the approach as 

described in (Currin, et al., 1991)).  The SEED method with Formulation I (as discussed 

in Section 4.5.3.1) is applied with the single-variable function in Section 4.6.2.  The 

SEED method with Formulation II (as discussed in Section 4.5.3.2) is applied with the 

single-variable function in Section 4.6.3.  In this section, we use kriging metamodels. 

 

4.6.1 Single-Stage Experimental Design with A Single-Variable Function 

In this section, we use a single-variable function, presented in Equation (4.35), as 

the deterministic computer simulation for which we develop kriging metamodels.  A 

graph of this function is shown in Figure 4.5.  As we see from the equation and graph, the 

design space is x = [0, 1].  In this design space, the maximum response value is y = 1.852 

at x = 0.04, and the minimum response value is around y = −1.563 at around x = 0.14; the 

response range is 3.415.   
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Figure 4.5 A Single-Variable Function 

To develop a kriging metamodel for this single-variable function, suppose that we 

plan to use 11 observed points.  In Sections 4.6.2 and 4.6.3, these 11 observed points are 

identified with the SEED method.  As a comparison, in this section the data points are 

identified in a “single-stage” manner in which the covariance matrix is not adjusted with 
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information on prediction errors.  With the word “single-stage” we mean two approaches 

as explained below: 

• One is to identify 11 data points in one step; the easiest way is to have 11 

points evenly spread over the design space, as listed in Table 4.1.  We name 

this set of points as Data Set I.  Plot of the corresponding kriging metamodel is 

illustrated in Figure 4.6.  The value of θ for this kriging model is 99.99993. 

• The other is to design “sequential” experiments following the approach in 

(Currin, et al., 1991).  First a 3×3 covariance matrix is built to help identify 

the first 3 points.  Then based on this information, a 7×7 covariance matrix is 

built to help find out 4 more points.  After this, we add in one new data point 

and one new validation point in each iteration until finally we get 11 points.  

We still use Equations (4.19) and (4.20) in this approach.  With this approach, 

we got two sets of points that are “equally” good – without information of 

responses at the observed points we cannot tell which data set is better.  

However, the first 11 data points identified in these two sets are the same 

(though the sequence of the points are different).  These 11 data points are 

listed in Table 4.2.  We name this set of points as Data Set II.  Plot of the 

corresponding metamodel is illustrated in Figure 4.7.  The value of θ for this 

kriging model is 99.9999. 

As discussed at the end of Section 4.4, in this chapter, since we are dealing with 

very simple examples (thus computation time on entropy optimization is not a problem), 
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to ensure the correctness of our comparison and verification, we do not use the “hiker” 

method as described in (Currin, et al., 1991) to find out the optimal set of data points.  

Instead, various optimization algorithms, such as sequential quadratic programming, 

simulated annealing, etc., are used to ensure the achievement of global optimum in 

maximizing the determinant of the covariance matrix. 

Table 4.1 Data Set I for the Single-Variable Function – 11 Data Points Evenly 
Spread Over the Design Space 

x 0 0.1 0.2 0.3 0.4 0.5 
y 0.618 -0.515 0.0 0.0 0.0 0.0 
x 0.6 0.7 0.8 0.9 1.0  
y 0.0 0.0 0.0 0.0 0.0  
 

Table 4.2 Data Set II for the Single-Variable Function – 11 Data Points Identified in 
A Single-Stage 6-Step Manner 

Data Set II Step Point 
x y 

1 0 0.618 
2 0.5 0.0 

 
I 

3 1 0.0 
4 0.167 -0.991 
5 0.333 0.0 
6 0.667 0.0 

II 

7 0.833 0.0 
III 8 0.917 0.0 
IV 9 0.417 0.0 
V 10 0.083 0.374 
VI 11 0.583 0.0 
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Figure 4.6 Metamodel (I) – For Data Set I 
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Figure 4.7 Metamodel (II) – For Data Set II 
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In the 3rd step of the “sequential” experiments as presented in Table 4.2, the new 

data point is identified as x = 0.917.  It could be proved that there exists another solution, 

x = 0.083, which has the same (which is maximum) value of the determinant of the 

covariance matrix as the solution of x = 0.917 does.  Thus, in experimental design, the 

designer may select another set of data points.  However, after identifying 11 data points 

we found that the two different ways yield the same result; the only difference lies in the 

sequence that new points are added.  It can be illustrated that starting from the 12th point, 

there will also be two different sets of data points that are equally good from the 

viewpoint of Currin’s single-stage experimental design. 

In Figure 4.6 and Figure 4.7 we see that the kriging metamodels (I and II) with 

“single-stage” experiments are accurate when values of the input variable x are not small.  

When x is smaller than 0.2, the kriging metamodels are inaccurate – the peak and the 

bottom of the response surface at low x values are not fully captured by the kriging 

metamodels.   

The maximum absolute error (MAX) and root mean squared error (RMSE) of 

these three metamodels are calculated with Equations (2.7) and (2.9), and listed in Table 

4.3.  To calculate MAX and RMSE we use observations from 201 points that evenly 

spread over the design space of [0,1].  As discussed in Chapter 2, the smaller the values 

of MAX and RMSE, the more accurate the corresponding metamodel is.  Values of MAX 

and RMSE from Table 4.3 are consistent with our observations with Figure 4.6 and 

Figure 4.7.  These values will be further used in comparison with those of metamodels 

developed in the following sections with the SEED method. 
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Table 4.3 MAX and RMSE of Three Metamodels 

 Metamodel (I) Metamodel (II) 
MAX 1.730 1.711 
RMSE 0.452 0.472 

 

4.6.2 Application of SEED in the Single-Variable Example – Formulation I 

In this section, the SEED method with Formulation I (as described in Section 

4.5.3.1, Equations (4.27) and (4.28)) is applied to facilitate the development of an 

acceptable kriging metamodel for the single-variable function as introduced in Section 

4.6.1.  In this design of sequential experiments, we plan to identify 3 data points and 4 

validation points first; after this, we add in one new data point and one new validation 

point in each iteration until finally we get 11 points.  Stopping criteria on metamodel 

accuracy will not be used in this example, thus no metamodel validation is done in Step 5 

in SEED.  In this example, at the end of the sequential experimental design and 

metamodeling, we will develop a “final” metamodel with all 11 points and compare the 

accuracy of the metamodel with Metamodels (I) and (II) that are developed in Section 

4.6.1. 

Iteration I – Step 1: Initial Experimental Design.  In this step we design the 

initial experiments.  The number of data points to be identified is nd = 3.  As discussed in 

Section 4.5.4, there are three ways to design the initial experiments.  In this case, we 

decide to use the method of maximum entropy sampling as stated in (Currin, et al., 1991).  

The stationary assumption holds and no adjustment is done to the covariance matrix.  

Entries of the covariance matrix are calculated with Equations (4.19) and (4.20).  Since 
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there is no previous information available, we set the value of θ as 10 in building the 

covariance matrix.  The results (initial set of data points) are listed in Table 4.4. 

We wrote a FORTRAN program to construct the covariance matrix given a 

number of candidate points.  Then the determinant of this covariance matrix is calculated 

with another FORTRAN program.  These FORTRAN programs are linked in iSIGHT, 

and optimization is done to find out the set of candidate points with the largest value of 

determinant of the covariance matrix.  In our study, since the computation expense in 

entropy optimization is not high with the single-variable example, we do not use the 

“hiker” method as introduced in (Currin, et al., 1991).  Instead, we use various 

optimization techniques as implemented in iSIGHT to ensure the achievement of global 

optimum.  These optimization techniques include: Sequential Quadratic Programming 

(DONLP, NLPQL), Method of Feasible Directions (CONMIN), Modified Method of 

Feasible Directions, Mixed Integer Optimization (MOST), and Simulated Annealing 

(SA).  In real-world applications, we could either use the “hiker” approach or any of the 

first 6 techniques listed above.  When the computation expense is expected to be high, the 

SA technique may not be used since it requires a long time for convergence.  The C 

programs, usage of iSIGHT, and introduction of these optimization techniques are 

described in Appendix A in detail. 

Iteration I – Step 2: Simulation and Initial Metamodel of Responses.  

Response values are observed at 3 data points.  Data points and the corresponding 

response values are listed in Table 4.4.  A kriging metamodel is then developed based on 
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the information.  The value of θ is 98.71232; the kriging metamodel is illustrated in 

Figure 4.8. 

Table 4.4 Initial Experiments 

x 0.0 0.5 1.0 
y 0.618 0.0 0.0 
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Figure 4.8 Initial Metamodel with 3 Data Points 
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Iteration I – Step 3: Identification of New Validation Points.  In the first 

iteration, we only have information from data points and the initial metamodel.  In this 

step we need to identify validation points for the first iteration.  As described before, 

without enough information for metamodel validation, we will use the same method as 

that for data points (in Step 1) to select validation points.  In this sense, the validation 

points could be viewed as “possible data points” if we had decided to select more data 

points in Step 1.  Since we have nd = 3 data points in the one-dimension problem, the 

number of validation points could be nerror = nd + 1 = 4. 

A covariance matrix is constructed with the first 3 rows and columns 

corresponding to the 3 data points that we already decided, and the last 4 rows and 

columns corresponding to 4 candidate points.  Through maximization of the determinant 

of this 7×7 covariance matrix, we could identify 3 validation points for the first iteration 

as listed in Table 4.5. 

Table 4.5 Validation Points in the 1st Iteration 

x 0.167 0.333 0.667 0.833 
ypred 0.232 0.193 0.193 0.193 
yactual -0.991 0.0 0.0 0.0 
yerror 1.223 0.193 0.193 0.193 

 

Iteration I – Step 4: Metamodel of Prediction Errors.  In this step, prediction 

errors at both data and validation points are used to develop a metamodel to predict 

prediction errors across the design space.  The prediction errors are calculated following 
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the equation of error pred actualy y y= − , and listed in Table 4.5.  Note that prediction errors at 

3 data points are zero, which is not shown in Table 4.5. 

A kriging metamodel for predicting prediction errors is developed, and the plot for 

predicted prediction errors ˆerrory  vs. x is drawn in Figure 4.9.  The value of θ is 99.99880.  

The data points are represented by stars and validation points are presented by solid 

circles in Figure 4.9.  In Figure 4.9 we see that the predicted prediction error is large 

when x values are small, and tend to be smaller when x values become larger.  This is the 

same as we observed from Figure 4.8.  The usage of validation points not only helps us 

know how accurate a metamodel is, but also provides us information on how the 

metamodel performs in the design space.  However, the metamodel of prediction error is 

not very accurate because we have information at only 3 data points and 4 validation 

points.  The maximum absolute predicted prediction error, emax ≈ 1.3, is found through 

optimization. 

In Figure 4.9 we also see that local maximum predicted prediction errors tend to 

locate at validation points.  This is partly because that we do not have sufficient 

validation points to provide more accurate information on prediction errors.  Another 

reason may be that the example is a single-variable function; in multivariable examples 

validation points may not have (local) maximum predicted prediction errors because the 

surface of prediction errors may be “twisted” due to interactions among the design 

variables.  In each step of the sequential experimental design, we should try to get as 

accurate information as possible; however, it is not necessary to get very accurate 
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metamodels (neither for responses nor for prediction errors) in early iterations.  Usually, 

more accurate metamodels (for both responses and prediction errors) could be obtained 

through iterations, when we get more accurate information with more data and validation 

points. 
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Figure 4.9 Metamodel of Prediction Errors in the 1st Iteration 

Iteration I – Step 5: Metamodel Validation.  Since in this study we do not use 

the accuracy of the metamodel as the stopping criterion, we will not check the accuracy of 

the metamodel before finishing designing sequential experiments.  This step is then 

skipped here. 
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Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix.  To get 

more accurate metamodels, we decide to add in nnew = 1 data points.  As mentioned in 

Iteration I – Step 4, the maximum absolute predicted prediction error of the metamodel 

developed in Iteration I – Step 2 is about 29; this will be used to calculate entries of the 

adjusted covariance matrix. 

In this step, a 4×4 covariance matrix is first built with Equations (4.19) and (4.20) 

– holding the stationary assumption; this is done with the same FORTRAN program as 

mentioned in Iteration I – Step 1.  The first 3 rows and columns of the covariance matrix 

correspond to the 3 data points as identified in Iteration I – Step 1, and the last row and 

column correspond to the candidate point.  Then another FORTRAN program is used to 

predict prediction errors, ei, at the candidate point using the kriging metamodel developed 

in Iteration I – Step 4.  These prediction errors are used to calculate correcting 

coefficients following Equation (4.25), and the correcting coefficients are used to adjust 

the covariance matrix following Equations (4.27) and (4.28).  This is done in another 

FORTRAN program.  These FORTRAN programs are linked in iSIGHT. 

Iteration I – Step 7: Identification of New Data Points.  In this step, by 

maximizing the determinant of the adjusted covariance matrix as developed in Iteration I 

– Step 6, the new data point is identified as x = 0.180.  Since the new data point, x = 

0.180, is very close to one of the validation points, x = 0.167, we decide to use x = 0.167 

as the new data point; this avoids clustering of data/validation points and ensures great 

efficiency in the experimentation.  To decide whether a candidate point is too close to an 

existing point, we need to compare their distance with that between evenly allocated 
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points.  In this case, there are totally 8 points (4 data points plus 4 validation points) in a 

one-dimension design space, thus the average minimum distance between evenly 

allocated points should be around 0.143.  We can use 10% of this distance as a standard 

value in judging whether two points are too close or not; in cases where high nonlinearity 

exists, this value may be smaller and in cases where the expected response surface is flat, 

this value should be larger.  In this case, the smallest distance between the candidate point 

and existing points is 0.013, which is much smaller than 10% of 0.143, i.e., 0.0143.  

Future research may be needed in determining whether two points are too close or not.   

Iteration I – Step 8: Updated Metamodel of Responses.  Now we have 4 data 

points, as listed in Table 4.6.  A new kriging metamodel is developed with information 

from these 4 data points.  We got θ as 99.99233.  The kriging model is as illustrated in 

Figure 4.10.   

In Figure 4.10, we see that the new kriging metamodel is more accurate than the 

initial metamodel as illustrated in Figure 4.8.  However, the new kriging model still does 

not catch the details of the actual responses at low x values (as illustrated in Figure 4.5).  

Following the flowchart in Figure 4.4, we go to Step 3 of the 2nd iteration. 

Table 4.6 Four Data Points 

x 0.0 0.167 0.5 1.0 
y 0.618 -0.991 0.0 0.0 
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Figure 4.10 Kriging Metamodel with 4 Data Points 

Iteration II – Step 3: Identification of New Validation Points.  We need to 

select 2 more validation points in order to have 9 observed points after this step.  

Following the method described in Section IV, a metamodel of response is developed 

with 3 validation points (as illustrated in Figure 4.11), and prediction errors of this 

particular metamodel are observed at 4 data points.  A metamodel of prediction errors is 

then developed and illustrated in Figure 4.12.  Note that in Figure 4.11 and Figure 4.12 

stars represent data points (in order to bring in most informative new validation points, 

the data points are used as validation points in Iteration II – Step 3), and solid dots 
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represent validation points (in this step, these validation points are used to develop a 

metamodel of response to help identify most informative new validation points). 

A 9×9 covariance matrix is then formulated, with the first 3 rows and columns 

corresponding to the validation points, the 4th to 7th rows and columns corresponding to 

data points, and the last 2 rows and columns corresponding to new validation points.  

Following the same method as used in Iteration I – Step 6 and Step 7, the covariance 

matrix is adjusted and new validation points are identified, at x = 0.122, and x = 0.235, as 

listed in Table 4.7. 
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Figure 4.11 Metamodel Developed with 3 Validation Points in Iteration II – Step 3 
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Figure 4.12 Metamodel of Prediction Errors Calculated in Iteration II – Step 3 

Table 4.7 New Validation Point Added in the 2nd Iteration 

x 0.122 0.235 
y -1.357 0.0 

 

 

Iteration II – Step 4: Metamodel of Prediction Errors.  Prediction errors at 5 

validation points are listed in Table 4.8 and illustrated in Figure 4.13 by solid circles.  As 



 241

shown before, prediction errors at 4 data points are all zero.  A kriging metamodel of 

prediction errors is built with information from these 9 points, and illustrated in Figure 

4.13.  The maximum absolute predicted prediction error is emax ≈ 0.8. 

Table 4.8 Prediction Errors at 5 Validation Points 

x 0.122 0.235 0.333 0.667 0.833 
ypred -0.691 -0.684 -0.145 -0.085 -0.085 
yactual -1.357 0.0 0.0 0.0 0.0 
yerror 0.666 -0.684 -0.145 -0.085 -0.085 

 
 

 

Figure 4.13 Metamodel of Prediction Errors with 5 Validation Points 
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Iteration II – Step 5: Metamodel Validation.  As explained in Iteration I – Step 

5, this step is skipped because the accuracy of metamodels is not used as the stopping 

criterion in SEED with the single-variable example. 

Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix.  In this 

iteration we will add in nnew = 1 new data point.  The maximum absolute predicted 

prediction error is about 0.8 with the current metamodel (by finding out the maximum 

absolute value of the metamodel developed in Iteration II – Step 4).  To formulate the 

adjusted covariance matrix we follow similar method to that in Iteration I – Step 6.  A 

5×5 correlation matrix is developed, with the first 4 rows and columns corresponding to 

the 4 data points we already had, and the rest corresponding to the candidate point.  The 

value of λ in Equation (4.28) is set to be 2.   

Iteration II – Step 7: Identification of New Data Points.  By maximizing the 

determinant of the adjusted correlation matrix as built in Iteration II – Step 6, we are able 

to identify the possible new data point as x = 0.75.  Since the possible new data points, x 

= 0.75, is not very close to any of the validation points, we take it as the new data point.  

All 5 data points are listed in Table 4.9. 

Table 4.9 Five Data Points 

x 0.0 0.167 0.5 1.0 0.75 
y 0.618 -0.991 0 0 0 
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Iteration II – Step 8: Updated Metamodel of Responses.  A new kriging 

metamodel is developed with information from the 5 data points as listed in Table 4.9.  

We got θ as 99.99987.  The kriging model is illustrated in Figure 4.14. 
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Figure 4.14 Metamodel of Responses with 5 Data Points 

Iteration III – Step 3: Identification of New Validation Points.  Now we have 

5 data points and 5 validation points.  Because we have a limit on the total number of 

points observed (11 points), we can only add in one more point in Iteration III.  Following 
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similar approach as in Iteration II – Step 3, in this step we first develop metamodel of 

responses with 5 validation points (as illustrated in Figure 4.15), then prediction errors at 

5 data points are observed and a metamodel of prediction errors is built (as illustrated in 

Figure 4.16).   

An 11×11 covariance matrix is then formulated, with the first 5 rows and columns 

corresponding to the validation points, the 6th to 10th rows and columns corresponding to 

data points, and the last row and column corresponding to the new validation point.  

Following the same method as used in Iteration I – Step 6 and Step 7, the covariance 

matrix is adjusted and new validation points are identified, at x = 0.047. 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 

Figure 4.15 Metamodel Developed with 5 Validation Points in Iteration III – Step 3 
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Figure 4.16 Metamodel of Prediction Errors Calculated in Iteration III – Step 3 

Iteration III – Step 4: Metamodel of Prediction Errors.  Prediction errors at 6 

validation points are listed in Table 4.10 and illustrated in Figure 4.17 by solid circles.  

As shown before, prediction errors at 5 data points are all zero.  A metamodel of 

prediction errors is built with information from these 11 points, and illustrated in Figure 

4.17.  The value of θ for this kriging metamodel is 99.99995.  The maximum absolute 

predicted prediction error is emax ≈ 1.5. 
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Table 4.10 Prediction Errors at 6 Validation Points 

x 0.122 0.235 0.333 0.667 0.833 0.047 
ypred -0.691 -0.684 -0.145 -0.085 -0.085 0.3 
yactual -1.357 0 0 0 0 1.784 
yerror 0.666 -0.684 -0.145 -0.085 -0.085 -1.484 
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Figure 4.17 Metamodel of Prediction Errors with 6 Validation Points 

Iteration III – Step 5: Metamodel Validation.  In this example, the SEED 

method finally stopped in Iteration III when 11 points are observed.  Data and validation 

points are listed in Table 4.11.  As stated at the beginning of this section, the final 

metamodel is developed with all 11 observed points.  We name this set of points as Data 

Set III.  The corresponding metamodel is illustrated in Figure 4.18.   
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Table 4.11 Points Obtained with SEED (Formulation I) – Data Set III 

x 0.0 0.5 1.0 0.167 0.75  
Data Points 

y 0.618 0.0 0.0 -0.991 0.0  
x 0.333 0.667 0.833 0.122 0.235 0.047 Validation 

Points y 0.0 0.0 0.0 -1.357 0.0 1.784 
 

 

 

Figure 4.18 Metamodel of Responses with 11 Points (SEED Formulation I) 

After validating this metamodel with 201 validation points that evenly spread over 

the design space, we got the maximum absolute prediction error of this metamodel is 

MAX = 0.371, and the root mean squared error is RMSE = 0.113.  Comparison and 

discussion of the result in this section with that from single-stage experiments (Section 
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4.6.1) will be done after we demonstrate and study the application of Formulation II of 

the SEED method with the single-variable example in Section 4.6.3. 

4.6.3 Application of SEED in the Single-Variable Example – Formulation II 

In this section, the SEED method with Formulation I (as described in Section 

4.5.3.2, Equations (4.27) and (4.34)) is applied to facilitate the development of an 

acceptable kriging metamodel for the single-variable function as introduced in Section 

4.6.1.  In this design of sequential experiments, similar to what have done in Section 

4.6.2, we plan to identify 3 data points and 4 validation points first; 4 more points will be 

added in following iterations until eventually we get 11 observed points.  Stopping 

criteria on metamodel accuracy will not be used in this example, thus no metamodel 

validation is done in Step 5 in SEED.   

Iteration I – Step 1: Initial Experimental Design.  In this step, we use the same 

approach as in Section 4.6.2 to design the initial experiments.  Since all conditions are the 

same, we got the same set of data points in the initial experimental design as listed in 

Table 4.4. 

Iteration I – Step 2: Simulation and Initial Metamodel of Responses.  Since 

the initial experiments are the same as that in Section 4.6.2, the initial metamodel is also 

the same as that illustrated in Figure 4.8. 

Iteration I – Step 3: Identification of New Validation Points.  In this step, since 

the information from current data points and metamodel is the same as that in Section 
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4.6.2, new validation points should be the same as that in Iteration I – Step 3 in Section 

4.6.2.  This set of validation points is listed in Table 4.5. 

Iteration I – Step 4: Metamodel of Prediction Errors.  In this step, a 

metamodel of prediction errors is developed with information from 3 data points and 4 

validation points.  The metamodel of prediction errors is the same as that developed in 

Iteration I – Step 4 in Section 4.6.2. 

Iteration I – Step 5: Metamodel Validation.  Similar to our strategy in Section 

4.6.2, the step of metamodel validation is skipped in the study of the single-variable 

example. 

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix.  In this 

iteration we decide to add in nnew = 1 new data point.  In this step, entries of the adjusted 

covariance matrix are calculated following Formulation II of the SEED method as 

described in Section 4.5.3.2.  The key equations here are Equations (4.27) and (4.34), 

which are different from those used in Section 4.6.2 (Equations (4.27) and (4.28)). 

In this step, a 4×4 covariance matrix is first built with Equations (4.19) and (4.20) 

– holding the stationary assumption; this is done with the same FORTRAN program as 

used in Iteration I – Step 6 in Section 4.6.2.  The first 3 rows and columns of the 

covariance matrix correspond to the 3 data points as identified in Iteration I – Step 1, and 

the last row and column correspond to the candidate point.  Then another FORTRAN 

program is used to predict prediction errors, ei, at the two candidate points using the 

kriging metamodel developed in Iteration I – Step 4.  These prediction errors are used to 

calculate correcting coefficients following Equation (4.32), and the correcting coefficients 
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are used to adjust the covariance matrix following Equations (4.27) and (4.34).  This is 

done in another FORTRAN program.  These FORTRAN programs are linked in iSIGHT.  

For details, see Appendix A. 

Iteration I – Step 7: Identification of New Data Points.  By maximizing the 

determinant of the covariance matrix developed in Iteration I – Step 6, we are able to 

identify two possible new data points as x = 0.17. 

Note that the possible new data point, x = 0.17, is very close to one of the 

validation points, x = 0.167, thus we decide to use x = 0.167 as the new data point to 

avoid clustering.  Four data points are listed in Table 4.12. 

Table 4.12 Four Data Points Identified in the 1st Iteration 

x 0.0 0.5 1.0 0.167 
y 0.618 0.0 0.0 -0.991 

 

Iteration I – Step 8: Updated Metamodel of Responses.  Now we have 4 data 

points as listed in Table 4.12.  In this step, a new metamodel of responses is developed 

based on the information from Table 4.12.  The value of θ for this metamodel is 

99.99964.  The new kriging metamodel is illustrated in Figure 4.19.  Since we have only 

7 observed points in this iteration, we will go to the next iteration for more points. 
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Figure 4.19 Metamodel of Responses with 4 Data Points in the 1st Iteration 

Iteration II – Step 3: Identification of New Validation Points.  Now we have 4 

data points and 3 validation points.  In this step, we need to identify 2 new validation 

points to ensure that we have one more validation points than data points.  Following the 

method described in Section IV, a metamodel of response is developed with 4 validation 

points (as illustrated in Figure 4.20), and prediction errors of this particular metamodel 

are observed at 4 data points.  A metamodel of prediction errors is then developed and 

illustrated in Figure 4.21.  Note that in Figure 4.20 and Figure 4.21 stars represent data 

points (in order to bring in most informative new validation points, data points are used 

Actual Function 

Metamodel 
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as validation points in this step), and solid dots represent validation points (in this step, 

these validation points are used to develop a metamodel of response to help identify most 

informative new validation points). 

A 9×9 covariance matrix is then formulated, with the first 4 rows and columns 

corresponding to the validation points, the 5th to 7th rows and columns corresponding to 

data points, and the last 2 rows and columns corresponding to the new validation points.  

Following the same method as used in Iteration I – Step 6 and Step 7, the covariance 

matrix is adjusted and new validation points are identified as listed in Table 4.13. 
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Figure 4.20 Metamodel Developed with 3 Validation Points in Iteration II – Step 3 

Actual Function 

Metamodel 
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Figure 4.21 Metamodel of Prediction Errors Calculated in Iteration II – Step 3 

Table 4.13 New Validation Point Added in the 2nd Iteration 

x 0.157 0.252 
y -1.310 0.0 

 

 

Iteration II – Step 4: Metamodel of Prediction Errors.  In this step, a 

metamodel of prediction errors is developed based on information of prediction errors at 

4 data points (all are zero’s) and 5 validation points.  Prediction errors at validation points 
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are listed in Table 4.14.  The metamodel of prediction errors is illustrated in Figure 4.22.  

The value of θ for this metamodel is 99.99997.  The maximum absolute predicted 

prediction error is emax ≈ 1.87. 
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Figure 4.22 Metamodel of Prediction Errors in the 2nd Iteration 

Table 4.14 Prediction Errors at 5 Validation Points in the 2nd Iteration 

x 0.157 0.252 0.333 0.667 0.833 
ypred -0.964 -0.55 -0.145 -0.085 -0.085 
yactual -1.31 0 0 0 0 
yerror 0.346 -0.55 -0.145 -0.085 -0.085 

 

Iteration II – Step 5: Metamodel Validation.  This step is skipped. 
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Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix.  In this 

iteration we decide to add in nnew = 1 new data point.  In this step, entries of the adjusted 

covariance matrix are calculated following Formulation II of the SEED method as 

described in Section 4.5.3.2.  The key equations here are Equations (4.27) and (4.34). 

Iteration II – Step 7: Identification of New Data Points.  By maximizing the 

determinant of the covariance matrix developed in Iteration II – Step 7, we are able to 

identify the new data point as x = 0.758. 

Iteration II – Step 8: Updated Metamodel of Responses.  Now we have 5 data 

points, as listed in Table 4.15.  A new kriging metamodel is developed with this 

information and illustrated in Figure 4.23.  The value of θ for this metamodel is 

99.99987. 

Table 4.15 Five Data Points Used in the 2nd Iteration 

x 0.0 0.5 1.0 0.167 0.758 
y 0.618 0.0 0.0 -0.991 0.0 
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Figure 4.23 Metamodel of Responses with 5 Data Points 

Iteration III – Step 3: Identification of New Validation Points.  Note that we 

do not use the accuracy of metamodels as the stopping criterion in this example.  Since 

we have got 10 observed points, we will only add in one more point in this iteration.  

Following similar approach as in Iteration II – Step 3, in this step we first develop 

metamodel of responses with 5 validation points (as illustrated in Figure 4.24), then 

prediction errors at 5 data points are observed and a metamodel of prediction errors is 

built (as illustrated in Figure 4.16).   

Metamodel 

Actual Function 
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Figure 4.24 Metamodel of Responses Developed in Iteration III – Step 3 
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Figure 4.25 Metamodel of Prediction Errors Developed in Iteration III – Step 3 
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An 11×11 covariance matrix is then formulated, with the first 5 rows and columns 

corresponding to the validation points, the 6th to 10th rows and columns corresponding to 

data points, and the last row and column corresponding to the new validation point.  

Following the same method as used in Iteration I – Step 6 and Step 7, the covariance 

matrix is adjusted and new validation points are identified, at x = 0.045. 

Table 4.16 Prediction Errors at Five Validation Points 

x 0.045 0.157 0.252 0.333 0.667 0.833 
ypred 0.322 -0.964 -0.539 -0.129 -0.036 -0.027 
yactual 1.812 -1.31 0 0 0 0 
yerror -1.49 0.346 -0.539 -0.129 -0.036 -0.027 
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Figure 4.26 Metamodel of Responses with 11 Points (SEED Formulation II) 
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Since we already got 11 points, the SEED process stopped in this iteration.  

Prediction errors at 6 validation points are presented in Table 4.16.  Same as what we did 

in Section 4.6.2, a final kriging metamodel is developed based on information at 11 

observed points, and illustrated in Figure 4.26.  The value of θ for this metamodel is 100.  

After validating this metamodel with 201 validation points that evenly spread over the 

design space, we got the maximum absolute prediction error of this metamodel is MAX = 

0.622, and the root mean squared error is RMSE = 0.198.   

 

In this section four approaches are used to design experiments and develop 

kriging metamodels for the single-variable example.  In Section 4.6.1, two “single-stage” 

methods are studied, in one of which all the data points are identified in a single step 

(Metamodel (I), Figure 4.6), and in the other the data points are added in sequentially but 

without adjustment based on information from previous experiments (Metamodel (II), 

Figure 4.7).  The SEED method with Formulation I is applied in Section 4.6.2 and the 

metamodel is illustrated in Figure 4.18.  The SEED method with Formulation II is applied 

in Section 4.6.3 and the metamodel is illustrated in Figure 4.26.  Based on studies in this 

section, the maximum absolute error (MAX) and root mean squared error (RMSE) of the 

kriging metamodels from different approaches are calculated with information from 201 

validation points and listed in Table 4.17.  For more details of the information shown in 

Table 4.17, see discussions in Sections 4.6.1, 4.6.2, and 4.6.3. 
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Table 4.17 Accuracy of Kriging Metamodels from Different Approaches 

Single-Stage Approach SEED 
Points Added at 

One Time  
Points Added 
Sequentially 

 

Metamodel I Metamodel II 
Formulation I Formulation II 

MAX 1.730 1.711 0.371 0.622 
RMSE 0.452 0.472 0.113 0.198 

 

In Table 4.17, we see clearly that with the SEED approach, no matter which 

formulation is used, values of MAX and RMSE of the metamodels are much smaller than 

those of Metamodels I and II with single-stage approaches.  This shows that metamodels 

with the SEED approach are more effective than those with single-stage approaches.  

With the SEED approach, data points are allocated in “crucial” regions where there are 

large expected prediction errors; the information brought in by each new data point is 

more than that in single-stage experiments.  This could also be seen through comparison 

of Figure 4.6, Figure 4.7, Figure 4.18, and Figure 4.26. 

We also observe that designers may meet problem in selecting points at some 

stages in the method by Currin and co-authors (Data Set II) because there may be two or 

more points that are equally good with their criteria.  In Data Set II, if the number of 

observed points is not set to be 11 (for example, it could be set to be 12 or 13), designers 

will not be able to select the “better” set of data points in experimental design.  Dilemma 

in design of experiments will be inevitable.  Thus, with single-stage experimental design 

method, the achievement of accurate metamodels is not guaranteed; the result of 

experimental design is very sensitive to decisions made by designers in the metamodeling 
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process.  Our study shows the SEED method is robust to decisions made by designers in 

the metamodeling process; the achievement of accurate metamodels is guaranteed. 

The SEED method will be used in RCEM to facilitate efficient development of 

accurate metamodels for design space exploration.  To be specific, the SEED method will 

replace Processors B, C, D, and E in RCEM, as illustrated in Figure 4.27.  This is further 

discussed in Chapters 5 and 6. 

      

Figure 4.27 Application of SEED in RCEM 

4.7 A LOOK BACK AND A LOOK AHEAD 

The method of Sequential Exploratory Experimental Design (SEED) is developed 

in this chapter.  The SEED method is demonstrated and verified with a single-variable 

example.  Research in this chapter helps answer Research Question 2 and its sub-

questions; the corresponding hypotheses are tested.  Research Question 2, its sub-

questions, and corresponding hypotheses are listed below. 
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R.Q.2: How to design sequential computer experiments (how to select data and 

validation points sequentially) to get an accurate metamodel? 

Hypothesis 2:  Sequential experiments could be designed through analysis of 

information from data/validation points and metamodels. 

 

R.Q.2.1: How to measure the information worth of a point? 

Sub-Hypothesis 2.1:  The information worth of a point could be measured with 

entropy. 

 

R.Q.2.2: How to select validation points to achieve a sequential design of 

computer experiments? 

Sub-Hypothesis 2.2:  Selection of validation points should follow similar rules 

for selection of data points; information from validation points could be used 

as guidance in identifying new data points. 

 

R.Q.2.3: How to utilize information from previous points and metamodels in 

identifying new data points?  

Sub-Hypothesis 2.3:  Through maximizing entropy (as formulated based on Sub-

Hypotheses 1.1 and 1.2) we are able to allocate new data points in the design 

space that yield maximum potential information. 

 

To answer Research Question 2, the method of Sequential Exploratory 

Experimental Design (SEED) is developed based on D-optimal design and maximum 

entropy sampling.  In this chapter, we verified that with the SEED method, designers are 

able to add in new data points with large amount of potential information, and thus 



 263

accurate metamodels could be achieved efficiently.  Information from current data and 

validation points and metamodels are used as guidance in identifying new data points.  

Hypothesis 2 is verified; our answer to Research Question 2 is: Accurate metamodels can 

be developed through iterations in sequential experimental design with the SEED 

method, in which information from current data/validation points and metamodels is 

used as guidance in identifying new data points.   

Research Question 2.1 is answered primarily in Sections 4.3 and 4.4.  The 

application of Bayesian entropy design in SEED in Sections 4.5 and 4.6 supports our idea 

from Sections 4.3 and 4.4.  A clear statement on Research Question 2.1 is presented at the 

beginning of Section 4.5.  Sub-Hypothesis 2.1 is tested; our answer to Research Question 

2.1 is: The entropy criterion could be used to measure the information worth of a new 

point. 

Research Question 2.2 is studied in developing and verifying the SEED method in 

Sections 4.5 and 4.6; Sub-Hypothesis 2.2 is tested.  The usage of validation points and 

observation of prediction errors are necessary steps in the SEED method; it provides the 

foundation for adjusting the covariance matrix, which is the core of the SEED method.  In 

the SEED method, validation points are added sequentially in iterations; as more and 

more data and validation points are observed, designers are able to develop more and 

more accurate metamodels for responses and prediction errors.  In Section 4.6, different 

strategies on selecting validation points are applied and studied in the SEED method.  

Our answer to Research Question 2.2 is: Validation points should be added in iterations 
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in sequential experimental design; information from validation points should be used as 

guidance in identifying future data points. 

Research Question 2.3 is answered and Sub-Hypothesis 2.3 is tested in the 

development of the SEED method.  To be specific, the method of maximum entropy 

sampling is introduced in Section 4.4; in Section 4.5.2, strategies on how to utilize 

information from previous points and metamodels are discussed; the mathematical 

formulations in SEED is developed in Section 4.5.3, which enables designers to design 

sequential experiments through maximizing entropy; Demonstration and verification is 

enclosed in Section 4.6.  Our answer to Research Question 2.3 is: Information from 

current data/validation points and metamodels could be used to build the adjusted 

covariance matrix; new data points could be identified through maximizing the 

determinant of the adjusted covariance matrix. 

Chapter 4 is the foundation of research in the following 2 chapters.  In the next 

chapter, the SEED method is further developed and tested with different types of 

metamodels.  In Chapter 5, as a support to the SEED method and the Efficient Robust 

Concept Exploration Method (to be developed in Chapter 6), research is done on 

comparison of different types of metamodels, sequential experimental design in irregular 

design spaces, and metamodel selection along the design timeline.  In Chapter 6, ideas 

from the SEED method will be further developed and used in developing the Efficient 

Robust Concept Exploration Method (E-RCEM), in which the design process of 

metamodeling and design space exploration are integrated and efficient exploration of the 

design space is facilitated. 
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5. 5 
CHAPTER 5 

SEQUENTIAL METAMODELING ALONG THE 
DESIGN TIMELINE 

 

In Chapter 4, the method of Sequential Exploratory Experimental Design (SEED) 

is developed and studied with kriging metamodels and a very simple example.  In this 

chapter, studies on SEED are extended with the application of other types of metamodels, 

i.e., Response Surface (RS) models and Multivariate Adaptive Regression Splines 

(MARS) models.  In this chapter, first we will study the performance of kriging and 

univariate quintic regression spline (application of MARS in one-dimensional problems) 

metamodels in response surface prediction in Section 5.2.  The application of SEED with 

MARS metamodels is described and studied in Section 5.3.  Then the approach of 

sequential utilization of RS, kriging, and MARS metamodels along the design timeline is 

described in Section 5.4.  This approach is illustrated with a simple engineering example 

in Section 5.5.  A look back and a look forward are enclosed in Section 5.6.  Research 

questions visited in this chapter are R.Q.2, R.Q.4, their sub- research questions, and 

R.Q.3.2. 
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5.1 WHAT IS PRESENTED IN THIS CHAPTER 

In Chapter 3 we studied metamodel validation techniques to answer Research 

Question 1 in this dissertation.  In Chapter 4, the method of Sequential Exploratory 

Experimental Design (SEED) is developed and studied to help answer Research Question 

2.  In this chapter, the application of SEED is extended with other types of metamodel, 

i.e., Response Surface (RS) models and Multivariate Adaptive Regression Splines 

(MARS) models.   

Research Question 2, How to design sequential computer experiments (how to 

select data and validation points sequentially) to get an accurate metamodel?, is revisited 

in this chapter with the utilization of MARS metamodels.  This is specifically done in 

Section 5.3, where kriging models and MARS models are used together in the application 

of SEED with a simple example. 

The comparison of kriging and regression spline (application of MARS in one-

dimensional problems) metamodels is done in Section 5.2, which helps answer Research 

Question 4.1, How do different types of metamodels perform in engineering design?, and 

Research Question 4.2, How to select different types of metamodels at different design 

stages?  Previous studies on RS metamodels and various types of kriging metamodels 

also contribute to answers to these research questions. 

Based on studies in Sections 5.2 and 5.3, an approach is developed in Section 5.4, 

in which RS, kriging, and MARS metamodels are utilized together to help efficiently and 

effectively develop acceptable metamodels in engineering design.  This approach is then 
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illustrated through the application with a simple engineering example in Section 5.5.  

This helps answer Research Question 4, How to utilize different types of metamodels 

along the design timeline in accordance with the changing design information? 

In Section 5.6 we revisit research questions and hypotheses discussed in this 

chapter.  Studies in Chapters 3, 4, and 5 build the foundation for research in Chapter 6, in 

which the Efficient Robust Concept Exploration Method (E-RCEM) is developed and 

studied to facilitate efficient exploration of the design space for robust solutions. 

5.2 A COMPARISON OF KRIGING AND MARS METAMODELS IN 
RESPONSE PREDICTION 

Research questions to be studied in this section are R.Q. 4.1, How do different 

types of metamodels perform in engineering design? and R.Q. 4.2, How to select different 

types of metamodels at different design stages?  The comparison of Response Surface 

(RS) metamodels and kriging metamodels with various types of correlation functions has 

been done in (Simpson, 1998) and (Lin, 2000), and will not be performed in this 

dissertation.  In order to answer R.Q. 4.1 and R.Q. 4.2, in this section first we observe and 

analyze the performance of kriging and univariate quintic regression spline (application 

of MARS in one-dimensional problems) metamodels with space filling experiments in 

Section 5.2.1.  Then in Section 5.2.2, the observation and analysis are extended to cases 

in which non-space-filling data points are used (which is typical in sequential 

experiments).  The example used in this section is a single-variable function. 
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5.2.1 An Observation and Analysis on the Performance of Kriging and Univariate 
Regression Spline Metamodels in Response Prediction with Space-Filling 
Experiments 

In this section, we observe and analyze the performance of kriging metamodels 

and regression splines in response prediction with space filling data points.  The kriging 

metamodel is developed with the Gaussian correlation function as expressed in Equation 

(2.14) in Chapter 2.  The regression splines are actually applications of MARS in one-

dimensional problems.  In building the regression splines, we use the implementation of 

MARS in (Chen, et al., 1999).  For regression splines metamodels in this chapter, if not 

specifically pointed out, the number of maximum basis functions is set to be 50; the 

number of knots is set equal to the number of data points; the maximum number of splits 

is set to be 2, which is suitable for two-way interactions and apparently more than enough 

for the single-variable function.  Details of the kriging and regression splines will be 

described later in this section.   

In this study we use a single-variable function taken from (Farhang-Mehr and 

Azarm, 2002): 

22 7 2000( 0.25)

2 2

( ) (1 ) 6 sin(10 ) 0.2

60min(0,| 0.14 | 0.08) [ln( 0.2) 1.5sin (85 )]

x x xf x e xe x e

x x x

− − − −= − + −
+ − − + +

   (5.1) 

In our study in this section, the design variable x is set to be within the design space of 

[0,1].  The actual response surface of Equation (5.1) with x = [0,1] is shown in Figure 5.1.  

The global minimum happens at x = 0 with y = 0; the global maximum happens around x 

= 0.165 with y = 0.953. 
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In Figure 5.1 we see that this single-variable function is very highly nonlinear in 

the design space of x∈  [0.15,0.35], and very flat when x is large.  This single-variable 

function provides a very good platform with which we could compare the performance of 

kriging metamodels and regression splines.  Since there is only one design variable, we 

could choose to have data points evenly spread over the whole design space of [0,1].  In 

order to observe how kriging and regression splines works with different number of data 

points, we choose three different sets of data points, one with 6 data points, another with 

12, and the third with 18 data points.  We use two software to develop the kriging 

metamodels; one is the computer program written by Simpson (see, Simpson 1998) and 

the other is commercial software named iSIGHT.  The software used to develop 

regression splines is from (Chen, et al., 1999). 
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Figure 5.1 A Single-Variable Function 
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The set of 6 data points is listed in Table 5.1.  The corresponding kriging and 

regression spline metamodels are illustrated in Figure 5.2 and Figure 5.3, respectively.  

The value of θ for the kriging metamodel is 99.9999.  To build the regression spline 

metamodel, we use 6 knots in the x dimension, which is equal to the number of data 

points; Backwards deletion is used in this metamodeling.  Results of regression splines 

approximation are saved in the file named qmars.dat, and the content is presented in 

Appendix B.  In Figure 5.2 and Figure 5.3 we see that with 6 data points both kriging and 

regression spline metamodels performs well in grasping the response surface at regions 

with very small and large x values.  Both of them do not catch the high nonlinearity in x ∈  

[0.15,0.35] since we do not have enough information in this region.  The regression spline 

metamodel is a little superior to the kriging metamodel as we see that there are two 

“waves” around x = 0.7 and 0.9 in Figure 5.2, the kriging metamodel. 

Table 5.1 Data Point Set I – 6 Points 

x 0.0 0.2 0.4 0.6 0.8 1.0 
y 0.0 0.87017 0.60729 0.88250 0.85041 0.86169 
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Figure 5.2 Kriging Metamodel with 6 Data Points 
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Figure 5.3 Regression Spline Metamodel with 6 Data Points 
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Now let us see how kriging and regression spline metamodels perform with 12 

data points.  Similar to that in Table 5.1, we select 12 data points evenly spread over x ∈  

[0,1.0], as listed in Table 5.2.  The corresponding kriging metamodel is illustrated in 

Figure 5.4.  The value of θ for the kriging metamodel is 19.49807.  The regression spline 

metamodel is illustrated in Figure 5.5.  Details of this regression spline model are 

presented in Appendix B. 

Table 5.2 Data Point Set II – 12 Points 

x 0.0 0.090909 0.181818 0.272727 0.363636 0.454545 
y 0.0 0.694415 0.794018 0.674573 0.619361 0.628709 
x 0.545455 0.636364 0.727273 0.818182 0.909091 1.0 
y 0.718714 0.80075 0.840776 0.851326 0.854544 0.861688 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel
 

Figure 5.4 Kriging Metamodel with 12 Data Points 
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Figure 5.5 Regression Spline Metamodel with 12 Data Points 

In Figure 5.4 and Figure 5.5 we see that the kriging and regression spline 

metamodels perform approximately the same in response prediction.  Compared to Figure 

5.2 and Figure 5.3 in which only 6 data points are used, the metamodels in Figure 5.4 and 

Figure 5.5 do not improve much even we used 12 data points.  The reason is that all data 

points are allocated evenly over the design space, thus there are no enough points in the 

highly nonlinear region.  As discussed in Chapter 4, this is the main shortcoming of 

single-stage experimental design, and the SEED method could help achieve accurate 

metamodels with relatively fewer data points.   

Another thing to be noticed is that the kriging metamodel improves more than the 

regression spline metamodel after using more data points.  This is because that the kriging 
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metamodel with 6 data points (Figure 5.2) does not perform very well around x = 0.7 and 

0.9.  By using more data points in the flat region (with large x values), the kriging 

metamodel is able to grasp the fluctuation on the response surface.   

It is expected that an accurate kriging metamodel could be developed as long as 

we have enough data points.  Now let us see how kriging and regression spline 

metamodels perform with 18 data points for the single-variable function.  These 18 data 

points are selected uniformly in [0,1], as listed in Table 5.3.  The corresponding kriging 

and regression spline metamodels are shown in Figure 5.6 and Figure 5.7, respectively.  

The value of θ is 99.99999683, and this works in this case.  Details about the regression 

spline metamodel are attached in Appendix B.  In Figure 5.6 and Figure 5.7 we see that 

both kriging and regression spline metamodels are more accurate with 18 data points than 

those with 6 or 12 data points.   

 

Table 5.3 Data Set III – 18 Points 

x 0.0 0.058824 0.117647 0.176471 0.235294 0.294118 
y 0.0 0.51409 0.642286 0.83149 0.684104 0.702732 
x 0.352941 0.411765 0.470588 0.529412 0.588235 0.647059 
y 0.627525 0.608298 0.641646 0.701418 0.76189 0.807675 
x 0.705882 0.764706 0.823529 0.882353 0.941176 1 
y 0.83488 0.847302 0.0851541 0.85343 0.856438 0.861688 
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Figure 5.6 Kriging Metamodel with 18 Data Points 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Actual Function Regression Spline Metamodel
 

Figure 5.7 Regression Spline Metamodel with 18 Data Points 
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Now let us see how kriging and regression spline metamodels work with 24 data 

points.  Similar to previous studies, these data points spread over the design space 

uniformly, as shown in Table 3.4.  The corresponding regression spline metamodel is 

illustrated in Figure 5.8.  Details about this regression spline metamodel are presented in 

Appendix B.  As for the kriging metamodel, we got θ = 283.0647.  The kriging 

metamodel is illustrated in Figure 5.9. 

Table 3.4 Data Set IV – 24 Points 

x 0 0.0434783 0.0869565 0.1304348 0.1739130 0.2173913 
y 0 0.422047 0.660364 0.930513 0.866839 0.816847 
x 0.2608696 0.3043478 0.3478261 0.3913043 0.4347826 0.4782609 
y 0.610096 0.688948 0.632174 0.608023 0.616353 0.64856 
x 0.5217391 0.5652174 0.6086957 0.6521739 0.6956522 0.7391304 
y 0.693114 0.739403 0.779896 0.810762 0.831379 0.843307 
x 0.7826087 0.8260870 0.8695652 0.9130435 0.9565217 1 
y 0.849152 0.851638 0.853004 0.854741 0.857589 0.861688 
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Figure 5.8 Regression Spline Metamodel with 24 Data Points 
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Figure 5.9 Kriging Metamodel with 24 Data Points 

Now let us see the last “space-filling” design with 65 data points – all these points 

are evenly spreading over the design space of [0,1].  Details about these points will not be 

put here.  The regression spline metamodel is illustrated in Figure 5.10.  The value of θ in 

the kriging metamodel is 2099.77433.  The corresponding kriging metamodel is 

illustrated in Figure 5.11.  In Figure 5.11 we see that though the kriging metamodel has 

some fluctuations on the deep slope between [0,0.1] (note that in Figure 5.10 the 

regression spline metamodel performs well on this slope – the predicted surface is very 

smooth), it captures the highly nonlinear response surface in [0.1,0.3] better than previous 

kriging metamodels do. 
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Figure 5.10 Regression Spline Metamodel with 65 Data Points 
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Figure 5.11 Kriging Metamodel with 65 Data Points 
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Suppose now we want to develop a very accurate metamodel for the single-

variable function, thus more data points should be used.  This time we decide to use 201 

data points evenly spread over [0,1].  The corresponding regression spline metamodel is 

illustrated in Figure 5.12; details are presented in Appendix B.  The kriging metamodel is 

illustrated in Figure 5.13; the value of θ is 7016.42038. 

Based on the examples above, we observe that when the number of data point 

increases, the value of θ increases too.  It has been stated by many researchers (see, e.g., 

Simpson, 1998; Farhang-Mehr and Azarm, 2002) that a value of 10 to 100 for θ implies 

very rapid decaying correlation.  In our examples, we meet θ values much larger than 

their suggestions (actually, we had to modify Simpson’s code to increase its upper limit 

on possible θ values).  On a highly nonlinear response surface, each of the data points 

conveys little information at its neighborhood; this yields a large value for θ.  When there 

are few data points, the high nonlinearity on the response surface is not captured and a 

small θ value could explain the available information.  However, when more data points 

are used, the high nonlinearity on the response surface is sensed and as a result, larger 

values of θ are needed to reflect this fluctuating surface.  In this case, the response surface 

in [0.1, 0.4] is the focus in our study; its high nonlinearity affects the value of θ. 
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Figure 5.12 Regression Spline Metamodel with 201 Data Points 
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Figure 5.13 Kriging Metamodel with 201 Data Points 
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Another thing to be noted is the computation time in developing kriging and 

regression spline metamodels.  It is expected that the computation time increase when the 

number of design variables and that of data points increases.  In this example of the 

single-variable function, it takes little time (<< 1 second) to build the regression spline 

metamodel with our P4, 196M computer.  With Simpson’s code, it takes less than 1 

second to build kriging metamodels for the single-variable function with fewer than 24 

data points; in the case with 65 data points, kriging metamodel fitting costs 2 seconds, 

and in the case with 201 data points, we spend 135 seconds to fit the kriging metamodel.  

It seems that the regression spline is a little superior to kriging on saving the computation 

time. 

Observations above support the assertion that more accurate kriging and 

regression spline metamodels could be developed with more data points spreading over 

the design space; when enough data points are selected and placed evenly in the design 

space, a metamodel could be developed as loyal to the actual function as possible.  While 

in the next section, our study shows that the assumption above is not always valid when 

metamodels are developed with non-space-filling experiments (unevenly spread data 

points). 

5.2.2 An Observation and Analysis on the Performance of Kriging and Regression 
Spline Metamodels in Response Prediction with Unevenly Spread Data 
Points 

In Section 5.2.1, we studied the performance of kriging and regression spline 

metamodels with evenly spread data points in the design space.  We observe that with 
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more data points evenly spreading over the design space, more accurate kriging and 

regression spline metamodels could be developed.  Values of θ in kriging metamodels 

and the computation time to build a kriging metamodel increase as the number of data 

points increases.  In our examples, regression spline metamodels seems a little superior to 

kriging metamodel since: 1). In some cases (with 8, 24, or 65 data points) the regression 

spline metamodels are smooth while kriging metamodels have tiny fluctuations on the 

predicted response surfaces, and 2). As the number of data points increases, it tends to 

cost much more computation time to build a kriging metamodel than to build a regression 

spline metamodel. 

In this section, we study the performance of kriging and regression spline 

metamodels when unevenly spread data points are used in metamodeling.  As presented 

in Chapter 4, in sequential exploratory experimental design, new data points are added 

not to “spread over” the design space, but rather to “reduce predicted prediction errors”.  

It is expected that more data points would be added in regions with high nonlinearity or 

high prediction errors, thus in sequential experimental design, we may get sets of data 

points that are not evenly allocated in the design space.  It is important to study the 

performance of kriging and regression spline metamodels with unevenly allocated data 

points in sequential experiments. 

In this study we still use the single-variable function as presented in Equation 

(5.1).  A wise designer (as expected in sequential experimental designs) might use the set 

of data points as listed in Table 5.5.  In Table 5.5 we see that the data points are 

apparently unevenly allocated in the design space; a large portion of data points are put in 
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the highly nonlinear region of [0.09, 0.4] (7 data points in [0.09, 0.2]), and only two data 

points in the flat region of [0.5, 1].  Data points in the region of [0.09, 0.4] are very close 

to local peaks and bottoms on the highly nonlinear response surface.  It is expected that 

accurate kriging and regression spline metamodels could be developed with this set of 

data points. 

The corresponding regression spline metamodel is illustrated in Figure 5.14; 

details about this metamodel are presented in Appendix B.  However, we meet problems 

in building the kriging metamodels.  Simpson’s code gives the value of θ as 2.34233, 

which is apparently incorrect because predicted response values at data points with the 

corresponding kriging metamodel are totally different from true values, which should not 

happen in deterministic kriging (note that prediction errors at data points should be zero).  

The value of θ from iSIGHT is 99.999999.  Predicted response values range from y ≈ –

1355 to y ≈ 550, while the actual function values are in [0, 0.95].  The corresponding 

kriging metamodel is illustrated in Figure 5.15; as we see, compared with the kriging 

metamodel, the actual function is like a horizontal line on the x-axis.  However, designers 

may not be able to see this because the predicted response values are the same as true 

ones (note that designers may only have information at data points). 

Table 5.5 Effective Data Set – 13 Points 

x 0 0.095 0.11 0.13 0.145 0.165 0.185 
y 0 0.71380 0.58279 0.93006 0.51582 0.95305 0.79902 
x 0.2 0.25 0.29 0.4 0.67 1.0  
y 0.87017 0.58812 0.70592 0.60728 0.82040 0.86169  
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Figure 5.14 Regression Spline Metamodel with 13 Data Points 

-1500

-1200

-900

-600

-300

0

300

600

0 0.2 0.4 0.6 0.8 1

Actual Function Kriging Metamodel
 

Figure 5.15 Kriging Metamodel with 13 Data Points (θ = 99.999999) 
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One possible reason for the problem above may be the limitation of algorithms or 

software; this caught our attention since Simpson’s code and iSIGHT yield different 

results.  This implies that the θ values we got might be incorrect.  To study this 

possibility, we develop several kriging metamodels with different θ values and analyze 

their performance.  Kriging metamodels with θ = 50, 500, 1000, and 5000 are illustrated 

in Figure 5.16, Figure 5.17, Figure 5.18, and Figure 5.19, respectively.  From these 

figures we see that as values of θ increase, the range of predicted responses decreases and 

the corresponding metamodel becomes more and more accurate – the highly nonlinear 

response surface in [0.09, 0.4] is better reflected with large θ values.   
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Figure 5.16 Kriging Metamodel with 13 Data Points (θ = 50) 
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Figure 5.17 Kriging Metamodel with 13 Data Points (θ = 500) 
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Figure 5.18 Kriging Metamodel with 13 Data Points (θ = 1000) 
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Figure 5.19 Kriging Metamodel with 13 Data Points (θ = 5000) 

In Figure 5.16, Figure 5.17, Figure 5.18, and Figure 5.19, we see that as θ values 

increase, the predicted response surface becomes flat (horizontal) in [0.5,1] except several 

sharp peaks at data points in this region.  It seems that we are not able to get an acceptable 

kriging metamodel with the set of data points as listed in Table 5.5.  Kriging metamodels 

do not work well with unevenly allocated data points.  Possible drawbacks of kriging 

software are not the very reason for the unreasonable kriging metamodel in Figure 5.15; 

kriging metamodeling is constrained by its own limitations. 

It is important to know why kriging metamodeling meets problems in modeling 

this single variable function with data points listed in Table 5.5.  The reason lies in the 

global usage (in one dimension) of θ in the design space.  As discussed in Chapter 2 and 
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Chapter 4, the parameter θ in maximum entropy sampling and kriging metamodeling 

represents correlation between points in the design space.  As the value of θ increases, the 

correlation between two points becomes weaker and weaker (suppose the distance 

between these two points is a constant).  Thus the value of θ in a highly nonlinear design 

space should be much larger than that in a flat one.  In this sense, the parameter θ could 

also be viewed as an indicator of how much information one data point could reflects in 

its neighborhood.  A small θ indicates that a data point in the design space reflects much 

information in its neighborhood; or say, it has great influence on response values in its 

neighborhood.  As stated before, values of 10 to 100 for θ indicate a very rapid decaying 

correlation between points.  In the single-variable function as presented in Equation (5.1) 

and Figure 5.1, the response surface in [0.09, 0.4] is highly nonlinear and could only be 

reflected by kriging metamodels with very large θ values (e.g., 2099.77433 as in Figure 

5.11).  Data points in this region could reflect very little information in their 

neighborhoods – and this is why we need to put more data points in this region in 

sequential experiments.  The responses surface in [0.5, 1] is very flat and could be 

modeled by kriging metamodels with very small θ values.  Data points in this region 

could reflect much information in their neighborhoods, thus only a few data points are 

needed in this region.  In kriging, the value of θ is universal in one dimension; the various 

demands of θ values as discussed above cause dilemma that cannot be compromised in 

kriging metamodeling with unevenly allocated data points.  This is the very reason why 
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we could not develop acceptable kriging metamodels with the set of data points in Table 

5.5.   

With large θ values, the highly nonlinear part of the actual response surface could 

be modeled accurately, while in flat regions where we have few data points, the kriging 

metamodel tends to rest at its constant β (see Equations (2.18) and (2.20)) and be 

occasionally dragged to observed values at data points – this is why we see sharp peaks 

on flat (horizontal) surfaces in Figure 5.17, Figure 5.18, and Figure 5.19. 

To solve this problem, one method is to put more data points in the flat region; 

data points should be very close to each other – a data point should be put where another 

one’s influence demises.  This results in an experimental design in which data points are 

almost evenly allocated in the whole design space.  As we see in Section 5.2.1, when 

“space filling” experiments are used, accurate kriging metamodels could be developed as 

long as we have enough data points.  This selection of evenly allocated data points is not 

desired in our sequential experimental design because a lot of effort is wasted on data 

points in flat regions. 

In our approach, we recommend replacing kriging with MARS in metamodeling 

with sequential experiments when necessary.  Kriging metamodels are still very useful 

and could not be totally discarded in our approach because: 1). Kriging metamodels 

predict the exact values at observed points while MARS metamodels smoothes the data – 

and this is important in metamodeling with deterministic computer experiments as 

explained in Chapter 2, and 2). As discussed in Chapter 4, in the SEED method, θ values 
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from current kriging metamodels could be used in the identification of new data points to 

help distinguish dimensions with high nonlinearity – more data points could be 

automatically put in dimensions with large θ values with our modified maximum entropy 

sampling approach.  Thus in conceptual design, when we want to develop metamodels for 

system responses with sequential experiments, we may use: 

 MARS metamodels only.  The shortcomings are that the metamodel smoothes 

the data (so the predicted value at data points may not be accurate), and we 

may not be able to identify highly nonlinear dimensions quickly. 

 Kriging metamodels only.  This is when the actual response surface is not very 

complicated.  However, in practice designers do not know how the actual 

response surface look; and it is very difficult to tell when kriging meets 

difficulty in the metamodeling process. 

 Kriging and MARS metamodels together.  Kriging metamodels could be used 

in early stages of design when the data points are nearly evenly allocated in the 

design space.  As the metamodeling process goes on, we may switch to MARS 

metamodels whenever a problem is identified.  One way to identify problems 

is to develop both kriging and MARS metamodels and compare their 

predictions for abnormal performance. 

Besides metamodels for system responses, we also develop metamodels for 

prediction errors in SEED.  In SEED processes, metamodels for prediction errors are 

expected to be more complicated than those for system responses because there are a lot 
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of points with zero prediction errors mixed with points with positive or negative 

prediction errors.  This could be illustrated with the example in Figure 5.20. 
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Figure 5.20 An Example of Metamodel and Prediction Errors  

The example in Figure 5.20 is obtained when we tried to apply SEED (with 

kriging metamodels only) in modeling the single-variable function in Equation (5.1).  In 

Figure 5.20 we see that since the actual function is highly nonlinear and the metamodel is 

flat, the actual response surface for prediction errors is highly nonlinear.  10 validation 

points are selected; prediction errors at these validation points and 11 data points are 

listed in Table 5.6.  The corresponding regression spline metamodel is shown in Figure 

5.21. 
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Table 5.6 Prediction Errors at 21 Points 

x 0.0 0.0542 0.0699 0.1038 0.1133 0.1748 0.1947 
y_err 0.0 -0.21447 -0.19659 -0.10392 0.0 -0.21942 -0.22848 

x 0.2377 0.2849 0.3557 0.3615 0.4320 0.5 0.5448 
y_err 0.0 0.0 0.00361 0.0 0.0 0.0 -0.02285 

x 0.5839 0.6362 0.6802 0.7623 0.8838 0.9054 1.0 
y_err -0.02367 0.0 0.01256 0.0 0.0 0.0073 0.0 
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Figure 5.21 Regression Spline Metamodel for Prediction Errors with 21 Points 

In Figure 5.21 we see that the regression spline model captures the actual response 

well, except for the highly nonlinear region where we may add in more validation points 

in future stages.  We failed to build an acceptable kriging metamodel in this case, partly 

because of the highly nonlinear property of the actual surface of prediction errors which is 

inherited from the single-variable function, partly because of the mixture of zero’s and 

non-zero’s for prediction errors in the design space.  For example, we notice that there are 
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three zero’s from x=0.36 to x=0.5, which implies a flat (horizontal) surface, while in other 

regions the surface may not be flat – this is usual in modeling prediction errors in SEED.  

When this confliction is intense enough, as shown in this case, we will fail in developing 

an acceptable kriging metamodel. 

5.2.3 An Observation and Analysis on the Performance of Kriging and MARS 
Metamodels in Response Prediction with Unevenly Spread Data Points 

In Section 5.2.2, we compared the performance of kriging and univariate 

regression spline metamodels with a single-variable function.  Our observations show that 

the regression spline metamodels are more robust to irregular response surfaces while it is 

difficult to use kriging to model irregular response surface that is highly nonlinear in 

some regions but flat in other regions.  In this section, we will extend this comparison to 

kriging and MARS metamodels with a two-variable function.  The two-variable function 

is as presented in Equation (5.2). 
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x x
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− + −
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− + + − − + +

+ +
           (5.2) 

 

Equation (5.2) is a modified two-variable version of Equation (5.1); the modification is 

done by substituting x in Equation (5.1) with 2 2
1 2x x+ .  The surface plot and contour plot 

of this function are illustrated in Figure 5.22 and Figure 5.23.  As we see in Figure 5.22 
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and Figure 5.23 the two-variable function is highly nonlinear with small x1 and x2 values 

and flat with large when x1 and x2 are large; the actual response surface is irregular. 

 

Figure 5.22 Surface Plot of the Two-Variable Function 

 

Figure 5.23 Contour Plot of the Two-Variable Function 
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According to our observations in Section 5.2.2, since the actual response surface 

is irregular (i.e., highly nonlinear in some regions while flat in others; the property of the 

response surface changes greatly), it is expected that: 1) it is difficult to get an accurate 

kriging metamodel for this two-variable function with reasonable number of data points, 

and 2) it is possible to build an accurate MARS (application of regression splines with 

multiple variables in this example) metamodel with data points putting at “critical” 

positions (unevenly spread data points, as developed in SEED).   

Similar to what we did in Section 5.2.2, first we act as a “wise” designer here.  As 

a wise designer, we are able to put most data points at critical positions, as expected from 

a sequential experimental design; in this example, we could achieve this by carefully 

examining the plots of Figure 5.22 and Figure 5.23.   A possible set of data points with 45 

data points is listed in Table 5.7. 

With the data points in Table 5.7, we are unable to develop a kriging metamodel 

that is accurate; actually, the kriging metamodel we build, with θ1 = 2.84701 and θ2 = 

1.97175, does not perform normally.  We use 625 points (which spread over the design 

space, with more being allocated in the region with small x values) to validate the kriging 

metamodel.  In Figure 5.22 and Figure 5.23 we see that the actual response values in the 

design space are in the range of [0,1], while the values predicted with the kriging 

metamodel at the validation points are very large (many are over −100,000,000).  The 

reason why we cannot develop an acceptable kriging metamodel in this example lies in 

the irregularity of the actual response surface, as explained in Section 5.2.2. 
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Table 5.7 Experiments with 45 Data Points 

X1 X2 Y X1 X2 Y X1 X2 Y 
0 0 0 0.11 0 0.58279 0.2 0 0.87017 
0 1 0.86169 0 0.11 0.58279 0 0.2 0.87017 
1 0 0.86169 0.078 0.078 0.58112 0.141 0.141 0.87037 
1 1 0.90773 0.13 0 0.93006 0.25 0 0.58812 
0 0.5 0.67001 0 0.13 0.93006 0 0.25 0.58812 

0.5 0 0.67001 0.092 0.092 0.93029 0.177 0.177 0.58758 
1 0.5 0.87670 0.145 0 0.51582 0.3 0 0.69537 

0.5 1 0.87670 0 0.145 0.51582 0 0.3 0.69537 
0.5 0.5 0.83527 0.103 0.103 0.51171 0.212 0.212 0.69563 
0.25 0.75 0.84978 0.165 0 0.95305 0.1 0.8 0.85076 
0.75 0.25 0.84978 0 0.165 0.95305 0.8 0.1 0.85076 
0.75 0.75 0.86900 0.117 0.117 0.95403 0.05 0.3 0.68927 
0.05 0 0.46195 0.185 0 0.79902 0.3 0.05 0.68927 

0 0.05 0.46195 0 0.185 0.79902 0.165 1 0.86319 
0.035 0.035 0.45891 0.131 0.131 0.80017 1 0.165 0.86319 

 

A MARS metamodel is developed with information from the data points listed in 

Table 5.7.  To build this MARS model, we set the number of knots in each dimension as 

T = 100, the maximum number of MARS basis functions in approximation Mmax = 50, 

the maximum number of splits per basis function maxIA = 2 to allow two-way 

interactions.  Backwards deletion is allowed in building the MARS metamodel.  The 

MARS metamodel is illustrated in Figure 5.24.  In Figure 5.24 we see that the MARS 

metamodel roughly grasps the irregular response surface.  We examined the prediction 

errors at 625 validation points and get RMSE = 0.0739 and MAX = 0.395 based on 

Equations (2.7) and (2.9).  The value of RMSE is small, which indicates that the overall 

model fitting is satisfactory and the metamodel grasps the fluctuations of the whole 

response surface; design space exploration with such a metamodel would probably 
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successfully lead us to regions in which the design solution lies.  The value of MAX is 

large, which implies that Local Model Inaccuracy (see Lin, et al., 1999) exists and it 

might be difficult to precisely identify the final design solution with this metamodel 

though we could have been led to the region where the solution lies. 

 

 

Figure 5.24 MARS Metamodel with 45 Data Points 

 

In this section, through the study of kriging and regression spline metamodels in 

response prediction, we answered Research Question 4.1; our study shows that regression 

spline metamodels (specifically, MARS in multi-dimensional cases and univariate 

regression splines in one-dimensional problems) are more robust to fluctuations on the 
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response surface than kriging metamodels do.  Studies of RS metamodels and different 

types of kriging metamodels in engineering design are done in (Simpson, 1998) and (Lin, 

2000).  Research Question 4.2, How to select different types of metamodels at different 

design stages?, is also visited in this section and will be further explored in Section 5.4.  

Based on the study above, we recommend that: 1). At the beginning of metamodeling 

processes, we could use kriging metamodels only or both kriging and MARS 

metamodels; and 2). When more points are selected in a highly nonlinear design space, 

we should use MARS to model prediction errors and both kriging and MARS to model 

system responses in SEED.  Both kriging and MARS metamodels have their own strong 

and weak aspects.  Thus, in real-world applications we should develop metamodels with 

both techniques if possible; when we meet problems with one technique, we could always 

switch to the other one.  The application of MARS with SEED is discussed in the next 

section. 

5.3 UTILIZATION OF MARS METAMODELS IN THE SEQUENTIAL 
EXPLORATORY EXPERIMENTAL DESIGN METHOD 

As discussed in Section 5.2, we suggest using MARS in SEED.  Since the SEED 

method was initially developed with kriging metamodels, we need to do some small 

modifications to have it work smoothly with MARS, which is to be done in this section.  

The research questions to be visited in this section are R.Q. 2, How to design sequential 

computer experiments (how to select data and validation points sequentially) to get an 

accurate metamodel? and R.Q.4.2, How to select different types of metamodels at 
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different design stages?  The utilization of MARS in SEED is discussed in Section 5.3.1, 

and then demonstrated with a single-variable function in Section 5.3.2. 

5.3.1 Utilization of MARS in SEED 

To use MARS in SEED brings no significant change to the sequential 

experimental design method as developed in Chapter 4.  The flowchart of SEED remains 

the same as that in Figure 4.4.  Similar to the description in Chapter 4, there are still two 

ways to formulate the modified covariance matrix (see Section 4.5.3), and mathematical 

formulations remain the same as Equations (4.27), (4.28), and (4.34). 

Since we suggest using MARS to model the prediction errors, it should be noted 

that the MARS metamodel smoothes the data so the predicted values at data points may 

not be accurate, thus we may have non-zero predicted prediction errors at data points.  

This may bring problem when we use kriging metamodels for system responses and 

MARS for prediction errors – even though the actual prediction errors at data points are 

zero with kriging, the predicted prediction errors from MARS may be different.  Usually 

this difference is not large, and it should not affect the SEED process a lot.  To be safe, 

careful examinations of this difference are recommended in the SEED process; the cost of 

this examination is negligible since only simple comparisons are involved. 

Another important thing is the selection of values of θ in identifying new points 

when we use MARS metamodels for system responses.  When we use kriging 

metamodels for system responses (as in Chapter 4), values of θ could be used in the 

formulation of the covariance matrix (see Equations (4.29) and (4.34)).  In multi-variable 
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problems, this approach helps us identify highly nonlinear dimensions (with large θ 

values); more new points will be automatically put in these dimensions with SEED as 

discussed in Chapter 4.  When MARS is used to model system responses, it provides no 

guidance on the selection of θ values for future sampling.  In such cases, we could use a 

universal θ value for all dimensions; usually we set θ as 10 (or larger values) to ensure a 

rapid decaying correlation between points.  In cases where there are already too many 

data points in the design space, we may need to set extremely large θ values (e.g., 1000) 

to ensure that the correlation decays fast enough and new points could be identified 

through maximum entropy sampling (small θ values may result in negative values of 

determinants of the covariance matrices, which implies that it is not worthwhile to add in 

new points).  Besides the selection of θ values, the selection of values for λ and emax is 

also very important; this is introduced in Chapter 4, and will be further discussed in this 

section after the application of MARS and SEED in developing metamodels for one 

single-variable function; similar to our study in last section, in this single-variable 

example, we are actually using the univariate quintic regression splines instead of MARS. 

Since kriging has some desirable properties (loyal to data, providing guidance on 

identification of new points, etc.), we may want to keep using kriging to model system 

responses until it is necessary to switch to MARS.  It may be helpful to develop both 

kriging and MARS metamodels for response surfaces with same data in the design 

process.  Besides the comparison between previous and current metamodels, the 

comparison between kriging and MARS metamodels could also help identify possible 
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problems in metamodeling as discussed in Section 5.2.  Once such a problem is 

identified, we will start to use MARS to replace kriging in future metamodeling stages.  

Designers may also use MARS to model system responses at the very beginning of 

SEED, as we will illustrate in Section 5.3.2 with the example of a single-variable 

function. 

5.3.2 Example: A Single-Variable Function 

In this section we illustrate and study the usage of regression splines in SEED 

with the single-variable example as used in Section 5.2.  In this example, we follow the 

same steps as presented in Figure 4.4.  The method used to formulate the adjusted 

covariance matrix is as described in Section 4.5.3.1, in which we adjust the covariance 

matrix without modifying the correlation function.  Equations (4.27) and (4.28) are used 

in the formulation.  In this sequential experimental design, we plan to use 4 data points 

and 5 validation points as initial design, and add in 2 new validation and 2 data points 

each time.  We will stop with total 17 data points, i.e., after 3 iterations.  Similar to the 

example in Chapter 4, metamodel accuracy is not used as the stopping criteria, thus no 

metamodel validation is needed in Step 4 during the sequential experimental design 

process.  In this example, we decide to use kriging and regression splines to model system 

responses and regression splines to model prediction errors.   

Iteration I – Step 1: Initial Experimental Design.  As discussed in Chapter 4, 

there are many ways to design the initial experiments in SEED.  In this example, we 
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decide to use the single-stage method by Currin, et al. (1991).  The initial data points are 

listed in Table 5.8.   

Table 5.8 Initial Experimental Design – 4 Data Points 

x 0.0 0.331 0.669 1.0 
y 0.0 0.6508 0.8199 0.8617 
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Figure 5.25 Initial Kriging Metamodel with 4 Data Points 

Iteration I – Step 2: Simulation and Initial Metamodel of Responses.  The 

corresponding kriging metamodel of system responses is illustrated in Figure 5.25; the 

value of θ for this metamodel is 7.83290. 

Iteration I – Step 3: Identification of New Validation Points.  In this step, we 

only have information from four data points and the initial metamodel developed in Step 

2.  We need to identify validation points for the first iteration.  Similar to that in Chapter 
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4, when no enough information is available, we will use standard maximum entropy 

sampling to identify validation points.  In this step we decide to identify nerror = 5 

validation points. 

A 9×9 covariance matrix is constructed with the first 4 rows and columns 

corresponding to the 4 data points in Table 5.8.  In the formulation of covariance 

matrices, we set θ = 20, which yields a rapid decaying correlation between points.  By 

maximizing the determinant of this 9×9 covariance matrix we identify 5 validation points 

as listed in Table 5.9.  Six optimization algorithms (same as those used in Chapter 4) are 

used in iSIGHT to ensure the achievement of global optimum.   

Table 5.9 Five New Validation Points in Iteration I 

x 0.091 0.215 0.5 0.785 0.909 
ypred 0.1301 0.4091 0.8088 0.8344 0.8604 
yactual 0.6951 0.8262 0.6700 0.8494 0.8545 

 

Iteration II – Step 4: Metamodel of Prediction Errors.  In this step, a 

metamodel of prediction errors of the kriging metamodel (Figure 5.25) is developed with 

information from 4 data points and 5 validation points.  Prediction errors at these points 

are listed in Table 5.10.  As described in Sections 5.2 and 5.3.1, a regression spline 

metamodel is developed based on the information in Table 5.10, and the plot of predicted 

prediction error yerror vs. x is drawn in Figure 5.26.  The maximum absolute predicted 

prediction error is about 0.6. 
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Table 5.10 Prediction Errors at 4 Data Points and 5 Validation Points 

x 0.0 0.331 0.669 1.0  
yerror 0.0 0.0 0.0 0.0  

x 0.091 0.215 0.5 0.785 0.909 
yerror -0.565 -0.4171 0.1388 -0.015 0.0059 
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Figure 5.26 Metamodel of Prediction Errors in Iteration I 

In Figure 5.26 we see that given the 9 points spreading over the whole design 

space, the regression spline metamodel grasps the prediction error very well.  Peaks and 

bottoms in [0.09, 0.3] are not precisely captured because we have no enough information 
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in this region.  In the next step, the regression spline metamodel of prediction errors as 

illustrated in Figure 5.26 will be used in the formulation of the covariance matrix. 

Iteration I – Step 5: Metamodel Validation.  Similar to the example in Chapter 

4, the step of metamodel validation is skipped here.  New data points are to be added. 

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix.  As 

introduced before, we plan to add in nnew = 2 new data points each time.  In this step, 

entries of the 6×6 adjusted covariance matrix are calculated following Formulation I of 

the SEED method as described in Section 4.5.3.1.  The key equations here are Equations 

(4.27) and (4.28). 

A 6×6 covariance matrix is first built following Equations (4.19) and (4.20), with 

the first 4 rows and columns corresponding to the six data points that we already have, 

and the rest 2 rows and columns representing new data points.  The value of θ is set to be 

7.8329.  All processes in this step are similar to those in Chapter 4; the only difference is 

that we use a C program to calculate predicted prediction errors, ei, at candidate points 

with the regression spline metamodel in Figure 5.26 (instead of the FORTRAN program 

for kriging metamodels). 

Iteration I – Step 7: Identification of New Data Points.  In this step, we identify 

two possible new data points through maximizing the determinant of the adjusted 

covariance matrix developed in Iteration I – Step 6, as listed in Table 5.11.  This is done 

in iSIGHT with six optimization techniques as used in Chapter 4. 
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Since the possible new data points, x = 0.101 and x = 0.503, are very close to two 

of the validation points, x = 0.091 and x = 0.5, we decide not to collect information at x = 

0.101 and x = 0.503; instead, we use x = 0.091 and x = 0.5 as new data points.  This helps 

avoid clustering of data/validation points and ensures efficiency in sequential 

experiments. 

Table 5.11 Two Possible New Data Points in Iteration I 

x 0.101 0.503 
 

Iteration I – Step 8: Updated Metamodel of Responses.  Now we have 6 data 

points, as listed in Table 5.12.  New metamodels are developed with information from 

these data points.  The kriging metamodel is illustrated in Figure 5.27; the value of θ is 

99.99981.   

As a comparison, we develop a regression metamodel with the six data points in 

Table 5.12, as illustrated in Figure 5.28.  Comparing Figure 5.27 and Figure 5.28 we see 

that the regression spline metamodel performs better than the kriging metamodel.  It is 

apparent that the kriging metamodel in Figure 5.27 does not predict the response surface 

in [0.6,1] well.  In real-world applications, with information from only data points, we 

may not be able to tell which metamodel is more accurate because we do not know 

whether the bell-shape curve in [0.6,1] in Figure 5.27 reflects the actual surface or not.  

However, with information from the validation points, we could figure out which model 

is better.  In this case, based on available information at x = 0.785 and x = 0.909, we 
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figure out that the unusual bell-shape curve in [0.6,1] of the kriging metamodel is far 

from reality; further inspection shows that this unusual bell-shape curve is actually from 

the large value of θ, which inherits from the highly nonlinear surface in regions with 

small x values.  This problem is similar to the one we discussed in Section 5.2.  Since 

kriging meets difficulty in modeling the object surface, we decide to use regression 

splines to model both responses and prediction errors in later stages of experimental 

design. 

After finishing Step 8, following the flow chart in Figure 4.4, we will go to Step 3 

of Iteration II to add in new validation points to test the current metamodels.  The 

regression spline metamodel in Figure 5.28 will be used in the next iteration. 
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Figure 5.27 Kriging Metamodel with 6 Data Points 
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Table 5.12 Six Data Points 

x y x y x y 
0.0 0.0 0.669 0.8199 0.091 0.6951 

0.331 0.6508 1.0 0.8617 0.5 0.6700 
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Figure 5.28 Regression Spline Metamodel with 6 Data Points 

Iteration II – Step 3: Identification of New Validation Points.  Now we have 6 

data points and 3 validation points.  In this step we decide to add in nnew = 4 validation 

points in order to have as many validation points as data points.  To identify new 

validation points, a kriging metamodel of response is first developed with 3 validation 

points and illustrated in Figure 5.29.  Prediction errors of this metamodel at 6 data points 

are calculated and listed in Table 5.13; a regression spline metamodel of prediction errors 
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are then developed and illustrated in Figure 5.30.  Using the method similar to Iteration I 

– Step 6 to Step 8, we identify 4 new validation points as listed in Table 5.14. 
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Figure 5.29 Metamodel of Responses Developed in Iteration II – Step 3 

Table 5.13 Prediction Errors at 6 Data Points in Iteration II – Step 3 

x 0 0.331 0.669 1 0.091 0.5 
ypred 0.8178 0.8308 0.8446 0.8582 0.8213 0.8376 
yactual 0 0.6508 0.8199 0.8617 0.6951 0.67 
yerror 0.8178 0.1800 0.0247 -0.0035 0.1262 0.1676 
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Figure 5.30 Regression Spline Metamodel of Prediction Errors in Iteration II – Step 
3 

Table 5.14 New Validation Points Added in Iteration II 

x 0.026 0.289 0.414 0.582 
yactual 0.3091 0.7063 0.6087 0.7560 

 

Iteration II – Step 4: Metamodel of Prediction Errors.  Prediction errors at 7 

validation points and 6 data points are listed in Table 5.15.  A regression spline 

metamodel of prediction errors is built with information from these 13 points, and 

illustrated in Figure 5.31.  The maximum absolute predicted prediction error is emax ≈ 

0.20. 
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Table 5.15 Prediction Errors at Observed Points in Iteration II – Step 4 

x 0.000 0.091 0.331 0.500 0.669 1.000  
ypred 0.0001 0.6940 0.6600 0.6984 0.7611 0.8839  
yactual 0.0000 0.6951 0.6508 0.6700 0.8199 0.8617  
yerr 0.0001 -0.0011 0.0092 0.0284 -0.0588 0.0222  
x 0.026 0.215 0.289 0.414 0.582 0.785 0.909 

ypred 0.2233 0.7061 0.6690 0.6691 0.7288 0.8041 0.8501 
yactual 0.3091 0.8262 0.7063 0.6087 0.7560 0.8494 0.8545 
yerr -0.0858 -0.1201 -0.0373 0.0604 -0.0272 -0.0453 -0.0044 

 
 

 

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

 

Figure 5.31 Regression Spline Metamodel of Prediction Errors in Iteration II 
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Iteration II – Step 5: Metamodel Validation.  As described before, this step is 

skipped and we proceed to Step 6. 

Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix.  We 

need to add in nnew = 2 new data points, thus we formulate an 8×8 covariance matrix 

following the method as used in Iteration I – Step 6.  The first 6 rows and columns 

correspond to previous data points, and the rest 2 rows and columns representing new 

data points.  The value of θ is set to be 100.0, which is the limit of Simpson’s kriging 

code. 

Iteration II – Step 7: Identification of New Data Points.  By maximizing the 

determinant of the adjusted covariance matrix as built in Iteration II – Step 6, we are able 

to identify 2 possible new data points at x =0.213 and x = 0.833.   Since one of the 

possible new data points, x = 0.213, is very close to one of the validation points, x = 

0.215, we decide to use x = 0.215 instead of x = 0.213 as the new data point.  New data 

points added in this step are listed in Table 5.16. 

Table 5.16 New Data Points Added in Iteration II 

x 0.215 0.833 
y 0.8262 0.8519 

 

Iteration II – Step 8: Updated Metamodel of Responses.  A new regression 

spline metamodel is developed with information from the 8 data points as listed in Table 

5.17.  The regression spline metamodel for responses is illustrated in Figure 5.32. 
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Table 5.17 Eight Data Points in Iteration II 

x y x y 
0 0.0000 0.5 0.6700 

0.091 0.6951 0.669 0.8199 
0.215 0.8262 0.833 0.8519 
0.331 0.6508 1 0.8617 
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Figure 5.32 Regression Spline Metamodel with 8 Data Points 

Iteration III – Step 3: Identification of New Validation Points.  Now we have 

8 data points and 6 validation points.  In this step, we need to add in 3 new validation 

points.  We build a regression spline metamodel of responses with 6 validation points; 

this metamodel is illustrated in Figure 5.33.  Then prediction errors of this metamodel at 
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8 data points and 6 validation points are calculated and listed in Table 5.18.  A regression 

spline metamodel of prediction errors is then developed and plotted in Figure 5.34.   
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Figure 5.33 Regression Spline Metamodel of Responses Developed in Iteration III – 
Step 3 

Table 5.18 Prediction Errors at Observed Points in Iteration III – Step 3 

x 0.000 0.091 0.215 0.331 0.500 0.669 0.833 1.000 
ypred 0.2663 0.4162 0.6243 0.6844 0.6800 0.8026 0.8450 0.8879 
yactual 0.0000 0.6951 0.8262 0.6508 0.6700 0.8199 0.8519 0.8617 
yerr 0.2663 -0.2789 -0.2019 0.0336 0.0100 -0.0173 -0.0069 0.0262 
x 0.026 0.289 0.414 0.582 0.785 0.909   

ypred 0.3091 0.7064 0.6077 0.7636 0.8326 0.8645   
yactual 0.3091 0.7063 0.6087 0.7560 0.8494 0.8545   
yerr 0.0000 0.0001 -0.0010 0.0076 -0.0168 0.0100   

 



315 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 

Figure 5.34 Regression Spline Metamodel of Prediction Errors in Iteration III – 
Step 3 

Following similar approach used in SEED – Steps 6 to 8, three possible validation 

points are identified at x = 0.0, x = 0.149, and x = 1.0.  Since two of the possible 

validation points are previously observed as data points, we need to redo the 

identification of new validation points because we should not convert data points to 

validation points in the SEED process.  A new regression spline metamodel of responses 

is developed with 6 validation points and 2 validation points (x = 0.0 and x = 1.0); this 

metamodel is illustrated in Figure 5.35.  Then prediction errors of this metamodel at 8 

other data points and 6 validation points are calculated and listed in Table 5.19.  A 
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regression spline metamodel of prediction errors is then developed and plotted in Figure 

5.36.  Following same processes as in Iteration II – Step 6 to Step 8, three new validation 

points are identified and listed in Table 5.20. 
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Figure 5.35 New Regression Spline Metamodel of Responses in Iteration III – Step 3 

Table 5.19 New Prediction Errors at Observed Points in Iteration III – Step 3 

x 0.000 0.091 0.215 0.331 0.500 0.669 0.833 1.000 
ypred 0.0000 0.4390 0.6312 0.6841 0.6750 0.8056 0.8550 0.8598 
yactual 0.0000 0.6951 0.8262 0.6508 0.6700 0.8199 0.8519 0.8617 
yerr 0.0000 -0.2561 -0.1950 0.0333 0.0050 -0.0143 0.0031 -0.0019 
x 0.026 0.289 0.414 0.582 0.785 0.909   

ypred 0.3091 0.7063 0.6087 0.7562 0.8475 0.8580   
yactual 0.3091 0.7063 0.6087 0.7560 0.8494 0.8545   
yerr 0.0000 0.0000 0.0000 0.0002 -0.0019 0.0035   
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Figure 5.36 New Regression Spline Metamodel of Prediction Errors in Iteration III 
– Step 3 

Table 5.20 New Validation Points Added in Iteration III 

x 0.071 0.151 0.243 
y 0.5732 0.5857 0.6193 

 

 

Iteration III – Step 4: Metamodel of Prediction Errors.  Now we have 8 data 

points and 9 validation points.  In this step, prediction errors at both data and validation 

points are used to develop a regression spline metamodel to predict prediction errors in 

the design space.  The observed prediction errors are listed in Table 5.21, and the 
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corresponding metamodel is illustrated in Figure 5.37.  The maximum absolute predicted 

prediction error is emax ≈ 0.06. 

Table 5.21 Prediction Errors at Data and Validation Points 

x ypred yactual yerr x ypred yactual yerr 
0 0.0000 0 0.0000 0.026 0.2193 0.3091 -0.0898 

0.091 0.6951 0.6951 0.0000 0.071 0.5833 0.5732 0.0101 
0.215 0.8262 0.8262 0.0000 0.151 0.8107 0.5857 0.2250 
0.331 0.6508 0.6508 0.0000 0.243 0.7956 0.6193 0.1763 
0.5 0.6699 0.67 -0.0001 0.289 0.7094 0.7063 0.0031 

0.669 0.8208 0.8199 0.0009 0.414 0.6398 0.6087 0.0311 
0.833 0.8504 0.8519 -0.0015 0.582 0.7444 0.7560 -0.0116 

1 0.8624 0.8617 0.0007 0.785 0.8469 0.8494 -0.0025 
    0.909 0.8558 0.8545 0.0013 
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Figure 5.37 Regression Spline Metamodel of Prediction Errors in Iteration III 
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Iteration III – Step 5: Metamodel Validation.  This step is skipped. 

Iteration III – Step 6: Formulation of the Adjusted Covariance Matrix.  We 

plan to add in nnew = 2 new data points.  Since after this iteration we plan to get 19 points 

and stop the SEED process, in this step we will consider the correlation between 

candidate points and all observed points; note this is different from what we did in 

Iteration II – Step 6 in which we only considered the correlation between candidate points 

and data points.  To achieve this, we build a 19×19 covariance matrix with the first 8 

rows and columns corresponding to the current data points, the 9th to 17th rows and 

columns corresponding to the validation points, and the last 2 rows and columns 

corresponding to new data points.  The value of θ is set to be 100.0. 

Iteration III – Step 7: Identification of New Data Points.  By maximizing the 

determinant of the adjusted covariance matrix as developed in Iteration III – Step 6, two 

new data points are identified and listed in Table 5.22. 

Table 5.22 Possible New Data Points in Iteration III 

x 0.126 0.254 
y 0.8743 0.5871 

 

Iteration III – Step 8: Updated Metamodel of Responses.  Now we have 10 

data points and 9 validation points as listed in Table 5.23.  As stated at the beginning of 

this section, we stop the SEED process since we have observed 19 points.  A final 

regression spline metamodel of responses is developed and illustrated in Figure 5.38. 
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Table 5.23 Nineteen Observed Points 

x y x y 
0 0.0000 0.026 0.3091 

0.091 0.6951 0.071 0.5732 
0.126 0.8743 0.151 0.5857 
0.215 0.8262 0.243 0.6193 
0.254 0.5871 0.289 0.7063 
0.331 0.6508 0.414 0.6087 
0.5 0.6700 0.582 0.7560 

0.669 0.8199 0.785 0.8494 
0.833 0.8519 0.909 0.8545 

1 0.8617   
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Figure 5.38 Regression Spline Metamodel of Responses with 16 Data Points 
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As a comparison, a regression spline metamodel of responses is developed with 

information from 19 evenly-spread data points in [0, 1].  This metamodel is illustrated in 

Figure 5.39.  Comparing the regression spline metamodel in Figure 5.38 and the one in 

Figure 5.39, we see that in the single-variable example, using the SEED method, we are 

able to develop a more accurate regression spline metamodel with the same number of 

data points.  More detailed discussions are presented in Section 5.3.3. 
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Figure 5.39 Regression Spline Metamodel of Responses with 19 Evenly-Spread Data 
Points 
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5.3.3 Discussions on Applications of the SEED method 

In this section, we further explored the application of the SEED method with 

MARS (to be specific, it is actually univariate quintic regression splines in this example) 

metamodels; this helped answer R.Q.2, How to design sequential computer experiments 

(how to select data and validation points sequentially) to get an accurate metamodel? 

and R.Q.4.2, How to select different types of metamodels at different design stages?  Our 

studies show that the SEED method is effective in allocating data points sequentially to 

obtain an acceptable metamodel; the usage of both kriging and regression spline 

metamodels provides sufficient flexibility in metamodeling.  In Figure 5.38 we see that 

with only 19 points we are able to grasp the high nonlinearity in [0.2,0.4] satisfactorily.  

Data points are added in regions where large prediction errors exist; in this case, it is near 

the lower band of the design space, i.e., [0.09,0.4]. 

In SEED, both kriging and regression splines could be used to develop 

metamodels for system responses.  Usually we use kriging metamodels in very early 

stages; regression spline metamodels could be developed to test whether there is 

abnormal behavior in kriging metamodeling (as discussed in Section 5.2).  When kriging 

meets difficulty in modeling, we should use regression spline metamodels in future stages 

of metamodeling.  To build metamodels for prediction errors, we suggest using regression 

spline metamodels, as explained with Figure 5.20 and Figure 5.21 in Section 5.2. 

The usage of two groups of points (data points and validation points) is very 

important in SEED.  In Section 5.3.2, finally we got a better metamodel with 19 data 

points (compared to the metamodel with 19 evenly-spread data points) with the SEED 
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method.  In SEED, data and validation points are added sequentially and the information 

from previous points are used to guide the allocation of future data and validation points.  

New points are added to decrease information uncertainty and thus should be in regions 

with large prediction errors.  In this way we are able to maximally utilize the available 

resources and save the computation expense on some expensive computer simulations. 

Besides sequential experiments and metamodeling, another option to develop 

metamodels is to conduct parallel simulation.  For example, one may run computer 

simulation simultaneously on many computers; in this way, large amount of information 

could be achieved by observing system responses at many data points.  In this sense, the 

parallel computing strategy seems superior to SEED because it is simpler.  However, in 

real-world applications, sequential experiments and metamodeling is necessary because 

we may not have enough resources.  To apply the parallel computation strategy, one may 

need to have a lot of computers running at the same time – and usually one computer 

could only afford one simulation (or a few) because the simulation may occupy a lot of 

resource (memory, CPU time, etc.) in the computer.  For example, in a simple industrial 

case that has 8 design variables (see the vehicle body structural design in Lin, 2000), the 

designers may need to run at least 64 simulations to develop the metamodels, and maybe 

another 64 to validate them.  To have 64 computer running at the same time may be 

difficult even in large laboratories.  To solve this problem, designers may want to do the 

experiments sequentially, e.g., run 8 simulations simultaneously at one time and conduct 

8 iterations; and this is where SEED is useful – it provides guidance on how to identify 

future data points in sequential simulations.   
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Another possibility is to extend the usage of SEED in physical experiments.  In 

some cases we could only do physical experiments because computer simulations are not 

available.  In other cases, computer simulations are used as references: they could give 

good estimations of system responses, while real-world experiments are needed to 

validate solutions obtained from computer simulations.  Usually these physical 

experiments are expensive – not only computationally but also monetarily.  Examples 

include crash experiments in designing vehicle bodies, some bio-system experiments, etc.  

In such cases, SEED could be applied and its advantage is apparent.   

The discussion above is closely related to another topic – the cost of applying 

SEED.  To apply SEED, in addition to the simulation expense, a lot of time and effort is 

spent on formulation of covariance matrices and search of maximum determinants of the 

matrices.  In the formulation of covariance matrices, designers’ decisions are involved 

and human behaviors occupy most time; in the search of maximum determinants, 

optimization algorithms are used and they usually require some time to get solutions.  To 

minimize time and effort wasted on designers’ decisions, a bunch of decision-support 

tools are to be incorporated into a computer framework, which could be done as we 

develop, verify, and improve the SEED method.  This is a future work for this 

dissertation.  To minimize computation time spent on optimization, we could adopt faster 

(though may be less effective) optimization algorithms, e.g., the “hiker” method used in 

(Currin, et al., 1991).  It is expected that the application of SEED should be very 

inexpensive with all supporting tools are ready. 
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One drawback of SEED is the necessary human decisions in the formulation of 

adjusted covariance matrices.  Actually this is partly from D-optimal design and 

maximum entropy sample, which is the basis of the SEED method: as introduced in 

Chapter 4, prior distributions are usually needed in such experimental designs.  As 

discussed in Chapter 4 and our studies in this chapter, designers need to select values of 

θ, λ, and emax in the formulation of the matrices.  At the beginning of SEED, we usually 

set θ =25, λ=2, and emax could be obtained with metamodels of prediction errors. 

In cases where kriging metamodels work well, values of θ from previous kriging 

metamodels could be used in the formulation of covariance matrices in future stages.  In 

cases where kriging meets difficulty, a large value of θ, e.g., θ =100, could be used in the 

formulation of covariance matrices.  In a design space with a few points, when other 

factors (λ, and emax, etc.) holding constant, as values of θ increases over a very large 

value, e.g., 100, solutions (new points) tend to spread over the design space instead of 

being in regions with large errors.  This is because that large θ values represent rapid 

decaying correlations, thus in a design space with only a few points, most regions will be 

a “desert” with little correlations with current points; in such cases the effect of the 

adjustment based on prediction errors is usually negligible. 

As discussed in Section 4.5.3.1, λ is used to gauge the balance between 

“spreading over the design space” and “being in regions with large prediction errors”.  

When large values of λ are used, the adjustment based on prediction errors is small and 

new points tend to spread over the design space.  When small values of λ are used, the 
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adjustment is large and new points tend to be in regions with great prediction errors.  In 

very early experimental design stages, since we do not have many points in the design 

space and are not very confident on the prediction of prediction errors in the design space, 

we tend to add in new points that spread over the design space to avoid being misled by 

the inaccurate information.  In later stages, as we have more accurate metamodel and 

confidence on the prediction of prediction errors, we could use small λ values, e.g., 

λ=1.5, to force new points to be added in regions with great predicted prediction errors. 

The selection of emax also affects the identification of new points.  As pointed out 

in Chapter 4, it may be very difficult to get the exact global maximum absolute predicted 

prediction error emax in a real-world application with many design variables and 

responses.  When values of emax are much larger than the actual one, the adjustment on 

the covariance matrices will be too small and thus new points tend to spread over the 

design space.  When values of emax are much smaller than the actual one, the adjustment 

on the covariance matrices will be too large and new points tend to spread over the design 

space too because too many candidate points in the design space are affected by this 

adjustment and those in regions with large prediction errors do not receive more attention 

compared with others.  Usually we use a value of emax that is a bit smaller than the actual 

maximum absolute prediction error, which generates small regions around points with 

large prediction errors; in the formulation of adjusted covariance matrices, points in these 

regions receive the same amount of adjustment.  This allows more trade-off in identifying 

new points and helps avoid clustering of new points with current points, especially in 

selecting new validation points. 
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In this section, we revisited R.Q.2 and improved the SEED method by applying 

MARS in the metamodeling processes.  The usage of different types of metamodels in 

SEED brings great advantage.  In the next section, we will go further and explore the 

utilization of more types of metamodels, i.e., RS, kriging, and MARS, along the design 

timeline; this work will be closely related with the SEED method. 

5.4 AN APPROACH FOR SEQUENTIAL METAMODELING ALONG THE 
DESIGN TIMELINE 

In this section, we plan to answer Research Question 4, How to utilize different 

types of metamodels along the design timeline in accordance with the changing design 

information?  Only RS, kriging, and MARS metamodels are considered in our study in 

this section.  To answer Research Question 4, we have done comparisons among RS, 

kriging, and MARS metamodels in Section 5.2 and previous studies (see, Simpson, 1998; 

Lin, 2000; Lin, et al., 2000).  In this section, an approach is proposed to incorporate and 

utilize these metamodels sequentially in accordance with different requirements and goals 

in different stages of experimental design.  The development of this approach also helps 

answer R.Q. 3.2, How to reduce the design space with information from previous 

metamodeling and design space exploration?  This approach is illustrated with a simple 

engineering problem in Section 5.5. 

In this dissertation we focus on the usage of three types of metamodels, the 

Response Surface (RS) model, kriging model, and Multivariate Adaptive Regression 

Splines (MARS).  Fundamentals of these metamodels are presented in Chapter 2.  The 
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comparison and usage of other types of metamodels in engineering design will be a future 

work for this dissertation.  In (Simpson, 1998), the author compared the performance of 

RS and kriging metamodels in engineering design.  In (Lin, 2000) the author studied the 

performance of RS and kriging metamodels in robust design.  The comparison of various 

types of kriging metamodels could be found in (Simpson, 1998; Lin, 2000; Lin, et al., 

2000).  The usage of kriging and MARS metamodels in SEED is studied in Sections 5.2 

and 5.3 in this dissertation.  Based on previous studies, properties of these metamodels 

are listed and compared in Table 5.24.  Items 1 – 3 in Table 5.24 correspond to the 

mathematical and computational complexity of metamodels, 4 – 6 corresponding to the 

accuracy (or the ability of prediction) of different metamodels, and 7 – 9 corresponding to 

metamodels’ relationship with other techniques. 

Table 5.24 Plus and Minus of Different Types of Metamodels 

 RS (Regression) Kriging MARS 
1. Mathematical complexity Simple Complicated Complicated 
2. Computation time Short Long Medium 
3. Problem size: # of design 

variables and # of data points 
Large, Medium, and 

Small Problems 
Small 

Problems  
Medium and 

Small Problems 
4. Metamodel accuracy Low High High 
5. Loyalty to data 

No Yes 
No, with very 

small bias 
6. Ability to model irregular 

surfaces (highly nonlinear or 
flat in different regions) 

No 
Yes, but only 

when with 
lots of data 

Yes 

7. Suitable for existing 
screening techniques 

Yes No Yes 

8. Preference to specific 
experimental designs 

Yes Yes No 

9. Mathematical connectivity to 
SEED (adapted maximum 
entropy sampling) 

No Yes No 



329 

In Table 5.24 we see that the RS metamodel has very apparent advantages and 

drawbacks.  Among the three types of metamodels, the RS model is easiest to develop; its 

mathematical foundation is simple and the computation time (on both model building and 

response prediction) is short.  Since it is simple, its accuracy is not very satisfactory and it 

cannot model irregular surfaces that are highly nonlinear or flat in different regions in the 

design space.  Usually the RS metamodels are developed with classical experiments, i.e., 

fractional factorial designs, CCD, etc.  The usage of these experiments and the RS 

metamodel in the Response Surface Methodology (RSM) provides an effective approach 

to screen out unimportant design variables – though this technique is primarily suitable 

for physical experiments that come with random errors. 

The kriging metamodel is most difficult to develop because it involves matrix 

calculations.  This sacrifice on computation time enables kriging metamodels to predict 

response values accurately with sufficient data.  One appealing property of the kriging 

metamodel used in this dissertation is that it is loyal to the existing data, which is suitable 

for metamodeling with deterministic computer experiments.  Previous studies show that 

kriging works better with space-filling experiments than with classical experiments.  

Kriging and maximum entropy sampling (the basis of SEED) share the same 

mathematical foundation, which makes the application of kriging in SEED natural and 

easy.  For example, in SEED, values of θ from previous kriging metamodels could be 

used in the formulation of covariance matrices in future maximum sampling steps.  Major 

limitations of kriging are: 1) it can only deal with small problems because the 

computation time on both model building and response prediction increases dramatically 
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as the numbers of design variables and data points increase, and 2) it cannot model 

irregular surfaces well, as discussed in Section 5.2. 

The MARS metamodel is mathematically complicated but does not require as 

much computation time as kriging because it does not require matrix calculations.  

Without strict computation constraints, it is able to deal with more design variables and 

data points than kriging.  It smoothes the data, but the prediction errors at current data 

points are very small.  Our studies show that it works well with both evenly and unevenly 

spread data points; this is attractive because in the SEED method data points tend not to 

be evenly spread.  As studied in Section 5.2, MARS could model irregular response 

surfaces, which is also very attractive in metamodeling. 

Since different types of metamodels all have their advantages and drawbacks, we 

propose to develop an approach in which these metamodels are used in different stages of 

experimental design so that we could take advantage from their strong points and avoid 

their shortcomings.  The incorporation of kriging and MARS metamodels in SEED has 

already been studied in Sections 5.2 and 5.3, thus in this section, our focus is on the usage 

of RS metamodels in early stages of experimental design and its incorporation with 

kriging and MARS metamodels in SEED.  Major advantages of the RS metamodel are its 

simplicity and ability of identifying unimportant design variables.  Thus, in very early 

stages of sequential experimental design, classical experiments and RS metamodels could 

be used to help reduce the size of the problem by screening out unimportant design 

variables.  As the experimental design evolves, more accurate metamodels are needed and 

we should use kriging and MARS metamodels to replace the RS metamodel.   



331 

The framework of sequential metamodeling is illustrated in Figure 5.40 and 

Figure 5.41 in different formats.  The SEED method, which was presented in Figure 4.4, 

is treated as an integrated and independent processor in this framework of sequential 

metamodeling.  The RS metamodel is not directly used in the SEED method; instead, it is 

used before we apply the SEED method to develop accurate metamodels.  Thus in this 

approach the primary goal of using RS metamodels is to reduce the design space by 

decreasing the number of dimensions of the problem.  At early stages of sequential 

metamodeling, we usually design fractional factorial experiments and develop first-order 

regression models (RS Metamodels) to gain knowledge of the actually response surface 

and eliminate unimportant design variables.  Then we may augment more data points to 

construct CCD experiments and second-order RS metamodels may be developed to help 

grasp more details of the simulation program.  We may also skip the development of 

second-order RS metamodels, going directly to Processor D, in which we apply the SEED 

method to get accurate kriging or MARS metamodels for system responses.  The dash 

arrows between Processors B and D indicate that the SEED method should call the 

simulation program occasionally to collect information at new data/validation points in its 

iterations. 
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Figure 5.40 Framework of Sequential Metamodeling (I) 

 

     

 

Figure 5.41 Framework of Sequential Metamodeling (II) 
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The approach for sequential metamodeling helps answer R.Q.4.2 by using 

different types of metamodels according to different requirements along the design 

timeline.  R.Q.3.2 is also answered in that the RS metamodels are used to help reduce the 

design space by screening out unimportant design variables.  To answer R.Q.3.2 

completely, a future work is to develop approaches to reduce the ranges of the design 

variables. 

The approach of sequential metamodeling is introduced and illustrated in Figure 

5.40 and Figure 5.41 in this section.  Note that in this study we do not consider multiple 

responses; the extension of this approach to multi-response problems is easy in cases 

where we have clear ideas on the relative importance of each response.  In Section 5.4.2, 

we will apply this approach in an engineering problem.  Further applications of this 

approach are to be presented in following chapters with more complicated real-world case 

studies.   

 

5.5 APPLICATION OF SEQUENTIAL METAMODELING: DEVELOPMENT 
OF METAMODELS IN DESIGNING A PRESSURE VESSEL 

In this section, we use the example of design of pressure vessels to illustrate the 

sequential metamodeling approach as described in Section 5.4.  This example is taken 

from (Li and Chou, 1994; Sandgren, 1990) with some modifications.  The cylindrical 

pressure vessel is shown in Figure 5.42.  The shell is made in two halves of rolled steel 

plate which are joined by two longitudinal welds.  Available rolling equipment limits the 
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length of the shell to 20 ft.  The end caps are hemispherical, forged, and welded to the 

shell.  All welds are single-welded butt joints with a backing strip.  The material is carbon 

steel ASME SA 203 grade B.     

There are three design variables – radius (R) and length (L) of the cylindrical 

shell, and the thickness (T) of the cylindrical shell and spherical head, which have the 

following ranges of interest: 

10 in. ≤ R ≤ 50 in. 

10 in. ≤ L ≤ 100 in. 

0.9 in. ≤ T ≤ 1.1 in. 

 

 

R 

1  T h 

R 

L 
 

Figure 5.42 Pressure Vessel 

The design objectives are to maximize the tank volume and minimize total system 

cost which is a combination of welding, material, and forming costs.  The tank volume is 

written as: 
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32

3

4
. RLRVol ππ +=       (5.3) 

The total system cost is given by: 

 RLTRRLCost 84.191661.37781.16224.0 2 +++=    (5.4) 

Meanwhile, the constraints which limit the minimal wall thickness T are from the 

ASME boiler and pressure vessel codes and are given as: 

00193.01 ≥− R       (5.5) 

000954.0 ≥− RT       (5.6) 

Another constraint is put on the tank volume: 

   Vol – 1.296E5 ≥ 0      (5.7) 

Given the ranges of design variables, we see that the first two constraints (Equations (5.5) 

and (5.6)) are automatically satisfied, thus we will not consider these constraints in our 

design.  The third constraint is only related to one of the system responses, Vol.  As talked 

about earlier, the design goals are also only related to Vol and Cost.  Thus, in the 

metamodeling process, we will only consider metamodels for two system responses, the 

tank volume Vol and the system cost Cost.  In Section 5.5.1, we will discuss on how to 

develop metamodels for multiple system responses in our framework of sequential DOE 

and metamodeling.  Appropriate metamodels are then developed in Section 5.5.2, and the 

design solution is obtained after exploration of the design space. 



336 

5.5.1 Development of Metamodels for Multiple Responses in SEED 

In our previous studies on SEED, we only considered problems with one 

response.  In this section, our focus is on cases in which metamodels of multiple 

responses are needed in design. 

The identification of important design variables in a multi-response problem has 

been studied by many researchers, most of which are with response surface metamodels.  

The identification of important factors is not the focus of our study in this dissertation; for 

case studies in this dissertation, we use the approach as used in (Ortega, 1998) to identify 

and screen out unimportant design variables.  Our interest is in the design of sequential 

experiments and development of sequential metamodels (specifically, MARS and kriging 

metamodels in SEED) in multi-response problems. 

Suppose there are nr system responses for which we need to develop metamodels 

in the design process.  When there is only one response, we could easily calculate the 

uncertainty associated with the metamodel accuracy following equations and methods 

described in Chapter 4.  In a multi-response problem, there may be trade-offs in the 

allocation of new data points; different responses (and different metamodels with certain 

amount of prediction errors) may “drag” candidate points to different directions because 

candidate points with large prediction errors in one response may be with small prediction 

errors in another response.  To take this trade-off into consideration, we need to modify 

the equations in SEED as presented in Chapter 4. 

Suppose that we could assign the “degrees of importance” for each of the nr 

system responses; there are many methods to achieve this, e.g., we could follow the 
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method as used in Selection Decision Support Problems (see, Mistree, et al., 1994).  We 

use the symbol ρk to represent the importance of the kth system response, which satisfies: 

10 ≤≤ kρ , 1
1

=∑
=

rn

k
kρ ,  and  rnk ,...,1=    (5.8) 

Following the constraints as described in Equation (5.8), we could assign larger 

values of ρk to important responses (e.g., safety in some examples).  In sequential 

experimental design, we should pay more attention to these responses; the accuracy of 

metamodels for these responses is given higher priority.   

Note that in Chapter 4, we developed two methods to formulate entries in the 

adjusted covariance matrix.  Core equations for these two methods are Equations (4.27), 

(4.28) and (4.34).  To reflect the relative importance of different responses in sequential 

experimental design in multi-response problems, we modify Equations (4.27) and (4.28) 

as below: 

( )

( )

( )

















=

≠




>>
≤≤

−





≤>
>≤

−
























−

























−

⋅=

−=

∑∑
==

jiwhen

ji
njni

njni
whenR

njni

njni
whenR

e

e

e

e

R

ji

ji

n

k k

kj

k

n

k k

ki
k

jijiij

rr

1
,

,

,

,1
1

1
1

1 max,

,

1 max,

,

2

2

xx

xx

xx

ρ
λ

ρ
λ

σ

αασσ

(5.9) 

 

and  



338 

( )
( )

∏ ∑∑

∏
∏

=
==

=

=






































+
























+−=

−=






−==

dv
rr

dv

dv

n

m mm

n

k k

kj
k

n

k k

ki
k

n

m mmji

n

m mji
adj

ij

d
e

e

e

e

d

dxxR adj
m

1

2

1 max,

,

1 max,

,2

1

22

1

222

11exp

exp

exp,

θ

θ

θ

ρλρλσ

ββσ

σσσ

(5.10) 

 

Equation (5.9) is used to formulate entries of the adjusted covariance matrix 

without changing the correlation function (corresponding to Equation (4.28)), and 

Equation (5.10) is to formulate entries of the adjusted covariance matrix through 

changing the correlation function (corresponding to Equation (4.32)).  Note there are nr 

responses and the quantified importance of each response is ρk.  emax,k is the maximum 

predicted prediction error of the current metamodel for the kth system response, and ei,k is 

the predicted prediction error of the current metamodel for the kth system response at 

point xi.  Meanings of other symbols are the same as those for Equations (4.28) and 

(4.32).  Note that in Equations (5.9) and (5.10) we use a single correlation function R, 

which is not inherit from any previous metamodels.  As described in the single-variable, 

single-objective examples in Chapter 4 and previous sections of Chapter 5, when there is 

only one system response, values of θ from the previous metamodel could be used in 

formulation of the covariance matrix in the next sampling iteration.  In cases with 

multiple responses, to be simple, we decide not to adopt this approach; instead, based on 

information from previous metamodels, the designers arbitrarily set the values of θ in the 
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correlation function R when formulating the covariance matrix.  To develop a more 

effective approach to address the concerns above is a future work for this dissertation. 

Comparing Equations (5.9) and (5.10) to Equations (4.28) and (4.34), we see that 

the only modification is on the formulations of the adjusting coefficients αi and βi.  

Responses with greater weight ρk play more important roles in allocating new data points 

because more of their prediction errors are reflected in Equations (5.9) and (5.10).  There 

may be other formulations of the entries of the adjusted covariance matrix that help 

achieve the same goal.  In this dissertation, we will only use Equations (5.9) and (5.10); 

the study and comparison of possible formulations would be one of the future work of 

this dissertation. 

With Equations (5.9) or (5.10) we could build the adjusted covariance matrix; 

new data points could be identified through maximizing the determinant of the adjusted 

covariance matrix.  In this dissertation, we develop metamodels for all system responses 

with the same set of data points.  This simplifies our method and enables us to focus on 

the development and verification of the SEED method.   

In real-world case studies, it is better to use different sets of data points to develop 

metamodels for different system responses.  However, to use totally different data points 

in metamodeling requires much more computation time and effort than to use the same 

set of data points.  To solve this problem, a method could be developed based on the 

usage of data and validation points.  As described before, in sequential experimental 

design, we have information of two sets of points, nd data points and nerror validation 

points.  In each iteration of SEED, a number of new data and validation points are added 
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to increase the accuracy of metamodels.  When there are multiple system responses, we 

may rearrange points in the large pool of observed points (data points + validation points) 

and form different sets of data/validation points for different system responses, i.e., for a 

particular observed point, we may use it as a data point for some responses, and as a 

validation point for other responses at the same time.  An algorithm needs to be 

developed to help select the set of data points for a particular system response; one 

possible criterion may be the prediction errors – we should use data points so that the 

corresponding metamodel’s prediction errors at the rest points (validation points) are 

smallest.  This is closely related to the cross-validation method.  Here we will not go 

further in this direction; the development of such an approach is a future work of this 

dissertation. 

5.5.2 Development of Metamodels for System Responses 

In this section, we will develop acceptable metamodels for the two system 

responses, Vol and Cost.  Following the approach described in Section 5.4 (see Figure 

5.40 and Figure 5.41), we will first build RS metamodels and screen out unimportant 

design variables, and then accurate metamodels (MARS or kriging) could be developed 

with the SEED method.   

Since there are only 3 design variables in this example, we need not use the 

fractional factorial experiments as initial experimental design.  The factorial experiments 

with 8 points, as listed in Table 5.25, are used to help develop first-order RS metamodels.  
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The center point will not be observed and used to develop the initial metamodel.  The 

design variables are scaled to [−1, 1] when building the RS metamodels. 

Table 5.25 Initial Experimental Design with 8 Data Points 

R L T R_norm L_norm T_norm Vol Cost 
10 10 0.9 −1 −1 −1 7330.38 452.33 
50 10 0.9 1 −1 −1 602138.60 5335.59 
10 100 0.9 −1 1 −1 35604.72 1297.44 
50 100 0.9 1 1 −1 1308996.96 8421.34 
10 10 1.1 −1 −1 1 7330.38 487.89 
50 10 1.1 1 −1 1 602138.60 6224.64 
10 100 1.1 −1 1 1 35604.72 1333.00 
50 100 1.1 1 1 1 1308996.96 9310.39 

 

Given the information in Table 5.25, we develop first-order regression model as 

following: 

Vol = 488518 + 467050 R + 183783 L + 0 T    (5.11) 

Cost = 4108 + 3215 R + 983 L + 231 T    (5.12) 

More details could be found in Appendix B.  As introduced in Chapter 2, widely 

used statistics in Response Surface Methodology (RSM), like MSE, F-statistics, etc., are 

not suitable in deterministic applications with computer experiments because of the lack 

of random errors.  Only values of R-sq and adjusted R-sq could give some verification of 

model adequacy, and often this measure is not sufficient (Simpson, et al., 1997).  In this 

example, the values of R-sq and adjusted R-sq for the metamodel of Vol are 89.7% and 

82.1%, and those for the metamodel of Cost are 96.9% and 94.6%, respectively.  This 
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shows that the first-order RS metamodels in Equations (5.11) and (5.12) are somewhat 

“accurate”; thus we are confident to use it to identify and screen unimportant design 

variables. 

We notice that the design variable T has no influence in the metamodel of Vol (the 

coefficient of T in Equation (5.11) is zero), and much smaller effect in the metamodel of 

Cost.  The coefficient of T in Equation (5.12) is about 1/4 and 1/15 of those of R and L. 

The main effects plot is shown in Figure 5.43, in which we see clearly that the design 

variable T has little influence on the response Cost.  Values of t-ratio and p of Cost (see 

Appendix B) give some reference on how importance a design variable is.  The p-value 

for T in Cost is 0.484, which is not small in a [0,1] range, and much larger than those for 

R and L, which are 0.0 and 0.031, respectively.  The t-ratio for T in Cost is 0.77, which is 

much smaller than those for R and L, which are 10.73 and 3.28, respectively.  Since a 

small p-value and a large t-ratio imply significant influence of the corresponding design 

variable on a response, we see that the design variable T has smaller influence on Cost 

than R and L do.  To decide whether T is unimportant or not, we need to set a confidence 

level and perform mathematical tests as used in RSM or ANOVA (Analysis of 

Covariance).  However, these tests may not be appropriate in deterministic applications 

which have no random errors.  Thus in this example we will not do mathematical tests. 
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Figure 5.43 Main Effects Plot – Means for Cost 

Based on our observations above, the design variable T is likely to be unimportant 

since it has no influence on Vol and little influence on Cost.  A first-order RS metamodel 

of Cost is developed without the design variable T and shown in Equation (5.13); more 

details of this metamodeling are presented in Appendix B.  Values of R-sq and adjusted 

R-sq for this RS model are 96.5% and 95.1%, respectively, which are almost the same as 

those for Equation (5.12).  This also implies that the design variable T has little effects on 

Cost.   

Cost = 4108 + 3215 R + 983 L     (5.13) 
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In future processes of metamodeling and design space exploration, effects from 

the design variable T are omitted and a constant value should be assigned to T.  In RSM, 

an unimportant design variable is usually set at the center of its factor range (i.e., a value 

of zero in the [−1,1] interval).  However, in sequential experimental design, in order to 

save computation time and effort on simulation, we should keep as many current 

observed points as possible.  If the normalized value of the design variable T is set as 

zero, none of the current observed points could be used in future metamodeling process.  

Thus, we should set the normalized value of T as either 1 or −1; in this way we are able to 

keep 4 observed data points for future use.  In Figure 5.43 we see that the main effect of T 

on Cost is positive, and our design goal is to minimize Cost, so we should set the 

normalized value of T at its lower band −1 (or say, the value of T is set as 0.9in.) to help 

obtain smaller values of Cost.  Thus, the first 4 data points in Table 5.25 will be kept in 

future metamodeling processes. 

After building first-order RS metamodels and screening out unimportant design 

variables, we could either build higher-order RS metamodels (more data points are 

needed to realize CCD experiments) or go directly to the next step in Figure 5.41, the 

Sequential Exploratory Experimental Design.  In this example, since the actual response 

functions (see Equations (5.3) and (5.4)) are not highly nonlinear, second-order RS 

metamodels should be acceptable for design space exploration.  However, in order to 

illustrate our sequential experimental design and metamodeling approach, we decide not 



345 

to develop second-order RS metamodels and go directly to the SEED process to develop 

kriging or MARS metamodels for the system responses Vol and Cost.   

As a reference, 3-D plots of Vol and Cost with respect to the design variables R 

and L are presented in Figure 5.44.  In Figure 5.44 we see that since the actual function of 

Vol and Cost are no more than cubic functions, the exact response surfaces are not highly 

nonlinear.  The response surface of Cost is more flat than that of Vol because the Cost is 

calculated with a second-order function while Vol is calculated with a third-order 

function.  Our next goal in metamodeling is to develop acceptable metamodels to reflect 

the actual response surfaces in Figure 5.44. 

 

Figure 5.44 Actual Responses of Volume and Cost 

In this example, besides the initial experiments with 4 data points and 4 validation 

points, we plan to add in 4 more data points and 2 more validation points.  Thus finally 

we will have 14 observed points.  Similar to our previous examples, to be simple, we will 

not use the accuracy of metamodels as stopping criteria in the SEED sampling process. 



346 

 

Iteration I – Step 1: Initial Experimental Design.  As discussed in Chapter 4, 

there are many ways to design the initial experiments in SEED.  In this example, since we 

already observed responses at points when developing RS metamodels, we will use these 

points as our initial experimental design.  As discussed earlier, 4 data points could be kept 

and used in SEED, as listed in Table 5.26.  Note that since the design variable T has been 

identified as an unimportant factor and will be set as 0.9 inch in all steps in the SEED 

method.  Note that in kriging and MARS metamodeling in SEED, we normalize design 

variables to [0,1]. 

Table 5.26 Initial Experimental Design with 4 Data Points 

R L R_norm L_norm Vol Cost 
10 10 0 0 7330.38 452.33 
50 10 1 0 602138.60 5335.59 
10 100 0 1 35604.72 1297.44 
50 100 1 1 1308996.96 8421.34 

 

Iteration I – Step 2: Simulation and Initial Metamodel of Responses.  Kriging 

metamodels are developed based on the information in Table 5.26.  For the kriging 

metamodel of Vol, we got θ1=79.44092 and θ2=0.59025.  For the kriging metamodel of 

Cost, we got θ1=77.00927 and θ2=0.28594.  In this study, if not specifically pointed out, 

the symbol θ1 always corresponds to the design variable R, and θ2 corresponds to the 

design variable L.  The kriging metamodels are illustrated in Figure 5.45. 
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Figure 5.45 Initial Kriging Metamodel for Volume and Cost 

Iteration I – Step 3: Identification of New Validation Points.  In this step we 

need to identify 4 validation points.  In the first iteration, we only have information from 

data points and the initial metamodel.  Without previous information on metamodel 

validation in this step, we will add in new points that are as far from current points as 

possible.  Maximum entropy sampling is directly applied without adjustment to the 

covariance matrix to help identify the validation points.  Values of θ in the correlation 

function R are set as 20 in formulating the covariance matrix.  New validation points are 

listed in Table 5.27. 

Note that in Table 5.27 the validation points are not strictly symmetrical to the 

center point of the design space because of small computational errors in the calculation 

and optimization of determinants of the covariance matrix.  Also, similar to the single-

variable example in Chapter 4, in this example, there should be another set of validation 

points that has the same value of determinant, i.e., are “equally” good in the optimization 
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of determinants of the covariance matrix.  That set of validation points could be easily 

obtained by switching the values for the two design variables, R and L.  In Chapter 4, we 

have shown that the SEED method is robust to the selection of points in each step, i.e., no 

matter which set of points are selected when there are multiple choices, the designers are 

assured to get acceptable metamodels after multiple iterations.  Thus, in this section, we 

will only consider the case with one possible set of validation points in this step, i.e., the 

points listed in Table 5.27. 

Table 5.27 Four New Validation Points Added in Iteration I 

R L R_norm L_norm Vol Cost 
30.036 10.108 0.5009 0.0012 142153.31 2260.6 
18.968 55.225 0.2242 0.5025 91006.7 1778.9 
41.448 55.081 0.7862 0.5009 595538.3 5166.86 
29.984 99.982 0.4996 0.9998 395307.47 4216.03 

 

Iteration I – Step 4: Metamodels of Prediction Errors.  In this step, prediction 

errors at both data and validation points are used to develop two metamodels to predict 

prediction errors for the two system responses across the design space.  The prediction 

errors at data points are zero; prediction errors at validation points are listed in Table 

5.28.   

Table 5.28 Prediction Errors at Validation Points in Iteration I 

R L R_norm L_norm Vol_err Cost_err 
30.036 10.108 0.5009 0.0012 346364.4 1616.075 
18.968 55.225 0.2242 0.5025 387949.3 2031.313 
41.448 55.081 0.7862 0.5009 -93268.6 -1195.64 
29.984 99.982 0.4996 0.9998 93210.2 -339.355 
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We first developed metamodels of prediction errors with MARS, as illustrated in 

Figure 5.46.  As mentioned in Section 5.3, since MARS metamodels smooth the data, 

when developing MARS metamodels, to be safe it is better to check whether they have 

big problems in prediction at observed points (though usually the prediction errors of 

MARS at observed points are very small).  In this case, we found that the MARS 

metamodel of prediction errors for the system response Vol is not working as expected. 

The prediction error at point [1,1] should be about zero since it is one of the data points 

listed in Table 5.26, while in Figure 5.46 we see that the predicted error at [1,1] with the 

MARS metamodel is around –900,000.  The difference between actual and predicted 

values is so large that we could not trust the MARS metamodel of prediction errors for 

Vol as illustrated in the left plot of Figure 5.46.  A kriging metamodel of prediction errors 

for Vol is developed and illustrated in Figure 5.47.  For this kriging metamodel, we got θ1 

= 99.81484 and θ2 = 0.52487. 

 

 

Figure 5.46 MARS Metamodels of Prediction Errors in Iteration I 
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Figure 5.47 Kriging Metamodel of Prediction Errors in Iteration I 

As for the MARS metamodel of prediction errors for Cost, we do not observe any 

abnormal features.  Thus, in future steps of SEED, we will use the MARS metamodel of 

prediction errors for Cost as illustrated in the right plot of Figure 5.46, and the kriging 

metamodel of prediction errors for Vol as illustrated in Figure 5.47.  The maximum 

absolute predicted prediction errors are emax,vol ≈ 370000, and emax,cost ≈ 6290. 

Iteration I – Step 5: Metamodel Validation.  This step is skipped since we do 

not use the accuracy of metamodels as the stopping criterion of the SEED method. 

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix.  To get 

more accurate metamodels, we decide to add in nnew = 2 data points.  The 6×6 adjusted 

covariance matrix is formulated following Equation (5.9).  Values of θ’s in the 
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correlation function are set as 20.  The two responses, Vol and Cost, are considered to be 

equally important, i.e., ρvol = ρcost = 0.5.  The value of λ is set as 2. 

To realize the formulation of adjusted covariance matrix with multiple responses, 

the FORTRAN program used in Chapter 4 is modified and presented in Appendix B.   

Iteration I – Step 7: Identification of New Data Points.  In this step, by 

maximizing the determinant of the adjusted covariance matrix as developed in the 

previous step, two possible new data points are identified and listed in Table 5.29.  This is 

done in iSIGHT; the picture of task organization of this step in iSIGHT is illustrated in 

Appendix B. 

Table 5.29 Two New Data Points Added in Iteration I 

R L R_norm L_norm Vol Cost 
30.036 79.102 0.5009 0.7678 337736.41 3768.84 

30 28.387 0.5 0.2043 193359.69 2655.38 
 

 

Iteration I – Step 8: Updated Metamodels of Responses.  Now we have 6 data 

points, as listed in Table 5.26 and Table 5.29.  Two new kriging metamodels are 

developed with information from these 6 data points, and illustrated in Figure 5.48.  For 

the kriging metamodel of Vol, we got θ1=1.43075 and θ2=0.37732.  For the kriging 

metamodel of Cost, we got θ1=0.17743 and θ2=0.06426.  In Figure 5.48 we see that 

metamodels for both system responses are more accurate than the ones with 4 data points. 
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Figure 5.48 Updated Metamodels of Responses with 6 Data Points 

Iteration II – Step 3: Identification of New Validation Points.  In this step, we 

need to add in 2 new validation points.  Two kriging metamodels are developed for Vol 

and Cost based on information from 4 validation points.  For the kriging metamodel of 

Vol, we got θ1=99.60797 and θ2=99.22609.  For the kriging metamodel of Cost, we got 

θ1=3.17433 and θ2=0.56250.  Plots of these two metamodels are illustrated in Figure 

5.49. 

Prediction errors of these two metamodels at 6 data points and 4 validation points 

are calculated and listed in Table 5.30.  Two MARS metamodels of prediction errors are 

then developed with information at 6 data points and 4 validation points, and illustrated 

in Figure 5.50.  From Figure 5.50 and Table 5.30 we see that the MARS metamodel of 

prediction errors for Vol does not perform well; the predicted prediction errors at four 

validation points are far from zero (since validation points are used to develop kriging 

metamodels of responses in this step, prediction errors at these points should be zero).  
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The MARS metamodel of prediction errors for Cost works well.  This suggests that we 

should not use MARS metamodel to predict prediction errors for Vol in this step.  A 

kriging metamodel is developed to calculate prediction errors for Vol, as illustrated in 

Figure 5.51.  For this kriging metamodel, we got θ1=99.93684 and θ2=2.00708. 

 

 

Figure 5.49 Kriging Metamodels of Responses Developed with 4 Validation Points in 
Iteration II – Step 3 

 

Figure 5.50 MARS Metamodels of Prediction Errors Developed with 6 Data Points 
and 4 Validation Points in Iteration II – Step 3 
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Table 5.30 Prediction Errors of MARS Metamodels at Data and Validation Points in 
Iteration II – Step 3 

R L R_norm L_norm Vol_err Cost_err 
10.00 10.00 0 0 134822.93 1808.27 
50.00 10.00 1 0 -511131.90 -3556.69 
10.00 100.00 0 1 559933.58 3869.41 
50.00 100.00 1 1 -913689.49 -4205.31 
30.04 79.10 0.5009 0.7678 -31268.38 67.38 
30.00 28.39 0.5 0.2043 109907.60 -35.50 
30.04 10.11 0.5009 0.0012 -103.25 -0.73 
18.97 55.23 0.2242 0.5025 -5946.40 -2.20 
41.45 55.08 0.7862 0.5009 -8028.14 -1.94 
29.98 99.98 0.4996 0.9998 -8582.95 -0.24 

 

 

 

Figure 5.51 Kriging Metamodel of Prediction Errors for Volume in Iteration II – 
Step 3 
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To identify 2 new validation points, a 12×12 covariance matrix is built, with the 

first 6 rows and columns corresponding to the data points, the 7th to 10th rows and 

columns corresponding to the validation points, and the last two rows and columns 

corresponding to the candidate points.  Then the 12×12 adjusted covariance matrix is 

formulated following Equation (5.9).  Values of θ’s in the correlation function are set as 

20.  The two responses, Vol and Cost, are considered to be equally important, i.e., ρvol = 

ρcost = 0.5.  The value of λ is set as 2.  By maximizing the determinant of this adjusted 

covariance matrix, 2 new validation points are identified and listed in Table 5.31. 

Table 5.31 Two New Validation Points Added in Iteration II 

R L R_n L_n Vol Cost 
17.48 28.15 0.1871 0.2017 49424.63 1231.57 
42.38 83.39 0.8096 0.8154 789523.87 6179.38 

 

Iteration II – Step 4: Metamodels of Prediction Errors.  Prediction errors of 

the updated kriging metamodels (Figure 5.48) are zero at data points.  Prediction errors at 

the 6 validation points are listed in Table 5.32.  The predicted values of responses are 

calculated with updated kriging metamodels in Figure 5.48.  Note that some of the 

predicted values are negative, which is apparently wrong since both Vol and Cost should 

have positive values. 
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 Table 5.32 Prediction Errors at Validation Points 

R_n L_n Vol Cost Vol_pred Cost_pred Vol_err Cost_err 
0.5009 0.0012 142153.31 2260.60 171500.83 2347.96 29347.53 87.36 
0.2242 0.5025 91006.70 1778.90 -2617.04 1643.15 -93623.74 -135.76 
0.7862 0.5009 595538.30 5166.85 686754.27 5184.76 91215.97 17.90 
0.4996 0.9998 395307.47 4216.03 415060.77 4297.58 19753.30 81.55 
0.1871 0.2017 49424.63 1231.57 -30331.33 572.18 -79755.96 -659.40 
0.8096 0.8154 789523.87 6179.38 1131853.75 7483.56 342329.88 1304.19 

 

Two MARS metamodels of predicted errors are developed with information of 

prediction errors at 6 data points and 6 validation points.  These two metamodels are 

illustrated in Figure 5.52; more details are presented in Appendix B. 

 

 

Figure 5.52 MARS Metamodels of Prediction Errors in Iteration II 

Similar to what we did in Iteration I, here we need to check whether these MARS 

metamodels work properly at data and validation points; we expect the predicted 

prediction errors from these metamodels to be very close to those “true” values that we 

observed.  The true and predicted prediction errors are listed in Table 5.33.  In Table 5.33 
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we see that the MARS metamodel of prediction errors for Cost does not perform well; the 

difference between actual and predicted values is very large at several points, e.g., there is 

a difference of about 1600 at (0.8096, 0.8154).  The MARS metamodel of prediction 

errors for Vol performs not well; the difference between actual and predicted values is 

very large (e.g., a difference of 4627 at (0.5009,0.7678) where the prediction error should 

be zero), though this difference may seem to be small compared to the huge range of 

prediction errors of Vol (from around –86274 to +94319).  Thus, two kriging metamodels 

of prediction errors for Vol and Cost are developed and illustrated in Figure 5.53.  For the 

kriging metamodel of prediction errors for Vol, we got θ1=99.99965 and θ2=6.49084.  For 

the kriging metamodel of prediction errors for Cost, we got θ1=99.99659 and 

θ2=17.19953.   

Table 5.33 True and Predicted Prediction Errors at Data/Validation Points 

R_n L_n Vol_err Cost_err Vol_err_pred Cost_err_pred 
0 0 0 0 391.61 1.23 
1 0 0 0 -597.57 2.66 
0 1 0 0 -363.31 -0.47 
1 1 0 0 598.44 -2.64 

0.5009 0.7678 0 0 -4627.24 2.76 
0.5 0.2043 0 0 -1969.90 -5.70 

0.5009 0.0012 29347.53 87.36 30193.33 83.65 
0.2242 0.5025 -93623.74 -135.76 -86273.75 -141.00 
0.7862 0.5009 91215.97 17.90 94318.65 23.17 
0.4996 0.9998 19753.30 81.55 19181.00 85.10 
0.1871 0.2017 -79755.96 -659.40 -32350.83 280.32 
0.8096 0.8154 342329.88 1304.19 -25824.06 -283.06 
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Figure 5.53 Kriging Metamodels of Prediction Errors in Iteration II 

  

Figure 5.54 Contour Plots of Metamodels of Prediction Errors for Vol and Cost 

Contour plots of kriging metamodels of prediction errors for Vol and the MARS 

metamodel of prediction errors for Cost are illustrated in Figure 5.54.  These two 

metamodels are used in future steps to help formulate the adjusted covariance matrix.  

The maximum absolute prediction errors are emax,vol ≈ 93700 and emax,cost ≈ 258. 

Iteration II – Step 5: Metamodel Validation.  This step is skipped. 
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Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix.  Two 

new data points are to be added in this iteration.  Since this is the last step in this SEED 

process, a 14×14 adjusted covariance matrix is built following Equation (5.8).  Values of 

θ’s in the correlation function are set as 20.  The two responses, Vol and Cost, are 

considered to be equally important, i.e., ρvol = ρcost = 0.5.  The value of λ is set as 2. 

Iteration II – Step 7: Identification of New Data Points.  In this step, by 

maximizing the determinant of the adjusted covariance matrix, two possible new data 

points are identified and listed in Table 5.34. 

Table 5.34 Two New Data Points Added in Iteration II 

R L R_norm L_norm Vol Cost 
18.08 82.19 0.2021 0.8021 109213.48 2067.43 
41.97 27.96 0.7993 0.1996 464482.31 4470.92 

 

Iteration II – Step 8: Updated Metamodels of Responses.  Now we have 8 data 

points and 6 validation points as listed in Table 5.35.  Since we already got 14 observed 

points, the SEED process will stop in this iteration.  Final metamodels of Vol and Cost 

are developed based on the information in Table 5.35; these metamodels are illustrated in 

Figure 5.55.  For the kriging metamodel of Vol, we got θ1=0.19587 and θ2=0.00136.  For 

the kriging metamodel of Cost, we got θ1=0.00226 and θ2=0.00122.  As a comparison, 

two MARS metamodels are also developed for Vol and Cost, and illustrated in Figure 

5.56.   
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Table 5.35 Observed Points 

R L R_norm L_norm Vol Cost 
10.00 10.00 0 0 7330.38 452.33 
50.00 10.00 1 0 602138.60 5335.59 
10.00 100.00 0 1 35604.72 1297.44 
50.00 100.00 1 1 1308996.96 8421.34 
30.04 79.10 0.5009 0.7678 337697.71 3768.84 
30.00 28.39 0.5 0.2043 193359.69 2655.38 
18.08 82.19 0.2021 0.8021 109213.48 2067.43 
41.97 27.96 0.7993 0.1996 464482.31 4470.92 
30.04 10.11 0.5009 0.0012 142153.31 2260.60 
18.97 55.23 0.2242 0.5025 91006.70 1778.90 
41.45 55.08 0.7862 0.5009 595538.30 5166.85 
29.98 99.98 0.4996 0.9998 395307.47 4216.03 
17.48 28.15 0.1871 0.2017 49424.63 1231.57 
42.38 83.39 0.8096 0.8154 789523.87 6179.38 

 

 

 

Figure 5.55 Final Kriging Metamodels for Vol and Cost 
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Figure 5.56 Final MARS Metamodels for Vol and Cost 

In Figure 5.55 we see that the kriging metamodel for Vol works well, while that 

for Cost is not acceptable.  The Predicted values of Cost with the kriging metamodel are 

all negative, which is far away from actual values.  As discussed in Section 5.2.1 the 

kriging algorithm may cause this problem.  We should not use the kriging metamodel to 

predict Cost in our later stages of this pressure vessel design.  As to the MARS 

metamodels, we see that the MARS metamodel does not work well in prediction of Vol 

because the predicted values at observed points do not match with the actual values; 

however, it works well when predicting values of Cost.  Thus, in this problem, we will 

use the kriging metamodel to predict responses of Vol and the MARS metamodel to 

predict responses of Cost.  Contour plots for these two metamodels are illustrated in 

Figure 5.57.  These two metamodels will be used in design space exploration for 

solutions that satisfy design constraints and achieve design goals as described at the 

beginning of Section 5.5. 
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Figure 5.57 Contour Plots of Final Metamodels for Vol and Cost 

The approach of sequential metamodeling and its integration with the SEED 

method are illustrated in this section.  The initial experiments and RS metamodels are 

used to identify and screen out the unimportant design variable, the wall thickness T.  

Then the SEED method is applied and metamodels of system responses are updated as 

new data points are added in.  Both kriging and MARS are used in developing the 

metamodels of responses and prediction errors in applying SEED.  A very interesting 

observation is that sometimes the MARS technique does not work well because it does 

not necessarily predict accurately at observed points.  In real-world applications, 

designers could observe this problem by examining the difference between actual and 

predicted values at observed points; in such cases, kriging may be used as a remedy to 

develop the metamodel that met difficulty with the MARS technique.  This will be 

summarized and further discussed later. 



363 

5.5.3 Comparison of Metamodels from SEED and Single-Stage Experiments 
Designs 

To verify the strategy of sequential experimental design, we need to compare the 

above results to that obtained with metamodels developed in a single-stage experimental 

design.  Two single-stage experimental designs are studied, one of which is Latin 

Hypercubes, and the other is maximum entropy sampling as stated in Currin, et al., 1991 

(without adjusting the covariance matrix); both of them have 14 data points, as listed in 

Table 5.36 and Table 5.37.  Kriging and MARS metamodels for both Vol and Cost are 

developed with information from Table 5.36 and Table 5.37.  For each experimental 

design and each response, the more accurate metamodel is selected.  As a result, MARS 

metamodels of Vol and Cost developed with information from Table 5.36, and kriging 

metamodel of Vol and Cost developed with information from Table 5.37, are selected and 

used in our comparisons in this section.  

Table 5.36 Single-Stage Maximum Entropy Sampling with 14 Data Points 

R_n L_n R L Vol Cost 
0 0 10.00 10.00 7330.38 452.33 
1 0 50.00 10.00 602138.60 5335.59 
0 1 10.00 100.00 35604.72 1297.44 
1 1 50.00 100.00 1308996.96 8421.34 

0.5009 0.0012 30.04 10.11 142153.31 2260.60 
0.2242 0.5025 18.97 55.23 91006.70 1778.90 
0.7862 0.5009 41.45 55.08 595538.30 5166.85 
0.4996 0.9998 29.98 99.98 395307.47 4216.03 

0 0.3141 10.00 38.27 16211.35 717.78 
1 0.6927 50.00 72.34 1091779.39 7473.08 
0 0.69 10.00 72.10 26839.67 1035.46 
1 0.3067 50.00 37.60 818932.06 6281.99 
0 0.5022 10.00 55.20 21529.75 876.74 

0.6953 0.2135 37.81 29.22 357677.27 3818.25 
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Table 5.37 Latin Hypercubes with 14 Data Points 

R_n L_n R L Vol Cost 
0.0 0.9231 10.00 93.08 33430.42 1232.45 

0.07692 0.8462 13.08 86.16 55652.71 1507.12 
0.1538 0.7692 16.15 79.23 82586.28 1785.27 
0.2308 0.0 19.23 10.00 41416.08 1124.82 
0.3077 0.4615 22.31 51.54 127071.89 2117.67 
0.3846 0.3846 25.38 44.61 158823.44 2380.87 
0.4615 1.0 28.46 100.00 351019.21 3948.80 
0.5385 0.3077 31.54 37.69 249220.62 3076.95 
0.6154 0.1538 34.62 23.84 263500.23 3193.52 
0.6923 0.6154 37.69 65.39 516135.63 4762.26 
0.7692 0.2308 40.77 30.77 444496.07 4346.80 
0.8462 0.5385 43.85 58.47 706271.52 5727.41 
0.9231 0.07692 46.92 16.92 549847.47 5002.41 

1.0 0.6923 50.00 72.31 1091496.64 7471.85 
 

With information at data points in the single-stage maximum entropy sampling 

(Table 5.36), we develop the MARS metamodels of Vol and Cost.  With information at 

data points in the Latin Hypercube design (Table 5.37), we develop the kriging 

metamodel of Vol; the parameters are θ1=0.03776 and θ2=0.00252.  A MARS metamodel 

is developed to predict values of Cost with information from the Latin Hypercube design. 

To compare the accuracy of metamodels from different experimental designs, the 

values of NRMSE and NMAX are calculated and listed in Table 5.38 based on Equations 

(2.7) and (2.9).  As introduced in Chapter 2, the smaller the values of NRMSE and 

NMAX, the more accurate the corresponding metamodel is.  In the first row of Table 5.38 

we see that metamodels for two system responses, Vol and Cost, are studied.  In the 

second row, designs of experiments (DOE) used are Sequential Exploratory Experimental 
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Design (SEED), single-stage maximum entropy sampling (S-MES), and Latin 

Hypercubes (LH).   

Table 5.38 Accuracy of Metamodels from Different Experimental Designs 

Response Vol Cost 
DOE SEED S-MES LH SEED S-MES LH 

NRMSE 0.00009 0.0395 0.0039 0.0058 0.0295 0.0058 
NMAX 0.00002 0.1055 0.0051 0.0262 0.0943 0.0262 

 

In Table 5.38 we see that metamodels from SEED is most accurate since they 

have smallest NRMSE and NMAX values for Vol and Cost.  Single-stage maximum 

entropy sampling performs better in modeling Cost than in modeling Vol; it performs 

worst among these three methods because it has the largest values of NRMSE and 

NMAX for both Vol and Cost.  The Latin Hypercubes design performs better than single-

stage maximum entropy sampling, but worse than the SEED method.   

Another issue to be noticed in comparison is the computation and handling 

expense associated with SEED and the single-stage experimental designs.  To design 

Latin Hypercube experiments is very fast and simple.  The SEED method requires a lot of 

time, most of which is spent on human interference – handling input and output files, 

transferring information, making decisions, etc.  Maximum entropy sampling is very time 

consuming when there are many design variables and/or when we want to allocate a lot of 

data points in one step.  This is the reason why the authors in (Currin, et al., 1991) 

developed a method in which data points are identified “sequentially”, in which 

information from previous data points is not used in identifying new points (this is why 
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we still call that method a “single-stage” method, as explained in Chapter 4).  The SEED 

method is similar to the method in (Currin, et al., 1991) except that information of 

prediction errors is used in the metamodeling process.  The computation expense of 

SEED is slightly higher than that of the S-MES method, but the difference should not be 

very significant.  The handling expense (due to human interference) of SEED is much 

higher than that of the S-MES method because human decisions have to be made in the 

metamodeling process, and human activities are used in transferring information between 

programs, developing metamodels of prediction errors, etc.  The handling expense of 

SEED could be reduced a lot by building SEED in a computer framework in which 

transference of information, development of metamodels, etc., are done automatically 

with the supervision of human beings; human decisions are still needed in some steps but 

time spent on the decision-making could be minimized by providing a good human-

computer interface. 

The comparison above shows that with equal number of data points, the SEED 

method helps achieve more accurate metamodels than single-stage experimental designs 

do.  The reason is that in SEED, information from validation points is taken into account 

during metamodeling, while in single-stage designs information from validation points is 

wasted because it is collected and used only after the metamodels are developed. 
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5.5.4 Exploration of Solutions for the Design of Pressure Vessels 

A compromise Decision Support Problem (C-DSP) is built for the design of 

pressure vessels; design requirements and goals are described at the beginning of Section 

5.5.  The mathematical formulation of the C-DSP is presented in Figure 5.58.  As 

described in Section 5.5.2, the factor T is identified as unimportant and set as 0.9 inch in 

metamodeling; thus, in C-DSP and design space exploration, it is not regarded as a design 

variable but a constant with the value of 0.9 inch.   

There are three system constraints.  The first two system constraints, g1(x) and 

g2(x), are automatically satisfied in the given design space, as we described at the 

beginning of Section 5.5; thus in design space exploration, we only need to consider the 

constraint of g3(x).  The metamodel of response for Vol as developed in Section 5.5.2 

could be used in g3(x). 

There are two design goals, one is to maximize the tank volume, and the other is 

to minimize the cost.  The metamodels developed in Section 5.5.2 are used in the C-DSP 

to replace the simulation code (in this example, Equations (5.3) and (5.4)).  In this 

example, the usage of metamodels does not help reduce computation time and effort; 

actually, it increases the computation time because the kriging metamodel is more 

complicated than the simple equations for system responses.  However, this is a 

demonstration of our sequential experimental design and metamodeling approach; saving 

on computation time and effort is not a goal in this section.  In this example, since we 

want to maximize the tank volume and minimize the cost, we use different formulations 

of the systems goals.  We set Voltarget = 700,000, and Costtarget = 3000. 
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Figure 5.58 Mathematical Formulation of C-DSP for Pressure Vessel Design 

In Figure 5.58, we show the Archimedean deviation function in which both design 

goals are equally weighed.  To obtain more general knowledge, we may need to study 

different design scenarios, e.g., Archimedean deviation functions with unequally weighed 

design goals, preemptive deviation functions, etc.  However, in this study, we will only 

Given: 
System variables R, L, and their ranges. 
System constraints and goals. 
T = 0.9 inch. 
 

Find:  
• Values of independent system variables: Cylinder radius, R, Cylinder 

length, L 
• Values of deviation variables: di

-, di
+, i = 1, 2 

 
Satisfy:  

• System Constraints: 
g1(x) = 1 - 0.0193R ≥ 0 
g2(x) = T - 0.00954R ≥ 0 
g3(x) = Vol(x) − 1.296E5 ≥ 0 

• System Goals: 
 To maximize Vol: 
  Vol (x) / Voltarget + d1

- − d1
+ = 1 

 To minimize Cost: 
  Costtarget / Cost(x) + d2

- − d2
+ = 1 

• Bounds: 
10 in. ≤ R ≤ 50 in.  
10 in. ≤ L ≤ 100 in. 

 di
-, di

+
 ≥ 0,  di

-·di
+ = 0; i = 1, 2 

Minimize:  
Preemptive deviation function (lexicographic minimum): 

Z = w1*d1
- + w2* d2

-,          where w1 = w2 = 0.5 



369 

explore for solutions with the given Archimedean deviation function since our focus here 

is on the sequential experimental design and metamodeling process, not the acquiesce of 

solutions for the pressure vessel design.  Given the formulation of design goals in the 

compromise DSP in Figure 5.58, d1
+ and d2

+ do not play roles in the Archimedean 

formulation because their values are always zero before the design goals are achieved. 

Solving the compromise DSP in Figure 5.58, we got the solution as presented in 

Table 5.39.  Note that this solution is obtained with metamodels developed in Section 

5.5.2.  As a comparison, the compromise DSP is re-solved with simulations, i.e., 

theoretical mathematical functions in Equations (5.3) and (5.4); no metamodel is used in 

this formulation.  The result is also listed in Table 5.39; note that this result could be 

regarded as the “true” solution based on given design requirements and goals.  The 

compromise DSP are also solved with metamodels developed with single-stage 

experimental designs as described in Section 5.5.3.   

Table 5.39 Design Solutions Obtained by Solving the C-DSP 

 R L T Vol Cost Vol_pred Cost_pred D1
− D2

− 

C-DSP with 
Simulation 

44.746 51.625 0.9 699999.90 5693.05 − − 0.00 0.4730

C-DSP with 
Metamodels 
from SEED 

44.75 51.62 0.9 700026.14 5693.18 699992.09 5640.52 0.00 0.4681

C-DSP with 
Metamodels 
from S-MES 

44.76 48.86 0.9 683012.87 5609.31 699996.86 5616.18 0.00 0.4658

C-DSP with 
Metamodels 

from LH 
46.72 55.32 0.9 806541.79 6203.87 699999.55 6062.94 0.00 0.5052
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In Table 5.39 we see that solutions from C-DSP with metamodels are close to that 

from C-DSP with simulation (the “true” solution), which indicates that the utilization of 

sequential experiments and metamodels is effective in finding out the design solutions.  

The sequential metamodeling approach described in Section 5.4 is effective; the 

application of RS, kriging, and MARS metamodeling techniques is appropriate in the 

example problem.   

Comparing solutions based on metamodels from SEED, S-MES, and LH, we find 

out that the best solution is achieved with the metamodel from SEED, which is very close 

(within ±0.01) to the true solution.  Metamodels from the Latin Hypercube design 

perform worst because its design solution is very far from the “true” solution.  The 

solution with metamodels from SEED is closest to that obtained with “actual 

simulations”; values of responses of Vol and Cost are also not far from those of the “true” 

solution.  The solution obtained with metamodels from the single-stage maximum 

entropy sampling is also very close to the “true” solution.  Since the actual response 

surfaces are not highly nonlinear or irregular (note that Equations (5.3) and (5.4) are 2nd-

order or 3rd-order questions), difference between solutions from different metamodels is 

not very huge.  In cases with irregular responses, we expect to achieve more accurate 

metamodels and better solutions with the sequential experimental design method.   

Metamodels with LH are generally more accurate than those from S-MES (as 

presented in Table 5.38), while the solution from metamodels with S-MES is better than 

that from metamodels with LH.  With the SEED method, we got the most accurate 

metamodels and best solutions.  This indicates that a more accurate metamodel may not 
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necessarily lead to a better solution, as in the case of LH and S-MES; while with more 

accurate metamodels it is more likely that we will achieve better solutions, as in the case 

of SEED. 

In this chapter, our focus is on studies for R.Q.4, How to utilize different types of 

metamodels along the design timeline in accordance with the changing design 

information?  An approach for sequential metamodeling is developed and illustrated 

through studies in Sections 5.2, 5.3, 5.4, and 5.5.  This approach is closely related to the 

SEED method developed in Chapter 4.  In Chapter 6, a new approach is to be developed 

to help integrate processes of metamodeling and design space exploration; studies in 

Chapter 4 (SEED) and this chapter (the approach of Sequential Metamodeling) will serve 

as the foundation of the proposed research.  Summaries of research in this chapter and its 

connections with studies in future chapters are presented in the following section. 

5.6 A LOOK BACK AND A LOOK FORWARD 

The research in this chapter is partly based on our studies in Chapter 4.  The 

SEED method as developed in Chapter 4 serve as an important component in the 

approach that is developed in this chapter.  Work in this chapter, together with that in 

Chapter 4, provides the foundation of studies in the next chapter (Chapter 6), in which an 

approach is developed to efficiently explore the design space for design solutions through 

the integration of the processes of metamodeling and design space exploration.  Chapters 

4, 5, and 6 are the core of this dissertation, which provide the methodological basis for 

applications in Chapter 7 and 8. 
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In this chapter, our focus is on studies for R.Q.4, How to utilize different types of 

metamodels along the design timeline in accordance with the changing design 

information?  To answer this research question, we posed two sub-research questions, as 

listed below: 

R.Q.4: How to utilize different types of metamodels along the design timeline in 

accordance with the changing design information? 

 

R.Q.4.1: How do different types of metamodels perform in engineering design? 

R.Q.4.2: How to select different types of metamodels at different design stages? 

 

R.Q.4.1 is studied and answered in Sections 5.2 and 5.4.  A comparison between 

kriging and MARS metamodels is done in Section 5.2 with some interesting 

observations.  The comparison between RS and kriging metamodels has been done in 

previous work in (Simpson, 1998) and (Lin, 2000), and comparisons between more types 

of metamodels could be a future work of this dissertation.  In our studies we observe that 

both kriging and MARS have their strong and weak points; kriging metamodels may not 

perform appropriately when the properties of the response surface change greatly (i.e., 

highly nonlinear in some regions while flat in others), and MARS metamodels may meet 

problems in deterministic applications because they smooth the data and thus the 

predicted values at data points may not be accurate.  A summary on comparison between 

RS, kriging, and MARS metamodels is presented in Table 5.24 in Section 5.4, before the 
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development of the approach for sequential metamodeling.  This could be viewed as the 

answer to R.Q.4.1. 

Based on the studies in Section 5.2, the SEED method is extended in Section 5.3 

by utilizing both kriging and MARS metamodels.  This helps answer R.Q.4.2.  Kriging 

and MARS may be appropriate, or, on the other hand, inappropriate, in different 

situations; thus we recommend that both be used to develop metamodels in sequential 

experimental design and metamodeling.  Designers could make decisions only after 

building the metamodels and observing their performance.  A recommendation on how to 

use kriging and MARS metamodels is described in Section 5.3. 

R.Q.4.2 is further studied and answered in Sections 5.4 and 5.5, in which an 

approach for sequential metamodeling is developed and illustrated with an engineering 

example.  The framework for the approach of sequential metamodeling is presented in 

Figure 5.40 and Figure 5.41 in Section 5.4.  In Section 5.5, we modified our SEED 

mathematical formulations introduced in Chapter 4 to account for multiple system 

responses.  An engineering example of pressure vessel design is used to illustrate the 

approach of sequential metamodeling introduced in Section 5.4 and the handling of 

multiple responses described in Section 5.5.1.   

In our studies in Section 5.5, one interesting observation is that MARS 

metamodels may work abnormally in response prediction: in some cases the prediction 

errors of MARS metamodels at observed points are dramatically large, while in our 

previous studies, MARS metamodels used to have very small prediction errors at 

observed points though theoretically they do not predict exactly at observed points.  In 
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such cases, kriging metamodels are developed to overcome this shortcoming.  This 

confirms our previous recommendations made in Section 5.3, in which we propose to 

develop metamodels with both kriging and MARS techniques and designers could select 

appropriate ones in design. 

R.Q.4 is answered based on all studies in Sections 5.2, 5.3, 5.4, and 5.5.  Our 

answer to R.Q.4 is: various types of metamodels could be developed and utilized in the 

design process following the approach of sequential metamodeling as described in 

Section 5.4 and 5.5.   

Our research in this chapter not only helps answer R.Q.4, but also provides some 

augments to the SEED method, which is related to R.Q.2:   

R.Q.2: How to design sequential computer experiments (how to select data and 

validation points sequentially) to get an accurate metamodel? 

 

 

The approach of sequential metamodeling is developed partly based on the SEED method 

(which is developed in Chapter 4); to some extent, it could also be viewed as an extension 

of and augment to the SEED method.  We propose to use both kriging and MARS 

metamodels to handle information from current data/validation points.  This is done and 

illustrated in Section 5.3 and Section 5.5. 

The development of the approach for sequential metamodeling also answers 

Research Question 3.2: 
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R.Q.3.2: How to reduce the design space with information from previous 

metamodeling and design space exploration? 

 

The usage of RS metamodels at the very early stages of metamodeling helps identify and 

screen unimportant design variables.  This is described in Section 5.4, and illustrated with 

the pressure vessel design problem in Section 5.5.  Another way to reduce the design 

space is to reduce the ranges of design variables; however, we will not go further on this 

research and leave it as a future work for this dissertation. 

 

Research in Chapters 4 and 5, i.e., development of the SEED method and the 

approach for sequential metamodeling, provides the foundation for our work in the 

following chapter (Chapter 6), in which the Efficient Robust Concept Exploration 

Method (E-RCEM) is developed to facilitate efficient metamodeling and design space 

exploration through the integration of these two processes.  Chapters 4, 5, and 6 form the 

core of this dissertation, which provides the methodological foundation of our 

applications in Chapter 7. 
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6. 5 
CHAPTER 6 

THE EFFICIENT ROBUST CONCEPT 
EXPLORATION METHOD: INTEGRATION OF 

PROCESSES OF METAMODELING AND DESIGN 
SPACE EXPLORATION 

 

In this chapter, our focus is on the development of the Efficient Robust Concept 

Exploration Method, in which the processes of metamodeling and design space 

exploration are integrated.  Research questions answered in this chapter are R.Q.3 and 

two of its sub-research questions, R.Q.3.1 and R.Q.3.3.  After a discussion on current 

design and metamodeling processes and the proposal of the integration of these processes 

in Section 6.1, Research Question 3.1 is answered in Section 6.2 through the study of 

incorporating design constraints in the metamodeling process.  This study is further 

extended in Section 6.3 where Research Question 3.3 is answered. The Efficient Robust 

Concept Exploration Method (E-RCEM), which enables designers to develop 

metamodels and get design solutions efficiently and effectively at early design stages 

through the integration of metamodeling and design space exploration, is then developed 

in Section 6.4.  An application of the Efficient Robust Concept Exploration Method is 

presented in Section 6.5.   
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6.1 PROCESSES OF METAMODELING AND DESIGN SPACE 
EXPLORATION AT EARLY DESIGN STAGES 

As introduced in Chapter 2, the purpose of metamodeling is to develop acceptable 

metamodels that helps designers integrate multi-disciplinary analysis codes, gain insights 

into the relationship between inputs and outputs, and then explore the design space 

efficiently for design solutions in later design stages.  Metamodeling is a very important 

process in early-stage design.  Design space exploration is a process in which designers 

explore the whole design space for solutions that satisfy design constraints and achieve 

design goals; various optimization techniques could be used in this process, and the usage 

of metamodels could help save a lot of computation time.  Typically, the two processes, 

metamodeling and design space exploration, are separated and conducted sequentially in 

applications, as illustrated in Figure 6.1. 

 

 

 

 

 

 

Process of Design 
Space Exploration Metamodeling Process 

SEED, Sequential Metamodeling

SolutionsInfo. Simulation: 
Experiments 

Meta-
models Design Space 

Exploration: 
Constraints and Goals 

Metamodeling: 
Development of 

Metamodels

Figure 6.1 Traditional Organization of Processes of Metamodeling and Design 
Space Exploration 

As illustrated in Figure 6.1, given an expensive simulation, usually we should 

design experiments, then develop metamodels for system responses based on the 
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information collected at data points.  In the SEED method and the sequential 

metamodeling approach as described in Chapter 4 and Chapter 5, we design experiments 

and develop metamodels in iterations to ensure that acceptable metamodels be acquired.  

This is the process of metamodeling.  After finishing the metamodeling process, we enter 

the process of design space exploration, in which the metamodels developed in the 

previous process are used in the exploration of design solutions.  System constraints and 

goals are considered in the process of design space exploration. 

This sequential organization of processes of metamodeling and design space 

exploration is widely used in engineering design.  For example, in many applications of 

Taguchi’s robust design (Taguchi, 1987), physical experiments are first designed and 

some statistics, e.g., signal-to-noise ratios, are developed (similar to our concept of 

“metamodels”); then the robust design solutions are found by analyzing the signal-to-

noise ratios, which corresponds to the process of design space exploration in Figure 6.1.  

In the Robust Concept Exploration Method (Figure 6.2), the sequential application of 

metamodeling and design space exploration is apparent: the process metamodeling is 

realized in Processors B, C, D, and E, and the process of design space exploration is 

realized in Processor F. 

One advantage of doing metamodeling and design space exploration sequentially 

lies in its simplicity.  The framework is clear and designers need only follow steps to get 

design solutions, avoiding backward information flows.  The objectives in each process 

are also very clear: in the metamodeling process, the objective is to build acceptable 

metamodels, and in the process of design space exploration, the objectives are to achieve 
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design goals and satisfying design constraints.  As a result of this clarification of 

objectives and steps, designers’ load is minimized because they need not deal with 

tangled design requirements and information flows. 

 

 

 
Process of 
Metamodeling

Process of Design 
Space Exploration

Figure 6.2 The Robust Concept Exploration Method (adapted from Chen, et al., 
1996a) 

On the other hand, the sequential organization of processes of metamodeling and 

design space exploration also has its disadvantages, as discussed below. 

In the sequential organization of processes of metamodeling and design space 

exploration, objectives of the two processes need to be clearly defined to ensure the 

achievement of good design solutions efficiently and effectively.  Since the objective of 
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the metamodel process (to build accurate metamodels) is different from that of the whole 

design process (to get design solutions that achieve design goals and satisfy design 

constraints), designers need to define the objective of metamodeling very clearly and 

carefully.  Two questions of importance are: which type of metamodels should be used?  

How accurate the metamodels should be?  The first question is related to the activities 

that designers plan to do in the process of design space exploration, e.g., some type of 

metamodels do not perform well in design space exploration of robust solutions (see, Lin, 

et al., 1999), while others may be so complicated that it may cost a lot of time and effort 

in design space exploration.  The second question is still not well addressed in current 

literature.  It is also related to the first question on types of metamodels.  Lin and co-

authors (Lin, et al., 1999) discussed on Local Model Inaccuracy and its effects on the 

achievement of design solutions; similar ideas are presented in (Jin, et al., 2001), which 

states more on the side of types of metamodels used.  Designers have to answer these two 

questions and clarify the objective of the metamodeling process before conducting a 

successful and efficient design. 

It is very possible that designers waste a lot of time, effort, and money on 

experiments at infeasible points (points outside of the feasible design space) in the 

metamodeling process since design constraints usually have no influence in design of 

experiments.  Usually, the initial design space used by designers in metamodeling is a 

multi-dimensional “hyper cubes” with preset ranges for design variables.  Most of current 

widely used DOE techniques, e.g., factorial design, Latin Hypercubes, Orthogonal 

Arrays, etc., are suitable for such design spaces; they are not suitable for experimental 
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designs in a feasible design space which is usually irregular as a result of the 

consideration of various design constraints.  Since design constraints are usually not 

considered in the metamodeling process, it is very possible that designers spend a great 

deal of time and money on experiments at infeasible points. 

When there is no design constraint, (or say, the feasible design space is 

“regular”), it is still very possible that a lot of time, effort, and money is wasted on 

experiments at “unimportant” points.  Note that the objective of the early-stage design 

process in Figure 6.1 is to achieve a good design solution; points far from this solution 

are considered “less important” than those close to the solution.  What designers pursue 

and eventually obtain in the early-stage design process is only the solution, while to 

achieve this solution a lot of time, effort, and money have to be spent on observations at 

numerous points in the feasible design space.  Among these points some are close to the 

design solution, while most others not.  Since design goals are not considered in the 

metamodeling process (note that there is no information flow from the process of design 

space exploration to metamodeling), all points in the design space are considered to be 

equally important in achieving design goals, and as a result, it may cost a lot to ensure the 

metamodel accuracy in some local regions that are far from the solution – and this is a 

waste when we review the design process after obtaining the design solution.   

As discussed above, the sequential organization of processes of metamodeling 

and design space exploration is inefficient and ineffective in the achievement of design 

solutions, especially when the simulation (or physical experiment) is very expensive.  To 

overcome the discussed shortcomings, we need to develop a method in which the two 
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processes are integrated.  To be specific, first we need to integrate the consideration of 

design constraints in the metamodeling process, and second we need to integrate the 

consideration of design goals in metamodeling; in other words, we can also say that we 

should integrate metamodeling in exploring the design space for solutions that achieves 

design goals and satisfy design constraints.  Another requirement for this integration is 

that the developed method should be organized clearly so that designers could follow it 

step by step, without getting lost in the complicated information flow which is expected 

to come with the integration. 

The study of applying design constraints in metamodeling is done in Section 6.2, 

and that of applying design goals in metamodeling is done in Section 6.3.  The Efficient 

Robust Concept Exploration Method (E-RCEM) is then developed and described as a 

result of the research in Sections 6.2 and 6.3. 

6.2 METAMODELING WITH CONSIDERATION OF DESIGN 
CONSTRATINTS 

There are basically two types of constraints in design space exploration.  One is 

the constraint put on design variables, e.g., in the design of pressure vessel in Chapter 5, 

we have a constraint associated with the wall thickness T and the radius of the spherical 

head R (see Equation (5.6)).  The other type of constraints is put on the responses, e.g., 

also in the design of pressure vessel in Chapter 5, a constraint is associated with one of 

the responses, Vol (see Equation (5.7)).  In examples with constraints only associated 

with design variables, the feasible design space is actually clearly defined though 

sometimes it is not easy to draw the boundaries.  In cases with constraints associated with 
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responses (and metamodels of these responses), the feasible design space could not be 

clearly defined in design because of the uncertainty associated with the metamodel; with 

current metamodel, the boundary of the feasible design space could be drawn but since 

the metamodel is not 100% accurate, this boundary is “vague” with some degree of 

uncertainty. 

No matter which types of constraints are used in the problem, it is very possible 

that the feasible design space is not “hyper cubes” as in most experimental designs.  

Classical experiments, e.g., factorial designs, and some space-filling experiments, e.g., 

Latin Hypercubes, are most suitable with regular design spaces that we may regard as 

“hyper cubes”.  Maximum entropy sampling is still appropriate in dealing with irregular 

design spaces; quite a lot research has been done (e.g., see Anstreicher, et al., 1996; 

Vandenberghe, et al., 1998; Lee and Williams, 1999; etc.) to address this.  The 

Constrained D-Optimality Problem (CDOPTP) and the Constrained Maximum-Entropy 

Sampling Problem (CMESP) are both fundamental problems in experimental design. 

In this section, we will not do or follow the theoretical (mathematical) work on 

Constrained Maximum Entropy Sampling.  Instead, using the example of design of 

pressure vessels in Chapter 5 (with small modifications), we empirically study the 

application of the SEED method in designing experiments with two types of constraints.  

In our study, the way to consider constraints is intuitive and direct (without complex 

mathematical deduction or algorithms); it could be a future work to incorporate previous 

results of Constrained Maximum Entropy Sampling in the SEED method. 
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In Section 6.2.1, we will incorporate constraints on design variables in designing 

sequential experiments.  The constraints on design responses are considered in designing 

sequential experiments in Section 6.2.2.   

6.2.1 Sequential Experimental Design and Metamodeling with Consideration of 
Constraints on Design Variables 

In the example of design of pressure vessels in Chapter 5, we identified two 

important design variables, R and L; in our studies here, only these two variables are 

considered to facilitate simple applications and illustrations.  There were two responses 

in our studies in Chapter 5, Vol and Cost; in this section, to be simple we only consider 

the response of Vol.  The original design space in the example in Chapter 5 is very small 

and some of the system constraints (Equations (5.5) and (5.6)) are automatically satisfied; 

in this section, the original design space is enlarged so that system constraints are active.  

The ranges of design variables are: 

25 in. ≤ R ≤ 150 in. 

25 in. ≤ L ≤ 140 in. 

The system response Vol could be calculated (simulated) with the following equation: 

32

3
4. RLRVol ππ +=       (6.1) 

Two system constraints are put on design variables: 

00193.01 ≥− R       (6.2) 

000954.0 ≥− RT       (6.3) 

Since the design variable T is not used in this example, Equation (6.3) will not be 

considered in the study.  Instead, according to some customers’ requirements (e.g., 
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assembling compatibility with other equipments, etc.), we may put other constraints on 

design variables: 

          (6.4) 0.5 0L R− ≥

          (6.5) 1.5 0L R− ≤

One system constraint is put on the response: 

   Vol – 1.296E5 ≥ 0      (6.6) 

In this section we will only study the incorporation of constraints on design variables in 

designing sequential experiments, the constraint in Equation (6.6) will not be considered.  

Now our aim is to develop an acceptable metamodel for the system response Vol in the 

feasible design space that is decided by ranges of design variables and three system 

constraints (Equations (6.2), (6.4), and (6.5)).  First, let us have a look at the “feasible” 

design space constructed based on the factor ranges and constraints in Equations (6.2), 

(6.4), and (6.5). 

The original design space is a 125in. × 115in. rectangular set by the ranges of the 

two design variables.  Three constraints are posed on the design variables and form clear 

boundaries for the “quasi-feasible” design space; here we use “quasi-” because we do not 

consider the effect of the constraint posed on the response (Equation (6.6)).  The “quasi-

feasible” design space is illustrated in Figure 6.3 marked in red shadow.  In Figure 6.3 

Constraint I corresponds to Equation (6.2); Constraint II corresponds to Equation (6.4); 

Constraint III corresponds to Equation (6.5).  The “quasi-feasible” design space has clear 

boundaries because the constraints considered in Figure 6.3 are posed on design variables 

only.  At the beginning of metamodeling, we have no information on the responses 
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(metamodels, simulations, etc.), thus the constraint associated with system responses 

(Equation (6.6)) is not considered in Figure 6.3.  Note that this design space is convex. 
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Figure 6.3 Quasi-Feasible Design Space with 3 Constraints on Design Variables 

The initial experiments are designed within the quasi-feasible design space in 

Figure 6.3.  The data points in the initial experimental design are listed in Table 6.1.  An 

initial kriging metamodel is developed based on information from these 6 data points.  

This corresponds to Step 1 and Step 2 of the SEED method.  Six validation points are 

then identified and listed in Table 6.2; this corresponds to Step 3 of the SEED method.  

Note that in the metamodeling processes in this study, we normalized the initial ranges of 

design variables to [0, 1].  Also, in these steps we use θ1 = θ2 = 20 to calculate entries of 

the covariance matrices.  To pose constraints in identifying data/validation points is easy 
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to realize in iSIGHT by eliminating points that do not satisfy the constraints (note that in 

Chapter 4 and Chapter 5 we applied the SEED method is in iSIGHT); the organizations 

of tasks, information flows, and the calculation of constraints, etc. in iSIGHT is presented 

in Appendix C. 

Table 6.1 Four Data Points 

R L R_n L_n Vol 
25 25 0 0 114537.23 

51.8125 26.0235 0.2145 0.0089 802104.03 
51.8125 77.716 0.2145 0.4584 1238063.89 

35.6 53.3935 0.0848 0.2469 401577.67 

Table 6.2 Four Validation Points 

R L R_n L_n Vol 
38.25 25 0.106 0 349322.33 

44.7875 39.444 0.1583 0.1256 624889.11 
25.125 37.512 0.001 0.1088 140829.54 
51.7625 45.47 0.2141 0.178 963685.39 

 

The data points and validation points are illustrated in Figure 6.4.  In Figure 6.4, 

black solid crosses represent data points, and red solid triangular represent validation 

points.  We successfully put data points (and validation points) in the irregular design 

space through maximum entropy sampling. 

After the initial experiments, a kriging metamodel is developed for Vol with 

information from 4 data points in Table 6.1.  For this kriging metamodel, we got θ1 = 

27.47586 for the design variable R, and θ2 = 1.55966 for the design variable L.  The 
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contour plot of this kriging metamodel is illustrated in Figure 6.5.  To test the accuracy of 

this metamodel, we collected information at 356 points; values of NMAX and NRMSE 

are calculated, and we get NMAX = 0.111 and NRMSE = 0.051.  The prediction errors of 

this metamodel are zero at data points; prediction errors at validation points are listed in 

Table 6.3.   
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Figure 6.4 Data and Validation Points in the Quasi-Feasible Design Space 
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Figure 6.5 Contour Plot of Kriging Metamodels for Volume with 4 Data Points 

Table 6.3 Prediction Errors at Validation Points 

R_n L_n Vol Vol_pred Prediction Error 
0.106 0 349322.33 333084.24 -16238.09 
0.1583 0.1256 624889.11 675782.52 50893.40 
0.001 0.1088 140829.54 128348.83 -12480.71 
0.2141 0.178 963685.39 978560.85 14875.45 

 

Following the steps in SEED, after calculating prediction errors at validation 

points, the next step is to develop the metamodel of prediction errors.  As we did in 

Chapter 5, a MARS metamodel is developed to predict prediction errors at candidate 

points; this MARS metamodel of prediction errors is proved to be inappropriate since we 

found that its predicted values at data and validation points are far from the actual ones.  
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Thus we develop a kriging metamodel for predicting prediction errors.  For this kriging 

metamodel, we got θ1 = 999.98841, and θ2 = 18.08955.  The contour plot of this kriging 

metamodel is illustrated in Figure 6.6.   
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Figure 6.6 Contour Plot of Predicted Prediction Errors (with 4 Data Points and 4 
Validation Points) 

The maximum absolute value of predicted prediction errors is around 51020.  

Following the steps in SEED as described in Chapter 4 and Chapter 5, we adjust the 

covariance matrix and identify 2 new data points, as listed in Table 6.4.  The 6 data 

points and 4 validation points are illustrated in Figure 6.8.   

A final kriging metamodel is developed for Vol with information from 10 

observed points; the contour plot of this metamodel is illustrated in Figure 6.7.  For this 

391 



kriging metamodel, we got θ1 = 1.77631, and θ2 = 0.03167.  Based on information from 

356 points we test the accuracy of this kriging metamodel and get NMAX = 0.0007 and 

NRMSE = 0.0003.  We see that new data points are successfully identified in the 

irregular quasi-feasible design space with the SEED method to help obtain most potential 

information. 

 

220000    
280000    
340000    
400000    
460000    
520000    
580000    
640000    
700000    
760000    
820000    
880000    
940000    
1000000   
1060000   

220000    

0.20.10.0

0.4

0.3

0.2

0.1

0.0

R

L

Contour Plot of Vol

 

Figure 6.7 Contour Plot of Kriging Metamodel of Vol with 10 Observed Points 

Table 6.4 Two New Data Points 

R L R_n L_n Vol 
45.3625 63.2145 0.1629 0.3323 799661.03 
25.9375 38.9035 0.0075 0.1209 155315.80 
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Figure 6.8 Eight Data Points and Six Validation Points 

In this practice we see that initial experiments could be designed in an irregular 

quasi-feasible design space.  New validation and data points could be identified 

following steps in the SEED method.  As discussed before, constrained maximum 

entropy sampling is not the focus of our research in this dissertation, and the study in this 

section is only a supportive step for our development of the Efficient Robust Concept 

Exploration Method (E-RCEM) in this chapter.  In this sub-section we have shown that 

we are able to deal with irregular design spaces with constraints on design variables with 
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the algorithms developed for SEED.  In Section 6.2.2, we will go further to study the 

application of SEED algorithms in problems with constraints on system responses. 

6.2.2 Sequential Experimental Design and Metamodeling with Consideration of 
Constraints on Responses 

In this section, we study the application of SEED in irregular design spaces 

defined by constraints on responses.  In cases where constraints are only put on design 

variables, boundaries of design spaces are clear and fixed; there is no uncertainty 

associated with the design space.  In cases where constraints are put on responses, 

boundaries of design spaces are vague and subject to change as the metamodels evolve; 

uncertainty plays an important role here.  Boundaries of design spaces tend to be less 

vague (uncertainty of design spaces reduces) as more and more data points are added and 

more and more accurate metamodels of system responses are obtained.  In the 

metamodeling process with consideration of system constraints on responses, we should 

pay attention to the following things in this dissertation: 

• With current metamodels we are able to define a small design space (expected 

to be irregular).  However, we need to consider the uncertainty associated 

with boundaries of this design space. 

• In sequential experimental design and metamodeling, metamodels should be 

developed for responses in the whole (initial) design space instead of the 

reduced design space, thus more and more accurate boundaries could be 

identified in the metamodeling process. 
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• In our studies in this dissertation, we only deal with irregular design spaces 

that are neither isolated nor concave.  In other words, we only study and apply 

our methods in problems with continuous, convex design spaces.  Studies with 

concave or discrete design spaces may be a future work for this dissertation. 

There are many methods to address the uncertainty with boundaries of design 

spaces in the metamodeling process, with the keywords of “reliability” or “uncertainty” 

in literature.  For example, in (Du and Chen, 2000) and (Du and Chen, 2001), the authors 

examined several feasibility-modeling techniques and proposed a most probable point 

(MPP) based importance sampling method for evaluating the feasibility robustness.  In 

(Gu, et al., 2000), the authors investigate how uncertainty propagates through a 

multidisciplinary system analysis subject to the bias errors associated with the 

disciplinary design tools and the precision errors in the inputs is undertaken; a method of 

worst case estimation of uncertainty is then integrated into a robust optimization 

framework.  It is future work of research in this dissertation to incorporate such methods 

in SEED or develop new methods that suits SEED better.  In this section, a preliminary 

observation is done in addressing boundaries of design space, which simply serves as a 

support for the development of E-RCEM (the Efficient Robust Concept Exploration 

Method) in this chapter. 

To address the boundaries of an irregular design space, one possible way is to 

develop confidence intervals for the boundaries, and new boundaries could be identified 

with a certain confidence level; it is expected that the new boundaries be obtained by 

pushing current boundaries outwards the design space, thus the new design space should 
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be a little larger than previous ones (all expected to be irregular).  This method is not 

studied here and may be a future work for this dissertation.  Another method to address 

the uncertainty with boundaries of design spaces is to utilize information from 

metamodels of prediction errors.  In identifying boundaries of the design space, we 

should consider not only the information from metamodels of responses (e.g., values of 

Vol should be larger than some preset constant), but also information from metamodels of 

prediction errors; in this case, the prediction errors could be considered a measure (or 

reflection) of uncertainty.  Suppose we have an irregular design space with boundaries 

identified by calculating response values with metamodels of responses, now we should 

push the boundaries outwards to new ones whose points safely satisfy the constraints put 

on responses, even when the effect of prediction errors (absolute prediction errors are 

recommended) is added to the response values.  More and more accurate boundaries 

could be identified and used after iterations of metamodeling in SEED.  Also, this 

method is not studied and used in this dissertation because it is very likely that concave 

or discrete design spaces would be developed, which is not in the scope of studies in this 

dissertation. 

In our studies in this section, we simply release the constraints on responses to 

some extent to hopefully address a good portion of the uncertainty with boundaries of the 

new design space.  With information from data/validation points, the normalized root 

mean squared error (NRMSE) could be calculated following Equation (2.9) and 

discussions in Section 2.2.3.  As explained in Section 2.2.3, usually NRMSE has a value 

between 0 and 1 (though in some cases it could be larger), and this could be used as a 
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reference on how much we should push the boundaries outwards.  For example, if the 

constraint is to have a system response y larger than a fixed constant y0; the minimum 

observed response value is ymin (suppose ymin ≤ y0) and the value of NRMSE is t%.  What 

we do is to release the constraint by t%, i.e., draw the boundary to satisfy 

 y = y0 – (y0 – ymin)⋅t%       (6.7) 

It should be noted that this method is not theoretically solid because the uncertainty 

associated with boundaries of the design space should be considered as Local Model 

Inaccuracy (Lin, et al., 1999) and the value of NRMSE is a measure of Global Model 

Inaccuracy (see, Lin, 2000).  To avoid this problem, we may use the normalized 

maximum absolute error (NMAX, Equation (2.7) and discussions in Section 2.2.3) to 

replace NRMSE.  Another way to solve this problem, and which is the most intuitive 

way, is to calculate the average absolute error (AAE) or root mean squared error (RMSE) 

for the response with Equations (2.8) or (2.9), and then release the constraint 

correspondingly.  Given the problem statement in the paragraph above, supposing the 

value of AAE or RMSE is Err, we could draw the new boundary to satisfy: 

y = y0 – Err       (6.8) 

The identified new boundaries with this method are not guaranteed to be accurate; 

the uncertainty may be under- or over- estimated.  However, after iterations of 

metamodeling in SEED, it is expected that more accurate boundaries could be obtained, 

which helps yield better results in sequential experimental design and modeling with 

same effort because of the reduced design space. 
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Now let us look at the pressure vessel example in Chapter 5.  In this section we 

only consider two design variables R and L and one system response Vol.  The original 

design space is 10in.≤ R ≤50in. and 10in.≤ L ≤100in.  In this design space, system 

constraints put on design variables (Equations (5.5) and (5.6)) are automatically satisfied.  

Thus we only need to consider the constraint posed on the system response Vol, i.e., Vol 

– 1.296E5 ≥ 0 (Equation (5.7)).  The actual feasible design space is illustrated by 

shadows in Figure 6.10. 

Suppose now we have got 6 data points and 6 validation points, as listed in Table 

6.5 (the first 6 rows correspond to data points and last 6 rows correspond to validation 

points).  Now we have a kriging metamodel for the response Vol, as illustrated in Figure 

6.9.  For the kriging metamodel of Vol, we got θ1=1.43001 and θ2=0.37760.  The 

prediction errors of the metamodel at data and validation points are listed in Table 5.41.   

Using Equation (2.7) and following descriptions in Section 2.2.3, we get the 

normalized maximum absolute error with 6 validation points as NMAX = 7.2%.  

Following Equation (6.7), we decide to release the constraint to Vol – 1.2E5 ≥ 0.  We can 

also calculate the value of root mean squared error with Equation (2.9) and get RMSE = 

59507; following Equation (6.8), we can release the constraint to Vol – 7.0E4 ≥ 0.  The 

constraint can also be released to Vol – 7.83E4 ≥ 0 if we use the average absolute error 

which is AAE = 51274 in this example.  Thus, we have several possible new boundaries, 

which are illustrated in Figure 6.10.   
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Table 6.5 Initial Experiments – Six Data Points and Six Validation Points 

R L R_n L_n Vol 
10 10 0 0 7330.38 
50 10 1 0 602138.60 
10 100 0 1 35604.72 
50 100 1 1 1308996.96 

30.036 79.102 0.5009 0.7678 337697.71 
30 28.387 0.5 0.2043 193359.69 

30.036 10.108 0.5009 0.0012 142153.31 
18.968 55.225 0.2242 0.5025 91006.70 
41.448 55.081 0.7862 0.5009 595538.30 
29.984 99.982 0.4996 0.9998 395307.47 

10 38.269 0 0.3141 16211.35 
50 72.361 1 0.6929 1091920.76 

 

 

 

Figure 6.9 Updated Metamodels of Responses with 6 Data Points 
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Figure 6.10 The Feasible Design Space and Boundaries 

In Figure 6.10 stars represent data points and solid circles represent validation 

points.  In Figure 6.10 we see that boundaries calculated with metamodels do not comply 

with the actual boundary (the curve on the very left when L=70).  After releasing the 

constraint, new boundaries are still not close to the actual one.  It is hard to say which 

boundary is better than others; in studies in this section, we will use the one calculated 
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with AAE, i.e., the third curve on the left when L=70, as the left boundary of the 

constrained design space in this stage of experimental design. 

Now we have 6 data points, 6 validation points, metamodels of responses and 

prediction errors for Vol, and an irregular “feasible” design space.  To identify 2 new data 

points, we should follow steps in SEED, adjusting the covariance matrix and doing 

optimization to maximize the determinant of the covariance matrix.  In Figure 6.10 we 

see that 2 of the data points fall far out of the feasible design space, thus we have only 4 

observed data points formulating the 6×6 adjusted covariance matrix.  Two new data 

points are listed in Table 6.6. 

Table 6.6 Two New Data Points 

R L R_n L_n Vol 
44.616 43.768 0.8654 0.3752 645723.3 
18.748 99.964 0.2187 0.9996 137986.1 

 

Table 6.7 Two New Data Points Identified When the Constraint on Volume Is Not 
Considered in SEED 

R L R_n L_n Vol 
45.308 48.196 0.8827 0.4244 700416.14 
18.996 57.79 0.2249 0.531 94225.68 

 

In Figure 6.10 we see that the new data points (represented by solid crosses) are 

allocated in the feasible design space (the shadowed region).  If the constraints of 

Equation (5.7) have not been considered in the process above, new data points will be 

identified as in Table 6.7.  The second point in Table 6.7, (R, L) = (18.996, 57.79), falls 
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out of the feasible design space in Figure 6.10.  In this example, we see that by 

considering the constraints on system responses, we avoid locating new points in 

infeasible design space. 

The application of SEED in irregular design spaces with two types of system 

constraints is preliminarily studied in this section.  In Section 6.2.1 and Section 6.2.2 we 

see that with SEED we are able to save experimental time and effort by locating new 

points in the feasible design space (typically irregular).  In the next section, design goals 

will be taken into consideration in the SEED process.  Then the E-RCEM method will be 

developed in Section 6.4 based on our observations in Section 6.2 and 6.3.   

6.3 METAMODELING WITH CONSIDERATION OF DESIGN GOALS 

In order to construct the information flow (or feedback) from the process of 

design space exploration to the process of metamodeling in Figure 6.1, we need to taken 

design constraints and goals into consideration in experimental designs and development 

of metamodels.  In Section 6.2, we identified two types of constraints and observed the 

performance of SEED in irregular design spaces outlined by these constraints.  When 

system constraints are considered, the initial design space (usually a hypercube) is 

reduced to an irregular one; some boundaries of this feasible design space are clear and 

fixed, while others are vague and may change when more accurate metamodels are 

obtained.  In either case, the usage of SEED helps reduce experimental time and effort by 

avoiding locating new points in infeasible regions.  In this section, we consider another 

possible information flow (feedback), i.e., the incorporation of design goals in 
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metamodeling process, to help achieve design solutions more effectively and efficiently.  

One existing method, the Efficient Global Optimization (EGO) is briefly introduced in 

Section 6.3.1, and our practice of metamodeling with consideration of design goals is 

done in Section 6.3.2. 

6.3.1 The Efficient Global Optimization Method 

A remarkable and interesting method applying this idea is the Efficient Global 

Optimization (EGO) developed in (Jones, et al., 1998).  The idea of the EGO algorithm is 

to first fit a metamodel (usually a kriging model) to data collected by evaluating the 

objective function at a few points.  Then, EGO balances between finding the minimum of 

the surface (assume that the optimization goal is to minimize the response) and 

improving the approximation by sampling where the prediction error may be high.  The 

prediction error used in EGO follows the equation to calculate prediction mean squared 

error at any new point: 

( )
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The equation above is the same as Equation (3.7); note that it only has meanings with 

kriging metamodels.  The term –rTR–1r represents the reduction in prediction error due to 

the fact that x* is correlated with the sampled points.  The σ2 here is the same as in 

Equation (2.21).  The term (1–fTR-1r)2/fTR-1f reflects the uncertainty that stems from our 

not knowing µ exactly, but rather having to estimate it from the data.  The prediction 

error in Equation (6.9) is σ reduced by an amount that depends on how correlated the 
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new point is to the sampled points.  With the stationary assumption as stated in Chapter 

4, points far from current observed data points have large prediction mean squared error 

from Equation (6.9).   

In EGO, the expected improvement of an experiment at one new point is a 

combination of improvement on the optimization goal and improvement on metamodel 

accuracy, which is calculated with the following equation: 

( ) ( ) min min
min

ˆ ˆˆ 0

0 0

f y f yf y s if s
E I x s s

if s

φ − −   − Φ + >    =      
 =

  (6.10) 

In Equation (6.10), fmin is the smallest response value at current data points,  is the 

predicted response value at a candidate point with mean and standard deviation given by 

the kriging predictor (Equation (2.18)) and its standard error (Equation (6.9)), φ(⋅) and 

Φ(⋅) are the standard normal density and distribution function, respectively.  By 

exploring for the largest value of the expected improvement, EGO locates the new point 

where either the predicted value is close to the goal or the prediction standard error is 

large.  More discussion on EGO and its applications can be found in (Schonlau, 1997; 

Sasena, et al., 2002; etc.). 

ŷ

6.3.2 Incorporation of Design Goals in SEED Metamodeling Processes 

The most valuable idea in EGO is the incorporation of optimization and 

metamodeling processes.  However, EGO has its limitations:  
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1. EGO only works with kriging metamodels since the expected 

improvement is calculated based on the kriging predictor and standard 

error. 

2. The kriging standard error (Equation (6.9)), which is based on the 

stationary assumption, is used to reflect prediction errors at a candidate 

point in EGO.  Our previous studies show that this may not be a reliable 

way to estimate prediction errors. 

SEED does not have the shortcomings stated above.  In SEED, the stationary 

assumption is relieved and more accurate estimated prediction errors are obtained in 

iterations, which is discussed and illustrated in Chapter 4.  The improvement and 

application of SEED with kriging and MARS metamodels is shown in Chapter 5.  In this 

section, we express our method of incorporating design goals in the SEED metamodeling 

processes. 

In SEED, new points are identified in critical regions that are either far from 

current data points or with large prediction errors.  This is achieved by adjusting the 

covariance matrix with Equation (4.28) or Equation (4.34).  Correction coefficients (αi in 

Equation (4.28) and iβ  in Equation (4.34)) are introduced to address the effect of 

prediction errors of current metamodels.  As a result, weak correlations are given to 

candidate points with large prediction errors, holding other criteria constant.  In a similar 

way, we can introduce some correction coefficients to represent the effect to design goals 

in adjusting the covariance matrix.  In this chapter, we will perform this study in the 
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context of SEED – Formulation I, which is based on Equation (4.28).  The study with 

SEED – Formulation II is a topic for future research. 

There are many ways to formulate and insert these correction coefficients in the 

sequential metamodeling process.  When both prediction errors and design goals are 

considered, the adjusted covariance between a candidate point and an existing point can 

be calculated as: 

( )2adj
ij i j i j ij i j i j i jRσ η η α α σ η η α α σ= = x x−    (6.11) 

In Equation (6.11), αi is the coefficient to reflect the current metamodel’s uncertainty 

(prediction errors) at point xi, and αj is the coefficient to reflect the current metamodel’s 

uncertainty at point xj.  They are calculated with Equation (4.25).  ηi and ηj are 

coefficients to reflect degrees of achievement of design goals at points xi and xj, 

respectively.  Theoretically, ηi and ηj should have values between [0,1).  A value close to 

0 means that the design goal is almost achieved at the candidate point; while a value 

close to 1 means that the design goal is hardly achieved.  To use Equation (6.11) in 

SEED is like “pulling” data points to regions with both large prediction errors (effect of 

αi) and response values that are close to the design goal (effect of ηi).   

Another way is to formulate the adjusted covariance as: 

( )( ) ( )jijjii
adj
ij xxR −++= 2

4
1 σηαηασ     (6.12) 

In Equation (6.12) the two coefficients, αi and ηi, are added instead of being multiplied 

as in Equation (6.11).  Since αi and ηi both have values between 0 and 1, their sum is 
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between 0 and 2; thus a coefficient of 1/4 is added to ensure that the whole coefficient 

part has values between 0 and 1.  When Equation (6.11) is used the designer expects to 

add new points that “either have large prediction errors or achieve design goals” because 

the covariance will be greatly adjusted when either criterion is satisfied.  When Equation 

(6.12) is used the designer expects to add new points that “both have large prediction 

errors and achieve design goals” because the covariance will be greatly adjusted only 

when both criteria is satisfied. 

The third way is to modify the coefficient αi to reflect the effects from both 

prediction errors and design goals.  Note that in Equation (4.28), αi is calculated with the 

following equation: 

max

1 . 1 | i
i

erelative uncert
e

α
λ

= − = − |       (6.13) 

We may change Equation (6.13) to the following one: 

 1 . .i relative uncert goal achievementα = − −      (6.14) 

Or, 

 1 . .i relative uncert goal achievementα = − ×      (6.15) 

In Equations (6.14) and (6.15) the term relative.uncert represents effect from prediction 

errors, and goal.achievement represents effect from design goals.   

The methods talked above are those in which the three criteria, “locating points in 

regions with large prediction errors”, “having points spread over the design space”, and 

“locating points in regions where design goals are (almost) achieved”, are considered in 

one formulation of adjusted covariance; and in SEED, the tradeoffs among these three 
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criteria are done in one step.  Another possible method is to do the tradeoffs in separate 

steps, e.g., first we add in new points to minimize the prediction error, and then we add in 

new points that achieve design goals better.  In this method, the covariance will be 

adjusted twice in a single iteration, following the equations below: 

( )1 2adj
ij i j ij i j i jRσ α α σ α α σ= = −x x     (6.16) 

( )2 2adj
ij i j ij i j i jRσ η η σ η η σ= = −x x     (6.17) 

Due to the space and time limit, only one of the above ideas will be studied and 

used in this dissertation.   The method associated with Equations (4.28) and (6.11) will be 

studied here because it is the simplest formulation.  To study all formulations mentioned 

above and compare their performance is future work to research in this dissertation. 

When formulating the coefficient αi in Equation (6.11) and Equation (6.13), the 

term relative.uncert is calculated using the same method as in Chapter 4: 

max

. ierelative uncert
eλ

=       (6.18) 

When design goals are not considered in metamodeling processes (as in Chapter 4 and 

Chapter 5), usually we take λ = 2, thus relative.uncert has values between 0 and 0.5.  In a 

similar way, the coefficient ηi is formulated as: 

1 .i goal achievementη = −       (6.19) 

To formulate the term goal.achievement, we need to satisfy the following requirements: 

 goal.achievement should have values between 0 and 1. 
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 goal.achievement should be a increasing function of degrees of achievement 

of design goals, i.e., large values should be assigned to goal.achievement at 

points where design goals are almost achieved. 

 In the process of designing sequential experiments, since the information from 

current metamodels of response values and prediction errors is usually 

inaccurate, we should balance between “locating points in regions with large 

prediction errors”, “having points spread over the design space”, and “locating 

points in regions where design goals are (almost) achieved”.  As discussed in 

Chapter 4, the balance between the first two aims is controlled by the factor λ 

(see Equation (4.25) or Equation (6.18)).  After taking design goals into 

consideration, new data points may not be those with largest predicted 

prediction errors with current metamodels or those have long distance from 

current data points; more points will also be added in regions where design 

goals are expected to be achieved.  More trade-off is needed.  This is like 

“twisting” the data points with three forces, one pulling points to regions with 

large predicted prediction errors, another to regions far from current data 

points, and the third to regions where design goals are expected to be 

achieved.  Based on the discussions above, in practice it may be better not to 

define goal.achievement between 0 and 1.  Points that almost achieve design 

goals should not have goal.achievement close to 1; otherwise the trade-off 

will be damaged.  As design evolves, more points are observed and more 
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accurate metamodels are developed; designers intend to decrease the value of 

γ to focus more on “achieving design goals” in the exploration of new points. 

 As will be shown later, a factor γ is introduced (together with λ which is 

introduced in Chapter 4) to balance the weight of consideration of “prediction 

errors”, “space-filling”, and “design goals” in the identification of new data 

points.  For example, in practice, we may use 1. ,goal achievement
γ

 
∈  

 
1

0

. 

In this dissertation, to calculate goal.achievement, we follow formulations of 

nonlinear design goals in the compromise DSP (Mistree, et al., 1993b).  There may be 

other ways to formulate goal.achievement; studies and comparisons on those possible 

formulations will be future work to this research.  In the compromise DSP, objective 

functions are normalized using a target value for each goal and the deviation from this 

target value is used to formulate the deviation function.  There are two deviation 

variables, d- and d+, for each goal that measure the deviation from the target value.  Both 

deviation variables take on only non-negative values.  Nonlinear design goals are 

formulated as: 

( ) 0i i iA x d d− ++ − =        (6.20) 

where,  and .  In Equation (6.20) the target value is absorbed into 

the definition of the function A

,i id d− + ≥ 0i id d− +⋅ =

i(x).   

When the goal is to minimize a response y, first we choose a low target value, TL, 

for the response based on experience.  Then Equation (6.20) can be formulated as: 
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( )
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− +− + − =  , or, 
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max min

( )1 0
max , i i

L

y y x d d
y y T

− +−
− + − =

−
  (6.21) 

In this case, the deviation variable di
+ needs to be minimized to achieve minimum values 

for y.   

When the goal is to maximize a response y, first we choose a high target value, 

TH, for the response based on experience.  Then Equation (6.20) can be formulated as: 

( ) 1 0i i
H

y x d d
T

− +− + − =  , or, 
( )

min

max min

( ) 1
min , i i

H

y x y d d
T y y

− + 0−
− + − =

−
  (6.22) 

In this case, the deviation variable di
- needs to be minimized to achieve maximum values 

for y. 

When the goal is to make a response y as close as possible to a preset value, TS, 

Equation (6.20) can be formulated as: 

( ) 1 i i
S

y x d d
T

− +− + − = 0        (6.23) 

We see that the target value for the response is achieved exactly when both deviation 

variables are equal to zero.  Therefore, in this case we seek to minimize both di
- and di

+. 

Based on the formulations of nonlinear design goals in compromise DSP as 

presented above, we formulate goal.achievement as below: 

( ) ( )

( )

max

max
min max

max min

min

0 (
( )1. max

max ,
1 ( ) max ,

L L
L

L

y y x
y y xgoal achievement T y y x y

y y T

y x T y

γ

γ


 ≤
 −= ⋅ < < −


≤


)

, ( ) (6.24) 
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Equation (6.24) is used when the design goal is to minimize the response.  Equation 

(6.25) is used when the design goal is to maximize the response.  Equation (6.26) is used 

when the design goal is to make the response as close to a preset value as possible.  In 

Equations (6.24), (6.25), and (6.26), ymax and ymin are the maximum and minimum 

response values at all observed points, respectively.  We can use the maximum and 

minimum observed response values for ymax and ymin; sometimes we use values slightly 

different from observed values to ensure that the goal.achievement is appropriately 

weighted in the adjustment of covariance matrices.  The expression  is used 

in Equation (6.24) is to make sure that the adjustment due to achievement of design goals 

does not fade even when the design target value is not achieved.  The term mi  

is used in Equation (6.24) because of the same reason.  T

( minmax ,LT y

n H( )max,T y

L, TH, and TS have the same 
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meanings as in Equations (6.21), (6.22), and (6.23); they are target goal values selected 

by designers based on experience.  As stated before, a coefficient, γ, is used to help 

balance the tradeoffs among three criteria in identifying new points.  It should be noted 

that the response values (ymax, ymin, TL, TH, and y(x)) in Equations (6.24), (6.25), and 

(6.26) should satisfy ymax > TL  and TH > ymin; y(x) typically has values larger than TL or 

smaller than TH.  In cases where this requirement is not met, designers should make 

corresponding modifications; usually it is because of inappropriate problem initialization. 

Equations (4.28), (6.11), (6.13), (6.19), (6.24), (6.25), and (6.26) will be used in 

the SEED processes.  From Equations (6.13) and (6.19) we see that 11 ,1iα
λ

 ∈ −  
, and 

11 ,1iη
γ

 
∈ −

 
 .  When λ and γ are both given values of 2, the adjustment at point xi, αiηi, 

is in [0.25, 1].  When λ and γ are both given values of 1.5, αiηi is in [0.1111, 1]. 

In this section, we discussed how to take design goals into consideration in the 

metamodeling processes.  Several possible ways are proposed; we focus on one of them 

and developed detailed mathematical formulations for SEED applications.  It should be 

noted that these mathematical formulations are not necessarily perfect; future research 

may be needed to study various possible formulations and identify the best or 

theoretically sound one.  Test of the proposed formulations will be done in Section 6.5, as 

part of the validation for the Efficient Robust Concept Exploration Method (E-RCEM). 

By considering design goals in metamodeling processes, we are able to facilitate 

the information feedback from the process of design space exploration to the process of 
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metamodeling.  It is expected that such information feedback will help designers locate 

new points in more “critical” regions, i.e., regions where either (both) prediction errors 

are large or (and) design goals are almost achieved.  Based on the SEED method in 

Chapters 4 and 5, experimental designs with constrained design spaces in Section 6.2, 

and experimental designs with design goals in this section, we develop the Efficient 

Robust Concept Exploration Method (E-RCEM) as will be discussed in detail in Section 

6.4. 

6.4 THE EFFICIENT ROBUST CONCEPT EXPLORATION METHOD 

The Efficient Robust Concept Exploration Method (E-RCEM) is presented in this 

section.  E-RCEM is developed to integrate the two traditionally separated processes in 

simulation-approximation-based design, i.e., the process of metamodeling and that of 

design space exploration.  It is expected that this integration will help achieve better 

design solutions with less time and money spent on expensive experiments and 

optimization processes. 

As discussed in Section 6.1, in traditional early-stage design processes, the 

information flow is one-way from metamodeling to design space exploration.  The two 

processes are not integrated and have different goals.  The purpose of the metamodeling 

process is to develop accurate metamodels, and that of the design space exploration 

process is to obtain a satisficing (Mistree, et al., 1993b) design solution based on current 

metamodels.  To achieve a good design solution in the design space exploration process, 

it is very important to have an accurate metamodel; while in the metamodeling process, it 
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is very hard to tell how accurate the metamodel should be in order to achieve good design 

solutions, given that there is no information feedback from the design space exploration 

process to the metamodeling process in traditional design methods.  This conflict leads to 

different strategies and behaviors in the two processes.   

As what we do with SEED, from the viewpoint of metamodeling, designers 

should make more observations in regions where prediction errors are large.  While from 

the viewpoint of design space exploration, designers should make more observations 

where design solutions probably lie (i.e., design goals are achieved while design 

constraints are satisfied) given that the metamodel is accurate.  As a result, a lot of time 

and money is wasted in the metamodeling process in “unimportant regions” (in infeasible 

regions, or where design goals are hardly achieved) to help achieve more accurate 

metamodels.   

On the other hand, inaccurate metamodels may be misleading in the design space 

exploration process.  Thus designers need to balance between “increasing metamodel 

accuracy” and “exploring in most-likely-to-succeed regions”.  This can only be achieved 

when the two processes, metamodeling and design space exploration, are integrated.  In 

other words, the information feedback flow from design space exploration to 

metamodeling must be built.  This idea of “metamodeling for design space exploration” 

leads to the Efficient Robust Concept Exploration Method. 

The Efficient Robust Concept Exploration Method (E-RCEM) is developed based 

on the Robust Concept Exploration Method (RCEM), incorporating several new methods 

and tools, e.g., the SEED method, metamodeling with irregular design spaces, 

415 



metamodeling with consideration of design goals, etc.  The infrastructure of E-RCEM is 

illustrated in Figure 6.11 and Figure 6.12.  Comparing Figure 6.11 with Figure 1.8 (the 

infrastructure for RCEM), we see that E-RCEM inherits RCEM’s design process 

organization.  Both RCEM and E-RCEM consists three main phases: Problem 

Initialization, Metamodeling, and Design Space Exploration; this organization of design 

process is well illustrated in Figure 6.1.  In RCEM, Processor A (Step 1) corresponds to 

the phase of Problem Initialization; Processors B, C, D, and E (Steps 2 and 3) correspond 

to the Metamodeling phase; and Processor F (Step 4) corresponds to the phase of Design 

Space Exploration.  In E-RCEM, Processors A and B correspond to the phase of Problem 

Initialization; the loop with Processors C, D, E, F, and G correspond to the phase of 

Metamodeling; and the loop with Processors C, D, E, F, G, and H correspond to the 

phase of Design Space Exploration.  The inheritance from RCEM to E-RCEM is 

apparent.  

In Figure 6.12 we see that the phases of metamodeling and design space 

exploration are not strictly separated.  There is a flow back from the compromise DSP to 

the beginning of the phase of metamodeling.  Thus from a viewpoint at a higher level, 

these two phases are “integrated” in E-RCEM; or in other words, we can say, we are 

doing “metamodeling for design space exploration” in E-RCEM. 

The implementation of the three phases in E-RCEM is discussed in details in 

Sections 6.4.1 through 6.4.3.  In E-RCEM, we can follow different types of design 

processes, in which the three phases are organized in different ways.  These processes are 

discussed in Section 6.4.4, while our focus is on the description of the integrated design 
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process in which the metamodeling process and design space exploration process are 

integrated.   
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Figure 6.11 Infrastructure of the Efficient Robust Concept Exploration Method (I) 
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6.4.1 The Phase of Problem Initialization 

As shown in Figure 6.13, the phase of Problem Initialization in E-RCEM consists 

of two processors or steps, A: Pre-Design Analysis and B: Design Space Definition.   

 

Figure 6.13 Phase I – Problem Initialization 

Activities conducted in Processor A are listed in Figure 6.11.  The market 

segmentation grid (Meyer, 1997) is drawn to facilitate identifying leveraging strategies 

for a product platform.  This is inherited from the Product Platform Concept Exploration 

Method (PPCEM, see Simpson, 1998); this analysis is useful when we are designing 

product families.  Problem partition or decomposition, together with problem synthesis in 

Processor C, was studied in (Koch, 1998); this analysis is needed when we are dealing 

with a complex engineering system with coupling subsystems.  Design concept selection 

is necessary when we have several optional design concepts; a most-likely-to-succeed 

design concept can be selected and further studied in E-RCEM by formulating and 
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solving a selection DSP (Mistree, et al., 1994).  In applications, not all mentioned 

analyses should be conducted; the implementation varies from case to case. 

The design variables and responses are clarified in Processor B.  Factors are 

classified in the following manner.  Appropriate ranges for the control and noise factors 

are identified during this step, and constraints and goal targets for the responses are also 

identified. 

 Responses are performance parameters of the system; in the problem 

formulation, they may be constraints or goals or both and are identified 

from the overall design requirements and the market segmentation grid.   

 Control factors are variables which can be freely specified by a designer; 

settings of the control factors are chosen to minimize the effects of 

variations in the system while achieving desired performance targets and 

meeting the necessary constraints.  Signal factors are also lumped within 

control factors since it is often difficult to know, a priori, which design 

variables are control factors and can be used to minimize the sensitivity of 

the design to noise variations and those which are signal factors and have 

no influence on the robustness of the system. 

 Noise factors are parameters over which a designer has no control or 

which are too difficult or expensive to control. 

 Scale factor is a factor around which a product platform is leveraged 

either through vertical scaling, horizontal scaling, or a combination of the 

two.  This is inherited from the PPCEM (Simpson, 1998). 
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6.4.2 The Phase of Metamodeling 

The whole process of sequential metamodeling as discussed in Chapter 5 (Figure 

5.40 and Figure 5.41) is applied in this phase.  As shown in Figure 6.14, processors 

involved in this phase are Processor C, D, E, F, and G.  The purpose of this phase is to 

develop acceptable metamodels for the next phase, design space exploration.   

The initial design space is redefined in Processor C.  In the metamodeling phase, 

this redefinition of design spaces is done by elimination of unimportant factors, as 

illustrated in Figure 5.41.  The loop of C-D-E-F-G corresponds to the SEED processes as 

studied and applied in Chapters 4 and 5.   

 

Figure 6.14 Phase II – Sequential Metamodeling 

421 



6.4.3 The Phase of Design Space Exploration 

As shown in Figure 6.14, processors involved in this phase are Processor C, D, E, 

F, G, and H.  The purpose of this phase is to explore for robust design solutions with 

acceptable metamodels.   

In this phase, the redefinition of design space in Processor C corresponds to our 

discussions in Sections 6.2, generation of irregular design spaces due to constraints on 

design variables and system responses.  Following the method developed in Section 6.3, 

design goals are considered in analyses in Processor C.  Note that the achievement of 

design goals is calculated with Equations (4.28), (6.11), (6.13), (6.19), (6.24), (6.25), and 

(6.26), which come from Processor H, the compromise DSP. 

 

 

Figure 6.15 The Phase of Design Space Exploration (Integrated Processes of 
Metamodel and Design Space Exploration) 
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6.4.4 Different Design Processes in E-RCEM 

In E-RCEM, after initialization of the design problem, we can go through the 

design processes in three ways following designers’ different decisions: 

1. Traditional Process: develop accurate metamodels then explore for design 

solutions in the compromise DSP without updating the metamodels.  This is a 

one-way process; thus there is no information feedback from Processor H to C 

in Figure 6.11 (the design space exploration loop in Figure 6.12 is then 

removed).  Our studies and application in Chapters 4 and 5 follow this way.   

2. Integrated Design Process: skip the phase of metamodeling and enter the 

integrated design processes of metamodeling and design space exploration as 

illustrated in Figure 6.15.  In this case the SEED process is not conducted thus 

the flow from Processor G to Processor C is removed.  This corresponds to the 

removal of the metamodeling loop in Figure 6.12.  This method is usually 

used with simple problems in which the actual responses are not highly 

nonlinear or irregular. 

3. Hybrid Process: develop metamodels first, and then explore the design space 

for solutions as well as updating metamodels.  The SEED method is applied to 

ensure acceptable metamodels are obtained.  Then the design space 

exploration loop (in Figure 6.12) is adopted to help update the metamodel and 

obtain better design solutions.  This method is usually used with large-scale 

problems with highly nonlinear or irregular responses. 
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In this chapter, since we use simple examples to illustrate the integrated design 

process in E-RCEM, we will follow the 2nd way as mentioned above.  The steps of this 

integrated design process are explained below: 

Step 1 – Problem Initialization.  This is the first phase in design, and 

corresponds to Processors A and B in Figure 6.11 and Figure 6.12. 

Step 2 – Initial Experiments and Design Space Reduction.  This corresponds to 

Processor C in Figure 6.11 and Figure 6.12, or the process of elimination of unimportant 

design factors in Figure 5.41.  In this step we use classical experiments and the response 

surface metamodels to identify important design variables. 

Step 3 – Design Space Redefinition.  This corresponds to Processor C in Figure 

6.11 and Figure 6.12.  In this step we identify the feasible design space (usually irregular) 

due to the constraints on design variables and responses. 

Step 4 – Identification of New Validation Points.  This corresponds to 

Processors H, C, and D in Figure 6.11 and Figure 6.12.  In this step we identify new 

validation points using the similar method in SEED; the only difference is that in 

identifying the new points design goals are considered as well as prediction errors and 

distances from existing points.  After locating new validation points, metamodels of 

prediction errors are developed and the achievement of design goals at points in the 

feasible design space are calculated to facilitate the identification of new data points in 

the next step. 

Step 5 – Identification of New Data Points.  The covariance matrix is adjusted 

with information from the metamodels of prediction errors and the achievement of design 
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goals as obtained in Step 4.  New data points are identified by maximizing the 

determinant of this adjusted covariance matrix.  This corresponds to Processor D in 

Figure 6.11 and Figure 6.12. 

Step 6 – Updated Metamodels and Metamodel Selection.  This corresponds to 

Processors E, F, and G in Figure 6.11 and Figure 6.12.  New metamodels are developed 

and the best metamodels are selected in future iterations and steps (as what we did in 

Chapter 5 with kriging and MARS metamodels). 

Step 7 – Analysis of Design.  This corresponds to Processors H and C in Figure 

6.11 and Figure 6.12.  In this step, we either compare the achievement of design goals at 

new identified points with that at old points (when designers wish to enter another design 

space exploration iteration), or formulate and solve the compromise DSP for design 

solutions (when designers wish to finish the design space exploration process).  The E-

RCEM processes will stop in this step once the stopping criterion is met; otherwise 

another iteration will start at Step 4.  Besides the stopping criteria introduced in Chapter 

4, we can also stop when the improvement of achievement of design goals is smaller than 

some preset value; when this criterion is adopted, the design space exploration process in 

E-RCEM becomes similar to the EGO, and can be viewed as an optimization algorithm. 

 

In this section we developed the E-RCEM based on RCEM and our studies in 

Chapter 4, Chapter 5, and Sections 6.1 – 6.3.  In order to develop more accurate 

metamodels with less time and money spent on expensive experiments, sequential 

metamodeling and the SEED processes are used in E-RCEM to replace the metamodeling 
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phase in RCEM.  Design goals are considered in the metamodeling process, which is 

expected to help achieving better design solutions with fewer experiments.  The actual 

implementation of each step in the integrated design process is liable to vary from 

problem to problem.  This integration of metamodeling and design space exploration, in 

which both computer simulations (or physical experiments) and empirical metamodels 

are used in achieving design solutions, can also be viewed as a new optimization 

algorithm that is best used in cases with expensive experiments.  The integrated design 

process in E-RCEM will be illustrated with a single-variable function in the next section. 

 

6.5 APPLICATION OF THE E-RCEM METHOD: A SINGLE-VARIABLE 
EXAMPLE 

In this section, we apply the E-RCEM method in the single-variable example 

similar to that we studied in Chapter 4.  The single-variable function is: 

( )( )10 0.01
0 0.( ) 0.5

0 0.19

Sin x
xf x x

x

π +
 ≤ ≤=  +


19

1< ≤

   (6.27) 

This function is the same as Equation (4.35) by adding a constant 2 to the response.  A 

graph of this function is shown in Figure 6.16.  As we see from the equation and graph, 

the design space is x = [0, 1].  In this design space, the maximum response value is y = 

1.852 at x = 0.04, and the minimum response value is around y = -1.564 at around x = 

0.138; the response range is 3.415.   
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Figure 6.16 A Single-Variable Function 

The design goal in this example is to minimize the response f(x).  The design 

target is preset at TL = –1.6, which is unachievable (smaller than the minimum actual 

response value); thus this design task is actually an optimization problem.  There is no 

constraint put on the design variable or the response.  In Chapter 4 following the SEED 

processes we are able to develop an acceptable metamodel with 11 observed points, 

which is much more accurate than those developed with single-stage experimental design 

methods.  In this section, the design solution obtained with E-RCEM will be compared to 

that obtained with SEED.  Initially we will have 3 data points and 4 validation points; 4 

more points will be added in 3 iterations of the integrated process of metamodeling and 
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design space exploration.  The value of λ in Equations (6.13) and (6.18) is set to be 2.0 

throughout the whole design process to balance “space-filling” and “reducing prediction 

errors” in the exploration for new points.  The value of γ will gradually decrease from 2.0 

to 1.25 along the timeline.  As discussed in Section 6.3, when more accurate metamodels 

are obtained with more observed points in later iterations of the integrated process of 

metamodeling and design space exploration, more weight should be put on the 

“achievement of design goals”, instead of “space-filling” or “reducing prediction errors”, 

in the exploration of new points.  A small value of γ helps achieve this balance. 

 

Iteration I – Step 1: Problem Initialization.  This is done. 

Iteration I – Step 2: Initial Experiments and Design Space Reduction.  Since 

there is only one design variable in this example, we do not reduce the design space by 

screening out unimportant design factors.  The initial experiments are the same as that in 

Chapter 4; the three data points are listed in Table 6.8.  The corresponding kriging 

metamodel is illustrated in Figure 6.17; the value of θ for this kriging metamodel is 

98.71232. 

Table 6.8 Initial Experiments 

x 0.0 0.5 1.0 
y 0.618 0.0 0.0 
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Figure 6.17 Initial Metamodel with 3 Data Points 

Iteration I – Step 3: Design Space Redefinition.  Since there is no constraint on 

design variables or responses, the design space is not redefined in this step. 

Iteration I – Step 4: Identification of New Validation Points.  Four new 

validation points are identified to be as far from current observed points as possible.  

These points are listed in Table 6.9.  Predicted prediction errors are unavailable thus not 

considered in this process.  The design goal is not considered in identifying new 

validation points in this step because we do not think the initial metamodel with only 3 

data points is accurate enough.  As design evolves and more points are observed we will 
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take the design goal into consideration.  This prevents us from being misled to incorrect 

directions by inaccurate metamodels in very early stages of design. 

A kriging metamodel of prediction errors is developed based on the information 

in Table 6.9.  Note that prediction errors at 3 data points are zero.  The value of θ is 

99.99880.  The maximum absolute predicted prediction error, emax ≈ 1.3, is found through 

optimization.  The predicted prediction error at a candidate point, ei, will be calculated 

with the kriging metamodel of prediction errors and used in the formulation of αi in 

Equation (6.13).  This information is then further used in the adjustment of entries in the 

covariance matrix in sequential experimental designs. 
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Figure 6.18 Metamodel of Prediction Errors Calculated in Iteration I – Step 4 
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Table 6.9 Validation Points in the 1st Iteration 

x 0.167 0.333 0.667 0.833 
ypred 0.232 0.193 0.193 0.193 
yactual -0.991 0.0 0.0 0.0 
yerror 1.223 0.193 0.193 0.193 

 

Another task in this step is to calculate the goal.achievement at candidate points.  

Since in this problem we want to minimize the response, Equation (6.24) will be used to 

formulate goal.achievement.  As discussed in Section 6.3, when using Equation (6.24), 

we may or may not force goal.achievement to be 0 when the predicted response y(x) is 

larger than or equal to ymax.  In this case, we force goal.achievement to be 0 at points with 

large predicted response values.   
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Figure 6.19 Metamodel Developed with 7 Observed Points in Iteration I – Step 4 
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The value of ymax is 0.618 (when x = 0.0) and the value of ymin is –0.991 (when x = 

0.167); in this step we use the actual observed response values for ymax and ymin.  As 

mentioned before, the design target value is set at TL = –1.6.    The metamodel used in 

Equation (6.24), y(x), is developed with all observed points in the feasible design space.  

Since at the end of the design process we will use all observed points to develop a final 

metamodel and explore the “final” design solution, it is reasonable to calculate the 

achievement of design goals based on information from all observed points in 

intermediate iterations.  To predict prediction errors we will have to use two groups of 

points; however, to calculate the achievement of design goals, we should utilize 

information from as many points as possible to try not be misled to wrong directions.  

The kriging metamodel developed with 7 observed points is illustrated in Figure 6.19.  

The value of θ for this kriging metamodel is 99.99983. 
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Figure 6.20 Values of goal.achievement at Points in the Design Space 
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A plot of goal.achievement at points in the design space is shown in Figure 6.20.  

In this figure we set γ = 1; when adjusting the covariance matrix in the next step, we will 

not set γ = 1 (we use large values for γ, e.g., γ = 1.5 or 2), as explained in Section 6.3.  In 

Figure 6.20 we see that when x is around 0.2 we have higher values of goal.achievement, 

which means we are close to achieve the design goal.   

Iteration I – Steps 5 and 6: Identification of New Data Points and Updated 

Metamodels.  In this step we need to identify 1 new data point.  A 4×4 covariance matrix 

is developed with the first 3 rows and columns corresponding to the 3 data points, and the 

last row and column corresponding to the new data point.  Entries of this covariance 

matrix are then adjusted with information from the prediction errors and achievement of 

design goals.  This adjustment is done with Equations (4.28), (6.11), (6.13), (6.19), and 

(6.24).  The values of λ and γ are set as λ = γ = 2.  Values of αiγi (the amount of 

adjustment at point xi) in the design space are illustrated in Figure 6.21.  Then the 

determinant of this adjusted covariance matrix is calculated.  The new data point is the 

one that generates the adjusted covariance matrix with the largest determinant.  

FORTRAN programs are written to facilitate the formulation and adjustment of the 

covariance matrices and calculation of determinants of matrices.  

The software iSIGHT is used to link the programs (formulation of covariance 

matrices, calculation of prediction errors, calculation of degrees of achievement of design 

goals, the adjustment of covariance matrices, and calculation of the determinant).  

Various optimization techniques (as what we did in Chapter 4) built in iSIGHT are 

utilized to find out the point with the maximum determinant of the corresponding 
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adjusted covariance matrix.  The possible new data point is identified at x = 0.177.  Since 

this point is very close to one of the validation points, x = 0.167, we decide to use x = 

0.167 as the new data point.  The four data points are listed in Table 6.10.  A new 

metamodel is developed with 4 data points and illustrated in Figure 6.22.  The value of θ 

for this kriging metamodel is 99.99964.  We do not make metamodel comparison and 

selection in this example because only kriging metamodels are developed. 
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Figure 6.21 Values of αiγi at Candidate Points in the Design Space in Iteration I – 
Step 5 
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Figure 6.22 Kriging Metamodel of Responses Developed with 4 Data Points 

Table 6.10 Four Data Points 

x 0.0 0.167 0.5 1.0 
y 0.618 -0.991 0.0 0.0 

 

Iteration I – Step 7: Analysis of Design.  Since the stopping criterion is not met, 

we will go to the next iteration of integrated metamodeling and design space exploration 

process. 

Iteration II – Step 4: Identification of New Validation Points.  In this step we 

plan to add in 2 new validation points.  Similar to the SEED process, in this step we will 

switch the roles of data points and validation points.  We first develop a metamodel of 

responses with 3 validation points, which is illustrated in Figure 6.23.  Prediction errors 
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of this metamodel at 4 validation points are listed in Table 6.11.  A metamodel of 

prediction errors is then developed with this information and illustrated in Figure 6.24. 
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Figure 6.23 Metamodel of Responses Developed with 3 Validation Points in 
Iteration II – Step 4 

Table 6.11 Prediction Errors at 4 Data Points in Iteration II – Step 4 

x 0.0 0.167 0.5 1.0 
ypred 0.0 0.0 0.0 0.0 
yactual 0.618 -0.991 0.0 0.0 
yerror -0.618 0.991 0.0 0.0 
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Figure 6.24 Metamodel of Prediction Errors Calculated in Iteration II – Step 4 

Since no new point is added in the past steps, the metamodel developed with all 

observed points is the same as that in Figure 6.19.  The values of goal.achievement at 

points in the design space are as illustrated in Figure 6.20.  Following the same method as 

in Iteration I – Steps 5 and 6, we identify two new validation points at x = 0.111, and x = 

0.243.  All validation points and the prediction errors of the intermediate kriging 

metamodel (in Figure 6.22) at these points are listed in Table 6.12.  Prediction errors at 

data points are zero. 
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A kriging metamodel of prediction errors is then developed based on this 

information and is illustrated in Figure 6.25.  The value of θ for this kriging metamodel is 

99.99993.  The maximum absolute predicted prediction error is emax ≈ 0.63.  This 

metamodel of prediction errors will be used in the next step to adjust the correlation 

between points. 
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Figure 6.25 Metamodel of Prediction Errors in Iteration II Developed with 
Information at 9 Observed Points in Iteration II – Step 4 

Table 6.12 Validation Points in the 2nd Iteration 

x 0.111 0.243 0.333 0.667 0.833 
ypred -0.559 -0.62 -0.145 -0.085 -0.085 
yactual -1.003 0.0 0.0 0.0 0.0 
yerror 0.444 -0.62 -0.145 -0.085 -0.085 
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Before going to the next step we need to calculate the degree of achievement of 

design goals at candidate points in the design space.  At this design stage we observed a 

lot of points with the response value of 0.0.  These points spread all over the design 

space, especially with large x values.  This indicates that the actual response function 

may be flat in most places, with response values close to 0.0.  This is useful in our 

formulation of design goals in the metamodeling process (or say, in the integrated 

process of metamodeling and design space exploration).  Since in this pure minimization 

example, the response value, 0.0, is far from the target goal value (compared with other 

observed points), we may set ymax as 0.0 instead of the maximum observed response 

value in following steps.  Note that in cases with more design goals (e.g., maximize some 

other response, robust design goal, etc.), this operation may not be appropriate.  In such 

cases designers need to consider the combined effects from all design goals when trying 

to set ymax or ymin at values different from observed ones. 

The predicted response value, y(x), is calculated with the metamodel of responses 

developed with all 9 observed points as illustrated in Figure 6.26.  To calculate 

goal.achievement, we set ymax = 0.0, ymin = -1.15, TL = -1.6, γ = 1.5.  The value of ymin is 

smaller than the observed value, which is –1.003; this is because that from the metamodel 

of response in Figure 6.26 we observe that the minimum predicted response value is 

around 0.85.  At this stage of design we focus more on the achievement of design goals 

since we are confident with the metamodel with 9 observed points, thus the value of γ is 

set at 1.5 instead of 2.0 (note that a smaller value of γ yields larger weight on 

achievement of design goals).  The values of goal.achievement at candidate points are 
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calculated with Equation (6.24).  We illustrate the values of goal.achievement calculated 

with γ = 1 in Figure 6.27. 
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Figure 6.26 Metamodel of Responses Developed with 9 Observed Points in Iteration 
II – Step 4 

Iteration II – Step 5 and 6: Identification of New Data Points and Updated 

Metamodels.  In this step we need to identify 1 new data point.  A 5×5 covariance matrix 

is developed with the first 4 rows and columns corresponding to the 4 data points, and the 

last row and column corresponding to the new data point.  Entries of this covariance 

matrix are then adjusted with information from the prediction errors and achievement of 
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design goals.  This adjustment is done with Equations (4.28), (6.11), (6.13), (6.19), and 

(6.24).  The values of λ and γ are set as λ = 2 and γ = 1.5.  The adjustment of entries in 

the covariance matrices due to prediction errors and achievement of design goals at 

candidate points, αiγi, is illustrated in Figure 6.28.  Then the determinant of this adjusted 

covariance matrix is calculated.  The new data point is the one that generates the adjusted 

covariance matrix with the largest determinant.  FORTRAN programs are written to 

facilitate the formulation and adjustment of the covariance matrices and calculation of 

determinants of matrices.   
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Figure 6.27 Values of goal.achievement at Points in the Design Space in Iteration II – 
Step 4 
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Figure 6.28 Values of αiγi at Candidate Points in the Design Space in Iteration II – 
Step 5 

The software iSIGHT is used to link the programs (formulation of covariance 

matrices, calculation of prediction errors, calculation of degrees of achievement of design 

goals, the adjustment of covariance matrices, and calculation of the determinant).  

Various optimization techniques (as what we did in Chapter 4) built in iSIGHT are 

utilized to find out the point with the maximum determinant of the corresponding 

adjusted covariance matrix.  Organizations and flowcharts of these programs in iSIGHT 

are presented in Appendix C. 

By pursuing the maximum determinant of adjusted covariance matrices, we 

identify the new data point as x = 0.131.  Now we have 5 data points as listed in Table 
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6.13.  A kriging metamodel of responses is developed with information at these 5 points 

and illustrated in Figure 6.29.  The value of θ for this kriging metamodel is 99.99985.  

We do not make metamodel comparison and selection in this example because only 

kriging metamodels are developed. 

Table 6.13 Five Data Points 

x 0.0 0.131 0.167 0.5 1.0 
y 0.618 -1.522 -0.991 0.0 0.0 
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Figure 6.29 Metamodel of Responses Developed with 5 Data Points in Iteration II – 
Steps 5, 6 
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Iteration II – Step 7: Analysis of Design.  Since the stopping criterion is not met 

we will enter the next iteration of the integrated process of metamodeling and design 

space exploration.   

Iteration III – Step 4: Identification of New Validation Points.  Now we have 

5 data points and 5 validation points.  In this step we plan to add in 1 new validation 

point.  Similar to what we did in Iteration II – Step 4, we switch the roles of data points 

and validation points in this step.  First we need to develop a metamodel of response with 

5 validation points.  This kriging metamodel is illustrated in Figure 6.30; the value of θ 

for this metamodel is 99.99982.   
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Figure 6.30 Metamodel of Responses Developed with 5 Validation Points in 
Iteration III – Step 4 
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Prediction errors of this metamodel at 5 data points are listed in Table 6.14.  A 

kriging metamodel of prediction errors is then developed with information of prediction 

errors at the data points and validation points.  This metamodel is illustrated in Figure 

6.31.  The value of θ for this metamodel is 100.00.  A univariate regression spline 

metamodel of prediction errors is also developed and illustrated in Figure 6.32. 

Table 6.14 Prediction Errors at 5 Data Points in Iteration III – Step 4 

x 0.0 0.131 0.167 0.5 1.0 
ypred -0.468 -0.932 -0.644 -0.206 -0.211 
yactual 0.618 -1.522 -0.991 0.0 0.0 
yerror -1.086 0.59 0.347 -0.206 -0.211 
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Figure 6.31 Kriging Metamodel of Prediction Errors in Iteration III – Step 4 
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Figure 6.32 Univariate Regression Splines Metamodel of Prediction Errors in 
Iteration III – Step 4 

Comparing Figures Figure 6.31 and Figure 6.32, we observe that the univariate 

regression splines metamodel is more reliable because it does not have the dramatic 

fluctuations in unobserved regions as the kriging metamodel (see the peaks or bottoms at 

x = 0.5, 0.3, and 0.4 in Figure 6.31).  Thus in the following steps we will use the 

univariate regression splines metamodel to calculate prediction errors. 

The predicted response value, y(x), can be calculated with the metamodel of 

responses developed with all 10 observed points as illustrated in Figure 6.33.  The value 

of θ for this metamodel is 100.00.  A univariate regression splines metamodel of 
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responses is also developed and illustrated in Figure 6.34.  Comparing Figures Figure 

6.33 and Figure 6.34 we see that the kriging metamodel does not work well; the 

fluctuations around x = 0.3 and x = 0.4 is abnormal.  As having been studied in Chapter 5, 

kriging cannot model irregular responses well.  The kriging metamodel works well in the 

prediction with very small x values; however, the peak around x = 0.5 cannot be validated 

when the actual response function is unknown and no observation in this region is done.  

Thus the good performance of this kriging metamodel with small x values is not a 

systematic solution but just lucky.  The univariate regression splines metamodel in Figure 

6.34 honestly reflects the response surface based on information from 10 observed points, 

and will be used in future steps. 
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Figure 6.33 Kriging Metamodel of Responses Developed with 10 Observed Points 
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Figure 6.34 Univariate Regression Splines Metamodel of Responses Developed with 
10 Observed Points 

An 11×11 covariance matrix is developed with the first 5 rows and columns 

corresponding to the 5 data points, the 6th to 10th rows and columns corresponding to the 

5 validation points, and the last row and column corresponding to the new validation 

point.  Entries of this covariance matrix are then adjusted with information from the 

prediction errors and achievement of design goals.  This adjustment is done with 

Equations (4.28), (6.11), (6.13), (6.19), and (6.24).  To calculate goal.achievement, we 

set ymax = 0.0, ymin = -1.53, TL = -1.6, γ = 1.25.  The value of γ is set as 1.25 because we 

wish to focus more on the achievement of design goals since we have much confidence 
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on the accuracy of the metamodel.  Values of goal.achievement calculated with γ = 1 are 

illustrated in Figure 6.35.  To calculate relative.uncert, we set λ = 2 and emax = 0.8.  The 

adjustment of entries in the covariance matrices due to prediction errors and achievement 

of design goals at candidate points, αiγi, is illustrated in Figure 6.36.  Then the 

determinant of this adjusted covariance matrix is calculated.  The new data point is the 

one that generates the adjusted covariance matrix with the largest determinant.  

FORTRAN programs are written to facilitate the formulation and adjustment of the 

covariance matrices and calculation of determinants of matrices.   
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Figure 6.35 Values of goal.achievement at Points in the Design Space 
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Figure 6.36 Values of αiγi at Candidate Points in the Design Space in Iteration III 

By pursuing the maximum determinant of adjusted covariance matrices, we 

identify the new validation point at x = 0.138.  Now we have 5 data points and 6 

validation points as listed in Table 6.15.  Since we have already obtained information at 

11 points, the stopping criterion is met and we will stop in this iteration.  A univariate 

regression splines metamodel of responses is developed with information from Table 

6.15.  This metamodel is illustrated in Figure 6.37.  We cannot develop an acceptable 

kriging metamodel for this example; the reason is explained in our studies in Chapter 5.  

The univariate regression splines metamodel will be used as the final metamodel for this 

example. 
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Table 6.15 Eleven Observed Points 

x 0.0 0.131 0.167 0.5 1.0  Data Points y 0.618 -1.522 -0.991 0.0 0.0  
x 0.111 0.138 0.243 0.333 0.667 0.833 Validation 

Points y -1.003 -1.564 0.0 0.0 0.0 0.0 
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Figure 6.37 Final Univariate Regression Splines Metamodel of Responses Developed 
with Information at 11 Observed Points 

In Figure 6.37 we see that the final univariate regression splines metamodel is not 

very accurate around x = 0.04; it does not grasp the bell shape in this region where the 
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global maximum response lies.  Four points are clustered in the region [0.1, 0.17], while 

others scatter in the whole design space.  As a result, the regression splines metamodel 

performs well around x = 0.14 where the global minimum response lies.   

As a comparison, in Chapter 4 we developed a kriging metamodel with the SEED 

method; the points are listed in Table 4.11 and the metamodel is illustrated in Figure 

4.18.  In that experimental design, the points are not clustered in the region where design 

goals are achieved (or almost achieved).  Instead, more points are located in regions with 

large prediction errors; thus the peak around x = 0.04 and the bottom around x = 0.14 are 

observed and grasped.  The values of root mean squared error (RMSE) and maximum 

absolute error (MAX) for both metamodels are calculated with information from 201 

points and listed in Table 6.16.  In Table 6.16 we see that the metamodel from SEED has 

much smaller values of RMSE and MAX, which supports our impression that the 

metamodel from SEED is more accurate than the metamodel from E-RCEM. 

Table 6.16 RMSE and MAX for Metamodels from SEED and E-RCEM 

 Metamodel from SEED 
Formulation (I) 

Metamodel from Integrated 
Design Process in E-RCEM 

RMSE 0.113 0.432 
MAX 0.371 1.847 
 

In the E-RCEM method, we focus more on the achievement of design goals.  In 

this example, the prediction error still affects the location of new points but its influence 

is not strong enough to drag our attention from the “bottom” region to the “peak” region 

on the actual response surface.  As a result, the metamodel developed with SEED method 
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in Chapter 4 is more accurate than the one developed in the integrated process of 

metamodeling and design space exploration in this chapter.  However, a more accurate 

metamodel does not ensure a better design solution.  In Table 6.17 we see that the 

minimum response of the metamodel developed in E-RCEM is at x = 0.138 with the 

predicted response value of y = −1.564, which is the same as the true minimum.  This is 

better than the solution obtained with the metamodel developed with SEED, which is at x 

= 0.136 with the predicted response value of y = −1.506.  The solutions are subject to 

round off errors within ±0.0005.  In E-RCEM more points are observed around the 

design solution so we are able to obtain a metamodel that is more accurate in the region 

of interest.  This metamodel may not perform well in “unimportant” regions (e.g., in this 

example, the region around x = 0.04 and that with large x values), but its local accuracy 

in the “important” region helps obtain a better solution with information from the same 

number of experiments.   

Table 6.17 Minimum Response Values in the Single-Variable Example 

 Actual 
Function 

Metamodel from SEED 
Formulation (I) 

Metamodel from the 
Integrated Design Process 

in E-RCEM 
xmin 0.138 0.136 0.138 

ymin (predicted) N/A −1.506 −1.564 
ymin (true) −1.564 −1.560 −1.564 

 

The computational expense of the integrated design process in E-RCEM is only 

slightly higher than SEED.  Only one more program (the one to calculate predicted 
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response values) is called in the optimization iterations for maximum determinants of the 

covariance matrices, and a little more calculations are added in the adjustment of 

covariance matrices.  There is no much human interaction in the integrated design 

process once SEED is implemented.  After successfully implementation of SEED in the 

automatic running mode in the future, it requires little effort to realize an automatic 

integrated design process in E-RCEM. 

From the viewpoint of metamodeling, the traditional process with SEED is better 

than the integrated design process in E-RCEM because it yields a more accurate 

metamodel in the whole design space; while from the viewpoint of design space 

exploration, the integrated design process in E-RCEM is better than the traditional 

process with SEED because it yields a metamodel with higher local accuracy in critical 

regions and thus possibly a better design solution.  In cases with expensive computer or 

physical experiments, both the traditional process with SEED and the integrated process 

in E-RCEM help develop better metamodels with less time and money, and thus ensure 

better design solutions than traditional experimental designs and design space exploration 

approaches.  When design goals are not well defined at the beginning of design (e.g., in 

some cases the relative priorities of design goals may change greatly during the design 

phrase) and it is hard to address this uncertainty, designers may prefer to use SEED to 

develop globally accurate metamodels.  When design goals are clearly defined, designers 

may prefer to use the integrated design process of metamodeling and design space 

exploration in E-RCEM to achieve better design solutions faster.  In most cases where 

design goals are defined but still subject to small changes in the future, designers may 
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prefer to use SEED first to achieve an acceptable metamodel, then use the integrated 

design process in E-RCEM to explore for new experimental points and design solutions. 

6.6 A LOOK BACK AND A LOOK AHEAD 

The Efficient Robust Concept Exploration Method (E-RCEM) is developed in 

this chapter.  The integrated design process in E-RCEM is demonstrated and verified 

with a single-variable example.  Research in this chapter helps answer Research Question 

3 and its sub-questions; the corresponding hypotheses are tested.  Research Question 3, 

its sub-questions, and corresponding hypotheses are listed below. 

R.Q.3: How to integrate the processes of metamodeling and robust design space 

exploration?   

Hypothesis 3:  The processes of metamodeling and robust design space 

exploration could be integrated through building the information flow from C-

DSP to the metamodeling cycle in the Robust Concept Exploration Method. 

 

R.Q.3.1: How to design sequential experiments with consideration of design 

constraints? 

Sub-Hypothesis 3.1:  Consideration of design constraints could be incorporated 

in the metamodeling process through construction irregular design spaces. 

 

R.Q.3.3: How to do sequential metamodeling with consideration of design goals? 

Sub-Hypothesis 3.3:  Design goals can be taken into consideration in 

metamodeling by formulating influential factors with the compromise DSP 

and using them in maximum entropy sampling. 
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To answer Research Question 3, the Efficient Robust Concept Exploration 

Method (E-RCEM) is developed based on the Robust Concept Exploration Method 

(RCEM) and the method of Sequential Exploratory Experimental Design (SEED).  In this 

chapter, we verified that with the integrated design process in E-RCEM, designers are 

able to incorporate considerations of metamodel accuracy and achievement of design 

goals in the experimental design and metamodeling process.  New points are identified in 

regions where design goals are to be achieved or large prediction errors exist.  With this 

integrated design process in E-RCEM (or the metamodeling for design space exploration 

approach), designers are able to achieve better design solutions with less time and money 

spent on expensive computer or physical experiments.  Hypothesis 3 is verified; our 

answer to Research Question 3 is: Better design solutions can be achieved with fewer 

experiments by integrating the processes of metamodeling and design space exploration; 

this integrated design process is realized in E-RCEM, in which information about 

metamodel uncertainty and achievement of design goals is used as guidance in 

identifying new points in sequential metamodeling. 

Research Question 3.1 is answered primarily in Section 6.2.  Sequential 

metamodeling with constraints on design variables is studied in Section 6.2.1, and 

sequential metamodeling with constraints on responses is studied in Section 6.2.2.  In this 

section we show that design constraints can be taken into consideration in the SEED 

method and the integrated design process in E-RCEM.  After taking design constraints 

into consideration, the design space is usually irregular; with SEED or E-RCEM, new 

points will be identified only in the reduced irregular feasible design space, and this helps 
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save time and money spent on experiments wasted in infeasible regions.  Our answer to 

Research Question 3.1 is: Design constraints can be taken into consideration to define an 

irregular design space, and SEED or E-RCEM can be used to identify new points in the 

reduced irregular feasible design space. 

Research Question 3.3 is studied and answered in Section 6.3.  Based on the 

compromise DSP, the degree of achievement of design goals at candidate points can be 

formulated and scaled in [0,1]; a value close to 0 means that design goals are hardly 

achieved, and a value close to 1 means that design goals are almost achieved at this point.  

Usually we preset a target value for the design goal, and once this target value is met or 

exceeded, we set the degree of achievement of design goals to be 1.  This quantitative 

expression of degree of achievement of design goals can be used in the adjustment of 

covariance matrices in maximum entropy sampling, and “drag” new points to regions 

where design goals are met or almost met.  Our answer to Research Question 3.3 is: The 

degree of achievement of design goals at a particular point can be quantitatively 

formulated with the compromise DSP and used as an influential factor in SEED or E-

RCEM. 

The Efficient Robust Concept Exploration Method (E-RCEM) is developed in 

Section 6.4.  There are three ways to organize design processes in E-RCEM: the 

Traditional Process (SEED → design space exploration), the Integrated Design Process 

(SEED + design space exploration), and the Hybrid Process (traditional → integrated).  

The traditional process has already been studied and implemented in Chapters 4 and 5, 

thus in this section we describe the integrated design process in detail.  A single-variable 
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example is presented in Section 6.5, implementing the integrated design process in E-

RCEM.  It is shown that with the integrated design process in E-RCEM, better design 

solution is achieved than that obtained with the traditional process.   

Research in Chapter 6 is built on that in Chapters 4 and 5, and should be viewed 

from a higher level.  In Chapters 4 and 5 we focus on the metamodeling process, while in 

this chapter we consider the whole design process in the early stages: problem 

initialization, metamodeling, and design space exploration.  The E-RCEM is an 

integrated robust design method developed for efficient and effective identification of 

design solutions at early stages.  It can also be viewed as or has the potential to be 

developed to a new optimization algorithm or heuristic.  

The SEED method introduced in Chapter 4, the sequential metamodeling strategy 

studied in Chapter 5, and the integrated design process in E-RCEM developed in Chapter 

6 will be implemented in Chapter 7 with a more complicated engineering problem. 
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6. 5 
CHAPTER 7 

ENGINEERING APPLICATION: DESIGN OF UNIT 
CELLS FOR LINEAR CELLULAR ALLOYS 

 

In this chapter, the method of Sequential Exploratory Experimental Design 

(SEED), sequential metamodeling, and the Efficient Robust Concept Exploration Method 

(E-RCEM), are applied in the engineering application of design of unit cells for linear 

cellular alloys (LCA).  The results are compared with that from the existing 

approximation-based design method in the Systems Realization Laboratory (i.e., RCEM 

without loops in metamodeling and information feedback from design space exploration 

to metamodeling).  Research questions visited in this chapter are R.Q.2, R.Q.3, R.Q.4 and 

their sub-research questions.  After an introduction to the thermal topological design of 

unit cells for linear cellular materials in Section 7.1, the design problem is defined in 

Section 7.2 and the traditional design method of RCEM is applied in Section 7.3.  The 

SEED method and sequential metamodeling approach is applied in Section 7.4. The 

integrated design process in E-RCEM is applied in Section 7.5.  Comparisons and 

discussions are presented in Section 7.6.   
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7.1  BACKGROUND OF DESIGN OF LINEAR CELLULAR ALLOYS 

The thermal topological design of unit cells for linear cellular alloys (LCA) is used 

in this chapter as a case study with which we compare the performance of SEED, E-

RCEM and traditional robust design methods like RCEM.  This design example is taken 

from studies in (Seepersad, et al., 2003).  The background of linear cellular alloys, 

topology design, the example, and the finite element model and simulation are introduced 

in this section. 

7.1.1 Topology Design 

In topology design designers simultaneously adjust both the external shape and the 

number and shape of internal boundaries for a given 2D or 3D domain and associated 

boundary conditions and design objectives (Eschenauer and Olhoff, 2001; Rozvany, 

2001).  Vastly different topologies can be obtained from an arbitrary initial domain with 

topological design techniques.  Important properties like compliance, stiffness, strength, 

eigenfrequencies, convective coefficients, and other properties sensitive to material 

arrangement can be tailored through the adjustment of the topology of a structure.  It is 

possible to distribute material strategically, resulting in lightweight structures with 

desirable properties.  Emerging manufacturing processes (e.g., additive fabrication and 

processing of cellular materials) facilitate the fabrication of structures with nearly 

arbitrary topologies.   

In Topology Design the following question is to be addressed: How can material 

be distributed efficiently in a given design region to tailor properties that are sensitive to 
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material distribution (e.g., compliance, stiffness, strength, convection, etc.)?  In topology 

optimization nothing is known about structure or shape a priori; the shape and number of 

discontinuities (i.e., voids) are determined during the course of topology optimization.  A 

typical topology design approach, as proposed by Carolyn Conner Seepersad in her PhD 

proposal involves the following steps: 

Step 1 - Establish design requirements, objectives, and domain.  

Step 2 - Divide domain into finite elements.  

Step 3 - Assign density variable to each finite element (ρ
i
).  

Step 4 - Modify density variables according to solution (optimization) algorithm. 

Small density values for an element imply that the element is empty (i.e., 

part of a hole). Large density values imply solid material.  

Step 5 - Calculate effective properties of structure.  

A. Select penalization power, p>3. The penalization power penalizes 

intermediate densities and encourages convergence to regions of solid 

(full density) and void (minimum density).  

B. Calculate effective properties in each element. For example, a 

stiffness matrix (K) for an element becomes: K
i 
= ρ

i

p

K
solid 

 

C. Calculate effective properties for the structure.  

Step 6 - Return to Step 4 until convergence is achieved.  
 

Explorations of the appropriate topology are to be incorporated in our research as 

a future direction.  However, in this dissertation, our focus is on the synthesis of design 

processes involving mechanical and material design. 

The computational model for topology design used in the example in this chapter 

stems from a 99 line MATLAB
® code for compliance minimization of statically loaded 
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structures, developed by Ole Sigmund from the Department of Solid Mechanics at the 

Technical University of Denmark (Sigmund, 2001).  The code was intended for 

engineering education and contains both a mesh independency filter and a finite element 

code.  A number of simplifying assumptions are made to reduce the code complexity.  

For example, the design domain is modeled as a rectangle and is discretized using square 

finite elements, as indicated in Figure 7.1.  Element and node numbering proceeds on a 

column-by-column basis, starting in the upper left corner.  The aspect ratio of the 

structure to be optimized is determined by the number of horizontal (nelx) and vertical 

(nely) elements as specified by the user.  

 

Figure 7.1 Dividing the Cantilever Beam Design Domain into Finite Elements (Choi 
and Fernandez, 2003) 

The chosen implementation of topology optimization within this algorithm is 

based on the “power law approach” or SIMP approach (Solid Isotropic Material with 

Penalization), where properties are assumed constant within each element and design 
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variables are the element relative densities.  For more information about this topology 

optimization problem, please refer to (Sigmund, 2001).  

7.1.2 Linear Cellular Alloys 

Linear Cellular Alloys (see Figure 7.2) are metallic cellular materials with a 

constant cross section, fabricated through a process developed by the Lightweight 

Structures Group at Georgia Tech (Seepersad, et al., 2003).  The process combines 

extrusion of ceramic slurry, composed of metal oxides and water through a die, allowing 

for the achievement of quasi-arbitrary two-dimensional cellular topologies.  Extrusion of 

the ceramic is followed by exposure to thermal and chemical treatments that cure the 

composites.  The inherent advantage in producing materials using this process is the 

ability to tailor properties of the resulting structure such as the effective moduli of 

elasticity and conductivity by altering the topologies of the cells.  Structures may be 

composed of either periodically repeating unit cells or functionally graded, non-uniform 

cells of various topologies.   

Linear or two-dimensional cellular materials are particularly suitable for 

multifunctional applications that require not only structural performance but also 

lightweight thermal or energy absorption capabilities.  LCAs are superior to those of 

metallic foams with equivalent densities.  For example, LCAs exhibit greater in-plane 

stiffness and strength and out-of-plane specific energy absorption than stochastic metal 

foams (Evans, et al., 2001; Hayes, et al., 2001).  LCAs are advantageous as heat 

exchangers due to larger surface area density and lower pressure drop – two factors that 
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compensate for lower heat transfer coefficients for laminar forced convection than for 

turbulent forced convection in stochastic metal foams with comparable relative densities 

(Lu, 1999).  Accordingly, LCAs have potential for use in applications such as actively 

cooled supersonic aircraft skins or engine combustor liners (Seepersad, et al., 2002).   

 

Figure 7.2 Square-Cell Linear Cellular Alloy (Hayes, et al., 2001) 

In addition, the manufacturing process for linear cellular alloys facilitates the 

fabrication of multi-functional cellular materials.  Powder slurries are extruded through a 

die and then exposed to thermal and chemical treatments in a process developed by the 

Lightweight Structures Group at Georgia Tech (Cochran, et al., 2000).  Extruded metallic 

cellular structures can be produced with nearly arbitrary two-dimensional cellular 

topologies limited only by paste flow and die manufacturability.  Wall thicknesses and 
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cell diameters as small as fifty microns and several hundred microns, respectively, have 

been manufactured (Church, et al., 2001).   

As presented in (Seepersad, et al., 2003), several authors have reported 

multifunctional analyses of two-dimensional cellular materials.  “Torquato and coauthors 

establish cross-property bounds on the thermal conductivities of periodic hexagonal, 

triangular, and square cells in terms of elastic properties and vice versa (Torquato, et al., 

1998).  Gu and coauthors present analytical models and dimensionless indices that enable 

simultaneous evaluation of structural and heat transfer performance of periodic 

hexagonal, square, and triangular cells (Gu, et al., 2001).  Structural performance is 

measured in terms of the effective shear modulus while a corrugated wall model (Lu, 

1999) is recommended for heat transfer.  The non-dimensional indices include a thermal 

performance index—the ratio of total heat transfer rate to pressure drop—and a 

thermomechanical index formulated by multiplying the thermal index by the ratio of 

shear modulus to the modulus of elasticity of the solid material.  Both Gu and coauthors 

and Evans and coauthors (Evans, et al., 2001) employ the indices to evaluate the 

performance of periodic triangular, square, and hexagonal topologies for 

thermomechanical applications.  Hayes and coauthors use theoretical estimates and 

physical experiments to evaluate several thermal and mechanical characteristics of LCAs, 

including total heat transfer rate, elastic properties, initial plastic buckling strengths, and 

in-plane and out-of-plane compressive strength, collapse behavior, and energy absorption 

for both quasi-static and dynamic loading (Hayes, et al., 2001).  The steady state heat 

transfer rate is evaluated for periodic square cells using a finite difference approach that is 
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more rigorous than closed-form estimates because it accounts for three-dimensional 

temperature distribution throughout the LCA and the convective fluid.  The finite 

difference approach can accommodate functionally graded cell topologies, although 

Hayes and coauthors did not leverage this capability” (Seepersad, et al., 2003).   

In (Seepersad, et al., 2003), Seepersad and co-authors design multifunctional, two-

dimensional cellular structures for applications that require both structural and thermal 

performance.  While others have focused primarily on analysis of the structural and 

thermal properties of cellular materials, the authors adopt a design perspective; given a 

set of rigorous analytical models, their emphasis is on synthesis of cellular designs and 

identification of superior design regions.  The example used in this chapter is modified 

from their studies in the referenced paper. 

7.1.3 Convectively Cooled Heat Sink for a Computer Chip 

LCAs are potentially well suited for heat exchanger applications, including 

compact electronic cooling devices and ultralight, actively cooled, aerospace structures.  

Unlike most heat exchangers, however, the two-dimensional cells that dissipate heat via 

conduction and convection also have desirable structural properties.   

The LCA example considered in this chapter is that of a convectively cooled heat 

sink for a computer chip.  A sample schematic of the structure is given in Figure 7.3.  The 

general requirements for a CPU heat sink are that it 1) remove enough heat from the chip 

so as to ensure steady state operation and 2) withstand the relatively high compressive 

forces exerted by clamps used to attached the heat sink to the chip as tightly as possible 
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(see Figure 7.4).  With this in mind, it is important to note that constant temperature at the 

chip interface is desired in this investigation.  Although, it may seem more intuitive to 

model constant heat flux instead, the idea is to design a heat sink that is capable of 

removing enough heat to keep the chip below 1) its maximum operating temperature or 2) 

its melting temperature (in the case of potential over-clocking). 

In Figure 7.3, the device has fixed overall width (W), depth (D), and height (H) of 

25 mm, 75 mm, and 25 mm, respectively.  It is insulated on the left, right, and bottom 

sides and is subjected to a heat source at constant temperature, Ts, on the top face.  The 

mechanism for heat dissipation is forced convection via air with entry temperature, Tin, 

and total mass flowrate M .  The flowrate is variable, but it is linked to the available 

pressure head through a representative characteristic fan curve, illustrated in Fig, 2.  

Steady state, incompressible laminar flow is assumed.  The solid material in the device is 

copper.  The thermal conductivity, ks, of copper samples fabricated with the thermo-

chemical LCA extrusion process has been measured to be 363 W/m-K [5]. 

In (Seepersad, et al., 2003), the LCA is composed exclusively of rectangular cells, 

but the size, shape, and number of cells are permitted to vary in a graded manner.  Each 

row of cells may assume a different height, hi, and each column a different width, wi.  The 

only restriction on cell height and width is that the cells must fit within the external 

dimensions with sufficient remaining space for vertical cell walls of variable thickness, th, 

and horizontal walls of variable thickness, tv.  The numbers of cells in the horizontal and 

vertical directions are designated Nh and Nv, respectively.  The goal for the example in 
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(Seepersad, et al., 2003) is to achieve desirable values for two objectives: (1) overall rate 

of steady state heat transfer and (2) overall structural elastic stiffness of the structure.  

 

 

 

 

 

 

 

 

 

Figure 7.3 Compact, Forced Convection Heat Exchanger with Graded Rectangular 
LCAs (Seepersad, et al., 2003) 

 
Figure 7.4 Steps Involved in CPU/Heat Sink Assembly (Choi and Fernandez, 2003) 
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Figure 7.5 Characteristics Fan Curve (Seepersad, et al., 2003) 

7.1.4 Finite Element Modeling and Computer Simulation 

As stated before, typically, topology design and optimization involve the general 

steps outlined in Figure 7.6.  As indicated, every change in geometry requires renewed 

analysis to evaluate system performance with regard to desired objectives. Considering 

that such changes in geometry also require the recalculation of temperature dependent 

(i.e., inlet, outlet, and bulk) properties such as fluid viscosity µ, convective coefficient h, 

Prandtl Number Pr, Reynolds Number Re, Hydraulic Diameter Dh, etc. and the 

reevaluation of potentially huge stiffness matrices computational expense is considerable. 

This is especially true when a number of different software applications are involved. 

Through an adaptation of the 99 line topology optimization algorithm, developed 

by Ole Sigmund and extended by Carolyn Conner Seepersad, as described in Section 

7.1.1, Finite Element Thermal and Structural analysis has been developed and 

successfully deployed in MATLAB.   
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Figure 7.6 General Step for Topology Design and Optimization (Adapted from Choi 
and Fernandez, 2003) 

 

Figure 7.7 FEA Boundary Conditions (Adapted from Choi and Fernandez, 2003) 
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The boundary conditions and coordinate system used for the thermal and 

structural finite element analysis are provided in Figure 7.7.  A number of simplifying 

assumptions are made in implementing the thermal and structural analysis for multi-

objective topology design.  The fluid temperature difference between inlet and outlet is 

assumed to be very small.   

In this chapter, the thermal analysis model is different from that used in 

(Seepersad, et al., 2003).  The simulation used in this chapter is not very accurate since it 

is not the focus of studies in this dissertation; simulations with low-fidelity are used here 

because the low cost enables us to observe thousands of points to illustrate the 

effectiveness of the SEED and E-RCEM methods in this chapter.  In the next section, this 

simulation and structural and thermal analysis will be used to construct the example 

problem to be used in this chapter. 

7.2 EXAMPLE PROBLEM: DESIGN OF UNIT CELLS FOR LINEAR 
CELLULAR ALLOYS 

The example problem of design of unit cells for linear cellular alloys is defined in 

this section.  Structural and thermal models introduced in Section 7.1 will be used as 

simulations in this example.  The example here is slightly different from that in 

(Seepersad, et al., 2003) because our focus is to illustrate and verify the SEED and E-

RCEM methods instead of exploring topology designs. 

In this chapter, the convectively cooled heat sink for a computer chip in Figure 7.3 

is used as the example problem.  Steady state, incompressible laminar flow of air is 
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assumed.  The temperature of the inlet flow is a constant, Tin = 293K.  The temperature of 

the heat source, which is put on the top of the LCA device as illustrated in Figure 7.3, is 

considered to be a constant of Tsource = 373K.  The thermal conductivity is set as 

365W/mK, which is that of the copper samples fabricated with the thermal-chemical 

LCA extrusion process in (Church, et al., 2001).  The depth of the device is set as D = 

0.075m.  The width and height of the device is W = H.  The number of cells in the 

horizontal and vertical directions is set as Nh = Nv = N = 8.  The overall structure of this 

LCA is defined and will not change in our example.  Identical rectangular cells are used, 

with h1 = h2 = … = hnv = w1 = w2 = … = wnh = w in Figure 7.3.  The wall thickness is set 

as tv = th = t.  The relationship between wall thickness, t, and cell size, w, follows 

Equation (7.1): 

( ) wtNwNtW 891 +=⋅++⋅=      (7.1) 

where as introduced earlier, N is the number of cells in the vertical or horizontal 

direction, and W is the width of the device and in this example, W = H.  The total area of 

the cross section that the working fluid (air) passes the device is: 

( )222 9tWwNAf −=⋅=       (7.2) 

And the area of the cross section that is filled with solid materials is: 

  ( )22 2 2 9s fA A A W H N w W W t= − = ⋅ − ⋅ = − −    (7.3) 

In this example we consider 3 design variables, as described below: 

• Wall thickness, t.  The wall thickness is used as a control factor in our 

example.  The ranges for t is 0.0002m ≤ t ≤ 0.0008m. 
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• Width of the device, W.  The width of the device is a control factor.  The 

ranges for W is 0.015m ≤ W ≤ 0.035m. 

• Fluid velocity, V, or total mass flow rate, M .  Air is the working fluid.  We 

assume that 1) the fluid velocity is the same at any places in the device, and 2) 

as a noise factor, the air temperature does not change greatly so that a constant 

density of air, ρf, can be used, we have the relationship between the fluid 

velocity and total mass flow rate as: 

VAM ff ⋅⋅= ρ       (7.4) 

Thus, in this example, we need to use only one of the two variables.  The 

density of air at 20 oC is ρf = 1.205 kg/m3.  The mass flow rate, M , is used as 

one of the control factors.  In this example, we set the boundaries for M  as 

0.0005kg/s ≤ M  ≤ 0.003kg/s. 

 

There are three system constraints in this design: 

• In this example we assume to have steady state, incompressible laminar flow 

in the LCA device.  Typically, a flow is laminar when the Reynolds number is 

smaller than 2300, and this is the second constraint in this example: 

2300<eR       (Constraint I) 

where the Reynolds number, Re, is calculated with Equation (7.5).  

  
f

fh
e

VD
R

µ
ρ⋅⋅

=       (7.5) 
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where Dh is the hydraulic diameter, V is the fluid velocity, ρf is the density of 

air, and µf is the fluid dynamic viscosity.  In this example, the dynamic 

viscosity is calculated with the following equation: 

  ( )638.514415.00000001.0 +⋅×= averagef Tµ    (7.6) 

where Taverage is the average fluid temperature and in this example, we take the 

fluid inlet temperature as the average temperature: 

  inaverage TT =        (7.7) 

In Equation (7.5), the hydraulic diameter Dh is calculated with the following 

equation: 

  
meterWettedPeri

A
D f

h

4
=      (7.8) 

In this example, since we use Nh = Nv  = 8 square cells along the horizontal 

and vertical directions, Equation (7.8) can be simplified to: 

  tWDh 9−=        (7.9) 

This constraint is very important in our example because the simulation code 

in Section 7.1.4 is developed specifically for cases with laminar flows; the 

results may not be valid when the flow is developing or turbulent.  This 

constraint puts limits on wall thickness, t, and fluid velocity, V.  The fluid inlet 

temperature, Tin, also affects the value of Reynolds number.   

• As illustrated in Figure 7.5, there is a constraint associated with the pressure 

drop and mass flow rate.  It is required that we must design the LCA device 
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with pressure drop and mass flow rate (along the LCA curve) smaller than 

those at the cross point in Figure 7.5.  This can be expressed as: 

MP 35.266330 −≤∆      (Constraint II) 

where M  can be calculated with Equation (7.4).  The pressure drop in a 

horizontal, steady state flow in a duct can be calculated with the following 

equation: 

  
2

2
f

h

VD
P f

D

ρ ⋅
∆ = ⋅ ⋅       (7.10) 

where f is the friction coefficient, D is the length of duct or pipe (in this 

example, the depth of the LCA device), ρf is the density of air, and V is the 

fluid velocity.  In this example, to be simple, we use the hydraulic diameter, 

Dh, to calculate the pressure drop; it should be noted that to be accurate, the 

equivalent diameter, De, should be used since LCA is a rectangular duct.  For 

fully developed laminar flow the friction coefficient depends only on the 

Reynolds Number, Re, and can be expressed as: 

  
64

e

f
R

=        (7.11) 

Pressure drop for non-laminar flows is not considered in this example because 

design solutions with such flows are not considered due to Constraint I.   

• Performance requirements include a constraint on the volume fraction of the 

unit cell and goals for the elastic properties of the cellular material.  The 
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volume fraction (or portion of the unit cell occupied by solid material), vf, is 

limited to at most 30% by the manufacturing process.   

( )2

2

9
1 30%fs

A A W tA
vf

A A W

− − ⋅
= = = − ≤              (Constraint III) 

 

There are three design goals considered in this example: 

• Maximize the total heat transfer rate, Q.  With the finite element model as 

introduced in Section 7.1.4, we are able to calculate the exit temperatures of 

the fluid in each cell, and the total rate of steady state heat transfer is then 

calculated by a summation over all the cells (Incropera and DeWitt): 

( )
i ave i

n cells

cell p exit in

i

Q m c T T= −∑     (7.12) 

The total heat transfer rate Q is directly obtained from the simulation code.  

We desire to maximize the heat transfer rate of the LCA device to cool down 

the computer chip.  In this example, we formulate this goal in the compromise 

DSP as:   

  01 11
minarg

min =++−
−

− +− dd
QQ

QQ

ett

    (7.13) 

In Equation (7.13), Q is the total heat transfer rate at the current point, Qmin is 

the minimum observed total heat transfer rate, and Qtarget is the target value for 

the heat transfer rate, which is set as 20W.  Note that there are different ways 

to formulate the goal (normalize the responses) in the compromise DSP, as 
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described in Chapter 6.  The deviation variables, d1
− and d1

+, satisfy the 

following requirements: 

  00, 1111 =⋅≥ +−+− ddanddd     (7.14) 

To maximize Q, in the compromise DSP we need to minimize the deviation 

variable d1
−. 

• Minimize the compliance, J.  Compliance is the measurement of softness as 

opposed to stiffness of a material.  It is the reciprocal of Young's modulus or 

the inverse of the stiffness matrix.  In this example, we use a simulation code 

to calculate the compliance of the LCA device.  Since we want to maximize 

the stiffness of the device, in this example we minimize the compliance.  In 

the compromise DSP, this goal is formulated as: 

max
2 2

max arg

1 0
t et

J J
d d

J J
− +−− + − =

−
     (7.15) 

where Jmax is the maximum observed compliance, and Jtarget is the target value 

for this goal, which we set as Jtarget = 0.0015m/N.  To minimize the 

compliance J, we need to minimize the deviation variable d2
+ in the 

compromise DSP. 

• Minimize the device weight.  Since the material is selected as copper and the 

depth of the device is fixed, this goal is the same as minimizing the cross-

section area that is filled with solid materials, As, as calculated in Equation 

(7.3).  .  In the compromise DSP, this goal is formulated as: 



478 

max
3 3

max arg

1 0s s

s st et

A A
d d

A A
− +−

− + − =
−

    (7.16) 

where Asmax is the maximum observed value of As, and Astarget is the target 

value for As, which we set as Astarget = 0.00025m2.  To minimize the 

compliance J, we need to minimize the deviation variable d3
+ in the 

compromise DSP. 

Response contour plots are presented below.  All plots are drawn with information 

from 1573 points evenly spread over in the whole design space.  The contour plots of Q 

(total heat transfer rate) versus t (wall thickness) & W (device width), t & Mdot (mass 

flow rate), and W & Mdot are illustrated in Figure 7.8, Figure 7.9, and Figure 7.10, 

respectively.  The contour plots of J (compliance) versus t and W is illustrated in Figure 

7.11.  The contour plots of the cross-section area of solid materials (As) versus t and W is 

illustrated in Figure 7.12.  From the plots we see that these responses are not highly 

nonlinear or highly irregular. 

LCA heat exchangers with desirable structural and thermal properties are designed 

for the boundary conditions summarized in Table 7.1.  Design is guided with the use of 

the compromise DSP in Figure 7.13.  Given a set of boundary conditions and techniques 

for analyzing non-periodic LCA heat exchangers, the objective is to find the values of the 

set of design variables that satisfy the set of constraints and bounds and achieve the 

targets for one or more goals as closely as possible.  After formulation of the compromise 

DSP for the LCA design problem, design solutions can be achieved using the design 

automation and exploration software of iSIGHT®.  When the computation is not 
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expensive to run we may link the simulation code to iSIGHT to obtain the actual solution.  

This actual design solution is listed in Table 7.2. 

 

Figure 7.8 Contour Plot of Heat Transfer Rate (Q) vs. Wall Thickness (t) and Device 
Width (W) 

 

Figure 7.9 Contour Plot of Heat Transfer Rate (Q) vs. Wall Thickness (t) and Mass 
Flow Rate (MDot) 
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Figure 7.10 Contour Plot of Heat Transfer Rate (Q) vs. Device Width (W) and Mass 
Flow Rate (MDot) 

 

Figure 7.11 Contour Plot of Compliance (J) vs. Wall Thickness (t) and Width (W) 
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Figure 7.12 Contour Plot of Cross-Section Area of Solid Materials (As) vs. Wall 
Thickness (t) and Device Width (W) 

Table 7.1 Boundary Conditions for Design 

Structure Width (W), Height (H) W = H 
Structure Depth (D) 0.075m 

Heat Source Temperature (Tsource) 373K 
Fluid Inlet Temperature (Tin) 293K 

Working Fluid Air 
Working Fluid Density 1.205 kg/m3 

LCA Structure 64 square cells 
Wall Thickness (t) Variable, tv = th 

Thermal Conductivity of Solid 
Materials (ks) 

363 W/mK 

Fluid Velocity (V) 
Variable, tied to mass flow 

rate and pressure drop 
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Given Control Factors and Noise Factors: 
Three control factors. 

Models: 
Simulations for thermal and structural analyses. 

Assumption:  
Steady-state uncompressible laminar flow of air. 
The average temperature of air in the device equals to the inlet temperature. 
Air density is a fixed value of 1.205 kg/m3. 
All walls have same thickness. 
All square cells have identical sizes. 

 
 

Find System Variables: 

 Mass flow rate ( M ) 
 Device Width (W) 
 Wall thickness (t) 

Deviation Variables: 
The under and over achievement of the goal of maximizing total heat transfer rate: 

d1
−, d1

+. 
The under and over achievement of the goal of minimizing compliance: d2

−, d2
+. 

The under and over achievement of the goal of minimizing device weight: d3
−, d3

+. 

 
 

kg/s 
m 
m 
 

Satisfy System Constraints:  
Laminar flow: Re < 2300 

Fan curve: MP 35.266330 −≤∆  

Volume fraction: ( )2

2
1 30%fs

A A W N tA
vf

A A W

− − ⋅
= = = − ≤  

System Goals: 
System Performance: 

Maximize heat transfer rate Q: 

01 11
minarg

min =++−
−

− +− dd
QQ

QQ

ett

 

Minimize compliance J: 

max
2 2

max arg

1 0
t et

J J
d d

J J
− +−− + − =

−
 

Minimize weight: 

max
3 3

max arg

1 0s s

s st et

A A
d d

A A
− +−

− + − =
−

 

Variable Bounds: 

0.0005 ≤ M  ≤ 0.003 
0.015 ≤ W ≤ 0.035 
0.0002 ≤ t ≤ 0.0008 

di
-, di

+
  ≥  0 ; di

-.di
+  =  0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

kg/s 
m 
m 

Minimize Deviation Function:  
 

1 1 2 2 3 3Z w d w d w d− + += ⋅ + ⋅ + ⋅ .  w1 = w2 = w3 = 1. 

 

Figure 7.13 Compromise DSP for LCA Unit Design 
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Table 7.2 Actual Design Solution Obtained with Simulation Codes 

 Values 
Mass flow rate, Mdot (kg/s) 0.00129 

Device width, W (m) 0.0348 
Wall thickness, t (m) 0.00042 

Mdot_normalized 0.316 
W_normalized 0.99 
t_normalized 0.3667 

Reynolds number, Re 2297.61 
Volume fraction, vf 0.2054 
30 2663.35M P− − ∆  26.5141 

Area of solid materials, As (m
2) 0.000249 

Heat transfer rate, Q (W) -15.59 
Compliance, J (m/N) 0.00139 

1 2 3Z d d d− + += + +  0.31489 
 

7.3 EXPLORATION OF DESIGN SOLUTIONS WITH RCEM 

In this section, the compromise DSP in Figure 7.13 is solved with the Robust 

Concept Exploration Method (RCEM).  Since the problem has been defined in Section 

7.2, our first step in this section is to design experiments and develop metamodels for 

responses. 

There are three design goals and three constraints in the compromise DSP.  The 

cross-section area of solid materials (As), the volume fraction (vf), the Reynolds number 

(Re), and the pressure drop (∆P) are easy to get with simple equations, thus we will not 

develop metamodel for them.  The total heat transfer rate (Q) and compliance (J) are 

obtained from the finite element simulation, and need to be modeled.   

There are three design variables as stated in Section 7.2.  In this example, we do 

not perform any screening experimental design to identify unimportant design variables.  
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Thus a single-stage experimental design is needed to select data points.  It is 

recommended in (iSIGHT, 2003) that to ensure the achievement of acceptable 

metamodels at least 3n data points should be used in cases with n design variables.  Thus 

in this example we use a Latin Hypercube design with 30 data points; values of design 

variables at these points are normalized to [0,1] and listed in Table D.1 in Appendix 

D.1.1.  Total heat transfer rate and compliance are observed by running simulations at 

these points.  Note that the total heat transfer rate is negative because the heat is 

transferred from the device to the air; in the compromise DSP, we multiply these values 

with –1 so that we maximize positive values for Q. 

With information from Table D.1 in Appendix D.1.1, two kriging metamodels are 

developed for Q and J, respectively.  Values of θ for these kriging metamodels are listed 

in Table 7.3.  In Table 7.3, θ1 corresponds to the design variable of mass flow rate ( M  or 

Mdot), θ2 corresponds to the device width (W), and θ3 corresponds to the wall thickness 

(t).  In this chapter, if not particularly pointed out, we always use these denotations.  

Contour plots of Q and J calculated from kriging metamodels versus t, W, and Mdot are 

illustrated in Figure 7.14,Figure 7.15, Figure 7.16, and Figure 7.17, respectively.  

Comparing plots with those in Figure 7.8, Figure 7.9, Figure 7.10, and Figure 7.11, we 

see that the kriging metamodel for compliance, J, is acceptable, while that for total heat 

transfer rate, Q, does not capture the actual responses very well.  MARS metamodels are 

also developed and the model files, qmars.dat, are presented in Appendix D.1.2.  The 

kriging metamodels are more accurate then the MARS metamodels in this example.  
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Without comparison to actual responses, we decide to use kriging metamodels in solving 

the compromise DSP because it gives more reasonable predictions (predicted response 

ranges from MARS are too large compared to what we observed with 30 data points).   

Table 7.3 Values of θ for Kriging Metamodels of Q and J 

 θ1 θ2 θ3 
Q 2.75193 9.41537 8.58675 
J 0.01004 0.00627 10.87170 

 

 

 

Figure 7.14 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points 
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Figure 7.15 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points 

 
Figure 7.16 Kriging Metamodel of Total Heat Transfer Rate Q with 30 Data Points 
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Figure 7.17 Kriging Metamodel of Compliance J with 30 Data Points 

After developing the metamodels for responses, design solutions can be achieved 

using the design automation and exploration software of iSIGHT®.  We link the 

metamodels directly in iSIGHT® to explore for solutions for the compromise DSP in 

Figure 7.13.  The implementation of C-DSP in iSIGHT® is illustrated in Appendix D.1.3.  

The solution is presented in Table 7.4.  In Table 7.4 we see that the solution obtained with 

RCEM and single-stage metamodeling has small values of Mdot, and medium value of W 

and t.  Constraint I (Re < 2300) is active.  Both Design Goals II (minimizing compliance) 

and III (minimizing area) are met.  The predicted objective function value at this solution 

is 0.35357, while the actual value is 0.37351.  The solution obtained with 30 data points 

from Latin Hypercube design is far from the actual solution listed in Table 7.2. 
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Table 7.4 The Design Solution Obtained with RCEM – 30 LH Experiments 

 Predicted Value Actual Value 
Mass flow rate, Mdot (kg/s) 0.00097 

Device width, W (m) 0.0278 
Wall thickness, t (m) 0.00051 

Mdot_normalized 0.1875 
W_normalized 0.6406 
t_normalized 0.5708 

Reynolds number, Re 2300 
Volume fraction, vf 0.29995 
30 2663.35M P− − ∆  27.30 

Area of solid materials, As (m
2) 0.00023 

Heat transfer rate, Q (W) −15.05 −14.77 
Compliance, J (m/N) 0.00078 0.00080 

1 2 3Z d d d− + += + +  0.35357 0.37351 
 

In order to have more comparisons, a Latin Hypercube design with 40 data points 

is also used in our study.  This experimental design and corresponding response values 

are listed in Table D.2 in Appendix D.1.4.  Two kriging metamodels of responses for Q 

and J are developed with this information; values of θ for these kriging metamodels are 

listed in Table 7.5.  The design solution obtained with these metamodels is listed in Table 

7.6.  From Table 7.6 we see that though information is collected from more points than 

that in Table 7.4, the solution becomes further from the actual one.  One possible reason 

is that in this example the metamodels developed with 30 data points are more accurate 

than those developed with 40 data points. 

Table 7.5 Values of θ for Kriging Metamodels of Q and J 

 θ1 θ2 θ3 
Q 5.71612 10.49253 7.49590 
J 0.00238 0.00614 10.31701 
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Table 7.6 The Design Solution Obtained with RCEM – 40 LH Experiments 

 Predicted Value Actual Value 
Mass flow rate, Mdot (kg/s) 0.0005 

Device width, W (m) 0.0201 
Wall thickness, t (m) 0.00036 

Mdot_normalized 0.0 
W_normalized 0.2532 
t_normalized 0.2707 

Reynolds number, Re 1644.18 
Volume fraction, vf 0.29872 
30 2663.35M P− − ∆  28.44 

Area of solid materials, As (m
2) 0.00012 

Heat transfer rate, Q (W) −20.05 −11.21 
Compliance, J (m/N) 0.00165 0.00167 

1 2 3Z d d d− + += + +  0.01429 0.64419 

Table 7.7 Root Mean Squared Errors of Metamodels Developed in RCEM 

 Metamodels with LH 30 Points Metamodels with LH 40 Points 
 Q J Q J 
RMSE 9.2047 0.0003433 8.3527 0.000175 

NRMSE 8.94% 3.00% 8.11% 1.53% 
 

To compare the accuracy of the metamodels, root mean squared errors (RMSE) 

are calculated with Equation (2.34) and listed in Table 7.7.  The normalized root mean 

squared errors (NRMSE) are calculated by dividing RMSE with the observed response 

range; it gives the impression of how large the RMSE is compared with possible response 

changes.  All the information is calculated with information from 1573 evenly spread 

points in the whole design space.  The smaller RMSE (or NRMSE) is, the more accurate 

the corresponding metamodel.  Typically when NRMSE is smaller than 10% we consider 

the metamodel to be acceptable (Simpson, 1998).    In Table 7.7 we see that metamodels 

developed with 40 data points are more accurate than those developed with 30 data 



490 

points, which is opposite to what we have expected in the analysis in the past paragraph.  

Thus the question here is that: why we cannot obtain better design solutions with more 

accurate metamodels?  This question will be answered in the discussion in Section 7.6, 

after we have applied and studied SEED and E-RCEM in Sections 7.4 and 7.5. 

7.4 EXPLORATION OF DESIGN SOLUTIONS WITH SEED IN RCEM 

In this section, the SEED method is used to facilitate sequential identification of 

data points and develop accurate metamodels for design space exploration.  After 

defining the design problem in Section 7.2, here we design the sequential experiments 

following the methods and steps described in Chapters 4 and 5.  We plan to start with 8 

data points and 8 validation points, then add in 3 data points or validation points each 

time.  We will stop this sequential experimental design process once 28 points (which is 

fewer than that used in RCEM in Section 7.3) are observed, i.e., in Iteration III – Step 3.  

We expect to develop more accurate metamodels and also achieve better design solutions 

with fewer observed points using the SEED method. 

Iteration I – Step 1: Initial Experimental Design.  Eight data points are 

identified at the “corners” of the hypercube, as listed in Table 7.8.  This is actually a full 

factorial experimental design. 

Iteration I – Step 2: Simulation and Initial Metamodels of Responses.  We run 

the simulation codes and get response values of Q and J at eight data points.  Kriging 

metamodels are developed with this information, and values of θ are listed in Table 7.9.  

Since at this very early stage of metamodeling, it is unlikely that kriging may behave 
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abnormally (as discussed in Chapter 5), we decide not to develop MARS metamodels and 

use kriging as the initial metamodels for responses.  The contour plot of Q versus t and 

Mdot is illustrated in Figure 7.18; more contour plots are presented in Appendix D.2.1. 

Table 7.8 Initial Experimental Design with 8 Data Points 

Mdot W t Mdot_n W_n t_n Q J 
0.0005 0.015 0.0002 0 0 0 -11.01 0.00749 
0.0005 0.015 0.0008 0 0 1 -14.37 0.00022 
0.0005 0.035 0.0002 0 1 0 -6.65 0.01167 
0.0005 0.035 0.0008 0 1 1 -9.56 0.00027 
0.003 0.015 0.0002 1 0 0 -42.24 0.00749 
0.003 0.015 0.0008 1 0 1 -109.66 0.00022 
0.003 0.035 0.0002 1 1 0 -19.86 0.01167 
0.003 0.035 0.0008 1 1 1 -23.03 0.00027 

Table 7.9 Values of θ for the Initial Kriging Metamodels 

 θ1 θ2 θ3 
Q 78.19556 3.11212 0.80947 
J 0.00100 0.20111 71.32491 

 

 
Figure 7.18 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 

Rate (Initial Kriging Metamodel with 8 Data Points) 
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Iteration I – Step 3: Identification of New Validation Points.  In this step we 

need to identify 8 validation points.  Since no information of prediction errors is known in 

this iteration, we do not adjust the covariance matrix and identify new validation points to 

spread over the whole design space.  A 16×16 covariance matrix is build with the first 8 

rows and columns corresponding to 8 data points that we have, and the last 8 rows and 

columns corresponding to the 8 validation points that we need to identify.  In the 

formulation of this covariance matrix, we set θ1 = 78.19556, θ2 = 3.11212, θ3 = 71.32491.  

For each design variable we use the larger one (in columns) in Table 7.9.  By maximizing 

the determinant of the covariance matrix, we identify 8 validation points for the first 

iteration as listed in Table 7.10. 

Table 7.10 Eight New Validation Points Identified in Iteration I 

Mdot W t Mdot_n W_n t_n Q J 
0.00222 0.0235 0.00045 0.6865 0.4227 0.4100 -17.64 0.00098 
0.00125 0.0350 0.00035 0.3008 1.0 0.2559 -14.85 0.00232 
0.00239 0.0150 0.00065 0.7573 0.0 0.7573 -70.69 0.00034 
0.00300 0.0250 0.00050 1.0 0.5 0.5 -18.94 0.00076 
0.00053 0.0203 0.00041 0.0111 0.2663 0.3472 -11.79 0.00118 
0.00175 0.0250 0.00080 0.5 0.5 1.0 -18.53 0.00025 
0.00175 0.0250 0.00020 0.5 0.5 0.0 -15.92 0.00990 
0.00146 0.0341 0.00057 0.3834 0.9532 0.6156 -17.53 0.00061 

 

Iteration I – Step 4: Metamodel of Prediction Errors.  Prediction errors of the 

initial kriging metamodels (Table 7.9) at the validation points are listed in Table 7.11.  

Prediction errors at data points are zero.  Two kriging metamodels of prediction errors are 
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then developed for heat transfer rate and compliance.  The values of θ are listed in Table 

7.12.  The maximum absolute prediction error is about 50 for Q, and 0.0078 for J. 

Table 7.11 Prediction Errors at 8 Validation Points 

Mdot_n W_n t_n Q J Q_pred J_pred Q_err J_err 
0.6865 0.4227 0.4100 -17.64 0.00098 -20.11 0.00491 -2.47 0.00393 
0.3008 1.0 0.2559 -14.85 0.00232 -20.39 0.00491 -5.54 0.00259 
0.7573 0.0 0.7573 -70.69 0.00034 -20.73 0.00491 49.96 0.00457 

1.0 0.5 0.5 -18.94 0.00076 -21.13 0.00491 -2.19 0.00415 
0.0111 0.2663 0.3472 -11.79 0.00118 -21.56 0.00486 -9.77 0.00368 

0.5 0.5 1.0 -18.53 0.00025 -22.03 0.00427 -3.5 0.00402 
0.5 0.5 0.0 -15.92 0.00990 -22.53 0.00208 -6.61 -0.0078 

0.3834 0.9532 0.6156 -17.53 0.00061 -23.03 0.00027 -5.5 -0.0003 

Table 7.12 Values of θ for Kriging Metamodels of Prediction Errors in Iteration I 

 θ1 θ2 θ3 
Q_err 31.38770 14.31849 0.00395 
J_err 7.72797 0.00100 32.19186 
 

Iteration I – Step 5: Metamodel Validation.  This step is skipped. 

Iteration I – Step 6: Formulation of the Adjusted Covariance Matrix.  We 

need to add in 3 data points.  An 11×11 covariance matrix is formulated, with the first 8 

rows and columns corresponding to current data points, and the last 3 rows and columns 

corresponding to new data points.  Then the prediction errors calculated from metamodels 

developed in Iteration I – Step 4 are used to calculate correcting coefficients following 

Equation (5.9).  In the formulation of this covariance matrix, we set θ1 = 78.19556, θ2 = 

14.31849, θ3 = 71.32491.  The two responses, Q and J, are considered to be equally 

important, i.e., ρQ = ρJ = 0.5 in Equation (5.9).  The value of λ is 2. 
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Iteration I – Step 7: Identification of New Data Points.  In this step, by 

maximizing the determinant of the adjusted covariance matrix as developed in the 

previous step, 3 possible new data points are identified and listed in Table 7.13. 

Table 7.13 Four New Data Points Identified in Iteration I 

Mdot W t Mdot_n W_n t_n Q J 
0.00175 0.0250 0.0005 0.5 0.5 0.5 -17.49 0.00076 
0.00058 0.0321 0.00043 0.0333 0.8556 0.3769 -9.58 0.00126 
0.00204 0.0237 0.00027 0.6143 0.4333 0.1167 -16.69 0.00405 

 

Iteration I – Step 8: Updated Metamodels of Responses.  Now we have 11 data 

points and 8 validation points.  Two new kriging metamodels of responses are developed 

with information from the data points.  The values of θ are listed in Table 7.14.  Contour 

plots of responses are presented in Appendix D.2.1. 

Table 7.14 Values of θ for Kriging Metamodels of Responses with 12 Data Points 

 θ1 θ2 θ3 
Q 1.76888 1.16104 0.48836 
J 0.00100 0.24056 84.62898 

 

Iteration II – Step 3: Identification of New Validation Points.  In this step, we 

need to add in 3 new validation points.  Two kriging metamodels are developed for Q and 

J based on information from 8 validation points.  The values of θ are listed in Table 7.15.  

Prediction errors of these metamodels at data points are listed in Table 7.16. 
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Kriging metamodels of prediction errors are developed with information at 19 

points.  The values of θ are listed in Table 7.17.  The maximum absolute prediction error 

is about 60 for Q, and 0.003 for J.  To identify 3 new validation points, a 22×22 

covariance matrix is formulated with the first 19 rows and columns corresponding to 

observed points and the last 3 rows and columns corresponding to new validation points.  

In the formulation of this covariance matrix, we set θ1 = 0.83202, θ2 = 23.19746, θ3 = 

25.33245.  Then prediction errors calculated from metamodels in Table 7.17 are used to 

adjust entries of the covariance matrix.  By maximizing the determinant of this adjusted 

covariance matrix, 3 new validation points are identified and listed in Table 7.18. 

Table 7.15 Values of θ for Kriging Metamodels of Responses with 8 Validation 
Points 

 θ1 θ2 θ3 
Q 0.01269 23.19746 0.00692 
J 0.00103 0.00100 6.24017 

 

Table 7.16 Prediction Errors at 11 Data Points 

Mdot_n W_n t_n Q J Q_pred J_pred Q_err J_err 
0 0 0 -11.01 0.00749 -70.07 0.00981 -59.06 0.00232 
0 0 1 -14.37 0.00022 -70.27 0.00025 -55.90 0.00003 
0 1 0 -6.65 0.01167 -14.83 0.00985 -8.18 -0.00182 
0 1 1 -9.56 0.00027 -14.99 0.0003 -5.43 0.00003 
1 0 0 -42.24 0.00749 -70.50 0.00995 -28.26 0.00246 
1 0 1 -109.66 0.00022 -70.69 0.0002 38.97 -0.00002 
1 1 0 -19.86 0.01167 -14.95 0.00999 4.91 -0.00168 
1 1 1 -23.03 0.00027 -15.11 0.00025 7.92 -0.00002 

0.5 0.5 0.5 -17.49 0.00076 -17.21 0.00073 0.28 -0.00003 
0.0333 0.8556 0.3769 -9.58 0.00126 -23.48 0.00109 -13.90 -0.00017 
0.6143 0.4333 0.1167 -16.69 0.00405 -16.96 0.00583 -0.27 0.00178 
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Table 7.17 Values of θ for Kriging Metamodels of Prediction Errors in Iteration II – 
Step 3 

 θ1 θ2 θ3 
Q 0.83202 7.31764 0.32241 
J 0.00160 0.63128 25.33245 

Table 7.18 Three New Validation Points Identified in Iteration II 

Mdot W t Mdot_n W_n t_n Q J 
0.003 0.0294 0.00031 0.9998 0.7204 0.1767 -19.52 0.00314 

0.00053 0.0290 0.00067 0.0123 0.7001 0.7850 -11.22 0.00039 
0.0005 0.0210 0.00065 0.0015 0.2976 0.7563 -12.91 0.00037 

 

Table 7.19 Prediction Errors at 11 Validation Points 

Mdot_n W_n t_n Q J Q_pred J_pred Q_err J_err 

0.6865 0.4227 0.41 -17.64 0.00098 -30.54 0.00097 -12.90 -0.00001 
0.3008 1 0.2559 -14.85 0.00232 -3.31 0.00252 11.54 0.00020 
0.7573 0 0.7573 -70.69 0.00034 -77.40 0.00306 -6.71 0.00272 

1 0.5 0.5 -18.94 0.00076 -50.45 0.00076 -31.51 0.00000 
0.0111 0.2663 0.3472 -11.79 0.00118 -11.70 0.00170 0.09 0.00052 

0.5 0.5 1 -18.53 0.00025 -27.21 0.00009 -8.68 -0.00016 
0.5 0.5 0 -15.92 0.0099 -9.02 0.00993 6.90 0.00003 

0.3834 0.9532 0.6156 -17.53 0.00061 -3.76 0.00247 13.77 0.00186 
0.9998 0.7204 0.1767 -19.52 0.00314 -27.53 0.00274 -8.01 -0.00040 
0.0123 0.7001 0.785 -11.22 0.00039 -11.72 0.00303 -0.50 0.00264 
0.0015 0.2976 0.7563 -12.91 0.00037 -12.74 0.00306 0.17 0.00269 

 

Iteration II – Step 4: Metamodels of Prediction Errors.  The prediction errors 

of metamodels in Iteration I – Step 8 at 11 validation points are calculated and listed in 

Table 7.19.  Prediction errors at 11 data points are zero.  Two kriging metamodels of 

prediction errors are developed with this information and the values of θ are listed in 
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Table 7.20.  The observed maximum absolute prediction error for Q is around 30, and 

that for J is around 0.003. 

Table 7.20 Values of θ for Kriging Metamodels of Prediction Errors in Iteration II – 
Step 4 

 θ1 θ2 θ3 
Q 23.92013 0.00100 7.91005 
J 0.00100 0.24284 72.55745 

 

Iteration II – Step 5: Metamodel Validation.  This step is skipped. 

Iteration II – Step 6: Formulation of the Adjusted Covariance Matrix.  We 

need to identify 3 new data points in this iteration.  The adjusted covariance matrix is 

formulated with the same method as described in Iteration I – Step 6.  In the formulation 

of this covariance matrix, we set θ1 = 23.92013, θ2 = 1.16104, θ3 = 84.62898.  The two 

responses, Q and J, are considered to be equally important, i.e., ρQ = ρJ = 0.5 in Equation 

(5.9).  The value of λ is 2. 

Iteration II – Step 7: Identification of New Data Points.  By maximizing the 

determinant of the adjusted covariance matrix formulated in Step 6, three new data points 

are identified and listed in Table 7.21.   

Table 7.21 Four New Data Points Identified in Iteration II 

Mdot W t Mdot_n W_n t_n Q J 
0.00082 0.0157 0.00064 0.1276 0.0344 0.7252 -14.65 0.00036 
0.00298 0.0245 0.00044 0.9925 0.4751 0.3961 -18.58 0.00106 
0.00182 0.0321 0.00074 0.5290 0.8567 0.9059 -19.76 0.00031 
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Iteration II – Step 8: Updated Metamodels of Responses.  Since we will stop 

the SEED process after identifying 2 more new points in Iteration III – Step 3, and then 

the final metamodels of responses will be developed with information from all observed 

points, we do not need to update metamodels of responses in this step. 

Iteration III – Step 3: Identification of New Validation Points.  In this step, we 

need to add in 3 new validation points.  Two kriging metamodels are developed for Q and 

J based on information from 11 validation points.  The values of θ are listed in Table 

7.22.  Prediction errors of these metamodels at data points are listed in Table 7.23.  

Prediction errors of these metamodels at validation points are zero. 

Kriging metamodels of prediction errors are developed with information at 25 

points.  The values of θ are listed in Table 7.24.  The observed maximum absolute 

prediction error is about 60 for Q, and 0.0022 for J.  To identify 3 new validation points, 

a 28×28 covariance matrix is formulated with the first 25 rows and columns 

corresponding to observed points and the last 3 rows and columns corresponding to new 

validation points.  In the formulation of this covariance matrix, we set θ1 = 0.46716, θ2 = 

11.95818, θ3 = 17.40336.  Then prediction errors calculated from metamodels in Table 

7.24 are used to adjust entries of the covariance matrix.  By maximizing the determinant 

of this adjusted covariance matrix, 3 new validation points are identified and listed in 

Table 7.25. 
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Table 7.22 Values of θ for Kriging Metamodels of Responses with 12 Validation 
Points 

 θ1 θ2 θ3 
Q 0.01937 11.95818 0.00382 
J 0.00100 0.00426 5.67512 

 

Table 7.23 Prediction Errors at 14 Data Points in Iteration III – Step 3 

Mdot_n W_n t_n Q J Q_pred J_pred Q_err J_err 
0 0 0 -11.01 0.00749 -68.51 0.00977 -57.50 0.00228 
0 0 1 -14.37 0.00022 -69.33 0.00031 -54.96 0.00009 
0 1 0 -6.65 0.01167 -13.87 0.01032 -7.22 -0.00135 
0 1 1 -9.56 0.00027 -13.79 0.00023 -4.23 -0.00004 
1 0 0 -42.24 0.00749 -70.36 0.00947 -28.12 0.00198 
1 0 1 -109.66 0.00022 -71.16 0.00028 38.50 0.00006 
1 1 0 -19.86 0.01167 -17.45 0.01002 2.41 -0.00165 
1 1 1 -23.03 0.00027 -17.37 0.00021 5.66 -0.00006 

0.5 0.5 0.5 -17.49 0.00076 -17.21 0.00083 0.28 0.00007 
0.0333 0.8556 0.3769 -9.58 0.00126 -17.45 0.00155 -7.87 0.00029 
0.6143 0.4333 0.1167 -16.69 0.00405 -16.86 0.00478 -0.17 0.00073 
0.1276 0.0344 0.7252 -14.65 0.00036 -60.53 0.00033 -45.88 -0.00003 
0.9925 0.4751 0.3961 -18.58 0.00106 -18.88 0.00098 -0.30 -0.00008 
0.529 0.8567 0.9059 -19.76 0.00031 -20.75 0.00037 -0.99 0.00006 

 

Table 7.24 Values of θ for Kriging Metamodels of Prediction Errors in Iteration III 
– Step 3 

 θ1 θ2 θ3 
Q 0.46716 3.81693 0.20295 
J 0.00880 0.53704 17.40336 
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Table 7.25 Three New Validation Points Identified in Iteration III 

Mdot W t Mdot_n W_n t_n Q J 
0.0005 0.035 0.00068 0.0 1.0 0.7935 -8.92 0.0004 
0.003 0.035 0.00046 1.0 1.0 0.4309 -21.65 0.00109 
0.0005 0.025 0.00062 0.0 0.5 0.7 -11.68 0.00044 

 

Now since we have already obtained 28 points (14 data points and 14 validation 

points), the SEED process stops in this iteration.  Information of responses at the 28 

points is listed in Table D.3 in Section D.2.4.  Two kriging metamodels are developed for 

Q and J based on information from these 28 points.  The values of θ are listed in Table 

7.26.  Contour plots of responses calculated with the kriging metamodels are illustrated in 

Figure 7.19, Figure 7.20, Figure 7.21, and Figure 7.22.   

With the kriging metamodels in Table 7.26, we solve the compromise DSP in 

iSIGHT.  The solution obtained in this section is listed in Table 7.27.  We see that this 

solution is closer to the actual solution (in Table 7.2) than those obtained in Section 7.3.  

Constraint I is active, while other constraints are not.  The design goals associated with J 

and Af are achieved. 

Table 7.26 Values of θ for Kriging Metamodels of Responses Developed with SEED 

 θ1 θ2 θ3 
Q 1.12370 2.69722 0.39064 
J 0.00100 0.09403 13.84511 
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Figure 7.19 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with 
Respect to Device Width (W) and Wall Thickness (t) Developed with SEED 

 

Figure 7.20 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with 
Respect to Wall Thickness (t) and Mass Flow Rate (Mdot) Developed with SEED 
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Figure 7.21 Contour Plot of the Kriging Metamodel for Heat Transfer Rate (Q) with 

Respect to Device Width (W) and Mass Flow Rate (Mdot) Developed with SEED 

 
Figure 7.22 Contour Plot of the Kriging Metamodel for Compliance (J) with Respect 

to Device Width (W) and Wall Thickness (t) Developed with SEED 
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Table 7.27 The Design Solution Obtained with SEED 

 Predicted Value Actual Value 
Mass flow rate, Mdot (kg/s) 0.00113 

Device width, W (m) 0.0316 
Wall thickness, t (m) 0.00048 

Mdot_normalized 0.2535 
W_normalized 0.8284 
t_normalized 0.4694 

Reynolds number, Re 2300 
Volume fraction, vf 0.25578 
30 2663.35M P− − ∆  26.91 

Area of solid materials, As (m
2) 0.00025 

Heat transfer rate, Q (W) −16.61 −15.30 
Compliance, J (m/N) 0.00089 0.00093 

1 2 3Z d d d− + += + +  0.24180 0.35620 
 

Root mean square error (RMSE) of metamodels are calculated with information 

from 1573 points, and listed in Table 7.28.  Values of RMSE and NRMSE for Q in Table 

7.28 are much smaller than those in Table 7.7.  Values of RMSE and NRMSE for J in 

Table 7.28 are between those of the two metamodels for J with 30 or 40 points in Table 

7.7.  Generally speaking, we are able to develop more accurate metamodels and achieve 

better design solutions with fewer observed points in the design space.  Further discussion 

and analyses will be done in Section 7.6, after the application of E-RCEM in Section 7.5. 

Table 7.28 Root Mean Squared Errors of Metamodels Developed in RCEM 

 Metamodels with 28 Points Identified with SEED 
 Q J 
RMSE 4.4767 0.0002304 

NRMSE 4.35% 2.01% 
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7.5 EXPLORATION OF DESIGN SOLUTIONS WITH E-RCEM 

In Section 7.4, we apply the SEED method in the design of unit cells for linear 

cellular alloys; in this example we show that more accurate metamodels and better design 

solutions can be achieved with fewer experiments using the SEED method in the 

metamodeling process.  In cases with very expensive computer simulations or physical 

experiments, using the SEED method helps save significant amount of time or money, 

and ensures a better solution as a starting point for design in later design stages.  In this 

section, we will apply the E-RCEM method to realize an integrated process of 

metamodeling and design space exploration in the LCA design.  As shown in Chapter 6, 

E-RCEM ensures the identification of most-likely-to-succeed regions in the 

metamodeling process and the development of metamodels with better local accuracy in 

such critical regions.  Uncertainty of global metamodel accuracy is addressed to avoid 

being misled to wrong directions in the integrated process of metamodeling and design 

space exploration, but global metamodel accuracy is not pursued or guaranteed.  In the 

integrated design process in E-RCEM, new points are added sequentially in regions with 

large metamodel uncertainty and/or better achievement of design goals.  In this LCA 

design example, we expect to achieve a solution closer to the true solution identified in 

Section 7.2 (Table 7.2) with fewer observed points using the integrated design process in 

E-RCEM than with RCEM (Section 7.3) or SEED (Section 7.4). 

As described in Section 6.4.4, there are three possible ways in implementing E-

RCEM: the traditional process, the integrated design process, and the hybrid process.  In 

the traditional process, designers develop acceptable metamodels and explore for design 
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solutions in two separated processes; there are no information feedbacks from the process 

of design space exploration to metamodeling.  The application of RCEM and SEED in 

Sections 7.3 and 7.4 follows this way.  In the integrated design process, prediction errors, 

achievement of design goals, and satisfaction of design constraints are considered 

simultaneously in the identification of new points.  In the hybrid process, acceptable 

metamodels are first developed, and then more points are added following the integrated 

design process.  In this section, we adopt the integrated design process in LCA design. 

In E-RCEM, the integrated process of metamodeling and design space exploration 

is realized by introducing the link (information feedback) from the compromise DSP to 

design of experiments, as illustrated in Figure 6.11.  This information feedback includes 

two types of information, one of which is associated with design goals, and the other 

associated with design constraints.  The consideration of design constraints and 

identification of points in irregular design spaces are discussed in Section 6.2.  From the 

viewpoint of design space exploration, infeasible regions in the design space are not 

“critical” and designers should not waste time or money on experiments in these regions.  

The feasible design space may be much smaller than the original design space (which is 

usually a hypercube); to identify points in such small design spaces help save 

experimental expense and achieve better design solutions.  However, the feasible design 

space may not have clear boundaries (when the constraints are associated with responses 

for which we need to build metamodels), or the boundaries may be difficult to identify 

and illustrate (when designers have a lot of design constraints in a multi-variable, multi-
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response problem).  E-RCEM helps address this concern and facilitate more efficient 

designs of experiments in irregular feasible design spaces.   

The consideration of design constraints helps identify feasible design spaces, 

which gives metamodeling a good start because “absolute uncritical” regions are 

removed.  Design goals are then taken into consideration with prediction errors to help 

identify critical regions in the feasible design space.  Critical regions are those in which 

design goals are achieved or nearly achieved and/or prediction errors are large with 

current metamodels.  By adding more points in critical regions in iterations, designers are 

able to develop metamodels with better local prediction performance and thus achieve 

better design solutions than using traditional design methods like RCEM.   

In a multi-variable, multi-response, and multi-objective design case, the feasible 

design space is constructed with boundaries from design variables and design constraints, 

and the covariance matrix will be adjusted with information from both prediction errors 

and the achievement of design goals.  Based on the research in Chapters 5 and 6, entries 

of the adjusted covariance matrix should be formulated with the equations below: 
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where αi and αj are the coefficient to reflect the current metamodel’s uncertainty 

(prediction errors) at point xi and xj, ηi and ηj are coefficients to reflect degrees of 

achievement of design goals at points xi and xj, respectively.  In multi-variable, multi-

response, and multi-objective cases, the coefficient αi (or αj) is formulated with the 

following equation: 

∑
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ρα    (7.18) 

where relative.uncert stands for the measurement of relative uncertainty at the candidate 

point, nr is the number of responses for which we need to develop metamodels, ei,k is the 

predicted prediction error of the metamodel for the kth response at the candidate point, 

emax,k is the maximum absolute error observed with the kth response (from current 

observations or from predictions with the metamodel), ρk is the weight designers assigned 

to the kth response in metamodeling, and λk is the coefficient to balance “minimizing 

prediction errors” and “spread over the design space” for the kth response in the 

identification of new points.  Usually we set: 

  221 ==⋅⋅⋅==
rnλλλ       (7.19) 

and 

  
r

n nr

1
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so that it satisfies that: 
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The coefficients, ηi and ηj, are formulated with the following equation: 

tachievemengoaltotali ..1−=η     (7.22) 

where total.goal.achievement is the measurement of degrees that the design goals are 

achieved at the candidate point.  In multi-objective cases, goal.achievement can be 

formulated with Equation  (7.23): 

∑
=

⋅=
gn

k
kk tachievemengoalwtachievemengoaltotal

1

...   (7.23) 

where goal.achievementk is the measurement of degrees that the kth design goal is 

achieved at the candidate point, ng is the number of design goals involved, and wk is the 

weight assigned to the kth design goal.  Usually, the formulation of total.goal.achievement 

should be the same as that of the deviation function, z, in the compromise DSP (Figure 

7.13).  Thus, the formulation of goal.achievementk follows Equations (6.24), (6.25), and 

(6.26) in Chapter 6. 

In this section, we will follow the integrated design process in E-RCEM as 

described in Section 6.4.4, starting with 6 data points and 6 validation points, and ending 

with 20 observed points.  Each time we plan to add in 2 new data or validation points, 

thus the integrated design process will stop in Iteration III – Step 4. 

Step 1: Problem Initialization.  This step is finished in Section 7.2. 
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Steps 2 and 3: Initial Experiments, Design Space Reduction, and Design 

Space Redefinition.  In this example we do not screen out unimportant design variables.  

The initial design space is defined in Section 7.2, Figure 7.13, and is refined in this step 

by considering design constraints. 

In this example, all design constraints are associated with design variables only, 

thus the design space is fixed and clear.  After examination of design boundaries, it can 

be shown that Constraint II is satisfied at all points in the design space, thus it will not be 

studied and taken into consideration in this section.  Boundaries from Constraints I and III 

are illustrated in Figure 7.23. 

As shown in Figure 7.23, the initial design space is cubic; the surface in red (dark 

color in black-white printouts) is the boundary calculated from Constraint I; the surface in 

green (light color in black-white printouts) is that from Constraint III.  Note that Figure 

7.23 is just an illustration and the boundaries on design variables do not strictly follow 

those in Figure 7.13, the compromise DSP.  Constraints are not satisfied at points below 

the boundaries contain points.  The two design constraints separate the initial design 

space into four regions, and the one above both boundaries is the feasible design space, as 

illustrated in Figure 7.23.   

It should be noted that design constraints could be easily accounted in E-RCEM 

without much expense; the analysis in the above paragraphs is for illustration only.  The 

initial experiments are designed with the maximum entropy sampling method.  All 6 data 

points are constrained in the feasible design space; the points and corresponding response 

values are illustrated in Table 7.29.  Based on this information, initial kriging metamodels 
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are developed for the two responses, Q and J.  Values of θ for the kriging metamodels are 

listed in Table 7.30.  The contour plot of the metamodel for total heat transfer rate (Q) 

versus wall thickness (t) and mass flow rate (Mdot) is illustrated in Figure 7.24.  More 

contour plots are presented in Appendix D.3.  Comparing Figure 7.24 with Figure 7.9 we 

see that the initial metamodel is not accurate at all. 

 

 

 

 
Figure 7.23 Boundaries from Constraints I and III in LCA Design 
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Table 7.29 Initial Experiments with 6 Data Points in E-RCEM 

Mdot W t Mdot_n W_n t_n Q J 
0.00052 0.0348 0.00020 0.0072 0.9875 0.0028 -6.93 0.01164 
0.00102 0.0266 0.00020 0.2067 0.5794 0.0013 -13.24 0.01022 
0.00130 0.0347 0.00038 0.3201 0.9873 0.3026 -15.41 0.00184 
0.00054 0.0217 0.00039 0.0147 0.3341 0.3169 -11.48 0.00139 
0.00055 0.0152 0.00020 0.0195 0.0118 0.0073 -11.34 0.00754 
0.00051 0.0308 0.00055 0.0023 0.7907 0.5806 -9.63 0.00065 

Table 7.30 Values of θ for Initial Kriging Metamodels of Responses in E-RCEM 

 θ1 θ2 θ3 
Q 20.06353 0.94352 0.28535 
J 0.00100 0.14830 15.84192 

 

 

Figure 7.24 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 
Rate (Initial Kriging Metamodel with 6 Data Points) 

Iteration I – Step 4: Identification of New Validation Points.  Six new 

validation points are identified in the feasible design space.  There is no information 
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about prediction errors, and design goals are not considered in the identification of new 

validation points in the first iteration.  These points are added to be as far from existing 

data points as possible.  A 12×12 covariance matrix is formatted with the first 6 columns 

and rows corresponding to existing data points and the last 6 columns and rows 

corresponding to new validation points.  Then the new validation points are identified 

through maximization of the determinant of the covariance matrix.  This is done in 

iSIGHT, following the same process as in Iteration I – Step 3 of the SEED method in 

Section 7.4 (see Figure D.15 in Appendix D.2.3).  The new validation points and 

corresponding response values are listed in Table 7.31. 

Table 7.31 Six Validation Points Identified in Iteration I – Step 4 in E-RCEM 

Mdot W t Mdot_n W_n t_n Q J 
0.00057 0.0278 0.00024 0.0267 0.6424 0.0646 -9.41 0.00614 
0.00107 0.0337 0.00059 0.2287 0.934 0.6533 -15.23 0.00056 
0.00062 0.0266 0.00041 0.0479 0.5787 0.3527 -11.39 0.00133 
0.00067 0.0332 0.00030 0.0668 0.9111 0.1586 -9.68 0.00351 
0.00066 0.0240 0.00033 0.0626 0.4476 0.2195 -11.84 0.00231 
0.00095 0.0268 0.00027 0.1798 0.5896 0.1209 -13.32 0.00430 

 

Prediction errors of the initial metamodels (Table 7.30) at validation points are 

then calculated and listed in Table 7.32.  Prediction errors at data points are zero.  Kriging 

metamodels of prediction errors are then developed based on the information at 12 

observed points.  Values of θ for these metamodels are listed in Table 7.33.  The 

observed maximum absolute error for Q is about 1.14, and that for J is about 0.00315. 
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Table 7.32 Prediction Errors of Initial Metamodels at 6 Validation Points 

Mdot_n W_n t_n Q J Q_krig J_krig Q_err J_err 
0.0267 0.6424 0.0646 -9.41 0.00614 -9.32 0.00922 0.09 0.00308 
0.2287 0.934 0.6533 -15.23 0.00056 -14.09 0.00129 1.14 0.00073 
0.0479 0.5787 0.3527 -11.39 0.00133 -10.75 0.00089 0.64 -0.00044 
0.0668 0.9111 0.1586 -9.68 0.00351 -8.66 0.00666 1.02 0.00315 
0.0626 0.4476 0.2195 -11.84 0.00231 -11.21 0.00364 0.63 0.00133 
0.1798 0.5896 0.1209 -13.32 0.00430 -12.81 0.00727 0.51 0.00297 

 

Table 7.33 Values of θ for Kriging Metamodels of Prediction Errors Developed with 
Information at Observed 12 Points in Iteration I – Step 4 

 θ1 θ2 θ3 
Q 27.09014 0.37486 0.23548 
J 6.91046 0.01056 99.99883 

 

Iteration I – Steps 5 and 6: Identification of New Data Points and Updated 

Metamodels of Responses.  In this step we plan to add in two new data points.  A 14×14 

covariance matrix is formulated with the first 6 rows and columns corresponding to the 

data points, the 7th to 12th rows and columns corresponding to the validation points, and 

the last 2 rows and columns corresponding to the new data points.  In this formulation, we 

set θ1 = 27.09014, θ2 = 0.94352, and θ3 = 99.99883, which are the largest values of θ’s in 

metamodels of responses (Table 7.30) and those of prediction errors (Table 7.33). 

To adjust entries of the covariance matrix, we need to have information of 

prediction errors and achievement of design goals.  Values of the coefficients, αi and αj, 

are calculated with Equation (7.18).  In this calculation, we have nr = 2, ρ1 = ρ2 = 0.5, λ1 

= λ2 = 2, emax,1 = 1.14, emax,2 = 0.00315.   
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Values of ηi and ηj are calculated with Equations (7.22) and (7.23).  There are ng 

= 3 design goals with the same weights, i.e., w1 = w2 = w3 = 1.  The first design goal is to 

maximize the total heat transfer rate, Q (here we multiply it with –1 which makes the 

response values positive).  We calculate the degree of achievement of the 1st design goal, 

goal.achievement1, with Equation (6.25).  The target value is T1,H = 20; we set y1,max = 

16.0, y1,min = 6.0, and γ1 = 2.  The second design goal is to minimize the compliance, J.  

We calculate the degree of achievement of the 2nd design goal, goal.achievement2, with 

Equation (6.24).  The target value is T2,L = 0.0015; we set y2,max = 0.012, y2,min = 0.00056, 

and γ2 = 2.  The third design goal is to minimize the cross-section area for solid materials, 

As.  We calculate the degree of achievement of the 3rd design goal, goal.achievement3, 

with Equation (6.24).  The target value is T3,L = 0.00025; we set y3,max = 0.00046, y3,min = 

0.00005, and γ3 = 2.   

After the calculation of correction coefficients, we adjust entries of the covariance 

matrix with Equation (7.17).  By maximizing the determinant of the adjusted covariance 

matrix, 2 new data points are identified and listed in Table 7.34.  The FORTRAN code 

used to formulate the adjusted covariance matrix is presented in Appendix D.3.2, and the 

implementation of the new-point-identification process is illustrated in Appendix D.3.3. 

Table 7.34 Two New Data Points Identified in Iteration I – Step 5 in E-RCEM 

Mdot W t Mdot_n W_n t_n Q J 
0.00134 0.0350 0.00032 0.3355 1 0.1927 -15.23 0.00299 
0.00127 0.0348 0.00049 0.306 0.9884 0.4764 -15.89 0.00092 
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Now we have 8 data points and 6 validation points.  New kriging metamodels are 

developed for responses Q and J.  Values of θ for the kriging metamodels are listed in 

Table 7.35.  The contour plot of the metamodel for total heat transfer rate (Q) versus wall 

thickness (t) and mass flow rate (Mdot) is illustrated in Figure 7.25.  More contour plots 

are presented in Appendix D.3.  Comparing with Figure 7.25 we see that the initial 

metamodel is not accurate at all. 

Table 7.35 Values of θ for Kriging Metamodels of Responses Developed with 8 Data 
Points in Iteration I – Step 6 

 θ1 θ2 θ3 
Q 3.46015 0.45474 0.14310 
J 0.00100 0.10223 16.22954 

 

 

Figure 7.25 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 
Rate (Kriging Metamodel with 8 Data Points) 
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Iteration I – Step 7: Analysis of Design.  Since the stopping criterion is not 

satisfied we will go to the next iteration of the integrated process of metamodeling and 

design space exploration. 

Iteration II – Step 4: Identification of New Validation Points.  In this step we 

plan to add in 2 new validation points.  In this step, we temporarily switch the roles of 

data points and validation points, and new validation points are identified to bring 

maximum possible potential information about the actual response and achievement of 

design goals.   

Kriging metamodels are developed for responses Q and J with 6 validation points.  

Values of θ for the kriging metamodels are listed in Table 7.36.  The contour plot of the 

metamodel for total heat transfer rate (Q) versus wall thickness (t) and mass flow rate 

(Mdot) is illustrated in Figure 7.26.  More contour plots are presented in Appendix D.3.   

Prediction errors of these metamodels of responses (Table 7.36) at 8 data points 

are calculated and listed in Table 7.37.  Prediction errors at 6 validation points are zero.  

Then kriging metamodels of prediction errors are developed with this information; values 

of θ for these kriging metamodels are listed in Table 7.38.  The observed maximum 

absolute error for Q is about 1.30, and that for J is about 0.0038. 

Table 7.36 Values of θ for Kriging Metamodels of Responses Developed with 6 
Validation Points in Iteration II – Step 4 

 θ1 θ2 θ3 
Q 2.36289 0.21077 0.10405 
J 0.09658 0.00100 8.72353 
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Figure 7.26 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 
Rate (Kriging Metamodel with 6 Validation Points) 

Table 7.37 Prediction Errors of Metamodels at 8 Data Points in Iteration II – Step 4 

Mdot_n W_n t_n Q J Q_krig J_krig Q_err J_err 
0.0072 0.9875 0.0028 -6.93 0.01164 -7.45 0.00786 -0.52 -0.00378 
0.2067 0.5794 0.0013 -13.24 0.01022 -13.40 0.00762 -0.16 -0.00260 
0.3201 0.9873 0.3026 -15.41 0.00184 -15.28 0.00119 0.13 -0.00065 
0.0147 0.3341 0.3169 -11.48 0.00139 -11.77 0.00146 -0.29 0.00007 
0.0195 0.0118 0.0073 -11.34 0.00754 -12.64 0.00773 -1.30 0.00019 
0.0023 0.7907 0.5806 -9.63 0.00065 -10.33 0.00089 -0.70 0.00024 
0.3355 1 0.1927 -15.23 0.00299 -15.05 0.00239 0.18 -0.00060 
0.306 0.9884 0.4764 -15.89 0.00092 -15.72 0.00108 0.17 0.00016 
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Table 7.38 Values of θ for Kriging Metamodels of Prediction Errors Developed with 
14 Points in Iteration II – Step 4 

 θ1 θ2 θ3 
Q 30.92156 3.99810 0.23290 
J 0.95488 1.05725 99.99985 

 

A 16×16 covariance matrix is formulated with the first 8 rows and columns 

corresponding to 8 data points, the 9th to the 14th rows and columns corresponding to 6 

validation points, and the last 2 rows and columns corresponding to 2 new validation 

points.  In the formulation of this covariance matrix, we set θ1 = 30.92156, θ2 = 3.99810, 

and θ3 = 99.99985.  

Then entries of the covariance matrix are adjusted with similar methods to that 

used in Iteration I – Step 5.  In the adjustment we have nr = 2, ρ1 = ρ2 = 0.5, λ1 = λ2 = 2, 

emax,1 = 1.30, emax,2 = 0.0038; ng = 3, w1 = w2 = w3 = 1, T1,H = 20, y1,max = 16.0, y1,min = 6.0, 

T1,H = 0.0015, y2,max = 0.012, y2,min = 0.00056, T3,L = 0.00025, y3,max = 0.00046, y3,min = 

0.00005, and γ1 = γ2 = γ3 = 2.  By maximizing the determinant of the adjusted covariance 

matrix, 2 new validation points are identified and listed in Table 7.39. 

Table 7.39 Two New Validation Points Identified in Iteration II – Step 4 

Mdot W t Mdot_n W_n t_n Q J 
0.00078 0.0207 0.00020 0.1134 0.2837 0.0002 -12.27 0.00896 
0.00132 0.0350 0.00038 0.3265 1 0.2924 -15.50 0.00184 
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Iteration II – Steps 5 and 6: Identification of New Data Points and Updated 

Metamodels of Responses.  In this step we plan to add in 2 new data points.  To 

formulate and adjust entries of the covariance matrix, we need information about 

prediction errors and achievement of design goals.  Prediction errors of the metamodels 

of responses developed in Iteration I – Step 6 (in Table 7.35) at 8 validation points are 

listed in Table 7.40.  Prediction errors at 8 data points are zero.  The observed maximum 

absolute error for Q is about 0.78, and that for J is about 0.00131.  Based on this 

information, kriging metamodels of prediction errors are developed, and values of θ for 

these kriging metamodels are listed in Table 7.41. 

Table 7.40 Prediction Errors of Metamodels at 8 Validation Points Calculated in 
Iteration II – Step 5 

Mdot_n W_n t_n Q J Q_krig J_krig Q_err J_err 
0.0267 0.6424 0.0646 -9.41 0.00614 -9.39 0.00745 0.02 0.00131 
0.2287 0.934 0.6533 -15.23 0.00056 -15.04 0.00134 0.19 0.00078 
0.0479 0.5787 0.3527 -11.39 0.00133 -11.09 0.00156 0.30 0.00023 
0.0668 0.9111 0.1586 -9.68 0.00351 -8.90 0.00385 0.78 0.00034 
0.0626 0.4476 0.2195 -11.84 0.00231 -11.59 0.00154 0.25 -0.00077 
0.1798 0.5896 0.1209 -13.32 0.00430 -13.08 0.00452 0.24 0.00022 
0.1134 0.2837 0.0002 -12.27 0.00896 -12.41 0.00902 -0.14 0.00006 
0.3265 1 0.2924 -15.50 0.00184 -15.47 0.00187 0.03 0.00003 

 

Table 7.41 Values of θ for Kriging Metamodels of Prediction Errors Developed with 
16 Points in Iteration II – Step 5 

 θ1 θ2 θ3 
Q 53.44009 4.84689 99.99936 
J 99.99713 99.99965 2.55718 
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An 18×18 covariance matrix is formulated, with the first 8 rows and columns 

corresponding to 8 data points, the 9th to the 16th rows and columns corresponding to 8 

validation points, and the last 2 rows and columns corresponding to the new data points.  

In the formulation of this covariance matrix, we set θ1 = 99.99713, θ2 = 99.99965, and θ3 

= 99.99936. 

Then entries of the covariance matrix are adjusted with similar methods to that 

used in Iteration I – Step 5.  In the adjustment we have nr = 2, ρ1 = ρ2 = 0.5, λ1 = λ2 = 2, 

emax,1 = 0.78, emax,2 = 0.00131; ng = 3, w1 = w2 = w3 = 1, T1,H = 20, y1,max = 16.0, y1,min = 

6.0, T1,H = 0.0015, y2,max = 0.012, y2,min = 0.00056, T3,L = 0.00025, y3,max = 0.00046, y3,min 

= 0.00005, and γ1 = γ2 = γ3 = 1.5.  By maximizing the determinant of the adjusted 

covariance matrix, 2 new validation points are identified and listed in Table 7.42. 

Table 7.42 Two New Data Points Identified in Iteration II – Step 5 

Mdot W t Mdot_n W_n t_n Q J 
0.00056 0.0347 0.00044 0.0241 0.9868 0.4026 -8.67 0.00122 
0.00063 0.0179 0.00031 0.0506 0.1438 0.183 -12.32 0.00238 

 

Now we have 10 data points and 8 validation points.  Since we will stop in 

Iteration III – Step 4, which is the next iteration, and final metamodels will be developed 

with all data and validation points, we do not need to update the metamodels of responses 

in this step. 

Iteration II – Step 7: Analysis of Design.  Since the stopping criterion is not 

satisfied we will go to the next iteration of the integrated process of metamodeling and 
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design space exploration.  The analysis of achievement of design goals is not done here in 

this example; it will be done after we finish the E-RCEM process in the next step. 

Iteration III – Step 4: Identification of New Validation Points.  In this step we 

plan to add in 2 new validation points.  In this step, we temporarily switch the roles of 

data points and validation points, and new validation points are identified to bring 

maximum possible potential information about the actual response and achievement of 

design goals.   

Kriging metamodels are developed for responses Q and J with 8 validation points.  

Values of θ for the kriging metamodels are listed in Table 7.43.  The contour plot of the 

metamodel for total heat transfer rate (Q) versus wall thickness (t) and mass flow rate 

(Mdot) is illustrated in Figure 7.27.  More contour plots are presented in Appendix D.3.   

Prediction errors of these metamodels of responses (Table 7.43) at 10 data points 

are calculated and listed in Table 7.44.  Prediction errors at 8 validation points are zero.  

Then kriging metamodels of prediction errors are developed with this information; values 

of θ for these kriging metamodels are listed in Table 7.45.  The observed maximum 

absolute error for Q is about 0.35, and that for J is about 0.0027. 

Table 7.43 Values of θ for Kriging Metamodels of Responses Developed with 6 
Validation Points in Iteration II – Step 4 

 θ1 θ2 θ3 
Q 2.36289 0.21077 0.10405 
J 0.09658 0.00100 8.72353 
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Figure 7.27 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 
Rate (Kriging Metamodel with 6 Validation Points) 

Table 7.44 Prediction Errors of Metamodels at 8 Data Points in Iteration II – Step 4 

Mdot_n W_n t_n Q J Q_krig J_krig Q_err J_err 
0.0072 0.9875 0.0028 -6.93 0.01164 -7.20 0.00896 -0.27 -0.00268 
0.2067 0.5794 0.0013 -13.24 0.01022 -12.91 0.00899 0.33 -0.00123 
0.3201 0.9873 0.3026 -15.41 0.00184 -15.52 0.00176 -0.11 -0.00008 
0.0147 0.3341 0.3169 -11.48 0.00139 -11.44 0.00142 0.04 0.00003 
0.0195 0.0118 0.0073 -11.34 0.00754 -11.39 0.00852 -0.05 0.00098 
0.0023 0.7907 0.5806 -9.63 0.00065 -9.46 0.0006 0.17 -0.00005 
0.3355 1 0.1927 -15.23 0.00299 -14.93 0.00294 0.30 -0.00005 
0.306 0.9884 0.4764 -15.89 0.00092 -16.17 0.00091 -0.28 -0.00001 
0.0241 0.9868 0.4026 -8.67 0.00122 -9.02 0.00128 -0.35 0.00006 
0.0506 0.1438 0.183 -12.32 0.00238 -12.59 0.00273 -0.27 0.00035 
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Table 7.45 Values of θ for Kriging Metamodels of Prediction Errors Developed with 
14 Points in Iteration II – Step 4 

 θ1 θ2 θ3 
Q 0.00102 99.99939 63.99243 
J 0.52949 0.79194 56.07930 

 

A 20×20 covariance matrix is formulated with the first 10 rows and columns 

corresponding to 10 data points, the 11th to the 18th rows and columns corresponding to 8 

validation points, and the last 2 rows and columns corresponding to 2 new validation 

points.  In the formulation of this covariance matrix, we set θ1 = 2.36289, θ2 = 99.99939, 

and θ3 = 63.99243.  

Then entries of the covariance matrix are adjusted with similar methods to that 

used in Iteration I – Step 5.  In the adjustment we have nr = 2, ρ1 = ρ2 = 0.5, λ1 = λ2 = 2, 

emax,1 = 0.35, emax,2 = 0.0027; ng = 3, w1 = w2 = w3 = 1, T1,H = 20, y1,max = 16.0, y1,min = 6.0, 

T1,H = 0.0015, y2,max = 0.012, y2,min = 0.00056, T3,L = 0.00025, y3,max = 0.00046, y3,min = 

0.00005, and γ1 = γ2 = γ3 = 1.25.  Note that in this iteration, the value of γ in this iteration 

(which is 1.25) is smaller than those used in Iteration II – Step 5 (which is 1.5) or 

Iteration I – Step 5 (which is 2.0).  This is because that as we have more knowledge of the 

actual responses and more confidence on the metamodel, more emphasis is put on the 

achievement of design goals in identifying new points.  By maximizing the determinant 

of the adjusted covariance matrix, 2 new validation points are identified and listed in 

Table 7.46. 
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Table 7.46 Two New Validation Points Identified in Iteration III – Step 4 

Mdot W t Mdot_n W_n t_n Q J 
0.00112 0.0305 0.00041 0.2462 0.7728 0.343 -14.94 0.00141 
0.00121 0.0311 0.00020 0.2838 0.8058 0.0006 -13.94 0.01104 

 

 

Now we have observed totally 20 points (10 data points and 10 validation points), 

the integrated process of metamodeling and design space exploration in E-RCEM will 

stop in this iteration.  Steps 5 and 6 in this iteration are skipped because we do not plan to 

add in more points.  Thus, we will directly enter Step 7, the analysis of design. 

Iteration III – Step 7: Analysis of Design.  All 20 observed points are listed in 

Table 7.47.  All these points are in the feasible design space.  In Table 7.47 we list not 

only the response values but also the values of deviation variables and the deviation 

function.  When necessary we can select the point with the minimum value of the 

deviation function z from Table 7.47, and take it as the design solution to be used in the 

future design.  In Table 7.47 we see that the smallest value of the deviation function at all 

observed points is z = 0.35381, at the point of Mdot_n = 0.3265, W_n = 1.0, t_n = 0.2924. 

Better design solutions can be found by exploring the feasible design space with 

metamodels developed with all observed points.  The final kriging metamodels are 

developed for Q and J with information from Table 7.47; values of θ for these kriging 

metamodels are listed in Table 7.48.  Contour plots of the responses versus design 

variables are illustrated in Figure 7.28, Figure 7.29, Figure 7.30, and Figure 7.31.  

Comparing Figure 7.28, Figure 7.29, Figure 7.30, Figure 7.31 with Figure 7.8, Figure 7.9, 



525 

Figure 7.10, and Figure 7.11, we see that the kriging metamodels of responses developed 

with the integrated design process in E-RCEM is not globally accurate. 

Table 7.47 All Points Identified in the Integrated Process in E-RCEM 

Mdot_n W_n t_n Q J As d1
– d2

+ d3
+ z 

0.0072 0.9875 0.0028 -6.93 0.01164 0.00012 0.93357 0.96571 0.00000 1.89929 
0.2067 0.5794 0.0013 -13.24 0.01022 0.00009 0.48286 0.83048 0.00000 1.31333 
0.3201 0.9873 0.3026 -15.41 0.00184 0.00023 0.32786 0.03238 0.00000 0.36024 
0.0147 0.3341 0.3169 -11.48 0.00139 0.00014 0.60857 0.00000 0.00000 0.60857 
0.0195 0.0118 0.0073 -11.34 0.00754 0.00005 0.61857 0.57524 0.00000 1.19381 
0.0023 0.7907 0.5806 -9.63 0.00065 0.00028 0.74071 0.00000 0.14485 0.88556 
0.3355 1 0.1927 -15.23 0.00299 0.00019 0.34071 0.14190 0.00000 0.48262 
0.306 0.9884 0.4764 -15.89 0.00092 0.00029 0.29357 0.00000 0.17851 0.47209 
0.0241 0.9868 0.4026 -8.67 0.00122 0.00026 0.80929 0.00000 0.04354 0.85282 
0.0506 0.1438 0.183 -12.32 0.00238 0.00009 0.54857 0.08381 0.00000 0.63238 
0.0267 0.6424 0.0646 -9.41 0.00614 0.00012 0.75643 0.44190 0.00000 1.19833 
0.2287 0.934 0.6533 -15.23 0.00056 0.00033 0.34071 0.00000 0.37951 0.72023 
0.0479 0.5787 0.3527 -11.39 0.00133 0.00018 0.61500 0.00000 0.00000 0.61500 
0.0668 0.9111 0.1586 -9.68 0.00351 0.00017 0.73714 0.19143 0.00000 0.92857 
0.0626 0.4476 0.2195 -11.84 0.00231 0.00013 0.58286 0.07714 0.00000 0.66000 
0.1798 0.5896 0.1209 -13.32 0.00430 0.00012 0.47714 0.26667 0.00000 0.74381 
0.1134 0.2837 0.0002 -12.27 0.00896 0.00007 0.55214 0.71048 0.00000 1.26262 
0.3265 1 0.2924 -15.50 0.00184 0.00023 0.32143 0.03238 0.00000 0.35381 
0.2462 0.7728 0.343 -14.94 0.00141 0.00021 0.36143 0.00000 0.00000 0.36143 
0.2838 0.8058 0.0006 -13.94 0.01104 0.00011 0.43286 0.90857 0.00000 1.34143 

 

Table 7.48 Values of θ for Final Kriging Metamodels of Responses Developed with 
20 Points in Iteration III – Step 7 

 θ1 θ2 θ3 
Q 27.64666 0.36657 0.32412 
J 0.13692 0.47800 63.94798 
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Figure 7.28 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device 
Width (Kriging Metamodel with 20 Points) 

 

Figure 7.29 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 
Rate (Kriging Metamodel with 20 Points) 
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Figure 7.30 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow 
Rate (Kriging Metamodel with 20 Points) 

 

Figure 7.31 Contour Plot of Compliance vs. Device Width and Wall Thickness 
(Kriging Metamodel with 20 Points) 
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Root mean square error (RMSE) of metamodels are calculated with information 

from 1573 points, and listed in Table 7.49.  Values of RMSE and NRMSE for Q and J in 

Table 7.49 are much larger than those in Table 7.7 and Table 7.28, which supports our 

observation that the metamodels of responses developed in this section is not as accurate 

as those developed with RCEM or SEED.  The design solution is obtained by solving the 

compromise DSP in Figure 7.13, and listed in Table 7.50. 

Table 7.49 Root Mean Squared Errors of Metamodels Developed in RCEM 

 Metamodels with 28 Points Identified with SEED 
 Q J 
RMSE 15.1906 0.0016713 

NRMSE 14.75% 14.60% 

Table 7.50 The Design Solution Obtained with the Integrated Design Process in E-
RCEM 

 Predicted Value Actual Value 
Mass flow rate, Mdot (kg/s) 0.00130 

Device width, W (m) 0.0350 
Wall thickness, t (m) 0.00043 

Mdot_normalized 0.3183 
W_normalized 0.9991 
t_normalized 0.3810 

Reynolds number, Re 2300.00 
Volume fraction, vf 0.20836 
30 2663.35M P− − ∆  26.50 

Area of solid materials, As (m
2) 0.00025 

Heat transfer rate, Q (W) −15.72 −15.69 
Compliance, J (m/N) 0.00124 0.00131 

1 2 3Z d d d− + += + +  0.30545 0.33587 
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Usually a metamodel is acceptable when the value of NRMSE is smaller than 5%.  

The final metamodels developed in this section have values of NRMSE around 15%, 

which is unacceptable from the viewpoint of metamodeling.  However, in the integrated 

design process of E-RCEM, to achieve a globally accurate metamodel is not the goal; E-

RCEM aims at identifying most-likely-to-succeed regions in the feasible design space, 

building locally accurate metamodels, and achieving robust design solutions with little 

time or money spent on expensive computer simulations or physical experiments.  The 

achievement of better design solutions is the goal of E-RCEM, which is the same for all 

designs.  Acceptable metamodels help realize this goal, but they are not the goal.  A 

metamodel with higher global fidelity does not ensure a better design solution; in other 

words, a metamodel with lower global fidelity may lead to a better design solution.  It is 

not surprising to see that the final metamodels developed in E-RCEM are not as accurate 

as those developed with RCEM and SEED, while a fair comparison should only be done 

on the achievement of good design solutions.  More analysis will be done in Section 7.6. 

7.6 A COMPARISON AND DISCUSSION ON RCEM, SEED, AND THE 
INTEGRATED DESIGN PROCESS IN E-RCEM 

Solutions are obtained for the LCA unit design with RCEM, the traditional 

process with SEED in E-RCEM, and the integrated design process in E-RCEM in 

Sections 7.3, 7.4, and 7.5, respectively.  In this section, comparisons are done on the 

performance of these three methods, and then recommendations are given on how to use 

them in design.   
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7.6.1 Comparison of Performance of Metamodels on Response Prediction 

First we compare the performance of the three methods in response prediction.  

Based on information from 1573 evenly spread points in the whole design space, values 

of RMSE and NRMSE are calculated for metamodels of responses developed in Sections 

7.3, 7.4, and 7.5 using Equation (2.34) and listed in Table 7.51. 

Table 7.51 Root Mean Squared Errors of Metamodels Developed in RCEM, SEED, 
and the Integrated Design Process in E-RCEM – Comparison in the Whole Design 

Space 

Response Q J 
Method RCEM SEED E-RCEM RCEM SEED E-RCEM 
# Points 30 40 28 20 30 40 28 20 
RMSE 9.2047 8.3527 4.4767 15.1906 0.0003433 0.000175 0.00023040.0016713

NRMSE 8.94% 8.11% 4.35% 14.75% 3.00% 1.53% 2.01% 14.60% 
 

In Table 7.51 we see that the metamodels developed in E-RCEM have largest 

values of RMSE and NRMSE, which indicates that they are most inaccurate among all 

metamodels.  For the response Q, the metamodel developed in SEED is the most accurate 

one.  For the response J, the metamodel developed with 40 points in RCEM is most 

accurate, but is only slightly better than the one developed in SEED.  In Table 7.51 we 

also see that when being compared in the whole design space, the metamodels developed 

with 40 points in RCEM are more accurate than those developed with 30 points in 

RCEM, which is reasonable.  From the viewpoint of global metamodel accuracy, the 

metamodels developed in SEED are best because they perform better (or nearly as well 

as) than other metamodels in response prediction with fewer observed points (except E-

RCEM, which uses fewer points than SEED in this example).  This is apparent when we 
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compare the metamodels from SEED with those with 30 points from RCEM: metamodels 

from SEED have smaller values of NRMSE for both Q and J than those from RCEM 

though fewer points are used in SEED.  This observation proves that through the 

identification of regions with large prediction errors, more globally accurate metamodels 

can be developed with fewer observed points sequentially added with the SEED method.  

It is not surprising to see that metamodels developed in SEED perform best in response 

prediction in the whole design space. 

A comparison is done among these metamodels on response prediction in the 

feasible design space.  Prediction errors at 159 points evenly spread in the feasible design 

space are observed and used to calculate values of RMSE and NRMSE.  The results are 

listed in Table 7.52. 

Table 7.52 Root Mean Squared Errors of Metamodels Developed in RCEM, SEED, 
and the Integrated Design Process in E-RCEM – Comparison in the Feasible Design 

Space 

Response Q J 
Method RCEM SEED E-RCEM RCEM SEED E-RCEM 
# Points 30 40 28 20 30 40 28 20 
RMSE 4.6587 6.5112 1.0886 0.2128 0.0006787 0.00026310.00034570.0002355

NRMSE 49.35% 68.97% 11.53% 2.25% 6.10% 2.36% 3.12% 2.12% 
 

In Table 7.52 we see that metamodels developed in E-RCEM perform much better 

in the feasible design space than they do in the whole design space; their values of 

NRMSE are a little larger than 2%, which are much smaller than those in Table 7.51.  All 

metamodels from RCEM and SEED perform much worse in the feasible design space 



532 

than in the whole design space.  Among all metamodels, those developed in E-RCEM are 

most accurate in the feasible design space.   

An interesting observation is that the metamodels developed with 40 points in 

RCEM are more accurate than those with 30 points when being compared in the whole 

design space, but not as accurate as those with 30 points in the feasible design space.  

This is because that more of the 40 points are put in the infeasible design space than those 

of the 30 points.  The metamodels developed in SEED perform worse in the feasible 

design space than in the whole design space because there is high nonlinearity in the 

infeasible design space and as a result, many points are added sequentially in these 

regions to help grasp the nonlinearity.  Even so, the metamodels developed in SEED are 

still much more accurate than those developed in RCEM.  Note that the values of 

NRMSE of the RCEM metamodels for Q are about 50%, which means that the root mean 

squared error of these metamodels is about half of the actual response range; Metamodels 

with such large prediction errors can not be trusted in design.  The metamodel from 

SEED is much better with an error bound of about 10%. 

If the values of NRMSE calculated with observations in the whole design space 

(Table 7.51) are used to judge whether a metamodel is acceptable or not (using 5% or 

10% as the criterion), the results are: 1). Metamodels from SEED are acceptable because 

their values of NRMSE are smaller than 5%; 2). Metamodels from RCEM are acceptable 

or nearly acceptable because their values of NRMSE are smaller than 5% for J and 10% 

for Q; and 3). Metamodels from E-RCEM are unacceptable because their values of 

NRMSE are larger than 10%.   
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If the values of NRMSE calculated with observations in the feasible design space 

(Table 7.52) are used to judge whether a metamodel is acceptable or not (using 5% or 

10% as the criterion), the results are: 1). Metamodels from SEED are unacceptable 

because their values of NRMSE for Q are dramatically larger than 10%; 2). Metamodels 

from RCEM are acceptable or nearly acceptable because their values of NRMSE are 

smaller than 5% for J and only slightly larger than 10% for Q; and 3). Metamodels from 

E-RCEM are acceptable because their values of NRMSE are smaller than 5%.   

The judgments based on local metamodel accuracy in the feasible design space are 

very different from that based on global metamodel accuracy in the whole design space.  

Since the final design solution is obtained through exploration of the feasible design 

space, we conclude that the metamodel accuracy in the feasible design space is a more 

reliable criterion than that calculated with observations in the whole design space.  This is 

further proved by studies in Section 7.6.2. 

7.6.2 Comparison of Performance of Metamodels in Sequential Design Space 
Exploration 

In this section we compare the performance of metamodels in design space 

exploration, in other words, we compare the design solutions obtained with metamodels 

developed in RCEM, SEED, and E-RCEM.  The actual design solution is obtained in 

Section 7.2 with original simulations.  Design solutions from all methods are listed in 

Table 7.53.  Note that in Table 7.53, RCEM (I) stands for the solution obtained with 

metamodels developed with 30 points in RCEM, and RCEM (II) stands for that with 

metamodels developed with 40 points in RCEM.  As described in Section 7.5, there are 
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two ways to identify the design solution in E-RCEM: 1). Final metamodels of responses 

are developed with information at all observed points, and then the compromise DSP is 

solved to identify the design solution, or 2). The design solution can be selected from the 

observed points because the exploration of design solutions has already been incorporated 

in the sequential metamodeling process through the formulation of design goals and 

constraints in the compromise DSP in E-RCEM.  The solution obtained in the first way in 

E-RCEM is represented by E-RCEM (II) and that obtained in the second way is 

represented by E-RCEM (I) in Table 7.53 

Table 7.53 The Design Solutions Obtained with Simulations, RCEM, SEED, and the 
Integrated Design Process in E-RCEM 

RCEM E-RCEM 
 

Actual 
Solution (I) (II) 

SEED 
(I) (II) 

# Points Observed − 30 40 28 20 20 
Mass flow rate, 

Mdot (kg/s) 
0.00129 0.00097 0.0005 0.00113 0.00132 0.00130 

Device width, W (m) 0.0348 0.0278 0.0201 0.0316 0.0350 0.0350 
Wall thickness, t (m) 0.00042 0.00051 0.00036 0.00048 0.00038 0.00043 

Mdot_normalized 0.316 0.1875 0.0 0.2535 0.3265 0.3183 
W_normalized 0.99 0.6406 0.2532 0.8284 1.0 0.9991 
t_normalized 0.3667 0.5708 0.2707 0.4694 0.2924 0.3810 

Reynolds number, Re 2297.61 2300 1644.18 2300 2300 2300 
Volume fraction, vf 0.2054 0.29995 0.29872 0.25578 0.18588 0.20836 

Constraint II 26.5141 27.30 28.44 26.91 26.44 26.50 
Area of solid 

materials, As (m
2) 

0.000249 0.00023 0.00012 0.00025 0.00023 0.00025 

Heat transfer rate, 
Q (W) 

-15.59 −14.77 −11.21 −15.30 −15.50 −15.69 

Compliance, J (m/N) 0.00139 0.00080 0.00167 0.00093 0.00184 0.00131 

1 2 3Z d d d− + += + +  0.31489 0.37351 0.64419 0.35620 0.35381 0.33587 
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In Table 7.53 we see that the solutions obtained from E-RCEM are closer to the 

actual design solution than those obtained from RCEM or SEED; the solutions also have 

smaller values of the deviation function, which means that they achieve design goals 

better than those obtained with RCEM or SEED.  This verifies that better design solutions 

can be achieved with fewer observed points in the integrated design process in E-RCEM 

than in the traditional process used in RCEM and SEED.   

The solution of E-RCEM (II), which is obtained with the final metamodels of 

responses developed with 20 points in E-RCEM, is better than that of E-RCEM (I), which 

is selected among the 20 observed points in E-RCEM.  Thus when the expense on 

metamodel building and design space exploration is affordable, designers had better 

explore for design solutions with final metamodels of responses developed with all 

observed points.  When the expense is not affordable (e.g., in cases with a lot of design 

variables, responses, constraints, and goals, the computation expense on design space 

exploration may be very high even with cheap-to-run metamodels), designers can skip the 

step of solving the compromise DSP and select the design solution from the observe 

points.   

The solution obtained with SEED (the traditional process in E-RCEM) is better 

than those obtained with RCEM but worse than those obtained with E-RCEM.  The 

solution obtained with 30 points is better than that obtained with 40 points in RCEM, 

which seems a little unexpected because we are not able to get a better design solution 

with more points observed in the design space in this example. 
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Here we can relate this comparison to that on metamodel accuracy in Section 

7.6.1.  Metamodels from E-RCEM perform worst on response prediction when being 

compared in the whole design space, but they help achieve the best design solutions.  The 

metamodels developed with 40 points in RCEM performs second best on response 

prediction when being compared in the whole design space, but the solution obtained 

with these metamodels is the worst of all.  This indicates that there is no clear positive 

correlation between the global metamodel accuracy and the performance in design space 

exploration.  In other words, to obtain metamodels that perform well in response 

prediction in the whole design space does not ensure the achievement of good design 

solutions, while better design solutions could be achieved with metamodels with less 

global metamodel accuracy. 

On the other hand, the metamodel accuracy in the feasible design space, as 

presented in Table 7.52, does have a positive correlation with the metamodels’ 

performance in design space exploration.  The metamodels from E-RCEM, which are the 

most accurate when, being compared in the feasible design space, facilitate the 

achievement of best design solutions of all.  The worst design solution is obtained with 

the metamodels developed with 40 points in RCEM that perform worst on response 

prediction when being compared in the feasible design space.  Metamodels from SEED 

are second best on response prediction in the feasible design space, and the solution 

obtained with SEED is also second best to the ones obtained with E-RCEM.  Metamodels 

developed with 30 points in RCEM perform better in response prediction in the feasible 
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design space and thus help achieve a design solution than those developed with 40 points 

in RCEM. 

The observations above suggests that when judging whether a metamodel is 

acceptable or not, we should examine the accuracy of metamodels in the feasible design 

space instead of the whole design space.  This conclusion is intuitive and reasonable.  

However, there may not always be positive correlation between the metamodel accuracy 

in feasible design spaces and the performance in design space exploration.  In the single-

variable example in Chapter 6, the feasible design space is the same as the whole design 

space because there is not system constraint.  In that example, a better design solution is 

achieved with a metamodel developed in E-RCEM than with that developed in SEED, 

though the metamodel developed in E-RCEM is not as accurate as that developed in 

SEED.  Thus, when judging whether a metamodel is acceptable or not, we should focus 

on the local metamodel accuracy in critical regions, which is measured in regions where 

design goals are achieved or nearly achieved, instead of global metamodel accuracy, 

which is measured in the whole design space or feasible design space.  In the LCA unit 

design example, because responses in the relatively small feasible design space are not 

highly nonlinear, we do not need to identify smaller critical regions and can view the 

feasible design space as a whole critical region.  In this case, our conclusion holds valid 

because the metamodels that are most accurate in the critical region, which are developed 

in E-RCEM, facilitate the achievement of best design solutions.  The judgment of 

whether metamodels are acceptable can be done in Step 7 of the integrated design process 

in E-RCEM, when the stopping criterion is to obtain good design solutions or accurate 
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metamodels, instead of being given a preset of maximum number of observed points as in 

the examples in Chapters 4 to 7 in this dissertation. 

With E-RCEM and SEED, we are able to achieve better design solutions as well 

as save a lot of expense on simulations in this LCA design example.  In cases with 

expensive experiments, this reduction of experimental expense is very valuable.  In E-

RCEM and SEED, we have additional expense on the calculation of prediction errors and 

achievement of design goals, the formulation of adjusted covariance matrix, the 

calculation of the determinant of the matrices, and the optimization to find out the matrix 

with the maximum determinant value.  These expenses can be categorized into two 

categories: 

• Manually operational expense.  This includes the initialization of input, 

output, and parameter files for FORTRAN or C codes used in the E-

RCEM or SEED process, the organization of analysis codes in iSIGHT, 

and the documentation of experimental and analysis results.   

• Computational expense.  This includes the computational time spent on 

the FORTRAN or C codes in E-RCEM or SEED and the optimization 

process in iSIGHT.   

To build the E-RCEM and SEED processes in an automated framework, which 

means the exclusion of manual operations will help save a large portion of expense spent 

in the examples in this dissertation.  This is future research for this dissertation.  As for 

the computational expense, most time and effort is spent on the optimization to find the 

matrix with maximum value of the determinant.  This expense can be reduced by using 
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appropriate optimization algorithms in iSIGHT.  The E-RCEM and SEED processes are 

not as complicated or intensive as they appear in Sections 7.4 and 7.5.  Some of the 

information in these sections is for illustration only and thus unnecessary in the sequential 

metamodeling and exploration process (e.g., the contour plots), and some can be easily 

managed within an automated framework (e.g., the documentation of information at data 

and validation points). 

7.6.3 Selection of the Most Suitable Methods in Design: RCEM, SEED, or the 
Integrated Design Process in E-RCEM 

RCEM is best used in cases with very cheap experiments and/or when the 

response surface is flat.  When the expense of experiments or simulations is low, 

designers are able to collect information at a lot of data points and develop very accurate 

metamodels without adopting sequential metamodeling and design space exploration 

strategies.  With cheap-to-run computer simulation models (no physical experiments are 

involved), designers even do not need to develop metamodels; the simulation codes can 

be linked in iSIGHT or similar software, and optimal (or robust) solutions can be found 

with optimization techniques.  In some cases the experimental expense may be high, but 

based on experience, designers may select very small design spaces in which the 

responses are not nonlinear; RCEM is better in such cases because acceptable 

metamodels can be developed with very few data points, and thus there is no need to 

adopt a sequential strategy.   

As described in this dissertation, SEED and E-RCEM are best used when: 1) the 

computer simulations or physical experiments are expensive to conduct, and/or 2) 
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designers expect (or are not sure) that the responses are nonlinear in the given design 

space.  In such cases, SEED helps achieve more accurate metamodels in the whole design 

space with fewer experiments (or simulations) than the RCEM method.  E-RCEM helps 

achieve more accurate metamodels in critical regions and thus obtain better design 

solutions with fewer experiments or simulations than SEED or RCEM. 

The consideration of design constraints in the integrated design process of E-

RCEM can also be used in SEED (or say, the traditional process of E-RCEM in which the 

information flow from the process of metamodeling to the process of design space 

exploration is one-way).  In this way, designers are able to develop accurate metamodels 

in the feasible design space with SEED, without wasting time or money on experiments 

in infeasible design spaces.  The corresponding metamodels may be more accurate in the 

feasible design space; however, they still may not be as accurate in critical regions, and 

the corresponding solutions may not be as good as those obtained with metamodels from 

the integrated design process in E-RCEM. 

In cases with clearly defined design goals, the integrated design process in E-

RCEM is better than the traditional process of SEED.  Otherwise, SEED is better because 

it helps achieve more accurate metamodels in the feasible design space.  SEED is more 

robust to changes of the design goals in later design stages because the accurate 

metamodels ensure the achievement of good design solutions no matter how the design 

goals are changed.  The integrated design process in E-RCEM is not as robust as SEED, 

because the “critical” regions may change as design goals change; the current metamodels 
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may not be acceptable in new critical regions after design goals are changed, and thus 

may lead to design solutions that are not as good as those obtained with SEED. 

Besides SEED (the traditional process in E-RCEM), the integrated design process 

in E-RCEM, we can also adopt the hybrid process in E-RCEM, as introduced in Section 

6.4.4.  In most cases where design goals are defined but still subject to small changes in 

the future, designers may prefer to the hybrid process in E-RCEM, in which SEED is first 

used to achieve an acceptable metamodel, then the integrated design process in E-RCEM 

is adopted to explore for new experimental points and design solutions. 

The methods of SEED and E-RCEM give designers more design freedom to deal 

with limited resources in early design stages.  Engineers are able to design and utilize 

expensive physical experiments or computer simulations in design.  Previously, 

expensive physical experiments are usually used to verify the final design solution, but 

seldom used to assist the design from early stages; complicated simulations are 

discouraged to avoid high computational expense.  With the SEED and E-RCEM 

methods, engineers can utilize expensive physical experiments in early design stages with 

relatively low total cost, and are allowed to develop time-consuming but high-fidelity 

computer simulations without worrying about their utilities.  Engineers are also given the 

freedom of defining and exploring a large design space without worrying about the 

nonlinearity and irregularity of responses.  They do not need carefully study the responses 

and conservatively define the design space (as small as possible) before design – they 

usually do these based on experience – and this experience, or previous information, is 
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not needed in SEED or E-RCEM, because engineers are able to grasp maximum 

information with limited available resources. 

7.7 A LOOK BACK AND A LOOK AHEAD 

In this chapter, the methods of RCEM, SEED (the traditional process in E-

RCEM), and the integrated design process in E-RCEM are applied and compared with the 

example of unit design for an LCA device.  Research Questions 2 and 3 are answered and 

the corresponding hypotheses are verified.  These research questions and hypotheses are 

listed below: 

R.Q.2: How to design sequential computer experiments (how to select data 

and validation points sequentially) to get an accurate metamodel? 

Hypothesis 2:  Sequential experiments could be designed through analysis of 

information from data/validation points and metamodels. 

R.Q.3: How to integrate the processes of metamodeling and robust design 

space exploration?   

Hypothesis 3:  The processes of metamodeling and robust design space 

exploration could be integrated through building the information flow 

from C-DSP to the metamodeling cycle in the Robust Concept Exploration 

Method. 
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The LCA design problem is described in Sections 7.1 and 7.2; the problem is 

initiated, the compromise DSP is formulated, and the actual design solution is obtained 

with the original computer simulation models in Section 7.2.  Single-stage experimental 

designs are applied and the solutions are obtained with RCEM in Section 7.3.  The SEED 

method (traditional process in E-RCEM) is applied in Section 7.4.  The integrated design 

process in E-RCEM is applied in Section 7.5.  The metamodels developed in Section 7.3, 

7.4, and 7.5 are compared on their performance in response prediction and achievement 

of design solutions in Section 7.6.  With the LCA design example we observe that more 

accurate metamodels are developed and better design solutions are achieved with fewer 

observed points in the methods of SEED and E-RCEM than in RCEM.   

Sequential experiments can be designed with SEED through the analysis of 

information from data and validation points and previous metamodels.  Prediction errors 

are used to adjust entries of the covariance matrices; by maximizing the determinant of 

the adjusted covariance matrix, new points are identified in regions with fewer observed 

points and/or large expected prediction errors.  Thus after iterations in SEED, more points 

are allocated at “critical” locations to reduce prediction errors; as a result, the final 

metamodels are more accurate than those developed with single-stage experimental 

designs in which information of responses from previous observations is not used as 

guidance in the identification of new points.  SEED ensures the achievement of 

metamodels that are accurate in the whole design space (or the feasible design space 

when design constraints are considered in the sequential metamodeling process). 
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The processes of metamodeling and design space exploration are integrated in the 

integrated design process in E-RCEM.  The information flow from the compromise DSP 

to metamodeling is built in E-RCEM and this information feedback helps engineers find 

“critical” regions, or regions of interest, and allocate more points in such regions to 

ensure the achievement of good design solutions.  The “critical” regions in the integrated 

design process of E-RCEM are those in which design goals are achieved or nearly 

achieved with current metamodels, and those in which we have large uncertainty with 

current metamodels.  This criterion of “critical” in E-RCEM is broader than that in 

SEED, which defines the “critical” regions as those in which we have large uncertainty 

with current metamodels. 

SEED and E-RCEM are superior to RCEM in cases with expensive experiments 

and nonlinear responses; they give engineers more freedom in design with limited 

resources.  However, the additional, relatively high expense in the complicated sequential 

experimental design process brings trouble for the application of SEED and E-RCEM.  

To build an automated computer framework for SEED and E-RCEM helps reduce the 

complexity and expense, and this will be a future direction for research in this 

dissertation.  The methods of SEED and E-RCEM, their plus and minus, their 

applications, and possible future improvements are further discussed in Chapter 8. 

 



6.  
CHAPTER 8 

CLOSURE 

Through this chapter significant issues addressed in this dissertation are 

recapitulated.  In this dissertation, the Sequential Exploratory Experimental Design 

(SEED) and the Efficient Robust Concept Exploration Method (E-RCEM) are developed 

and verified through the study of several single- or two- variable examples and an 

industrial application of LCA design.  Metamodel evaluation, comparison, and selection 

are also studied as preliminary research for the development of the two proposed 

methods.  SEED and E-RCEM give engineers more freedom in design; they facilitate the 

development of acceptable metamodels for irregular responses with limited 

computational or monetary resources and the achievement of satisficing design solutions 

in a large design space with expensive physical or computer experiments.  Our study in 

this dissertation is brought to a close in this chapter.  In Section 8.1, closure is sought by 

returning to the research questions posed in Chapter 1 and reviewing the answers that 

have been offered.  Then, the resulting contributions are discussed in Section 8.2.  

Limitations of the research and future work are then described in Section 8.3.   
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8.1 ANSWERING THE RESEARCH QUESTIONS 

As stated in Chapter 1, the principal objective in this dissertation is to develop 

systematic yet flexible methods that facilitate the development of acceptable metamodels 

and achievement of satisficing design solutions with limited resources.  With the 

proposed methods engineers can fully utilize expensive physical or computer 

experiments to grasp important properties of design responses in early design stages.  

This helps avoid possible expensive re-design processes and thus reduce the development 

time for new products.  The key research question is proposed to motivate our study in 

this dissertation: 

 

How to explore the design space efficiently and effectively for satisficing solutions 

by employing sequential metamodeling and design space exploration 

techniques in accordance with the changing design information along the 

design timeline in early design stages? 

 

In Section 1.3.2, based on the key question two research questions, Research 

Questions 1, 2, 3, and 4 are posed for investigation in this dissertation, each of which 

corresponds to a category of techniques to be studied, developed, and utilized.  The four 

research questions are: 
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R.Q.1: How to validate a metamodel with deterministic computer 

experiments? 

R.Q.2: How to design sequential computer experiments (how to select data 

and validation points sequentially) to get an accurate metamodel? 

R.Q.3: How to integrate the processes of metamodeling and robust design 

space exploration?   

R.Q.4: How to utilize different types of metamodels along the design timeline 

in accordance with the changing design information? (How to do 

sequential metamodeling to achieve robust design solutions?) 

 

Research Question 1 is about metamodel validation techniques with deterministic 

computer experiments.  Research Question 2 is about the sequential identification of data 

points.  Research Question is about the integration of metamodeling and design space 

exploration processes.  Research Question 4 is about metamodel comparison and 

selection.  The relations between research questions, and research questions and proposed 

methods in this dissertation are presented in Figure 2.5.  To address these questions, 

research hypotheses are introduced and identified in support of achieving the principal 

objective for the dissertation.  In this dissertation, according to the four questions and the 

corresponding hypothesis, first we prove that the leave-one-out cross-validation is 

inappropriate and proposed approaches to validate the accuracy of metamodels; then the 

SEED method is developed based on maximum entropy sampling techniques; metamodel 
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comparison and selection are studied to improve the SEED method; finally, E-RCEM is 

developed based on SEED and the compromise DSP to integrate the processes of 

metamodeling and design space exploration.  The elaboration and verification of the 

research questions and hypothesis provide the context in which the research work has 

proceeded.   

R.Q. 2 and R.Q. 3 are the most important research questions, which lead to the 

development of SEED and E-RCEM in Chapters 4 and 6, respectively.  Researches for 

R.Q. 1 and R.Q. 4 provide supporting tools for the development and improvement of 

SEED and E-RCEM. 

As described in Section 1.3.2, each of the four research questions is divided into 

several secondary research questions.  Then the corresponding sub-hypotheses are 

proposed.  The secondary research questions operate at a lower level of abstraction in 

comparison to the research questions posed earlier.  In the rest of this section we answer 

the research questions through revisiting and summarizing our work for the secondary 

research questions. 

8.1.1 Answering Research Question R.Q.1 

The first research question, R.Q.1, leads to studies of metamodel validation 

techniques with deterministic computer experiments, which is a preliminary research for 

the development of SEED and E-RCEM.  This research question is separated into two 

supporting research questions leading to two studies, one of which is to prove the 

inappropriateness of the currently widely used method, leave-one-out cross-validation, in 

deterministic applications, and the other is to develop new approaches of metamodel 
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validation.  Research Question 1, two supporting research questions, and corresponding 

hypotheses are: 

 

R.Q.1: How to validate a metamodel with deterministic computer experiments? 

Hypothesis 1:  Information from either previous additional validation points is 

needed in testing the accuracy of a metamodel with deterministic 

computer experiments. 

R.Q.1.1: Is leave-one-out cross-validation a suitable method of metamodel 

validation with computer experiments? 

Sub-Hypothesis 1.1:  Leave-one-out cross-validation is not an appropriate 

method of metamodel validation with deterministic computer experiments. 

R.Q.1.2: How to test the accuracy a metamodel in deterministic applications? 

Sub-Hypothesis 1.2:  The accuracy of a metamodel could be validated through 

examining prediction errors at additional validation points. 

 

To answer Research Question 1 and test Hypothesis 1 two tasks need to be 

accomplished, one is the theoretical study of the inappropriateness of leave-one-out 

cross-validation in metamodel evaluation, and the other is the development of approaches 

to test metamodels’ accuracy with information from additional validation points.  These 

correspond to studies for the supporting research questions and sub-hypotheses. 

Research Question 1.1 and Sub-Hypothesis 1.1 are studied in Sections 3.2 and 

3.3. In Section 3.2 with two single-variable examples we observe that leave-one-out 

cross-validation is insufficient in metamodel validation because it is actually a 
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measurement for degrees of insensitivity of a metamodel to lost information at its data 

points, while an insensitive metamodel is not necessarily an accurate one.  After careful 

examination, we point out that there are two causes for this insensitivity: clustering or 

inappropriately correlated data points.  To design space-filling experiments with a 

sufficient number of data points is one way to prevent an inaccurate and insensitive 

model, while this cannot assure the validity of the leave-one-out cross-validation method, 

and this is opposite to our idea of sequential experimental design and may result in great 

waste of time or money on unnecessary experiments, which will increase the time of 

bringing new products to market.  Our conclusion is verified through empirical study in 

Section 3.3.  Sub-Hypothesis 1.1 is tested and Research Question 1.1 is answered: Leave-

one-out cross-validation is not an appropriate method to validate the accuracy of 

metamodels.  

Research Question 1.2 and Sub-Hypothesis 1.2 are studied in Section 3.4, in 

which approaches are proposed for engineers to test the accuracy of metamodels.  Several 

methods are described to help engineers gain insight into the performance of metamodels 

over the whole design space.  Information from additional validation points is utilized in 

these approaches.  The sub-hypothesis is tested and Research Question 1.2 is answered: 

The accuracy of metamodels can be tested with information from additional validation 

points with the developed approaches. 

After answering the supporting research questions and test the sub-hypotheses, 

we are able to answer Research Question 1.  We verify that leave-one-out cross-

validation is theoretically inappropriate in metamodel validation and information at 
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additional validation points are needed.  Several preliminary approaches are proposed for 

engineers to utilize this information of prediction errors at validation points to validate 

the accuracy of metamodels. 

8.1.2 Answering Research Question R.Q. 2 

To answer Research Question 2 we focus on the development of accurate 

metamodels with a sequential experimental design strategy.  Three secondary research 

questions and their corresponding hypotheses are posed: 

 

R.Q.2: How to design sequential computer experiments (how to select data and 

validation points sequentially) to get an accurate metamodel? 

Hypothesis 2:  Sequential experiments could be designed through analysis of 

information from data/validation points and metamodels. 

 

R.Q.2.1: How to measure the information worth of a point? 

Sub-Hypothesis 2.1:  The information worth of a point could be measured with 

entropy. 

 

R.Q.2.2: How to select validation points to achieve a sequential design of 

computer experiments? 

Sub-Hypothesis 2.2:  Selection of validation points should follow similar rules 

for selection of data points; information from validation points could be 

used as guidance in identifying new data points. 

 

R.Q.2.3: How to utilize information from previous points and metamodels in 

identifying new data points?  
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Sub-Hypothesis 2.3:  Through maximizing entropy (as formulated based on Sub-

Hypotheses 1.1 and 1.2) we are able to allocate new data points in the 

design space that yield maximum potential information.  

To answer Research Question 2, the method of Sequential Exploratory 

Experimental Design (SEED) is developed based on D-optimal design and maximum 

entropy sampling.  The development of SEED is the foundation of research for Research 

Questions 3 and 4.  To develop the SEED method, we need to accomplish the following 

tasks: definition and identification of “critical regions” and “information potential of 

points”, consideration of “information potential” in the identification of data points, and 

selection of validation points.  These are done in Chapters 4 and 5. 

In Chapters 4 and 5, we verified that with the SEED method, designers are able to 

add in new data points in the design space with large amount of potential information, 

and thus accurate metamodels could be achieved efficiently.  Information from current 

data and validation points and metamodels are used as guidance in identifying new data 

points.  Hypothesis 2 is verified; our answer to Research Question 2 is: Accurate 

metamodels can be developed through iterations in sequential experimental design with 

the SEED method, in which information from current data/validation points and 

metamodels is used as guidance in identifying new data points.   

Research Question 2.1 is answered primarily in Sections 4.3 and 4.4.  The 

application of Bayesian entropy design in SEED in Sections 4.5 and 4.6 supports our idea 

from Sections 4.3 and 4.4.  A clear statement on Research Question 2.1 is presented at 

the beginning of Section 4.5.  Sub-Hypothesis 2.1 is tested; our answer to Research 
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Question 2.1 is: The entropy criterion could be used to measure the information worth of 

a new point. 

Research Question 2.2 is answered in developing and verifying the SEED method 

in Sect

d and Sub-Hypothesis 2.3 is tested in the 

develop

ions 4.5 and 4.6; Sub-Hypothesis 2.2 is tested.  The usage of validation points and 

observation of prediction errors are necessary steps in the SEED method; it provides the 

foundation for adjusting the covariance matrix, which is the core of the SEED method.  

In the SEED method, validation points are added sequentially in iterations; as more and 

more data and validation points are observed, designers are able to develop more and 

more accurate metamodels for responses and prediction errors.  In Section 4.6, different 

strategies on selecting validation points are applied and studied in the SEED method.  

Our answer to Research Question 2.2 is: Validation points should be added in iterations 

in sequential experimental design; information from validation points should be used as 

guidance in identifying future data points. 

Research Question 2.3 is answere

ment of the SEED method.  To be specific, the method of maximum entropy 

sampling is introduced in Section 4.4; in Section 4.5.2, strategies on how to utilize 

information from previous points and metamodels are discussed; the mathematical 

formulations in SEED is developed in Section 4.5.3, which enables designers to design 

sequential experiments through maximizing entropy; Demonstration and verification is 

enclosed in Section 4.6.  Our answer to Research Question 2.3 is: Information from 

current data/validation points and metamodels could be used to build the adjusted 
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covariance matrix; new data points could be identified through maximizing the 

determinant of the adjusted covariance matrix. 

 

 

Figure 8.1 Flowchart of the Sequential Exploratory Experimental Design Method 

The flowchart of the SEED method is illustrated in Figure 8.1.  The SEED 

method can be used to replace the metamodeling process in RCEM, as illustrated in 
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Figure 8.2.  Also, as shown in Chapter 6, the application of SEED method in E-RCEM 

helps form the traditional process and hybrid process of the E-RCEM method.  In 

Chapters 4, 5, and 7, with several simple examples and a multivariable, multi-response 

example, it is shown that more globally accurate metamodels can be developed with 

fewer experiments and better design solutions can be achieved with the SEED method 

than with traditional methods (such as RCEM).  In cases with expensive experiments 

and/or irregular responses, SEED helps designers grasp important response properties in 

the whole (or feasible) design space with low cost, and thus enable engineers to fully 

utilize the approximation-based design strategy and reduce the time of introducing new 

products to the market. 

 

      

Figure 8.2 Application of SEED in RCEM 
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8.1.3 Answering Research Question R.Q. 3 

To answer Research Question 3 we study the integration of processes of 

metamodeling and design space exploration.  Three secondary research questions and 

their corresponding hypotheses are posed.  The research question, supporting research 

questions, and corresponding hypotheses are: 

R.Q.3: How to integrate the processes of metamodeling and robust design space 

exploration?   

Hypothesis 3:  The processes of metamodeling and robust design space 

exploration could be integrated through building the information flow 

from C-DSP to the metamodeling cycle in the Robust Concept 

Exploration Method. 

R.Q.3.1: How to design sequential experiments with consideration of design 

constraints? 

Sub-Hypothesis 3.1:  Consideration of design constraints could be incorporated 

in the metamodeling process through construction irregular design spaces. 

 

R.Q.3.2: How to reduce the design space with information from previous 

metamodeling and design space exploration? 

Sub-Hypothesis 3.2:  Design space could be reduced through analysis of the 

information from previous metamodels.    

 

R.Q.3.3: How to do sequential metamodeling with consideration of design goals? 

Sub-Hypothesis 3.3:  Design goals can be taken into consideration in 

metamodeling by formulating influential factors with the compromise 

DSP and using them in maximum entropy sampling. 
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To answer Research Question 3, the Efficient Robust Concept Exploration 

Method (E-RCEM) is developed in Chapter 6, and the screening of unimportant design 

variables is built in the SEED method in Chapter 5.  The integrated design process in E-

RCEM is demonstrated and verified with a single-variable example in Chapter 6 and in 

the LCA unit design in Chapter 7.   

E-RCEM is developed through the conduction of two tasks: consideration of 

design constraints in metamodeling, and consideration of design goals in metamodeling.  

E-RCEM is developed based on the Robust Concept Exploration Method (RCEM), the 

method of Sequential Exploratory Experimental Design (SEED), and the Compromise 

Decision Support Problems (C-DSP).  In Chapters 6 and 7, we verified that with the 

integrated design process in E-RCEM, designers are able to incorporate considerations of 

metamodel accuracy and achievement of design goals in the experimental design and 

metamodeling process.  New points are identified in regions where design goals are to be 

achieved or large prediction errors exist.  With this integrated design process in E-RCEM 

(or the metamodeling for design space exploration approach), designers are able to 

achieve better design solutions with less time and money spent on expensive computer or 

physical experiments.  Hypothesis 3 is verified; our answer to Research Question 3 is: 

Better design solutions can be achieved with fewer experiments by integrating the 

processes of metamodeling and design space exploration; this integrated design process 

is realized in E-RCEM, in which information about metamodel uncertainty and 

achievement of design goals is used as guidance in identifying new points in sequential 

metamodeling. 
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Research Question 3.1 is answered primarily in Section 6.2.  Sequential 

metamodeling with constraints on design variables is studied in Section 6.2.1, and 

sequential metamodeling with constraints on responses is studied in Section 6.2.2.  In this 

section we show that design constraints can be taken into consideration in the SEED 

method and the integrated design process in E-RCEM.  After taking design constraints 

into consideration, the design space is usually irregular; with SEED or E-RCEM, new 

points will be identified only in the reduced irregular feasible design space, and this helps 

save time and money spent on experiments wasted in infeasible regions.  Our answer to 

Research Question 3.1 is: Design constraints can be taken into consideration to define an 

irregular design space, and SEED or E-RCEM can be used to identify new points in the 

reduced irregular feasible design space. 

Research Question 3.2 is answered in Section 5.4 and illustrated in Section 5.5.  

The usage of RS metamodels at the very early stages of metamodeling helps identify and 

screen unimportant design variables.  Another way to reduce the design space is to 

reduce the ranges of design variables, which is not studied and incorporated with SEED 

in researches in this dissertation; thus this study here is preliminary and future research is 

needed to improve the design space reduction approaches that are built in the methods of 

SEED and E-RCEM.  Our answer to Research Question 3.2 is: The design space can be 

reduced by eliminating unimportant design variables through the analysis of information 

from previous data points and metamodels. 

Research Question 3.3 is answered in Section 6.3.  Based on the compromise 

DSP, the degree of achievement of design goals at candidate points can be formulated 
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and scaled in [0,1]; a value close to 0 means that design goals are hardly achieved, and a 

value close to 1 means that design goals are almost achieved at this point.  Usually we 

preset a target value for the design goal, and once this target value is met or exceeded, we 

set the degree of achievement of design goals to be 1.  This quantitative expression of 

degree of achievement of design goals can be used in the adjustment of covariance 

matrices in maximum entropy sampling, and “drag” new points to regions where design 

goals are met or almost met.  Our answer to Research Question 3.3 is: The degree of 

achievement of design goals at a particular point can be quantitatively formulated with 

the compromise DSP and used as an influential factor in SEED or E-RCEM. 

The flowchart for the Efficient Robust Concept Exploration Method is illustrated 

in Figure 8.3 and Figure 8.4.  With the integrated design process in E-RCEM, engineers 

identify points sequentially in regions of interest, thus are able to develop metamodels 

with more local accuracy in critical regions and achieve better design solutions than 

SEED and RCEM.  In cases with expensive experiments and irregular responses, E-

RCEM helps achieve efficient and effective designs with affordable cost, which may not 

be accomplished with traditional approximation-based design methods such as RCEM. 
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Figure 8.3 Flowchart of the Efficient Robust Concept Exploration Method (I) 
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Figure 8.4 Flowchart of the Efficient Robust Concept Exploration Method (II) 

8.1.4 Answering Research Question R.Q. 4  

To answer Research Question 4 we study the comparison and selection of 

different types of metamodels in the SEED and E-RCEM processes.  Three secondary 
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research questions and their corresponding hypotheses are posed.  The research question, 

supporting research questions, and corresponding hypotheses are: 

 

R.Q.4: How to utilize different types of metamodels along the design timeline in 

accordance with the changing design information? 

Hypothesis 4:  Different types of metamodels should be used at different design 

stages in accordance with different requirements of design. 

 

R.Q.4.1: How do different types of metamodels perform in engineering design? 

Sub-Hypothesis 4.1:  Different types of metamodels have their strong and weak 

points. 

 

R.Q.4.2: How to select different types of metamodels at different design stages? 

Sub-Hypothesis 4.2:  As design evolves, more complicated types of metamodels 

should be used to help yield good approximations with more computation 

time and efforts. 

 

In this dissertation we consider three types of metamodels, the response surface 

(RS) metamodels, kriging, and multivariate adaptive regression splines (MARS).  

R.Q.4.1 is studied and answered in Sections 5.2 and 5.4.  A comparison between kriging 

and MARS metamodels is done in Section 5.2 with some interesting observations.  The 

comparison between RS and kriging metamodels has been done in previous work in 

(Simpson, 1998) and (Lin, 2000), and comparisons between more types of metamodels 

could be a future work of this dissertation.  In our studies we observe that both kriging 
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and MARS have their strong and weak points; kriging metamodels may not perform 

appropriately when the properties of the response surface change greatly (i.e., highly 

nonlinear in some regions while flat in others), and MARS metamodels may meet 

problems in deterministic applications because they smooth the data and thus the 

predicted values at data points may not be accurate.  Hypothesis 4.1 is tested, and as an 

answer to Research Question 4.1, a summary on comparison between RS, kriging, and 

MARS metamodels is presented in Table 8.1.  Particularly, in Table 8.1 we see that 

MARS works better than kriging in modeling irregular responses, while kriging has a 

native mathematical connectivity to SEED that MARS lacks. 

Table 8.1 Plus and Minus of Different Types of Metamodels 

 RS (Regression) Kriging MARS 
1. Mathematical complexity Simple Complicated Complicated 
2. Computation time Short Long Medium 
3. Problem size: # of design 

variables and # of data points
Large, Medium, and 

Small Problems 
Small 

Problems  
Medium and 

Small Problems 
4. Metamodel accuracy Low High High 
5. Loyalty to data No Yes No, with very 

small bias 
6. Ability to model irregular 

responses (highly nonlinear 
or flat in different regions) 

No 
Yes, but only 

when with 
lots of data 

Yes 

7. Suitable for existing 
screening techniques Yes No Yes 

8. Preference to specific 
experimental designs Yes Yes No 

9. Mathematical connectivity to 
SEED (adapted maximum 
entropy sampling) 

No Yes No 
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Based on the studies in Section 5.2, the SEED method is extended in Section 5.3 

by utilizing both kriging and MARS metamodels.  This helps answer R.Q.4.2.  Kriging 

and MARS may be appropriate, or, on the other hand, inappropriate, in different 

situations; thus we recommend that both be used to develop metamodels in sequential 

experimental design and metamodeling.  Designers could make decisions only after 

building the metamodels and observing their performance.  A recommendation on how to 

use kriging and MARS metamodels is described in Section 5.3. 

 

Start of Sequential 
Metamodeling 

Acceptable 
Metamodels B. Simulation 

Programs
 

A. Point Generator 

Design of classical 
experiments 

C. Experiments Analyzer
Development of 

regression models; factor 
screening 

D. SEED 
Development of 

accurate kriging and 
MARS metamodels 

Figure 8.5 Framework of Sequential Metamodeling 

R.Q.4.2 is further studied and answered in Sections 5.4 and 5.5, in which an 

approach for sequential metamodeling is developed and illustrated with an engineering 

example.  The framework for the approach of sequential metamodeling is presented in 

Figure 8.5.  This sequential metamodeling approach is incorporated in the method of E-

RCEM in Chapter 6.  Hypothesis 4.2 is tested and Research Question 4.2 is answered: 

Response surface metamodels should be used at the beginning of design to help gain 

knowledge of responses and screen unimportant design variables; MARS and kriging 
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should be used in later stages with SEED to help gain accurate interpretations of 

irregular responses. 

Answers to research questions, tasks, and verification of hypotheses are presented 

in this section.  This discussion leads to the research contributions of this dissertation, 

which will be summarized in the next section. 

 

 

8.2 ACHIEVEMENTS: REVIEW OF RESEARCH CONTRIBUTIONS 

The expected contributions of this dissertation have been stated in Section 1.3.3 

and Section 2.1.  Here is a revisit of the achievements and contributions of the research in 

this dissertation.   

Contributions Related to the Sequential Exploratory Experimental Design Method: 

• The development of the SEED method for sequential experimental design.  

The SEED method is developed in Chapter 4 and then improved with the 

utility of various types of metamodels in Chapter 5.  The SEED method 

facilitates the development of globally accurate metamodels with limited 

number of observations in the whole design space.  Its utility has been verified 

with several examples. 

• An approach to calculate and incorporate prediction errors in the identification 

of regions of interest and data points.  This is done in Section 4.5.2.  The 

 565



usage of two groups of points to calculate and incorporate prediction errors in 

design is an original work of this dissertation. 

• Two approaches to modify the mathematical formulations of entries of the 

covariance matrix in maximum entropy sampling.  This is done in Section 

4.5.3.  With the two developed approaches, the information of prediction 

errors can be mathematically taken into consideration in the identification of 

new points, thus this work helps solid the idea of sequential experimental 

design. 

Contributions Related to the Efficient Robust Concept Exploration Method: 

• The development of the Efficient Robust Concept Exploration Method.  E-

RCEM is developed in Chapter 6 and further improved with multi-variable 

and multi-response examples in Chapter 7.  E-RCEM facilitates efficient and 

effective design space exploration for robust design solutions.   

• The integration of traditionally separated processes of metamodeling and 

design space exploration.  The idea of consideration of design constraints and 

design goals in the metamodeling process is innovative, and is realized in E-

RCEM based on the SEED algorithm and the compromise DSP.  This is the 

core of E-RCEM, and studied throughout Chapters 6 and 7. 

• An approach to consider design constraints and design goals in the 

identification of regions of interest and new data points.  This is done in 
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Sections 6.2 and 6.3.  This work supports the integration of processes of 

metamodeling and design space exploration. 

• A preliminary design space exploration heuristic for designers with expensive 

physical and computer experiments.  The integrated design process in E-

RCEM (one of the three possible ways to apply E-RCEM, as stated in Section 

6.4.4) can be viewed as a design space exploration heuristic for cases with 

expensive experiments.  Although only examples with computer experiments 

are used in this dissertation, it is expected that E-RCEM is also suitable for 

designs with expensive physical experiments.   

Contributions Related to Metamodel Evaluation: 

• A study shows that leave-one-out cross-validation is theoretically 

inappropriate for metamodel validation.  This is done in Section 3.2.  This is 

an original work of this dissertation.  This conclusion is also supported with 

empirical studies in Section 3.3. 

• Preliminary approaches for engineers to validate metamodels’ accuracy with 

information at additional validation points.  This is done in Section 3.4.  The 

developed approaches, though may be complicated and somewhat non-solid 

in applications, help designers gain knowledge of the responses and support 

designers’ decisions in metamodel validation. 

Contributions Related to Metamodel Comparison and Selection: 
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• A comparison between kriging and MARS and an observation of kriging’s 

limitation in modeling irregular responses.  This is done in Section 5.2.  

Previously kriging and MARS are only compared with space-filling 

experiments.  The comparison of kriging and MARS with unevenly spread 

points from sequential experiments in this dissertation is original. 

• An approach in which three types of metamodels are used sequentially along 

the design timeline to facilitate effective and efficient exploration of 

satisficing design solutions.  In Section 5.3 recommendations are made on 

how to use MARS and kriging in sequential experimental design.  In Section 

5.4, a sequential metamodeling approach is proposed in which response 

surface models, kriging, and MARS are utilized in the metamodeling process. 

The value of these contributions lies in the worth to be either an addition to the 

fundamental knowledge of the field or a new and better interpretation of the facts already 

known.  Based on this criterion contributions of this dissertation are classified and listed 

in Table 8.2.  The most important contributions of this dissertation are the development 

of the methods of SEED and E-RCEM, which are all original in this dissertation.  These 

contributions represent an addition to the fundamental knowledge of the field.   

Some of the other contributions, e.g., the comparison of kriging and MARS in 

modeling irregular responses, and the verification that leave-one-out cross-validation is 

theoretically inappropriate for metamodel validation, are also original in this dissertation 

and represent an addition to the fundamental knowledge.  As to other contributions, 
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previous work is available, while the studies in this dissertation are from different 

viewpoints.   

Table 8.2 Contributions of Studies in this Dissertation 

Contributions Addition to the 
Fundamental Knowledge 

Better Interpretation of 
Existing Ideas 

SEED 
Yes.  A new method for 
sequential experimental 

design and metamodeling 
Information theory 

Calculation and 
incorporation of prediction 
errors in metamodeling 

Yes  

Mathematical formulations 
to adjust entries of the 
covariance matrix 

Yes D-optimal design 
Maximum entropy sampling 

E-RCEM 

Yes.  A method with 
integrated processes of 

metamodeling and design 
space exploration 

 

Integration of processes of 
metamodeling and design 
space exploration 

Yes  

Incorporation of design 
goals and constraints in 
metamodeling 

Yes  

A preliminary optimization 
heuristic for engineers Yes Efficient Global Optimization

Verification of the 
inappropriateness of leave-
one-out cross-validation 

Yes Simpson, 1998 

Preliminary approaches to 
validate metamodels  Simpson, 1998; Jones, et al., 

1998 
A comparison of kriging 
and MARS in SEED Yes  

An approach to utilize 
three types of metamodels 
along the design timeline 

 Response Surface 
Methodology 
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With the methods of SEED and E-RCEM, engineers are able to develop more 

accurate metamodels for irregular responses with limited resources and achieve better 

design solutions in a large design space with expensive computer or physical experiments 

than they do with traditional methods like RCEM.  This gives engineers the freedom of 

using expensive experiments to analyze irregular responses in large design spaces in 

early design stage, thus enables the full utilization of the approximation-based design 

strategy in industrial applications.  However, there are several limitations in our studies 

in this dissertation.  In the next sections, after identifying the limitations of our work for 

this dissertation and summarizing observations in our study, we point out some possible 

directions for future work. 

 

8.3 CRITICAL REVIEW 

Answers to research questions are summarized in Section 8.1 and the 

contributions of studies in this dissertation are listed in Section 8.2.  In this section, 

insights obtained from the studies, limitations of the developed methods, and 

recommendations on how to use the methods in design are presented in four sub-sections 

corresponding to four research questions in this dissertation.  Studies of metamodel 

evaluation are summarized in Section 8.3.1.  Studies of metamodel comparison and 

selection are summarized in Section 8.3.2.  Studies of Sequential Exploratory 

Experimental Design (SEED) are summarized in Section 8.3.3.  Studies of the integrated 
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design process in the Efficient Robust Concept Exploration Method (E-RCEM) are 

summarized in Section 8.3.4. 

8.3.1 Metamodel Evaluation 

The outcome of studies of metamodel validation is documented in Chapter 3.  

First we studied the performance of leave-one-out cross-validation method in validating 

metamodels with deterministic computer experiments.  With several simple functions we 

illustrated that cross-validation is an insufficient method, thus to use additional validation 

points becomes essential in metamodel validation.  Then we describe some preliminary 

methods on how to utilize the information from additional validation points.   

The reason why leave-one-out cross-validation is insufficient in metamodel 

validation is that it is actually a measurement for degrees of insensitivity of a metamodel 

to lost information at its data points, while an insensitive metamodel is not necessarily 

accurate.  There are two causes for this insensitivity: clustering or inappropriately 

correlated data points.  To design space-filling experiments with a sufficient number of 

data points is one way to prevent an inaccurate and insensitive model, while this cannot 

assure the validity of the leave-one-out cross-validation method.  We recommend starting 

with space filling experimental designs in the development of metamodels in engineering 

applications. 

The conclusion here does not mean that previous applications with leave-one-out 

cross-validation are necessarily wrong.  When the original actual function is not highly 

nonlinear (or the design space is not very large) and there are enough data points 

spreading all over the design space, the danger of having clustering or inappropriately 
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correlated data sets is small.  However, the success of leave-one-out cross-validation in 

those examples is dependent on particular cases; real-world applications are usually more 

complicated and cannot meet the requirements mentioned above.  Thus to use additional 

validation points are necessary in metamodel validation. 

Though one important benefit of using metamodels is to save expenses on 

experiments, to add in additional validation points, which eventually increases time and 

effort on computer simulations, does not hurt the importance of metamodeling very 

much.  First, in computer experiments, moderate increases of computational expenses are 

usually affordable with fast computers in a distributed design environment.  Second, to 

use metamodels not only helps us save experimental expenses but also integrates 

simulation codes from different disciplines to give insight into the relationships between 

input variables and output responses.  Third, and maybe the most important, with the 

SEED method and the E-RCEM method developed in this dissertation, designers are able 

to do more observations in the design space with relatively low expense, which makes it 

possible to utilize validation points with expensive experiments. 

Several methods are proposed in Chapter 3 to help engineers gain insight into the 

performance of metamodels over the whole design space.  However, these methods are 

not very solid and sometimes they are too complex to use; future studies on metamodel 

valuation are needed.  One unsolved problem in model validation is how to select 

validation points, e.g., how many validation points should be used, and how to allocate 

these points.  Validation points are identified and used in the methods of SEED and E-

RCEM; however, the selection of validation points in these methods are for the 
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achievement of better metamodels, not for the validation of the current metamodel.  Thus 

the development of new strategies to validate a metamodel (either with or without 

validation points) is future work of this dissertation.  Currently, without better methods, 

we recommend the method with Equations (3.8) and (3.9) because of its simplexity. 

8.3.2 Metamodel Comparison and Selection 

The outcome of studies of metamodel comparison and selection is documented in 

Chapter 5.  First we studied the performance of kriging and adaptive regression splines in 

modeling the actual responses with unevenly located data points.  Our observations show 

that in cases with irregular responses (highly nonlinear in some regions while flat 

elsewhere) and unevenly located data points (usually a result from sequential 

experimental designs), kriging may work abnormally.  The reason lies in the universal 

usage of a constant value of θ in one dimension in our kriging algorithm; designers meet 

difficulty when trying to model highly nonlinear surfaces and flat surfaces with the same 

θ.  Univariate or multivariate adaptive regression splines metamodels perform well in 

modeling irregular responses. 

Although kriging might not be appropriate in cases with irregular responses, it has 

some desirable properties that adaptive regression splines metamodels do not have.  First, 

it yields the exact true value at data points, while adaptive regression splines may have 

small deviations.  This is important in deterministic computer applications.  Second, in 

SEED, values of θ from previous kriging metamodels can be used as a reference in 

formulating and adjusting the covariance matrices.  With this information designers are 
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able to distinguish design variables with high uncertainties in response prediction, and 

thus more future points will be automatically identified in these dimensions with the 

SEED process.  When adaptive regression splines metamodels are used we cannot get 

such information as easily as with kriging. 

Based on these observations, we propose to utilize both kriging and adaptive 

regression splines in SEED.  Usually both kriging and adaptive regression splines are 

used to develop metamodels; careful examinations for abnormal performance are 

necessary.  We prefer to use kriging metamodels when abnormal behaviors are not 

detected.   

The implementation of kriging and adaptive regression splines with SEED is also 

studied in Chapter 5.  It is illustrated that with SEED, designers are able to develop 

accurate kriging or adaptive regression splines metamodels.  In the examples, kriging is 

first used to develop a metamodel of responses then replace by the univariate (or 

multivariate) adaptive regression splines because of abnormal performance in the design 

space.  The univariate (or multivariate) adaptive regression splines metamodels work 

well in modeling both responses and prediction errors. 

A limitation of the studies of metamodel comparison and selection is that only 

three types of metamodels are studied in this dissertation.  Other types of metamodels, 

e.g., the artificial neural networks (ANN) or wavelets, need to be studied and compared 

with the kriging and MARS metamodels in sequential metamodeling processes. 

A sequential metamodeling approach is proposed in Chapter 5, which 

incorporates the factor-screening techniques in the Response Surface Methodology 
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(RSM) and the SEED method.  The research surface metamodels (regression 

polynomials) are used to identify and screen unimportant design variables, and then the 

SEED method is applied to help develop accurate metamodels.  It should be noted that 

the design space reduction approach here is very preliminary; the development of new 

methods to reduce the number and ranges of design variables should be future work for 

this dissertation.  The methods of SEED and E-RCEM, together with other references 

(e.g., the fuzzy c-Means clustering technique), can be used in the development of such 

design-space-reduction techniques. 

8.3.3 Sequential Exploratory Experimental Design 

One of our main contributions is the development of the Sequential Exploratory 

Experimental Design (SEED) method in Chapter 4.  SEED is based on Bayesian entropy 

sampling by removing the stationary assumption and introducing correction factors in the 

calculation of correlations between points.  With the SEED method new points are 

allocated in “crucial” regions (which are with large prediction errors) and as a result 

more accurate metamodels can be developed with limited number of observed points.  In 

cases with computer experiments, SEED helps save time and effort spent on expensive 

computer simulations.  Though SEED was initially developed for designing computer 

experiments, it can also be applied in physical experiments and may bring considerable 

monetary benefits.   

To develop the SEED method, the inappropriateness of “locating new points in 

regions with more local optimums” is illustrated, and the criterion of expected prediction 

errors is proposed and applied to help identify regions of interest where candidate points 
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are expected to have more potential information.  In order to calculate the expected 

prediction errors, an approach is proposed in which two groups of points are used to help 

grasp the information of responses and modeling errors.  The usage of two groups of 

points also facilitates the selection of appropriate sets of points when only a portion of 

data points are required in building the final metamodel. 

Leave-one-out cross-validation is widely used to model prediction errors.  We 

claim that the “cross-validated prediction errors” do not necessarily reflect “actual 

prediction errors”, but leave-one-out cross-validation can still be used in SEED, 

especially when there are strict limits on the number of total observed points.  The 

application of leave-one-out cross-validation in SEED is future work for this dissertation. 

On relaxing the stationary assumption, two methods are proposed to adjust the 

covariance matrix, as stated in Section 4.5.3.  Prediction errors are taken into 

consideration in the mathematical formulation of entries of the covariance matrix.  There 

may be different ways to incorporate expected prediction errors in sampling (formulation 

of entries of the covariance matrix).   

Kriging metamodels are used in Chapter 4 to illustrate the SEED method.  

However, the SEED method is not developed for kriging and can be used with other 

types of metamodels.  The MARS metamodels are applied in SEED in Chapter 5.  More 

types of metamodels will be studied and applied in SEED, which is future work of this 

dissertation. 

In sequential experimental design, more time and effort is spent on the 

comprehensive steps and iterations with SEED than with single-stage experiments.  To 
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develop an automated SEED routine with little human interface will help save significant 

expense on human operations.  In SEED, most computation time is spent on the entropy 

optimization steps (Steps 3 and 7); adopting faster local optimization techniques (e.g., as 

in Currin, et al., 1991) helps save computation time.  Future work is needed in studying 

the computational efficiency of the SEED method. 

In the SEED method, the numbers of initial data points and validation points and 

those of new points added in each iteration are determined arbitrarily by the designers.  

This decision may be based on previous knowledge of the responses in the design space.  

When previous knowledge of the responses is unavailable, we recommend starting with a 

factorial (or fractional factorial) experimental design.  The central point may be added to 

help designers grasp more information at the beginning of the SEED process.  In the 

examples in this dissertation, the number of new points added in each iteration is set to be 

the same as the number of design variables (nv) or one less than the number of design 

variables (nv – 1).  However, enough number (at least 2 or 3) of iterations in SEED 

should be ensured so that information at previous points can be fully utilized; this affects 

designers’ decisions on how many initial points and new points should be used in SEED.  

Future theoretical or empirical studies are needed to compare different strategies and also 

observe the flexibility of the SEED method. 

The mathematical formulations in SEED in this dissertation are not necessarily 

perfect.  Values of parameters λ and θ in SEED are determined by designers.  When 

kriging metamodels are used, values of θ from kriging metamodels can be used in the 

formulation of entries of the covariance matrix in later iterations.  When no kriging 
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metamodels are developed (e.g., at the beginning of the SEED process), a large number 

can be assigned to θ; in such cases usually we set all θ’s as 10.  The parameter λ is used 

to balance the considerations of “relative distance between the candidate point and 

current points” and “prediction errors at the candidate point” in the formulation of entries 

of the adjusted covariance matrix.  Usually we set λ as 2; as design develops and more 

accurate metamodels are obtained, we can use smaller values for λ, e.g., 1.5.  Future 

theoretical or empirical studies are needed to compare different strategies and also 

observe the flexibility of the SEED method. 

8.3.4 The Efficient Robust Concept Exploration Method 

The Efficient Robust Concept Exploration Method (E-RCEM) is developed in 

Chapter 6 based on RCEM and SEED.  The E-RCEM method can be used in three ways, 

the traditional process, the integrated design process, and the hybrid process.  In the 

traditional process the two processes of metamodeling and design space exploration is 

separated, and the E-RCEM method becomes the SEED method because globally 

accurate metamodels are pursued.  In the integrated design process of the E-RCEM 

method, regions of interest are those with fewer points, large prediction errors, and also 

points where design goals are achieved and constraints are satisfied.  The two processes 

of metamodeling and design space exploration are integrated; in other words, we realize a 

process of metamodeling for design space exploration.  In the integrated design process, 

the focus is to achieve a good design solution; globally accurate metamodels are not 

pursued.  The hybrid process is a combination of the traditional process and the 
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integrated design process, and is recommended in complicated applications with multiple 

design variables and responses.  In the hybrid process, the traditional process is first used 

to help develop metamodels with acceptable accuracy, and then the integrated design 

process is applied to help achieve design solutions efficiently and effectively. 

From the viewpoint of metamodeling, the traditional process of SEED is better 

than the integrated design process in E-RCEM because it yields a more accurate 

metamodel in the whole design space; while from the viewpoint of design space 

exploration, the integrated design process in E-RCEM is better than the traditional 

process of SEED because it yields a metamodel with higher local accuracy in critical 

regions and thus possibly a better design solution.  In cases with expensive computer or 

physical experiments, both the traditional process with SEED and the integrated process 

in E-RCEM help develop better metamodels with less time and money, and thus ensure 

better design solutions than traditional experimental designs and design space exploration 

approaches.  When design goals are not well defined at the beginning of design (e.g., in 

some cases the relative priorities of design goals may change greatly during the design 

phrase) and it is hard to address this uncertainty, designers may prefer to use SEED to 

develop globally accurate metamodels.  When design goals are clearly defined, designers 

may prefer to use the integrated design process of metamodeling and design space 

exploration in E-RCEM to achieve better design solutions faster.  In most cases where 

design goals are defined but still subject to small changes in the future, designers may 

prefer to use SEED first to achieve an acceptable metamodel, then use the integrated 

design process in E-RCEM to explore for new experimental points and design solutions. 
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In the integrated design process in E-RCEM, the correction parameter γ is 

introduced to balance the consideration of design goals, prediction errors, and relative 

distances.  The selection of γ is arbitrary in this dissertation; usually we set it as 2 at the 

beginning of the E-RCEM process, and as design develops, smaller values of γ (e.g., 1.5) 

may be adopted.  Future studies are needed on the determination of values for γ, as well 

as other parameters inherited from SEED. 

Design constraints are considered in the metamodeling process in E-RCEM, thus 

designers usually deal with irregular feasible design spaces.  Only convex design spaces 

are considered in this dissertation.  This provides a reference for the identification of the 

initial design space in engineering design.  However, in complicated cases with a lot of 

design variables, responses, and constraints, it may be difficult to identify and use the 

feasible design space as the initial design space.  In such cases designers can use a 

hypercube design space that is large enough to enclose all possible-to-succeed regions 

based on designers’ previous knowledge.  To develop formal methods to define the initial 

design space and re-define (design space shift and reduction) the design space is future 

work for this dissertation. 

8.4 FUTURE WORK 

In carrying out the research that has led to the contributions reviewed in the 

previous section, many lessons have been learned.  The first is that there is always no end 

for research.  The more we study, the more we learn what we need to learn.  Though from 
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some aspects we could say that the study in this dissertation is complete by itself, we 

could always find limitations here and there in our research; this awareness of limitations, 

most possibly, leads to future improvements and achievements.  Thus in this section we 

list our possible future work below after having identified the limitations of our study in 

Section 8.3. 

A Flexible Computer Framework to Realize SEED and E-RCEM 

Processes in the method of SEED and E-RCEM are complicated for engineers 

who lack knowledge of maximum entropy sampling.  The initialization and realization of 

the SEED or E-RCEM processes in iSIGHT require tedious manual operations.  These 

two factors mentioned above limit the application of SEED and E-RCEM in academic 

research and industrial applications.  An automated computer framework to realize the 

SEED and E-RCEM process will solve the two problems and ensure the utility of the 

methods developed in this dissertation. 

As illustrated in Chapters 4, 5, 6, and 7, automated processes of single steps in 

SEED and E-RCEM have been realized in iSIGHT.  However, the formulation of initial 

input and output files for these steps is still done manually in this dissertation.  It is not 

technically difficult to realize an automated initialization process to formulate the 

information flow between computer codes used in steps of the SEED and E-RCEM 

method. 

In addition to the automated process, a user-friendly interface is also desired to 

make SEED and E-RCEM easy to implement.  It is also desired that this automated, user-
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friendly system should run in a distributed environment, in which engineers from 

different geological locations can work together during the SEED and E-RCEM design 

processes. 

An Design Space Exploration Heuristic for Engineers with Expensive Experiments 

The E-RCEM method developed in this dissertation has great potential to be 

developed into an optimization heuristic for engineers to use in real-world industrial 

applications.  Current the development of new products industrial applications is still 

much dependent on designers’ experience, partly because of the lack of effective yet 

efficient analytical, synthetic, and optimization tools for design in early stages.  As 

discussed in Chapter 1 and Section 2.1, designers’ freedom is confined and the 

approximation-based design strategy is not fully utilized in industrial applications 

because of the expensive experiments, large design spaces, and irregular responses.  The 

method of E-RCEM addresses these problems and facilitates the fast and effective 

analysis of responses and helps achieve satisficing design solutions with very few runs of 

the expensive analysis codes (or physical experiments).  

E-RCEM is a preliminary design space exploration heuristic that is suitable for 

engineers in industrial applications.  We illustrated its utility with the LCA unit design in 

Chapter 7.  However, there are still many aspects of E-RCEM that can be improved or 

modified.  Besides the automated computer framework, work is needed on the 

comparison and refinement of the mathematical formulations in E-RCEM.  As discussed 

in Section 6.3.2, based on our idea of incorporating degrees of achievement of design 
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goals in metamodeling, several possible mathematical formulations are proposed to 

adjust entries of the covariance matrix in the identification of new points, and finally we 

adopt only one of them and apply in the E-RCEM process.  Future research is needed to 

study possible mathematical formulations, not limited to those presented in this 

dissertation, and find out the best one (or ones) with either sound theoretical foundation 

or good empirical results.  Another topic to be considered is the application of E-RCEM 

in cases with discrete or concave design spaces.  The performance of E-RCEM in such 

cases is not studied in this dissertation, and it is expected that modifications and 

improvements of E-RCEM be needed in such problems.   

It is expected that an optimization heuristic can be developed based on E-RCEM.  

The proposed optimization heuristic will facilitate the study and achievement of good 

solutions for engineers with complex responses and expensive experiments in industrial 

applications. 

Design Space Reduction 

There are two ways to reduce a design space, one is to screen out unimportant 

design variables (reduce the dimensionality), and the other is to reduce the ranges of 

design variables.  In this dissertation, the factor-screening technique in the Response 

Surface Methodology is adopted and used in the sequential metamodeling approach in 

Chapter 5.  However, this technique is only suitable for response surface models, and 

lacks theoretical foundations in deterministic computer experiments.  Thus future studies 
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are needed on how to reduce a design space, and how to incorporate the proposed 

approach in the SEED and E-RCEM processes. 

As described in the last paragraph, there are two directions in the study of design 

space reduction.  To identify and remove unimportant design variables, methods are 

developed in (Myer and Montgomery, 1995; Box and Draper, 1969; Balabanov, et al., 

1999; Giunta, et al., 1996; Welch, et al., 1992), which can be used as a basis for the 

proposed research.  Kriging and MARS metamodels also provide qualitative information 

of the relative importance of design variables, thus it is possible to develop an approach 

for the identification of unimportant design variables within the sequential metamodeling 

process. 

An alternative way to reduce the design space is to reduce the ranges of design 

variables.  Chen and her co-authors developed heuristics to lead the surface refinement to 

a smaller design space (Chen, et al., 1997).  The adaptive RSM (ARSM) method is 

developed to systematically reduces the size of the design space by discarding portions of 

it that correspond to objective function values larger than a given threshold value at each 

modeling-optimization iteration (Wang, 2001; Wang, 2003).  Move limit strategies or 

trust regions are often used to identify “meaningful” design spaces (Wujek and Renaud, 

1998a; Wujeck and Renuad, 1998b; Alexandrov, et al., 1998; Rodriguez, et al., 1997).  

Wang and Simpson propose an intuitive methodology to systematically reduce the design 

space to a relatively small region by incorporating the fuzzy c-Means clustering 

technique in the metamodeling process (Wang and Simpson, 2004).  All these provide 

good foundations for our proposed research on design space reduction; I expect the 
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improvement and incorporation of some of the methods above (e.g., the fuzzy clustering 

design space reduction approach) with SEED and E-RCEM. 

Comparison and Utilization of More Types of Metamodels 

In this dissertation only three types of metamodels, the response surface (RS) 

model, kriging, and MARS, are studied and applied in the SEED and E-RCEM methods.  

A future research direction is to study the performance of other types of metamodels, 

e.g., the artificial neural networks (ANN) and wavelets, in metamodeling and design 

space exploration with SEED and E-RCEM.   

Metamodel Evaluation Methods 

New approaches are needed to evaluate the metamodels with deterministic 

computer experiments since the preliminary metamodel validation approaches developed 

in Chapter 3 are not very solid and easy to use.  To validate the metamodels with 

additional points, engineers should decide the number and location of these validation 

points.  This should be accomplished with the improvement and application of SEED and 

E-RCEM. 

To validate the metamodels without additional points, criteria must be developed 

to distinguish “good” metamodels from “bad” ones.  One possible criterion is the 

“smoothness” of the responses.  Approaches to quantify such criteria are needed. 

Application of Cross-Validation in SEED and E-RCEM 
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Leave-one-out cross-validation is proved to be inappropriate as a method to 

validate the accuracy of metamodels in Chapter 3 in this dissertation; however, it helps 

designers judge whether a metamodel is robust to the lost of information due to removal 

of particular data points.  This means that if a metamodel has small leave-one-out cross-

validation errors, its performance in response prediction will not be greatly affected by 

removing any of its data points.   

In SEED and E-RCEM, two groups of points are used to test and supplement each 

other.  Prediction errors are calculated with this information and then entries of the 

covariance matrix are adjusted.  It is possible that the leave-one-out cross-validation 

errors can be used to adjust the entries of the covariance matrix; in such cases only one 

group of points are needed and a lot of operational and computational expense can be 

saved.  One possible shortcoming of such a strategy is that large leave-one-out cross-

validation errors tend to appear close to existing data points.  To use k-folder cross-

validation may be helpful to avoid such problems; in fact, the two-group-point strategy 

used in this dissertation is a specific situation of the k-folder cross-validation.  Future 

studies are needed on the possible utilization of cross-validation in SEED and E-RCEM. 

Improvement of SEED and E-RCEM 

The mathematics used SEED and E-RCEM in this dissertation is not perfect.  As 

discussed in Chapters 4 and 6, there are many ways to adjust entries of the covariance 

matrix, while we only adopted and tested a few of them in this dissertation.  Future 
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research is needed on the theoretical and empirical studies of and comparisons between 

these possible methods. 

Values of some important parameters (θ, λ, and γ) in SEED and E-RCEM are 

arbitrarily selected.  The original design space, the number of initial data points and that 

of new points added in each iteration, are also arbitrarily set.  Recommendations are 

given in this dissertation but more empirical studies are needed, not only to provide better 

suggestions but also to test the flexibility of the SEED and E-RCEM methods. 

The stopping criterion is another research topic.  In this dissertation we use the 

total number of observed points as the stopping criterion.  Solid metamodel evaluation 

approaches are desired to test the accuracy of metamodels, and thus may be used as a 

stopping criterion.  In E-RCEM, it is also possible to stop the integrated design process 

by testing the existence of “cluster” in the sequential identification of data points; as 

more data points are identified in E-RCEM and we are approaching the critical region 

with the actual design solution, new identified points tend to cluster, and this may lead to 

an effective stopping criterion. 

Uncertainty of Design Goals and Constraints 

To apply the integrated design process in E-RCEM, one premise is that the design 

goals and constraints should be clear and fixed (or with small uncertainty).  If the design 

constraints and goals are changed during the metamodeling and design space exploration 

process, the actual design solution will change and thus the identified data points may not 

still be in “critical” regions.  When great uncertainty of the design goals and constraints 
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exists, we recommend the SEED method instead of the integrated design process in E-

RCEM because the globally accurate metamodels developed from SEED are robust to the 

changes of design goals and constraints in the process of design space exploration. 

When the uncertainty of design goals and constraints is not expected to be great, 

the E-RCEM method may still be used.  In such cases, methods to measure, model, and 

control this uncertainty are needed.  This is future work of this dissertation. 

Concave and Discrete Design Spaces 

Only examples with continuous and convex design spaces are used in this 

dissertation.  However, in real-world industrial applications, due to the complex design 

constraints, the feasible design spaces are usually concave and/or discrete.  It is an 

interesting yet difficult research direction to study sequential metamodeling and design 

space exploration in such cases.  Design with concave design spaces studied in (Mistree, 

et al., 1993b) can be very helpful in this proposed research. 

Study and Application of SEED and E-RCEM in Large-Scale Engineering Problems 

In this dissertation, the SEED and E-RCEM methods are developed, verified, and 

illustrated with relatively simple examples.  In large-scale real-world applications, the 

design process can be described as multi-variable, multi-response, and multi-objective.  

How do SEED and E-RCEM perform in cases with hundred or thousands of design 

variables, responses, or design objectives?  What modifications or improvements should 

be done to SEED and E-RCEM to ensure an effective and efficient design in such cases?  
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To apply and improve SEED and E-RCEM in large-scale industrial problems is one 

possible future direction for research in the vein of studies in this dissertation. 

Possible interesting and hot applications of SEED and E-RCEM include 

biomechanical devices, energy and environment analysis, homeland security cases, and 

medicine, etc.  For example, as discussed in (), in biomedical studies, besides enabling 

physicians to devise better treatments for individual patients, simulation-based 

engineering methods could enable medical device manufacturers to predict the 

performance of their devices in virtual patients prior to deployment in human trials. 

Current physical and animal testing procedures (now used prior to human trials) have 

significant limitations in representing variations in human anatomy and physiology.  

Virtual prototyping of medical devices could be conducted by simulating the deployment 

of alternate device-designs in a group of virtual patients representing the range of 

conditions likely to be encountered.  SEED and E-RCEM provide great utilities in such 

applications. 
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A.  
APPENDIX A 

SEQUENTIAL EXPLORATORY EXPERIMENTAL 
DESIGN: CODES AND ORGANIZATION OF 

PROCESSES 

 

 

This appendix is intended to supplement the development of the SEED method in 

Chapter 4.  The computer codes written to support the SEED method is presented in 

Section A.1.  The organization of the point-identification process of SEED is illustrated 

in Sections A.2 and A.3. 
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A.1 EXPLORATION OF DESIGN SOLUTIONS WITH RCEM 

The FORTRAN programs used in SEED in Sections 4.6.2 and 4.6.3 are enclosed 

in this section.  To formulate the covariance matrix we use covmat.f and 

covdata.params.h; the input and output filenames are specified in covdata.params.h.  To 

adjust entries of the covariance matrix we use altcov.f and altcov.params.h.  To calculate 

the determinant of the covariance matrix we use detcov.f and detcov.params.h.   

 

Covmat.f (Formulation I): 
************************************************************************ 
* 
      program covmat 
* 
*  This program invokes calculation of the correlation matrix given 
*        information of points and values of theta. 
* 
*  Updated by: Yao Lin, March 26, 2003 
* 
*  Original code developed by: 
*  Yao Lin 26 March 2003 / Tim Simpson, 25 Feburary 1998 
* 
************************************************************************ 
* 
* Input files: 
* ------------ 
*  covdata.params.h - parameter file, specifying numdv, numsamp, fprefix 
*  .sam             - x's of sample points 
*  .gau.fit         - thetas 
* 
* Output files: 
* ------------- 
*  .cov             - correlation matrix 
* 
* Variables: 
* ---------- 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*   numsamp = number of data samples from which the correlation matrix 
*               is calculated 
* 
* Local Variables: 
* ---------------- 
*   DOUBLE PRECISION 
*   ---------------- 
*   xmat     = numdv x numsamp of sample site locations, scaled [0,1] 
* 
*   INTEGER 
*   ------- 
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* 
************************************************************************ 
 
      integer numdv,numsamp 
      character*16 fprefix 
C 
C  include parameter settings for numdv,numsamp,fprefix, e.g., in the 
C  one-variable problem: numdv=1,numsamp=5,fprefix='step1' 
C 
      include 'covdata.params.h' 
 
      double precision xmat(numsamp,numdv),cov(numsamp,numsamp), 
     &   dummy2,thetaray(1,numdv),theta(numdv) 
      integer i,j,dummy,lenstr 
      character*16 ftitle 
      character*20 deckfile,fitsfile,outfile 
 
 
C 
C  open necessary .sam, .fit, and .cov files based on 'fprefix' name, 
C  e.g., in the one-variable problem: 
C         step1.sam, step1.gau.fit, step1.cov 
C 
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
 
       deckfile=ftitle(1:lenstr) // '.sam' 
       fitsfile=ftitle(1:lenstr) // '.gau.fit' 
       outfile=ftitle(1:lenstr) // '.cov' 
 
       open(21,file=deckfile,status='old') 
       open(22,file=fitsfile,status='old') 
       open(27,file=outfile,status='unknown') 
 
       print * 
       print *, deckfile,fitsfile,outfile 
       print *, numdv,numsamp 
C 
C  initialize xmat and theta arrays 
C 
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (xmat(i,j),j=1,numdv) 
      close(21) 
 
      print * 
      write(6,*) 'Reading in theta parameters...' 
      do 20 i=1,1 
        read(22,*) dummy,(thetaray(i,j),j=1,numdv),dummy2 
        write(6,1000) dummy,(thetaray(i,j),j=1,numdv) 
 1000   format(i2,8f9.5) 
 20   continue 
      close(22) 
 
      do 50 j=1,numdv 
          theta(j)=thetaray(1,j) 
 50     continue 
        write(6,1002) (theta(j),j=1,numdv) 
 1002     format(8f9.5) 
 
 
C 
C  call subroutine to calculate the correlation matrix 
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C 
C  input:  xmat, theta, numsamp, numdv 
C 
C  output: R - the correlation matrix 
C 
 
         call cormat (xmat,cov,numsamp,numdv,theta) 
 
C 
C  write predicted values to specified .cov file 
C 
      do 90 i=1,numsamp 
        write(27,79) (cov(i,j),j=1,numsamp) 
 79     format(10(f13.5,1x)) 
 90   continue 
      close(27) 
 
      print * 
      write(6,*) 'Correlation matrix written to specified .cov file' 
 
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'covdata.params.h'. 
* 
*  With this known, the .sam, .gau.fit, and .cov suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Yao Lin, 3/26/2003; Tim Simpson, 2/15/1998 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
 
*********************************************************************** 
* 
      subroutine cormat (xmat,cov,numsamp,numdv,theta) 
* 
* 
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*  This subroutine calculates the correlation matrix and its inverse 
* 
*  Original code developed by: 
*  Yao Lin 26 March 2003 / 
*        Tim Simpson 15 February 1998 / Tony Giunta, 12 May 1997 
* 
*********************************************************************** 
* 
* Inputs: 
* ------- 
*   DOUBLE PRECISION: 
*   ----------------- 
*   xmat,theta 
* 
*   INTEGER: 
*   -------- 
*   numdv,numsamp 
* 
* Outputs: 
* -------- 
*   DOUBLE PRECISION: 
*   ----------------- 
*   cov - the correlation matrix. 
* 
* 
*********************************************************************** 
C 
C  passed variables 
C 
      integer numdv,numsamp 
 
      double precision xmat(numsamp,numdv),cov(numsamp,numsamp), 
     &   theta(numdv),R 
C 
C  local variables 
C 
      integer i,j 
C 
C  calculate terms in the correlation matrix 
C 
      do 300 i = 1,numsamp 
        do 305 j = i,numsamp 
          if( i .eq. j ) then 
            cov(i,j) = 1.0d0 
          else 
C 
C  call subroutine to compute spatial correlation function for xmat 
C 
C  input:  xmat, theta, numdv, numsamp, i, j 
C 
C  output: R 
C 
            call scfxmat(R,xmat,theta,numdv,numsamp,i,j) 
            cov(i,j) = R 
            cov(j,i) = cov(i,j) 
          endif 
 305    continue 
 300  continue 
      end 
 
C******************************************************************** 
C 
      subroutine scfxmat(R,xmat,theta,numdv,numsamp,i,j) 
C 
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C     Origin: Tim Simpson       Date:  February 11, 1998 
C     Modified: Yao Lin         Date:  March 26, 2003 
C 
C     subroutine to compute spatial correlation function (scf) for 
C     correlation matrix; NOT to compute scf for r_xhat. 
C 
C  Output: 
C  ------- 
C    R = value of correlation function between two sample points, 
C          given theta 
C 
C  Input: 
C  ------ 
C    xmat = matrix of sample points 
C    theta = array of theta values 
C    i,j = i_th and j_th elements of correlation matrix for which 
C           correlation function is being computed 
C 
C  All variables except R are unchanged upon exiting 
C 
C******************************************************************** 
C 
C  passed variables 
C 
      integer i,j,numdv,numsamp 
      double precision R,xmat(numsamp,numdv),theta(numdv) 
C 
C  local variables 
C 
      double precision sum,thetadist,dist 
      integer k 
 
      sum=0.0d0 
      do 120 k = 1,numdv 
          dist = ABS(xmat(i,k)-xmat(j,k)) 
          sum = sum + theta(k)*((dist)**2) 
  120      continue 
      R = exp( -1.0d0*sum ) 
 
         return 
         end 

 

Covdata.params.h (Formulation I): 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'covmat'                 * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for calculating the covariance 
C          matrix and its determinant 
C 
 
      parameter (numdv=1,numsamp=11,fprefix='suit3valid') 
      
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C 
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C  fprefix = prefix of titles of files to opened/used 
C 
C********************************************************** 

 
 
Covmat.f (Formulation II): 
************************************************************************ 
* 
      program covmat 
* 
*  This program invokes calculation of the correlation matrix given 
*        information of points and values of theta. 
* 
*  Updated by: Yao Lin, March 26, 2003 
* 
*  Original code developed by: 
*  Yao Lin 26 March 2003 / Tim Simpson, 25 Feburary 1998 
* 
************************************************************************ 
* 
* Input files: 
* ------------ 
*  covdata.params.h - parameter file, specifying numdv, numsamp, fprefix 
*  .sam             - x's of sample points 
*  .gau.fit         - thetas 
* 
* Output files: 
* ------------- 
*  .cov             - correlation matrix 
* 
* Variables: 
* ---------- 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*   numsamp = number of data samples from which the correlation matrix 
*               is calculated 
*   errmax = maximum predicted prediction error 
*   lambda = safety coefficient 
* 
* Local Variables: 
* ---------------- 
*   DOUBLE PRECISION 
*   ---------------- 
*   xmat     = numdv x numsamp of sample site locations, scaled [0,1] 
* 
*   INTEGER 
*   ------- 
* 
************************************************************************ 
 
      integer numdv,numsamp,numold 
      double precision lambda,errmax 
      character*16 fprefix,fprefixe 
C 
C  include parameter settings for numdv,numsamp,fprefix, e.g., in the 
C  one-variable problem: numdv=1,numsamp=5,fprefix='step1' 
C 
      include 'covdata.params.h' 
 
      double precision xmat(numsamp,numdv),cov(numsamp,numsamp), 
     &   dummy2,thetaray(1,numdv),theta(numdv),errpred(numsamp) 
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      integer i,j,dummy,lenstr 
      character*16 ftitle 
      character*20 deckfile,fitsfile,outfile,errpredfile 
 
 
C 
C  open necessary .sam, .fit, and .cov files based on 'fprefix' name, 
C  e.g., in the one-variable problem: 
C         step1.sam, step1.gau.fit, step1.cov 
C 
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
        
       deckfile=ftitle(1:lenstr) // '.sam' 
       fitsfile=ftitle(1:lenstr) // '.gau.fit' 
       outfile=ftitle(1:lenstr) // '.cov' 
 
       call getlen(fprefixe,lenstr) 
       ftitle=fprefixe 
       errpredfile=ftitle(1:lenstr) // '.out' 
 
       open(21,file=deckfile,status='old') 
       open(22,file=fitsfile,status='old') 
       open(23,file=errpredfile,status='old') 
       open(27,file=outfile,status='unknown') 
 
       print * 
       print *, deckfile,fitsfile,outfile 
       print *, numdv,numsamp 
C 
C  initialize xmat and theta arrays 
C 
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (xmat(i,j),j=1,numdv) 
      close(21) 
 
      print * 
      write(6,*) 'Reading in theta parameters...' 
      do 20 i=1,1 
        read(22,*) dummy,(thetaray(i,j),j=1,numdv),dummy2 
        write(6,1000) dummy,(thetaray(i,j),j=1,numdv) 
 1000   format(i2,8f9.5) 
 20   continue 
      close(22) 
       
      print * 
      write(6,*) 'Reading in and calculating errpred...' 
      do 30 i=1,numsamp 
         if (i.le.numold) then 
            errpred(i)=0.0 
         else 
            read(23,*) errpred(i) 
         endif 
         if (abs(errpred(i)).gt.(errmax)) then 
            errpred(i)=errmax 
         endif 
 30   continue 
      close(23) 
 
      print * 
      do 50 j=1,numdv 
          theta(j)=thetaray(1,j) 
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 50     continue 
        write(6,*) 'theta' 
        write(6,1002) (theta(j),j=1,numdv) 
 1002     format(8f9.5) 
 
 
C 
C  call subroutine to calculate the correlation matrix 
C 
C  input:  xmat, theta, numsamp, numdv 
C 
C  output: R - the correlation matrix 
C 
 
         call cormat (xmat,cov,numsamp,numdv,theta, 
     &        errpred,errmax,lambda) 
 
C 
C  write predicted values to specified .cov file 
C 
      do 90 i=1,numsamp 
        write(27,79) (cov(i,j),j=1,numsamp) 
 79     format(10(f13.5,1x)) 
 90   continue 
      close(27) 
 
      print * 
      write(6,*) 'Correlation matrix written to specified .cov file' 
 
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'covdata.params.h'. 
* 
*  With this known, the .sam, .gau.fit, and .cov suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Yao Lin, 3/26/2003; Tim Simpson, 2/15/1998 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
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      end if 
      return 
      end 
 
*********************************************************************** 
* 
      subroutine cormat (xmat,cov,numsamp,numdv,theta, 
     &           errpred,errmax,lambda) 
* 
* 
*  This subroutine calculates the alternated correlation matrix (by 
*       changing values of theta between any two points, 
*       and the inverse of the alternated correlation matrix 
* 
*  Original code developed by: 
*  Yao Lin 26 March 2003 / 
*        Tim Simpson 15 February 1998 / Tony Giunta, 12 May 1997 
* 
*********************************************************************** 
* 
* Inputs: 
* ------- 
*   DOUBLE PRECISION: 
*   ----------------- 
*   xmat,theta,errpred 
* 
*   INTEGER: 
*   -------- 
*   numdv,numsamp 
* 
* Outputs: 
* -------- 
*   DOUBLE PRECISION: 
*   ----------------- 
*   cov - the correlation matrix. 
* 
* 
*********************************************************************** 
C 
C  passed variables 
C 
      integer numdv,numsamp 
 
      double precision xmat(numsamp,numdv),cov(numsamp,numsamp), 
     &   theta(numdv),R,errpred(numsamp),errmax,lambda 
C 
C  local variables 
C 
      integer i,j 
C 
C  calculate terms in the correlation matrix 
C 
      do 300 i = 1,numsamp 
        do 305 j = i,numsamp 
          if( i .eq. j ) then 
            cov(i,j) = 1.0d0 
          else 
C 
C  call subroutine to compute spatial correlation function for xmat 
C 
C  input:  xmat, theta, numdv, numsamp, i, j 
C 
C  output: R 
C 
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            call scfxmat(R,xmat,theta,numdv,numsamp,i,j, 
     &                   errpred,errmax,lambda) 
            cov(i,j) = R 
            cov(j,i) = cov(i,j) 
          endif 
 305    continue 
 300  continue 
      end 
 
C******************************************************************** 
C 
      subroutine scfxmat(R,xmat,theta,numdv,numsamp,i,j, 
     &                   errpred,errmax,lambda) 
C 
C     Origin: Tim Simpson       Date:  February 11, 1998 
C     Modified: Yao Lin         Date:  March 26, 2003 
C 
C     subroutine to compute spatial correlation function (scf) for 
C     correlation matrix; NOT to compute scf for r_xhat. 
C 
C  Output: 
C  ------- 
C    R = value of correlation function between two sample points, 
C          given theta 
C 
C  Input: 
C  ------ 
C    xmat = matrix of sample points 
C    theta = array of theta values 
C    i,j = i_th and j_th elements of correlation matrix for which 
C           correlation function is being computed 
C    errpred = predicted prediction error at points 
C    errmax = maximum predicted prediction error 
C    lambda = safety coefficient 
C 
C  All variables except R are unchanged upon exiting 
C 
C******************************************************************** 
C 
C  passed variables 
C 
      integer i,j,numdv,numsamp 
      double precision R,xmat(numsamp,numdv),theta(numdv), 
     &       errpred(numsamp),errmax,lambda 
C 
C  local variables 
C 
      double precision sum,thetadist,dist,alttheta(numdv) 
      integer k 
 
      sum=0.0d0 
      do 120 k = 1,numdv 
        dist = ABS(xmat(i,k)-xmat(j,k)) 
        alttheta(k)=theta(k)*(1+lambda*abs(errpred(i)) 
     &      /errmax)*(1+lambda*abs(errpred(j))/errmax) 
          sum = sum + alttheta(k)*((dist)**2) 
  120      continue 
      R = exp( -1.0d0*sum ) 
       
      write(6,1003) (alttheta(1)) 
 1003 format(8f9.5) 
         return 
         end 
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Covdata.params.h (Formulation II): 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'covmat'                 * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for calculating the covariance 
C          matrix and its determinant 
C 
 
      parameter (numdv=1,numsamp=4,numold=3, 
     &          fprefix='suit1newp', 
     &          fprefixe='errpred1_1.gau', 
     &          errmax=1.23,lambda=2) 
      
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C 
C  fprefix = prefix of titles of files to opened/used 
C 
C********************************************************** 
 
 
 
 
 
 

Suit3valid.sam: 
0 
0.167 
0.5 
0.75 
1 
0.122 
0.235 
0.333 
0.667 
0.833 
0.0472747809891277 

 
 

 
Suit3valid.gau.fit: 

1      63.78181      -16.55119 
 

 

Altcov.f (Formulation I in Section 4.6.2): 
************************************************************************ 
* 
      program altcov 
* 
*  This program calculates the alternated correlation matrix, given the 
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*       initial correlation matrix and predicted prediction errors at 
*       possible new data points. 
* 
*  Updated by: Yao Lin, March 26, 2003 
*  
*  Original code developed by: 
*  Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997 
* 
************************************************************************ 
* 
* Input files: 
* ------------ 
*  altcov.params.h - parameter file, specifying numdv, numsamp, 
*                       errmax, lambda, fprefix, fprefix2, fprefixnew 
*  fprefix.cov     - initial correlation matrix 
*  fprefix2.out    - predicted prediction errors at possible new data points 
* 
* Output files: 
* ------------- 
*  fprefixnew.cov  - alternated correlation matrix 
* 
* Variables: 
* ---------- 
*  inicov     = the initial correlation matrix 
*  newcov     = the alternated correlation matrix 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*  numsamp = number of data samples from which the correlation matrix 
*               is calculated 
* 
* Local Variables: 
* ---------------- 
*  DOUBLE PRECISION 
*  ---------------- 
*  errpred = the predicted prediction errors associated with each data 
*            and possible new data points 
* 
************************************************************************ 
 
      integer numsamp 
      double precision lambda,errmax 
      character*16 fprefix,fprefix2,fprefixnew 
C       
C  include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew, 
C  errmax, lambda, e.g., in the one-variable problem, for the first step: 
C  numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1', 
C  fprefixnew='step1altnewp',errmax=0.50,lambda=2.0 
C      
      include 'altcov.params.h' 
 
      double precision inicov(numsamp,numsamp),newcov(numsamp,numsamp), 
     &       errpred(numsamp) 
      integer i,j,lenstr 
      character*16 ftitle 
      character*20 deckfile,deckfile2,outfile 
 
C 
C  open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files, 
C  e.g., step1newp.cov, errpred1.out, step1altnewp.cov 
C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
       deckfile=ftitle(1:lenstr) // '.cov' 
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       call getlen(fprefix2,lenstr) 
       ftitle=fprefix2 
       deckfile2=ftitle(1:lenstr) // '.out' 
        
       call getlen(fprefixnew,lenstr) 
       ftitle=fprefixnew 
       outfile=ftitle(1:lenstr) // '.cov' 
        
       open(21,file=deckfile,status='old') 
       open(23,file=deckfile2,status='old') 
       open(27,file=outfile,status='unknown') 
        
       print * 
       print *, deckfile,deckfile2,outfile 
       print *, numsamp 
C 
C  initialize inicov 
C       
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (inicov(i,j),j=1,numsamp) 
      close(21)  
 
C 
C  initialize errpred 
C 
      print * 
      write(6,*) 'Reading in and calculating errpred...' 
      do 20 i=1,numsamp 
         if (i.le.numold) then 
            errpred(i)=0.0 
         else 
            read(23,*) errpred(i) 
         endif 
         if (abs(errpred(i)).gt.(errmax)) then 
            errpred(i)=errmax 
         endif 
 20   continue 
      close(23) 
             
C 
C  calculate the alternated correlation matrix 
C 
      do 30 i=1,numsamp 
         do 40 j=i,numsamp 
         if (i.eq.j) then 
            newcov(i,j)=1.0 
         elseif (((i.gt.numold).AND.(j.le.numold)).OR. 
     &             ((i.le.numold).AND.(j.gt.numold))) then 
         newcov(i,j)=inicov(i,j)*(1-abs(errpred(i)/lambda/errmax)) 
     &   *(1-abs(errpred(j)/errmax/lambda)) 
         newcov(j,i)=newcov(i,j) 
         else 
         newcov(i,j)=inicov(i,j) 
         newcov(j,i)=newcov(i,j) 
         endif 
 40   continue 
 30   continue 
 
C 
C  write alternated correlation matrix into specified .cov file 
C  
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      do 50 i=1,numsamp 
        write(27,79) (newcov(i,j),j=1,numsamp) 
 79     format(10(f13.5,1x)) 
 50   continue 
      close(27) 
 
      print * 
      write(6,*) 'Alternated correlation matrix written to .cov file' 
  
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 

 
 
Altcov.params.h: 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'altcov'                      * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
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      parameter ( numdv=1,numsamp=11,numold=10, 
     &          fprefix='suit3valid',fprefix2='errpred3_1.gau', 
     &          fprefixnew='suit3altvalid',errmax=1.5, 
     &          lambda=2.0 ) 
      
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C  numold = # old data points in the data set 
C 
C  fprefix = prefix of titles of file that stores the initial 
C            correlation matrix for both old and possible new 
C            data points 
C 
C  fprefix2 = prefix of titles of file that stores the 
C             predicted prediction errors at possible new 
C             data points 
C 
C  fprefixnew = prefix of titles of file that stores the 
C               alternated correlation matrix for both old and 
C               possible new data points, with prediction errors 
C               at these points considered 
C 
C  errmax = maximum value of the absolute predicted prediction error 
C 
C  lambda = coefficient used to gauge the adjustment to initial 
C           correlation matrix 
C********************************************************************* 

 

Detcov.f: 
C*********************************************************************** 
C 
      program detcov 
C 
C  This program calculates the determinant given a matrix.  Particularly, 
C       in SEED, it is used to calculate the determinant of the 
C       correlation matrix. 
C 
C  Updated by: Yao Lin, March 26, 2003 
C 
C  Original code developed by: 
C  Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997 
C 
C********************************************************************** 
C 
C Input files: 
C ------------ 
C  detcov.params.h - parameter file, specifying numdv, numsamp, 
C                       coedet, fprefix 
C  .cov             - correlation matrix 
C 
C Output files: 
C ------------- 
C  .det             - determinant of the correlation matrix 
C 
C Variables: 
C ---------- 
C   cov     = the input correlation matrix for which we calculate 
C             determinant 
C 
C Parameter Variables (to be specified by user in dace.params.h): 
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C ---------------------------------------------------- 
C   numsamp = number of data samples from which the correlation matrix 
C               is calculated 
C 
C Local Variables: 
C ---------------- 
C   DOUBLE PRECISION 
C   ---------------- 
C   work     = vector of length 'numsamp' used as temporary storage 
C   invmat   = inverse of the correlation matrix (numsamp x numsamp) 
C 
C   INTEGER 
C   ------- 
C   ipvt    = vector of length 'numsamp' of pivot locations 
C 
C*********************************************************************** 
 
      integer numsamp 
      double precision coedet 
      character*16 fprefix 
C       
C  include parameter settings for numdv,numsamp,fprefix 
C 
      include 'detcov.params.h' 
 
C************************************************************************* 
C 
C  include LINPACK routines used to find determinant of correlation matrix 
C 
C************************************************************************* 
 
C      include 'dgefa.f' 
C      include 'dgedi.f' 
 
C************************************************************************* 
 
      double precision cov(numsamp,numsamp),work(numsamp), 
     &       dummy2,detR,det(2),rcond,z(numsamp) 
      integer i,j,ipvt(numsamp),dummy,lenstr,info 
      character*16 ftitle 
      character*20 deckfile,outfile 
      err=0.0000 
C 
C  open necessary .cov and .det files based on 'fprefix' name, 
C  e.g., step1.cov, step1.det 
C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
        
       deckfile=ftitle(1:lenstr) // '.cov' 
       outfile=ftitle(1:lenstr) // '.det' 
        
       open(21,file=deckfile,status='old') 
       open(27,file=outfile,status='unknown') 
        
       print * 
       print *, deckfile,outfile 
       print *, numsamp 
C 
C  initialize cov 
C       
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
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 10     read (21,*) (cov(i,j),j=1,numsamp) 
      close(21)  
             
C 
C     Start to calculate the determinant of the correlation matrix; 
C        initialization. 
C 
      do 307 i=1,numsamp 
        work(i)=0.0d0 
        ipvt(i)=0 
 307  continue 
 
C 
C     If there is any error in the calculation in DGEFA (singular matrix), 
C        this program will set the determinant to 0. 
C 
      call dgeco(cov,numsamp,numsamp,ipvt,rcond,z) 
      if( rcond .eq. 0 ) then 
          write(27,78) err 
 78   format(10(f13.5,1x)) 
          close(27) 
          go to 1000 
      endif 
C 
C In DGEDI, last flag is: 1 (inverse only), 10 (Det only), 11 (both) 
C 
      call dgedi(cov, numsamp, numsamp, ipvt, det, work, 10) 
      detR=det(1)*10.0d0**det(2) 
      detR=coedet*detR 
 
C 
C  write predicted values to specified .det file 
C  
      write(27,79) detR 
 79   format(10(f13.5,1x)) 
      close(27) 
           
      print * 
      write(6,*) detR 
1000  write(6,*) 'Coefficient*Determinant written to .det file' 
  
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
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      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
 
      subroutine dgeco(a,lda,n,ipvt,rcond,z) 
      integer lda,n,ipvt(1) 
      double precision a(lda,1),z(1) 
      double precision rcond 
c 
c     dgeco factors a double precision matrix by gaussian elimination 
c     and estimates the condition of the matrix. 
c 
c     if  rcond  is not needed, dgefa is slightly faster. 
c     to solve  a*x = b , follow dgeco by dgesl. 
c     to compute  inverse(a)*c , follow dgeco by dgesl. 
c     to compute  determinant(a) , follow dgeco by dgedi. 
c     to compute  inverse(a) , follow dgeco by dgedi. 
c 
c     on entry 
c 
c        a       double precision(lda, n) 
c                the matrix to be factored. 
c 
c        lda     integer 
c                the leading dimension of the array  a . 
c 
c        n       integer 
c                the order of the matrix  a . 
c 
c     on return 
c 
c        a       an upper triangular matrix and the multipliers 
c                which were used to obtain it. 
c                the factorization can be written  a = l*u  where 
c                l  is a product of permutation and unit lower 
c                triangular matrices and  u  is upper triangular. 
c 
c        ipvt    integer(n) 
c                an integer vector of pivot indices. 
c 
c        rcond   double precision 
c                an estimate of the reciprocal condition of  a . 
c                for the system  a*x = b , relative perturbations 
c                in  a  and  b  of size  epsilon  may cause 
c                relative perturbations in  x  of size  epsilon/rcond . 
c                if  rcond  is so small that the logical expression 
c                           1.0 + rcond .eq. 1.0 
c                is true, then  a  may be singular to working 
c                precision.  in particular,  rcond  is zero  if 
c                exact singularity is detected or the estimate 
c                underflows. 
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c 
c        z       double precision(n) 
c                a work vector whose contents are usually unimportant. 
c                if  a  is close to a singular matrix, then  z  is 
c                an approximate null vector in the sense that 
c                norm(a*z) = rcond*norm(a)*norm(z) . 
c 
c     linpack. this version dated 08/14/78 . 
c     cleve moler, university of new mexico, argonne national lab. 
c 
c     subroutines and functions 
c 
c     linpack dgefa 
c     blas daxpy,ddot,dscal,dasum 
c     fortran dabs,dmax1,dsign 
c 
c     internal variables 
c 
      double precision ddot,ek,t,wk,wkm 
      double precision anorm,s,dasum,sm,ynorm 
      integer info,j,k,kb,kp1,l 
c 
c 
c     compute 1-norm of a 
c 
      anorm = 0.0d0 
      do 10 j = 1, n 
         anorm = dmax1(anorm,dasum(n,a(1,j),1)) 
   10 continue 
c 
c     factor 
c 
      call dgefa(a,lda,n,ipvt,info) 
c 
c     rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) . 
c     estimate = norm(z)/norm(y) where  a*z = y  and  trans(a)*y = e . 
c     trans(a)  is the transpose of a .  the components of  e  are 
c     chosen to cause maximum local growth in the elements of w  where 
c     trans(u)*w = e .  the vectors are frequently rescaled to avoid 
c     overflow. 
c 
c     solve trans(u)*w = e 
c 
      ek = 1.0d0 
      do 20 j = 1, n 
         z(j) = 0.0d0 
   20 continue 
      do 100 k = 1, n 
         if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k)) 
         if (dabs(ek-z(k)) .le. dabs(a(k,k))) go to 30 
            s = dabs(a(k,k))/dabs(ek-z(k)) 
            call dscal(n,s,z,1) 
            ek = s*ek 
   30    continue 
         wk = ek - z(k) 
         wkm = -ek - z(k) 
         s = dabs(wk) 
         sm = dabs(wkm) 
         if (a(k,k) .eq. 0.0d0) go to 40 
            wk = wk/a(k,k) 
            wkm = wkm/a(k,k) 
         go to 50 
   40    continue 
            wk = 1.0d0 
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            wkm = 1.0d0 
   50    continue 
         kp1 = k + 1 
         if (kp1 .gt. n) go to 90 
            do 60 j = kp1, n 
               sm = sm + dabs(z(j)+wkm*a(k,j)) 
               z(j) = z(j) + wk*a(k,j) 
               s = s + dabs(z(j)) 
   60       continue 
            if (s .ge. sm) go to 80 
               t = wkm - wk 
               wk = wkm 
               do 70 j = kp1, n 
                  z(j) = z(j) + t*a(k,j) 
   70          continue 
   80       continue 
   90    continue 
         z(k) = wk 
  100 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
c 
c     solve trans(l)*y = w 
c 
      do 120 kb = 1, n 
         k = n + 1 - kb 
         if (k .lt. n) z(k) = z(k) + ddot(n-k,a(k+1,k),1,z(k+1),1) 
         if (dabs(z(k)) .le. 1.0d0) go to 110 
            s = 1.0d0/dabs(z(k)) 
            call dscal(n,s,z,1) 
  110    continue 
         l = ipvt(k) 
         t = z(l) 
         z(l) = z(k) 
         z(k) = t 
  120 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
c 
      ynorm = 1.0d0 
c 
c     solve l*v = y 
c 
      do 140 k = 1, n 
         l = ipvt(k) 
         t = z(l) 
         z(l) = z(k) 
         z(k) = t 
         if (k .lt. n) call daxpy(n-k,t,a(k+1,k),1,z(k+1),1) 
         if (dabs(z(k)) .le. 1.0d0) go to 130 
            s = 1.0d0/dabs(z(k)) 
            call dscal(n,s,z,1) 
            ynorm = s*ynorm 
  130    continue 
  140 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
      ynorm = s*ynorm 
c 
c     solve  u*z = v 
c 
      do 160 kb = 1, n 
         k = n + 1 - kb 
         if (dabs(z(k)) .le. dabs(a(k,k))) go to 150 
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            s = dabs(a(k,k))/dabs(z(k)) 
            call dscal(n,s,z,1) 
            ynorm = s*ynorm 
  150    continue 
         if (a(k,k) .ne. 0.0d0) z(k) = z(k)/a(k,k) 
         if (a(k,k) .eq. 0.0d0) z(k) = 1.0d0 
         t = -z(k) 
         call daxpy(k-1,t,a(1,k),1,z(1),1) 
  160 continue 
c     make znorm = 1.0 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
      ynorm = s*ynorm 
c 
      if (anorm .ne. 0.0d0) rcond = ynorm/anorm 
      if (anorm .eq. 0.0d0) rcond = 0.0d0 
      return 
      end 
 
 
      subroutine dgedi(a,lda,n,ipvt,det,work,job) 
      integer lda,n,ipvt(1),job 
      double precision a(lda,1),det(2),work(1) 
C 
C     dgedi computes the determinant and inverse of a matrix 
C     using the factors computed by dgeco or dgefa. 
C 
C     on entry 
C 
C        a       double precision(lda, n) 
C                the output from dgeco or dgefa. 
C 
C        lda     integer 
C                the leading dimension of the array  a . 
C 
C        n       integer 
C                the order of the matrix  a . 
C 
C        ipvt    integer(n) 
C                the pivot vector from dgeco or dgefa. 
C 
C        work    double precision(n) 
C                work vector.  contents destroyed. 
C 
C        job     integer 
C                = 11   both determinant and inverse. 
C                = 01   inverse only. 
C                = 10   determinant only. 
C 
C     on return 
C 
C        a       inverse of original matrix if requested. 
C                otherwise unchanged. 
C 
C        det     double precision(2) 
C                determinant of original matrix if requested. 
C                otherwise not referenced. 
C                determinant = det(1) * 10.0**det(2) 
C                with  1.0 .le. dabs(det(1)) .lt. 10.0 
C                or  det(1) .eq. 0.0 . 
C 
C     error condition 
C 
C        a division by zero will occur if the input factor contains 
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C        a zero on the diagonal and the inverse is requested. 
C        it will not occur if the subroutines are called correctly 
C        and if dgeco has set rcond .gt. 0.0 or dgefa has set 
C        info .eq. 0 . 
C 
C     linpack. this version dated 08/14/78 . 
C     cleve moler, university of new mexico, argonne national lab. 
C 
C     subroutines and functions 
C 
C     blas daxpy,dscal,dswap 
C     fortran dabs,mod 
C 
C     internal variables 
C 
      double precision t 
      double precision ten 
      integer i,j,k,kb,kp1,l,nm1 
C 
C 
C     compute determinant 
C 
      if (job/10 .eq. 0) go to 70 
         det(1) = 1.0d0 
         det(2) = 0.0d0 
         ten = 10.0d0 
         do 50 i = 1, n 
            if (ipvt(i) .ne. i) det(1) = -det(1) 
            det(1) = a(i,i)*det(1) 
C        ...exit 
            if (det(1) .eq. 0.0d0) go to 60 
   10       if (dabs(det(1)) .ge. 1.0d0) go to 20 
               det(1) = ten*det(1) 
               det(2) = det(2) - 1.0d0 
            go to 10 
   20       continue 
   30       if (dabs(det(1)) .lt. ten) go to 40 
               det(1) = det(1)/ten 
               det(2) = det(2) + 1.0d0 
            go to 30 
   40       continue 
   50    continue 
   60    continue 
   70 continue 
C 
C     compute inverse(u) 
C 
      if (mod(job,10) .eq. 0) go to 150 
         do 100 k = 1, n 
            a(k,k) = 1.0d0/a(k,k) 
            t = -a(k,k) 
            call dscal(k-1,t,a(1,k),1) 
            kp1 = k + 1 
            if (n .lt. kp1) go to 90 
            do 80 j = kp1, n 
               t = a(k,j) 
               a(k,j) = 0.0d0 
               call daxpy(k,t,a(1,k),1,a(1,j),1) 
   80       continue 
   90       continue 
  100    continue 
C 
C        form inverse(u)*inverse(l) 
C 
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         nm1 = n - 1 
         if (nm1 .lt. 1) go to 140 
         do 130 kb = 1, nm1 
            k = n - kb 
            kp1 = k + 1 
            do 110 i = kp1, n 
               work(i) = a(i,k) 
               a(i,k) = 0.0d0 
  110       continue 
            do 120 j = kp1, n 
               t = work(j) 
               call daxpy(n,t,a(1,j),1,a(1,k),1) 
  120       continue 
            l = ipvt(k) 
            if (l .ne. k) call dswap(n,a(1,k),1,a(1,l),1) 
  130    continue 
  140    continue 
  150 continue 
      return 
      end 
       
      subroutine daxpy(n,da,dx,incx,dy,incy) 
C 
C     constant times a vector plus a vector. 
C     uses unrolled loops for increments equal to one. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dy(*),da 
      integer i,incx,incy,ix,iy,m,mp1,n 
C 
      if(n.le.0)return 
      if (da .eq. 0.0d0) return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
C 
C        code for unequal increments or equal increments 
C          not equal to 1 
C 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dy(iy) = dy(iy) + da*dx(ix) 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      return 
C 
C        code for both increments equal to 1 
C 
C 
C        clean-up loop 
C 
   20 m = mod(n,4) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dy(i) = dy(i) + da*dx(i) 
   30 continue 
      if( n .lt. 4 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,4 
        dy(i) = dy(i) + da*dx(i) 
        dy(i + 1) = dy(i + 1) + da*dx(i + 1) 
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        dy(i + 2) = dy(i + 2) + da*dx(i + 2) 
        dy(i + 3) = dy(i + 3) + da*dx(i + 3) 
   50 continue 
      return 
      end 
       
      subroutine  dscal(n,da,dx,incx) 
C 
C     scales a vector by a constant. 
C     uses unrolled loops for increment equal to one. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 3/93 to return if incx .le. 0. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision da,dx(*) 
      integer i,incx,m,mp1,n,nincx 
C 
      if( n.le.0 .or. incx.le.0 )return 
      if(incx.eq.1)go to 20 
C 
C        code for increment not equal to 1 
C 
      nincx = n*incx 
      do 10 i = 1,nincx,incx 
        dx(i) = da*dx(i) 
   10 continue 
      return 
C 
C        code for increment equal to 1 
C 
C 
C        clean-up loop 
C 
   20 m = mod(n,5) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dx(i) = da*dx(i) 
   30 continue 
      if( n .lt. 5 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,5 
        dx(i) = da*dx(i) 
        dx(i + 1) = da*dx(i + 1) 
        dx(i + 2) = da*dx(i + 2) 
        dx(i + 3) = da*dx(i + 3) 
        dx(i + 4) = da*dx(i + 4) 
   50 continue 
      return 
      end 
 
      subroutine  dswap (n,dx,incx,dy,incy) 
C 
C     interchanges two vectors. 
C     uses unrolled loops for increments equal one. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dy(*),dtemp 
      integer i,incx,incy,ix,iy,m,mp1,n 
C 
      if(n.le.0)return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
C 
C       code for unequal increments or equal increments not equal 
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C         to 1 
C 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dtemp = dx(ix) 
        dx(ix) = dy(iy) 
        dy(iy) = dtemp 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      return 
C 
C       code for both increments equal to 1 
C 
C 
C       clean-up loop 
C 
   20 m = mod(n,3) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dx(i) 
        dx(i) = dy(i) 
        dy(i) = dtemp 
   30 continue 
      if( n .lt. 3 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,3 
        dtemp = dx(i) 
        dx(i) = dy(i) 
        dy(i) = dtemp 
        dtemp = dx(i + 1) 
        dx(i + 1) = dy(i + 1) 
        dy(i + 1) = dtemp 
        dtemp = dx(i + 2) 
        dx(i + 2) = dy(i + 2) 
        dy(i + 2) = dtemp 
   50 continue 
      return 
      end 
       
 
      subroutine dgefa(a,lda,n,ipvt,info) 
      integer lda,n,ipvt(1),info 
      double precision a(lda,1) 
C 
C     dgefa factors a double precision matrix by gaussian elimination. 
C 
C     dgefa is usually called by dgeco, but it can be called 
C     directly with a saving in time if  rcond  is not needed. 
C     (time for dgeco) = (1 + 9/n)*(time for dgefa) . 
C 
C     on entry 
C 
C        a       double precision(lda, n) 
C                the matrix to be factored. 
C 
C        lda     integer 
C                the leading dimension of the array  a . 
C 
C        n       integer 
C                the order of the matrix  a . 
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C 
C     on return 
C 
C        a       an upper triangular matrix and the multipliers 
C                which were used to obtain it. 
C                the factorization can be written  a = l*u  where 
C                l  is a product of permutation and unit lower 
C                triangular matrices and  u  is upper triangular. 
C 
C        ipvt    integer(n) 
C                an integer vector of pivot indices. 
C 
C        info    integer 
C                = 0  normal value. 
C                = k  if  u(k,k) .eq. 0.0 .  this is not an error 
C                     condition for this subroutine, but it does 
C                     indicate that dgesl or dgedi will divide by zero 
C                     if called.  use  rcond  in dgeco for a reliable 
C                     indication of singularity. 
C 
C     linpack. this version dated 08/14/78 . 
C     cleve moler, university of new mexico, argonne national lab. 
C 
C     subroutines and functions 
C 
C     blas daxpy,dscal,idamax 
C 
C     internal variables 
C 
      double precision t 
      integer idamax,j,k,kp1,l,nm1 
C 
C 
C     gaussian elimination with partial pivoting 
C 
      info = 0 
      nm1 = n - 1 
      if (nm1 .lt. 1) go to 70 
      do 60 k = 1, nm1 
         kp1 = k + 1 
C 
C        find l = pivot index 
C 
         l = idamax(n-k+1,a(k,k),1) + k - 1 
         ipvt(k) = l 
C 
C        zero pivot implies this column already triangularized 
C 
         if (a(l,k) .eq. 0.0d0) go to 40 
C 
C           interchange if necessary 
C 
            if (l .eq. k) go to 10 
               t = a(l,k) 
               a(l,k) = a(k,k) 
               a(k,k) = t 
   10       continue 
C 
C           compute multipliers 
C 
            t = -1.0d0/a(k,k) 
            call dscal(n-k,t,a(k+1,k),1) 
C 
C           row elimination with column indexing 
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C 
            do 30 j = kp1, n 
               t = a(l,j) 
               if (l .eq. k) go to 20 
                  a(l,j) = a(k,j) 
                  a(k,j) = t 
   20          continue 
               call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1) 
   30       continue 
         go to 50 
   40    continue 
            info = k 
   50    continue 
   60 continue 
   70 continue 
      ipvt(n) = n 
      if (a(n,n) .eq. 0.0d0) info = n 
      return 
      end 
 
      integer function idamax(n,dx,incx) 
C 
C     finds the index of element having max. absolute value. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 3/93 to return if incx .le. 0. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dmax 
      integer i,incx,ix,n 
C 
      idamax = 0 
      if( n.lt.1 .or. incx.le.0 ) return 
      idamax = 1 
      if(n.eq.1)return 
      if(incx.eq.1)go to 20 
C 
C        code for increment not equal to 1 
C 
      ix = 1 
      dmax = dabs(dx(1)) 
      ix = ix + incx 
      do 10 i = 2,n 
         if(dabs(dx(ix)).le.dmax) go to 5 
         idamax = i 
         dmax = dabs(dx(ix)) 
    5    ix = ix + incx 
   10 continue 
      return 
C 
C        code for increment equal to 1 
C 
   20 dmax = dabs(dx(1)) 
      do 30 i = 2,n 
         if(dabs(dx(i)).le.dmax) go to 30 
         idamax = i 
         dmax = dabs(dx(i)) 
   30 continue 
      return 
      end 
       
      double precision function dasum(n,dx,incx) 
c 
c     takes the sum of the absolute values. 
c     jack dongarra, linpack, 3/11/78. 
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c     modified 3/93 to return if incx .le. 0. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      double precision dx(*),dtemp 
      integer i,incx,m,mp1,n,nincx 
c 
      dasum = 0.0d0 
      dtemp = 0.0d0 
      if( n.le.0 .or. incx.le.0 )return 
      if(incx.eq.1)go to 20 
c 
c        code for increment not equal to 1 
c 
      nincx = n*incx 
      do 10 i = 1,nincx,incx 
        dtemp = dtemp + dabs(dx(i)) 
   10 continue 
      dasum = dtemp 
      return 
c 
c        code for increment equal to 1 
c 
c 
c        clean-up loop 
c 
   20 m = mod(n,6) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dtemp + dabs(dx(i)) 
   30 continue 
      if( n .lt. 6 ) go to 60 
   40 mp1 = m + 1 
      do 50 i = mp1,n,6 
        dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2)) 
     &  + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5)) 
   50 continue 
   60 dasum = dtemp 
      return 
      end 
       
      double precision function ddot(n,dx,incx,dy,incy) 
c 
c     forms the dot product of two vectors. 
c     uses unrolled loops for increments equal to one. 
c     jack dongarra, linpack, 3/11/78. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      double precision dx(*),dy(*),dtemp 
      integer i,incx,incy,ix,iy,m,mp1,n 
c 
      ddot = 0.0d0 
      dtemp = 0.0d0 
      if(n.le.0)return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
c 
c        code for unequal increments or equal increments 
c          not equal to 1 
c 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dtemp = dtemp + dx(ix)*dy(iy) 
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        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      ddot = dtemp 
      return 
c 
c        code for both increments equal to 1 
c 
c 
c        clean-up loop 
c 
   20 m = mod(n,5) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dtemp + dx(i)*dy(i) 
   30 continue 
      if( n .lt. 5 ) go to 60 
   40 mp1 = m + 1 
      do 50 i = mp1,n,5 
        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + 
     & dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 
   50 continue 
   60 ddot = dtemp 
      return 
      end 

 
 
Detcov.params.h: 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'detcov'                      * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
 
      parameter ( numdv=1,numsamp=11,fprefix='suit3altvalid', 
     &          coedet=1e4 ) 
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C 
C  fprefix = prefix of titles of files to opened/used 
C 
C  coedet = when the value of determinant is very small, 
C          this coefficient is used to magnify the value. 
C********************************************************** 

 

 

 

 

620 



 

 

 

 

 

A.2 IMPLEMENTATION OF SEED (FORMULATION I) IN ISIGHT IN 
SECTION 4.6.2 

Figures presented in this section illustrate how the SEED method (with 

Formulation I) is implemented in iSIGHT.  The organization of tasks in Iteration I – Step 

3 is shown in Figure A.1.  The organization of tasks in Iteration I – Step 7 is shown in 

Figure A.2. 

In Iteration I – Step 3, since the covariance matrix is not adjusted, there are only 

two simulation codes used in iSIGHT, Covmat and Detcov.  In Iteration I – Step 7, with 

information from metamodels of prediction errors, we use four simulation codes in 

iSIGHT, i.e., Covmat, Errpred, Altcov, and Detcov.  Covmat is used to formulate the 

covariance matrix, Errpred are metamodels to predict prediction errors, Altcov is used to 

adjust entries of the covariance matrix, and Detcov is used to calculate the determinant. 

The parameter and input/output files for the component Covmat in iSIGHT are: 

• Input files:  Inputfilename1.sam (containing ns + nnew data points) 

Inputfilename1.gau.fit 

• Output file: Outputfilename1.cov 

• Parameter file: Covmat.params.h 
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The parameter and input/output files for the component Errpred in iSIGHT are: 

• Input file:  Inputfilename2.npt (containing ns + nnew data points) 

• Output file: Outputfilename2.gau.out 

• Parameter files: Dace.params.h 

Inputfilename2.dek 

Inputfilename2.gau.fit 

The parameter and input/output files for the component Altcov in iSIGHT are: 

• Input files:  Outputfilename1.cov  

Outputfilename2.gau.out 

• Output file: AltOutputfilename1.cov 

• Parameter file: Altcov.params.h 

The parameter and input/output files for the component Detcov in iSIGHT are: 

• Input file:  AltOutputfilename1.cov  

• Output file: AltOutputfilename1.det 

• Parameter file: Detcov.params.h 
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Figure A.1 Implementation of SEED in iSIGHT – Iteration I, Step 3 
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Figure A.2 Implementation of SEED (Formulation I) in iSIGHT – Iteration I, Step 7 

 
Figure A.3 File Parsing in iSIGHT (Formulation I) – Iteration I, Step 7 
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A.3 IMPLEMENTATION OF SEED (FORMULATION II) IN ISIGHT IN 
SECTION 4.6.3 

Figures presented in this section illustrate how the SEED method (with 

Formulation II) is implemented in iSIGHT.  The organization of tasks in Iteration I – 

Step 7 is shown in Figure A.4.  In Iteration I – Step 7, with information from metamodels 

of prediction errors, we use three simulation codes in iSIGHT, i.e., Covmat, Errpred, and 

Detcov.  Covmat is used to formulate the adjusted covariance matrix, Errpred are 

metamodels to predict prediction errors, and Detcov is used to calculate the determinant. 

The parameter and input/output files for the component Errpred in iSIGHT are: 

• Input file:  Inputfilename2.npt (containing ns + nnew data points) 

• Output file: Outputfilename2.gau.out 

• Parameter files: Dace.params.h 

Inputfilename2.dek 

Inputfilename2.gau.fit 

The parameter and input/output files for the component Covmat in iSIGHT are: 

• Input files:  Inputfilename1.sam (containing ns + nnew data points) 

Inputfilename2.gau.out 

• Output file: Outputfilename1.cov 

• Parameter file: Covmat.params.h 

Inputfilename1.gau.fit 

The parameter and input/output files for the component Detcov in iSIGHT are: 

• Input file:  Outputfilename1.cov  

• Output file: Outputfilename1.det 

• Parameter file: Detcov.params.h 
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Figure A.4 Implementation of SEED (Formulation II) in iSIGHT – Iteration I, Step 

7 

 
Figure A.5 File Parsing in iSIGHT (Formulation II) – Iteration I, Step 7 

626 



A.  
APPENDIX B 

METAMODEL COMPARISON, SELECTION, AND 
SEQUENTIAL METAMODELING 

 

 

This appendix is intended to supplement the study of different types of 

metamodels and the development of the sequential metamodeling approach in Chapter 5.  

Supporting materials for studies in Section 5.2 are presented in Section B.1.  Supporting 

materials for studies in Section 5.3 are presented in Section B.2.  Supporting materials for 

studies in Section 5.5 are presented in Section B.3.   
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B.1 COMPARISON OF KRIGING AND MARS METAMODELS 

The regression splines metamodels developed for the single-variable function in 

Section 5.2 are presented here.  These metamodels are developed with the computer 

codes written by Dr. Victoria Chen.  Only the files qmars.dat are presented. 

QMARS.dat (6 Data Points): 
    1    4 
        0.500000000000000 
        0.500000000000000 
    1    1    1    1 
        0.742514189859821       -3.782619142636539        0.078497782391407        1.852499728306856       -
0.592897867942160 
 -1    1       -0.8000       -0.6000       -0.4000 
  1    1       -0.8000       -0.6000       -0.4000 
 -1    1       -0.4000       -0.2000        0.0000 
 -1    1        0.0000        0.2000        0.5000 
 
 
QMARS.dat (12 Data Points): 
    1    8 
        0.500000000000000 
        0.500000000000000 
    1    1    1    1    1    1    1    1 
        0.804456738034367       -3.931699607694008        0.031300702570219        0.335180979819468       -
1.092464920190181       -0.166540234100570        0.465258270418457       -0.314632853306543        
0.519951496439981 
 -1    1       -0.909090909       -0.818181818       -0.7272727270 
  1    1       -0.909090909       -0.818181818       -0.7272727270 
 -1    1       -0.363636363       -0.272727272       -0.1818181810 
 -1    1       -0.727272727       -0.636363636       -0.5454545450 
 -1    1        0.363636363        0.454545454        0.5909090905 
 -1    1       -0.181818181       -0.090909090        0.0454545465 
 -1    1        0.090909091        0.272727272        0.3636363630 
 -1    1       -0.545454545       -0.454545454       -0.3636363630 
 
 
QMARS.dat (18 Data Points): 
    1   15 
        0.499999996500000 
        0.499999996500000 
    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
        0.769341991216719       -4.268794934636631        0.049066635497016        1.583636167930717        
0.442740915755735       -3.974759760066522       -0.161586860187488        2.348742252830790       -
1.331732197131855       -0.071742968334441        0.687898025469788        0.227592654584590       -
0.140027007826507       -0.127598133593445        0.030241893070942       -0.009966859336800 
 -1    1       -0.941176470588235       -0.882352941176471       -0.823529411764706 
  1    1       -0.941176470588235       -0.882352941176471       -0.823529411764706 
 -1    1       -0.823529411764706       -0.764705882352941       -0.705882352941176 
 -1    1       -0.235294117647059       -0.176470588235294       -0.117647058823529 
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 -1    1       -0.705882352941176       -0.647058823529412       -0.588235294117647 
 -1    1        0.235294117647059        0.294117647058823        0.352941176470588 
 -1    1       -0.588235294117647       -0.529411764705882       -0.470588235294118 
 -1    1       -0.470588235294118       -0.411764705882353       -0.352941176470588 
 -1    1        0.470588235294118        0.529411764705882        0.588235294117647 
 -1    1       -0.352941176470588       -0.294117647058823       -0.235294117647059 
 -1    1       -0.117647058823529       -0.058823529411765        0.029411764705882 
 -1    1        0.058823529411765        0.176470588235294        0.235294117647059 
 -1    1        0.352941176470588        0.411764705882353        0.470588235294118 
 -1    1        0.764705882352941        0.882352941176471        0.941176470588235 
 -1    1        0.588235294117647        0.647058823529412        0.735294117647059 
 
 
QMARS.dat (65 Data Points): 
    1   26 
        0.500000000000000 
        0.500000000000000 
    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    
1    1    1    1    1    1    1    1    1    1 
        0.814748875040033        3.549664011717383        0.024521568179330        
0.430340401178658       -9.134154080734954       -0.193694588044647       -
4.892401712101362        5.960830477768092       -1.570290211352681       -
0.438853117041401       -1.976226001655917      -23.619604594495684       
17.710681769470721       19.282322168852357      -11.949572131038920       -
2.657872090330002        6.967264825385147       -4.752009346821804       -
1.643991566805389        0.230258560128408       -0.217743722561814        
0.431372119205884       -0.083341921457411        0.077691137470582        
0.158336056791558        0.296070952762389        0.081009268717310 
 -1    1       -0.859375000000000       -0.843750000000000       -
0.828125000000000 
  1    1       -0.859375000000000       -0.843750000000000       -
0.828125000000000 
 -1    1       -0.265625000000000       -0.218750000000000       -
0.171875000000000 
 -1    1       -0.671875000000000       -0.656250000000000       -
0.640625000000000 
 -1    1        0.296875000000000        0.375000000000000        
0.453125000000000 
 -1    1       -0.984375000000000       -0.968750000000000       -
0.953125000000000 
 -1    1       -0.515625000000000       -0.500000000000000       -
0.484375000000000 
 -1    1       -0.703125000000000       -0.687500000000000       -
0.671875000000000 
 -1    1       -0.421875000000000       -0.406250000000000       -
0.382812500000000 
 -1    1       -0.578125000000000       -0.562500000000000       -
0.546875000000000 
 -1    1       -0.765625000000000       -0.750000000000000       -
0.734375000000000 
 -1    1       -0.734375000000000       -0.718750000000000       -
0.703125000000000 
 -1    1       -0.796875000000000       -0.781250000000000       -
0.765625000000000 
 -1    1       -0.828125000000000       -0.812500000000000       -
0.796875000000000 
 -1    1       -0.453125000000000       -0.437500000000000       -
0.421875000000000 
 -1    1       -0.640625000000000       -0.625000000000000       -
0.609375000000000 
 -1    1       -0.609375000000000       -0.593750000000000       -
0.578125000000000 
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 -1    1       -0.906250000000000       -0.875000000000000       -
0.859375000000000 
 -1    1       -0.171875000000000       -0.125000000000000       -
0.093750000000000 
 -1    1        0.078125000000000        0.218750000000000        
0.296875000000000 
 -1    1       -0.359375000000000       -0.312500000000000       -
0.265625000000000 
 -1    1        0.453125000000000        0.531250000000000        
0.648437500000000 
 -1    1       -0.953125000000000       -0.937500000000000       -
0.914062500000000 
 -1    1       -0.093750000000000       -0.062500000000000       -
0.015625000000000 
 -1    1       -0.484375000000000       -0.468750000000000       -
0.453125000000000 
 -1    1       -0.546875000000000       -0.531250000000000       -
0.515625000000000 
 
 
QMARS.dat (201 Data Points): 
    1   26 
        0.500000000000000 
        0.500000000000000 
    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    
1    1    1    1    1    1    1    1    1    1 
        0.784491961559237        2.905122792062056        0.042860015545419        
0.427947997651711       -3.760823714142479       -0.382420644801848        
6.611500445700711       12.432798782937748      -15.005696487610892      -
10.259740596893510       12.252316879797418       -0.894864223631819       -
3.011698787841257      -20.865240202107969       -6.460929739742117      -
10.056190560758544       18.419131225604275        9.859346092078775       -
3.588518685680111       -1.418510120164459       -2.306032232475570        
0.358212982095669      -10.642612994172065        0.442563362726601        
5.410178765440429        9.941634063124194       -0.089060082973616 
 -1    1       -0.860000000000000       -0.840000000000000       -
0.825000000000000 
  1    1       -0.860000000000000       -0.840000000000000       -
0.825000000000000 
 -1    1       -0.260000000000000       -0.210000000000000       -
0.155000000000000 
 -1    1       -0.665000000000000       -0.660000000000000       -
0.652500000000000 
 -1    1        0.260000000000000        0.350000000000000        
0.485000000000000 
 -1    1       -0.535000000000000       -0.500000000000000       -
0.470000000000000 
 -1    1       -0.705000000000000       -0.700000000000000       -
0.692500000000000 
 -1    1       -0.735000000000000       -0.730000000000000       -
0.725000000000000 
 -1    1       -0.690000000000000       -0.680000000000000       -
0.675000000000000 
 -1    1       -0.775000000000000       -0.770000000000000       -
0.762500000000000 
 -1    1       -0.430000000000000       -0.420000000000000       -
0.405000000000000 
 -1    1       -0.585000000000000       -0.570000000000000       -
0.547500000000000 
 -1    1       -0.755000000000000       -0.740000000000000       -
0.735000000000000 
 -1    1       -0.990000000000000       -0.980000000000000       -
0.965000000000000 
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 -1    1       -0.825000000000000       -0.810000000000000       -
0.795000000000000 
 -1    1       -0.715000000000000       -0.710000000000000       -
0.705000000000000 
 -1    1       -0.650000000000000       -0.640000000000000       -
0.625000000000000 
 -1    1       -0.620000000000000       -0.600000000000000       -
0.585000000000000 
 -1    1       -0.930000000000000       -0.880000000000000       -
0.860000000000000 
 -1    1       -0.470000000000000       -0.440000000000000       -
0.430000000000000 
 -1    1       -0.155000000000000       -0.100000000000000       -
0.017500000000000 
 -1    1       -0.675000000000000       -0.670000000000000       -
0.665000000000000 
 -1    1       -0.365000000000000       -0.310000000000000       -
0.260000000000000 
 -1    1       -0.795000000000000       -0.780000000000000       -
0.775000000000000 
 -1    1       -0.725000000000000       -0.720000000000000       -
0.715000000000000 
 -1    1        0.035000000000000        0.170000000000000        
0.260000000000000 
 
 
QMARS.dat (13 Data Points): 
    1   11 
        0.280000000000000 
        0.500000000000000 
    1    1    1    1    1    1    1    1    1    1    1 
        0.818148952861391      -10.592469590022956        0.024055246830793        1.141505735575954      -
19.190225735854213       36.236320885414720      -33.743756350529544       19.536054858076000        
4.098478120463438       -2.546356064901451       -0.465685671146863        1.709644342307768 
 -1    1       -0.465000000000000       -0.370000000000000       -0.355000000000000 
  1    1       -0.392500000000000       -0.370000000000000       -0.355000000000000 
 -1    1        0.130000000000000        0.240000000000000        0.405000000000000 
 -1    1       -0.250000000000000       -0.230000000000000       -0.210000000000000 
 -1    1       -0.285000000000000       -0.270000000000000       -0.250000000000000 
 -1    1       -0.320000000000000       -0.300000000000000       -0.285000000000000 
 -1    1       -0.355000000000000       -0.340000000000000       -0.320000000000000 
 -1    1       -0.125000000000000       -0.060000000000000       -0.020000000000000 
 -1    1       -0.020000000000000        0.020000000000000        0.080000000000000 
 -1    1        0.510000000000000        0.780000000000000        1.110000000000000 
 -1    1       -0.210000000000000       -0.190000000000000       -0.160000000000000 
 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 13, 13, 50, 2, 1 
v 1 count[v] 13 levels 
T set to p-2 (11). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 7 value 0.026000 
v 1 t 2 knot[v][t] 2 value 0.091000 
v 1 t 3 knot[v][t] 8 value 0.215000 
v 1 t 4 knot[v][t] 9 value 0.289000 
v 1 t 5 knot[v][t] 3 value 0.331000 
v 1 t 6 knot[v][t] 10 value 0.414000 
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v 1 t 7 knot[v][t] 4 value 0.500000 
v 1 t 8 knot[v][t] 11 value 0.582000 
v 1 t 9 knot[v][t] 5 value 0.669000 
v 1 t 10 knot[v][t] 12 value 0.785000 
v 1 t 11 knot[v][t] 13 value 0.909000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000192 
m 0 v 1 t 1 I 33.889683071877734 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 6 I 40.171443343286093 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 9 I 65.506933558794287 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 3 I 89.350140883724464 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 2 I 57.490695569612832 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 5 I 3.907723530036343 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 10 I 1.184287438418364 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 8 I 0.253932969820230 zero 1 1 2 1 M=17, onM=9 
m 0 v 1 t 7 I 1.099315592147945 zero 1 1 2 1 M=19, onM=10 
m 0 v 1 t 11 I 0.025664992346307 zero 1 1 2 1 M=21, onM=11 
m 0 v 1 t 4 I 0.000647036211367 zero 1 1 2 1 M=23, onM=12 
m 0 v 1 t 4 I 0.000000000000000 zero 1 1 2 0 M=24, onM=12 
For N=13, onM=12, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000000841432161 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 
  1  1  1  1  1  1  1  1  1  1  1  0 
linear lof_bst is 0.000000841469089 
quintic lof_bst is 0.000429884029849 
quintic lof_bst without penalty is lof*0.005917159763314=0.000002543692484 
m 1 split 1 cov 1 knots  -0.868000  -0.842000  -0.803000 s -1 
m 2 split 1 cov 1 knots  -0.868000  -0.842000  -0.777000 s 1 
m 3 split 1 cov 1 knots  -0.149000  -0.066000   0.020000 s -1 
m 4 split 1 cov 1 knots   0.357000   0.444000   0.560000 s -1 
m 5 split 1 cov 1 knots  -0.588000  -0.464000  -0.348000 s -1 
m 6 split 1 cov 1 knots  -0.777000  -0.712000  -0.614500 s -1 
m 7 split 1 cov 1 knots  -0.348000  -0.232000  -0.149000 s -1 
m 8 split 1 cov 1 knots   0.560000   0.676000   0.800000 s -1 
m 9 split 1 cov 1 knots   0.188000   0.270000   0.357000 s -1 
m 10 split 1 cov 1 knots   0.020000   0.106000   0.188000 s -1 
m 11 split 1 cov 1 knots   0.800000   0.924000   1.015000 s –1 
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B.2 UTILIZATION OF DIFFERENT TYPES OF METAMODELS IN SEED 

The regression splines metamodels developed for the single-variable function in 

Section 5.3 are presented here.  Only the files qmars.dat are presented here. 

 
REGRESSION SPLINE Metamodel of Prediction Errors in Iteration I – Step 4 (with 4 data 
points and 5 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 9, 9, 30, 2, 1 
v 1 count[v] 9 levels 
T set to p-2 (7). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 5 value 0.091000 
v 1 t 2 knot[v][t] 6 value 0.215000 
v 1 t 3 knot[v][t] 2 value 0.331000 
v 1 t 4 knot[v][t] 7 value 0.500000 
v 1 t 5 knot[v][t] 3 value 0.669000 
v 1 t 6 knot[v][t] 8 value 0.785000 
v 1 t 7 knot[v][t] 9 value 0.909000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000278 
m 0 v 1 t 1 I 2185.235914437491400 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 3 I 1779.564047921492600 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 2 I 211.881913968762090 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 4 I 70.600513313779658 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 5 I 70.390066900327525 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 6 I 1.153538313945575 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 7 I 0.992432478524021 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 7 I 0.000000000000000 zero 1 1 2 0 M=16, onM=8 
For N=9, onM=8, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000893189952348 with J_bst: 
  1  2  3  4  5  6  7  8 
  1  1  1  1  1  1  1  0 
lof_bst= 0.000482844283989 with J_bst: 
  1  2  3  4  5  6  7  8 
  1  1  1  1  1  1  0  0 
linear lof_bst is 0.000482844295849 
quintic lof_bst is 0.000223574353830 
quintic lof_bst without penalty is lof*0.049382716049383=0.000011040708831 
m 1 split 1 cov 1 knots  -0.909000  -0.818000  -0.694000 s -1 
m 2 split 1 cov 1 knots  -0.909000  -0.818000  -0.694000 s 1 
m 3 split 1 cov 1 knots  -0.454000  -0.338000  -0.169000 s -1 
m 4 split 1 cov 1 knots  -0.694000  -0.570000  -0.454000 s -1 
m 5 split 1 cov 1 knots  -0.169000   0.000000   0.169000 s -1 
m 6 split 1 cov 1 knots   0.169000   0.338000   0.591500 s –1 
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REGRESSION SPLINE Metamodel of Responses in Iteration I – Step 8 (6 data points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 6, 6, 50, 2, 1 
v 1 count[v] 6 levels 
T set to p-2 (4). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 5 value 0.091000 
v 1 t 2 knot[v][t] 2 value 0.331000 
v 1 t 3 knot[v][t] 6 value 0.500000 
v 1 t 4 knot[v][t] 3 value 0.669000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000417 
m 0 v 1 t 1 I 4803.027518465813000 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 2 I 67.979517786175649 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 4 I 18.226084000257934 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 3 I 28.470572680609678 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 3 I 0.000000000000000 zero 1 1 2 0 M=10, onM=5 
For N=6, onM=5, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.010935660807123 with J_bst: 
  1  2  3  4  5 
  1  1  1  0  1 
lof_bst= 0.007004537701781 with J_bst: 
  1  2  3  4  5 
  1  1  1  0  0 
linear lof_bst is 0.007004537701936 
quintic lof_bst is 0.007265056347063 
quintic lof_bst without penalty is lof*0.111111111111111=0.000807228483007 
m 1 split 1 cov 1 knots  -0.772667  -0.681667  -0.545167 s -1 
m 2 split 1 cov 1 knots  -0.772667  -0.681667  -0.441667 s 1 
m 3 split 1 cov 1 knots  -0.441667  -0.201667   0.158333 s –1 

 
 
REGRESSION SPLINE Metamodel of Prediction Errors in Iteration II – Step 3 (with 3 
data points and 6 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 9, 9, 50, 2, 1 
v 1 count[v] 9 levels 
T set to p-2 (7). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 5 value 0.091000 
v 1 t 2 knot[v][t] 7 value 0.215000 
v 1 t 3 knot[v][t] 2 value 0.331000 
v 1 t 4 knot[v][t] 6 value 0.500000 
v 1 t 5 knot[v][t] 3 value 0.669000 
v 1 t 6 knot[v][t] 8 value 0.785000 
v 1 t 7 knot[v][t] 9 value 0.909000 
 

634 



Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000278 
m 0 v 1 t 1 I 5237.207545019747200 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 4 I 82.908493275196250 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 5 I 63.546597755261850 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 2 I 75.747176648623253 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 3 I 82.351740441337313 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 6 I 1.394399483913649 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 7 I 0.026953414014063 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 7 I 0.000000000000000 zero 1 1 2 0 M=16, onM=8 
For N=9, onM=8, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000024258092213 with J_bst: 
  1  2  3  4  5  6  7  8 
  1  1  1  1  1  1  1  0 
linear lof_bst is 0.000024258116828 
quintic lof_bst is 0.000041249572296 
quintic lof_bst without penalty is lof*0.012345679012346=0.000000509253979 
m 1 split 1 cov 1 knots  -0.909000  -0.818000  -0.694000 s -1 
m 2 split 1 cov 1 knots  -0.909000  -0.818000  -0.694000 s 1 
m 3 split 1 cov 1 knots  -0.169000   0.000000   0.169000 s -1 
m 4 split 1 cov 1 knots   0.169000   0.338000   0.454000 s -1 
m 5 split 1 cov 1 knots  -0.694000  -0.570000  -0.454000 s -1 
m 6 split 1 cov 1 knots  -0.454000  -0.338000  -0.169000 s -1 
m 7 split 1 cov 1 knots   0.454000   0.570000   0.744000 s –1 

 
 
REGRESSION SPLINE Metamodel of Responses in Iteration II – Step 8 (with 8 data 
points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 8, 8, 50, 2, 1 
v 1 count[v] 8 levels 
T set to p-2 (6). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 2 value 0.091000 
v 1 t 2 knot[v][t] 3 value 0.215000 
v 1 t 3 knot[v][t] 4 value 0.331000 
v 1 t 4 knot[v][t] 5 value 0.500000 
v 1 t 5 knot[v][t] 6 value 0.669000 
v 1 t 6 knot[v][t] 7 value 0.833000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000313 
m 0 v 1 t 1 I 5364.836771030441900 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 4 I 86.810040802686899 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 5 I 54.955163539854851 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 2 I 75.668742279855266 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 3 I 82.411207787488465 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 6 I 0.849650086301520 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 6 I 0.000000000000000 zero 1 1 2 0 M=14, onM=7 
For N=8, onM=7, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000679720795882 with J_bst: 
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  1  2  3  4  5  6  7 
  1  1  1  1  1  1  0 
linear lof_bst is 0.000679720812870 
quintic lof_bst is 0.000030046700078 
quintic lof_bst without penalty is lof*0.015625000000000=0.000000469479689 
m 1 split 1 cov 1 knots  -0.818750  -0.727750  -0.603750 s -1 
m 2 split 1 cov 1 knots  -0.818750  -0.727750  -0.603750 s 1 
m 3 split 1 cov 1 knots  -0.078750   0.090250   0.259250 s -1 
m 4 split 1 cov 1 knots   0.259250   0.428250   0.681750 s -1 
m 5 split 1 cov 1 knots  -0.603750  -0.479750  -0.363750 s -1 
m 6 split 1 cov 1 knots  -0.363750  -0.247750  -0.078750 s –1 

 
 
REGRESSION SPLINE Metamodel of Responses in Iteration III – Step 3 (with 8 data 
points and 6 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 6, 6, 50, 2, 1 
v 1 count[v] 6 levels 
T set to p-2 (4). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 2 value 0.289000 
v 1 t 2 knot[v][t] 3 value 0.414000 
v 1 t 3 knot[v][t] 4 value 0.582000 
v 1 t 4 knot[v][t] 5 value 0.785000 
 
Min/Max x-values: 
v 1 min 0.026000 max 0.909000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000417 
m 0 v 1 t 1 I 1970.567559425040800 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 2 I 75.588720887641529 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 3 I 29.659951455774380 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 4 I 6.802131324235522 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 4 I 0.000000000000000 zero 1 1 2 0 M=10, onM=5 
For N=6, onM=5, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.004081281493572 with J_bst: 
  1  2  3  4  5 
  1  1  1  1  0 
linear lof_bst is 0.004081281503242 
quintic lof_bst is 0.002639744126298 
quintic lof_bst without penalty is lof*0.027777777777778=0.000073326225731 
m 1 split 1 cov 1 knots  -0.777652  -0.479804  -0.338241 s -1 
m 2 split 1 cov 1 knots  -0.692148  -0.479804  -0.338241 s 1 
m 3 split 1 cov 1 knots  -0.338241  -0.196678  -0.006418 s -1 
m 4 split 1 cov 1 knots  -0.006418   0.183843   0.469234 s –1 

 
 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 14, 14, 50, 2, 1 
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v 1 count[v] 14 levels 
T set to p-2 (12). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 9 value 0.026000 
v 1 t 2 knot[v][t] 2 value 0.091000 
v 1 t 3 knot[v][t] 3 value 0.215000 
v 1 t 4 knot[v][t] 10 value 0.289000 
v 1 t 5 knot[v][t] 4 value 0.331000 
v 1 t 6 knot[v][t] 11 value 0.414000 
v 1 t 7 knot[v][t] 5 value 0.500000 
v 1 t 8 knot[v][t] 12 value 0.582000 
v 1 t 9 knot[v][t] 6 value 0.669000 
v 1 t 10 knot[v][t] 13 value 0.785000 
v 1 t 11 knot[v][t] 7 value 0.833000 
v 1 t 12 knot[v][t] 14 value 0.909000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000179 
m 0 v 1 t 2 I 1104.034446933376800 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 5 I 641.727010256131280 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 1 I 68.699732858564118 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 3 I 27.511075114669328 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 4 I 35.085611876807420 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 10 I 18.609337638162899 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 6 I 2.143573078245412 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 7 I 1.766371130643947 zero 1 1 2 1 M=17, onM=9 
m 0 v 1 t 9 I 0.704470670560657 zero 1 1 2 1 M=19, onM=10 
m 0 v 1 t 8 I 0.783995247638147 zero 1 1 2 1 M=21, onM=11 
m 0 v 1 t 12 I 0.025600117142965 zero 1 1 2 1 M=23, onM=12 
m 0 v 1 t 11 I 0.001473995613301 zero 1 1 2 1 M=25, onM=13 
m 0 v 1 t 11 I 0.000000000000000 zero 1 1 2 0 M=26, onM=13 
For N=14, onM=13, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000002063615280 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 13 
  1  1  1  1  1  1  1  1  1  1  1  1  0 
linear lof_bst is 0.000002063753677 
quintic lof_bst is 0.000005698330870 
quintic lof_bst without penalty is lof*0.005102040816327=0.000000029073117 
m 1 split 1 cov 1 knots  -0.832143  -0.767143  -0.669643 s -1 
m 2 split 1 cov 1 knots  -0.832143  -0.767143  -0.643143 s 1 
m 3 split 1 cov 1 knots  -0.329143  -0.287143  -0.224143 s -1 
m 4 split 1 cov 1 knots  -0.923143  -0.897143  -0.858143 s -1 
m 5 split 1 cov 1 knots  -0.643143  -0.519143  -0.445143 s -1 
m 6 split 1 cov 1 knots  -0.445143  -0.371143  -0.329143 s -1 
m 7 split 1 cov 1 knots   0.504857   0.620857   0.744857 s -1 
m 8 split 1 cov 1 knots  -0.204143  -0.121143  -0.035143 s -1 
m 9 split 1 cov 1 knots  -0.035143   0.050857   0.132857 s -1 
m 10 split 1 cov 1 knots   0.301857   0.388857   0.504857 s -1 
m 11 split 1 cov 1 knots   0.132857   0.214857   0.301857 s -1 
m 12 split 1 cov 1 knots   0.744857   0.868857   0.959857 s –1 

 
 
REGRESSION SPLINE Metamodel of Responses II in Iteration III – Step 3 (with 6 data 
points and 2 data points and 6 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
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circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 8, 8, 50, 2, 1 
v 1 count[v] 8 levels 
T set to p-2 (6). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 3 value 0.026000 
v 1 t 2 knot[v][t] 4 value 0.289000 
v 1 t 3 knot[v][t] 5 value 0.414000 
v 1 t 4 knot[v][t] 6 value 0.582000 
v 1 t 5 knot[v][t] 7 value 0.785000 
v 1 t 6 knot[v][t] 8 value 0.909000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000313 
m 0 v 1 t 1 I 6301.198254006109900 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 2 I 310.957987054077080 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 3 I 57.583263028843767 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 5 I 50.498017544867572 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 4 I 10.043555448854978 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 6 I 0.026299124785490 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 6 I 0.000000000000000 zero 1 1 2 0 M=14, onM=7 
For N=8, onM=7, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000021039316562 with J_bst: 
  1  2  3  4  5  6  7 
  1  1  1  1  1  1  0 
linear lof_bst is 0.000021039355873 
quintic lof_bst is 0.000155486029099 
quintic lof_bst without penalty is lof*0.015625000000000=0.000002429469205 
m 1 split 1 cov 1 knots  -0.975250  -0.949250  -0.910250 s -1 
m 2 split 1 cov 1 knots  -0.975250  -0.949250  -0.686250 s 1 
m 3 split 1 cov 1 knots  -0.686250  -0.423250  -0.298250 s -1 
m 4 split 1 cov 1 knots  -0.298250  -0.173250  -0.005250 s -1 
m 5 split 1 cov 1 knots   0.365750   0.568750   0.783750 s -1 
m 6 split 1 cov 1 knots  -0.005250   0.162750   0.365750 s –1 

 
 
REGRESSION SPLINE Metamodel of Prediction Errors II in Iteration III – Step 3 (with 6 
data points, 2 data points, and 6 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 14, 14, 50, 2, 1 
v 1 count[v] 14 levels 
T set to p-2 (12). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 9 value 0.026000 
v 1 t 2 knot[v][t] 2 value 0.091000 
v 1 t 3 knot[v][t] 3 value 0.215000 
v 1 t 4 knot[v][t] 10 value 0.289000 
v 1 t 5 knot[v][t] 4 value 0.331000 
v 1 t 6 knot[v][t] 11 value 0.414000 
v 1 t 7 knot[v][t] 5 value 0.500000 
v 1 t 8 knot[v][t] 12 value 0.582000 
v 1 t 9 knot[v][t] 6 value 0.669000 
v 1 t 10 knot[v][t] 13 value 0.785000 
v 1 t 11 knot[v][t] 7 value 0.833000 
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v 1 t 12 knot[v][t] 14 value 0.909000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000179 
m 0 v 1 t 2 I 339.173680209830590 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 5 I 467.274744487073750 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 3 I 40.935521600356182 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 1 I 33.590584833269411 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 4 I 30.608378933262543 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 6 I 7.133305614126354 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 9 I 0.872305796962173 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 11 I 0.643541172744865 zero 1 1 2 1 M=17, onM=9 
m 0 v 1 t 7 I 0.826719505032901 zero 1 1 2 1 M=19, onM=10 
m 0 v 1 t 8 I 0.143614638849335 zero 1 1 2 1 M=21, onM=11 
m 0 v 1 t 12 I 0.049901920769187 zero 1 1 2 1 M=23, onM=12 
m 0 v 1 t 10 I 0.000054162747859 zero 1 1 2 1 M=25, onM=13 
m 0 v 1 t 10 I 0.000000000000000 zero 1 1 2 0 M=26, onM=13 
For N=14, onM=13, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000000075828957 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 13 
  1  1  1  1  1  1  1  1  1  1  1  1  0 
linear lof_bst is 0.000000075954298 
quintic lof_bst is 0.000000399706621 
quintic lof_bst without penalty is lof*0.005102040816327=0.000000002039319 
m 1 split 1 cov 1 knots  -0.832143  -0.767143  -0.669643 s -1 
m 2 split 1 cov 1 knots  -0.832143  -0.767143  -0.643143 s 1 
m 3 split 1 cov 1 knots  -0.329143  -0.287143  -0.224143 s -1 
m 4 split 1 cov 1 knots  -0.643143  -0.519143  -0.445143 s -1 
m 5 split 1 cov 1 knots  -0.923143  -0.897143  -0.858143 s -1 
m 6 split 1 cov 1 knots  -0.445143  -0.371143  -0.329143 s -1 
m 7 split 1 cov 1 knots  -0.204143  -0.121143  -0.035143 s -1 
m 8 split 1 cov 1 knots   0.301857   0.388857   0.519357 s -1 
m 9 split 1 cov 1 knots   0.552857   0.716857   0.792857 s -1 
m 10 split 1 cov 1 knots  -0.035143   0.050857   0.132857 s -1 
m 11 split 1 cov 1 knots   0.132857   0.214857   0.301857 s -1 
m 12 split 1 cov 1 knots   0.792857   0.868857   0.959857 s –1 

 
 
Intermediate REGRESSION SPLINE Metamodel of Responses (with 17 data points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 17, 17, 50, 2, 1 
v 1 count[v] 17 levels 
T set to p-2 (15). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 9 value 0.026000 
v 1 t 2 knot[v][t] 10 value 0.071000 
v 1 t 3 knot[v][t] 2 value 0.091000 
v 1 t 4 knot[v][t] 11 value 0.151000 
v 1 t 5 knot[v][t] 3 value 0.215000 
v 1 t 6 knot[v][t] 12 value 0.243000 
v 1 t 7 knot[v][t] 13 value 0.289000 
v 1 t 8 knot[v][t] 4 value 0.331000 
v 1 t 9 knot[v][t] 14 value 0.414000 
v 1 t 10 knot[v][t] 5 value 0.500000 
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v 1 t 11 knot[v][t] 15 value 0.582000 
v 1 t 12 knot[v][t] 6 value 0.669000 
v 1 t 13 knot[v][t] 16 value 0.785000 
v 1 t 14 knot[v][t] 7 value 0.833000 
v 1 t 15 knot[v][t] 17 value 0.909000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000147 
m 0 v 1 t 2 I 7269.432967947485800 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 9 I 75.293730914431393 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 5 I 93.431176329404067 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 12 I 111.320725496105170 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 4 I 70.560647626696408 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 6 I 126.027225668510250 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 3 I 64.635104556370621 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 1 I 63.947382383630810 zero 1 1 2 1 M=17, onM=9 
m 0 v 1 t 7 I 50.840791638568675 zero 1 1 2 1 M=19, onM=10 
m 0 v 1 t 8 I 2.945047030187512 zero 1 1 2 1 M=21, onM=11 
m 0 v 1 t 13 I 1.568282759622121 zero 1 1 2 1 M=23, onM=12 
m 0 v 1 t 10 I 0.316523842043537 zero 1 1 2 1 M=25, onM=13 
m 0 v 1 t 11 I 1.173101721484663 zero 1 1 2 1 M=27, onM=14 
m 0 v 1 t 15 I 0.025330077475867 zero 1 1 2 1 M=29, onM=15 
m 0 v 1 t 14 I 0.001812327231944 zero 1 1 2 1 M=31, onM=16 
m 0 v 1 t 14 I 0.000000000000000 zero 1 1 2 0 M=32, onM=16 
For N=17, onM=16, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000003080989086 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 
linear lof_bst is 0.000003098407401 
quintic lof_bst is 0.000004917793013 
quintic lof_bst without penalty is lof*0.003460207612457=0.000000017016585 
m 1 split 1 cov 1 knots  -0.739353  -0.694353  -0.674353 s -1 
m 2 split 1 cov 1 knots  -0.724353  -0.694353  -0.674353 s 1 
m 3 split 1 cov 1 knots  -0.091353  -0.008353   0.077647 s -1 
m 4 split 1 cov 1 knots  -0.470353  -0.406353  -0.378353 s -1 
m 5 split 1 cov 1 knots   0.414647   0.501647   0.617647 s -1 
m 6 split 1 cov 1 knots  -0.594353  -0.534353  -0.470353 s -1 
m 7 split 1 cov 1 knots  -0.378353  -0.350353  -0.308353 s -1 
m 8 split 1 cov 1 knots  -0.674353  -0.654353  -0.624353 s -1 
m 9 split 1 cov 1 knots  -0.810353  -0.784353  -0.745353 s -1 
m 10 split 1 cov 1 knots  -0.304353  -0.258353  -0.216353 s -1 
m 11 split 1 cov 1 knots  -0.216353  -0.174353  -0.111353 s -1 
m 12 split 1 cov 1 knots   0.617647   0.733647   0.857647 s -1 
m 13 split 1 cov 1 knots   0.077647   0.163647   0.245647 s -1 
m 14 split 1 cov 1 knots   0.245647   0.327647   0.414647 s -1 
m 15 split 1 cov 1 knots   0.857647   0.981647   1.072647 s –1 

 
 
REGRESSION SPLINE Metamodel of Prediction Errors in Iteration III – Step 4 (with 8 
data points and 9 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 17, 17, 50, 2, 1 
v 1 count[v] 17 levels 
T set to p-2 (15). 
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Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 9 value 0.026000 
v 1 t 2 knot[v][t] 10 value 0.071000 
v 1 t 3 knot[v][t] 2 value 0.091000 
v 1 t 4 knot[v][t] 11 value 0.151000 
v 1 t 5 knot[v][t] 3 value 0.215000 
v 1 t 6 knot[v][t] 12 value 0.243000 
v 1 t 7 knot[v][t] 13 value 0.289000 
v 1 t 8 knot[v][t] 4 value 0.331000 
v 1 t 9 knot[v][t] 14 value 0.414000 
v 1 t 10 knot[v][t] 5 value 0.500000 
v 1 t 11 knot[v][t] 15 value 0.582000 
v 1 t 12 knot[v][t] 6 value 0.669000 
v 1 t 13 knot[v][t] 16 value 0.785000 
v 1 t 14 knot[v][t] 7 value 0.833000 
v 1 t 15 knot[v][t] 17 value 0.909000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000147 
m 0 v 1 t 4 I 282.133557720369200 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 8 I 156.279296509230140 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 1 I 121.718667887611250 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 5 I 31.115971263869707 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 6 I 148.141265141702890 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 7 I 54.196704995797312 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 3 I 28.193625034420087 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 2 I 9.020780410731158 zero 1 1 2 1 M=17, onM=9 
m 0 v 1 t 11 I 1.573669673836520 zero 1 1 2 1 M=19, onM=10 
m 0 v 1 t 9 I 6.461532051825494 zero 1 1 2 1 M=21, onM=11 
m 0 v 1 t 10 I 0.996209068593577 zero 1 1 2 1 M=23, onM=12 
m 0 v 1 t 12 I 0.496281852568706 zero 1 1 2 1 M=25, onM=13 
m 0 v 1 t 13 I 0.080533179549255 zero 1 1 2 1 M=27, onM=14 
m 0 v 1 t 15 I 0.024430331786970 zero 1 1 2 1 M=29, onM=15 
m 0 v 1 t 14 I 0.001454009081724 zero 1 1 2 1 M=31, onM=16 
m 0 v 1 t 14 I 0.000000000000000 zero 1 1 2 0 M=32, onM=16 
For N=17, onM=16, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000002471841746 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 
linear lof_bst is 0.000002489316544 
quintic lof_bst is 0.000000078125069 
quintic lof_bst without penalty is lof*0.003460207612457=0.000000000270329 
m 1 split 1 cov 1 knots  -0.594353  -0.534353  -0.470353 s -1 
m 2 split 1 cov 1 knots  -0.594353  -0.534353  -0.470353 s 1 
m 3 split 1 cov 1 knots  -0.216353  -0.174353  -0.111353 s -1 
m 4 split 1 cov 1 knots  -0.810353  -0.784353  -0.745353 s -1 
m 5 split 1 cov 1 knots  -0.470353  -0.406353  -0.378353 s -1 
m 6 split 1 cov 1 knots  -0.378353  -0.350353  -0.308353 s -1 
m 7 split 1 cov 1 knots  -0.304353  -0.258353  -0.216353 s -1 
m 8 split 1 cov 1 knots  -0.674353  -0.654353  -0.624353 s -1 
m 9 split 1 cov 1 knots  -0.739353  -0.694353  -0.674353 s -1 
m 10 split 1 cov 1 knots   0.245647   0.327647   0.414647 s -1 
m 11 split 1 cov 1 knots  -0.091353  -0.008353   0.077647 s -1 
m 12 split 1 cov 1 knots   0.077647   0.163647   0.245647 s -1 
m 13 split 1 cov 1 knots   0.414647   0.501647   0.617647 s -1 
m 14 split 1 cov 1 knots   0.617647   0.733647   0.857647 s -1 
m 15 split 1 cov 1 knots   0.857647   0.981647   1.072647 s –1 
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Final Regression Spline Metamodel of Responses in Iteration III – Step 8 (with 17 points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 19, 19, 50, 2, 1 
v 1 count[v] 19 levels 
T set to p-2 (17). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 11 value 0.026000 
v 1 t 2 knot[v][t] 12 value 0.071000 
v 1 t 3 knot[v][t] 2 value 0.091000 
v 1 t 4 knot[v][t] 3 value 0.126000 
v 1 t 5 knot[v][t] 13 value 0.151000 
v 1 t 6 knot[v][t] 4 value 0.215000 
v 1 t 7 knot[v][t] 14 value 0.243000 
v 1 t 8 knot[v][t] 5 value 0.254000 
v 1 t 9 knot[v][t] 15 value 0.289000 
v 1 t 10 knot[v][t] 6 value 0.331000 
v 1 t 11 knot[v][t] 16 value 0.414000 
v 1 t 12 knot[v][t] 7 value 0.500000 
v 1 t 13 knot[v][t] 17 value 0.582000 
v 1 t 14 knot[v][t] 8 value 0.669000 
v 1 t 15 knot[v][t] 18 value 0.785000 
v 1 t 16 knot[v][t] 9 value 0.833000 
v 1 t 17 knot[v][t] 19 value 0.909000 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000132 
m 0 v 1 t 2 I 7168.542631419148200 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 11 I 205.645631822369320 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 4 I 151.450532648740650 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 5 I 314.886298981557500 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 6 I 95.209332861043208 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 7 I 260.087296180865560 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 14 I 77.475774020079555 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 9 I 71.272630255421504 zero 1 1 2 1 M=17, onM=9 
m 0 v 1 t 1 I 62.989582271940449 zero 1 1 2 1 M=19, onM=10 
m 0 v 1 t 8 I 15.840252941947378 zero 1 1 2 1 M=21, onM=11 
m 0 v 1 t 10 I 2.944981081412627 zero 1 1 2 1 M=23, onM=12 
m 0 v 1 t 15 I 1.568282702010469 zero 1 1 2 1 M=25, onM=13 
m 0 v 1 t 3 I 0.998537593401555 zero 1 1 2 1 M=27, onM=14 
m 0 v 1 t 12 I 0.316523281034097 zero 1 1 2 1 M=29, onM=15 
m 0 v 1 t 13 I 1.173099698582701 zero 1 1 2 1 M=31, onM=16 
m 0 v 1 t 17 I 0.025330077333144 zero 1 1 2 1 M=33, onM=17 
m 0 v 1 t 16 I 0.001812327000035 zero 1 1 2 1 M=35, onM=18 
m 0 v 1 t 16 I 0.000000000000000 zero 1 1 2 0 M=36, onM=18 
For N=19, onM=18, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000003443458390 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 
linear lof_bst is 0.000003464607892 
quintic lof_bst is 0.000005476011637 
quintic lof_bst without penalty is lof*0.002770083102493=0.000000015169007 
m 1 split 1 cov 1 knots  -0.691316  -0.646316  -0.626316 s -1 
m 2 split 1 cov 1 knots  -0.676316  -0.646316  -0.626316 s 1 
m 3 split 1 cov 1 knots  -0.043316   0.039684   0.125684 s -1 
m 4 split 1 cov 1 knots  -0.571316  -0.536316  -0.511316 s -1 
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m 5 split 1 cov 1 knots  -0.511316  -0.486316  -0.448816 s -1 
m 6 split 1 cov 1 knots  -0.422316  -0.358316  -0.330316 s -1 
m 7 split 1 cov 1 knots  -0.330316  -0.302316  -0.291316 s -1 
m 8 split 1 cov 1 knots   0.462684   0.549684   0.665684 s -1 
m 9 split 1 cov 1 knots  -0.245316  -0.210316  -0.168316 s -1 
m 10 split 1 cov 1 knots  -0.762316  -0.736316  -0.697316 s -1 
m 11 split 1 cov 1 knots  -0.291316  -0.280316  -0.263816 s -1 
m 12 split 1 cov 1 knots  -0.168316  -0.126316  -0.063316 s -1 
m 13 split 1 cov 1 knots   0.665684   0.781684   0.905684 s -1 
m 14 split 1 cov 1 knots  -0.626316  -0.606316  -0.576316 s -1 
m 15 split 1 cov 1 knots   0.125684   0.211684   0.293684 s -1 
m 16 split 1 cov 1 knots   0.293684   0.375684   0.462684 s -1 
m 17 split 1 cov 1 knots   0.905684   1.029684   1.120684 s –1 
 
 
Single-Stage Experiments and Corresponding Regression Spline Metamodel of Responses 
(with 19 points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 1, 0, 19, 19, 50, 2, 1 
v 1 count[v] 19 levels 
T set to p-2 (17). 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 2 value 0.055556 
v 1 t 2 knot[v][t] 3 value 0.111111 
v 1 t 3 knot[v][t] 4 value 0.166667 
v 1 t 4 knot[v][t] 5 value 0.222222 
v 1 t 5 knot[v][t] 6 value 0.277778 
v 1 t 6 knot[v][t] 7 value 0.333333 
v 1 t 7 knot[v][t] 8 value 0.388889 
v 1 t 8 knot[v][t] 9 value 0.444444 
v 1 t 9 knot[v][t] 10 value 0.500000 
v 1 t 10 knot[v][t] 11 value 0.555556 
v 1 t 11 knot[v][t] 12 value 0.611111 
v 1 t 12 knot[v][t] 13 value 0.666667 
v 1 t 13 knot[v][t] 14 value 0.722222 
v 1 t 14 knot[v][t] 15 value 0.777778 
v 1 t 15 knot[v][t] 16 value 0.833333 
v 1 t 16 knot[v][t] 17 value 0.888889 
v 1 t 17 knot[v][t] 18 value 0.944444 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000132 
m 0 v 1 t 2 I 6380.515450402902400 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 7 I 480.547397715893790 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 3 I 533.166835128732490 zero 1 1 2 1 M=7, onM=4 
m 0 v 1 t 1 I 282.444647093684690 zero 1 1 2 1 M=9, onM=5 
m 0 v 1 t 12 I 210.694453772197110 zero 1 1 2 1 M=11, onM=6 
m 0 v 1 t 4 I 51.861511452135410 zero 1 1 2 1 M=13, onM=7 
m 0 v 1 t 5 I 5.817543824950742 zero 1 1 2 1 M=15, onM=8 
m 0 v 1 t 8 I 8.042719105064752 zero 1 1 2 1 M=17, onM=9 
m 0 v 1 t 14 I 1.236193941396714 zero 1 1 2 1 M=19, onM=10 
m 0 v 1 t 11 I 0.952642915238477 zero 1 1 2 1 M=21, onM=11 
m 0 v 1 t 13 I 0.253713461247394 zero 1 1 2 1 M=23, onM=12 
m 0 v 1 t 9 I 0.130664484272747 zero 1 1 2 1 M=25, onM=13 
m 0 v 1 t 10 I 0.079337049073314 zero 1 1 2 1 M=27, onM=14 
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m 0 v 1 t 6 I 0.066123847745227 zero 1 1 2 1 M=29, onM=15 
m 0 v 1 t 17 I 0.024999987650532 zero 1 1 2 1 M=31, onM=16 
m 0 v 1 t 15 I 0.001079991352833 zero 1 1 2 1 M=33, onM=17 
m 0 v 1 t 16 I 0.002399987137368 zero 1 1 2 1 M=35, onM=18 
m 0 v 1 t 16 I 0.000000000000000 zero 1 1 2 0 M=36, onM=18 
For N=19, onM=18, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000002052000131 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1 
lof_bst= 0.000001653000115 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0 
linear lof_bst is 0.000001653096778 
quintic lof_bst is 0.000000533730253 
quintic lof_bst without penalty is lof*0.011080332409972=0.000000005913909 
m 1 split 1 cov 1 knots  -0.833333  -0.777778  -0.722222 s -1 
m 2 split 1 cov 1 knots  -0.833333  -0.777778  -0.722222 s 1 
m 3 split 1 cov 1 knots  -0.277778  -0.222222  -0.166667 s -1 
m 4 split 1 cov 1 knots  -0.722222  -0.666667  -0.611111 s -1 
m 5 split 1 cov 1 knots  -0.944444  -0.888889  -0.833333 s -1 
m 6 split 1 cov 1 knots   0.277778   0.333333   0.388889 s -1 
m 7 split 1 cov 1 knots  -0.611111  -0.555556  -0.500000 s -1 
m 8 split 1 cov 1 knots  -0.500000  -0.444444  -0.388889 s -1 
m 9 split 1 cov 1 knots  -0.166667  -0.111111  -0.055556 s -1 
m 10 split 1 cov 1 knots   0.500000   0.555556   0.638889 s -1 
m 11 split 1 cov 1 knots   0.166667   0.222222   0.277778 s -1 
m 12 split 1 cov 1 knots   0.388889   0.444444   0.500000 s -1 
m 13 split 1 cov 1 knots  -0.055556   0.000000   0.055556 s -1 
m 14 split 1 cov 1 knots   0.055556   0.111111   0.166667 s -1 
m 15 split 1 cov 1 knots  -0.388889  -0.333333  -0.277778 s -1 
m 16 split 1 cov 1 knots   0.722222   0.888889   0.944444 s –1 
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B.3 EXPLORATION OF DESIGN SOLUTIONS WITH SEED 

All supporting materials and documents for studies in Section 5.5 are presented 

here.  The model files for MARS metamodels are listed in Section B.3.1.  The RS 

metamodels of responses developed in Section 5.5.2 are listed in Section B.3.2.  

FORTRAN codes of the SEED method in the multi-response problem are presented in 

Section B.3.3.  The implementation of SEED in iSIGHT is illustrated in Section B.3.4.   

B.3.1 MARS Metamodels Developed in Design of the Pressure Vessels 

MARS Metamodel of Prediction Errors for Volume in Iteration II – Step 3 (with 6 data 
points and 4 validation points): 
The responses should be multiplied by 1k. 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 2, 0, 10, 10, 50, 3, 1 
v 1 count[v] 7 levels 
v 2 count[v] 8 levels 
T set to p-2 (5). 
Warning: Knots distributed asymmetrically over levels of covariate 2. 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 8 value 0.224200 
v 1 t 2 knot[v][t] 10 value 0.499600 
v 1 t 3 knot[v][t] 6 value 0.500000 
v 1 t 4 knot[v][t] 5 value 0.500900 
v 1 t 5 knot[v][t] 9 value 0.786200 
 
v 2 t 1 knot[v][t] 7 value 0.001200 
v 2 t 2 knot[v][t] 6 value 0.204300 
v 2 t 3 knot[v][t] 8 value 0.502500 
v 2 t 4 knot[v][t] 5 value 0.767800 
v 2 t 5 knot[v][t] 10 value 0.999800 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
v 2 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000250 
m 0 v 1 t 5 I 11657676488.734486000000000 zero 1 1 2 1 M=3, onM=2 
m 1 v 2 t 5 I 1418662870.428122500000000 zero 1 1 2 1 M=5, onM=4 
m 0 v 2 t 5 I 812614130.099333880000000 zero 1 1 2 1 M=7, onM=6 
m 0 v 2 t 2 I 41187877.130973093000000 zero 1 1 2 1 M=9, onM=7 
m 1 v 2 t 3 I 47085000.369751297000000 zero 1 1 2 1 M=11, onM=8 
m 0 v 2 t 4 I 6859787.339947069100000 zero 1 1 2 1 M=13, onM=9 
m 0 v 2 t 4 I 0.000000000000000 zero 1 1 2 0 M=14, onM=9 
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For N=10, onM=9, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 6859.801602373312600 with J_bst: 
  1  2  3  4  5  6  7  8  9 
  1  1  1  1  1  1  1  1  0 
linear lof_bst is 6859.801648299139700 
quintic lof_bst is 4832.855340449985300 
quintic lof_bst without penalty is lof*0.010000000000000=48.328553404499864 
m 1 split 1 cov 1 knots  -0.216160   0.570040   0.783840 s -1 
m 2 split 1 cov 1 knots   0.249340   0.570040   0.783840 s 1 
m 3 split 1 cov 1 knots  -0.216160   0.570040   0.783840 s -1 
m 3 split 2 cov 2 knots   0.507000   1.004300   1.004500 s -1 
m 4 split 1 cov 1 knots  -0.216160   0.570040   0.783840 s -1 
m 4 split 2 cov 2 knots   1.004000   1.004300   1.004500 s 1 
m 5 split 1 cov 2 knots   0.208800   1.004300   1.004500 s -1 
m 6 split 1 cov 2 knots   1.004000   1.004300   1.004500 s 1 
m 7 split 1 cov 2 knots  -0.791000  -0.586700  -0.280250 s -1 
m 8 split 1 cov 1 knots  -0.216160   0.570040   0.783840 s -1 
m 8 split 2 cov 2 knots  -0.492800   0.009700   0.507000 s –1 

 
 
MARS Metamodel of Prediction Errors for Cost in Iteration II – Step 3 (with 6 data points 
and 4 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 2, 0, 10, 10, 50, 3, 1 
v 1 count[v] 7 levels 
v 2 count[v] 8 levels 
T set to p-2 (5). 
Warning: Knots distributed asymmetrically over levels of covariate 2. 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 8 value 0.224200 
v 1 t 2 knot[v][t] 10 value 0.499600 
v 1 t 3 knot[v][t] 6 value 0.500000 
v 1 t 4 knot[v][t] 5 value 0.500900 
v 1 t 5 knot[v][t] 9 value 0.786200 
 
v 2 t 1 knot[v][t] 7 value 0.001200 
v 2 t 2 knot[v][t] 6 value 0.204300 
v 2 t 3 knot[v][t] 8 value 0.502500 
v 2 t 4 knot[v][t] 5 value 0.767800 
v 2 t 5 knot[v][t] 10 value 0.999800 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
v 2 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000250 
m 0 v 1 t 5 I 422716224254.840150000000000 zero 1 1 2 1 M=3, onM=2 
m 1 v 2 t 5 I 50602287774.648834000000000 zero 1 1 2 1 M=5, onM=4 
m 0 v 2 t 5 I 8253259926.488828700000000 zero 1 1 2 1 M=7, onM=6 
m 0 v 2 t 4 I 14910739.498952884000000 zero 1 1 2 1 M=9, onM=7 
m 0 v 2 t 2 I 24541784.041385669000000 zero 1 1 2 1 M=11, onM=8 
m 0 v 1 t 4 I 2643745.749466502600000 zero 1 1 2 1 M=13, onM=9 
m 0 v 1 t 4 I 0.000000000000000 zero 1 1 2 0 M=14, onM=9 
For N=10, onM=9, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 2643.756863027096600 with J_bst: 
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  1  2  3  4  5  6  7  8  9 
  1  1  1  1  1  1  1  1  0 
linear lof_bst is 2643.761193983883000 
quintic lof_bst is 198.886293763002160 
quintic lof_bst without penalty is lof*0.010000000000000=1.988862937630022 
m 1 split 1 cov 1 knots  -0.216160   0.570040   0.783840 s -1 
m 2 split 1 cov 1 knots   0.249340   0.570040   0.783840 s 1 
m 3 split 1 cov 1 knots  -0.216160   0.570040   0.783840 s -1 
m 3 split 2 cov 2 knots   0.004500   1.004300   1.004500 s -1 
m 4 split 1 cov 1 knots  -0.216160   0.570040   0.783840 s -1 
m 4 split 2 cov 2 knots   1.004000   1.004300   1.004500 s 1 
m 5 split 1 cov 2 knots   0.772300   1.004300   1.004500 s -1 
m 6 split 1 cov 2 knots   1.004000   1.004300   1.004500 s 1 
m 7 split 1 cov 2 knots  -0.023200   0.540300   0.772300 s -1 
m 8 split 1 cov 2 knots  -0.791000  -0.586700  -0.280250 s –1 

 
 
MARS Metamodel of Prediction Errors for Vol in Iteration II – Step 4 (with 6 data points 
and 6 validation points): 
The responses should be multiplied by 1k. 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 2, 0, 12, 12, 50, 3, 1 
v 1 count[v] 9 levels 
v 2 count[v] 10 levels 
T set to p-2 (7). 
Warning: Knots distributed asymmetrically over levels of covariate 2. 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 11 value 0.187100 
v 1 t 2 knot[v][t] 8 value 0.224200 
v 1 t 3 knot[v][t] 10 value 0.499600 
v 1 t 4 knot[v][t] 6 value 0.500000 
v 1 t 5 knot[v][t] 5 value 0.500900 
v 1 t 6 knot[v][t] 9 value 0.786200 
v 1 t 7 knot[v][t] 12 value 0.809600 
 
v 2 t 1 knot[v][t] 7 value 0.001200 
v 2 t 2 knot[v][t] 11 value 0.201700 
v 2 t 3 knot[v][t] 6 value 0.204300 
v 2 t 4 knot[v][t] 8 value 0.502500 
v 2 t 5 knot[v][t] 5 value 0.767800 
v 2 t 6 knot[v][t] 12 value 0.815400 
v 2 t 7 knot[v][t] 10 value 0.999800 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
v 2 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000208 
m 0 v 1 t 7 I 621225387227118.620000000000000 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 6 I 563769260568713.000000000000000 zero 1 1 2 1 M=5, onM=3 
m 0 v 1 t 2 I 143945428054018.940000000000000 zero 1 1 2 1 M=7, onM=4 
m 0 v 2 t 3 I 7161540023987.430700000000000 zero 1 1 2 1 M=9, onM=6 
m 0 v 2 t 6 I 2680587765498.110400000000000 zero 1 1 2 1 M=11, onM=7 
m 9 v 1 t 5 I 304802422458.856750000000000 zero 1 1 2 1 M=13, onM=9 
m 7 v 1 t 5 I 63536933803.304916000000000 zero 1 1 2 1 M=15, onM=11 
m 8 v 1 t 3 I 0.000001552017532 zero 1 1 2 1 M=17, onM=11 
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For N=12, onM=11, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 35267651.525962584000000 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 
  1  1  1  1  1  1  1  1  1  1  0 
lof_bst= 19061327.902506381000000 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 
  1  1  1  1  1  1  1  1  1  0  0 
linear lof_bst is 19285221.624043379000000 
quintic lof_bst is 319236200.270192330000000 
quintic lof_bst without penalty is lof*0.027777777777778=8867672.229727564400000 
 
m 1 split 1 cov 1 knots   0.594383   0.617783   0.652883 s -1 
m 2 split 1 cov 1 knots   0.594383   0.617783   0.808183 s 1 
m 3 split 1 cov 1 knots   0.008983   0.570983   0.594383 s -1 
m 4 split 1 cov 1 knots  -0.777217  -0.553017  -0.216717 s -1 
m 5 split 1 cov 2 knots  -0.794633  -0.590333  -0.283883 s -1 
m 6 split 1 cov 2 knots  -0.794633  -0.590333   0.020767 s 1 
m 7 split 1 cov 2 knots   0.020767   0.631867   0.816467 s -1 
m 8 split 1 cov 2 knots  -0.183533   0.631867   0.816467 s -1 
m 8 split 2 cov 1 knots  -0.500517   0.000383   0.499483 s -1 
m 9 split 1 cov 2 knots  -0.183533   0.631867   0.816467 s -1 
m 9 split 2 cov 1 knots  -0.500517   0.000383   0.499483 s 1 

 
 
MARS Metamodel of Prediction Errors for Cost in Iteration II – Step 4 (with 6 data points 
and 6 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 2, 0, 12, 12, 50, 3, 1 
v 1 count[v] 9 levels 
v 2 count[v] 10 levels 
T set to p-2 (7). 
Warning: Knots distributed asymmetrically over levels of covariate 2. 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 11 value 0.187100 
v 1 t 2 knot[v][t] 8 value 0.224200 
v 1 t 3 knot[v][t] 10 value 0.499600 
v 1 t 4 knot[v][t] 6 value 0.500000 
v 1 t 5 knot[v][t] 5 value 0.500900 
v 1 t 6 knot[v][t] 9 value 0.786200 
v 1 t 7 knot[v][t] 12 value 0.809600 
 
v 2 t 1 knot[v][t] 7 value 0.001200 
v 2 t 2 knot[v][t] 11 value 0.201700 
v 2 t 3 knot[v][t] 6 value 0.204300 
v 2 t 4 knot[v][t] 8 value 0.502500 
v 2 t 5 knot[v][t] 5 value 0.767800 
v 2 t 6 knot[v][t] 12 value 0.815400 
v 2 t 7 knot[v][t] 10 value 0.999800 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
v 2 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000208 
m 0 v 1 t 7 I 6993899343.225333200000000 zero 1 1 2 1 M=3, onM=2 
m 0 v 1 t 6 I 10478966729.657942000000000 zero 1 1 2 1 M=5, onM=3 
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m 3 v 2 t 2 I 2961799047.788775900000000 zero 1 1 2 1 M=7, onM=5 
m 3 v 2 t 3 I 683032866.399371030000000 zero 1 1 2 1 M=9, onM=6 
m 0 v 2 t 4 I 98909051.808867946000000 zero 1 1 2 1 M=11, onM=8 
m 1 v 2 t 5 I 2757207.572606816400000 zero 1 1 2 1 M=13, onM=10 
m 0 v 2 t 5 I 185920.509375761990000 zero 1 1 2 1 M=15, onM=11 
m 0 v 2 t 5 I 0.000000000000000 zero 1 1 2 0 M=16, onM=11 
For N=12, onM=11, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 53.417769237333374 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 
  1  1  1  1  1  1  1  1  1  0  1 
linear lof_bst is 428.554112511562890 
quintic lof_bst is 2094.049693607996700 
quintic lof_bst without penalty is lof*0.006944444444444=14.542011761166643 
m 1 split 1 cov 1 knots   0.594383   0.617783   0.652883 s -1 
m 2 split 1 cov 1 knots   0.594383   0.617783   0.808183 s 1 
m 3 split 1 cov 1 knots  -0.215217   0.570983   0.594383 s -1 
m 4 split 1 cov 1 knots  -0.215217   0.570983   0.594383 s -1 
m 4 split 2 cov 2 knots  -0.797233  -0.595533  -0.592933 s -1 
m 5 split 1 cov 1 knots  -0.215217   0.570983   0.594383 s -1 
m 5 split 2 cov 2 knots  -0.599433  -0.595533  -0.592933 s 1 
m 6 split 1 cov 1 knots  -0.215217   0.570983   0.594383 s -1 
m 6 split 2 cov 2 knots  -0.592933  -0.590333  -0.586433 s -1 
m 7 split 1 cov 2 knots  -0.496433   0.006067   0.271367 s -1 
m 8 split 1 cov 2 knots  -0.391883   0.006067   0.271367 s 1 
m 9 split 1 cov 1 knots   0.594383   0.617783   0.652883 s -1 
m 9 split 2 cov 2 knots  -0.026833   0.536667   0.768867 s -1 
m 10 split 1 cov 2 knots   0.271367   0.536667   0.768867 s –1 

 
 
Final MARS Metamodel of Responses for Vol (with 8 data points and 6 validation points): 
The responses should be multiplied by 1k. 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 2, 0, 14, 14, 50, 3, 1 
v 1 count[v] 11 levels 
v 2 count[v] 12 levels 
T set to p-2 (9). 
Warning: Knots distributed asymmetrically over levels of covariate 2. 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 13 value 0.187100 
v 1 t 2 knot[v][t] 7 value 0.202100 
v 1 t 3 knot[v][t] 10 value 0.224200 
v 1 t 4 knot[v][t] 12 value 0.499600 
v 1 t 5 knot[v][t] 6 value 0.500000 
v 1 t 6 knot[v][t] 5 value 0.500900 
v 1 t 7 knot[v][t] 11 value 0.786200 
v 1 t 8 knot[v][t] 8 value 0.799300 
v 1 t 9 knot[v][t] 14 value 0.809600 
 
v 2 t 1 knot[v][t] 9 value 0.001200 
v 2 t 2 knot[v][t] 8 value 0.199600 
v 2 t 3 knot[v][t] 13 value 0.201700 
v 2 t 4 knot[v][t] 6 value 0.204300 
v 2 t 5 knot[v][t] 10 value 0.502500 
v 2 t 6 knot[v][t] 5 value 0.767800 
v 2 t 7 knot[v][t] 7 value 0.802100 
v 2 t 8 knot[v][t] 14 value 0.815400 
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v 2 t 9 knot[v][t] 12 value 0.999800 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
v 2 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000179 
m 0 v 1 t 6 I 13964451127484424.000000000000000 zero 1 1 2 1 M=3, onM=2 
m 2 v 2 t 2 I 3041069350555118.500000000000000 zero 1 1 2 1 M=5, onM=4 
m 0 v 2 t 1 I 336570851093858.440000000000000 zero 1 1 2 1 M=7, onM=6 
m 6 v 1 t 7 I 53706319880319.062000000000000 zero 1 1 2 1 M=9, onM=8 
m 6 v 1 t 3 I 14911004903154.381000000000000 zero 1 1 2 1 M=11, onM=9 
m 6 v 1 t 9 I 13637584247.136438000000000 zero 1 1 2 1 M=13, onM=10 
m 0 v 1 t 4 I 538625124.816079740000000 zero 1 1 2 1 M=15, onM=11 
m 13 v 2 t 5 I 24754069.548083205000000 zero 1 1 2 1 M=17, onM=13 
m 0 v 2 t 6 I 0.001997870607497 zero 1 1 2 1 M=19, onM=13 
For N=14, onM=13, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 15745.356707442419000 with J_bst: 
  1  2  3  4  5  6  7  8  9 10 11 12 13 
  1  1  1  1  1  1  1  1  1  1  1  0  1 
lof_bst= 9372.505216306077300 with J_bst: 
1  2  3  4  5  6  7  8  9 10 11 12 13 
  1  1  1  1  1  1  1  1  1  1  1  0  0 
linear lof_bst is 26676.326120175963000 
quintic lof_bst is 4180792285.069392700000000 
quintic lof_bst without penalty is lof*0.020408163265306=85322291.53202842200000 
0 
m 1 split 1 cov 1 knots  -0.000914   0.000386   0.002336 s -1 
m 2 split 1 cov 1 knots  -0.000914   0.000386   0.499486 s 1 
m 3 split 1 cov 1 knots  -0.276314   0.000386   0.285686 s 1 
m 3 split 2 cov 2 knots  -0.798529  -0.600129  -0.302529 s -1 
m 4 split 1 cov 1 knots  -0.276314   0.000386   0.285686 s 1 
m 4 split 2 cov 2 knots  -0.798529  -0.600129   0.200271 s 1 
m 5 split 1 cov 2 knots  -0.998129  -0.996929  -0.995129 s -1 
m 6 split 1 cov 2 knots  -0.998129  -0.996929   0.001871 s 1 
m 7 split 1 cov 2 knots  -0.998129  -0.996929  -0.798529 s 1 
m 7 split 2 cov 1 knots   0.285686   0.570986   0.594386 s -1 
m 8 split 1 cov 2 knots  -0.998129  -0.996929  -0.798529 s 1 
m 8 split 2 cov 1 knots   0.535886   0.570986   0.594386 s 1 
m 9 split 1 cov 2 knots  -0.998129  -0.996929  -0.798529 s 1 
m 9 split 2 cov 1 knots  -0.777214  -0.553014  -0.276314 s -1 
m 10 split 1 cov 2 knots  -0.998129  -0.996929  -0.798529 s 1 
m 10 split 2 cov 1 knots   0.594386   0.617786   0.652886 s -1 
m 11 split 1 cov 1 knots  -0.501814  -0.002214  -0.000914 s –1 

 
 
Final MARS Metamodel of Responses for Cost (with 8 data points and 6 validation points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 2, 0, 14, 14, 50, 3, 1 
v 1 count[v] 11 levels 
v 2 count[v] 12 levels 
T set to p-2 (9). 
Warning: Knots distributed asymmetrically over levels of covariate 2. 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 13 value 0.187100 
v 1 t 2 knot[v][t] 7 value 0.202100 
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v 1 t 3 knot[v][t] 10 value 0.224200 
v 1 t 4 knot[v][t] 12 value 0.499600 
v 1 t 5 knot[v][t] 6 value 0.500000 
v 1 t 6 knot[v][t] 5 value 0.500900 
v 1 t 7 knot[v][t] 11 value 0.786200 
v 1 t 8 knot[v][t] 8 value 0.799300 
v 1 t 9 knot[v][t] 14 value 0.809600 
 
v 2 t 1 knot[v][t] 9 value 0.001200 
v 2 t 2 knot[v][t] 8 value 0.199600 
v 2 t 3 knot[v][t] 13 value 0.201700 
v 2 t 4 knot[v][t] 6 value 0.204300 
v 2 t 5 knot[v][t] 10 value 0.502500 
v 2 t 6 knot[v][t] 5 value 0.767800 
v 2 t 7 knot[v][t] 7 value 0.802100 
v 2 t 8 knot[v][t] 14 value 0.815400 
v 2 t 9 knot[v][t] 12 value 0.999800 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
v 2 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000179 
m 0 v 1 t 6 I 562685817939.216190000000000 zero 1 1 2 1 M=3, onM=2 
m 0 v 2 t 5 I 78881631025.950470000000000 zero 1 1 2 1 M=5, onM=4 
m 3 v 1 t 8 I 12798869263.519903000000000 zero 1 1 2 1 M=7, onM=6 
m 4 v 1 t 9 I 1677706339.461287700000000 zero 1 1 2 1 M=9, onM=8 
m 0 v 1 t 3 I 123697458.871668280000000 zero 1 1 2 1 M=11, onM=9 
m 9 v 2 t 3 I 535854.928281072290000 zero 1 1 2 1 M=13, onM=11 
m 0 v 2 t 8 I 24580.374692539062000 zero 1 1 2 1 M=15, onM=12 
m 0 v 2 t 4 I 83.420381156008816 zero 1 1 2 1 M=17, onM=13 
m 0 v 2 t 4 I 0.000000000000000 zero 1 1 2 0 M=18, onM=13 
For N=14, onM=13, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.116793045816546 with J_bst: 
1  2  3  4  5  6  7  8  9 10 11 12 13 
  1  1  1  1  1  1  1  1  1  1  1  1  0 
linear lof_bst is 0.117325671701268 
quintic lof_bst is 60.439011743304562 
quintic lof_bst without penalty is lof*0.005102040816327=0.308362304812778 
m 1 split 1 cov 1 knots  -0.276314   0.000386   0.415436 s -1 
m 2 split 1 cov 1 knots  -0.276314   0.000386   0.499486 s 1 
m 3 split 1 cov 2 knots  -0.496829   0.005671   0.318571 s -1 
m 4 split 1 cov 2 knots  -0.463679   0.005671   0.318571 s 1 
m 5 split 1 cov 2 knots  -0.295129   0.005671   0.456871 s -1 
m 5 split 2 cov 1 knots   0.022086   0.597186   0.607486 s -1 
m 6 split 1 cov 2 knots  -0.295129   0.005671   0.456871 s -1 
m 6 split 2 cov 1 knots   0.581736   0.597186   0.607486 s 1 
m 7 split 1 cov 2 knots  -0.295129   0.005671   0.503171 s 1 
m 7 split 2 cov 1 knots   0.607486   0.617786   0.633236 s -1 
m 8 split 1 cov 2 knots  -0.295129   0.005671   0.503171 s 1 
m 8 split 2 cov 1 knots   0.607486   0.617786   0.808186 s 1 
m 9 split 1 cov 1 knots  -0.777214  -0.553014  -0.276314 s -1 
m 10 split 1 cov 1 knots  -0.777214  -0.553014  -0.216714 s -1 
m 10 split 2 cov 2 knots  -0.797629  -0.595929  -0.295129 s -1 
m 11 split 1 cov 1 knots  -0.777214  -0.553014  -0.216714 s -1 
m 11 split 2 cov 2 knots  -0.797629  -0.595929  -0.295129 s 1 
m 12 split 1 cov 2 knots   0.318571   0.631471   0.816071 s –1 

 
 
MARS Metamodel of Responses for Vol with Currin’s Method (with 14 data points): 
The responses should be multiplied by 1k. 
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qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 2, 0, 14, 14, 50, 3, 1 
v 1 count[v] 7 levels 
v 2 count[v] 12 levels 
T set to p-2 (5). 
Warning: Knots distributed asymmetrically over levels of covariate 2. 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 6 value 0.224200 
v 1 t 2 knot[v][t] 8 value 0.499600 
v 1 t 3 knot[v][t] 5 value 0.500900 
v 1 t 4 knot[v][t] 14 value 0.695300 
v 1 t 5 knot[v][t] 7 value 0.786200 
 
v 2 t 1 knot[v][t] 5 value 0.001200 
v 2 t 2 knot[v][t] 12 value 0.306700 
v 2 t 3 knot[v][t] 13 value 0.502200 
v 2 t 4 knot[v][t] 11 value 0.690000 
v 2 t 5 knot[v][t] 8 value 0.999800 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
v 2 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000179 
m 0 v 1 t 4 I 21153270704470560.000000000000000 zero 1 1 2 1 M=3, onM=2 
m 2 v 2 t 2 I 2871077576538964.000000000000000 zero 1 1 2 1 M=5, onM=4 
m 0 v 2 t 1 I 226329607510409.160000000000000 zero 1 1 2 1 M=7, onM=6 
m 6 v 1 t 1 I 93250906819148.141000000000000 zero 1 1 2 1 M=9, onM=8 
m 0 v 2 t 2 I 20436006647032.305000000000000 zero 1 1 2 1 M=11, onM=9 
m 0 v 1 t 5 I 2510813171017.603500000000000 zero 1 1 2 1 M=13, onM=10 
m 1 v 2 t 4 I 0.153360606386285 zero 1 1 2 1 M=15, onM=11 
m 0 v 2 t 5 I 0.085556872945454 zero 1 1 2 1 M=17, onM=12 
m 0 v 2 t 5 I 0.071798856600192 zero 1 1 2 1 M=19, onM=12 
For N=14, onM=12, lof_all= 0.000012327228356 
Alg3 
linear lof_bst is 864.330273024335720 
quintic lof_bst is 615672484.325671430000000 
quintic lof_bst without penalty is lof*0.005102040816327=3141186.144518731600000 
 
m 1 split 1 cov 1 knots  -0.262729   0.432571   0.523471 s -1 
m 2 split 1 cov 1 knots   0.296221   0.432571   0.523471 s 1 
m 3 split 1 cov 1 knots  -0.024479   0.432571   0.737271 s 1 
m 3 split 2 cov 2 knots  -0.652614  -0.347114   0.036186 s -1 
m 4 split 1 cov 1 knots  -0.024479   0.432571   0.737271 s 1 
m 4 split 2 cov 2 knots  -0.652614  -0.347114   0.036186 s 1 
m 5 split 1 cov 2 knots  -0.959314  -0.958114  -0.956314 s -1 
m 6 split 1 cov 2 knots  -0.959314  -0.958114  -0.652614 s 1 
m 7 split 1 cov 2 knots  -0.959314  -0.958114  -0.652614 s 1 
m 7 split 2 cov 1 knots  -0.733829  -0.509629  -0.173329 s -1 
m 8 split 1 cov 2 knots  -0.959314  -0.958114  -0.652614 s 1 
m 8 split 2 cov 1 knots  -0.733829  -0.509629  -0.038529 s 1 
m 9 split 1 cov 2 knots  -0.652614  -0.347114   0.111136 s -1 
m 10 split 1 cov 1 knots   0.523471   0.614371   0.750721 s -1 
m 11 split 1 cov 1 knots  -0.038529   0.432571   0.737271 s -1 
m 11 split 2 cov 2 knots   0.036186   0.419486   0.729486 s -1 
m 12 split 1 cov 2 knots   0.345986   1.039086   1.039286 s –1 
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MARS Metamodel of Responses for Cost with Currin’s Method (with 14 data points): 
qmars.dat 
Parameter file is data/marsparm.dat. 
X data file is data/x.dat. 
Y data file is data/y.dat. 
Output file is data/qmars.dat. 
circle,n,p,T,N,Mmax,maxIA,alg3 
0, 2, 0, 14, 14, 50, 3, 1 
v 1 count[v] 7 levels 
v 2 count[v] 12 levels 
T set to p-2 (5). 
Warning: Knots distributed asymmetrically over levels of covariate 2. 
Knots based on scaled/actual x-values: 
v 1 t 1 knot[v][t] 6 value 0.224200 
v 1 t 2 knot[v][t] 8 value 0.499600 
v 1 t 3 knot[v][t] 5 value 0.500900 
v 1 t 4 knot[v][t] 14 value 0.695300 
v 1 t 5 knot[v][t] 7 value 0.786200 
 
v 2 t 1 knot[v][t] 5 value 0.001200 
v 2 t 2 knot[v][t] 12 value 0.306700 
v 2 t 3 knot[v][t] 13 value 0.502200 
v 2 t 4 knot[v][t] 11 value 0.690000 
v 2 t 5 knot[v][t] 8 value 0.999800 
 
Min/Max x-values: 
v 1 min 0.000000 max 1.000000 
v 2 min 0.000000 max 1.000000 
mars.qls 
EPS2 0.0000000002500 eps3 0.0000000000179 
m 0 v 1 t 4 I 858846602267.893920000000000 zero 1 1 2 1 M=3, onM=2 
m 0 v 2 t 2 I 64489801799.024834000000000 zero 1 1 2 1 M=5, onM=4 
m 1 v 2 t 5 I 13010850810.562563000000000 zero 1 1 2 1 M=7, onM=6 
m 4 v 1 t 1 I 1859203636.146642200000000 zero 1 1 2 1 M=9, onM=8 
m 3 v 1 t 3 I 66559694.730898231000000 zero 1 1 2 1 M=11, onM=10 
m 0 v 1 t 5 I 116668403.846223890000000 zero 1 1 2 1 M=13, onM=11 
m 0 v 2 t 3 I 0.839298763277442 zero 1 1 2 1 M=15, onM=12 
m 0 v 2 t 5 I 0.032245321227659 zero 1 1 2 1 M=17, onM=13 
m 0 v 2 t 5 I 0.000000036194794 zero 1 1 2 1 M=19, onM=13 
For N=14, onM=13, lof_all= 1.#INF00000000000 
Alg3 
lof_bst= 0.000045143582274 with J_bst: 
1  2  3  4  5  6  7  8  9 10 11 12 13 
  1  1  1  1  1  1  1  1  1  1  1  1  0 
linear lof_bst is 1.296527187277450 
quintic lof_bst is 651.881924728576340 
quintic lof_bst without penalty is lof*0.005102040816327=3.325928187390695 
m 1 split 1 cov 1 knots  -0.262729   0.432571   0.523471 s -1 
m 2 split 1 cov 1 knots   0.296221   0.432571   0.523471 s 1 
m 3 split 1 cov 2 knots  -0.653814  -0.347114  -0.151614 s -1 
m 4 split 1 cov 2 knots  -0.640364  -0.347114  -0.151614 s 1 
m 5 split 1 cov 1 knots   0.238171   0.432571   0.724171 s -1 
m 5 split 2 cov 2 knots   0.345986   1.039086   1.039286 s -1 
m 6 split 1 cov 1 knots   0.238171   0.432571   0.724171 s -1 
m 6 split 2 cov 2 knots   1.038786   1.039086   1.039286 s 1 
m 7 split 1 cov 2 knots  -0.653814  -0.347114   0.345986 s 1 
m 7 split 2 cov 1 knots  -0.733829  -0.509629  -0.232929 s -1 
m 8 split 1 cov 2 knots  -0.653814  -0.347114   0.345986 s 1 
m 8 split 2 cov 1 knots  -0.733829  -0.509629  -0.232929 s 1 
m 9 split 1 cov 2 knots  -0.653814  -0.347114   0.112936 s -1 
m 9 split 2 cov 1 knots  -0.232929   0.043771   0.238171 s -1 
m 10 split 1 cov 2 knots  -0.653814  -0.347114   0.112936 s -1 
m 10 split 2 cov 1 knots  -0.232929   0.043771   0.238171 s 1 
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m 11 split 1 cov 1 knots   0.523471   0.614371   0.750721 s -1 
m 12 split 1 cov 2 knots  -0.151614   0.043886   0.337136 s –1 

 
 

B.3.2 Response Surface Metamodels Developed in Section 5.5.2 

 
Regression Analysis for Vol versus R, L, and T: 
The regression equation is 
Vol = 488518 + 467050 R + 183783 L + 0 T 
 
Predictor       Coef       Stdev    t-ratio        p 
Constant      488518       84823       5.76    0.005 
R             467050       84823       5.51    0.005 
L             183783       84823       2.17    0.096 
T                  0       84823       0.00    1.000 
 
s = 239916      R-sq = 89.7%     R-sq(adj) = 82.1% 
 
Analysis of Variance 
 
SOURCE       DF          SS          MS         F        p 
Regression    3 2.01530E+12 6.71766E+11     11.67    0.019 
Error         4 2.30238E+11 57559535616 
Total         7 2.24553E+12 
 
SOURCE       DF      SEQ SS 
R             1 1.74509E+12 
L             1 2.70210E+11 
T             1           0 
 
 
Regression Analysis for Cost versus R, L, and T: 
The regression equation is 
Cost = 4108 + 3215 R + 983 L + 231 T 
 
Predictor       Coef       Stdev    t-ratio        p 
Constant      4107.8       299.7      13.71    0.000 
R             3215.2       299.7      10.73    0.000 
L              982.7       299.7       3.28    0.031 
T              231.2       299.7       0.77    0.484 
 
s = 847.7       R-sq = 96.9%     R-sq(adj) = 94.6% 
 
Analysis of Variance 
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SOURCE       DF          SS          MS         F        p 
Regression    3    90851440    30283814     42.14    0.002 
Error         4     2874456      718614 
Total         7    93725896 
 
SOURCE       DF      SEQ SS 
R             1    82698160 
L             1     7725829 
T             1      427452 
 
 
Regression Analysis for Cost versus R and L: 
The regression equation is 
Cost = 4108 + 3215 R + 983 L 
 
Predictor       Coef       Stdev    t-ratio        p 
Constant      4107.8       287.3      14.30    0.000 
R             3215.2       287.3      11.19    0.000 
L              982.7       287.3       3.42    0.019 
 
s = 812.6       R-sq = 96.5%     R-sq(adj) = 95.1% 
 
Analysis of Variance 
 
SOURCE       DF          SS          MS         F        p 
Regression    2    90423984    45211992     68.46    0.000 
Error         5     3301908      660382 
Total         7    93725888 
 
SOURCE       DF      SEQ SS 
R             1    82698160 
L             1     7725829 

 

 

 

 

B.3.3 FORTRAN Programs Used in SEED in Section 5.5 

The FORTRAN program of altcov.f and altcov.params.h used in SEED in Section 

5.5 are enclosed in this section.  The programs of altcov.f and altcov.params.h are used to 
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adjust entries of the covariance matrix.  Other programs used in the integrated process in 

SEED are the same as those presented in Appendix A. 

 

Altcov.f: 
************************************************************************ 
* 
      program altcov 
* 
*  This program calculates the alternated correlation matrix, given the 
*       initial correlation matrix and predicted prediction errors at 
*       possible new data points. 
* 
*  Updated by: Yao Lin, March 26, 2003 
*  
*  Original code developed by: 
*  Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997 
* 
************************************************************************ 
* 
* Input files: 
* ------------ 
*  altcov.params.h - parameter file, specifying numdv, numsamp, 
*                       errmax, lambda, fprefix, fprefix2, fprefixnew 
*  fprefix.cov     - initial correlation matrix 
*  fprefix2.out    - predicted prediction errors at possible new data points 
* 
* Output files: 
* ------------- 
*  fprefixnew.cov  - alternated correlation matrix 
* 
* Variables: 
* ---------- 
*  inicov     = the initial correlation matrix 
*  newcov     = the alternated correlation matrix 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*  numsamp = number of data samples from which the correlation matrix 
*               is calculated 
* 
* Local Variables: 
* ---------------- 
*  DOUBLE PRECISION 
*  ---------------- 
*  errpred = the predicted prediction errors associated with each data 
*            and possible new data points 
* 
************************************************************************ 
 
      integer numsamp,numdv,numold 
      double precision lambda,errmax1,errmax2 
      character*20 fprefix,fprefix2,fprefix3,fprefixnew 
C       
C  include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew, 
C  errmax, lambda, e.g., in the one-variable problem, for the first step: 
C  numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1', 
C  fprefixnew='step1altnewp',errmax=0.50,lambda=2.0 
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C      
      include 'altcov.params.h' 
 
      double precision inicov(numsamp,numsamp),newcov(numsamp,numsamp), 
     &       errpred1(numsamp),errpred2(numsamp) 
      integer i,j,lenstr 
      character*16 ftitle 
      character*20 deckfile,deckfile2,deckfile3,outfile 
 
C 
C  open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files, 
C  e.g., step1newp.cov, errpred1.out, step1altnewp.cov 
C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
       deckfile=ftitle(1:lenstr) // '.cov' 
        
       call getlen(fprefix2,lenstr) 
       ftitle=fprefix2 
       deckfile2=ftitle(1:lenstr) // '.out' 
        
       call getlen(fprefix3,lenstr) 
       ftitle=fprefix3 
       deckfile3=ftitle(1:lenstr) // '.out' 
        
       call getlen(fprefixnew,lenstr) 
       ftitle=fprefixnew 
       outfile=ftitle(1:lenstr) // '.cov' 
        
       open(21,file=deckfile,status='old') 
       open(23,file=deckfile2,status='old') 
       open(24,file=deckfile3,status='old') 
       open(27,file=outfile,status='unknown') 
        
       print * 
       print *, deckfile,deckfile2,deckfile3,outfile 
       print *, numsamp 
C 
C  initialize inicov 
C       
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (inicov(i,j),j=1,numsamp) 
      close(21)  
 
C 
C  initialize errpred 
C 
 
      print * 
      write(6,*) 'Reading in and calculating errpred 1...' 
      do 25 i=1,numsamp 
         if (i.le.numold) then 
            errpred1(i)=0.0 
         else 
            read(24,*) errpred1(i) 
         endif 
         if (abs(errpred1(i)).gt.(errmax1)) then 
            errpred1(i)=errmax1 
         endif 
 25   continue 
      close(24) 
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      print * 
      write(6,*) 'Reading in and calculating errpred 2...' 
      do 20 i=1,numsamp 
         if (i.le.numold) then 
            errpred2(i)=0.0 
         else 
            read(23,*) errpred2(i) 
         endif 
         if (abs(errpred2(i)).gt.(errmax2)) then 
            errpred2(i)=errmax2 
         endif 
 20   continue 
      close(23) 
 
             
C 
C  calculate the alternated correlation matrix 
C 
      do 30 i=1,numsamp 
         do 40 j=i,numsamp 
         if (i.eq.j) then 
            newcov(i,j)=1.0 
         elseif (((i.gt.numold).AND.(j.le.numold)).OR. 
     &             ((i.le.numold).AND.(j.gt.numold))) then 
         newcov(i,j)=inicov(i,j)*(1-1/lambda*(0.5*abs 
     &   (errpred1(i)/errmax1)+0.5*abs(errpred2(i)/errmax2))) 
     &   *(1-1/lambda*(0.5*abs(errpred1(j)/errmax1)+ 
     &   0.5*abs(errpred2(j)/errmax2))) 
         newcov(j,i)=newcov(i,j) 
         else 
         newcov(i,j)=inicov(i,j) 
         newcov(j,i)=newcov(i,j) 
         endif 
 40   continue 
 30   continue 
 
C 
C  write alternated correlation matrix into specified .cov file 
C  
      do 50 i=1,numsamp 
        write(27,79) (newcov(i,j),j=1,numsamp) 
 79     format(10(f13.5,1x)) 
 50   continue 
      close(27) 
 
      print * 
      write(6,*) 'Alternated correlation matrix written to .cov file' 
  
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
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* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 

 
 
Altcov.params.h 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'altcov'                      * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
 
      parameter ( numdv=2,numsamp=14,numold=12, 
     &          fprefix='ch5pvit2newp',fprefix2='double1.gau', 
     &          fprefix3='errpred2_2.gau', 
     &          fprefixnew='ch5pvit2altnewp',errmax1=342400, 
     &          errmax2=1310, 
     &          lambda=2.0 ) 
      
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C  numold = # old data points in the data set 
C 
C  fprefix = prefix of titles of file that stores the initial 
C            correlation matrix for both old and possible new 
C            data points 
C 
C  fprefix2 = prefix of titles of file that stores the 
C             predicted prediction errors at possible new 
C             data points 
C 
C  fprefixnew = prefix of titles of file that stores the 
C               alternated correlation matrix for both old and 
C               possible new data points, with prediction errors 
C               at these points considered 
C 
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C  errmax = maximum value of the absolute predicted prediction error 
C 
C  lambda = coefficient used to gauge the adjustment to initial 
C           correlation matrix 
C*********************************************************************** 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.3.4 Implementation of SEED in iSIGHT in Section 5.5 

Figures presented in this section illustrate how the SEED method is implemented 

in iSIGHT.  The organization of tasks in Iteration II – Step 7 is shown in Figure B.1. 
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In Iteration I – Step 5, with information from metamodels of prediction errors, we 

use five simulation codes in iSIGHT, i.e., Covmat, KrigErrpred, MARSErrpred, Altcov, 

and Detcov.  Covmat is used to formulate the covariance matrix, KrigErrpred and 

MARSErrpred are metamodels to predict prediction errors, Altcov is used to adjust 

entries of the covariance matrix, and Detcov is used to calculate the determinant. 

 

 

Figure B.1 Implementation of E-RCEM in iSIGHT – Iteration II, Step 7 
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Figure B.2 Input Mapping for Covmat.f in SEED – Iteration II, Step 7 

 
Figure B.3 Organization of Input and Output for Altcov.f in SEED – Iteration II, 

Step 7 
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A.  
APPENDIX C 

SUPPORTING MATERIALS FOR THE 
INTEGRATED PROCESSES OF METAMODELING 
AND DESIGN SPACE EXPLORATION IN E-RCEM 

 

 

This appendix is intended to supplement the development of the E-RCEM method 

in Chapter 6.  The computer codes to incorporate design goals and constraints in the 

metamodeling process are presented in Section C.1.  The organization of the E-RCEM 

method in iSIGHT with a single-variable example in Section 6.5 is illustrated in Section 

C.2. 
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C.1 FORTRAN PROGRAMS TO INCORPORATE DESIGN GOALS IN 
METAMODELING 

The FORTRAN programs to incorporate design goals in metamodeling in 

Sections 6.3 and 6.5 are listed in this section.  To formulate the covariance matrix we use 

covmat.f and covdata.params.h; the input and output filenames are specified in 

covdata.params.h.  To adjust entries of the covariance matrix we use altcov.f and 

altcov.params.h.  To calculate the determinant of the covariance matrix we use detcov.f 

and detcov.params.h.   

 

Covmat.f: 
************************************************************************ 
* 
      program covmat 
* 
*  This program invokes calculation of the correlation matrix given 
*        information of points and values of theta. 
* 
*  Updated by: Yao Lin, March 26, 2003 
* 
*  Original code developed by: 
*  Yao Lin 26 March 2003 / Tim Simpson, 25 Feburary 1998 
* 
************************************************************************ 
* 
* Input files: 
* ------------ 
*  covdata.params.h - parameter file, specifying numdv, numsamp, fprefix 
*  .sam             - x's of sample points 
*  .gau.fit         - thetas 
* 
* Output files: 
* ------------- 
*  .cov             - correlation matrix 
* 
* Variables: 
* ---------- 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*   numsamp = number of data samples from which the correlation matrix 
*               is calculated 
* 
* Local Variables: 
* ---------------- 
*   DOUBLE PRECISION 
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*   ---------------- 
*   xmat     = numdv x numsamp of sample site locations, scaled [0,1] 
* 
*   INTEGER 
*   ------- 
* 
************************************************************************ 
 
      integer numdv,numsamp 
      character*16 fprefix 
C 
C  include parameter settings for numdv,numsamp,fprefix, e.g., in the 
C  one-variable problem: numdv=1,numsamp=5,fprefix='step1' 
C 
      include 'covdata.params.h' 
 
      double precision xmat(numsamp,numdv),cov(numsamp,numsamp), 
     &   dummy2,thetaray(1,numdv),theta(numdv) 
      integer i,j,dummy,lenstr 
      character*16 ftitle 
      character*20 deckfile,fitsfile,outfile 
 
 
C 
C  open necessary .sam, .fit, and .cov files based on 'fprefix' name, 
C  e.g., in the one-variable problem: 
C         step1.sam, step1.gau.fit, step1.cov 
C 
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
 
       deckfile=ftitle(1:lenstr) // '.sam' 
       fitsfile=ftitle(1:lenstr) // '.gau.fit' 
       outfile=ftitle(1:lenstr) // '.cov' 
 
       open(21,file=deckfile,status='old') 
       open(22,file=fitsfile,status='old') 
       open(27,file=outfile,status='unknown') 
 
       print * 
       print *, deckfile,fitsfile,outfile 
       print *, numdv,numsamp 
C 
C  initialize xmat and theta arrays 
C 
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (xmat(i,j),j=1,numdv) 
      close(21) 
 
      print * 
      write(6,*) 'Reading in theta parameters...' 
      do 20 i=1,1 
        read(22,*) dummy,(thetaray(i,j),j=1,numdv),dummy2 
        write(6,1000) dummy,(thetaray(i,j),j=1,numdv) 
 1000   format(i2,8f9.5) 
 20   continue 
      close(22) 
 
      do 50 j=1,numdv 
          theta(j)=thetaray(1,j) 
 50     continue 
        write(6,1002) (theta(j),j=1,numdv) 
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 1002     format(8f9.5) 
 
 
C 
C  call subroutine to calculate the correlation matrix 
C 
C  input:  xmat, theta, numsamp, numdv 
C 
C  output: R - the correlation matrix 
C 
 
         call cormat (xmat,cov,numsamp,numdv,theta) 
 
C 
C  write predicted values to specified .cov file 
C 
      do 90 i=1,numsamp 
        write(27,79) (cov(i,j),j=1,numsamp) 
 79     format(10(f13.5,1x)) 
 90   continue 
      close(27) 
 
      print * 
      write(6,*) 'Correlation matrix written to specified .cov file' 
 
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'covdata.params.h'. 
* 
*  With this known, the .sam, .gau.fit, and .cov suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Yao Lin, 3/26/2003; Tim Simpson, 2/15/1998 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
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*********************************************************************** 
* 
      subroutine cormat (xmat,cov,numsamp,numdv,theta) 
* 
* 
*  This subroutine calculates the correlation matrix and its inverse 
* 
*  Original code developed by: 
*  Yao Lin 26 March 2003 / 
*        Tim Simpson 15 February 1998 / Tony Giunta, 12 May 1997 
* 
*********************************************************************** 
* 
* Inputs: 
* ------- 
*   DOUBLE PRECISION: 
*   ----------------- 
*   xmat,theta 
* 
*   INTEGER: 
*   -------- 
*   numdv,numsamp 
* 
* Outputs: 
* -------- 
*   DOUBLE PRECISION: 
*   ----------------- 
*   cov - the correlation matrix. 
* 
* 
*********************************************************************** 
C 
C  passed variables 
C 
      integer numdv,numsamp 
 
      double precision xmat(numsamp,numdv),cov(numsamp,numsamp), 
     &   theta(numdv),R 
C 
C  local variables 
C 
      integer i,j 
C 
C  calculate terms in the correlation matrix 
C 
      do 300 i = 1,numsamp 
        do 305 j = i,numsamp 
          if( i .eq. j ) then 
            cov(i,j) = 1.0d0 
          else 
C 
C  call subroutine to compute spatial correlation function for xmat 
C 
C  input:  xmat, theta, numdv, numsamp, i, j 
C 
C  output: R 
C 
            call scfxmat(R,xmat,theta,numdv,numsamp,i,j) 
            cov(i,j) = R 
            cov(j,i) = cov(i,j) 
          endif 
 305    continue 
 300  continue 
      end 

667 



 
C******************************************************************** 
C 
      subroutine scfxmat(R,xmat,theta,numdv,numsamp,i,j) 
C 
C     Origin: Tim Simpson       Date:  February 11, 1998 
C     Modified: Yao Lin         Date:  March 26, 2003 
C 
C     subroutine to compute spatial correlation function (scf) for 
C     correlation matrix; NOT to compute scf for r_xhat. 
C 
C  Output: 
C  ------- 
C    R = value of correlation function between two sample points, 
C          given theta 
C 
C  Input: 
C  ------ 
C    xmat = matrix of sample points 
C    theta = array of theta values 
C    i,j = i_th and j_th elements of correlation matrix for which 
C           correlation function is being computed 
C 
C  All variables except R are unchanged upon exiting 
C 
C******************************************************************** 
C 
C  passed variables 
C 
      integer i,j,numdv,numsamp 
      double precision R,xmat(numsamp,numdv),theta(numdv) 
C 
C  local variables 
C 
      double precision sum,thetadist,dist 
      integer k 
 
      sum=0.0d0 
      do 120 k = 1,numdv 
          dist = ABS(xmat(i,k)-xmat(j,k)) 
          sum = sum + theta(k)*((dist)**2) 
  120      continue 
      R = exp( -1.0d0*sum ) 
 
         return 
         end 

 

Covdata.params.h: 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'covmat'                * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for calculating the covariance 
C          matrix and its determinant 
C 
 
      parameter (numdv=1,numsamp=11,fprefix='suit3valid') 
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C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C 
C  fprefix = prefix of titles of files to opened/used 
C 
C********************************************************** 

 

Altcov.f: 
************************************************************************ 
* 
      program altcov 
* 
*  This program calculates the alternated correlation matrix, given the 
*       initial correlation matrix and predicted prediction errors at 
*       possible new data points. 
* 
*  Updated by: Yao Lin, March 26, 2003 
*  
*  Original code developed by: 
*  Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997 
* 
************************************************************************ 
* 
* Input files: 
* ------------ 
*  altcov.params.h - parameter file, specifying numdv, numsamp, 
*                       errmax, lambda, fprefix, fprefix2, fprefixnew 
*  fprefix.cov     - initial correlation matrix 
*  fprefix2.out    - predicted prediction errors at possible new data points 
* 
* Output files: 
* ------------- 
*  fprefixnew.cov  - alternated correlation matrix 
* 
* Variables: 
* ---------- 
*  inicov     = the initial correlation matrix 
*  newcov     = the alternated correlation matrix 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*  numsamp = number of data samples from which the correlation matrix 
*               is calculated 
* 
* Local Variables: 
* ---------------- 
*  DOUBLE PRECISION 
*  ---------------- 
*  errpred = the predicted prediction errors associated with each data 
*            and possible new data points 
* 
************************************************************************ 
 
      integer numsamp 
      double precision lambda,errmax,gamma,TargetH,TargetL,TargetS 
      double precision y1max,y1min,yconstant 
      character TargetType 
      character*16 fprefix,fprefix2,fprefixnew,fprefix3 
C       
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C  include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew, 
C  errmax, lambda, e.g., in the one-variable problem, for the first step: 
C  numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1', 
C  fprefixnew='step1altnewp',errmax=0.50,lambda=2.0 
C      
      include 'altcov.params.h' 
 
      double precision inicov(numsamp,numsamp),newcov(numsamp,numsamp), 
     &       errpred(numsamp),goalachieve(numsamp),responsey1(numsamp), 
     &       response,goalachievement 
      integer i,j,lenstr 
      character*16 ftitle 
      character*20 deckfile,deckfile2,deckfile3,outfile 
 
C 
C  open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files, 
C  e.g., step1newp.cov, errpred1.out, step1altnewp.cov 
C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
       deckfile=ftitle(1:lenstr) // '.cov' 
        
       call getlen(fprefix2,lenstr) 
       ftitle=fprefix2 
       deckfile2=ftitle(1:lenstr) // '.dat' 
        
       call getlen(fprefixnew,lenstr) 
       ftitle=fprefixnew 
       outfile=ftitle(1:lenstr) // '.cov' 
 
       call getlen(fprefix3,lenstr) 
       ftitle=fprefix3 
       deckfile3=ftitle(1:lenstr) // '.dat' 
 
        
       open(21,file=deckfile,status='old') 
       open(23,file=deckfile2,status='old') 
       open(25,file=deckfile3,status='old') 
       open(27,file=outfile,status='unknown') 
 
       print * 
       print *, deckfile,deckfile2,deckfile3,outfile 
       print *, numsamp 
C 
C  initialize inicov 
C       
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (inicov(i,j),j=1,numsamp) 
      close(21)  
 
C 
C  initialize errpred 
C 
      print * 
      write(6,*) 'Reading in and calculating errpred...' 
      do 20 i=1,numsamp 
         if (i.le.numold) then 
            errpred(i)=0.0 
         else 
         read(23,*) errpred(i) 
         endif 
         if (abs(errpred(i)).gt.(errmax)) then 
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            errpred(i)=errmax 
         endif 
 20   continue 
      close(23) 
 
      print * 
      write(6,*) 
     &  'Reading in responses and calculating goal.achievement...' 
      do 60 i=1,numsamp 
         read(25,*) responsey1(i) 
         response=responsey1(i)+yconstant 
         if (TargetType.eq.'H') then 
            call Hgoalachievecal(goalachievement,TargetH, 
     &      response,y1max,y1min,gamma) 
            goalachieve(i)=goalachievement 
         else if (TargetType.eq.'L') then 
            call Lgoalachievecal(goalachievement,TargetL, 
     &      response,y1max,y1min,gamma) 
            goalachieve(i)=goalachievement 
         else if (TargetType.eq.'S') then 
            call Sgoalachievecal(goalachievement,TargetS, 
     &      response,y1max,y1min,gamma) 
            goalachieve(i)=goalachievement 
         endif 
 60   continue 
      close(25) 
 
C 
C  calculate the alternated correlation matrix 
C 
      do 30 i=1,numsamp 
         do 40 j=i,numsamp 
         if (i.eq.j) then 
            newcov(i,j)=1.0 
         elseif (((i.le.numold).AND.(j.le.numold)).OR. 
     &             ((i.gt.numold).AND.(j.gt.numold))) then 
         newcov(i,j)=inicov(i,j) 
         newcov(j,i)=newcov(i,j) 
         elseif (((i.le.numold).AND.(j.gt.numold)).OR. 
     &             ((i.gt.numold).AND.(j.le.numold))) then 
         if (inicov(i,j).eq.1) then 
         newcov(i,j)=inicov(i,j) 
         newcov(j,i)=newcov(i,j) 
         elseif (inicov(i,j).lt.1) then 
         newcov(i,j)=inicov(i,j) 
     &   *(1-abs(errpred(i)/lambda/errmax)) 
     &   *(1-goalachieve(i)) 
     &   *(1-abs(errpred(j)/errmax/lambda)) 
     &   *(1-goalachieve(j)) 
         newcov(j,i)=newcov(i,j) 
         endif 
         endif 
 40   continue 
 30   continue 
 
C 
C  write alternated correlation matrix into specified .cov file 
C  
      do 50 i=1,numsamp 
        write(27,79) (newcov(i,j),j=1,numsamp) 
 79     format(10(f13.5,1x)) 
 50   continue 
      close(27) 
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      print * 
      write(6,*) 'Alternated correlation matrix written to .cov file' 
  
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
 
*********************************************************************** 
* 
      subroutine Hgoalachievecal(goalachievement,TargetH, 
     &      response,y1max,y1min,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetH,response 
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      double precision y1max,y1min,gamma 
 
      if (response.le.y1min) then 
         goalachievement=0.00000000 
      else if (response.ge.min(TargetH,y1max)) then 
          goalachievement=1.0/gamma 
      else 
          goalachievement=(response-y1min)/ 
     &    (min(TargetH,y1max)-y1min)/gamma 
      endif 
 
      return 
      end 
 
 
*********************************************************************** 
* 
      subroutine Lgoalachievecal(goalachievement,TargetL, 
     &      response,y1max,y1min,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetL,response 
      double precision y1max,y1min,gamma 
 
      if (response.ge.y1max) then 
         goalachievement=0.0000000000 
      else if (response.le.max(TargetL,y1min)) then 
          goalachievement=1.0/gamma 
      else 
          goalachievement=(y1max-response)/ 
     &    (y1max-max(y1min,TargetL))/gamma 
      endif 
 
      return 
      end 
       
*********************************************************************** 
* 
      subroutine Sgoalachievecal(goalachievement,TargetS, 
     &      response,y1max,y1min,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
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* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetS,response 
      double precision y1max,y1min,gamma 
 
      if (response.ge.y1max) then 
         goalachievement=0.00000000 
      else if (response.le.y1min) then 
         goalachievement=0.00000000 
      else if (response.eq.TargetS) then 
         goalachievement=1.0/gamma 
      else if (response<TargetS.AND.response>y1min) then 
          goalachievement=(response-y1min)/(TargetS-y1min)/gamma 
      else if (response>TargetS.AND.response<y1max) then 
          goalachievement=(response-TargetS)/(y1max-TargetS)/gamma 
      endif 
 
      return 
      end 

 

Altcov.params.h: 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'altcov'                      * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
 
      parameter ( numdv=1,numsamp=11,numold=10, 
     &          fprefix='suit3valid',fprefix2='marspline1', 
     &          fprefixnew='suit3altvalid', 
     &          fprefix3='marspline', 
     &          errmax=1.1,lambda=2.0, 
     &          y1max=0.0,y1min=-1.45,TargetL=-1.6, 
     &          TargetH=-1.0,TargetS=-1.0, 
     &          TargetType='L', 
     &          yconstant=0.0, 
     &          gamma=1.25) 
      
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C  numold = # old data points in the data set 
C 
C  fprefix = prefix of titles of file that stores the initial 
C            correlation matrix for both old and possible new 
C            data points 
C 
C  fprefix2 = prefix of titles of file that stores the 
C             predicted prediction errors at possible new 
C             data points 
C 
C  fprefix3 = prefix of titles of file that stores the 
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C             predicted response values at all points 
C 
C 
C  fprefixnew = prefix of titles of file that stores the 
C               alternated correlation matrix for both old and 
C               possible new data points, with prediction errors 
C               at these points considered 
C 
C  errmax = maximum value of the absolute predicted prediction error 
C 
C  lambda = coefficient used to gauge the adjustment to initial 
C           correlation matrix 
C 
C********************************************************************* 

 

 

Detcov.f: 
C*********************************************************************** 
C 
      program detcov 
C 
C  This program calculates the determinant given a matrix.  Particularly, 
C       in SEED, it is used to calculate the determinant of the 
C       correlation matrix. 
C 
C  Updated by: Yao Lin, March 26, 2003 
C 
C  Original code developed by: 
C  Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997 
C 
C********************************************************************** 
C 
C Input files: 
C ------------ 
C  detcov.params.h - parameter file, specifying numdv, numsamp, 
C                       coedet, fprefix 
C  .cov             - correlation matrix 
C 
C Output files: 
C ------------- 
C  .det             - determinant of the correlation matrix 
C 
C Variables: 
C ---------- 
C   cov     = the input correlation matrix for which we calculate 
C             determinant 
C 
C Parameter Variables (to be specified by user in dace.params.h): 
C ---------------------------------------------------- 
C   numsamp = number of data samples from which the correlation matrix 
C               is calculated 
C 
C Local Variables: 
C ---------------- 
C   DOUBLE PRECISION 
C   ---------------- 
C   work     = vector of length 'numsamp' used as temporary storage 
C   invmat   = inverse of the correlation matrix (numsamp x numsamp) 
C 
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C   INTEGER 
C   ------- 
C   ipvt    = vector of length 'numsamp' of pivot locations 
C 
C*********************************************************************** 
 
      integer numsamp 
      double precision coedet 
      character*16 fprefix 
C       
C  include parameter settings for numdv,numsamp,fprefix 
C 
      include 'detcov.params.h' 
 
C************************************************************************* 
C 
C  include LINPACK routines used to find determinant of correlation matrix 
C 
C************************************************************************* 
 
C      include 'dgefa.f' 
C      include 'dgedi.f' 
 
C************************************************************************* 
 
      double precision cov(numsamp,numsamp),work(numsamp), 
     &       dummy2,detR,det(2),rcond,z(numsamp) 
      integer i,j,ipvt(numsamp),dummy,lenstr,info 
      character*16 ftitle 
      character*20 deckfile,outfile 
      err=0.0000 
C 
C  open necessary .cov and .det files based on 'fprefix' name, 
C  e.g., step1.cov, step1.det 
C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
        
       deckfile=ftitle(1:lenstr) // '.cov' 
       outfile=ftitle(1:lenstr) // '.det' 
        
       open(21,file=deckfile,status='old') 
       open(27,file=outfile,status='unknown') 
        
       print * 
       print *, deckfile,outfile 
       print *, numsamp 
C 
C  initialize cov 
C       
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (cov(i,j),j=1,numsamp) 
      close(21)  
             
C 
C     Start to calculate the determinant of the correlation matrix; 
C        initialization. 
C 
      do 307 i=1,numsamp 
        work(i)=0.0d0 
        ipvt(i)=0 
 307  continue 
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C 
C     If there is any error in the calculation in DGEFA (singular matrix), 
C        this program will set the determinant to 0. 
C 
      call dgeco(cov,numsamp,numsamp,ipvt,rcond,z) 
      if( rcond .eq. 0 ) then 
          write(27,78) err 
 78   format(10(f13.5,1x)) 
          close(27) 
          go to 1000 
      endif 
C 
C In DGEDI, last flag is: 1 (inverse only), 10 (Det only), 11 (both) 
C 
      call dgedi(cov, numsamp, numsamp, ipvt, det, work, 10) 
      detR=det(1)*10.0d0**det(2) 
      detR=coedet*detR 
 
C 
C  write predicted values to specified .det file 
C  
      write(27,79) detR 
 79   format(10(f13.5,1x)) 
      close(27) 
           
      print * 
      write(6,*) detR 
1000  write(6,*) 'Coefficient*Determinant written to .det file' 
  
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
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        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
 
      subroutine dgeco(a,lda,n,ipvt,rcond,z) 
      integer lda,n,ipvt(1) 
      double precision a(lda,1),z(1) 
      double precision rcond 
c 
c     dgeco factors a double precision matrix by gaussian elimination 
c     and estimates the condition of the matrix. 
c 
c     if  rcond  is not needed, dgefa is slightly faster. 
c     to solve  a*x = b , follow dgeco by dgesl. 
c     to compute  inverse(a)*c , follow dgeco by dgesl. 
c     to compute  determinant(a) , follow dgeco by dgedi. 
c     to compute  inverse(a) , follow dgeco by dgedi. 
c 
c     on entry 
c 
c        a       double precision(lda, n) 
c                the matrix to be factored. 
c 
c        lda     integer 
c                the leading dimension of the array  a . 
c 
c        n       integer 
c                the order of the matrix  a . 
c 
c     on return 
c 
c        a       an upper triangular matrix and the multipliers 
c                which were used to obtain it. 
c                the factorization can be written  a = l*u  where 
c                l  is a product of permutation and unit lower 
c                triangular matrices and  u  is upper triangular. 
c 
c        ipvt    integer(n) 
c                an integer vector of pivot indices. 
c 
c        rcond   double precision 
c                an estimate of the reciprocal condition of  a . 
c                for the system  a*x = b , relative perturbations 
c                in  a  and  b  of size  epsilon  may cause 
c                relative perturbations in  x  of size  epsilon/rcond . 
c                if  rcond  is so small that the logical expression 
c                           1.0 + rcond .eq. 1.0 
c                is true, then  a  may be singular to working 
c                precision.  in particular,  rcond  is zero  if 
c                exact singularity is detected or the estimate 
c                underflows. 
c 
c        z       double precision(n) 
c                a work vector whose contents are usually unimportant. 
c                if  a  is close to a singular matrix, then  z  is 
c                an approximate null vector in the sense that 
c                norm(a*z) = rcond*norm(a)*norm(z) . 
c 
c     linpack. this version dated 08/14/78 . 
c     cleve moler, university of new mexico, argonne national lab. 
c 
c     subroutines and functions 
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c 
c     linpack dgefa 
c     blas daxpy,ddot,dscal,dasum 
c     fortran dabs,dmax1,dsign 
c 
c     internal variables 
c 
      double precision ddot,ek,t,wk,wkm 
      double precision anorm,s,dasum,sm,ynorm 
      integer info,j,k,kb,kp1,l 
c 
c 
c     compute 1-norm of a 
c 
      anorm = 0.0d0 
      do 10 j = 1, n 
         anorm = dmax1(anorm,dasum(n,a(1,j),1)) 
   10 continue 
c 
c     factor 
c 
      call dgefa(a,lda,n,ipvt,info) 
c 
c     rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) . 
c     estimate = norm(z)/norm(y) where  a*z = y  and  trans(a)*y = e . 
c     trans(a)  is the transpose of a .  the components of  e  are 
c     chosen to cause maximum local growth in the elements of w  where 
c     trans(u)*w = e .  the vectors are frequently rescaled to avoid 
c     overflow. 
c 
c     solve trans(u)*w = e 
c 
      ek = 1.0d0 
      do 20 j = 1, n 
         z(j) = 0.0d0 
   20 continue 
      do 100 k = 1, n 
         if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k)) 
         if (dabs(ek-z(k)) .le. dabs(a(k,k))) go to 30 
            s = dabs(a(k,k))/dabs(ek-z(k)) 
            call dscal(n,s,z,1) 
            ek = s*ek 
   30    continue 
         wk = ek - z(k) 
         wkm = -ek - z(k) 
         s = dabs(wk) 
         sm = dabs(wkm) 
         if (a(k,k) .eq. 0.0d0) go to 40 
            wk = wk/a(k,k) 
            wkm = wkm/a(k,k) 
         go to 50 
   40    continue 
            wk = 1.0d0 
            wkm = 1.0d0 
   50    continue 
         kp1 = k + 1 
         if (kp1 .gt. n) go to 90 
            do 60 j = kp1, n 
               sm = sm + dabs(z(j)+wkm*a(k,j)) 
               z(j) = z(j) + wk*a(k,j) 
               s = s + dabs(z(j)) 
   60       continue 
            if (s .ge. sm) go to 80 
               t = wkm - wk 
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               wk = wkm 
               do 70 j = kp1, n 
                  z(j) = z(j) + t*a(k,j) 
   70          continue 
   80       continue 
   90    continue 
         z(k) = wk 
  100 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
c 
c     solve trans(l)*y = w 
c 
      do 120 kb = 1, n 
         k = n + 1 - kb 
         if (k .lt. n) z(k) = z(k) + ddot(n-k,a(k+1,k),1,z(k+1),1) 
         if (dabs(z(k)) .le. 1.0d0) go to 110 
            s = 1.0d0/dabs(z(k)) 
            call dscal(n,s,z,1) 
  110    continue 
         l = ipvt(k) 
         t = z(l) 
         z(l) = z(k) 
         z(k) = t 
  120 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
c 
      ynorm = 1.0d0 
c 
c     solve l*v = y 
c 
      do 140 k = 1, n 
         l = ipvt(k) 
         t = z(l) 
         z(l) = z(k) 
         z(k) = t 
         if (k .lt. n) call daxpy(n-k,t,a(k+1,k),1,z(k+1),1) 
         if (dabs(z(k)) .le. 1.0d0) go to 130 
            s = 1.0d0/dabs(z(k)) 
            call dscal(n,s,z,1) 
            ynorm = s*ynorm 
  130    continue 
  140 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
      ynorm = s*ynorm 
c 
c     solve  u*z = v 
c 
      do 160 kb = 1, n 
         k = n + 1 - kb 
         if (dabs(z(k)) .le. dabs(a(k,k))) go to 150 
            s = dabs(a(k,k))/dabs(z(k)) 
            call dscal(n,s,z,1) 
            ynorm = s*ynorm 
  150    continue 
         if (a(k,k) .ne. 0.0d0) z(k) = z(k)/a(k,k) 
         if (a(k,k) .eq. 0.0d0) z(k) = 1.0d0 
         t = -z(k) 
         call daxpy(k-1,t,a(1,k),1,z(1),1) 
  160 continue 
c     make znorm = 1.0 
      s = 1.0d0/dasum(n,z,1) 
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      call dscal(n,s,z,1) 
      ynorm = s*ynorm 
c 
      if (anorm .ne. 0.0d0) rcond = ynorm/anorm 
      if (anorm .eq. 0.0d0) rcond = 0.0d0 
      return 
      end 
 
 
      subroutine dgedi(a,lda,n,ipvt,det,work,job) 
      integer lda,n,ipvt(1),job 
      double precision a(lda,1),det(2),work(1) 
C 
C     dgedi computes the determinant and inverse of a matrix 
C     using the factors computed by dgeco or dgefa. 
C 
C     on entry 
C 
C        a       double precision(lda, n) 
C                the output from dgeco or dgefa. 
C 
C        lda     integer 
C                the leading dimension of the array  a . 
C 
C        n       integer 
C                the order of the matrix  a . 
C 
C        ipvt    integer(n) 
C                the pivot vector from dgeco or dgefa. 
C 
C        work    double precision(n) 
C                work vector.  contents destroyed. 
C 
C        job     integer 
C                = 11   both determinant and inverse. 
C                = 01   inverse only. 
C                = 10   determinant only. 
C 
C     on return 
C 
C        a       inverse of original matrix if requested. 
C                otherwise unchanged. 
C 
C        det     double precision(2) 
C                determinant of original matrix if requested. 
C                otherwise not referenced. 
C                determinant = det(1) * 10.0**det(2) 
C                with  1.0 .le. dabs(det(1)) .lt. 10.0 
C                or  det(1) .eq. 0.0 . 
C 
C     error condition 
C 
C        a division by zero will occur if the input factor contains 
C        a zero on the diagonal and the inverse is requested. 
C        it will not occur if the subroutines are called correctly 
C        and if dgeco has set rcond .gt. 0.0 or dgefa has set 
C        info .eq. 0 . 
C 
C     linpack. this version dated 08/14/78 . 
C     cleve moler, university of new mexico, argonne national lab. 
C 
C     subroutines and functions 
C 
C     blas daxpy,dscal,dswap 
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C     fortran dabs,mod 
C 
C     internal variables 
C 
      double precision t 
      double precision ten 
      integer i,j,k,kb,kp1,l,nm1 
C 
C 
C     compute determinant 
C 
      if (job/10 .eq. 0) go to 70 
         det(1) = 1.0d0 
         det(2) = 0.0d0 
         ten = 10.0d0 
         do 50 i = 1, n 
            if (ipvt(i) .ne. i) det(1) = -det(1) 
            det(1) = a(i,i)*det(1) 
C        ...exit 
            if (det(1) .eq. 0.0d0) go to 60 
   10       if (dabs(det(1)) .ge. 1.0d0) go to 20 
               det(1) = ten*det(1) 
               det(2) = det(2) - 1.0d0 
            go to 10 
   20       continue 
   30       if (dabs(det(1)) .lt. ten) go to 40 
               det(1) = det(1)/ten 
               det(2) = det(2) + 1.0d0 
            go to 30 
   40       continue 
   50    continue 
   60    continue 
   70 continue 
C 
C     compute inverse(u) 
C 
      if (mod(job,10) .eq. 0) go to 150 
         do 100 k = 1, n 
            a(k,k) = 1.0d0/a(k,k) 
            t = -a(k,k) 
            call dscal(k-1,t,a(1,k),1) 
            kp1 = k + 1 
            if (n .lt. kp1) go to 90 
            do 80 j = kp1, n 
               t = a(k,j) 
               a(k,j) = 0.0d0 
               call daxpy(k,t,a(1,k),1,a(1,j),1) 
   80       continue 
   90       continue 
  100    continue 
C 
C        form inverse(u)*inverse(l) 
C 
         nm1 = n - 1 
         if (nm1 .lt. 1) go to 140 
         do 130 kb = 1, nm1 
            k = n - kb 
            kp1 = k + 1 
            do 110 i = kp1, n 
               work(i) = a(i,k) 
               a(i,k) = 0.0d0 
  110       continue 
            do 120 j = kp1, n 
               t = work(j) 
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               call daxpy(n,t,a(1,j),1,a(1,k),1) 
  120       continue 
            l = ipvt(k) 
            if (l .ne. k) call dswap(n,a(1,k),1,a(1,l),1) 
  130    continue 
  140    continue 
  150 continue 
      return 
      end 
       
      subroutine daxpy(n,da,dx,incx,dy,incy) 
C 
C     constant times a vector plus a vector. 
C     uses unrolled loops for increments equal to one. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dy(*),da 
      integer i,incx,incy,ix,iy,m,mp1,n 
C 
      if(n.le.0)return 
      if (da .eq. 0.0d0) return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
C 
C        code for unequal increments or equal increments 
C          not equal to 1 
C 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dy(iy) = dy(iy) + da*dx(ix) 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      return 
C 
C        code for both increments equal to 1 
C 
C 
C        clean-up loop 
C 
   20 m = mod(n,4) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dy(i) = dy(i) + da*dx(i) 
   30 continue 
      if( n .lt. 4 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,4 
        dy(i) = dy(i) + da*dx(i) 
        dy(i + 1) = dy(i + 1) + da*dx(i + 1) 
        dy(i + 2) = dy(i + 2) + da*dx(i + 2) 
        dy(i + 3) = dy(i + 3) + da*dx(i + 3) 
   50 continue 
      return 
      end 
       
      subroutine  dscal(n,da,dx,incx) 
C 
C     scales a vector by a constant. 
C     uses unrolled loops for increment equal to one. 
C     jack dongarra, linpack, 3/11/78. 
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C     modified 3/93 to return if incx .le. 0. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision da,dx(*) 
      integer i,incx,m,mp1,n,nincx 
C 
      if( n.le.0 .or. incx.le.0 )return 
      if(incx.eq.1)go to 20 
C 
C        code for increment not equal to 1 
C 
      nincx = n*incx 
      do 10 i = 1,nincx,incx 
        dx(i) = da*dx(i) 
   10 continue 
      return 
C 
C        code for increment equal to 1 
C 
C 
C        clean-up loop 
C 
   20 m = mod(n,5) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dx(i) = da*dx(i) 
   30 continue 
      if( n .lt. 5 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,5 
        dx(i) = da*dx(i) 
        dx(i + 1) = da*dx(i + 1) 
        dx(i + 2) = da*dx(i + 2) 
        dx(i + 3) = da*dx(i + 3) 
        dx(i + 4) = da*dx(i + 4) 
   50 continue 
      return 
      end 
 
      subroutine  dswap (n,dx,incx,dy,incy) 
C 
C     interchanges two vectors. 
C     uses unrolled loops for increments equal one. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dy(*),dtemp 
      integer i,incx,incy,ix,iy,m,mp1,n 
C 
      if(n.le.0)return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
C 
C       code for unequal increments or equal increments not equal 
C         to 1 
C 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dtemp = dx(ix) 
        dx(ix) = dy(iy) 
        dy(iy) = dtemp 
        ix = ix + incx 
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        iy = iy + incy 
   10 continue 
      return 
C 
C       code for both increments equal to 1 
C 
C 
C       clean-up loop 
C 
   20 m = mod(n,3) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dx(i) 
        dx(i) = dy(i) 
        dy(i) = dtemp 
   30 continue 
      if( n .lt. 3 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,3 
        dtemp = dx(i) 
        dx(i) = dy(i) 
        dy(i) = dtemp 
        dtemp = dx(i + 1) 
        dx(i + 1) = dy(i + 1) 
        dy(i + 1) = dtemp 
        dtemp = dx(i + 2) 
        dx(i + 2) = dy(i + 2) 
        dy(i + 2) = dtemp 
   50 continue 
      return 
      end 
       
 
      subroutine dgefa(a,lda,n,ipvt,info) 
      integer lda,n,ipvt(1),info 
      double precision a(lda,1) 
C 
C     dgefa factors a double precision matrix by gaussian elimination. 
C 
C     dgefa is usually called by dgeco, but it can be called 
C     directly with a saving in time if  rcond  is not needed. 
C     (time for dgeco) = (1 + 9/n)*(time for dgefa) . 
C 
C     on entry 
C 
C        a       double precision(lda, n) 
C                the matrix to be factored. 
C 
C        lda     integer 
C                the leading dimension of the array  a . 
C 
C        n       integer 
C                the order of the matrix  a . 
C 
C     on return 
C 
C        a       an upper triangular matrix and the multipliers 
C                which were used to obtain it. 
C                the factorization can be written  a = l*u  where 
C                l  is a product of permutation and unit lower 
C                triangular matrices and  u  is upper triangular. 
C 
C        ipvt    integer(n) 
C                an integer vector of pivot indices. 
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C 
C        info    integer 
C                = 0  normal value. 
C                = k  if  u(k,k) .eq. 0.0 .  this is not an error 
C                     condition for this subroutine, but it does 
C                     indicate that dgesl or dgedi will divide by zero 
C                     if called.  use  rcond  in dgeco for a reliable 
C                     indication of singularity. 
C 
C     linpack. this version dated 08/14/78 . 
C     cleve moler, university of new mexico, argonne national lab. 
C 
C     subroutines and functions 
C 
C     blas daxpy,dscal,idamax 
C 
C     internal variables 
C 
      double precision t 
      integer idamax,j,k,kp1,l,nm1 
C 
C 
C     gaussian elimination with partial pivoting 
C 
      info = 0 
      nm1 = n - 1 
      if (nm1 .lt. 1) go to 70 
      do 60 k = 1, nm1 
         kp1 = k + 1 
C 
C        find l = pivot index 
C 
         l = idamax(n-k+1,a(k,k),1) + k - 1 
         ipvt(k) = l 
C 
C        zero pivot implies this column already triangularized 
C 
         if (a(l,k) .eq. 0.0d0) go to 40 
C 
C           interchange if necessary 
C 
            if (l .eq. k) go to 10 
               t = a(l,k) 
               a(l,k) = a(k,k) 
               a(k,k) = t 
   10       continue 
C 
C           compute multipliers 
C 
            t = -1.0d0/a(k,k) 
            call dscal(n-k,t,a(k+1,k),1) 
C 
C           row elimination with column indexing 
C 
            do 30 j = kp1, n 
               t = a(l,j) 
               if (l .eq. k) go to 20 
                  a(l,j) = a(k,j) 
                  a(k,j) = t 
   20          continue 
               call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1) 
   30       continue 
         go to 50 
   40    continue 
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            info = k 
   50    continue 
   60 continue 
   70 continue 
      ipvt(n) = n 
      if (a(n,n) .eq. 0.0d0) info = n 
      return 
      end 
 
      integer function idamax(n,dx,incx) 
C 
C     finds the index of element having max. absolute value. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 3/93 to return if incx .le. 0. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dmax 
      integer i,incx,ix,n 
C 
      idamax = 0 
      if( n.lt.1 .or. incx.le.0 ) return 
      idamax = 1 
      if(n.eq.1)return 
      if(incx.eq.1)go to 20 
C 
C        code for increment not equal to 1 
C 
      ix = 1 
      dmax = dabs(dx(1)) 
      ix = ix + incx 
      do 10 i = 2,n 
         if(dabs(dx(ix)).le.dmax) go to 5 
         idamax = i 
         dmax = dabs(dx(ix)) 
    5    ix = ix + incx 
   10 continue 
      return 
C 
C        code for increment equal to 1 
C 
   20 dmax = dabs(dx(1)) 
      do 30 i = 2,n 
         if(dabs(dx(i)).le.dmax) go to 30 
         idamax = i 
         dmax = dabs(dx(i)) 
   30 continue 
      return 
      end 
       
      double precision function dasum(n,dx,incx) 
c 
c     takes the sum of the absolute values. 
c     jack dongarra, linpack, 3/11/78. 
c     modified 3/93 to return if incx .le. 0. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      double precision dx(*),dtemp 
      integer i,incx,m,mp1,n,nincx 
c 
      dasum = 0.0d0 
      dtemp = 0.0d0 
      if( n.le.0 .or. incx.le.0 )return 
      if(incx.eq.1)go to 20 
c 
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c        code for increment not equal to 1 
c 
      nincx = n*incx 
      do 10 i = 1,nincx,incx 
        dtemp = dtemp + dabs(dx(i)) 
   10 continue 
      dasum = dtemp 
      return 
c 
c        code for increment equal to 1 
c 
c 
c        clean-up loop 
c 
   20 m = mod(n,6) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dtemp + dabs(dx(i)) 
   30 continue 
      if( n .lt. 6 ) go to 60 
   40 mp1 = m + 1 
      do 50 i = mp1,n,6 
        dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2)) 
     &  + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5)) 
   50 continue 
   60 dasum = dtemp 
      return 
      end 
       
      double precision function ddot(n,dx,incx,dy,incy) 
c 
c     forms the dot product of two vectors. 
c     uses unrolled loops for increments equal to one. 
c     jack dongarra, linpack, 3/11/78. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      double precision dx(*),dy(*),dtemp 
      integer i,incx,incy,ix,iy,m,mp1,n 
c 
      ddot = 0.0d0 
      dtemp = 0.0d0 
      if(n.le.0)return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
c 
c        code for unequal increments or equal increments 
c          not equal to 1 
c 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dtemp = dtemp + dx(ix)*dy(iy) 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      ddot = dtemp 
      return 
c 
c        code for both increments equal to 1 
c 
c 
c        clean-up loop 
c 
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   20 m = mod(n,5) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dtemp + dx(i)*dy(i) 
   30 continue 
      if( n .lt. 5 ) go to 60 
   40 mp1 = m + 1 
      do 50 i = mp1,n,5 
        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + 
     & dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 
   50 continue 
   60 ddot = dtemp 
      return 
      end 

 

Detcov.params.h: 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'detcov'                      * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
 
      parameter ( numdv=1,numsamp=11,fprefix='suit3altvalid', 
     &          coedet=1e4 ) 
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C 
C  fprefix = prefix of titles of files to opened/used 
C 
C  coedet = when the value of determinant is very small, 
C          this coefficient is used to magnify the value. 
C 
C************************************************************ 

 

C.2 IMPLEMENTATION OF E-RCEM IN ISIGHT IN SECTION 5.5 

Figures presented in this section illustrate how the SEED method is implemented 

in iSIGHT.  The organization of tasks in Iteration I – Step 7 is shown in Figure C.1.  In 

Iteration I – Step 7, with information from metamodels of prediction errors, we use five 

simulation codes in iSIGHT, i.e., Covmat, Errpred, Response, Altcov, and Detcov.  

Covmat is used to formulate the covariance matrix, Errpred is the metamodel to predict 
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prediction errors, Response is the metamodel to predict response values, Altcov is used to 

adjust entries of the covariance matrix, and Detcov is used to calculate the determinant. 

 

 

Figure C.1 Implementation of E-RCEM in iSIGHT – Iteration I, Step 7 
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A.  
APPENDIX D 

DESIGN OF UNIT CELLS FOR LINEAR 
CELLULAR ALLOYS: EXPERIMENTS, 
SIMULATION RESULTS, PROGRAMS, 

METAMODELS, AND PLOTS 

 

 

This appendix is intended to supplement the application of SEED and E-RCEM 

methods in designing unit cells for linear cellular alloys in Chapter 7.  The experimental 

designs, simulation results, metamodels, and plots developed in Section 7.3 are presented 

in Section D.1.  Supporting materials for the application of SEED (Section 7.4) and E-

RCEM (Section 7.5) are enclosed in Sections D.2 and D.3, respectively.   
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D.1 EXPLORATION OF DESIGN SOLUTIONS WITH RCEM 

In this section we collect supporting materials for studies in Section 7.3. 

D.1.1 Latin Hypercube Design with 30 Data Points 

Table D.1 Latin Hypercube Design – 30 Data Points Used in RCEM in Section 7.3 

Mdot (kg/s) W (m) t (m) Mdot_n W_n t_n Q (W) J (m/N) 
0.0005 0.0219 0.0008 0 0.3448 1 -13.64 0.00024 
0.00059 0.0171 0.00061 0.03448 0.1034 0.6897 -13.80 0.00041 
0.00067 0.0309 0.00078 0.06897 0.7931 0.9655 -13.19 0.00028 
0.00076 0.0233 0.00041 0.1034 0.4138 0.3448 -13.27 0.00126 
0.00084 0.035 0.00045 0.1379 1 0.4138 -12.01 0.00116 
0.00093 0.0295 0.00053 0.1724 0.7241 0.5517 -14.45 0.00070 
0.00102 0.0247 0.00072 0.2069 0.4828 0.8621 -16.31 0.00031 
0.0011 0.0205 0.00068 0.2414 0.2759 0.7931 -16.01 0.00034 
0.00119 0.0191 0.00032 0.2759 0.2069 0.2069 -14.59 0.00225 
0.00128 0.0198 0.00057 0.3103 0.2414 0.6207 -15.88 0.00050 
0.00136 0.0288 0.0007 0.3448 0.6897 0.8276 -17.76 0.00035 
0.00145 0.0322 0.0002 0.3793 0.8621 0 -15.14 0.01122 
0.00153 0.0184 0.00051 0.4138 0.1724 0.5172 -15.77 0.00065 
0.00162 0.0267 0.00055 0.4483 0.5862 0.5862 -17.69 0.00061 
0.00171 0.015 0.0003 0.4828 0 0.1724 -14.53 0.00239 
0.00179 0.0212 0.00076 0.5172 0.3103 0.931 -17.43 0.00026 
0.00188 0.0157 0.00063 0.5517 0.03448 0.7241 -51.85 0.00037 
0.00197 0.0164 0.00039 0.5862 0.06897 0.3103 -15.31 0.00123 
0.00205 0.0281 0.00066 0.6207 0.6552 0.7586 -19.29 0.00040 
0.00214 0.0226 0.00028 0.6552 0.3793 0.1379 -16.63 0.00356 
0.00222 0.0274 0.00024 0.6897 0.6207 0.06897 -17.53 0.00610 
0.00231 0.0178 0.00022 0.7241 0.1379 0.03448 -15.26 0.00627 
0.0024 0.026 0.00049 0.7586 0.5517 0.4828 -18.67 0.00082 
0.00248 0.0343 0.00074 0.7931 0.9655 0.8966 -21.73 0.00032 
0.00257 0.0302 0.00026 0.8276 0.7586 0.1034 -18.80 0.00507 
0.00266 0.0253 0.00037 0.8621 0.5172 0.2759 -18.31 0.00172 
0.00274 0.0316 0.00034 0.8966 0.8276 0.2414 -19.87 0.00241 
0.00283 0.0329 0.00043 0.931 0.8966 0.3793 -20.76 0.00128 
0.00291 0.0336 0.00059 0.9655 0.931 0.6552 -21.75 0.00056 
0.003 0.024 0.00047 1 0.4483 0.4483 -18.51 0.00088 
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D.1.2 MARS Metamodel of Responses Developed with 30 LH Experiments 

Qmars.dat for Total Heat Transfer Rate Q: 

    3   28 
        0.499998333333333        0.499998333333333        0.499998333333333 
        0.500000000000000        0.500000000000000        0.500000000000000 
    1    1    1    1    1    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    2    
1    2 
       -0.339870036111432      -12.773472901115134      -19.863793680013131      -
46.524074229003666       35.691924559997979       13.394144037678506    -
1681.581052686991800     -184.515789535457710    -1198.261206478433200       -
6.568937120765133      -49.284612979016075       87.083329828075918       
12.650147584392984       63.973544584529279       49.554777358052647     -
344.571366217510730       94.750374353128009        7.178640037521877      -
52.280639764008647       56.193684386954324     -109.039095462713310      
220.209200073127250       30.784057093017406       69.569559469737314      -
50.105432708334561       -6.049454931256710        1.041273408861595       
49.915412264619803      353.571628624746100 
 -1    1       -0.448296666666667        0.103403333333333        0.551703333333333 
  1    1       -0.448296666666667        0.103403333333333        0.551703333333333 
 -1    3        0.413803333333333        0.448203333333333        0.499803333333333 
  1    3        0.413803333333333        0.448203333333333        0.724103333333333 
 -1    3       -0.310296666666667        0.379403333333333        0.413803333333333 
  1    3        0.327803333333333        0.379403333333333        0.413803333333333 
 -1    2       -0.724096666666667       -0.448196666666667       -0.241296666666667 
  1    3        0.327803333333333        0.379403333333333        0.413803333333333 
  1    2       -0.724096666666667       -0.448196666666667       -0.241296666666667 
  1    1       -0.448296666666667        0.103403333333333        0.517203333333333 
 -1    2       -0.862096666666667       -0.724196666666667       -0.517346666666667 
  1    1       -0.448296666666667        0.103403333333333        0.517203333333333 
  1    2       -0.862096666666667       -0.724196666666667       -0.517296666666667 
 -1    3        0.413803333333333        0.448203333333333        0.499803333333333 
 -1    2        0.620703333333334        0.724203333333333        0.758703333333333 
 -1    3        0.413803333333333        0.448203333333333        0.499803333333333 
  1    2        0.672453333333333        0.724203333333333        0.758703333333333 
 -1    1       -0.448296666666667        0.103403333333333        0.517203333333333 
 -1    2        0.103503333333333        0.379403333333333        0.689703333333333 
 -1    1       -0.448296666666667        0.103403333333333        0.517203333333333 
  1    2        0.103503333333333        0.379403333333333        0.689703333333333 
 -1    3       -0.310296666666667        0.379403333333333        0.413803333333333 
 -1    2        0.758703333333333        0.793203333333333        0.844953333333333 
 -1    3       -0.310296666666667        0.379403333333333        0.413803333333333 
  1    2        0.758703333333333        0.793203333333333        0.896603333333333 
 -1    1       -0.034496666666667        0.103403333333333        0.310253333333333 
 -1    3       -0.655196666666667       -0.310396666666667        0.000003333333333 
 -1    1       -0.034496666666667        0.103403333333333        0.310253333333333 
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  1    3       -0.655196666666667       -0.310396666666667        0.000003333333333 
  1    1       -0.034496666666667        0.103403333333333        0.551703333333333 
 -1    3        0.000003333333333        0.310403333333333        0.344903333333333 
  1    1       -0.034496666666667        0.103403333333333        0.551703333333333 
  1    3        0.258653333333333        0.310403333333333        0.344903333333333 
  1    3        0.413803333333333        0.448203333333333        0.724103333333333 
 -1    2       -0.241296666666667       -0.034396666666667        0.000003333333333 
  1    3        0.413803333333333        0.448203333333333        0.724103333333333 
  1    2       -0.085996666666666       -0.034396666666667        0.000003333333333 
 -1    3        0.344903333333333        0.379403333333333        0.431153333333333 
 -1    1       -0.586196666666667       -0.172396666666667       -0.034496666666667 
 -1    3        0.344903333333333        0.379403333333333        0.431153333333333 
  1    1       -0.379246666666667       -0.172396666666667       -0.034496666666667 
 -1    1       -0.448296666666667        0.103403333333333        0.517203333333333 
 -1    2       -0.241396666666667       -0.172396666666667       -0.068896666666667 
 -1    3        0.413803333333333        0.448203333333333        0.499803333333333 
 -1    2        0.000003333333333        0.034403333333333        0.086003333333333 
 -1    3       -0.310296666666667        0.379403333333333        0.413803333333333 
 -1    2        0.275803333333334        0.517203333333334        0.620703333333334 
 -1    2       -0.655196666666667       -0.310396666666667        0.206803333333333 
  1    2       -0.413896666666667       -0.310396666666667       -0.241396666666667 
  1    1        0.879253333333333        0.931003333333333        0.965503333333333 
 

Qmars.dat for Compliance J: 

    3   27 
        0.499998333333333        0.499998333333333        0.499998333333333 
        0.500000000000000        0.500000000000000        0.500000000000000 
    1    1    2    2    1    2    2    1    1    1    1    2    2    2    2    1    1    2    2    2    2    2    2    2    2    2    
2 
        0.001466407963489       -0.000192918064502       -0.001245038659639        
0.009567743769789        0.144035227182990        0.016246182925700       -0.010048035980419       
-0.032223805341409        0.008670185519562        0.000142024396652       -
0.000806115246652        0.000436531100816       -0.010530678740980       -0.065287694525146        
0.007554843266843       -0.000978118081569       -0.015116318652959        0.000102440282160        
0.000677603505063       -0.015011756040837       -0.000459155980944        0.000184045816162        
0.000115606777776       -0.000320462363114        0.001366597092628        0.000152516546845       
-0.000160190632074       -0.000211840744665 
 -1    3       -0.827596666666667       -0.655196666666667       -0.517296666666667 
  1    3       -0.827596666666667       -0.655196666666667       -0.517296666666667 
 -1    3       -0.827596666666667       -0.655196666666667       -0.517296666666667 
 -1    2        0.344803333333334        0.517203333333334        0.758603333333334 
 -1    3       -0.827596666666667       -0.655196666666667       -0.517296666666667 
  1    2        0.344803333333334        0.517203333333334        0.758603333333334 
 -1    3       -0.137896666666667       -0.103396666666667       -0.051646666666667 
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 -1    3       -0.241396666666667       -0.103396666666667       -0.034496666666667 
 -1    2        0.344803333333334        0.517203333333334        0.758603333333334 
 -1    3       -0.241396666666667       -0.103396666666667       -0.034496666666667 
  1    2        0.344803333333334        0.517203333333334        0.758603333333334 
 -1    3       -0.517296666666667       -0.379396666666667       -0.275896666666667 
 -1    3        0.310303333333333        0.448203333333333        0.655053333333333 
 -1    2       -0.448296666666667        0.103403333333333        0.551703333333333 
  1    2       -0.448296666666667        0.103403333333333        0.551703333333333 
 -1    3       -0.827596666666667       -0.655196666666667       -0.413796666666667 
 -1    1        0.344803333333333        0.448203333333333        0.603303333333333 
 -1    3       -0.827596666666667       -0.655196666666667       -0.413796666666667 
  1    1        0.344803333333333        0.448203333333333        0.689603333333333 
 -1    2       -0.448296666666667        0.103403333333333        0.137903333333333 
 -1    3       -0.034496666666667        0.034403333333333        0.137753333333333 
 -1    2       -0.448296666666667        0.103403333333333        0.137903333333333 
  1    3       -0.034496666666667        0.034403333333333        0.517203333333333 
 -1    3       -0.275896666666667       -0.172396666666667       -0.137896666666667 
 -1    3        0.034503333333333        0.172403333333333        0.310303333333333 
  1    3       -0.413796666666667       -0.172396666666667        0.413803333333333 
 -1    1        0.689603333333333        0.931003333333333        0.965503333333333 
  1    3       -0.413796666666667       -0.172396666666667        0.413803333333333 
  1    1        0.879253333333333        0.931003333333333        0.965503333333333 
  1    3       -0.827596666666667       -0.655196666666667       -0.413796666666667 
 -1    1       -0.379296666666667        0.241403333333333        0.344803333333333 
  1    3       -0.827596666666667       -0.655196666666667       -0.413796666666667 
  1    1        0.086303333333334        0.241403333333333        0.344803333333333 
 -1    2       -0.448296666666667        0.103403333333333        0.551703333333333 
 -1    1       -0.172396666666667       -0.034396666666667        0.172603333333333 
 -1    2       -0.448296666666667        0.103403333333333        0.551703333333333 
  1    1       -0.172396666666667       -0.034396666666667        0.482803333333333 
  1    3       -0.517296666666667       -0.379396666666667       -0.241396666666667 
 -1    2        0.137903333333333        0.172403333333334        0.224153333333334 
  1    3       -0.517296666666667       -0.379396666666667       -0.241396666666667 
  1    2        0.137903333333333        0.172403333333334        0.344803333333334 
  1    2       -0.448296666666667        0.103403333333333        0.551703333333333 
 -1    1       -0.655196666666667       -0.310396666666667       -0.172396666666667 
  1    2       -0.448296666666667        0.103403333333333        0.551703333333333 
  1    1       -0.517396666666667       -0.310396666666667       -0.172396666666667 

 

D.1.3 Formulating and Solving C-DSP in iSIGHT 

The compromise DSP is formulated in Figure 7.13.  To solve this compromise 

DSP, we use the automation and exploration software iSIGHT.  Presented below are plots 
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illustrating the implementation of iSIGHT in solving the compromise DSP in Section 7.3.  

The overall organization of tasks of C-DSP in iSIGHT is illustrated in Figure D.1  The 

file parsing process for Q and the calculation of the design goal are illustrated in Figure 

D.2 and Figure D.3, respectively.  In Figure D.1, the simulation codes Q and J are kriging 

metamodels to predict response values at the current point; the simulation code 

Constraints is a model to calculate all 3 design constraints (as described in Section 7.2) 

and the value of Af (cross-section area of the cells).  Q, J, and Af are then used to calculate 

the deviation variables.   

 

 

Figure D.1 Solving C-DSP in iSIGHT – Overall Organization of Tasks 
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Figure D.2 Solving C-DSP – File Parsing for Input 

 
Figure D.3 Solving C-DSP in iSIGHT – Calculation of the Design Goal 
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D.1.4 Latin Hypercube Design with 40 Data Points 

Table D.2 Latin Hypercube Design – 40 Data Points Used in RCEM in Section 7.3 

Mdot (kg/s) W (m) t (m) Mdot_n W_n t_n Q (W) J (m/N) 
0.0005 0.03141 0.000646 0 0.8205 0.7436 -9.85 0.00043 

0.000564 0.019616 0.000769 0.02564 0.2308 0.9487 -14.32 0.00025 
0.000628 0.02218 0.000615 0.05128 0.359 0.6923 -13.61 0.00044 
0.000692 0.01859 0.000477 0.07692 0.1795 0.4615 -13.58 0.00077 
0.000757 0.018076 0.000446 0.1026 0.1538 0.4103 -13.74 0.00090 
0.000821 0.026282 0.000754 0.1282 0.5641 0.9231 -15.34 0.00028 
0.000885 0.020128 0.000523 0.1538 0.2564 0.5385 -14.67 0.00063 
0.000949 0.02423 0.000662 0.1795 0.4615 0.7692 -15.70 0.00038 
0.001013 0.020642 0.000431 0.2051 0.2821 0.3846 -14.74 0.00104 
0.001077 0.02577 0.0008 0.2308 0.5385 1 -16.96 0.00025 
0.001141 0.028334 0.000262 0.2564 0.6667 0.1026 -14.29 0.00484 
0.001205 0.035 0.000569 0.2821 1 0.6154 -15.89 0.00062 
0.001269 0.028846 0.000385 0.3077 0.6923 0.3077 -15.73 0.00164 
0.001333 0.015 0.000677 0.3333 0 0.7949 -46.55 0.00031 
0.001398 0.032948 0.000338 0.359 0.8974 0.2308 -15.89 0.00248 
0.001462 0.022692 0.0004 0.3846 0.3846 0.3333 -16.07 0.00133 
0.001526 0.016026 0.000492 0.4103 0.05128 0.4872 -15.18 0.00067 
0.00159 0.029358 0.000415 0.4359 0.7179 0.359 -17.23 0.00134 
0.001654 0.02782 0.000354 0.4615 0.641 0.2564 -16.98 0.00203 
0.001718 0.021666 0.0002 0.4872 0.3333 0 -15.35 0.00919 
0.001782 0.017564 0.000738 0.5128 0.1282 0.8974 -46.78 0.00027 
0.001846 0.031924 0.0006 0.5385 0.8462 0.6667 -19.19 0.00052 
0.00191 0.023718 0.000231 0.5641 0.4359 0.05128 -16.25 0.00636 
0.001974 0.029872 0.000785 0.5897 0.7436 0.9744 -19.98 0.00027 
0.002039 0.033974 0.000308 0.6154 0.9487 0.1795 -18.34 0.00330 
0.002103 0.015513 0.000554 0.641 0.02564 0.5897 -51.65 0.00050 
0.002167 0.017052 0.000708 0.6667 0.1026 0.8462 -55.53 0.00029 
0.002231 0.025256 0.000462 0.6923 0.5128 0.4359 -18.16 0.00095 
0.002295 0.032436 0.000369 0.7179 0.8718 0.2821 -19.30 0.00193 
0.002359 0.019102 0.000631 0.7436 0.2051 0.7179 -43.92 0.00039 
0.002423 0.016538 0.000508 0.7692 0.07692 0.5128 -48.67 0.00063 
0.002487 0.030898 0.000323 0.7949 0.7949 0.2051 -19.19 0.00275 
0.002551 0.024744 0.000246 0.8205 0.4872 0.07692 -17.45 0.00539 
0.002616 0.026794 0.000723 0.8462 0.5897 0.8718 -19.85 0.00031 
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0.00268 0.021154 0.000538 0.8718 0.3077 0.5641 -17.52 0.00059 
0.002744 0.030384 0.000692 0.8974 0.7692 0.8205 -21.02 0.00036 
0.002808 0.034488 0.000292 0.9231 0.9744 0.1538 -20.22 0.00385 
0.002872 0.027308 0.000585 0.9487 0.6154 0.641 -19.86 0.00053 
0.002936 0.023206 0.000215 0.9744 0.4103 0.02564 -17.17 0.00768 

0.003 0.033462 0.000277 1 0.9231 0.1282 -20.28 0.00443 
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D.2 EXPLORATION OF DESIGN SOLUTIONS WITH RCEM 

All supporting materials and documents for studies in Section 7.4 are presented 

here.  Contours plots of metamodels of responses (initial metamodels, metamodels of 

responses in Iteration I – Step 8 and Iteration II – Step 3) are illustrated in Section D.2.1.  

FORTRAN codes of SEED are presented in Section D.2.2.  The implementation of SEED 

in iSIGHT is illustrated in Section D.2.3.  Twenty-eight points identified from SEED and 

their corresponding response values are listed in Section D.2.4. 

D.2.1 Contour Plots of Metamodels of Responses 

Contour plots illustrated below are drawn with predicted values from the kriging 

metamodels of responses in Section 7.4.  Contour plots of metamodels of prediction 

errors are not drawn.  The contour plots are drawn using Minitab® with default 

parameters. 

 

 

Figure D.4 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device 
Width (Initial Kriging Metamodel with 8 Data Points) 
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Figure D.5 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow 
Rate (Initial Kriging Metamodel with 8 Data Points) 

 

Figure D.6 Contour Plot of Compliance vs. Device Width and Wall Thickness 
(Initial Kriging Metamodel with 8 Data Points) 
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Figure D.7 Contour Plot of Heat Transfer Rate vs. Device Width and Wall 
Thickness (Kriging Metamodel with 11 Data Points – Iteration I, Step 8) 

 

Figure D.8 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 
Rate (Kriging Metamodel with 11 Data Points – Iteration I, Step 8) 
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Figure D.9 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow 
Rate (Kriging Metamodel with 11 Data Points – Iteration I, Step 8) 

 

Figure D.10 Contour Plot of Compliance vs. Device Width and Wall Thickness 
(Kriging Metamodel with 11 Data Points – Iteration I, Step 8) 
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Figure D.11 Contour Plot of Heat Transfer Rate vs. Device Width and Wall 
Thickness (Kriging Metamodel with 8 Validation Points – Iteration II, Step 3) 

 

Figure D.12 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 
Rate (Kriging Metamodel with 8 Validation Points – Iteration II, Step 3) 
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Figure D.13 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow 
Rate (Kriging Metamodel with 8 Validation Points – Iteration II, Step 3) 

 

Figure D.14 Contour Plot of Compliance vs. Device Width and Wall Thickness 
(Kriging Metamodel with 8 Validation Points – Iteration II, Step 3) 
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Figure D.15 Contour Plot of Heat Transfer Rate vs. Device Width and Wall 
Thickness (Kriging Metamodel with 11 Validation Points – Iteration III, Step 3) 

 

Figure D.16 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Mass Flow 
Rate (Kriging Metamodel with 11 Validation Points – Iteration III, Step 3) 
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Figure D.17 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow 
Rate (Kriging Metamodel with 11 Validation Points – Iteration III, Step 3) 

 

Figure D.18 Contour Plot of Compliance vs. Device Width and Wall Thickness 
(Kriging Metamodel with 11 Validation Points – Iteration III, Step 3) 
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D.2.2 FORTRAN Programs Used in SEED in Section 7.4 

The FORTRAN programs used in SEED, Iteration III – Step 3, in Section 7.4 are 

enclosed in this section.  To formulate the covariance matrix we use covmat.f and 

covdata.params.h; the input and output filenames are specified in covdata.params.h.  To 

adjust entries of the covariance matrix we use altcov.f and altcov.params.h.  To calculate 

the determinant of the covariance matrix we use detcov.f and detcov.params.h.   

 

Covmat.f: 
************************************************************************ 
* 
      program covmat 
* 
*  This program invokes calculation of the correlation matrix given 
*        information of points and values of theta. 
* 
*  Updated by: Yao Lin, March 26, 2003 
* 
*  Original code developed by: 
*  Yao Lin 26 March 2003 / Tim Simpson, 25 Feburary 1998 
* 
************************************************************************ 
* 
* Input files: 
* ------------ 
*  covdata.params.h - parameter file, specifying numdv, numsamp, fprefix 
*  .sam             - x's of sample points 
*  .gau.fit         - thetas 
* 
* Output files: 
* ------------- 
*  .cov             - correlation matrix 
* 
* Variables: 
* ---------- 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*   numsamp = number of data samples from which the correlation matrix 
*               is calculated 
* 
* Local Variables: 
* ---------------- 
*   DOUBLE PRECISION 
*   ---------------- 
*   xmat     = numdv x numsamp of sample site locations, scaled [0,1] 
* 
*   INTEGER 
*   ------- 
* 
************************************************************************ 
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      integer numdv,numsamp 
      character*16 fprefix 
C 
C  include parameter settings for numdv,numsamp,fprefix, e.g., in the 
C  one-variable problem: numdv=1,numsamp=5,fprefix='step1' 
C 
      include 'covdata.params.h' 
 
      double precision xmat(numsamp,numdv),cov(numsamp,numsamp), 
     &   dummy2,thetaray(1,numdv),theta(numdv) 
      integer i,j,dummy,lenstr 
      character*16 ftitle 
      character*20 deckfile,fitsfile,outfile 
 
 
C 
C  open necessary .sam, .fit, and .cov files based on 'fprefix' name, 
C  e.g., in the one-variable problem: 
C         step1.sam, step1.gau.fit, step1.cov 
C 
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
 
       deckfile=ftitle(1:lenstr) // '.sam' 
       fitsfile=ftitle(1:lenstr) // '.gau.fit' 
       outfile=ftitle(1:lenstr) // '.cov' 
 
       open(21,file=deckfile,status='old') 
       open(22,file=fitsfile,status='old') 
       open(27,file=outfile,status='unknown') 
 
       print * 
       print *, deckfile,fitsfile,outfile 
       print *, numdv,numsamp 
C 
C  initialize xmat and theta arrays 
C 
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (xmat(i,j),j=1,numdv) 
      close(21) 
 
      print * 
      write(6,*) 'Reading in theta parameters...' 
      do 20 i=1,1 
        read(22,*) dummy,(thetaray(i,j),j=1,numdv),dummy2 
        write(6,1000) dummy,(thetaray(i,j),j=1,numdv) 
 1000   format(i2,8f9.5) 
 20   continue 
      close(22) 
 
      do 50 j=1,numdv 
          theta(j)=thetaray(1,j) 
 50     continue 
        write(6,1002) (theta(j),j=1,numdv) 
 1002     format(8f9.5) 
 
 
C 
C  call subroutine to calculate the correlation matrix 
C 
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C  input:  xmat, theta, numsamp, numdv 
C 
C  output: R - the correlation matrix 
C 
 
         call cormat (xmat,cov,numsamp,numdv,theta) 
 
C 
C  write predicted values to specified .cov file 
C 
      do 90 i=1,numsamp 
        write(27,79) (cov(i,j),j=1,numsamp) 
 79     format(10(f13.5,1x)) 
 90   continue 
      close(27) 
 
      print * 
      write(6,*) 'Correlation matrix written to specified .cov file' 
 
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'covdata.params.h'. 
* 
*  With this known, the .sam, .gau.fit, and .cov suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Yao Lin, 3/26/2003; Tim Simpson, 2/15/1998 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
 
*********************************************************************** 
* 
      subroutine cormat (xmat,cov,numsamp,numdv,theta) 
* 
* 
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*  This subroutine calculates the correlation matrix and its inverse 
* 
*  Original code developed by: 
*  Yao Lin 26 March 2003 / 
*        Tim Simpson 15 February 1998 / Tony Giunta, 12 May 1997 
* 
*********************************************************************** 
* 
* Inputs: 
* ------- 
*   DOUBLE PRECISION: 
*   ----------------- 
*   xmat,theta 
* 
*   INTEGER: 
*   -------- 
*   numdv,numsamp 
* 
* Outputs: 
* -------- 
*   DOUBLE PRECISION: 
*   ----------------- 
*   cov - the correlation matrix. 
* 
* 
*********************************************************************** 
C 
C  passed variables 
C 
      integer numdv,numsamp 
 
      double precision xmat(numsamp,numdv),cov(numsamp,numsamp), 
     &   theta(numdv),R 
C 
C  local variables 
C 
      integer i,j 
C 
C  calculate terms in the correlation matrix 
C 
      do 300 i = 1,numsamp 
        do 305 j = i,numsamp 
          if( i .eq. j ) then 
            cov(i,j) = 1.0d0 
          else 
C 
C  call subroutine to compute spatial correlation function for xmat 
C 
C  input:  xmat, theta, numdv, numsamp, i, j 
C 
C  output: R 
C 
            call scfxmat(R,xmat,theta,numdv,numsamp,i,j) 
            cov(i,j) = R 
            cov(j,i) = cov(i,j) 
          endif 
 305    continue 
 300  continue 
      end 
 
C******************************************************************** 
C 
      subroutine scfxmat(R,xmat,theta,numdv,numsamp,i,j) 
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C 
C     Origin: Tim Simpson       Date:  February 11, 1998 
C     Modified: Yao Lin         Date:  March 26, 2003 
C 
C     subroutine to compute spatial correlation function (scf) for 
C     correlation matrix; NOT to compute scf for r_xhat. 
C 
C  Output: 
C  ------- 
C    R = value of correlation function between two sample points, 
C          given theta 
C 
C  Input: 
C  ------ 
C    xmat = matrix of sample points 
C    theta = array of theta values 
C    i,j = i_th and j_th elements of correlation matrix for which 
C           correlation function is being computed 
C 
C  All variables except R are unchanged upon exiting 
C 
C******************************************************************** 
C 
C  passed variables 
C 
      integer i,j,numdv,numsamp 
      double precision R,xmat(numsamp,numdv),theta(numdv) 
C 
C  local variables 
C 
      double precision sum,thetadist,dist 
      integer k 
 
      sum=0.0d0 
      do 120 k = 1,numdv 
          dist = ABS(xmat(i,k)-xmat(j,k)) 
          sum = sum + theta(k)*((dist)**2) 
  120      continue 
      R = exp( -1.0d0*sum ) 
 
         return 
         end 

 
 

Covdata.params.h: 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'covmat'                 * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for calculating the covariance 
C          matrix and its determinant 
C 
 
      parameter (numdv=3,numsamp=28,fprefix='suit3valid') 
      
C 
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C  numdv = # design variables 
C  numsamp = # samples in data set 
C 
C  fprefix = prefix of titles of files to opened/used 
C 
C********************************************************** 

 

Suit3valid.sam: 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
0.5 0.5 0.5 
0.0333 0.8556 0.3769 
0.6143 0.4333 0.1167 
0.1276 0.0344 0.7252 
0.9925 0.4751 0.3961 
0.529 0.8567 0.9059 
0.6865 0.4227 0.41 
0.3008 1 0.2559 
0.7573 0 0.7573 
1 0.5 0.5 
0.0111 0.2663 0.3472 
0.5 0.5 1 
0.5 0.5 0 
0.3834 0.9532 0.6156 
0.9998 0.7204 0.1767 
0.0123 0.7001 0.785 
0.0015 0.2976 0.7563 
0.0    1.0     0.7927 
1.0    1.0     0.4309 
0.0    0.5     0.7007 

 

Suit3valid.gau.fit: 
1      0.46716      11.95818    17.40336      -16.55119 

 
 
Altcov.f: 
************************************************************************ 
* 
      program altcov 
* 
*  This program calculates the alternated correlation matrix, given the 
*       initial correlation matrix and predicted prediction errors at 
*       possible new data points. 
* 
*  Updated by: Yao Lin, March 26, 2003 
*  
*  Original code developed by: 
*  Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997 
* 
************************************************************************ 
* 
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* Input files: 
* ------------ 
*  altcov.params.h - parameter file, specifying numdv, numsamp, 
*                       errmax, lambda, fprefix, fprefix2, fprefixnew 
*  fprefix.cov     - initial correlation matrix 
*  fprefix2.out    - predicted prediction errors at possible new data points 
* 
* Output files: 
* ------------- 
*  fprefixnew.cov  - alternated correlation matrix 
* 
* Variables: 
* ---------- 
*  inicov     = the initial correlation matrix 
*  newcov     = the alternated correlation matrix 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*  numsamp = number of data samples from which the correlation matrix 
*               is calculated 
* 
* Local Variables: 
* ---------------- 
*  DOUBLE PRECISION 
*  ---------------- 
*  errpred = the predicted prediction errors associated with each data 
*            and possible new data points 
* 
************************************************************************ 
 
      integer numsamp,numgoal,numdv 
      double precision lambda,errmax1,errmax2,gamma 
      double precision TargetH1,TargetL1,TargetS1, 
     &       TargetH2,TargetL2,TargetS2, 
     &       TargetH3,TargetL3,TargetS3 
      double precision ymax1,ymin1, 
     &       ymax2,ymin2,ymax3,ymin3, 
     &       yconstant1,yconstant2,yconstant3 
      character TargetType1,TargetType2,TargetType3 
      character*20 fprefix,fprefix2,fprefixnew 
      character*20 fprefix3,fprefix4,fprefix5,fprefix6 
C       
C  include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew, 
C  errmax, lambda, e.g., in the one-variable problem, for the first step: 
C  numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1', 
C  fprefixnew='step1altnewp',errmax=0.50,lambda=2.0 
C      
      include 'altcov.params.h' 
 
      double precision inicov(numsamp,numsamp), 
     &       newcov(numsamp,numsamp), 
     &       errpred(numresp,numsamp), 
     &       goalachieve(numgoal,numsamp), 
     &       responsey(numgoal,numsamp), 
     &       alpha(2),eta(2), 
     &       response,goalachievement, 
     &       errmax(numresp),TargetH(numgoal), 
     &       TargetL(numgoal),TargetS(numgoal), 
     &       ymax(numgoal),ymin(numgoal), 
     &       yconstant(numgoal) 
      character TargetType(numgoal) 
      integer i,j,k,lenstr 
      character*20 ftitle 
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      character*20 deckfile,deckfile2,deckfile3,outfile 
      character*20 deckfile4,deckfile5,deckfile6 
       
      errmax(1)=errmax1 
      errmax(2)=errmax2 
      TargetH(1)=TargetH1 
      TargetL(1)=TargetL1 
      TargetS(1)=TargetS1 
      TargetH(2)=TargetH2 
      TargetL(2)=TargetL2 
      TargetS(2)=TargetS2 
      TargetH(3)=TargetH3 
      TargetL(3)=TargetL3 
      TargetS(3)=TargetS3 
      ymax(1)=ymax1 
      ymin(1)=ymin1 
      ymax(2)=ymax2 
      ymin(2)=ymin2 
      ymax(3)=ymax3 
      ymin(3)=ymin3 
      yconstant(1)=yconstant1 
      yconstant(2)=yconstant2 
      yconstant(3)=yconstant3 
      TargetType(1)=TargetType1 
      TargetType(2)=TargetType2 
      TargetType(3)=TargetType3 
 
C 
C  open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files, 
C  e.g., step1newp.cov, errpred1.out, step1altnewp.cov 
C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
       deckfile=ftitle(1:lenstr) // '.cov' 
        
       call getlen(fprefix2,lenstr) 
       ftitle=fprefix2 
       deckfile2=ftitle(1:lenstr) // '.out' 
        
       call getlen(fprefix3,lenstr) 
       ftitle=fprefix3 
       deckfile3=ftitle(1:lenstr) // '.out' 
 
       call getlen(fprefix4,lenstr) 
       ftitle=fprefix4 
       deckfile4=ftitle(1:lenstr) // '.out' 
        
       call getlen(fprefix5,lenstr) 
       ftitle=fprefix5 
       deckfile5=ftitle(1:lenstr) // '.out' 
        
       deckfile6=fprefix6 
 
       call getlen(fprefixnew,lenstr) 
       ftitle=fprefixnew 
       outfile=ftitle(1:lenstr) // '.cov' 
 
        
       open(21,file=deckfile,status='old') 
       open(23,file=deckfile2,status='old') 
       open(25,file=deckfile3,status='old') 
       open(28,file=deckfile4,status='old') 
       open(29,file=deckfile5,status='old') 
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       open(30,file=deckfile6,status='old') 
       open(27,file=outfile,status='unknown') 
 
       print * 
       print *, deckfile,deckfile2,deckfile3, 
     &       deckfile4,deckfile5,outfile 
       print *, numsamp 
C 
C  initialize inicov 
C       
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (inicov(i,j),j=1,numsamp) 
      close(21)  
 
C 
C  initialize errpred 
C 
      print * 
      write(6,*) 'Reading in and calculating errpred...' 
      do 15 j=1,numresp 
            do 20 i=1,numsamp 
                if (i.le.numold) then 
                    errpred(j,i)=0.0 
                else 
                    if (j.eq.1) then 
                       read(23,*) errpred(j,i) 
                    else 
                       read(25,*) errpred(j,i) 
                    endif 
                endif 
                if (abs(errpred(j,i)).gt.(errmax(j))) then 
                    errpred(j,i)=errmax(j) 
                endif 
 20   continue 
 15   continue 
      close(23) 
      close(25) 
 
      print * 
      write(6,*) 
     &  'Reading in responses and calculating goal.achievement...' 
      do 55 j=1,numgoal 
         do 60 i=1,numsamp 
            if (j.eq.1) then 
               read (28,*) responsey(j,i) 
            elseif (j.eq.2) then 
               read (29,*) responsey(j,i) 
            else 
               read (30,*) responsey(j,i) 
            endif 
            response=responsey(j,i)+yconstant(j) 
            if (TargetType(j).eq.'H') then 
               call Hgoalachievecal(goalachievement,TargetH(j), 
     &              response,ymax(j),ymin(j),gamma) 
               goalachieve(j,i)=goalachievement 
            else if (TargetType(j).eq.'L') then 
               call Lgoalachievecal(goalachievement,TargetL(j), 
     &              response,ymax(j),ymin(j),gamma) 
               goalachieve(j,i)=goalachievement 
            else if (TargetType(j).eq.'S') then 
               call Sgoalachievecal(goalachievement,TargetS(j), 
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     &              response,ymax(j),ymin(j),gamma) 
               goalachieve(j,i)=goalachievement 
            endif 
 60   continue 
 55   continue 
      close(28) 
      close(29) 
      close(30) 
 
C 
C  calculate the alternated correlation matrix 
C 
      do 30 i=1,numsamp 
         do 40 j=i,numsamp 
         if (i.eq.j) then 
            newcov(i,j)=1.0 
         elseif (((i.le.numold).AND.(j.le.numold)).OR. 
     &             ((i.gt.numold).AND.(j.gt.numold))) then 
         newcov(i,j)=inicov(i,j) 
         newcov(j,i)=newcov(i,j) 
         elseif (((i.le.numold).AND.(j.gt.numold)).OR. 
     &             ((i.gt.numold).AND.(j.le.numold))) then 
         if (inicov(i,j).eq.1) then 
         newcov(i,j)=inicov(i,j) 
         newcov(j,i)=newcov(i,j) 
         elseif (inicov(i,j).lt.1) then 
            alpha(i)=0 
            alpha(j)=0 
            do 50 k=1,numresp 
               alpha(i)=alpha(i)+abs(errpred(k,i))/lambda/ 
     &            errmax(k)/numresp 
               alpha(j)=alpha(j)+abs(errpred(k,j))/lambda/ 
     &            errmax(k)/numresp 
 50   continue 
            alpha(i)=1-alpha(i) 
            alpha(j)=1-alpha(j) 
            eta(i)=0 
            eta(j)=0 
            do 65 k=1,numgoal 
               eta(i)=eta(i)+goalachieve(k,i)/numgoal 
               eta(j)=eta(j)+goalachieve(k,j)/numgoal 
 65   continue 
            eta(i)=1-eta(i) 
            eta(j)=1-eta(j) 
         newcov(i,j)=inicov(i,j) 
     &   *alpha(i)*alpha(j)*eta(i)*eta(j) 
         newcov(j,i)=newcov(i,j) 
         endif 
         endif 
 40   continue 
 30   continue 
 
C 
C  write alternated correlation matrix into specified .cov file 
C  
      do 80 i=1,numsamp 
        write(27,79) (newcov(i,j),j=1,numsamp) 
 79     format(30(f13.5,1x)) 
 80   continue 
      close(27) 
 
      print * 
      write(6,*) 'Alternated correlation matrix written to .cov file' 
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      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*20 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
 
*********************************************************************** 
* 
      subroutine Hgoalachievecal(goalachievement,TargetH, 
     &      response,ymax,ymin,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetH,response 
      double precision ymax,ymin,gamma 
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      if (response.le.ymin) then 
         goalachievement=0.00000000 
      else if (response.ge.min(TargetH,ymax)) then 
          goalachievement=1.0/gamma 
      else 
          goalachievement=(response-ymin)/ 
     &    (min(TargetH,ymax)-ymin)/gamma 
      endif 
 
      return 
      end 
 
 
*********************************************************************** 
* 
      subroutine Lgoalachievecal(goalachievement,TargetL, 
     &      response,ymax,ymin,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetL,response 
      double precision ymax,ymin,gamma 
 
      if (response.ge.ymax) then 
         goalachievement=0.0000000000 
      else if (response.le.max(TargetL,ymin)) then 
          goalachievement=1.0/gamma 
      else 
          goalachievement=(ymax-response)/ 
     &    (ymax-max(ymin,TargetL))/gamma 
      endif 
 
      return 
      end 
       
*********************************************************************** 
* 
      subroutine Sgoalachievecal(goalachievement,TargetS, 
     &      response,ymax,ymin,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
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* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetS,response 
      double precision ymax,ymin,gamma 
 
      if (response.ge.ymax) then 
         goalachievement=0.00000000 
      else if (response.le.ymin) then 
         goalachievement=0.00000000 
      else if (response.eq.TargetS) then 
         goalachievement=1.0/gamma 
      else if (response<TargetS.AND.response>ymin) then 
          goalachievement=(response-ymin)/(TargetS-ymin)/gamma 
      else if (response>TargetS.AND.response<ymax) then 
          goalachievement=(response-TargetS)/(ymax-TargetS)/gamma 
      endif 
 
      return 
      end 

 

Altcov.params.h: 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'altcov'                      * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
 
      parameter ( numdv=3,numsamp=20,numold=18, 
     &          numgoal=3,numresp=2, 
     &          fprefix='suit3valid', 
     &          fprefix2='Qit3st3err.gau', 
     &          fprefix3='Jit3st3err.gau', 
     &          fprefix4='Qit3val.gau', 
     &          fprefix5='Jit3val.gau', 
     &          fprefix6='repmoutput1.out', 
     &          fprefixnew='suit3altvalid', 
     &          errmax1=0.35, 
     &          errmax2=0.00268, 
     &          lambda=2.0, 
     &          ymax1=-6.9,ymin1=-16.0, 
     &          TargetL1=-20.0, 
     &          TargetH1=-1.0,TargetS1=-1.0, 
     &          ymax2=0.01164,ymin2=0.00056, 
     &          TargetL2=0.0015, 
     &          TargetH2=-1.0,TargetS2=-1.0, 
     &          ymax3=0.00033,ymin3=0.00005, 
     &          TargetL3=0.00025, 
     &          TargetH3=-1.0,TargetS3=-1.0, 
     &          TargetType1='L', 
     &          TargetType2='L', 
     &          TargetType3='L', 
     &          yconstant1=0.0, 
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     &          yconstant2=0.0, 
     &          yconstant3=0.0, 
     &          gamma=1.25) 
      
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C  numold = # old data points in the data set 
C 
C  fprefix = prefix of titles of file that stores the initial 
C            correlation matrix for both old and possible new 
C            data points 
C 
C  fprefix2 = prefix of titles of file that stores the 
C             predicted prediction errors at possible new 
C             data points 
C 
C  fprefix3 = prefix of titles of file that stores the 
C             predicted response values at all points 
C 
C 
C  fprefixnew = prefix of titles of file that stores the 
C               alternated correlation matrix for both old and 
C               possible new data points, with prediction errors 
C               at these points considered 
C 
C  errmax = maximum value of the absolute predicted prediction error 
C 
C  lambda = coefficient used to gauge the adjustment to initial 
C           correlation matrix 
C********************************************************************* 

 

 

Detcov.f: 
C*********************************************************************** 
C 
      program detcov 
C 
C  This program calculates the determinant given a matrix.  Particularly, 
C       in SEED, it is used to calculate the determinant of the 
C       correlation matrix. 
C 
C  Updated by: Yao Lin, March 26, 2003 
C 
C  Original code developed by: 
C  Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997 
C 
C********************************************************************** 
C 
C Input files: 
C ------------ 
C  detcov.params.h - parameter file, specifying numdv, numsamp, 
C                       coedet, fprefix 
C  .cov             - correlation matrix 
C 
C Output files: 
C ------------- 
C  .det             - determinant of the correlation matrix 
C 
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C Variables: 
C ---------- 
C   cov     = the input correlation matrix for which we calculate 
C             determinant 
C 
C Parameter Variables (to be specified by user in dace.params.h): 
C ---------------------------------------------------- 
C   numsamp = number of data samples from which the correlation matrix 
C               is calculated 
C 
C Local Variables: 
C ---------------- 
C   DOUBLE PRECISION 
C   ---------------- 
C   work     = vector of length 'numsamp' used as temporary storage 
C   invmat   = inverse of the correlation matrix (numsamp x numsamp) 
C 
C   INTEGER 
C   ------- 
C   ipvt    = vector of length 'numsamp' of pivot locations 
C 
C*********************************************************************** 
 
      integer numsamp 
      double precision coedet 
      character*16 fprefix 
C       
C  include parameter settings for numdv,numsamp,fprefix 
C 
      include 'detcov.params.h' 
 
C************************************************************************* 
C 
C  include LINPACK routines used to find determinant of correlation matrix 
C 
C************************************************************************* 
 
C      include 'dgefa.f' 
C      include 'dgedi.f' 
 
C************************************************************************* 
 
      double precision cov(numsamp,numsamp),work(numsamp), 
     &       dummy2,detR,det(2),rcond,z(numsamp) 
      integer i,j,ipvt(numsamp),dummy,lenstr,info 
      character*16 ftitle 
      character*20 deckfile,outfile 
      err=0.0000 
C 
C  open necessary .cov and .det files based on 'fprefix' name, 
C  e.g., step1.cov, step1.det 
C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
        
       deckfile=ftitle(1:lenstr) // '.cov' 
       outfile=ftitle(1:lenstr) // '.det' 
        
       open(21,file=deckfile,status='old') 
       open(27,file=outfile,status='unknown') 
        
       print * 
       print *, deckfile,outfile 
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       print *, numsamp 
C 
C  initialize cov 
C       
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (cov(i,j),j=1,numsamp) 
      close(21)  
             
C 
C     Start to calculate the determinant of the correlation matrix; 
C        initialization. 
C 
      do 307 i=1,numsamp 
        work(i)=0.0d0 
        ipvt(i)=0 
 307  continue 
 
C 
C     If there is any error in the calculation in DGEFA (singular matrix), 
C        this program will set the determinant to 0. 
C 
      call dgeco(cov,numsamp,numsamp,ipvt,rcond,z) 
      if( rcond .eq. 0 ) then 
          write(27,78) err 
 78   format(10(f13.5,1x)) 
          close(27) 
          go to 1000 
      endif 
C 
C In DGEDI, last flag is: 1 (inverse only), 10 (Det only), 11 (both) 
C 
      call dgedi(cov, numsamp, numsamp, ipvt, det, work, 10) 
      detR=det(1)*10.0d0**det(2) 
      detR=coedet*detR 
 
C 
C  write predicted values to specified .det file 
C  
      write(27,79) detR 
 79   format(10(f13.5,1x)) 
      close(27) 
           
      print * 
      write(6,*) detR 
1000  write(6,*) 'Coefficient*Determinant written to .det file' 
  
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 



724 

*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
 
      subroutine dgeco(a,lda,n,ipvt,rcond,z) 
      integer lda,n,ipvt(1) 
      double precision a(lda,1),z(1) 
      double precision rcond 
c 
c     dgeco factors a double precision matrix by gaussian elimination 
c     and estimates the condition of the matrix. 
c 
c     if  rcond  is not needed, dgefa is slightly faster. 
c     to solve  a*x = b , follow dgeco by dgesl. 
c     to compute  inverse(a)*c , follow dgeco by dgesl. 
c     to compute  determinant(a) , follow dgeco by dgedi. 
c     to compute  inverse(a) , follow dgeco by dgedi. 
c 
c     on entry 
c 
c        a       double precision(lda, n) 
c                the matrix to be factored. 
c 
c        lda     integer 
c                the leading dimension of the array  a . 
c 
c        n       integer 
c                the order of the matrix  a . 
c 
c     on return 
c 
c        a       an upper triangular matrix and the multipliers 
c                which were used to obtain it. 
c                the factorization can be written  a = l*u  where 
c                l  is a product of permutation and unit lower 
c                triangular matrices and  u  is upper triangular. 
c 
c        ipvt    integer(n) 
c                an integer vector of pivot indices. 
c 
c        rcond   double precision 
c                an estimate of the reciprocal condition of  a . 
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c                for the system  a*x = b , relative perturbations 
c                in  a  and  b  of size  epsilon  may cause 
c                relative perturbations in  x  of size  epsilon/rcond . 
c                if  rcond  is so small that the logical expression 
c                           1.0 + rcond .eq. 1.0 
c                is true, then  a  may be singular to working 
c                precision.  in particular,  rcond  is zero  if 
c                exact singularity is detected or the estimate 
c                underflows. 
c 
c        z       double precision(n) 
c                a work vector whose contents are usually unimportant. 
c                if  a  is close to a singular matrix, then  z  is 
c                an approximate null vector in the sense that 
c                norm(a*z) = rcond*norm(a)*norm(z) . 
c 
c     linpack. this version dated 08/14/78 . 
c     cleve moler, university of new mexico, argonne national lab. 
c 
c     subroutines and functions 
c 
c     linpack dgefa 
c     blas daxpy,ddot,dscal,dasum 
c     fortran dabs,dmax1,dsign 
c 
c     internal variables 
c 
      double precision ddot,ek,t,wk,wkm 
      double precision anorm,s,dasum,sm,ynorm 
      integer info,j,k,kb,kp1,l 
c 
c 
c     compute 1-norm of a 
c 
      anorm = 0.0d0 
      do 10 j = 1, n 
         anorm = dmax1(anorm,dasum(n,a(1,j),1)) 
   10 continue 
c 
c     factor 
c 
      call dgefa(a,lda,n,ipvt,info) 
c 
c     rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) . 
c     estimate = norm(z)/norm(y) where  a*z = y  and  trans(a)*y = e . 
c     trans(a)  is the transpose of a .  the components of  e  are 
c     chosen to cause maximum local growth in the elements of w  where 
c     trans(u)*w = e .  the vectors are frequently rescaled to avoid 
c     overflow. 
c 
c     solve trans(u)*w = e 
c 
      ek = 1.0d0 
      do 20 j = 1, n 
         z(j) = 0.0d0 
   20 continue 
      do 100 k = 1, n 
         if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k)) 
         if (dabs(ek-z(k)) .le. dabs(a(k,k))) go to 30 
            s = dabs(a(k,k))/dabs(ek-z(k)) 
            call dscal(n,s,z,1) 
            ek = s*ek 
   30    continue 
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         wk = ek - z(k) 
         wkm = -ek - z(k) 
         s = dabs(wk) 
         sm = dabs(wkm) 
         if (a(k,k) .eq. 0.0d0) go to 40 
            wk = wk/a(k,k) 
            wkm = wkm/a(k,k) 
         go to 50 
   40    continue 
            wk = 1.0d0 
            wkm = 1.0d0 
   50    continue 
         kp1 = k + 1 
         if (kp1 .gt. n) go to 90 
            do 60 j = kp1, n 
               sm = sm + dabs(z(j)+wkm*a(k,j)) 
               z(j) = z(j) + wk*a(k,j) 
               s = s + dabs(z(j)) 
   60       continue 
            if (s .ge. sm) go to 80 
               t = wkm - wk 
               wk = wkm 
               do 70 j = kp1, n 
                  z(j) = z(j) + t*a(k,j) 
   70          continue 
   80       continue 
   90    continue 
         z(k) = wk 
  100 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
c 
c     solve trans(l)*y = w 
c 
      do 120 kb = 1, n 
         k = n + 1 - kb 
         if (k .lt. n) z(k) = z(k) + ddot(n-k,a(k+1,k),1,z(k+1),1) 
         if (dabs(z(k)) .le. 1.0d0) go to 110 
            s = 1.0d0/dabs(z(k)) 
            call dscal(n,s,z,1) 
  110    continue 
         l = ipvt(k) 
         t = z(l) 
         z(l) = z(k) 
         z(k) = t 
  120 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
c 
      ynorm = 1.0d0 
c 
c     solve l*v = y 
c 
      do 140 k = 1, n 
         l = ipvt(k) 
         t = z(l) 
         z(l) = z(k) 
         z(k) = t 
         if (k .lt. n) call daxpy(n-k,t,a(k+1,k),1,z(k+1),1) 
         if (dabs(z(k)) .le. 1.0d0) go to 130 
            s = 1.0d0/dabs(z(k)) 
            call dscal(n,s,z,1) 
            ynorm = s*ynorm 
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  130    continue 
  140 continue 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
      ynorm = s*ynorm 
c 
c     solve  u*z = v 
c 
      do 160 kb = 1, n 
         k = n + 1 - kb 
         if (dabs(z(k)) .le. dabs(a(k,k))) go to 150 
            s = dabs(a(k,k))/dabs(z(k)) 
            call dscal(n,s,z,1) 
            ynorm = s*ynorm 
  150    continue 
         if (a(k,k) .ne. 0.0d0) z(k) = z(k)/a(k,k) 
         if (a(k,k) .eq. 0.0d0) z(k) = 1.0d0 
         t = -z(k) 
         call daxpy(k-1,t,a(1,k),1,z(1),1) 
  160 continue 
c     make znorm = 1.0 
      s = 1.0d0/dasum(n,z,1) 
      call dscal(n,s,z,1) 
      ynorm = s*ynorm 
c 
      if (anorm .ne. 0.0d0) rcond = ynorm/anorm 
      if (anorm .eq. 0.0d0) rcond = 0.0d0 
      return 
      end 
 
 
      subroutine dgedi(a,lda,n,ipvt,det,work,job) 
      integer lda,n,ipvt(1),job 
      double precision a(lda,1),det(2),work(1) 
C 
C     dgedi computes the determinant and inverse of a matrix 
C     using the factors computed by dgeco or dgefa. 
C 
C     on entry 
C 
C        a       double precision(lda, n) 
C                the output from dgeco or dgefa. 
C 
C        lda     integer 
C                the leading dimension of the array  a . 
C 
C        n       integer 
C                the order of the matrix  a . 
C 
C        ipvt    integer(n) 
C                the pivot vector from dgeco or dgefa. 
C 
C        work    double precision(n) 
C                work vector.  contents destroyed. 
C 
C        job     integer 
C                = 11   both determinant and inverse. 
C                = 01   inverse only. 
C                = 10   determinant only. 
C 
C     on return 
C 
C        a       inverse of original matrix if requested. 
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C                otherwise unchanged. 
C 
C        det     double precision(2) 
C                determinant of original matrix if requested. 
C                otherwise not referenced. 
C                determinant = det(1) * 10.0**det(2) 
C                with  1.0 .le. dabs(det(1)) .lt. 10.0 
C                or  det(1) .eq. 0.0 . 
C 
C     error condition 
C 
C        a division by zero will occur if the input factor contains 
C        a zero on the diagonal and the inverse is requested. 
C        it will not occur if the subroutines are called correctly 
C        and if dgeco has set rcond .gt. 0.0 or dgefa has set 
C        info .eq. 0 . 
C 
C     linpack. this version dated 08/14/78 . 
C     cleve moler, university of new mexico, argonne national lab. 
C 
C     subroutines and functions 
C 
C     blas daxpy,dscal,dswap 
C     fortran dabs,mod 
C 
C     internal variables 
C 
      double precision t 
      double precision ten 
      integer i,j,k,kb,kp1,l,nm1 
C 
C 
C     compute determinant 
C 
      if (job/10 .eq. 0) go to 70 
         det(1) = 1.0d0 
         det(2) = 0.0d0 
         ten = 10.0d0 
         do 50 i = 1, n 
            if (ipvt(i) .ne. i) det(1) = -det(1) 
            det(1) = a(i,i)*det(1) 
C        ...exit 
            if (det(1) .eq. 0.0d0) go to 60 
   10       if (dabs(det(1)) .ge. 1.0d0) go to 20 
               det(1) = ten*det(1) 
               det(2) = det(2) - 1.0d0 
            go to 10 
   20       continue 
   30       if (dabs(det(1)) .lt. ten) go to 40 
               det(1) = det(1)/ten 
               det(2) = det(2) + 1.0d0 
            go to 30 
   40       continue 
   50    continue 
   60    continue 
   70 continue 
C 
C     compute inverse(u) 
C 
      if (mod(job,10) .eq. 0) go to 150 
         do 100 k = 1, n 
            a(k,k) = 1.0d0/a(k,k) 
            t = -a(k,k) 
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            call dscal(k-1,t,a(1,k),1) 
            kp1 = k + 1 
            if (n .lt. kp1) go to 90 
            do 80 j = kp1, n 
               t = a(k,j) 
               a(k,j) = 0.0d0 
               call daxpy(k,t,a(1,k),1,a(1,j),1) 
   80       continue 
   90       continue 
  100    continue 
C 
C        form inverse(u)*inverse(l) 
C 
         nm1 = n - 1 
         if (nm1 .lt. 1) go to 140 
         do 130 kb = 1, nm1 
            k = n - kb 
            kp1 = k + 1 
            do 110 i = kp1, n 
               work(i) = a(i,k) 
               a(i,k) = 0.0d0 
  110       continue 
            do 120 j = kp1, n 
               t = work(j) 
               call daxpy(n,t,a(1,j),1,a(1,k),1) 
  120       continue 
            l = ipvt(k) 
            if (l .ne. k) call dswap(n,a(1,k),1,a(1,l),1) 
  130    continue 
  140    continue 
  150 continue 
      return 
      end 
       
      subroutine daxpy(n,da,dx,incx,dy,incy) 
C 
C     constant times a vector plus a vector. 
C     uses unrolled loops for increments equal to one. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dy(*),da 
      integer i,incx,incy,ix,iy,m,mp1,n 
C 
      if(n.le.0)return 
      if (da .eq. 0.0d0) return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
C 
C        code for unequal increments or equal increments 
C          not equal to 1 
C 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dy(iy) = dy(iy) + da*dx(ix) 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      return 
C 
C        code for both increments equal to 1 
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C 
C 
C        clean-up loop 
C 
   20 m = mod(n,4) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dy(i) = dy(i) + da*dx(i) 
   30 continue 
      if( n .lt. 4 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,4 
        dy(i) = dy(i) + da*dx(i) 
        dy(i + 1) = dy(i + 1) + da*dx(i + 1) 
        dy(i + 2) = dy(i + 2) + da*dx(i + 2) 
        dy(i + 3) = dy(i + 3) + da*dx(i + 3) 
   50 continue 
      return 
      end 
       
      subroutine  dscal(n,da,dx,incx) 
C 
C     scales a vector by a constant. 
C     uses unrolled loops for increment equal to one. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 3/93 to return if incx .le. 0. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision da,dx(*) 
      integer i,incx,m,mp1,n,nincx 
C 
      if( n.le.0 .or. incx.le.0 )return 
      if(incx.eq.1)go to 20 
C 
C        code for increment not equal to 1 
C 
      nincx = n*incx 
      do 10 i = 1,nincx,incx 
        dx(i) = da*dx(i) 
   10 continue 
      return 
C 
C        code for increment equal to 1 
C 
C 
C        clean-up loop 
C 
   20 m = mod(n,5) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dx(i) = da*dx(i) 
   30 continue 
      if( n .lt. 5 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,5 
        dx(i) = da*dx(i) 
        dx(i + 1) = da*dx(i + 1) 
        dx(i + 2) = da*dx(i + 2) 
        dx(i + 3) = da*dx(i + 3) 
        dx(i + 4) = da*dx(i + 4) 
   50 continue 
      return 
      end 
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      subroutine  dswap (n,dx,incx,dy,incy) 
C 
C     interchanges two vectors. 
C     uses unrolled loops for increments equal one. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dy(*),dtemp 
      integer i,incx,incy,ix,iy,m,mp1,n 
C 
      if(n.le.0)return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
C 
C       code for unequal increments or equal increments not equal 
C         to 1 
C 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dtemp = dx(ix) 
        dx(ix) = dy(iy) 
        dy(iy) = dtemp 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      return 
C 
C       code for both increments equal to 1 
C 
C 
C       clean-up loop 
C 
   20 m = mod(n,3) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dx(i) 
        dx(i) = dy(i) 
        dy(i) = dtemp 
   30 continue 
      if( n .lt. 3 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,3 
        dtemp = dx(i) 
        dx(i) = dy(i) 
        dy(i) = dtemp 
        dtemp = dx(i + 1) 
        dx(i + 1) = dy(i + 1) 
        dy(i + 1) = dtemp 
        dtemp = dx(i + 2) 
        dx(i + 2) = dy(i + 2) 
        dy(i + 2) = dtemp 
   50 continue 
      return 
      end 
       
 
      subroutine dgefa(a,lda,n,ipvt,info) 
      integer lda,n,ipvt(1),info 
      double precision a(lda,1) 
C 
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C     dgefa factors a double precision matrix by gaussian elimination. 
C 
C     dgefa is usually called by dgeco, but it can be called 
C     directly with a saving in time if  rcond  is not needed. 
C     (time for dgeco) = (1 + 9/n)*(time for dgefa) . 
C 
C     on entry 
C 
C        a       double precision(lda, n) 
C                the matrix to be factored. 
C 
C        lda     integer 
C                the leading dimension of the array  a . 
C 
C        n       integer 
C                the order of the matrix  a . 
C 
C     on return 
C 
C        a       an upper triangular matrix and the multipliers 
C                which were used to obtain it. 
C                the factorization can be written  a = l*u  where 
C                l  is a product of permutation and unit lower 
C                triangular matrices and  u  is upper triangular. 
C 
C        ipvt    integer(n) 
C                an integer vector of pivot indices. 
C 
C        info    integer 
C                = 0  normal value. 
C                = k  if  u(k,k) .eq. 0.0 .  this is not an error 
C                     condition for this subroutine, but it does 
C                     indicate that dgesl or dgedi will divide by zero 
C                     if called.  use  rcond  in dgeco for a reliable 
C                     indication of singularity. 
C 
C     linpack. this version dated 08/14/78 . 
C     cleve moler, university of new mexico, argonne national lab. 
C 
C     subroutines and functions 
C 
C     blas daxpy,dscal,idamax 
C 
C     internal variables 
C 
      double precision t 
      integer idamax,j,k,kp1,l,nm1 
C 
C 
C     gaussian elimination with partial pivoting 
C 
      info = 0 
      nm1 = n - 1 
      if (nm1 .lt. 1) go to 70 
      do 60 k = 1, nm1 
         kp1 = k + 1 
C 
C        find l = pivot index 
C 
         l = idamax(n-k+1,a(k,k),1) + k - 1 
         ipvt(k) = l 
C 
C        zero pivot implies this column already triangularized 
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C 
         if (a(l,k) .eq. 0.0d0) go to 40 
C 
C           interchange if necessary 
C 
            if (l .eq. k) go to 10 
               t = a(l,k) 
               a(l,k) = a(k,k) 
               a(k,k) = t 
   10       continue 
C 
C           compute multipliers 
C 
            t = -1.0d0/a(k,k) 
            call dscal(n-k,t,a(k+1,k),1) 
C 
C           row elimination with column indexing 
C 
            do 30 j = kp1, n 
               t = a(l,j) 
               if (l .eq. k) go to 20 
                  a(l,j) = a(k,j) 
                  a(k,j) = t 
   20          continue 
               call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1) 
   30       continue 
         go to 50 
   40    continue 
            info = k 
   50    continue 
   60 continue 
   70 continue 
      ipvt(n) = n 
      if (a(n,n) .eq. 0.0d0) info = n 
      return 
      end 
 
      integer function idamax(n,dx,incx) 
C 
C     finds the index of element having max. absolute value. 
C     jack dongarra, linpack, 3/11/78. 
C     modified 3/93 to return if incx .le. 0. 
C     modified 12/3/93, array(1) declarations changed to array(*) 
C 
      double precision dx(*),dmax 
      integer i,incx,ix,n 
C 
      idamax = 0 
      if( n.lt.1 .or. incx.le.0 ) return 
      idamax = 1 
      if(n.eq.1)return 
      if(incx.eq.1)go to 20 
C 
C        code for increment not equal to 1 
C 
      ix = 1 
      dmax = dabs(dx(1)) 
      ix = ix + incx 
      do 10 i = 2,n 
         if(dabs(dx(ix)).le.dmax) go to 5 
         idamax = i 
         dmax = dabs(dx(ix)) 
    5    ix = ix + incx 
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   10 continue 
      return 
C 
C        code for increment equal to 1 
C 
   20 dmax = dabs(dx(1)) 
      do 30 i = 2,n 
         if(dabs(dx(i)).le.dmax) go to 30 
         idamax = i 
         dmax = dabs(dx(i)) 
   30 continue 
      return 
      end 
       
      double precision function dasum(n,dx,incx) 
c 
c     takes the sum of the absolute values. 
c     jack dongarra, linpack, 3/11/78. 
c     modified 3/93 to return if incx .le. 0. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      double precision dx(*),dtemp 
      integer i,incx,m,mp1,n,nincx 
c 
      dasum = 0.0d0 
      dtemp = 0.0d0 
      if( n.le.0 .or. incx.le.0 )return 
      if(incx.eq.1)go to 20 
c 
c        code for increment not equal to 1 
c 
      nincx = n*incx 
      do 10 i = 1,nincx,incx 
        dtemp = dtemp + dabs(dx(i)) 
   10 continue 
      dasum = dtemp 
      return 
c 
c        code for increment equal to 1 
c 
c 
c        clean-up loop 
c 
   20 m = mod(n,6) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dtemp + dabs(dx(i)) 
   30 continue 
      if( n .lt. 6 ) go to 60 
   40 mp1 = m + 1 
      do 50 i = mp1,n,6 
        dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2)) 
     &  + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5)) 
   50 continue 
   60 dasum = dtemp 
      return 
      end 
       
      double precision function ddot(n,dx,incx,dy,incy) 
c 
c     forms the dot product of two vectors. 
c     uses unrolled loops for increments equal to one. 
c     jack dongarra, linpack, 3/11/78. 



735 

c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      double precision dx(*),dy(*),dtemp 
      integer i,incx,incy,ix,iy,m,mp1,n 
c 
      ddot = 0.0d0 
      dtemp = 0.0d0 
      if(n.le.0)return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
c 
c        code for unequal increments or equal increments 
c          not equal to 1 
c 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        dtemp = dtemp + dx(ix)*dy(iy) 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      ddot = dtemp 
      return 
c 
c        code for both increments equal to 1 
c 
c 
c        clean-up loop 
c 
   20 m = mod(n,5) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        dtemp = dtemp + dx(i)*dy(i) 
   30 continue 
      if( n .lt. 5 ) go to 60 
   40 mp1 = m + 1 
      do 50 i = mp1,n,5 
        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + 
     & dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 
   50 continue 
   60 ddot = dtemp 
      return 
      end 

 

Detcov.params.h: 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'detcov'                      * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
 
      parameter ( numdv=3,numsamp=27,fprefix='suit3altvalid', 
     &          coedet=1e8 ) 
C 
C  numdv = # design variables 
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C  numsamp = # samples in data set 
C 
C  fprefix = prefix of titles of files to opened/used 
C 
C  coedet = when the value of determinant is very small, 
C          this coefficient is used to magnify the value. 
C********************************************************** 

 

 

 

 

 

 

 

 

 

 

D.2.3 Implementation of SEED in iSIGHT in Section 7.4 

Figures presented in this section illustrate how the SEED method is implemented 

in iSIGHT.  The organization of tasks in Iteration I – Step 3 is shown in Figure D.19.  The 

organization of tasks in Iteration I – Step 7 is shown in Figure D.20. 

In Iteration I – Step 3, since the covariance matrix is not adjusted, there are only 

two simulation codes used in iSIGHT, Covmat and Detcov.  In Iteration I – Step 7, with 

information from metamodels of prediction errors, we use five simulation codes in 

iSIGHT, Covmat, Qerr, Jerr, Altcov, and Detcov.  Covmat is used to formulate the 

covariance matrix, Qerr and Jerr are metamodels to predict prediction errors, Altcov is 
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used to adjust entries of the covariance matrix, and Detcov is used to calculate the 

determinant. 

 
Figure D.19 Implementation of SEED in iSIGHT – Iteration I, Step 3 
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Figure D.20 Implementation of SEED in iSIGHT – Iteration I, Step 7 

 
Figure D.21 File Parsing of Input in iSIGHT – Iteration I, Step 7 
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D.2.4 Twenty Eight Points Identified with SEED 

Listed below are 28 points identified with SEED in Section 7.4. 

Table D.3 Twenty Eight Points Identified with SEED 

Mdot (kg/s) W (m) t (m) Mdot_n W_n t_n Q (W) J (m/N) 
0.0005 0.0150 0.0002 0 0 0 -11.01 0.00749 
0.0005 0.0150 0.0008 0 0 1 -14.37 0.00022 
0.0005 0.0350 0.0002 0 1 0 -6.65 0.01167 
0.0005 0.0350 0.0008 0 1 1 -9.56 0.00027 
0.003 0.0150 0.0002 1 0 0 -42.24 0.00749 
0.003 0.0150 0.0008 1 0 1 -109.66 0.00022 
0.003 0.0350 0.0002 1 1 0 -19.86 0.01167 
0.003 0.0350 0.0008 1 1 1 -23.03 0.00027 

0.00175 0.0250 0.0005 0.5 0.5 0.5 -17.49 0.00076 
0.00058 0.0321 0.00043 0.0333 0.8556 0.3769 -9.58 0.00126 
0.00204 0.0237 0.00027 0.6143 0.4333 0.1167 -16.69 0.00405 
0.00082 0.0157 0.00064 0.1276 0.0344 0.7252 -14.65 0.00036 
0.00298 0.0245 0.00044 0.9925 0.4751 0.3961 -18.58 0.00106 
0.00182 0.0321 0.00074 0.529 0.8567 0.9059 -19.76 0.00031 
0.00222 0.0235 0.00045 0.6865 0.4227 0.41 -17.64 0.00098 
0.00125 0.0350 0.00035 0.3008 1 0.2559 -14.85 0.00232 
0.00239 0.0150 0.00065 0.7573 0 0.7573 -70.69 0.00034 
0.003 0.0250 0.0005 1 0.5 0.5 -18.94 0.00076 

0.00053 0.0203 0.00041 0.0111 0.2663 0.3472 -11.79 0.00118 
0.00175 0.0250 0.0008 0.5 0.5 1 -18.53 0.00025 
0.00175 0.0250 0.0002 0.5 0.5 0 -15.92 0.0099 
0.00146 0.0341 0.00057 0.3834 0.9532 0.6156 -17.53 0.00061 
0.003 0.0294 0.00031 0.9998 0.7204 0.1767 -19.52 0.00314 

0.00053 0.0290 0.00067 0.0123 0.7001 0.785 -11.22 0.00039 
0.0005 0.0210 0.00065 0.0015 0.2976 0.7563 -12.91 0.00037 
0.0005 0.035 0.00068 0 1 0.7935 -8.92 0.0004 
0.003 0.035 0.00046 1 1 0.4309 -21.65 0.00109 
0.0005 0.025 0.00062 0 0.5 0.7 -11.68 0.00044 
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D.3 EXPLORATION OF DESIGN SOLUTIONS WITH THE INTEGRATED 
DESIGN PROCESS IN E-RCEM 

All supporting materials and documents for studies in Section 7.5 are presented 

here.  Contours plots of metamodels of responses (initial metamodels, metamodels of 

responses in Iteration I – Step 8 and Iteration II – Step 3) are illustrated in Section D.3.1.  

FORTRAN codes of the integrated design process in E-RCEM are presented in Section 

D.3.2.  The implementation of E-RCEM in iSIGHT is illustrated in Section D.3.3.  

Twenty points identified from E-RCEM and their corresponding response values are 

listed in Section D.3.4. 

D.3.1 Contour Plots of Metamodels of Responses 

Contour plots illustrated below are drawn with predicted values from the kriging 

metamodels of responses in Section 7.5.  Contour plots of metamodels of prediction 

errors are not drawn.  The contour plots are drawn using Minitab® with default 

parameters. 

 
Figure D.22 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device 

Width (Initial Kriging Metamodel with 6 Data Points) 
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Figure D.23 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow 
Rate (Initial Kriging Metamodel with 6 Data Points) 

 

Figure D.24 Contour Plot of Compliance vs. Device Width and Wall Thickness 
(Initial Kriging Metamodel with 6 Data Points) 
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Figure D.25 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device 
Width (Kriging Metamodel with 8 Data Points) 

 

Figure D.26 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow 
Rate (Kriging Metamodel with 8 Data Points) 
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Figure D.27 Contour Plot of Compliance vs. Device Width and Wall Thickness 
(Kriging Metamodel with 8 Data Points) 

 

Figure D.28 Contour Plot of Heat Transfer Rate vs. Wall Thickness and Device 
Width (Kriging Metamodel with 8 Validation Points) 
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Figure D.29 Contour Plot of Heat Transfer Rate vs. Device Width and Mass Flow 
Rate (Kriging Metamodel with 8 Validation Points) 

 

Figure D.30 Contour Plot of Compliance vs. Device Width and Wall Thickness 
(Kriging Metamodel with 8 Validation Points) 
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D.3.2 FORTRAN Programs Used in E-RCEM in Section 7.5 

The FORTRAN program of altcov.f and altcov.params.h used in SEED, Iteration 

III – Step 4, in Section 7.5 are enclosed in this section.  The programs of altcov.f and 

altcov.params.h are used to adjust entries of the covariance matrix.  Other programs used 

in the integrated process in E-RCEM are the same as those presented in Appendix D.2.2. 

 

Altcov.f: 
************************************************************************ 
* 
      program altcov 
* 
*  This program calculates the alternated correlation matrix, given the 
*       initial correlation matrix and predicted prediction errors at 
*       possible new data points. 
* 
*  Updated by: Yao Lin, March 26, 2003 
*  
*  Original code developed by: 
*  Tim Simpson 25 February 1998 / Tony Giunta, 12 May 1997 
* 
************************************************************************ 
* 
* Input files: 
* ------------ 
*  altcov.params.h - parameter file, specifying numdv, numsamp, 
*                       errmax, lambda, fprefix, fprefix2, fprefixnew 
*  fprefix.cov     - initial correlation matrix 
*  fprefix2.out    - predicted prediction errors at possible new data points 
* 
* Output files: 
* ------------- 
*  fprefixnew.cov  - alternated correlation matrix 
* 
* Variables: 
* ---------- 
*  inicov     = the initial correlation matrix 
*  newcov     = the alternated correlation matrix 
* 
* Parameter Variables (to be specified by user in dace.params.h): 
* ---------------------------------------------------- 
*  numsamp = number of data samples from which the correlation matrix 
*               is calculated 
* 
* Local Variables: 
* ---------------- 
*  DOUBLE PRECISION 
*  ---------------- 
*  errpred = the predicted prediction errors associated with each data 
*            and possible new data points 
* 
************************************************************************ 
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      integer numsamp,numgoal,numdv 
      double precision lambda,errmax1,errmax2,gamma 
      double precision TargetH1,TargetL1,TargetS1, 
     &       TargetH2,TargetL2,TargetS2, 
     &       TargetH3,TargetL3,TargetS3 
      double precision ymax1,ymin1, 
     &       ymax2,ymin2,ymax3,ymin3, 
     &       yconstant1,yconstant2,yconstant3 
      character TargetType1,TargetType2,TargetType3 
      character*20 fprefix,fprefix2,fprefixnew 
      character*20 fprefix3,fprefix4,fprefix5,fprefix6 
C       
C  include parameter settings for numdv,numsamp,fprefix,fprefix2,fprefixnew, 
C  errmax, lambda, e.g., in the one-variable problem, for the first step: 
C  numdv=1,numsamp=8,fprefix='step1newp',fprefix2='errpred1', 
C  fprefixnew='step1altnewp',errmax=0.50,lambda=2.0 
C      
      include 'altcov.params.h' 
 
      double precision inicov(numsamp,numsamp), 
     &       newcov(numsamp,numsamp), 
     &       errpred(numresp,numsamp), 
     &       goalachieve(numgoal,numsamp), 
     &       responsey(numgoal,numsamp), 
     &       alpha(2),eta(2), 
     &       response,goalachievement, 
     &       errmax(numresp),TargetH(numgoal), 
     &       TargetL(numgoal),TargetS(numgoal), 
     &       ymax(numgoal),ymin(numgoal), 
     &       yconstant(numgoal) 
      character TargetType(numgoal) 
      integer i,j,k,lenstr 
      character*20 ftitle 
      character*20 deckfile,deckfile2,deckfile3,outfile 
      character*20 deckfile4,deckfile5,deckfile6 
       
      errmax(1)=errmax1 
      errmax(2)=errmax2 
      TargetH(1)=TargetH1 
      TargetL(1)=TargetL1 
      TargetS(1)=TargetS1 
      TargetH(2)=TargetH2 
      TargetL(2)=TargetL2 
      TargetS(2)=TargetS2 
      TargetH(3)=TargetH3 
      TargetL(3)=TargetL3 
      TargetS(3)=TargetS3 
      ymax(1)=ymax1 
      ymin(1)=ymin1 
      ymax(2)=ymax2 
      ymin(2)=ymin2 
      ymax(3)=ymax3 
      ymin(3)=ymin3 
      yconstant(1)=yconstant1 
      yconstant(2)=yconstant2 
      yconstant(3)=yconstant3 
      TargetType(1)=TargetType1 
      TargetType(2)=TargetType2 
      TargetType(3)=TargetType3 
 
C 
C  open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files, 
C  e.g., step1newp.cov, errpred1.out, step1altnewp.cov 
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C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
       deckfile=ftitle(1:lenstr) // '.cov' 
        
       call getlen(fprefix2,lenstr) 
       ftitle=fprefix2 
       deckfile2=ftitle(1:lenstr) // '.out' 
        
       call getlen(fprefix3,lenstr) 
       ftitle=fprefix3 
       deckfile3=ftitle(1:lenstr) // '.out' 
 
       call getlen(fprefix4,lenstr) 
       ftitle=fprefix4 
       deckfile4=ftitle(1:lenstr) // '.out' 
        
       call getlen(fprefix5,lenstr) 
       ftitle=fprefix5 
       deckfile5=ftitle(1:lenstr) // '.out' 
        
       deckfile6=fprefix6 
 
       call getlen(fprefixnew,lenstr) 
       ftitle=fprefixnew 
       outfile=ftitle(1:lenstr) // '.cov' 
 
        
       open(21,file=deckfile,status='old') 
       open(23,file=deckfile2,status='old') 
       open(25,file=deckfile3,status='old') 
       open(28,file=deckfile4,status='old') 
       open(29,file=deckfile5,status='old') 
       open(30,file=deckfile6,status='old') 
       open(27,file=outfile,status='unknown') 
 
       print * 
       print *, deckfile,deckfile2,deckfile3, 
     &       deckfile4,deckfile5,outfile 
       print *, numsamp 
C 
C  initialize inicov 
C       
      print * 
      write(6,*) 'Reading in sample data...' 
      do 10 i=1,numsamp 
 10     read (21,*) (inicov(i,j),j=1,numsamp) 
      close(21)  
 
C 
C  initialize errpred 
C 
      print * 
      write(6,*) 'Reading in and calculating errpred...' 
      do 15 j=1,numresp 
            do 20 i=1,numsamp 
                if (i.le.numold) then 
                    errpred(j,i)=0.0 
                else 
                    if (j.eq.1) then 
                       read(23,*) errpred(j,i) 
                    else 
                       read(25,*) errpred(j,i) 
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                    endif 
                endif 
                if (abs(errpred(j,i)).gt.(errmax(j))) then 
                    errpred(j,i)=errmax(j) 
                endif 
 20   continue 
 15   continue 
      close(23) 
      close(25) 
 
      print * 
      write(6,*) 
     &  'Reading in responses and calculating goal.achievement...' 
      do 55 j=1,numgoal 
         do 60 i=1,numsamp 
            if (j.eq.1) then 
               read (28,*) responsey(j,i) 
            elseif (j.eq.2) then 
               read (29,*) responsey(j,i) 
            else 
               read (30,*) responsey(j,i) 
            endif 
            response=responsey(j,i)+yconstant(j) 
            if (TargetType(j).eq.'H') then 
               call Hgoalachievecal(goalachievement,TargetH(j), 
     &              response,ymax(j),ymin(j),gamma) 
               goalachieve(j,i)=goalachievement 
            else if (TargetType(j).eq.'L') then 
               call Lgoalachievecal(goalachievement,TargetL(j), 
     &              response,ymax(j),ymin(j),gamma) 
               goalachieve(j,i)=goalachievement 
            else if (TargetType(j).eq.'S') then 
               call Sgoalachievecal(goalachievement,TargetS(j), 
     &              response,ymax(j),ymin(j),gamma) 
               goalachieve(j,i)=goalachievement 
            endif 
 60   continue 
 55   continue 
      close(28) 
      close(29) 
      close(30) 
 
C 
C  calculate the alternated correlation matrix 
C 
      do 30 i=1,numsamp 
         do 40 j=i,numsamp 
         if (i.eq.j) then 
            newcov(i,j)=1.0 
         elseif (((i.le.numold).AND.(j.le.numold)).OR. 
     &             ((i.gt.numold).AND.(j.gt.numold))) then 
         newcov(i,j)=inicov(i,j) 
         newcov(j,i)=newcov(i,j) 
         elseif (((i.le.numold).AND.(j.gt.numold)).OR. 
     &             ((i.gt.numold).AND.(j.le.numold))) then 
         if (inicov(i,j).eq.1) then 
         newcov(i,j)=inicov(i,j) 
         newcov(j,i)=newcov(i,j) 
         elseif (inicov(i,j).lt.1) then 
            alpha(i)=0 
            alpha(j)=0 
            do 50 k=1,numresp 
               alpha(i)=alpha(i)+abs(errpred(k,i))/lambda/ 
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     &            errmax(k)/numresp 
               alpha(j)=alpha(j)+abs(errpred(k,j))/lambda/ 
     &            errmax(k)/numresp 
 50   continue 
            alpha(i)=1-alpha(i) 
            alpha(j)=1-alpha(j) 
            eta(i)=0 
            eta(j)=0 
            do 65 k=1,numgoal 
               eta(i)=eta(i)+goalachieve(k,i)/numgoal 
               eta(j)=eta(j)+goalachieve(k,j)/numgoal 
 65   continue 
            eta(i)=1-eta(i) 
            eta(j)=1-eta(j) 
         newcov(i,j)=inicov(i,j) 
     &   *alpha(i)*alpha(j)*eta(i)*eta(j) 
         newcov(j,i)=newcov(i,j) 
         endif 
         endif 
 40   continue 
 30   continue 
 
C 
C  write alternated correlation matrix into specified .cov file 
C  
      do 80 i=1,numsamp 
        write(27,79) (newcov(i,j),j=1,numsamp) 
 79     format(30(f13.5,1x)) 
 80   continue 
      close(27) 
 
      print * 
      write(6,*) 'Alternated correlation matrix written to .cov file' 
  
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*20 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
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          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
 
*********************************************************************** 
* 
      subroutine Hgoalachievecal(goalachievement,TargetH, 
     &      response,ymax,ymin,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetH,response 
      double precision ymax,ymin,gamma 
 
      if (response.le.ymin) then 
         goalachievement=0.00000000 
      else if (response.ge.min(TargetH,ymax)) then 
          goalachievement=1.0/gamma 
      else 
          goalachievement=(response-ymin)/ 
     &    (min(TargetH,ymax)-ymin)/gamma 
      endif 
 
      return 
      end 
 
 
*********************************************************************** 
* 
      subroutine Lgoalachievecal(goalachievement,TargetL, 
     &      response,ymax,ymin,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
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*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetL,response 
      double precision ymax,ymin,gamma 
 
      if (response.ge.ymax) then 
         goalachievement=0.0000000000 
      else if (response.le.max(TargetL,ymin)) then 
          goalachievement=1.0/gamma 
      else 
          goalachievement=(ymax-response)/ 
     &    (ymax-max(ymin,TargetL))/gamma 
      endif 
 
      return 
      end 
       
*********************************************************************** 
* 
      subroutine Sgoalachievecal(goalachievement,TargetS, 
     &      response,ymax,ymin,gamma) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      double precision goalachievement,TargetS,response 
      double precision ymax,ymin,gamma 
 
      if (response.ge.ymax) then 
         goalachievement=0.00000000 
      else if (response.le.ymin) then 
         goalachievement=0.00000000 
      else if (response.eq.TargetS) then 
         goalachievement=1.0/gamma 
      else if (response<TargetS.AND.response>ymin) then 
          goalachievement=(response-ymin)/(TargetS-ymin)/gamma 
      else if (response>TargetS.AND.response<ymax) then 
          goalachievement=(response-TargetS)/(ymax-TargetS)/gamma 
      endif 
 
      return 
      end 

 

Altcov.params.h 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'altcov'                      * 



752 

C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
 
      parameter ( numdv=3,numsamp=20,numold=18, 
     &          numgoal=3,numresp=2, 
     &          fprefix='suit3valid', 
     &          fprefix2='Qit3st3err.gau', 
     &          fprefix3='Jit3st3err.gau', 
     &          fprefix4='Qit3val.gau', 
     &          fprefix5='Jit3val.gau', 
     &          fprefix6='repmoutput1.out', 
     &          fprefixnew='suit3altvalid', 
     &          errmax1=0.35, 
     &          errmax2=0.00268, 
     &          lambda=2.0, 
     &          ymax1=-6.9,ymin1=-16.0, 
     &          TargetL1=-20.0, 
     &          TargetH1=-1.0,TargetS1=-1.0, 
     &          ymax2=0.01164,ymin2=0.00056, 
     &          TargetL2=0.0015, 
     &          TargetH2=-1.0,TargetS2=-1.0, 
     &          ymax3=0.00033,ymin3=0.00005, 
     &          TargetL3=0.00025, 
     &          TargetH3=-1.0,TargetS3=-1.0, 
     &          TargetType1='L', 
     &          TargetType2='L', 
     &          TargetType3='L', 
     &          yconstant1=0.0, 
     &          yconstant2=0.0, 
     &          yconstant3=0.0, 
     &          gamma=1.25) 
      
C 
C  numdv = # design variables 
C  numsamp = # samples in data set 
C  numold = # old data points in the data set 
C 
C  fprefix = prefix of titles of file that stores the initial 
C            correlation matrix for both old and possible new 
C            data points 
C 
C  fprefix2 = prefix of titles of file that stores the 
C             predicted prediction errors at possible new 
C             data points 
C 
C  fprefix3 = prefix of titles of file that stores the 
C             predicted response values at all points 
C 
C 
C  fprefixnew = prefix of titles of file that stores the 
C               alternated correlation matrix for both old and 
C               possible new data points, with prediction errors 
C               at these points considered 
C 
C  errmax = maximum value of the absolute predicted prediction error 
C 
C  lambda = coefficient used to gauge the adjustment to initial 
C           correlation matrix 
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Repmcal.f: 
************************************************************************ 
* 
      program repmcal 
* 
 
      integer numsamp,ncell 
      double precision density,totalwidth,length 
       
      character*20 fprefix,fprefixnew,fprefixnew1 
 
 
      include 'repmcal.h' 
 
      double precision variable(numsamp,3),reynolds(numsamp) 
      double precision mdot(numsamp),pdrop(numsamp),vf(numsamp) 
      double precision thickness,width,velocity,tin,a,as(numsamp) 
      double precision dh,viscosity,af,friction,constraint(numsamp) 
      integer i,j,lenstr 
      character*16 ftitle 
      character*20 deckfile,outfile,outfile1 
 
C 
C  open necessary fprefix.cov, fprefix2.out, and fprefixnew.cov files, 
C  e.g., step1newp.cov, errpred1.out, step1altnewp.cov 
C       
       call getlen(fprefix,lenstr) 
       ftitle=fprefix 
       deckfile=ftitle(1:lenstr) // '.dat' 
 
       call getlen(fprefixnew,lenstr) 
       ftitle=fprefixnew 
       outfile=ftitle(1:lenstr) // '.out' 
 
       call getlen(fprefixnew1,lenstr) 
       ftitle=fprefixnew1 
       outfile1=ftitle(1:lenstr) // '.out' 
 
       open(21,file=deckfile,status='old') 
       open(27,file=outfile,status='unknown') 
       open(30,file=outfile1,status='unknown') 
        
       print * 
       print *, deckfile,outfile 
       print *, numsamp 
C 
C  initialize inicov 
C       
      print * 
      write(6,*) 'Reading in points...' 
      do 10 i=1,numsamp 
 10     read (21,*) (variable(i,j),j=1,3) 
      close(21)  
 
C 
C  initialize errpred 
C 
 
         tin=293 
 
      do 20 i=1,numsamp 
         mdot(i)=0.0005+(0.003-0.0005)*variable(i,1) 
         width=0.015+(0.035-0.015)*variable(i,2) 
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         thickness=0.0002+(0.0008-0.0002)*variable(i,3) 
         a=width*width 
         dh=width-(ncell+1)*thickness 
         af=dh*dh 
         as(i)=a-af 
         vf(i)=(a-af)/a 
         velocity=mdot(i)/density/af 
         viscosity=(0.4415*tin+51.638)*0.0000001 
         reynolds(i)=velocity*density*dh/viscosity 
         friction=64/reynolds(i) 
         pdrop(i)=friction*length/dh*density 
     &       *velocity*velocity/2 
         constraint(i)=30-2663.35*mdot(i)-pdrop(i) 
         write(27,76) reynolds(i),vf(i),constraint(i) 
 76      format(3(f13.5,1x)) 
         write(30,79) as(i) 
 79      format(f13.5,1x) 
C 79      format(1(f13.5,1x)) 
 20   continue 
      close(27) 
 
      print * 
      write(6,*) 'outputs written' 
  
      stop 
      end 
 
*********************************************************************** 
* 
      subroutine getlen(string,lenstr) 
* 
* 
*  This subroutine is used to determine the actual length of the 
*  filename prefix specified by the user in 'detcov.params.h'. 
* 
*  With this known, the .cov and .det suffixes are 
*  concatenated onto the prefix, and the files are opened. 
* 
*  Author:  Tim Simpson, 2/15/98 
*  Modified: Yao Lin,    3/26/2003 
* 
*  From:  Koffman and Friedman, Fortran (5th ed.), Addison-Wesley, 
*         New York, pp. 537-538. 
* 
*********************************************************************** 
* 
      character*1 blank 
      character*16 string 
      parameter (blank=' ') 
      integer next 
      do 10 next = LEN(string), 1, -1 
        if (string(next:next).ne.blank) then 
          lenstr=next 
          return 
        end if 
 10   continue 
      lenstr=0 
      if (lenstr.eq.0) then 
        write(6,*) 'You have not specified a file name prefix' 
        stop 
      end if 
      return 
      end 
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Repmcal.h 
C********************************************************** 
C                                                         * 
C  Parameter input file for 'repmcal'                      * 
C    Author: Yao Lin                                      * 
C      Date: 3/26/2003                                    * 
C                                                         * 
C********************************************************** 
C 
C  specify parameter values for dace modeling software 
C 
 
      parameter ( numsamp=1, 
     &          fprefix='repminput',fprefixnew='repmoutput', 
     &          fprefixnew1='repmoutput1', 
     &          density=1.205,length=0.075,ncell=8 ) 
      
C 
C  numsamp = # samples in data set 
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D.3.3 Implementation of E-RCEM in iSIGHT in Section 7.5 

Figures presented in this section illustrate how the SEED method is implemented 

in iSIGHT.  The organization of tasks in Iteration I – Step 5 is shown in . 

In Iteration I – Step 5, with information from metamodels of prediction errors, we 

use eight simulation codes in iSIGHT, Covmat, Qerr, Jerr, Q, J, AsConstraint, Altcov, 

and Detcov.  Covmat is used to formulate the covariance matrix, Qerr and Jerr are 

metamodels to predict prediction errors, Q and J are used to predict responses for total 

heat transfer rate and compliance, AsConstraint is used to calculate the response of cross-

section area, As, and test design constraints.  Altcov is used to adjust entries of the 

covariance matrix, and Detcov is used to calculate the determinant. 

 
Figure D.31 Implementation of E-RCEM in iSIGHT – Iteration I, Step 5 
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Figure D.32 Input Mapping for Covmat.f in E-RCEM – Iteration I, Step 5 

 
Figure D.33 Organization of Input and Output for Altcov.f in E-RCEM – Iteration 

I, Step 5 



758 

 

 



REFERENCES 

Alexandrov, N. Dennis, J.E. Jr., Lewis, R.M. and Torczon, V., 1998, “A Trust Region 
Framework for Managing the Use of Approximation Models in Optimization,” 
Structural Optimization, 15(1), 16-23. 

Anstreicher, K. M., Famps, M., Lee, J. and Williams, J., 1996, “Continuous Relaxations 
for Constrained Maximum-Entropy Sampling”, Integer Programming and 
Combinatorial Optimization, W. H. Cunningham, S. T. McCormick, and M. 
Queyranne, eds., No. 1084, Springer-Verlag, New York, 1996, pp.234-248. 

Atkinson, A. C. and Haines, L. M., 1996, “Designs for Nonlinear and Generalized Linear 
Models,” Handbook of Statistics (Ghosh, S. and Rao, C. R., eds.), Elsevier Science, 
New York, pp.437-475. 

Balabanov, V.O., Giunta, A.A., Golovidov, O., Grossman, B., Mason, W.H. and Watson, 
L.T., 1999, “Reasonable Design Space Approach to Response Surface 
Approximation,” Journal of Aircraft, 36(1), 308-315. 

Barton, R. R., 1992, December 13-16, "Metamodels for Simulation Input-Output 
Relations," Proceedings of the 1992 Winter Simulation Conference (Swain, J. J., 
Goldsman, D., et al., eds.), Arlington, VA, IEEE, pp. 289-299. 

Barton, R. R., 1994, “Metamodeling: A State of the Art Review,” Proceedings of the 
1994 Winter Simulation Conference, Lake Beuna Vista, FL, IEEE. 

Bernardo, J. M., 1979, “Expected Information as Expected Utility,” Ann. Statist., Vol. 7, 
pp.686-690. 

Bernardo, J. M. and Smith, A. F. M., 1994, Bayesian Theory, New York: Wiley. 

Berry, D. A. and Fristedt, B., 1985, Bandit Problems: Sequential Allocation of 
Experiments, Chapman and Hall, London. 

759 



Biles, W. E., 1984, "Design of Simulation Experiments," Proceedings of the 1984 Winter 
Simulation Conference (WSC), Dallas, TX, IEEE, pp. 99-104. 

Booker, A. J., 1996, "Case Studies in Design and Analysis of Computer Experiments," 
Proceedings of the Section on Physical and Engineering Sciences, American 
Statistical Association. 

Booker, A. J., Conn, A. R., Dennis, J. E., Frank, P. D., Serafini, D., Torczon, V. and 
Trosset, M., 1996, "Multi-Level Design Optimization: A Boeing/IBM/Rice 
Collaborative Project," 1996 Final Report, ISSTECH-96-031, The Boeing Company, 
Seattle, WA. 

Booker, A. J., Conn, A. R., Dennis, J. E., Frank, P. D., Trosset, M. and Torczon, V., 
1995, "Global Modeling for Optimization: Boeing/IBM/Rice Collaborative Project," 
1995 Final Report, ISSTECH-95-032, The Boeing Company, Seattle, WA. 

Box, G., 1988, “Signal-to-Noise Ratios, Performance Criteria, and Transformations,” 
Technometrics, Vol. 30, No. 1, pp. 1-18. 

Box, G. E. P. and Draper, N. R., 1987, Empirical Model Building and Response Surfaces, 
John Wiley & Sons, New York. 

Box, G.E.P. and Draper, N.R., 1969, Evolutionary Operation: A Statistical Method for 
Process Management, John Wiley & Sons, New York. 

Box, G. E. P., Hunter, W. G. and Hunter, J. S., 1978, Statistics for Experimenters, John 
Wiley &Sons, Inc., New York. 

Box, G. E. P. and Wilson, K. B., 1951, “On the Experimental Attainment of Optimum 
Conditions,” Journal of the Royal Statistical Society, Series B, 13, pp. 1-45. 

Bras, B. A. and Mistree, F., 1991, "Designing Design Processes in Decision-Based 
Concurrent Engineering," SAE Transactions, Journal of Materials & Manufacturing , 
SAE International, Warrendale, PA, pp. 451-458. 

760 



Brassard, M. and Ritter, D., 1994, “The Memory JoggerTM II – A Pocket Guide of Tolls 
for Continuous Improvement & Effective Planning,” Methuen, MA, GOAL/QPC. 

Breiman, L., Friedman, J. H., Olshen, R. and Stone, C. J., 1984, Classification and 
Regression Trees, Wadsworth, Belmont, California. 

Byrne, D.M. and Taguchi, S., 1987, “The Taguchi Approach to Parameter Design,” 40th 
Annual Quality Congress Transactions, Milwaukee, WI, American Society for Quality 
Control, pp. 19-26. 

Chaloner, K. and Verdinelli, I., 1995, "Bayesian Experimental Design: A Review," 
Statistical Science, Vol. 10, No. 3, pp. 273-304. 

Chen, V. C. P., 1993, Applying Experimental Design and Regression Splines to High-
Dimensional Continuous-State Stochastic Dynamic Programming, Ph.D. Dissertation, 
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, 
NY.  

Chen, V. C. P., 1999, “Application of Orthogonal Arrays and MARS to Inventory 
Forecasting Stochastic Dynamic Programs,” Computational Statistics and Data 
Analysis, 30, pp. 317-341. 

Chen, V. C. P., Ruppert, D., and Shoemaker, C. A., 1999, “Applying Experimental 
Design and Regression Splines to High-Dimensional Continuous-State Stochastic 
Dynamic Programming,” Operations Research, Vol 47, pp. 38-53. 

Chen, W., 1995, A Robust Concept Exploration Method for Configuring Complex 
Systems, Ph.D. Dissertation, The George W. Woodruff School of Mechanical 
Engineering, Georgia Institute of Technology, Atlanta, GA. 

Chen, W., Allen, J. K., Mistree, F. and Tsui, K. L., 1995, “Integration of Response 
Surface Methods with the Compromise Decision Support Problem in Developing a 
General Robust Design Procedure,” ASME Design Automation Conference, Boston, 
Massachusetts, ASME, New York, pp. 485-492. 

761 



Chen, W., Allen, J. K., Mavris, D. and Mistree, F., 1996a, "A Concept Exploration 
Method for Determining Robust Top-Level Specifications," Engineering 
Optimization, Vol. 26, No. 2, pp. 137-158. 

Chen, W., Allen, J.K., Tsui, K. L., and Mistree, F., 1996b, “A Procedure for Robust 
Design: Minimizing Variations Caused by Noise Factors and Control Factors,” ASME 
Journal of Mechanical Design, Vol. 118, No. 4, pp. 478-485. 

Chen, W., Allen, J.K., Schrage, D.P. and Mistree, F., 1997, “Statistical Experimentation 
Methods for Achieving Affordable Concurrent Systems Design,” AIAA Journal, 35(5), 
893-900. 

Cheng, B. and Titterington, D. M., 1994, “Neural Networks: A Review from a Statistical 
Perspective,” Statistical Science, Vol. 9, No. 1, pp. 2-54. 

Choi, H. and Fernandez, M. G., 2003, Towards Finite Element-Based Thermal 
Topological Design of Unit Cells for Linear Cellular Alloys, Semester Project Report, 
ME 6124, Spring, 2003. 

Church, B. C., Dempsey, B. M., Clark, J. L., Sanders, T. H. and Cochran, J. K., 2001, 
“Copper Alloys from Oxide Reduction for High Conductivity Applications,” 
Proceedings of IMECE 2001, International Mechanical Engineering Congress and 
Exposition, New York, 2001. 

Clausing, D., 1994, Total Quality Development – A Step by Step Guide to World-Class 
Concurrent Engineering, ASME, New York. 

Clausius, R., 1865, “Ueber Verschiedene fur die Anwendung Bequeme Formen der 
Hauptgleichungen der Mechanischen Warmetheorie,” Annalen der Physik und 
Chemie, Vol.125, pp.353-400.Ericsson, K. A. and Simon, H. A., 1980, “Verbal 
Reports as Data,” Vol. 87, No. 3, pp. 215-251. 

Clyde, M. A., 1994, “A System for Bayesian Optimal Design Using XLISP-STAT,” 
ISDS Discussion Paper, May 26, 1994. 

Cochran, J. K., Lee, K. J., McDowell, D. L. and Sanders, T. H., 2000, “Low Density 
Monolithic Honeycombs by Thermal Chemical Processing,” Proceedings of the 4th 

762 



Conference on Aerospace Materials, Processes, and Environmental Technology, 
Huntsville, AL, 2000. 

Congdon, P., 2001, Bayesian Statistical Modeling, Chichester, England; New York: 
Wiley; 2001. 

Cox, D. D. and John, S., 1995, March 13-16, “SDO: A Statistical Method for Global 
Optimization,” Proceedings of the ICASE/NASA Langley Workshop on 
Multidisciplinary Optimization (Alexandrov, N. M. and Hussaini, M. Y., eds.), 
Hampton, VA, SIAM, pp. 315-329. 

Cozzolino, J. M. and Zahner, M. J., 1973, “The Maximum Entropy Distribution of the 
Future Market Price of a Stock,” Operations Research, Vol.21, pp.1200-1211. 

Cressie, N. A. C., 1993, Statistics for Spatial Data, John Wiley & Sons, New York. 

Currin, C., Mitchell, M., Morris, M., and Ylvisaker, D., 1991, “Bayesian Prediction of 
Deterministic Functions, with Applications to the Design and Analysis of Computer 
Experiments,” Journal of the American Statistical Association, Volume 86, pp.953-
963. 

Dennis, J. E. and Torczon, V., 1995, March 13-16, "Managing Approximation Models in 
Optimization," Proceedings of the ICASE/NASA Langley Workshop on 
Multidisciplinary Design Optimization (Alexandrov, N. M. and Hussaini, M. Y., eds.), 
Hampton, VA, SIAM, pp. 330-347. 

Dixon, L. C. W. and Szego, G. P., 1978, The Global Optimisation Problem: An 
Introduction, Towards Global Optimisation 2, North-Holland Publishing Company, 
New York. 

Du, X. and Chen, W., 2001, “A Most Probable Point Based Method for Uncertainty 
Analysis,” Journal of Design and Manufacturing Automation, Vol. 4, No. 1, pp. 47-
66, 2001. 

Du, X. and Chen, W., 2000, “Towards a Better Understanding of Modeling Feasibility 
Robustness in Engineering,” ASME Journal of Mechanical Design, Vol. 122, No. 4, 
pp. 357-583, 2000. 

763 



DuMouchel, W. and Jones, B., 1994, “A Simple Bayesian Modification of D-optimal 
Designs to Reduce Dependence on an Assumed Model,” Technometrics, Vol. 36, 
pp.37-47. 

Ericsson, K. A. and Simon, H. A., 1980, “Verbal Reports as Data,” Vol. 87, No. 3, pp. 
215-251. 

Eschenauer, H. A. and Olhoff, N., 2001, “Topology Optimization of Continuum 
Structures: A Review,” Applied Mechanics Reviews, Vol. 54, No. 4, pp. 331-389. 3. 

Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F. and Wadley, H. N. G., 2001, 
“The Topological Design of Multifunctional Cellular Materials,” Progress in 
Materials Science, Vol. 46, No. 3-4, 2001, pp. 309-327. 

Fang, S.-C. and Tsao, H.-S.J., 1993, “An Unconstrained Convex Programming Approach 
to Solving Convex Quadratic Programming Problems,” Optimization, Vol. 27, pp.235-
243. 

Fang, S.-C. and Tsao, H.-S.J., 1995, “Linear-Constrained Entropy Maximization Problem 
with Quadratic Cost and its Application to Transportation Planning Problems,” 
Transportation Science, Vol. 29, pp.353-365. 

Fang, S.-C., Rajasekera, J. R. and Tsao, H.-S.J., 1997, Entropy Optimization and 
Mathematical Programming, Kluwer Academic Publishers, 
Boston/London/Dordrecht. 

Farhang-Mehr, A. and Azarm, S., 2002, “A Sequential Information-Theoretic Approach 
to Design of Computer Experiments,” 9th AIAA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Atlanta, Georgia, 2002. 

Finger, S. and Dixon, J. R., 1989a, “A Review of Research in Mechanical Engineering 
Design.  Part 1: Descriptive, Prescriptive, and Computer-Based Models of Design 
Processes,” Research in Engineering Design, Vol. 1, pp. 51-67. 

Finger, S. and Dixon, J. R., 1989b, “A Review of Research in Mechanical Engineering 
Design.  Part 2: Representations, Analysis, and Design for the Life Cycle,” Research 
in Engineering Design, Vol. 1, pp. 121-137. 

764 



Freeman, P. R., 1970, “Optimal Bayesian Sequential Estimation of the Median Effective 
Dose,” Biometrika, Vol. 57, pp.79-89. 

Friedman, J. H., 1991, “Multivariate Adaptive Regression Splines (with discussion),” 
Annals of Statistics, Vol 19, pp.1-141. 

Giunta, A. A., 1997, "Aircraft Multidisciplinary Design Optimization Using Design of 
Experiments Theory and Response Surface Modeling," Ph.D. Dissertation and MAD 
Center Report No. 97-05-01, Department of Aerospace and Ocean Engineering, 
Virginia Polytechnic Institute and State University, Blacksburg, VA. 

Giunta, A.A., Balabanov, V., Kaufmann, M., Burgee, S., Grossman, B., Haftka, R.T., 
Mason, W.H. and Watson, L.T., 1996, “Variable-Complexity Response Surface 
Design of An HSCT Configuration,” Multidisciplinary Design Optimization: State of 
the Art – Proceedings of the ICASE/NASA Langley Workshop on Multidisciplinary 
Design Optimization, SIAM, Hampton, VA, pp. 348-367. 

Giunta, A. A., Balabanov, V., Haim, D., Grossman, B., Mason, W. H. and Watson, L. T., 
1996, “Wing Design for a High-Speed Civil Transport Using a Design of Experiments 
Methodology,” 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary 
Analysis and Optimization, Bellevue, WA,  pp. 168-183. 

Giunta, A. A., Dudley, J. M., Narducci, R., Grossman, B., Haftka, R. T., Mason, W. H. 
and Watson, L. T., 1994, September 7-9, "Noisy Aerodynamic Response and Smooth 
Approximations in HSCT Design," 5th AIAA/USAF/NASA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Panama City, FL, AIAA, Vol. 2, pp. 
1117-1128. AIAA-94-4376-CP. 

Giunta, A., Watson, L. T. and Koehler, J., 1998, September 2-4, "A Comparison of 
Approximation Modeling Techniques: Polynomial Versus Interpolating Models," 7th 
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization, 
St. Louis, MI, AIAA, AIAA-98-4758. 

Goldman, R.W., 2001, Development of a Rollover-Warning Device for Road Vehicles, 
Ph.D. Dissertation, Department of Mechanical and Nuclear Engineering, The 
Pennsylvania State University, December, 2001. 

765 



Gu, L., 2001, “A Comparison of Polynomial Based Regression Models in Vehicle Safety 
Analsysis,” ASME Design Engineering Technical Conferences – Design Automation 
Conference, Pittsburgh, PA, Paper No. DETC2001/DAC-21063. 

Gu, S., Lu, T. J. and Evans, A. G., 2001, “On the Design of Two-Dimensional Cellular 
Metals for Combined Heat Dissipation and Structural Load Capacity,” International 
Journal of Heat and Mass Transfer, Vol. 44, No. 11, 2001, pp. 2163-2175. 

Gu, X., Renaud, J.E., Batill, S.M., Brach, R.M., and Budhiraja, A.S., 2000, "Worst Case 
Propagated Uncertainty of Multidisciplinary Systems in Robust Design Optimization," 
Structural and Multidisciplinary Optimization , Vol.20, No.3, pp.190-213Guiasu, S., 
1977, Information Theory with Applications, McGraw-Hill, New York. 

Guiasu, S., 1986, “Maximum Entropy Condition in Queueing Theory,” Journal of 
Operational Research Society, Vol. 37, ppp.293-301. 

Hastie, T., Tibshirani, R., and Friedman, J., 2001, The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction, Springer Series in Statistics. 

Hayes, A. M., Wang, A., Dempsey, B. M., and McDowell, D. L., 2001, “Mechanics of 
Linear Cellular Alloys,” Proceedings of IMECE, International Mechanical 
Engineering Congress and Exposition, New York, NY.  

Healy, M. J., Kowalik, J. S. and Ramsay, J. W., 1975, "Airplane Engine Selection by 
Optimization of Surface Fit Approximations," Journal of Aircraft, Vol. 12, No. 7, pp. 
593-599. 

Holnicki-Szulc, J., Pawlowski, P. and Wiklo, M., 2003, “High-Performance Impact 
Absorbing Materials – The Concept, Design Tools and Applications,” Institute of 
Physics Publishing, Smart Materials and Structures, 12 (2003) 461-467. 

Hubka, V., 1982, Principles of Engineering Design, Butterworth & Co. (Publishers) Ltd., 
London. 

Ignizio, J. P., 1985, Introduction to Linear Goal Programming, Sage University Papers, 
Beverly Hills, CA. 

766 



Incropera, F. P. and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, John 
Wiley & Sons, New York, 1996. 

iSIGHT, Engineous Software, Inc., Cary, NC, Version 7.0, 2003. 

Jaynes, E. T., 1957, “Information Theory and Statistical Mechanics II,” Physics Review, 
Vol.108, pp.171-190. 

Jin, R., Chen, W., and Sudjianto, A., 2002, “On Sequential Sampling for Global 
Metamodeling in Engineering Design,” ASME 2002 Design Engineering Technical 
Conferences and Computer and Information in Engineering Conference, Montreal, 
Canada, September 29-October 2, 2002.  Paper No. DETC2002/DAC-34092. 

John, R.C. St. and Draper, N. R., 1975, “D-Optimality for Regression Designs: A 
Review,” Technometrics, Vol. 17, No.1, February 1975. 

Johnson, M. E., Moore, L. M. and Ylvisaker, D., 1990, "Minimax and Maximin Distance 
Designs," Journal of Statistical Planning and Inference, Vol. 26, No. 2, pp. 131-148. 

Jones, D. R., Schonlau, M., and Welch, W. J., 1998, “Efficient Global Optimization of 
Expensive Black-Box Functions,” Journal of Global Optimization, 13:455-492. 

Journel, A. G. and Huijbregts, C. J., 1978, Mining Geostatistics, Academic Press, New 
York. 

Kapur, J. N. and Kesavan, H. K., 1992, Entropy Optimization Principles with 
Applications, Academic Press, Boston. 

Kiefer, J., 1958, “On the Nonrandomized Optimality and Randomized Non-optimality of 
Symmetrical Designs,” Ann. Math. Stat. Vol. 29, p675-699. 

Kiefer, J., 1959, “Optimum Experimental Designs,”  Journal of the Royal Statistical 
Society B, Vol. 21, pp. 298-325. 

Kiefer, J., 1961, “Optimum Designs in Regression Problems,” Annals of Mathematical 
Statistics, Vol. 21, pp. 272-304. 

767 



Kiefer, J., 1985, Jack Carl Kiefer Collected Papers III, Springer, New York. 

Kiefer, J. and Wolfowitz, J., 1959, “Optimum Designs in Regression Problems,”  Annals 
of Mathematical Statistics, Vol. 30, pp. 271-294. 

Kiefer, J. and Wolfowitz, J., 1960, “The Equivalence of Two Extremum Problems,” 
Canad. J. Math., Vol 12, 363. 

Kleijnen, J.P.C., 1987, Statistics: Models and Tools for Simulation Practitioners, Marcel 
Dekker, NY. 

Koch, P. N., 1998, Hierarchical Modeling and Robust Synthesis for the Preliminary 
Design of Large Scale Complex Systems, Ph.D. Dissertation, The G. W. Woodruff 
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia. 

Koch, P. N., Barlow, A., Mistree, F. and Allen, J. K., 1996, "Configuring Turbine 
Propulsion Systems Using Robust Concept Exploration," ASME Design Engineering 
Technical Conferences, Irvine, CA, Paper No. 96-DETC/DAC-1472. 

Koch, P. N., Allen, J. K., Mistree, F. and Mavris, D., 1997, September 14-17, "The 
Problem of Size in Robust Design," Advances in Design Automation, Sacramento, CA, 
ASME, Paper No. DETC97/DAC-3983. 

Koehler, J. R. and Owen, A. B., 1996, “Computer Experiments,” Handbook of Statistics 
(Ghosh, S. and Rao, C. R., eds.), Elsevier Science, New York, pp.261-308. 

Kumar, V., Hoshino, K. and Kumar, U., 1989, “An Application of the Entropy 
Maximization Approach in Shopping Area Planning,” International Journal of 
General Systems, Vol. 16, pp.25-42. 

Laird, J. E., Newell, A. and Rosenbloom, P. S., 1987, “SOAR: An Architecture for 
General Intelligence,” Vol. 33, No. 1, pp. 1-64. 

Lee, D., 2001, “Maximum Entropy Sampling,” In A.H. El-Shaarawi and W.W. 
Piegorsch, editors, "Encyclopedia of Environmetrics". Wiley, 2001. 

768 



Lee, J. and Williams J., 1999, Generalized Maximum-Entropy Sampling, University of 
Kentucky, Department of Mathematics, Technical report No. 99-10, July 1999. 

Lewis, K., Lucas, T. and Mistree, F., 1994, September 7-9, "A Decision Based Approach 
to Developing Ranged Top-Level Aircraft Specifications: A Conceptual Exposition," 
5th AIAA/USAF/NASA/ISSMOSymposium on Multidisciplinary Analysis and 
Optimization, Panama City, FL,  Vol. 1, pp. 465-481. 

Li, H.-L. and Chou, C.-T., 1994, “A Global Approach for Nonlinear Mixed Discrete 
Programming in Design Optimization,” Engineering Optimization, Vol. 22, pp. 109-
122. 

Lin, Y., 2000, Robust Design Goal Formulations and Metamodeling Techniques, MS 
Thesis, the George. W. Woodruff School of Mechanical Engineering, Georgia Institute 
of Technology, Atlanta, Georgia. 

Lin, Y., Krishnapur, K., Allen, J. K. and Mistree, F., 1999, “Robust Design: Goal 
Formulations and A Comparison of Metamodeling Methods,” 1999 ASME Design 
Automation Conference, Las Vegas, Neveda, ASME DETC99/DAC-8608. 

Lindley, D. V., 1956, “On a Measure of Information Provided by an Experiment,” The 
Annals of Mathematical Statistics, Volume 27, pp. 986-1005. 

Lu, T. J., 1999, “Heat Transfer Efficiency of Metal Honeycombs,” International Journal 
of Heat and Mass Transfer, Vol. 42, No. 11, 1999, pp. 2031-2040. 

Lucas, J.M., 1994, “Using Response Surface Methodology to Achieve a Robust Process,” 
Journal of Quality Technology, Vol. 26, No. 4, pp. 248-260. 

Mallet, C. G., 1998, A Wavelet Tour of Signal Processing, Academic Press, Boston. 

Matheron, G., 1963, “Principles of Geostatistics,” Economic Geology, 58, pp. 1246-1266. 

Mavris, D.N., Bandte, O., DeLaurentis, D.A., 1999, “Robust Design Simulation: A 
Probabilistic Approach to Multidisciplinary Design,” AIAA Journal of Aircraft, Vol. 
36, No. 1, pp. 298-307. 

769 



McKay, M. D., Beckman, R. J. and Conover, W. J., 1979, "A Comparison of Three 
Methods for Selecting Values of Input Variables in the Analysis of Output from a 
Computer Code," Technometrics, Vol. 21, No. 2, pp. 239-245. 

Mistree, F., Smith, W. F., Bras, B., Allen, J. K. and Muster, D., 1990a, “Decision-Based 
Design: A Contemporary Paradigm for Ship Design,” Transactions, Society of Naval 
Architects and Marine Engineers, Jersey City, New Jersey, pp. 565-597. 

Mistree, F., Muster, D., Srinivasan, S. and Mudali, S., 1990b, “Design of Linkages: A 
Conceptual Exercise in Designing for Concept,” Mechanism and Machine Theory, 
Vol. 25, No. 3, pp. 273-286. 

Mistree, F., Smith, W. F. and Bras, B. A., 1993a, “A Decision-Based Approach to 
Concurrent Engineering,” Handbook of Concurrent Engineering, Paresai, H. R. and 
Sullivan, W., ed., Chapman & Hall, New York, pp. 127-158. 

Mistree, F., Hughes, O.F. and Bras, B.A., 1993b, “The Compromise Decision Support 
Problem and the Adaptive Linear Programming Algorithm,” Structural Optimization, 
Vol. 5, No. 3, pp. 141-144. 

Mistree, F., Lewis, K. and Stonis, L., 1994, “Selection in the Conceptual Design of 
Aircraft,” AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and 
Optimization, Panama City, Florida, September 7-9, 1994, 1153-1166, Paper No. 
AIAA-94-4382-CP. 

Mitchell, T. J. and Morris, M. D., 1992a, "Bayesian Design and Analysis of Computer 
Experiments: Two Examples," Statistica Sinica, Vol. 2, pp. 359-379. 

Mitchell, T. J. and Morris, M. D., 1992b, December 13-16, “The Spatial Correlation 
Function Approach to Response Surface Estimation,” Proceedings of the 1992 Winter 
Simulation Conference (Swain, J. J., Goldsman, D., et al., eds.), Arlington, VA, IEEE, 
pp. 565-571. 

Montgomery, D. C., 1991, Design and Analysis of Experiments, Third Edition, John 
Wiley & Sons, New York. 

770 



Montgomery, D. C. and Evans, D. M., Jr., 1975, "Second-Order Response Surface 
Designs in Computer Simulation," Simulation, Vol. 29, No. 6, pp. 169-178. 

Muster, D. and Mistree, F., 1988, “The Decision Support Problem Techniques in 
Engineering Design,” The International Journal of Applied Engineering Education, 
Vol. 4, No. 1, pp. 23-33. 

Myers, R. H. and Montgomery, D. C., 1995, Response Surface Methodology: Process 
and Product Optimization Using Designed Experiments, John Wiley & Sons, New 
York. 

Myers, R. H., Khuri, A. I. and Carter, W. H., 1989, "Response Surface Methodology: 
1966-1988," Technometrics, Vol. 31, No. 2, May, pp. 137-157. 

Nair, V.N., 1992, “Taguchi’s Parameter Design: A Panel Discussion,” Technometrics, 
Vol. 34, No. 2, pp. 127-161. 

Nevill, G. E., 1989, “Computational Models of Design Processes,” Design Theory ’88: 
Proceedings of the 1988 NSF Grantee Workshop on Design Theory and Methodology, 
Springer-Verlag, New York. 

Osio, I. G. and Amon, C. H., 1996, "An Engineering Design Methodology with 
Multistage Bayesian Surrogates and Optimal Sampling," Research in Engineering 
Design, Vol. 8, No. 4, pp. 189-206. 

Otto, K. N. and Antonsson, E. K., 1993, "Extensions to the Taguchi Method of Product 
Design," Journal of Mechanical Design, Vol. 115, No. 1, pp. 5-13. 

Pahl, G. and Beitz, W., 1984, Engineering Design, The Design Council/Springer-Verlag, 
London/Berlin. 

Pahl, G. and Beitz, W., 1986, Konstruktionslehre – Handbuch fuer Studium und Praxis, 
Springer – Verlag, Berlin. 

Parkinson, A., Sorensen, C. and Pourhassan, N., 1993, “A General Approach for Robust 
Optimal Design,” Transactions of the ASME, Vol. 115, pp. 74-80. 

771 



Pedersen, K., Emblemsvag, J., Allen, J. K., and Mistree, F., 2000, “Validating Design 
Methods and Research – The Validation Square,” ASME Design Theory and 
Methodology Conference, Baltimore, MD, ASME, DETC00/DTM-14579. 

Phadke, M.S., 1989, Quality Engineering using Robust Design, Prentice Hall, Englewood 
Cliffs, NJ. 

Pignatiello, J. J. and Ramberg, J. S., 1991, “Top Ten Triumphs and Tragedies of Genichi 
Taguchi,” Vol. 4, pp. 211-225. 

Pilz, J., 1991, Bayesian Estimation and Experimental Design in Linear Regression 
Models, New York: Wiley. 

Pukelsheim, F., 1993, Optimal Design of Experiments, New York: Wiley. 

Rajasekera, J. R. and Fang, S.-C., 1992, “Deriving an Unconstrained Convex Program for 
Linear Programming,” Journal of Optimization Theory and Applications, Vol. 75, 
pp.603-612. 

Ramakrishnan, B. and Rao, S.S., 1991, “A Robust Optimization Approach using 
Taguchi’s Loss Function for Solving Nonlinear Optimization Problems,” Advances in 
Design Automation – Design Automation and Design Optimization, Miami, FL, 
ASME, pp. 241-248. 

Ramberg, J.S., Sanchez, S.M., Sanchez, P.J. and Hollick, L.J., 1991, “Designing 
Simulation Experiments: Taguchi Methods and Response Surface Metamodels,” 
Proceedings, 1991 Winter Simulation Conference, Phoenix, AZ, IEEE, pp. 167-176. 

Rangarajan, B., 1998, Robust Concurrent Design of Automobile Engine Lubricated 
Components, The George W. Woodruff School of Mechanical Engineering, Georgia 
Institute of Technology, Atlanta, GA. 

Reddy, S. Y., 1996, August 18-22, “HIDER: A Methodology for Early-Stage Exploration 
of Design Space,” Advances in Design Automation (Dutta, D., ed.), Irvine, CA, 
ASME, Paper No. 96-DETC/DAC-1089. 

772 



Renaud, J. E., 1992, August, Sequential Approximation in Non-Hierarchic System 
Decomposition and Optimization: A Multidisciplinary Design Tool, Doctoral 
Dissertation, Rensselear Polytechnic Institute, Troy, NY. 

Renaud, J. E. and Gabrielle, G. A., 1991, September 22-25, "Sequential Global 
Approximation in Non-Hierarchic System Decomposition and Optimization," 
Advances in Design Automation - Design Automation and Design Optimization 
(Gabriele, G., ed.), Miami, FL, ASME, Vol. 32-1, pp. 191-200. 

Renaud, J. E. and Gabriele, G. A., 1994, "Approximation in Nonhierarchic System 
Optimization," AIAA Journal, Vol. 32, No. 1, pp. 198-205. 

Renyi, A., 1961, “On Measures of Entropy and Information,” In Proc. 4th Berkeley Symp. 
Mathematical Statistics and Probability, Volume 1, pp. 547-561.  Berkeley: 
University of California Press. 

Renyi, A., 1970, Probability Theory, Amsterdam, North-Holland. 

Rodriguez, J. F., Renaud, J. E. and Watson, L. T., 1997, September 14-17, "Trust Region 
Augmented Lagrangian Methods for Sequential Response Surface Approximation and 
Optimization," Advances in Design Automation (Dutta, D., ed.), Sacramento, CA, 
ASME, Paper No. DETC97/DAC-3773. 

Ross, P.J., 1988, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, 
NY. 

Roth, K., 1982, Konstruieren mit Konstruktionskatalogen, Springer-Verlag, Berlin. 

Rozvany, G. I. N., 2001, “Aims, Scope, Methods, History, and Unified Terminology of 
Computer-Aided Topology Optimization in Structural Mechanics,” Structural and 
Multidisciplinary Optimization, Vol. 21, pp. 90-108. 

Rumelhart, D. E., Widrow, B. and Lehr, M. A., 1994, "The Basic Ideas in Neural 
Networks," Communications of the ACM, Vol. 37, No. 3 (March), pp. 87-92. 

773 



Sacks, J. and Schiller, S., 1988, "Spatial Designs," Statistical Decision Theory and 
Related Topics (Gupta, S. S. and Berger, J. O., eds.), Springer-Verlag, New York, pp. 
385-399. 

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P., 1989a, "Design and Analysis of 
Computer Experiments," Statistical Science, Vol. 4, No. 4, pp. 409-435. 

Sacks, J., Schiller, S. B. and Welch, W. J., 1989b, "Designs for Computer Experiments," 
Technometrics, Vol. 31, No. 1, February, pp. 41-47. 

Sandgren, E., 1990, “Nonlinear Integer and Discrete Programming in Mechanical Design 
Optimization,” Journal of Mechanical Design, Vol. 112, No. 2, pp. 223-229. 

Sasena, M. J., 1998, Optimization of Computer Simulations via Smoothing Splines and 
Kriging Metamodels, M.S. Thesis, Department of Mechanical Engineering, University 
of Michigan, Ann Arbor, MI. 

Sasena, M J, Papalambros, P.Y., and Goovaerts, P., 2002, “Exploration of Metamodeling 
Sampling Criteria for Constrained Global Optimization,” Engineering Optimization, 
34(3):263–278, 2002. 

Sayers, M.W. and Karamihas, S.M., 1998, The Little Book of Profiling: Basic 
Information about Measuring and Interpreting Road Profiles, The Regent of the 
University of Michigan. 

Schonlau, M., 1997, Computer Experiments and Global Optimization, Doctoral thesis, 
University of Waterloo, Department of Statistics, Ontario, Canada. 

Schonlau, M., Welch, W. J. and Jones, D. R., 1997, "Global Versus Local Search in 
Constrained Optimization of Computer Models," Technical Report RR-97-11, to 
appear in New Developments and Applications in Experimental Design (Fluornoy, N., 
et al., Eds.), Institute for Mathematical Statistics, Institute for Improvement in Quality 
and Productivity, University of Waterloo, Waterloo, Ontario, Canada. 

Scott, C. H. and Jefferson, T. R., 1977, “Entropy Maximizing Models of Residential 
Location via Geometric Programming,” Geographical Analysis, Vol. 9, pp.181-187. 

774 



Sebastiani P. and Wynn H.P., 1997, “Bayesian Experimental Design and Shannon 
Information,” Statistical Research Report, No.17, October 1997. 

Sebastiani, P. and Wynn, H. P., 2000, “Maximum Entropy Sampling and Optimal 
Bayesian Experimental Design,” J. R. Statist. Soc. B (2000), Vol. 62, Part 1, pp.145-
157. 

Sebastiani, P. and Wynn, H. P., 2001, “Experimental Design to Maximize Information,” 
Twentieth International Workshop on Bayesian Inference and Maximum Entropy in 
Science and Engineering, AIP Conference Proceedings, pp.192-203. 

Seepersad, C. C., B. M. Dempsey, J. K. Allen, F. Mistree and D. L. McDowell, 2003, 
“Design of Multifunctional Honeycomb Materials,” AIAA Journal. 

Seepersad, C.C., Dempsey, B.M., Allen, J.K., Mistree, F. and McDowell, D.L., 2002, 
“Design of Multifunctional Honeycomb Materials,” 9th AIAA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Atlanta, GA, AIAA, Paper Number 
AIAA-2002-5626.  

Shannon, C. E., 1948, “A Mathematical Theory of Communication,” Bell System Tech. 
J., 27:379–423, 623–659. 

Shannon, C. E. and Weaver, W., 1962, The Mathematical Theory of Communication, 
University of Illinois Press, Urbana, Illinois. 

Shewry, M. C. and Wynn, H. P., 1987, “Maximum Entropy Sampling,” Journal of 
Applied Statistics, Vol.14, No.2, pp.165-170. 

Shewry, M. C. and Wynn, H. P., 1988, “Maximum Entropy Sampling with Application to 
Simulation Codes,” Proceedings of the 12th World Congress on Scientific 
Computation, IMAC88, Vol.2, pp.517-519. 

Shoemaker, A. C., Tsui, K. L. and Wu, J., 1991, "Economical Experimentation Methods 
for Robust Design," Technometrics, Vol. 33, No. 4, pp. 415-427. 

775 



Shore, J. E., “Minimum Cross-entropy Spectral Analysis,” IEEE Transactions on 
Acoustics, Speech, and Signal Processing, Vol. ASSP-29, pp.230-237. 

Shupe, J. A., Muster, D., Allen, J. K. and Mistree, F., 1988, “Decision-Based Design: 
Some Concepts and Research Issues,” Expert Systems, Strategies and Solutions in 
Manufacturing Design and Planning, Kusiak, A., ed., Society of Manufacturing 
Engineeris, Dearborn, Michigan, pp. 3-37 (Chapter 1). 

Sigmund, O., 2001, “A 99 Line Topology Optimization Code Written in Matlab,” 
Structural Multidisciplinary Optimization, Vol. 21, pp. 120-127. 

Simon, H. A., 1982, “Models of bounded rationality,” Cambridge, Massachusetts: MIT 
Press, Vol. 2, 1982. 

Simpson, T. W., 1995, Development of a Design Process for Realizing Open Engineering 
Systems, MS Thesis, The G. W. Woodruff School of Mechanical Engineering, Georgia 
Institute of Technology, Atlanta, GA. 

Simpson, T. W., 1998, A Concept Exploration Method for Product Family Design, Ph.D. 
Dissertation, The Georgia W. Woodruff School of Mechanical Engineering, Georgia 
Institute of Technology, Atlanta, GA. 

Simpson, T. W., Chen, W., Allen, J. K. and Mistree, F., 1996, September 4-6, 
“Conceptual Design of a Family of Products Through the Use of the Robust Concept 
Exploration Method,” 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary 
Analysis and Optimization, Bellevue, WA, AIAA, Vol. 2, pp. 1535-1545. AIAA-96-
4161-CP. 

Simpson, T. W., Lautenschlager, U., and Mistree, F., 1997a, “Mass Customization in the 
Age of Information: The Case for Open Engineering Systems,” The Information 
Revolution: Present and Future (Read, W. H., and Porter, A. L., eds.), Ablex 
Publishing, Greenwich, CT, pp. 49-71. 

Simpson, T.W., Peplinski, J., Koch, P.N. and Allen, J.K., 1997b, “On the Use of 
Statistics in Design and the Implications for Deterministic Computer Experiments,” 
ASME Design Engineering Technical Conferences, Sacramento, CA Paper No. 
DETC97/DTM3881. 

776 



Simpson, T. W., Chen, W., Allen, J. K. and Mistree, F., 1997c, October 13-16, 
"Designing Ranged Sets of Top-Level Design Specifications for a Family of Aircraft: 
An Application of Design Capability Indices," SAE World Aviation Congress and 
Exposition, Anaheim, CA, AIAA-97-5513. 

Smith, W. F. and Mistree, F., 1994, May 24-27, "The Development of Top-Level Ship 
Specifications: A Decision-Based Approach," 5th International Conference on Marine 
Design, Delft, The Netherlands,  pp. 59-76. 

Steinberg, D. M., 1985, “Model Robust Response Surface Designs: Scaling Two-Level 
Factorials,” Biometrika, Vol. 72, pp.513-26. 

Stone, M., 1959, “Application of a Measure of Information to the Design and 
Comparison of Regression Experiments,” Ann. Math. Statist., Vol. 30, pp.55-70. 

Su, J. and Renaud, J. E., 1996, September 4-6, "Automatic Differentiation in Robust 
Optimization," 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary 
Analysis and Optimization, Bellevue, WA, AIAA, Vol. 1, pp. 201-215. AIAA-96-
4005-CP. 

Suh, N. P., 1990, Principles of Design, Oxford University Press, Oxford, U.K. 

Sundaresan, S., Isshii, K. and Houser, D.R., 1993, “A Robust Optimization Procedure 
with Variations on Design Variables and Constraints,” Advances in Design 
Automation, ASME DE-Vol. 69-1, pp. 379-386. 

Taguchi, G., 1978, “Off-Line and On-Line Quality Control Systems,” Proceedings of 
International Conference on Quality Control, Tokyo, Japan. 

Taguchi, G., 1987, System of Experimental Design: Engineering Methods to Optimize 
Quality and Minimize Costs, UNIPUB/Kraus International Publications. 

Taguchi, G., Elsayad, E. A. and Hsiang, T., 1989, Quality Engineering in Production 
Systems, McGraw-Hill, New York. 

777 



Toropov, V., van Keulen, F., Markine, V. and de Doer, H., 1996, September 4-6, 
"Refinements in the Multi-Point Approximation Method to Reduce the Effects of 
Noisy Structural Responses," 6th AIAA/USAF/NASA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Bellevue, WA, AIAA, Vol. 2, pp. 941-
951. AIAA-96-4087-CP. 

Torquato, S., Gibiansky, L. V., Silva, M. J. and Gibson, L. J., 1998, “Effective 
Mechanical and Transport Properties of Cellular Solids,” International Journal of 
Mechanical Sciences, Vol. 40, No. 1, 1998, pp. 71-82. 

Tribus, M., 1969, Rational Descriptions, Decisions, and Designs, Pergamon Press, New 
York. 

Tribus, M. and Szonyi, G., 1989, "An Alternative View of the Taguchi Approach," 
Quality Progress, Vol. 22, No. 5, pp. 46-52. 

Trosset, M. W. and Torczon, V., 1997, “Numerical Optimization Using Computer 
Experiments,”  Report No. TR97-02, Department of Computational and Applied 
Mathematics, Rice University, Houston, TX. 

Tsai, J. C., 2002, Statistical Modeling of the Value Function in High-Dimensional , 
Continuous-State SDP, Ph.D. Dissertation, School of Industrial and Systems 
Engineering, Georgia Institute of Technology. 

Tsui, K–L., 1992, “An Overview of Taguchi Method and Newly Developed Statistical 
Methods for Robust Design,” IIE Transaction, Vol. 24, No. 5, pp. 44-57. 

Unal, R., Stanley, D.O., Engelund, W. and Lepsch, R., 1994, “Design for Quality using 
Response Surface Methods: An Alternative to Taguchi’s Parameter Design 
Approach,” Engineering Management Journal, Vol. 6 No. 3, pp. 40-48.  

Vandenberghe, L., Boyd, S. and Wu, S. P., 1998, “Determinant Maximization with 
Linear Matrix Inequality Constraints,” SIAM Journal on Matrix Analysis and 
Application, Vol. 19 (1998). 

778 



Venter, G., Haftka, R. T. and Starnes, J. H., Jr., 1996, "Construction of Response Sufaces 
for Design Optimization Applications," 6th AIAA/USAF/NASA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Bellevue, WA, AIAA, Inc., pp. 548-564. 

Wald, A., 1943, “On the Efficient Design of Statistical Investigations,” Ann. Math. 
Statist., Vol. 14, p134-140. 

Wang, G., 2001, “Improvement on the Adaptive Response Surface Method for High-
Dimensional Computation-Intensive Design Problems,” ASME Design Engineering 
Technical Conferences – Design Automation Conference, Pittsburgh, PA, Paper No. 
DETC2001/DAC-21141. 

Wang, G., 2003, “Adaptive Response Surface Method Using Inherited Latin Hypercube 
Designs,” ASME Journal of Mechanical Design, 125(2), 210-220. 

Wang, Y. and Lu, W., 1992, “Multicriterion Maximum Entropy Image Reconstruction 
from Projections,” European Journal of Operational Research, Vol. 59, pp.324-329. 

Wang, G. and Simpson, T.W., 2004, “Fuzzy Clustering Based Hierarchical 
Metamodeling for Design Space Reduction and Optimization,” Engineering 
Optimization, Vol.36, No.3, June 2004, 313-335. 

Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J. and Morris, M.D., 1992, 
“Screening, Predicting and Computer Experiments,” Technometrics, 34(1), 15-25. 

Welch, W. J., Yu, T.-K., Kang, S. M. and Sacks, J., 1990, "Computer Experiments for 
Quality Control by Parameter Design," Journal of Quality Technology, Vol. 22, No. 1, 
pp. 15-22. 

Wijsman, R. A., 1973, “On the Attainment of the Cramer-Rao Lower Bound,” Ann. 
Statist., Vol. 1, pp.538-542. 

Wilson, B., Cappelleri, D. J., Frecker, M. I. and Simpson, T. W., 2001, “Efficient Pareto 
Frontier Exploration Using Surrogate Approximations,” Optimization and 
Engineering, 2:1 (31-50).  

779 



780 

Wujek, B.A. and Renaud, J.E., 1998a, “New Adaptive Move-Limit Management Strategy 
for Approximate Optimization, Part 1,” AIAA Journal, 36(10), 1911-1921. 

Wujek, B.A. and Renaud, J.E., 1998b, “New Adaptive Move-Limit Management Strategy 
for Approximate Optimization, Part 2,” AIAA Journal, 36(10), 1922-1934. 

Wujek, B. A., Renaud, J. E., Batill, S. M. and Brockman, J. B., 1995, September 17-21, 
"Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed 
Computing Environment," Advances in Design Automation (Azarm, S., Dutta, D., et 
al., eds.), Boston, MA, ASME, Vol. 82, pp. 181-188. 

Yamada, M. and Rajasekera, J. R., 1993, “Portfolio Re-balancing with the Entropy 
Criteria,” Report No.310, QUICK Research Institute Corp., Tokyo. 

Ye, Q., 1997, Orthogonal Latin Hypercubes and their Application in Computer 
Experiments, Technical Report #305, University of Michigan. 

Yu, J.-C. and Ishii, K., 1998, "Design Optimization for Robustness Using Quadrature 
Factorial Models," Engineering Optimization, Vol. 30, No. 3-4, pp. 203-225. 

Zacks, S., 1996, “Adaptive Designs for Parametric Models,” Handbook of Statistics 
(Ghosh, S. and Rao, C. R., eds.), Elsevier Science, New York, pp.151-180. 

 


