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ABSTRACT
As the end of Dennard scaling looms, both the semiconductor
industry and the research community are exploring for innovative
solutions that allow energy efficiency and performance to con-
tinue to scale. Approximation computing has become one of the
viable techniques to perpetuate the historical improvements in the
computing landscape. As approximate computing attracts more
attention in the community, having a general, diverse, and repre-
sentative set of benchmarks to evaluate different approximation
techniques becomes necessary.

In this paper, we develop and introduce AxBench, a general,
diverse and representative multi-framework set of benchmarks
for CPUs, GPUs, and hardware design with the total number of
29 benchmarks. We judiciously select and develop each bench-
mark to cover a diverse set of domains such as machine learn-
ing, scientific computation, signal processing, image processing,
robotics, and compression. AxBench comes with the necessary
annotations to mark the approximable region of code and the
application-specific quality metric to assess the output quality of
each application. AxBench with these set of annotations facilitate
the evaluation of different approximation techniques.

To demonstrate its effectiveness, we evaluate three previously
proposed approximation techniques using AxBench benchmarks:
loop perforation [1] and neural processing units (NPUs) [2–4] on
CPUs and GPUs, and Axilog [5] on dedicated hardware. We find
that (1) NPUs offer higher performance and energy efficiency as
compared to loop perforation on both CPUs and GPUs, (2) while
NPUs provide considerable efficiency gains on CPUs, there still
remains significant opportunity to be explored by other approxi-
mation techniques, (3) Unlike on CPUs, NPUs offer full benefits
of approximate computations on GPUs, and (4) considerable op-
portunity remains to be explored by innovative approximate com-
putation techniques at the hardware level after applying Axilog.

1 Introduction
As the end of Dennard scaling and Moore’s law advances loom,
the computing landscape confronts the diminishing performance
and energy improvements from the traditional scaling paradigm [6–
8]. This evolution drives both the industry and the research com-
munity to explore viable solutions and techniques to maintain
the traditional scaling of performance and energy efficiency. Ap-
proximate computing is one of the promising approaches for
achieving significant efficiency gains at the cost of some output

quality degradation for applications that can tolerate inexactness
in their output.

A growing swath of studies have proposed different approx-
imation languages and techniques including software languages
EnerJ [9] and Rely [10], hardware language Axilog [5], circuit
level techniques [11–26], microarchitecture techniques [27, 28],
algorithmic techniques [29, 30] and approximate accelerators [2–
4, 31]. As approximate computing gains popularity, it becomes
important to have a diverse and representative set of benchmarks
for a fair evaluation of approximation techniques. While a bad
set of benchmarks makes progress problematic, a good set of
benchmarks can help us as a community to rapidly advance the
field [32].

A benchmark suite for approximate computing has to have
several features. As various applications in different domains
like finance, machine learning, image processing, vision, med-
ical imaging, robotics, 3D gaming, numerical analysis, etc. are
amenable to approximate computation, a good benchmark suite
for approximate computation should be diverse to be represen-
tative of all these different applications.

Moreover, approximate computing can be applied to various
levels of computing stack and through different techniques. Ap-
proximate computing is applicable to both hardware and software.
At both levels various techniques may be used for approximation.
At the hardware level, a dedicated approximate hardware may
perform the operations [2–4, 31, 33–35] or an imprecise proces-
sor may run the program [12, 34, 36], among other possibili-
ties [5, 13–26, 37, 38]. Likewise, there are many possibilities at
the software level [1, 29, 30, 39–41]. A good benchmark suite for
approximate computation should be useful for evaluation of all
these possibilities. Being able to evaluate vastly different approx-
imation techniques using a common set of benchmarks enables
head-to-head comparison of different approximation techniques.

Finally, approximation not only applies to information pro-
cessing, but also can be applied to information communication
and information retrieval. While many approximation techniques
target processing units [2–4, 12, 34, 36], the communication and
storage medium are also amenable to approximation [27, 42–
46]. This means that a good benchmark suite for approximate
computing should be rich enough to be useful for evaluation of
approximate communication and storage.

This paper introduces AxBench, a diverse and representative
multi-framework set of benchmarks for evaluating approximate
computing research in CPUs, GPUs and hardware design. We



discuss why AxBench benchmarks have all the necessary fea-
tures of a good benchmark suite for approximate computing.
AxBench covers diverse application domains such as machine
learning, robotics, arithmetic computation, multimedia, and sig-
nal processing. AxBench enables researchers in the approximate
computing to study, evaluate, and compare the state-of-the-art
approximation techniques on a diverse set of benchmarks in a
straightforward manner.

We perform a detailed characterization of AxBench bench-
marks on CPUs, GPUs, and dedicated hardware. The results
show that approximable regions of the benchmarks, on average,
constitute 74.9% of runtime and 81.8% of energy usage of the
whole applications when they run on a CPU. On a GPU, approx-
imable regions constitute 53.4% of runtime and 56.0% of energy
usage of the applications. We use an approximation synthesis [5]
to gain insights about the potential benefits of using approxima-
tion in the hardware design. The results demonstrate, on average,
approximate parts constitute 92.4% of runtime, 69.4% of energy
usage, and 70.1% of the area of the whole dedicated hardware.
These results clearly demonstrate that these benchmarks, which
are taken from various domains, are amendable to approximation.

We also evaluate three previously proposed approximate com-
putation techniques using AxBench benchmarks. We apply Loop
Perforation [1] and Neural Processing Units (NPUs) [2–4] to
CPU and GPU, and Axilog [5] to dedicated hardware. We find
that loop perforation results in large output quality degradation
and consequently, NPUs offer higher efficiency on both CPUs
and GPUs. Moreover, we observe that, on CPU+NPU, signifi-
cant opportunity remains to be explored by other approximation
techniques mainly because NPUs do nothing for data misses.
On GPUs, however, NPUs leverage all the potentials and leave
very little opportunity for other approximation techniques except
on workloads that saturate the off-chip bandwidth. Data misses
are not a performance bottleneck for GPU+NPU, as massively-
parallel GPU can effectively hide data miss latencies. Finally,
we find that Axilog is effective at improving efficiency of ded-
icated hardware but still significant opportunity exists for other
approximation techniques to be explored.

The contributions of this work are as follows:

1. We provide a diverse and representative set of multi-framework
benchmarks for approximate computation (AxBench). AxBench
comes in three categories tailored for studying approximate
computing on CPUs, GPUs, and dedicated hardware. It
includes 9 benchmarks for CPUs, 11 for GPUs and 9 for
hardware design.

2. All the benchmarks come with the initial annotations,
which marks the approximable regions of the code. The
annotations only marks where the approximation is benefi-
cial without specifying how to approximate the region. The
annotations ease the evaluation of different approximation
techniques with minor changes in the code.

3. We introduce application-specific quality metrics for
each of the benchmarks. The introduced quality metric
for each benchmark helps to understand how the exploited
approximation technique affects the output quality. The
user can easily alter the degree of approximation or the
applied approximation technique and compare their effects
on the output quality of the application.

Table 1: The evaluated CPU benchmarks, characterization of each approximable
region, and the quality metric.

Name Domain
# of 

Function 
Calls

# of 
Loops

# of ifs 
/ elses

# of x86-
64 Insts. Quality Metric

blackscholes Financial Analysis 5 0 5 309         Avg. Relative Error
canneal Optimization 6 2 6 378         Avg. Relative Error
fft Singal Processing 2 0 0 34          Avg. Relative Error
forwardk2j Robotics 2 0 0 65          Avg. Relative Error
inversek2j Robotics 4 0 0 100         Avg. Relative Error
jmeint 3D Gaming 32 0 23 1,079      Miss Rate
jpeg Compression 3 4 0 1,257      Image Diff
kmeans Machine Learning 1 0 0 26          Image Diff
sobel Image Processing 3 2 1 88          Image Diff

Table 2: The evaluated GPU benchmarks, characterization of each approximable
region, and the quality metric.

Name Domain
# of 

Function 
Calls

# of 
Loops

# of ifs 
/ elses

# of PTX 
Insts. Quality Metric

binarization Image Processing 1 0 1 27          Image Diff
blackscholes Financial Analysis 2 0 0 96          Avg. Relative Error
convolution Machine Learning 0 2 2 886         Avg. Relative Error
fastwalsh Signal Processing 0 0 0 50          Avg. Relative Error
inversek2j Robotics 0 3 5 132         Avg. Relative Error
jmeint 3D Gaming 4 0 37 2,250      Miss Rate
laplacian Image Processing 0 2 1 51          Image Diff
meanfilter Machine Vision 0 2 1 35          Image Diff
newton-raph Numerical Analysis 2 2 1 44          Avg. Relative Error
sobel Image Processing 0 2 1 86          Image Diff
srad Medical Imaging 0 0 0 110         Image Diff

Table 3: The evaluated ASIC benchmarks, characterization of each approximable
region, and the quality metric.

Name Domain # of  
Lines Quality Metric

brent-kung (32-bit) Arithmetic Computation 352       Avg. Relative Error
fir (8-bit) Signal Processing 113       Avg. Relative Error
forwardk2j Robotics 18,282  Avg. Relative Error
inversek2j Robotics 22,407  Avg. Relative Error
kmeans Machine Learning 10,985  Image Diff
kogge-stone (32-bit) Arithmetic Computation 353       Avg. Relative Error
wallace tree (32-bit) Arithmetic Computation 13,928  Avg. Relative Error
neural network Machine Learning 21,053  Image Diff
sobel Image Processing 143       Image Diff
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Figure 1: The instruction classification for CPU platform.

4. We evaluate previously proposed approximation techniques
using AxBench and find that (1) While NPUs provide con-
siderable efficiency gains on CPUs, there still remains
significant opportunity to be explored by other approxi-
mation techniques, mainly because NPUs do nothing for
data accesses (2) Unlike on CPUs, NPUs offer full bene-
fits of approximate computations on GPUs when off-chip
bandwidth is not saturated.

2 Benchmarks
One of the goals of AxBench is to provide a diverse set of ap-
plications to further facilitate the research and development in
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approximate computing. It consists of 29 applications from dif-
ferent domains including machine learning, computer vision, big
data analytics, 3D gaming, and robotics. We first introduce the
benchmarks and some of their characteristics, and then discuss
the benchmark specific quality metric.

2.1 Common Benchmarks
AxBench provides a set of C/C++ benchmarks for execution on
CPUs, a set of CUDA benchmarks for execution on GPUs, and
a set of Verilog benchmarks for hardware design. Some algo-
rithms are amenable for execution on all platforms. For these
algorithms, AxBench provides the C/C++ implementation for
execution on CPUs, the CUDA implementation for execution on
GPUs, and the Verilog implementation for hardware design. In
this part, we briefly introduce these benchmarks.
Inversek2j is used in robotic and animation applications. It uses
the kinematic equation to compute the angles of 2-joint robotic
arm. The input dataset is the position of the end-effector of a
2-joint robotic arm and the output is the two angles of the arm.
Sobel is widely used in image processing and computer vision
applications, particularly within edge detection algorithms. The
Sobel application takes an RGB image as the input and produces
a grayscale image in which the edges are emphasized.

2.2 Common CPU and GPU Benchmarks
For some algorithms, AxBench provides both the C/C++ imple-
mentation for execution on CPUs and the CUDA implementation
for execution on GPUs. We briefly introduce these benchmarks
here.
Black-Scholes is a financial analysis workload. It solves partial
differential equations to estimate the price for a portfolio of Eu-
ropean options. Each option consists of different floating point
values and the output is the estimated price of the option.
Jmeint is a 3D gaming workload. The input is a pair of two
triangles’ coordinates in the three-dimensional space and the out-
put is a Boolean value which indicates whether the two triangles
intersect or not.

2.3 Common CPU and Hardware-Design Bench-
marks

For some algorithms, AxBench provides both the C/C++ imple-
mentation for execution on CPUs and the Verilog implementation
for hardware design.
Forwardk2j is used in robotic and animation applications. It
uses kinematic equations to compute the position of a robotic arm
in a two-dimensional space. The input dataset consists of a set
of 2-tuple angles of a 2-joint robotic arm and the output dataset
is the computed (x,y)-position of the end-effector of the arm.
K-means is widely used in machine learning and data mining
applications. It aims to partition a number of n-dimensional input
points into k different clusters. Each point belongs to the cluster
with the nearest mean. To evaluate this benchmark, we use an
RGB image as the input. The output is an image that is clustered
in different color regions.

2.4 CPU Specific Benchmarks
Table 1 shows the complete list of all CPU benchmarks. In addi-
tion to the six benchmarks that are already introduced, there are
three dedicated CPU benchmarks as listed in the table. The table
also indicates the domain in which these benchmarks are taken

from and some characteristics about the benchmarks. In what
follows, we briefly introduce the three CPU specific benchmarks.
Canneal is an optimization algorithm which is used to minimize
the routing cost of chip design. Canneal employs the simulated
annealing (SA) [47] technique to find the optimum design point.
At each iteration of the algorithm, Canneal pseudo-randomly
swaps the netlist elements and re-evaluates the routing cost of
the new placement. If the cost is reduced, the new placement
will be accepted. In order to escape from the local minimum,
the algorithm also randomly accepts a placement with a higher
routing cost. This process continues until the number of possible
swaps is below a certain threshold. The input to this benchmark
is a set of netlist element and the output is the routing cost.
FFT is an algorithm that is used in many signal processing ap-
plications. FFT computes the discrete Fourier transform of a
sequence, or its inverse. The input is a sequence of signals in
time domain and the output is the signal values in frequency
domain. We use a set of sequences of signals as input dataset.
The output is the representation of the corresponding signals in
frequency domain.
JPEG is a lossy compression technique for color images. The
input is an uncompressed image (RGB). The JPEG algorithm
performs a lossy compression and produces a similar image with
reduced file size.

Figure 1 shows the instructions breakdown for all CPU bench-
marks. On average, 51% of the instructions are integers, 16% of
the instructions are floating-points, and the rest are other types
of instructions (e.g., load, store, conditional, etc.). The figure
shows that the CPU benchmarks have diversity in their instruc-
tion breakdown.

2.5 GPU Specific Benchmarks
Table 2 shows the complete list of all GPU benchmarks, the
domain that the benchmarks are taken from and some charac-
teristics about the applications. In addition to the four GPU
benchmarks that are already introduced, there are seven GPU
specific benchmarks in the table. In this part, we introduce the
GPU specific benchmarks.
Binarization is an image processing workload, which is fre-
quently used as a pre-processor in optical character recognition
(OCR) algorithms. It converts a 256-level grayscale image to
a black and white image. The image binarization algorithm
uses a pre-defined threshold to decide whether a pixel should be
converted to black or white.
Convolution operator can be used in a variety of domains such
as machine learning and image processing. One of the applica-
tion of convolution operator is to extract the feature map of an
image in deep neural networks. In the image processing domain,
it is used for image smoothing and edge detection. Convolution
takes an image as the input. The output of the convolution is the
transformed form of the input image.
FastWalsh is an image processing workload and is widely used
in a variety of domains including signal processing and video
compression. It is an efficient algorithm to compute the Walsh-
Hadamard transform. Similar to other image processing bench-
marks, we use an image as the input. The output is the trans-
formed form of the input image.
Laplacian is an image processing application. It is mainly used
in image processing for edge detection. The output image is a
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Figure 2: The instruction classification for GPU platform.

grayscale image in which all the edges are emphasized.
Meanfilter is an image processing application. It is used as a
filter for smoothing (and removing the noises from) an image.
The meanfilter replaces all the image pixels with the average
value of their 3x3 window of neighbors. Meanfilter takes as
input a noisy image. The output is the same image in which the
noises are reduced.
Newton-Raphson is an iterative numerical analysis method.
This method is widely used in scientific applications to find
an approximation to the roots of a real-valued function. The
Newton-Raphson method starts with an initial guess of the root
value. Then, the method finds a better approximation of the root
value after each iteration.
SRAD is a method that is widely used in medical image pro-
cessing domain and is based on partial differential equations.
SRAD is used to remove the correlated noise from the image
without destroying the important image features. We evaluate
this benchmark with a grayscale and noisy image of a heart. The
output is the same image with reduced noise.

Figure 2 shows the instructions breakdown for all GPU bench-
marks. On average, 16% of the instructions are integers, 55% of
the instructions are floating-points, and the rest are other types
of instructions (e.g., load, store, conditional, etc.). As compared
to CPU benchmarks, GPU benchmarks have more floating point
instructions. Even for common CPU and CPU benchmarks, the
CPU benchmarks have more floating-point instructions. The
reason is that we implemented many floating-point operations
like sin and cos using lookup tables for CPU benchmarks, as
processors usually do not have hardware support for such oper-
ations. However, due to hardware support in GPUs, we used the
floating-point operation for GPUs benchmarks.

2.6 Hardware-Design Specific Benchmarks
Table 3 shows the complete list of all hardware-design bench-
marks. In addition to the four benchmarks that are already intro-
duced, there are five dedicated hardware-design benchmarks as
listed in Table 3. The table also indicates the domain in which
these benchmarks are taken from and some characteristics about
the benchmarks. In what follows, we briefly introduce the five
hardware-design specific benchmarks.
Brent-Kung is one of the parallel prefix form of carry look-
ahead adder. Brent-Kung is an efficient design in terms of area
for an adder. The input dataset for this benchmark is a set of two
random 32-bit integer numbers and the output is a 32-bit integer
sum.
FIR filter is widely used in signal processing domain. One of

the applications of FIR filter is to select the desired frequency of
a finite-length digital input. To evaluate this benchmark, we use
a set of random values as the input dataset.
Kogge-Stone is one of the parallel prefix form of carry look-
ahead adder. Kogge-Stone adder is one of the fastest adder
design and is widely used for high performance computing in
industry. We use a set of random two 32-bit integer values as
input. The output is the summation of the corresponding values.
Wallace-Tree is an efficient design for multiplying two integer
values. Similar to other arithmetic computation benchmarks, we
use random 32-bit integer values as input. The output is the
product of the corresponding numbers.
Neural-Network is an implementation of a feedforward neural
network that approximate the Sobel filter. Such artificial neural
networks are used in a wide variety of applications including
pattern recognition and function approximation. The benchmark
takes as input an RGB image and the output is a grayscale image
whose edges are emphasized.

2.7 Application Specific Quality Metric
Each approximation technique may introduce different levels of
quality loss in the applications’ output. Therefore, a good bench-
mark suite for approximation has to include a quality metric to
evaluate the applications’ output quality loss as they undergoes
approximation. However, since the nature of applications’ output
varies from one application to another, it is required to have a
quality metric that takes into account the type of the application’s
output. For example, the output of sobel is an image, but the
output of jmeint is a Boolean. Therefore, it is necessary to have
an application specific quality metric to effectively assess the
quality loss of each application’s output.

To make AxBench useful, we augment each application with
an application specific quality metric. In total, we introduce
three different quality metrics: (1) average relative error, (2) miss
rate, and (3) image difference. We use image difference for all
applications that produce image output, including binarization,
jpeg, kmeans, laplacian, meanfilter, neural network, sobel, and
srad. Image difference calculates the average root-mean-square
of the pixel differences of the precise and approximated images.
Jmeint algorithm checks whether two 3D triangles intersects and
produce a Boolean value (True if the triangles intersect, and false
otherwise). Therefore, we use miss rate to measure the number
of misclassified triangles. For all the other applications (e.g.
blackscholes, canneal, fastwalsh, fft, inversek2j) that produce
numeric outputs, we use average relative error to measure the
discrepancy between the original and approximate outputs.

3 Methodology
3.1 Approximable Region Identification
AxBench comes with the initial annotations, which mark the
approximable region of code. The annotations only provide high-
level guidance about where the approximable regions are and not
how to approximate those regions. We introduce two criteria to
identify the approximable regions in AxBench. An approximable
region of code in AxBench must satisfy these criteria: (1) it must
be hot spot; and (2) it must tolerate imprecision in its operations
and data;
Hot spot. The intention of approximation techniques is to trade
off accuracy for higher gains in performance and energy. There-
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Table 4: Major CPU microarchitectural parameters for the core, caches, memory.

Core

Clock Frequency 3.4 GHz
Architecture x86-64

Fetch/Issue Width 4/6
INT ALUs/FPUs 3/2
Load/Store FUs 2/2

ROB Entries 96
Issue Queue Entries 32

INT/FP Physical Registers 256/256
Branch Predictor Tournament, 48 KB
BTB Sets/Ways 1024/4

Load/Store Queue Entries 48/48
Dependence Predictor 4096-entry Bloom Filter

Caches and Memory

L1 Cache Size 32 KB instruction, 32 KB data
L1 Line Width 64 bytes

L1 Associativity 8
L1 Hit Latency 3 cycles

ITLB/DTLB Entries 128/256
L2 Cache Size 2 MB
L2 Line Width 64 bytes

L2 Associativity 8
L2 Hit Latency 12 cycles

Memory Latency 104 cycles (30 ns)
On-Chip Bandwidth 33.77 GB/sec
Off-Chip Bandwidth 8 GB/sec

fore the obvious target for approximation is the region of code
which either takes the most execution time or consumes the
highest energy of an application. We call this region hot spot.
The hot spot of an application contains the highest potential for
approximation. Note that, this region may contain function calls,
loops, complex control flows, and memory operations.
Tolerance to imprecision. The identified approximable region
will undergo approximation during the execution. Therefore,
the AxBench benchmarks must have some application-level
tolerance to imprecision. Recent approximate programming
work [1–4, 9] has shown that identifying these regions of code
with tolerance to imprecision is not difficult. For example, in
jpeg any imprecision on region of code that stores the meta-data
in the output image totally corrupts the output image. Whereas,
imprecision in region of code that compresses the image (i.e.,
quantization) has tolerance to imprecision and may only leads
to some degree of quality loss in the output image. In AxBench,
we perform the similar study for each benchmark to identify the
region of code which has tolerance to imprecision. The iden-
tified regions commensurate with prior work on approximate
computing [1, 2, 9, 48].

3.2 Safety
Recent work on approximate programming languages [9, 10, 48]
introduce practical techniques to provide statistical safety guaran-
tees for approximation. However, as mentioned in the previous
section, one of the objective in AxBench, is to only provide an
abstraction above the approximation techniques. This abstraction
only provides guidelines about where the potentials for approx-
imation lies and not about how to apply approximation to these
regions. Therefore, we do not provide any guarantees about the
safety of the AxBench applications when they undergo approx-
imation. It is still the responsibility of the users of AxBench
to provide safety guarantees for their approximation technique.
Due to this reason, in Section 4.2 in which we evaluate AxBench
with prior approximation techniques, we use the similar safety
mechanism techniques as what they proposed to provide safety
in the AxBench’s approximable regions.

3.3 Experimental Setup for CPU
Cycle-accurate simulation and energy modeling. We use the
MARSSx86 cycle-accurate x86-64 simulator [50] to characterize
AxBench benchmarks on a CPU platform. Table 4 summarizes
the major microarchitectural parameters of the core, caches, and
the memory subsystem. The core is modeled after the Nehalem
microarchitecture and operates at 3.4GHz. We made several

Table 5: Major GPU microarchitectural parameters for the streaming
multiprocess (SM), shader processor (SP), caches, and memory.

System Overview 15 SMs, 32 thread/warps
6 memory channel

Shader Core Config 1.4 GHz, GTO scheduler [49]
2 scheduler per SM

Resources per SM 48 warps/SM, 32768 registers
L1 Instruction Cache 2KB, 128B line, 4-way, LRU

L1 Data Cache 16KB, 128B line, 4-way, LRU
L1 Constant Cache 8KB, 64B line, 2-way, LRU
L1 Texture Cache 12KB, 128B line, 24-way, LRU
Shared Memory 48KB, 32 banks

Interconnect 1 crossbar/direction (15 SMs, 6 MCs)
1.4 GHz

L2 Shared Cache 768KB, 128B line, 16-way, LRU
Memory 924 MHz, 6 GDDR5 Memory Controllers

FR-FCFS scheduling, 16 banks/SM
On-Chip Bandwidth 443.5 GB/sec
Off-Chip Bandwidth 177.4 GB/sec

minor changes in the simulator to enable the simulation and char-
acterization of the approximable and non-approximable regions.
We use C assembly inlining in the source code to identify the
beginning and the end of the approximable region. We compile
all the benchmarks using GCC/G++ version 4.8.4 with the -O3
flag to enable aggressive compiler optimizations. We simulate
all the benchmarks to completion to capture the distinct phases
of each workload.

We useMcPAT [51] to measure the energy consumption of the
benchmarks. MARSSx86 generates an event log during the cycle-
accurate simulation of a program. We pass this event log to a
modified version of the McPAT. At the end, McPAT provides the
energy consumption of the approximable and non-approximable
regions.

3.4 Experimental Setup for GPU
Cycle-accurate simulation and energy modeling. We use ver-
sion 3.2.2 of the GPGPU-Sim cycle-accurate simulator [52]
to characterize AxBench workloads on a GPU platform. We
simulate all the benchmarks with a default GPGPU-Sim’s config-
uration that closely models an Nvidia GTX 480 chipset. Table 5
summarizes the major microarchitectural parameters of the sim-
ulated system. We made several changes in the simulator to sim-
ulate and characterize the approximable and non-approximable
regions. We use the PTX1 inlining in the source code to iden-
1Parallel Thread Execution is a pseudo-assembly language in Nvidia’s
CUDA programming model
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tify the beginning and the end of the approximable region. We
compile all the benchmarks using NVCC version 4.2 with -O3
flag to enable aggressive compiler optimizations. Furthermore,
we accordingly optimize the number of thread blocks and the
number of threads per block of each kernel for our simulated
hardware. We simulate all the benchmarks to completion to
capture the distinct phases of each workload.

We measure the energy consumption of GPU workloads by us-
ing GPGPU-Wattch [53], which is integrated with GPGPU-Sim.

3.5 Experimental Setup for ASIC
Gate-level simulation and energy modeling. We use Synopsys
Design Compiler version G-2012.06SP5 to synthesize and mea-
sure the energy consumption of the Verilog benchmarks. We use
TSMC 45-nm multi-Vt standard cells libraries for the synthesis.
We report the results for the slowest PVT corner (SS, 0.81 V,
0◦C). We useCadence NC-Verilog version 11.10-s062 for timing
simulation with SDF back annotations extracted from the output
of the synthesis.

3.6 Prior Approximation Techniques
To show the advantage of AxBench, we evaluate some of the
prior approximation techniques with the introduced benchmarks.
For CPU and GPU benchmarks, we study the benefits of using
neural processing units (NPUs) [2–4] and loop perforation [1].
For dedicated hardware benchmarks, we use the proposed ap-
proximation synthesis technique in Axilog [5].
Neural processing units (NPUs). Hadi Esmaeilzadeh et al. [2]
introduced an automated workflow for neural transformations.
Furthermore, they designed a tightly-coupled neural acceleration
for general-purpose approximate programs. First, the automated
framework observes the annotated region of code that transforms
a region of code to a neural representation. This transformation
consists only of simple arithmetic operations such as addition
and multiplication and sigmoid. Then, the compiler annotates
the source code which allow the CPU to offload the annotated
region(s) to an efficient implementation of feedforward neural
networks.
Loop perforation. This software-level technique provides higher
efficiency by reducing the amount of required computation to pro-
duce the output. The Loop perforation technique first identifies
the loops whose perforation still leads to acceptable output. Then,
they transform these loops to execute a subset of their iterations.
Axilog. Amir Yazdanbakhsh et al. [5] introduces a set of lan-
guage annotations that enables the hardware designers to in-
corporate the approximation in hardware design. They also
proposed an approximate synthesis workflow in which they relax
the timing constraints on some paths. This allows the synthesis
tools to use slower gates (less leaky and smaller) on these paths
which lead to reduction in both area and energy consumption.

4 Experimental Results
We first characterize AxBench’s benchmarks on CPU, GPU and
dedicated hardware to demonstrate their usefulness for approx-
imate computing. We then use the benchmarks to evaluate three
previously proposed approximation techniques, namely loop per-
foration [1], neural processing units (NPU) [2–4], and Axilog [5].
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Figure 3: Total application runtime and energy breakdown between non-
approximable and approximable region in CPU platform.

4.1 Benchmark Characterization
4.1.1 CPU Platform

Runtime and energy breakdown. Figure 3 shows the runtime
and energy breakdown of approximable and non-approximable
parts of applications when applications execute on a CPU. Some
applications such as blackscholes, canneal, and jmeint are com-
pletely approximable. Among the rest, while many applications
spend more than 70% of their runtime and energy in approx-
imable regions (e.g., inversek2j), the number goes down to less
that 40% in some applications (e.g., jpeg). On average, applica-
tions spend 74.9% of their runtime and 81.8% of their energy in
approximable regions. While the time-energy breakdown differs
from one application to another, this experiment clearly shows
that there is a strong opportunity for approximate computing
across a large number of applications from scientific computing,
signal processing, image processing, etc.
L1-I and L1-D misses per kilo instructions (MPKI). Figure 4
and 5 present the number of L1-I and L1-D misses per kilo
instructions of the approximable regions of our benchmarks,
respectively. For some applications (e.g., blackscholes) the in-
struction footprint is relatively small and fits in the L1-I of the
processor. For these benchmarks, the number of L1-I misses
per kilo instructions is almost zero. The rest of the benchmarks
have instruction footprint that is larger than the L1-I cache, and
consequently, suffer from L1-I misses (e.g., jmeint). On the
other hand, the data working sets of AxBench benchmarks are
large, exceeding the capacity of L1-D caches, and as a result, the
number of L1-D misses per kilo instructions of many applica-
tions is relatively large. Across all benchmarks, the L1-D MPKI
ranges from 0.5 in blackscholes to 27.6 in canneal. These graphs
clearly show that instruction and data delivery is a bottleneck
across many applications. Any approximation technique that can
unblock the bottleneck has a potential to significantly improve
performance and energy efficiency.
On-chip bandwidth utilization Figure 6 shows the on-chip
bandwidth utilization across all the benchmarks. The maximum
bandwidth utilization is registered for fft and is less than 10%.
The rest of the benchmarks have even lower bandwidth utiliza-
tion. While many applications suffer from large instructions and
data misses, the on-chip bandwidth is almost underutilized. This
is due to (1) low performance per core due to high number of
misses and (2) few number of cores (in this case: one) per proces-
sor. The results suggest that approximate computation techniques
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Figure 4: Approximable region L1 instruction cache misses per kilo instructions in
CPU platform. L1 instruction cache size is 32 KBs.
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Figure 5: Approximable region L1 data cache misses per kilo instructions in CPU
platform. L1 data cache size is 32 KBs.
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Figure 6: On-chip bandwidth utilization in CPU platform. The baseline on-chip
bandwidth is 33.77 GB/sec.

that increase the performance of benchmarks are unlikely to hit
the on-chip bandwidth bottleneck.
LLC misses per kilo instructions (MPKI). Figure 7 shows
the number of LLC misses per kilo instructions of the approx-
imable regions of AxBench’s benchmarks. We find that many
benchmarks in our suite have data working sets larger than the
LLC capacity (i.e., 2 MBs) and consequently observe many
LLC misses (the instruction footprint of the benchmarks fits in
the LLC, so the LLC misses are mainly due to data accesses).
The LLC MPKI ranges from almost 0 in blackscholes to 15
in canneal. Large number of LLC misses per kilo instructions
results in significant performance and energy loss. Consequently,
the results suggest usefulness of any approximate computing
technique that reduces the LLC pressure.
Off-chip bandwidth utilization. Figure 8 shows the off-chip
utilization of our CPU benchmarks. Just like on-chip bandwidth
utilization, the off-chip bandwidth of almost all benchmarks is
underutilized. This is due to (1) low performance per core due to
large number of misses and (2) few number of cores in the proces-
sor. The only exception is canneal that experiences large number
of LLC misses (almost every access to LLC is a miss). The
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Figure 7: Approximable region LLC cache misses per kilo instructions in CPU
platform. LLC cache size is 2 MBs.
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Figure 8: Off-chip bandwidth utilization in CPU platform. The baseline off-chip
bandwidth is 8 GB/sec.
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Figure 9: The approximable region instruction per cycle (IPC) in CPU platform.

results show that an approximate computation that improves the
performance of almost all of these benchmarks is unlikely to hit
the off-chip bandwidth bottleneck. For canneal that suffers from
large number of LLC misses, a successful approximate compu-
tation technique should reduce the number of off-chip accesses.
Instruction per cycle (IPC). Figure 9 shows the average num-
ber of instructions committed per cycle when approximable parts
of the applications are executing on the CPU. While the CPU is
capable to execute up to 3 instructions per cycle, due to ineffi-
ciencies in instructions and data delivery, the average number of
instructions committed per cycle for majority of the benchmarks
do not reach 1.5. In many applications, the average IPC is less
than 1 (e.g., canneal and fft). Any approximate computing that
unblocks the bottleneck on instructions and data delivery has a
significant potential to improve performance.

4.1.2 GPU Platform

Runtime and energy breakdown. Figure 10 shows the time
and energy breakdown of approximable and non-approximable
parts of applications when applications run on a GPU. On av-
erage, applications spend 53.4% of their runtime and 56.0% of
their energy usage in approximable regions. Some applications
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Figure 10: Total application runtime and energy breakdown between
non-approximable and approximable region in GPU platform.
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Figure 11: Approximable region application L1 instruction cache misses per kilo
instructions in GPU platform. L1 instruction cache size is 2 KBs.
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Figure 12: Approximable region application L1 data cache misses per kilo
instructions in GPU platform. L1 data cache size is 16 KBs.

such as inversek2j and newton-raph spend more than 90% of
their runtime and energy in approximable regions. This exper-
iment clearly shows that approximate computing has a strong
opportunity to improve execution time and energy efficiency of
GPUs across a large number of domains such as signal process-
ing, scientific computing, and multimedia.
L1-I and L1-D misses per kilo instructions (MPKI). Fig-
ure 11 and 12 present the number of L1-I and L1-D misses
per kilo instructions of the approximable regions of our bench-
marks. We find that the instruction footprint of GPU benchmarks
tend to be smaller than that of CPU benchmarks. Consequently,
the number of L1-I misses per kilo instructions of GPU bench-
marks is smaller than that of CPU benchmarks. On the other
hand, the number of L1-D misses per kilo instructions for GPU
benchmarks is significant. Across all benchmarks, the number
of L1-D misses per kilo instructions ranges from less than 0.25
in srad to 5 in jmeint.
On-chip bandwidth utilization. Figure 13 shows the on-chip
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Figure 13: Off-chip bandwidth utilization in GPU platform. The baseline on-chip
bandwidth is 443.5 GB/s.
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Figure 14: Total application L2 data cache misses per kilo instructions in GPU
platform. L2 data cache size is 786 K-Byte.

bandwidth utilization of the GPU across all benchmarks. Similar
to the results for the CPU, on-chip bandwidth is underutilized
for all the benchmarks. The on-chip bandwidth utilization is
under 25% for all the benchmarks. As compared to a CPU, a
GPU benefits from thread-level parallelism and executes many
threads in parallel (our CPU executes one thread while each SM
can execute 64 threads in parallel and there are 15 SMs in the
GPU). The underutilization of on-chip bandwidth is due to (1)
GPU cores (SIMD lanes) are simpler and less capable than CPU
cores and (2) GPU has higher on-chip bandwidth as compared
to the CPU: our CPU has 33.77 GB/sec of on-chip bandwidth
while the GPU benefits from 443.5 GB/sec (a factor of 13×
higher bandwidth). These results suggest that an approximation
technique that improves the performance of GPU workloads is
unlikely to hit the on-chip bandwidth bottleneck.
LLC misses per kilo instructions (MPKI). Figure 14 shows
the number of LLC misses per kilo instructions of the approx-
imable regions of AxBench’s benchmarks. We find that many
benchmarks in our suite have data working sets larger than the
LLC capacity (i.e., 786 KBs), and consequently, observe large
number of LLC misses. The number of LLC misses per kilo
instructions ranges from 0.05 in meanfilter to 4.9 in jmeint.
Off-chip bandwidth utilization Figure 15 shows the off-chip
bandwidth utilization of GPU benchmarks. Some of the GPU
benchmarks have high on-chip bandwidth utilization (more than
40%). The high utilization is because GPUs benefit from execut-
ing many threads in parallel. Across the benchmarks, the off-chip
bandwidth utilization ranges from less than 5% in meanfilter and
newton-raph to about 60% in blackscholes and srad. The results
suggest that off-chip bandwidth is a bottleneck for some GPU
benchmarks and a successful approximation technique should
reduce the off-chip traffic to be useful for these applications.
Instruction per cycle (IPC). Figure 16 shows the average num-
ber of instructions committed per cycle when approximable parts
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Figure 15: Off-chip bandwidth utilization in GPU platform. The baseline off-chip
bandwidth is 177.4 GB/s.
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Figure 16: Approximable region instruction per cycle (IPC) for each thread in
GPU platform. The maximum IPC for each thread is one.

of the applications are executing on the GPU. Each GPU thread
can execute 1 instruction per cycle. Due to inefficiencies in
instructions and data delivery, the average number of instructions
committed per cycle is less than 1. The IPC ranges from less
than 0.2 in jmeint to near 0.9 in fastwalsh. While the IPC of
each thread is less than 1, as a GPU’s SM executes 64 threads in
parallel, GPUs execute significantly higher number instructions
per cycle as compared to CPUs. Nevertheless, there are oppor-
tunities, as manifested by Figure 10, for approximate computing
techniques to improve the performance and energy efficiency of
GPU applications.

4.1.3 Dedicated Hardware
AxBench provides a set of Verilog benchmarks for approximate
hardware design. In this section, we characterize these bench-
marks to show their effectiveness for approximate computing.
Runtime, energy, and area breakdown. Figure 17 shows the
time, energy, and area breakdown of approximable and non-
approximable parts of the benchmarks when we synthesized
them using Synopsis Design Compiler (DC). On average and
across all benchmarks, 92.4% of the time, 69.4% of the energy,
and 70.1% of the area go to approximable parts. Some applica-
tions such as forwardk2j, inversek2j, kmeans, and neural network
spend more than 90% of their runtime, energy, and area in ap-
proximable parts. All benchmarks spend 90% of their runtime
on approximable parts. For energy and area, some benchmarks
spend less than 50% on approximable parts. However, the ma-
jority of the benchmarks spend more than 50% of the area and
energy on approximable parts. This experiment clearly shows
that there is a strong opportunity for approximate computing to
improve runtime, energy, and area of dedicated hardware across
a large number of domains such as machine learning, robotics,
and signal processing.
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Figure 17: Total application runtime and energy breakdown between
non-approximable and approximable region in dedicate hardware design.

4.2 Evaluation of Prior Approximation Tech-
niques

In this part, we benefit from AxBench benchmarks to evaluate
some of the previously proposed approximation techniques. For
CPU and GPU platforms, we evaluate loop perforation [1] and
neural processing unit (NPU) [2–4]. For dedicated hardware, we
evaluate Axilog [5].

4.2.1 CPU Platform
Figure 18 compares loop perforation and neural processing units
(NPU) accelerators for improving speedup and energy efficiency
of CPU benchmarks. The maximum quality degradation is set
to 10%. We restrict the degree of loop perforation and NPU
invocations to limit the quality degradation to 10%.

Across all benchmarks expect kmeans and canneal, CPU+NPU
offers higher speedup and energy reduction as compared to
CPU+Loop Perforation. The approximable region in canneal
and kmeans consists of few arithmetic operations. Therefore,
the communication overhead kills the potential benefits of NPU
acceleration. The maximum speedup and energy reduction is
registered for inversek2j: loop perforation offers 8.4× speedup
and 4.7× energy reduction and NPU offers 11.1× speedup and
13.1× energy reduction. The average speedup (energy reduction)
for loop perforation and NPU is 2.0× and 2.7× (1.6× and 2.4×),
respectively.

While NPU is superior to loop perforation for improving effi-
ciency of CPUs, it cannot reach the peak potential because it does
not reduce the number of L1-D misses (it does not approximate
loads). Unlike instruction accesses that get eliminated by neural
transformation, data accesses remain the same. Figure 3 indicates
that about 80% of time and energy of AxBench’s benchmarks
are spent on approximable parts, which suggests the maximum
speedup and energy improvement of an approximate computa-
tion technique is 5×. NPUs only realize half of the opportunity,
mainly because they do nothing for data misses.

4.2.2 GPU Platform
Figure 19 compares loop perforation and neural processing units
(NPU) accelerators for improving speedup and energy efficiency
of GPU benchmarks. The maximum quality degradation is set
to 10%. We restrict the degree of loop perforation and NPU
invocations to limit the quality degradation to 10%.

Across all benchmarks, GPU+NPU offers higher speedup
and energy reduction as compared to GPU+Loop Perforation.
The maximum speedup and energy reduction is registered for
newton-raph (14.3×) and inversek2j (18.9×), respectively. The
average speedup (energy reduction) for loop perforation and
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(b) Energy Reduction
Figure 18: The comparison between NPU acceleration [2] and loop
perforation [1] approximation techniques in CPU platform with 10%
quality degradation.

NPU is 1.1× and 2.3× (1.3× and 2.6×), respectively.
Unlike CPU+NPU, which only realizes half of the opportunity,

GPU+NPU realizes all of the opportunity of approximate compu-
tation. The numbers in Figure 10 suggest the maximum speedup
and energy reduction of an approximation technique to be 3.1×
and 3.0×, respectively. As Figure 19 shows, GPU+NPU realizes
72.5% (83.4%) of the speedup (energy reduction) opportunity, re-
spectively. While NPU does nothing for data misses, a GPU exe-
cutes many threads in parallel to hide data misses. Consequently,
massively parallel GPUs augmented with neural accelerators
achieve the peak potential of approximate computation. The
only exceptions are blackscholes and srad that has high off-chip
bandwidth utilization (off-chip bandwidth is saturated). As the
off-chip bandwidth is a bottleneck, NPU accelerators cannot offer
speedup though they improve the energy efficiency of the GPU.

4.2.3 Dedicated Hardware
We evaluate Axilog hardware approximation technique [5] us-
ing AxBench benchmarks. We set the maximum output quality
degradation to 10%. We apply Axilog to each benchmark to the
extent in which the 10% output quality degradation is preserved.

Figure 20 shows the energy and area reduction of applying Ax-
ilog to the benchmarks. We do not include a graph for speedup
as Axilog does not affect the performance of the benchmarks.
Axilog is quite effective at reducing the energy and area needed
by the benchmarks. The energy reduction across all benchmarks
ranges from 1.1× in fir to 1.9× in inversek2j with a geometric
mean of 1.5×. The area reduction ranges from 1.1× in fir to
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(b) Energy Reduction
Figure 19: The comparison between NPU acceleration [3, 4] and
loop perforation [1] approximation techniques in GPU platform with
10% quality degradation.

2.3× in brent-kung with a geometric mean of 1.9×.
Figure 17 shows that roughly 70% of the energy and area of

the benchmarks, on average, is due to approximable parts, which
translates to the maximum area and energy reduction of 3.3×.
While Axilog is effective at reducing the energy and area usage
of dedicated hardware, there is still a significant opportunity for
innovative approximate computation techniques at the hardware
level.

5 Related Work
Approximate computing. Recent work has explored various
approximation techniques across system stack and for different
frameworks such as CPUs, GPUs, and hardware design that in-
clude: (a) programming languages [9, 10, 48], (b) software [1, 29,
30, 40, 54, 55], (c) memory system [44, 46], (d) circuit-level [11,
12, 34, 36, 56], (e) approximate circuit synthesis [5, 14, 15, 57,
58], (f) memoization [29, 59, 60], (g) limited fault recovery [61–
67], and (h) neural acceleration [2–4, 31, 68–73]. However, prior
work does not provide benchmarks for approximate computing.
In contrast, this work is an effort to address the needed demand
for benchmarking and workload characterization in approximate
computing. Distinctively, we introduce AxBench, a diverse set of
benchmarks for CPUs, GPUs, and hardware design frameworks.
AxBench may be used by different approximate techniques to
study the limits, challenges, and benefits of the techniques.
Benchmarking and workload characterization. There is a
growing body of work on benchmarking and workload charac-
terization, which includes: (a) machine learning [74–76], (b)

10



0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

E
ne

rg
y

R
ed

uc
ti

on

br
en

t-k
ung fir

fo
rw

ar
dk2

j

in
ve

rs
ek

2j

km
ea

ns

ko
gg

e-
st

on
e

wal
la

ce
-tr

ee

neu
ra

l net
wor

k
so

bel

gm
ea

n

Axilog Ideal

(a) Energy Reduction

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

A
re

a
R

ed
uc

ti
on

br
en

t-k
ung fir

fo
rw

ar
dk2

j

in
ve

rs
ek

2j

km
ea

ns

ko
gg

e-
st

on
e

wal
la

ce
-tr

ee

neu
ra

l net
wor

k
so

bel

gm
ea

n

3
.1

3
.1

Axilog Ideal

(b) Area Reduction
Figure 20: Reduction in (a) energy and (b) area for the AxBench
ASIC benchmarks by using Axilog [5] hardware approximation
technique. The quality degradation is set to 10%.

big data analytics [77–79], (c) heterogeneous computing [80],
(d) scientific computing [81], (e) bioinformatics [82], (f) multi-
thread programming [83], (g) data mining [84], (h) embedded
computing [85], (i) computer vision [86, 87], and (j) general-
purpose computing [88, 89]. However, our work contrasts from
all the previous work on benchmarking, as we introduce a set
of benchmarks that falls into a different category. We introduce
AxBench, a set of diverse and multi-framework benchmarks for
approximate computing. To the best of our knowledge, AxBench
is the first effort towards providing benchmarks for approximate
computing. AxBench accelerates the evaluation of new approx-
imation techniques and provides further support for the needed
development in this domain.

6 Conclusion
As the approximate computing gains popularity in different com-
puting platforms such as CPUs and GPUs, and across the system
stack, it is important to have a diverse, representative, and multi-
platform set of benchmarks. A benchmark suite with these fea-
tures facilitates fair evaluation of approximation techniques and
speeds up progress in the approximate computing domain. This
work expounds AxBench, a multi-framework benchmark suite
for approximate computing across the system stack. AxBench in-
cludes 9 benchmarks for CPUs, 11 benchmarks for GPUs, and 9
benchmarks for hardware design. We extensively characterize all
the benchmarks and provide guidelines for the potential approx-
imation techniques that can be applied across the system stack.

Furthermore, we evaluate loop perforation approximation [1]
and neural processing units (NPUs) [2–4] using CPU and GPU
benchmarks, and Axilog [5] using hardware design benchmarks
to show the effectiveness of AxBench. We find that previously
proposed techniques are effective at improving performance or
energy efficiency. However, there remains significant opportu-
nity to be explored by future approximation techniques. While
all the AxBench benchmarks are ready, we have not released
them publicly to preserve anonymity.
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