
VISION-BASED AUTONOMOUS NAVIGATION IN MEDIUM LEVEL
REPRESENTATION

A Thesis
Presented to

The Academic Faculty

By

Jin Ha Hwang

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2017

Copyright c© Jin Ha Hwang 2017

VISION-BASED AUTONOMOUS NAVIGATION IN MEDIUM LEVEL
REPRESENTATION

Approved by:

Dr. Patricio A. Vela, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Fumin Zhang
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Anthony J. Yezzi
School of Electrical and Computer
Engineering
Georgia Institute of Technology

This thesis is dedicated to Jooyoung Kim, who has been my life since I met her.

ACKNOWLEDGEMENTS

First and foremost, I would first like to thank my thesis advisor Dr. Patricio A. Vela of

the School of Electrical and Computer Engineering at Georgia Institute of Technology. He

consistently assisted and steered me in the right direction whenever he thought I needed

it. I sincerely hope I continue to have opportunities to interact with him for the rest of my

career.

My sincere thanks also go to Justin Smith at IVALab who supported me throughout

various research projects and my thesis with insightful comments and discussions. I cannot

adequately express how thankful I am. This thesis would not have been possible without

his intellectual contribution and guidance throughout my entire research period.

I also thank the rest of my thesis committee members, Dr. Fumin Zhang and Dr. An-

thony Yezzi for sharing their precious time.

Finally, I must express my very profound gratitude to my parents for providing me

with unfailing support and continuous encouragement throughout my years of study. This

accomplishment would not have been possible without them.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

Chapter 2: Background . 4

Chapter 3: Stixel Representation . 8

3.1 Cost Volume Computation . 8

3.2 Ground Plane Estimation . 9

3.3 Stixel Disparity Estimation . 11

3.3.1 Stixel Cost . 11

3.3.2 Smoothness Term . 14

3.3.3 Dynamic Programming . 14

3.4 Stixel Height Estimation . 16

3.4.1 Height Cost . 17

3.4.2 Smoothness Term . 17

3.4.3 Dynamic Programming . 17

vi

Chapter 4: Local Path Planning . 20

4.1 Model Projection Based Path Planning . 20

4.2 3D Cartesian Point Projection . 21

4.3 Implementation of Robot Model Projection 22

4.3.1 Rectangular Model . 23

4.3.2 Cylindrical Model . 25

4.4 Collision Checking . 28

4.5 Local Reactive Controller . 32

Chapter 5: Global Navigation Framework . 35

5.1 Global and Local Plan . 35

5.2 Sample Based Trajectory Generation . 38

5.3 Trajectory Evaluation . 43

5.3.1 Oscillation Cost . 43

5.3.2 Local Goal Heading Cost . 44

5.3.3 Global Goal Heading Cost . 45

5.3.4 Local Goal Distance Cost . 45

5.3.5 Global Goal Distance Cost . 45

5.3.6 Obstacle Cost . 46

5.3.7 Trajectory Selection . 47

Chapter 6: Experimental Results . 51

6.1 Stixel Construction . 51

6.2 Statistical Data . 51

vii

6.3 Simulation Experiments . 53

6.3.1 Simulation System . 53

6.3.2 Rectangular World . 54

6.3.3 Random World . 58

6.4 Real World Implementation . 60

6.4.1 Real World System . 61

6.4.2 Stixel and Path Evaluation . 62

6.4.3 Navigation Task . 65

6.5 Limitations . 69

6.5.1 No Obstacle History . 69

6.5.2 Limited Field of View . 69

6.5.3 Stereo Matching Over Textureless Area 70

Chapter 7: Conclusion & Future Work . 71

7.1 Conclusion . 71

7.2 Future Work . 71

Appendix A: Detailed Screenshots of Real Time Navigation Task 74

Appendix B: Derivation Of Scalar Distance From The Camera Origin To The
Intersection Of The Circle . 77

References . 83

viii

LIST OF TABLES

6.1 Stixel world parameters . 51

6.2 Computation time of Stixel world . 52

6.3 Computation time of model projection based approach 52

6.4 Camera parameters in simulation . 54

6.5 Controller parameters in simulation . 54

6.6 Real world stereo caemra parameters . 62

6.7 Real world controller parameters . 62

ix

LIST OF FIGURES

2.1 Stixel World representation . 6

3.1 v-disparity representation and original image with no wall present 10

3.2 v-disparity representation and original image with a vertical wall present . 10

3.3 Object cost (top) and ground cost (bottom) matrices in different local scenes 13

3.4 Stixel representation in the left image with corresponding Stixel cost matrix 15

3.5 Stixel height estimation in the left image with corresponding height cost
matrix . 19

4.1 Robot platform used for implementation and experiments 23

4.2 Rectangular Model Projection . 25

4.3 Cylindrical model projection in 2D Cartesian space 26

4.4 Cylindrical Model Projection . 28

4.5 Collision Checking in the image space at point A - L 30

4.6 Collision Checking for Trajectory B in the image space at point A - L . . . 31

4.7 Example path evaluation in different local scenes 34

5.1 Global plan visualization in three representations 37

5.2 Trajectory candidates sampled based on the current configuration of robot . 42

5.3 Trajectory projection in the perception space 49

x

5.4 Navigation Task with obstacles . 50

6.1 Mobile vehicle in simulation . 53

6.2 World level view of Rectangular World . 55

6.3 Dead zone example . 56

6.4 Rectangular World Experimental Result 58

6.5 World View of Random World . 59

6.6 Random World Experimental Result . 60

6.7 Real world mobile vehicle . 61

6.8 Trajectory Evaluation in the Stixel representation 64

6.9 Failure case of Stixel estimation . 65

6.10 Real world navigation task in a rectangular region 66

6.11 Real World Map . 67

6.12 Real world navigation in a corridor . 68

6.13 Limitaion of Vision Based Navigation . 70

xi

SUMMARY

Autonomous navigation for a mobile robot is required to operate in cluttered, unstruc-

tured environment at high speeds with efficient data gathering. Given the payload con-

straints and long-range sensing requirements, vision-based scene analysis is the preferred

sensing modality for a modern navigation system. For outdoor navigation, stereo vision is

favored by reasons of improving detection range by increasing the views of the scene and

the indirect access to depth information.

However, state of the art approach uses stereo camera observations by converting dis-

parity images to a world representation such as 3D point cloud and 2D occupancy grid

and fail to deal with sensor noises [1]. The computational burden of performing dense

stereo matching and updating the observation in the world representation and the difficulty

in dealing with sensor error force modern approaches to update the world representation

on a per frame basis, which often becomes a factor of reducing a degree of autonomy for

a navigation task [2]. Moreoever, the observation update in the 2D world representation

often requires a simplification of a geometry of an object as a circle [3] or a rectangle [4,

5] for the obstacle expansion. Overly inflated region due to the simplified geometry causes

the navigation system to negotiate by performing overly conservative path planning.

In this paper, we propose an alternative scene perception and planning approach in a

medium level representation called Stixel World for stereo cameras. Instead of convert-

ing the local scene observation into the world representation, obstacle detection and path

planning computation remains in the perception space. We use a method to construct the

medium level representation by detecting every possible vertical obstacle for each column

in the image. We construct the Stixel representation using a reduced detection window for

the Stixels by ground plane estimation. Instead of computing the full disparity map, we

utilize a cost volume matrix approach. Also, we propose a method that directly projects a

robot model into the perception space so that the 3D physical geometry of the robot model

xii

does not need to be simplified unlike modern perception-based local planning approaches

that perform obstacle expansion in the image space [6, 7]. Furthermore, we propose a

method to integrate this local/reactive obstacle avoidance controller with a global planner

for navigating to a provided destination both safely and efficiently.

We demonstrate these capabilities on a simulated mobile robot in many environment

scenarios for quantitative evaluation. Then, we also qualitatively explore limitations and

possibilities of the vision-based autonomous navigation in the medium level representation

by implementing our approach on a real mobile robot. From experimental results, we

show the robustness and effectiveness of our method by comparing to other traditional 2D

Cartesian-based navigation planners as well as the depth image-based path planner.

xiii

CHAPTER 1

INTRODUCTION

Recently, many vision-based autonomous navigation methods have been proposed as an

intelligent mobile robot application. While the autonomous navigation requires a relation

between the perception of the environment and a low-level robot operation, the visual sen-

sors are especially efficient for this task by providing comprehensive understandings of the

local scene than range scanning sensors such as LRF and sonar sensors.

An issue that arises with vision-based obstacle avoidance is that noise in the vision

source can cause an inaccurate detection of obstacles that leads to potential collisions. The

navigation planner has to compromise this issue by selecting a path candidate that does

not have obstacle present as well as less noise along the path, which causes overall navi-

gation overly conservative with longer travel time [8, 9]. Hence, robust and safe obstacle

avoidance has remained an active research area for several decades [10].

Achieving safe, autonomous, fast control of traditional navigation planners in unstruc-

tured environments presents two challenges. One is the need for a rapid sensing of the local

scene to allow for adequate time to detect and avoid obstacles. Another is the need for a fast

and accurate update of the world representation based on the newly collected information.

Even though an infrared-based depth camera provides relatively accurate depth information

of the scene, it does not work adequately in the outdoor scene because the IR structured

lighting pattern gets lost in ambient IR. An alternative is a Time-of-Flight (ToF) camera that

gives the depth information based on measuring the time-of-flight of a light between the

camera and the subject for each point of the image. Even though the ToF camera performs

well in low-textured regions, the performance of depth estimation over textured regions is

still insufficient in the outdoor scene [11]. Instead, disparity-based depth estimation using

a stereo camera is commonly performed for the autonomous navigation task. The stereo

1

camera offers a low weight, long range sensing that can be easily mounted on any mobile

platform at the cost of increased computation.

However, fulfilling the two challenges mentioned above requires a significant compu-

tational burden on the navigation system because the traditional vision-based navigation

planners generally perform a scene analysis and path planning separately in different rep-

resentation spaces and the latter cannot be done without updated information in the world

representation. Also, using estimated raw disparity data as the primary source for the navi-

gation causes a lot of noise due to sensor error, which forces the navigation system to update

the world representation as often as possible to correct noises [2]. Long computational time

in the observation update process causes high latencies in an end-to-end global navigation

pipeline, which can decrease the planning frequency and possibly overall performance in

navigation tasks.

In this thesis, we propose an alternative approach to integrate the two stages to be per-

formed in the perception space so that the navigation system can perform more robust scene

analysis and obstacle avoidance. From raw stereo image pairs, we construct the medium-

level representation called Stixel World. We increase the speed of the Stixel representation

construction by reducing a detection window of the Stixels based on ground plane estima-

tion. Unlike other contemporary perception-based path planning approaches that expand

obstacles in the perception space, we directly project the robot model into the perception

space so that the planner does not need to simplify the 3D physical geometry of the mobile

robot. Then, we show that our approach can be integrated with a traditional global planner

framework by proposing a new end-to-end global navigation framework.

This thesis is ordered as follows. Chapter 2 presents a short background of the related

work. Chapter 3 describes the construction of the Stixel representation from a rectified

stereo pair by extending [12]. Chapter 4 describes the scene analysis for the collision

checking and local path planning in the perception space. Chapter 5 describes the integra-

tion of the local reactive obstacle avoidance approach with the global navigation frame-

2

work. Chapter 6 presents various experimental results and limitations of our approach.

Finally, this paper concludes with remaining works.

3

CHAPTER 2

BACKGROUND

To estimate disparity from a raw stereo image pair, stereo matching should be performed

to find the corresponding points in the image pair. There have been an extensive search of

stereo matching algorithms such as Fast block matching [13], Semi-Global Block Mathing

(SGBM) [14], and Symmetric stereo matching [15]. From estimated disparities, traditional

stereo vision-based path planning algorithms commonly represent data in the world repre-

sentation and plan the path.

A 2D occupancy grid is one of popular representation that the traditional navigation

system performs path planning [16, 1, 17, 2]. For 3D navigation on flying vehicles such as

MAVs, a 3D occupancy grid such as OctoMaps [18] is frequently used due to its efficient

structure for the 3D occupancy mapping. A voxel grid is another popular modality in the

world space that represents an object as a collectioin of aligned boxes [5]. [19] proposes a

spherical coordinate based grid mapping for autonomous navigation using stereo sensors,

but requires the disparity map to be converted to 3D point cloud before mapping into the

grid.

Since many navigation systems that describes the local scene in the world space use

a grid-like representation, there have been a lot of attempts to employ graph-based path

searching algorithms for autonomous navigation. Dynamic Window Approach [20], Elas-

tic Band [21], Timed-Elastic Band [22], and Genetic Algorithm [23] which generally plans

paths on the 2D or 3D occupancy grid have been proposed. These approaches work suffi-

ciently, but vision-based navigation planners that employ same approach require the addi-

tional process of converting visual observations into a data type that is compatible with the

grid representation such as the point cloud. This conversion process causes a long delay

during the motion planning, which potentially decreases the performance of the navigation

4

system. Moreover, these approaches require a large local memory to update and store the

information. As travel duration and distance of a navigation task increase, maintaining the

scene observations in the world representation can be problematic for small mobile robots

that have hardware constraints.

Instead of path planning approaches that operate in the world representation, several

works propose path planning approaches in the perception space directly without the con-

version process. For outdoor navigation, [6] proposes a path planning approach that per-

forms the A* path searching algorithm in the disparity space based on the cost assigned to

each pixel. However, this approach does not consider the hardware limits and configura-

tions of the mobile vehicle and treat the image path planning same as a grid path searching,

which simply connects pixel by pixel. This unclear understanding of the relationship be-

tween the path planning in the perception space and the low-level robot operation causes

the vehicle to be unable to achieve a planned path in a given period. In contrast, there are

alternative approaches to construct a motion library, which is a set of trajectories that the

robot can achieve based on its hardware limitations. The motion library is usually con-

structed prior to a navigation task and then used by projecting the corresponding image

coordinates in the disparity space [24, 25].

For a robot that has a non-negligible size, many works propose an expansion-based path

planning approaches, which expands an obstacle boundary by the vehicle radius incorpo-

rating with the depth information, such as Configuration-Space (C-Space) expansion [26,

27]. However, most expansion-based approaches simplify the geometry of the robot, which

usually negotiates the simplification by the over-expansion of the obstacle.

As opposed to the obstacle expansion approaches, [28] proposes a robot model projection-

based local path planning approach in the depth space, which does not simplify the 3D

geometry of the robot. However, this approach is implemented as a local reactive obstacle

avoidance controller that navigates without a goal.

Besides planning in the raw image representation and the 3D world, there has been a

5

lack of attempts to perform the local path planning in a middle-ground between the image

level and world level. However, several methods of constructing the medium-level repre-

sentations are frequently proposed such as superpixel [29, 30] and 3D primitives [31]. One

other alternative is called Stixel World [32].

First proposed by Bandino et al. as Stixel World [32], the Stixel representation is re-

ferred as the medium level representation of 3D traffic scene with a goal to bridge the gap

between pixels and a 3D physical object. Stixels are represented by a set of rectangular

sticks standing vertically on the ground to approximate free space in front of the vehicle as

shown in Figure 2.1.

Figure 2.1: Stixel World representation

[33] proposes a multi-layer approach that allows multiple Stixels in an image column.

[12] proposes Stixel computation without estimating the depth map based on an assump-

tion that all stereo matching methods that yield a dense depth map will either use smooth-

ing constraints or prior knowledge. [34] introduces a bottom-up stixel segmentation with

object-level knowledge in a sound probabilistic fashion.

Modern Sticel construction methods implement machine learning-driven approaches

such as Semantic Stixels which infers both geometric and semantic layout of a scene [35].

[36] proposes a single color camera-based Stixel representation using a deep CNN with a

loss function based on a semi-discrete representation of the obstacle position probability to

train the network. Stixel representation has been used for several applications such as object

6

detection and recognition [37, 38, 39, 40], motion estimation [41], and scene understanding

[42, 43].

While there are many approaches to recognize and understand the local scene in the

world representation based on the Stixels, there has been no attempts to perform the path

planning in the Stixel representation directly. For a small-sized mobile robot that has hard-

ware limitations, sophisticated scene understanding algorithms such as object recognition

and segmentation from the Stixels and represent them in the world can be extremely de-

manding and might be unnecessary for a simple navigation task.

7

CHAPTER 3

STIXEL REPRESENTATION

The proposed Stixel estimation algorithm extends [12] and includes five sub-stages. From

an input rectified stereo image pair, the proposed method computes the cost volume ma-

trix of each pixel in §3.1. This cost volume reduces the search window of the Stixels by

estimating a ground plane in §3.2, which is then used to estimate the Stixel disparity §3.3.

We then show height estimation of the Stixel using the estimated Stixel disparity in §3.4.

Throughout the paper, we assume a width of the Stixel to be one pixel for simplicity of

mathematical equations. Using a broader Stixel width may reduce the overall time com-

plexity by averaging columns of data, but reduces the spatial resolution of the Stixels as a

tradeoff.

3.1 Cost Volume Computation

Given a pair of rectified stereo images, the Stixel estimator first computes a matching cost

volume, cm(u, v, d), which is a cost of having a disparity d at pixel (u, v) by using a sum

of absolute differences over the image channel for every pixel in the left image and every

possible disparity value d ∈ [0, dmax]. In this paper, we denote u, v, d as a horizontal axis,

vertical axis, and disparity respectively. We describe how the cost volume is computed in

Algorithm 1.

The lower the cost cm(u, v, d) is, the likelihood of having the disparity value d at (u, v)

is higher. This pixelwise operation can be parallelized to increase the computational speed.

Most stereo matching methods include an equivalent matching step with similar or higher

cost, which is usually followed by a smoothing process that dominates the computation

time [44].

8

Algorithm 1 Cost Volume Computation
1: procedure COSTVOLUME(u, v)
2: d← 0
3: dmax ← Max disparity value possible
4: I(u, v)← intensity at image(u, v)
5: while d ≤ dmax do
6: cm(u, v, d)← Ileft(u, v)− Iright(u− d, v)

3.2 Ground Plane Estimation

The Stixel estimator then finds a ground plane by exploiting a v-disparity representation

[45]. Since one assumption of the Stixel world is that an object stands vertically from the

ground, ground estimation efficiently reduces the search space of the Stixels and speeds up

the computation of following stages.

For a vehicle that equips the camera with the pitch angle of 0 or small negative (i.e.,

camera facing straight forward or slightly downward), a horizontal vanishing line of the

ground plane is guaranteed to converge at the center point of the vertical axis in the image.

Therefore, the ground estimator first exclude the upper half of the image (i.e., v ∈ [0, width
2

])

from the search window.

To calculate the ground plane, we first project the cost volume matrix computed in §3.1

along the horizontal axis (u-axis) to create the v-disparity representation. Each pixel in

the v-disparity representation contains a summed pixel cost of the uni-dimensional slice

of the cost volume. The equation of v-disparity computation is the following.

Iv∆(d, v) =
width∑
u=0

cm(u, v, d) (3.1)

For an image in Figure 3.1, a line that connects lowest cost at each row, arg mind Iv∆(d, v),

has constant slope in disparity. On the other hand, there is no change in arg mind Iv∆(d, v)

for v ∈ [0, v(wall)] from the v-disparity representation in Figure 3.2. This means that this

area has the high probability of having the constant disparity value vertically, which we

9

assume the area as a non-ground plane. Therefore, the estimator excludes this area from

the Stixel search window based on the assumption of the Stixel World where all objects

stand vertically from the ground plane.

disparity axis

v axis

Figure 3.1: v-disparity representation and original image with no wall present

disparity axis

v axis

v(wall)

Figure 3.2: v-disparity representation and original image with a vertical wall present

10

3.3 Stixel Disparity Estimation

While ground plane estimation involves the projection of the cost volume along the hori-

zontal axis, the Stixel estimator projects the cost volume matrix along the vertical axis to

estimate a Stixel distance in each column of the image.

Following the approach of Kubota et al. [46], the estimator computes the disparity

of each Stixel using 2D dynamic programming over two terms: Stixel cost cs(u, v) and

smoothness term ss(d(ua), d(ub)) where ua and ub are neighbouring pixels (|ua − ub| =

1). We compute an optimal disparity of the Stixel at column u, d∗s(u), by solving the 2D

minimization problem using the dynamic programming in the u-disparity domain.

d∗s(u) = arg min
d(u)

∑
u

cs(u, d(u)) +
∑
ua,ub

ss(d(ua), d(ub)) (3.2)

How each cost is defined will be explained below.

3.3.1 Stixel Cost

For each column and possible disparity d ∈ [0, dmax], a Stixel cost cs(u, d) defines a like-

lihood of a presence of a Stixel at d in the left image. The lower the cost, the more likely

that the Stixel is present at position (u, v(d)). The Stixel cost comprises of an object cost

co(u, d) and a ground cost cg(u, d).

cs(u, d) = co(u, d) + cg(u, d) (3.3)

Object Cost

The object cost co(u, d) describes the cost of a vertical object being present at (u, v(d)).

For a faster and more accurate computation, we set up an upper bound of expected object

height ho. Using a predefined camera calibration matrix and the estimated ground plane

from §3.2, the Stixel estimator calculates vertical image coordinates of a point above the

11

ground for a given height v(h, d). With ho, the estimator calculates v(ho, d) for our upper

boundary of the Stixel in the image plane. If no ho is specified, v(ho, d) should be 0 (i.e.,

top of the image).

co(u, d) =

v(ho,d)∑
v=v(d)

cm(u, v, d) (3.4)

From Figure 3.3, object costs co(u, d) in the cost matrix at disparity value d that corre-

sponds to the location of the obstacle are lower than other disparity values in each column.

In Figure 3.3a, object costs are lower for smaller disparity values for the columns where

a trash bin is located (co(u(trash), d)) while costs are evenly distributed over all disparity

values for the columns where a vertical wall is located. Also, in Figure 3.3b, the disparity

values that have lowest co(u(coke), d) is generally larger than the disparity values that have

lowest co(u(cabinet), d) because the coke is located closer from the camera than the coke.

Ground Cost

The ground cost cg(u, d) describes the cost of a supporting ground being present at (u, v(d)).

For a flat surface, it is bijective relationship between fground : U × V 7→ D. Therefore, we

can map (u, d) coordinate to a point (u, v(d)) in the image plane using v(d) = f−1
ground(d).

For the ground cost, the Stixel estimator computes a likelihood of the supporting ground

plane’s presence at v = v(d) for each d ∈ [0, dmax].

cg(u, d) =

v(d)∑
v=heightimage

cm(u, v, fground(v)) (3.5)

From the image in Figure 3.3a, a vertical wall is present in the ground plane search area.

Therefore, ground cost matrix contains higher cost at smaller disparities for the columns

where the wall is located, which indicates that this region is less likely to have the support-

ing ground if there is an obstacle. For both object and ground cost matrices, we discard the

far left columns since they are the uncertainty due to unknown stereo matching due to the

12

baseline between two cameras. As the baseline if the stereo camera increases, the size of

the uncertain columns will also increase.

u(trash)

Vertical wall

u axis

disparity axis

(a) Scene A

u(cabinet)

u(coke)

lowest cost

(b) Scene B

(c) Scene C (d) Scene D

Figure 3.3: Object cost (top) and ground cost (bottom) matrices in different local scenes

13

3.3.2 Smoothness Term

In a stereo vision, some portion of the objects visible in the left image can be occluded in

the right image, causing a significant difference in computed disparity values. When pro-

cessing the left image, the Stixel estimator excludes this area from the Stixel computation

since it does not have corresponding area to match. We ensure this occlusion constraint

using a smoothness term by exploiting [46].

ss(da, db) =

∞, if da < db − 1

co(ua, ub), if da = db − 1

0, if da > db − 1

(3.6)

where da = d(ua) and db = d(ub) with ua one pixel to the left of the pixel ub. When the ss

is∞, no Stixel distance estimate will violate the occlusion constraint.

3.3.3 Dynamic Programming

With computed Stixel cost cs and smoothness term ss, an optimal disparity for each Stixel,

d∗s, is computed by solving the 2D dynamic programming for the cost minimization in the

u-disparity domain using [46]. The Stixel estimator performs the dynamic programming

calculation from the right most column to the left most column using the following recur-

sive equations.

d∗s(uwidth) = arg min
d(uwidth)

cs(uwidth, d(uwidth))

d∗s(u− 1) = arg min
d(u−1)

{cs(u− 1, d(u− 1)) + ss(d(u− 1), d∗s(u))}
(3.7)

where uwidth is the far right column of the image.

Using the d∗s(u) in the u-disparity domain and predefined camera calibration matrix,

the Stixel estimator computes the u-v boundary v∗bottom(u) that represents a bottom of each

14

Stixel. In Figure 3.4, we show original left images in different local scenes with the cor-

responding Stixel cost matrices in the u-disparity domain layered with d∗s(u) along the

column. We also draw the bottom of the Stixel at (u, v(d∗s(u))) in the original image for

each u.

(a) Scene A (b) Scene B

(c) Scene C (d) Scene D

Figure 3.4: Stixel representation in the left image with corresponding Stixel cost matrix

15

3.4 Stixel Height Estimation

[32] uses the input depth map to compute a membership function based on the distance

between the pixelwise disparities and the Stixel disparities. Since our Stixel computation

does not include the full dense disparity map computation, we use an alternative approach

that computes a similar membership function without estimating pixelwise disparities.

If a pixel (u, v) in the image belongs to a given disparity d, we expect the cost volume

function of neighbouring pixels with d, cm(u, v, dsurr) to be a local minima. If a true

disparity d∗ at (u, v) is far from the estimated disparity d, then the cm(u, v, dsurr) will not

resemble the local minima. Our membership function measures how much cm(u, v, d∗s(u))

resembles the local minima.

This computation is significantly faster than the full dense map computation approach

performed in [32]. All pixels below the estimated u-v boundary, v∗bottom(u) computed in

§3.3, do not need to be computed. If the expected maximum height of an object is prede-

fined, all pixels above the height can also be skipped.

Our membership function m(u, v) is defined as

m(u, v) = 2 · (max(0,m1(u, v))− 0.5) (3.8)

m1(u, v) =
∑

d∈N(d∗s(u))

m2(c̃m(u, v, d), c̃∗m(u, v, d∗s(u))

|N(d∗s(u)|
(3.9)

m2(cm, c
∗
m) =

+ max(|cm − c∗m| ,∆max)/∆max if cm > c∗m

−max(|cm − c∗m| ,∆max)/∆max otherwise
(3.10)

where c̃m(u, v, d) is the cost value after applying a mean filter. N(d∗s(u)) is a small

neighborhood of pixels around d∗s(u), |N(d∗s(u)| indicates the number of elements inN(d∗s(u)),

and ∆max is a small constant. As defined in Equation 3.8, m(u, v) ∈ [−1,∞] where a

16

membership value of 1 indicates the full membership that belongs to the Stixel while a

membership value of -1 means no membership.

3.4.1 Height Cost

Based on the membership function m(u, v), the proposed Stixel estimator converts it into

the height cost ch(u, v). We also use the expected height of the object ho to reduce the

computation time.

ch(u, v) = (
v∑

w=v∗bottom

|m(u,w)− 1|) + (

v(ho,d∗s(u))∑
w=v

|m(u,w) + 1|) (3.11)

where v(ho, d
∗
s(u)) indicates the row of the maximum height considered for an object. If

not defined, v(ho, d
∗
s(u) should be set to 0.

3.4.2 Smoothness Term

Similar to §3.3.2, we apply a smoothness term to penalize jumps in the vertical direction.

sh(ua, va, ub, vb) = |va − vb| ·max(0, 1− |z(d∗s(ua))− z(d∗s(ub))|
∆z2

) (3.12)

where ua and ub are neighboring pixels,|ua − ub| = 1. The cost of the jump is proportional

to the difference between the rows va and vb. ∆z2 is the minimum distance of adjacent

Stixels that influence each other (set to 2 meters in our experiments). Hence, the spatial

cost of a jump in the vertical direction becomes zero if the difference in depth between

the columns is equal or larger than ∆z2. z(d∗s(u)) denotes a depth of the optimal disparity

value at column u based on the camera calibration matrix.

3.4.3 Dynamic Programming

With computed height cost ch and smoothness term sh, the Stixel estimator also finds the

optimal Stixel height, v∗s(u), by solving the 2D dynamic programming for the cost mini-

17

mization similar to §3.3.3 but with different data and smoothness terms.

v∗s(uwidth) = arg min
v

ch(uwidth, v))

v∗s(u− 1) = arg min
v
{ch(u− 1, v) + sh(u, v

∗
s(u), u− 1, v)}

(3.13)

As a post-processing step, if the estimated Stixel height is too far from the expected height

ho, we consider it erroneous and set back to ho. In the height cost matrix from Figure 3.5a,

the matrix shows the height cost of the region where the trash can is located in the image

spcae, ch(u(trash), v(trash)), has relatively smaller than ch(u(trash), v(above)) where

v(above) is rows higher than the top of the trash can. One problem is that the height cost

matrix is distributed evenly over the trash can despite the fact that the cost at the upper

boundary of the object should be the lowest. This is because there is not much texture

difference over the region.

For local scenes that objects have more textures such as Figure 3.5b, we observe that

the Stixel height estimation performs better by correctly estimating the upper boundary of

the object with the lowest cost. From the height cost matrix, we see that the height cost

ch(u(cabinet), v(cabinet)), ch(u(coke), v(coke)), and ch(u(dumpster), v(dumpster)) are

the lowest among other v for each u(cabinet), u(coke), and u(dumpster).

18

u(trash)

v(trash)

v(above)

(a) Scene A

u(cabinet)
u(coke)

u(dumpster)

v(cabinet)

v(coke)

v(dumpster)

lowest cost

(b) Scene B

(c) Scene C (d) Scene D

Figure 3.5: Stixel height estimation in the left image with corresponding height cost matrix

19

CHAPTER 4

LOCAL PATH PLANNING

During a navigation task, a local reactive controller needs to know locations of obstacles

that are present in the representation that the controller performs the path planning. For the

most planner that uses different types of sensors such as a laser scanner as well as some

vision-based navigation planners, they usually convert and update the observation in the

2D/3D world representation and construct the path that the robot should follow within the

next control stage. For vision-based planners that plan the path in the image representation,

popular modality is to expand the obstacles along the boundary in the image space and

construct the local plan pixel by pixel. In this paper, we propose the model projection

based local path planning approach in the Stixel representation that only constructs a set

of achievable trajectory candidates based on the robot’s kinematics and dynamics at every

control stage.

4.1 Model Projection Based Path Planning

Traditional collision checking approaches expand either a robot or an obstacle boundary by

simplifying the geometrical shape of the object, which usually over-expands the object so

that the resulting plan becomes overly permissive.

As the gap between the geometrical shape of the actual robot and the expansion model

in the image representation gets larger, the local path planner has to choose more conser-

vative paths in order to avoid the collision. This deficiency sometimes affects the overall

navigation performance in the cluttered environments by not only causing a long detour but

also not being able to find a valid path frequently.

Instead, the work by Smith and Vela [28] presents a local path planning approach that

models the 3D physical geometry of the robot and projects it directly into the perception

20

space to find collision-free trajectories. The advantage of this approach is that the colli-

sion checking is done in a 3D volume but only requires 2D image comparisons. Another

advantage is that the approach does not need to maintain the world representation unlike

most vision-based path planning algorithms that update the observation. With more pre-

cise trajectory evaluation in the perception space compared to obstacle expansion based

approaches, the navigation system can construct more accurate local plans during the nav-

igation task.

In this paper, we propose a similar collision checking algorithm for local/reactive scene

analysis and path planning that uses Stixel disparity instead of depth image. This chapter

assumes that there is a set of trajectories to evaluate provided by a global planner based

on the status of the robot. Hence, the local path planner does not check the validity of

the trajectory and assume that the trajectory is feasible for the robot to achieve within the

next control stage. How the global planner constructs and validates each trajectory will

be discussed in the next chapter. For convention, we use a camera optical frame axis with

x-axis right, y-axis down, and z-axis forward.

4.2 3D Cartesian Point Projection

Since the proposed collision checking method operates in the image representation, we first

briefly revisit the image coordinate projection of a 3D Cartesian point. From a pinhole cam-

era model, the mapping between the 3D Cartesian point (x, y, z) and an image coordinate

21

(u, v) on the left image of the stereo camera is the following:

Zl

u

v

l

 = K [I|0]

R T

0 1

x

y

z

1

=

fx 0 cx 0

0 fy cy 0

0 0 1 0

R T

0 1

x

y

z

1

(4.1)

where fx and fy are the focal lengths of the camera and [cx, cy] is the principal point of the

camera optical axis in pixels. R and T are the rotation and translation matrices from the

world frame that the 3D Cartesian point is constructed to the left camera frame. If the 3D

point is constructed in the left camera frame, R and T matrix should be identity and zero

matrices respectively.

4.3 Implementation of Robot Model Projection

In this paper, we use a Turtlebot 2 as our navigation robot as shown in Figure 4.1 and

implement it as our robot model in the perception space.

22

Figure 4.1: Robot platform used for implementation and experiments

Based on the actual robot, we implement two robot models in the perception space:

Rectangular and Cylindrical model. The rectangular model projection assumes a frontal

side of the robot as a rectangle while the cylindrical model tries to represent the actual

robot model more closely. A trade-off between these two models is the time complexity

and quality of trajectory evaluation. The local path planner is able to create the rectangu-

lar robot model in the perception space significantly faster than the cylindrical model but

still simplifies the 3D geometry of the actual robot, which eventually addresses the overly

conservative navigation as well. The cylindrical model reflects the actual robot much more

closely and yields more precise trajectory evaluation. However, it also requires more com-

putation to construct.

4.3.1 Rectangular Model

For a projection of the rectangular model at a 3D Cartesian point (x, y, z), the planner first

calculates the 3D Cartesian positions of the rectangular corners that bounds the frontal side

23

of the robot.
topl = (x− r − es, y − h, z + r + es)

topr = (x+ r + es, y − h, z + r + es)

bottoml = (x− r − es, y, z + r + es)

bottomr = (x+ r + es, y, z + r + es)

(4.2)

where r, h, es are a radius of the base, height of the robot, and safety expansion of the

projected robot model respectively. Then the planner projects each 3D Cartesian point in

the image space using the equation described in §4.2.

From images in Figure 4.2, we show projected rectangular models at 3D Cartesian

points. In the image, the area colored white is a rectangular model that bounds the frontal

side of the robot. We briefly describe the downside of using the rectangular model in the

perception space. From the rectangular model projection shown in Figure 4.2a and 4.2b,

the projected robot model in the image space is a rectangular shape while the actual robot

has a circular front side. This is a case of the over-expansion on the frontal side, and

the navigation planner will discard a trajectory if the over-expanded area overlaps with an

obstacle, which causes the conservative path selecting problem.

Hence, the local planner will discard a path that the far left or right side of the projected

model overlaps with the obstacle even though it is traversable in reality. Another downside

is that the projected model has a constant depth over a column. Based on the geometry of

the actual robot shown in Figure 4.1, each column should have different depth while the

center of the model has the largest depth. Since our rectangular model projection method

assigns the depth of the farthest point from the center to all the columns as expressed in

Equation 4.2, the collision checking by comparing the depth in the model becomes simpli-

fied.

24

(a) Projection of a point (3m forward) (b) Projection of a point (2m forward, 0.5m to
the right

Figure 4.2: Rectangular Model Projection

4.3.2 Cylindrical Model

For a projection of the cylindrical robot model at a 3D Cartesian point (x, y, z), we first

compute the far left and right side of the projected model. Denoted as points L and R

in Figure 4.3, these points are the far left and right boundary of the projected model that

the pinhole camera is able to see in the image space. We compute these points of tangency

between the current camera optical origin and the projected robot model using the following

equations:

25

Figure 4.3: Cylindrical model projection in 2D Cartesian space

bottoml = (dt sin(θc − θd), y, dt cos(θc − θd))

bottomr = (dt sin(θc + θd), y, dt cos(θc + θd))

(4.3)

dt =
√
d2 − r2

θc = tan−1 x

z

θd = sin−1 r√
x2 + z2

(4.4)

where bottoml and bottomr are the bottom left and right points in the 3D Cartesian space.

Then, the planner projects bottoml and bottomr in the image space using §4.2 to get far

left and right coordinates of the robot model in the perception space. Based on the actual

robot shown in Figure 4.1, the y coordinates of the projected model in the Cartesian space

are constant along the boundary of the robot base while x and z coordinates (x-axis right,

y-axis down, and z-axis forward) change along each column. Hence, the planner finds

26

x and z coordinates by computing an intersection of the projected circle and the vector

that comprises of a unit vector and distance. The computation of the 3D Cartesian point

(xb, yb, zb) that represents the bottom of the robot base at column u is the following:

xb(u) = γx · t

yb(u) = γy · t = y

zb(u) = γz · t

(4.5)

where γ and t are the computed unit vector and the scalar distance from the camera origin

to the Cartesian point.

Based on the property of a circle, we construct a center-radius form of the circle equa-

tion.

(xb − x)2 + (zb − z)2 = r2 (4.6)

Using the quadratic equation, t can be solved as follows:

t =
−(−2xγx − 2zγz) +

√
(−2xγx − 2zγz)2 − 4(γ2

x + γ2
z)(x

2 + z2 − r2)

2(γ2
x + γ2

z)
(4.7)

A derivation of Equation 4.7 can be found in Appendix B. Finally, bottom and top 3D

Cartesian coordinates for each column u can be expressed as follows:

bottom(u) = (xb(u), y, zb(u))

top(u) = (xb(u), y − h, zb(u))

(4.8)

The planner then projects these 3D Cartesian points back into the image space using the

equation described in §4.2.

Hence, the vertical start and end points for each column is different as shown in Figure

4.4a and 4.4b based on the different depth. Using the cylindrical model, the projected

model reflects the actual robot much closer than the rectangular model projection so that

27

the local path planner can perform collision checking of the trajectory more precisely.

(a) Projection of a point (3m forward) (b) Projection of a point (2m forward, 0.5m to
right)

Figure 4.4: Cylindrical Model Projection

4.4 Collision Checking

We propose a collision checking algorithm based on the Stixel disparity and the projected

robot model. The proposed algorithm assumes that a trajectory candidate, Ti, consists of

poses sampled in time and checks collision by comparing the Stixel disparity and depth of

the projected robot model at each pose.

For a pose pti(x, y, z) ∈ Ti the planner constructs the projected robot model as de-

scribed in §4.1. When the planner constructs the corresponding robot model at the pose

p(x, y, z) in the image representation, the collision checking algorithm evaluates that the

robot pose at the point is in collision with an object in the real world if the estimated depth

from the Stixels is less than that of the projected robot model in the image. Hence, a pose

is collision-free if

Collisionfree(x, y, z) =

true, ifD∗m(u) > D∗(u) ∀u ∈ [ul, ur]

false, otherwise
(4.9)

where, ul and ur are far left and right horizontal image coordinates of the robot model

28

projected at point (x, y, z).

Since the depth is deterministic from the estimated disparity, we compute the depth of

the Stixel at each u.

D∗(u) =
fB

d∗(u)
(4.10)

where f and B are the focal length and baseline of the camera respectively.

In both Figure 4.5 and 4.6, the planner evaluates the point J as a collision point. The

robot model is projected at point J and finds the collision between the frontal side of the

robot and a trash can by comparing the depth of each column of the projected model and

the depth of the Stixels that correspond to the column.

29

(a) Sample Trajectory A in 2D Cartesian grid, collision points are denoted as ”X”

Current A B C D E F G H I

J K L

(b) Actual robot placement on each pose in Trajectory A

(c) Point A (d) Point B (e) Point C (f) Point D

(g) Point E (h) Point F (i) Point G (j) Point H

(k) Point I (l) Point J (m) Point K (n) Point L

Figure 4.5: Collision Checking in the image space at point A - L

30

(a) Sample Trajectory B in 2D Cartesian grid, collision points are denoted as ”X”

Current A B C D
E F G H I J

K

L

(b) Actual robot placement on each pose in Trajectory B

(c) Point A (d) Point B (e) Point C (f) Point D

(g) Point E (h) Point F (i) Point G (j) Point H

(k) Point I (l) Point J (m) Point K (n) Point L

Figure 4.6: Collision Checking for Trajectory B in the image space at point A - L

31

4.5 Local Reactive Controller

Before integrating our approach with the global navigation framework, we first implement

our collision checking algorithm as a local reactive controller that navigates thorough ob-

stacles without any goal. Hence, the mobile robot moves through obstacles until a collision

occurs.

For the implementation, we use a trajectory library that generates trajectories simulated

in time based on a departure angle from the current position of the robot. Using the tra-

jectory generation method of [28], the controller constructs a set of trajectories as follows.

T ∗i (t) = vnomR(θdep,i)e1t for t ∈ [0, tmax] (4.11)

where vnom is a desired forward velocity, R(θ) is a rotation matrix that rotates the frame by

θ, e1 represents a unit vector in the body x-direction in the robot base frame (i.e., forward

for the robot), and tmax is the duration of the trajectory.

Applying the controller to each straight trajectories creates an indexed set of achievable

trajectories T = (g∗i (t), V
∗
i (t)) that satisfy kinematic and dynamic constraints of the robot.

Since only purpose of the local reactive controller is to navigate without collision, the

planner selects the trajectory that maximizes the safe travel time,

arg max
(g(t),V (t))∈χ

Tsafe(g(t), V (t)) (4.12)

To find the safe travel duration of the trajectory (up to tmax), we apply the Stixel colli-

sion testing procedure from §4.4:

Tsafe(g(t), V (t)) = arg max
t∈[0,tmax]

Collisionfree(pos ◦ g(t)) (4.13)

where pos is the translational position of g ∈ SE(2).

We show the evaluation of trajectory candidates using our approach in different local

32

scenes in Figure 4.7. In these images, Stixels are colored based on the Stixel disparity.

From Figure 4.7b, the robot looks at a dumpster and treats it as an obstacle based on the

Stixel disparity estimation. Hence, the trajectories that goes to the dumpster have shorter

Tsafe. In contrast, Tsafe for all of the trajectories in Figure 4.7d are fairly similar because

the location of the cabinet is farther than g(tmax). These two cases occur frequently during

local reactive navigation tasks. However, there can be occasions that the robot is trapped

in the cluttered environment due to the limitations of the camera similar to Figure 4.7f.

This is the case where the local reactive controller is unable to find a safe trajectory due

to the small field of view and nearby obstacles. As a result, the local reactive controller is

unable to navigate this type of local scenes since it does not maintain knowledge of obstacle

position nor any alternative paths that it can travel. Moreover, the trajectory generation

method creates a fixed set of trajectories so that the planner is unable to navigate due to the

coarseness of the path samples. Therefore, we discover that the planner needs to construct

trajectories with various velocity samples. From the results, we show that the local planner

alone is insufficient for an end-to-end global navigation system.

33

(a) World view of Scene A (b) Analysis of Scene A in perception space

(c) World view of Scene B (d) Analysis of Scene B in perception space

(e) World view of Scene C (f) Analysis of Scene C in perception space

Figure 4.7: Example path evaluation in different local scenes

34

CHAPTER 5

GLOBAL NAVIGATION FRAMEWORK

To function effectively as an end-to-end navigation framework, the local reactive approach

in §4.5 must integrate with additional features and capabilities. A core idea is to trans-

form the local navigation process into serialized goal-driven sub-processes, where each

sub-process considers the location of the destination. In this paper, we assume that the

navigation planner knows the current position and state of the robot and the goal. Again,

the navigation planner does not interpret and convert information from the perception space

into the world representation; it only tracks the current location and destination in the world

coordinate system.

5.1 Global and Local Plan

A global plan is a high-level path that the local path planner uses as a reference during

a navigation task. The global path planning requires the environment to be completely

known and the terrain should be static. During the global path planning stage, the path

planner generates a complete path from the start point to the destination before the robot

starts its motion. Therefore, the global plan does not consider the kinematic and dynamic

constraints of the robot that dynamically change while navigating.

On the other hand, a local plan is a reactive plan that the robot is going to follow at

every control loop. Hence, the planned local path should be feasible and reachable based

on the hardware limitations of the robot in a given period. In other words, the local planner

should be capable of generating a new plan in response to environmental changes. In most

cases, the local planner constructs the plan from the current position of the robot with an

intermediate destination called a local goal. In our implementation, we select the local goal

based on the effective sensing range of the sensor so that a constructed set of trajectory

35

candidates can be evaluated in the given range. Hence, we implement a rolling window

approach which the size of window is established based on the sensing range of the stereo

camera. In the paper, we use a size of 6x6 meters of a rectangular box and select an

intersection between the window and the global plan as the local goal.

The planner can naively travel towards the local goal at every control frame so that the

navigation task can be completed by following the shortest path, if there is a guarantee that

all of the obstacles are known and already represented in the world. In Figure 5.1, we show

constructed global plans of two local scenes in different representation spaces. For these

environments, we add the large wall in the middle as a known object so that the planner can

construct the global plan that avoids the known obstacle. We treat other objects such as the

dumpster, cabinet, or barrels as unknown objects. We spawn the robot on the bottom of the

world and provide the destination to the top of the world represented as a red arrow shown

in Figure 5.1c and 5.1d. We show a case when the local planner can travel towards the local

goal without scene analysis in Figure 5.1e. The local planner can directly follow the global

plan since there are no unknown objects along the path. For the global plan in Figure 5.1f,

however, following the global plan without constant local scene analysis causes potential

collisions with obstacles. Since the latter is the most common case during the navigation

task, we always assume that there will be unknown objects along the constructed global

plan. Hence, the navigation planner must construct a new reactive local plan based on the

environmental changes at every planning stage so that the robot avoids the obstacles and

travels to the destination both safely and efficiently.

In our implementation, the planner constructs the global plan from the initial position

of the robot to the destination using Dijkstra’s algorithm[47]. Given a premade map, the

planner divides the world into smaller cells as a grid. We use a resolution of 5cm for each

cell.

Algorithm 2 describes the Djikstra’s path searching algorithm. This algorithm assumes

to have varying costs of moving from one cell to another for different cells. Since the

36

(a) 3D world view of Scene A (b) 3D world view of Scene B

Goal

(c) 2D grid representation of Scene A with a
connstructed global plan

Goal

(d) 2D grid representation of Scene B with a con-
structed global plan

(e) Constructed global plan in the perception
space for Scene A

(f) Constrcuted global plan in the perception
space for Scene B

Figure 5.1: Global plan visualization in three representations

planner does not update the grid while navigating, the path searching algorithm can apply

constant values for both moving between free cells and occupied cells (e.g. 1 and 100000).

37

Algorithm 2 Djikstra-based path searching
1: procedure DJIKSTRA(grid, current)

2: for each vertex v ∈ grid do

3: cost[v]←∞
4: previous[v]← undefined

5: cost[current]← 0

6: Q← all cells in the grid

7: while Q is not empty do

8: u← vertex in Q with min cost[u]

9: remove u from Q

10: for each neighbor v of u do

11: temp← cost[u] + cost(u, v)

12: if temp < cost[v] then

13: cost[v]← temp

14: previous[v]← u

For certain cases that the planner needs to update the obstacle information on the grid to

construct an alternative global plan to exit the area (e.g. Figure 4.7f), the planner might

need to update the grid with different costs on each cell based on the situation.

This stage does not significantly affect performance regarding the computation speed

during the navigation task because construction of the global plan usually occurs only once

during the initialization process or few rare cases that the local controller needs a new global

plan for specific reasons (e.g. global replanning, exit procedure, and recovery behavior).

5.2 Sample Based Trajectory Generation

Once the local planner receives the global plan, it constructs a set of trajectory candidates

in the velocity space. One important constraint in our trajectory generation approach is

that a desired velocity v(x, y, θ) ∈ candidatei must be reachable and feasible within the

next control loop. Therefore, the generation algorithm limits the range of velocity samples

based on the dynamic and kinematic constraints of the robot. Then, the planner selects the

38

local goal for local path planning, which must be reasonably far to travel but not so far that

it goes outside of the effective depth sensing range of the camera. We first calculate the

effective depth range of the stereo camera based on the configuration of the camera prior to

the navigation task.

Z =
fB

d
(5.1)

where f and B are focal length and baseline of the stereo camera and d can be 1 for

pixelwise stereo matching.

We use a rolling rectangular window with a size of 6x6 meters based on the depth range

computation. As already mentioned above, we select the local goal as the intersection point

of the rolling window and the global plan.

For construction of the trajectory set, the local planner first computes the reachable

velocity based on the current state of the robot.

v′maxx = min(Vmaxx , vx + alimxts), v
′
minx = max(Vminx , vx − alimxts)

v′maxy = min(Vmaxy , vy + alimyts), v
′
miny = max(Vminy , vy − alimyts)

v′maxθ = min(Vmaxθ , vθ + alimθts), v
′
minθ

= max(Vminθ , vθ − alimθts)

(5.2)

where v′max and v′min denote the upper and lower bounds of the velocity that is reachable

within the next planning loop based on the current velocity v(vx, vy, vθ). Vmax, Vmin, and

alim are the maximum and minimum velocities and the acceleration limit based on the

hardware of the robot. ts denotes the control period.

Based on the computed upper and lower bound, the planner creates the velocity sample

space. For a given velocity sample (vtargetx , vtargety , vtargetθ), the velocity that the robot can

39

reach at each timestep is the following:

v′x(n)

v′y(n)

v′θ(n)

 =

min(vtargetx , v

′
x(n− 1) + alimx∆t), if vtargetx > v′x(n− 1)

max(vtargetx , v
′
x(n− 1)− alimx∆t), otherwise

min(vtargety , v

′
y(n− 1) + alimy∆t), if vtargety > v′y(n− 1)

max(vtargety , v
′
y(n− 1)− alimy∆t), otherwise

min(vtargetθ , v

′
θ(n− 1) + alimθ∆t), if vtargetθ > v′θ(n− 1)

max(vtargetθ , v
′
θ(n− 1)− alimθ∆t), otherwise

(5.3)

and
v′x(0)

v′y(0)

v′θ(0)

 =

vx

vy

vθ

 (5.4)

where ∆t is ts divided by a number of poses that the planner is set to sample for each

candidate. v′(n) and v denote the sampled velocity at timestep n and the current velocity

of the robot. Using Equation 5.3, the planner then calculates the 2D Cartesian points for

the non-holonomic robot at each timestep.

posx(n)

posy(n)

θ(n)

 =

posx(n− 1) + vx(n− 1) cos(θ(n− 1))∆t

posy(n− 1) + vx(n− 1) sin(θ(n− 1))∆t

θ(n− 1) + vθ(n− 1)∆t

 (5.5)

where
posx(0) = poscurrentx

posy(0) = poscurrenty

θ(0) = currentθ

(5.6)

40

In Figure 5.2, we show that various initial velocities have different reachable velocity space

which creates distinctive trajectory candidates. For all the sampled trajectory candidates

in the figure, we apply the same simulation time (ts), number of samples for each trajec-

tory candidate, maximum and minimum velocity limits (Vmax, Vmin), and acceleration limit

alim. The average travel distance of trajectory candidates in Figure 5.2a is generally shorter

than 5.2b because of its slower initial velocity. With a larger magnitude of vθ, trajectory

candidates in Figure 5.2d are more biased to the direction of the robot’s current vθ than

Figure 5.2c.

41

(a) (vx : 0.0, vx : 0, vθ : 0.01) (b) (vx : 0.25, vx : 0, vθ : 0.01)

(c) (vx : 0.25, vx : 0, vθ : 0.12) (d) (vx : 0.39, vx : 0, vθ : −0.31)

Figure 5.2: Trajectory candidates sampled based on the current configuration of robot

42

5.3 Trajectory Evaluation

The path planner evaluates each trajectory candidate constructed in §5.2 using an objec-

tive function. As opposed to the local reactive controller described in §4.5, the objective

function should not only minimize collision probability but also select the trajectory that

leads the robot to the destination as fast as possible. Our objective function contains six

cost functions.

• Oscillation Cost

• Local Goal Heading Cost

• Global Goal Heading Cost

• Local Goal Distance Cost

• Global Goal Distance Cost

• Obstacle Cost

In our implementation, the planner discards a trajectory if any of the cost function returns

a negative value.

5.3.1 Oscillation Cost

An oscillation cost prevents the robot from moving in different directions at every control

stage. An important idea behind the oscillation cost is that a trajectory candidate should be

discarded if it drives the robot into the opposite direction with a magnitude greater than a

predefined tolerance.

Therefore, the oscillation cost establishes two parameters called dtrans and θrot which

are translational and rotational tolerances that can be applied when the candidate trajectory

drives into the opposite direction from the current heading of the robot. The mathematical

43

definition is the following:

coscillation =

0, if (Ox ∧Oy ∧Oθ)

−1, otherwise
(5.7)

Ox =

true, if(vx · v′x > 0 ∨ d < dtrans)

false, otherwise

Oy =

true, if(vy · v′y > 0 ∨ d < dtrans)

false, otherwise

Oθ =

true, if(vθ · v′θ > 0 ∨ θ < θrot)

false, otherwise

(5.8)

where v is the current velocity and v′ is the velocity target of the trajectory candidate. d

and θ are the difference in the position and angle between the current state of the robot and

the first few expected robot state from the candidate trajectory. If there is no oscillation in

motion, the constant cost of 0 is assigned to the trajectory.

5.3.2 Local Goal Heading Cost

During the navigation task, the planner needs to prefer a trajectory that drives the robot

nose (heading) towards the local goal. Based on the local goal chosen in §5.2, the planner

measures how closely the end pose of the trajectory candidate will point towards the local

goal. The local goal heading cost cθlocal is the following:

cθlocal = |θlocal − θ|

θlocal = tan−1(
poslocaly − poscurrenty
poslocalx − poscurrentx

)

θ = tan−1(
postrajy − poscurrenty
postrajx − poscurrentx

)

(5.9)

44

where postrajx and postrajy denote x and y coordinates of the end position in the trajectory

candidate. poslocal and poscurrent are the position of the local goal and the robot.

5.3.3 Global Goal Heading Cost

The navigation planner should not get stuck in the local minima problem where the planner

always tries to reach the local goal. Therefore, we implement a global goal heading cost

that balances with the local goal heading cost. This cost measures how closely the end pose

of the trajectory candidate will point towards the global goal.

cθglobal = |θglobal − θ|

θglobal = tan−1(
posglobaly − poscurrenty
posglobalx − poscurrentx

)

θ = tan−1(
postrajy − poscurrenty
postrajx − poscurrentx

)

(5.10)

5.3.4 Local Goal Distance Cost

Similar to the heading costs, a local goal distance cost measures the translational difference

between the local goal and the end position of the trajectory candidate.

cdlocal = dlocal−traji

dlocal−traji =
√

(poslocaly − postrajy)2 + (poslocalx − postrajx)2

(5.11)

5.3.5 Global Goal Distance Cost

A global goal distance cost measures how closely the end pose of the trajectory candidate

will be to the global goal, which balances with the local goal distance cost so that the

planner also favors the trajectory that tries to reach the destination.

cdglobal = dglobal−traji

dglobal−traji =
√

(posglobaly − postrajy)2 + (posglobalx − postrajx)2

(5.12)

45

5.3.6 Obstacle Cost

An obstacle cost measures the potential for collision of the poses in the trajectory candidate.

In addition to the local reactive controller in §4.5, additional safety constraints should be

added such as a minimum distance that the trajectory can travel.

First, our trajectory collision checking approach operates in the perception space. Since

the trajectory generation method in the proposed global navigation framework that con-

structs candidates based on the state of the robot does not guarantee that all of the 3D Carte-

sian poses in the trajectory candidate will be projected in the perception space. Hence, the

obstacle cost returns -1 if the planner is unable to evaluate the trajectory in the perception

space.

Our first criteria of validating the trajectory is that at least one pose in the trajectory

must be projected in the perception space for evaluation. For the area that is in front of

the robot but outside of the field of view, the planner assumes that poses in this area are

safe. Finally, the planner utilizes the safe travel distance as a principal evaluation metric

in the obstacle cost function. Since our objective function is to minimize the sum of cost

functions explained above, we compute the obstacle cost by taking an inverse of the safe

travel distance.

cobstacle = ObstacleCost(Ti) (5.13)

where ObstacleCost(traj) is defined in Algorithm 3.

46

Algorithm 3 Obstacle Cost evaluation
1: procedure OBSTACLE COST(Trajectory)
2: U ← Image Width
3: V ← Image Height
4: dsafe ← 0.01
5: xcurrent ← x0
6: ycurrent ← y0
7: projonce ← false
8: for each (xi, yi, zi) ∈ Trajectory do
9: u, v ← imageSpaceProjection(xi, yi, zi) → §4.2

10: if (0 <= u < U) ∧ (0 <= v < V) then → Point in the perception
space boundary

11: if collision(u, v) then → §4.4
12: if projonce then
13: return 1

dsafe

14: else
15: Return− 1
16: else
17: dsafe ← dsafe +

√
(xi − xcurrent)2 + (yi − ycurrent)2

18: xcurrent ← xi
19: ycurrent ← yi
20: else → Point not in the perception space boundary
21: if (0 <= u < U) ∧ (v >= V) then → Out of the perception space

boundary, but in front of the robot
22: projonce ← true
23: dsafe ← dsafe +

√
(xi − xcurrent)2 + (yi − ycurrent)2

24: xcurrent ← xi
25: ycurrent ← yi
26: else → Out of the perception space boundary and the area is un-

known
27: if projonce then
28: return 1

dsafe

29: else
30: Return− 1
31: return 1

dsafe

5.3.7 Trajectory Selection

The robot follows a trajectory that minimizes the overall cost function until the next control

loop.

c(Ti) = coscillation + αcθlocal + βcθglobal + γcdlocal + λcdglobal + µcobstacle (5.14)

47

where α, β, γ, λ, and µ are scale factors for each cost function. Again, the planner does not

select a trajectory if any of cost function returns a negative value. Once the best trajectory

T ∗ is found, the planner provides the corresponding velocity command (vx, vy, vθ) to the

robot drive controller.

We show how the overall cost affects local path planning in 5.3. In Figure 5.3a, we

visualize the trajectory candidate set and the selected candidate in the perception space. For

visualization purposes, only two samples from from both vx and vθ (vx ∈ (0.4, 0.25m/s)

and vθ ∈ (0, 0.25 radian/s) are used to generate the trajectory candidate set. Trajectories

with positive values are colored red, weighted by the overall cost c(Ti). The smaller the

cost, the intensity of the projected trajectory gets larger. The selected trajectory is colored

green.

In the figure, we provide a global goal location in front of the robot. As a result, we

observe that the planner selects the trajectory that drives the robot forward with the faster

speed, v(0.4m/s, 0 radian/s). Another note is that the planner evenly favors trajectories

with the same vθ for each vx because the cost difference between these two candidates are

very close since all the cost functions return similar values. In contrast, the trajectories that

drive the robot slower are least favored due to smaller values returned from local and global

goal distance costs.

In Figure 5.3b, we sample 5 trajectories using a same linear velocity but different vθ. In

this scenario, we provide a global goal location to the right side of the robot nose marked

as a red arrow. As a result, we observe that the planner selects the trajectory that aligns

its heading to the goal with the closest distance. While the trajectory in the middle gets

the second lowest value from the overall cost function, another note is that the planner

roughly favors the trajectory in the second left and far right. One interpretation is that the

trajectory in the second left gets favored from the heading cost functions since the heading

of the robot at the end of the trajectory will head towards the destination. In contrast, the

trajectory in the far right gets favored because the translational difference will be smaller.

48

(a) Projection of candidate trajectories in the per-
ception space weighted by the overall cost, Goal
Front

(b) Projection of candidate trajectories in the per-
ception space weighted by the overall cost, Goal
Right

Figure 5.3: Trajectory projection in the perception space

The next simulation experiment contains two trash bins and one dumpster as shown

in Figure 5.4g. A goal of the navigation task is shown as a red arrow in Figure 5.4h.

Trajectories with the positive overall cost are colored red weighted by the overall cost as

in 5.3 and projected in both the world and image representation. The selected trajectory is

colored green. In Scene 1, the planner selects a trajectory that turns left because the two

other trajectory candidates collide with the obstacle. The planner selects the same trajectory

in Scene 2 even though the trajectory in the middle does not appear to collide with the

obstacle. This is due to the robot model projection based collision checking described in

§4.4. By projecting each pose in the trajectory, the planner detects that the right side of

the robot model collides with the obstacle. In Scene 3, the trajectory no longer collides

with the obstacle and is selected. In Scene 4 and 5, the planner then tries to return to the

optimal path (i.e., global plan) because no obstacle is found in the perception space. Finally

in Scene 6, the planner selects the straight trajectory which will take the robot within the

tolerance distance of the goal, thereby completes the navigation task.

49

(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

(g) World B

(h) Scene 1

(i) Scene 4

(j) Scene 2

(k) Scene 5

(l) Scene 3

(m) Scene 6

Figure 5.4: Navigation Task with obstacles

50

CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Stixel Construction

Parameters that we use to build the Stixel representation are the following:

Table 6.1: Stixel world parameters

Parameter Value
Expected maximum object height 100cm

Maximums disparity dmax 128 pixels
Neighbouring Pixel Size ∆max 10 pixels

Stixel Width 1 pixel

6.2 Statistical Data

In Table 6.2, we compare the processing time of each stage in Stixel construction using our

approach to that of the full depth map computation based approach used in [32]. For depth

map computation, we use OpenCV 2.4 Semi-Global Block Matching using SAD over 9x9

pixels with winner−take−all strategy. Based on the estimated depth map, we assign a

deterministic disparity value at each pixel and compute the u-disparity and v-disparity

representations.

As already mentioned in §3.1 and §3.2, the proposed Stixel estimator reduces the com-

putation time by limiting the search window of the Stixels based on the cost volume ma-

trix and ground plane estimation. From the table, we show that our Stixel estimator can

construct the Stixel representation at a rate of 29Hz for our camera’s maximum image res-

olution of 1080x720 pixels. Skipping the stage of computing the full depth map and only

comparing the disparity cost matrix of the region of interest for the Stixel estimation, we see

that the proposed approach is significantly faster than the full depth map based approach.

51

Table 6.2: Computation time of Stixel world

Dimension Stage
Cost Volume Approach Depth Map Computation

Time(ms) Time(ms)

320 x 240
Ground Plane Estimation 0.54 4.98

Stixel Estimation 4.16 24.54

640 x 480
Ground Plane Estimation 2.87 10.27

Stixel Estimation 12.65 97.48

1080 x 720
Ground Plane Estimation 8.87 68.19

Stixel Estimatioin 25.76 470.02

In Table 6.3, we show the processing time for evaluating a trajectory candidate that

consists of 80 sampled poses using our Stixel-based collision checking approach compared

to the depth image based collision checking algorithm, PiPS [28]. From the table, the

robot model projection time using the Stixel-based approach is significantly faster than

PiPS. While PiPS includes pixelwise depth value comparisons of the projected robot model

for the collision checking, our approach compares one d∗s(u) for each column along the

horizontal boundary of the robot model, allowing it to evaluate each pose much faster.

As a size of the robot model increases, the computation time using PiPS will increase

quadratically while our approach increases linearly.

Table 6.3: Computation time of model projection based approach

Approach Approach Time(µs)

Stixel
Rectangular Model Projection 832

Cylindrical Model Projection 2845

Smith and Vela
Rectangular Model Projection 1764

Cylindrical Model Projection 8724

52

6.3 Simulation Experiments

While real-world experiments are relatively challenging to reproduce same environments,

simulation serves to create highly repeatable and consistent test conditions for evaluating

a variety of planning implementations. Therefore, we evaluate our Stixel-based navigation

framework quantitatively by comparing with traditional navigation systems.

6.3.1 Simulation System

We use Gazebo version 7.8.1 to simulate the environment and mobile vehicle and Robot

Operating System (ROS) version Indigo to interface with the Gazebo simulation. Simu-

lations run on a Intel i7-4770 3.4GHz 8-core processor with 16GB RAM. The simulated

mobile robot is a Turtlebot 2 with a stereo camera mounted on the second plate of the robot.

The stereo camera is located at (0.05, 0, 0.21) meters in the robot base frame. We show the

mobile robot that we use for experiments in simulation in Figure 6.1. Note that the robot

also equips the depth camera for use by other types of navigation planners.

Figure 6.1: Mobile vehicle in simulation

53

In Table 6.4, we list important configuration parameters of the simulated stereo camera

used during the experiments.

Table 6.4: Camera parameters in simulation

Parameter Value
Camera Driver ROS Multisense sl

Baseline 12cm
Image Dimension 640x480 RGB

Image Rate 30 FPS
Focal Length 554

Horizontal FOV 120◦

To effectively compare each controller under same configurations and limitations, we

utilize common parameters for all the controllers. We show the parameters in Table 6.5.

Table 6.5: Controller parameters in simulation

Parameter Value
Acceleration Limit (alimx , alimy , alimθ) (2.5m/s2, 2.5m/s2, 3.2 radians/s2)
Velocity Limit (Vmaxx , Vmaxy , Vmaxθ) (0.5m/s, 0.5m/s, 0.5 radians/s)

Trajectory Simulation Time ts 5 seconds
Velocity Samples 200

Oscillation cost parameter (dtrans, θrot) (0.05, 0.2)
Objective function parameters (α, β, γ, λ, µ) (24, 32, 24, 32, 50)

6.3.2 Rectangular World

In this experiment, we explore the robustness of the reactive obstacle avoidance capability

of the Stixel navigation framework. The objective of the navigation task is to move from

one end of the world to the other end without crashing. In a 10 x 6m rectangular world,

the robot has to travel approximately 8 meters forward. We repeatedly execute navigation

tasks in randomly generated scenes. We iterate the local scene for each controller by giving

the same destination. For each local scene, there are a number of barrels that are randomly

placed in the zone shown as the red rectangle in Figure 6.2a. As more numbers of barrels

are placed in the fixed size of the rectangle, we expect that the planner which performs

54

more robust and accurate obstacle avoidance will score higher success rate of the navigation

tasks. Also, there is no guarantee that there exists any traversable path that the planner can

choose because locations of barrels are randomly chosen (i.e., if all barrels are lined up

each other horizontally as shown in Figure 6.2b). We set the number of barrels to 3, 5, and

7. For each quantity of barrels, 100 scenes are created.

(a) Rectangular world scenario example (b) Local scene that is guaranteed to fail

Figure 6.2: World level view of Rectangular World

For quantitative evaluation, We compare our Stixel-based navigation framework with

four different planners. Three of them operate on the 2D Cartesian grid with a laser scan

data as their primary source. One is a vision-based planner that uses the depth image. We

populate the laser scan data by taking a depth image from the Kinect camera. The planners

that we use in this experiment are the following:

55

• Dynamic Window Approach Local Planner (2D Cartesian, Laser)[20]

• Elastic Band Local Planner (2D Cartesian, Laser)[21]

• Timed Elastic Band Local Planner (2D Cartesian, Laser)[22]

• PiPS Local Planner (Depth Space, Depth Camera)[28]

• Stixel Local Planner (Stixel Space, Stereo Camera)

We show the success rate of navigation tasks in Figure 6.4a. From the figure, we ob-

serve that the Stixel-based planner is capable of navigating through densely placed ob-

stacles compared to traditional navigation planners. The TEB planner scores the highest

success rate and one interpretation is that the planner constructs more safe and robust exit

plan in the dead zone. When the robot gets stuck in the dead zone, the area which is impos-

sible to navigate (i.e., Figure 6.3), the TEB planner constructs a path that drives the robot

backwards following the previous paths that the robot took. After the robot moves back-

wards for certain duration, the planner constructs a new global plan with the knowledge of

the dead zone.

Figure 6.3: Dead zone example

For the Stixel planner, however, this type of approach remains as a future work since

the underlying assumption of our perception space path planning is that the planner does

56

not convert and update the obstacle observation in the world representation. In our current

implementation, the exit strategy when the Stixel planner cannot find a valid path is to

rotate 180 degrees and reconstruct a new global plan so that the robot can explore the local

scene much longer until it finds the traversable path. The other 2D Cartesian local planners

also implement a similar type for their exit strategy, rotating 720 degrees to update the local

costmap and reconstruct the new global plan.

The figure also shows that the success rate of the Stixel planner is the second highest

scored planner despite the fact that 2D Cartesian planners still accumulate the local obser-

vations in the world representation. This is because their update approaches are pointwise

based expansion and these approaches significantly simplify the 3D geometry of the robot

model, which over-expands the obstacles. In the cluttered environment like the Rectangu-

lar World, over-expansion of the obstacles can cause the navigation system to fail to find a

path that navigates through a narrow space between obstacles.

In Figure 6.4b, we show the computation time of the Stixel navigation by comparing

the average time taken for each planner when the navigation task is successful. While the

average time of the Stixel planner seems much longer than other 2D Cartesian planners,

Cartesian planners update the world representation based on the populated laser scan data,

which is a simple 1D line search from the depth image. In contrast, the Stixel navigation

planner includes various subprocesses such as Stixel world construction and robot model

projection-based collision checking. Even with many subprocesses, the average comple-

tion time of the Stixel planner is comparable to the TEB planner which updates the world

representation significantly faster and is the only planner that scores the higher success rate

than the Stixel planner on average.

57

(a) Controller comparison (Success rate) (b) Controller comparison (Average time to com-
plete)

Figure 6.4: Rectangular World Experimental Result

6.3.3 Random World

While navigation tests in the Rectangular World evaluate robust obstacle avoidance capa-

bility in densely located obstacles, the Random World evaluates how well each local path

planning approach is integrated with the global navigation framework. Unlike the Rect-

angular World, the Random World contains different types of objects which can identify

the effectiveness of model projection-based collision checking and the quality of our Stixel

construction approach. This 20 x 20m world is evenly divided into nine different sectors

where the objective of each task is to travel between the selected start and goal sectors,

denoted as red dots in Figure 6.5a. Start and goal sectors are randomly selected for each

test. Based on the experimental results from the Rectangular World, we choose three best

planners. We run 100 navigation tasks for each controller.

• Timed Elastic Band Local Planner (2D Cartesian, Laser)

• Depth PIPS Local Planner (Depth Space, Depth Camera)

58

• Stixel Local Planner (Stixel Space, Stereo Camera)

We use the same robot configuration parameters as in the Rectangular World experiments.

(a) Random World Top View (b) Random World Side View

Figure 6.5: World View of Random World

In Figure 6.6a, we show the success rate of the three navigation planners. The Stixel

navigation planner achieves a similar success rate to the depth based navigation planner.

Even though our approach does not maintain local obstacle information, its success rate

is comparable to that of the TEB planner. We show a disadvantage of accumulating local

obstacle observations in the world representation in Figure 6.6b. Unlike the Rectangular

World, each navigation task in Random World has a different travel distance for each test.

The average travel time of the TEB planner increase more rapidly with the travel distance

of the navigation task than that of the vision-based planners. One interpretation is because

the planner has to accumulate the observations in the world representation as the robot

travels, which increases the amount of information the planner has to maintain. If this type

of 2D Cartesian planners uses their primary source from the vision data instead of the laser

scan, the planner has to include the additional process of converting the vision data into the

Cartesian grid-compatible data type such as a point cloud. Hence, the update process will

take significantly longer and the planner will have to sacrifice it by decreasing the local

59

planning frequency, which eventually causes either longer travel time or unsafe navigation.

(a) Controller Success Rate

(b) Average Time Taken per distance

Figure 6.6: Random World Experimental Result

6.4 Real World Implementation

In this section, we implement our navigation framework on a real world system to evaluate

the navigation performance qualitatively.

60

6.4.1 Real World System

In real world-based experiments, we again use the Turtlebot 2 as our base mobile platform

and ROS Indigo for the hardware and software interface. We run the navigation tasks on

an Intel i7-6500U 2.5GHz 4-core processor with 8GB RAM for processing hardware. A

stereo camera that we use in the experiments is a DUO M stereo camera mounted under

the third plate as shown in Figure 6.7. The translation is (0.076, 0, 0.29) in the robot base

frame.

Figure 6.7: Real world mobile vehicle

Important parameters of stereo camera are listed in Table 6.6.

The controller configuration parameters that we use for the real time testing are listed

in Table 6.7.

61

Table 6.6: Real world stereo caemra parameters

Parameter Value
Camera Driver Custom Implementation

Baseline 3cm
Image Dimension 752x480 Gray

Image Rate 30 FPS
Focal Length 300

Height 30cm from the ground
Pitch 0◦

Horizontal FOV 170◦

Table 6.7: Real world controller parameters

Parameter Value
Acceleration Limit (alimx , alimy , alimθ) (2.5m/s2, 2.5m/s2, 3.2 radians/s2)
Velocity Limit (Vmaxx , Vmaxy , Vmaxθ) (0.45m/s, 0.45m/s, 0.45 radians/s)

Trajectory Simulation Time ts 5 seconds
Velocity Samples 25

Oscillation cost parameters (dtrans, θrot) (0.05, 0.2)
Objective function parameters (α, β, γ, λ, µ) (24, 32, 24, 32, 75)

6.4.2 Stixel and Path Evaluation

We show example trajectory evaluations in the Stixel representation in Figure 6.8. Due

to the short baseline of our stereo camera, the effective depth range is only from 0.3 to 2

meters. For visualization purposes, we only visualize five trajectories constructed using the

departure angle using [28] so that the planner can project all the trajectories in the percep-

tion space to explore the performance of the proposed Stixel-based collision checking.

First, as seen in Figure 6.8, the Stixel estimator detects most vertical objects that stand

from the ground plane within the effective depth range. Also, trajectory evaluation using

the robot model projection approach performs well in the real world.

Throughout the experiment, we find several failure cases of Stixel estimation. There

failure cases mostly happen on the objects that have a lack of textures. From Figure 6.9, the

Stixel estimator is not accurately constructing the Stixels over the region that does not have

enough features such as a wall. Our cost volume matrix based Stixel estimation assumes

62

that each object has unique textures and intensities that differentiate it from other types of

objects. If there is not enough uniqueness in the object, the Stixel estimator is not able

to construct the accurate Stixel representation. Since the stereo matching mostly focuses

on outdoor scenes where each object has unique texture, this weakness is somewhat less

important than other navigation-related limitations.

63

Figure 6.8: Trajectory Evaluation in the Stixel representation

64

Figure 6.9: Failure case of Stixel estimation

6.4.3 Navigation Task

Navigation with overhead view

In this experiment, we explore the capability of the reactive obstacle avoidance in real world

navigation using an overhead view. We restrict the navigation area to be a 3.2x2.4 meter

of rectangular region within the filed of view of an overhead camera in order to capture the

entire navigation task.

We show a subset of overhead views of the navigation task for one scenario in Figure

6.10. The Turtlebot starts off the screen at the upper-right (just past the barely visible white

marker) and is directed to travel to another off-screen location at the upper-left of the image.

We visualize each trajectory candidate based on its safe travel distance from the base of the

robot. Since the destination of the navigation is upper-left of the image, the robot tries

to stay to the upper side as long as there are no obstacles. More detailed overhead image

sequences and the corresponding Stixel constructions and path evaluations can be found in

Appendix A.

65

(a) Stage 1 (b) Stage 2 (c) Stage 3

(d) Stage 4 (e) Stage 5 (f) stage 6

Figure 6.10: Real world navigation task in a rectangular region

We test our approach 20 times with different obstacle positions. For 14 cases, the

navigation task from the start to goal is successful. In 2 of 6 failure cases, the valid path is

not found during the navigation because of incorrect Stixel construction. For the remaining

4 cases, the Turtlebot collides with obstacles located just outside of the stereo camera’s

field of view.

Global Navigation

In this experiment, we repeatedly test the Stixel-based global navigation framework to

explore the floor. From the primary experimental results from §6.4.2, we discover that

the cost volume matrix approach does not perform well over textureless regions such as a

wall. Therefore, we provide these regions to the navigation planner as the prior knowledge

enabling it to construct global plans that avoid those walls. The map used in the experiment

is shown in Figure 6.11.

66

Figure 6.11: Real World Map

We capture the 2D world representation view of one navigation task in Figure 6.12 For

this task, the objective of the navigation is to traverse through a narrow corridor where

there are three unknown obstacles along the way. For the task, the Stixel planner only

knows the position of its current location and the destination. We illustrate the start and

goal locations and the positions of obstacles in Figure 6.12a as well as the odometry history

of the robot recorded during the navigation task. From the odometry history, we see that

the Stixel planner avoids the obstacle safely while trying to reach to the destination as fast

as possible. In Figure 6.12b, we show the corresponding linear velocity changes during the

navigation. Decreased linear velocities are the result of increased angular velocities from

avoiding obstacles. As soon as the planner safely avoids the obstacles, the planner then

tries to reach its maximum velocity again.

67

(a) Odometry layered in the 2D Cartesian Grid with start and goal location

(b) Linear velocity over time

Figure 6.12: Real world navigation in a corridor

In this experiment, we test our Stixel-based global navigation planner framework in dif-

ferent locations 10 times. For 6 cases, the navigation tasks from start to goal are successful.

3 of 4 failure cases are due to a collision caused by the inaccurate Stixel construction. One

last failure case occurs due to an object being outside of the field of view when the planner

turns a corner.

68

6.5 Limitations

In this section, we discuss several limitations discovered during experiments.

6.5.1 No Obstacle History

For scenarios with sparsely located obstacles, local path planning without maintaining ob-

stacle information performs relatively well and is robust compared to traditional vision-

based navigation planners that include the conversion process. For scenarios that require

global replanning, such as a dead zone exit, the navigation planner needs to know the local

obstacle information in order to construct the new global plan. The traditional navigation

planners can reconstruct the global plan using the information in the world representation

that is updated at every control stage. In contrast, our planner only has knowledge of obsta-

cles that are in the image space at the current control stage. Therefore, the exit strategy that

we implement is to make the robot rotate and let it explore the local scene more extensively.

We observe that the TEB planner can drive the robot backwards safely based on the recent

obstacle information, which can help the robot to exit the dead zone more efficiently. In

order to implement similar feature as the TEB planner, we can implement an approach to

extend the visual obstacle information locally in the perception space (i.e., Local visual

memory [48]).

6.5.2 Limited Field of View

Throughout the experiments, we find some failure cases of the Stixel navigation planner

colliding with obstacles when the robot tries to make a sharp turn around an obstacle close

to the robot. It is one of canonical problems in vision-based navigation where obstacles are

not seen in the image plane and therefore the navigation planner cannot reactively avoid

them. In Figure 6.13, an obstacle is right next to the mobile vehicle but is outside of the

camera’s field of view. Assuming the goal location is placed on the far right side with

69

respect to the robot, the navigation system chooses to go to the right because no obstacle

is found in the perception space. Since it may never come into field of view during the

navigation, a collision will likely occur. We can partially solve this problem by fusing the

vision based collision checking with other types of sensor data.

Figure 6.13: Limitaion of Vision Based Navigation

6.5.3 Stereo Matching Over Textureless Area

Stereo matching algorithms usually assume that objects will have unique textures. As we

discovered, from the inaccurate Stixel World constructions over the wall (shown in Figure

6.9), regions that have large stereo ambiguity also affect the performance of the naviga-

tion. We can address this type of limitations by implementing more sophisticated stereo

matching algorithms such as [49] with a trade off of higher computation time, which is

also critical for the autonomous navigation.

70

CHAPTER 7

CONCLUSION & FUTURE WORK

7.1 Conclusion

We have presented an approach and a system framework that allows robust and non-myopic

vision-based navigation system that performs path planning in the medium level represen-

tation called Stixel World. Our system does not interpret and convert any information from

the perception space into a world representation to improve the robustness in local path

planning. The key factor that enables our system to perform local path planning in the

perception space without conversion is projecting the 3D physical geometry of the mobile

robot into the Stixel representation by comparing the estimated Stixel disparity and the

depth of the projected model.

In order to evaluate the Stixel navigation planner quantitatively and qualitatively, we

tested our approach both in simulation and the real world. As a result of our improved

computation time in Stixel world construction, the navigation system in both environments

was able to maintain approximately 30 frames of the Stixel world per second even at our

camera’s maximum resolution of 1080x720 pixels. From experimental results from both

simulation and the real world, we showed that the Stixel navigation planner is suitable for

the autonomous navigation of the mobile robot.

7.2 Future Work

The current Stixel representation lacks an accurate Stixel boundary detection, d∗s(u) if the

object does not have unique texture and color, which makes the navigation system vulner-

able to collision for those objects. We can address this problem by implementing more

sophisticated stereo matching algorithms with the trade-off of a decreased planning fre-

71

quency. Another resolution is to integrate the stereo camera with other types of visual data

such as a Time-of-Flight (ToF) camera and depth camera. ToF camera has an advantage in

depth estimation over textureless objects while the stereo camera performs unsatisfactorily.

Depth camera can give precise depth information indoor.

Also, the Stixel navigation planner can be implemented on a large-sized real road ve-

hicle since the Stixel World is first proposed for detecting pedestrians and obstacles on

the real road. By recognizing pedestrians that are expected to be dynamically moving in

the local scene, the navigation planner is able to distinguish between dynamic objects that

have higher priority to be avoided and small static objects that might not be significantly

hazardous.

72

Appendices

73

APPENDIX A

DETAILED SCREENSHOTS OF REAL TIME NAVIGATION TASK

(a) Overhead view 1-Navigation started (b) Vehicle view 1-Navigation started

(c) Overhead view 2 (d) Vehicle view 2

(e) Overhead view 3 (f) Vehicle view 3

74

(a) Overhead view 4 (b) Vehicle view 4

(c) Overhead view 5 (d) Vehicle view 5

(e) Overhead view 6 (f) Vehicle view 6

(g) Vehicle view 7 (h) Vehicle view 7

75

(a) Overhead view 8 (b) Vehicle view 8

(c) Overhead view 9 (d) Vehicle view 9

(e) Overhead view 10-Navigation completed (f) Vehicle view 10-Navigation completed

76

APPENDIX B

DERIVATION OF SCALAR DISTANCE FROM THE CAMERA ORIGIN TO THE

INTERSECTION OF THE CIRCLE

We can express a position of a 3D Cartesian point as a product of a unit vector and a scalar

distance.
xb(u) = γx · t

yb(u) = γy · t = y

zb(u) = γz · t

(B.1)

Constructed expression of a center radius expression of a circle is following:

(xb − x)2 + (zb − z)2 = r2 (B.2)

x2
b − 2xbx+ x2 + z2

b − 2zbz + z2 = r2 (B.3)

(γxt)
2 − 2γxtx+ x2 + (γzt)

2 − 2γztz + z2 = r2 (B.4)

(γ2
x + γ2

z)t
2 + (−2γxx− 2γzz)t+ (x2 + z2 − r2) = 0 (B.5)

Using a quadratic formula, we express t as follows:

t =
−b±

√
b2 − 4ac

2a
(B.6)

77

where
a = γ2

x + γ2
z

b = −2γxx− 2γzz

c = x2 + z2 − r2

(B.7)

Since we are only interested in the positive distance that goes forward from the camera

origin. A complete expression is the following:

t =
−(−2xγx − 2zγz) +

√
(−2xγx − 2zγz)2 − 4(γ2

x + γ2
z)(x

2 + z2 − r2)

2(γ2
x + γ2

z)
(B.8)

78

REFERENCES

[1] D. Murray and J. J. Little, “Using real-time stereo vision for mobile robot naviga-
tion,” autonomous robots, vol. 8, no. 2, pp. 161–171, 2000.

[2] F. Andert, “Drawing stereo disparity images into occupancy grids: measurement
model and fast implementation,” in 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2009, pp. 5191–5197.

[3] K. Konolige, E. Marder-Eppstein, and B. Marthi, “Navigation in hybrid metric-
topological maps,” in 2011 IEEE International Conference on Robotics and Automa-
tion, 2011, pp. 3041–3047.

[4] O. Veksler, Y. Boykov, and P. Mehrani, “Superpixels and supervoxels in an en-
ergy optimization framework,” in Proceedings of the 11th European Conference on
Computer Vision: Part V, ser. ECCV’10, Heraklion, Crete, Greece: Springer-Verlag,
2010, pp. 211–224, ISBN: 3-642-15554-5, 978-3-642-15554-3.

[5] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation invariant spherical har-
monic representation of 3 d shape descriptors,” in Symposium on geometry process-
ing, vol. 6, 2003, pp. 156–164.

[6] T. Cao, Z. Y. Xiang, and J. L. Liu, “Perception in disparity: an efficient navigation
framework for autonomous vehicles with stereo cameras,” IEEE Transactions on
Intelligent Transportation Systems, vol. 16, no. 5, pp. 2935–2948, 2015.

[7] L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-based obstacle
avoidance for micro air vehicles using disparity space,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp. 3242–3249.

[8] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmenta-
tion,” International journal of computer vision, vol. 59, no. 2, pp. 167–181, 2004.

[9] B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey, and M. Likhachev, “Path plan-
ning for non-circular micro aerial vehicles in constrained environments,” in 2013
IEEE International Conference on Robotics and Automation, 2013, pp. 3933–3940.

[10] C. Liu, “Safe robot navigation among moving and steady obstacles [bookshelf],”
IEEE Control Systems, vol. 37, no. 1, pp. 123–125, 2017.

79

[11] J. Zhang, L. H. Wang, D. X. Li, and M. Zhang, “High quality depth maps from stereo
matching and tof camera,” in 2011 International Conference of Soft Computing and
Pattern Recognition (SoCPaR), 2011, pp. 68–72.

[12] R. Benenson, R. Timofte, and L. V. Gool, “Stixels estimation without depth map
computation,” in 2011 IEEE International Conference on Computer Vision Work-
shops (ICCV Workshops), 2011, pp. 2010–2017.

[13] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-matching
motion estimation,” IEEE Transactions on Image Processing, vol. 9, no. 2, pp. 287–
290, 2000.

[14] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual informa-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no.
2, pp. 328–341, 2008.

[15] J. Sun, Y. Li, S. B. Kang, and H.-Y. Shum, “Symmetric stereo matching for occlusion
handling,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, IEEE, vol. 2, 2005, pp. 399–406.

[16] M. Perrollaz, J. D. Yoder, A. Spalanzani, and C. Laugier, “Using the disparity space
to compute occupancy grids from stereo-vision,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 2721–2726.

[17] H. Badino, R. Mester, T. Vaudrey, U. Franke, and A. Daimler, “Stereo-based free
space computation in complex traffic scenarios,” in Image Analysis and Interpreta-
tion, 2008. SSIAI 2008. IEEE Southwest Symposium on, IEEE, 2008, pp. 189–192.

[18] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap:
an efficient probabilistic 3d mapping framework based on octrees,” Autonomous
Robots, vol. 34, no. 3, pp. 189–206, 2013.

[19] P. Gohl, D. Honegger, S. Omari, M. Achtelik, M. Pollefeys, and R. Siegwart, “Omni-
directional visual obstacle detection using embedded fpga,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, IEEE, 2015, pp. 3938–
3943.

[20] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision
avoidance,” IEEE Robotics Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[21] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and control,” in
Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference
on, IEEE, 1993, pp. 802–807.

80

[22] C. Rsmann, F. Hoffmann, and T. Bertram, “Timed-elastic-bands for time-optimal
point-to-point nonlinear model predictive control,” in 2015 European Control Con-
ference (ECC), 2015, pp. 3352–3357.

[23] K. H. Sedighi, K. Ashenayi, T. W. Manikas, R. L. Wainwright, and H.-M. Tai,
“Autonomous local path planning for a mobile robot using a genetic algorithm,”
in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat.
No.04TH8753), vol. 2, 2004, 1338–1345 Vol.2.

[24] J. Sun, T. Mehta, D. Wooden, M. Powers, J. Rehg, T. Balch, and M. Egerstedt,
“Learning from examples in unstructured, outdoor environments,” Journal of Field
Robotics, vol. 23, no. 11-12, pp. 1019–1036, 2006.

[25] L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-based obstacle
avoidance for micro air vehicles using disparity space,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on, IEEE, 2014, pp. 3242–3249.

[26] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configuration
spaces,” in Robotics and Automation, 1997. Proceedings., 1997 IEEE International
Conference on, IEEE, vol. 3, 1997, pp. 2719–2726.

[27] G. E. Jan, K. Y. Chang, and I. Parberry, “Optimal path planning for mobile robot
navigation,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, pp. 451–
460, 2008.

[28] J. Smith and P. Vela, “Planning in perception space,” in to appear IEEE International
Conference on Robotics and Automation, 2017.

[29] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed, and G. Jones, “Superpixel
lattices,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition,
2008, pp. 1–8.

[30] Z. Li and J. Chen, “Superpixel segmentation using linear spectral clustering,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 1356–1363.

[31] M. Schönbein and A. Geiger, “Omnidirectional 3d reconstruction in augmented
manhattan worlds,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, IEEE, 2014, pp. 716–723.

[32] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world-a compact medium level
representation of the 3d-world.,” in DAGM-Symposium, Springer, 2009, pp. 51–60.

[33] D. Pfeiffer and U. Franke, “Towards a global optimal multi-layer stixel representa-
tion of dense 3d data.,” in BMVC, vol. 11, 2011, pp. 51–1.

81

[34] M. Cordts, L. Schneider, M. Enzweiler, U. Franke, and S. Roth, “Object-level pri-
ors for stixel generation,” in German Conference on Pattern Recognition, Springer,
2014, pp. 172–183.

[35] L. Schneider, M. Cordts, T. Rehfeld, D. Pfeiffer, M. Enzweiler, U. Franke, M. Polle-
feys, and S. Roth, “Semantic stixels: depth is not enough,” in 2016 IEEE Intelligent
Vehicles Symposium (IV), 2016, pp. 110–117.

[36] D. Levi, N. Garnett, and E. Fetaya, “Stixelnet: a deep convolutional network for
obstacle detection and road segmentation,” in Proceedings of the British Machine
Vision Conference (BMVC), X. Xie, M. W. Jones, and G. K. L. Tam, Eds., BMVA
Press, 2015, pp. 109.1–109.12, ISBN: 1-901725-53-7.

[37] M. Enzweiler, M. Hummel, D. Pfeiffer, and U. Franke, “Efficient stixel-based object
recognition,” in 2012 IEEE Intelligent Vehicles Symposium, 2012, pp. 1066–1071.

[38] N. Bernini, M. Bertozzi, L. Castangia, M. Patander, and M. Sabbatelli, “Real-time
obstacle detection using stereo vision for autonomous ground vehicles: a survey,”
17th International IEEE Conference on Intelligent Transportation Systems (ITSC),
pp. 873–878, 2014.

[39] F. Erbs, B. Schwarz, and U. Franke, “From stixels to objects - a conditional ran-
dom field based approach,” in 2013 IEEE Intelligent Vehicles Symposium (IV), 2013,
pp. 586–591.

[40] R. Benenson, M. Mathias, R. Timofte, and L. Van Gool, “Fast stixel computation for
fast pedestrian detection,” in European Conference on Computer Vision, Springer,
2012, pp. 11–20.

[41] B. Günyel, R. Benenson, R. Timofte, and L. Van Gool, “Stixels motion estimation
without optical flow computation,” in European Conference on Computer Vision,
Springer, 2012, pp. 528–539.

[42] T. Scharwächter, M. Enzweiler, U. Franke, and S. Roth, “Stixmantics: A medium-
level model for real-time semantic scene understanding,” in Computer Vision - ECCV
2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V, 2014, pp. 533–548.

[43] F. Erbs, B. Schwarz, and U. Franke, “Stixmentation-probabilistic stixel based traffic
scene labeling.,” in Bmvc, 2012, pp. 1–12.

[44] H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching
and mutual information,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 2, 2005, 807–814 vol. 2.

82

[45] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection in stereovi-
sion on non flat road geometry through” v-disparity” representation,” in Intelligent
Vehicle Symposium, 2002. IEEE, IEEE, vol. 2, 2002, pp. 646–651.

[46] S. Kubota, T. Nakano, and Y. Okamoto, “A global optimization algorithm for real-
time on-board stereo obstacle detection systems,” in 2007 IEEE Intelligent Vehicles
Symposium, 2007, pp. 7–12.

[47] J. A. Bondy, U. S. R. Murty, et al., Graph theory with applications. Citeseer, 1976,
vol. 290.

[48] J. Courbon, Y. Mezouar, and P. Martinet, “Autonomous navigation of vehicles from
a visual memory using a generic camera model,” IEEE Transactions on Intelligent
Transportation Systems, vol. 10, no. 3, pp. 392–402, 2009.

[49] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief propagation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7,
pp. 787–800, 2003.

83

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Stixel Representation
	Cost Volume Computation
	Ground Plane Estimation
	Stixel Disparity Estimation
	Stixel Cost
	Smoothness Term
	Dynamic Programming

	Stixel Height Estimation
	Height Cost
	Smoothness Term
	Dynamic Programming

	Local Path Planning
	Model Projection Based Path Planning
	3D Cartesian Point Projection
	Implementation of Robot Model Projection
	Rectangular Model
	Cylindrical Model

	Collision Checking
	Local Reactive Controller

	Global Navigation Framework
	Global and Local Plan
	Sample Based Trajectory Generation
	Trajectory Evaluation
	Oscillation Cost
	Local Goal Heading Cost
	Global Goal Heading Cost
	Local Goal Distance Cost
	Global Goal Distance Cost
	Obstacle Cost
	Trajectory Selection

	Experimental Results
	Stixel Construction
	Statistical Data
	Simulation Experiments
	Simulation System
	Rectangular World
	Random World

	Real World Implementation
	Real World System
	Stixel and Path Evaluation
	Navigation Task

	Limitations
	No Obstacle History
	Limited Field of View
	Stereo Matching Over Textureless Area

	Conclusion & Future Work
	Conclusion
	Future Work

	Detailed Screenshots of Real Time Navigation Task
	Derivation Of Scalar Distance From The Camera Origin To The Intersection Of The Circle
	References

