Linear Promises: Towards Safer Concurrent
Programming — Artifact

Ohad Rau Caleb Voss Vivek Sarkar
ohad@gatech.edu cvoss@gatech.edu vsarkar@gatech.edu

April 2021

1 Abstract
2 Getting Started

2.1 Installing the Compiler

The easiest way to get started with the compiler is using the provided Docker
image. If you don’t yet have Docker installed, you can follow the official instruc-
tions to install it. Once Docker is installed, you can run the following commands
to download and then run the image:

$ docker pull ohadrau/linear —promises:latest
$ docker run —it ohadrau/linear —promises

After running this command, you should be loaded into a shell where you can
interact with the compiler (1inear-promises.compiler --help to see options
for the compiler).

2.2 Running an Example Program

There are several example programs already available in the examples/ and
stackoverflow/ directories in the Docker image. Whenever a program is com-
piled with linear-promises.compiler, it will generate a Java source file. This
file utilizes the language runtime and must be compiled with the runtime to
produce runnable code. The simplest way to do this is simply placing the Java
code in the same directory as the runtime library and compiling it, though you
can also precompile the library and link against it.
To compile and run examples/long.txt:

—o0 sets the output file path

$ linear —promises.compiler —o runtime/src/Long.java examples/long.txt
$ cd runtime/src

Compile the Java source alongside the runtime

mailto:ohad@gatech.edu
mailto:cvoss@gatech.edu
mailto:vsarkar@gatech.edu
https://hub.docker.com/r/ohadrau/linear-promises
https://hub.docker.com/r/ohadrau/linear-promises
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

$ javac Long.java
Run the compiled Java program
$ java Long

3 Language Guide

— Types

Unit — this is the nothing type, like woid in some languages
Int

Bool

Promise (Type) — read—handle for a promise of a wvalue
Promisex(Type) — write—handle for a promise of a wvalue

— Values

() : Unit

1 : Int

—5 : Int
true : Bool
false : Bool

— Functions

func <name>(<params>): <return> begin
<code>

end

— e.g.

func chooseFirstOne(a: Int, b: Int): Int begin
a — Functions automatically return the last wvalue
end

— Main function
func main (): Unit begin

end

— Calling functions
<name>(<args>)

— e.g.
f(1, true, p)

— Asynchronous execution
async <expr>

— e.g.
async f(1, true, p)

—— Let bindings
let <name>: <type> = <value> in

<code>

— e.g.

let p: Bool = true in

p

— Sequences

<code>; — Sequence code with semi—colon
<code> — No semi—colon after last expression
— Promises

—— Create a promise of an int (pRead is the read—handle, pWrite is the write—har
promise pRead, pWrite: Int in

pWrite <— 6; — Write value to promise (only works with owned promises)
— After writing to pWrite, the wariable no longer ezists in scope
pRead <~ 7; — We can still force a write using the unsafe write syntazx (<~) on
?7pRead — Await a value from promise’s read—handle
— Conditionals
if <boolean expr> then
<expr>
else
<expr>
end
—— Loops
while <boolean expr> begin
<expr>
end

for <name> = <initial value> to <final value> begin
<expr>
end

— User—defined types

— Records

record <name> begin
<field >: <type>;
<field >: <type>...

end

— F.g.

record Vector2d begin
x: Int;
y: Int

end

— Construct a record
Vector2d { x=5, y=10 }

— Access fields directly

func manhattanDistance(v: Vector2d): Int begin
V.X + V.y

end

— Or with pattern matching
func swap(v: Vector2d): Vector2d begin
match v begin
{ x=a, y=b } —> Vector2d { x=b, y=a }
end
end

— Unions

union <name> begin
<case>[<param types >];
<case>[<param types >]...

end

— E.g.

union List begin
Nil [];
Cons[Int, List]

end

— Construct a union

Cons[1, Cons[2, Cons[3, Nil[]]]]

— Deconstruct using pattern matching
func length(list: List): Int begin
match list begin
Nil[] —> 0
Cons[x, rest] —> 1 + length(rest)
end
end

4 Code Breakdown

The compiler is written in OCaml with minimal dependencies (only the OCaml
standard distribution and the Menhir parser generator). The code for the com-
piler is all contained within src/ in the Docker image. This directory includes
the following files:

e compiler.ml: the driver for the compiler; parses command-line arguments
and runs the compilation pipeline.

e contexts.ml: implements the data structures used to provide typing con-
texts (specifically, typing environments & sets of variables).

e ident.ml: utilities for working with identifiers. This provides a way to
generate unique identifiers, as well as a preprocessor to give each distinct
variable a unique name (e.g. let x = 0 in let x = 1 in x becomes
let x0 = 0 in let x1 = 1 in x1).

e javaCG.ml: implements Java code-generation by performing a translation
from our language’s AST to source-level Java. This code also inserts
several built-in methods into the static scope of the program.

e lang.ml: defines the AST for the language, as well as string formatters
for the AST.

e lexer.mll: implements the tokenization for the language syntax, utilizing
the OCamllex lexer generator.

e parser.mly: implements parsing for the language syntax, utilizing the
Menhir parser generator.

e typecheck.ml: the type-checking code for the language. This is the bulk
of the compiler and is described in pseudo-code in the paper (section 4.2).

	Abstract
	Getting Started
	Installing the Compiler
	Running an Example Program

	Language Guide
	Code Breakdown

