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SUMMARY 

During the past ten years, experiments performed by others have 

yielded results that indicate an anomalously large rate of production of 

muons in large volume detectors by neutral components of the cosmic radi-

ation. Equally important is the fact that the event rate associated with 

this phenomenon is sidereal-time dependent, yielding several significant 

source regions on the celestial sphere. It is worth noting that the right 

ascension coordinate of the inner arm of our galaxy coincides with one 

of these source regions. These results raise the very interesting possi-

bility that the detection of events having a particular signature might 

yield additional information about the structure and composition of our 

galaxy. 

A further study of this phenomenon was undertaken at Georgia 

Institute of Technology with particular emphasis placed on an independent 

confirmation of the existence of an anomaly in the rate of production of 

muons by neutral components of the cosmic radiation. To satisfy this 

objective a versatile cosmic ray facility was designed and constructed 

to allow not only the confirmation of the phenomenon, but also to serve 

as a base for a broad range of other experiments in this area. This 

facility consists of a large volume, modular, liquid scintillation de-

tection system, appropriate electronics for the collection and prelimi-

nary reduction of desired data, and liquid scintillation development and 

preparation apparatus. 

x 
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Prior to the collection of neutral-particle-induced muon data, 

much effort was expended in the checkout and calibration of the detection 

system. A determination of the mean muon lifetime in mineral oil served 

as a final check on the system. A value of T = 2.13 ± 0.05 microseconds 

was obtained. 

Neutral-particle-induced muon data were collected for 1,802.63 

hours between August 19, 1971 and November 27, 1971. The signature for 

an interesting event consisted of the production of an energetic charged 

particle by an incident neutral cosmic ray, followed by the characteris-

tic decay of the muon. After correction for the chance rate and for 

leaking muons, an average rate of 0.82 ± 0.15 events/hour was obtained. 

The production of pions within the detector by cosmic ray neutrons 

was assumed to be a likely candidate to explain the observed neutral-

particle-induced event rate. The proposed event would be the following: 

n +
n 

--' 7 + other 
p 

p + v 

e + v + v
e 

. 

Due to the short lifetime of the pion (— 25 nanoseconds) and the low 

energy of the emitted muon (' 4 MeV), this event is in general indistin-

guishable from direct muon production processes. Such was the case in 

this experiment and in all previous neutral-particle-induced muon experi-

ments conducted by others. 

Using available cosmic-ray neutron flux data and pertinent pion 
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production cross section data, an absolute event rate for the neutron 

initiated n-p-e event was established for the detector. The efficiency 

for the detection of the 7-p-e decay event was determined with the aid of 

a computer model of the detector. A FORTRAN program modeling pertinent 

aspects of the incident neutron flux, the pion production cross sections, 

the pion energy and angular distributions, the muon energy distributions, 

and the detector's geometry was written for the Georgia Tech Univac 1108 

computer. Using Monte Carlo techniques it was possible to integrate the 

incident neutron flux over the detector volume, and thus simulate the 

Tf-p-e process. The resulting expected event rate due to incident neutrons 

was determined to be 1.31 ± 0.59 events/hour. 

The available evidence indicated that the near sea level cosmic 

ray neutron intensity is sufficient to account for the observed neutral-

particle-induced muon event rate in the detector. It is pointed out, 

however, that the data are not inconsistent with the hypothesis that up 

to 25 percent of the events may be due to processes other than pion pro-

duction by incident neutrons. In conclusion, no obvious anomaly in the 

rate of production of muons by neutral components of the cosmic radiation 

was observed. 



CHAPTER I 

INTRODUCTION 

The purposes of this research program were twofold: (1) to 

design and construct a cosmic ray facility to allow continuing studies 

of the production of muons by neutral components of the cosmic radia-

tion; and (2) to determine if an anomqly exists in the rate of produc-

tion of single muons by neutral cosmic rays near sea level. As such 

this research is but a small part of the continuing effort of the sci- 

entific community to better understand our natural radiation environment. 

Our Radiation Environment  

The cosmic rays were discovered at the turn of the century as a 

result of measurements on the conductivity of gases. At that time dry 

air ionization chambers were being used to study various natural and man-

made radiations. The dry air was assumed to be a near perfect insulator, 

and the presence of a persistent "dark current" in the chambers was of 

great concern. Initial efforts to shield the chambers from the earth's 

natural radioactivity reduced the background somewhat, but even great 

quantities of shielding failed to eliminate the effect. Likewise, 

meticulous cleaning and decontamination of the chambers produced disap-

pointing results. In an attempt to escape the effects of the earth's 

natural radioactivity, experiments measuring the residual background 

were conducted with the aid of balloons at various altitudes above the 

earth's surface. These experiments indicated that the background 

1 
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initially decreased with altitude but by the time the instruments reached 

5000 meters the "dark current" was several times its sea level value. 

The results of such studies, notably by Hess
1 
and later by Kolhorster,

2 

provided clear evidence for the existence of an extra-terrestrial source 

of radiation. 

The primary cosmic radiation consists of energetic protons, helium 

nuclei, heavier nuclei, electrons, electromagnetic radiations such as 

gamma rays and X-rays, and probably neutrinos. The electromagnetic radia-

tion and the electrons are completely absorbed by the earth's upper atmos-

phere and will not be discussed further. The primary neutrino flux, if 

it exists, is probably several orders of magnitude smaller than the secon-

dary neutrino flux created within the earth's atmosphere, and for the pur-

poses of this dissertation the two will be treated together. Of the pri-

mary nuclear component approximately 90 percent of the flux consists of 

protons, 10 percent helium nuclei, and 1 or 2 percent nuclei with Z 	3. 

To this component of the primary radiation the earth's atmosphere acts 

as a thick absorber of approximately 10 mean free paths and thus a neglig-

ible fraction of the primary flux reaches the earth's surface. Many of 

these particles are however quite energetic (up to at least 10 20 eV), 

and their interactions with nuclei in the upper atmosphere produce secon-

dary particles and radiations which are ultimately detected at ground level. 

The secondary cosmic radiation consists of nucleons, electrons, 

photons, pions, muons, and to a lesser extent most if not all of the 

other 'elementary" particles. Figure 1 illustrates in a schematic way 

the generation of these secondaries. 
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Figure 1. Production of the secondary components of the cosmic radiation. 
The open circle represents an air nucleus. After Sandstrom. 



4 

Near sea level the bulk of the cosmic radiation is generally 

divided into a "hard" component which has great penetrating power and a 

"soft" component which is relatively easily absorbed. The hard component 

is known to consist mainly of energetic muons while the soft component 

consists of electrons, photons, and low energy muons. The remaining 

components of the sea level radiation have rates that are quite small 

five percent of the muon flux) when compared to those mentioned above. 

Yet, it is these particles and their interactions that are often the 

subject of investigation and many techniques have been devised to study 

such particles under these less than ideal conditions. 

One class of event occurring near sea level is the production of 

single muons by neutral components of the cosmic radiation. This process 

can be accomplished in two ways: directly, in which one of the products 

of the interaction is a muon, and indirectly, in which the muon is a de-

cay product of a short lived particle produced in the interaction. The 

majority of indirectly produced muons by neutral components of the cosmic 

radiation involves the neutron as the incident neutral particle. High 

energy neutrons colliding with other nucleons produce, via strong inter-

action, short lived pions which decay rapidly into muons. This process 

is summarized as follows: 

n +
n 	

7 	nucleons 
P f 

+ v 
	

(1) 

	> e + v + 

The only known processes for the direct production of a single 
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muon by an incident neutral particle are the neutrino reactions: 

v + p n + 
	

(2) 

and 

v
P 
 + n-sp +p 
	

(3) 

Cross sections for these reactions are believed to be extremely small—

of the order of 10
-39 

cm
2

.
5 

An anomaly in the rate of production of single muons by neutral 

components of the cosmic radiation would imply one of the following: 

(1) The cosmic ray neutron flux near sea level is larger than 

has been reported; 

(2) The pion production cross sections for neutrons on nuclei 

are larger than presently believed; 

(3) The muon neutrino flux near sea level is much larger than 

presently believed; 

(4) The muon neutrino cross sections are much larger than ex-

pected, possibly the result of a resonance phenomenon; or 

(5) A heretofore unknown particle is producing muons via its 

interaction with matter. 

Historical Background  

In the fall of 1960 Cowan and Ryan
6 

placed in operation a detector 

designed to look for the direct production of muons by incident neutral 

cosmic rays. It was intended to build a rather small modular detector, 

understand all events occurring within it, and then enlarge the detector. 

This process was to be repeated until they ultimately achieved a detector 



capable of observing the neutrino reactions: 

v
p- 
 + p -4 n +

+ 

and 

v + n p +I 

- 

. 

The signature for such an event would consist of the production of 

an energetic charged particle by an incident neutral cosmic ray, followed 

by the characteristic decay of the muon. A typical event is shown in 

Figure 2. 

The detector was operated at ground level and at 200 meters water 

equivalent underground for a total of four years. During this period 

events were observed having the above described signature but at a rate 

then believed to be an order of magnitude above that which could be ex- 

plained based on a current knowledge of the cosmic rays.
7 
 Furthermore, 

the event rate was shown to occur in diurnal cycles fixed in sidereal 

time, suggesting the neutral flux to be of a cosmic origin external to 

the solar system. 

The primary source of background events in this experiment was 

that due to incident neutrons initiating the 7-p-e decay chain within 

the detector. 	That is, 

n + 	j 	7- + nucleons (6)  

T = 25nsec p- + vp  E 	= 4 MeV 

T = 2.2 IL sec 

6 

(4)  

(5)  

v 
E

e 
= 0 -4  53 MeV 

+ v + 
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Such an event is shown in Figure 3. Note that, if the pion decay portion 

of this event is not detected, the signature of the event is identical to 

that for the direct production of a muon by an incident neutral particle. 

The fact that the pion decay portion of the event is of low energy and 

that it occurs on the tail of a much more energetic process made it impos-

sible for Cowan-Ryan to distinguish neutron induced events from direct 

production events. 

An estimate of the incident neutron flux was made by Cowan and 

Ryan by assuming that the neutral particle initiated singles rate in their 

detector was due solely to neutrons. This flux was then used to determine 

a pion production rate in the detector. 

There were several possible explanations for the anomalously large 

neutral particle induced rate observed in this detector: 

1. There was the remote possibility of a low energy resonance in 

one of the two neutrino cross sections mentioned above. 

2. There was the possibility that the incident particles were 

muons which leaked through the anticoincidence system, stopped, and 

decayed. 

3. There was the possibility that an error existed in the flux-

cross section product used to calculate the event rate due to incident 

neutrons. 

4. There was the possibility that a new elementary particle had 

been seen. 

5. Finally, there was the possibility that the process was some 

combination of all four of the above. 
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Figure 2. The direct production of a muon by a neutral component of 
the cosmic rays. 

NEUTRON 
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Figure 3. A 7-p-e event initiated by a cosmic ray neutron. 
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The sidereal time dependence of the event rate raised the very in-

teresting possibility that a study of cosmic rays with a particular signa-

ture might yield information on the celestial positions of cosmic ray 

sources. The observed event rate also raised the possibility of a reso-

nance perhaps associated with the postulated intermediate boson. 

The first Cowan-Ryan detector had an anticoincidence rejection 

ratio of approximately 200:1. Their second detector 7-9 
consisted of a 

2' x 4' x 1' slab of plastic scintillator surrounded on all sides by an 

anticoincidence system constructed of 3/4-inch plastic scintillator. 

This system had an anticoincidence rejection ratio estimated to be 1200:1. 

It was operated at ground level during 1965-66 and collected approximately 

132 events per hour. At most, only 11 events/hour could be accounted for 

without assuming an anomaly.
7 

This detector was believed to have good time resolution and was 

used to search for the presence of a pion as an intermediate particle in 

the process by determining the muon decay curve at times near zero (less 

than 50 nanoseconds). The decay curve of a directly produced muon would 

be a simple exponential with a 2.2 microsecond lifetime. The decay 

curve of a pion produced muon would exhibit the characteristic mother-

daughter relationship of a multiple decay process and would, at short 

times, deviate from the simple exponential and would intersect the origin 

at time zero. The results of the lifetime studies indicated that the 

muons were being produced directly, but the statistics were rather poor. 

The sidereal time dependence of the event rate was still present; one 

two-hour-time bin standing 4.8 standard deviations above the average 

rate. 
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The possibility of muon pair production by incident photons was 

also investigated with this detector. It was determined that "events 

representative of the production of two muons by neutrals are extremely 

rare in [their] data. 

Novey, 1965
10 proposed that the phenomenon was due to cosmic ray 

neutrons from muon stars which are in equilibrium with the muon flux. 

These neutrons would create the p-e decay chain via the indirect pion 

production process discussed earlier. To test this hypothesis Novey 

constructed a 2 12— foot cube of liquid scintillator and surrounded it by 

plastic scintillator for an anticoincidence system. Eight feet of con-

crete was placed around the detector to yield a muon-neutron equilibrium 

environment. He observed a normalized event rate of approximately 1/4 

that of the Cowan-Ryan work and consistent with the hypothesis of neutron 

production in the eight feet of concrete surrounding the detector. 

Novey's work showed that at least one mechanism exists for the 

production of muons by energetic neutral cosmic rays. This is the nor-

mal indirect 7-p-e decay process discussed earlier. His work did not, 

however, rule out the possibility of the existence of other production 

mechanisms, both direct and indirect. Additionally, the presence of 

eight feet of concrete around the experiment makes it difficult to com-

pare the results of Novey with those of Cowan-Ryan. 

In 1965-66 Buckwalter, et al.,
11 

using 650 Kgm of decalin-base 

liquid scintillator surrounded on all sides by 3/4-inch plastic scintil-

lator, observed 16,495 events having the neutral-particle-produced muon 

signature. These data indicated a peak of 4.2 standard deviations above 
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mean background between 21 and 23 hours right ascension, consistent with 

the Cowan-Ryan data. 

In 1967 Hesse, et al. 12 
constructed a 4' x 4' x 4' internally trig-

gered spark chamber complete with anticoincidence system to study the 

astrophysical implications of the neutral-particle-induced event. The 

results of a three-year program of mapping the neutral particle origins 

on the celestial sphere yielded a map containing several statistically 

significant regions, the most prominent being at approximately 21 hours 

right ascension by 25
o 
N. declination. 

In 1965 Standil and Bukata,
13 

using a pair of highly directional 

detectors, reported results which they interpreted as indicating a 15 

percent anisotropy in the primary radiation above 40 BeV, with a preferred 

incident direction corresponding to a right ascension of 20.5 ± 1.0 hours. 

Malboux, et al.
14 

also reported a similar effect in a muon spectrometer 

experiment performed underground at 1300 meters water equivalent. In 

1969 Buckwalter, et al.
15 

reported a strong sidereal time dependence in 

cosmic ray muons which stop and decay in a directional detector at sea 

level. Their data show a peak four standard deviations above background 

at about 21 hours right ascension. 

O'Sullivan, 1969,
16 

and Shelby, 1970,
17 

improved the anticoincidence 

system of the Hesse spark chamber by adding four inches of liquid scin-

tillator above the chamber and requiring that the first track project 

back through the liquid. Based on an analysis of 65 "events" in 1775 

hours of operation in one case and 71 "events" in 2412.9 hours of opera-

tion in the other, they concluded that all of the spark chamber events 

could be neutron produced but that the data were also consistent with up 
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to 50 percent production by other processes. A major difficulty in the 

analysis of this experiment was the complicated overburden offered the de-

tector by being in the basement of a two-storied concrete and brick build-

ing. 

Georgia Tech Program  

A further study of the production of single muons by neutral com-

ponents of the cosmic radiation was undertaken at Georgia Institute of 

Technology with particular emphasis placed on an independent confirmation 

of the existence of the phenomenon. To satisfy this objective a versatile 

cosmic ray facility was designed and constructed to allow not only the 

confirmation of this phenomenon, but also to serve as a base for a broad 

range of other experiments in this area. 

The facility consisted of a large volume, modular, liquid scintil-

lation detection system, appropriate electronics for the collection, and 

preliminary reduction of desired data, and liquid scintillator development 

and preparation apparatus. Design criteria for the detector emphasized a 

reliable anticoincidence system and an uncomplicated overburden, two 

sources of problems in previous experiments. Prior to the collection of 

data on neutral-particle-induced events much emphasis was placed on an 

understanding of the characteristics of the detector. 

The following chapter describes in some detail the design, con-

struction, and checkout of the facility. Topics covered include a descrip-

tion of the detector and its electronics, the development of the liquid 

scintillator, and the results of numerous tests and calibrations. The 

collection and analysis of neutral-particle-induced muon data are described 

in Chapters III and IV, respectively. Conclusions and recommendations for 

future work are presented in Chapter V. 



CHAPTER II 

THE FACILITY 

A versatile cosmic ray facility has been designed and constructed 

to allow continuing studies in the field of muon production by neutral 

components of the cosmic radiation. The elements of this facility are 

discussed in some detail with the hope that such a discussion might be 

of value to others interested in working in this field. Also included 

is a summary of the testing, calibration, and preliminary experimental 

studies undertaken before the start of collection of neutral-particle-

induced data. 

The Detector  

Due to the nature of the signature involved in the proposed single-

muon-production experiment, it was decided to construct a detector con-

sisting of a central target region and a surrounding anticoincidence 

system. Considering the expected event rate per target nucleus and the 

range of produced particles, a rather large detector was envisioned. 

These criteria, along with those of economic feasibility and maximum 

versatility, prompted the design and construction of a large volume, 

modular, liquid scintillation detection system. This system was locat-

ed near sea level in a single-storied building within the city limits 

of Atlanta, Georgia (33 °48mN., 84 °21mW.). 

Ten large multi-region modules were constructed, arranged on a 

steel supporting frame, and filled with organic liquid scintillator. 

13 
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These modules were constructed from one-half-inch-thick Plexiglas sheet. 

Two additional detectors, end anticoincidence units, were constructed 

from plastic scintillator to allow easy access to the target region of 

the detector. 

The target region of the detector consisted of three Plexiglas 

modules arranged as shown in Figure 4. Each module was divided into a 

sensitive volume filled with a mineral oil base liquid scintillator, 

and two light pipe regions filled with pure mineral oil. The light 

pipes were included to improve the uniformity of response of the target 

region to scintillation light. 

This detector was designed to perform several related experiments, 

only one of which is reported here. It was for these other experiments 

that the target volume was divided into the three regions described 

above. Although all three modules were present and filled with 

scintillator during the course of this experiment, only the two larger 

target modules were actually used. The effects associated with the 

presence of the small central module were, however, included in the 

analysis of the data. 

The anticoincidence system consisted of nine modules arranged 

as shown in Figure 5. The two modules above the target region con-

tained 5-1/2 inches of liquid scintillator and were each viewed by 

three five-inch-diameter photomultiplier tubes located at one end of 

each cell. The four side anticoincidence modules contained approximate-

ly four inches of liquid scintillator and were each viewed by two five-

inch-diameter photomultiplier tubes located at each end. The end 

anticoincidence units were each constructed of two sheets of 3/4-inch 
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Figure 5. 
Cosmic ray detector anticoincidence system. 
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Pilot-B plastic scintillator which were optically isolated. This 1-1/2-

inch-thick scintillator sandwich was viewed along the bottom edge by 

three two -inch diameter high gain photomultiplier tubes. 

Each module of the detector was wrapped with loose-fitting aluminum 

foil to serve as a diffuse reflector to that portion of the scintillation 

light escaping the module. It has been shown by others
18 

that the 

addition of such a reflector can result in a non-negligible increase in 

the light output of most scintillation detectors employing internal 

reflection for the collection of the scintillation light. The foil also 

served the equally important purpose of optically isolating each module 

from the others. 

Note that in the above application it was very important that the 

foil not be in optical contact with the modules. Such contact would 

destroy the internal reflection characteristics of a module and severely 

impair its performance. 

To afford the accompanying photomultiplier tubes a satisfactory 

environment, the entire detector was enclosed in a light-tight box con-

structed of 5/8-inch particle board. This structure was painted inside 

and out with a flat black paint and sealed with a black silicone rubber. 

Figures 6 through 13 show the detector during various stages of 

construction. A summary of the dimensions and volume of each module is 

given in Table 1. 

Module Construction  

Prior to the fabrication of the above described Plexiglas 

modules, much effort was placed on developing techniques to allow this 

construction to be done "in-house." The primary obstacle that had to 



Figure 6. 

1 8 

Figure 7. 

Cosmic ray detector during various stages of construction. 
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Cosmic ray detector during various stages of construction. 



Figure 10. 
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Figure 11. 

Cosmic ray detector during various stages of construction. 



Figure 12. 	 Figure 13. 

Cosmic ray detector during various stages of construction. 



Table 1. Cell Dimensions and Volumes of Cosmic Ray Detector 
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Module 

Sensitive Volume Light Pipe 

Dimensions 
(inches) 

Volume 
(liters) 

Dimensions 
(inches) 

A 13.55 x 20 x 30 133.2 13.55 x 20 x 12 

B 5.37 x 20 x 30 52.8 5.37 x 20 x 12 

C 13.55 x 20 x 30 133.2 13.55 x 20 x 12 

Total Target Volume = 319.2 

D 5-1/2 x 35 x 71 224.0 

E 4 x 48-3/4 x 71 226.9 

F 4 x 48-3/4 x 71 226.9 

G 3-1/2 x 35 x 71 142.5 

H 5-1/2 x 35 x 41 129.3 

J 3-3/4 x 35 x 57-1/2 123.7 

K 3-3/4 x 35 x 57-1/2 123.7 

L 1-1/2 x 48 x 48 56.6 

M 1-1/2 x 48 x 48 56.6 

Total Volume = 1,629.4 

Note: Cells L and M are sheets of Pilot-B plastic scintillator. 
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be overcome was that of size. The bonding of small pieces of plastic 

can be satisfactorily achieved via solvent bonding, but this requires 

that the two surfaces be in contact over the entire area to be bonded. 

When extrapolated to dimensions of the order of three to six feet, this 

requirement becomes almost impossible to satisfy. After several attempts 

involving extensive machining and elaborate jigs, the solvent bonding 

approach was abandoned as unworkable. 

A product found to give very satisfactory results under these less 

than ideal conditions is PS-30, an acrylic adhesive manufactured by 

Cadillac Plastics. ' It consists of a bulk component, which appears to 

be partially polymerized methyl methacrylate, and a catalyst. The 

primary advantage of this material is that it will fill the voids 

between two pieces of acrylic plastic which are being bonded, thus 

eliminating the need for extensive machining and elaborate fabrication 

facilities. Crude experimentation also indicated that a properly con-

structed joint was stronger than the material being bonded. 

The technique used to bond two pieces of plastic at right angles 

is shown in Figure 14. The three-degree bevel insures that the ad-

hesive reaches all parts of the surfaces to be bonded. With the aid of 

a rather large hypodermic needle to apply the adhesive, and capillary 

action to insure that the entire volume is filled, an optically clear 

joint can be achieved. 

Although the adhesive comes as a two-part mixture, it was found 

that thinning with methyl methacrylate monomer was necessary to achieve 

Cadillac Plastic and Chemical Company, Atlanta, Georgia. 
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a workable viscosity. Satisfactory results were achieved using the 

following ratios of components: 45 grams adhesive, 15 grams methyl 

methacrylate monomer, and 3 grams catalyst. Following the thorough 

mixing of these components, it is necessary to remove trapped air by 

placing the sample under vacuum. The pot life of a prepared sample is 

approximately 10 minutes. 

Development of Scintillator  

Solvent  

The choice of medicinal paraffin (mineral oil) as primary solvent 

for the liquid scintillator was based primarily on the following facts: 

1. The mean free path of scintillation light in mineral oil is 

, 
quite long (greater than two meters).

19 
 

2. The flash point of mineral oil is much higher than traditional 

scintillator solvents such as toluene, xylene, etc. 

3. Mineral oil is relatively inexpensive. 

4. The material requires no additional purification before use 

as a scintillator solvent. 

5. The solvent is optically and chemically compatible with 

Plexiglas, the construction material of the modules. 

6. Scintillator solutes are relatively easily dissolved in 

mineral oil. 

Kaydol, a U.S.P. grade white mineral oil marketed by the Sonne-

born Division of Witco Chemical Company, New York, was selected as the 

primary solvent. This material has an index of refraction of 1.482 and 

a specific gravity of 0.880/0.895 at 60 0F.
20 
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Solutes and Secondary Solvent  

The results of research conducted by Advanced Research Corporation, 

Atlanta, Georgia, in 1967
21 

indicated that appropriate quantities of 

* 
mineral oil as solvent, PPO as scintillator, naphthalene as secondary 

** 
solvent and Bis-MSB as wavelength shifter should result in a satis- 

factory liquid scintillator. The recent work of O'Sullivan
15 
 with large 

mineral oil base scintillation detectors indicates that the optimum 

naphthalene concentration for such a scintillator is approximately 2-

1/2 percent by weight. 

Using 0.01 percent Bis-MSB and 2-1/2 percent naphthalene in heavy 

mineral oil data were collected on the relative light output of the 

scintillator as a function of the PPO concentration in a 12-inch-long 

cell. These data, when extrapolated to a 30-inch cell and a 72-inch 

cell, indicated the optimum PPO concentration to be approximately 0.35 

percent by weight. Figure 15 shows the experimental arrangement and 

the data. 

A summary of the scintillator components used in this experiment 

and their concentrations appears in Table 2. 

Scintillator Preparation  

The scintillator for the detector was mixed in 30 liter batches 

in a large Pyrex battery jar fitted with stirrer, heating tape, and 

cover. Following the addition of all components of the scintillator, 

the liquid was heated to approximately 50-55 °C. and stirred for at 

* 
PPO is an abbreviation for the organic compound 2,5-Diphenyloxazole. 

** 
Bis-MSB is an abbreviation for the organic compound bis(0-Methylstyry1)- 
Benzene. 
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Table 2. Composition of Liquid Scintillator 

Component 	 Percent by Weight 

Heavy Mineral Oil (Kaydol) 	 97.14 

Naphthalene 	 2.50 

PPO 	 0.35 

Bis-MSB 	 0.01 

28 



least three hours. Transfer of the scintillator to the detector was 

accomplished with the aid of a high speed stainless steel pump and 

Tygon tubing. 

Effects of Dissolved Oxygen 

It has been reported by many researchers 
22_24 

that the removal of 

dissolved oxygen from a liquid scintillator may result in a substantial 

increase in the light output from that scintillator. Since the mag-

nitude of this effect has been observed to vary considerably with the 

composition of the scintillator, it was felt that a determination of the 

quenching effects of dissolved oxygen in this mineral oil base scin-

tillator was necessary. The relative light output from small (2-inch 

diameter x 1/2-inch-high) samples of the liquid scintillator was obtain-

ed before and after bubbling the samples with helium to remove dissolved 

oxygen. An improvement of more than 15 percent in the relative light 

output of the liquid was obtained by bubbling for five minutes. No 

additional improvement was gained by bubbling the liquid for longer 

periods of time. 

Based on the above results, it was felt necessary to remove the 

dissolved oxygen from the scintillator in the large detector modules. 

Approximately 107 hours was spent bubbling 1000 cubic feet of helium 

gas through the 10 liquid-containing Plexiglas cells. At the con-

clusion of this bubbling an argon blanket was placed above the liquid 

in each cell. 

Scintillator Pulse Shape  

The decay time of the mineral oil base liquid scintillator was 

determined from oscilloscope photographs of pulses from small samples 

29 
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of the liquid. The scintillator was viewed by a high gain, very fast 

Amperex 56AVP photomultiplier tube. The anode output of this tube was 

** 
used to drive the 50-ohm terminated input of a 581A Tektronix oscillo- 

scope containing a type 86 plug-in preamplifier. After correction for 

the finite rise time of the electronics, the decay time of the liquid 

scintillator was determined to be approximately 26 nanoseconds. 

A determination of the light output of the scintallator was made 

by comparing it with Nuclear Enterprise's +  N.E. 213 liquid scintillator. 

Using identical test cells and the same electronics, Cobalt-60 spectra 

were collected and compared. The light output of the mineral oil base 

scintillator was determined to be 75 to 80 percent of that of the N.E. 

213. Both samples were bubbled with helium to remove dissolved oxygen 

prior to the collection of data. 

Electronics  

The electronics system associated with this facility can be 

logically divided into four groups: (1) mounted photomultiplier tubes; 

(2) a mounted photomultiplier tube high voltage distribution system; (3) mixing 

networks to allow linear summing of photomultiplier outputs; and (4) ex-

tensive logic for the collection and preliminary analysis of data. A 

discussion of these groups and how they relate to one another is felt 

necessary for a complete understanding of the capabilities of this 

facility. 

* 
Amperex Electronic Corporation, Hicksville, New York. 
** 
Tektronix, Inc., Beaverton, Oregon. 

+
Nuclear Enterprises Ltd., Winnipeg, Canada. 
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The choice of photomultiplier tubes for the detector was compli-

cated by the wide variety of tubes available. Based on considerations 

such as physical size, availability, cost, allowable peak currents, timing 

characteristics, output dark current and cathode spectral response, four 

types of tubes were selected for use with the detector. It should be 

pointed out, however, that in some cases the choice of tube type was in-

fluenced by having a sufficient quantity of an acceptable tube "in-

house." 

The nine-inch diameter Amperex 57AVP photomultiplier tube was 

chosen for target cells A and C because it was the only large, fast 

photomultiplier tube which was economically feasible. This is not to 

berate the tube, for its characteristics were entirely satisfactory for 

the intended purpose. 

Target cell B was designed to be a very "fast" cell to allow ob-

servation of the low energy muon associated with the decay of the short-

lived pion. For that reason the cell was viewed by six very fast (two 

nanoseconds), high gain (10
8), five-inch-diameter Amperex XP1040 photo-

multiplier tubes. These tubes covered both ends of the cell in an 

attempt to collect a large fraction of the emitted light and thus mini-

mize the statistical effects associated with summing a small number of 

photons. As mentioned previously, this cell was not actively involved in 

the present experiment. 

The anticoincidence system photomultiplier tubes were divided into 

two groups according to scintillator thickness. The five-inch-diameter 

RCA 4525, a moderately high gain, low dark current, economically priced 

* 
Radio Corporation of America, Harrison, New Jersey. 



tube, was used with all liquid containing anticoincidence cells. This 

tube was found to be very satisfactory for situations requiring long 

term stability. 

As mentioned earlier, the end anticoincidence detectors were each 

* 
constructed from two pieces of 3/4-inch-thick Pilot-B plastic scin-

tillator. Due to poor light transmission in this plastic and a less 

than ideal optical coupling between the plastic and the photomulti- 

plier tubes, these sandwiches were each viewed by three two-inch-diameter 

Amperex 56AVP very high gain photomultiplier tubes. In an attempt to 

maximize the detection efficiency, these tubes were operated at near 

maximum rated high voltage and at a rather large anode current. As a 

result, some long term count rate stability problems existed, but were 

kept under control by frequent gain adjustments at the photomultiplier 

tube. 

Each photomultiplier tube of the detector was supplied with a 

base consisting of a printed circuit board support structure, and a 

resistive divider chain for the application of appropriate voltage to 

the electrodes of the tube. The use of large supply currents and 

appropriate capacitive decoupling of the last several dynodes of the 

tubes insured that each tube remained stable under high count rate and 

large peak current conditions. 

A suitable high voltage was applied to each tube base through a 

distribution system fed by nine highly regulated power supplies, each 

Pilot Chemicals, Inc., Watertown, Massachusetts. 
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supply furnishing power to from two to nine tubes. In an attempt to 

effect electrical isolation, especially among tubes being operated in 

coincidence, no power supply was allowed to furnish power to both ends 

of any module. 

The gain of individual photomultiplier tubes were set by adjust-

ing the voltage supplied to these tubes. These adjustments were accom-

plished with the aid of potentiometers operated in series with each 

tube base. 

Additionally, the high voltage distribution system contained test 

points to allow precision determination of the voltage supplied to each 

tube. 

Electrical signals from the detector were taken directly from the 

anode of each tube and brought to the outside of the light-tight en-

closure via 50-ohm coaxial cable. Signal processing could begin at that 

point. This arrangement allowed access to the output of each photo-

multiplier tube without disturbing normal operating conditions. 

The usual mode of data collection required that the outputs from 

all tubes at one end of each cell be linearly summed before further 

analysis. To accomplish this, several types of linear summing networks 

were designed and built for incorporation into the detector. 

For the target region, two and three input, wide band, unity gain, 

dual output mixers were built. These units were designed to have a 

bandwidth of the order of 300 megahertz to allow work with very fast 

pulses. Additional features of these amplifiers include isolated test 

33 
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points for each input, a high degree of isolation between inputs, a high 

degree of isolation between outputs, and NIM compatibility. Mixers of 

this type were also used to sum the three photomultiplier outputs of each 

end anticoincidence detector. 

For the remainder of the anticoincidence region, two and three in-

put, 150 megahertz, dual output mixers were designed and constructed. Due 

to the lower gain of the five-inch diameter anticoincidence photomultipliers 

and the need for a sensitive anticoincidence system, these mixers were de-

signed with a gain of approximately 20. Additional features of this ampli-

fier are similar to those of the unity gain mixer described above. A de-

tailed description of these units can be found in Appendix A. 

To minimize the cable lengths between the photomultiplier tubes and 

the mixers, all summing units were mounted on the outside surface of the 

light-tight housing. Additional lengths of cable were used as necessary 

to adjust signal delays to the mixers. Signals from the mixers to the elec-

tronics console were carried via 32-foot lengths of 50-ohm coaxial cable. 

With the exception of the linear summing discussed above, all sig-

nal processing was done at the electronics console. This console contained 

** 
an assortment of EG & G, 	ORTEC,

+ 
and ARC

++ 
nuclear instrument modules 

(NIM), several scalers, a TMC-1024 multichannel analyzer and various input-

output devices. A detailed listing of these instruments can be found in 

Appendix A. 

In 1964 the AEC Committee on Nuclear Instrument Modules (NIM) was 
formed to draw up specifications for standard modules to assure mechani-
cal and electrical interchange-ability within the industry. The program 
resulted in the issuance of module specifications in the form of govern- 
ment document TID-20893. 

** 
EG & G, Inc., Oak Ridge, Tennessee. 

+
ORTEC, Inc., Oak Ridge, Tennessee. 

++
Advanced Research Corporation, Atlanta, Georgia. 
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Testing and Calibration of Equipment  

Response as a Function of Position in Cell A  

For a scintillation detection system to have the ultimate in 

energy resolution it is necessary that the detector respond identically 

to identical events occurring throughout the volume of the detector. 

For a given event this requires collecting a constant fraction of the 

scintillation light, independent of where the light was created within 

the volume. In reality self-absorption by the scintillator, reflection 

losses at interfaces, light trapping, optical flaws, and inefficient 

light piping may all contribute to a reduction in the uniformity of  

response of a detector. 

The uniformity of response of target cell A was determined with 

the aid of the "muon telescope" arrangement shown in Figure 16. This 

arrangement defined a muon beam that passed vertically through the 

cell depositing approximately 57.6 MeV in the liquid. As shown in 

Figure 17, response data were collected at three cell positions and 

normalized to the center of the cell. Using these data and assuming 

that the scintillation light is attenuated exponentially with respect 

to the perpendicular distance from the light pipe-scintillator inter-

face, it was determined that the effective attenuation of the scin-

tillation light in the liquid could be expressed as 

I = I
o 

e -0.0061x 	
(7) 

where x is the perpendicular distance from an interface expressed in 
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centimeters. This expression yields an effective mean free path for the 

scintillation light of approximately 113 centimeters. 

Calibration of Target Cells  

The energy calibration of target cell A and thus its twin, cell C, 

was accomplished with the aid of the muon telescope arrangement described 

above. Figure 18 shows the "thru-peak" data collected with the telescope 

centered over the target region. It is estimated that the "thru-peak" 

energy corresponds to channel number 660 ± 30. 

The use of the muon "thru-peak" defined one energy point of a cali-

bration curve. A second data point was chosen to be the multichannel 

analyzer's "zero of energy." If one verifies the linearity of a multi-

channel pulse height analysis system by plotting the charge delivered from 

an accurately calibrated pulser versus the corresponding channel number, 

the x-intercept is the system's "zero of energy." A mercury pulser of 

Advanced Research Corporation design (Model AR-Hgl) was used to supply 

pulses of known integrated charge. The linearity of the system was veri-

fied at two amplifier gains and from these data it was determined that the 

"zero of energy" corresponded to channel number -(55 ± 15). The error rep-

resents the maximum spread in the collected data. 

Using the above two data points and their errors, a plot of energy 

versus channel number was made (Figure 18). As will be explained 

The determination of a pulse height distribution from a photomultiplier 
tube was accomplished in all cases with the aid of a multichannel 
pulse height analyzer. This device, consisting of an analog-to-digital 
converter and memory unit, determines the relative amplitude of input 
pulses and uses this information to build a histogram of pulse heights. 
The intervals of this histogram are often called channels and each 
channel is assigned a channel number. Channel numbers generally start 
at one and increase with increasing pulse height. 
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below, channel number 75 was chosen to represent the desired threshold 

setting for cells A and C. This setting corresponded to an energy of 

10.5 ± 0.8 MeV referenced to the center of target cell A. Figure 19 

shows the relationship of this threshold to the background spectrum 

collected by accepting all events occurring within cell A. The in-

tegrated background count rate above 10.5 MeV was determined to be 

93.5 counts/second for cell A and 85.0 counts/second for cell C. The 

lower rate for cell C was a result of the additional overburden for 

that cell. 

Using the numerical data of Figure 19, a plot of cell A count 

rate versus threshold energy was constructed. This plot, shown as 

Figure 20, indicates that to stay within 1.5 MeV of the desired 10.5 

MeV threshold the cell A count rate must remain within approximately 

4.0 percent of 93.5 counts/second. A similar determination was made 

for target cell C. 

Determination of the Muon Decay Electron Energy Distribution  

The energy distribution of the electron in p-e decay is rather 

well known. In a sufficiently large detector, having excellent energy 

resolution, one would expect to see a distribution similar to that 

shown in Figure 21. In a realistic detector, however, this theoretical 

energy distribution will be altered by the nonuniformity of response 

and intrinsic resolution of the detector, and by the fact that some of 

the decay electrons will leave the detector volume before depositing all 

of their energy. 

40 
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An accurate knowledge of the p-e decay electron energy distribu-

tion recorded by target cells A and C was necessary first to set an 

energy threshold for the detection of the decay event, and later for a 

determination of the p-e decay detection efficiency of the detector. 

The electron energy distribution from muon decay, as seen by the 

photomultiplier tubes at one end of cell A, was measured using the 

arrangement shown in Figure 22. An energetic muon entering cell A 

would initiate a delayed nine microsecond gate. This gate was delayed 

for a time sufficient to guarantee the decay of the initial pulse and 

then opened for the nine microseconds to receive the electron signal 

for pulse height analysis. 

The same spectrum was then collected with the additional con-

straint that the second or electron pulse must not violate the anti-

coincidence system. During the collection of neutral-particle-produced 

muon data such events were indistinguishable from those in which the 

second pulse was initiated by an outside particle passing through the 

detector. Thus, even though a substantial fraction of otherwise accept-

able events were lost, it was necessary to veto all such events. The 

effect of such a veto served to lower the detection efficiency of the 

experiment, but improved the reliability of the remaining data. 

The two muon decay electron energy distributions for cell A are 

shown in Figure 23 along with the "thru-muon" spectrum taken with the 

aid of the telescope arrangement discussed above. 

As a check on the validity of the p-e decay electron energy 

distribution in the detector, the above data were compared with those 

generated by a computer model which simulated the decay process. A 
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detailed description of this Monte Carlo program can be found in 

Chapter IV in the discussion of the determination of the electron 

detection efficiency. Let it suffice here to say that, during the 

running of the program, 525,000 trials were used to build the expected 

electron energy distribution. 

The experimentally determined electron energy distribution shown 

in Figure 24 was obtained by subtracting the energy dependent background 

(Figure 19) from the raw data (Figure 23). The smooth curve shown in 

the same figure is the distribution predicted by the computer model. 

The agreement between the experimental data and that generated from the 

model is quite good. 

Calibration of TAC-Multichannel Analyzer System  

Prior to the actual calibration of the time-to-amplitude conver-

sion system, the differential linearity of the system was determined as 

a function of the various output pulse shapes available from the time-

to-amplitude converter (TAC). The optimized arrangement had an integral 

nonlinearity of approximately 1.2 percent between channel numbers 50 

and 500. Data in channels below number 50 or above 500 were discarded. 

The actual calibration of the TAC-multichannel analyzer system 

was accomplished using a scheme developed by Hatcher and reported in 

EG&G's publication, Nanonotes.
26 
 A block diagram of the logic is shown 

in Figure 25. A 10-KHz  signal, derived from a time mark generator, was 

shaped by a discriminator to form the initial , or START, member of a 

pulse pair. A 10-MHz 
signal also derived from the time mark generator 

was shaped by another discriminator to form a train of narrow pulses 

spaced 100 nanoseconds apart. These pulses were gated at random by 
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Figure 24. Comparison of experimental p-e decay electron energy 
distribution with computer generated distribution. 



TIME MARK 
	

10 KHz 

GENERATOR 

10 MHz 

20n SEC 
FWHM 

START 
DISCRIMINATOR 

DISCRIMINATOR 

TIME 
TO 

AMPLITUDE 
CONVERTER 

MULTI-
CHANNEL 

ANALYZER 

11. 
20n SEC 

FWHM 

STOP 

1110 

DISCRIMINATOR 

COINCIDENCE 50n SEC 1 
FWHM 

11. 

PMT- 
SCINTILLATOR 

Figure 25. Calibration of the time to amplitude converter. 



50 

pulses from a third discriminator which was connected to a photomulti-

plier tube and scintillator. A gated 10-MH
z 
pulse was then the second, 

or STOP, member of a pair and was used to stop the time-to-amplitude 

convertor. 

The spacing between members of a pair was thus a random multiple 

of 100 nanoseconds and the spectrum of the time intervals appeared as a 

series of spikes on the pulse height analyzer. The accuracy of such a 

calibration is determined by the stability of the time mark generator and 

the number of counts in the peaks. 

Effectiveness of Anticoincidence System  

To determine the rate of production of neutral particle initiated 

events in the detector it was necessary to identify and establish rates 

for all processes capable of generating an artificial signature. Of 

particular concern was the signature generated by a muon leaking through 

the anticoincidence system, stopping and decaying within the target 

region of the detector. The large muon flux near sea level made this a 

likely candidate for an important source of false events. 

Determining the magnitude of this leak rate involved knowing the 

average charged particle rejection ratio of the anticoincidence system, 

and the muon decay rate in the target for those particles satisfying the 

constraints imposed by the system. The determination of an averaged 

charged particle rejection ratio is discussed below. The application 

of this ratio to the muon decay rate to establish a leak rate will be 

treated in the chapter on the analysis of the neutral particle in-

duced data. 



As used here the charged particle rejection ratio of an anti-

coincidence detector is defined as the ratio of the number of charged 

particles passing through a detector to the number of charged particles 

passing through the detector but not recorded by the detector. For 

example, an anticoincidence detector that is 99.9 percent efficient 

would have a rejection ratio of 1000:1. 

The charged particle rejection ratio of the anticoincidence 

system as a function of position was determined with the aid of a two-

element particle telescope. The target region of the detector served 

as one element of the telescope and a small (8" x 14" x 2" thick) 

plastic scintillator survey detector served as the other element (see 

Figure 26). Coincident pulses occurring in the telescope were used to 

signify the passage of charged particles through the anticoincidence 

system. Those events not accompanied by an output from the anti-

coincidence system were considered to be leaking particles. 

From these data it was possible to determine the charged particle 

rejection ratio at the site of the survey detector. By moving the 

survey detector over the anticoincidence system the rejection ratio was 

determined as a function of position for the entire detector. In an 

attempt to minimize the number of surveyed data points, advantage was 

taken of the symmetry inherent in each anticoincidence cell. Figure 27 

summarizes the results of this survey. 

To aid in the determination of the muon leak rate an average  

charged particle rejection ratio for the entire detector was defined. 

This quantity, RA , is the average of the individual rejection ratios, 

each weighted by its corresponding muon flux. That is, 
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Figure 27. Summary of anticoincidence system charged particle 
rejection ratios. 
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Figure 26. Muon telescope. 
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where the R.
1 
 are the individual charged particle rejection ratios and 

the C. are the corresponding relative muon flux rates. The quantity 

RA 
when applied to the muon decay rate of the detector yields the 

detector's muon leak rate. 

Data for the determination of the C.'s were collected simultaneous-

ly with the charged particle rejection ratio data, and with the same 

experimental arrangement. The C i 's were effectively the normalized 

telescope rates for the survey detection system. These data were 

collected for all regions of the anticoincidence system with the ex-

ception of the lower half of the sides of the detector. Due to the 

cos
2 

dependence of the incident muon flux the telescope coincidence 

rate in those regions was extremely small and an experimental survey 

was impractical. 

The remaining Ci 's were determined with the aid of a computer 

model of the system. The cos
2 muon flux incident on the detector was 

numerically integrated over the target region yielding rates for the 

flux at all points on the anticoincidence system. These rates, when 

normalized to the available experimental data, were used to obtain the 

remaining C i 's. 

As a check on the incorporation of estimated data into the calcu-

lation, it was determined that a 50-percent error in the estimated rates 

would yield only a 11-percent change in the calculated muon leak rate. The 
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actual error associated with the estimated flux is believed to be much 

smaller than the 50 percent, probably no more than 10 or 15 percent. 

The value of RA, the effective charged particle rejection ratio 

for the system, was determined to be 980:1. 

Determination of Muon Lifetime  

A determination of the well known muon lifetime served as a last 

check on the target portion of the system prior to the start of collec-

tion of neutral-particle-induced data. A 38-hour data run using cells 

A and C yielded 194,000 pulse pairs, each characteristic of a muon 

stopping and decaying within the target region. Reduction of the raw 

data consisted of subtracting the effect of the chance rate, and then 

determining the "least squares straight line" for the log of the re-

maining data. An analysis of the data between 350 nanoseconds and 8.9 

microseconds yielded a mean muon lifetime in mineral oil of: 

T = 2.13 ± 0.05 microseconds. 

This compares favorably with the predicted value of 2.11 micro-

seconds reported by Reines.
27 

The primary source of error was that due 

to an approximate 40 nanosecond uncertainty in the time base. Plots of 

the raw and corrected lifetime data appear in Figure 28. 
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Figure 28. Muon life time curve before and after correction for background. 



CHAPTER III 

COLLECTION OF DATA 

The design, construction, and checkout of the facility satisfied 

the first objective of this program. The second objective was to 

determine if an anomaly exists in the rate of production of low energy 

muons by neutral components of the cosmic radiation. The signature 

for such an event consists of the production of an energetic charged 

particle by an incident neutral cosmic ray, followed by the character-

istic decay of a muon. The neutrality of the incident particle was 

guaranteed by the anticoincidence system and the identity of the muon was 

established by its characteristic lifetime. A description of the 

electronic system used to recognize this signature and a summary of the 

collected data follows. 

Electronically an interesting event consisted of a "non-vetoed" 

pulse pair from the target region whose time separation was character-

istic of muon decay. The first pulse of this pair was due to the slow-

ing down of the neutral-produced particle or particles. The second 

pulse was due to the slowing down of the electron emitted by the muon 

decay. A veto was generated if either pulse of this pair was in time 

coincidence with an event in the anticoincidence system. The electron-

ic logic shown in Figure 29 was used to obtain the desired data. 

Pulse pairs occurring in cells A and/or C, when not accompanied 

by an output from the anticoincidence system, were used to start and 
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stop a time-to-amplitude converter (TAC). The output of the TAC, a 

signal whose amplitude is proportional to the time separation of the 

inputs, was fed to a multichannel analyzer for pulse height analysis 

and subsequent storage of the information. The stored information 

was a histogram giving the frequency of occurrence of interesting events 

as a function of their pulse pair separation. These data were designed 

to provide sufficient information to verify the presence of the muon in 

the process and to establish a rate of occurrence for the event. 

The two largest cells were each viewed by four nine-inch photo-

multiplier tubes, two at each end of each cell. The outputs from these 

pairs of tubes were linearly summed and presented to discriminators for 

amplitude analysis. The threshold of each discriminator was set at 

10.5 MeV referenced to an event in the center of the target. 

As reported by O'Sullivan
15 

it is possible for photomultiplier 

tube afterpulsing to artifically generate the p-e decay signature. For 

that reason the two discriminator outputs from each target cell were 

operated in coincidence. This had the disadvantage of degrading the 

system's uniformity of response somewhat but was felt necessary to guar-

antee the validity of the data. 

The veto pulse width from the anticoincidence system was set at 

16 microseconds, the equivalent of approximately 10 muon half-lives. 

This was done to eliminate the possibility of a 11-e decay electron be-

coming the first pulse of an interesting event. 

Due to the high count rate of the anticoincidence system (130,000 

cps) and the necessity of a wide veto pulse width, the anticoincidence 
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output was gated by the output from the target region. This minimized 

system dead time without sacrificing the anticoincidence system's 

effectiveness. The neutral-particle-induced data were collected with 

a system dead time of approximately 17 percent. 

The collection of neutral-particle-induced data started August 19, 

1971, and terminated November 27, 1971. A total of 1,802.63 hours of 

data collection yielded 5065 events for an average raw data rate of 

2.81 events/hour. With the exception of equipment failure and acts of 

God (lightning struck the building) data were collected approximately 

22 hours a day, seven days a week. Daily performance monitoring of the 

equipment required approximately two hours each day. 

The collected data were stored in 512 channels of a TMC multi-

channel pulse height analyzer which had been calibrated in microseconds. 

Initially the data were outputed daily to paper and punched tape, but 

as confidence in the system increased the interval between readouts was 

shifted to three days. A total of 32 data tapes resulted, each capable 

of being individually corrected for system drift. A summary of the data 

appears in Table 3. 

Table 3. Summary of Data Collected August 19 to November 27, 1971 

Total Run Time 	1,802.63 Hours 
Total Number of 

Raw Events 	 5065 
Average Event Rate 	2.81 Hours

-1 

System Live Time 	82.8 percent 
Target Threshold 	10.5 MeV

* 

Referenced to center of target cell. 
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A detailed program of performance monitoring insured that the 

detector performed normally during the three-month data run. The 

following quantities were monitored on a regular basis: high voltage 

to each photomultiplier tube, low voltage to ARC built mixers, NIM 

voltages, count rate of each photomultiplier tube, count rate from each 

end of each module, total anticoincidence system count rate, cell A 

coincidence rate, cell C coincidence rate, A + C rate, percent dead 

time of system, and TAC start rate. Initially these checks were per-

formed daily but as confidence in the system increased the interval 

between checks increased to three days. Several times during the run 

the anticoincidence system was turned off and the detector was allowed 

to collect normal muon decay data. These data were used as an addition-

al check on the stability of the system. 



CHAPTER IV 

ANALYSIS OF DATA 

The objective of this investigation was to determine if an 

anomaly exists in the rate of production of muons by neutral components 

of the cosmic radiation. This involved experimentally determining the 

rate of production of muons in the detector and comparing this rate 

with that expected from known sources. Experimental data designed to 

satisfy this objective were collected and analyzed. The analysis 

yielded an observed rate for the process and proof that the observed 

events did involve the p-e decay. The significance of these results will 

be discussed in Chapter V. 

The analysis of the data was divided into three parts: (1) a veri-

fication that the observed events involved muon decay, (2) a determination, 

from experimental data, of the muon production rate in the target by in-

cident neutral particles, and (3) a determination of the expected rate of 

production of muons in the target by the indirect r-p process initiated 

by incident neutrons. 

Analysis of Lifetime  

The raw data collected during the neutral particle run and used to 

establish an event rate for the process consisted of pulse pairs supposedly 

generated by p-e or -p-e decay events. As a check on the validity of 

this assumption the pulse pair data were analyzed for a meaningful half-

life. 
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The raw lifetime data consisting of 32 printed tapes were first 

individually corrected for time drift in the electronic system and then 

summed to yield the histogram shown in Figure 30. Each bin of the histo-

gram is approximately 191 nanoseconds wide. From performance monitoring 

data the time drift of the system during the three-month data collection 

period was determined to be less than 40 nanoseconds. 

The determination of a lifetime from the corrected data involved 

making the assumption that the data consisted of muon decay events super-

imposed on a constant background. That is, it was assumed that the data 

could be fitted by an expression of the form 

N(t) = No e
-At 

+ B , 	 (9) 

where N
o 

represents the number of observed muon decays occurring within a 

time At of t = 0, and N(t) represents the total number of observed events 

occurring within a time At of t. The constant background rate was attri-

buted to the chance delayed coincidence rate of the target region. 

A simple least squares fit of equation 9 to the corrected lifetime 

data would yield values for N o , X, and B by minimizing the quantity 

F = E [N.
1 
 - (N

o 
e -Xt  + B)] 2  . 

i  
(10) 

The assumption implicit in this fit is that the errors associated with 

the 1\1's are approximately equal. Considering the range of the statisti-

calerrorsassociatedwiththeN.'s in the present data, it was concluded 

that the simple least squares fit was inappropriate for the present analy-

sis. A more meaningful fit to the data can be achieved by using a fitting 

technique that takes into account the probable errors associated with each 
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data point. 

The weighted least squares fit minimizes the sum of the squares of 

the differences between the experimental data and the fitting curve, but 

in such a manner as to give appropriate weight to each data point accord-

ing to its probable error. A fit of the corrected lifetime data was 

achieved by minimizing the following quantity 

2 	IN. — (N e
—at 

 + BM
2  

(11) X = 	 2 
a
i  

where each squared difference is weighted by a , the variance associated 

with N.. That is, 

a. = N. . 
2 	

(12) 

The weighted least squares technique was applied to the corrected 

lifetime data between 256 nanoseconds and 8.855 microseconds. For the 

purpose of this analysis this interval was divided into 45 bins each 

approximately 191 nanoseconds wide. The results of the fit yielded a 

decay probability of 

X = 0.466 ± 0.017 psec
-1 
 . 	 (13) 

This corresponds to a mean lifetime of 2.15 ± 0.09 microseconds, in good 

agreement with that expected for the muon in mineral oil.
27 

The primary 

source of error was that due to an approximate 40 nanosecond uncertainty 

in the time base. A plot of the raw data after subtraction of background 

and the resulting fit to these data appears in Figure 31. 

In addition to the lifetime check, the abpve fit also yielded 
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Figure 31. Muon lifetime from neutral - particle -induced data. 

65 

C
O

U
N

T S
/ 1

91
 N

A
N

O
SE

CO
N

D
 W

ID
E

 BI
N 

100 

10 



66 

the background rate in the target due to uncorrelated pulse pairs. This 

is the rate due to random  non-vetoed events starting and stopping the 

time-to-amplitude converter. Such events are indistinguishable from true 

neutral-particle-produced muon events, and thus the effect of this back-

ground on the data must be treated in a statistical manner. 

Based on the above least squares fit it was determined that approx-

imately 1,505 of the 5,065 events between 256 nanoseconds and 8.855 micro-

seconds were due to non-correlated pulse pairs. This represents approxi-

mately 30 percent of the raw data and yields a chance event rate in the 

target of 

D
c 
= 0.83 ± 0.02 events/hour . 	 (14) 

The error represents the standard deviation associated with the 1505 

events. 

Observed Experimental Rate Due to Incident Neutral Particles  

A determination of the rate of production of muons by incident 

neutral particles required knowing the rates due to all sources of 

false events, Although the signature used to identify an interesting 

event was rather unique and thus allowed the electronic logic to be 

very selective, it did allow for two major sources of false events. As 

discussed above, the chance rate background accounted for approximately 

30 percent of the raw data. It will be shown below that the rate due 

to muons leaking through the anticoincidence system was also non-

neglibible. 

If the anticoincidence system surrounding the target were 100 

percent effective at registering the passage of muons, the only major 
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source of background would be that due to the chance rate. As discuss-

ed previously the anticoincidence system charged particle rejection 

ratio is approximately 980:1, making this detector 99.89 percent 

effective at rejecting incident charged particles. This rejection ratio, 

when applied to the rate with which incident muons stop and decay in the 

target, yields that portion of the "neutral" rate due to leaking muons. 

A determination of the muon decay rate in the target region was 

made under the very special condition that the anticoincidence system 

was armed immediately after the entrance of a charged particle. This 

limited the observed muon decay rate to those muons whose decay 

electrons did not violate the anticoincidence system. With the excep-

tion of the lack of an anticoincidence veto on the first pulse, these 

data were collected under conditions identical to those used to collect 

the neutral-particle-induced data. The muon decay rate under these 

conditions was 1137 events/hour. 

Applying the anticoincidence rejection ratio to this rate yielded 

the muon leak rate expected under neutral particle collection conditions. 

A value of 

DL  = 1.16 ± 0.14 events/hour 
	

(15) 

was obtained. The error is the product of that associated with the un-

certainty in the charged particle rejection ratio and that associated 

with the statistical uncertainty in the muon decay rate. 

As discussed previously the observed raw data rate consisted of 

the true neutral-particle-induced rate plus several sources of back-

ground. That is: 



D
o 

= D
N 
+ D

L 
+ D

c 
	 (16) 

where 

Do is the observed rate in the target; 

DN is the contribution to the observed rate due to neutral-

particle-induced events; 

D
L 

is the contribution to the observed rate due to leaking muons 

which stop and decay in the target; and 

D
c 
is the contribution to the observed rate due to chance coin- 

cidences in the target. 

Knowing the values for D o , DL , and D
c 

the observed rate due to neutral-

particle-induced events was determined to be 

D
N 

= 0.82 ± 0.15 events/hour. 	 (17) 

A summary of the individual rates and their errors appears in Table 4. 

Table 4. Composition of Raw Data 

Source 
	 Rate 

Total Rate (Do) 

Muon Leak Rate (D
L

) 

Chance Coincidence Rate (D
c
) = 

DN = Do - DL 
- D

c 

2.81 ± 0.04 events/hour 

1.16 ± 0.14 events/hour 

0.83 ± 0.02 events/hour 

0.82 ± 0.15 events/hour 
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Determination of Expected Muon Decay Rate From Incident Neutrons  

In the preceding section an observed event rate was established 

for the production of muons by neutral components of the cosmic 

radiation. Before the possibility of an anomaly in this rate can be 

discussed, the expected event rate in the detector must be established. 

The expected rate is that due to incident neutrons initiating the 

7-11-e decay chain within the target volume. This rate was calculated 

using available data on the cosmic ray neutron energy spectrum and the 

pertinent pion production cross sections. 

The Neutron Energy Spectrum  

The cosmic ray neutron energy spectrum was determined by Hess,  

et al.
28 

in 1959 and by Hughes and Marsden
29 

in 1966. The Hess 

determination at energies above about 10 MeV was based on data from 

large bismuth fission chambers and fron neutron-induced stars in 

photographic emulsions. The spectrum is given for energies to 10 GeV, 

but in reality is based on observations at sea level for energies only 

up to about 500 MeV. The extrapolation to higher energies was made by 

assuming the spectrum at sea level to have the same shape as the primary 

proton spectrum at the top of the atmosphere (Messel 32). This shape was 

taken from the proton spectrum of Singer, 1958.
30 

The Hughes and Marsden neutron energy spectrum was determined 

from data taken with a standard IGY neutron monitor operated in coin-

cidence with a magnetic spectrograph. The rate of interaction and the 

resulting multiplicity of evaporation neutrons was determined for each 

of the charged components of the cosmic radiation. This was compared 

with the total rate and multiplicity in the detector and the difference 
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was attributed to the incident neutron flux. Hughes and Marsden assumed 

the shape of the sea level neutron spectrum at higher energies to be the 

same as that of the sea level proton flux. Their data were fitted to the 

sea level proton spectrum of Brooke and Wolfendale, 1964.
31 

A plot of 

the Hess spectrum and the Hughes and Marsden spectrum is shown in Figure 

32. 

The Hughes and Marsden neutron spectrum was used in the present 

analysis. This decision was based on the following observations: 

1. The Hughes and Marsden experiment was sensitive to neutron 

energies from 50 MeV to in excess of those required in the present 

analysis. 

2. The Hess experiment was sensitive to neutron energies up to 

approximately 500 MeV; one half that required in the present analysis. 

3. The high energy tail of the Hughes and Marsden neutron spec-

trum approaches that of the presently accepted proton spectrum. The 

Hess spectrum does not. 

The data for the above neutron spectra were collected at or nor-

malized to 44 °N. latitude. These data must be corrected for the lati-

tude effect associated with the earth's magnetic field before use in 

the present analysis. The following correction was indicated from the 

work of Simpson 

Neutron Intensity at 34 °N.  
± 

Neutron Intensity at 44°N. -- 0.70 
	0.02 . 
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Figure 32. The differential neutron energy spectrum at sea level as 
given by Hess and modified by Hughes and Marsden. After 
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Pion Production Cross Sections  

The source of neutron produced pions in the target region of the 

detector are the interactions 

n 	C
12 	

7
± 	

. . 	 (18) 

and 

n 	H 	-4- 7 	. . 	 (19) 

It was desired to calculate the number of pions produced per unit 

pion energy per unit solid angle per nucleus. Unfortunately complete 

d
2
a/dE dC2 cross sections for these reactions are available only at 600 

MeV (Oganesyan 
34
). However, these data do indicate that the contribu-

tion due to neutron interactions with hydrogen is relatively unimportant 

in the present experiment. 

The problem associated with the lack of detailed experimental in- 

- 
formation about the n + u 

12  .4. Tr+ 	. . . processes was dealt with by 

reducing it to several smaller problems. In particular, information was 

independently gathered on (1) the differential cross section da/dE
n 

for pion production as a function of incident neutron energy between 0.1 

and 1.1 GeV, and (2) the energy and angular distribution of emitted pions 

from these processes. 

Information used to construct differential cross section curves 

(da/dE
n 

versus E
n
) for pion production by neutrons was obtained from sev-

eral sources. The only experimental n + C
12 	

7
+ 	

. . . data are those of 

Oganesyan 34 at an incident neutron energy of 600 ± 100 MeV. Data points 

at 340 MeV were determined by using the p + C -4- 7 	. . . data of 
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Dudziak 35 and assuming that the cross sections for p + C
12 

4- 7 1' 	. . 

can be equated with the cross sections for n + C
12 4- 7+ 	 This 

assumption was based on the results of fp + C
12 	

7
-4- 	

. . experi- 

ments performed by Bradner, et al.
36 

in 1950. Likewise a it data 

point at a neutron energy of 660 MeV was determined from the p + C
12 

4- 

7
+ 	

. . . data of Meshkovskii.
37 

The remaining information used in the determination was taken 

from the results of the intranuclear cascade calculations of 

Bertini. 38,39  Differential cross sections were determined at 500, 1000, 

and 2000 MeV from his calculations of neutrons interacting with oxygen-

16. The A
2/3 

rule which has been shown to be accurate for the present 

range of nuclear masses
40,41 

was used to determine the carbon cross 

sections from those of oxygen. 

The resulting differential cross sections for pion production 

from neutrons onto C 12 as a function of incident neutron energy are 

shown in Figure 33. The curves through the data points were drawn to 

guide the eye and were also used for interpolation between data points. 

In the process of collecting the data used in this determination 

numerous "bits" of n + C
12 

4- 7
+ 	

. . . and p + C
12 

4- it 	. . . cross 

section data were tabulated. This information appears in Appendix B. 

To determine the expected muon production rate from the n + C
12 

4- 

it 	. . . processes requires not only a knowledge of the neutron energy 

dependence of the production cross sections, but also a knowledge of the 

energy and angular distributions of the emitted pions. The p + Be 4- 

it + . . . experiments of Yuan and Lindenbawn
42 

at 1.0 and 2.3 GeV, 

followed by similar experiments with carbon at 660 MeV by Meshcheriakov, 
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et al., 43 
and Meshkovskii, et al.,

37 
offer strong evidence that in these 

processes the energy of the emitted pion in the center-of-mass system  of 

the colliding nucleons is independent of the incident nucleon energy and 

the angle of pion emission. In all four experiments a strong resonance 

is reported in the pion energy distribution near 100 MeV. As pointed out 

by Yuan and Lindenbaum
42 

these data indicate that the predominate source 

of pions is through the excitation of one of the colliding nucleons to 

an excited state 
(P3/2,3/2) 

 from which the nucleon returns to the ground 

state by pion emission. 

The center-of-mass pion energy distributions of Meshcheriakov, 

et al.
43 

were used in the present analysis. These curves are shown in 

Figure 34. The conversion of these distributions to the lab system will 

be discussed later. 

For the purposes of this analysis the angular distribution of the 

emitted pions in the center-of-mass system of the colliding nucleons 

was assumed to be independent of the incident nucleon energy and equal 

to that distribution measured by Oganesyan
34 

at a neutron energy of 600 

MeV. These distributions are shown in Figure 35. 

The conversion of the pion energy and angular distributions to 

the lab system was accomplished via the transformations derived by 

Hopper
44 
 and listed below: 

* 	* 
S sin e 

7  
 tan 6 

TT 	* 	 *

7 
- 	 V1 — (3 2  

C 

	

(3 	cos 6 + 13 

	

7 	 7 	C 

(20) 

and 
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* 	* 	* * 
u+ s 13. cos 0 u 

c 7 Tr 	 IT 	IT u 

where the asterick (*) implies a quantity measured in the center-of-

mass coordinate system. The characters used in the above equations are 

defined as follows: 

6Tr is the angle of pion emission with respect to the incident 

nucleon; 

uTr is the total energy of the pion; 

Tr 
is the velocity of the pion in the center-of-mass coordinate 

system; and 

c 
is the velocity of the center-of-mass with respect to the lab 

system. 

Pion Production in Target  

The cosmic ray neutron flux at the detector site and the perti- 

+ 
nent pion production cross sections for the processes n + C

12 	
Tr + . . 

have been determined. This information will be used to calculate the 

pion production rate in the target region of the detector, and will, 

with application of pertinent detection efficiencies, yield an expected 

neutral-particle-produced muon rate due to incident neutrons. 

Figure 36 shows the flux-cross section product for the production 

of pions of both signs by cosmic ray neutrons incident on carbon 

nuclei. The integral of these products from 0.1 to 1.1 GeV yields 

(21) 

= 1.15 x 10
-30 
 pions/second • carbon nucleus 	(22) 

for the production of positive pions, and 
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u 	= 4.27 x 10
-30 
 pions/second • carbon nucleus 
	

(23) 

for the production of negative pions. 

In the case of positive pion production the vast majority of the 

pions comes to rest and then decays to muons. The case of the negative 

pion is different since any negative pion which comes to rest will, 

with very high probability, undergo nuclear capture with no resulting 

muon. From the calculations of Shelby
15 

approximately two percent of 

the negative pions do decay in flight. Thus an effective  flux-cross 

section product for the pi-minus event is 0.02(u0, or 

u eff 
= 0.085 x 10

-30 
 pions/second • carbon nucleus . 	(24) 

A total flux-cross section product for pion production can be obtained 

by adding the individual products: 

teff = u t + eff 
	 (25a) 

= (1.23 ± 0.26) x 10 -3°  pions/second • carbon nucleus . 	(25b) 

The error includes an eight percent uncertainty in the incident 

neutron flux
29 

and an estimated 13 percent uncertainty in the pion pro-

duction cross sections. 

If it were not for the attenuation of the incident neutron beam by 

the overburden and the self-shielding characteristics of the detector, the 

pion production rate in the target would be equal to the above flux-cross 

section product multiplied by the number of carbon nuclei in the target. 

After measurements of Hess
28 

the absorption length for the incident neu-

trons was taken to be 150 gms/cm
2

. 

Assuming a vertical neutron flux, a carbon density of 3.77 x 10
22 



nuclei/cm-'
120 

'
45 
 and a neutron absorption length of 150 gms/cm

2
, the 

pion production rate in the target was determined to be 92.1 x 10 -4 

events/second or (33.1 ± 8.6) per hour. A summary of the information 

used to make this determination appears in Table 5. 

Table 5. Summary of Data Used To Determine 
Pion Production in Target Volume 

Parameter 	 Value 

a+(I) (0.1 - 1.1 GeV) 	 (1.15 ± 0.24) x 10
-30 
 pions/second- 
carbon nucleus 

o
+

(I,  (0.1 - 1.1 GeV) 	 = 	(4.27 ± 0.89) x 10
-30 
 pions/second- 
carbon nucleus 

- 
a

eff 
(0.1 - 1.1 GeV) = 	(0.0855 ± 0.018 x 10

-30 
 pions/second- 

carbon nucleus 

a+(1) +
eff 

(0.1 - 1.1 GeV) 	(1.23 ± 0.26) x 10
-30 

 pions/second- 
carbon nucleus 

carbon nuclei/cm 3 
	

= 3.77 x 10
22 

carbon/cm
3 

Pion production rate in target ■ (33.1 ± 8.6) pions/hour 

Detection Efficiency for Pion Pulse  

An absolute pion production rate by cosmic ray neutrons has been 

established. It is desired to know what fraction of this rate was 

observed during the collection of the neutral-particle-induced muon 
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data. This observed rate will be equal to the absolute pion pro-

duction rate multiplied by the detection efficiency for the pion 

pulse multiplied by the detection efficiency for the p-e decay pulse. 

The efficiency for the detection of the pion pulse was determin-

ed with the aid of a computer model of the detector. A FORTRAN program 

modeling pertinent aspects of the incident neutron flux, the pion pro-

duction cross sections, the pion energy and angular distributions, and 

the detector's geometry was written for the Georgia Tech Univac 1108. 

Using Monte Carlo techniques it was possible to integrate the incident 

neutron flux over the detector volume, simulating pions whose energy, 

angle of emission and charge distributions corresponded to those of 

available experimental data. 

To insure statistically meaningful results 100,000 pion produc-

tion histories were computed and tabulated. These histories were used 

to determine the pion detection efficiency by observing the fraction 

of events giving a satisfactory signature. To be considered satis-

factory an event had to be above threshold and not violate the anti-

coincidence system. 

Due to the uncertainties in the target and anticoincidence thresholds 

the Monte Carlo program was run using five different combinations of these 

parameters. Based on the results of these computations a pion detection 

efficiency of e l  = 0.21 ± 0.01 was established. A summary of the results 

of these five computations appears in Table 6. The error is that associ-

ated with the uncertainty in the threshold energy of the target discrimi-

nators (see Figure 18). 



Table 6. Pion Detection Efficiency As A Function of Target And 
Anticoincidence Threshold Energy 

Target , 	 Anticoincidence 	 Detection 
Threshold" 	 Threshold 	 Efficiency 

(MeV) 	 (MeV) 	 (percent) 

	

8.32 
	

10.0 
	

20.3 

	

8.32 
	

15.0 
	

20.7 

	

8.32 
	

20.0 
	

21.1 

	

12.00 
	

15.0 
	

17.6 

	

8.32 
	

15.0 
	

20.7 

	

5.00 
	

15.0 
	

23.7 

* 
Referenced to scintillator-light pipe interface. 

Determination of the 4-e Decay Electron Detection Efficiency  

The efficiency for the detection of the emitted electron in muon 

decay can be considered as the product of several other efficiencies. In 

particular, if e
2 
is the total detection efficiency, it can be repre-

sented as 

e
2 
 = f

L  f1 
F(f2' 

 f 3 
 ) 

-  

where 

f
L 

is the fractional life-time of the detector, 

f
1 
is the fraction of muon decays falling within the specified 

time window, 

f
2 
is the fraction of muon decay electrons above threshold, 

f
3 
is the fraction of muon decay electrons not violating the 
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anticoincidence system, and 

F(f2,f3) is the fraction of muon decay electrons above threshold but 

not violating the anticoincidence system. 

The methods used to determine each of these quantities will be summar-

ized. 

The live-time of an electronic system is that time, usually ex-

pressed as a percent, during which the system is sensitive to input. 

There are many possible sources for a loss of system live-time. A 

significant loss can occur as the result of the finite time required to 

process and store information. Some logic circuits have an inherent 

dead-time during which re-initialization of circuits must take place. 

The primary source of lost live-time in the present experiment was the 

anticoincidence system. The system's high count rate and the long veto 

pulse width combined to yield a non-negligible dead-time for the ex-

periment. 

The live-time of the system used to collect neutral-particle-

induced muon data was determined by introducing artificially generated 

signals into a target discriminator of the neutral particle logic and 

noting what fraction of the inputs was accepted for analysis. A 

system live-time of (82.8 ± 3.3) percent was established. 

Recall that the signature of an interesting neutral-particle-

induced event consisted of the production of a charged particle by an 

incident neutral cosmic ray, followed by the characteristic decay of a 

muon. The search for the muon decay pulse was started 256 nanoseconds 

after the neutral-particle-induced pulse and lasted for 8.6 microseconds. 
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Assuming a muon lifetime of 2.15 microseconds it was determined that 

this time window accepted 87.2 percent of the muon decays. 

The fraction of muon decays above threshold, but not violating 

the anticoincidence system was determined with the aid of a FORTRAN 

computer program written for the Georgia Tech Univac 1108. Using Monte 

Carlo techniques, 11-e decay electrons were generated with the proper 

energy and angular distribution throughout the target volume of the 

detector. The history of each electron was examined to determine if it 

represented a satisfactory decay event. To be satisfactory an event 

had to be above the energy threshold with respect to the photomultiplier 

tubes at each end of the target cell, and must not have violated the 

anticoincidence system. The ratio of the number of satisfactory events 

to the number of trials was used as a measure of the quantity F(f 2 ,f3 ). 

To insure statistically meaningful results the program tabulated 525,000 

histories. 

Due to a large uncertainty in the anticoincidence threshold 

energy the above program was run for five different threshold energies. 

From the results of these runs, which are summarized in Table 7, the 

quantity F(f2 ,f 3) was determined to be 0.29 ± 0.02. 

From the above individual efficiencies the 1.1-e detection effic-

iency was determined to be 

e2  = 0.19 ± 0.03. 

A summary of the individual efficiencies and the product efficiency 

appear in Table 8. 



Table 7. p-e Decay Electron Detection Efficiency as a Function 
of Anticoincidence Threshold 
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Anticoincidence Threshold Energy 
(MeV) 

p-e Decay Detection Efficiency 
(Percent) 

10.0 28.86 

15.0 31.04 

20.0 32.92 

25.0 34.46 

30.0 35.61 

Table 8. Individual and Product Detection Efficiencies for the 
p-e Decay Electron 

Factor Efficiency 

System live-time (f 2 ) 0.828 ± 0.033 

p-e Decay Time Window (f 1 ) 0.872 ± 0.009 

Satisfactory Signature (F(f 2 ,f 3 )) 

p-e Detection Efficiency 
(e2 

= f
L
f
1
F(f

2'
f
3
)) 

0.29 

0.19 

± 0.02 

± 0.03 
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Observed Rate Erected From Neutron Production of Pions  

The signature used to collect neutral-particle-induced muon 

data corresponded to the production of a charged particle by an incident 

neutral cosmic ray, followed by the characteristic decay of a muon. 

High energy neutrons can create this signature by producing energetic 

pions in the target volume. Due to its low energy, the muon in the 

Tr-11 decay will not be seen and the p-e decay then becomes the second 

pulse of the required signature. 

Applying the above determined pion and electron detection ef-

ficiencies to the absolute pion rate for the target volume yielded an 

expected observed  event rate due to neutrons of 1.31 ± 0.59 events/hour. 

The data used to make this determination are summarized in Table 9. 

Table 9. Data for Determination of Observed Rate Due to Neutrons 

Absolute Pion Production Rate in 
Target By Neutrons 

Detection Efficiency for Pion 
Pulse 

Detection Efficiency for 11-e 
Decay Electron Pulse 

Observed Rate Expected From 
Neutrons 

= (33.1 ± 8.6) events/hour 

= 0.21 ± 0.01 

= 0.19 ± 0.03 

= 1.31 ± 0.59 events/hour 



CHATTER V 

CONCLUSIONS AND RECOMMENDATIONS 

During the past ten years experiments performed by others have 

yielded results that indicate an anomaly in the rate of production of 

muons by neutral components of the cosmic radiation. Perhaps more ex-

citing is the observation that the event rate fluctuates with sidereal 

time, and contains a significant peak at approximately 21 hours right 

ascension. It is worth noting that the inner arm of our galaxy is 

directly overhead at that time. These results raise the very interest-

ing possibility that the detection of events having a particular sig-

nature might yield additional information about the structure and com-

position of our galaxy. 

A versatile cosmic ray facility was designed and constructed to 

allow continuing studies in the field of muon production by neutral 

components of the cosmic radiation. This facility and the use of it 

to study the rate of production of single muons by incident neutral 

cosmic rays has been described in previous chapters. A summary of the 

results of this work will be given in two parts: (1) results germane 

to the construction of the facility, and (2) results germane to the single 

muon production experiment. Recommendations for future studies will be 

used to conclude the chapter. 
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Conclusions  

The Facility 

An efficient, high flash point, organic liquid scintillator was 

developed for use in the large-volume cosmic-ray detector. The 

scintillator consists of heavy mineral oil as primary solvent, naph-

thalene as secondary solvent, PPO as scintillator and Bis -MSB as wave-

length shifter. The results of experimentation indicate that optimum 

concentrations by weight in mineral oil are: 2.5 percent naphthalene, 

0.35 percent PPO, and 0.01 percent Bis-MSB. 

The removal of dissolved oxygen from an organic liquid scintillator 

usually results in a significant improvement in the light output of that 

liquid. Studies with relatively small samples of the mineral oil base 

scintillator indicated that an improvement in response of approximately 

15 percent could be obtained by bubbling the liquid with helium gas to 

remove dissolved oxygen. The absolute light output of the deoxygenated 

scintillator was determined to be 75 to 80 percent of that of Nuclear 

Enterprise's N.E. 213 liquid scintillator (also deoxygenated). 

The decay time of the mineral oil base liquid scintillator was 

determined to be of the order of 25 nanoseconds, much slower than most 

organic scintillators. 

Prior to the collection of data on neutral-particle-induced muon 

events, the facility was used to determine the muon lifetime in mineral 

oil. This determination experimentally verified the predicted muon life-

time in mineral oil and also served as a final check on the system. 

The obtained value of 2.13 ± 0.05 microseconds is in good agreement with 

the value of 2.11 microseconds predicted by Reines.
27 

88 



89 

The Neutral Particle Experiment  

Neutral-particle-induced muon lifetime data were collected for 

1,802.63 hours at an average raw data rate of 2.81 events/hour. After 

corrections for background, these data were fitted to a single exponential. 

A mean lifetime of 2.15 ± 0.09 microseconds was obtained, indicating that 

the observed events did involve the decay of the muon. 

The observed neutral-particle-induced event rate, after correction 

for the chance rate and for leaking muons, was determined to be 0.82 ± 0.15 

events/hour. A predicted event rate due to incident neutrons producing the 

7-p-e decay chain within the detector was determined by applying Monte 

Carlo techniques to available neutron flux and cross section data and per-

tinent detector parameters. A value of 1.31 ± 0.59 events/hour was 

predicted. 

The available evidence indicates that the sea level cosmic ray neu-

tron intensity is sufficient to account for the observed neutral-particle-

induced muon event rate in the detector. Although this is by far the more 

palatable conclusion, it should be pointed out that the errors in the two 

rates allow for up to 25 percent of the events to be due to processes 

other than pion production by incident neutrons. In conclusion, no obvious 

anomaly in the rate of production of muons by neutral components of the 

cosmic radiation was observed. 

A second problem still exists. Other researchers have reported 

that the neutral-produced-muon event rate fluctuates in time in such a 

manner as to suggest the presence of several sources on the celestial 

sphere. If neutrons are the sole source of events in the detector, and 

thus responsible for the sidereal dependence of the event rate, the origin 
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of these neutrons must be explained. 

It is unlikely that the sidereal effect is the result of primary 

cosmic ray neutrons. The short lifetime of the neutron (— 12 minutes) and 

the enormous distances to even our nearest celestial neighbors (.?, 4.2 light-

years) coupled with the observed detector rates would tend to rule out that 

possibility. A more likely explanation would be that the neutrons are se-

condary particles created within the earth's atmosphere by high energy 

primaries, or other secondaries. Any incident primary cosmic ray could 

initiate such an event, but due to its abundance, the proton would be a 

likely candidate. Statements of a more definitive nature will have to 

await the results of further experimentation. Potentially fruitful areas 

for research include anisotropy studies of the primary cosmic radiation 

and studies designed to identify the incident neutral particle. 

An interesting result of the present work is evidence that the sea 

level neutron flux as determined by Hughes and Marsden is a closer approxi-

mation to the actual flux than that determined by Hess. Calculations em-

ploying the Hughes and Marsden spectrum yielded a predicted event rate for 

the detector in agreement with that observed. Such was not the case with 

the higher neutron flux of the Hess spectrum. 

Recommendations  

The dual objective of this work was to design and build a cosmic 

ray facility to allow continuing studies of muon production by neutral 

components of the cosmic radiation, and to use this facility to conduct a 

specific experiment. It is thus natural to divide recommendations and 

comments into those pertaining to improvements in the facility and those 
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pertaining to future experimentation with the facility. 

In addition to the calibration of the detector and the collection 

of data on neutral-particle-induced events, the first year of operation of 

the detector was also used as a time to evaluate the system. As a result 

of that evaluation, the following changes are suggested: 

1. Improve the charged particle rejection of the end anticoinci-

dence detectors. This could be accomplished by replacing the existing 

detectors with two-inch thick sheets of plastic scintillator. An addi-

tional improvement could be gained by mounting the accompanying photo-

multiplier tubes at the top of the plastic sheets. 

2. Replace the liquid scintillator in target cell B by a liquid 

with a much faster decay time, or possibly replace the entire cell with 

an equivalent slab of plastic scintillator. The need for a fast detector 

in the target region will be discussed below. 

3. Elevate the entire detector to allow insertion of small survey 

detectors below the lower anticoincidence system. 

A major difficulty associated with determining if an anomaly exists 

in the rate of production of muons by neutral components of the cosmic 

radiation results from a lack of knowledge of the incident neutron spec-

trum and the necessary pion production cross sections. The sea level neu-

tron spectrum has been determined by two different research groups with 

the result that their distributions differ by a factor of approximately 

two in the energy range of interest. Furthermore, these distributions 

must be corrected for a latitude effect which is also not accurately 

known. 
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The problem is further compounded by the fact that there is very 

little cross section information concerning neutron interactions of the 

type: neutron + nucleus 	pion + other. For carbon, the target nucleus 

in the present experiment, complete d
2
cy/dEdO information is available 

only at a neutron energy of 660 MeV. 

A brute force approach to a solution of the anomaly problem is 

possible. This approach would require determining the cosmic ray neutron 

energy spectrum and the necessary pion production cross sections to the 

desired accuracy, and repeating the type of calculations used in the pres-

ent work. Such an undertaking would be a formidable task and is not 

likely to occur in the foreseeable future. 

The question then becomes: What can be done to solve the anomaly 

problem short of attacking it via the brute force method? If an anomaly 

exists, it either involves the pion as an intermediary particle or it does 

not. If it does, detailed flux and cross section information is necessary. 

An approach will be outlined in the following paragraphs which could be 

used with the present facility to search for an anomaly in the rate of 

non-pion produced muons by incident neutral particles. 

The rate of production of single non-pion produced muons by neutral 

components of the cosmic radiation is believed to be vanishingly small in 

a detector of the present size.
5 

Thus, an experimental study of the rate 

of production of neutral-particle-produced muons with a detector capable 

of distinguishing the pion-produced muon event from the non-pion-produced 

muon event should yield information concerning the possible existence of 

an anomaly in the rate of non-pion produced muons. With minor modifica-

tions, the present detector is ideally suited for such a study. 
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Basically, the suggested experiment is an extension of that de-

scribed in earlier chapters. The signature for an interesting event re-

mains the same: the production of a charged particle in the detector by 

an incident neutral cosmic ray, followed by the characteristic decay of a 

muon. The major difference involves the use of target cell B as a fast 

detector. Events occurring in this region of the detector volume would 

be examined for evidence of the presence of the entire 7-4-e decay chain. 

This would involve searching for the four MeV 7-4 decay pulse on the tail 

of the much larger slowing-down pulse of the pion. An anomaly would be 

indicated if a study of such events revealed that a non-negligible frac-

tion of the events did not involve the pion. Since the analysis would 

involve "fraction of events observed," detailed neutron flux and pion 

production cross section information would not be required. 

Such an experiment would require nanosecond timing capabilities. 

As mentioned in the facility recommendations above, target cell B would 

have to be replaced by a much faster detector. A second problem of major 

concern would be the storage of high resolution timing information occur-

ring in the vicinity of the first pulse while waiting for the remainder 

of the signature. To solve this problem, it is suggested that all non-

vetoed pulses from cell B be outputed to a fast oscilloscope. The com-

bination of the persistence of the oscilloscope phosphor and the expected 

event rate should allow interesting events to be photographed with very 

little interference from non-interesting events. 



APPENDIX A 

ELECTRONICS 

300 MHz Low Gain Mixer  

A wide band, dual output mixer was designed for the expressed 

purpose of linearly summing the fast anode signals for the target 

photomultiplier tubes of the cosmic ray detector. This mixer has the 

following desirable characteristics: 

1. dual isolated outputs, 

2. isolated test points for each input, 

3. available in two input and three input versions, 

4. inputs isolated from each other, 

5. NIX compatible, and 

6. a bandwidth of greater than 300 MHz. 

A schematic of the mixer is shown in Figure 37, and the technical 

specifications for the unit appear below: 

input D.C. offset - 1.44 volts 

output D.C. offset - zero 

test point D.C. offset - zero 

main output noise level - <0.125 my peak to peak 

band width - >300 MHz 

main output current gain - approximately 0.58 

test point current gain - approximately 0.59 

main output linearity - from less than 0.2 ma to greater than 
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12 ma, giving a dynamic range of greater than 60 

isolation between inputs - better than 43 db for X40 overload 

at input 

isolation between outputs - better than 32 db. 

150 MHz, X20 Mixer  

A 150 MHz, X20 mixer-amplifier was designed to linearly sum and 

amplify negative going pulses like those from the anode of a photo-

multiplier tube. The unit has dual isolated outputs, an isolated test 

point for each input, and can be built with an arbitrary number of in-

puts. A schematic of the mixer is shown in Figure 38 and the technical 

specifications are listed below: 

1. Main output voltage gain - 21.5 

2. Main output linearity - linear from below 0.2 my to 36 my 

referenced to input. 

3. Dynamic range - better than 72:1 

4. Main output noise - approximately 3.5 my peak to peak at 

output. 

5. Test point gain - about 0.6 

6. Test point linearity - linear to 440 my referenced to input 

7. Test point noise - less than 0.5 my peak to peak 

8. Isolation between inputs - 46 db 

9. Isolation between outputs - 47 db 

10. Test point isolation - shorting test point produced about 

0.4% change in main output 

11. Isolation of adjacent wide band mixer - 50 db. 
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12. D. C. offset - input - 1.35 volts 

output - 0.00 volts 

test point - 1.0 volts 

13. Overload recovery time (to within 5 my of base line): 

X2 overload - 120 nsec 

X10 overload - 190 nsec 

X75 overload - 950 nsec. 

15 Microsecond Updating Oneshot (AR-10)  

A 15 microsecond, updating oneshot was designed and built to 

serve as a system veto for the cosmic ray experiment. This unit accepts 

a NIM fast logic input from the detector's anticoincidence system and 

generates a NIM fast logic output which lasts for approximately 10 muon 

half-lives 
(T1/2 

- 1.54 psec). For the unit to function properly the 

input pulse must be at least 50 nanoseconds wide and the output must be 

D.C. coupled. The NIM standard output width of this unit may be varied 

from 12 to 18.7 microseconds. A schematic of the AR-10 appears in 

Figure 39. 

Electronic Instrument Inventory  

A facility inventory of electronic nuclear instrumentation appears 

in Table 10. This inventory includes console related instruments and 

high voltage power supplies. Photomultiplier tubes, special test in-

struments, and the previously described linear mixers are not included 

in this inventory. 
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Table 10. Inventory of Electronic Nuclear Instruments 

Quantity 	Manufacturer 	 Model Number 	Description 

100 

1 

4 
1 

EG & G, Inc. 

II  

n 

NIM INSTRUMENTATION 

AD128B/N 

AN102/N 
AN109/N 

2 It  AN201/N 
4 II  C102B/N 
1 II  C104/N 

1 It C104A/N 

1 11 DS104/N 
1 // F108/N 
1 n GG200/N 

2 II  LG102/N 

3 11 M127/N 
2 11 0R102/N 
1 /I TH200A/N 

2 n T120/N 

3 TD101/N 

1 II  TR104S/N 
1 n TR204A/N 

2 Advanced Res. Corp. AR-1 

2 
II AR-2 

4 II AR-3 
6 /I AR-4 
1 II  AR-5 

1 II  AR-6 
1 n AR-7 

Analog to Digital 
Converter 
6-input D.C. Mixer 
Biased Amplifier and 
Linear Gate 
Quad Amplifier 
Dual Coincidence 
4-Fold Coincidence 
with Veto 
4-Fold Coincidence 
with Veto 
Quad Scaler Driver 
Dual Fanout 
Gate Generator with 
Veto 
Linear Gate & 
Stretcher 
NIM Fan 
Dual OR/NOR 
Time-to-Amplitude 
Converter 
Quad Discriminator 
(updating) 
Diff. Discriminator 
(with LLT) 
Dual Discriminator 
Dual Discriminator 
(updating) 
Dual PreAmp-Coinc.- 
Sum-Lin. Gate-Delay 
Diff. Discriminator 
Dual Fixed Delay 
Incremental Delay 
Nanosecond Amplifier-
Coinc. 
Slow Coincidence 
Dual Pre-Amplifier 
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Table 10. 	Continued 

Quantity Manufacturer Model Number Description 

1 Advanced Res. Corp. 	AR-8 Dual Mercury Pulsers 
1 AR-9 Dual Logic Interface 
2 AR-10 Updating Oneshot Gate 

Generator 
1 ORTEC, Inc. 417 Fast Discriminator 
1 427 Delay Amplifier 
2 425 Incremental Delay 
3 EG & G, Inc. M120A/N Nimbin with power 

supply 
1 Bull Run BR-100 Nimbin with power 

supply 
2 EG & G, Inc. M125/N Unpowered Nimbin 
1 Bull Run BR-100 Unpowered Nimbin 

MULTICHANNEL ANALYZER COMPONENTS 

1 TMC, Inc. CN1024 Digital Computer Unit 
1 220C Data Output Unit 
1 240 Display, Control Unit 
1 210 Pulse Height Logic 

Unit 
1 211 Time-of-Flight Logic 

Unit 
1 216 Coincidence Pair Unit 
1 242 Two Parameter Unit 
2 210B Pulse Height Logic 

Unit 
1 243 Computer Program Unit 
1 Hewlett-Packard 561B Digital Recorder 
1 Tally 540R Paper Tape Punch 
1 Moseley 7590B X-Y Plotting System 

POWER SUPPLIES 

2 Advanced Res. Corp. Dual D.C. Power 
Supply (NIM Voltages) 

15 Hamner N4035 High Voltage Power 
Supply 

1 NJE 5326RM High Voltage Power 
Supply 



Table 10. Concluded 

Quantity Manufacturer Model Number Description 

SPECIAL TEST EQUIPMENT 

1 Tektronix 555 Dual Beam Oscillo-
scope 

1 RM566 Oscilloscope 
1 581A Oscilloscope 
2 L Plug-in Unit 
1 C-12 Oscilloscope Camera 
1 Advanced Res. Corp. AR-Hgl Mercury Pulser 
1 Data Pulse 111R Pulse Generator 

MISCELLANEOUS NUCLEAR INSTRUMENTS 

1 Science Accessories 032 Quadruple Delay 
3 Hamner N-286 Highspeed Scaler 
1 810 Electronic Timer 
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APPENDIX B 

PION PRODUCTION CROSS SECTIONS FOR CARBON 

During the search for cross section data for the reactions 

fnl + C 	+ . . ., numerous "bits" of experimental data were tabu- 
lated. A summary of these data appears as Table 11. 



Table 11. Summary of Available Experimental Cross Section Data for {n}  + C 	7 	. . 
Reactions from Threshold to 1.1 GeV 

Date Principal 
Author 

Ref.*  Reaction Incident 
Energy 

(MeV) 

Pion Lab 
Angle 

Observed 
(degrees) 

Pion 
Energy 

Observed 
(MeV) 

Output 
Pion 

Observed 

do/dD ci du /d Were d 2o/dE dc, 
7 

Data Presented? 

x 10
-27 

cm
2
/Sr 7+  TT - 

1949 Barkas A n + c 168 7
+ 

0 No N.A. 

1949 Barkas A n + c 156 -- 7 0 N.A. No 

1949 Jones & White B p + c 165-345 $(0-4-5) S(2-10) TT N.A. No 

1953 Hamlin C p + c 235 90 25-120 7+  Yes N.A. 

264 90 25-120 7+  Yes N.A. 

294 90 25-120 7+  Yes N.A. 

313 90 25-120 7+  Yes N.A. 

336 90 25-120 7+  Yes N.A. 
± 

1950 Bradner K n + c 270 90 50-65 7 No No 

1952 Clark D p + C 240 S(130-150) 40 7 
 

No No 

1955 Merritt B p + C 335 0 34-147 7
+ 
 -- Yes N.A. 

1954 Dudziak F p + c 340 0 7 2.1 0.0714 No No 
± 

90 -- 7 0.335 0.043 No No 

1953 Sagane G p + c 340 90 13,18,42 -- -- No No 
± 

1951 Richman H p + c 340 90 15-115 7 0.23 Yes Yes 

1957 Imhof I p + c 340 135 36,63 7
+ 

 -- -- No N.A. 

1953 Leonard J p + c 340 180 9-120 rr 0.177 0.0190 Yes Yes 

1951 Henley L p + c 345 0 & 90 No No 

+ 1953 Tokunaga M p + c 345 90 30,50,60 7 

+ 
1950 Richman N p + c 345 90 15-115 7 0.20 0.04 No No 

1950 Richman 0 p + c 345 90 15-115 7
± 
 0.20 0.04 Yes Yes 

1952 Passman P p + c 345 90 15-120 7+  0.47 Yes N.A. 

Passman p + c 365 90 15-120 7+  0.64 Yes N.A. 

Passman p + c 380 90 15-120 7+  0.67 -- Yes N.A. 

1952 Block Q p + c 381 90 0-125 
± 

7 0.53 0.042 Yes Yes 

1951 Block R p + c 381 90 0-120 
± 

7 0.52 0.046 Yes Yes 

Comments 

mass energy calculations 

relative yields for rr 

relative yields using 

scintillation counter - 

normalized to nuclear 

emulsion data 

Film 

relative yields, 7 ele-
ments 

no cross section data 
+ 

7 energy distributions 

Z dependence study 

good d 2a/dEdQ tables 

theoretical paper - 
formalism 

poor data points - 
large spread 

same as #14, but in 
more detail 



Table 11. Concluded 

Date Principal 
Author 

Ref.*  Reaction Incident 
Energy 

(MeV) 

Pion Lab 
Angle 

Observed 
(degrees) 

Pion 
Energy 

Observed 
(MeV) 

Output 

Observed 

do+/d2 dg /an 	Were d 2u/dE
u
dn 

Presented? Data 

Comments 

x 10
27 

cm
2
/Sr 

74-  
u 

 - 

1962 

1954 

1968 

1957 

1958 

1957 

1957 

1958 

1966 

Lillethum 

Rosenfeld 

Oganesyan 

Meshkovskii 

Meshkovskii 

Meshcheriakov 

Meshkovskii 

Azhgfrez 

Beer 

S 

T 

U 

V 

W 

X 

Y 

Z 

AA 

p + c 	450 	21.5 

450 	60 

450 	21.5 

450 	60 

p + c 	440 	90.0 

n + c 	600 	16 

600 	30 

600 	60 

600 	90 

600 	123 

p + c 	600 	45 

p + c 	660 	19.5 

660 	29 

660 	38 

660 	56 

660 	65 

p + c 	 660 	24 

p + c 	 660 	45 

p + c 	 670 	56 

p + c 	 600 	0.8 

600 	21.5 

725 	0 

was not available. 

83-236 

149 

132-200 

99 

25-300 

25-300 

25-300 

25-300 

25-300 

79-320 

102-356 

80-324

80-313 

75-278 

44-268 

60-400 

75-285 

30-394 

all 

all 

all 

71-  

7+  

7 

7 

7-1 

7 -1 

 71  

7± 

7± 

7± 

7 ± 

 ,+ 

+ 
7

7
-I- 

7+  

u
+ 

7 i  

7
+ 

7 

Ti  

Ti  

7 

11.1 

3.1 

-- 

0.83 - .11 

 1.51 

1.15 

0.60 

0.40 

0.35 

6.77 

12.34 

107. 213 

4.62 

3.70 

__ 

5.1 	0.8 

-- 

0.95 

0.43 
4- 

0.115± .024 

9.66 

7.32 

3.56 

2.40 

2.02 

1.00 

__ 

1.0 	0.2 

Yes 

Yes 

N.A. 

N.A. 

No 

No 

Yes 

No 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

N.A. 

N.A. 

Yes 

Yes 

No 

No 

Yes 

No 

Yes 

No 

Yes 

N.A. 

N.A. 

N.A. 

N.A. 

N.A. 

Yes  

N.A. 

No 

Yes 

Yes 

Yes 

good tabulation 

for d
2
oldDdE 

author notes lack of 

dc2 /dE an informa- 
7 

lion in 	literature  
12 

for n+c 	-. 7 1-   

...reactions 

concludes that u+meson 

energy independent 

of angle of emission 

and equal to - 100 

MeV in cms of col- 

liding nucleons 

tables of d
2g/dEdn 

NOTE: Dashes indicate that information 

Reference refers to Cross Section Bibliography on following pages. 



Cross Section Bibliography 

A. W. H. Barkas, Phys. Rev., 75, 1109 (1949). 

B. S. B. Jones and R. S. White, Phys. Rev., 78, 12 (1950). 

C. D. A. Hamlin, USACE Report UCRL-2414 (1953). 

D. D. L. Clark, Phys. Rev., 87, 157 (1952). 

E. J. Merritt and D. A. Hamlin, Phys. Rev., 99, 1523 (1955) 

F. W. F. Dudziak, USAEC Report UCRL-2564 (1954). 

G. R. Sagane, Phys. Rev., 90, 1003 (1953). 

H. C. Richman, M. Weissbluth, and H. A. Wilcox, Phys. Rev., 85, 161 
(1952). 

I. W. Imhof, H. T . Easterday, V. Perez-Mendez, Phys. Rev., 105, 1859 
(1957). 

J. S. L. Leonard, Phys. Rev., 93, 1380 (1954). 

K. H. Bradner, D. J. O'Connel, and B. Rankin, Phys. Rev., 79, 720 
(1950). 

L. E. M. Henley, Phys. Rev., 85, 204 (1952). 

M. S. Tokunaga, K. Yuasa, K. Nishikawa, T. Isii, J. Phys. Soc. Japan, 
8, 571 (1953). 

N. C. Richman and H. A. Wilcox, Phys. Rev., 78, 496 (1950). 

0. C. Richman, H. A. Wilcox, USAEC Report UCRL-592 (1950). 

P. S. Passman, M. M. Block, and W. W. Havens, Jr., Phys. Rev., 88 , 
1247 (1952). 

Q. M. M. Block, S. Passman, and W. W. Havens, Jr., Phys. Rev., 88, 
1239 (1952). 

106 



107 

Cross Section Bibliography (Concluded) 

R. M. M. Block, S. Passman, and W. W. Havens, Jr., Phys. Rev., 83, 
1967 (1951). 

S. E. Lillethun, Phys. Rev., 125, 665 (1962). 

T. A. H. Rosenfeld, Phys. Rev., 96, 130 (1954). 

U. K. O. Oganesyan, Sov. Phys.-JETP, 27, 679 (1968). 

V. A. G. Meshkovskii, Iu. S. Pligin, Ia. Ia. Shalaman, and V. A. 
Shebanov, Sov. Phys.-JETP, 5, 1085 (1957). 

W. A. G. Meshkovskii, Ia. Ia. Shalamov, and V. A. Shebanov, Sov. Phys.- 
JETP, 34, 987 (1958). 

X. M. G. Meshcheriakov, I. K. Vzorov, V. P. Zrelov, B. S. Neganov, 
and A. F. Shabudin, Sov. Phys.-JETP, 4, 79 (1957). 

Y. A. G. Meshkovskii, Iu. S. Pligin, Ia. Ia. Shalamov, and V. A. 
Shebanov, Sov. Phys.-JETP, 4, 842 (1957). 

Z. L. S. Azhgirei, I. K. Vzorov, V. P. Zrelov, M. G. Meshcheriakov, 
and V. I. Petrukhin, Sov. Phys.-JETP, 34, 939 (1958). 

	

AA. 	E. Heer, W. Hirt, M. Martin, E. G. Michaelis, C. Serre, P. Skarek, 
and B. T. Wright, Proceedings of the 1966 Williamsburg Conference 
on Intermediate Energy Physics, Williamsburg, Virginia, 1, 277 
(1966). 



LITERATURE CITED 

1. V. F. Hess, Physikalische Zeitschritt, 14, 610 (1913). 

2. W. Kohlh5rster and G. V. Salis, Naturwiss, 14, 936 (1923). 

3. A. E. Sandstrom, Cosmic Ray Physics, John Wiley and Sons, New 
York, 1965, Chapter 1, p. 58. 

4. A. E. Sandstrom, Cosmic Ray Physics, John Wiley and Sons, New 
York, 1965, Chapter 1, p. 2. 

5. E. Segre*, Nuclei and Particles, An Introduction to Nuclear and  
Subnuclear Physics, W. A. Benjamin, Inc., New York, 1964, p. 340. 

6. C. L. Cowan and D. F. Ryan, "Experimental Evidence for an Observ-
able Cosmic Neutrino Signal," unpublished report, Physics Depart-
ment, Catholic University of America, Washington, D. C. (1964). 

7. C. L. Cowan, "The Production of Muons," Proceedings of Informal 
Conference on Experimental Neutrino Physics, CERN-65-32 (1965). 

8. C. Cowan, D. Ryan, and G. Buckwalter, Proceedings of the Ninth 
International Conference on Cosmic Rays, Paper MU-NU-44 (London, 
1965). 

9. D. F. Ryan, V. Acosta, G. L. Buckwalter, W. M. Carey, Jr., C. L. 

Cowan, and D. J. Curtin, Physics Letters, 21, 475 (1966). 

10. T. B. Novey, "Cosmic Ray Induced '4-e' Events," Proceedings of 
Informal Conference on Experimental Neutrino Physics, CERN-65-32 
(1965). 

11. G. L. Buckwalter, C. L. Cowan, and D. F. Ryan, Physics Letters, 21, 
478 (1966). 

12. P. W. Hess, F. L. Talbott, and C. L. Cowan, The Astrophysical 
Journal, 148, L73 (1967). 

13. S. Standil and R. P. Bukata, Physical Review Letters, 12, 487 
(1964); Canadian Journal of Physics, 42, 1834 (1964); Can. J. Phys., 
43, 883 (1964). 

14. C. Malboux, P. Mosrin, and M. Scherer, C. R. Acad. Sc. Paris, 5262 
(20 Juin 1966). 

108 



109 

LITERATURE CITED (Continued) 

15. G. L. Buckwalter, G. Steffy, and D. D. Steffy, 1969 Spring Meeting 
of the American Physical Society, Paper AJ11 (Washington, D. C.). 

16. C. T. O'Sullivan, "Some Properties of a Neutral Component of the 
Cosmic Radiation," Ph.D. Thesis, Catholic University of America, 
Washington, D. C. (1969). 

17. R. N. Shelby, "A Background to the Observation of Direct Muon 
Production by Neutral Cosmic Rays Near Sea Level," Ph.D. Thesis, 
Catholic University of America, Washington, D. C. (1970). 

18. J. B. Birks, The Theory and Practice of Scintillation Counting, 
The MacMillan Company, New York, 1964, p. 99. 

19. J. C. Barton, A. Crispin, and M. Slade, Journal of Scientific 
Instruments, 41, 736 (1964). 

20. Witco Chemical Company, Sonneborn Refined Petroleum Products, New 
York. 

21. T. P. Lang, Jr., private communications, Advanced Research Cor- 
poration, Atlanta. 

22. R. W. Pringle, L. D. Black, B. L. Funt, and S. Sobering, Phys. 
Rev., 92, 1582 (1953). 

23. C. A. Ziegler, H. H. Seliger, and I. Jaffe, Phys. Rev., 99, 663 
(1955). 

24. B. L. Funt and E. Neparko, Journal of Physical Chemistry, 60, 
276 (1956). 

25. A. O. Weissenberg, Muons, North-Holland Publishing Company, Amster- 
dam, 1967, p. 59. 

26. "Time-To-Amplitude Conversion Calibration," Nanonotes, 1, January 
1964, publication of EG & G, Inc., Salem, Massachusetts. 

27. F. Reines, "Progress Report for A Research Program in Neutrino 
Physics, Cosmic Rays and Elementary Particles, 1 October 1969 to 
30 September 1970," University of California, Irvine (1970). 

28. W. N. Hess, H. W. Patterson, and R. Wallace, Phys. Rev., 116, 
445 (1959). 

29. E. B. Hughes and P. L. Marsden, Journal of Geophysical Research, 
71, 1435 (1966). 



LITERATURE CITED (Continued) 

30. S. F. Singer, "The Primary Cosmic Radiation and Its Variations," 
Progress in Cosmic Ray Physics, 4, 261 (1958). 

31. G. Brooke and A. W. Wolfendale, "The Momentum Spectrum of Cosmic 
Ray Protons Near Sea Level in the Momentum Range 0.6-150 GeV/C," 
Proceedings of the Physical Society (London), A83, 843 (1964). 

32. H. Messel, "The Development of a Nucleon Cascade," Progress in 
Cosmic Ray Physics, 2, 132 (1954). 

33. J. A. Simpson, Phys. Rev., 83, 1175 (1951). 

34. K. 0. Oganesyan, Soviet Physics-JETP, 27, 679 (1968). 

35. W. F. Dudziak, Phys. Rev., 95, 866 (1954) and "Production Cross 
Section for Positive and Negative Pions from Carbon Initiated by 
340 MeV Protons," UCRL-2564 (1954). 

36. H. Bradner, D. J. O'Connel, and B. Rankin, Phys. Rev., 79, 720 
(1950). 

37. A. G. Meshkovskii, Ia. Ia. Shalamov, and V. A. Shebanov, Soviet 
Physics-JETP, 34, 987 (1958). 

38. H. W. Bertini, "Preliminary Data from Intranuclear-Cascade Calcu- 
lations of 0.75, 1-, and 2-GeV Protons on Oxygen, Aluminum, and 
Lead, and 1-GeV Neutrons on the Same Elements," ORNL-TM-1996 
(1967). 

39. H. W. Bertini, private communication (1972). 

40. A. G. Meshkovskii, Iu. S. Pligin, Ia. Ia. Shalamov, and V. A. 
Shebanov, Soviet Physics-JETP, 4, 842 (1957). 

41. S. Passman, M. M. Block, and W. W. Havens, Jr., Phys. Rev., 88, 
1239 (1952). 

42. Luke C. L. Yuan and S. J. Lindenbaum, Phys. Rev., 103, 404 (1956). 

43. M. G. Meshcheriakov, I. K. Vzorov, V. P. Zrelov, B. S. Neganov, 
and A. F. Shabudin, Soviet Phys.-JETP, 4, 79 (1957). 

44. V. D. Hopper, Cosmic Radiation and High Energy Interactions, 
Prentice-Hall, Inc., Englewood Cliffs, 1964, pp. 19-27. 

110 



LITERATURE CITED (Concluded) 

45. E. Meyer, White Mineral Oil and Petrolatum and Their Related  
Products Petroleum Sulfonates and Microcrystalline Waxes,  Chemical 
Publishing Company, Inc., New York, 1968, 2nd ed., p. 10. 

46. W. H. Barkas, Phys. Rev., 75, 1109 (1949). 

111 



VITA 

Charles Thomas Brown was born December 21, 1941 in Montgomery, 

Alabama. He is the oldest of the three children of James Wiley and Jane 

Barber Brown. On June 17, 1966, he was married to Donna Edna Evans of 

Atlanta, Georgia. They have two daughters, Michele Leigh Brown and 

Yvonne Marie Brown. 

Mr. Brown attended Robert E. Lee High School in Montgomery, and 

entered Georgia Institute of Technology as a freshman in 1960. He re-

ceived the degrees of Bachelor of Science in Physics in 1964 and Master 

of Science in Physics in 1966. He is a member of Tau Kappa Epsilon, Tau 

Beta Pi, and Sigma Xi. 

Mr. Brown has been associated with the Georgia Tech Engineering 

Experiment Station as a Graduate Research Assistant since 1966. His 

activities during this period included developmental work related to neu-

tron detecting liquid scintillators, the design and construction of a 

parallel plate spark chamber, the development of new organic liquid scin-

tillators, and various contract related support activities for Advanced 

Research Corporation, an Atlanta based company. Several unpublished 

reports have resulted from these activities. 

112 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126

