
Automated Reasoning: Computer Assisted Proofs in Set Theory

Using Gödel’s Algorithm for Class Formation

A Thesis

Presented to

The Academic Faculty

by

Tiffany D. Goble

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in the

School of Mathematics

Georgia Institute of Technology

December 2004

Automated Reasoning: Computer Assisted Proofs in Set Theory

Using Gödel’s Algorithm for Class Formation

Approved by:

Dr. Johan G. F. Belinfante, Advisor

Dr. William Green

Dr. Panagiotis Manolios

August 17, 2004

TABLE OF CONTENTS

CHAPTER I BACKGROUND ON AUTOMATED REASONING

IN SET THEORY . 1

1.1 Axiomatization of Set Theory . 1

1.2 Automated Reasoning in Set Theory . 2

1.2.1 The AURA Program . 2

1.2.2 The ITP Program . 3

1.3 The Otter Program . 3

CHAPTER II THE GOEDEL PROGRAM 5

2.1 The Mechanics of the GOEDEL Program 5

2.2 Simplification Tools . 6

2.2.1 AssertTest . 6

2.2.2 Normality . 6

2.2.3 NotNotTest . 6

2.2.4 SubstTest . 7

2.2.5 Logical Arguments . 7

CHAPTER III THE REGULAR CLASS . 8

3.1 Characterization of REGULAR . 8

3.2 General Theorems about REGULAR . 8

3.3 Specific Membership Theorems About REGULAR 9

CHAPTER IV THE RUSSELL CLASS . 14

4.1 Russell’s Paradox . 14

4.2 Characterization of RUSSELL . 14

4.3 Theorems about RUSSELL . 15

CHAPTER V EQUIVALENCE RELATIONS 18

5.1 Characterization of EQUIVALENCE[x] 18

5.2 Theorems about EQUIVALENCE[x] . 18

CHAPTER VI PARTIAL ORDERINGS . 21

6.1 Characterization of PARTIALORDER[x] 21

6.2 Theorems about PARTIALORDER[x] 21

CHAPTER VII TOTAL ORDERINGS . 25

7.1 Characterization of TOTALORDER[x] 25

7.2 Theorems about TOTALORDER[x] . 25

CHAPTER VIII CONCLUSIONS . 29

APPENDIX A . 30

APPENDIX B . 44

APPENDIX C . 51

APPENDIX D . 61

APPENDIX E . 69

REFERENCES . 78

CHAPTER I

BACKGROUND ON AUTOMATED REASONING IN

SET THEORY

1.1 Axiomatization of Set Theory

Early attempts to formulate set theory without the use of an axiom system all led to para-

doxes. It has become necessary to adopt a consistent set of axioms in order to develop

the ideas of set theory. In the axiomatization of set theory, no definition is used for the

concept of a set or the relation between a set and its elements. Instead, a few axioms are

assumed and from them everything else must be proven to be true. The first axiomatization

of set theory was given by Zermelo19 in 1908. In this theory the following five axioms

are standard: equality axiom, pairing axiom, sum-set (or union) axiom, power-set axiom,

and subset axiom. Skolem11 and Fraenkel5 independently contributed the axiom of replace-

ment in 1922 as a replacement for the axiom of subsets. This axiom is needed for transfinite

induction and ordinal arithmetic.10

In contrast to the system described above, von Neumann,12 Bernays3 and Gödel6 developed

their own axiom systems of set theory. In Gödel-Bernays class theory, we begin with the

premise that everything is a class. Then, we define a class to be a set if there is a class

to which it belongs. Classes that are not sets are proper classes. It was postulated by von

Neumann that proper classes are those objects that can be mapped onto V, the universal

class. The Bernays-Gödel system can be proven to be consistent with the Zermelo system

above. In the Bernays-Gödel system, the axiom of subsets states that if x is a subclass of y

and y is a set, then x is a set. The axiom of replacement states that if f is a function and x

is a set, then the image of x under f is a set.

1

An additional axiom that can be assumed is the axiom of choice, also called the multiplica-

tive axiom. In this axiom, a set is not uniquely determined by its data, and thus this is not

labelled as a constructive axiom. That is, one cannot construct sets from this axiom alone.

A couple of questions that were asked early on about the axiom of choice were whether it

is consistent with the other axioms and whether it is independent of the other axioms. The

answer to the first question was provided by Kurt Gödel,6 who proved that the axiom of

choice is consistent, while the latter question was answered by Paul Cohen,4 who proved

the independence of the axiom of choice. A few other axioms that are involved in this

formulation of set theory are the axiom of infinity, the axiom of substitution, and the axiom

of foundation.

1.2 Automated Reasoning in Set Theory

Automated reasoning involves the use of computer programs to search for and verify proofs

of theorems. The difference between automated reasoning and logical reasoning by humans

is that automated reasoning often lacks instantiation and assumptions. It does, however,

contain inference rules and make explicit use of strategies.

Some of the most successful applications of automated reasoning are in the field of expert

systems. In very specific instances within this field, automated reasoning programs are

being used at the same level as human experts. Other applications of automated reasoning

programs lie in verifying the performance of computer programs and creating computer

programs given certain specifications. They are also applicable to real time systems control,

the design and validation of logic circuits, and controlling intelligent robots.

1.2.1 The AURA Program

One of the earliest automated reasoning assistants was named AURA.18 This was written in

IBM 360/370 assembly language and PL / I. This program obtained a lot of the first results

in automated reasoning, but it lacked portability because of the language it was written in.

In AURA, the user was able to set flags and choose variables for control parameters before

2

executing the program.

1.2.2 The ITP Program

Another earlier automated reasoning program was named ITP. This program was written

in Pascal by Lusk and Overbeek,15 and provided a user with some interactive use.

1.3 The Otter Program

William McCune of Argonne National Laboratory wrote an automated reasoning program

in 1988 named Otter. This is written in C and performs somewhat similarly to the AURA

program, in that it allows the user to set flags and choose values for control parameters but

is not interactive in nature.16 In fact, both AURA and ITP are predecessors of the Otter

program, although Otter’s execution time is much faster.

Since Otter only draws conclusions if they follow from given hypotheses,17 there is no

chance for logical fallacies or unsound arguments. However, a drawback to Otter is

that it must assume some conjecture and look for contradictions in order to disprove the

negative of the conjecture. This means that Otter is used more to prove things the user

already suspects is true, rather than being used exploratively to discover new theorems.

Otter provides many strategies to improve one’s chances of success when searching for

proofs. One of these strategies is a unit preference strategy, which means that it avoids

compound conclusions. Another is a set of support strategy, which helps Otter avoid

drawing conclusions that are reached only from background hypotheses and thereby helps

the program focus on the theorem for which a proof is sought. These strategies, as well as

others, help to eliminate many problems that face automated theorem proving programs.

Otter’s existence has proven useful in mathematics. In 1996, McCune9 used the Otter

program to solve the Robbins Algebra problem, which asks whether the three axioms for a

Robbins algebra axiomatize Boolean algebra.

Researchers have provided clausal versions of the von Neumann-Bernays-Gödel set theory

3

that can be programmed into an automated reasoning program. This is possible because

the NBG version of set theory has a finite number of axioms, all of which can be input into

a computer. After extensive use of the Otter program, Quaife13 believes that

“There is no apparent obstacle to the development of set theory through con-

siderably more difficult theorems.”

4

CHAPTER II

THE GOEDEL PROGRAM

2.1 The Mechanics of the GOEDEL Program

The GOEDEL program, written and developed by Dr. Johan G. F. Belinfante,1 is a computer

implementation of Gödel’s algorithm for class formation. MathematicaÔ is used as an

interface for the GOEDEL program. Replacing the axioms for class formation are a few

axioms for basic class constructions. All classes must be defined in terms of two basic

classes, V and E, and seven basic class constructors: complement, domain, flip,

rotate, pairset, cart, and intersection. In the GOEDEL program, V is the

universal class and E is the membership relation.

Although the GOEDEL program is not able to carry out deductions automatically, it can

verify deductions carried out interactively. Also, in some cases it can prove statements by

way of simplifying them to true. Oftentimes it will produce such a result, due to the many

simplification rules in the program which are necessary due to the complicated output of

Gödel’s algorithm. The GOEDEL program contains two quantifiers, forall and exists,

but these can only be applied to sets, since Gödel’s algorithm does not apply to statements

containing quantifiers over classes.

The GOEDEL program serves two important purposes, to reformulate statements contain-

ing quantifiers into statements without quantifiers and to act as an interactive reasoning

program through with a user can discover new theorems.2 Once statements are reformu-

lated or discovered, they can then be input into the Otter program in order to obtain

clean proofs. The GOEDEL program can also be used to rewrite statements in set theory as

equations without variables. Often, this is done with a statement involving class. When

class occurs in a statement, Gödel’s algorithm is invoked and the simplification rules in

5

the GOEDEL program are applied.

Work done in the GOEDEL program is done within the framework of the Gödel-Bernays

class theory. Because of this, the collection of sets we consider do not have to be sets

themselves, but can instead be proper classes.

2.2 Simplification Tools

2.2.1 AssertTest

AssertTest compares a statement to the result after applying assert to the state-

ment. The input assert[p] will apply Gödel’s algorithm to class[w,p], or the class

of all w such that p is true. In this case, the variable w must not appear anywhere in p.

Using assert converts a statement into an equation of the form equal[V,x] or, equiv-

alently, equal[0,complement[x]]. Also, assert will convert negative statements

into positive ones and will convert statements containing quantifiers into logically equiva-

lent statements without quantifiers.

2.2.2 Normality

Normality is another tool often used to simplify expressions; Normality[x] com-

pares xwith class[y,member[y,x]]. Other tools similar to Normality are Renormality,

which is Normalitywith an extra assert, and Rerenormality, which is Normality

with two extra asserts. There are also similar tests for relations (RelnNormality,

RelnRenormality, and RelnRerenormality) and vertical sections (VSNormality,

VSRenormality, and VSRerenormality).

2.2.3 NotNotTest

When NotNotTest is applied to a statement in the GOEDEL program, it causes the state-

ment to be negated twice, in the course of which the GOEDEL program searches for a

6

simplification of the original statement. If no simplification exists, the program simply re-

sponds with True. Applying NotNotTest is particularly successful with statements that

contain compound conclusions.

2.2.4 SubstTest

SubstTest is a tool which allows the user to instantiate a general expression in the

GOEDEL program and specialize it by making substitutions for the variables. This ex-

pression can either be a class or an entire statement. SubstTest compares the results of

simplifying the expression before and after substitution of the variables and returns True

if there is no difference between the two resulting expressions. If the two resulting expres-

sions are not exactly the same, then SubstTest will return a rule that states that the two

expressions are equivalent.

2.2.5 Logical Arguments

Oftentimes, there are too many steps in a proof for the GOEDEL program to be able to

simplify a statement to true. In these cases, it is necessary to specify a logical argument

needed to deduce some statement from others that are known to be true. This is done mainly

by using a SubstTest and specifying which hypotheses imply which conclusions. If each

implication holds under the appropriate substitutions and the logic is sound, the theorem

will then be deduced.

7

CHAPTER III

THE REGULAR CLASS

3.1 Characterization of REGULAR

The idea of the axiom of regularity is to prohibit infinite regress of membership statements.

In the GOEDEL program, the axiom of regularity is not assumed, but there is a definition

for a class of regular sets for which the axiom of regularity holds. The class of regular sets

is characterized as follows:

REGULAR = complement[U[DESCENDING]].

The class DESCENDING is characterized as:

DESCENDING = complement[fix[composite[E,DISJOINT]]],

where E is the membership relation and DISJOINT is the class of all pair[x,y] such

that x and y are disjoint. U[x] is defined as the union of all sets that belong to x, and

fix[x] is the class of all y such that pair[y,y] belongs to x.

Although the GOEDEL program already contained some rewrite rules concerning REGULAR

and DESCENDING, there were several more rules available in Otter that needed to be de-

rived within the GOEDEL environment. An overview of the derivation of several of these

rules follows.

3.2 General Theorems About REGULAR

The universal class is denoted V. To derive that

DESCENDING Î V Þ REGULAR = V,

8

we use a substitution rule that deals with member[U[U[x]],V]. This membership rule

reduces to member[x,V], or the statement that x is a set. This rule is essentially the

axiom of sum class. However, if we substitute DESCENDING for x, a particular rewrite

rule will reduce member[U[U[DESCENDING]],V] to equal[REGULAR,V]. In this

way, we derive the theorem.

An important membership theorem is

y Î REGULAR & x Î y Þ x Î REGULAR.

Since membership is not automatically transitive, this takes a little reasoning. However, it

is known that

y Î REGULAR Þ y Ì REGULAR.

Also, the GOEDEL program knows that

x Î y & y Ì z Þ x Î z.

Replacing z by REGULAR, we can easily see that x is a member of REGULAR.

It is also relatively easy to show that

x Î DESCENDING Þ disjoint[x,REGULAR].

To derive this, we note

x Î y Þ x Ì U[y].

Replacing y by REGULAR, we see that

x Î REGULAR Þ x Ì U[DESCENDING].

The GOEDEL program then replaces U[DESCENDING] by complement[REGULAR],

and from this is able to deduce that x and REGULAR are disjoint.

3.3 Specific Membership Theorems About REGULAR

Besides general theorems, there are also more specific membership theorems. These take

the form that if x is a member of REGULAR, then f[x] is a member of REGULAR, where

9

f is some operation acting on x. For instance, using the GOEDEL program we are able to

show that

x Î REGULAR Þ range[x] Î REGULAR.

The GOEDEL program will automatically reduce the statement

and[member[x, V], subclass[x, REGULAR]]

to member[x,REGULAR]. So we just need to show that if x is a member of REGULAR,

then range[x] is a set and a subclass of REGULAR. The fact that range[x] is a set is

recognized to be true from the statement that x is a member of REGULAR. We then employ

the fact

x Î REGULAR Þ x Ì REGULAR,

along with the rule that:

x Ì v Þ range[x] Ì range[v].

When we replace v by REGULAR, the GOEDEL program will reduce range[REGULAR]

to REGULAR and we will have our theorem.

Another specific membership theorem involves deriving that

x Î REGULAR Þ rotate[x] Î REGULAR.

To derive this, we use the rule in the GOEDEL program that states that if x is a subclass of

u then rotate[x] is a subclass of rotate[u]. Substituting in REGULAR for u, we

get that

rotate[x] Ì cart[cart[REGULAR,REGULAR],REGULAR].

Since it is already known that cart[REGULAR,REGULAR] is a subclass of REGULAR,

it follows that

cart[cart[REGULAR,REGULAR],REGULAR] Ì cart[REGULAR,REGULAR] Ì REGULAR.

10

Therefore, we know that rotate[x] is a subclass of REGULAR. Since

x Î V Þ rotate[x] Î V,

and

v Î V & v Ì REGULAR Þ v Î REGULAR,

substituting rotate[x] for v we have that

x Î REGULAR Þ rotate[x] Î REGULAR.

The derivation that if x is a member of REGULAR, then composite[x,SWAP] is a

member of REGULAR is very similar to the above derivation. We know that if x is a

member of REGULAR, then x is a subclass of REGULAR. From the theorems already de-

rived in this section, the GOEDEL program can deduce that if x is a subclass of REGULAR,

then composite[x,SWAP] is a subclass of composite[REGULAR,SWAP]. Since

composite[REGULAR,SWAP] is known to be a subclass of REGULAR by the GOEDEL

program, we can use the rule that

u Ì v & v Ì w Þ u Ì w

with the replacements

u ® composite[x, SWAP],

v ® composite[REGULAR, SWAP],

and

w ® REGULAR.

Now, we have shown that if x is a member of REGULAR, then composite[x,SWAP]

is a subclass of REGULAR. The GOEDEL program does not automatically recognize that if

x is a set then composite[x,SWAP] is a set, but this can be shown to be true by the

axiom of replacement. This fact combined with the fact that composite[x,SWAP] is

contained in REGULAR give us the result that

x Î REGULAR Þ composite[x,SWAP] Î REGULAR.

11

Along the same lines, we can use the GOEDEL program to show that if x is a member of

REGULAR, then inverse[x] is also a member of REGULAR. We first use the rule that

if x is a subclass of y then inverse[x] is a subclass of inverse[y]. Substituting

REGULAR in for y, we obtain the rule that

x Ì REGULAR Þ inverse[x] Ì inverse[REGULAR].

Since inverse[REGULAR] is a subclass of REGULAR, this implies that inverse[x]

is a subclass of REGULAR by transitivity of subclass. The GOEDEL program already knows

that

x Î V Þ inverse[x] Î V.

We again use the rule that

v Î V & v Ì REGULAR Þ v Î REGULAR,

replacing v by inverse[x] to obtain our final result:

x Î REGULAR Þ inverse[x] Î REGULAR.

One final theorem about members of REGULAR that is a bit different from the above is the

following:

x Î REGULAR & y Î REGULAR Þ cart[x,y] Î REGULAR.

Since x and y are known to be sets from the fact that they are members of REGULAR, we

need only show that cart[x,y] is a subclass of REGULAR. We do this by using the fact

that

u Ì v & v Ì w Þ u Ì w

and make the following substitutions:

u ® cart[x, y],

v ® cart[REGULAR, REGULAR],

and

w ® REGULAR.

12

From this we obtain the fact that

x Ì REGULAR & y Ì REGULAR Þ cart[x,y] Ì REGULAR,

which, with a bit of logical reasoning, completes our derivation.

13

CHAPTER IV

THE RUSSELL CLASS

4.1 Russell’s Paradox

In 1901, Bertrand Russell14 discovered the Russell paradox. In 1902, this paradox was

brought to the attention of Gottlob Frege via a letter7 from Russell, forcing Frege to recon-

sider publishing his findings.

The Russell class is the class of all x that do not belong to themselves. In Zermelo-Fraenkel

set theory, the axiom scheme states that

" x, x Î RÛ x /Î x,

where R denotes the Russell class. Since x is a variable, we can replace it with R , to obtain

R Î RÛ R /Î R,

an obvious contradiction. In the von Neumann and Bernays class theories, this contra-

diction does not occur. Kelley8 explains that this is because the Neumann-Bernays axiom

scheme states that

" x, x Î RÛ x /Î x & x Î V.

Now, when we replace x by R, we have

R Î RÛ R /Î R & R Î V,

from which we can deduce that the Russell class is not a set.

4.2 Characterization of RUSSELL

The RUSSELL class is the class of all x that do not belong to themselves. The power class

P[RUSSELL] of the RUSSELL class has the remarkable property of being a subclass of

14

RUSSELL,

P[RUSSELL] Ì RUSSELL.

Most of the theorems concerning the RUSSELL class are fairly simple to derive with the

GOEDEL program.

4.3 Theorems About RUSSELL

It only takes an AssertTest to derive that

P[RUSSELL] /Î x.

By using the rule that

u Î v & v Ì w Þ u Î w

and making the replacements:

u ® x,

v ® P[RUSSELL],

and

w ® RUSSELL,

we obtain the following theorem,

x Î V & x Ì RUSSELL Þ x Î RUSSELL.

Once we’ve derived the above theorem, the following can also be derived with only an

AssertTest:

x Ì RUSSELL & x Î V Þ succ[x] Ì RUSSELL,

where succ[x] is the union of x and singleton[x].

We can derive that

intersection[RUSSELL,x,A[x]] = 0

15

by using Renormality. The class A[x] is the class obtained by intersecting all sets that

belong to x.

To derive a slightly more difficult theorem, we can use the rule that

u Î v & v Ì w Þ u Î w

with the replacements:

u ® intersection[RUSSELL, x],

v ® P[RUSSELL],

and

w ® RUSSELL,

which leads to the lemma that

intersection[RUSSELL,x] Î V Þ intersection[RUSSELL,x] Î RUSSELL.

Then, we use the rule that

u Î RUSSELL Þ u /Î u,

letting u be replaced by intersection[RUSSELL,x]. From this we obtain the lemma

intersection[RUSSELL,x] Î RUSSELL Þ intersection[RUSSELL,x] /Î x.

From the above lemmas we obtain the following theorem:

intersection[RUSSELL,x] /Î x.

The remainder of the theorems about the RUSSELL class can also be derived in one step,

although the GOEDEL program needs a little help with them.

We use the rule

u Ì v & v Ì w Þ u Ì w

with the substitutions
u ® x,

v ® P[RUSSELL],

and

w ® RUSSELL

16

to obtain the theorem

U[x] Ì RUSSELL Þ x Ì RUSSELL.

Using this same rule, but with the replacements

u ® P[x],

v ® P[RUSSELL],

and

w ® RUSSELL,

we obtain the theorem

x Ì RUSSELL Þ P[x] Ì RUSSELL.

To derive the theorem

P[x] Ì union[RUSSELL,x],

we start with the rule in the GOEDEL program that reduces

u Ì union[RUSSELL,U[u]]

to True. Then we replace u by P[x]. Since U[P[x]] = x we obtain our theorem.

The GOEDEL program can then use the preceding theorem to derive that

RUSSELL Ì x Þ P[x] Ì x.

We do this by using the rule in the GOEDEL program that says that

u Î v & v = w Þ u Î w

with the replacements

u ® P[x],

v ® union[RUSSELL, x],

and

w ® x.

With these replacements, our theorem is recognized to be true.

17

CHAPTER V

EQUIVALENCE RELATIONS

5.1 Characterization of EQUIVALENCE[x]

EQUIVALENCE[x] is the statement that x is an equivalence relation. In the GOEDEL pro-

gram, EQUIVALENCE[x] is equivalent to the statement that x is equal to the composite

of x and inverse[x] or, alternatively, that x is equal to the composite of inverse[x]

and x. It immediately follows from either of these statements that

EQUIVALENCE[x] Þ x = inverse[x].

5.2 Theorems About EQUIVALENCE[x]

An interesting rule that the GOEDEL program is already familiar with is the statement that

EQUIVALENCE[x] & EQUIVALENCE[u]Þ EQUIVALENCE[intersection[x,u]].

When we specialize this rule by replacing u by cart[y,y], we obtain the following

theorem:

EQUIVALENCE[x] Þ EQUIVALENCE[composite[id[y],x,id[y]]].

The object id[y] is the restriction of the identity relation to y. So this theorem states

that if x is an equivalence relation then the particular restriction of x given above is also an

equivalence relation.

If x is an equivalence relation, then we know that x = inverse[x]. We can use this fact

with the rule

u Î x & x = inverse[x] Þ u Î inverse[x],

18

and specialize u to pair[y,z]. This gives us the theorem that

EQUIVALENCE[x] & pair[z,y] Î x Þ pair[y,z] Î x.

Since the statement EQUIVALENCE[x] is equivalent to the statement that x is equal to

composite[inverse[x],x], we can use the previous theorem to derive

EQUIVALENCE[x]& pair[z,y] Î composite[inverse[x],x]Þ pair[y,z] Î x.

First we use the GOEDEL rule that

u Î v & v = x Þ u Î x,

with the replacements

u ® pair[z, y]

and

v ® composite[inverse[x], x].

This tells us that

EQUIVALENCE[x]& pair[z,y] Î composite[inverse[x],x]Þ pair[z,y] Î x.

Combined with the previous theorem, this leads to our result.

A similar theorem states that

EQUIVALENCE[x] & pair[y,z] Î x Þ pair[y,y] Î x.

The derivation of this theorem relies on a lemma. Using an AssertTest we learn that

pair[y,z] Î x & pair[y,z] Î cart[V,V] Þ

pair[y,y] Î composite[inverse[x],x].

Then, the GOEDEL program relies on the previous theorem, in the case where z is replaced

by y. This is automatic and does not need to be specified, even in the logical deduction.

This, together with the former lemma, derives our theorem.

19

From the two previous theorems, we are easily able to use SubstTest, along with some

logical statements, to derive the following theorem:

EQUIVALENCE[x] & pair[y,z] Î x Þ pair[z,z] Î x.

To derive the theorem that

EQUIVALENCE[x] & pair[y,z] Î x Þ

image[x,singleton[y]] = image[x,singleton[z]],

we need a lemma that is significant in its own right. This lemma states that

TRANSITIVE[x] & pair[u,v] Î x Þ

image[x,singleton[v]] Ì image[x,singleton[u]].

To derive this, we first use an AssertTest on the statement

member[pair[u,v],composite[inverse[x],complement[x]]].

The AssertTest tells us that this statement is equivalent to saying that u is a set and

image[x,singleton[v]] is a subclass of image[x,singleton[u]]. Once we

have added this replacement to the GOEDEL program, we use the rule

w Î x & x Ì y Þ w Î y

with the substitutions

w ® pair[u, v]

and

y ® composite[Id, complement[composite[inverse[x], complement[x]]]].

From this we obtain our desired lemma. Once we’ve added the lemma to the GOEDEL

program, we use a SubstTest with a little logical reasoning to obtain our theorem.

Adding all of these new theorems to the GOEDEL program makes the next theorem par-

ticularly easy to derive. With just a little reasoning and no new lemmas, we obtain the

theorem

EQUIVALENCE[x] & pair[z,y] Î composite[inverse[x],x]Þ

image[x,singleton[y]] = image[x,singleton[z]].

20

CHAPTER VI

PARTIAL ORDERINGS

6.1 Characterization of PARTIALORDER[x]

In the GOEDEL program, a partial ordering is characterized by:

REFLEXIVE[x] & TRANSITIVE[intersection[Di,x]].

The above two conditions will automatically reduce to PARTIALORDER[x]. Here Di is

the diversity relation and is defined as the class of all pair[x,y] such that x is not equal

to y. Reflexive relations are characterized by

x Ì cart[fix[x],fix[x]]Û REFLEXIVE[x],

where fix[x] is the class of all y such that pair[y,y] is a member of x. Transitive

relations are characterized by

x Ì composite[Id,complement[composite[complement[x],inverse[x]]]]Û

TRANSITIVE[x].

6.2 Theorems About PARTIALORDER[x]

To derive an initial theorem about partial orderings, we use the fact that the GOEDEL pro-

gram will reduce the statement that u is equal to id[fix[u]] to the statement that u is

a subclass of the identity relation. Here, id[fix[x]] is the identity relation restricted to

the fixed point set of x. When we replace u by the intersection of x and inverse[x],

we get the following rewrite rule:

id[fix[x]] = intersection[x,inverse[x]]Þ

intersection[x,inverse[x]] Ì Id.

21

This serves to derive the following theorem about partial orderings:

PARTIALORDER[x] Þ intersection[x,inverse[x]] = id[fix[x]].

To derive that

PARTIALORDER[x] Þ x = composite[x,x],

we need an important lemma. To derive this lemma, we use the following rewrite rule in

the GOEDEL program:

u Ì v & v Ì u Þ u = v.

When we make the replacements

u ® x

and

v ® composite[x, x],

we learn that

TRANSITIVE[composite[Id,x]]& x Ì composite[x,x] Þ x = composite[x,x].

The phrasing of this rule is a result of the fact that the GOEDEL program reduces subclass[composite[x,x],x]

to TRANSITIVE[composite[Id,x]]. However, since

PARTIALORDER[x] Þ REFLEXIVE[x] Þ subclass[x,composite[x,x]]

and

PARTIALORDER[x] Þ TRANSITIVE[x] Þ TRANSITIVE[composite[Id,x]],

we deduce that for partial orderings x is equal to composite[x,x].

The last theorem about partial orderings is somewhat complicated for a few reasons. Not

only does it have several hypotheses, but the GOEDEL program has trouble executing the

logical argument needed to derive the theorem. Because of this, it is necessary to break the

argument into several smaller lemmas. This is a problem that is often encountered when

22

the derivation of a theorem requires several steps. Sometimes this problem can be fixed

by ‘bundling the hypotheses’ into one object rather than having each hypothesis act as its

own object. In this case, this did not help and disassembling the derivation was necessary.

The first step needed for this derivation uses the fact that the GOEDEL program makes the

following replacement:

REFLEXIVE[u] & TRANSITIVE[u] & intersection[u,inverse[u]] Ì Id Þ

PARTIALORDER[x].

When we replace u by intersection[x,y], we obtain the following lemma:

REFLEXIVE[intersection[x,y]]& TRANSITIVE[intersection[x,y]]&

intersection[x,y,inverse[x],inverse[y]] Ì Id Þ

PARTIALORDER[intersection[x,y]].

The theorem we are trying to derive is

PARTIALORDER[x] & TRANSITIVE[y] & REFLEXIVE[y] Þ

PARTIALORDER[intersection[x,y]].

In order to derive this theorem, we will need to show that each of the conditions of the

above lemma is satisfied by the hypotheses of the theorem. First, we use the rules that

PARTIALORDER[x] Þ REFLEXIVE[x]

and

REFLEXIVE[x]& REFLEXIVE[y] Þ REFLEXIVE[intersection[x,y]]

to derive that

PARTIALORDER[x] & REFLEXIVE[y] Þ REFLEXIVE[intersection[x,y]].

Next, we use the same rules but with TRANSITIVE instead of REFLEXIVE to derive that

PARTIALORDER[x] & TRANSITIVE[y] Þ TRANSITIVE[intersection[x,y]].

23

For the last piece of this derivation, we use the fact that

PARTIALORDER[x] Þ intersection[x,inverse[x]] Ì Id.

Since intersection[x,inverse[x]] is a subclass of Id, so is any subclass of

intersection[x,inverse[x]]. It follows that

intersection[x,y,inverse[x],inverse[y]] Ì Id.

With these three pieces and the above lemma, we have completed the derivation of the

theorem.

24

CHAPTER VII

TOTAL ORDERINGS

7.1 Characterization of TOTALORDER[x]

In the GOEDEL program, a total ordering is defined by a wrapped rule. Since

TRANSITIVE[x] & ANTISYMMETRIC[x]&

union[x,inverse[x]] = cart[fix[x],fix[x]]Þ TOTALORDER[x],

we just need to derive implication in the other direction to find a suitable characterization.

Since TOTALORDER[x] implies each of the hypotheses in the above statement, a sim-

ple NotNotTest is suitable for proving implication in the other direction. Then, if we

choose, we can add to the GOEDEL program the following rule for TOTALORDER[x]:

TRANSITIVE[x] & ANTISYMMETRIC[x] &

union[x,inverse[x]] = cart[fix[x],fix[x]]Û TOTALORDER[x].

It is also true that

TOTALORDER[x] Þ PARTIALORDER[x],

so many of the previous theorems can be reformulated to obtain slightly different (and in

most cases less general) theorems.

7.2 Theorems About TOTALORDER[x]

An easy theorem to derive about total orderings states that

TOTALORDER[x] Þ

intersection[x,inverse[x]] Ì Id & TRANSITIVE[composite[Id,x]].

25

To derive this we just need to derive the part that states that for a total ordering x, the

composite of the identity relation and x is transitive. For this, we use the fact that

TOTALORDER[x] Þ TRANSITIVE[x]Þ TRANSITIVE[composite[Id,x]].

Once we’ve added this rule to the GOEDEL program, we need only perform a NotNotTest

on the theorem to deduce that it is true.

The next theorem illustrates a way of classifying something as a total ordering. The theo-

rem is as follows

union[x,inverse[x]] = cart[fix[x],fix[x]]&

intersection[x,inverse[x]] Ì Id &

TRANSITIVE[composite[Id,x]]Þ TOTALORDER[x].

To derive this, we need to derive a lemma. We use the rule in the GOEDEL program that

says

u = v Þ u Ì v,

making the replacements

u ® union[x, inverse[x]]

and

v ® cart[fix[x], fix[x]].

This is applied in conjunction with the hypothesis that the intersection of x and inverse[x]

is a subclass of the identity to derive that x is antisymmetric, a fact later used in the deriva-

tion. This lemma, together with some facts the GOEDEL program already recognizes as

true, completes the derivation of this theorem.

Another theorem about total orderings that can be derived using only rules already recog-

nized by the GOEDEL program is:

union[x,inverse[x]] = cart[fix[x],fix[x]]&

PARTIALORDER[x] Þ TOTALORDER[x].

26

To derive that

pair[y,z] Î cart[fix[x],fix[x]]& TOTALORDER[x] Þ

pair[y,z] Î x or pair[z,y] Î x,

we need an important lemma. Using the rule in the GOEDEL program that says that

u Î v & v = w Þ u Î w,

we make the replacements

u ® pair[y, z],

v ® cart[fix[x], fix[x]],

and

w ® union[x, inverse[x]].

Since the GOEDEL program already knows that

TOTALORDER[x] Þ cart[fix[x],fix[x]] = union[x,inverse[x]],

we only need to use a few logical statements to complete this derivation.

One final theorem concerning total orderings deals with the fact that if x is a total ordering,

then certain restrictions of x are also total orderings. More specifically, it says that

TOTALORDER[x] Þ TOTALORDER[composite[id[y],x,id[y]]].

We can abbreviate composite[id[y],x,id[y]] as restrict[x,y,y], which is

the intersection of x and cart[y,y]. Deriving this theorem involves two lemmas and a

bit of logical reasoning. For the first lemma, we use the rule in the GOEDEL program that

states that

u = v Þ intersection[u,cart[y,y]] = intersection[v,cart[y,y]],

with the replacements

u ® union[x, inverse[x]]

and

v ® cart[fix[x], fix[x]].

27

Since, for total orderings, the union of x and inverse[x] is equal to the cartesian prod-

uct of fix[x] and fix[x], we can now recognize that the result of the above lemma is

true for total orderings. For the second lemma, we use the following rule in the GOEDEL

program:

PARTIALORDER[u] & union[u,inverse[u]] = cart[fix[u],fix[u]]Û

TOTALORDER[u],

letting u be replaced by composite[id[y],x,id[y]]. With these two lemmas, sev-

eral facts that the GOEDEL program is already aware of, and some logical arguments, the

derivation of this theorem is complete.

28

CHAPTER VIII

CONCLUSIONS

While much progress has been made in developing automated reasoning programs, prac-

tical applications of these programs to set theory, and mathematics in general, is still in

its infancy. Otter is a powerful resource for researchers desiring a reasoning assistant,

despite its limited interactivity. The GOEDEL program will continue to be developed and

improved so that it can be used along with the Otter program to discover and produce

elegant proofs of theorems. It seems likely that the computer assisted approach to theorem

proving will continue to be developed to the point that researchers will soon be able to

routinely solve open problems that mathematicians have yet been unable to solve.

29

APPENDIX A

The REGULAR Class

30

The REGULAR Class

In[1]:= << "C : �WINDOWS�Desktop�Research�Thesis�

goedel57.16a";

<< "C : �WINDOWS�Desktop�Research�Thesis�

Tools.m"

":Package Title: goedel57.16a 2004 May 16 at 10:05 p.m. "

It is now: 2004 Jul 14 at 18 : 0

"Loading Simplification Rules"

"TOOLS.M Revised 2004 June 16 "

weightlimit = 40

Characterization of REGULAR

In[2]:= complement[fix[composite[e,DISJOINT]]]

Out[2]= DESCENDING

In[3]:= complement[U[DESCENDING]]

Out[3]= REGULAR

General Theorems About REGULAR

If DESCENDING is a set, then REGULAR is equal to the universal class.

Theorem:

In[4]:= SubstTest[member,U[U[x]],V,

x ® DESCENDING]//Reverse

Out[4]= member[DESCENDING,V] == equal[REGULAR,V]

31

In[5]:= member[DESCENDING,V] := equal[REGULAR,V]

If x is a member of y and y is a member of REGULAR, then x is a member

of REGULAR.

Theorem:

In[6]:= Map[not,SubstTest[and,implies[p1,p3],

implies[and[p2,p3],p4],

not[implies[and[p1,p2],p4]],

{p1 ® member[y,REGULAR],p2 ® member[x,y],

p3 ® subclass[y,REGULAR],

p4 ® member[x,REGULAR]}]]

Out[6]= or[member[x,REGULAR],not[member[x,y]],

not[member[y,REGULAR]]] == True

In[7]:= or[member[x_,REGULAR],not[member[x_,y_]],

not[member[y_,REGULAR]]] := True

If x is a member of DESCENDING, then x and REGULAR are disjoint.

Theorem:

In[8]:= SubstTest[implies,member[x,y],

subclass[x,U[y]],y ® DESCENDING]

Out[8]= or[equal[0,intersection[REGULAR,x]],

not[equal[0,

intersection[x,P[complement[x]]]]],

not[member[x,V]]] == True

In[9]:= or[equal[0,intersection[REGULAR,x_]],

not[equal[0,intersection[x_,

P[complement[x_]]]]],

not[member[x_,V]]] := True

32

Restatement:

In[10]:= or[not[member[x,DESCENDING]],

disjoint[x,REGULAR]]

Out[10]= True

Specific Membership Theorems Regarding REGULAR

If x is a member of REGULAR, then range[x] is a member of REGULAR.

Lemma 1:

In[11]:= SubstTest[implies,subclass[x,y],

subclass[range[x],range[y]],y ® REGULAR]

Out[11]= or[not[subclass[x,REGULAR]],

subclass[range[x],REGULAR]] == True

In[12]:= (%/.x ® x_)/.Equal ® SetDelayed

Lemma 2:

In[13]:= SubstTest[or,member[range[x],P[u]],

not[member[range[x],V]],

not[subclass[range[x],u]],u ® REGULAR]

Out[13]= or[member[range[x],REGULAR],

not[member[range[x],V]],

not[subclass[range[x],REGULAR]]] == True

In[14]:= (%/.x ® x_)/.Equal ® SetDelayed

33

Theorem:

In[15]:= Map[not,SubstTest[and,implies[p1,p2],

implies[p1,p3],implies[p3,p4],

implies[and[p2,p4],p5],

not[implies[p1,p5]],

{p1 ® member[x,REGULAR],

p2 ® member[range[x],V],

p3 ® subclass[x,REGULAR],

p4 ® subclass[range[x],REGULAR],

p5 ® member[range[x],REGULAR]}]]

Out[15]= or[member[range[x],REGULAR],

not[member[x,REGULAR]]] == True

In[16]:= or[member[range[x_],REGULAR],

not[member[x_,REGULAR]]] := True

If x is a member of REGULAR, then rotate[x] is a member of REGULAR.

Lemma 1:

In[17]:= Map[implies[subclass[x,REGULAR],#]&,

SubstTest[subclass,rotate[x],rotate[u],

u ® REGULAR]]

Out[17]= or[and[subclass[domain[domain[x]],REGULAR],

subclass[image[x,cart[V,V]],REGULAR],

subclass[range[domain[x]],REGULAR]],

not[subclass[x,REGULAR]]] == True

In[18]:= (%/.x- > x_)/.Equal ® SetDelayed

34

Lemma 2a:

In[19]:= SubstTest[implies,

and[subclass[u,v],subclass[v,w]],

subclass[u,w],

{u ® rotate[REGULAR],

v ® cart[REGULAR,REGULAR],w ® REGULAR}]

Out[19]= subclass[cart[cart[REGULAR,REGULAR],

REGULAR],REGULAR] == True

In[20]:= subclass[cart[cart[REGULAR,REGULAR],

REGULAR],REGULAR] := True

Lemma 2b:

In[21]:= SubstTest[implies,

and[subclass[u,v],subclass[v,w]],

subclass[u,w],

{u ® rotate[x],v ® rotate[REGULAR],

w ® REGULAR}]

Out[21]= or[

not[subclass[domain[domain[x]],REGULAR]],

not[

subclass[image[x,cart[V,V]],REGULAR]],

not[subclass[range[domain[x]],REGULAR]],

subclass[rotate[x],REGULAR]] == True

In[22]:= (%/.x- > x_)/.Equal ® SetDelayed

35

Lemma 3:

In[23]:= or[member[rotate[x],REGULAR],

not[member[rotate[x],V]],

not[subclass[rotate[x],REGULAR]]]//

NotNotTest

Out[23]= or[member[rotate[x],REGULAR],

not[member[rotate[x],V]],

not[subclass[rotate[x],REGULAR]]] == True

In[24]:= (%/.x- > x_)/.Equal ® SetDelayed

Theorem:

In[25]:= Map[not,SubstTest[and,implies[p1,p2],

implies[p1,p3],implies[p3,p4],

implies[p4,p5],implies[and[p2,p5],p6],

not[implies[p1,p6]],

{p1 ® member[x,REGULAR],

p2 ® member[rotate[x],V],

p3 ® subclass[x,REGULAR],

p4 ® subclass[rotate[x],rotate[REGULAR]],

p5 ® subclass[rotate[x],REGULAR],

p6 ® member[rotate[x],REGULAR]}]]

Out[25]= or[member[rotate[x],REGULAR],

not[member[x,REGULAR]]] == True

In[26]:= or[member[rotate[x_],REGULAR],

not[member[x_,REGULAR]]] := True

36

If x is a member of REGULAR, then composite[x,SWAP] is a member of

REGULAR.

Lemma 1:

In[27]:= SubstTest[implies,

and[subclass[u,v],subclass[v,w]],

subclass[u,w],

{u ® composite[x,SWAP],

v ® composite[REGULAR,SWAP],w ® REGULAR}]

Out[27]= or[

not[subclass[domain[domain[x]],REGULAR]],

not[

subclass[image[x,cart[V,V]],REGULAR]],

not[subclass[range[domain[x]],REGULAR]],

subclass[composite[x,SWAP],

REGULAR]] == True

In[28]:= (%/.x ® x_)/.Equal ® SetDelayed

Lemma 2:

In[29]:= Map[

implies[#,member[composite[x,SWAP],

V]]&,member[composite[x,SWAP],V]//

AssertTest]//Reverse

Out[29]= or[member[composite[x,SWAP],V],

not[member[domain[domain[x]],V]],

not[member[image[x,cart[V,V]],V]],

not[member[range[domain[x]],V]]] == True

In[30]:= (%/.x ® x_)/.Equal ® SetDelayed

37

In[31]:= Map[not,SubstTest[and,implies[p2,p3],

implies[p3,p4],implies[p3,p5],

implies[p2,p6],

implies[and[p4,p5,p6],p7],

not[implies[p2,p7]],

{p2 ® member[x,V],

p3 ® member[domain[x],V],

p4 ® member[domain[domain[x]],V],

p5 ® member[range[domain[x]],V],

p6- > member[image[x,cart[V,V]],V],

p7 ® member[composite[x,SWAP],V]}]]

Out[31]= or[member[composite[x,SWAP],V],

not[member[x,V]]] == True

In[32]:= (%/.x ® x_)/.Equal ® SetDelayed

Lemma 3:

In[33]:= SubstTest[implies,and[u,v],w,

{u ® member[composite[x,SWAP],V],

v ® subclass[composite[x,SWAP],REGULAR],

w ® member[composite[x,SWAP],

REGULAR]}]//Reverse

Out[33]= or[member[composite[x,SWAP],REGULAR],

not[member[composite[x,SWAP],V]],

not[subclass[composite[x,SWAP],

REGULAR]]] == True

In[34]:= (%/.x ® x_)/.Equal ® SetDelayed

38

Theorem:

In[35]:= Map[not,SubstTest[and,implies[p1,p2],

implies[p2,p3],implies[p3,p4],

implies[p1,p5],implies[p5,p6],

implies[and[p4,p6],p7],

not[implies[p1,p7]],

{p1 ® member[x,REGULAR],

p2 ® subclass[x,REGULAR],

p3 ® subclass[composite[x,SWAP],

composite[REGULAR,SWAP]],

p4 ® subclass[composite[x,SWAP],

REGULAR],p5 ® member[x,V],

p6 ® member[composite[x,SWAP],V],

p7 ® member[composite[x,SWAP],

REGULAR]}]]

Out[35]= or[member[composite[x,SWAP],REGULAR],

not[member[x,REGULAR]]] == True

In[36]:= or[member[composite[x_,SWAP],REGULAR],

not[member[x_,REGULAR]]] := True

If x is a member of REGULAR, then inverse[x] is a member of REGULAR.

Lemma 1:

In[37]:= Map[implies[subclass[x,REGULAR],#]&,

SubstTest[subclass,inverse[x],inverse[v],

v ® REGULAR]]

Out[37]= or[and[subclass[domain[x],REGULAR],

subclass[range[x],REGULAR]],

not[subclass[x,REGULAR]]] == True

39

In[38]:= (%/.x ® x_)/.Equal ® SetDelayed

Lemma 2:

In[39]:= SubstTest[implies,

and[subclass[u,v],subclass[v,w]],

subclass[u,w],

{u ® inverse[x],v ® inverse[REGULAR],

w ® REGULAR}]

Out[39]= or[not[subclass[domain[x],REGULAR]],

not[subclass[range[x],REGULAR]],

subclass[inverse[x],REGULAR]] == True

In[40]:= (%/.x ® x_)/.Equal ® SetDelayed

Lemma 3:

In[41]:= Map[

implies[#,member[inverse[x],REGULAR]]&,

SubstTest[and,member[u,V],

subclass[u,REGULAR],u ® inverse[x]]]

Out[41]= or[member[inverse[x],REGULAR],

not[member[domain[x],V]],

not[member[range[x],V]],

not[subclass[inverse[x],REGULAR]]] == True

In[42]:= (%/.x ® x_)/.Equal ® SetDelayed

40

Theorem

In[43]:= Map[not,SubstTest[and,implies[p1,p2],

implies[p2,p3],implies[p3,p4],

implies[p1,p5],implies[and[p4,p5],p6],

not[implies[p1,p6]],

{p1 ® member[x,REGULAR],

p2 ® subclass[x,REGULAR],

p3 ® subclass[inverse[x],

inverse[REGULAR]],

p4 ® subclass[inverse[x],REGULAR],

p5- > member[inverse[x],V],

p6 ® member[inverse[x],REGULAR]}]]

Out[43]= or[member[inverse[x],REGULAR],

not[member[x,REGULAR]]] == True

In[44]:= or[member[inverse[x_],REGULAR],

not[member[x_,REGULAR]]] := True

If x and y are members of REGULAR, then cart[x,y] is a member of

REGULAR.

Lemma 1:

In[45]:= SubstTest[implies,

and[subclass[u,v],subclass[v,w]],

subclass[u,w],

{u ® cart[x,y],v ® cart[REGULAR,REGULAR],

w ® REGULAR}]

41

Out[45]= or[and[not[equal[0,x]],not[equal[0,y]],

not[subclass[x,REGULAR]]],

and[not[equal[0,x]],not[equal[0,y]],

not[subclass[y,REGULAR]]],

subclass[cart[x,y],REGULAR]] == True

In[46]:= (%/.{x ® x_,y ® y_})/.Equal ® SetDelayed

In[47]:= Map[not,SubstTest[and,implies[p1,p3],

implies[p2,p4],implies[and[p3,p4],p5],

implies[p5,p6],

not[implies[and[p1,p2],p6]],

{p1 ® member[x,REGULAR],

p2 ® member[y,REGULAR],

p3 ® subclass[x,REGULAR],

p4 ® subclass[y,REGULAR],

p5 ® subclass[cart[x,y],

cart[REGULAR,REGULAR]],

p6 ® subclass[cart[x,y],REGULAR]}]]

Out[47]= or[not[member[x,REGULAR]],

not[member[y,REGULAR]],

subclass[cart[x,y],REGULAR]] == True

In[48]:= (%/.{x ® x_,y ® y_})/.Equal ® SetDelayed

Lemma 2:

In[49]:= Map[

implies[#,member[cart[x,y],REGULAR]]&,

SubstTest[and,subclass[u,REGULAR],

member[u,V],u ® cart[x,y]]]

42

Out[49]= or[and[not[equal[0,x]],not[equal[0,y]],

not[member[x,V]]],and[not[equal[0,x]],

not[equal[0,y]],not[member[y,V]]],

member[cart[x,y],REGULAR],

not[subclass[cart[x,y],REGULAR]]] == True

In[50]:= (%/.{x ® x_,y ® y_})/.Equal ® SetDelayed

Theorem

In[51]:= Map[not,SubstTest[and,implies[p1,p3],

implies[p2,p4],implies[and[p1,p2],p6],

implies[and[p3,p4],p5],

implies[and[p5,p6],p7],

not[implies[and[p1,p2],p7]],

{p1 ® member[x,REGULAR],

p2 ® member[y,REGULAR],p3 ® member[x,V],

p4 ® member[y,V],

p5 ® member[cart[x,y],V],

p6 ® subclass[cart[x,y],REGULAR],

p7 ® member[cart[x,y],REGULAR]}]]

Out[51]= or[member[cart[x,y],REGULAR],

not[member[x,REGULAR]],

not[member[y,REGULAR]]] == True

In[52]:= or[member[cart[x_,y_],REGULAR],

not[member[x_,REGULAR]],

not[member[y_,REGULAR]]] := True

43

APPENDIX B

The RUSSELL Class

44

The RUSSELL Class

In[53]:= << "C : �WINDOWS�Desktop�Research�Thesis�

goedel57.16a";

<< "C : �WINDOWS�Desktop�Research�Thesis�

Tools.m"

":Package Title: goedel57.16a 2004 May 16 at 10:05 p.m. "

It is now: 2004 Jul 14 at 18 : 48

"Loading Simplification Rules"

"TOOLS.M Revised 2004 June 16 "

weightlimit = 40

Theorems about Russell

The power set of RUSSELL is not a member of x.

Theorem:

In[54]:= member[P[RUSSELL],x]//AssertTest

Out[54]= member[P[RUSSELL],x] == False

In[55]:= member[P[RUSSELL],x_] := False

45

If x is a set and x is a subclass of RUSSELL, then x is a member of

RUSSELL

Theorem:

In[56]:= SubstTest[implies,

and[member[u,v],subclass[v,w]],

member[u,w],

{u ® x,v ® P[RUSSELL],w ® RUSSELL}]

Out[56]= or[member[x,RUSSELL],not[member[x,V]],

not[subclass[x,RUSSELL]]] == True

In[57]:= or[member[x_,RUSSELL],not[member[x_,V]],

not[subclass[x_,RUSSELL]]] := True

If x is a set and x is a subclass of RUSSELL then the successor of x is a

subclass of RUSSELL.

Theorem:

In[58]:= or[not[member[x,V]],

not[subclass[x,RUSSELL]],

subclass[succ[x],RUSSELL]]//AssertTest

Out[58]= or[not[member[x,V]],

not[subclass[x,RUSSELL]],

subclass[succ[x],RUSSELL]] == True

In[59]:= or[not[member[x_,V]],

not[subclass[x_,RUSSELL]],

subclass[succ[x_],RUSSELL]] := True

46

The intersection of x, RUSSELL, and A[x] is empty.

Theorem:

In[60]:= Map[equal[0,#]&,

intersection[RUSSELL,x,A[x]]//

Renormality]

Out[60]= equal[0,intersection[RUSSELL,x,A[x]]] ==

True

In[61]:= equal[0,intersection[RUSSELL,x_,A[x_]]] :=

True

The intersection of RUSSELL and x not a member of x.

Lemma 1:

In[62]:= SubstTest[implies,

and[member[u,v],subclass[v,w]],

member[u,w],

{u ® intersection[RUSSELL,x],

v ® P[RUSSELL],w ® RUSSELL}]

Out[62]= or[member[intersection[RUSSELL,x],

RUSSELL],not[member[

intersection[RUSSELL,x],V]]] == True

In[63]:= (%/.x ® x_)/.Equal ® SetDelayed

Lemma 2:

In[64]:= SubstTest[implies,member[u,RUSSELL],

not[member[u,u]],

u ® intersection[RUSSELL,x]]

47

Out[64]= or[not[member[intersection[RUSSELL,x],

RUSSELL]],not[member[

intersection[RUSSELL,x],x]]] == True

In[65]:= (%/.x ® x_)/.Equal ® SetDelayed

Theorem:

In[66]:= Map[not[#]&,

Map[not,SubstTest[and,implies[p1,p2],

implies[p2,p3],not[implies[p1,p3]],

{p1- > member[intersection[RUSSELL,x],

V],

p2- > member[intersection[RUSSELL,x],

RUSSELL],

p3 ® not[member[intersection[RUSSELL,x],

x]]}]]]

Out[66]= member[intersection[RUSSELL,x],x] == False

In[67]:= member[intersection[RUSSELL,x_],x_] :=

False

If U[x] is a subclass of RUSSELL, then x is a subclass of RUSSELL.

Theorem:

In[68]:= SubstTest[implies,

and[subclass[u,v],subclass[v,w]],

subclass[u,w],

{u ® x,v ® P[RUSSELL],w ® RUSSELL}]

Out[68]= or[not[subclass[U[x],RUSSELL]],

subclass[x,RUSSELL]] == True

48

In[69]:= or[not[subclass[U[x_],RUSSELL]],

subclass[x_,RUSSELL]] := True

If x is a subclass of RUSSELL then P[x] is a subclass of RUSSELL.

Theorem:

In[70]:= SubstTest[implies,

and[subclass[u,v],subclass[v,w]],

subclass[u,w],

{u ® P[x],v ® P[RUSSELL],w ® RUSSELL}]

Out[70]= or[not[subclass[x,RUSSELL]],

subclass[P[x],RUSSELL]] == True

In[71]:= or[not[subclass[x_,RUSSELL]],

subclass[P[x_],RUSSELL]] := True

The power class of x is a subclass of the union of x and RUSSELL

Theorem:

In[72]:= SubstTest[subclass,u,union[RUSSELL,U[u]],

u ® P[x]]

Out[72]= subclass[P[x],union[RUSSELL,x]] == True

In[73]:= subclass[P[x_],union[RUSSELL,x_]] :=

True

If RUSSELL is a subclass of x then the power class of x is a subclass of x.

Theorem:

In[74]:= SubstTest[implies,

and[subclass[u,v],subclass[v,w]],

subclass[u,w],

{u ® P[x],v ® union[RUSSELL,x],w ® x}]

49

Out[74]= or[not[subclass[RUSSELL,x]],

subclass[P[x],x]] == True

In[75]:= or[not[subclass[RUSSELL,x_]],

subclass[P[x_],x_]] := True

50

APPENDIX C

Equivalence Relations

51

Equivalence Relations

In[76]:= << "C : �WINDOWS�Desktop�Research�Thesis�

goedel57.16a";

<< "C : �WINDOWS�Desktop�Research�Thesis�

Tools.m"

":Package Title: goedel57.16a 2004 May 16 at 10:05 p.m. "

It is now: 2004 Jul 14 at 19 : 8

"Loading Simplification Rules"

"TOOLS.M Revised 2004 June 16 "

weightlimit = 40

Characterization of EQUIVALENCE[x]

In[77]:= equal[x,composite[x,inverse[x]]]

Out[77]= EQUIVALENCE[x]

In[78]:= equal[x,composite[inverse[x],x]]

Out[78]= EQUIVALENCE[x]

In[79]:= implies[EQUIVALENCE[x],equal[x,inverse[x]]]

Out[79]= True

52

Theorems about EQUIVALENCE[x]

If x is an equivalence relation, then composite[id[y],x,id[y]] is an equiva-

lence relation.

Theorem:

In[80]:= SubstTest[implies,

and[EQUIVALENCE[x],EQUIVALENCE[u]],

EQUIVALENCE[intersection[x,u]],

u ® cart[y,y]]

Out[80]= or[EQUIVALENCE[composite[id[y],x,id[y]]],

not[EQUIVALENCE[x]]] == True

In[81]:= or[EQUIVALENCE[composite[id[y_],x_,

id[y_]]],not[EQUIVALENCE[x_]]] :=

True

If x is an equivalence relation and pair[z,y] is a member of x, then pair[y,z]

is a member of x.

Lemma:

In[82]:= SubstTest[implies,

and[member[u,x],equal[x,inverse[x]]],

member[u,inverse[x]],u ® pair[z,y]]

Out[82]= or[and[member[y,V],

member[z,V],member[pair[y,z],x]],

not[equal[x,inverse[x]]],

not[member[pair[z,y],x]]] == True

In[83]:= (%/.{x ® x_,y ® y_,z ® z_})/.

Equal ® SetDelayed

53

Theorem

In[84]:= Map[not,SubstTest[and,implies[p1,p3],

implies[and[p2,p3],p4],implies[p4,p5],

not[implies[and[p1,p2],p5]],

{p1 ® EQUIVALENCE[x],

p2 ® member[pair[z,y],x],

p3 ® equal[x,inverse[x]],

p4- > member[pair[z,y],inverse[x]],

p5- > member[pair[y,z],x]}]]

Out[84]= or[member[pair[y,z],x],

not[EQUIVALENCE[x]],

not[member[pair[z,y],x]]] == True

In[85]:= or[member[pair[y_,z_],x_],

not[EQUIVALENCE[x_]],

not[member[pair[z_,y_],x_]]] := True

If x is an equivalence relation and pair[y,z] is a member of

composite[inverse[x],x], then pair[y,z] is a member of x.

Lemma 1:

In[86]:= SubstTest[implies,

and[member[u,v],equal[v,x]],member[u,x],

{u ® pair[z,y],

v ® composite[inverse[x],x]}]

Out[86]= or[member[pair[z,y],x],

not[EQUIVALENCE[x]],

not[member[pair[z,y],

composite[inverse[x],x]]]] == True

54

In[87]:= (%/.{x ® x_,y ® y_,z ® z_})/.

Equal ® SetDelayed

Theorem:

In[88]:= Map[not,SubstTest[and,

implies[and[p1,p2],p3],

implies[and[p1,p3],p4],

not[implies[and[p1,p2],p4]],

{p1 ® EQUIVALENCE[x],

p2 ® member[pair[z,y],

composite[inverse[x],x]],

p3 ® member[pair[z,y],x],

p4 ® member[pair[y,z],x]}]]

Out[88]= or[member[pair[y,z],x],

not[EQUIVALENCE[x]],

not[member[pair[z,y],

composite[inverse[x],x]]]] == True

In[89]:= or[member[pair[y_,z_],x_],

not[EQUIVALENCE[x_]],

not[member[pair[z_,y_],

composite[inverse[x_],x_]]]] := True

If x is an equivalence relation and pair[y,z] is a member of x, then pair[y,y]

is a member of x.

Lemma:

In[90]:= implies[and[member[pair[y,z],x],

member[pair[y,z],cart[V,V]]],

member[pair[y,y],

composite[inverse[x],x]]]//AssertTest

55

Out[90]= or[member[pair[y,y],

composite[inverse[x],x]],

not[member[y,V]],not[member[z,V]],

not[member[pair[y,z],x]]] == True

In[91]:= (%/.{x ® x_,y ® y_,z ® z_})/.

Equal ® SetDelayed

Theorem:

In[92]:= Map[not,SubstTest[and,implies[p1,p3],

implies[and[p2,p3],p4],

implies[and[p2,p4],p5],

implies[and[p1,p5],p6],

not[implies[and[p1,p2],p6]],

{p1 ® EQUIVALENCE[x],

p2 ® member[pair[y,z],x],

p3 ® subclass[x,cart[V,V]],

p4- > member[pair[y,z],cart[V,V]],

p5 ® member[pair[y,y],

composite[inverse[x],x]],

p6- > member[pair[y,y],x]}]]

Out[92]= or[member[pair[y,y],x],

not[EQUIVALENCE[x]],

not[member[pair[y,z],x]]] == True

In[93]:= or[member[pair[y_,y_],x_],

not[EQUIVALENCE[x_]],

not[member[pair[y_,z_],x_]]] := True

56

If x is an equivalence relation and pair[y,z] is a member of x, then pair[z,z]

is a member of x.

Theorem:

In[94]:= Map[not,SubstTest[and,

implies[and[p1,p2],p3],

implies[and[p1,p3],p4],

not[implies[and[p1,p2],p4]],

{p1 ® EQUIVALENCE[x],

p2 ® member[pair[y,z],x],

p3 ® member[pair[z,y],x],

p4 ® member[pair[z,z],x]}]]

Out[94]= or[member[pair[z,z],x],

not[EQUIVALENCE[x]],

not[member[pair[y,z],x]]] == True

In[95]:= or[member[pair[z_,z_],x_],

not[EQUIVALENCE[x_]],

not[member[pair[y_,z_],x_]]] := True

If x is an equivalence relation and pair[y,z] is a member of x, then

image[x,singleton[y]] is equal to image[x,singleton[z]].

Lemma

In[96]:= member[pair[u,v],

composite[inverse[x],complement[x]]]//

AssertTest

57

Out[96]= member[pair[u,v],

composite[inverse[x],complement[x]]] ==

and[member[u,V],

not[subclass[image[x,singleton[v]],

image[x,singleton[u]]]]]

In[97]:= member[pair[u_,v_],

composite[inverse[x_],complement[x_]]] :=

and[member[u,V],

not[subclass[image[x,singleton[v]],

image[x,singleton[u]]]]]

In[98]:= Map[

or[subclass[image[x,singleton[v]],

image[x,singleton[u]]],#]&,

SubstTest[implies,

and[member[w,x],subclass[x,y]],

member[w,y],

{w ® pair[u,v],

y ® composite[Id,

complement[composite[inverse[x],

complement[x]]]]}]]

Out[98]= or[not[member[pair[u,v],x]],

not[TRANSITIVE[x]],

subclass[image[x,singleton[v]],

image[x,singleton[u]]]] == True

In[99]:= or[not[member[pair[u_,v_],x_]],

not[TRANSITIVE[x_]],

subclass[image[x_,singleton[v_]],

image[x_,singleton[u_]]]] := True

58

Theorem:

In[100]:= Map[not,SubstTest[and,implies[p1,p3],

implies[and[p2,p3],p4],

implies[and[p1,p2],p5],

implies[and[p3,p5],p6],

implies[and[p4,p6],p7],

not[implies[and[p1,p2],p7]],

{p1 ® EQUIVALENCE[x],

p2 ® member[pair[y,z],x],

p3 ® TRANSITIVE[x],

p4 ® subclass[image[x,singleton[z]],

image[x,singleton[y]]],

p5 ® member[pair[z,y],x],

p6 ® subclass[image[x,singleton[y]],

image[x,singleton[z]]],

p7 ® equal[image[x,singleton[y]],

image[x,singleton[z]]]}]]

Out[100]= or[equal[image[x,singleton[y]],

image[x,singleton[z]]],

not[EQUIVALENCE[x]],

not[member[pair[y,z],x]]] == True

In[101]:= or[equal[image[x_,singleton[y_]],

image[x_,singleton[z_]]],

not[EQUIVALENCE[x_]],

not[member[pair[y_,z_],x_]]] := True

59

If x is an equivalence relation and pair[y,z] is a member of

composite[inverse[x],x], then image[x,singleton[y]] is equal to

image[x,singleton[z]].

Theorem:

In[102]:= Map[not,SubstTest[and,

implies[and[p1,p2],p3],

implies[and[p1,p3],p4],

not[implies[and[p1,p2],p4]],

{p1 ® EQUIVALENCE[x],

p2- > not[disjoint[image[x,singleton[y]],

image[x,singleton[z]]]],

p3 ® member[pair[y,z],x],

p4- > equal[image[x,singleton[y]],

image[x,singleton[z]]]}]]

Out[102]= or[equal[image[x,singleton[y]],

image[x,singleton[z]]],

not[EQUIVALENCE[x]],

not[member[pair[z,y],

composite[inverse[x],x]]]] == True

In[103]:= or[equal[image[x_,singleton[y_]],

image[x_,singleton[z_]]],

not[EQUIVALENCE[x_]],

not[member[pair[z_,y_],

composite[inverse[x_],x_]]]] := True

60

APPENDIX D

Partial Orderings

61

Partial Orderings

In[104]:= << "C : �WINDOWS�Desktop�Research�Thesis�

goedel57.16a";

<< "C : �WINDOWS�Desktop�Research�Thesis�

Tools.m"

":Package Title: goedel57.16a 2004 May 16 at 10:05 p.m. "

It is now: 2004 Jul 14 at 19 : 21

"Loading Simplification Rules"

"TOOLS.M Revised 2004 June 16 "

weightlimit = 40

Characterization of PARTIALORDER[x]

In[105]:= and[REFLEXIVE[x],

TRANSITIVE[intersection[Di,x]]]

Out[105]= PARTIALORDER[x]

In[106]:= subclass[x,cart[fix[x],fix[x]]]

Out[106]= REFLEXIVE[x]

In[107]:= subclass[x,

composite[Id,

complement[composite[complement[x],

inverse[x]]]]]

Out[107]= TRANSITIVE[x]

62

Theorems about PARTIALORDER[x]

If x is a partial ordering, then the intersection of x and inverse x is equal to

the identity restricted to the fixed point set of x.

Lemma:

In[108]:= SubstTest[equal,u,id[fix[u]],

u ® intersection[x,inverse[x]]]

Out[108]= equal[id[fix[x]],

intersection[x,inverse[x]]] ==

subclass[intersection[x,inverse[x]],Id]

In[109]:= equal[id[fix[x_]],

intersection[x_,inverse[x_]]] :=

subclass[intersection[x,inverse[x]],Id]

Restatement:

In[110]:= or[not[PARTIALORDER[x]],

equal[intersection[x,inverse[x]],

id[fix[x]]]]

Out[110]= True

If x is a partial ordering, then x is equal to composite[x,x].

Lemma:

In[111]:= Map[implies[#,equal[x,composite[x,x]]]&,

SubstTest[and,subclass[u,v],

subclass[v,u],

{u ® x,v ® composite[x,x]}]]

63

Out[111]= or[equal[x,composite[x,x]],

not[subclass[x,composite[x,x]]],

not[TRANSITIVE[composite[Id,x]]]] == True

In[112]:= (%/.x ® x_)/.Equal ® SetDelayed

Theorem:

In[113]:= Map[not,SubstTest[and,implies[p1,p2],

implies[p2,p3],implies[p1,p4],

implies[p4,p5],implies[and[p3,p5],p6],

not[implies[p1,p6]],

{p1 ® PARTIALORDER[x],p2 ® REFLEXIVE[x],

p3 ® subclass[x,composite[x,x]],

p4 ® TRANSITIVE[x],

p5 ® TRANSITIVE[composite[Id,x]],

p6- > equal[x,composite[x,x]]}]]

Out[113]= or[equal[x,composite[x,x]],

not[PARTIALORDER[x]]] == True

In[114]:= or[equal[x_,composite[x_,x_]],

not[PARTIALORDER[x_]]] := True

64

If x is a partial ordering and y is both reflexive and transitive, then the inter-

section of x and y is a partial ordering.

Lemma:

In[115]:= Map[

implies[#,PARTIALORDER[

intersection[x,y]]]&,

SubstTest[and,REFLEXIVE[u],TRANSITIVE[u],

subclass[intersection[u,inverse[u]],Id],

u ® intersection[x,y]]]

Out[115]= or[not[REFLEXIVE[intersection[x,y]]],

not[subclass[intersection[x,y,

inverse[x],inverse[y]],Id]],

not[TRANSITIVE[intersection[x,y]]],

PARTIALORDER[intersection[x,y]]] == True

In[116]:= (%/.{x ® x_,y ® y_})/.Equal ® SetDelayed

65

This is the proof but it fails to terminate, so we have to break it up:

In[117]:= Map[not,SubstTest[and,implies[p1,p4],

implies[and[p2,p4],p5],implies[p1,p6],

implies[and[p3,p6],p7],implies[p1,p8],

implies[p8,p9],

implies[and[p5,p7,p9],p10],

not[implies[and[p1,p2,p3],p10]],

{p1 ® PARTIALORDER[x],p2 ® REFLEXIVE[y],

p3 ® TRANSITIVE[y],p4 ® REFLEXIVE[x],

p5 ® REFLEXIVE[intersection[x,y]],

p6 ® TRANSITIVE[x],

p7 ® TRANSITIVE[intersection[x,y]],

p8 ® subclass[intersection[x,inverse[x]],

Id],

p9- > subclass[intersection[x,y,

inverse[x],inverse[y]],Id],

p10- > PARTIALORDER[intersection[x,y]]}]]

Out[117]= $Aborted

Pieces of Proof:

In[118]:= Map[not,SubstTest[and,implies[p1,p3],

implies[and[p2,p3],p4],

not[implies[and[p1,p2],p4]],

{p1 ® PARTIALORDER[x],p2 ® REFLEXIVE[y],

p3 ® REFLEXIVE[x],

p4 ® REFLEXIVE[intersection[x,y]]}]]

Out[118]= or[not[PARTIALORDER[x]],not[REFLEXIVE[y]],

REFLEXIVE[intersection[x,y]]] == True

In[119]:= (%/.{x ® x_,y ® y_})/.Equal ® SetDelayed

66

In[120]:= Map[not,SubstTest[and,implies[p1,p3],

implies[and[p2,p3],p4],

not[implies[and[p1,p2],p4]],

{p1 ® PARTIALORDER[x],p2 ® TRANSITIVE[y],

p3 ® TRANSITIVE[x],

p4 ® TRANSITIVE[intersection[x,y]]}]]

Out[120]= or[not[PARTIALORDER[x]],not[TRANSITIVE[y]],

TRANSITIVE[intersection[x,y]]] == True

In[121]:= (%/.{x ® x_,y ® y_})/.Equal ® SetDelayed

In[122]:= Map[not,SubstTest[and,implies[p1,p2],

implies[p2,p3],not[implies[p1,p3]],

{p1 ® PARTIALORDER[x],

p2 ® subclass[intersection[x,inverse[x]],

Id],

p3- > subclass[intersection[x,y,

inverse[x],inverse[y]],Id]}]]

Out[122]= or[not[PARTIALORDER[x]],

subclass[intersection[x,y,

inverse[x],inverse[y]],Id]] == True

In[123]:= (%/.{x ® x_,y ® y_})/.Equal ® SetDelayed

67

Putting the pieces together to get the theorem:

In[124]:= Map[not,SubstTest[and,

implies[and[p1,p2],p4],

implies[and[p1,p3],p5],implies[p1,p6],

implies[and[p4,p5,p6],p7],

not[implies[and[p1,p2,p3],p7]],

{p1 ® PARTIALORDER[x],p2 ® REFLEXIVE[y],

p3 ® TRANSITIVE[y],

p4 ® REFLEXIVE[intersection[x,y]],

p5 ® TRANSITIVE[intersection[x,y]],

p6- > subclass[intersection[x,y,

inverse[x],inverse[y]],Id],

p7- > PARTIALORDER[intersection[x,y]]}]]

Out[124]= or[not[PARTIALORDER[x]],

not[REFLEXIVE[y]],not[TRANSITIVE[y]],

PARTIALORDER[intersection[x,y]]] == True

In[125]:= or[not[PARTIALORDER[x_]],

not[REFLEXIVE[y_]],not[TRANSITIVE[y_]],

PARTIALORDER[intersection[x_,y_]]] :=

True

68

APPENDIX E

Total Orderings

69

Total Orderings

In[126]:= << "C : �WINDOWS�Desktop�Research�Thesis�

goedel57.16a";

<< "C : �WINDOWS�Desktop�Research�Thesis�

Tools.m"

":Package Title: goedel57.16a 2004 May 16 at 10:05 p.m. "

It is now: 2004 Jul 14 at 19 : 25

"Loading Simplification Rules"

"TOOLS.M Revised 2004 June 16 "

weightlimit = 40

Characterization of TOTALORDER[x]

In[127]:= implies[TOTALORDER[x],

and[TRANSITIVE[x],ANTISYMMETRIC[x],

equal[cart[fix[x],fix[x]],

union[x,inverse[x]]]]]//NotNotTest

Out[127]= or[and[equal[cart[fix[x],fix[x]],

union[x,inverse[x]]],

subclass[intersection[x,inverse[x]],

Id],TRANSITIVE[x]],

not[TOTALORDER[x]]] == True

In[128]:= (%/.x ® x_)/.Equal ® SetDelayed

In[129]:= equiv[TOTALORDER[x],

and[TRANSITIVE[x],ANTISYMMETRIC[x],

equal[cart[fix[x],fix[x]],

union[x,inverse[x]]]]]

70

Out[129]= True

Theorems about TOTALORDER[x]

If x is a total ordering, then composite[Id,x] is transitive and intersection[x,inverse[x]]

is a subclass of Id.

Lemma:

In[130]:= Map[not,SubstTest[and,implies[p1,p2],

implies[p2,p3],not[implies[p1,p3]],

{p1 ® TOTALORDER[x],p2 ® TRANSITIVE[x],

p3 ® TRANSITIVE[composite[Id,x]]}]]

Out[130]= or[not[TOTALORDER[x]],

TRANSITIVE[composite[Id,x]]] == True

In[131]:= (%/.x ® x_)/.Equal ® SetDelayed

Theorem:

In[132]:= or[and[subclass[intersection[x,inverse[x]],

Id],TRANSITIVE[composite[Id,x]]],

not[TOTALORDER[x]]]//NotNotTest

Out[132]= or[and[subclass[intersection[x,inverse[x]],

Id],TRANSITIVE[composite[Id,x]]],

not[TOTALORDER[x]]] == True

In[133]:= or[

and[subclass[intersection[x_,

inverse[x_]],Id],

TRANSITIVE[composite[Id,x_]]],

not[TOTALORDER[x_]]] := True

71

If cart[fix[x],fix[x]] is equal to union[x,inverse[x]] , intersection[x,inverse[x]]

is a subclass of Id, and composite[Id,x] is transitive, then x is a total

ordering.

Lemma:

In[134]:= SubstTest[implies,equal[u,v],

subclass[u,v],

{u ® union[x,inverse[x]],

v ® cart[fix[x],fix[x]]}]

Out[134]= or[and[REFLEXIVE[x],

REFLEXIVE[composite[Id,x]]],

not[equal[cart[fix[x],fix[x]],

union[x,inverse[x]]]]] == True

In[135]:= (%/.x ® x_)/.Equal ® SetDelayed

Theorem:

In[136]:= Map[not,SubstTest[and,implies[p3,p4],

implies[p4,p5],implies[and[p1,p5],p6],

implies[and[p2,p3,p6],p7],

not[implies[and[p1,p2,p3],p7]],

{p1 ® subclass[intersection[x,inverse[x]],

Id],p2 ® TRANSITIVE[composite[Id,x]],

p3 ® equal[union[x,inverse[x]],

cart[fix[x],fix[x]]],

p4 ® subclass[union[x,inverse[x]],

cart[fix[x],fix[x]]],

p5 ® subclass[x,cart[V,V]],

p6- > ANTISYMMETRIC[x],

p7 ® TOTALORDER[x]}]]

72

Out[136]= or[not[equal[cart[fix[x],fix[x]],

union[x,inverse[x]]]],not[subclass[

intersection[x,inverse[x]],Id]],

not[TRANSITIVE[composite[Id,x]]],

TOTALORDER[x]] == True

In[137]:= or[not[equal[cart[fix[x_],fix[x_]],

union[x_,inverse[x_]]]],

not[subclass[intersection[x_,

inverse[x_]],Id]],

not[TRANSITIVE[composite[Id,x_]]],

TOTALORDER[x_]] := True

If x is a partial ordering and cart[fix[x],fix[x]] is equal to union[x,inverse[x]],

then x is a total ordering.

Theorem:

In[138]:= Map[not,SubstTest[and,implies[p2,p3],

implies[p2,p4],

implies[and[p1,p3,p4],p5],

not[implies[and[p1,p2],p5]],

{p1- > equal[union[x,inverse[x]],

cart[fix[x],fix[x]]],

p2 ® PARTIALORDER[x],p3 ® TRANSITIVE[x],

p4 ® subclass[intersection[x,inverse[x]],

Id],p5 ® TOTALORDER[x]}]]

Out[138]= or[not[equal[cart[fix[x],fix[x]],

union[x,inverse[x]]]],

not[PARTIALORDER[x]],

TOTALORDER[x]] == True

73

In[139]:= or[not[equal[cart[fix[x_],fix[x_]],

union[x_,inverse[x_]]]],

not[PARTIALORDER[x_]],TOTALORDER[x_]] :=

True

If pair[y,z] is a member of cart[fix[x],fix[x]], x is a total ordering, // and

pair[z,y] is not a member of x, then pair[y,z] is a member of x.

Lemma:

In[140]:= SubstTest[implies,

and[member[u,v],equal[v,w]],

member[u,w],

{u ® pair[y,z],v ® cart[fix[x],fix[x]],

w ® union[x,inverse[x]]}]

Out[140]= or[and[member[y,V],

member[z,V],member[pair[z,y],x]],

member[pair[y,z],x],

not[equal[cart[fix[x],fix[x]],

union[x,inverse[x]]]],

not[member[y,fix[x]]],

not[member[z,fix[x]]]] == True

In[141]:= (%/.{x ® x_,y ® y_,z ® z_})/.

Equal- > SetDelayed

74

Theorem:

In[142]:= Map[not,SubstTest[and,implies[p3,p4],

implies[and[p2,p4],p5],

implies[and[p1,p5],p6],

not[implies[and[p1,p2,p3],p6]],

{p1 ® not[member[pair[z,y],x]],

p2- > member[pair[y,z],

cart[fix[x],fix[x]]],

p3 ® TOTALORDER[x],

p4 ® equal[cart[fix[x],fix[x]],

union[x,inverse[x]]],

p5- > member[pair[y,z],

union[x,inverse[x]]],

p6- > member[pair[y,z],x]}]]

Out[142]= or[member[pair[y,z],x],

member[pair[z,y],x],

not[member[y,fix[x]]],

not[member[z,fix[x]]],

not[TOTALORDER[x]]] == True

In[143]:= or[member[pair[y_,z_],x_],

member[pair[z_,y_],x_],

not[member[y_,fix[x_]]],

not[member[z_,fix[x_]]],

not[TOTALORDER[x_]]] := True

75

If x is a total ordering, then composite[id[y],x,id[y]] is a total ordering.

Lemma 1:

In[144]:= SubstTest[implies,equal[u,v],

equal[intersection[u,cart[y,y]],

intersection[v,cart[y,y]]],

{u ® union[x,inverse[x]],

v ® cart[fix[x],fix[x]]}]

Out[144]= or[equal[cart[intersection[y,fix[x]],

intersection[y,fix[x]]],

union[composite[id[y],x,id[y]],

composite[id[y],inverse[x],id[y]]]],

not[equal[cart[fix[x],fix[x]],

union[x,inverse[x]]]]] == True

In[145]:= (%/.{x ® x_,y ® y_})/.Equal- > SetDelayed

Lemma 2:

In[146]:= SubstTest[implies,

and[PARTIALORDER[u],

equal[union[u,inverse[u]],

cart[fix[u],fix[u]]]],TOTALORDER[u],

u ® composite[id[y],x,id[y]]]

Out[146]= or[not[equal[cart[intersection[y,fix[x]],

intersection[y,fix[x]]],

union[composite[id[y],x,id[y]],

composite[id[y],inverse[x],id[y]]]]],

not[PARTIALORDER[composite[id[y],

x,id[y]]]],TOTALORDER[

composite[id[y],x,id[y]]]] == True

76

In[147]:= (%/.{x ® x_,y ® y_})/.Equal- > SetDelayed

Theorem:

In[148]:= Map[not,SubstTest[and,implies[p1,p2],

implies[p1,p3],implies[p2,p4],

implies[p3,p5],implies[and[p4,p5],p6],

not[implies[p1,p6]],

{p1 ® TOTALORDER[x],p2 ® PARTIALORDER[x],

p3 ® equal[union[x,inverse[x]],

cart[fix[x],fix[x]]],

p4 ® PARTIALORDER[

composite[id[y],x,id[y]]],

p5- > equal[cart[intersection[y,fix[x]],

intersection[y,fix[x]]],

union[composite[id[y],x,id[y]],

composite[id[y],inverse[x],id[y]]]],

p6 ® TOTALORDER[

composite[id[y],x,id[y]]]}]]

Out[148]= or[not[TOTALORDER[x]],TOTALORDER[

composite[id[y],x,id[y]]]] == True

In[149]:= or[not[TOTALORDER[x_]],

TOTALORDER[composite[id[y_],x_,

id[y_]]]] := True

77

REFERENCES

[1] Belinfante, Johan G. F., Gödel’s Algorithm for Class Formation, Jour-

nal of Symbolic Computation, volume 1831 (1990), pp. 132–147.

[2] Belinfante, Johan G. F. and Goble, Tiffany D., CORE and HULL

Constructors in Gödel’s Class Theory, IJCAR 2004 Workshop 7

on Computer-Supported Mathematical Theory Development held

July 5, 2004 in Cork Ireland, Benzmüller, Christoph and Wind-

steiger,Wolfgang (Chairs), pp 73–89.

[3] Bernays, Paul, Axiomatic Set Theory with a Historical Introduction by

Abraham A. Fraenkel, North-Holland Publishing Company, Amster-

dam, 1958.

[4] Cohen, P. J., Set Theory and the Continuum Hypothesis, W. A. Ben-

jamin, New York, 1966.

[5] Fraenkel, A. A., On the Foundations of the Cantor-Zermelo Set The-

ory, Math. Annal. 86 (1922), pp. 230–237.

[6] Gödel, K., The consistency of the axiom of choice and of the gener-

alized continuum-hypothesis with the axioms of set theory, Princeton

University Press, Princeton, 1940.

78

[7] Heijenoort, Jean von, From Frege to Gödel: A Source Book in Math-

ematical Logic, 1879-1931, Harvard University Press, Cambridge,

1967.

[8] Kelley, John L., General Topology, D. Van Nostrand, Company Inc.,

Princeton, 1955.

[9] McCune, W., Solution of the Robbins problem, J. Automated Reason-

ing, 19(3) (1997), pp. 263–276.

[10] Rubin, Jean E., Set Theory for the Mathematician, Holden-Day, San

Francisco, 1967.

[11] Skolem, T., Some remarks on the axiomatic foundations of set theory,

Wiss. Vorträge gehalten aug dem 5. Kongress der Skandenav. Mathe-

maliken in Helsingfors (1922), pp. 217–232.

[12] Neumann, John von, The Axiomatisation of Set Theory, Math. Zschr.

27, Vol. I, No. 16(1928), pp. 669–752.

[13] Quaife, Art, Automated Development of Fundamental Mathematical

Theories Kluwer Academic Publishers, Dordrecht, 1992.

[14] Russell, B., On some difficulties in the theory of transfinite numbers

and order types, Proc. London Math. Soc. (1906), (2), 4, pp. 29–53.

[15] Wos, L., Overbeek, R., Lusk, E. and Boyle, J., Automated Reason-

ing: Introduction and Applications, 2nd ed., McGraw-Hill, New York,

1992.

79

[16] Wos, Larry and Pieper, Gail W., The Collected Works of Larry Wos,

Volume 1, Exploring the Power of Automated Reasoning, World Sci-

entific, Singapore, 2000.

[17] Wos, Larry and Pieper, Gail W., The Collected Works of Larry Wos,

Volume 2, Applying Automated Reasoning to Puzzles, Problems, and

Open Questions, World Scientific, Singapore, 2000.

[18] Wos, Larry and Pieper, Gail W., A Fascinating Country in the World

of Computing: Your Guide to Automated Reasoning, World Scientific,

Singapore, 1999.

[19] Zermelo, E., Investigations on the Foundations of Set Theory I, Math.

Annal., 65 (1908), pp. 261–281.

80

