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Nothing in the world can take the place of 
persistence.  Talent will not; nothing is more 

common than unsuccessful men [and 
women] with talent.  Genius will not; 

unrewarded genius is almost a proverb.  
Education will not; the world is full of 

educated derelicts.  The slogan, “Press on” 
has solved and always will solve the 

problems of the human race. 
 

-Calvin Coolidge, January 17, 1914 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To Mommy and Daddy 



v 

 

ACKNOWLEDGEMENTS 
 
 
 

 I would first like to thank my parents, Mable and David Evans (or as I like to call 

them, Mom and Dad).  This journey of constant failure and success would not have been 

made possible without the values and drive they instilled in me at an early age.  It is 

because of them that I continue to persevere. My persistence to becoming the best 

person I can be will never let down because I know they will always be with me…guiding 

me to the top.  I love you both very much. 

 I am happy to have reached this stage in my professional endeavors.  It has 

been a long and tedious journey filled with excitement, sleep deprivation, serendipity and 

colossal failure.  As I have matured I have come to realize the advantages to all of these 

stages.   I must admit that as a younger PhD student my “procrastination level” was quite 

high.  I had come to rely on my ability to just “get by”, which I was very good at doing.  I 

maintained a good GPA at the University of Virginia with procrastination and was 

successful at a graduate student at Georgia Tech with procrastination.  Research 

however, made me realize the importance of thorough planning and asking the right 

questions.  These actions are not very friendly to the student who procrastinates…thus 

my mindset began to change.  This change was not a divine realization that I had come 

to understand by myself.  It took the guidance of my advisor, Dr. Samuel Dudley, to help 

me get back on track.  Dr. Dudley has been a constant mentor and friend throughout my 

journey at Georgia Tech, Emory University and the University of Illinois at Chicago.  He 

has guided me in becoming a better scientist and a better person.  He has even 

extended a helping hand during my times of personal struggle and hardship.  I am 

confident I will never forget his in depth knowledge about “everything” or his tales of 

science (the “CS” to “CS” converter comes to mind).  He has always said that I need to 



vi 

 

become famous so I can invite him to give a talk someday…he can rest assured he will 

be at the top of my list. 

 I would also like to acknowledge the contributions of the members on my PhD 

thesis committee:  Dr. Robert Nerem, Dr. Marie Csete, Dr. Steve Stice and Dr. Todd 

McDevitt.  Specifically, I would like to thank Dr. Nerem for his assistance, guidance and 

belief in me during my time at Georgia Tech.  I have always considered him to be a 

second advisor and have enjoyed working with him and his laboratory.  I would also like 

to thank Dr. Csete for her assistance with understanding oxygen tension and how it 

relates stem cell function and also her enthusiasm for my project.  While at Emory 

University I was able to collaborate and work with members of Dr. Csete’s research lab 

which was of great help in furthering my project.   I would like to thank Dr. Steve Stice for 

his assistance with understanding embryonic stem cell culture and properties.  In 

addition, I would like to thank the Stice Lab (specifically, Dr. Nolan Boyd) for providing 

SM1, SM4 and B4 progenitor cells which I have used over the past two years in my 

studies.  Lastly, I would like to think Dr. Todd McDevitt for his great advice and feedback 

which has help me tailor my thesis into something I am quite proud of.  

 The laboratory of Dr. Samuel Dudley has been of immense help in aiding me 

through this stage of my life.  They have assisted me with various techniques and made 

me feel welcome when I joined the lab.  I would like to thank Jon Allen, Priyanka Karen, 

Georgia Gaconnet and Alana Reed for their friendship and assistance throughout the 

various facets of my work.  I would like to thank Dr. Zhe Jiao, Dr. Hong Liu, Dr. Lisa 

Shang, Dr. Vijay Kasi, Dr. Grace Gao, Dr. Havey Lardin, Dr. Josh Lovelock, Dr. Man Liu, 

Dr. Michael Fan, Dr. Alice Huang and Dr. Susen Varghese for their willingness to assist 

me in learning new techniques or helping me in understanding some random piece of 

knowledge.  In particular I’d like to think Dr. Alice Huang and Dr. Hong Liu for having the 



vii 

 

patience to work with me and teach me a variety of surgical techniques which I have 

come to rely on throughout my PhD research.   

 During my stay at Georgia Tech and Emory University I had the opportunity to 

work with many individuals.  I would like to thank the members of the Nerem Lab for 

accepting me into the lab and teaching me various techniques that I continue to use to 

this day. Thank you Kara McCloskey, Ima Ibong, Tiffany Johnson, Ann Ensley, Jonathan 

Butcher, Josette Broiles, Stacy Schutte, Taby Ashan, Adele Doyle, Barbara Nsiah, 

Casey Holiday and Steve Woodard for all of your help.  I would also like to acknowledge 

the staff of the IBB who aided me in understanding and performing additional techniques 

such as histology (Tracy Couse and Aqua Asberry), flow cytometry and confocal 

microscopy (Jonafel Crowe).  I also want to thank all the secretaries, assistants and staff 

of the IBB front office and building.  You are the ones who keep this institute running. 

 While at Georgia Tech and Emory University I worked with various faculty who 

gave me the opportunity to improve my teaching pedagogy.  In particular I’d like to thank 

Dr. Barbara Boyan for allowing me to help reshape and improve the BMED 3160 lab and 

Dr. David Lynn for accepting me into the ORDER program at Emory University.  I would 

also like to thank the program directors of the FACES program, NIH Cellular and Tissue 

Engineering Training Grant, George Fellowships and Gandy-Diaz Fellowships for all the 

financial assistance these programs have provided me over the years.  

 I would also like to acknowledge the faculty and staff at the University of Illinois at 

Chicago, Section of Cardiology.  In particular I’d like to think Dr. Dave Geenen for his 

assistance with fine tuning my myocardial infarct model and echocardiography 

technique.  Also, I’d like to thank Dr. Mei Lin Chen for her assistance with confocal 

microscopy and Dr. Karen Hagen for her assistance with flow cytometry.  Additionally, I’d 

like to thank the staff of the Section of Cardiology: Lisa Cox, Birgitta Kuehn, Jeffery 



viii 

 

Kulik, Faith Thrumond and Richard Whitley.  They are always willing to help me with any 

problem and I greatly appreciate their efforts. 

 Lastly, I’d like to thank my friends Anthony, Matt, Johnny, Adam, Tony and 

Augustus.  Thank you Anthony, Matt, Johnny, Adam and Tony for always being there for 

me.  You are great friends who I have come to rely on for peace of mind and great 

conversation.  Augustus, I know we’ve had our ups and downs but thank you for being 

by my side during some of the toughest times of my life: my financial curses, the death 

of my grandmother, my sudden move to Chicago, the theft from my car and my personal 

struggles with life in general.  You helped me to continue to strive for my goals and live 

life to its fullest. I can confidently say that because of you I have evolved into a better 

person.  I can see my faults and am willing to venture outside my comfort zone to 

change them.  Sometimes I do wish I would’ve realized this earlier, but I am confident 

that we are both much happier.  Thank you for everything, I love you and I wish you the 

best. 

   

     

  

  



ix 

 

TABLE OF CONTENTS 
 
 
 

ACKNOWLEDGEMENTS v 
 
TABLE OF CONTENTS ix 
 
LIST OF TABLES xvi 
 
LIST OF FIGURES xvii 
 
LIST OF ABBREVIATIONS xx 
 
SUMMARY xxiii 
 
 
CHAPTER 
 

1 Introduction 1 
 
2    Background 5 
  
 2.1    A Brief Discussion on the Anatomy and Physiology of the Heart 5 
 
 2.2    Epidemiology and Etiology of Heart Failure 10 
 
 2.3    Myocardial Infarction (MI) 12 
 
 2.4    Diagnosis of Myocardial Infarction 16 
 
  2.4.1    The Electrocardiogram (ECG) 16 
 
  2.4.2    Echocardiography 18 
 
 2.5    Current Treatment Options and Limitations 21 
 
  2.5.1    Drug Therapies 21 
 
  2.5.2    Surgical Options 22 
 
  2.5.3    Cellular Cardiomyoplasty as a Potential Treatment 23 
 
 2.6    A Critical Review on the State of Progenitor Cell 
          Cardiomyoplasty 23 
 
  2.6.1    Cell Sources for Cardiomyoplasty 23 
 
   2.6.1.1    Skeletal Myoblast 25 
   



x 

 

   2.6.1.2    Cardiac Progenitors 26 
 
   2.6.1.3    Bone Marrow Stem Cells 28 
 
   2.6.1.4    Adipose-Derived Mesenchymal Stem Cells 29 
 
   2.6.1.5    Amniotic Fluid Stem Cells 30 
 
   2.6.1.6    Embryonic Stem Cells 31 
 
   2.6.1.7    Induced Pluripotent Stem Cells 32 
 
  2.6.2    Clinical Translation of Cellular Cardiomyoplasty 34 
 
   2.6.2.1    Phase I Clinical Trial Results 36 
 
   2.6.2.2    Phase II and III Clinical Trials 37 
 

2.6.3 Translational Issues Concerning Cellular 
Cardiomyoplasty 41 

 
    2.6.3.1    Translational Roadblock #1: No Optimum Cell 
                   has been Identified 41 
 
    2.6.3.2    Translational Roadblock #2: Low Engraftment  
                   Rates 41 
 
    2.6.3.3    Translational Roadblock #3: Understanding 
                   the Mechanism of Repair 42 
 
     2.6.3.3.1    Do Cardiomyocytes Matter? 42 
 
     2.6.3.3.2    Trophic Factors – The Paracrine 
                       Hypothesis 45 
 
   2.6.4    Tissue Engineering for Addressing the Translational  
               Issues  46 
 
   2.6.5    Summary 51 
 
  2.7    Conclusions  52 
 
  2.8    References  53 
 
 3    A TISSUE ENGINEERING APPROACH TO CELL DELIVERY RESULTS 
       IN SIGNIFICANT CELL ENGRAFTMENT AND IMPROVED MYOCARDIAL 
       REMODELING: A PROOF OF CONCEPT 
 
  3.1    Introduction  64 
 



xi 

 

  3.2    Materials and Methods 65 
 
   3.2.1    Animal Handling 65 
 
   3.2.2    Production of Cardiac Patches 65 
 
   3.2.3    Characterization of hMSC in Cardiac Patch 69 
 
    3.2.4.1    Viability 69 
 
    3.2.4.2    Differentiation 69 
 
    3.2.4.3    Cellularity 70 
 
   3.2.4    Infarct Model and Patch Application 70 
 
   3.2.5    Echocardiography 71 
 
   3.2.6    Cardiac Hemodynamics 72 
 
   3.2.7    Myocardial Histology 72 
 
   3.2.8    Neonatal Cardiomyocyte and Cardiac Fibroblast 
               Isolation 74 
 
   3.2.9    Real Time RT-PCR 74 
 
   3.2.10  Assessment of hMSC Paracrine Function 75 
 
   3.2.11 Statistical Analysis and Interpretation 77 
 
  3.3    Results   77 
 
   3.3.1    In Vitro Characterization of the Cardiac Patch 77 
 
   3.3.2    Progenitor Cell Engraftment and Distribution with 
               Cardiac Patch Application 80 
 

3.3.3 Efficacy of the Cardiac Patch in Post-infarct 
            Remodeling 84  
 
3.3.4    Increased Myofibroblast and c-Kit Expression with 
            Patch Application 87 
 
3.3.4 An In Vitro Model to Assess Possible Benefits of 

hMSC Conditioned Media 91 
 
  3.4    Discussion  95 
 
  3.5    Limitations and Recommendations 99 



xii 

 

 
  3.6    References   101 
 
  
 4    MODULATION OF HUMAN MESENCHYMAL STEM CELL FUNCTION 
             IN COLLAGEN PATCHES 105 
 
  4.1    Introduction  105 
 
  4.2    Materials and Methods 106 
 
   4.2.1    Cell Culture 106 
 
   4.2.2    Formation of Cell Seeded Collagen Patches 106 
 
   4.2.3    Measurement of Patch Compaction 106 
 
   4.2.4    Viability Assays 107 
 
   4.2.5    Cellularity 107 
 
   4.2.6    Proliferation 108 
 
   4.2.7    Assessment of Cell Differentiation 109 
 
    4.2.7.1    Flow Cytometry 109 
 
    4.2.7.2    Histology 109 
 
   4.2.8    Antibody Arrays and Protein ELISAs 110 
 
   4.2.9    Real Time RT-PCR 111 
 
   4.2.10   Hypoxia Model and Endothelial Cell Function 112 
 
   4.2.11   Animal Handling 114 
 
   4.2.12   Infarct Model and Patch Application 114 
 
   4.2.13   Echocardiography 115 
 
   4.2.14   Cardiac Hemodynamics 116 
 
   4.2.15   Myocardial Histology 117 
 
   4.2.16   Statistical Analysis and Interpretation 118 
 
  4.3    Results   118 
 
   4.3.1    Culture within Collagen Patches Modulates  



xiii 

 

              Proliferation, Differentiation and Viability of hMSC 118 
 
   4.3.2    Changes in Secretory Profiles of hMSC after  
               Culture in Collagen Patches 123 
 
   4.3.3    hMSC Conditioned Media may Modulate 
               Endothelial Cell function 129 
 
   4.3.4    hMSC Patch Application Results in Improved  
               Myocardial Function Compared to Injected hMSC 131 
 
  4.4    Discussion  135 
 
  4.5    Limitations and Recommendations 140 
 
  4.6    References  141 
 
 5    HUMAN EMBRYONIC STEM CELL DERIVED-MESENCHYMAL CELLS: 
                  EXPLORING THE EFFICACY OF A POSSIBLE SUBSTITUTE FOR  
                  MESENCHYMAL STEM CELLS IN CELLULAR CARDIOMYOPLASTY 145 
 
  5.1    Introduction  145 
 
  5.2    Materials and Methods 147 
 
   5.2.1    Animal Handling 147 
 
   5.2.2    Cell Culture 147 
 
   5.2.3    Formation of Cell Seeded Collagen Patches 148 
 
   5.2.4    Viability Assays 148 
 
   5.2.5    Proliferation 149 
 
   5.2.6    Assessment of Cell Differentiation 150 
 
   5.2.7    Real Time RT-PCR 150 
 
   5.2.8    Infarct Model and Patch Application 151 
 
   5.2.9    Echocardiography 152 
 
   5.2.10  Cardiac Hemodynamics 153 
 
   5.2.11   Myocardial Histology 153 
 
   5.2.12   Statistical Analysis and Interpretation 154 
 
  5.3    Results   154 



xiv 

 

   5.3.1    Culture within Collagen Patches Modulates  
               Proliferation, Differentiation and Viability of hMSC and  
               B4 Progenitor Cells 154 
 
   5.3.2    Culture within 3D Collagen Patches Modulates  
               Growth mRNA Abundance of hMSC and B4  
               Progenitor Cells 157 
 
   5.3.3    Cardiac Patch Application to Injured Myocardium  
               does not Alter the Developed Infarct Size 160 
 
   5.3.4    hMSC and B4 Progenitor Cell Cardiac Patch  

  Application Improves Parameters of Cardiac     
  Remodeling and Function after Myocardial Infarction  162 

 
   5.3.3    B4 Progenitor Cell Patch does not Alter Neovessel 
               Formation after Myocardial Infarction 164 
 
  5.4    Discussion  166 
 
  5.5    Limitations and Recommendations 169 
 
  5.5    References  170 
 
 6    CONCLUSIONS AND FUTURE DIRECTIONS 174 
 
  6.1    Addressing Cellular Cardiomyoplasty in Five Stages 174 
 
  6.2    Conclusions  189 
 
  6.3    References  190 
 
APPENDIX 
 
 A    PERFORMING A SUCCESSFUL LEFT ANTERIOR DESCENDING 
                  CORONARY ARTERY LIGATION 194 
 
  A.1    Introduction  194 
 
  A.2    Materials  194 
 
  A.3    Pre-op   195 
 
  A.4    Surgical Procedure 198 
 
  A.5    Post-op   201 
 
 B    MODULATION OF HUMAN EMBRYONIC STEM CELL FUNCTION 
                  IN COLLAGEN PATCHES 202 
 



xv 

 

  B.1    Introduction  202 
 
  B.2    Materials and Methods 202 
 
   B.2.1    Cell Culture 202 
 
   B.2.2    Formation of Cell Seeded Collagen Patches 202 
 
   B.2.3    Viability Assays 203 
 
   B.2.4    Proliferation 203 
 
   B.2.5    Assessment of Cell Differentiation 204 
 
  B.3    Results   205 
 
   B.3.1    Culture of hESCs within Collagen Patches Modulates 
                Proliferation, Differentiations and Viability 205 
 
  B.4    Discussion  208 
 
  B.5    References  209 
 
 C    SECRETION PROFILE FOR B4 PROGENITOR CELLS 210 
 
VITA      212 
 
 
 

 
 



xvi 

 

LIST OF TABLES 
 
 
 

Table 2.1: Major human clinical studies involving stem cell therapy 
                 for heart failure 35 
 
Table 2.2: Major preclinical studies involving tissue engineering for 
                 myocardial repair 48 
 
Table 3.1: Echocardiographic measures of myocardial remodeling and function 85 
 
Table 3.2: Hemodynamic measures of myocardial infarction 86 
 
Table 4.1: Animal accounting for in vivo model of myocardial infarction 117 
 
Table 4.2: Corrected echocardiographic measures after myocardial infarction 133 
 
Table 4.3: Hemodynamic measures after myocardial infarction 134 
 
Table 5.1: Animal accounting for in vivo model of myocardial infarction 160 
 
Table 5.2: Corrected echocardiographic measures after myocardial infarction 163 
 
Table 5.3: Hemodynamic measures after myocardial infarction 164 
 
Table 6.1:  Correlation of cell number to improved myocardial function 180 
 
  
  

 
 
 

 



xvii 

 

LIST OF FIGURES 
 
 
 

Figure 2.1: The flow of blood in the heart 6 
 
Figure 2.2: The cardiac action potential 8 
 
Figure 2.3: Pressure-volume loop from the ventricle of a normal rat 10 
 
Figure 2.4: The pathological progression of myocardial infarction 14 
 
Figure 2.5: Mechanical changes in the infarcted heart 16 
 
Figure 2.6: The standard ECG 17 
 
Figure 2.7: The twelve lead ECG 18 
 
Figure 2.8: Diagnosis of MI using echocardiography 20 
 
Figure 2.9: Translational roadblocks of cellular cardiomyoplasty 40 
 
Figure 2.10: Tissue engineering approaches to address roadblocks 51 
 
Figure 3.1: Apparent cell migration with culture on tissue culture treated plates 67 
 
Figure 3.2: A single freeze/thaw cycle leads to complete loss of viability in cardiac 
                  patches 68 
 
Figure 3.3: Overview of induced infarct and patch placement methodology 71 
 
Figure 3.4: Schematic of in vitro hypoxia model 77 
 
Figure 3.5: In vitro characteristics of the cardiac patch 78 
 
Figure 3.6: Remodeling of cardiac patches in culture 79 
 
Figure 3.7: Loss of patch cellularity while in culture 80 
 
Figure 3.8: Trends in hMSC engraftment 81 
 
Figure 3.9: Engraftment of hMSC in infarcted rat heart at 1 week 83 
 
Figure 3.10: Blood vessel density at 4 weeks post-infarction 88 
 
Figure 3.11: Expression of α-SMA in infarcted hearts at 4 weeks 89 
 
Figure 3.12: No change in the extent of fibrosis with cardiac patch application 90 
 
Figure 3.13: Endogenous stem cell recruitment with cardiac patch treatment 91 



xviii 

 

 
Figure 3.14: NCM apoptosis with exposure to hMSC conditioned media 92 
 
Figure 3.15: Downregulation of SCN5A transcript levels with exposure to hMSC 
                    conditioned media 93 
 
Figure 3.16: Increased CFb presence after exposure to hMSC conditioned media 94 
 
Figure 3.17: Attenuated collagen secretion from CFb exposed to hMSC conditioned 
                    media 95 
 
Figure 4.1: Schematic of experiments to test the paracrine effects of hMSC 114 
 
Figure 4.2: Initial seeding density influences cardiac patch cellularity and  
                  compaction 119 
 
Figure 4.3: Culture of hMSC in collagen patches attenuates proliferation 120               
 
Figure 4.4: Minimal loss of cell potency after culture in collagen patches 122 
 
Figure 4.5: Viability of hMSC cells in collagen patches 123 
 
Figure 4.6: hMSC secretion profile 126 
 
Figure 4.7: Angiogenic factor gene expression in hMSC 128 
 
Figure 4.8: hMSC conditioned media may support endothelial cell 
                  growth/proliferation 130 
 
Figure 4.9: hMSC conditioned media may alter endothelial cell tube 
                  formation properties 131 
 
Figure 4.10: No change in infarct size with cardiac patch transplantation 132 
 
Figure 4.11: Application of hMSC patch does not change blood vessel presence 135 
 
Figure 5.1: Proliferation of hMSC and B4 progenitor cells in collagen patches 155 
 
Figure 5.2: No loss of hMSC or B4 progenitor cell potency after culture 
                  in collagen patches 156 
 
Figure 5.3: Viability of hMSC and B4 progenitor cells in collagen patches 157 
 
Figure 5.4: Angiogenic growth factor mRNA abundance fold change in 
                  hMSC and B4 progenitor cells 159 
 
Figure 5.5: No change in infarct size with cardiac patch transplantation 161 
 
Figure 5.2: Myocardial infarct development after treatment with a cardiac patch 162 
 



xix 

 

Figure 5.6: Application of hMSC patch showed no improvement in 
                  neovessel formation 165 
 
Figure 6.1: The five stages 175 
 
Figure B.1: Culture of hESC in collagen patches attenuates proliferation  205 
 
Figure B.2: Culture of hESC in collagen patches modulates potency 206 
 
Figure B.3: Viability of hESC cells in collagen patches  207 
 
Figure C.1: B4 progenitor cell secretion profile 210 
 



xx 

 

LIST OF ABBREVIATIONS 
 
 
 

 
ANG Angiogenin 
 
α-SMA alpha-Smooth Muscle Actin 
 
ATP Adenosine Triphosphate 
 
BSA Bovine Serum Albumin 
 
cDNA Complementary Deoxyribonucleic Acid 
 
CFb Cardiac Fibroblast 
 
CHF Congestive Heart Failure 
 
Cx43 Connexin 43 
 
DAPI 4’, 6-diamidino-2-phenylindole 
 
DMEM Dulbecco’s Modified Eagle’s Medium 
 
DNA Deoxyribonucleic Acid 
 
ECG Electrocardiography 
 
ECHO Echocardiography 
 
ECM Extracellular Matrix 
 
EDP End Diastolic Pressure 
 
EdU 5-ethynyl-2’-deoxyuridine 
 
ELISA Enzyme-Linked Immunosorbent Assay 
 
FBS Fetal Bovine Serum 
 
FGF-a Fibroblast Growth Factor-acidic 
 
FGF-b Fibroblast Growth Factor-basic 
 
FITC Fluorescein Isothiocyanate 
 
HCl Hydrochloric Acid 
 
hESC Human Embryonic Stem Cell 



xxi 

 

 
hESC-MC/B4 Human Embryonic Stem Cell derived Mesenchymal Cell 
 
HF Heart Failure 
 
HIF-1α Hypoxia Inducible Factor-1 alpha 
 
HLA Human Leukocyte Antigen 
 
hMSC Human Mesenchymal Stem Cell 
 
IC Intracoronary 
 
IgG Immunoglobulin 
 
IHC Immunohistochemistry 
 
IL-6 Interleukin 6 
 
IL-8 Interleukin 8 
 
IM Intramuscular 
 
IRC Intravenous Retrograde Intracoronary 
 
LAD Left Anterior Descending (Coronary Artery) 
 
LV Left Ventricle 
 
MI Myocardial Infarction 
 
MM Maintenance Media 
 
MMP Matrix Metalloproteinase 
 
MSC Mesenchymal Stem Cell 
 
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
 
NCM Neonatal Cardiomyocyte 
 
NV Non-viable 
 
OCT Optimal Cutting Temperature 
 
Oct 3/4 Octomer –binding transcription factor 3/4 
 
PBS Phosphate Buffered Saline 
 
PCR Polymerase Chain Reaction 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Methyl
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl


xxii 

 

 
R18s Ribosomal Protein 18s 
 
RLP13A Ribosomal Protein 13A 
 
RAS Renin Angiotensin System 
 
RNA Ribonucleic Acid 
 
RT-PCR Reverse Transcription Polymerase Chain Reaction 
 
SDF-1 Stromal Derived Factor-1 
 
SERCA Sarcoendoplasmic reticulum calcium ATPase 
 
SSEA4 Stage Specific Embryonic Antigen 4 
 
TE Tissue Engineering 
 
TIMP Tissue Inhibitor of Metalloproteinase 
 
TNF-α Tissue Necrosis Factor-alpha 
 
TnT Troponin T 
 
TUNEL Terminal Deoxynucleotidyl Transferase mediated dUTP Nick End Labeling 
 
VEGF Vascular Endothelial Growth Factor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xxiii 

 

SUMMARY 
 
 
 

Heart failure accounts for more deaths in the United States than any other 

pathology. Unfortunately, repairing the heart after pathological injury has become an 

overwhelming task for physicians and researchers to overcome.  Fortunately, cellular 

cardiomyoplasty has emerged as a promising solution for sufferers of heart failure. Such 

a therapy is limited in efficacy due to poor engraftment efficiencies, however.  To 

address this issue, we have developed a tissue engineered vehicle for cell delivery.  Use 

of a “cardiac patch” resulted in localized and efficient delivery of human mesenchymal 

stem cells (hMSC) to infarcted myocardium.  Application of a cardiac patch also 

attenuated adverse remodeling.  Additionally, the culture of stem/progenitor cells within 

three dimensional collagen constructs led to modulations in cell function, which did not 

promote enhanced angiogenesis in vitro or in vivo.  Despite enhanced neovessel 

formation, hMSC patches were more beneficial at augmenting myocardial repair 

compared to directly injected hMSC.  Lastly, although hMSC represent an effective cell 

source option for enhancing cardiac repair they require additional purification and 

expansion steps which inherently delay the turnover before treatment.  Therefore, 

suitable cell alternative are being sought.  Human embryonic stem cell derived 

mesenchymal (B4) cells display several phenotypic similarities to hMSC.  B4 progenitor 

cell responded similarly to hMSC in 3D culture.  In addition B4 progenitor cell patch 

application to infarcted myocardium resulted in similar indices of repair compared to 

hMSC.  Thus, a tissue engineering approach represents an effective cell delivery 

strategy and induces modulations in cell function which may demonstrate pathological 

significance. 



Chapter 1 
 

Introduction 
 
 
 

Myocardial infarction (MI) is the death of heart muscle that results from impaired 

perfusion. Approximately 16.8 million American adults suffer from coronary heart 

disease, a common cause of MI. In addition, it is expected that over 151,000 individuals 

will die from severe MI, even with modern advances in devices and pharmaceuticals.  

Current research efforts involve replacing lost myocardial cells (due to MI) with other 

functional cells that act to restore contractile function or provide paracrine factors to 

enhance healing.  In particular, fibroblasts, smooth muscle cells, skeletal myoblasts, 

bone marrow stem cells, and embryonic stem cells have been transplanted into infarcted 

myocardium.  Typical approaches used to deliver cells to an infarcted heart include 

direct epicardial or endocardial injection, intravenous (IV), intracoronary (IC), and 

retrograde IC injection. Direct injection methods result in inhomogeneous cell delivery or 

washout of cells into vascular shunts, however. Additionally, IV and IC methods suffer 

from the failure of cells to reach the target area.  The following thesis will provide 

evidence that a tissue engineered approach to cell delivery will help attenuate such 

limitations.  We hypothesize that tissue engineered constructs will help to localize more 

cells in the damaged region, thus improving overall cardiac function after infarction.  

  

Specific Aim I 

The application of tissue engineering practices for cell delivery is not a novel 

concept.  Translating this approach for cardiac repair however, does offer a unique 

approach to cellular cardiomyoplasty.  Initially we set out to provide a “Proof of Concept” 

that tissue engineering could be used to deliver human mesenchymal stem cells to 

1



infarcted myocardium.  We also set out to demonstrate that engraftment would be 

relatively high with this approach.  

Specific Aim: Determine the suitability of cell delivery using a collagen hydrogel 

disk embedded with human mesenchymal stem cells to infarcted heart. 

Hypothesis: Tissue engineered cellularized vehicles can be used to efficiently 

deliver human mesenchymal stem cells to infarcted heart.    

  

Specific Aim II 

 With conventional methods of delivery such as direct or IV injection, cells are grown as 

a monolayer before injection into the host.  With a TE approach, cell delivery is achieved 

by applying a cellularized collagen patch onto the epicardial surface of the heart. These 

changes in culture configuration have the possibility of affecting cell function in 

numerous ways.  Such changes in cell function can lead to downstream consequences 

which may promote or attenuate potential reparative mechanisms involved in cellular 

cardiomyoplasty. Thus we set out to investigate modulations in cell function due to 

culture in collagen patches. Two cell types were used in these studies: human 

mesenchymal stem cells (Chapter 4) and B4 progenitor cells (Chapter 5).  Both cell 

types are thought to have cardiomyoplastic potential.   

Specific Aim: Investigate how progenitor/stem cell function can be modulated 

through culture in collagen hydrogels.  

Hypothesis: Culture of progenitor/stem cells within collagen gels will modulate 

cellular viability, proliferation, differentiation and secretory profiles compared to 

cells cultured as monolayer. 
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Specific Aim III 

Our initial “Proof of Concept” experiments provided much insight as to how to 

optimize future experiments investigating tissue engineered approaches to cell delivery.  

Firstly, we changed from an immunocompetent animal model to an 

immunocompromised animal model.  Ideally, this would provide for longer engraftment 

of human progenitor/stem cells.  Additionally, the cardiac patch was slightly modified by 

lowering the initial seeding density.  This effectively reduced cell crowding and was 

thought to also enhance long term viability.  With these changes in place, we conducted 

a comparison of direct myocardial injection and cardiac patch cell delivery using human 

mesenchymal stem cells in an in vivo model for myocardial infarction (Chapter 4). 

Specific Aim: Compare the efficacy of a tissue engineered approach to cell 

delivery to a direct injection approach on cardiac function. 

Hypothesis: Localized delivery of a modest number of hMSC using cellularized 

collagen constructs will enhance global cardiac function and myocardial 

remodeling compared to delivery via direct injection.  

Specific Aim IV 

Human mesenchymal stem cells are a viable cell source for cellular 

cardiomyoplasty because they are easily maintained and have been implicated in 

several potential reparative mechanisms to heart failure (including cardiac/vascular cell 

differentiation and secretion of trophic factors).  Although these properties are attractive, 

the time needed to purify and scale up mesenchymal stem cell production may lead to 

delayed treatment for severely ill patients in the clinic.  Fortunately, a human embryonic 

stem cell derived mesenchymal stem cell has recently become available.  The use of 

these cells could potentially eliminate the need for scale up and offer “off the shelf” 

availability of a cardiac cell therapy.  These cells, termed human embryonic stem cell 

derived mesenchymal cells (referred to as B4 progenitor cells throughout the study), 
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were tested in vitro and in vivo model of myocardial infarction to determine their 

suitability and effectiveness for cellular cardiomyoplasty (Chapter 5). 

Specific Aim: Explore the extent of cardiac repair and remodeling with the use 

of B4 progenitor cells delivered within tissue engineered constructs. 

Hypothesis: Similar indices of myocardial improvement will be presented upon 

delivery of B4 progenitor cells to infarcted heart when compared to human 

mesenchymal stem cells. 
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Chapter 2 

Background 
 
 
 

2.1 A BREIF DISSCUSSION ON THE ANATOMY AND PHYSIOLOGY OF THE HEART 
 

 The human heart is a mechanical pump that facilitates the delivery of oxygen, 

biochemical molecules and blood cells to all vascularized tissues of the body.  It 

achieves such delivery with the help of a vast vessel network. The human heart is 

composed of four chambers:  two atrium and two ventricles.  Associated with each 

chamber is a valve that aids in controlling the flow of blood in the systemic and 

pulmonary circulation. Under normal conditions, blood enters the heart from the vena 

cava into the right atria.  Next, blood travels through the tricuspid valve into the right 

ventricle where it is sent through the pulmonic valve into the lung.  While in the lung 

circulation, blood is re-oxygenated (heme groups in hemoglobin of erythrocytes bind 

oxygen) and returns to the left atrium.  Blood then enters the left ventricle through the 

mitral valve.  Once the pressure within the left ventricle exceeds that across the aortic 

valve, blood is ejected from the left ventricle into the systemic circulation (Figure 2.1). 
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Figure 2.1) The flow of blood in the heart.  Blood returns to the right (blue) side of the 
heart.  This blood, which has diminish oxygen content, flows to the lung to bind more 
oxygen and returns to the left side of the heart (red).  After entering the thick-walled left 
ventricle blood is ejected into the systemic circulation. 
 
 
 Several cell types found in the heart contribute to its overall function. These 

include working myocytes, Purkinje fibers, nodal cells, fibroblasts, endothelial cells, 

vascular smooth muscle cells and squamous cells (which line the endocardium and 

epicardium).  The bulk of work produced by the heart is the result of active working 

myocytes.  These cells are found in both the atria and ventricles and contain a 

contractile apparatus made of an array of sarcomeres.  Located within the sarcomeres 

are thick (myosin and titin) and thin (actin, tropomyosin and troponin proteins) filaments.  

It is the interaction of these filaments which dictates the extent of force produced by a 

working myocyte.  In general, as the overlap of myosin and actin increases, the 

generated tension also increases.  This positive correlation does diminish, however, as 

the overlap continues to increase and the sarcomere length falls below 1.65 μm in 

humans.   The collection of sarcomeres forms myofibrils which account for over 47% of 

the volume of myocytes.  Mitochondria (36%), sarcoplamic reticulum (3.5%) and nuclei 

(2%) occupy most of the remaining volume.  Surrounding each myocyte is a sarcolemma 

which acts to separate the intracellular and extracellular environments.  A system of 

transverse tubules emanates from the sarcolemma and helps to relay electrochemical 
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signals throughout the interior of the cell.  Myocytes interact with each other via 

specialized junctions called intercalated discs.  These structures allow for mechanical 

and electrical communication between cells. 

 The heart is innervated with both sympathetic and parasympathetic nerves which 

act to control the automaticity, rhythmicity and contractile properties of the heart.  

Excitation-contraction coupling mediates the translation of electrical impulses into 

mechanical work.   This is mediated by Ca2+-induced Ca2+ release from the sarcoplasmic 

reticulum.  The propagation of an action potential initiates these cycles.  This action 

potential is determined by the timed opening and closing of specific ion channels and is 

divided into 5 major phases (Figure 2.2).  During phase 0, sodium channels (hH1 

encoded by SCN5A) open, and there is a rapid depolarization event.  This causes the 

membrane potential to depolarize from -90mV to +20mV. Ion flux is driven by an 

electrochemical gradient (INa).  During phase 1, there is early repolarization caused by a 

transient outward current of potassium ions (IKR).  Repolarization does not complete, 

however, because of competing inward calcium currents through voltage gated L-type 

calcium ion channels (ICa).  This balance of inward and outward currents leads to a 

plateau phase (phase 2).  It is this influx of calcium ions which triggers sarcoplasmic 

reticulum Ca2+ release.  When the efflux of potassium ions is greater than the influx of 

calcium ions, repolarization accelerates (phase 3).  This process is typically mediated by 

delayed outward rectifying and inward rectifying potassium currents (IKS).  Eventually, 

rapid repolarization will occur as the inward rectifier current becomes active (IKI).  During 

phase 4 the sodium and calcium ions which entered the cell at earlier phases are 

ejected through ion-specific exchangers and pumps and the baseline membrane 

potential is restored.  
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Figure 2.2)  The cardiac action potential.  The cardiac action potential can be divided 
into 5 phases (0-4).  Each phase represents the well timed process of ion channel 
opening and closing that creates small currents.  These currents allow for changes in 
membrane potential and action potential propagation. Adapted from Nature Cell Biology 
2004. 6:1039 - 1047.  
 
 
 As discussed above, the cardiac action potential stimulates the opening of 

voltage gated L-type calcium ion channels.  These “long-lasting” channels allow a 

relatively small influx of calcium ions to enter the cell.  These calcium ions bind to 

calcium release channels (ryanodine receptors) in the sarcoplasmic reticulum.  

Interestingly, L-type calcium channels in the sarcolemma and calcium release channels 

in the sarcoplasmic reticulum are in close proximity as dyad structures, mimimizing the 

diffusion distance.  Once extracellular calcium ions bind to the calcium release channel, 

a surge of calcium is released into the cytosolic space.  This level of internal calcium 

concentration allows for calcium binding to troponin C, a regulatory protein found in thin 

filaments of myofibrils.  Upon binding to troponin C, a conformation change of the 

troponin complex displaces tropomyosin from the actin binding site for myosin.  At this 

point, myosin can bind actin and initiate shortening of sarcomeres (contraction) in an 

ATP-dependent process.  Afterwards, calcium is returned to the sarcoplasmic reticulum 

by the sarcoendoplasmic reticulum calcium pump ATPase (SERCA) and residual 
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calcium is ejected from the cytosol into the extracellular space by a sodium-calcium 

exchanger and the P-type plasma membrane calcium pump.  This process occurs in 

each individual ventricular myocyte.  When cells act together in a pseudo-anatomical 

syncytium, work can be performed to supply the entire body with a sufficient blood 

supply.       

 Within the left ventricle, the heart undergoes what is known as the cardiac cycle. 

The cycle involves isovolumic phases, ejection (systole), and filling (diastole).  During 

the cardiac cycle, blood enters the left ventricle through the mitral valve from the left 

atrium.  This rapid filling phase steadily increases the volume of blood in the ventricle as 

the pressure in both the atria and ventricle slightly decreases.  Next, the filling rate 

declines (diastasis) as the ventricular, venous and atrial pressures increase slightly.  

Such pressures result from preload tensions produced within the ventricular wall as it is 

stressed. After a brief contraction of the atrium, the mitral valve closes and isovolumnic 

contraction occurs in which the pressure within the ventricle rises to near that of the 

aorta.  When the pressure within the ventricle is above the pressure across the aortic 

valve, the valve opens and blood flows into the systemic circulation.  Normally about 50-

75% of blood in the ventricular chamber is ejected across the aortic valve with each 

cycle.  After ejection, onset of isovolumic relaxation occurs in which the pressure within 

the ventricle returns to basal levels before filling repeats.  Often the cardiac cycle is 

represented by pressure-volume (P-V) loops (Figure 2.3). 
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Figure 2.3) Pressure-Volume loop from ventricle of normal rat.  The cardiac cycle can be 
represented via a pressure-volume loop.  Stages of isovolumic contraction and 
relaxation, filling and ejection make up this cycle and contribute to the systolic and 
diastolic properties of the heart. 
 

 Abnormal heart function can be the result of problems with ejection (systole), 

relaxation (diastole), or arrhythmias.  As these abnormalities progress, patients 

experience symptoms of congestive heart failure (CHF). 

2.2 EPIDEMIOLOGY AND ETIOLOGY OF HEART FAILURE 

 CHF is the leading cause of death in the Western world.  It is estimated that as 

many as 4.9 million people suffer from this disease in the U.S. with 550,000 new cases 

emerging each year. Additionally, approximately $27.9 billion per year is spent on more 

than 900,000 hospitalizations related to CHF annually.  Several studies have been 

undertaken to determine the incidence and prevalence of the disease.  The Framingham 

Heart Study indicated that the prevalence of heart failure increased with age from 1% in 

individuals aged 50-59 to 10% in individuals aged 80-89 [1]. In addition, the annual 

incidence also increased with age from 0.4% in individuals aged 45-54 to 4% in 

individuals aged 85-94.     
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 The Framingham Heart Study first suggested that the majority of CHF events 

were a result of hypertension.  More recent data from the “Studies of Left Ventricular 

Dysfunction” (SOLVD) study indicates that over 70% of people with CHF have coronary 

artery disease as the underlying etiology [2].  The SOLVD study was specifically 

designed such that the majority of patients have ventricular dysfunction or congestive 

heart disease (CHD).  For instance, in the Framingham Heart Study, 76% of men had a 

predisposition to hypertension while only 46% had coronary heart disease.  The SOLVD 

study, however, included a patient population where 70% were predisposed to some 

form of ischemic heart disease and 7% were hypertensive [2].  Regardless of the 

underlying etiology, CHF occurs because of 1) mechanical abnormalities, 2) myocardial 

failure, 3) arrhythmias or a combination of these processes.  

 One underlying etiology of CHF is myocardial infarction (MI).  MI is the death of 

heart muscle that results when the heart’s blood supply is impaired.  The myocardium 

does not regenerate itself like other organs in our body because it lacks the sizable pool 

of endogenous progenitor cells, and because adult cardiac muscle cells are not capable 

of extensive proliferation.  Therefore, the dead tissue is replaced with fibrous scar tissue 

and the left ventricle dilates.  MI is generally a result of atherosclerosis; a disease 

characterized by the formation of fibrofatty plaques in the coronary arteries accelerated 

by hypertension, diabetes mellitus, and/or hypercholesterolemia.  MI results when there 

is impairment of perfusion of the myocardial tissue typically mediated by thrombus 

formation.  Just like CHF, the prevalence and incidence of MI related deaths increases 

with age, peaking between 35-64 in men and 80-89 in women.  Men are generally more 

prone to MI than are women.[3] Increased risk of MI is associated with smoking, use of 

oral contraceptives, lack of exercise, and stress. 
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2.3 MYOCARIDAL INFARCTION (MI) 

MI typically leads to mechanical abnormalities, myocardial failure and 

arrhythmias.  When the demand for blood exceeds the perfusion of blood a sequence of 

events begins which can ultimately lead to heart failure.  The first event is known as 

“angina pectoris” or chest pain that is caused by ischemia.  With time, acute ischemia 

within the myocardium leads to no contractile function.  Depending on the extent of 

impaired perfusion, a subendocardial or transmural infarct can develop.  Subendocardial 

infarcts occur on the endocardial side of the myocardial wall leaving healthy or 

hibernating myocardium towards the epicardium.  A subendocardial infarct will develop 

first because the endocardium has a higher metabolic demand but decreased perfusion.  

A transmural infarct, however, occurs throughout the myocardial wall stretching from 

endocardium to epicardium and results from thrombosis or vasospasm of the major 

coronary arteries (left anterior descending, right coronary, and left circumflex coronary 

artery). 

Most infarctions involve the left ventricle because it is more highly perfused than 

the right ventricle.  The most apparent gross morphological change of an infarcted area 

is the color (grayish brown).  Typically pallor occurs within twenty-four hours after an 

infarct in humans.  This change in color is also apparent in small animals (purple-pink), 

occurring within minutes after induced infarction.  By the fourth day after MI in humans, 

the border of the infarct becomes more apparent and the infarct itself begins to change 

to a yellow-brown color.  By day ten, the peri-infarct region is bright red (due to the high 

vascularity) and the infarct is yellow and soft because of a progressive fatty change.  By 

six weeks the infarct will contain fibrous and vascularized scar tissue. 

In addition to gross morphological changes, several microscopic changes occur.  

The first noticeable change is termed coagulative necrosis.  During this process, cross 
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striations of the cells as well as their nuclei begin to disappear (pyknosis).  Also, the 

cytoplasm becomes granular as eosinophilia develops and cells begin to condense. By 

forty-eight hours hemorrhagic exudate leads to the accumulation of neutrophils and 

eventual myofibrolysis.  Eventually the neutrophils become replaced by macrophages 

and the cytoplasm of necrotic cells accumulates fat.  Over time, necrotic cells will be 

phagocytosed by scavenging macrophages and a fibrovascular response will occur.  

During this time there is marked in-growth of neo-vessels and fibroblasts.  These 

changes in morphology have many functional consequences that ultimately lead to heart 

failure (Figure 2.4). 

The onset of cardiac ischemia typically reflects a lack of (or diminished) blood 

perfusion in the myocardium.  This gives rise to reduced oxygen tensions which 

ultimately affect the energetic output of cardiomyocytes.  The lack of oxygen halts the 

process of oxidative phosphorylation and thus aerobic respiration shuts down.  This 

results in decreased adenosine triphosphate (ATP) production and reduced ATP 

hydrolysis.  Reduced ATP levels lead to abnormalities in several ATP-dependent 

processes including actin-myosin interactions (physiologic response: negatively 

lusitropic), calcium channels (physiologic response: negatively inotropic), P-Type plasma 

membrane calcium pump (physiologic response: negatively lusitropic), SERCA 

(physiologic response: negatively lusitropic), sodium-calcium exchangers (physiologic 

response: negatively lusitropic ) and Ryanodine receptors (physiologic response: 

negatively inotropic).  The halting of aerobic respiration puts increased strain on the 

anaerobic process of glycolysis to deliver the myocyte’s energy content.  Eventually, 

falling glucose and glycogen content ceases any energetic output.  Ischemia also gives 

rise to acidosis (due to lactic acid and inorganic phosphate build up) and cellular 

depolarization (which can inactivate sodium channels and is due to potassium efflux).  
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All of these events constrain normal cardiac function. This results in slow conduction, 

irritable ectopic foci and mechanical failure which are the features for heart failure. 

 

Figure 2.4) The pathological progression of myocardial infarction.  MI proceeds as a 
series of events which include gross morphological, cellular and metabolic changes.  
Cellular necrosis due to ischemia gives rise to macrophage and neutrophil infiltration.  
Ultimately, scar tissue is formed which leads to mechanical and electrical malfunction. 
 

The process of MI can be broken into four phases: acute ischemia, necrosis, 

fibrosis and remodeling.  Each phase has a distinct effect on the mechanical properties 

and function of the infarcted myocardium. Acute ischemia occurs within hours after the 

impaired perfusion of a coronary artery. During this time oxygen tension steadily 

decreases and what was once active, contracting myocardium becomes flaccid.  At this 

point the affected myocardium has mechanical properties which are similar to passive 

constitutive (elastic) myocardium although matrix associated proteins and collagen 

content decrease.  Thus, the myocardium retains its diastolic properties, however the 

systolic properties are severely impaired (Figure 2.5; Holmes et al).  Within 24 hours of 

chronic coronary artery stenosis, necrosis of the native myocardium begins to occur 

within the infarcted segment of the heart.  During this time matrix metalloproteinase 
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activity increases, disrupting the extracellular matrix (ECM) composition and 

cardiomyocytes lose viability.  Despite the reduction in cell density and ECM proteins the 

infarct area does stiffen over time during this phase.  It is thought that interstitial edema 

contributes to this increase in elastic modulus and may help prevent infarct rupture 

during this critical stage.  During the fibrotic stage the infarct area is infiltrated with 

fibroblasts and new collagen is deposited.  The increase in anisotropic collagen stiffens 

the infarcted area over a period of several weeks.  Unfortunately, this increase in 

chamber stiffness impairs both chamber filling and systolic function of neighboring (non-

infarcted) tissue.  Lastly, remodeling occurs when the mechanical properties of the 

infarcted heart are no longer determined by the collagen content (i.e. fibrotic phase).  

Although the collagen content may continue to increase during remodeling, stiffness 

drops.  This has to do with the degree of collagen cross-linking which occurs during the 

remodeling phase.  Typically LV dilation occurs during this phase as wall stress 

increases over each cardiac cycle.  This occurs because the limited systolic function the 

heart has to offer reduces the cardiac output and stroke volume. Thus more volume is 

left in the LV chamber at end diastole which imparts increased wall stress on the LV wall 

(wall stress = PR / 2T; where P is pressure, R is radius of chamber, T is wall thickness). 

This leads to thinning of the infarcted wall segment.     
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Figure 2.5) Mechanical changes in the infarcted heart. Myocardial infarction leads to 
pressure-volume changes as MI develops.  Control (C), Acute Ischemia (I), Nectrotic 
(N), and Fibrotic (F) hearts display differences in diastolic and systolic function.  Adapted 
from, Annu. Rev. Biomed. Eng. 2005. 7:223–53.  
 
 
2.4 DIAGNOSIS OF MYOCARDIAL INFARCTION 
 
2.4.1 The Electrocardiogram (ECG) 

The typical twelve lead ECG consist of three limb leads, three augmented limb 

leads and six chest leads.  The twelve lead ECG give a concise and non-invasive 

assessment of cardiac rhythm function.  In general, ECG leads measure the flow of 

positive ions during the cardiac cycle.  Positive ions that flow toward the lead gives an 

upward deflection while those that flow away from the lead create a downward 

deflection.  The typical ECG waveform is composed of several parts including the P-

wave, QRS complex and T-wave (Figure 2.6).   
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Figure 2.6) The standard ECG waveform.  The ECG is composed of several parts 
including a P-wave, QRS complex and T-wave.  The figure represents a generic ECG 
although depending on the axis of depolarization, other patterns may exist.  This 
includes inverted QRS complexes or very large (non-pathological) Q-waves. 
 
 

The P-wave reflects atrial contraction.  The QRS complex reflects ventricular 

contraction.  The T-wave reflects ventricular repolarization.  Normal tracings for the 

twelve lead ECG are shown in Figure 2.7.  After the onset of myocardial infarction, acute 

ischemia gives rise to reduced free energy and subsequent myocardial death.  This 

creates an electrical void which can be detected with the ECG.  Acute changes include 

ST segment elevation and depressed QRS amplitude.  The ECG of well developed 

myocardial infarcts evolves to generate significant Q waves and T-wave inversion 

(although this can also be an acute characterization).  ST-segment elevation may also 

persist if a transmural infarct develops.  
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Figure 2.7) The twelve lead ECG. A) A normal twelve lead ECG taken from a healthy 
patient. B) A twelve lead ECG taken from a patient with an old anterior infarct.  The 
appearance of significant Q-waves (red arrows) and T-wave inversion (blue arrow) 
signifies necrotic or infarcted myocardium.  Adapted from www.uptodate.com.  
 

 

2.4.2 Echocardiography    

Ultrasound is a versatile non-invasive technique which relies on the propagation, 

scatter and detection of sound waves in anatomical structures.  Ultrasonic study 

intended to visualize the heart is referred to as echocardiography.  In general, 

piezoelectric materials capable of producing electric currents through conformational 

changes are used to generate ultrasounds.  These materials can also detect scattered or 

reflected ultrasounds (echos).  Echo detection causes a conformation change in the 

piezoelectric material and gives rise to an electric current which can be processed as an 
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analog signal.  Echocardiography can be used for B-mode two-dimensional images, M-

Mode one-dimensional motion analysis and Doppler analysis, all of which play a vital 

role in the analysis of cardiac function.  B-mode in conjunction with M-mode can be used 

to measure ventricular dimensions, volume and fractional shortening.  Doppler can be 

used to measure hemodynamic-related parameters such as mitral valve function, stroke 

volume and cardiac output. Doppler relies on the frequency components of generated 

(F0) and detected (Fd) ultrasounds to measure an apparent velocity or V (Fd = (2F0/C) * 

Vcosθ). After the onset of myocardial infarction, echocardiography will reveal ventricular 

dilation, ventricular wall thinning, reduced fractional shortening and attenuated 

hemodynamic measures compared to normal heart (Figure 2.8).    
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Figure 2.8) Diagnosis of MI using echocardiography.  Normal cardiac function is 
represented by myocardial thickening during a complete cycle which includes diastole 
(A) and systole (B).  B-mode images are acquired as a short axis view at the mid-
papillary level.   Cardiac measurements can be made by looking along a single line 
through the ventricle (Red line shown in B and E).  This produces an M-mode view 
where chamber dimensions and function can be assessed and calculated.  Infarcted 
myocardium displays little systolic function during the cardiac cycle (D and E).  This loss 
of function is also apparent in M-mode (F). Images acquired by author using Vevo 770 
Ultrasound Unit from Visual Sonics (Toronto, Canada).   
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2.5 CURRENT TREATMENT OPTIONS AND LIMITATIONS 

2.5.1 Drug Therapies 

The current clinical approaches to treating heart failure are pharmaceuticals 

and/or surgery. One common class of drugs is diuretics.  When the heart begins to fail 

(decreased cardiac output and subsequent decrease in circulating blood volume), a 

compensatory neurohormonal response is elicited in which the circulating renin-

angiotensin system (RAS) is activated.  In addition to heightened sympathetic nervous 

activity, the RAS acts by increasing the amount of circulating angiotensin II, a potent 

vasoconstrictor, as well as atrial natriuretic peptide, aldosterone and vasopressin.  The 

increase in activity of these circulating compounds leads to arterial and venous 

vasoconstriction, increased tubular sodium reabsorption due to decreased renal 

perfusion and eventual increases in blood volume.  Although these actions appear to 

compensate for the failing heart, they also aggravate failure by increasing atrial and 

ventricular preload and afterload and increasing intracardiac and intravascular 

congestion and edema. Diuretics act by eliminating intravascular congestion and thus 

aid in the removal of water and salt from blood vessels.  Extensive use of diuretics, 

however, can lead to hypokalemia (potassium deficiency) and ventricular arrhythmias. In 

addition, steroid glycoside compounds such as digitalis have been used as drug therapy 

for arrhythmias in the setting of congestive heart failure.  Digitalis acts as a positive 

inotropic (contraction) agent by inhibiting the actions of the sodium-potassium ATPase 

pump.  In doing so, intracellular sodium increases and is later exchanged for 

extracellular calcium via the sodium-calcium exchanger (see above).  The increase in 

calcium leads to heightened contractility.  Digitalis also results in vasodilation, diuresis, 

reduction of circulating neurohormones, slowing of rapid ventricular rate, and increased 

baroreceptor sensitivity.  If digitalis is not effectively removed from circulation, however, 
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it can become toxic and lead to deficiencies of many electrolytes, hypothyriodism, and 

renal failure.   

Another drug class used in heart failure is the angiotensin-converting enzyme 

(ACE) inhibitors.  These drugs act by inhibiting the enzyme responsible for converting 

the decapeptide angiotensin I to the octapeptide, vasoconstrictor angiotensin II.  Thus 

the effect of ACE inhibitors is vasodilation of constricted vessels mediated by the RAS.  

ACE inhibitors also reduce plasma norepinephrine levels which decreases sympathetic 

nervous activity.  ACE inhibitors, however, can also lead to hypotension and 

angioedema.  Finally, β-adrenergic blockers act at β-receptors and are a class of drugs 

that act by reducing the synthesis of cyclic AMP and reducing pacemaker activity. They 

have proven benefit in decreasing the heart’s energy demand and risk for tachycardia 

and other arrhythmias.  Unfortunately, the decrease in adrenergic activity also leads to 

decreased cardiac output.     

Thus, current pharmaceutical therapies have focused on restoring and enhancing 

inotropic function, reducing congestion, and decreasing α-adrenergic stimulation, but 

such approaches are not able to prevent remodeling and are associated with several 

negative side effects.              

2.5.2 Surgical Options  

In addition to pharmaceuticals, several surgical options have emerged to treat 

the failing heart. These include left ventricular assist devices, which augment cardiac 

output, implanted defibrillators, which attempt to combat the occurrence of arrhythmias, 

percutaneous coronary intervention, which removes stenosis in diseased coronary 

arteries, coronary bypass surgery and heart transplants. Except for heart transplants, no 

treatments are able to fully restore cardiac function.  Heart transplants require a matched 

donor (heart size and blood group), and the number of hearts available is significantly 
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lower than the number of patients who require this procedure.  Recently, cell based 

methods of heart repair have been established which attempt to regenerate lost 

myocardium after ischemic events. 

 

2.5.3 Cellular Cardiomyoplasty as a Potential Treatment 

Regenerative medicine has emerged as a strategy to repair myocardial damage 

after injury.  This strategy, called cellular cardiomyoplasty, involves transplanting cells 

into injured myocardium to assist in the repair and restoration of myocardial function.  In 

particular, stem cells have gained much attention over the past decade because of their 

ability to differentiate into cardiomyocytes as well as provide trophic factors to assist in 

the repair of an injured heart. Translating this approach into the clinical realm has proven 

to be difficult, however.  Questions have arisen regarding cell source, stem cell fate once 

transplanted, and cell delivery and site of delivery strategies. 

 

2.6 A CRITICAL REVIEW ON THE STATE OF PROGENITOR CELL 
CARDIOMYOPLASTY  
 
2.6.1 Cell Sources for Cardiomyoplasty  
 

In order to achieve successful clinical translation of cellular cardiomyoplasty, a 

cell capable of improving cardiac function without induction of adverse consequences 

must be identified.  One elegantly simple solution would be exogenous cardiomyocytes.  

Several preclinical studies have been undertaken to show the potential of these cells in 

restoring cardiac function after infarction. In particular, Koh et al. demonstrated that 

mouse AT-1 cardiomyocytes (derived by expressing an atrial natriuretic factor-simian 

virus 40 T antigen fusion gene) were able to survive up to four months and proliferate 

when injected into normal mouse myocardium [4].  The ability of these cells to survive 

suggests that cardiomyocytes may provide a useful platform for cardiac therapy.   
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Additional studies showed that injection of rat fetal ventricular cells into infarcted rat 

myocardium resulted in reduced scar formation and improved systolic pressure over 

eight weeks [5].  A study comparing rat fetal cardiomyocytes, rat smooth muscle cells, 

and rat fibroblast concluded that the contractile potential of a cell (cardiomyocytes > 

smooth muscle cell > fibroblast) determined the extent of improved muscle function in 

infarcted rat hearts [6]. Although these studies are promising, successful translation has 

been difficult given the inability of obtaining large numbers of primary cardiomyocytes 

(adult or neonatal) and immunological limitations. 

The choice of progenitor cell is more challenging than comparing cardiomyocytes 

and carries additional potential complications.  After the onset of myocardial infarction 

and other cardiomyopathies, fibroblast infiltration gives rise to collagen deposition [7].  

This increase in fibrosis leads to changes in the mechanical properties of the muscle and 

usually is associated with reduced myocardial performance [8].  An ideal cell for 

cardiomyoplasty might reduce cardiac fibrosis and migrate to areas of myocardial 

damage to induce a favorable effect. Other desirable characteristics might include the 

ability to promote endogenous cardiomyocyte proliferation or to differentiate into working 

cardiomyocytes.  Thus, a suitable cell might provide a therapeutic scaffold for myocardial 

repair and preservation by stimulating endogenous cardiac progenitors to proliferate and 

migrate to areas of myocardial injury, or by production of trophic factors. Whatever the 

mechanism of benefit, a suitable cell would have to be free from significant adverse 

effects such as arrhythmias, tumor formation or aberrant differentiation.  

Unfortunately, no known cell exists which demonstrates all of these properties, 

and the notion of engineering suitable cells seems decades away.  Several progenitor 

cells do provide many desirable traits, however.  The selection is vast and continues to 

grow as new progenitor cells are characterized.  These cells may hold the key to 

successful cellular cardiomyoplasty. Many progenitor cells have already been tested in 
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preclinical and clinical studies and in most cases a beneficial effect was observed, at 

least transiently [9].  

2.6.1.1 Skeletal Muscle Satellite Cells 

Skeletal muscle satellite cells are precursor cells for skeletal muscle and are 

found in the basal lamina of muscle fibers.  They are typically characterized by their 

expression of Pax 7 (quiescent) and MyoD (activated) [10]. Activated satellite cells are 

typically referred to as skeletal myoblasts. Because of their contractile potential and 

resistance to ischemia, early efforts in cellular cardiomyoplasty involved the direct 

injection of skeletal myoblasts into injured hearts. Murry et al. demonstrated that rat 

skeletal myoblasts could engraft in infarcted rat myocardium, form myotubes, and 

mature into β-myosin heavy chain expressing muscle [11].  Additionally, this muscle 

could be induced to contract ex vivo and was able to convert into fatigue resistant, slow 

twitch fibers. There is still some debate whether these cells assume a cardiac-like 

phenotype in vivo. Reinecke et al. were not able to show transdifferentiation of rat 

skeletal muscle satellite cells into cardiomyocytes once engrafted [12].  Other reports 

suggest partial transdifferentiation potential of skeletal muscle satellite cells [13, 14]. 

One possible explanation for the disparity between reports is that skeletal muscle 

satellite cells may fuse with surrounding myocardium, developing a hybrid phenotype 

[15, 16].  

Regardless of the fate of the myoblasts or satellite cells after in vivo intracardiac 

transplantation, improvements in myocardial performance have been demonstrated over 

four to five weeks after transplantation in several studies.  Discrepancies between 

reports, however, make it difficult to assess the mechanism of action by which myoblasts 

or satellite cells assist in myocardial repair.  Additionally, myoblasts and satellite cells 

require ex vivo expansion to increase cell number for autologous transplantation.  
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Inherently, this delays the time until treatment can be administered and may contribute 

to variability in cell behavior. 

2.6.1.2 Cardiac Progenitors 

Several variations of cardiac progenitors are currently being studied.  Stem cell 

antigen-1 (Sca-1) has previously been shown to exist on several tissue-specific 

progenitor cells [17, 18].  Sca-1+ cardiac progenitors have also been reported. These 

cells maintain the ability to proliferate ex vivo allowing for cell expansion. Also, these 

cells can be induced to differentiate into beating cardiomyocytes with the application of 

the demethylating agent, 5’ azacytadine and oxytocin [19, 20].  Notably, beating 

frequency increases with isoproterenol treatment demonstrating the physiological 

responsiveness of mouse cardiac Sca-1+ derived cardiac cells. When injected, these 

cells are able to home to the border zone of infarcted myocardium [19]. Nevertheless, 

the regenerative ability of mouse cardiac Sca-1+ cells has yet to be determined. 

Cardiac side population (CSP) cells have been isolated via the selection of cells 

which efflux Hoechst dye.  Such cells have a varied phenotypic profile in regards to the 

expression of Sca-1, c-kit, Abcg2, CD34 and CD31 depending on the donor from which 

they are isolated. High expression of Sca-1 and low expression of c-kit are observed 

typically [21, 22] in CSP cells from mouse heart.  Mouse CSP cells have been shown to 

differentiate into a cardiac phenotype (Nkx2.5 and GATA4 positive) via co-culture with 

cardiomyocytes and demonstrate a high proclivity for ex vivo proliferation [21-23].  The 

efficacy of these cells in an in vivo myocardial injury model has yet to be determined, 

although it has been demonstrated that the proliferation of CSP cells increases after MI 

and that these cells can be replenished by bone marrow derived progenitors during MI 

[24].    

Another cardiac progenitor that has been isolated from the myocardium is 

characterized by its high expression of c-kit and negative expression for CD34 and 
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CD45.  These cells can be isolated from an enzymatically dissociated heart lysate using 

c-kit specific antibodies and antibody-based cell sorting techniques.   7-10% of isolated 

rat c-kit+cells express the cardiac specific transcription factors Nkx2.5, GATA-4, and 

MEF-2 [25]. Further signs of differentiation are exhibited when c-kit+ cells are cultured in 

differentiation media.  Although no morphological signs are observed in regards to 

cardiac cell differentiation, many molecular resemblances emerged. Beltrami et al. 

injected BrdU-labeled rat c-kit+ cells into the border zone of infarcted rat myocardium.  

These cells engrafted, reduced infarct size and differentiated into cardiac muscle, 

smooth muscle and endothelial cells.  Additionally, injection of c-kit+ cells enhances 

cardiac remodeling and improves myocardial performance [26].   

Cardiospheres (CSph) are a heterogeneous progenitor cell population derived 

from an adult cardiac biopsy.  Upon isolation and enzymatic dissociation, the cells are 

cultured in suspension where they spontaneously form small clusters and differentially 

express markers such as c-kit, Sca-1, CD31, CD34 and CD105 [27, 28].  CSph can 

spontaneously differentiate into beating cardiac muscle, alone or as a co-culture with 

cardiomyocytes.  When mouse CSph are injected into infarcted mouse hearts, a marked 

increase in fractional shortening and myogenesis is observed.  Similar effects are also 

observed when enzymatically dissociated CSph (used to form single cells) are injected 

into infarcted myocardium [28].  The use of CSph-derived single cells offers the option of 

expanding the progenitor cell population, given the small number of cells initially 

isolated, and avoids using large cell clusters in vivo.  

The presence of the LIM-homeodomain transcription factor islet-1 (isl1) has been 

used as a marker to identify a progenitor cell population in the mouse, rat and human 

postnatal heart. These “cardioblasts” are observed to primarily reside in areas of the 

second heart field (i.e. right ventricle, both atria, and the outflow tract). Although the 

number of isl1+ cells substantially decreases after birth, they are able to propagate ex 
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vivo when cultured on a cardiac mesenchymal feeder layer.  Mouse isl1+ cardioblasts 

are positive for Nkx2.5 and GATA4 but fail to express both Sca-1 and c-kit indicating 

they are phenotypically distinct from other reported cardiac progenitors [29].  

Interestingly, mouse isl1+ cardioblasts are able to differentiate spontaneously into 

functional cardiomyocytes when co-cultured with neonatal mouse cardiomyocytes.  

These cardioblast-derived cardiomyocytes express cardiac structural proteins, exhibit 

calcium transients, and have the ability to undergo excitation contraction coupling.  The 

role of isl1+ cardioblast in myocardial repair after injury has yet to be determined.  

Although cardiac progenitors show a high proclivity for cardiac differentiation, it is 

difficult to isolate large numbers of these cells.  Therefore, ex vivo expansion is typically 

performed to allow for a suitable size graft.  Cardiac progenitor cell therapies would 

benefit from methods to decrease the time from cell isolation to cell transplantation. 

2.6.1.3 Bone Marrow Stem Cells 

Bone marrow stem cells (BMSC) include both mesenchymal and hematopoietic 

cell types. Both have been used extensively as a cell therapy for myocardial infarction. 

Mesenchymal stem cell (MSCs) are adult progenitor cells that have the potential to 

differentiate into tissues from the mesoderm [30].  These include fibroblast, muscle, 

bone, cartilage, and adipose tissue.  Such cells are characterized by their expression of 

SH2 (type III TGF receptor), SH3, SH4 (ecto-5’-nucleotidase), and STRO-1 [31] and by 

their lack of expression of CD45 and CD34. These cells have also been shown to 

successfully differentiate into cardiomyocytes in vitro [32].  In landmark papers by Orlic 

and his co-workers, they showed that mouse Lin-, c-kit+ BMSC differentiated into 

premature cardiomyocytes, endothelial cells, and smooth muscle cells after injection into 

infarcted mouse myocardium.  Functional assessments of infarcted hearts with BMSC 

grafts also revealed improvement in several hemodynamic measures [33, 34].  Other 

reports showed lesser functional improvements, and hematopoietic stem cell 
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differentiation into cardiomyocytes was not observed [35, 36]. Functional cardiac 

improvement without cardiomyocyte differentiation raises questions about the 

mechanisms by which these cells can impact cardiac function.  When human MSCs are 

injected into normal mouse myocardium they attain a “cardiac-like” phenotype [37] as 

tested by the expression of several cardiac related markers. Unfortunately, few studies 

have shown well-defined cardiomyogenic differentiation of MSCs delivered to infarcted 

hearts [9, 38-40].  In addition, these studies indicate a need for ex vivo expansion of 

MSCs before implantation. Other fractions of the bone marrow do not require extensive 

ex vivo manipulation and can be readily used as autologous grafts.  Nevertheless, most 

studies do report improvements in remodeling, hemodynamic measures, and 

mechanical parameters upon delivery of MSCs to injured myocardium.  One theory to 

explain such improvements without substantial cardiomyocyte repopulation is that MSCs 

secrete paracrine factors that act on host cells in a beneficial manner [41, 42].   

Some benefit of BMSC transplantation in myocardial repair seems clear. 

Nevertheless, the extent and mechanism of repair are still uncertain.  In addition, 

unfractionated BMSCs represent a heterogenous cell population.  The use of BMSCs for 

cellular cardiomyoplasty may benefit from advancements in bioprocessing to identify 

different marrow populations with enhanced cardiomyogenic or angiogenic potential.        

2.6.1.4 Adipose-Derived Mesenchymal Stem Cells 

MSCs are not only found in the bone marrow but can be found in several tissues 

throughout the body.  In particular, cells isolated from liposuction aspirates have 

demonstrated mesenchymal-like properties and offer an alternative to bone marrow-

derived MSCs [43].  Adipose-derived stem cells (ADSC) express similar markers 

expressed by MSCs such as CD105, CD29, CD44 and CD90.  One difference appears 

in the expression of the VLA-VCAM-1 receptor-ligand pair.  ADSCs express Very Late 

Antigen (VLA) but fail the express Vascular Cell Adhesion Molecule-1 (VCAM-1), while 
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MSCs express VCAM-1 but not VLA.  Such differences in adhesion molecule/integrin 

expression may account for the distinct differences in tissue localization [44].  There 

appears to be 500 times more ADSCs per gram of fat than MSCs per gram of marrow 

thus possibly eliminating the need for ex vivo scale up for cellular cardiomyoplasty.  In 

addition, ADSCs differentiate into a α actinin and β-myosin heavy chain expressing 

cardiac phenotype with the use of 5-azacytidine, co-culture with neonatal 

cardiomyocytes, or spontaneously under defined culture conditions [45-47].  

Observations indicate that cardiomyocytes derived from ADSCs can generate action 

potentials and respond appropriately to pharmacological stimuli such as isoproterenol 

[47].  Mouse ADSCs injected into the LV of a mouse cryoinjured myocardial infarct 

model determined that these cells engraft and differentiate into Nkx2.5, troponin I, and 

myosin heavy chain expressing cells.  These cells were not shown to integrate with 

healthy myocardium, however [48].  Others studies have shown the angiogenic potential 

of ADSCs upon enrichment of the CD34+/CD31- population [49] and the beneficial effect 

these cells have on global myocardial function after LV chamber injection [50].  Also, 

ADSCs secrete angiogenic paracrine factors (VEGF) that may contribute to tissue repair 

after injury [51]. 

The ability of ADSCs to differentiate into cardiomyocytes, secrete paracrine 

factors, provide functional augmentation after myocardial infarction, and not require ex 

vivo expansion suggests these cells represent an important advancement in the search 

for useful cell sources.  An understanding of the mechanism by which these cells 

contribute to cardiac repair is lacking, however.  

2.6.1.5 Amniotic Fluid Stem Cells 

Amniotic fluid stem cells (AFSC) are a multipotent cell population isolated from 

amniocentesis specimens.  Although cultures of amniocentesis contain a heterogeneous 

population of cells with diverse potencies, AFSC can be isolated and enriched for by 
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using antibody selection for the c-kit receptor.  Upon isolation, human AFSC express 

markers characteristic of mesenchymal, neural, and embryonic stem cells.  These 

include the expression of CD90, CD44, CD105, CD29, CD73, Oct4, and SSEA4.  

AFSCs fail to express the hematopoietic markers CD45, CD34 and CD133 [52].  AFSCs 

differentiate into a cardiomyogenic phenotype in the presence of neonatal 

cardiomyocytes as evidenced by the expression of Nkx2.5, cardiac troponin I, GATA-4, 

and MLC-2v, but cell fusion with host myocytes has not been excluded. When swine 

AFSCs are injected into infarcted pig hearts, they differentiate into endothelial, fibroblast, 

and smooth muscle phenotypes, but no cardiogenic phenotypes are observed [53].  

Human AFSCs are acutely rejected when used in normal or immunosuppressed rat 

myocardial infarct models [54].   

AFSC represent another abundant cell source.  The efficacy of AFSCs in cardiac 

repair is still ill defined, however.  In order for further progress, more studies will have to 

be performed to investigate issues of cell integration, rejection, and efficacy for 

myocardial repair.  

2.6.1.6 Embryonic Stem Cells 

Embryonic stem cells (ESCs) are another cell type which has garnered attention 

lately because of their relative availability, expansion capabilities, and proven 

cardiomyocyte differentiation. Most ESC lines are isolated from the inner cell mass of a 

developing blastocyst, are defined by their ability to differentiate into tissues from all 

three germ layers, and express pluripotency markers such as OCT 3/4 and Tra 1-81 [55-

58].  Mouse and human embryonic stem cells have been shown to successfully 

differentiate into cardiomyocytes through the formation of embryoid bodies [59] or co-

culture with the visceral endoderm-like cell line END-2 [60, 61].  ESCs have also been 

extensively tested in vivo for potential to differentiate into cardiomyocytes [62]. 

Limitations of undifferentiated ESCs include the formation of teratomas and susceptibility 
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to ischemia after delivery [63]. Both Swijnenburg et al. [64] and Nussbaum et al. [65] 

report significant teratoma formation after undifferentiated mouse ESC transplantation 

into infarcted mouse myocardium. To avoid teratoma formation, investigators are starting 

to differentiate cells into cardiomyocytes before transplantation. Differentiated mouse 

ESC-derived cardiomyocytes have shown arrhythmic potential in vitro [42], however.    In 

addition, ESC-derived cardiomyocytes continued to display susceptibility to ischemia 

[63].   

The use of undifferentiated ESCs risks teratoma formation and low graft viability.  

Addressing these issues has resulted in many investigators differentiating ESCs into 

cardiomyocytes before implantation.  This approach focuses on remuscularization of 

damaged heart, although other mechanisms may play a significant role.  Additionally, 

integration of these grafts with host myocardium is poor and may result in unwanted 

arrhythmias.  The issue of rejection is also a concern.    

2.6.1.7 Induced Pluripotent Stem Cells 

Induced pluripotent stem (iPS) cells represent a major breakthrough in 

regenerative medicine and involve the transdifferentiation of an unipotent or multipotent 

cell into a pluripotent state.  Typical approaches to inducing pluripotency include 

retroviral transduction of somatic cells with four transcription factors: octamer-binding 

transcription factor 3/4 (oct 3/4), SRY-related high-mobility-group-box protein-2 (Sox2), 

Myc, and Kruppel-like factor-4 (Klf4) [66-68], although variations on which factors can be 

used or excluded are being explored [69-71]. Additional methods intended to avoid 

genomic integration of the expression vectors have been undertaken and include use of 

adenoviral vectors and plasmid transfection and membrane soluble proteins [70, 72, 73]. 

iPS cell formation suffers from low induction efficiencies, however. Also, retroviral-based 

transduction has resulted in tumor formation in chimeric animals [74].  Recently, it was 

demonstrated that functional cardiomyocytes could be derived from iPS cells [75].  After 
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induced pluripotency, cardiomyocytes were derived through embryoid body formation.  

iPS cell-derived cardiomyocytes expressed many cardiac markers and displayed 

cardiomyocyte-specific action potentials.  

Despite several obstacles, iPS cells hold potential in providing an autologous cell 

therapy without the ethical or immunological concerns surrounding the use of ESCs.  

There are still many questions surrounding iPS cells (mechanism of induced 

pluripotency, safety, and similarity to ESCs), and thus their potential for myocardial 

repair has yet to be explored. 

In summary, several progenitor cell populations have been used or are being 

studied for use in myocardial repair.  In most cases, the delivery and engraftment of cells 

to infarcted myocardium leads to improvements in function after injury. Such 

improvements seem transient, indicating the goal of myocardial “regeneration” has 

transitioned into myocardial “preservation” marked by reduced fibrosis, attenuated 

remodeling, and improved myocardial perfusion. Although several studies have shown 

viable muscular grafts, the mechanism by which these grafts induce myocardial 

improvement is still lacking.  Given the similarity in outcome with the progenitor cells 

used for cellular cardiomyoplasty, how do we choose which is the best? Recently, van 

der Bogt et al. reported a direct comparison of how mouse mononuclear cells (fresh 

unfractionated bone marrow), mouse MSCs, mouse skeletal myoblasts, and mouse 

fibroblasts acted as mediators for infarct repair [76]. The authors conclude that 

mononuclear cells provide a superior regimen for cardiac repair and preservation 

compared to the other cell types given their capacity for long term survival.  Such 

comparisons between cell types were lacking previously in the field and are likely 

necessary in the future to determine if an optimal cell type exists. The transient nature of 

cellular cardiomyoplasty also raises the question as to whether only one cell type is 

needed or if multiple cell doses would be required to have an extended effect [77, 78]. 
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As discussed below, some of these cell sources have been used in humans, and the 

results have not always paralleled the preclinical outcomes, raising another level of 

complexity in choosing the right cell.   

 

2.6.2 Clinical Translation of Cellular Cardiomyoplasty 

Many phase I human clinical trials indicate that cellular cardiomyoplasty is safe 

and feasible.  Efficacy reports from larger controlled trials revealed transient and 

somewhat limited effects for primary endpoints (Table 2.1).  Thus far, autologous bone 

marrow derived stem cells, skeletal myoblasts, MSCs, and circulating blood-derived 

progenitor cells have been used in human clinical trials.  
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Table 2.1)  Major Human Clinical Studies involving Stem Cell Therapy for Heart Failure 
 

 

Study Primary 
End Point 

Cells Used Randomized 
Controlled 

# Cells # Patients Time after 
PCI 

Delivery Results 

Hamono et al. 
[79] 

Myocardial 
Perfusion 

BMMC N 50x106 – 100x106 5  Direct injection 60% Efficacy 

Strauer et al. [80] LVEF % BMMC N 9x106 – 28x106 20 5-9d Intracoronary (IC) Increased LVEF (not 
significant), 
decreased ESV 

Assmus et al. [82] LVEF % CPC / 
BMMC 

N 10x106 20 4.3±1.5d IC Increased LVEF%, 
ESV and myocardial 
viability.  No 
difference between 
CPC and BMMC 

Stamm et al. [84] LVEF% 
and 
Perfusion 

AC133+ 
BMMC 

N -- 6  Direct injection Increased LVEF% 
and blood perfusion 
through heart 

Menasche et al. 
[89] 

LVEF % Skeletal 
Myoblast 

N 5-17x106 10  Direct injection Increased LVEF% 
and systolic 
thickening.  Increased 
risk of arrhythmia 

Tse et al. [85] LVEF % BMMC N --   Trans-Endocardial 
injection 

No significant 
increase in LVEF%, 
increased wall 
thickening and motion 

Patel et al. [87] 
 

LVEF % CD34+ 
BMMC 

N -- 20  Direct injection Increased LVEF% 
and LVEDV 

Wollert et al. [88] LVEF % BMMC Y -- 60  IC Increased LVEF% 
and decreased infract 
size 

Perin et al. [86] LVEF % BMMC N 25.5x106 14  Trans-Endocardial 
injection 

Increased LVEF% 
and decreased ESV.  
Results decline by 4 
months 

Assmus et al. [91] LVEF% BMMC Y 200x106 92  IC Increased LVEF% 

Lunde et al. [95] LVEF% BMMC Y 68x106 100 4-8d IC No Change in LVEF 
% or infarct size 

Schachinger et 
al. [93] 

LVEF% BMMC Y 236x106 204 3-7d IC Increased LVEF%, 
ESV.  The more time 
after PCI the better 
the result 

ESV - End systolic volume, LVEDV – Left ventricular end diastolic volume, PCI – Percutaneous coronary intervention, 
LVEF – Left ventricular ejection fraction, CPC – Circulating blood-derived progenitor cell, BMMS – Bone marrow 
mononuclear cell 
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2.6.2.1 Phase I Clinical Trial Results  

Many of the first human clinical trials for cellular cardiomyoplasty were small and 

non-randomized.  In 1999, Hamano and colleagues [79] directly injected bone marrow 

mononuclear cells (BMMC) into the ischemic area of patients undergoing coronary artery 

bypass graft (CABG) surgery.  Results indicated that three out of five patients obtained 

increased blood perfusion in the area where the cells were grafted. This increase in 

blood flow was persistent after a one-year follow-up.  Strauer et al. [80]. demonstrated 

that intracoronary infusion was a feasible approach for the delivery of autologous 

BMMC.  In this study, cells were injected 5-9 days after percutaneous transluminal 

coronary angioplasty and resulted in a significant reduction of 18% in end systolic 

volume and a 12% increase in stroke volume index at a three-month follow-up.   This 

was the first human study to not only consider alternate delivery strategies for cellular 

cardiomyoplasty but also the time of delivery after acute myocardial infarction (AMI), 

showing less invasive procedures could be used to deliver cells.   The contribution of 

time of delivery to improved cardiac function was not tested, but it was thought that 

waiting until after the inflammatory response has subdued would allow for enhanced cell 

engraftment.  Such an idea has been validated in animal studies [81]. 

Additional studies followed, including the TOPCARE-AMI (Transplantation of 

Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction) [82, 83] 

clinical trial that delivered either circulating blood-derived progenitor cells (CPC) or 

BMMC to patients diagnosed with acute myocardial infarction (AMI).  Cells were 

delivered an average of 4.3 days after AMI and resulted in reduced end systolic volume 

and in increased LV ejection fraction, coronary flow reserve, and myocardial viability.  

Although both cell types gave rise to improved functional outcomes, there were no 

differences observed between the two cell types.  Given the angiogenic potential of both 

cell types, the similarity in results seems likely to arise from each cell type’s ability to 
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promote neovascularization, endothelial cell migration, and proliferation.  This conclusion 

is similar to many preclinical studies discussed above. Supporting this idea, 

neovascularization was observed when Stamm and colleagues [84] directly injected 

BMMC enriched for AC133+ cells into the border zone of infarcted myocardium.  After a 

three-month follow-up, patients receiving AC133+ enriched cell treatment had increased 

ejection fraction and perfusion in infarcted segments of the heart.   Similar results were 

seen by Tse et al. [85], Perin et al. [86], and Patel et al. [87].   

In 2004, the BOOST (Bone Marrow Transfer to Enhance ST-Elevation Infarct 

Regeneration) clinical trial represented the first randomized, controlled and blinded 

human clinical trial for cellular cardiomyoplasty [88].  Sixty patients were randomly 

assigned to a control or BMMC transplant groups. BMMC-treated patients were injected 

via intracoronary infusion, five days after percutaneous coronary intervention.  After six 

months, cardiac magnetic resonance imaging revealed BMMC-treated patients had a 

significant increase in LV ejection fraction from baseline value after infarct and as 

compared to controls.  Additionally, systolic wall motion in the border zone increased 

over this period.  There were no major adverse events after infusion of BMMC.     

Autologous skeletal myoblasts have also been used in human clinical trials for 

cellular cardiomyoplasty.  In an initial feasibility study, ~871 x 106 skeletal myoblasts 

were injected directly into 37 sites within and around the injured myocardium in 10 

patients undergoing CABG [89].  At an average follow-up of 11 months, most patients 

had increased ejection fraction and improved systolic thickening, but an increase in 

arrhythmias was observed in four patients.   A similar result was observed when Pagani 

and colleagues [90] directly injected autologous skeletal myoblasts into five patients 

undergoing implantation of a left ventricular assist device.  Of the five patients treated, 

four developed cardiac arrhythmias.   

2.6.2.2 Phase II and III Clinical Trials  
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After the demonstration of feasibility in several smaller human clinical trials, 

larger, randomized, controlled clinical trials were initiated.  In 2005, Assmus and 

colleagues [91] expanded upon their previous investigation using both autologous 

BMMC and circulating blood derived progenitor cells (CPCs).  Patients were randomized 

into control (no cell treatment), BMMC and CPC groups.  After a three month follow-up, 

patients were entered into a crossover phase whereby patients initially designated into 

the BMMC group were given CPCs and vice versa.  Patients in the control group were 

randomized into either BMMC or CPC groups at crossover.  In general, BMMC 

performed better than CPCs as demonstrated by significant improvements in LV ejection 

fraction (4% by MRI) over control at three months.  This observation was further 

confirmed at crossover as patients given BMMC at the three-month follow-up 

examination also showed increased improvements in LV ejection fraction.   Additionally, 

Schachinger and colleagues [92-94] demonstrated similar trends of LV ejection fraction 

(4% over placebo) improvement at four months with intracoronary delivery of autologous 

BMMC.  Interestingly, they found that the degree of improvement was correlated to the 

time of cell delivery after reperfusion therapy and the extent of impaired cardiac function 

at enrollment.  

Not all larger clinical trials, however, have shown comparable improvements in 

cardiac function after cell treatment.  Lunde and colleagues [95] delivered autologous 

BMMC via intracoronary injection and showed no change in LV ejection fraction or 

infarct size versus control at a six month follow-up.  This might be ascribed to differences 

in cell preparation [96] and number of delivered cells in the Autologous Stem Cell 

Transplantation in Acute Myocardial Infarction (ASTAMI) trial. 

The US registry of federally and privately supported clinical trials, 

Clinicaltrials.gov, reports several ongoing studies aimed at cellular cardiomyoplasty.  

The majority of these trials use autologous BMMC as the cell source.  Several trials, 
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however, are taking new approaches to cardiac cell therapy.  For instance, the 

Combination Stem Cell  Therapy for Utilization and Rescue of Infarcted Myocardium 

(MESENDO) trial is attempting to use an autologous mixture of two cell sources 

(BMMCs and MSCs in equal proportions); one which would promote neovascularization 

and the other would promote cardiac remuscularization.  In addition, the Study of 

Allogeneic Mesenchymal Precursor Cells (MPCs) in Subjects with Recent Acute 

Myocardial Infarction is attempting to determine the suitability of an allogeneic progenitor 

cell source.  This work and others could prove beneficial to optimizing cellular 

cardiomyoplasty in the future. 

In summary, of the two major cell types used in clinical trials, only one has 

emerged as a viable option. BMMC appear to have a beneficial effect on myocardial 

function while the threat of adverse arrhythmias precludes the use of skeletal myoblasts.  

Unfortunately, the extent of repair with BMMC appears less robust than that reported in 

preclinical studies using the same or a similar cell source.  The lack of expansion 

beyond the use of BMMC in clinical trials has provided a significant roadblock to the 

progression of cellular cardiomyoplasty.  Are there other cells which could supply even 

greater benefit?  The answer is likely to be yes, but there are roadblocks to be 

addressed (Figure 2.9). 
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Figure 2.9) Translational roadblocks which are preventing the successful application of 
cellular cardiomyoplasty in the clinic include determining an optimal cell source, 
increasing engraftment rates, and understanding the mechanism of stem cell repair.   
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2.6.3 Translational Issues Concerning Cellular Cardiomyoplasty 

2.6.3.1 Translational Roadblock #1: No Optimum Cell has been Identified.   

The progression of clinical cellular cardiomyoplasty appears to be moving 

forward, but as noted above, the extent of repair in humans is limited when compared to 

preclinical models.  One reason for this is that the cell source pool is limited.  Cell 

sources are constrained by immunological rejection and the need for large numbers.  

Autologous sources address the issue of rejection but prevent “off-the-shelf” availability 

of cell therapies for efficient treatment. In addition, patients likely to be treated with 

autologous cell cardiomyoplasty maybe the same ones that have deficiencies in source 

number or efficacy.  Ongoing clinical trials continue to utilize previously suggested cell 

sources in their experimental design, [97] although the number of cell sources used in 

preclinical studies is vast.  This disconnect will likely have to be addressed.  

2.6.3.2 Translational Roadblock #2: Low Engraftments Rates 

The rate of cell engraftment is a factor in determining the initial outcomes and 

may explain the lack of durable results seen in some studies.  Assmus and colleagues 

and Schachinger and colleagues delivered 200 x 106 and 236 x 106 autologous human 

BMMCs, respectively and observed modest improvements in LV ejection fraction 

compared to placebo [91, 93].  Lunde and colleagues however, reported no change in 

LV ejection fraction with the delivery of 68 x 106 autologous human BMMCs cells [95]. 

This suggests cell number may play an important role in the repair of myocardial 

damage. 

Engraftment rates can be influenced in a number of ways, one of which is the cell 

delivery method.  Typical approaches to deliver cells include intravenous (IV) injection, 

intracoronary (IC) injection, retrograde venous intracoronary (RIC) infusion, and 

intramyocardial (IM) injection.  Although IV injection offers the advantage of being 

minimally invasive, there is low cell engraftment (< 1%) into the injured area [98, 99].  IC 
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injection and RIC infusion provide more localized delivery of cells, resulting in improved 

but still limited cell engraftment (3-6%) [98, 100].  IM injection offers direct localization of 

cells to the injured area, but engraftment (6-12%) is limited by leakage out of the 

injection sites and cellular washout into the native venous shunts [99].  Moreover, this 

technique results in inhomogeneous cell delivery with emerging cell clusters within the 

myocardial scar [82].  This could act as a substrate for adverse electrical remodeling 

[101]. In a study comparing the relative efficiency of cell delivery by intramyocardial (IM), 

intracoronary (IC), and interstitial retrograde coronary venous (IRV) delivery, each 

method resulted in only modest engraftment [100].  Specifically, IM injection resulted in 

11% engraftment, while IC and IRV injections resulted in 2.6% and 3.2% engraftment, 

respectively. Similar studies performed by Freyman et al. [98] showed that 14 days after 

IC infusion, engraftment was 6%, and this delivery procedure was also accompanied by 

reduced coronary blood flow and subsequent myocardial injury. The low engraftment 

rates reported with conventional delivery strategies may not allow for optimal reparative 

ability from individual cells.   Therefore, methods aimed at improving engraftment may 

help bring cellular cardiomyoplasty to its full potential. 

2.6.3.3 Translational Roadblock #3: Understanding the Mechanism of Repair 

Just how cells might fix hearts is not understood, and this lack of understanding 

slows the design of future trials.  Competing hypotheses include stem cell differentiation 

into cardiac or vascular cells and the secretion of beneficial trophic factors to modulate 

endogenous functions or to lower cell death thresholds.  

2.6.3.3.1 Do Cardiomyocytes Matter? 

ESCs, MSCs, and skeletal myoblasts have been extensively tested in vivo for 

their potential for differentiation into myocytes. For these myocytes to be functional, they 

would have to be electrically integrated and be able to produce sufficient force to explain 
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the observed preclinical and clinical results.  As of yet, it is unclear if any of these cell 

types meets these criteria. 

Early studies involving the injection of undifferentiated ESCs into infarcted hearts 

reported enhanced cardiac function after cell transplantation with evidence that these 

cells engraft and differentiate into cardiomyocytes [62].  In addition, there was also 

evidence of ESC differentiation into vascular smooth muscle and endothelial cells.  

These cells were able to attenuate apoptosis and adverse cardiac remodeling [102]. The 

uncertainty about teratoma formation, however, has lead many investigators to initially 

differentiate ESCs into cardiomyocytes before transplantation.  Early investigations by 

Min et al. [103] showed that delivery of a modest number of mouse ESC-derived 

cardiomyocytes could improve cardiac function after infarction in rat.  Engraftment was 

calculated to be 7.3% after direct injection of cells and was complemented with 

improvements in ventricular function and myocardial remodeling after six weeks. These 

results appeared to be maintained out to thirty-two weeks, suggesting a potential long 

term benefit [104].  Human ESC-derived cardiomyocytes were also shown to engraft into 

healthy rat myocardium with no teratoma formation by four weeks [105].  Additionally, 

the cardiomyogenic grafts exhibited a substantial proliferative capacity and an ability to 

interact with host myocardium through the formation of vascular beds.  Other studies 

which delivered human ESC-derived cardiomyocyte grafts into infarcted myocardium 

accompanied by pro-survival factors reported improved cardiac function and remodeling 

[63].  Improvements in cardiac function, ventricular wall remodeling, and 

remuscularization were observed at four weeks after cell delivery.  Despite evidence of 

remuscularization and neovascularization, it is yet to be established that these grafts are 

functional and contribute to the improvements in cardiac function observed.   

A similar circumstance is the case for MSCs. MSCs have also demonstrated 

cardiomyogenic differentiation potential in vivo.  Human MSCs injected into healthy 
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mouse heart upregulated their expression of cardiac proteins out to 40 days after 

delivery [37].  Unfortunately, the percent engraftment was extremely low with only 0.44% 

MSCs detected after only four days.  Min et al. [42] showed that human MSCs had a 

beneficial effect on myocardial perfusion in a pig model and that MSCs could 

differentiate into a cardiac α-myosin heavy chain and troponin I expressing cell 

phenotype.  Myocardial perfusion was further enhanced when human MSCs were co-

transplanted with fetal cardiomyocytes. Dai et al.[9] studied the short and long term 

effects of rat MSC therapy on infarcted rat myocardium.  These studies revealed that 

allogeneic rat MSCs could differentiate to express cardiac-specific proteins, that MSC 

therapy resulted in improved cardiac function, but that the effect of MSCs on global 

cardiac function was transient (lasting only one month after delivery).  Moreover, the 

number of MSCs expressing cardiac proteins decreased over time.  Contrary to these 

results, Amado et al. [106] reported improved cardiac function with reduced scar 

formation in Yorkshire pigs undergoing myocardial infarction but without swine MSC 

differentiation into a cardiac-expressing phenotype.  Unfortunately, none of these studies 

have investigated the function of MSC-derived cardiac gene expressing cells. Thus, 

even if MSCs can differentiate toward the cardiac lineage, it is unclear that they can 

make myocytes with sufficient contractile properties to explain the observed effects of 

cell transplantation. 

More evidence that factors other than myocyte differentiation may be important 

come from the experiments with skeletal muscle progenitors.  The transdifferentiation 

potential of skeletal myoblasts and satellite cells into cardiomyocytes is unclear. In one 

study, Reinecke et al. reported that skeletal muscle satellite cells are unable to 

transdifferentiate into cardiomyocytes after delivery to the myocardium [12].  Skeletal 

muscle satellite cells differentiated into mature skeletal muscle but failed to co-express a 

cardiomyogenic phenotype.  On the other hand, Horackova et al. reported that over time 
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engrafted skeletal myoblasts downregulated their expression of skeletal muscle markers 

and partially transdifferentiated into a cardiac phenotype through the expression of 

cardiac troponin T in addition to other markers [13].  Additionally, Invernici and 

colleagues [14] reported that upon treatment with retinoic acid, human skeletal 

myoblasts would differentiate into spontaneously beating cells which expressed 

cardiomyogenic markers.  These differentiated skeletal myoblasts also mediated 

improved cardiac function after they were injected into infarcted myocardium.    Since 

skeletal myoblasts are capable of mediating myocardial improvement but may have a 

limited ability to differentiate into cardiac myocytes and since they do not electrically 

couple with native cardiac cells, it seems unlikely that their ability to improve outcomes is 

the sole result of generation of new, functional cardiac myocytes.  

In summary, although many studies have focused on cardiomyocyte 

differentiation, function of these donor-derived myocytes is unclear, and engraftment and 

differentiation rates seem too low to explain the full effect of exogenous cell transplant. 

Therefore, it seems likely that, despite the original idea of regenerating myocardium, 

other mechanisms are at work with current therapeutic strategies. 

2.6.3.3.2 Trophic Factors – The Paracrine Hypothesis 

It now seems possible that the main effect of improved cardiac function after cell 

delivery results from secreted factors that preserve native cells, induce 

neovascularization, or attract resident stem cells [107].  In vitro studies with MSCs show 

that they secrete paracrine factors under hypoxic and normoxic conditions.  MSC-

conditioned media can attenuate fibroblast proliferation [108], induce electrical 

remodeling of cardiomyocytes [109], stimulate endothelial cell proliferation and activation 

[110, 111], and inhibit apoptosis [112, 113]. These results provide a basis for possible 

paracrine mechanisms by which stem cells may repair and/or preserve myocardial 

function after AMI.   
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Potential paracrine factors mediating these effects include VEGF, basic FGF, 

SDF-1α, IGF-1 and secreted frizzled related protein [114]. Studies using only 

conditioned media from Akt over-expressing MSCs confirmed that paracrine factors can 

mediate myocardial repair [115].  Pro-survival cocktails have also been used with the 

intention of prolonging engraftment of progenitor cells in ischemic conditions [63].  

Results show improved engraftment and survivability after graft delivery. Additionally, 

Korf-Klingebiel et al. [116] recently described human bone marrow cells as rich sources 

for pro-angiogenic and cytoprotective factors.  This suggests that current clinical trials 

which have focused on the use of autologous bone marrow progenitor cells may 

promote myocardial repair via a paracrine pathway.  ESC-derived cardiomyocytes have 

also been shown to secrete beneficial paracrine factors [117]. 

These studies and others suggest that exogenous cells secrete factors that affect 

the host tissue.  This observation may explain why so many different cell types can 

mediate repair and why differentiation seems poorly correlated to functional 

improvement. Also, it would suggest that the field would seem to be at an 

implementation bifurcation point, having to choose between understanding and refining 

the paracrine effect with or without cells or moving on to identify cells with more potential 

to generate cardiac myocytes.   

 

2.6.4 Tissue Engineering for Addressing the Translational Issues 

Tissue engineering may help address the obstacles noted above.  Tissue engineering 

involves the restoration, maintenance, or enhancement of tissue and organ function. 

Initial tissue engineering treatment options for heart failure involved acellular synthetic 

materials which surrounded the ventricle to prevent ventricular dilation [118].  

Cellularized scaffolds have been constructed as alternative delivery and graft solutions 

to cardiomyoplasty. Tissue engineered approaches include neonatal rat ventricular cells 
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embedded in gelatin mesh (Gelfoam®) [119] and skeletal myoblasts suspended in fibrin 

glue [120]. Zimmerman et al. [121] have demonstrated electrical integration with host 

myocardium in addition to improved myocardial performance and remodeling after 

application of engineered heart tissue (EHT).  EHTs created by combining neonatal 

cardiomyocytes and collagen achieved spontaneous contraction while in culture.  

Currently fibroblasts [122, 123], skeletal myoblasts [120], embryonic stem cells [124, 

125], cardiomyocytes [121, 126-131] and BMSCs [132-135] have been used in 

conjunction with a variety biomaterials to form “cardiac patches” (Table 2.2).  Some 

groups have also used acellular biodegradable materials as cardiac grafts and have 

seen improvements in remodeling and cardiac function [136] in preclinical studies.  

Another benefit of tissue engineered constructs that may prove useful is that materials 

have been shown to induce differentiation or modulate cell function [137, 138].  

Therefore, tissue engineering is likely to direct progenitor cell fate more efficiently 

through the combination of biomaterials, bioactive factors, and physical forces.  This 

would provide more controllable methods for optimization of cell source in cellular 

cardiomyoplasty.  Unfortunately, cellularized constructs are restricted in size due to 

diffusion limitations. In order to sustain cell viability with tissue engineered constructs, 

methods to induce angiogenesis and cell survival within cardiac patches will need to be 

explored.  Other considerations will involve optimizing construct size and delivery. 
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Table 2.2)  Major Preclinical Studies Involving Tissue Engineering for Myocardial Repair 
 

 

Study Cell Type (Seeding 
Density) 

Construct 
Type 

Animal 
Model 

Immune 
Status 

Time of 
Measurements 

Results of Outcome 
Measures 

TE Controls 

        

Christman et al. 
[120] 

Skeletal Myoblast 
(5x106 / construct) 

Fibrin Glue Female 
SD Rats 

IC ECHO 1 weeks and 5 
weeks Histology 5 
weeks 

Improved FS% and LV AWTh Fibrin Glue 
only 

Li et al. [119] Rat Fetal Ventricular 
Cells (4x107/ mL) 

Gelatin Male 
Lewis Rats 

IC 5 weeks Little effect on cardiac 
function, formed junctions with 
host myocardium 

Acellular 
Gelatin 

Zimmerman et al. 
[121] 

Rat Neonatal Heart 
Cells(2.5x106 / 
construct) 

Collagen Type 
I 

Male 
Wistar 
Rats 

IS 4 weeks in vivo 
histology 2 weeks all 
other measures 

Electrical integration with host 
myocardium, improved LVDD, 
LVEDD, FS%, max LV 
volume, tau (relaxation index) 
LVEDP and LVEDV 

formaldehyde 
fixed, Non-
cardiomyocyte 
construct 

Leor et al. [130] Rat Fetal Heart 
Cells (3x105 / 
construct)  

Alginate Female 
SD Rats 

IC 5-7 days after MI and 
65 days after 
implantation 

Improvement in FS%, LVIDs 
and LVIDd  

none 

Kellar et al. [122, 
123] 

Human Dermal 
Fibroblast (N/A) 

Vicryl Mesh Female 
Mice 

SCID 2 weeks Increased overall survival, 
increased microvessel 
formation, improved EF, 
preload recruitable stroke 
work, and volume at end-
systole 

Non-viable 
construct 

Miyagawa et al. 
[131] 

Rat Neonatal 
Cardiomyocytes 
(1x106 / sheet) 

N/A Male 
Lewis Rats 

IC ECHO 2, 4, 8 weeks; 
Histology 2, 8 weeks, 
Electrophysiology 

Improved LV AWTh, vessel 
density, FS%, EF electrical 
communication with host 
myocardium 

Fibroblast 
Sheet, 
collagen 
membrane 

Kofidis et al. [124] 
 

Mouse Embryonic 
Stem Cells 
(2.5x106/mL) 
 

Collagen Type 
I 
 

Rat 
 

Athymic 
Nude 
 
 

2 weeks 
 
 

Improved LV AWTh and FS% 
 

Acellular 
Collagen 
 

Kofidis et al. [125] Mouse Embryonic 
Stem Cells (1 x 106 
/50uL) 

Matrigel BALB/c 
Mice 

IC 2 weeks after in situ 
injection 

Increased graft/scar ratio, 
improved FS% 

Matrigel only 

Miyahara et al. 
[133] 

Rat Mesenchymal 
Stem Cells (5x105 / 
sheet) 

N/A Male SD 
Rats 

IC ECHO, 
Hemodynamics 4 and 
8 weeks; Histology 1-
4 weeks 

MSC differentiation within 
host, improved LVDD, FS%, 
LV AWTh, +/- dP/dt, and 
LVEDP 

Fibroblast 
sheet 

Gaballa et al. [136] N/A Collagen 
Foam 

Male 
Fischer 
Rats 

IC 6 weeks No change in Hemodynamics, 
increase vascular density, 
improved cardiac remodeling 

none 

Simpson et al. 
[137] 

Human 
Mesenchymal Stem 
Cells (1 x 106) 

Collagen Type 
I 

Male CDF 
Rats 

IC 4 weeks Decreased adverse 
myocardial remodeling, 
increased myofibroblast 
presence 

Non-viable 
construct 

Wei et al. [135] Rat Mesenchymal 
Stem Cells (1.5 x 
106/sheets) 

Acellular 
bovine 
pericardia 

Lewis Rats IC 12 weeks Improved FS%, LVEDP and 
LVESP, increased neovessel 
formation 

none 

FS% - Percent fractional shortening, AWTh - Anterior wall thickness, LVDD - Left ventricular diastolic diameter, LVESP - 
Left ventricular end systolic pressure, LVEDP - Left ventricular end diastolic pressure, LVEDV - Left ventricular end 
diastolic volume, IC - Immuno-competent, IS - Immuno-suppressed, ECHO – Echocardiography, LVIDd – Left ventricular 
internal diameter at diastole, LVIDs – Left ventricular internal diameter at systole, SCID - Severe combined 
immunodeficiency, dP/dt – Change in pressure over time 
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Tissue engineering, in conjunction with bioreactors and biomimetics, can be used 

to expand and prepare cells and tissues and offers the ability to develop and test tissue 

function in vitro in a controlled manner [139]. Bioreactors are culture devices and 

schemes used for scalable cell and tissue production. Bioreactors can be used to reduce 

time between cell isolation and cell transplantation and to promote progenitor cell 

differentiation. Biomimetics is a functional system which serves to mimic a biological 

process. This allows for an in vitro test situation for various strategies.  Currently, 

investigators are taking steps to optimize cardiac tissue formation through the 

combination of cells, biomaterials, and electrical or mechanical stimulation [140-143].  

For instance, cardiac organoids have been formed with the intent to develop a working 

biological model of the left ventricle.  This tissue engineered model was shown to 

contract, develop a small pressure and even eject fluid. This model was responsive to 

cryoinjury [142], a technique commonly used in animal models to induce myocardial 

infarction.  Bioreactors and biomimetics may allow researchers to develop systems to 

rapidly optimize cell bioprocessing and cardiomyoplasty.  

The versatility of tissue engineering also extends to making chemical 

modifications to biomaterials for the attachment of proteins, immunosuppressive, or 

biochemical agents.  Such techniques can provide localized bulk delivery of paracrine 

factors [144, 145] or other molecules which may directly benefit the myocardium or act to 

enhance engraftment and reduce rejection after cell transplantation.  Local delivery of 

defined factors may also help elucidate the role of these factors in cardiac repair and 

help overcome roadblocks in understanding the mechanism by which cellular 

cardiomyoplasty is effective.  The rate of release of these factors can also be modulated 

to prolong their effects or provide a temporal augmentation to the repair process. 

Furthermore, by using their inherent mechanical properties, the material may also be 

tailored to provide mechanical support for the ailing heart either transiently, using 
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biodegradable materials, or permanently in the case of non-degradable substrates.  

Therefore, tissue engineering may promote higher engraftment rates, improved 

differentiation, maintenance of progenitor cells, an ability to tailor and sustain the release 

of various paracrine factors, and assistance in the understanding of cardiac repair via 

cellular cardiomyoplasty, helping to address the two major issues identified above 

(Figure 2.10).  The issue of engraftment, however relies on the use of tissue engineering 

as a delivery vehicle.  It can by hypothesized that the application of a biocompatible 

material seeded with progenitor cells will allow for localized and enhanced engraftment 

beyond that observed with conventional delivery techniques.   
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Figure 2.10) Tissue engineering principles are likely to help overcome roadblocks that 
are slowing the progress of cellular cardiomyoplasty.   Bioreactors and biomimetics can 
be used to create and test functional tissue engineered constructs.  These constructs 
can act to modulate cell function and enhance delivery of cells or paracrine factors.  
 

2.6.5 Summary 

The issues preventing clinical success for cellular cardiomyoplasty have proved 

more formidable than first expected.  Although this therapy is a viable option for the 

treatment of ischemic cardiomyopathy, there are many questions which still need to be 

addressed.  In particular, issues related to optimizing cell source, understanding the 

mechanism of repair, and enhancing engraftment need to be optimized before maximally 

successful transition from the laboratory to the clinic will be possible.  The use of 

autologous cells appears to be the safest route, yet obtaining large numbers of cells 

needed for transplantation limits the cell source pool.  Also, there is a lack of 

understanding the mechanism by which progenitor cells can repair injured myocardium.  

Enhancing cell engraftment may also play a critical role in enhancing clinical outcomes.  

Tissue engineering may offer solutions to current problems by allowing for ex vivo cell 
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expansion and differentiation, suitable test models, cell and paracrine factor delivery 

systems, and replacement tissue, which may bring us a step closer to making 

cardiomyoplasty a therapeutic option for heart disease patients. 

 

2.7 CONCLUSIONS 

 The heart is an essential organ.  When abnormalities of the heart occur, the 

progression of several events can lead to a deterioration of cardiac function and 

secondary damage to other organ systems.  Although there are several proposed 

therapeutic options for patients with degenerative cardiomyopathies, the limited 

regenerative capacity of the heart, potential side effects of treatment and limited 

reparative potential of these therapies prevents successful recovery.  In addition, a heart 

transplant, which appears to be the one true cure, is limited by the number of hearts 

available, matching criteria and significant side effects.  Fortunately, research has begun 

to investigate other potentially useful therapies for cardiac repair.  Cellular 

cardiomyoplasty, which involves the transplantation of a cell source with regenerative 

properties, has emerged as an exciting option.  Unfortunately, issue regarding cell 

source, mechanisms of repair and enhancement of cell engraftment have made it 

difficult to translate basic research efforts into the clinic.  Biomedical researchers are 

beginning to decipher the challenges in understanding the heart and treating the heart 

after injury.  In particular, tissue engineering may hold the key to unlocking a vast vault 

of solutions regarding these roadblocks to cell therapy.  There is no end to cardiac 

regenerative medicine in sight and it is expected that tissue engineering will provide 

many contributions to the field of cellular cardiomyoplasty.  
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Chapter 3 
 

A Tissue Engineering Approach to Cell Delivery Results in Significant Cell 

Engraftment and Improved Myocardial Remodeling:  A Proof of Concept* 

 

3.1 INTRODUCTION 

Myocardial infarction is the term for heart muscle death, either apoptotic or 

necrotic, resulting from an impaired myocardial blood supply. Repair of infarcted 

myocardium is mediated largely by fibroblast proliferation, collagen deposition, and scar 

formation[1, 2].  The myocardium does not regenerate appreciably because of the 

limited pool of cardiac specific progenitor cells present and the inability of adult 

cardiomyocytes to proliferate[3].  Recently, cellular cardiomyoplasty has been proposed 

as a strategy to repair myocardial damage after injury.  This strategy involves 

encouraging replacement of lost myocardium with new cells having desirable properties.  

To date, addition of skeletal myoblasts[4-6], smooth muscle cells[7], fibroblast[8], 

hematopoietic stem cells[9], cardiomyocytes[10, 11], umbilical cord blood derived 

cells[12], embryonic stem cells[13, 14] and mesenchymal stem cells[15, 16] have shown 

improvement in cardiac function after myocardial infarction in animal models.  Despite 

some disappointing results, several clinical trials suggest efficacy of cellular 

cardiomyoplasty in the treatment of human heart disease[17-20].  

One factor likely to influence the success of cellular cardiomyoplasty is the 

number of cells delivered to the area of damage.  Typical approaches to deliver cells to 

infarcted myocardium include intravenous (IV) injection, intracoronary (IC) injection, 

retrograde venous intracoronary (RIC) infusion, and intramyocardial (IM) injection.  

Although IV injection offers the advantage of being minimally invasive, it suffers from low 

cell engraftment (< 1%) into the injury area [21, 22].  IC injection and RIC infusion 

provide somewhat more localized delivery of cells, resulting in improved but still limited 
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cell engraftment (3-6%)[21, 23].  IM injection offers direct localization of cells to the 

injured area, but engraftment (6-12%) is limited by leakage out of the injection sites and 

cellular washout into the native venous shunts[22].  Moreover, this technique results in 

inhomogeneous cell delivery with cell “islands” within the myocardial scar [18].  

Therefore, we tested the possibility that a biodegradable, cellularized construct applied 

directly on the epicardial surface of the infarction could result in uniform delivery of cells 

with better engraftment efficacy than the more traditional cell delivery techniques.  We 

refer to this construct as a “cardiac patch”.   

  

3.2 MATERIALS and METHODS 

3.2.1 Animal Handling 

Male CDF rats obtained from Charles River (Wilmington, MA) were allowed to 

acclimate to housing conditions for one week before use.  All animals received care in 

compliance with federal and institutional guidelines with approval from the Institutional 

Animal Care and Use Committee. 

 

3.2.2 Production of Cardiac Patches 

We used patches containing bone marrow-derived human mesenchymal stem 

cells (hMSCs) because several studies have shown benefits with the use of these cells 

and because they are currently being used in several human clinical trials[17-19, 24].  

CD34 negative hMSC obtained from Cambrex Inc. (Walkersville, MD) were expanded to 

P3 – P6 before being embedded into a rat tail type I collagen matrix (BD Biosciences; 

San Jose, California).  hMSC were cultured in complete media consisting of Dulbecco’s 

Modified Eagle’s Medium (DMEM) containing 10% MSC qualified serum, L-glutamine 

and penicillin/streptomycin at 37oC in 5% CO2 (Cambrex Inc.).  To produce cardiac 

patches for progenitor cell delivery, one million hMSCs were resuspended in a solution 
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of rat tail collagen type I (BD Biosciences, Bedford, MA), 10% fetal bovine serum (FBS) 

0.1 M NaOH and adjusted with 5x DMEM (Gibco, Carlsbad, CA) such that the final 

collagen concentration was 2 mg/mL and the initial volume was 200 μL.  Then, the 

solution was placed in individual wells of a non-tissue culture-treated 48-well plate in 

order to create a patch that was between 0.3 – 0.7 cm in diameter. Non-tissue culture-

treated plates were chosen to minimize cell lost due to migration.  As shown in figure 

3.1, there appeared to be decreased cellularity within patches (See section 3.2.4.3) 

cultured in treated plates compared to non-treated plates after four days.  

66



 

 

 

 

 

 

Figure 3.1) Apparent cell migration with culture on tissue culture (TC) treated plates.  
There is a nonsignificant reduction in cellularity (DNA content) of cardiac patches over 
four days under normal culture conditions.  Additionally, more cells appear to be 
attaching and migrating from the patch over two days in culture.  This data set provided 
rationale to culture cardiac patches in non-tissue culture (NTC) treated plates. 
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Patches were cultured at 37oC in 5% CO2 for 4-7 d before usage. For the control 

experiments, non-viable cardiac patches were prepared by freezing four day old patches 

overnight in phosphate buffered saline at -80oC.  The patches were thawed at room 

temperature and used for subsequent experiments.  The resulting non-viable (NV) 

patches demonstrated significantly reduced viability (figure 3.2).  

 

 
 
 

Figure 3.2)  A single freeze/thaw cycle leads to complete loss of viability in cardiac 
patches. To create NV patches, we quickly froze viable cardiac patches at -80oC in 
sterile PBS.  Afterwards patches were thawed and used as controls in animal 
experiments.  A live/dead assay was performed to assess the efficacy of the single 
freeze/thaw cycle to promote cellular death.  This assay revealed complete loss of 
viability within cardiac patches. 

 

Compaction of the patch, a property thought to describe cell interaction with the 

collagen, was determined by measuring the change in area of the patch over 5 d. The 

change in cross-sectional area was measured by taking images of the construct every 

24 h and measuring the diameter along at least three different dimensions using Matrox 

Inspector 3.0 software (Dorval, Québec, Canada).  Diameters were converted into areas, 

and change was represented as the percent reduction in area over five days.  In 

addition, compaction of hMSC patches was determined by measuring the change in 

volume of the patch over 7 d. Patches were removed from culture dishes and washed 

several times to remove media/serum using PBS. Afterwards patches were placed in a 

10 mL volumetric flask (containing 10mL of serum-free DMEM). The location of the initial 
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volume was indicated using the “10 mL” marking on the side of the flask. The change in 

volume was measured after submersing patches in DMEM. The change in volume after 

submersion was obtained using a micro-volume syringe.  DMEM was removed from the 

flask until the volume reached the initial location as indicated by the “10 mL” marking.  

The volume removed after submersion was recorded as the volume of the patches at 

one to five days.   

 

3.2.3 Characterization of hMSC in the Cardiac Patch 

3.2.3.1 Viability  

To assess cell viability within the construct, patches were digested in type I 

collagenase (650 U/mL, Worthington Biochemical Corporation; Lakewood, NJ) for 45 

min at 37oC.  Collagenase activity was inhibited by the addition of FBS and complete 

hMSC media. Viability was measured using trypan blue with a hemocytometer.  In 

addition, viability was assessed via fluorescence microscopy.  Briefly, constructs were 

washed 3x in phosphate buffered saline (PBS) to remove serum.  Fluorescent EthD-1 (4 

μM, red) and Calcein AM (4 μM, green) (Molecular Probes; Eugene, Oregon) were then 

added for 45 min.  Afterwards, constructs were washed 3x in PBS and viewed with a 

confocal microscope.   

 

3.2.3.2 Differentiation 

  Differentiation of hMSCs within the patch was measured by monitoring the 

expression of CD73 (SH3) and CD105 (SH2) over seven days.  Cells were isolated from 

the patch by treatment in collagenase (650 U/mL) for 30 min at 37oC.  Collagenase 

activity was inhibited by the addition of FBS and complete media, and cells were washed 

in complete media. Cells were stained with anti-CD73 and anti-CD105 diluted in 0.3% 
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bovine serum albumin at 2-4oC for 30 min.  Cells were than washed with PBS and 

analyzed by flow cytometry (BD; San Jose, CA).      

 

3.2.3.3 Cellularity 

Cellularity was measured by quantifying the amount of DNA within cardiac 

patches.  Constructs were digested in a mild detergent with proteinase K for 1-2 hours at 

55oC and DNA was isolated and purified using a DNeasy kit (Qiagen; Valencia, CA).  

The amount of DNA was quantified by incubating DNA with PicoGreen reagent for five 

minutes at room temperature and analyzed with a fluorescent plate reader at an 

excitation of 480nm and emission of 520nm.  RFU values were compared with a 

standard curve and DNA concentrations were calculated at zero to five days after patch 

formation. 

 

3.2.4 Infarct Model and Patch Application 

Myocardial infarction (MI) was induced by permanent ligation of the left anterior 

descending (LAD) coronary artery in immuno-competent male CDF rats. Briefly, rats 

were anesthetized with 1.5% isoflurane. After endotracheal intubation and initiation of 

ventilation, the heart was exposed via a left thoracotomy and the proximal LAD was 

ligated. Ten minutes after ligation, patches were applied onto the anterior wall of infarct 

site and secured with fibrin glue (Baxter; Deerfield, IL; Figure 3.3). Rats with induced 

infarction and without construct application or with an acellular construct served as 

controls. Buprenorphine (0.03mg/kg) was injected subcutaneously after surgery (and as 

necessary), and rats were allowed to recover under close supervision. 
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Figure 3.3) Overview of induced infarct and patch placement methodology.  Collagen 
based patches seeded with human mesenchymal stem cells are allowed to culture for 4 
days before placement.  A permanent ligation of the left anterior descending artery is 
used to induce myocardial infarction.  Afterwards the cardiac patch is placed onto the 
anterior wall of the heart below the ligation point and held in place with fibrin sealant.  
 

3.2.5 Echocardiography 

Transthoracic echocardiograms were performed on rats using a SONOS 5500 

ultrasound unit (Philips Medical Systems, Bothell, WA) equipped with a 15-MHz linear-

array transducer and a 12-MHz phase-array transducer. The animals were maintained 

lightly anesthetized during the procedure with 1% isoflurane delivered through a face 

mask at a rate of 5 L/min. The animals were kept warm on a heating pad. The body 

temperature was continuously monitored using a rectal thermometer probe and 

maintained between 36 and 37 °C by adjusting the distance of a ceramic heating lamp. 

Under these conditions, the animal’s heart rate could be maintained above 300 beats 

per minute. Two-dimensional and M-mode echocardiography were used to assess wall 

motion, chamber dimensions, wall thickness, and fractional shortening. Color flow 

Doppler was used to assess valve function. Images were obtained from the parasternal 
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long axis, parasternal short axis at the mid-papillary level, apical 4-chamber, apical 2-

chamber, and apical 3-chamber views. 

Baseline echocardiograms were acquired at 2-3 days post-MI with additional 

echocardiograms acquired at 4 weeks post-MI. The baseline post-MI echocardiograms 

served two purposes: 1) they allowed us to determine whether there were initial 

differences in infarct size between the MI control group and the patch-treated groups, 

and 2) they allowed us to select only animals with sufficiently large MI. We have 

prospectively established that an animal must have sustained a sizable anterior MI in 

order to be included in subsequent studies. We defined sizable anterior MI as wall 

motion abnormalities involving at least two of the three anterior myocardial segments. 

Using this pre-established criterion, we excluded a total of two animals from our study: 

one from the MI control group and one from the MI + Patch group. 

 

3.2.6 Cardiac hemodynamics 

Cardiac hemodynamics were measured after the final echocardiographic 

examination. Rats were anesthetized with 1% isoflurane, and a 1.4F Millar Mikro-Tip 

catheter (SPR-671, Millar Instruments, Houston, TX) was inserted into the right carotid 

artery and advanced into left ventricle. Aortic and left ventricular (LV) pressures were 

recorded on a PowerLab system and analyzed using Chart v4.2.4 software 

(ADinstruments, Colorado Springs, CO).  

 

3.2.7 Myocardial Histology 

After the hemodynamics study, hearts were removed, perfused with 4% 

paraformaldehyde and then cryo-protected by immersion in 30% sucrose for 48-96 h.  

Isopentane cooled in liquid nitrogen was used to freeze hearts immersed in optimal 

cutting temperature (OCT) medium.  Sections were cut to 7 μm using a commercial 
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cyrostat and used for either immunohistochemistry or staining with hematoxylin and 

eosin or Masson’s Trichrome. To calculate fibrosis, at least three Masson’s Trichrome 

stained sections at various levels along the long axis were analyzed for collagen 

deposition using the histogram-based color selection function of Image-Pro® Plus 

software v6.3 (Media Cybernetics, Inc; Bethesda, MD).  To assess engraftment 

efficiency, serial sections were taken at 1 mm intervals along the axis of the heart from 

the apex to the base. Total cell number was interpolated using a physical dissector 

methodology for stereology[25].   Using fluorescence microscopy, the numbers for 

human and 4',6-diamidino-2-phenylindole (DAPI)-positive cells were counted within the 

mid-infarct and peri-infarct region, and serial sections were compared to exclude points 

of cell intersection. Human cells were detected using a fluorescein isothiocyanate (FITC) 

conjugated anti-human IgG (Sigma, St. Louis, MO 1:20).  Equivalent results were 

obtained using anti-human HLA (Sigma 1:20) and a lack of fluorescence in the hearts 

without applied cells confirmed the antibody specificity. Engraftment was calculated as 

the number of FITC-positive cells within the native tissue divided by the number of intact 

cells initially delivered within the patch.    Immunohistochemical staining with antibodies 

against α-smooth muscle actin (α-SMA, Sigma, St. Louis, MO; 1:200), von Willebrand 

Factor (vWF, Sigma; 1:500) and c-kit (Santa Cruz Biotechnology; 1:100) with 

appropriate secondary antibodies (anti-mouse IgG, Jackson ImmunoResearch Inc, West 

Grove, PA; anti-goat IgG, anti-rabbit IgG) were used to show blood vessel (calculated as 

vessels per field) and myofibroblast and endogenous stem cell locations within and 

around the infarct zone.  Frozen sections were air dried, and OCT was removed by 

rinsing slides in PBS.  Non-specific binding was blocked by incubating slides with 5% 

donkey or goat serum (Sigma) for 1 h.  The primary antibody was then added for 2 h at 

room temperature or overnight at 4oC.  After rinsing in 0.45% fish skin gelatin oil 
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(Sigma), the secondary antibody is added for 1 h then counterstained with DAPI and 

mounted with DAKO anti-fade aqueous mounting media (DAKO, Carpenteria, CA). 

 

3.2.8 Neonatal Cardiomyocyte and Cardiac Fibroblast Isolation 

Ventricular cardiomyocytes were isolated from 2 to 3 day-old Sprague-Dawley 

rats (Charles River Laboratories, Wilmington, MA) using an isolation kit purchased from 

Worthington Biochemical Corporation (Lakewood, NJ). Briefly, the beating hearts of 

anesthetized Sprague-Dawley neonates were surgically removed and then immediately 

placed in a centrifuge tube containing 35 mL sterile calcium- and magnesium-free Hanks 

Balanced Salt Solution (pH 7.4). The suspension was incubated overnight at 4°C with 

trypsin (50μg/ml). On the following day, the tissue was treated with a trypsin inhibitor for 

30 min, followed by collagenase for 45 min both at 37°C. The tissue was titrated and the 

supernatant was filtered through a cell strainer. Then, the cells were centrifuged at 1000 

rpm for 3 min, and the cell pellet was re-suspended in media consisting of DMEM, 10% 

FBS, and 200μg/mL penicillin/streptomycin. After measuring cell yield and viability with 

the trypan blue exclusion test, cells were plated on tissue culture dishes for 1.5 h to 

allow for the attachment of non-myocyte fibroblasts. The non-adherent neonatal 

cardiomyocytes (NCM) were collected and re-plated in a new culture dish.  The 

remaining cardiac fibroblasts (CFb) were cultured at 37oC and 5% CO2.  

 

3.2.9 Real Time RT-PCR 

RNA was isolated from cell monolayers using a commercial RNeasy kit (Qiagen; 

Valencia, CA). RNA concentration was measured using a spectrophotometer (abs: 

260nm). Afterwards, 1μg of RNA was converted into cDNA using a BioRad iScript cDNA 

synthesis kit (BioRad; Hercules, CA).  The reaction mixture was run for 30 minutes at 

55oC.  Real Time PCR was run using a total of 50ng template cDNA for each sample.  
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For each run a negative control (water only, no template) was also run.  Each sample 

was run in triplicate using a BioRad SYBR green master mix for multiple genes 

including: rat SCN5A, rat bax and rat bcl2. Primer assays for bax and bcl2 was obtained 

from Qiagen.  Unfortunately, primer sequence information is proprietary and is not 

available. Primer sequence information for SCN5A is listed below. The PCR protocol 

consists of an initial denaturing step at 95oC for 15 minutes.  Next, samples are run at 

94oC (denaturantion) for 15 seconds, 60oC (annealing) for 30 seconds and 72oC 

(extension) for 30 seconds for 35 cycles.  Relative RNA abundance was calculated using 

the following equation: 2-ΔΔcT .   

 

SCN5A Primer Sequence: 

Fwd: TTACGCACCTTCCGAGTCCTCC 

Rev: GATGAGGGCAAAGACGCTGAGG 

 

3.2.10 Assessment of hMSC Paracrine Function 

To assess the likelihood of paracrine functionality, hMSC were cultured under 

hypoxic conditions (1% O2) for 3 d (Figure 3.3) in DMEM supplemented with L-Glutamine 

and penicillin/streptomycin only (Maintenance Media; MM). Afterwards the conditioned 

media was removed from the hMSC, spun at 2000 rpm to remove debris and placed on 

beating and confluent NCM cultures or 24 hour serum starved CFb for 1 d.  Conditioned 

media that was not immediately used was frozen at -80oC.  Frozen media was also used 

for experiments, but would only be used after at most a single freeze/thaw cycle.  After a 

one day culture period under hypoxic or normoxic (20% O2) conditions with conditioned 

media, NCM were collected and the RNA was isolated as described in 3.2.10.  RT-PCR 

was run for the expression of SCN5a, bax and bcl2. Additionally, after 1 d in culture 

under hypoxic or normoxic conditions, conditioned media was removed from CFb (initial 
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seeding density was 20,000 cells/well) and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; Sigma) reagent was added for 4 hours (Figure 3.4). 

Afterwards, the MTT reagent was removed and an ice cold solution of 0.1 N hydrochloric 

acid (HCL) in anhydrous isopropyl alcohol was added to dissolve formazan crystals.  

The resulting colored solution was collected and the absorbance was 

spectrophotometrically measured at 570nm with background subtraction at 690nm. Also, 

a picosirius red assay was performed on media collected from CFb (initial seeding 

density was 500,000 cells/T-25 flask) after 1 d of culture in hMSC conditioned media. 

Briefly, the media was collected and dried onto a non-tissue culture treated multi-well 

dish in a 37oC humidified chamber for 16 hours than a 37oC dry oven for at least 24 

hours. The wells were washed with deionized H2O and than stained with a 0.1% 

picosirius red solution (Direct Red dissolved in picric acid; Sigma) for 2 hours.  The wells 

were washed five times with 10mM HCL and bound collagen was eluted using 0.1 M 

sodium hydroxide.  The resulting colored solution was collected and the absorbance was 

spectrophotometrically measured at 540nm. Absolute concentrations were determined 

through the use of a standard curve utilizing rat tail type I collagen.  Background 

collagen secreted from hMSC was subtracted by measuring picosirius red absorbance 

from media taken directly off of hMSC.      
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Figure 3.4)  Schematic of in vitro hypoxia model.  In order to investigate the paracrine 
effects of hMSC on NCM and CFb, a model was set up in which conditioned media from 
hMSC under hypoxia was removed and placed on viable NCM or CFb.  After defined 
periods, the function of either cell was analyzed.  
 
 
3.2.11 Statistical Analysis and Interpretation 

 A Student’s t-test was used for comparison of data sets with two groups.  Data 

sets involving three on more groups were analyzed using a one-way analysis of variance 

(ANOVA). Appropriate post-hoc testing (Bonerroni or Dunnett) was performed for the 

interpretation of several data sets.  A p-value less than 0.05 indicated statistical 

significance. 

 
3.3 RESULTS 

3.3.1 In Vitro Characterization of the Cardiac Patch 

To determine the suitability of the cardiac patch for transplantation of progenitor 

cells, we performed a series of experiments to assess hMSC differentiation, collagen 

compaction, patch cellularity and hMSC viability in vitro after casting cells in the collagen 

hydrogel.  Progenitor cell potency is thought to be an important factor determining the 

degree of cardiac repair with cell replacement therapy.  On days 4 and 7 of culture, the 

extent of hMSC differentiation was measured by monitoring the expression of two 

markers of hMSC potency, CD105 and CD73[26].  As shown in figure 3.5a, there was no 
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significant decrease in either marker after 4 d, the day patches were applied in our 

experiments.  Longer incubation resulted in a modest decrease in CD73 but not CD105 

expression at 7 d. Therefore, hMSCs retained their original potency on the day the patch 

constructs were used. 

 
 

Figure 3.5)  In vitro characteristic of the cardiac patch. In order to determine the 
feasibility of this cell-matrix combination a series of in vitro experiments were performed 
to assess hMSC differentiation, collagen compaction and hMSC viability. A) hMSC 
potency was measured by monitoring the expression of CD105 and CD73 via flow 
cytometry over 7 d.  B) The change in diameter of the cardiac patch was measured over 
several days to determine the extent of collagen compaction.  In addition, H&E staining 
was performed (20X magnification) on compacted cardiac patches to view the 
distribution of cells. C) A representative picture of a live/dead assay on a cardiac patch 
(20X magnification).  High hMSC viability was retained before placement of cardiac 
patch onto infarcted heart. 
 
 

During the in vitro culture period, there was evidence of cell-matrix interactions. 

Compaction is a measure of the interaction of cells and matrix.  Compaction of the 

collagen construct imparted increased mechanical strength to the patch, providing for 

easier manipulation during transplantation. Compaction was quantified by the 

measurement of the maximum construct diameter on days 0 and 4. After 24 h, 

constructs compacted maximally to 38 ± 2% (n=5) of their original area to a diameter of 
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3.7 ± 0.4 mm (figure 3.5b, 3.6). The degree of volumetric compaction was similar (23 + 7 

μl; n=3). This degree of compaction is similar to that seen using other cell types 

embedded in a collagen matrix[27]. 
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Figure 3.6) Remodeling of cardiac patches in culture.  To assess the extent of 
remodeling of cardiac patches, compaction was measured to gauge percent change in 
cross-sectional area and volumetric change over five days. 
 

 Also, in order for successful delivery to the infarct, cells must remain viable in 

the patch.  hMSC viability was found to be 94 ± 2% over 4 d in culture (figure 3.5c).  

Therefore, patches developed suitable mechanical properties and embedded cells 

retained appropriate characteristics for in vivo application.  Although viability remained 

relatively high, we observed a progressive non-significant reduction in patch cellularity 

over five days.  Overall there was an apparent 55% drop in patch cellularity from day 

zero to day five.  As shown in figure 3.1 this may be partly due to cell migration from the 

patch onto the culture surface.  Additionally, cell apoptosis could contribute to these 

effects.  It should be noted that the viability assay used to determine hMSC survival was 

not designed to differentiate apoptotic cells.     
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Figure 3.7) Loss of cardiac patch cellularity while in culture.  The absolute DNA content 
of cardiac patches was measured using a Picogreen DNA binding dye.  There was an 
apparent 55% drop in cellularity measured over five days. (n=3, Day 0-3; n=4 Day 4-5) 
 

3.3.2 Progenitor Cell Engraftment and Distribution with Cardiac Patch Application  

Cardiac patches were fixed in place on the epicardial surface of the heart, and 

cell engraftment was determined at one week.  After the removal of rat hearts, they were 

fixed, cyropreserved, and embedded in OCT medium. Serial sections at 1 mm intervals 

were cut and stained for human antigen.  Engraftment was analyzed across the infarcted 

region with fluorescence microscopy.  Only cells which were positive for human antigen 

and DAPI and located within the myocardium were counted as being engrafted (figure 

3.8 and figure 3.9a).  We found that 23 ± 4% of the applied cells engrafted at this time 

(i.e., one week after patch application, n=6). Cell distribution within animals which 

received a cardiac patch tended to show low engraftment at the apex and base of the 

heart (figure 3.8).   We also noticed the fusion of collagen patches with the native tissue.  

This event made it difficult to differentitiate between the patch and host myocardium in 

histological evaluations. 
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Figure 3.8) Trends in hMSC engraftment.  One week post-infarcted rat hearts were 
stained with anti-human IgG or anti-human HLA to determine the extent of engraftment 
after patch application.  In general, most stem cells were observed to engraft in the area 
between the apical and basal portions of the heart.  
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 Most engraftment occurred directly underneath the applied patch with 80 ± 3% 

of the hMSCs found in this area of the myocardial anterior wall (figure 3.9a and c). Of 

these engrafted cells, 1.0 ± 0.2%, 14 ± 3%, and 85 ± 3% were found in the endocardial, 

mid-myocardial, and epicardial regions, respectively.  Nevertheless, some cell migration 

away from the patch occurred.  Of the engrafted hMSCs, 20 ± 3% were found in the 

infracted region not covered by the patch.  These cells showed a similar proclivity to 

engraft in the epicardial region. Of the cells engrafted away from the patch, 3 ± 1%, 39 ± 

4%, and 58 ± 4% were found in the endocardium, mid-myocardium, and epicardium, 

respectively.  Cells within the mid-myocardium were typically found amongst necrotic 

myocardium. Occasionally, we observed hMSC engraftment in regions as far as 1 mm 

from the apex of the heart (figure 3.9b). 
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Figure 3.9) Engraftment of hMSC in infarcted rat heart at 1 week. Histology was 
performed on 1 week old infarcted hearts to determine the location and number of 
hMSC.  As shown on the left, hMSC stained with an anti-human IgG (verified with 
human anti HLA class I) are able to migrate from the patch to the infarcted region of the 
heart (A and B). Cells typically migrated to the epicardial side of the heart though they 
were found in more distal in areas not covered by the patch (C and D).  Engraftment was 
calculated to be 22 + 5% (n=4).  E) In addition, engraftment was distributed across the 
entire infarct, spreading from apex to base.  (20X magnification; bar equals 100μm) 
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3.3.3 Efficacy of the Cardiac Patch in Post-Infarct Remodeling 

In order to assess the efficacy of this cell delivery method, post-infarct 

remodeling was studied using echocardiography and invasive hemodynamics.  Baseline 

echocardiograms at day 2-3, presumably before any substantial effects of the applied 

progenitor cells, showed no difference in the initial infarct size between the MI control 

group and patch-treated animals, 39 ± 1% and 38 ± 2% of the left ventricle (LV), 

respectively.   At four weeks, MI resulted in statistically significant adverse remodeling in 

all five parameters measured, as shown in Table 3.1. Application of patches containing 

hMSCs statistically significantly improved all five parameters as compared to MI only 

animals. At four weeks after infarction, the hearts of patch-treated animals showed less 

dilatation in LV internal dimensions and better preserved anterior wall thickness.  These 

findings were consistent with a -11.5% reduction in internal LV diameter and a 29.8% 

increase in wall thickness in the MI + patch group when compared to the MI  only group 

as assessed by histological morphometry.  Fractional shortening was also better 

preserved in patch-treated hearts as compared to MI control hearts (25±2% vs. 19±1%, 

p<0.05), and the L/S ratios suggested a less spherical LV in the patch-treated animals 

as compared to the MI control group.   

To determine if the improvements were mediated by hMSC or by cardiac patch 

placement itself, we used patches without viable cells (i.e. non-viable patches).  A 

freeze/thaw cycle was used to eliminate hMSCs within 4-day old patches, and these 

non-viable patches of equivalent size and mechanical proprieties to the cellular patches 

were transplanted onto infarcted myocardium in an identical manner.  As shown in Table 

3.1, all remodeling parameters were statistically unchanged between MI control animals 

and non-viable patch-treated animals. Also, animals treated with the cardiac patch 

showed improvements in all five parameters when compared to animals treated with 
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non-viable patches, suggesting that hMSCs and not the collagen alone were responsible 

for favorable remodeling.  

 

Table 3.1: Echocardiographic measures of myocardial remodeling and function 
 Sham (n=4) MI (n=8) MI + NV Patch 

(n=7) 

MI + Patch (n=7) 

LVIDd (mm) 7.5±0.2 9.5±0.1a 9.7±0.4a 8.8±0.1a,b 

LVIDs (mm) 3.9±0.2 7.7±0.1a 8.0±0.5a 6.4±0.3 a,b,c 

FS (%) 48±2 19±1a 18±2a 27±3 a,c 

AWTh  (mm) 1.01±0.01 0.35±0.03a 0.37±0.04a 0.60±0.03 a,b,c 

L/S 1.55±0.04 1.27±0.02a 1.26±0.03a 1.40±0.02 a,b,c 

a p<0.05, vs. Sham; b p<0.05 vs. MI; c p<0.05 vs. MI + NV Patch 
 
MI: Myocardial Infarction 
NV: Non-viable 
LVIDd: Left ventricular internal diameter at diastole 
LVIDs: Left ventricular internal diameter at systole 
FS%: Percent fractional shortening 
AWTh: Anterior wall thickness 
L/S: Ratio of long to short axis; sphericity index 
  

In general, hemodynamic measures were less sensitive to infarction and 

subsequent patch application. Despite creating relatively uniform, large infarcts, only 

+dp/dt, the rate of rise of pressure LV pressure, and –dp/dt, a measure of diastolic 

relaxation, were statistically different between the control and MI groups, and despite the 

improvements in post-infarct structural remodeling as assessed by echocardiography, 

there was no statistical differences in hemodynamic parameters between the MI and MI 

+ patch groups (Table 3.2). 
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Table 3.2 Hemodynamic measures of myocardial function 

a p<0.05 vs. Sham 

 
Sham (n=5) MI (n=10) MI+Patch (n=13) MI+NV Patch 

(n=7) 

SBP (mmHg) 132 ± 3 126 ± 3 131 ± 2 123 ± 2 

DBP (mmHg) 98 ± 1 96 ± 3 99 ± 2 93 ± 2 

LVESP (mmHg) 136 ± 4 126 ± 4 128 ± 3 124 ± 1 

LVEDP (mmHg) 5.1 ± 0.3 8.9 ± 1.2 9.1 ± 1.2 7.6 ± 1.6 

+ dp/dt (mmHg/s) 10080 ± 567 8320 ± 213a 8774 ± 228a 8518 ± 229a 

- dp/dt (mmHg/s) -9476 ± 463 -6960 ± 245a -7065 ± 168a -6396 ± 202a 

 
SBP: Systolic blood pressure 
DBP: Diastolic blood pressure 
LVESP: Left ventricular end-systolic pressure 
LVEDP: Left ventricular end-diastolic pressure 
+ dp/dt: Maximum rate of rise in left ventricular pressure during systole 
- dp/dt: Maximum rate of decrease in left ventricular pressure during diastole 
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3.3.4 Increased Myofibroblast and c-Kit Expression with Patch Application  

The mechanism whereby bone marrow-derived progenitor cell replacement 

therapy improves myocardial function is unknown.  Possibilities include proliferation and 

differentiation of exogenously applied MSCs or paracrine effects on native cells[28, 29]. 

To investigate these two possibilities further in our system, we replicated the histological 

analysis for MSCs at four weeks.  This analysis showed that despite high initial 

engraftment rates at one week, no hMSCs or residual patch were detectable at four 

weeks.  This suggested that the advantageous effect of patches containing MSCs was 

not the result of long-term MSC proliferation and differentiation.   

Since MSC application has been reported to increase angiogenesis[30], we 

performed additional histological analysis for this possibility.  Immunohistochemical 

staining for vWF at four weeks after MI showed only a trend toward an increased 

number of blood vessels throughout the peri-infarct and infarcted regions of patch-

treated animals (7.2 ± 2.1 vs. 10.3 ± 1.3 vessels per field for control and patch-treated 

animals respectively; figures 3.10a, b and c).  Additionally, there were generally more 

vessels toward the endocardium compared to the epicardium in both MI control and 

cardiac patch treated animals (figure 3.10d).  Interestingly, there is a non-significant 

trend for increased vessel density on the epicardial side of the infarct zone compared to 

MI controls.  Cardiac patches were placed on the epicardial surface of hearts and 

showed heighted engraftment in the area, which may contribute to these observations.  
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Figure 3.10) Blood vessel density at 4 weeks post-infarction.  A) and B) vwf expression 
was used to determine the vessel density in infarcted hearts with and without cardiac 
patch treatment (20X magnification).  C)  Although there was a trend for increased 
vessel density across the border zone and infarct zone there was no statistically 
significant difference.  D) In general there were more blood vessels on the endocardial 
side of the heart versus the epicardium. 
 
 

On the other hand, we found a marked increase in the number of cells in the 

infarct area expressing α-SMA.  α-SMA positive cells were increased in patch-treated 

animals (1.5 ± 0.5% vs. 4.6 ± 1.1%; p<0.01; figure 3.11a).   Most of these α-SMA 

expressing cells were located in the mid myocardium, away from blood vessels and 

along the border zone of the mid-infarcted region. (figure 3.11b, c and d).  Since α-SMA 

expression is a marker for vascular smooth muscle cells and myofibroblasts and most 

cells expressing the marker were not associated with blood vessels, these cells likely 

represent an increase in myofibroblasts within the infarct region in response to patch 

application.  Finally, these α-SMA positive cells did not stain for human antigen, 

suggesting that patch application encouraged recruitment, differentiation, or both of 

native cells.   
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Figure 3.11) Expression of α-SMA in infarcted hearts at 4 weeks.  A) α-SMA expression 
was significantly increased with the application of constructs when compared to an 
infarcted control (4.6 ± 1.1% vs. 1.5 ± 0.5%, p<0.01; n=4). B) Increased α-SMA 
expression was consistently augmented across the LV wall.  C) and D) Fluorescence 
microscopy images show higher α-SMA expression in patch treated hearts versus 
controls (20X magnification). 

89



Although we observed a significant increase in myofibroblast presence, this did 

not result in increased collagen deposition. Several sections along the long axis of the 

heart were stained with a Masson’s Trichrome tinctorial stain and analyzed for fibrosis 

using Image Pro Plus software. Analysis revealed there was no difference in the amount 

of fibrosis at the anterior, mid and posterior regions of the infarct in MI control hearts 

versus hearts treated with a cardiac patch (figure 3.12a-d) Therefore, although cell 

presence is increased in samples treated with a cardiac patch, the extent of collagen 

production appears attenuated.  

 

 
 

Figure 3.12) No change in the extent of fibrosis with cardiac patch application.  Fibrosis 
was measure using Masson’s Trichrome stained sections from MI control and cardiac 
patch treated hearts. D) There was no difference in the extent of fibrosis at the anterior 
(A) and posterior (C) border zones or the mid-infarct region (B); 10X magnification.    
 
 

In addition, to determine the extent of endogenous stem cell recruitment to the 

infarct site we performed immunohistochemistry for the presence of the c-kit antigen.  As 

shown in figures 3.13a and b, there is an apparent increase in the number of c-kit-

positive cells present in infarcted hearts treated with a cardiac patch versus MI controls.  
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We also noticed that many hMSC appeared c-kit-positive (figure 3.13c).  Such 

expression may represent cell fusion of hMSC with endogenous progenitors or possible 

dedifferentiation of hMSC after transplantation.  

 
 
 

Figure 3.13) Endogenous stem cell recruitment with cardiac patch treatment.  A) and B) 
Infarcted rat hearts treated with cardiac patches demonstrated an apparent increase in 
c-kit-positive cells (Red) in the infarct zone compared to those without cardiac patches 
one week after infarction and patch placement. (20X magnification)  (C) hMSC are 
stained with anti-human HLA (Green) and show apparent colocalization (Yellow) with c-
kit antigen. 
 

3.3.5 An In Vitro Model to Assess Possible Benefits of hMSC Conditioned Media 

The results obtained from in vivo experimentation predict that repair of infarcted 

myocardium may be mediated via a paracrine mechanism.  To further assess this 

possibility, we developed an in vitro hypoxia model (figure 3.4).  Conditioned media from 

hMSC cultured under hypoxia for 3 d was removed and placed on NCM or CFb to 

determine downstream functions.  NCM cultured with hMSC conditioned media or 

maintenance media (MM) were cultured for 1 d under normoxia or hypoxia.  RT-PCR of 
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RNA collected from NCM revealed there was no change in the extent of apoptosis 

(bcl2:bax) with or without hMSC conditioned media (Figure 3.14).  Additionally, NCM 

cultured with hMSC conditioned media showed a relative downregulation of SCN5A 

(sodium channel) transcripts compared to cells in MM at 1% oxygen or cells in MM at 

20% oxygen (Control: 1.04 + 0.06; Hypoxia: 0.68 + 0.1; hMSC Hypoxia: 0.37 + 0.07; 

Figure 3.15).   
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Figure 3.14) NCM apoptosis with exposure to hMSC conditioned media.  RT-PCR for 
bcl2 and bax transcripts revealed no change in the extent of apoptosis with exposure of 
NCM to hypoxia.  Control represents NCM at 20% oxygen in MM.  Hypoxia represents 
NCM at 1% oxygen in MM.  hMSC media hypoxia represents NCM at 1% oxygen in 
hMSC conditioned media. 
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Figure 3.15) Downregulation of SCN5A transcript levels with exposure to hMSC 
conditioned media. SNC5A transcript were downregulated upon exposure to hypoxia 
alone and further upon exposure to hMSC conditioned media(Control: 1.04 + 0.06; 
Hypoxia: 0.68 + 0.1; hMSC Hypoxia: 0.37 + 0.07; *p < 0.05 vs. Control).  

 

CFb cultured in hMSC conditioned media or maintenance media at differing 

oxygen tensions was performed to determine the effect of hMSC paracrine factors on 

CFb presence and collagen secretion.  hMSC were cultured with MM for 3 d at 1% or 

20% oxygen.  hMSC conditioned media was collected and added to primary CFb at 

passage two or three under normoxic or hypoxic conditions.  MM was also added to a 

subset CFb as control media.  MTT and cell counts were used to quantify cell growth 

and proliferation while a picosirius red assay was used to quantify collagen secretion 

from CFb.  As shown in figures 3.16a and b,  after exposure to hMSC conditioned media 

in hypoxic culture for 24 hours, CFb demonstrated increased formazan formation (0.07 + 

0.02 vs. 0.13 + 0.01 AU; p<0.05) and increased cell number (2.7 + 0.3x105 vs. 4.5 + 

0.8x105 cells; p=0.06).   
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Figure 3.16) Increased CFb presence after exposure to hMSC conditioned media.  After 
24 hour exposure to hypoxia, CFb demonstrated heightened presence as indicated by 
A) formazan absorbance (MTT assay; 0.07 + 0.02 vs. 0.13 + 0.01 AU; *p<0.05; n=3) and 
B) cell number (2.7 + 0.3x105 vs. 4.5 + 0.8x105 cells; p=0.06, n=3).    
 

Additionally, we performed a picosirus red assay to assess collagen secretion 

from CFbs. Conditioned media from CFbs with hMSC condititoned media or MM at 

differing oxygen tensions was collected and dried onto a multiwell plate to allow for 

collagen absorption. Plates were stained with picosirius red dye, washed and 

absorbance values measured with a spectrophotometer.  hMSC conditioned media was 

also used in this process to subtract any background collagen secreted into hMSC 

conditioned media by hMSC.  Originally we found that there was no change in the 

amount of collagen in the conditioned media taken from CFbs under hypoxia.  

Considering, however, that more CFbs exist in the wells after exposure to hMSC 

conditioned media we normalized absorbance values obtained from the picosirius red 

assay to those obtained from the MTT assay.  This normalization gives a relative value 

for collagen secretion based on cell presence.  As shown in figure 3.17 this correction 

reveals attenuated collagen secretion from CFb exposed to hMSC conditioned media 

under hypoxia (0.45 + 0.12 (n=6) vs. 0.14 + 0.06 (n=4) AU; p=0.08). 
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Figure 3.17) Attenuated collagen secretion from CFb exposed to hMSC conditioned 
media.  Upon exposure to hMSC conditioned media a statistically non-significant 
reduction in collagen secretion was observed (0.45 + 0.12 (n=6) vs. 0.14 + 0.06 (n=4) 
AU; p=0.08).  Picosirius red absorbance was normalized to MTT absorbance to account 
for differences in CFb presence as shown in figure 3.16.   
 
 
3.4 DISCUSSION 

Reconstituting infarcted tissue with cells capable of performing the functions of 

the heart or providing beneficial trophic factors for native cells are attractive solutions for 

myocardial repair[31].  In order to reconstitute myocardium, a large number of cells will 

need to be delivered efficiently.  In this study, we tested the feasibility of a tissue 

engineered approach to stem cell delivery by delivering hMSC embedded in a 

biodegradable collagen matrix to the site of an infarct.  Using this approach, we were 

able to achieve high levels of cell engraftment and show improvements in post-infarct 

remodeling, despite the relatively modest number of cells initially delivered.    

Several tissue engineering approaches have been undertaken for cardiac cell 

replacement therapy[6, 14, 32-37].  These include the use of biomaterial-based cellular 

patches to restore myocardial function. Additional studies have attempted to optimize 

different cardiac constructs for myocardial repair in vitro[38-40].  Our approach, however, 

differs in several regards.  First, previous studies utilizing a type I collagen hydrogel were 

95



conducted in immunosuppressed models, making comparison with our results difficult. 

Second, to date, no study has investigated the use of hMSC embedded in a collagen 

matrix as a repair tool in vivo. Finally, we have attempted to quantify the extent of early 

cell engraftment using the cardiac patch as a delivery vehicle.      

This method of cell delivery leads to engraftment which exceeds reported rates 

for other delivery techniques. In a study comparing the relative efficiency of cell delivery 

by intramyocardial (IM), intracoronary (IC), and interstitial retrograde coronary venous 

(IRV) delivery, it was found that these injection procedures resulted in only modest 

engraftment[23].  Specifically, IM injection resulted in 11% engraftment while IC and IRV 

injections resulted in 2.6% and 3.2% engraftment, respectively. Similar studies 

performed by Freyman et al. [21] showed that 14 days after IC infusion, engraftment was 

6%, and this delivery procedure was also accompanied by reduced coronary blood flow 

and subsequent myocardial injury.  In our study, patch delivery achieved an initial cell 

engraftment of 23%. While this is an improvement over the other techniques, calculating 

the exact percentage of cells delivered is complicated by an unknown rate of hMSC 

proliferation and loss.  Nevertheless, these rates are likely to be similar between delivery 

techniques.  Possible explanations for this increased delivery include that exogenously 

applied cells remained fixed in proximity to the infarct area increasing the opportunities 

for engraftment. The technique had the further advantage of delivering cells in a 

relatively homogenous manner as compared to the next most efficacious delivery 

technique, direct injection.   

While our purpose in these experiments was to demonstrate the feasibility of the 

patch delivery system, applied MSCs showed favorable effects on post-infarct myocardial 

remodeling. This outcome is similar to that described by others using MSCs.  For example, 

Uemura et al. found that, with a similar number of applied bone marrow stem cells 

delivered via intraventricular injection, there was significant improvements in LV ejection 
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fraction and LV internal diameter at systole[29] Other measures of remodeling and 

function in their study, however, were unchanged including wall thickness and infarct size.  

Despite the improvements in echocardiographic measures of remodeling, we were 

not able to show significant changes in hemodynamic parameters at four weeks after 

patch placement.  This result is consistent with reports using a similar number of MSC [30, 

41].  At higher doses of five million or more cells, there is evidence of improvements in 

hemodynamic measures as well as structural remodeling, however [28, 42].  This 

observation reinforces the need for high engraftment rates to maximally affect myocardial 

remodeling.  Nevertheless, the fact that echocardiographic parameters showed 

improvements with only trends toward improvement in hemodynamic parameters in our 

experiments suggests that pressure measurements in rats are a relatively insensitive 

measure of myocardial function.   Alternatively, it is possible that hemodynamic 

improvements might have been noted if remodeling had been allowed to continue longer.  

Based on the experiments with non-viable patches, it seems likely that the 

improvement in remodeling seen was mediated by the applied cells rather than some 

effect of the biodegradable matrix.  Despite this conclusion, it is possible that future 

permutations with different matrices or different configurations of the same matrix will 

allow improvements in the results with the patch approach.  For example, Gaballa et al. 

found that acellular 3-D collagen foam scaffolds can reduce cardiac remodeling and 

induce angiogenesis,[43] reporting that these scaffolds can lead to reduced LV dilation 

and scar area.   

While the mechanism of any benefit of MSC application in humans is likely multi-

factorial, our experiments imply that favorable remodeling can be seen in the absence of 

long-term cell engraftment. Probably related to the xenograft nature of our experiments 

and the application of cells into immuno-competent animals, we observed no retained 

hMSC four weeks after patch application.  Our results are similar to those of Leor et 
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al.[44] where the injection of activated human macrophages into immuno-competent 

male Sprague-Dawley rats resulted in improved myocardial healing and function.  In 

these experiments, human macrophages survived only 4-7 days, but their presence 

during early healing led to significant improvements in LV dimensions and fractional 

shortening at five weeks.  Alternatively, we observed an increased number of cells in the 

infarct region that expressed α-SMA, presumably mostly myofibroblasts, since most of 

the additional cells were not associated with blood vessels. Myofibroblasts have 

previously been shown to assist in favorable post-infarct remodeling [45], and therefore, 

may represent a novel mechanism for the observed remodeling effects of the patch.   In 

any event, our experiments evaluating myofibroblast, neovessel formation and 

endogenous stem cell recruitment confirm that some improvement in myocardial repair 

with MSCs is mediated through a paracrine effect.   

The paracrine effects of hMSC were further investigated using an in vitro hypoxia 

model with NCM and CFb.  When NCM cultured with hMSC conditioned media are 

subjected to hypoxia for 24 hours there was no change in the bcl2:bax ratio compared to 

NCM cultured with MM.  This suggests hypoxia alone may not mediate significant 

apoptosis of NCM.  For instance Malhotra et al. have demonstrated a need for glucose 

inhibitors or glucose depleted media in addition to hypoxia to induce substantial 

apoptosis in NCM[46].  Although no apoptosis of NCM was observed under hypoxia, we 

did observe a significant reduction in SCN5A transcripts with hypoxia.  This effect was 

further attenuated with the addition of hMSC conditioned media. A reduction in sodium 

channels has been correlated with arrhythmias[47, 48] and thus this data suggests the 

proarrhythmic potential of hMSC paracrine factors.  MSC transplantation into infarcted 

myocardium has not revealed increased arrhythmogenicity[49], however.    Regardless, 

the substantial change observed with addition of conditioned media suggests hMSC can 

effect NCM via paracrine mechanisms.   
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CFbs were also used in an in vitro hypoxia model to investigate the effect of 

hMSC conditioned media on CFbs presence and collagen secretion.  CFbs exposed to 

hMSC conditioned media exhibited increased presence after exposure to hypoxia and 

decreased collagen secretion. Similar results have also shown increased CFbs presence 

after culture with MSC conditioned media[50].  Collagen synthesis remained constant in 

studies by Li et al.[50] and Ohnishi et al.[51], however.  Notably, the MSC source was 

different in these two studies versus our study and collagen expression was measured 

using RT-PCR.  Thus, transcript levels may not correlate well with secreted protein 

levels.  This in vitro data set also follows trends seen in our in vivo results.  For instance, 

there are correlations for increased myofibroblast presence.  Although there is in 

increase in myofibroblasts there is no change in fibrosis, suggesting fibroblasts are 

secreting less collagen. A similar trend was observed in vitro. This data as well as the in 

vivo data highlight possible paracrine mechanisms that may act to repair injured heart 

after cell therapy.    

In conclusion, these experiments suggest that it is possible to deliver progenitor 

cells to injured myocardium using a collagen hydrogel.  Moreover, this approach appears 

to result in higher initial engraftment rates than conventional approaches.  Refinements 

of this approach, such as using matrices with desirable effects on cell differentiation or 

maintenance, may serve to enhance any benefits gained by cellular cardiomyoplasty. 

 

3.5 LIMITATIONS and RECOMMENDATIONS 

 This proof of concept study details the use of TE constructs for the delivery of 

hMSC to infarcted myocardium.  Application of cardiac patches resulted in high 

engraftment and prevention of adverse remodeling.  There are several limitations to this 

study, however.  For instance, it was noted that the culture of hMSC in collagen patches 

led to reduced potency and cellularity.  This response may indicate that cells are 
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exposed to high stresses that modulate their function.  This could be due a number of 

possibilities including cell crowding, mechanical strain or increased oxidative stress 

within the patch.  Unfortunately, our does not directly support any one of these 

possibilities.  Future studies should include investigations into stem cell function within 

collagen patches and the mechanisms for any observed modulations.  Additionally, 

although our in vivo studies clearly demonstrate improved myocardial remodeling, it is 

unclear whether this effect is mediated by cell presence or via a possible immune 

response.  The immunocompetent model used in this study has the capacity to elicit an 

immune response (to the xenograft).  The presence of a strong immune response may 

also aid in the repair of infarcted myocardium.  This model also limits the extent of 

engraftment over long periods.  Therefore, use of an immunocompromised model may 

help to circumvent these limitations allowing for long term culture, uninhibited by a 

detrimental host response. 
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Chapter 4 
 

Modulation of Human Mesenchymal Stem Cell Function in Collagen Patches 
 
 
 
4.1 INTRODUCTION 
 
 Tissue engineering (TE) encompasses the combination of living cells with 

biological or synthetic scaffolds.  Several attempts at engineering blood vessels, heart 

valves, heart tissue, bone, skin, ligament and nerve tissue have been undertaken 

recently and show promise as therapeutic substitutes [1-6].  In the field of cellular 

cardiomyoplasty, several cell types have been delivered to the myocardium, yet few cells 

actually engraft using conventional delivery methods such as direct or IV injection [7, 8].  

To address this problem, we have developed a TE approach (combination of cells and 

matrix) to locally and homogenously deliver cells to an infarct.  We have selected 

collagen as the bioscaffold because it is easily available and relatively non-

immunogenic.  Its composition can be modified to vary how rapidly it is reabsorbed in 

vivo and to vary its elastic modulus. Collagen is relatively strong but flexible, and it 

contains signaling sequences for cells that are seeded into it; thus adhesion-dependent 

cell types are capable of attaching to and remodeling this fibrous protein. Adult stem 

cells such as hMSCs are attractive for cellular cardiomyoplasty because they are 

relatively easy to obtain and maintain in culture.  In general, MSCs which engraft into 

infarcted heart improve global cardiac measures [9-11].   

 With conventional methods of delivery, cells grown as a monolayer are removed 

from culture, resuspended in an aqueous vehicle and injected into the host.  With a TE 

approach, cell delivery is achieved by applying a cellularized collagen patch to the 

epicardial surface of the heart.  Because these cells are cultured in a different 

configuration (i.e. a monolayer vs. in three dimensions in collagen), it is expected that 

the phenotype and function of cells in collagen constructs will be affected.   We 
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hypothesize that culture of hMSC within collagen gels will modulate cellular viability, 

proliferation, differentiation and secretory profiles compared to cells cultured as 

monolayers. Such changes in cell function can lead to downstream consequences that 

may promote or attenuate potential reparative mechanisms involved in cellular 

cardiomyoplasty.  

 

4.2 MATERIALS and METHODS 

4.2.1 Cell Culture 

CD34 negative female hMSC obtained from Lonza (Wakersville, Maryland) were 

cultured in complete medium consisting of Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% MSC qualified serum, L-glutamine and penicillin/streptomycin at 37oC in 

5% CO2. Human cardiac microvascular endothelial cells (hMVEC-C) were cultured in 

EGM-2V medium (Lonza; Wakersville, Maryland) containing 5% FBS at 37oC in 5% CO2.   

 

4.2.2 Formation of Cell Seeded Collagen Patches 

hMSC (female) expanded to P3 – P6 were embedded into a rat tail type I 

collagen matrix to form cardiac patches.  To produce cardiac patches for progenitor cell 

delivery, 0.2 million hMSCs were mixed in a solution of rat tail type I collagen, 5x DMEM 

and 10% fetal bovine serum such that the final collagen concentration was 2 mg/mL.  

The solution was placed in individual wells of a non-tissue culture-treated 48-well plate in 

order to create a patch that was between 0.3 – 0.7 cm in diameter. Patches were 

cultured at 37oC in 5% CO2 for 1-7 d before usage. 

 

4.2.3 Measurement of Patch Compaction 

Compaction of hMSC patches was determined by measuring the change in 

volume of the patch over 7 d, using a water displacement strategy. Patches were 
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removed from culture dishes and washed several times to remove medium/serum using 

PBS. Afterwards, patches were placed in a 10 mL volumetric flask containing 10 mL of 

serum-free DMEM. The location of the initial volume was indicated using the “10 mL” 

marking on the side of the flask. The change in volume was measured after submersing 

patches in DMEM and was obtained using a micro-volume syringe.  DMEM was 

removed from the flask until the volume reached the initial location as indicated by the 

“10 mL” marking.  The volume removed after submersion was recorded as the volume of 

the patches at 0, 1 and 3 d.   

 

4.2.4 Viability Assays 

To assess cell viability within the construct, patches containing hMSC were 

digested in type I collagenase (500 U/mL) diluted in DMEM for 30 minutes at 37oC with 

intermittent mixing.  Each patch was submerged in 2 mL of the collagenase solution and 

placed into at 37oC water bath.  The solution was triturated every 5 minutes to assist in 

the digestion of the construct.  At the end of the incubation period, collagenase activity 

was inhibited by the addition of 500 μL of 100% FBS and 8 mL of complete hMSC 

medium (see section 4.2.1). Viability was measured using a 1:10 dilution of cell 

suspension to trypan blue.  Counts were made using a hemocytometer on day three. 

Total cell number was counted in addition to the total number of live cells.  Viability was 

recorded as (the number of live cells) / (the number of total cells).  Viability of stem cells 

cultured on treated plastic was also determined using the same counting procedure as 

above.  Cells were removed from culture dishes using 0.25% Trypsin/EDTA.   

 

4.2.5 Cellularity 

 DNA within hMSC cardiac patches was used as an index of cellularity.  

Constructs were digested in a mild detergent with proteinase K for 1-2 hours at 55oC and 
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DNA was isolated and purified using a DNeasy kit (Qiagen; Valencia, CA).  The amount 

of DNA was quantified by incubating DNA with PicoGreen reagent (Molecular Probes; 

Eugene, Oregon) for five minutes at room temperature and analyzed with a fluorescent 

plate reader at an excitation of 480 nm and emission of 520 nm.  RFU values were 

compared with a standard curve and DNA concentrations were calculated at 1 and 3 d 

after patch formation.   

 

4.2.6 Proliferation 

Proliferation was determined by measuring the incorporation of 5-ethynyl-2'-

deoxyuridine (EdU); a nucleoside analog to thymidine, which is incorporated into DNA 

during synthesis. Cellularized constructs or cells cultured as a monolayer were pulsed 

with 10 mM EdU (Invitrogen; Carlsbad, CA) for 72 hours after their initial formation.  

Afterwards constructs were washed in PBS and digested using collagenase to isolate 

cells as described above (4.2.4).  Next, cells were washed using a 1% bovine serum 

albumin (BSA)/PBS solution and then fixed using the Click-iT fixative (invitrogen; 

Carlsbad, CA) for 15 minutes at room temperature.  Cells were permeabilized with Triton 

X-100 and then stained using the Click-iT cocktail mixture for 30 minutes at room 

temperature.  Afterwards, cells were washed with 1% BSA/PBS and used for flow 

cytometry.  To simplify analysis hMSC were gated using an unstained sample (no 

antibody) on a forward scatter vs. side scatter dot plot.  This procedure helped to remove 

excess debris.  Next, a positive control using hMSC cultured on treated plastic was run 

to determine the proper levels for positive signal.  Samples were analyzed for positive 

fluorescein isothiocyanate (FITC) signal using the histogram option of the BD FACS Diva 

software package (BD Biosciences; San Jose, CA). Positive signal was compared with 

the appropriate isotype controls, which allowed for accurate background subtraction. 
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Analysis of data was performed using FCS Express 3.0 software (De Novo Software; 

Los Angles, CA) and the histogram subtraction function. 

 

4.2.7 Assessment of Cell Differentiation 

4.2.7.1 Flow Cytometry 

Differentiation of hMSC within collagen patches was measured by monitoring the 

expression of markers for stem cell potency over several days.  hMSC were isolated 

from the patch via collagenase treatment, stained and analyzed for the expression of 

CD105 and CD73 by flow cytometry.    After cells were isolated from the patch, they 

were fixed using 4% paraformaldehyde (PFA) for 15 minutes on ice.  Next, cells were 

stained with the appropriate primary antibodies for 30 minutes on ice.  If necessary, 

fluorescent conjugated secondary antibodies were added for 25 minutes on ice (Santa 

Cruz Biotechnology; Santa Cruz, CA).  Cells were washed in a 0.3% BSA/PBS solution 

and analyzed via flow cytometry as described above (4.2.5).   

4.2.7.2 Histology 

 Differentiation of hMSC toward cardiac lineages was further assessed using 

immunohistochemistry (IHC) and fluorescence or confocal microscopy.  hMSC were 

cultured on glass slides coated with 0.1% gelatin until 80-90% confluency.  Culture 

medium was removed, and the cells were fixed and permeabilized using 4% PFA and 

0.1% Triton X-100, respectively.  Cells were blocked with 3% BSA. Next, cells were 

stained for connexin 43 or troponin T (diluted in 0.3% BSA in PBS) followed by staining 

with appropriate fluorescent conjugated secondary antibodies (diluted in 5% goat 

serum), a phallodin F-actin stain (Molecular Probes; Eugene, Oregon) and a nuclear 

DAPI (4',6-diamidino-2-phenylindole) stain (Sigma; St. Louis, MO).  Cells were mounted 

using an antifade mounting medium and viewed under a confocal microscope (Carl 

Zeiss; Thornwood, NY).  Additionally, patches at 3 d and 7 d were removed from culture 
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and washed in PBS to remove excess culture medium. Sections were fixed in 4% PFA 

for 24 hours then transferred into 70% ethanol until paraffin processing.  The patches 

were embedded in paraffin wax and cut to 5 μm sections using a microtome and dried 

onto a glass slide at 37oC for 24 hours.  To stain patches, sections were rehydrated by 

washing in two changes each of the following: xylene (to remove paraffin wax),100% 

ethanol, 95% ethanol, 70% ethanol and deionized water.  Afterwards sections were 

pretreated with citrate buffer (10 mM citric acid in water; pH 6.0, microwaved on high) for 

5 minutes for antigen retrieval. Next sections were blocked with 5% goat serum for one 

hour and incubated with primary antibodies (connexin 43 and Troponin T; diluted in 0.3% 

BSA in PBS) for two hours.  Sections were washed using a 0.45% fish skin gelatin 

solution in PBS and the appropriate fluorescent conjugated secondary antibodies were 

added for one hour.  DAPI was used to stain cell nuclei.  Afterwards, sections were 

mounted using an antifade mounting medium and viewed under a fluorescence and 

confocal microscope (Nikon; Melville, NY).   

 

4.2.8 Antibody Arrays and Protein ELISAs 

To determine possible angiogenic growth factors secreted by hMSC, an antibody 

array was performed on four sets of conditioned media: 

 

Room Air (20% Oxygen; also defined as normoxia for our experiments): 

1) hMSC monolayer (hN), 2) hMSC patch (hNP) 

Hypoxia (1% Oxygen): 

3) hMSC monolayer (hH), 4) hMSC patch (hHP)  

 

Conditioned medium was collected from each group after 24 hours with either room air 

or 1% O2 and allowed to incubate with an angiogenesis specific antibody array 
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(Panomics; Fremont, CA) for two hours.  Conditioned medium not immediately used was 

frozen at -80oC.  Unused medium was used and discarded after a single freeze/thaw 

cycle. The antibody array was washed, labeled and visualized using the ECL plus 

chemiluminescence kit (Amersham Biosciences, Piscatway, NJ).  Exposure times 

ranged from 15 seconds to two minutes. Several individual angiogenic factors were 

further assessed using an enzyme-linked immunosorbent assay (ELISA).  In particular, 

vascular endothelial growth factor (VEGF), fibroblast growth factor-acidic (FGF-1), 

angiogenin (ANG) and interleukin-8 (IL-8) ELISAs were performed according to 

manufacturer’s instructions (R&D Systems; Minneapolis, MN).  Conditioned medium was 

diluted 1:1 in calibrator diluent and placed into the wells of a 96 well plate containing 

adsorbed antibodies to one of the four growth factors described above.  After an 

extended incubation at room temperature, the wells were washed several times with 

wash buffer.  Growth factor conjugate was added for one hour and washed several times 

thereafter.  Next, substrate solution was added, which led to the development of a color 

that was proportional to the amount of growth factor in each conditioned medium group.  

The resulting colored solution was collected and the absorbance was 

spectrophotometrically measured at 450 nm with background subtraction at 570 nm.  

Absorbance values were compared with a standard curve and absolute concentrations 

were determined from this standard curve. The ELISA standard curve was adjusted 

based on the signal (noise) levels recorded in null samples. 

 

4.2.9 Real Time RT-PCR 

RNA was isolated from cell monolayers or cellularized constructs (48 hours after 

initial seeding) using a commercial RNeasy kit (Qiagen; Valencia, CA). RNA 

concentration and purity were measured using a spectrophotometer (abs: 260 nm, 280 

nm and 230 nm). Afterwards, 1 μg of RNA was converted into cDNA using an Applied 
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Biosystems cDNA synthesis kit (Applied Biosystems, Foster City, CA).  The reaction 

mixture was incubated for 5 minutes at 25oC, 30 minutes at 42oC and lastly, 5 minutes at 

85oC.  Real Time PCR was run using a total of 5 ng template cDNA for each sample.  

For each run, a negative control (water only, no template) was analyzed simultaneously, 

and each sample was run in duplicate using ABI FAST SYBR green supermix (Applied 

Biosystems;) for multiple genes including: ANG, IL-8, VEGF, FGF-1, ribosomal protein 

13A (RPL13A), β-Actin and ribosomal protein 18S (R18S). Primer assays for each 

primer set were obtained from Qiagen. The fast PCR protocol consisted of an initial 

denaturing step at 95oC for 4 minutes.  Next, samples were run at 94oC (denaturation) 

for 15 seconds, 60oC (annealing) for 30 seconds and 72oC (extension) for 30 seconds 

for 35 cycles.  Relative RNA abundance was calculated using the following equation: 2-

ΔΔcT, where the first delta represents threshold subtraction (“delta 1”) from the 

endogenous control and the second delta represents the division of “delta 1” by an 

internal control.   

 

4.2.10 Hypoxia Model and Endothelial Cell Function 

To evaluate paracrine functionality, hMSC were cultured in room air (~20% O2) or 

under hypoxic conditions (1% O2) for one day (Figure 4.1) as a patch or monolayer in 

DMEM supplemented with L-glutamine and penicillin/streptomycin (Maintenance Media; 

MM). Afterwards the conditioned medium was removed from the cells or patches, spun 

at 5000 rpm to remove debris and placed on hMVEC-C for two days in 1% O2.  

Conditioned medium that was not immediately used was frozen at -80oC.  Frozen 

medium was also used for experiments but would only be used after a single 

freeze/thaw cycle.  After a two day culture period conditioned medium was removed 

from hMVEC-C and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; 
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Sigma) reagent was added for three hours (Figure 4.1). Afterwards, the MTT reagent 

was removed, and a solution of 0.1 N hydrochloric acid (HCL) in anhydrous isopropyl 

alcohol was added to dissolve the formazan crystals.  The resulting colored solution was 

collected, and the absorbance was spectrophotometrically measured at 570 nm with 

background subtraction at 690 nm.  In addition, cell counts were performed to determine 

if cell number was affected after culture in conditioned media for 3 d in 1% O2.  hMVEC-

C were removed from treated tissue culture plastic using a 0.25% trypsin/EDTA solution.  

Complete EGM-2V medium was added after three minutes, and the cells were collected 

and centrifuged.  Afterwards, the cells were washed once with PBS and added to trypan 

blue at a 1:10 dilution.  Trypan exclusion was used to determine the total number of cells 

and viability. Viability was recorded as (the number of live cells) / (the number of total 

cells).  

A tube formation assay was performed to further assess the angiogenic potential 

of hMSC conditioned medium. hMVEC-C (15,000) were seeded onto Matrigel in a 96-

well plate in the presence of conditioned medium from all groups in a 1:1 ratio with 2% 

fetal bovine serum in MM for 22 hours under hypoxic conditions.  Images of the resultant 

tubes were collected with a digital camera, and the average length was manually 

determined (sample sizes from 50 to 70 tubes per group) using Image Pro Plus software 

(Media Cybernetics Inc; Bethesda, MD). 
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Figure 4.1) Schematic of experiments to test the paracrine effects of hMSCs.  In order to 
investigate the paracrine effect of hMSC conditioned medium on endothelial cells, a 
model was set up in which conditioned medium from hMSCs cultured in room air 
(normoxia) or hypoxia was removed and placed on viable endothelial cells.  After defined 
periods, the function of endothelial cells was analyzed. 
 
 
 
4.2.11 Animal Handling 

Male athymic nude rats obtained from Charles River (Wilmington, MA) were 

allowed to acclimate to housing conditions for at least one week before use. Rats were 

typically used for experiments between 8 and 12 weeks of age.  All animals received 

care in compliance with federal and institutional guidelines with approval from the 

Institutional Animal Care and Use Committee. 

 
 

4.2.12 Infarct Model and Patch Application 

Myocardial infarction (MI) was induced by permanent ligation of the left anterior 

descending (LAD) coronary artery in athymic nude male rats (200-300 g). Rats were 

anesthetized with 5% isoflurane in pure oxygen. Afterwards, rats were weighed and 

intubated for mechanical ventilation.  After endotracheal intubation and initiation of 

ventilation, isoflurane was reduced to the amount required to prevent the pedal reflex 

(1.5-2%).  The heart was exposed via a left thoracotomy, and the proximal LAD was 

ligated using 6-0 silk suture. The location of the ligation was placed at the intersection of 
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the left atrial appendage and pulmonary conus when the LAD was not clearly visible.  

Noticeable effects of ligation included a change in pallor of the left ventricle (LV), 

transient arrhythmias and an inflated left atrial appendage. Ten minutes after ligation, 

either patches were applied onto the anterior wall of the infarct site and secured with 

fibrin glue (Baxter; Deerfield, IL; Figure 3.3) or 250,000 – 400,000 hMSC suspended in 

25-40 mL saline were injected. This range of injected cells was used to account for cell 

loss due to leakage out of the injection site. Rats with induced infarction and without 

patch application or cell injection, with saline injection only, or with non-viable patches 

applied served as controls for the study. Additionally, a sham control, in which the 

pericardium was removed and suture was threaded around the LAD without ligation, was 

also used as a control.  Buprenorphine (0.1 mg/kg) was injected subcutaneously after 

surgery (and as necessary), and rats were allowed to recover under close supervision.  

This procedure was performed on a total of 62 rats, of which 15 died within two weeks 

postoperatively, presumably because of infarct complications.  Additionally, 22 rats were 

excluded because of insufficient infarct size. Therefore, a total of 25 rats were used in 

this in vivo study (Table 4.1).   

 

4.2.13 Echocardiography 

Transthoracic echocardiograms were performed on rats using a VisualSonics 

Vevo 770 ultrasound unit (VisualSonics, Toronto, Canada).  The VisualSonics RMV 716 

Scanhead with center frequency 17.5 MHz, frequency band 11.5–23.5 MHz, and focal 

length 17.5 mm was used for echo acquisition in rats. The animals were maintained 

lightly anesthetized during the procedure with 1.5% isoflurane delivered through a face 

mask at a rate of 3-4 L/min. The animals were kept warm on a heating pad, and the 

body temperature was continuously monitored using a rectal thermometer, maintaining it 

at between 35 and 37°C by adjusting the distance of a heating lamp. Under these 
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conditions, the animal’s heart rate could be maintained between 300-400 beats per 

minute. Two-dimensional and M-mode echocardiography were used to assess wall 

thickness, LV dimensions and fractional shortening. Images were obtained from the 

parasternal long axis, parasternal short axis at the mid-papillary level and apical 4-

chamber views. 

Baseline echocardiograms were acquired at 3 days post-MI with additional 

echocardiograms acquired at 4 weeks post-MI. The baseline post-MI echocardiograms 

allowed determination of the extent and location of infarction.  With nude rats, LAD 

ligation resulted in most animals developing anterolateral infarcts.  Isolated anterior 

infarction only occurred in one animal that survived surgery.   

 

4.2.14 Cardiac Hemodynamics 

Cardiac hemodynamics were measured after the final echocardiographic 

examination. Rats were anesthetized with 1% isoflurane, and a 1.4 or 2 F Millar Mikro-

Tip catheter (SPR-671, Millar Instruments, Houston, TX) was inserted into the right 

carotid artery and advanced into the left ventricle. Aortic and left ventricular (LV) 

pressures were recorded on a PowerLab system and analyzed using Chart v4.2.4 

software (ADinstruments, Colorado Springs, CO).   

 

 

 

 

 

 

 

 

116



Table 4.1) Animal accounting for in vivo model of myocardial infarction 

 # 
Surgeries 

# Dead 
within 24 

hr 

# Dead 
from 24 hr 

to 14 d 

# Excluded 
Due to 

Baseline 
ECHO 

Mass at 
Initial 

Surgery 
(g) 

Mass at 
4wk Hemo 

(g) 

# Used in 
4wk ECHO 

Studies 

# Used in 4 
wk Hemo 
Studies 

Sham 6 0 0 1 209 + 12 -- 5 2 

MI control 14 1 0 8 209 + 8 277 + 7 5 5 

Saline Inj 15 5 0 7 233 + 9 297 + 18 3 3 

Non-viable 
Patch 

11 4 0 5 216 + 8 249 + 1 2 2 

hMSC Inj 7 3 0 0 210 + 7 267 + 8 4 4 

hMSC Patch 9 0 2 1 215 + 7 273 + 7 5 5 

         

MI – Myocardial infarction; hMSC – human mesenchymal stem cells; ECHO – Echocardiography; 
Hemo – Hemodynamics; wk – week 
 

4.2.15 Myocardial Histology 

After the hemodynamic studies, hearts were excised under anesthesia, perfused 

with 4% paraformaldehyde and then cryo-protected by immersion in 30% sucrose for 48-

96 hours.  Isopentane cooled in liquid nitrogen was used to freeze hearts immersed in 

optimal cutting temperature (OCT) medium.  Sections were cut to 7 μm using a 

commercial cyrostat and used for either isolectin B4 or Masson’s Trichrome staining. To 

calculate infarct size, at least four Masson’s Trichrome stained sections at various levels 

along the long axis were analyzed for collagen deposition.  The midline technique for 

infarct size determine was used as described previously [12].  Briefly, the LV midline was 

drawn at the center of the anterior or lateral walls along the length of the infarct.  This 

circumference was divided by the total midline circumference of the heart to determine 

infarct size.    Additionally, frozen heart sections were air dried, and OCT was removed 

by rinsing slides in PBS.  Isolectin B4 (Invitrogen; Carlsbad, CA) was diluted 1:1000 in 

Tris buffered saline with 0.1% Tween-20.  This solution was added to sections for 30 

minutes at 37oC.  Then, sections were washed in PBS and counterstained with DAPI for 

5 minutes.  Sections were rinsed in dH2O and mounted with an antifade aqueous 
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mounting medium (Vector Labs; Burlingame, CA). Isolectin is used to stain endothelial 

cells and thus highlighted neovessel formation.  Vessel density was calculated as the 

number of vessels (with a clear lumen and not associated with intact myocardium) per 

field of view (FOV).  At least six FOVs were taken for each frozen section along the 

anterior, lateral and posterior portions of the LV.  

 

4.2.16 Statistical Analysis and Interpretation 

 A Student’s t-test was used to determine changes in hMSC cellularity when 

cultured in collagen patches.  A two-way analysis of variance (ANOVA) was performed 

to interpret the response of hypoxic versus normoxic (20% O2) and of patch versus 

monolayer in in vitro assays (proliferation, differentiation, viability and protein/mRNA 

abundance).  A post-hoc Bonferroni test was used for comparison of individual results.  

Additionally, a one-way ANOVA with appropriate post-hoc testing (Bonferroni) was used 

for the interpretation of in vivo, endothelial cell and histological data sets.  A p-value less 

than 0.05 indicated statistical significance. 

 

 
4.3 RESULTS 

4.3.1 Culture within Collagen Patches Modulates Proliferation, Differentiation and 

Viability of hMSC. 

To determine the effects of cell culture within collagen patches on hMSC 

function, we assessed cell proliferation, differentiation, viability and secretion profiles. 

Earlier data reported in Chapter 3 noted a loss of cellularity when hMSCs were grown in 

patches.  In order to address this, we lowered the cell number in the patch to two 

hundred thousand cells per patch. Two hundred thousand cells was chosen based on 

previous reports using cellularized collagen systems for tissue engineering purposes [13, 
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14] and by using the mass ratio of mice to humans to correct the number of cells given 

to humans in recent clinical studies of cellular cardiomyoplasty [15-17].   Upon lowering 

the hMSC number to 0.2 million cells per patch, we noticed slightly slower compaction 

but no reduced cellularity over 3 d in culture (Figure 4.2). 

 

 

 

 

 

Figure 4.2) Initial cell seeding density influences cardiac patch cellularity and 
compaction.  The seeding density of cardiac patches was lowered from 1 million to 0.2 
million cells to prevent excessive cell loss while in culture. A) When 1 million cells were 
cultured in collagen patches, we saw a significant drop in cellularity over 3 d (Day 0: 4.5 
+ 1.4 μg vs. Day 3: 2.3 + 0.2 μg; p < 0.05)  B) Cardiac patches seeded with 0.2 million 
cells showed no decrease in cellularity over 3 d (Day 0: 0.39 + 0.04 μg vs. 0.46 + 0.05 
μg; p = 0.3). C) Cardiac patches with 1 million or 0.2 million showed little differences in 
compaction over 3 d.    
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All experiments described from this point use a seeding density of 0.2 million hMSC per 

patch.   

Proliferation was quantified using a pulse-chase with EdU substrate (Figure 4.3).  

EdU incorporation into monolayer cells or cells removed from within collagen patches 

was measured by flow cytometry.  hMSC demonstrated attenuated proliferation upon 

culture within collagen patches.  hMSC showed a 86% reduction (50.9 + 6.2% EdU+ vs. 

7 + 0.9% EdU+; p < 0.001) compared to culture on treated plastic.    

 

 

Figure 4.3) Culture of hMSC in collagen patches attenuates proliferation.  A) Analysis by 
flow cytometry of EdU incorporation was used to determine the proliferative capacity of 
stem/progenitor cells cultured with patches compared to monolayers. The black 
histogram represents the isotype or negative control while the red histogram represents 
those cells stained for the EdU.  Peaks beyond the isotype control, correspond to cells 
with positive EdU presence.  B) hMSC (50.9 + 6.2% EdU+ vs. 7 + 0.9% EdU+; *p < 
0.001), demonstrated reduced EdU incorporation and thus proliferation after culture in 
collagen patches (hMSC: n = 5).   
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Stem cell potency for cells cultured as monolayers or within collagen patches 

was determined by monitoring several antigens within the progenitor/stem cell 

populations.  CD105 and CD73 were used to determine the extent of differentiation over 

7 d. There was no loss of potency in that time period for hMSCs as measured by CD105 

(Monolayer: 85.6 + 5.5% Expression vs. Patch 3 d: 76.1 + 8.3% Expression vs. Patch 7 

d: 73.1 + 12% Expression; p > 0.05) and CD73 (Monolayer: 82.9 + 0.4% Expression vs. 

Patch 3 d: 75.4 + 4.9% Expression vs. Patch 7 d: 71.1 + 9.7% Expression; p > 0.05).   

To determine whether culture of hMSC in collagen patches promoted cardiac cell 

differentiation, we performed IHC on cardiac patch sections to probe for connexin43 

(Cx43) and cardiac troponin T (TnT).  Results reveal the presence of Cx43 localized 

within the cytosolic space (and near the nucleus) of cultured hMSC monolayers.  This 

pattern of staining was maintained when hMSC were cultured in collagen patches, 

although the intensity of staining was less pronounced, suggesting that there was no 

increase in cardiac differentiation in culture.  TnT was absent in hMSC monolayers and 

patches, confirming the maintenance of pluripotency.   
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Figure 4.4) Minimal loss of cell potency after culture in collagen patches.  CD73 and 
CD105 were used to monitor stem cell potency over 7 d in culture as monolayers or 
patches for hMSCs. hMSCs showed minimal to no change in A) CD73 (hMSC: 
monolayer: 82.9 + 0.4% vs. patch 3 d: 75.4 + 4.9% vs. patch 7 d: 71.1 + 9.7%; p > 0.05) 
and B) CD105 (hMSC: monolayer: 85.6 + 5.5% vs. patch 3 d: 76.1 + 8.3% vs. patch 7 d: 
73.1 + 12%; p > 0.05) expression over 7 d.  Additionally, culture in collagen patches did 
not upregulate cardiac proteins connexin43 (Cx43; C&D) or troponin T (TnT; E&F) in 
hMSCs  (Green – Cx43 in figure C, D and TnT in figure E, F; Red – Phallodin F-Actin; 
Blue – DAPI nuclear stain). Measure bars correspond to 10 μm.  
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  Despite a maintenance of potency and little evidence of differentiation, there was 

a small decrease in cell viability in patches as compared to monolayers. To determine 

cell viability within collagen patches, hMSC were isolated using a collagenase solution 

after three days in culture.  hMSC maintained viability above 80% after culture in 

collagen patches (Figure 4.6a and b).  There was, however, a small but significant loss 

of viability of hMSC cultured in collagen patches when compared to monolayers 

(Monolayer: 92.8 + 2% vs. Patch: 81 + 3%; p < 0.05).   

 

 

 
Figure 4.5) Viability of hMSC in collagen patches. Viability of hMSC was determined with 
a trypan exclusion assay.  hMSCs culture in collagen patches resulted in a modest but 
statistically significant reduction in viability over 3 d (monolayer: 92.8 + 2% vs. patch: 81 
+ 3%; *p < 0.05; n =5).   
 

  

4.3.2 Changes in Secretory Profiles of hMSC after Culture in Collagen Patches 

Several stem cell populations are known to secrete beneficial paracrine factors 

which may play an important role in circumventing maladaptive pathologies.  Paracrine 

pathways have also been suggested in potential reparative mechanisms in cellular 

cardiomyoplasty.  The tissue engineered delivery vehicle used in this study has already 
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shown a propensity to alter cellular function and thus may also alter the secretion profile 

of hMSC.  Therefore, in addition to assessing changes in cellular properties, we also 

assessed any changes in the secretory profiles of hMSC in collagen patches versus 

cultured monolayers.  Conditioned medium from hMSC cultured as monolayers or within 

collagen patches in room air or 1% oxygen was collected and analyzed for various 

angiogenic factors (groups described in section 4.2.9). Additionally, RNA from hMSC 

was isolated from monolayers or within collagen patches and analyzed for various 

transcripts.  Hypoxia was chosen as a model to simulate expected low oxygen 

conditions within ischemic tissue (such as infarcted cardiac tissue).  Such a model has 

been used in several studies investigating cell function in vitro.  

All hMSC conditioned media groups showed heightened protein concentrations 

versus a MM control (figure 4.6c).  Additionally, conditioned media from all groups was 

placed on antibody arrays to detect the presence of pro- and anti-angiogenic factors.  As 

shown in figure 4.6a, notable differences within groups hN, hH, hNP and hHP include 

the absence of IL-8 in monolayers (groups hN and hH), reduced presence of ANG, IL-6 

and FGF-1in patch samples (group hNP and hHP) and reduced presence of VEGF in 

normoxic monolayers (group hN).   

We chose four factors depicted in figure 4.6a to quantify to verify the qualitative 

observations. An ELISA for VEGF, FGF-1, IL-8 and ANG was performed on conditioned 

media from all groups.  A two-way ANOVA was also used to determine if ambient 

oxygen tension or culture condition (monolayer vs. patch) had a role in the regulation of 

secreted growth factor protein abundance. Post-hoc test were performed to compare 

monolayer versus patch.  As shown in figure 4.6d there was significantly lower 

abundance of ANG found in the conditioned medium of hMSC cultured in collagen 

patches at both room air and hypoxia.  The majority of the variance (69.9%; p < 0.0003) 

resulted from culture in collagen patches, indicating that hMSC ANG secretion was 
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significantly affected by culture in collagen patches.  Post-hoc test revealed significant 

downregulation of ANG abundance by the patch in room air and in hypoxic conditions (p 

< 0.05). Ambient oxygen tension attributed little to the total variance (13.5%; p < 0.05). 

The abundance of FGF-1 found in the conditioned medium of hMSC was unchanged 

with culture in collagen patches versus monolayers (Figure 4.6e).  Analysis of VEGF 

abundance (Figure 4.6f) in the conditioned medium of hMSC monolayers and collagen 

patches revealed a significant increase in VEGF protein abundance in hypoxic patches 

(29.6% of variance due to ambient oxygen tension; p < 0.05). Post-hoc testing confirmed 

this result (p < 0.05) and revealed a significant difference between hypoxic patches and 

monolayers.  Lastly, there was a significant increase in IL-8 abundance attributed to 

culture in collagen patches (68.7% of variance was due to culture in collagen patches; p 

< 0.01).  Post-hoc testing revealed a significant increase in IL-8 abundance in hypoxic 

patch conditioned medium compared to hypoxic monolayers.  Ambient oxygen tension 

attributed little to total variance (3.1%; p = 0.33). 
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Figure 4.6) hMSC secretion profile.  A and B) hMSC cultured as monolayers or within 
patches and exposed to normoxia (20% O2) or hypoxia (1% O2) display differential 
secretion profiles of angiogenic factors. C) There was a general increase in protein 
content in conditioned media from normoxic monolayers (hN; 0.74 + 0.02 mg/mL), 
hypoxic monolayers (hH; 0.71 + 0.02 mg/mL), normoxic patches (hNP; 0.67 + 0.02 
mg/mL) and hypoxic patches (hHP; 0.67 + 0.03 mg/mL) versus a maintenance media 
control (MM; 0.57 + 0.01 mg/mL; *p < 0.001).  Specific analysis of pro-angiogenic factors 
revealed differential expressions patterns based on hMSC culture in monolayers versus 
collagen patches for D) ANG (Normoxia: 125.6 + 12.2 vs. 48.4 + 7.5 pg/mL; *p < 0.05 
and Hypoxia: 180.6 + 25.9 vs. 77 + 7.4 pg/mL; *p < 0.05), E) FGF-1 (no statistical 
significance was observed; Normoxia: 63.9 + 17.1 vs. 48.9 + 7.7 pg/mL and Hypoxia: 86 
+ 22.3 vs. 81.5 + 28.3 pg/mL), F) VEGF  (Normoxia: 1046.9 + 333.3 vs. 981.6 + 56.1 
pg/mL and Hypoxia: 1114.1 + 52.3 vs. 1904.8 + 129.2 pg/mL; *p < 0.05) and G) IL-8 
(Normoxia: 12.9 + 3.4 vs. 40 + 6.7 pg/mL and Hypoxia: 10.2 + 1.6 vs. 58.8 + 13.2 pg/mL; 
*p < 0.05); n = 3 for all groups.   
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To determine whether protein expression was regulated at the transcription level 

real time RT-PCR was performed to provide relative quantification of growth factor 

mRNA abundance.  Two-way ANOVA of hMSC cultured as monolayers or within cardiac 

patches at different oxygen tensions revealed that IL-8, FGF-1, and VEGF mRNA 

abundance were significantly affected by culture in collagen patches. VEGF mRNA 

abundance was also significantly affected by ambient oxygen tension (1% O2).   Post-

hoc tests revealed increased mRNA abundance of IL-8 in patches compared to 

monolayers in room air (58.9 + 9.5 vs. 1 + 0.1; p < 0.01) and increase mRNA abundance 

of FGF-1 and VEGF in patches compared to monolayers at 1% O2 (FGF-1: (hHP) 9.81 + 

2.6 vs. (hH) 0.49 + 0.02; VEGF: (hHP) 14.7 + 3.54 vs. (hH) 1.14 + 0.08; p < 0.05). There 

were no significant changes in ANG mRNA abundance when exposed to different 

conditions. Overall, the statistical analysis for both protein and mRNA abundance 

demonstrate that most of the changes in secretion profile were the result of culture within 

collagen patches and not ambient oxygen tension. These changes typically led to 

increased growth factor expression. Subsequent in vitro studies were performed using 

one oxygen tension (1% O2) with condition media from hypoxic samples only.  
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Figure 4.7) Angiogenic factor gene expression in hMSC.  mRNA abundance was 
measure with real time RT-PCR.  Results indicate differential mRNA regulatory patterns 
for A) ANG (no statistical significance was observed; Normoxia: 0.66 + 0.17 vs. 0.36 + 
0.004; and Hypoxia: 0.55 + 0.05 vs. 1.18 + 0.35), B) FGF-1 (Normoxia: 0.57 + 0.22 vs. 
3.19 + 0.1 and Hypoxia: 0.49 + 0.02 vs. 9.82 + 2.6; p < 0.01), C) VEGF  (Normoxia: 0.7 
+ 0.15 vs. 2.23 + 0.02 and Hypoxia: 1.14 + 0.08 vs. 14.7 + 3.54; *p < 0.01) and D) IL-8 
(Normoxia: 1.04 + 0.05 vs. 58.9 + 9.47; *p < 0.01 and Hypoxia: 1.06 + 0.08 vs. 28.59 + 
18.21) for hMSC cultured as monolayers versus within 3D collagen constructs (n = 3 
except ANG, FGF-1 and VEGF hNP and IL-8 hHP where n= 2).  
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4.3.3 hMSC Conditioned Media may Modulate Endothelial Cell Function 

Since growth in collagen seemed to affect secretion of pro-angiogenic factors 

secreted by hMSCs favorably, we investigated potential functional consequences by 

comparing conditioned media from hMSC cultured as monolayers or within collagen 

patches on endothelial cell growth/proliferation.  Conditioned media from hypoxic groups 

was placed on human cardiac microvascular endothelial cells (hMVEC-C) for 2 d.  

Afterwards MTT reagent was added for three hours and after formazan crystal formation, 

0.1 N hydrochloric acid in isopropyl alcohol was added. The resulting colored solution 

was collected and the absorbance was spectrophotometrically measured at 570 nm 

(with background subtraction at 690 nm). Additionally, hMVEC-C were removed from 

culture after 2 d with trypsin treatment, and a trypan blue exclusion assay was performed 

to determine cell number.  As shown in figure 4.8a, conditioned media from hypoxic 

hMSC groups had minimal effect on cell growth/proliferation compared to a MM control 

in all groups.  Divergent results were obtained using direct cell counts.  hMSC 

conditioned media from hypoxic patches increased the cell number of hMVEC-C 

compared to a MM control and hH conditioned media.   The difference between the two 

methods may have resulted from the difference in culture time after addition of 

conditioned media (MTT: 2 d; Cell count: 3 d). 
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Figure 4.8) hMSC conditioned media may support endothelial cell growth/proliferation. 
A) A MTT assay of endothelial cells exposed to conditioned medium from hypoxic 
monolayers (hH) and hypoxic patches (hHP) show no change in endothelial 
growth/proliferation compared to maintence media controls (MM: 1.0; hH: 1.17 + 0.08; 
hHP: 1.09 + 0.08).  B) On the other hand, cell counts resulted in more pronounced 
differences growth/proliferation.  Exposure of hMVEC-C to hHP conditioned media 
resulted in increased relative cell counts compared to both MM (1.97 + 0.35 vs. 1.0; *p < 
0.05) and hH exposure (1.97 + 0.35 vs. 1.03 + 0.14; *p < 0.05). n = 3 for all groups.   
 
 

Angiogenic effects of conditioned media were investigated using a tube formation 

assay.  Briefly, 15,000 hMVEC-C were seeded onto Matrigel in the presence of 

conditioned media and 2% fetal bovine serum for 22 hours.  Images of the resultant 

tubes were collected and the average length was manually determined using Image Pro 

Plus software.  In general, in the presence of hMSC conditioned media, tubes which 

formed were longer compared to a MM control (N = 1; Figure 4.9b and c).  There were 
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no obvious differences between monolayer and patch conditioned media on tube 

formation (Figure 4.9a).  

 

 
Figure 4.9) hMSC conditioned media may enhance endothelial cell tube formation 
properties.  Conditioned media from hypoxic hMSC cultured as monolayers or within 
patches resulted in longer tube formation compared to a MM control when exposed to 
endothelial cells cultured on Matrigel (MM: 96.8; hH: 128.7; hHP: 142.8; n = 1).  
 

4.3.4 hMSC patch application results in improved myocardial function compared 

to injected hMSC 

In Chapter 3, we assessed the hypothesis that a tissue engineered, cardiac 

patch could be transplanted directly onto an infarcted site for localized and uniform 

delivery of human mesenchymal stem cells (hMSC) [18].  In addition to demonstrating 

enhanced hMSC engraftment, we also used this “proof of concept” experiment to 

redesign future in vivo studies. This allowed us to optimize cell survival in order to 

adequately compare the effects of direct injection and cardiac patch delivery of hMSC to 

infarcted myocardium.  Strategies for optimization included lowering the seeding density 

of hMSC within cardiac patches and using a nude rat myocardial infarct model.  Initial 

131



analysis revealed no change in infarct size at four weeks amongst the different 

experimental groups (Figure 4.10). Additionally, there was successful induction of 

infarction in all groups compared to sham.  All groups suffered attenuated fractional 

shortening and adverse LV remodeling.   
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Figure 4.10) No change in infarct size with cardiac patch transplantation.  Infarct size 
was determined by measuring the infarct midline circumference of Masson’s Trichrome 
stained tissue sections.  Analysis revealed no change in infarct size 4 weeks after initial 
LAD ligation when comparing MI (37.1 + 1.4%) and saline injected controls , (34.4 + 
0.8%)  hearts treated with MSC injection (28.5 + 5.6%)  or hearts treated with MSC 
patches (33.9 + 1.1%)  MI – Myocardial infarction controls; Saline Inj – Saline injection; 
MSC Inj – Mesenchymal stem cell injection; MSC Patch – Mesenchymal stem cell patch. 
(n = 3 for all groups except saline inj where n = 2). 

 

 

 Baseline echocardiograms taken 3 d post infarction were compared with 

echocardiograms taken at four weeks post infarction. The extent of functional loss/gain 

and remodeling were calculated as a percent change over the duration of the 

experiment.  When cardiac patches were applied to infarcted heart, fractional shortening 

and infarct wall thickness were augmented in animals treated with patch versus MI 
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controls and NV patches (Table 4.2).  There were no statistical differences between 

groups in regards to left ventricular systolic and diastolic diameter (Table 4.2).   

 

Table 4.2 - Corrected echocardiographic measures after myocardial infarction 

ap < 0.05 vs. MI, bp < 0.05 vs. MI + NV Patch 

Corrected 
MI (n=5) Saline Inj 

(n=4) 
MI+NV Patch 
(n=2) 

MSC Inj 
(n=3) 

MI+ MSC 
Patch (n=4) 
 

FS (Δ%) -38 ± 19 -11 ± 15 -4 ± 15 -6 ± 3 11 ± 10a 

AWTh (Δ%) -97 ± 25 -87 ± 27 -80 ± 13 -62 ± 12 19 ± 12a,b 

LVIDs (Δ%) 19 ± 4 18 ± 4 14 ± 9 8 ± 6 6 ± 1 

LVIDd (Δ%) 14 ± 4 23 ± 3 15 ± 6 10 ± 5 11 ± 2 

 
MI: Myocardial Infarction 
NV: Non-viable 
MSC: Mesenchymal Stem Cell 
Inj: Injection 
LVIDd: Left ventricular internal diameter at diastole 
LVIDs: Left ventricular internal diameter at systole 
FS%: Percent fractional shortening 
AWTh: Anterior wall thickness 
 

 

 Invasive hemodynamics were performed to determine the functionality of the LV 

chamber after infarction and in the presence of cell treatment (Table 4.3).  There were 

no statistically significant events when contractility, end diastolic pressure (EDP) or τ 

(time constant for pressure fall during cardiac relaxation) were measured and calculated.   
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Table 4.3 - Hemodynamic measures after myocardial infarction 

MI: Myocardial Infarction 

 
MI (n=5) Saline Inj 

(n=4) 
MI+NV Patch 
(n=3) 

MSC Inj 
(n=3) 

MI+ MSC 
Patch (n=4) 
 

+dP/dt (mmHg/s) 8133 ± 306 8213 ± 241 6862 ± 279 7381 ± 540 8145 ± 158 

-dP/dt (mmHg/s) -6510 ± 372 -6785 ± 224 -5882 ± 63 -6976 ± 703 -8252 ± 640 

EDP (mmHg) 11 ± 3 10 ± 1 17 ± 5 7 ± 0.5 8 ± 3 

τ (msec) 16 ± 3 14 ± 1 17 ± 3 16 ± 3 12 ± 0.3 

NV: Non-viable 
MSC: Mesenchymal Stem Cell 
Inj: Injection 
+ dp/dt: Maximum rate of rise in left ventricular pressure during systole 
- dp/dt: Maximum rate of decrease in left ventricular pressure during diastole 
EDP: Left ventricular end-diastolic pressure 
τ: Time constant for pressure fall during cardiac relaxation 
 

  
 One possible mechanism by which hMSC can prevent or delay the onset of 

adverse remodeling after myocardial infarction is by mediating the formation of functional 

blood vessels within the infarcted area.  To determine if there was any difference in the 

number of blood vessels that occupied the LV wall across the infarct we performed 

histology for isolectin B4.  Staining revealed no change in blood vessel presence in the 

infarct area when cardiac patches were applied to infarcted hearts compared to MI 

controls and hMSC injection (Figure 4.11; p = 0.1, MSC patch vs. MI control).  Observed 

blood vessels were most prominent in the peri-infarct region near the epicardial surface 

of the anterior wall (Figure 4.11b – 4.11d).   
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Figure 4.11) Application of hMSC patch does not change blood vessel presence.  four 
weeks after LAD ligation hearts were probed for neo-vessel formation.  A) hMSC patch 
application does not affect neo-vessel formation compared to MI controls and hMSC 
injection (MI: 7 + 1%, MSC Inj: 7 + 0.4% and MSC Patch:  11 + 2%; ANOVA p = 
0.1). Histological analysis of B) MI control hearts; n=3, C) hMSC injected hearts; n=2 
and D) hMSC patch treated hearts; n=3 was performed to assess neo-vessel formation. 
 
 

4.4 DISCUSSION 

Cellular cardiomyoplasty offers a novel therapeutic approach to myocardial repair 

and preservation.  Unfortunately, conventional cell delivery strategies are less than 

optimal.  This thesis explores a tissue engineered vehicle, called a cardiac patch that 

can be applied directly to the infarct site for homogenous and localized cell delivery, 

overcoming this limitation.  In this chapter, we investigated the behavior of cells once 

embedded within cardiac patches.  In a series of experiments, we identified alterations of 

cell function caused by cell culture within 3D collagen constructs.  These studies reveal 

specific changes between cells cultured as monolayers and within patches with little 
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dependence on ambient oxygen tension.  For instance, cells cultured in collagen 

patches display reduced proliferation and viability. Additionally, cell culture within 

collagen patches tended to augment the secretion of several angiogenic growth factors.  

These differences may induce deviations in downstream effects for myocardial repair 

after infarction when using a cardiac patch for cell delivery versus direct injection.   

One observation from in vitro characterizations of cardiac patches was that 

culture of hMSC in 3D collagen constructs attenuated their proliferative response as 

assessed via their ability to incorporate EdU.  Similar in vitro models have shown the 

tendency of cells embedded within 3D scaffolds to have suppressed cell proliferation 

[19].   This could indicate reconfigured bioenergetics to support cell differentiation or 

enhance protein production.  It is well documented that MSC cultured in collagen gels 

can undergo both chondrogenic and osteogenic differentiation [20, 21].  Nevertheless, 

there was no loss of potency over 7 d with hMSC in collagen patches, and cell viability 

remained consistently above 80% in hMSC patches. Thus, cellular differentiation is an 

unlikely event mediating reduced proliferation. 

Reduced cell proliferation may also indicate increased protein production.  It has 

already been reported that hMSC secrete a variety of different growth factors under 

normal and hypoxic culture conditions.  Such factors include: VEGF [22, 23], IGF-1 [24], 

SDF-1 [25] and MCP-1 [26]. To date, little research has been performed to assess the 

effect of 3D culture on protein production of stem/progenitor cells.  In our studies, ANG, 

FGF-1, VEGF and IL-8 were observed to secrete from hMSC monolayers. Upon culture 

in collagen patches, this response increased for VEGF and IL-8 compared to 

monolayers.  Additionally, the mRNA abundance of VEGF, IL-8 and FGF-1 increased 

upon culture in collagen patches. Ambient oxygen tension did not appear to affect these 

results.  Similar results were shown when hMSC were grown as spheroids via a 

traditional hanging drop method.  These cells demonstrated increased angiogenic 
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growth factor production that was thought to be mediated by an autocrine feedback loop 

where enriched growth factors continually promoted additional production of angiogenic 

factors [23], although this hypothesis was not tested.  The proliferative state of hMSC in 

spheroids was also not tested.  Wong et. al., however, have noted that reduced 

proliferation is associated with increased protein production [27] given the reduced need 

to expend energy for cell division. The data demonstrate reduced proliferation with 

culture in cardiac patches. This event may explain the increased protein and mRNA 

expression observed.  

There were instances where protein and mRNA expression did not correlate. For 

instance, culture of hMSC in collagen patches caused substantial upregulation of FGF-1 

transcripts. This effect, however, was not apparent when conditioned media was 

analyzed for the presence of FGF-1. It is possible that the lack of a secretory signal 

peptide on FGF-1 transcripts [28] results in FGF-1 accumulating near the cell surface or 

within the surrounding extracellular matrix and would be released only upon matrix 

degradation.   

Additionally, ANG is a very potent angiogenic factor which is thought to be 

necessary for VEGF and FGF to elicit their pro-angiogenic effects [29].  ANG is an 

RNase capable of binding to endothelial cells to promote proliferation and protease 

activity which aids in the breakdown of basement membrane [30].  The secretion of ANG 

was downregulated upon culture in collagen patches although no differences in mRNA 

abundance were observed.  Rajashekhar and colleagues have reported that ANG shows 

differential regulation depending on cell type, extracellular matrix and oxygen tension 

[31].   

We were unable demonstrate conclusive positive effects of hMSC patch 

conditioned medium on endothelial cell proliferation/growth and tube formation.  

Conditioned media from hMSC had no effect on endothelial cell growth as assessed via 
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MTT analysis but did demonstrate enhanced endothelial cell growth after performing cell 

counts. Specifically hMVEC-C exposed to hHP conditioned media demonstrated 

improved cell number versus a MM control and hMVEC-C exposed to hH conditioned 

medium.  The culture of hMVEC-C in hN conditioned media also increased cell number 

versus a MM control. The differences between these two assays may be the result of the 

time hMVEC-C were exposed to conditioned media before cell collection and assaying 

(MTT: 2 d; Cell counts: 3 d).  hMSC conditioned medium appeared to have promoted the 

production of longer tubes when cultured with endothelial cells on Matrigel. This effect 

did not depend on whether hMSC were cultured in 3D collagen patches or monolayers, 

although more experiments are needed to calculate statistical significance.  The results 

presented support the hypothesis that culture of stem cells in collagen constructs 

modulates cell function but seems to suggest that angiogenic factors and vessel 

formation may not explain the improvements in function after cardiac patch application 

noted in vivo.  

The data suggest that hMSCs delivered in collagen have a more beneficial effect 

than those directly injected.  This might have been explained by changes in the 

secretory profile of angiogenic factors.  Nevertheless, in vitro and in vivo data does not 

support that to be the main cause.  Specifically, when we analyzed infarcted hearts for 

neovessel formation we observed no change in neovessel formation throughout the LV 

infarct wall.  These results are similar to the observations reported in Chapter 3 where 

there was no statistically significant change in neovessel formation after cardiac patch 

transplantation. There are several studies which indicate increased neovessel formation 

after hMSC delivery, however [32, 33]. For instance, Li and colleagues concluded that 

anoxic pretreatment of hMSC significantly improved their positive effects in 

cardiomyopathies by enhancing capillary density in addition to other trophic effects [34].  

These studies typically delivered more cells, via direct injection, to infarcted myocardium 

138



than our experiments, however.  Other causes for improved function after cardiac patch 

transplantation may include the accumulation of myofibroblasts [18], a modulated fibrotic 

response, endogenous stem cell recruitment and activation or improved net engraftment. 

These responses have been demonstrated in Chapter 3. 

 In other studies that inject hMSC, more cells were initially injected than what was 

used in this study.  This difference may account for why we were unable to observe 

significant improvements in myocardial function after hMSC injection. The positive 

results observed after cardiac patch application (which also contained a small cell 

number) may indicate that localized (and concentrated) delivery of cells provides for 

better local responses involved in infarct repair. In Chapter 3 a cardiac patch initially 

seeded with one million cells and transplanted onto an immunocompetent model 

demonstrated enhanced remodeling parameters (FS%, AWTh, LVIDd and LVIDs) 

compared to MI and NV patch controls.  The initial seeding density and animal model 

used may account for the differences observed between the two studies.  Dose 

response studies in nude and immunocompetent animal models are needed to help 

comprehend these differences. 

In conclusion, the culture of hMSC in collagen patches alters their behavior and 

cells delivered in collagen patches show increased cardiomyoplasty efficacy compared 

to cells directly injected This may be explained by increased paracrine secretion of 

hMSC grown in patches.  Nevertheless, the mechanism by which this happens is not 

clear, since vessel formation is similar between hearts with patches and those subject to 

direct injection.  Other paracrine responses may be involved in cardiac repair, however.  

Additionally, an increase in net engraftment may explain the favorable effects of cardiac 

patch application compared to direct injection. hMSC culture and delivery within collagen 

patches may represent an option to promote local reparative response involved 
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myocardial repair after cellular cardiomyoplasty and thus improve global cardiac 

function.   

4.5 LIMITATIONS and RECOMMENDATIONS 

 Chapter 4 discusses the modulation of hMSC function when cultured in collagen 

patches.  There are clear differences in several functions including proliferation and 

growth factor expression when cells are embedded in a collagen matrix.  The 

mechanism for such changes was not clearly identified, however.  Reduced proliferation 

was one factor thought to mediate changes the hMSC secretory profiles.  The 

mechanism promoting reduced proliferation was not addressed.  Protein measurements 

and analysis after preventing proliferation with cell cycle inhibitors may aid in uncovering 

specific mechanisms involved in protein modulation.  Comparing these mechanisms with 

those involved in cardiac patch mediated suppression of cell proliferation will help 

determine how culture in collagen patches reduces proliferation and its consequences 

on the production of specific proteins. 

Additionally, several studies within Chapter 4 were performed to demonstrate 

variations in growth factor expression after culture in collagen patches.  These 

experiments were completed under the assumption that modulation in paracrine function 

will produce differential reparative responses after cellular cardiomyoplasty.  

Unfortunately, there is no direct evidence which would suggest that the changes in 

hMSC growth factor expression upon culture in collagen patches affected local or global 

reparative responses in vivo.  This is a very difficult hypothesis to investigate given the 

number of potential paracrine factors and likely redundancy of function.  Although the 

use of in vitro experiments will help answer some questions related to paracrine 

functions, the mechanisms of action for several in vivo responses will likely prevent 

reliable correlations. Thus, investigating general responses such as angiogenesis, 

fibrosis or cell mobilization may aid in discovering classes of paracrine factors which play 
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important roles in myocardial repair.  From these classes, “cocktails” can be developed 

and used in vitro and in vivo the help determine specific paracrine factors which mediate 

efficient myocardial repair.  Of course, the dose will have to be accounted for in the 

experimental design.   

Our in vivo studies also contained limitations.  We chose to decrease the seeding 

density within cardiac patches to sustain cellularity and stem cell potency.  

Unfortunately, the positive effects of cardiac patch application as described in Chapter 3, 

was attenuated. Thus we only observed minor changes in myocardial repair.  This effect 

was also likely caused by the change in animal model (immunocompetent vs. nude).  

Unfortunately, the role seeding density and immune status in mediating myocardial 

repair after infarction are ill-defined.  For this reason, it is difficult to precisely determine 

why neither hMSC injection nor hMSC cardiac patch application resulted in more 

pronounced augmentation of myocardial function. Dose response studies (using both 

injection and TE constructs for cell delivery) in immunocompetent and 

immunocompromised physiologic models would aid in developing a more complete 

hypothesis for the role of seeding density and immune status in myocardial repair.       
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Chapter 5 
 

Human Embryonic Stem Cell Derived-Mesenchymal Cells:  Exploring the Efficacy 

of a Possible Substitute for Mesenchymal Stem Cells in Cellular Cardiomyoplasty 

 
 
 

5.1 INTRODUCTION 
 

One issue limiting advancements in clinical cellular cardiomyoplasty is 

determining an optimal cell source.  Traditionally, cells intended for human use have 

been limited to those that can be isolated in large quantities (thus limiting the need for ex 

vivo expansion) and/or that are autologous. As a result, bone marrow mononuclear cells 

have become very popular in clinical studies.  The use of this heterogeneous population 

of cells imparts difficulties in trying to assess which cell type(s) contributes to improved 

function and which do not.  One population within unfractionated bone marrow which 

may be useful is mesenchymal stem cells (MSC).  This defined cell population has 

proven successful in both preclinical and clinical studies.  Unfortunately, MSCs represent 

a very small portion of the bone marrow and may require ex vivo expansion to maximize 

their efficacy. Derivation of MSC-like cells that can be made available “off-the-shelf” 

might help address these problems.  

Unlike other organs of the body, the myocardium does not regenerate 

appreciably because of the limited pool of cardiac specific progenitor cells present and 

the inability of adult cardiomyocytes to proliferate [1].  Recently, cellular cardiomyoplasty 

has been proposed as a strategy to repair myocardial damage after injury. Cell sources 

include: cardiomyocytes [2-4], skeletal myoblasts [5-7], smooth muscle cells [8], cardiac 

progenitors [9-11], bone marrow stem cells [12-17], embryonic stem cells [18-21], 

endothelial cells [22], activated macrophages [23], amniotic fluid stem cells [24, 25], cord 

blood stem cells [26], and adipose derived stem cells [27]. When delivered to infarcted 
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myocardium, cell therapy results in improved measures of cardiac function.  Clinical 

studies have also shown success with cell treatment [28-36].  Larger controlled trials 

using bone marrow mononuclear cells indicate statistically significant improvements in 

several cardiac indices; although the absolute change may not be physiologically 

relevant.   

Although the kinds of cells used for cellular cardiomyoplasty is vast, MSC 

continue to prove resourceful for mediating cardiac repair after injury.  Bone marrow 

stem cells (BMSC) include both mesenchymal and hematopoietic cell types. 

Mesenchymal stem cell (MSCs) are adult progenitor cells that have the potential to 

differentiate into tissues from the mesoderm [37].  These include fibroblast, muscle, 

bone, tendon, ligament, and adipose tissue.  These cells also successfully differentiate 

into cardiomyocytes in vitro [38].  When human MSCs are injected into normal mouse 

myocardium they attain a “cardiac-like” phenotype [39] determined by the expression of 

several cardiac related markers. Unfortunately, few studies have shown well-defined 

cardiomyogenic differentiation of MSCs delivered to infarcted hearts [12-14, 40].  Clinical 

use of MSCs has recently begun.  Preliminary results indicate that MSCs are safe and 

feasible as a therapeutic platform.  Nevertheless, the need for ex vivo expansion was 

required. 

Boyd et al. recently described the derivation of hESC derived mesenchymal cells 

[41].  H9 hESC (as well as BG01 hESC) were cultured in endothelial basal medium for 

20-30 days until epithelial outgrowths form a confluent sheet within the culture dish.  

Upreguated genes during hESC differentiation included several mesodermal markers 

such as BMP4, GATA4 and RUNX1.  After several passages of these cells MSC 

markers began to appear including CD73, CD90, CD105 and CD166.  Although there is 

no clear definition as to what constitutes a mesenchymal stem cell, the expression of 

these markers is typically observed.  These derived cells were also tested for their ability 
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to differentiate down osteogenic, adipogenic and chondrogenic lineages. The ability of 

MSCs to differentiate into these components of the mesoderm has also been used to 

define MSCs.   Osteogenic and chondrogenic differentiation was observed, however, 

adipogenic differentiation was not.  Similar to MSCs, hES-MC could also contract a 

collagen lattice.  Despite the lack of adipogenic differentiation, hES-MC do possess 

several genetic and phenotypic similarities to MSCs.  These cells are relatively easy to 

derive and culture and may represent a suitable alternative to MSC-based therapies.  

Therefore, we hypothesized that hES-MC (referred to as B4 progenitor cells throughout 

this and subsequent chapters) would display similar responses when cultured in 3D 

culture compared to hMSC. In addition, similar indices of myocardial improvement will be 

presented upon delivery of B4 progenitor cells to infarcted heart when compared to 

hMSC.  

 

5.2 MATERIALS AND METHODS 

5.2.1 Animal Handling 

Male athymic nude rats (200-300 g) obtained from Charles River (Wilmington, 

MA) were allowed to acclimate to housing conditions for at least one week before use.  

All animals received care in compliance with federal and institutional guidelines with 

approval from the Institutional Animal Care and Use Committee. 

 

5.2.2 Cell Culture 

CD34 negative female hMSC obtained from Lonza were cultured in complete 

media consisting of Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% MSC 

qualified serum, L-glutamine and penicillin/streptomycin at 37oC in 5% CO2. B4 

progenitor cells obtained from Dr. Stephen Stice (University of Georgia) were cultured in 

complete EGM-2V medium containing 5% FBS at 37oC in 5% CO2.  At 80-90% 
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confluency hMSC or B4 progenitor cells were passaged by treating cells with 0.25% 

Trypsin/EDTA for three minutes.  Cells were collected and replated at a lower cell 

density (usually one-third of the original cell density) onto new tissue culture treated 

flasks. 

 

5.2.3 Formation of Cell Seeded Collagen Patches 

hMSC (female) expanded to P3 – P6  or B4 progenitors (female, also known as 

hESC derived mesenchymal cells) expanded to P4 - P12 were embedded into a rat tail 

type I collagen matrix to form cardiac patches.  To produce cardiac patches for 

progenitor cell delivery, 0.2 million hMSC or 0.2 million B4 progenitor cells were mixed in 

a solution of rat tail type I collagen, 5x DMEM and 10% fetal bovine serum such that the 

final collagen concentration was 2 mg/mL.  Upon addition of sodium hydroxide (to 

neutralize acidic collagen solution) and placement of patches at 37oC for 15 minutes, the 

collagen solution gelled.  The solution was placed in individual wells of a non-tissue 

culture-treated 48-well plate in order to create a patch that is between 0.3 – 0.7 cm in 

diameter. Patches were cultured at 37oC in 5% CO2 for 1 d before usage. For the control 

experiments, non-viable cardiac patches were prepared by freezing 1 d old patches 

overnight in phosphate buffered saline at -80oC.  The patches were thawed at room 

temperature and used for subsequent experiments.  Non-viable patches were only 

exposed to a single freeze-thaw cycle. 

 

5.2.4 Viability Assays 

To assess cell viability within the construct, patches containing hMSC or B4 

progenitor cells were digested 3 d after production in type I collagenase (500 U/mL) 

diluted in DMEM for 30 min at 37oC with intermittent mixing.  Each patch was submerged 

in 2 mL of the collagenase solution and placed into at 37oC water bath.  The solution 
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was triturated every 5 minutes to assist in the digestion of the construct.  At the end of 

the incubation period, collagenase activity was inhibited by the addition of 500μL of 

100% FBS and 8 mL of complete hMSC or B4 progenitor cell medium (see section 

5.2.2). Viability was measured using a 1:10 dilution of the cell suspension by trypan blue 

exclusion.  Counts were made using a hemocytometer. Viability was recorded as (the 

number of live cells) / (the number of total cells).  For comparison, the viability of hMSC 

and B4 progenitor cells cultured on treated plastic dishes was determined using the 

same trypan blue exclusion and counting methodology.  Cells were removed from 

culture dishes on day three using 0.25% Trypsin/EDTA. 

   

5.2.5 Proliferation 

Proliferation was determined by measuring the incorporation of 5-ethynyl-2'-

deoxyuridine (EdU); a nucleoside analog to thymidine which is incorporated into DNA 

during synthesis. Cellularized constructs or cells cultured as a monolayer were pulsed 

with 10 mM EdU (Invitrogen; Carlsbad, CA) for 72 hours after their initial formation.  

Afterwards, constructs were washed in PBS and digested using collagenase to isolate 

cells as described above (5.2.4).  Next, cells were washed using a 1% bovine serum 

albumin (BSA)/PBS solution and then fixed using the Click-iT fixative (invitrogen; 

Carlsbad, CA) for 15 minutes at room temperature.  Cells were permeabilized with Triton 

X-100 and then stained using the Click-iT cocktail mixture for 30 minutes at room 

temperature.  Afterwards, cells were washed with 1% BSA/PBS and used for flow 

cytometry.  To simplify analysis, hMSC or B4 progenitor cells were gated using an 

unstained sample (no antibody) on a forward scatter versus side scatter dot plot.  This 

procedure helped to remove excess debris.  Next, a positive control (using hMSC or B4 

progenitor cells cultured on treated plastic) was run to determine the proper levels for 

positive signal.  Samples were run and analyzed for positive fluorescein isothiocyanate 
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(FITC) signal using the histogram option of the BD FACS Diva software package (BD 

Biosciences; San Jose, CA). Positive signal was compared with the appropriate isotype 

controls, which allowed for accurate background subtraction. Analysis of data was 

performed using FCS Express 3.0 software and the histogram subtraction function (De 

Novo Software; Los Angles, CA). 

 

5.2.6 Assessment of Cell Differentiation 

Differentiation of hMSC and B4 progenitor cells within the patch was measured 

by monitoring the expression of markers for stem cell potency over several days.  hMSC 

and B4 progenitors isolated from the patch were stained and analyzed for the expression 

of CD105 and CD73 by flow cytometry.    After cells were isolated from the patch, they 

were fixed using a 4% paraformaldehyde (PFA) for 15 minutes on ice.  Next, cells were 

stained with the appropriate primary antibodies for 30 minutes on ice.  If necessary, 

fluorescent conjugated secondary antibodies were added afterwards for 25 minutes at 

0°C (Santa Cruz Biotechnology; Santa Cruz, CA).  Cells were washed in a 0.3% 

BSA/PBS solution and analyzed via flow cytometry as described above (5.2.5).  A two-

way analysis of variance or Student t-test was used to determine differences in 

expression between culture methods (i.e. treated plastic vs. collagen gel). 

 

5.2.7 Real Time RT-PCR 

RNA was isolated from cell monolayers or cellularized constructs (48 hours after 

initial seeding) using a commercial RNeasy kit (Qiagen; Valencia, CA). RNA 

concentration and purity were measured using a spectrophotometer (abs: 260 nm, 280 

nm and 230 nm). Afterwards, 1 μg of RNA was converted into cDNA using an Applied 

Biosystems cDNA synthesis kit (Applied Biosystems, Foster City, CA).  The reaction 
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mixture was run for 5 minutes at 25oC, 30 minutes at 42oC and lastly, 5 minutes at 85oC.  

Real Time PCR was run using a total of 5 ng template cDNA for each sample.  For each 

run, a negative control (water only, no template) was analyzed.  Each sample was run in 

duplicate using ABI FAST SYBR green supermix (Applied Biosystems;) for multiple 

genes including: ANG, FGF-1, VEGF, FGF-2, Stromal Derived Factor (SDF-1), CXCR4, 

ribosomal protein 13A (RPL13A), β-Actin and ribosomal protein 18s (R18s). Primer 

assays for each primer set was obtained from Qiagen. The fast PCR protocol consists of 

an initial denaturing step at 95oC for 4 minutes.  Next, samples are run at 94oC 

(denaturation) for 15 seconds, 60oC (annealing) for 30 seconds and 72oC (extension) for 

30 seconds for 35 cycles.  Relative RNA abundance was calculated using the following 

equation: 2-ΔΔcT (where the first delta represents threshold subtraction (“delta 1”) from the 

endogenous control and the second delta represents the division of “delta 1” by an 

internal control).     

 

5.2.8 Infarct Model and Patch Application 

Myocardial infarction (MI) was induced by permanent ligation of the left anterior 

descending (LAD) coronary artery in athymic nude male rats. Rats were anesthetized 

with 5% isoflurane in pure oxygen. Afterwards, rats were weighed and intubated for 

mechanical ventilation.  After endotracheal intubation and initiation of ventilation, 

isoflurane was reduced to effect (1.5-2% vol/vol).  The heart was exposed via a left 

thoracotomy, and the proximal LAD coronary artery was ligated using 6-0 silk suture. 

The location of ligation was placed at the intersection of the left atrial appendage and 

pulmonary conus whenever the LAD was not clearly visible.  Diagonal branches of the 

main LAD were also ligated if the developed infarct was small.  Noticeable effects of 

LAD coronary artery ligation included a change in pallor of the left ventricle (LV), 
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transient arrhythmias and an inflated left atrial appendage. Ten minutes after ligation, 

either viable or non-viable cardiac patches were applied onto the anterior wall of infarct 

site and secured with fibrin glue (Baxter; Deerfield, IL; Figure 3.3). Cardiac patches were 

secured to heart directly beneath the ligation site and covered approximately 30-40% of 

the LV wall.   Rats with induced infarction and without construct application, with an non-

viable construct, or with sham ligations (left thorocotomy with pericardium removal and 

suture place around LAD coronary without ligation) served as controls. Buprenorphine 

(0.1 mg/kg) was injected subcutaneously after surgery (and as necessary), and rats 

were allowed to recover under close supervision. 

 

5.2.9 Echocardiography 

Transthoracic echocardiograms were performed on rats using a VisualSonics 

Vevo 770 ultrasound unit (VisualSonics, Toronto, Canada).  The VisualSonics RMV 716 

Scanhead with center frequency 17.5 MHz, frequency band 11.5–23.5 MHz, and focal 

length 17.5 mm was used for echo acquisition in rats. The animals were maintained 

lightly anesthetized during the procedure with 1.5% isoflurane delivered through a face 

mask at a rate of 3-4 L/min. The animals were kept warm on a heating pad and the body 

temperature was continuously monitored using a rectal thermometer probe and 

maintained between 35 and 37°C by adjusting the distance of a heating lamp. Under 

these conditions, the animal’s heart rate could be maintained between 300-400 beats 

per minute. Two-dimensional and M-mode echocardiography were used to assess wall 

thickness, LV dimensions and fractional shortening. Images were obtained from the 

parasternal long axis, parasternal short axis at the mid-papillary level and apical 4-

chamber views. 
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Baseline echocardiograms were acquired at 3 d post-MI with additional 

echocardiograms acquired at 28 d post-MI. The baseline post-MI echocardiograms 

allowed us to determine whether incidence of infarction was successful (via a substantial 

reduction in myocardial shortening/thickening) and the extent and location of infarction.  

With nude rats, we noticed that LAD ligation resulted in most animals developing anterio-

lateral infarcts.  Isolated anterior infarctions only occurred in one case which survived 

surgery and other procedural stages of the overall experiment.   

 

5.2.10 Cardiac Hemodynamics 

Cardiac hemodynamics were measured after the final echocardiographic 

examination. Rats were anesthetized with 1% isoflurane, and a 1.4 or 2F Millar Mikro-Tip 

catheter (SPR-671, Millar Instruments, Houston, TX) was inserted into the right carotid 

artery and advanced into left ventricle. Aortic and left ventricular (LV) pressures were 

recorded on a PowerLab system and analyzed using Chart v4.2.4 software 

(ADinstruments, Colorado Springs, CO).  After the procedure, rats were intravenously 

injected with 30% potassium chloride to paralyze/relax the heart before excision for 

histology. 

 

5.2.11 Myocardial Histology 

After the hemodynamic studies, hearts were excised, perfused with 4% 

paraformaldehyde and then cryo-protected by immersion in 30% sucrose for 48-96 

hours.  Isopentane cooled in liquid nitrogen was used to freeze hearts immersed in 

optimal cutting temperature (OCT) medium.  Sections were cut to 7 μm using a 

commercial cyrostat and used for either isolectin B4 or Masson’s Trichrome. To 

calculate infarct size, at least four Masson’s Trichrome stained sections at various levels 

along the long axis were analyzed for collagen deposition.  The midline technique for 
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infarct size determination was used as described previously [42].  Briefly, the LV midline 

was drawn at the center of the anterior (lateral) wall along the length of the infarct.  This 

circumference was divided by the total midline circumference of the heart to determine 

infarct size.    Frozen sections were air dried, and OCT was removed by rinsing slides in 

PBS.  Isolectin B4 was diluted 1:250 in Tris buffered saline with 0.1% Tween-20.  This 

solution was added to sections for 1 hour at 37oC.  Afterwards, sections were washed in 

PBS and counterstained with DAPI for 5 minutes.  Sections were rinsed in dH2O and 

mounted with an anti-fade aqueous mounting media (Vector Labs, Burlingame, CA).   

 

5.2.12 Statistical Analysis and Interpretation 

 Two-way analysis of variance (ANOVA) was performed to interpret the response 

of hMSC and B4 progenitor cells in collagen patches in several in vitro assays 

(proliferation, differentiation and viability).  A post-hoc Bonferroni testing was used to 

determine statistical significance between culture conditions for the two cell types.  

Additionally, a one-way ANOVA with appropriate post-hoc testing (Bonferroni) was used 

for the interpretation of in vivo and histological data sets. A p-value less than 0.05 

indicated statistical significance. A Student’s t-test was used to determine changes in 

mRNA abundance fold change between hMSC and B4 progenitor cells. 

 

5.3 RESULTS 

5.3.1 Culture within Collagen Patches Modulates Proliferation, Differentiation and 

Viability of hMSC and B4 Progenitor Cells 

To determine how culture of cells within collagen patches affected stem cell 

function, we measured proliferation, differentiation and viability of hMSC and B4 

progenitor cells as monolayers or isolated from collagen patches.  Proliferation was 
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quantified using a pulse-chase with EdU substrate (Figure 4.3).  EdU incorporation 

within cell types as monolayers or removed from within collagen patches was measured 

with flow cytometry.  hMSC and B4 progenitor cells demonstrated attenuated 

proliferation upon culture within collagen patches.  hMSC showed a 86% reduction in 

EdU incorporation (50.9% EdU+ vs. 7% EdU+; p < 0.001). B4 progenitors showed a 

57% reduction (60% EdU+ vs. 25.5% EdU+; p < 0.01).  A two-way ANOVA revealed that 

55.3% of the variance was due to the culture of cells in collagen patches (p <0.0001).  

The cell types used only accounted for 6.9% of the variance (p = 0.022), suggesting that 

patches reduced proliferation and the effect was similar but not identical between cell 

types. 

 

 

Figure 5.1) Proliferation of hMSC and B4 progenitor cells in collagen patches. Flow 
cytometry for EdU incorporation into hMSC and B4 progenitor cells was used to 
determine the proliferative capacity of stem/progenitor cells in 3D culture.  Both hMSC 
(50.9 + 6.2% vs. 7 + 0.9%; *p < 0.001) and B4 (60.1 + 11.1% vs. 25.5 + 3.2%; *p < 0.01)  
progenitor cells demonstrated attenuated proliferation in collagen patches as compared 
to culture as monolayers. 
 

 

Additionally, stem cell potency for cells cultured as monolayers or within collagen 

patches was determine by monitoring several antigens within the progenitor/stem cell 
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populations.  For both hMSC and B4 progenitors, CD105 and CD73 were used to 

determine the extent of differentiation over 3 d.  There was no loss of potency over 3 d in 

hMSC for both CD105 (Monolayer: 85.6% Expression vs. Patch 3 d: 76.1% Expression; 

p > 0.05) and CD73 (Monolayer: 82.9% Expression vs. Patch 3 d: 75.4% Expression; p 

> 0.05).  In addition, there was no loss of potency in B4 progenitors over 3 d for CD105 

(Monolayer: 78.2% Expression vs. Patch 3 d: 81% Expression; p > 0.05) or CD73 

(Monolayer: 96.8% Expression vs. Patch 3 d: 95.3% Expression; p > 0.05).  Despite the 

lack of change of markers in collagen patches, CD73 was higher in B4 progenitors than 

hMSC (p = 0.0002), suggesting a higher percentage of B4 cells expressed this 

multipotent marker at baseline.    

 

 

Figure 5.2) No loss of hMSC or B4 progenitor cell potency after culture in collagen 
patches.  CD73 and CD105 were used to monitor stem cell potency over 3 d in culture 
as monolayers or patches for hMSC and B4 progenitor cells. hMSC showed no change 
in CD73 (hMSC: monolayer: 82.9 + 0.4% vs. patch 3 d: 75.4 + 4.9%) and CD105 
(hMSC: monolayer: 85.6 + 5.5% vs. patch 3 d: 76.1 + 8.3%) expression over 3 d.  B4 
progenitor cells also displayed no change in CD73 (B4: monolayer: 96.8 + 1.1% vs. 
patch 3 d: 95.3 + 1.7%) and CD105 (hMSC: monolayer: 78.2 + 6.8% vs. patch 3 d: 81 + 
4%).  A two-way ANOVA revealed significant variation between cell types in regard to 
CD73 expression (p = 0.0002). 
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To determine cell viability within collagen patches, hMSC and B4 progenitors 

were isolated using a collagenase solution after 3 d in culture.  Both hMSC and B4 

progenitor maintained viability above 80% after culture in collagen patches (Figure 5.3).  

There was a slight but significant loss of viability of hMSC cultured in collagen patches 

(Monolayer: 92.8 + 2% Expression vs. Patch: 81 + 3% Expression) that was not seen in 

B4 cells (Monolayer: 96.6 + 6.5% vs. Patch: 91.3 + 2.9%). 

 

 

Figure 5.3) Viability of hMSC and B4 progenitor cells in collagen patches. Viability was 
measured using a trypan blue exclusion assay. hMSC displayed a small and significant 
reduction in viability after culture in collagen patches (92.8 + 2% vs. 80.8 + 3%; *p < 
0.05). B4 progenitor cells demonstrated no change in viability when cultured collagen 
patches compared to culture as monolayers (96.6 + 6.5% vs. 91.3 + 2.9%). 
  

 

5.3.2 Culture within 3D Collagen Patches Modulates Growth Factor mRNA 

Abundance of hMSC and B4 Progenitor Cells 

 Paracrine pathways may play an important role hMSC mediated repair of 

damaged myocardium.  Therefore, we performed real time RT-PCR to determine the 

effect of progenitor/stem cell culture in collagen patches on growth factor mRNA 

abundance. We investigated six growth factors: IL-8, ANG, VEGF, FGF-1, FGF-2, and 
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SDF-1α.  All data were taken from cells/patches exposed to hypoxia (1% O2) to mimic 

likely conditions in the infarct region. Comparison of hMSC and B4 progenitor cells was 

represented as fold difference between monolayer and cardiac patches. Analysis 

revealed that hMSC and B4 cells responded similarly for IL-8 (upregulation; p = 0.4), 

ANG (upregulation; p = 0.3), FGF-2 (downregulation; p = 0.3) and SDF-

1α (downregulation; p = 0.1). Although both hMSC and B4 progenitor cells modulation 

expression of VEGF and FGF-1 upon culture in collagen patches,  the extent of change 

was significantly greater in hMSC (VEGF: 13.3 + 3.3 vs. 1.5 + 0.2; *p < 0.05; FGF-1: 20 

+ 5.3 vs. 0.7 + 0.3; *p < 0.01)  
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Figure 5.4) Angiogenic growth factor mRNA abundance fold change in hMSC and B4 
progenitor cells.  mRNA abundance was measure with real time RT-PCR.  Results 
indicate similar mRNA regulatory patterns between hMSC and B4 progenitor cells for  A) 
IL-8 (26 + 16.7 vs. 20.3 + 15; p = 0.4), B) ANG (2.4 + 0.7 vs. 1.8 + 0.3; p = 0.3), E) FGF-
2  (0.7 + 0.04 vs. 0.8 + 0.1; p = 0.3) F) SDF-1 (0.7 + 0.3 vs. 0.2 + 0.1 ; p = 0.1).  mRNA 
regulatory patterns were significantly different for the growth factors C) VEGF (13.3 + 3.3 
vs. 1.5 + 0.2; *p < 0.05) and D) FGF-1 (20 + 5.3 vs. 0.7 + 0.3; *p < 0.05).  
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5.3.3 Cardiac Patch Application to Injured Myocardium does not Alter the 

Developed Infarct Size 

 In vivo models of myocardial infarction are well documented and involve the 

ligation the left anterior descending coronary artery.  This artery supplies the anterior 

portions of the heart.  The high death and exclusion rates seen in Table 4.1 and Table 

5.1 suggest variability in infarct surgery or coronary anatomy. To determine if there were 

any differences in final (28 d) infarct size between different groups represented in the 

study, we measured infarct size by midline evaluation.  As shown in figure 5.4 there 

were no differences in infarct size between MI control hearts, hMSC patch treated hearts 

and B4 progenitor cell patch treated hearts (MI: 37 + 1%, MSC Patch:  34 + 1%, and B4 

Patch: 34 + 6%; p = 0.71).   

 

 

Table 5.1 – Animal accounting for in vivo model of myocardial infarction 

 # 
Surgeries  

# Dead 
within 24 
hr  

# Dead 
from 24 hr 
to 14 d  

# Excluded 
Due to 
Baseline 
ECHO  

Mass at 
Initial 
Surgery 
(g)  

Mass at 
4wk Hemo 
(g)  

# Used in 
4wk ECHO 
Studies  

# Used in 4 
wk Hemo 
Studies  

Sham  6  0  0  1  209 + 12  --  5  2  

MI control  14  1  0  8  209 + 8  277 + 7  5  5  

Non-viable 
Patch  

11  4  0  5  216 + 8  249 + 1  2  2  

hMSC Patch  9  0  2  1  215 + 7  273 + 7  5  5  

B4 Patch  12  5  0  1  216 + 8  254 + 14  6  6  

         

MI – Myocardial infarction; hMSC – human mesenchymal stem cells; LAD – Left anterior 
descending coronary artery; ECHO – Echocardiography; Hemo – Hemodynamics; wk – week 
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Figure 5.5) No change in infarct size with cardiac patch transplantation.  Infarct size was 
determined by measuring the infarct midline circumference of Masson’s Trichrome 
stained tissue sections.  Analysis revealed no change in infarct size 4 weeks after initial 
LAD ligation when comparing MI controls, hearts treated with MSC patches or hearts 
treated B4 progenitor cell treatment (MI: 37 + 1%, MSC Patch:  34 + 1%, and B4 Patch: 
34 + 6%; p = 0.71). MI – Myocardial infarction controls; MSC – Mesenchymal stem cells; 
B4 – B4 progenitor cells. 
 
 
 
Although there was no change in infarct size, there were distinct differences in the 

composition of the infarct area. (Figure 5.5).  Echocardiography, invasive hemodynamics 

and histology for neovessel formation were performed to help elucidate this effect.  
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Figure 5.6) Myocardial infarct development at treatment with a cardiac patch.  hMSC and 
B4 progenitor cell patches were applied to infarcted hearts.  4 weeks later, histological 
analysis revealed qualitative differences in infarct composition between all groups.  This 
included in the presence of blood vessels and LV wall thickness. 
 

5.3.4 hMSC and B4 Progenitor Cell Cardiac Patch Application Improves 

Parameters of Cardiac Remodeling and Function after Myocardial Infarction 

 To adjust for variable infarct size within each group, echocardiographic data was 

normalized within each rat for the 3 d baseline.  After this correction, both hMSC and B4 

progenitor cardiac patches had a beneficial role in preventing adverse remodeling. 

Specifically, hMSC and B4 progenitor cells helped to maintain fractional shortening  and 

infarct wall thickness (Table 5.2). There was no difference between hMSC patch or B4 

progenitor cell treatment.  Additionally, there were no significant differences observed 

with LV chamber dimensions between all groups. 
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Table 5.2 - Corrected echocardiographic measures after myocardial infarction 

 

Corrected 
MI (n=5) MI+NV Patch 

(n=2) 
MI+ MSC 
Patch (n=4) 

MI+ B4 
Patch (n=5) 
 

FS (Δ%) -38 ± 19 -4 ± 15 11 ± 10a 14 ± 10a 
AWTh (Δ%) -97 ± 25 -80 ± 13 19 ± 12a,b -22 ± 14a 
LVIDs (Δ%) 19 ± 4 14 ± 9 6 ± 1 12 ± 7 
LVIDd (Δ%) 14 ± 4 15 ± 6 11 ± 2 15 ± 5 

 

 

 

 
ap < 0.05 vs. MI, bp < 0.05 vs. MI + NV Patch 
 
MI: Myocardial Infarction 
NV: Non-viable 
MSC: Mesenchymal Stem Cell 
LVIDd: Left ventricular internal diameter at diastole 
LVIDs: Left ventricular internal diameter at systole 
FS%: Percent fractional shortening 
AWTh: Anterior wall thickness 
 
 

Additionally, invasive hemodynamics were performed to assess myocardial 

function after cardiac patch application. Similar to previous experiments using this model 

(see Chapter 3 and Chapter 4), there were few hemodynamic changes between the 

different groups 28 d after the initial infarct surgery (Table 5.3). hMSC patch application, 

however, did improve the dP/dt min compared to MI and non-viable patch controls.  

Other measures including dP/dt max, end diastolic pressure and τ  did not show any 

statistical significance when comparing viable patch treatment to controls.   
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Table 5.3 - Hemodynamic measures after myocardial infarction 

 
 

MI (n=5) MI+ NV 
Patch (n=3) 

MI+ MSC 
Patch (n=4) 

MI+ B4 
Patch (n=5) 
 

+dP/dt (mmHg/s) 8133 ± 306 6862 ± 279 8145 ± 158 7664 ± 355 
-dP/dt (mmHg/s) -6510 ± 372 -5882 ± 63 -8252 ± 640a,b -7009 ± 59 
EDP (mmHg) 11 ± 3 17 ± 5 8 ± 3 6 ± 1 
τ (msec) 16 ± 3 17 ± 3 12 ± 0.3 15 ± 2 

 

 

 

 
 

ap < 0.05 vs. MI, bp < 0.05 vs. MI + NV Patch 
 
MI: Myocardial Infarction 
NV: Non-viable 
MSC: Mesenchymal Stem Cell 
+ dp/dt: Maximum rate of rise in left ventricular pressure during systole 
- dp/dt: Maximum rate of decrease in left ventricular pressure during diastole 
EDP: Left ventricular end-diastolic pressure 
τ: Time constant for pressure fall during cardiac relaxation 
 

 

5.3.5 B4 Progenitor Cell Patch Application does not Alter Neovessel Formation 

after Myocardial Infarction. 

One possible explanation as to why hMSC application (either injected or 

delivered with a tissue engineered patches) improves cardiac function is through the 

release of beneficial paracrine factors once engrafted.  Such factors can act by 

decreasing cardiomyocyte apoptosis, preventing adverse fibrosis or increasing 

angiogenesis.  To determine whether B4 progenitor cell patch application had an effect 

on neovessel formation after myocardial infarction, histological evaluation for isolectin B4 

was performed.  The data indicated that hMSC and B4 progenitor cell patches did not 

alter blood vessel formation compared to MI controls (MI: 6.6 + 0.6 vs. hMSC: 10.6 + 1.8 

vs. B4: 11.9 + 2.6; ANOVA p = 0.18; Figure 5.6).  
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A 

 

Figure 5.7) Application of B4 patch showed no improvement in neovessel formation.   4 
weeks after LAD ligation, hearts were analyzed for neo-vessel formation.  A) hMSC and 
B4 progenitor cell patch application showed no statistical evidence of increased neo-
vessel formation compared to MI controls (MI: 6.6 + 0.6 vs. hMSC: 10.6 + 1.8 vs. B4: 
11.9 + 2.6; ANOVA p = 0.18). Histological analysis of B) MI control hearts; n=3, C) 
hMSC patch treated hearts; n=3 and D) B4 patch treated hearts; n=3 was performed to 
assess neo-vessel formation. 
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5.4 DISCUSSION 

The choice of cell source used in human clinical trials is limited by the need to 

expand specific cell populations after isolation.  This is the case with mesenchymal stem 

cells, which have to be purified and expanded before transplantation into patients. This 

delay represents a potential problem when treating patients with cellular 

cardiomyoplasty.  Given the difficulties of harvesting mesenchymal stem cells for 

preventive therapy, it is essential to develop novel techniques for deriving “off-the-shelf” 

hMSC substitutes.  B4 progenitor cells represent one possible solution to the 

development of hMSC substitutes.  It has been reported that these cells display a similar 

phenotype to hMSC, however, the reparative potential of B4 progenitor cells in cellular 

cardiomyoplasty was not yet evaluated.  In this study, we compared hMSC to B4 

progenitor cells delivered to infarcted myocardium.  A tissue engineered approach to cell 

delivery was chosen given evidence that cardiac patches provide relatively large cell 

engraftment efficiencies and provide enhanced prevention of adverse cardiac 

remodeling (Chapter 3 and Chapter 4, respectively)  

In general, hMSC and B4 progenitor cells responded similarly when embedded in 

collagen patches.  Both cell types demonstrated attenuated proliferation with 

maintenance of stem cell potency and viability.  It has already been reported by Boyd et 

al. that B4 progenitor cells are phenotypically similar to hMSC [41].  This manuscript also 

described the use of a contraction assay to demonstrate the ability of B4 progenitor cells 

to respond to external stresses.  Similar responses have been reported for MSCs by 

other investigators and in Chapters 3 and 4.  We expanded on this approach of 

comparing hMSC and B4 progenitor cell function in collagen hydrogels by assessing 

proliferation, potency and viability.  The comparable responses of hMSC and B4 

progenitor cells in collagen patches suggests these cells may respond similarly in other 

applications such as cellular cardiomyoplasty. 
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As reported in Chapter 4, the culture of stem cells in collagen patches alters 

mRNA expression of several growth factors.  Several growth factors (including IL-8, 

ANG, FGF-2 and SDF-1) were similarly regulated when cultured in collagen patches for 

hMSC and B4 progenitor cells.  These cells also displayed differential regulatory 

patterns for other growth factors (VEGF and FGF-1), however. This implies that hMSC 

and B4 progenitor cell paracrine actions may promote different downstream local 

responses.  Differences in mRNA regulation may be due to variations in derivation or 

isolation procedures.  

The mechanisms involved in the differential modulation of mRNA abundance for 

hMSC and B4 progenitor cells may include cell responsiveness to physical stresses.  

This may induce cytoskeletal reorganization because of cellular interaction (or lack of 

interaction) with the collagen microstructure or modulation of cell bioenergetics. The data 

shows similar cellular behavior for proliferation, differentiation and viability between 

hMSC and B4 progenitor cells. Therefore differences in mRNA regulation may be due to 

differences in available stress-induced transcriptional elements within the individual cells 

before culturing in patches. Understanding these mechanisms will aid in optimizing or 

modifying paracrine actions of different stem/progenitor cell populations for cellular 

cardiomyoplasty. 

In order to determine the effectiveness of B4 progenitor cell patch transplantation 

in mediating cardiac repair after infarction, we assessed function using 

echocardiography and invasive hemodynamics. Although B4 progenitor cells did not 

perform as well as hMSC in this model (i.e. hemodynamic measures), they did provide 

for a similar level of cardiac repair and preservation (FS% and AWTh).  Interestingly, 

hMSC patch application resulted in improved –dP/dt when compared to MI and 

nonviable patch controls.  This level of improvement was absent when B4 progenitor cell 

patches were transplanted onto infarcted hearts.  This may be the result of differential 
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paracrine actions that affect myofibroblast presence, neovessel formation or 

endogenous stem cell recruitment.  These perceived paracrine responses were shown 

to be important in Chapter 3.  These actions represent a few possible explanations for 

the differences in hMSC and B4 progenitor cell mediated repair, but given the number of 

paracrine factors secreted by stem/progenitor cells other mechanisms are also likely to 

be playing an important role.  Other responses include differential engraftment/migration 

efficiencies or cell differentiation. 

The accumulation of blood vessels within the wall can aid in the prevention of 

adverse remodeling by allowing for improved infarct volume and compliance and 

reduced apoptosis of viable muscle. The local angiogenic effects of B4 progenitor cells 

were similar to hMSC, but were not statistically significant compared to MI controls.. The 

lack of enhanced neovessel formation in both hMSC and B4 progenitor cells suggests 

other reparative mechanisms are involved in myocardial repair. Given differences in 

growth factor regulation upon culture in cardiac patches, the initiation or lack of several 

paracrine actions may account for differences hMSC and B4 progenitor cell mediated 

myocardial repair.  Another mechanism involves differences in engraftment (migratory) 

potential. For instance, hMSC may be more prone to engraft into injured myocardium 

after culture in cardiac patches than B4 progenitor cells.  Therefore the local effects of 

hMSC would be more pronounced than B4 progenitor cells.  This hypothesis has yet to 

be tested. 

 In conclusion, cellular cardiomyoplasty with the use of B4 progenitor cells may 

represent a suitable alternative to hMSC therapy.  B4 progenitors displayed similar 

responses to hMSC in 3D culture in terms of retention of pluripotency and longevity.  

Additionally, there were similar trends in the indices of myocardial repair after delivery 

with hMSC and B4 progenitor cell patches.  There were several differences that suggest 

differential paracrine actions after engraftment, however.  Such differences highlight a 
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need to investigate potential mechanisms by which hMSC and B4 progenitor cells 

enhance cardiac function and remodeling. Nevertheless, B4 progenitor cells do offer 

another effective cell source for cellular therapies. 

 

5.5 LIMITATIONS and RECOMMENDATIONS 

 B4 progenitor cells may represent a potential cell source substitute for hMSC-

based therapies.  We tested this hypothesis by comparing the response of hMSC and 

B4 progenitor cells in 3D culture and by comparing the reparative potential of hMSC and 

B4 progenitor cells (delivered within collagen patches) in an in vivo model of myocardial 

infarction.  There are several limitations to these studies.  One hypothesis investigated in 

Chapter 5 concerns the response of B4 progenitor cells in collagen patches compared to 

hMSC.  Although there were several responses that were similar (i.e. reduced 

proliferation, maintenance of potency and growth factor expression), this response may 

not be cell specific.  The use of a control stem cell (such as an embryonic stem cell) 

would benefit this study so that generic and specific responses can be identified.  

 Additionally, hMSC improved myocardial function and prevented adverse 

remodeling more effectively then B4 progenitor cells.  The reason for such differences is 

not specifically addressed, however.  Possible mechanisms include differential 

myofibroblast presence, stem cell recruitment or engraftment (migration) efficiencies. 

Many of these mechanisms were addressed in Chapter 3.  To investigate the hypothesis 

more conclusively, these experiments will have to be undertaken.   Additional 

experiments to determine changes in cell migration potential are also necessary. 

 hMSC patch application led to improved prevention of wall thinning.  This effect 

was also observed with the use of immunocompetent animal models in Chapter 3. Other 

measures such as LV dimensions were not improved, however.  This is contrary to the 

results of Chapter 3.  Additionally, improved lusitropy was not observed with the use of 

169



immunocompetent animal models.  This collection of data (Chapter 3 and Chapter 5) 

suggests the immune status of the host may play a role in hMSC patch mediated repair.  

Understanding this effect is essential to determining the role of the immune response in 

cellular cardiomyoplasty and may demonstrate a benefit to allogenic therapies.  A nude 

rat may allow for longer engraftment and thus allow hMSC to favorably affect lusitropy.  

Additionally, a strong immune response may promote enhanced remodeling and repair.  

Experiments necessary to investigate this hypothesis involve monitoring engraftment 

and the immune response over several time points in immunocompromised and 

immunocompetent animal models.    
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Chapter 6 
 

Conclusions and Future Directions 
 
 
 

6.1 ADDRESSING CELLULAR CARDIOMYOPLASTY IN FIVE STAGES 
 
 Heart failure represents a major cause of death in the United States.  The 

progressive decline in cardiac function after myocardial infarction (MI) represents one 

etiology that leads to heart failure.  Typical approaches to preventing heart failure after 

MI is through the use of pharmaceuticals which act to restore inotropic function or to 

minimize the energy demands of the heart.  Unfortunately, these approaches do not 

allow for improvements in left ventricular (LV) remodeling or regeneration of lost 

myocardium.  One experimental therapy which is gaining much ground is cellular 

cardiomyoplasty.  This involves the delivery of cell alternatives to aid in infarct repair.  

Although this method has resulted in improved cardiac function in both preclinical and 

clinical studies, there are still limitations in cell delivery and cell sourcing.  To address 

these issues, we developed a tissue engineered vehicle for progenitor cell delivery.  This 

involved embedding progenitor cell populations within collagen matrices and 

transplanting the resultant cellularized patch onto infarcted myocardium.  The hypothesis 

was that the application of a tissue engineered patch onto the infarct site would localize 

more cells and distribute them more evenly across the injured region.  This would allow 

for higher engraftment rates than other delivery strategies and ultimately increased 

improvement in cardiac function.  There are several stages to this project that warrant 

further discussion in order for this hypothesis to be thoroughly investigated (Figure 6.1).  

Each stage presents known and unknown problems associated with mechanism and 

application. 
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Figure 6.1) Five stages of cardiac patch mediate responses that require additional 
research.  
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Stage 1 

The first stage revolves around the formation and characterization of cardiac 

patches.  Throughout this study, type I collagen was used as a bioscaffold material and 

provided most of the mechanical support for the patch.  Collagen was chosen based on 

previous studies which describe the formation of viable constructs for tissue engineering 

(TE) purposes [1-3] and because collagen is biodegradable, relatively non-immunogenic 

and can interact with adhesion dependent cell types such as MSCs.  Chapters 4 and 5 

provide evidence that different progenitor cell populations undergo changes in behavior 

after culture within collagen patches.  This modulation in function may be mediated by 

cellular responsiveness to physical stresses such as oxygen tension or cellular 

interaction with the collagen microstructure. 

When cells are deprived of oxygen, some cells respond by upregulating survival 

genes and modulating bioenergetics by inducing glycolosis, erythropoiesis and 

angiogenesis.  For instance, hMSC typically respond to hypoxia by increasing HIF-1α 

expression, a heterodimeric transcription factor [4].  One outcome of this response is 

increasing the production of vascular endothelial growth factor (VEGF) and other trophic 

factors such as IL-8.  There was a measurable increase in VEGF and IL-8 production 

and mRNA abundance when hMSC were cultured in cardiac patch exposed to hypoxia 

compared to monolayers Therefore, patches may help modulate desirable paracrine 

factors.  Future experiments may show that this modulation is important for cellular 

myoplasty 

In Chapters 4 and Chapter 5, reduced proliferation was apparent for both hMSC 

and B4 progenitor cells cultured within collagen patches.  HIF-1α and p53 may play a 

role is this response. HIF-1α is known to promote growth arrest. Carmeliet and collegues 

demonstrated the anti-proliferative function of HIF-1α by exposing ESC void of HIF-1α 
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and normal ESC to hypoxia [5]. Results indicate that in the absence of HIF-1α, cells 

retained a high proliferative capacity compared to wild type ESC. These HIF-1α knock 

out ESCs also downregulated p53 expression, a known mediator of stress induced 

growth arrest and apoptosis [6].  Given that HIF-1α can stabilize p53 [7], it was 

concluded that HIF-1α mediated growth arrest was mediated through the p53 pathway.  

Matrix interactions with cells are also known to influence cellular properties 

through integrin binding and outside-inside signaling pathways.  Collagen matrices are 

rich in RGD and other integrin binding sequences.  Therefore, progenitor cell integrin 

binding to collagen within cardiac patches may affect cellular properties.  

The extent to which a gradient of oxygen tension and cell-collagen interaction 

play in modulating cell function in a patch is unknown. Investigators have shown that the 

presence of ECM such as collagen can regulate differentiation of MSCs.  For example, 

culture of MSCs on or within collagen matrix induces both adipogenic and osteogenic 

differentiation [8].  Understanding how culture of stem cells in collagen patches affects 

differentiation may aid in directed cardiomyogenesis or reducing differentiation to 

unwanted cell types. 

 

Future Directions: Stage 1 

Studies involved in specifically deciphering the role of oxygen tension and 

integrin binding on progenitor cell function in collagen matrices will provide further insight 

as to how researchers can optimize and tailor TE patches for different applications. 

Studies that utilize different bioscaffolds, cell sources and seeding densities need to be 

explored to understand the usefulness of other forms of “cardiac patches”. Other studies 

will involve the use of oxygen generating biomaterials which may help sustain oxygen 

tension and prevent hypoxia-mediated modulations[9].  Additionally, the use of PEG-
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ylated fibrin [10] or Matrigel [11] as a bioscaffold induces proliferation and resistance to 

apoptosis of different progenitor cell types.  Thus, the use of different matrices for 

cardiac patch formation may induce more desirable modulations in cell function.  

 

Stage 2 

The second stage addresses issues related to cell engraftment after 

transplantation of the cardiac patch.  We showed that hMSC have the ability to migrate 

out of the patch in response to injury.  One potential injury signal mediating this 

migration is stromal derived factor-1α (SDF-1α).  It is well documented that there is a 

multifold increase in endogenous SDF-1α levels after myocardial infarction. Ma and 

colleagues [12] recently described the time course of SDF-1α expression after the 

induction of MI in mice.  They concluded there was a bimodal response with SDF-1α 

expression peaking after 1 d and returning to basal levels by 8 d.  Also known is that 

MSCs express CXCR4 (the receptor for SDF-1α) and can migrate toward a chemotatic 

gradient of SDF-1α upon activation of cytokines, growth factors or hypoxia [12-15]. The 

role of the SDF-1α:CXCR4 axis in the migration of progenitor cells has been implicated 

in cellular cardiomyoplasty as well as other injury models [16].  Based on preliminary 

data obtained, the intracellular SDF-1α:CXCR4 axis of hMSC embedded within collagen 

patches is significantly altered.  Results indicate decreased SDF-1α expression with 

increased CXCR4 expression. These changes may result from decreased oxygen 

tension or cellular interaction with the collagen microstructure. This suggests that hMSC 

have increased migratory potential when embedded in collagen patches.   

Another possible determinant of progenitor cell migration into infarcted 

myocardium is integrin binding.  CD29 is constitutively expressed on MSCs at high 

levels.  Additionally, the binding partners for CD29 (such as Tenascin –C and VCAM-1) 
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are upregulated after MI.  When CD29 was blocked using antibodies on MSCs, the 

engraftment rate of these cells was severely reduced [17].  Thus, MSCs may also 

migrate toward injury by binding to adhesion molecules down a chemotactic gradient. 

Another unknown is the role of protease secretion (i.e. MMPs) in facilitating 

migration.  This hypothesis has not yet been tested but determining the mechanism for 

transmigration and engraftment by cells embedded within cardiac patches will aid in the 

engineering of cells/matrix with an enhanced ability to promote migration into the infarct.  

This would effectively increase cell engraftment beyond current levels and also possibly 

enhance cardiac repair.   

The idea that increased cell engraftment (or increased cell number initially 

delivered) is necessary in augmenting cardiac repair may not always hold true.  

Logically, if more cells engraft into injured myocardium, greater benefit would be 

expected. Delivery of a relatively small number of cells however, demonstrates 

comparable benefit.  As shown in Table 6.1, 50,000 – 10 million cells have been 

delivered to infarcted myocardium in rats and mice.  In all cases augmentation of 

myocardial function and remodeling was observed.   
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Table 6.1) Correlation of cell number to improved myocardial function 

EF – ejection fraction; FS – fractional shortening; FAC – fractional area change; MSC – 
mesenchymal stem cells 

Study In vivo 
Model 

Cell Type # Cells Delivered Engraftment 
(if reported) 

Result 

Grinnemo et al.  
[18] 

Nude Rat Human MSC 1-2 million % not reported 
but few cells 

present at 3 d 

30% increase FAC at 1wk 
compared to controls; difference 

gone by 6 wk 
      

Dai et al. [19] Rat Rat MSC 2 million Not reported 12% increase FS at 4 wk 
compared to controls; difference 

gone by 6 months 
      

Uemura et al. 
[20] 

Mouse Mouse MSC 1 million 0.01% Increased EF% compared to 
controls 

      
Nagaya et al.  

[21] 
Rat Rat MSC 1-5 million Not reported 

though it was 
reported that at 5 
wk 8% of isolated 
MSC expressed 
cardiac markers 

1 million cell showed no 
substantial difference; 5 million 
increased FS% compared to 

controls 

      
Kudo et al. [22] Mouse Mouse MSC 0.05-0.5 million Not reported 68% decrease in infarct size 

compared to controls 
      

Tang et al. [23] Rat Rat MSC 10 million Not reported 60% increase in FS at 8 wk 
compared to controls 

      
Hou et al. [24] IS Rat Human MSC 2 million Not reported 

though few cells 
present at 4 wk 

Increased FS% compared to 
control at 4 wk 

 

Whether graft size/cell number correlates with cardiac function is still an unanswered 

question.  For instance, our studies utilized two types of animal models 

(immunocompetent vs. immnuncompromised) with two different seeding densities to 

determine if patch application had an effect on myocardial function (Chapter 3 and 4). 

We observed similar patterns in infarct repair when using 1 million (immunocompetent) 

or 0.2 million (immunocompromised) cells within cardiac patches.  The use of 1 million 

cells appeared to provide more benefit (although this could be an effect of the model and 

not cell number).  Dose response studies intended to determine optimal cell number and 

graft sizes would greatly benefit ongoing investigations that use cardiac patches.  

 

Future Directions Stage 2 

The application of cardiac patches onto infarcted myocardium allows for localized 

delivery of progenitor cells at relatively high engraftment rates.  The mechanism by 
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which cells are able to migrate from the patch and engraft into the injured tissue, 

however, is unknown.  Studies to determine the migratory potential of cells within cardiac 

patches to known chemotatic (or growth factor) gradients present after MI will help to 

uncover new and useful information about this process.  For instance, progenitor can be 

engineered to overexpress receptors for the most effective chemotatic signals present 

after an infarct.  It may well be that localized delivery is only one advantage of cardiac 

patches.  Another advantage is enhanced migratory potential due to cell culture in a 3D 

construct.  More in depth studies into the SDF-1:CXCR4 axis and integrin/adhesion 

molecule profile of progenitor cells will help determine the role of bioscaffolding in 

modulating cellular migratory potential.  Additional studies to determine the location and 

activity levels of secreted proteases will help to investigate how progenitor cells traverse 

the ventricular wall for efficient engraftment. Enhancing this process with gene therapy 

may help increase engraftment rates.  Lastly, dose response studies will need to be 

performed to determine whether there are optimal graft sizes.  In these studies one will 

have to consider cell number, the size of injury, the type of cell used and the immune 

status of the model.  It is expected that the data from these studies will help to answer 

the question, “How many cells are necessary to have a positive effect on myocardial 

function?”  

 

Stage 3 

The third stage addresses the response of progenitor cells after engraftment.  

Reports have speculated that a variety of events may take place and include: cell 

differentiation, secretion of paracrine factors and/or cell death. MSCs are typically 

defined by their ability to differentiate into osteocytes, chondrocytes and adipocytes [25].  

These multipotent cells have also been reported to differentiate into cardiomyocytes [26] 

or neural cells [27, 28] with the proper stimuli. Several cases of MSC differentiation to 
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cardiomyocytes have been reported after the delivery of MSCs to infarcted myocardium 

[19, 29]. Unfortunately, the functions of these “cardiac-like” cells and the mechanisms 

mediating differentiation in vivo have not been investigated. Interestingly, researchers 

have also reported a lack of differentiation potential from these cells after engraftment 

[30]. In Chapter 3 we noted improved cardiac function without cardiomyocyte 

differentiation or hMSC presence long term. These conflicting results make necessary 

studies in understanding differentiation of MSCs after engraftment.  

Another possible local response of engrafted progenitor cells is to secrete 

paracrine factors.  Potential paracrine factors include angiogenic, anti-apoptotic, 

mitogenic and progenitor cell mobilizing factors.  Such factors may aid in the induction of 

neo-vessel formation, survival of energy starved myocardium and the proliferation and 

mobilization of endogenous cardiac progenitor cells. Interestingly, the mechanisms that 

are mediating the secretion of paracrine factors may be related to the mechanisms 

involved in the modulation of the hMSC secretion profile as described in Chapter 4.  

After delivery, progenitor cells engraft into a 3D hypoxic/ischemic tissue placing similar 

stresses on the cells as that imposed by the cardiac patch. The presence of endogenous 

chemokines and growth factors after a MI may also play a role in the induction of 

progenitor cells to secrete paracrine factors.  For instance, angiotensin II, a potent 

vasoconstrictor regulated via the renin-angiotensin system (see Chapter 2), can induce 

VEGF synthesis in MSCs.  The mechanism for this effect was via binding of Ang II to 

AT1 receptors and activation of the extracellular signal-regulated kinase 1/2 and Akt 

pathways [31].  

Oxygen tension, cellular interaction with the myocardial microstructure or 

stimulation via endogenous chemokines/growth factors may also play a role in the 

apparent differentiation of engrafted progenitor cells. Recent data suggest that Wnt-

related signaling events are upregulated in the peri-infarct region of a MI [32].  
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Additionally, it has been suggested that both canonical and non-canonical Wnt signaling 

pathways play a role in cardiomyogenesis [33, 34] and that MSCs have the molecular 

machinery in place to participate in these signaling cascades [35].  Studies aimed at 

deciphering the role of Wnt signaling in cell differentiation after engraftment, may aid in 

uncovering “tunable” mechanisms involved in enhancing cardiomyogenesis.  

Given the volatile and highly ischemic properties of the heart after infarction, 

many engrafted cells will simply die.  This effectively reduces engraftment over time and 

may reduce the effect progenitor cells have on possible repair and preservation of the 

myocardium. 

 

Future Direction Stage 3 

Progenitor cells which have migrated and engrafted into infarcted myocardium 

generate local responses which may (or may not) contribute to repair.  Such responses 

include cell differentiation and the secretion of paracrine factors.  Cell differentiation may 

occur via Wnt signaling.  Tracking and isolating progenitor cells for mRNA (i.e. laser 

capture) may aid researchers in understanding the role of the Wnt pathway in progenitor 

cell cardiomyogenesis after engraftment.  If this pathway is shown to play a significant 

role, than the use of stem cells which overexpress Frizzled receptors may enhance 

differentiation.   

Another local response is the secretion of paracrine factors.  Studies aimed at 

understanding the role of hypoxia/ischemia, the myocardial microstructure (mechanics 

and content) and chemokines/growth factors at inducing progenitor cell paracrine 

responses will aid in understanding how researchers can prime or modify MSCs for 

optimal performance. For instance, the use of a cardiac patch may aid in the acclimation 

and modulation of progenitor cells to survive and enhance secretion specific factors 

necessary for effective repair.  The choice of scaffold, cell number and bioactive factors 
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will have to be addressed when designing such studies. These local responses are key 

to understanding the reported benefits of cellular cardiomyoplasty.  Answering the 

question: “How do local responses translate into global benefit?” is a lofty task but has to 

be done in order to progress this field forward.  

 

Stage 4 

How local cellular responses might translate into improved myocardial function is 

the focus of Stage 4.  During the discussion of Stage 3, two major local responses were 

described, cell differentiation and secretion of paracrine factors.  Under an appropriate 

sets of stresses and bioactive signals, progenitor cells may differentiate into 

cardiomyocytes.  If these cells are able to integrate into the synticium of the myocardium 

and produce a contractile force, they may contribute to improved systolic function.   

One question is how many cells are necessary to have a beneficial effect?  

Under normal conditions, there are millions of cells working together to actively contract 

and relax the heart.  After cellular cardiomyoplasty, the number of cells which actually 

engraft reduces the likelihood that a necessary number of cells differentiate into 

cardiomyocytes and integrate with the endogenous system.  Therefore, cell 

differentiation alone may not account for improved myocardial function after infarction. 

Several groups contend that preserved ejection fraction or fractional shortening 

suggests improved contractility and thus the emergence of new, working myocytes.  

This, however, may be due to compensatory hypertrophic responses, reduced 

deposition of collagen or reduced infarct size. These responses can be explained via the 

interaction of endogenous cells with beneficial paracrine factors secreted from engrafted 

progenitor cells.  For instance, several pathways are involved in pathological 

hypertrophy of cardiomyocytes and include: G-protein coupled receptor (GPCR), 

mitogen activated protein kinase and cytokine activated pathways (via NF-κb). Factors 
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secreted from progenitor cells such as insulin-like growth factor-1 (IGF-1) can bind 

receptor tyrosine kinases (or other receptors such as GPCR or specific cytokine 

receptors) to induce hypertrophy of the viable myocytes (most likely in the peri-infarct 

region).  This hypertrophic response can preserve ejection fraction though may also act 

as a catalyst for diastolic dysfunction.   

Paracrine factors from progenitor cells may also reduce fibrosis by inhibiting 

MMP activity via TIMP secretion or by attenuating myofibroblasts production of collagen 

via IGF-1 or adrenomedullin [36].  MMPs are involved in the initial breakdown of the 

cardiac microstructure which provides the necessary space for myofibroblast to lay down 

scar tissue.  Additionally, relaxin [37], a member of the IGF family of growth factors, has 

been cited as an antifibrotic growth factor which can act on myofibroblasts.  Both of 

these efforts will help reduce fibrosis.  

A reduction in infarct size can also aid in preserving cardiac function.  This is 

most efficiently done by reperfusion of an infarction. The complete block of a coronary 

artery may not always allow for reperfusion and thus neovessel formation mediated by 

paracrine factors secreted from engrafted progenitor cells may help.  Several angiogenic 

factors have been reported to secrete from progenitor cells in response to hypoxia and in 

vivo after infarction.  These factors actively assist in the recruitment, proliferation and 

stabilization of endothelial cells.  In Chapter 4 and 5 we describe the pro-angiogenic 

responses of progenitor cells delivered via a cardiac patch.  There was no change in 

neoessel formation in vivo, however. Therefore, neovessel formation may not play as big 

a role in infarct repair as thought.  Other paracrine-mediated events may be attributing to 

repair, however.  For instance, in Chapter 3 we noted enhanced myofibroblast presence 

after patch delivery.  Myofibroblasts are responsive to several paracrine stimuli. 

Lastly, paracrine factors from engrafted progenitor cells can aid in the recruitment 

and proliferation of endogenous progenitor cells. In Chapter 3 we presented preliminary 
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data which suggest that the application of a cardiac patch increases the number of c-kit+ 

cells in the infarct region after MI.  Endogenous progenitor cells have the capacity to 

differentiae into cardiomyocytes or vascular cell types (i.e. endothelial cells and/or 

smooth muscle cells).  Given sufficient differentiation, this response may aid in the 

replenishment of necrotic/apoptotic myocytes and the formation of functional blood 

vessels.   

 

Future Directions Stage 4 

Understanding how local responses after cellular cardiomyoplasty translate into 

improved global myocardial function will allow researchers to determine optimal cell 

types for delivery, how cells can be engineered for optimal performance (possibly via 

modulation in cardiac patches) and which responses provided the most benefit. Cell 

differentiation is one response that may aid in improved cardiac function after infarction.  

Studies aimed at determining the contractile and integration potential of these cells will 

have to be completed.  For instance, labeled progenitor cells (GFP label driven by an 

MCL-2v promoter to isolate progenitor cells which have differentiated to cardiomyocytes) 

can be isolated and contractile properties analyzed using published cell shortening 

analysis techniques.  Additionally, patch clamp studies will help to understand the 

electrophysiological state of isolated cells.  Optical mapping techniques can also be 

used to determine whether differentiated progenitor cells have integrated electrically with 

the endogenous myocardium.  Optical mapping will also aid in determining the location 

of differentiated progenitor cells to help correlate location with function. If differentiated 

cells are shown to significantly contribute the cardiac function, methods intended to 

promote cardiac cell differentiation should be explored.   

Although some differentiation is possible after progenitor cell engraftment, it may 

not be enough to explain the augmented function reported after cellular cardiomyoplasty.  
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Thus, cellular responses to paracrine factors should be studied.  These include 

hypertrophy, apoptosis, angiogenesis, fibrosis and progenitor cell recruitment.  All of 

these responses provide potential benefits to cardiac repair.  Studies aimed at 

understanding the extent by which these responses aid in cardiac repair should be 

explored.  Additionally, studies to determine what factors (and how much) are most 

beneficial are imperative.   

 

Stage 5   

Translating the use of cardiac patches into clinical arenas must be considered.  

Considerations include: cell source, immune response and transplantation of the cardiac 

patch.  In Chapter 5 the effect of B4 progenitor cell patch application on myocardial 

function after infarction was described.  B4 progenitor cells were chosen based on 

several limitations to hMSC. A major limitation with hMSC is the need for ex vivo 

expansion. This inherently delays the turnover before treatment. Given the similarities 

between B4 progenitor cells and hMSC [38] it was expected that these two cell types 

would perform similarly.  In fact, we did observe similar indices of functional 

improvement compared to MI controls.  Therefore B4 progenitor cells may represent a 

suitable alternative to hMSC therapy.  The need for ex vivo expansion is just one 

limitation to progenitor cells use.  Other cell types may be less prone to secrete 

paracrine factors or more prone to differentiate into unwanted cell types.  Because of the 

multitude of cell responses, the choice of one “optimal” cell type may not be possible.  

Thus several cell types may be necessary.  For instance, one cell type can be used to 

limit infarct expansion by inducing neovessel formation, another cell may differentiate 

into working myocytes and integrate with the host tissue and another cell may assist in 

limiting fibrosis through enhanced IGF-1 secretion. If a cardiac patch is chosen as the 

delivery vehicle than its role in the modulation of cell function will have to be addressed. 
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The question of cell source has no easy answer and will likely require many more years 

of research before significant progress is achieved. 

One major issue with the use of B4 progenitor cells is they will likely have to be 

provided as an allogenic transplant.  Thus, the likelihood of an immunological response 

is foreseeable.  It will be interesting to determine the extent of immune response elicited 

due to B4 progenitor cell delivery (or any allogenic cell source).  Such experiments 

would proceed similarly to what was performed with hMSC and would involve the 

delivery of B4 progenitor cells to immune-competent models of MI.  This experiment will 

help to answer whether B4 progenitor cells have any immunoprivileges and whether they 

can continue to elicit a beneficial effect in the presence of an immunological response.  

This effect was indirectly addressed in the Chapters 3 and 4.  The use of 

immunocompetent and immunocompromised animal models for a xenotransplant 

provided for similar indices of repair.  The mechanisms governing each repair process 

are untested, however. 

The transplantation of cardiac patches may present problems for cardiac 

surgeons.  In most surgical settings, the use of non-invasive or minimally invasive 

procedures is preferred.  This produces less tissue trauma for the patient. Thus, if the 

cardiac patch is to be used in a clinical setting, effective and minimally invasive ways to 

transplant the patch are preferred.  Given the increase in temperature during an 

inflammatory responses and occurrence of acidosis after MI, physically responsive 

bioscaffolds may allow for localized delivery of cardiac patches.  Thus, 

thermoresponsive (or pH-responsive) bioscaffolds [39] or the injection of a pre-gelled 

patch directly into the myocardium [40] using an image modality to guide the surgeon to 

an injection site may provide suitable alternatives to a complete thoracotomy.  

The use of a cardiac patch provides plenty of benefits.  Unexpected occurrences 

can blunt any positive effect, however.  For instance, unwanted differentiation, the 
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secretion of non-beneficial paracrine factors or induction of adverse mechanical strain on 

the heart are just a few potential problems.  Although we did not address this 

specifically, any unwanted events should be addressed throughout an experimental 

design. 

 

Future Directions Stage 5 

 Effectively translating cellular cardiomyoplasty and cardiac patch application into 

the clinic is a work in progress.  Several factors related to cell sourcing (which cell(s) will 

provide the greatest benefit and how can cardiac patches be used to aid in this benefit?), 

the immune response (if allogenic cells are to be used, how does the immune response 

effect local cellular responses?) and surgical transplantation of the cardiac patch (how to 

do so in a minimally invasive fashion?) have to be addressed.  Studies aimed at 

determining optimal cell types and whether a cell “cocktail” could be more beneficial will 

have to be explored.  These studies will proceed as described in Chapter 3, 4, and 5 

except the cell type will vary.  Additionally, studies aimed at understanding the role of the 

immune responses in cell mediated repair will allow researchers to either expand the cell 

source pool (if the immune response is shown to induce minimal changes in local 

cellular responses) or shrink the cell source pool.  Lastly, innovative methods for 

minimally invasive delivery of the cardiac patch will need to be explored if this technique 

is to translate into the clinic.  This may involve the use of thermo- or pH-responsive 

bioscaffolds for localized delivery of cardiac patches.  

 

6.2 CONCLUSIONS 

It is clear that a tissue engineered approach to cell delivery can enhance 

engraftment and modulate cell function.  Whether these processes can be further 

advanced is a work in progress.  Issues related to how cells migrate from the patch, how 

189



they affect myocardial improvement, and how to deliver a patch in a minimally invasive 

manner need to be addressed, however. 
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APPENDIX A 
 

Performing a Successful Left Anterior Descending Coronary Artery Ligation 
 
 
 

A.1 INTRODUCTION 

The following appendix provides a step-by-step protocol for performing a 

successful left anterior descending coronary ligation in rats.  In vivo models of 

myocardial infarction have become essential to investigating the efficacy of cellular 

cardiomyoplasty.  Unfortunately there is no published in depth protocol for this 

procedure.  Surgical technique and equipment (and instruments) will be presented. 

 

A.2 MATERIALS 

Surgical Pack 
 
-Chest tube 
-20mL syringe 
-Scalpel handle (#3) 
-Rib retractor 
-Needle Holder (auto-locking) 
-12 cm hemostats (curved; x2) 
-Small scissors 
-12 cm forceps (straight) 
-10 cm forceps (curved; x2)  
-14 cm Surgical scissors (straight; used for cutting non-tissue) 
-gauze (1 – 2, 4x4 inch pieces) 
-Cotton swabs (x8) 
 
Surgical Equipment 
 
-Rodent Anesthesia Workstation 
-Isoflurane vaporizer 
-Heating Pad 
-EKG monitor 
-Rectal Probe 
-Hair Clippers 
-Scale 
-Surgical lamp (fiber optics) 
-Trachea tube 
-Nose cone (small and medium sizes) 
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Anesthesia and Analgesics 
 
-Bupenorphine (Dose: 0.1mg/kg) 
-Bupivicaine (Dose: 0.3mL 0.25% solution) 
-Isoflurane 
 
Miscellaneous 
 
-1mL Insulin syringes 
-Isolation gown 
-Face mask 
-Gloves (both sterile and non-sterile) 
-Sterile Drapes 
-Shoe covers 
-Sterile Saline 
-Sterile beaker (small) 
-Hemostats and forceps for intubation 
-Surgical bed (i.e. Styrofoam lids) 
-Clean rodent cage (with food and water) 
-Suture (4-0 nylon, 5-0 nylon, 6-0 silk) 
 

A.3 PRE-OP 

Before performing this surgery, make sure that all materials described in section A.2 are 

available.   

 

1) Retrieve rat from housing and bring to surgical suite.  Allow animal at least 20 

minutes to acclimate to new environment.  If your animal facilities require laminar flow 

hoods to be used when opening cages, place animal under an operating hood during 

this time. 

 

2) During the acclimation period prepare aliquots of 0.9% saline in 1mL insulin 

syringes (for each rat 0.5mL of warm saline will be injected SC post-op into two sites). 

Also prepare 0.1mg/mL Bupenorphine and 0.25% Bupivicaine in 1mL insulin syringes.  

Bupenorphine will be delivered SC post-op at 0.1mg/kg and Bupevicaine will be 

delivered IM (directly beneath the initial incision site) at 0.3mL per rat.   
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 Turn on the heating pad, check isoflurane levels and add as needed, clean 

surgical space with 70% ethanol or Clidex, turn on rectal thermometer and ECG monitor.   

 

3) Retrieve acclimated rat using a medium size nose cone.  Once rodent is inside 

nose cone, place onto a flat surface near vaporizer.  Attach vaporizer to nose cone. Turn 

on oxygen, rodent workstation (make sure ventilation function is off) and set isoflurane 

level to five (or max) and oxygen flow rate to 0.5 L/min.  During this time watch for three 

responses: 

Excitability:  Initially the rodent will appear calm in the nosecone but after a few 

minutes he/she will appear more excited and restless.  This response is normal. 

Flickering of Eyelids:  After the excitability response the rodent will begin to 

settle down and the eyelids will begin to quickly flicker.  The cessation of this 

response is a good indicator that one can move to the next step  

Respiration:  Throughout this process the breathing rate of the rodent will 

steadily decrease.  Monitoring respiration is a good method to determine the 

depth of anesthesia. 

 

4) Once respiration is down to 1 breath per second or the eyelids have stopped 

flickering, turn off anesthesia, remove the rodent from nosecone and weigh.  Record this 

weight for later use.  Next place the rodent in a supine position with a small nosecone 

attached.  Return isoflurane levels back to max.  Again monitor respiration.  Once the 

breath rate is down to one per second the surgeon should proceed to the next step.  

While waiting, secure the rodent to a surgical bed on top of heating pad using surgical 

tape.  Place a rolled piece of gauze (no more than 0.75 inch thick) under the chest of the 

rodent to lift the heart slightly.  The gauze should be placed directly inferior to the armpit 

of the rodent.  The surgeon should modify the supine position slightly so that the left leg 
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crosses over to the right leg. Use surgical tape to secure this position.  This modification 

displaces the heart slightly so that the anterior portion is more visible after rib retraction. 

 

5) Once the breath rate has returned to one per second, turn off the anesthesia and 

remove nose cone.  Position the surgical bed (to which the rodent is secured to) such 

that the nose of the rodent is toward the surgeon.  Place rubber bands (or some other 

restraint) around the incisors of the rodent so that its head remains flat.  Direct the light 

source to the throat of the rodent. Gently displace the tongue and use a 14 cm curved 

hemostats to lift the jaw.  At this point the surgeon should see the vocal cords.  Insert 

trachea tube into the trachea when the cords are OPEN.  Do not force the tube down the 

trachea as this will cause severe trauma.  Once the tube is in the trachea, attach it to the 

rodent workstation, set isoflurane level to 1.5 – 2, turn on mechanical ventilation and 

increase oxygen such that be pO2 is above 10mmHg.  The ventilation rate should be set 

to 80 per minute for rats. Check the rodent to make sure the chest expands and 

collapses with the ventilator.  If not, remove tube and try again.  Do not try more than 3 

times to avoid serious throat trauma.  For most surgeons, this will be the hardest skill to 

master for this surgery. 

 

6)  Secure trachea tube and connections using surgical tape.  Place ointment onto 

the eyes of rodents to prevent infection and severe drying during surgery. Shave the 

rodent (if hair is present) and vacuum excess hair.  Be sure there is no loose hairs 

present around the surgical sight.  Clean sight with surgical scrub (70% ethanol) to clean 

and pick up any loose hair.  Attach ECG monitor and insert rectal probe (body 

temperature should be maintained at 37oC).  Next, inject 0.3mL of bupivicaine IM directly 

under the proposed incision sight (just lateral to the sternum).  Use surgical scrub to 
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clean the area again and then place iodine onto the area for one minute. Remove iodine 

with sterile ethanol wipes. 

 

7)  Aseptically place sterile drape over the rodent.  Be sure there is a hole in the 

drape which should be big enough to see the entire surgical site.  Next, aseptically open 

the surgical pack and sterile beaker.  Place sterile saline into the beaker and set close to 

surgery area. Adjust light source to desired intensity and location.  Aseptically put on 

sterile gloves and proceed to the surgery area. 

 

A.4 SURGICAL PROCEDURE 

 

1) Using a scalpel with sharp blade (do not reuse the blades), make a 3-4 cm 

parasternal incision just left of the sternum.  Be sure not to press with too much force.  

Use blutisection to lift skin from muscle layer.  At this point you will see a thick muscle 

layer.  (note:  There are actually two muscle layers here with the other being directly 

under the visible muscle layer).  Use scalpel to make a 3 cm parasternal incision in the 

top layer only.  If there is bleeding, be sure it is under control before proceeding.  

Displace the second layer (which covers the ribcage) to the left side of the rodent by 

slowly cutting the connective tissue beneath this layer.  The use of a scalpel or scissors 

works well for this step. Use hemostats secure this layer to the side of the rodent such 

that the ribcage is clearly visible.       

 

2)  Find the largest intercostal space and insert 12 cm curved hemostats into this 

area at the peak of the rib (Each rib extends from the sternum going down.  The rib will 

peak at a particular location and extend upwards toward the left arm).  Rotate the 

hemostats so that the tip goes beneath the rib more proximal to the heart and out the 
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adjacent intercostal space.  Slightly lift and open the hemostats and cut rib.  This 

procedure aids in preventing unwanted damage to the lung which is in the area.  Place a 

small piece of damp gauze through the hole to move the lung slightly to the left.  Use 

scissors to cut up toward the next proximal rib but do not cut this rib.  Use scissors to cut 

down toward the next distal rib.  Cut through this rib and continue cutting until the next 

rib.  Do not cut through this rib.  In total two ribs and three intercostal spaces should be 

cut (note: during this step always be aware of where the lung is located.  Damage to the 

lung is very traumatic). 

 

3) Retract the ribs.  Use additional damp gauze to displace the lung so that the 

anterior portion of the heart is visible.  Gently remove the pericardium using forceps and 

displace the left atrial appendage slightly upward to gain a better view of the LAD 

(traditionally, the LAD branches from the left main at the intersection of the left atrial 

appendage and pulmonary conus.  These are the best landmarks if the surgeon is 

unable to visualize the LAD).  Reduce intensity of the light source and inspect the heart 

for the LAD.  The LAD is not bright red (these are veins) or superficial.  It will be directly 

beneath the epicardium and will look pinkish (and very pale).  It will continue straight 

down toward the apex of the heart and will most likely branch 1-3 mm from the base of 

the heart into the lateral myocardium. 

 

4) Obtain sterile 6-0 silk suture and ligate the LAD 1-2 mm from the intersection of 

the left atrial appendage and pulmonary conus (note:  1-2 mm is just a typical number 

that seems to work for most surgeries.  For nude rats, however, this may be too proximal 

and it is suggested that the ligation be made 2-4 mm from the intersection.  If the ligation 

is made too proximal, the infarct will be too big and the rodent will die.  If the ligation is 

made to distal however, the infarct will be very small and thus useless in your analysis.  
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The surgeon should practice several surgeries to determine optimal ligation parameters).  

If a successful ligation has been made there will be immediate ST-elevation on the EKG 

monitor and pallor of the myocardium.  The myocardium will look grey in the anterio-

lateral portions of the heart.  If these changes do not occur than up to two more ligations 

can be made.  Ligation of LAD branches may also help in making a good infarct. 

 

5) Monitor the rodent for 10 minutes after ligation for adverse arrhythmias, 

respiration (remove gauze from lung so that lungs can fully inflate) and fusion of ST-

segment with the ORS complex on the EKG.  Also make sure the ligation does not come 

loose by observing maintained pallor.  Make sure that any bleeding (especially from the 

heart) is under control before continuing.   

 

6) Clean pleural cavity with gauze to remove excess blood and fluid.  Remove 

excess gauze, retractor and hemostats from surgical area. Suture the rodent closed in 

three layers:  

Ribcage: 4-0 interrupted; inserted chest tube before tightening of last suture; bite 

size should be < 1 mm 

 Muscle:  5-0 continuous; bite size should be < 1 mm 

 Skin:  4-0 continuous; bite size should be 1-2 mm 

 

7)  Right before the skin suture is secured, restore negative pressure using a 20mL 

syringe attached to the chest tube.  Blood and other fluids will also be drawn into the 

syringe. 

 

8) Clean skin with saline. 
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A.5 POST-OP 

1) Turn off anesthesia, removed rolled gauze from under chest, remove drape and 

rectal thermometer.  Inject 0.5 mL of warm saline SC (any location other than the 

surgical site is fine).  Also inject bupenorphine SC at a dose of 0.1mg/kg.  This mass of 

the rodent taken pre-op should be used to determine the dose.  Maintain ventilation and 

O2 levels until it is clear that the rodent is breathing on its own.  Turn off ventilation and 

set the O2 flow rate to 0.5.  Allow the rodent to take in pure O2 for at least 5 minutes and 

then remove the trachea tube.  Watch to make sure the rodent continues breathing for 5 

minutes and then return to cage.  The rodent should be placed on its side and the cage 

should be clean and contain moist food on top of the bedding.  One half of the cage 

should be place on a heating pad.  This will help generate a temperature gradient that so 

the rodent can choose a comfortable area for eating or sleeping. 

 

2)  Return live rodent to housing room. Watch the rodent for consecutive three days.  

If there are signs of pain (porphyrin red staining around the eyes, lack of appetite, loss of 

body mass, lack of activity) give more bupenorphine at the same dose.   
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APPENDIX B 
 

Modulation of Human Embryonic Stem Cell Function in Collagen Patches 
 
 
 
B.1 INTRODUCTION 
 
 In chapters 3 and 4 we describe the use of a TE approach (combination of cells 

and matrix) to locally and homogenously deliver cells to an infarct.  Typical cell source 

choices are limited in their ability to differentiate into working cardiomyocytes. To 

address this issues human embryonic stem cells (hESCs) have been considered as an 

alternative for cardiomyocyte replacement.  Such cells have been shown to readily 

differentiate into cardiomyocytes under specific conditions [1-3] and may offer a superior 

platform for cardiac regeneration.  The culture of hESCs within TE constructs, however 

may alter their function.  We hypothesize that culture of hESCs within collagen gels will 

modulate cellular viability, proliferation and differentiation compared to cells cultured as 

monolayers.  

 

B.2 MATERIALS and METHODS 

B.2.1 Cell Culture 

hESC obtained from a NSF-sponsored core lab at Emory University, were 

cultured in a 90% DMEM/Ham’s F12 Mixture (1:1), 20% Knock-Out Serum 

Replacement, 1% glutamine, 1% non-essential amino acids and 10 ng/mL human 

recombinant basic fibroblast growth factor at 37oC in 3% O2 and 5% CO2 on mitomycin C 

treated mouse embryonic feeder cells.   

 

B.2.2 Formation of Cell Seeded Collagen Patches 

H9 (female) hESC expanded to P30-P50 were embedded into a rat tail type I 

collagen matrix to form cardiac patches.  To produce cardiac patches for stem cell 
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delivery, 0.2 million hESCs (resuspended as small clumps) were mixed in a solution of 

rat tail type I collagen, 5x DMEM and serum replacement such that the final collagen 

concentration was 2 mg/mL.  The solution was placed in individual wells of a non-tissue 

culture-treated 48-well plate in order to create a patch that is between 0.3 – 0.7 cm in 

diameter. Patches were cultured at 37oC in 5% CO2 for 1-7 d before usage 

 

B.2.3 Viability Assays 

To assess cell number within the construct, patches containing hESC were 

digested in type I collagenase (250 U/mL) diluted in DMEM for 30 min at 37oC with 

intermittent mixing.  Each patch was submerged in 2mL of the collagenase solution and 

placed into at 37oC water bath.  The solution was triturated every 5 minutes to assist in 

the digestion of the construct.  At the end of the incubation period, collagenase activity 

was inhibited by the addition of 500μl of 100% FBS and 8 ml of complete hESC medium 

(see section B.2.1). Counts were made using a hemocytometer on day three. In addition, 

a more qualitative measure of viability was completed via fluorescence microscopy using 

a commercial live/dead kit.  Constructs were washed in (PBS) to remove serum.  

Fluorescent EthD-1 (4μM, red) and SYTO 10 (4μM, green) (Molecular Probes; Eugene, 

Oregon) were then added for 30 minutes.  Afterwards, constructs are washed three 

times in PBS and viewed under a confocal microscope.  Although this technique only 

offers finite penetration into the construct it did provide a general sense as to the viability 

of cells within the collagen matrix.   

 

B.2.4 Proliferation 

Proliferation was determined by measuring the incorporation of 5-ethynyl-2'-

deoxyuridine (EdU); a nucleoside analog to thymidine which is incorporated into DNA 
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during synthesis. Cellularized constructs or cells cultured as a monolayer were pulsed 

with 10mM EdU at (Invitrogen; Carlsbad, CA) for 24 hours after their initial formation.  

Afterwards constructs were washed in PBS and digested using collagenase to isolate 

cells as described above (B.2.3).  Next, cells were washed using a 1% bovine serum 

albumin (BSA)/PBS solution and then fixed using the Click-iT fixative (invitrogen; 

Carlsbad, CA) for 15 minutes at room temperature.  Cells were permeabilized with Triton 

X-100 and then stained using the Click-iT cocktail mixture for 30 minutes at room 

temperature.  Afterwards, cells were washed with 1% BSA/PBS and used for flow 

cytometry.  To simplify analysis, hESCs were gated using an unstained sample (no 

antibody) on a forward scatter vs. side scatter dot plot.  This procedure helped to remove 

excess debris.  Next, a positive control (using hESCs cultured on treated plastic) was 

run to determine the proper levels for positive signal.  Samples were run and analyzed 

for positive fluorescein isothiocyanate (FITC) signal using the histogram option of the BD 

FACS Diva software package (BD Biosciences; San Jose, CA). Positive signal was 

compared with the appropriate isotype controls which allowed for accurate background 

subtraction. Analysis of data was performed using FCS Express 3.0 software (De Novo 

Software; Los Angles, CA) and the histogram subtraction function. 

 

B.2.5 Assessment of Cell Differentiation 

Differentiation of hESCs within collagen patches was measured by monitoring 

the expression of markers for stem cell potency over several days.  hESC isolated from 

the patch by treatment in collagenase (B.2.3) were stained and analyzed for the 

expression of Oct 3/4, SSEA 4 and anti-TRA 1-81 by flow cytometry.  After cells are 

isolated from the patch, they were fixed using a 4% paraformaldehyde (PFA) for 15 

minutes on ice.  Next, cells were stained with the appropriate primary antibodies for 30 

minutes on ice.  If necessary, fluorescent conjugated secondary antibodies were added 
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afterwards for 25 minutes on ice (Santa Cruz Biotechnology; Santa Cruz, CA).  Cells 

were washed in a 0.3% BSA/PBS solution and analyzed via flow cytometry as described 

above (B.2.4). A Student’s t-test was used to determine statistical significance. 

 

B.3 RESULTS 

B.3.1 Culture of hESCs within Collagen Patches Modulates Proliferation, 

Differentiation and Viability. 

To determine the effect of cell culture within collagen patches on hESC function, 

we performed a series of test to assess cell proliferation, differentiation and viability.  

Proliferation was quantified using a pulse-chase with EdU substrate (Figure 4.3).  EdU 

incorporation within cell types as monolayers or removed from within collagen patches 

was measured with flow cytometry.  hESC demonstrated attenuated proliferative 

capacity upon culture within collagen patches (hESC showed a 92% reduction).   

 

 

Figure B.1) Culture of hESCs in collagen patches attenuates proliferation.  Analysis by 
flow cytometry of EdU incorporation was used to determine the proliferative capacity of 
hESCs cultured within patches compared to monolayers. hESC demonstrated a 92% 
reduction in EdU incorporation and thus proliferation after culture in collagen patches (n 
= 1).   
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hESC demonstrated slight modulations in potency after culture in collagen 

patches.  SSEA4, Oct 3/4 and Tra 1-81 were used to monitor potency of hESC over 3 d.  

There was no change in SSEA4 expression on hESC when cultured in collagen patches 

(Monolayer: 77% Expression vs. Patch: 78% Expression; Figure 4.5a).  We did notice 

attenuated expression levels of Oct 3/4, however.  Oct 3/4 showed a significant 

reduction in expression of 64.7% (Figure 4.5b; Monolayer: 43.6% Expression vs. Patch: 

15.4% Expression; p < 0.05).  There was also a non-statistical reduction in Tra 1-81 

expression (Figure 4.5c; Monolayer: 69.4% Expression vs. Patch: 56.1% Expression; p = 

0.1) in hESC cultured in collagen patches.   

 

 

 

Figure B.2) Culture of hESC in collagen patches modulates potency.  hESC evaluated 
for the expression of A) SSEA (Monolayer: 77 + 3.7% vs. Patch: 78 + 4.4%; p = 0.8) B) 
Oct 3/4 (Monolayer: 43.6 + 6.7% vs. Patch: 15.4 + 7.1%; *p = 0.04) and C) TRA 1-81 
(Monolayer: 69.4 + 4.9% vs. Patch: 56.1 + 5.2%; p = 0.1) demonstrate attenuated 
expression of Oct 3/4 upon culture in collagen patches. SSEA 4  and TRA 1-81 
expression remains statistically unchanged over 3 d in culture.  (n > 3 for all groups) 
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hESC demonstrated variable cell morphology and viability after 3 d in collagen 

patches (Figure 4.6e-f). As shown in Figure 4.6d-f, there were instances of small 

embryoid body-like structures developing in some samples and in most others there was 

complete loss of cell viability with no body formation.  In addition, there were instances 

where cell yield was as low as 1800 cell per patch and at other times as many as 

116,000 cells could be isolated with collagenase treatment after 3 d in culture (Figure 

4.6c).  Most instances resulted in low cell yield.  This variability in cell survival and 

morphology prompted us to exclude hESC from potential in vivo experiments as it was 

concluded that under the current conditions, undifferentiated hESC would not represent 

a viable option for tissue engineered-based cell delivery strategies. Additionally, 

teratoma formation (a significant disadvantage to the use of undifferentiatied ESC in 

vivo) was still an unresolved risk. 

 

 

Figure B.3) Viability of hESCs cells in collagen patches. A live/dead assay was used to 
determine the viability of hESC in collagen patches given the low and variable cell yield 
after patch treatment with collagenase (A; n = 6). hESC demonstrated a tendency to 
form small embryoid bodies with collagen patches (B), though this occurred on rare 
instances.  C and D) There was also variability in hESC viability in collagen patches 
(green – live cells, red – dead cells).    
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B.4 DISCUSSION 

There are several cell sources marked for use in cellular cardiomyoplasty. hESC 

are attractive because they readily differentiate into working cardiomyocytes.  

Unfortunately, our experiments show that hESC display variable growth and viability 

patterns and thus do not represent a good option for cell delivery in collagen constructs. 

It has already been suggested that hESC are fairly intolerant to hypoxia [4] but hESC 

must also be grown as colonies.  Thus single celled hESC are more likely to undergo 

apoptosis [5] then those grown as colonies. Even when grown as colonies, however, 

hESC continue to display incidences of cell death.  On the other hand there were also 

cases of embroid body formation within collagen matrices.  This is likely due to initial 

colony size.  It is assumed that if colonies were large enough they would continue to 

grow.  If colonies did not meet a particular threshold, however, they would assume the 

same fate as single cells.  Variations in initial colony size were due to mild enzymatic 

treatment and gentle trituration of hESC.  This treatment may also have induced cell 

death before culture in collagen patches.  The use of small colonies in TE delivery 

vehicles however, foreshadow teratoma formation once transplanted in vivo.  Thus this 

strategy does not represent a suitable option for hESC delivery.  It may be possible to 

use to ROCK inhibitors to allow for single cell survival in collagen patches [6].  Whether 

or not hESCs will migrate out of the patch and into the adjacent myocardium will have to 

be investigated if this strategy is to be explored. 

In conclusions, using the conditions and experimental procedures described, the 

use of undifferentiated hESC would not represent a viable option of TE-based delivery 

strategies.  Methods for improving cell survival in TE constructs and preventing adverse 

teratoma formation would aid in advancing the use of hESC in translational research.  
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APPENDIX C 
 

Secretion Profile for B4 Progenitor Cells 
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Figure C.1) B4 Progenitor Cell Secretion Profile.  A & B) B4 progenitor cells cultured as 
monolayers or within patches and exposed to normoxia (20% O2) or hypoxia (1% O2) 
display differential secretion profiles of angiogenic factors. C) There was a general 
increase in protein content in conditioned media from normoxic monolayers (BN; 0.8 + 
0.03 mg/mL) and hypoxic monolayers (BH; 0.78 + 0.02 mg/mL), versus a maintenance 
media control (MM; 0.57 + 0.01 mg/mL; *p < 0.001).  There was no statistical difference 
between normoxic patches (BNP; 0.64 + 0.02 mg/mL) and hypoxic patches (BHP; 0.62 + 
0.03 mg/mL) versus a MM control.  Specific analysis of pro-angiogenic factors revealed 
differential expressions patterns based on hMSC culture in monolayers versus collagen 
patches for D) ANG (Normoxia: 239.3 vs. 16.5 + 1.6 pg/mL; and Hypoxia: 198 + 49.2 vs. 
15.6 + 1 pg/mL; *p < 0.01), E) FGF-1 (no statistical significance was observed; 
Normoxia: 104.9 vs. 26.8 + 6.4 pg/mL and Hypoxia: 42.7 + 17.1 vs. 15.6 + 2.3 pg/mL), 
F) VEGF  (Normoxia: 144.8 vs. 128.6 + 23.8 pg/mL and Hypoxia: 562.3 + 107.1 vs. 
184.7 + 30.5 pg/mL; *p < 0.01) and G) IL-8 (no statistical significance was observed; 
Normoxia: 118.5 vs. 68 + 26.1 pg/mL and Hypoxia: 139 + 10.7 vs. 52.5 + 13.8 pg/mL) n 
> 3 for all groups for panel C; n = 3 for BNP and BHP; n = 2 for BH and n = 1 BN for 
ELISAs.   
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