Large Deviation Principles for Weakly Interacting Fermions

N. J. B. Aza

Departamento de Física Matemática, Universidade de São Paulo

Joint work with J.-B. Bru, W. de Siqueira Pedra and L. C. P. A. M. Müssnich

October 08, 2016

Lebowitz-Lenci-Spohn '00, Gallavotti-Lebowitz-Mastropietro '02, Netočny-Redig '04, Lenci-Rey-Bellet '05, Hiai-Mosonyi-Ogawa '07, Ogata '10, Ogata-Rey-Bellet '11, de Roeck-Maes-Netočny-Schütz '15

Lebowitz-Lenci-Spohn '00, Gallavotti-Lebowitz-Mastropietro '02, Netočny-Redig '04, Lenci-Rey-Bellet '05, Hiai-Mosonyi-Ogawa '07, Ogata '10, Ogata-Rey-Bellet '11, de Roeck-Maes-Netočny-Schütz '15

■ Observe that for ρ a state on the C^* -algebra $\mathfrak A$ and $A \in \mathfrak A$ a selfadjoint element, there is a unique probability measure $\mu_{\rho,A}$ on $\mathbb R$ such that $\mu_{\rho,A}(\operatorname{spec}(A)) = 1$ and, for all continuous functions $f : \mathbb R \to \mathbb C$,

$$\rho(f(A)) = \int_{\mathbb{R}} f(x) \mu_{\rho,A}(dx).$$

■ $\mu_A \doteq \mu_{\rho,A}$ is the measure associated to ρ and A. For a sequence of selfadjoints $\{A_I\}_{I \in \mathbb{R}^+}$ of \mathfrak{A} , and a state ρ , we say that these satisfy a Large Deviation Principle (LDP), with scale $|\Lambda_I|$, if, for all Borel measurable $\Gamma \subset \mathbb{R}$,

$$-\inf_{x\in \tilde{\Gamma}}\mathscr{I}(x)\leq \liminf_{l\to\infty}\frac{1}{|\Lambda_l|}\log \mu_{A_l}(\Gamma)\leq \limsup_{l\to\infty}\frac{1}{|\Lambda_l|}\log \mu_{A_l}(\Gamma)\leq -\inf_{x\in \overline{\Gamma}}\mathscr{I}(x)$$

■ To find an LDP we desire to use the Gärtner–Ellis Theorem (GET) to μ_{A_I} , through the scaled cumulant generating function

$$\overline{f}(s) = \lim_{l \to \infty} \frac{1}{|\Lambda_l|} \log \rho(e^{s|\Lambda_l|A_l}), \quad s \in \mathbb{R}.$$

- If \overline{f} exists and is differentiable, then the good rate function \mathscr{I} is the Legendre–Fenchel transform of \overline{f} .
- In the case of lattice fermions we represent \overline{f} as a Berezin–integral and analyse it using "tree expansions". The scale $|\Lambda_i|$ will be then the volume of the boxes Λ_i :

$$\Lambda_I \doteq \{(x_1,\ldots,x_d) \in \mathbb{Z}^d : |x_1|,\ldots,|x_d| \leq I\} \in \mathscr{P}_f(\mathbb{Z}^d).$$

■ For lattice fermions, $\mathfrak A$ is the CAR C^* -algebra generated by the identity $\mathbb 1$ and $\{a_{s,x}\}_{s,x\in\mathfrak L}$. $\mathfrak L\doteq S\times\mathbb Z^d$ where S is the set of Spins of single fermions. However, our proofs do not depend on the particular choice of S.

CAR:

$${a_x, a_{x'}} = 0, \quad {a_x, a_{x'}^*} = \delta_{x,x'} \mathbb{1}.$$

- $\mathfrak{A}_{\Lambda} \subset \mathfrak{A}$ is the C^* -subalgebra generated $\mathbb{1}$ and $\{a_x\}_{x \in \Lambda}$.
- An interaction Φ is a map $\mathscr{P}_f(\mathbb{Z}^d) \to \mathfrak{A}$ s.t. $\Phi_{\Lambda} = \Phi_{\Lambda}^* \in \mathfrak{A}^+ \cap \mathfrak{A}_{\Lambda}$ and $\Phi_{\emptyset} = 0$.
- Φ is of finite range if for $\Lambda \in \mathscr{P}_f(\mathbb{Z}^d)$ and some R > 0, diam $\Lambda > R$ $\to \Phi_{\Lambda} = 0$.
- For any interaction Φ , we define the space average $K_I^{\Phi} \in \mathfrak{A}_{\Lambda_I}$ by

$$\mathcal{K}_{l}^{\Phi} \doteq \frac{1}{|\Lambda_{l}|} \sum_{\Lambda \in \mathscr{D}_{\epsilon}(\mathbb{Z}^{d}), \Lambda \in \Lambda_{l}} \Phi_{\Lambda}.$$

Note that finite range interactions define equilibrium (KMS) states of \mathfrak{A} .

Theorem (A., Bru, Müssnich, Pedra)

Let $\beta>0$ and consider any finite range translation invariant interaction $\Psi=\Psi_0+\Psi_1$. If the interparticle component Ψ_1 (Ψ_0 is the free part) is small enough (depending on β), then any invariant equilibrium state ρ of Ψ and the sequence of averages K_I^Φ of ANY translation invariant interaction Φ , have an LDP and $s\mapsto \overline{f}(s)$ is analytic at small s.

Remarks

- 1 Note that, in contrast to previous results, we do not impose β to be small or Φ (defining K_l^{Φ}) to be an one-site interaction.
- 2 Uniqueness of KMS states is not used.
- 3 Use C^* -algebras formalism and Grassmann algebras.
- 4 Determinant bounds or study of Large Determinants.
- 5 Direct representation of \overline{f} by Berezin–integrals. In particular we do not use the correlation functions.
- 6 Beyond the LDP, the analyticity of $\overline{f}(\cdot)$ together with the Bryc Theorem implies the Central Limit Theorem for the system.

Sketch of the proof.

1

$$\overline{f}(s) = \lim_{l \to \infty} \lim_{l' \to \infty} \frac{1}{|\Lambda_l|} \log \frac{\operatorname{tr}(e^{-\beta H_{l'}} e^{sK_l})}{\operatorname{tr}(e^{-\beta H_{l'}})}.$$

Sketch of the proof.

1

$$\overline{f}(s) = \lim_{l \to \infty} \lim_{l' \to \infty} \frac{1}{|\Lambda_l|} \log \frac{\operatorname{tr}(e^{-\beta H_{l'}} e^{sK_l})}{\operatorname{tr}(e^{-\beta H_{l'}})}.$$

2 From a Feynmann–Kac–like formula for traces, we write the KMS state as a Berezin–integral

$$\frac{\text{tr}_{\wedge^*\mathfrak{H}}(e^{-\beta H_{l^\prime}}e^{sK_l})}{\text{tr}_{\wedge^*\mathfrak{H}}(e^{-\beta H_{l^\prime}^{(0)}})} = \lim_{n \to \infty} \int d\mu_{C_{l^\prime}^{(n)}}(\mathfrak{H}^{(n)})e^{\mathscr{W}_{l,l^\prime}^{(n)}}.$$

Sketch of the proof.

1

$$\overline{f}(s) = \lim_{l \to \infty} \lim_{l' \to \infty} \frac{1}{|\Lambda_l|} \log \frac{\operatorname{tr}(e^{-\beta H_{l'}} e^{sK_l})}{\operatorname{tr}(e^{-\beta H_{l'}})}.$$

2 From a Feynmann-Kac-like formula for traces, we write the KMS state as a Berezin-integral

$$\frac{\text{tr}_{\wedge^*\mathfrak{H}}(e^{-\beta H_{l'}}e^{sK_l})}{\text{tr}_{\wedge^*\mathfrak{H}}(e^{-\beta H_{l'}^{(0)}})} = \lim_{n \to \infty} \int d\mu_{C_{l'}^{(n)}}(\mathfrak{H}^{(n)})e^{\mathscr{W}_{l,l'}^{(n)}}.$$

3 The covariance $C_{l'}^{(n)}$ satisfies:

$$\left|\det\left[\left(\varphi_{a}^{*}\right)^{(k_{a})}\left(C_{\mu}^{(n)}\left(\varphi_{b}^{(k_{b})}\right)\right)\right]_{a,b=1}^{m}\right|\leq\left(\prod_{a=1}^{m}\left\|\varphi_{a}^{*}\right\|_{\mathfrak{H}^{*}}\right)\left(\prod_{b=1}^{m}\left\|\varphi_{b}\right\|_{\mathfrak{H}}\right).$$

Sketch of the proof.

1

$$\overline{f}(s) = \lim_{l \to \infty} \lim_{l' \to \infty} \frac{1}{|\Lambda_l|} \log \frac{\operatorname{tr}(e^{-\beta H_{l'}} e^{sK_l})}{\operatorname{tr}(e^{-\beta H_{l'}})}.$$

2 From a Feynmann–Kac–like formula for traces, we write the KMS state as a Berezin–integral

$$\frac{\text{tr}_{\wedge^*\mathfrak{H}}(e^{-\beta H_{l'}}e^{sK_l})}{\text{tr}_{\wedge^*\mathfrak{H}}(e^{-\beta H_{l'}^{(0)}})} = \lim_{n \to \infty} \int d\mu_{\mathcal{C}_{l'}^{(n)}}(\mathfrak{H}^{(n)})e^{\mathscr{W}_{l,l'}^{(n)}}.$$

The covariance $C_{l'}^{(n)}$ satisfies:

$$\left|\det\left[\left(\varphi_{a}^{*}\right)^{(k_{a})}\left(C_{\mu}^{(n)}\left(\varphi_{b}^{(k_{b})}\right)\right)\right]_{a,b=1}^{m}\right|\leq\left(\prod_{a=1}^{m}\left\|\varphi_{a}^{*}\right\|_{\mathfrak{H}^{*}}\right)\left(\prod_{b=1}^{m}\left\|\varphi_{b}\right\|_{\mathfrak{H}}\right).$$

Use Brydges-Kennedy Tree expansions (BKTE) to verify GET. BKTE are solution of an infinite hierarchy of coupled ODEs. . .

Perspectives and Questions

Perspectives:

- 1 Quantum Hypothesys Testing? Open problems, e.g., study thermodynamic limit of the relative entropy between equilibrium state $\omega_{\Lambda}^{\beta} \in \mathfrak{A}_{\Lambda}$ and translation invariant state ω_{Λ} .
- 2 Related problems to our approach.
- 3 ...

Perspectives and Questions

Perspectives:

- 1 Quantum Hypothesys Testing? Open problems, e.g., study thermodynamic limit of the relative entropy between equilibrium state $\omega_{\Lambda}^{\beta} \in \mathfrak{A}_{\Lambda}$ and translation invariant state ω_{Λ} .
- 2 Related problems to our approach.
- 3 ...

Open Questions:

- 1 LDP for time correlation (transport coefficients)?
- 2 Systems in presence of disorder?
- **3** What about LDP for commutators of averages $i[K^{\Phi_1}, K^{\Phi_2}]$ in place of simple averages K^{Φ} ? (Also related to transport)
- 4 ...

Thank you!

Supporting facts

1 For any invertible operator $C \in \mathcal{B}(\mathfrak{H})$ and $\xi \in \wedge^*(\mathfrak{H} \oplus \bar{\mathfrak{H}})$, the Gaussian Grassmann integral: $\int d\mu_{C}(\mathfrak{H}) : \wedge^*(\mathfrak{H} \oplus \bar{\mathfrak{H}}) \to \mathbb{C}_1$ with covariance C, is defined by

$$\int d\mu_{\mathcal{C}}(\mathfrak{H})\xi \doteq \det\left(\mathcal{C}\right)\int d\left(\mathfrak{H}\right)e^{\left\langle \mathfrak{H},\mathcal{C}^{-1}\mathfrak{H}\right\rangle }\wedge \xi.$$

2 $\int d\mu_C(\mathfrak{H})\mathbf{1} = \mathbf{1}$ and for any $m, n \in \mathbb{N}$ and all $\bar{\varphi}_1, \ldots, \bar{\varphi}_m \in \bar{\mathfrak{H}}$, $\varphi_1, \ldots, \varphi_n \in \mathfrak{H}$,

$$\int \mathrm{d}\mu_{\mathcal{C}}(\mathfrak{H})\bar{\varphi}_{1}\cdots\bar{\varphi}_{m}\varphi_{1}\cdots\varphi_{m}=\det\left[\bar{\varphi}_{k}(\mathcal{C}\varphi_{l})\right]_{k,l=1}^{m}\delta_{m,n}\mathbf{1}$$

3 For all $N \in \mathbb{N}$ and $A_0, \ldots, A_{N-1} \in \mathscr{B}(\wedge^* \mathfrak{H})$,

$$\mathsf{Tr}_{\wedge^*\mathfrak{H}}(A_0\cdots A_{N-1})\mathbf{1} = \left(\prod_{k=0}^{N-1}\int \mathsf{d}\left(\mathfrak{H}^{(k)}\right)\right)\mathsf{E}_{\mathfrak{H}}^{(N)}\left(\prod_{k=0}^{N-1}\varkappa^{(k)}(A_k)\right),$$

where
$$\mathsf{E}_{\mathfrak{H}}^{(N)} \doteq \mathsf{e}^{\langle \mathfrak{H}^{(0)}, \mathfrak{H}^{(0)} \rangle + \langle \mathfrak{H}^{(0)}, \mathfrak{H}^{(N-1)} \rangle + \sum\limits_{k=1}^{N-1} (\langle \mathfrak{H}^{(k)}, \mathfrak{H}^{(k)} \rangle - \langle \mathfrak{H}^{(k)}, \mathfrak{H}^{(k-1)} \rangle)}^{N-1}},$$

$$\boldsymbol{\varkappa}^{(k)} \doteq \boldsymbol{\varkappa}^{(k,k)}_{(0,0)} \circ \boldsymbol{\varkappa} : \mathcal{B}(\wedge^* \mathfrak{H}) \to \wedge^* (\mathfrak{H}^{(k)} \oplus \bar{\mathfrak{H}}^{(k)}) \text{ and for }$$

$$i,j,k,l \in \{0,\ldots,N\}, \ \boldsymbol{\varkappa}^{(k,l)}_{(i,j)} : \wedge^* (\mathfrak{H}^{(i)} \oplus \bar{\mathfrak{H}}^{(l)}) \to \wedge^* (\bar{\mathfrak{H}}^{(k)} \oplus \bar{\mathfrak{H}}^{(l)}).$$