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m Observe that for p a state on the C*—algebra 20 and A € 2l a selfadjoint
element, there is a unique probability measure u, 4 on R such that
Wo.a(spec(A)) = 1 and, for all continuous functions f : R — C,

o (f(A) /f (X)tp,a(dx).

B a4 = lpa is the measure associated to p and A. For a sequence of
selfadjoints {A;},cr+ of A, and a state p, we say that these satisfy a
Large Deviation Principle (LDP), with scale |A,|, if, for all Borel
measurable ' C R,

—inf #(x) < ||m |nf |/\ | log pa, () < Ilm sup |/\ | log pa, (I) < —inf 7 (x)

xef xelr
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m To find an LDP we desire to use the Gartner—Ellis Theorem (GET) to
wa,, through the scaled cumulant generating function

f(s) = Jim = log p(e*™*), s eR.

—00 |/\/‘

m If  exists and is differentiable, tﬁen the good rate function .# is the
Legendre—Fenchel transform of f.

m In the case of lattice fermions we represent f as a Berezin—integral and
analyse it using “tree expansions”. The scale |A| will be then the volume
of the boxes A;:

A={(x, ..., xd) € 2% : |xl, . .., Ixq| < 1} € 2:(27).

m For lattice fermions, 2l is the CAR C*—algebra generated by the identity
1 and {@sx}exes. £=5 x Z% where S is the set of Spins of single
fermions. However, our proofs do not depend on the particular choice of
S.
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m CAR:
{aXYaX,}:O' {aXya;’}:éx.x’ﬂ-

Ax C 2 is the C*—subalgebra generated 1 and {ax}xen.

m An interaction ® is a map Z(Z9) — A s.t. by = )} € AT N 2Ap and
®y = 0.

m ¢ is of finite range if for A € 2¢(Z?) and some R > 0,diamA > R
— dp = 0.

m For any interaction ®, we define the space average K € A, by

1
> S
K/ == ‘/\‘ q)/\.

!
Ne P¢(29), NeN,



Main Result

Note that finite range interactions define equilibrium (KMS) states of 2.

Theorem (A., Bru, Miissnich, Pedra)

Let B > 0 and consider any finite range translation invariant interaction
V = W, + V. [f the interparticle component W1 (Vg is the free part) is
small enough (depending on 3), then any invariant equilibrium state p of
W and the sequence of averages K ,‘D of ANYY translation invariant
interaction ®, have an LDP and s +— f(s) is analytic at small s.



Main Result

Remarks
1 Note that, in contrast to previous results, we do not impose 3 to be
small or ® (defining K*) to be an one-site interaction.
2 Uniqueness of KMS states is not used.
3 Use C*—algebras formalism and Grassmann algebras.
4 Determinant bounds or study of Large Determinants.

5 Direct representation of f by Berezin—integrals. In particular we do not
use the correlation functions.

6 Beyond the LDP, the analyticity of ?() together with the Bryc Theorem
implies the Central Limit Theorem for the system.



Main Result
Sketch of the proof.
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Sketch of the proof.

f(s) = lim lim —Iog

=00 I'—500 |/\/‘

tl’( ﬁH,/esK,)
( 7BH//)

2 From a Feynmann—Kac—like formula for traces, we write the KMS state
as a Berezin—integral

trax . (n)
raes (e = T /dﬂ ”)(55(1))9%,/, _
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3 The covariance C,(,") satisfies:

det [(‘P:)(ka) (C( ) ((pgkb)))}:bzl

m
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Sketch of the proof.

1

f(s) = lim lim —Iog

=00 I'—500 |/\/‘

tr( ﬁH,/esK,)
( 76H//)

2 From a Feynmann—Kac—like formula for traces, we write the KMS state
as a Berezin—integral
—BHy A5K|

tracp(e " e . (n)

rs( 5 ) _ lim /du (5.
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3 The covariance C,(,") satisfies:

a3 (e ()] < (Flvon

) (fioss)-

Use Brydges—Kennedy Tree expansions (BKTE) to verify GET. BKTE are
solution of an infinite hierarchy of coupled ODEs. .. [End
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Perspectives:

1 Quantum Hypothesys Testing? Open problems, e.g., study thermodynamic
limit of the relative entropy between equilibrium state wf € Ax and
translation invariant state wp.

2 Related problems to our approach.
3 ...
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Open Questions:

1 LDP for time correlation (transport coefficients)?
2 Systems in presence of disorder?

3 What about LDP for commutators of averages i[K®t, K®2] in place of
simple averages K®? (Also related to transport)
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Supporting facts

1 For any invertible operator C € () and £ € A*(H @ §H), the Gaussian
Grassmann integral: [ duc($): A* (@ H) — C1 with covariance C, is
defined by

/d“C(fJ)fidet(C)/d(yJ)emC*lﬁ) AE

2 [duc($H)r=1and forany m,n € Nand all @1,..., Pm €9,
Q1,...,0, €9,

[ duc(©)@r - @ur -+ 0 = det [Bu( CoNIEy o

3 Forall NeNand A, ..., An—1 € B(N'9H),
N—-1 N-1
Traes (Ao - - An_1)1 = <H /d (ﬁk))) Egv) <H M“(A@) ,
k=0 k=0

N—1
) (50 50y 450 H(N=1)y 4 5~ ((§(K) 5Ky —(5k) §k-1)y)
where Eg7 = e k=1

AR %(((;’g)) o BNH) = A(HW @ HX) and for

ik €40, N}, 55D A (90 @ HY) = A5 @ HO).



	Outlook

