
Haptic Simulation for Robot-Assisted Dressing

Wenhao Yu, Ariel Kapusta, Jie Tan, Charles C. Kemp, Greg Turk and C. Karen Liu

Abstract— There is a considerable need for assistive dressing
among people with disabilities, and robots have the potential
to fulfill this need. However, training such a robot would
require extensive trials in order to learn the skills of assistive
dressing. Such training would be time-consuming and require
considerable effort to recruit participants and conduct trials.
In addition, for some cases that might cause injury to the
person being dressed, it is impractical and unethical to perform
such trials. In this work, we focus on a representative dressing
task of pulling the sleeve of a hospital gown onto a person’s
arm. We present a system that learns a haptic classifier for the
outcome of the task given few (2-3) real-world trials with one
person. Our system first optimizes the parameters of a physics
simulator using real-world data. Using the optimized simulator,
the system then simulates more haptic sensory data with noise
models that account for randomness in the experiment. We
then train hidden Markov Models (HMMs) on the simulated
haptic data. The trained HMMs can then be used to classify
and predict the outcome of the assistive dressing task based
on haptic signals measured by a real robot’s end effector. This
system achieves 92.83% accuracy in classifying the outcome
of the robot-assisted dressing task with people not included in
simulation optimization. We compare our classifiers to those
trained on real-world data. We show that the classifiers from
our system can categorize the dressing task outcomes more
accurately than classifiers trained on ten times more real data.

I. INTRODUCTION
Many people do not have the ability to dress themselves,

and thus require assistance with this task. According to some
studies, other than bathing/showering assistance, dressing
is the most received assistance for older adults among all
activities of daily living, and dressing assistance is needed by
over 80% of people in skilled nursing facilities [1]. In this
work, we focus on robot-assisted dressing, which is a growing
area of study that has the potential to alleviate this problem.
We work on a specific assistive dressing task, where a robot
pulls the sleeve of a hospital gown onto a person’s forearm, as
illustrated in Fig. 1 (a). Kapusta et al. [2] demonstrated that
for this dressing task, the haptic data collected from the robot
end effector holding the hospital gown can be used to train
a classifier that accurately categorizes whether the person’s
arm is going to 1) successfully go into the sleeve, 2) miss the
sleeve opening completely or 3) get caught by the gown. This
indicates that haptic sensing can provide valuable information
for robots to infer the relationship between clothing and the
human body. However, obtaining this real-world haptic data
requires extensive amounts of time and human labor. Also,
it is difficult to obtain data for failure cases, especially for
those that might cause injury to the person.

Wenhao Yu, Jie Tan, Greg Turk and C. Karen Liu are with the School of
Interactive Computing, Georgia Institute of Technology, Atlanta, USA

Ariel Kapusta and Charles C. Kemp are with the Healthcare Robotics
Lab, Georgia Institute of Technology, Atlanta, USA

Wenhao Yu is the corresponding author (wyu68@gatech.edu).

Fig. 1: The assistive dressing task (a) demonstrated by an
experimenter and (b) simulated by our system.

In this research, we extend the work of Kapusta et al.
[2] by incorporating physical cloth simulation techniques
into the data generation pipeline, thus reducing the required
number of real-world experiments. Physical cloth simulation
usually models cloth as a series of vertices and advances their
state (e.g. position and velocity) by solving the equations of
motion. Cloth simulation has the potential to generalize to
cases that we haven’t seen in real-world experiments. Our
system is divided into three stages: optimize, simulate, and
classify. Our system optimizes the parameters of a physics
simulator by matching the simulated data to two to three
haptic data sequences for one participant from real-world
experiments. The resulting optimized physics engine is then
used to simulate new haptic data. Finally, we train hidden
Markov Models (HMMs) with the simulated haptic data and
demonstrate that these HMMs can achieve high accuracy
in classifying the outcome of the task for real-world test
data from participants not included in the dataset used for
optimizing the simulation. Fig. 1 illustrates the dressing task
in the real world and in simulation.

To evaluate the effectiveness of our system, we compare
the classifiers trained by our system to classifiers trained with
real-world data. We also evaluate the importance of the arm
height offset in the simulator optimization formulation.

II. RELATED WORK

A. Robot-Assisted Dressing

Most of the prior work in robot-assisted dressing has been
focused on vision and kinematics based methods. Tamei et al.
demonstrated using a robot to put a mannequin’s head into
a T-shirt. They used topological coordinates to represent the

relationship between the T-shirt and the mannequin in low-
dimensional space and applied reinforcement learning to learn
the arm motion for the robot to dress the mannequin [3].
Gao et al. focused on user modeling, where they used a
depth camera to estimate the user pose and modeled the
joint movement space with GMMs. They presented results
in which a Baxter robot dresses a person with sleeveless
jacket[4]. Klee et al. introduced a turn-taking approach where
the robot coordinates with a human during assistive dressing
and learns the person’s mobility limitations using a vision
module. They demonstrated putting a hat onto a person’s
head [5].

There have also been works focusing on visual perception
of cloth during dressing. Koganti et al. used a depth sensor to
estimate a human cloth topological relationship and showed
the feasibility of using it to replace the more complex motion
capture system [6]. Further, an offline learning method was
proposed in the more recent work by Koganti et al. , in which
they fitted a cloth dynamics model with multi sensor data
and applied it to track human-cloth relationships in real-time
using a depth sensor [7].

During robot-assisted dressing, vision-based methods usu-
ally suffer from occlusion of task-related objects from cloth
and the robot itself. More recently, there have been works that
incorporated haptic information into robot assisted dressing.
Yamazaki et al. demonstrated pulling of a bottom along the
legs using a life-size humanoid robot, where they applied both
visual and force sensing to detect failure cases and re-plan
the robot motion [8]. Gao et al. introduced a stochastic path
optimization method to search for the optimal personalized
dressing path for the robot using the estimated human pose
and haptic data from the sensor attached at the robot’s end
effector [9]. To evaluate the usefulness of haptic data for
robot-assisted dressing, Kapusta et al. conducted a user-study
that had a robot pull a hospital gown’s sleeve onto a person’s
arm. They showed that Hidden Makove Models (HMMs)
trained on force data from the robot’s end effector can achieve
high accuracy in classifying outcomes of this robot-assisted
dressing task [2]. Our work builds on the work by Kapusta
et al. [2] and aims to reduce the number of real-world trials
needed to train a high-accuracy classifier.

B. Anomaly Detection

Our work is also related to anomaly detection from
force or trajectory data,[10],[11],[12]. Park et al. presented
an online anomaly detection framework using multimodal
sensory inputs. They demonstrated their methods on anomaly
detection of a robot performing various tasks including door
pushing and assistive yogurt feeding. [13]. Rodriguez et al.
collected force data during part assembly and trained an SVM
to detect failed assemblies [14]. In the work by Pastor et al.
, they applied reinforcement learning for robots to acquire
new motor skills from demonstration. In their system, they
trained a prediction model from real-world sequences to detect
failure outcomes [15]. On the other hand, our work focuses on
detection of multiple outcomes during robot-assisted dressing,
instead of general anomaly detection.

Fig. 2: Overview of our system.

C. Physics Simulation in Robotics

Physics simulation has been used to debug or validate
algorithms before applying them to real robots [16], [17], [18].
In addition, a few works have investigated integrating physics
simulation into the robot learning or control algorithm. Haidu
et al. presented an interactive game of cooking pancakes using
rigid-body and fluid simulation. They collected data from a
human performing the cooking task and trained classifiers on
the data to predict failure outcomes [19]. In a more recent
work by Haidu et al. , they demonstrated predicting failure
cases for the same task on a real robot, in which they learned
a classifier by constructing envelopes for the data collected
from the interactive game [20]. Jie et al. proposed an iterative
method for balancing a humanoid robot. They used physics
simulation to perform system identification and trajectory
optimization [21]. Wu et al. demonstrated using a physics
simulator to infer the properties of rigid objects in videos
or images and to predict the physical events in the scene.
They further learned a direct mapping from visual features to
the object properties using deep learning techniques [22]. In
the work by Cusumano-Towner et al. , they used an Hidden
Markov Model to infer where the garment is being grasped
and identify the state of the garment. Based on this and a
physical cloth simulator, they planned the motion for a robot
to bring a garment into a desired configuration [23].

III. OVERVIEW

Our system trains Hidden Markov Models (HMMs) that
classify the outcome of a dressing task using a small amount
of haptic data from real-world measurements. We demonstrate
our system on the same dressing task investigated by Kapusta
et al. [2]— pulling the sleeve of a hospital gown onto a
person’s arm. This task is representative of various assistive
dressing tasks for two reasons: 1) a hospital gown is a
common clothing article with which health professionals
provide assistance and 2) pulling the sleeve onto a person’s
arm represents a general dressing class, where a cloth tube
is pulled onto the human body.

Fig. 2 shows an overview of our system. The inputs to
our system are two or three sequences of forces measured at
the robot end-effector (Fig. 3 (a)). The system first optimizes
the parameters of a physics simulator based on the input
data sequences. Once optimized, the physics simulator is

Fig. 3: The hospital gown being grasped by the robot’s end
effector (the rectangular piece) in (a) experiment and (b)
simulation. The red dots shown on the simulated gown denotes
the lower half of the sleeve opening, which are used to
automatically label the simulated assistive dressing trials.

used to generate a large number of synthetic haptic data
sequences. Finally, the system trains HMMs using forces
from the synthetic sequences. Only two components of the
forces are used during training: in the end-effector direction
of movement and in the direction of gravity. The trained
HMMs are used to predict in real world whether the arm will
successfully go into the sleeve, miss the sleeve completely,
or get caught by the gown.

IV. SIMULATOR OPTIMIZATION

The heart of our system is a physics simulator capable of
producing haptic data, to be used for learning a model that
classifies and predicts the outcome of the dressing task. To
simulate the dressing task, we create a triangle mesh from
measurements of a hospital gown, and we use capsules to
model the person’s arm. The modeled arm has uniform friction
coefficient and is fixed during the simulation. The haptic data
in our experiment consist of the force-torque information
measured at the robot’s end-effector, where the gown is
held. Simulating this 6-dimensional data involves complex
computations on cloth dynamics and collisions, which are
sensitive to numerous simulation and model parameters, as
well as the dynamic integration scheme and collision handling
method used. As such, the success of haptic data simulation
depends on the choice of the initial simulator, as well as
identifying the right model parameters.

A. Initial cloth Simulator

An ideal cloth simulator should be fast, stable, and accurate.
Existing cloth simulators, however, can only achieve one
or two of these three desirable properties. In order for a
robot to acquire skills for assistive dressing through physics
simulation, many simulated trials under various conditions
would be especially useful. Therefore a relatively accurate
but slow cloth simulator, such as one based on Finite Element
Methods (FEMs) [24], [25], is impractical for many machine
learning methods that require large amounts of training data.
Moreover, FEM-based cloth simulation tends to be unstable

when large contact forces or large deformations occur, which
are common events in a dressing scenario.

In this work, we choose to use the cloth simulator in
Nvidia PhysX 3.3.4 [26] due to its efficiency and robustness
at handling large contact forces (e.g. when the sleeve is caught
on the hand). From our test, PhysX runs at 0.2x real-time on
an Intel Core i5 CPU for our hospital gown model consisting
of 20k triangles, which is 60 times faster than the FEM-based
cloth simulator from Narain et al. [25]. PhysX is based on
Position-based Dynamics (PBD), which calculates position
changes directly instead of through force integration. Being
able to avoid solving and integrating the forces and to modify
position directly makes PBD more stable, controllable, and
efficient than many alternative methods.

These desirable properties make PhysX suitable for ap-
plications that require an efficient and stable simulator.
However, the standard PhysX software is not sufficient
for producing reliable haptic data for our purpose. We
implemented additional functions in PhysX to calculate haptic
data and improve the accuracy of the friction handling. These
changes are described below.

1) Collision Force Calculation: Because forces are not
explicitly calculated in the PBD formulation, we need to
extract the force information from the positions of each vertex
on the cloth. During simulation, the position of a vertex at
timestep t+ 1 is calculated as:

xt+1 = xt + ∆tẋt +
(∆t)2fext

m
+ δxint + δxcol, (1)

where xt is the position at timestep t, ẋ is the velocity, fext
is the external force, m is the mass of the vertex, δxint is
the position change due to internal constraints and δxcol is
the position change due to collision. Our goal is to compute
a collision force fcol that, when applied to the vertex, would
achieve the same position change as δxcol. To do this, we
equate δxcol to the position change due to fcol and solve for
the collision force:

fcol =
δxcolm

∆t2
. (2)

2) Improved Friction Scheme: In the original PBD friction
scheme, the calculated friction impulses are added to the
velocity of the vertex at the next timestep. In this scheme,
tangential position changes caused by internal force or gravity
force before the friction solving are not corrected, resulting
in underestimation of friction force. In fact, we find that
in our experiments, even the maximum friction coefficient
allowed by PhysX is not able to generate enough friction
to match the real-world data. To address this problem, we
add the calculated friction impulse to the current position, in
addition to the velocity for the next timestep. The new scheme
improves the accuracy of the friction solver and enables us
to match the real world data.

3) Cloth-Cloth Friction: The default PhysX implementa-
tion does not model friction forces for cloth self-collisions.
The lack of friction forces often make the simulated cloth

appear overly slippery without wrinkles or folds. We im-
plemented cloth-cloth friction using the same algorithm for
cloth-object friction as described in IV-A.2.

B. Optimization

PhysX provides a flexible framework that allows simulating
a wide range of cloth materials (e.g. silk or denim). However,
the parameters in PhysX do not have a direct mapping
to real-world cloth materials, preventing us from directly
measuring the parameters from real garments. Instead, we
use an optimization procedure to search for suitable simulator
parameters. The input to our optimization procedure includes
a few sequences of real-world haptic data and an initial set
of cloth parameters for the simulator. The optimizer then
searches for a set of cloth parameters that minimize the
difference between real and simulated forces in the direction
of gravity (Y) and end-effector movement (X). By fitting
the simulation parameters to the real-world sequences, we
expect the optimized simulator to generalize to other situations
relevant to our classification problem, such as different arm
heights and initial configurations. However, given so few real-
world sequences, it is unlikely that the optimized simulator
can generalize to all conditions.

1) Input Sequence Selection: We use the haptic data
acquired by Kapusta et al. [2]. The dataset consists of 360
sequences from 12 participants. For each participant, 30
sequences were collected with their arm positioned at three
heights. For all trials at the highest height, the arm successfully
goes into the sleeve, and at the lowest height, the arm misses
the sleeve. For the middle height, either the arm misses the
sleeve or the arm gets caught by the gown. Each sequence
contains 6-dimensional force and torque measurements at
the robot’s end-effector, but only the forces in the horizontal
direction of end-effector movement (X) and in the gravity
direction (Y) are used. Our system uses two or three sequences
as the input, as chosen by the policy given below.

For the participant of interest, we randomly select one
sequence from each of the three heights, excluding all the
caught sequences. For a participant whose middle height
only contains caught sequences, we end up selecting only
two sequences for optimization. We do not include caught
sequences because the rapid increase of force in caught se-
quences lead to sub-optimal simulators with an unrealistically
large friction coefficient. Our results show that the exclusion
of caught sequences during parameter optimization does not
affect the ability of the simulator to generate cases when the
arm is caught by the gown.

2) Simulation Parameters: PhysX provides a large set
of free parameters for cloth simulation (24 in total). To
avoid overfitting to a small set of examples, we identify
six parameters directly related to the cloth materials for
optimization, namely the stiffness of vertical stretching,
horizontal stretching, bending, shearing, and the coefficients
of friction and self-friction. We further assume isotropic
material for our cloth model and thus combine vertical and
horizontal stretching stiffness into one parameter. We use
an iteration number of 20 for the constraint solver and use

default values for the rest of the parameters1. In addition,
the measured dataset includes variations in the precise height
of the arm due to human factors, therefore we include a
parameter that models the deviation between the actual height
of the arm and the controlled height (the height of the armrest).
We include this parameter for each of the controlled heights.
The final dimension of the parameter vector is either seven
or eight, depending on whether a middle height sequence is
used.

3) Objective Function: We define the objective function
as the difference of forces in X and Y direction between
simulated and input sequences. For each input sequence, the
system runs a complete simulation at the corresponding arm
height and records haptic data from the simulated robot end-
effector. For force data in each direction, we compute the error
e(S,R) between synthetic data si ∈ S = [s0, s1, · · · , sm]
and input data ri ∈ R = [r0, r1, · · · , rn]:

e(S,R) =

max(n,m)∑
i

d(si, ri). (3)

The per-frame error metric d(si, ri) is defined as:

d(si, ri) =


∆x|si − ri| if i ≤ m and i ≤ n
w∆x|si − rn| if i ≤ m and i > n

w∆x|sm − ri| if i > m and i ≤ n
, (4)

where ∆x is the distance traveled by the end-effector between
two consecutive frames and w = 20 is a weight to penalize
differences in sequence length.

The error function is an approximation of the unsigned area
difference between two curves, with a penalty for difference
in sequence length. The objective function is then defined as:

L(R, θ) =

N∑
k=1

(e(SYk (θ), RYk) + e(SXk (θ), RXk)), (5)

where θ is the set of simulation parameters to be optimized.
The subscript k is the index of the input sequence (N = 2 or
3) and the superscript X or Y is the direction of the force.

4) Solving The Optimization: We can now formulate our
optimization problem as:

θ∗ = argmin
θ

L(R, θ). (6)

However, it is nontrivial to use gradient-based optimization
methods because the objective function is highly nonlinear and
non-differentiable in θ. To solve this problem, we use Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [27],
a stochastic algorithm for solving nonlinear optimization
problems. We run CMA-ES for 50 iterations with 32 samples
per iteration. The resulting objective value of the optimal
solution represents how close the physics simulation is able
to match the real-world data.

Fig. 4: Successfully dressing one sleeve in real-world and in simulation.

V. CLASSIFIER TRAINING

A. Haptic Data Simulation

With the optimized simulator, we are able to generate haptic
data similar to the input sequences. However, the success
of classification also depends on modeling the distribution
of the real world data accurately. In our dressing task, two
major factors, among many others, that cannot be precisely
controlled during data acquisition are the initial state of the
hospital gown and the actual arm height of the participant. As
such, we model these two factors as probabilistic distributions
when synthesizing haptic data using the optimized simulator.

We perturb the initial state of the cloth by adding a random
external force equally distributed to all the cloth vertices. The
random force is sampled from a uniform distribution in the
X and Z direction with the maximum magnitude being 6N.
We apply the force to the cloth for 0.5 seconds and wait for
the gown to settle before the end-effector starts moving.

Similarly, we randomize the arm height around the highest,
the lowest, and the middle arm heights used in the experiments
[2]. For the highest and the lowest arm heights, which
produce good and missed outcomes respectively, we add
a uniformly distributed noise σ = [−1.5, 1.5]cm to the
optimized arm height. For the middle arm height, which
is expected to generate caught or missed outcomes, we add a
larger uniformly distributed noise σ = [−6, 0]cm to increase
the chance of generating both caught and missed outcomes.
Note that for the middle arm height, we directly add the noise
to the middle arm height because not all participants have an
optimized middle arm height. Further, we only add negative
noise to compensate the gravity effect.

1We refer readers to http://docs.nvidia.com/gameworks/content/gameworks
library/physx/guide/Manual/Cloth.html for details in PhysX cloth parameters.

We run the simulation at 300 Hz and record simulated
haptic data once every three frames to match the sample
rate of the force-torque sensor used in the user-study [2].
We generate 100 sequences for each height. Using the same
protocol as the user-study, half of the sequences are generated
with the end effector moving at 0.1 m/s and the other half at
0.15 m/s. The simulation is terminated when either the end-
effector travels 0.85 meters or the force in the X or Y direction
reaches 10N. The simulated haptic data is automatically
labeled according to the following policy.

If the end-effector travels the full distance of 0.85 meters,
we label the resulting sequence as missed. Otherwise, we
compute the distance between the vertices on the lower half
of the sleeve opening (Fig. 3 (b)) and the center of the
person’s elbow in the X direction and find the maximum
value dmax. If dmax ≤ 7 cm, we label this sequence as good,
otherwise we label it as caught. Fig. 4 shows the simulated
dressing task and a real-world demonstration where the sleeve
is successfully pulled onto the arm.

B. Hidden Markov Model

We train three hidden Markov Models (HMMs) to classify
the outcome of the assistive dressing task given the simulated
haptic data. We use the General HMM library[28] to train
and run left-right HMMs. One HMM was trained for each of
the three task outcomes, with the simulated data set labeled
as missed, good, or caught. Similar to Kapusta et al. [2], we
use bivariate HMMs trained on force data in the X and Y
direction. When testing with a new haptic sequence, each
of the trained HMMs predicts the probability of the new
sequence being in its class. The classifier then assigns the
category label corresponding to the HMM with the highest
likelihood.

VI. RESULTS

In this section, we present the performance of our Sim-
ulation Trained Classifiers (STCs). We tested the accuracy
of STCs on the labeled data from the user-study [2]. The
accuracy is defined as the percentage of test sequences that
are correctly classified into one of the three classes: “good”,
“missed”, and “caught”. For all experiments presented here,
we trained bivariate HMMs with 10 hidden states, similar to
Kapusta et al. [2].

A. Classification Accuracy of STCs

For each of the 12 participants in the dataset, we trained
one STC using our system and tested it on the data from
the remaining 11 participants. This yields 3960 classification
results in total. We present this data in a confusion matrix, as
shown in Fig. 5 (a). The STCs achieves 92.83% accuracy on
average. For comparison, a random classifier would result in
33.3% accuracy and a majority classifier would achieve 40%.
Below, we compare STCs with baseline classifiers trained on
different amounts of real-world data. HMMs are used in all
baseline classifiers.

B. Comparison with Real-World Data Trained Classifiers

1) Comparison with Baseline Classifiers: For each of the
12 participants, we trained a Baseline Classifier (BC) directly
with the input sequences (N = 2 or 3) used to optimize the
simulator. Recall that during the simulator optimization we
chose not to include sequences labeled as caught. To conduct
the comparison, we added one caught sequence, randomly
chosen from each participant, to the training set of BC so
that it can learn to classify all three classes. BCs achieved
an overall accuracy of 75.13% as illustrated in Fig. 5 (b).

This confirms that our system does have a positive effect
by generating haptic data. However, this is not surprising,
since a classifier that is trained on such a small amount of
data is not likely to perform well.

2) Comparison with Extended Baseline Classifiers: Our
next comparison is against Extended Baseline Classifiers
(EBCs). For each participant, we trained one EBC on his/her
entire data set (N=30). We again present average classification
accuracy for EBCs. The resulting EBCs achieved 88.01%
accuracy, as shown in Fig. 5 (c). Out of the 3960 test samples,
the STCs from our system were able to classify 191 more
samples correctly than EBCs.

3) Performance With Limited Distance: In our experiment,
the robot stops moving when it travels 0.85m in distance
or when a force (in the X or Y direction) of 10N or above
is detected. During the assistive dressing task, it will be
beneficial if we can predict the outcome earlier, before the
task is complete. To evaluate how well STCs predict the
outcome of our dressing task, we truncated the test sequences
at various distances and used the truncated sequences to
test the performance of STCs and EBCs. Fig. 6 shows the
comparison of the two sets of classifiers with regard to travel
distance of the robot’s end-effector. It can be seen that the
EBCs perform better earlier in the process, while our STCs
are able to catch up and surpass them later on.

VII. DISCUSSION AND LIMITATIONS
We have shown that our Simulation Trained Classifiers

outperform Extended Baseline Classifiers on average. To
further evaluate the performance of the individual STCs, we
collected the accuracy of all the STCs for each participant, as
shown in Table I. Note that most of the classifiers achieved
reasonable results (9 out of 12 were over 90% and 11 were
over 85%), but the classifier trained on participant 11 achieved
only 71.52% accuracy. The significantly lower accuracy of
participant 11 is also observed in EBCs (68.79% accuracy).
This suggests that the data collected from participant 11
do not represent well the haptic data distribution for this
dressing task, resulting in a sub-optimal physics simulator
that generates biased data.

Fig. 7 and Fig. 8, visualize the simulated data and the
real-world data for the most and the least accurate STCs
respectively. The data for good and missed are shown in bold
curves while the data for caught, which was not included
in the input sequence set, is shown in dashed curves. In
general, for good and missed outcomes, the simulated data
tend to be close to the real data from the same participant,
with larger variance. This fits our expectation: the simulator
optimization would attract the synthetic data towards the
real-world data, and simulating large amounts of haptic data
(10 times the real-world data) with the noise model would
introduce greater variance. Note that we were able to reliably
synthesize data for caught even though it is not used during
the simulator optimization. This suggests the potential for
simulation-trained classifiers to detect new events during
robot-assisted dressing.

One insight that we gain from our experiments is that
modeling the variance in the real world accurately is important
to the success of classification using synthetic data. In
this work, we identified two types of randomnesses in the
experiments [2], the initial gown configuration and the arm
height deviation. We evaluated the importance of these two
factors through the following experiments.

We first trained and tested classifiers from simulated data
that were generated without the initial gown configuration
perturbation. This resulted in an average classification ac-
curacy of 89.17%, which is about 3.5% lower than STCs.
Similarly, we trained and tested classifiers from simulated
data without arm height perturbation. The resulting average
accuracy was 81.77%, which outperforms the Baseline
Classifiers, but is substantially lower than the performance
of STCs. These results confirm that modeling both source
of randomnesses during data synthesis is valuable to achieve
accurate classification.

TABLE I: The accuracy of the STCs trained for each
participant using our system.

Participant Accuracy

1 99.09%
2 98.18%
3 97.88%
4 91.82%
5 98.48%
6 88.18%

Participant Accuracy

7 99.7%
8 94.24%
9 85.76%
10 91.52%
11 71.52%
12 97.58%

Fig. 5: Confusion matrix showing the performance of (a) STCs, (b) BCs and (c) EBCs.

Fig. 6: Comparison of performance in predicting the outcome
earlier in the process with STCs and EBCs. The bottom part
of the figure illustrates the robot end-effector pulling a gown
onto a human arm with average length. From left to right, the
dotted lines depict the average stop position for the caught
event and average stop position for the good event.

To demonstrate the importance of modeling the arm height
deviation during simulator optimization, we optimized two
simulators with the same input sequences. We optimized for
the arm height deviation for one of them while fixing it to
zero for the other. As shown in Fig. 9, the green dashed
curve representing the data from the simulator optimized
with arm height deviation fits the real-world data (red solid
curve) notably better than the blue dotted curve generated
without optimizing for arm height deviation.

There are a few limitations in our system. Although the
STCs from our system achieved better performance than EBCs
when tested with full data, it did not perform as well when
trying to predict the outcome early in the process (roughly
before the robot’s end effector reaches the person’s elbow),
as shown in Fig. 6. A possible reason is that the objective
function that we used measures the overall similarity between

Fig. 7: Data visualization for the most accurate STC overlaid
with real-world data from the same participant. The classifier
trained on this simulated data set achieved 99.7% accuracy.

Fig. 8: Data visualization for the least accurate STC overlaid
with real-world data from the same participant. The classifier
trained on this simulated data set achieved 71.52% accuracy.

two sequences, which might neglect the details when the
force is relatively low.

In addition, optimizing the parameters for the simulator is
still time consuming despite the fast cloth simulation enabled
by PBD. In our experiments, it took about 16.8 hours on
a 2.4 GHz Intel Core i5 CPU to optimize a simulator with
two input sequences. The optimization parameter size also
increases with the number of input sequences due to the arm
height deviation parameter. These factors make it difficult for
our method to deal with many inputs.

In the work by Kapusta et al. [2], they trained classifiers

Fig. 9: Optimized simulator with and without arm height
deviation for the good outcome from participant 7.

on the data of 11 participants and tested on one, resulting
in average classification accuracy of 98.61%. We tested a
similar procedure where we trained classifiers on simulated
data for 11 participants and tested on the real-world data of
the other and achieved on average 97.78% accuracy. This is a
promising result for including data from multiple participants.
However, optimizing 11 simulators with our system currently
takes about 10 days. Therefore, how to best take advantage
of input sequences from multiple participants efficiently still
remains an open question.

VIII. CONCLUSIONS

We have presented a system that learns a classifier to
categorize the outcome of a robot pulling the sleeve of a
hospital gown onto a person’s arm from only two or three real-
world sequences. The key components of our system are an
optimization scheme to tune a physics simulator with the input
sequences, and using the optimized simulator to synthesize
haptic data with noise models that account for real-world
variations. We demonstrate that the optimized simulator can
synthesize outcomes that are not seen during the optimization
and that our classifiers achieve high accuracy in categorizing
real-world data. Our results suggest that physics simulations
can improve robot-assisted dressing by enabling robots to
learn from fewer trials with real people and also learn about
riskier situations without real-world data.

ACKNOWLEDGMENT

We thank Alexander Clegg and Zackory Erickson for
their help with this work. This work is supported by NSF
award IIS-1514258 and the National Institute on Disability,
Independent Living, and Rehabilitation Research (NIDILRR),
grant 90RE5016-01-00 via RERC TechSAge.

REFERENCES

[1] T. L. Mitzner, T. L. Chen, C. C. Kemp, and W. A. Rogers, “Identifying
the potential for robotics to assist older adults in different living
environments,” International Journal of Social Robotics, pp. 1–15,
2013.

[2] A. Kapusta, W. Yu, T. Bhattacharjee, C. K. Liu, G. Turk, and C. C.
Kemp, “Data-driven haptic perception for robot-assisted dressing,”
in IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), 2016.

[3] T. Tamei, T. Matsubara, A. Rai, and T. Shibata, “Reinforcement learning
of clothing assistance with a dual-arm robot,” in Int. Conf. on Humanoid
Robots (Humanoids). IEEE, 2011, pp. 733–738.

[4] Y. Gao, H. J. Chang, and Y. Demiris, “User modelling for personalised
dressing assistance by humanoid robots.”

[5] S. D. Klee, B. Q. Ferreira, R. Silva, J. P. Costeira, F. S. Melo, and
M. Veloso, “Personalized assistance for dressing users,” in Social
Robotics. Springer, 2015, pp. 359–369.

[6] N. Koganti, T. Tamei, T. Matsubara, and T. Shibata, “Estimation of
human cloth topological relationship using depth sensor for robotic
clothing assistance,” in Proceedings of Conference on Advances In
Robotics. ACM, 2013, pp. 1–6.

[7] N. Koganti, J. G. Ngeo, T. Tomoya, K. Ikeda, and T. Shibata, “Cloth
dynamics modeling in latent spaces and its application to robotic
clothing assistance,” 2015.

[8] K. Yamazaki, R. Oya, K. Nagahama, K. Okada, and M. Inaba, “Bottom
dressing by a life-sized humanoid robot provided failure detection and
recovery functions,” in Int. Symposium on System Integration (SII),
2014, pp. 564–570.

[9] Y. Gao, H. Chang, and Y. Demiris, “Iterative path optimisation for
personalised dressing assistance using vision and force information.”
IEEE, 2016. [Online]. Available: http://hdl.handle.net/10044/1/39009

[10] C. Piciarelli and G. L. Foresti, “On-line trajectory clustering for
anomalous events detection,” Pattern Recognition Letters, vol. 27,
no. 15, pp. 1835–1842, 2006.

[11] O. Rosen and A. Medvedev, “An on-line algorithm for anomaly
detection in trajectory data,” in American Control Conference (ACC),
2012. IEEE, 2012, pp. 1117–1122.

[12] A. Jain and C. C. Kemp, “Improving robot manipulation with data-
driven object-centric models of everyday forces,” Autonomous Robots,
vol. 35, no. 2-3, pp. 143–159, 2013.

[13] D. Park, Z. Erickson, T. Bhattacharjee, and C. C. Kemp, “Multimodal
execution monitoring for anomaly detection during robot manipulation,”
in Int. Conf. on Robotics and Automation (ICRA). IEEE, 2016.

[14] A. Rodriguez, D. Bourne, M. Mason, G. F. Rossano, and J. Wang,
“Failure detection in assembly: Force signature analysis,” in Automation
Science and Engineering (CASE), 2010 IEEE Conference on. IEEE,
2010, pp. 210–215.

[15] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in Int.
Conf. on Robotics and Automation (ICRA), 2011, pp. 3828–3834.

[16] S. Ha and C. K. Liu, “Multiple contact planning for minimizing damage
of humanoid falls,” in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, Sept 2015, pp. 2761–2767.

[17] Y. Bai and C. K. Liu, “Dexterous manipulation using both palm and
fingers,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), May 2014, pp. 1560–1565.

[18] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[19] A. Haidu, D. Kohlsdorf, and M. Beetz, “Learning task outcome
prediction for robot control from interactive environments,” in Int.
Conf. on Intelligent Robots and Systems (IROS), Chicago, USA, 2014.

[20] ——, “Learning action failure models from interactive physics-based
simulations,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), Hamburg, Germany, 2015.

[21] J. Tan, Z. Xie, B. Boots, and C. K. Liu, “Simulation-based design
of dynamic controllers for humanoid balancing,” in Proceedings of
The IEEE Conference on Intelligent Robots and Systems (IROS-2016),
2016.

[22] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum, “Galileo:
Perceiving physical object properties by integrating a physics engine
with deep learning,” in Advances in Neural Information Processing
Systems 28.

[23] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel,
“Bringing clothing into desired configurations with limited perception,”
in Int. Conf. on Robotics and Automation (ICRA), May 2011, pp.
3893–3900.

[24] J. F. O’Brien and J. K. Hodgins, “Graphical modeling and animation
of brittle fracture,” in ACM SIGGRAPH, 1999, pp. 137–146.

[25] R. Narain, A. Samii, and J. F. O’Brien, “Adaptive anisotropic remeshing
for cloth simulation,” ACM transactions on graphics (TOG), vol. 31,
no. 6, p. 152, 2012.

[26] “PhysX physics engine.” www.geforce.com/hardware/technology/physx,
[Online].

[27] N. Hansen, “The CMA evolution strategy: a tutorial (2009),” Technische
Universitat Berlin, TU Berlin.

[28] “The general hidden markov model library.” http://ghmm.org/, [Online].

