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Abstract. While at first glance seemingly obvious, the number of variables in a model is 
not a priori fixed. For mathematical purposes, it is oftentimes convenient to reduce the 
number of variables to a minimum, but such reduction sometimes obscures meaning and 
insight and is not always computationally optimal. This is demonstrated with a special 
class of nonlinear differential equations, called S-systems, whose specific mathematical 
structure makes reduction as well as expansion of models translucent. The reduction 
shown here is based on the determination of Lie groups of scaling tmnsformations, while 
the expansion is based on equivalent recasting. The Lie reduction constitutes the inverse 
operation to the recasting of multinomial systems. 
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. 1. Introduction 

At first glance, the number of variables in a model seem to be one of the best 
defined quantities. In contrast to parameter values or the mathematical forms of 
the governing processes, which often are insufficiently characterized or not known 
at all, the first step in designing a model is the listing of its constituents. Hence, al
most by definition the number of variables is given. Nevertheless, at second thought 
~he number of variables can be argued on two grounds. One derives from the sub
Ject area of the modeled phenomenon, and the other is an issue of mathematical 
~epresentation. While there may be some overlap between the two, the distinction 
\s easy to intuit. . 

~ubject Area. Only in clear-cut cases is the number of variables beyond ques
tton. Even in prototype models, such as those describing the dynamics in predator
prey systems, modelers and ecologists are likely to argue about alternative prey, 
C?mpeting predators, and other contributors to the ecosystem of which the inves
ttgated predator-prey pair is just one part. In biochemical systems analysis, the 
~odeler has to decide which compounds are biochemically and functionally simi
ar enough to allow their aggregation in mathematically homogeneous pools that 
are represented by single variables. In organismic phenomena like growth, the key 
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variables are certain high-lever measurements like weights or volumes or organs, 
whereas molecular and biochemical aspects are usually not explicitly represented. 
The number of variables, thus, depends on the organizational level at which a 
model is constructed. By including certain components and excluding others, the 
model focuses on some aspects of the phenomenon and ignores others. For in
stance, the classical infectious disease models that, with a total of three variables, 
account for susceptible, infected, and removed individuals, by virtue of this defi
nition exclude aspects of age and sex. It is obvious that the number of necessary 
or desired variables, in the end, is a compromise between actuality with respect to 
the subject area and mathematical tractability. Model reduction in this sense has 
been discussed extensively in the literature and is not subject of this report. 

Mathematical representation. In contrast to model reduction or expansion 
within the subject area, mathematical reduction and expansion deal with equiv
alent representations. In this case, the organizational level of the model has been 
determined and is not subject to further discussion. The question asked now is Is it 
possible to find mathematical transformations that allow us to characterize certain 
properties of the model more efficiently, for instance, by decoupling simultaneous 
differential equations? As we shall see in the following, this question can have 
many answers, depending on the criteria chosen to evaluate competing represen
tations. In some cases, constraints or conservation laws can be used to uncouple 
equations, in other cases, it actually turns out to be advantageous to increase the 
number of variables and equations. I shall demonstrate some scenarios as they 
come up in S-system models, without claiming exhaustiveness. 

2. Transformations that affect the 
number of simultaneous equations 

2.1. Reduction in number. Under opportune circumstances, various general and 
ad hoc methods are available to reduce the number of differential equations that is 
necessary for solution. For instance, if a constraint is known that allows a system 
variable Xi to be expressed as a function of another system variable X j , then Xi 
can be substituted with this function, and the differential equation for Xi is no 
longer necessary to solve for the remaining variables and can be eliminated. If Xi 
is of interest, it can be computed in a separate step from Xj. From a mathematical 
standpoint, this "decoupling" usually simplifies the original problem. Decoupling 
can be accomplished in two ways. In the first case, the resulting system is exactly 
equivalent to the original; I will discuss an example of such a transformation in 
this report. In the second case, equations with different time scales are decoupled 
from each other by considering the slow equations to be in steady state (e.g., [4, 
8]). 
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A second well-known reduction in the number of equations applies to au
tonomous systems. Under favorable conditions, the independent variable can be 
eliminated by expressing the dependent variables X 2 , X 3 , •.• in terms of Xl, which 
is accomplished by dividing the equations for X 2 , X 3 , .•• by the equation for Xl. 
The result is a non-autonomous "trajectorial" system with one equation less than 
the original system. 

A method that seems to be appreciated only by a select group of experts is the 
determination of Lie groups of coordinate transformations. If such groups can be 
found, the number of simultaneous equations can be reduced. Furthermore, knowl
edge of such groups elucidates the structure of the differential equation by showing 
which quantities are invariant under the action of the group. The invariants can 
often be interpreted in terms of conservation laws, such as the conservation of 
mass and energy in closed systems. Lie group analysis in general is rather difficult. 
In the special case of scaling transformations in S-systems, however, the analysis 
can be executed with means of elementary linear algebra. The following states 
conditions for the existence of such Lie groups and demonstrates how they can be 
employed in the analysis of models in S-system form. 

The general ideas of transformation groups and invariants may best be illus
trated with a simple example. Consider the differential equation 

dy 

dx 
(2.1) 

It is not difficult to see that x and y can be transformed to Xl = px, YI = py 
(p E R+) and the differential equation in Xl and YI has the same form as the 
equation in X and y: 

(2.2) 

When p is written as exp(E), the set of all transformations of this type form an 
additive group in the parameter E. If a differential equation admits several (say k) 
independent transformations of this type, it admits a k-parameter group. 

While the identification of transformation groups in general is quite compli
cated, scaling transformations of S-systems are characterized with elementary 
methods: One simply constructs a particular matrix from the kinetic order pa
rameters 9ij and h ij . If the rank of this matrix is not maximal, the S-system 
admits a Lie group of transformations. Specifically, let 

dXi = . lIn X!!i j _ fJ. lIn X~ij 
dX . Q. J • J 

. O. j=O j=O 

i = 1,2, ... ,n (2.3) 



3372 Eberhard O. Voit 

be a potentially non-autonomous S-system with explicit incorporation of the in
dependent variable Xo. Let Y be an (n x (n+ 1)) matrix with elements 

{ 

gij + 1 if 0i f. 0 and j = 0, 

Y
_ _ _ gij if 0i f. 0 and j f. i, 
tJ -

gij - 1 if 0i f. 0 and j = i, 
o if 0i = 0, 

(2.4) 

where i = 1, ... , nand j = 0, ... , n. Let 1tij be defined analogously with hand f3 
instead of 9 and 0. Let C be the (2n x (n + 1)) matrix whose first n rows contain 
Yij and whose remaining rows contain 1tij . Let v be a column vector with n + 1 

real components vo, Vb V2, ... , Vn , and -; the zero (2n)-vector·. Let p be a positive 
real number. 

(i) If the system 

(2.5) 

has a non-trivial solution v = (VO,V1,V2,." ,vn)tr, the the transformations 

Yj = pVj Xj j = 0, ... , nj pER (2.6) 

form a one-parameter Lie group of coordinate transformations that leaves 
the S-systemEq. (2.3) unaltered. That is, the equation is invariant under 
the group. 

(ii) Let 

p = rank (C) (2.7) 

and let V1,V2,'" ,vr be a set ofr = n+l-p linearly independent solutions 
to Eq. (2.5). Let v k have the components Vkj' Then eq. (2.3) admits the 
r-dimensional Lie group of transformations 

r 

II Vk-Yj = Pk J Xj (2.8) 
k=l 

with r parameters P1,P2, ... ,Pr E R+. 
The proof of (i) and (ii) can be found in [10]. 

Remarks. 
1) The groups in (i) and (ii) are called stretching groups or scaling groups, and 

S-system (2.3) is called quasi-homogeneous when it admits such groups. 
2) For r > 1, a one-parameters group of transformations of type (2.6) can be 

generated from the r transformations (2.8) by setting p = P1 = P2 = ... = Pro 
3) A similar theorem holds if th~ differential equations in Eq. (2.3) contain 

more than two terms [9, Ch. 15]. 

If an S-system admits a Lie group of transformations, the number of simulta
neous equations necessary for solution can be reduced. This is accomplished by 
9-etermine group invariants, which are functions of the original system variables 
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that remain unaltered by the action of the group. The most convenient, function
ally independent set of group invariants in our case is 

t. = X.Xn-Vi/Vn . 0 n 1 .... z = , ... , - (2.9) 

(2.10) 

because the inverse of this transformation, which is needed to retrieve the original 
variables from the reduced system, is easily determined to be 

(2.11) 

(2.12) 

As an alternative to Eqns. (2.9) and (2.10), or in the case of Vn = 0, one can select 
another index j with Vj f. 0 and employ the invariants 

t. - X·X-vdvj (2.13) ... - • j 

or one can renumber the equations such that Vn f. o. 
Other applications of the Lie-group analysis shown above include the lowering 

of the order of a differential equation (e.g., [10D, the analytical computation of 
steady-states in S-systems that lack some production or degradation terms [9:, Ch. 
15], and, in favorable cases, the analytical solution of S-systems [9: Ch. 15J. As an 
illustration, the next section gives an example that has relevance to modeling. 

Example. A boundary value problem in Pharmacodynamics. Janszen [3] 
has recently formulated physiologically-based pharmacokinetic models within the 
framework of S-systems. These models describe how a drug upon injection or in
halation is distributed through an organism over a period of time. Janszen showed 
that S-system models with parameter values determined from physiological mea
surements, such as transport rates and partition coefficients, accurately describe 
the dynamics of drug concentrations in various organs and plasma over time. His 
model for the pharmacodynamics of the antibiotic sulfathiazole in swine reads 

Xi = Q:iX6 - {3iXi i = 1, ... ,5 

5 . II 96· Xy = Q:6 Xj J - {36X6. (2.14) 
j=1 

The variables Xi represent various organs or tissues, X6 represents plasma. 
According to the rules for setting up an S-system model, the structure of Janszen's 
model immediately shows that all flow of drug is facilitated by ways of plasma. 
Note that, independent of their numerical values, the exponents gij in the sixth 
equation always sum up to 1, because the S-system model was designed in such 
a way that it behaved exactly like a traditional compartment model at a desired 
operating point. Specifically, if the sum of linear terms is approximated by a power
law term, the exponents in this t~rin add up to 1. 
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Given this model and initial values, the dynamical responses of all concentra
tions are readily computed with numerical methods. However, questions of the 
following type are difficult to answer: Given that the plasma concentration of the 
drug at time t* is Xp(t*), how much of the drug was given at time t = O? Assum
ing that all drug concentrations, except that of plasma, were zero at time 0, the 
question poses a boundary value problem that, a priori, is difficult to solve. Lie 
group analysis can be employed to address the problem. 

The first step is construction of the matrix C from the exponents 9ij and h ij 
of the S-system model. We stack up Janszen's matrix of 9'S 

0 0 0 0 0 1 
0 0 0 0 0 1 
0 0 0 0 0 1 
0 0 0 0 0 1 
0 0 0 0 0 1 
0 0 0 0 0 1 

0.24004 0.34087 0.28842 0.08370 0.04697 0 

and the matrix of h's 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

add a zero-th column with anI's, and subtract 1 from all 9ii and h ii . The resulting 
matrix is thus 12 x 7. Its reduction to row echelon form is executed with the 
usual matrix operations of linear algebra. First, we observe that the diagonal 
elements of the former matrix of h's disappear, resulting in six rows of the form 
(1 0 0 0 0 0 0). This row is subtracted from the first six rows. Then, we 
add 0.24004 times the first row, 0.34087 times the second row, etc. to the sixth 
row. This reduces the sixth row to a row of O's, since the exponents 9ij in the sixth 
model equation sum up to 1. Upon renumbering rows, the result is the matrix 

1 0 0 0 0 0 0 
0 -1 0 0 0 0 1 
0 0 -1 0 0 0 1 

C= 0 0 0 -1 0 0 1 (2.15) 
0 0 0 0 -1 0 1 
0 0 0 0 0 -1 1 
0 0 0 0 0 0 0 

" 
The rank of the matrix is (n + 1) - 1, which indicates that the model admits 

a one-parameter stretching group. 
Solution of the equation 

(2.16) 
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yields Vo = 0, Vi = Vj (i,j #- 0), and when we use V6 #- 0 as reference, the new 
coordinates are 

€o = Xo = t 

c X X-vi/v6 (. 1 5) <"i = i 6 ~ = , ... , (2.17) 

The model in new coordinates is obtained by differentiation and substitution 
of ~i for Xi: 

d€i . Xi X 6 - X i X6 
d€o = ~i = Xg . (2.18) 

For instance, one obtains for the first variable 

5 

i: - f3 X X-I X X- 2 II X 96
j f3 X X-I <"i - al - I I 6 - a6 I 6 j - 6 I 6 , (2.19) 

j=1 

which reduces to 

(2.20) 

since the g6j sum to 1. Note that this equation, just like the second through fifth 
equations, does not contain ~6. In other words, the first five equations can be solved 
without consideration of the sixth. The equation for €6, 

(2.21 ) 

is separable and can be solved once the solution of the first five equations has been 
obtained. 

What is the bottom line result of this analysis? After transformation to a new 
coordinate system, the model now is expressed in variables ~i = Xd X 6 , which 
are interpretable as relative drug concentrations (with respect to plasma concen
tration). In other words, the model is independent of the absolute magnitudes of 
concentrations. Furthermore, we are able to reduce the boundary value problem 
to an initial value problem. This is done in the following way: 

1. Initialize system at time 0 with Xi = 0 (i = 1, ... ,5), X6 = 1. 
2. Solve system up to point t*. 

3 .. Solve system again, this time initialized at time 0 with Xi = 0 (i = 1, ... ,5), 
X6 .~ X6-computed(t*) / X6-observed(t*). Because of its scaling property, 
indicated by the Lie group, the system satisfies the boundary value problem. 
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2.2. Increase in number. Minimality is often considered a criterion of opti
mality when it comes to mathematical representation. As early as in the 14th 
century, this idea was explicitly formulated by William of Ockham who postu
lated that between two alternative theories with the same explanatory power the 
more "parsimonious" theory should be judged better (in: [12]). While condensa
tion of representation in many cases in indeed desirable, mathematics has also 
encountered precedents and compelling arguments against this notion. Two well 
established cases are higher-order differential equations and the realization of a 
proper rational transfer function in the form of a linear time-invariant dynamical 
equation [1: p. 154f]. In the well-known first case, new variables are introduced for 
higher derivatives, and the original n-th order equation is replaced by a set of n 
first-order equations. In the second case, the input-output description of a system 
with p input terminals and q output terminals is 

y(t) = it 9(t,T)U(T)dT 
to 

(2.22) 

where y is the q x 1 output vector, U is the p x 1 input vector, and 9 is the q x p 

impulse-response matrix of the system. This system description is equivalently 
represented as 

x = A(t)x(t) + B(t)u(t) (2.23) 

y(t) = C(t)x(t) + [;(t)u(t), (2.24) 

where x is the n x 1 state vector of the system, and A, B, C, and [; are time
dependent matrices of appropriate dimension. Specifically, if g in the frequency 
domain is a scalar function of the type 

'( ) f3lsn- l + ... + f3n-l s + f3n 
g s = e + 1 

sn + alsn- + ... + an-ls + an 
(2.25) 

the realization of g( s) is 

1 
o 

o 
-an-l 

o 
1 

o 
-an -2 

o 
o 

o ~ ) (I)+(!)u 
-al Xn 1 

y = (f3n f3n-l f3n-2 f32 f3l ) X + eu (2.26) 

(cf. [1]). That is, one (integral) pquation (for y(t)) is replaced by n differential 
equations. 

The method of recasting. Recasting is a further example for the advantages of 
non-minimal representations. Recasting is a method for representing differentiable 
functions and differential equations as S-systems. This equivalent transformation 
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is typically accompanied by an increase in the number of independent variables. 
The following paragraphs list the standard recasting methods, discuss some of 
the advantages of recast representations, and finally show relationships between 
recasting and system reduction via Lie transformation groups. 

Given a differential equation, it is initially not at all obvious how to obtain 
an equivalent representation in S-system form. Nonetheless, a standard recasting 
process has been developed [6] that always succeeds, even though it may not yield 
optimal results. This process consists of three types of operations which, in a given 
situation, may have to be applied several times: (i) decompose composite functions; 
(ii) translocate non-positive variables to the positive real domain; and (iii) reduce 
sums of products of power-law functions to a single difference between products of 
power-law functions. In particular cases, ad hoc transformations are possible and 
often preferable (e.g., [9, 11]). The process is best illustrated with an example. 

Example. Blue Sky Catastrophes. The system 

± = 0.7y + x - 10xy2 

iJ = C - x + 0.25sin(1.5t) (2.27) 

describes an apparently almost-periodic solution, but in some cases unexpectedly 
begins to grow without bound, generating a so-called blue sky catastrophy (cf. [7]). 

The first step of the recasting process is to assure positivity of all variables. To 
this end, we introduce the variables Xl = x + p, X2 = Y + q, X3 = sin(1.5t) + r, 
and X4 = cos(1.5t) + r. Differentiation yields 

Xl = [10pq2 -0.7q-p]- [10q2 -l]XI - [20pq-0.7]X2+20qXIX 2 -XIX~+lOpX~ 

(2.28) 

In this representation, p and q can be chosen freely, as long as they are large 
enough to assure positivity, and r is given as r = 4(C + p); for a typical value of 
C = 0.097 (eg., [7]), one may choose p = q = 10, r = 40.388. 

To obtain the S-system form, the first equation, which is in so-called multino
mial form, replace the variable X I with the product of three new variables. For 
instance, we may specify Xl = XgXgXi, where powers of two have been chosen 
for illustration purposes. Differentiation of Xl leads to the sum 2X5X5XgXi+ 
2X6 XgX6 Xi +2X7XgXgX7. Equate the first positive plus the first negative 
power-law term of the first equation with 2X5X5XgXi, the second positive plus 
the second negative power-law term of the first equation with 2X6 XgX6 Xi, and 
the remaining two terms with 2X7XgXgX7. 

The result without renumbering is 
. 2 2 2 X 2 = 0;25X3 - X 5X 6 X 7 X 2(tO) = y(to) 
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X3 = 1.5X4 - 60.582 X 3(to) = sin(1.5to) + r 

X 4 = 60.582 - 1.5X3 X 4 (tO) = cos(1.5to) + r 

X5 = 4991.5X;I Xi 2 Xi 2 
- 499.5X5 X 5(to) = x(tO)0.5 

X6 = 100X2X 6 - 999.65X2X;2 XiI Xi 2 X 6(tO) = 1 

(2.29) 

For a numerical example with x(to) = y(to) = 9.6, the initial vector is (9.6, 
40.388,41.388,9.6°.5 , 1, 1). The original variables x and yare recouped as x = 
XgXgX? - p and y = X2 - q. 

Advantages of recasting. The recasting process transforms differential equa
tions into S-systems that usually have more equations but a simpler structure than 
the original equations. The regularity of the resulting system can be exploited for 
efficient numerical analysis. In particular, Irvine and Savageau [2] have shown that 
the S-system form allows recursive computation of Taylor series expansions which 
are the basis for a robust and efficient numerical integrator. Such an algorithm has 
been implemented in the software ESSYNS, and it has been demonstrated with 
numerous benchmark tests [2, 6] that in very many cases the computational effort 
created by the increase in size is recouped, and that systems are often computed 
faster and with higher accuracy when they are recouped, and that systems re often 
computed faster and with higher accuracy when they are recast as S-systems. 

Recasting can be employed as a tool for the classification and optimization of 
functional forms. For instance, Savageau [5] has shown that all prominent growth 
functions are special cases of a two-variable S-system. This form facilitates the 
search for the growth law that would best model a set of data: Instead of comparing 
different functional forms, one merely optimizes parameter values of the recast 
system. Similarly, probability density functions have been recast and classified. 
Their S-system representation allowed evaluations, such as the computation of 
quantiles, that in the original form are often complicated (cf. [11]). 

Recasting can also be used as modeling tool, when a complex phenomenon is 
to be represented as an S-system model but some subsystems are not in S-system 
form [9: Ch. 14]. For instance, an ecological model may significantly depend on 
the circadian change in solar radiation. The required inclusion of an appropriate 
oscillation would destroy the S-system form and prevent us from using many of 
the established symbolic or numerical S-system methods of analysis. In such a 
situation it is helpful to recast the oscillation and thus to regain the S-system 
form. ~ 

Relationship between Lie-group analysis and recasting. Since recasting 
typically increases the number of variables and equations, one may ask whether 
it is possible to reverse the recasting process and to reduce a recast S-system 
to a lower-dimensional system in non-S-system form. In general, this "decasting" 
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process requires solution of partial differential equations or some semi-systematic 
trial and error (cf. [9: Ch. 15]). However, there are two notable exceptions. First, if 
the recasting procedure itself is known, decasting is trivial since one just substitutes 
back the functions for the auxiliary variables. Second, if the recasting process had 
included the reduction of multinomial equations, decasting is possible via Lie group 
analysis. This becomes evident from a comparison of the recasting process and the 
method of decoupling equations in S-systems admitting a Lie-group. 

For the recasting a multinomial system as an S-system one substitutes the 
variajJle Xi with the product of two new variables, Xi = X n +1X n +2 , which may be 
raised to some powers, and replaces the differential equation for Xi with equations 
for Xn+1and X n +2 . 

On the other hand, if an S-system admits a Lie transformation group, an equa
tion can be decoupled by introduction of new variables ~i = XiX;;Vi/Vn as shown 
above (cf. Eq. (2.9)), and the resulting system is in multinomial form. In fact, the 
invariants ~i that are used in this transformation have exactly the same struc
ture as the auxiliary variables that are introduced in the reduction of multinomial 
systems to the S-system form. 
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