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SUMMARY 

Smartphone-based telehealth is steadily transforming the delivery of medical care 

worldwide, moving diagnosis of disease from the clinic to the home to potentially 

anywhere in the globe.  Smartphone images alone have recently been used by physicians 

to remotely diagnose a myriad of diseases. However, smartphone telehealth approaches 

have yet to non-invasively replace blood-based testing, which remains a major 

cornerstone of disease diagnosis in modern medicine. While the addition of specialized 

smartphone attachments and supplemental calibration tools may enable point-of-care 

diagnosis and analysis of tissue and bodily fluid samples, the additional burden of blood 

and/or tissue sample collections combined with the additional cost and inconvenience 

associated with this equipment, prevents worldwide use of these potentially disruptive 

approaches. Therefore, a smartphone-based system, requiring nothing other than the 

smartphones native technology and capable of non-invasively replacing blood-based 

diagnostics, would transform the very nature of telehealth and the delivery of healthcare 

worldwide. Towards that end, I specifically focused on anemia, a potentially life-

threatening disorder characterized by low blood hemoglobin (Hgb) levels that affects 

approximately 2 billion people worldwide. Despite the high prevalence of anemia, all 

existing diagnostic approaches to measure Hgb require specialized equipment and 

represent tradeoffs between invasiveness, accuracy, infrastructure needs, and expense. 

Aside from being cost-prohibitive, the necessary invasive blood sampling to measure 

Hgb levels causes discomfort and trauma in younger pediatric patients. By examining 

clinical pallor, a common symptom of anemia, I developed a methodology that 
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quantitatively analyzes patient-sourced photos using smartphone-based algorithms to 

enable a noninvasive, accurate, and accessible anemia diagnostic. Here, a patient simply 

takes a picture of their fingernail beds using their smartphone, and the image analysis 

algorithm analyzes color data and image metadata to measure the corresponding Hgb 

level. By quantifying clinical pallor, this system non-invasively measures Hgb levels to 

within a clinically significant and well accepted margin of error (±2.6 g/dL) of the gold 

standard Hgb measurement tool with a sensitivity and specificity of 0.90 and 0.82, 

respectively, of predicting anemia (defined as Hgb < 11.0g/dL) in 100 pediatric patients 

at Children’s Healthcare of Atlanta with anemia of any etiology mixed with healthy 

subjects. Furthermore, this algorithm can be personally calibrated to achieve and 

accuracy of ±0.9 g/dL, a degree of accuracy which, upon further testing, may enable this 

technique to replace traditional blood-based testing. This algorithm has been 

implemented into a smartphone app that is capable of outperforming trained 

hematologists in physical examination-based Hgb measurement. Overall, this technology 

has the capability to change the treatment paradigm for anemia as patients no longer need 

to visit a clinic to monitor their hemoglobin. In this thesis, I discuss the development of 

this image analysis algorithm and the implementation of the algorithm into a smartphone 

app.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Anemia, characterized by low blood  hemoglobin (Hgb) levels1, is a global public 

health problem that affects an estimated 1 in 3 people worldwide. Anemia is caused by a 

variety of etiologies, including chronic hematological conditions that disproportionately 

affect underserved populations, such as sickle cell disease and β-thalassemia2,3. Patients 

suffering from chronic anemia require frequent monitoring of their Hgb levels to track 

the progression of their disease and inform their treatment strategy. The gold standard 

Hgb measurement test is the complete blood count (CBC) which typically requires a 

blood draw and trained laboratory technicians as well as expensive analytical equipment 

and reagents4. Despite the high prevalence of anemia, there is currently no noninvasive, 

inexpensive, and accurate Hgb assessment technology available that enables patients with 

chronic conditions to better self-manage their disease5-7. 

To that end, advancements in point-of-care (POC) technology are dramatically 

and cost-effectively improving clinical outcomes and quality of life of patients with 

chronic diseases by facilitating patient-provider communication and enabling self-

management8. Smartphones offer an ideal POC platform, as they are already distributed 

worldwide and in the hands of billions of users9. Recently, patients have used 

smartphones to capture and transmit images to physicians for remote diagnosis, such as in 

cases of ear infections or melanoma10,11. Moreover, with customized attachments, 

smartphones have been widely adapted to perform POC diagnostic analysis on body 

tissue and fluid samples12. However, there are currently no smartphone-based approaches 
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that can non-invasively replace blood-based diagnostics (e.g. Hgb measurement), a major 

cornerstone in the practice of modern medicine. A patient-operated, home-based method 

to measure Hgb as a self-test would dramatically improve the quality of life of chronic 

anemia patients, as this would obviate the need for frequent, time-consuming, and 

expensive clinic visits to measure Hgb levels.   

To address these challenges, I have developed and clinically validated a novel, 

non-invasive smartphone-based technology capable of accurately measuring blood Hgb 

levels using only patient-sourced images and the phone’s native hardware without 

additional attachments or calibration tools. Using this smartphone app, a patient simply 

takes an image of their fingernail beds, where a custom, novel, image analysis algorithm 

calculates that patient’s Hgb level based on the pallor of their fingernail beds (Figure 1). 

Clinicians have used physical examination of the fingernails, conjunctiva, and palmar 

creases for qualitative assessment of anemia, and several groups have semi-quantitatively 

characterized anemia using these clinical findings13-17. Combining this clinically 

Figure 1: This smartphone app enables non-invasive, quantitative self-
measurement of patient blood Hgb levels. A) A patient takes a photo of their 
fingernail beds. B) Using the native hardware on the smartphone, without needing any 
attachments or calibration equipment, (C) the image analysis algorithm quantitatively 
measures Hgb levels. 
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established utility of physical examination in anemia diagnosis with the imaging 

capabilities of smartphones, this image analysis algorithm relates clinical pallor of the 

fingernail beds from patient images to quantitative Hgb levels.  

1.2 Research Objectives and Specific Aims 

The overall goals of this project were to: (Aim1) determine the feasibility of 

developing an image analysis algorithm that can accurately predict Hgb values from 

smartphone images of subject’s fingernails, (Aim 2) develop the anemia prediction 

algorithm and validate with a large scale clinical assessment (n = 337), and (Aim 3) 

perform usability testing and incorporate this algorithm into a translational, easy to use, 

and inexpensive smartphone application. The incorporation of this image analysis 

algorithm into a mobile platform in the form of an app ultimately facilitates patient self-

management by allowing chronic anemia patients to measure their own Hgb levels, 

enabling more effective patient-provider communication, as well as improving access to 

healthcare especially in low resource settings. 

1.2.1 Aim 1: Determine the feasibility of developing an image analysis algorithm that 

can accurately predict Hgb values from smartphone images of subjects 

fingernails 

In this aim, I showed that it is possible to quantitatively correlate the clinical pallor in a 

patients fingernail beds to the patient’s blood Hgb concentration.  Images of fingernail beds were 

taken using a smartphone and multiple parameters were extracted from the images. These 

parameters were then correlated with actual Hgb levels to determine their relationships to blood 
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Hgb level. Accurate Hgb levels used to evaluate the regression analysis were obtained via a blood 

draw and subsequent measurement via a CBC, the gold standard for measuring anemia. 

1.2.2 Aim 2: Validate and improve the anemia monitoring algorithm with a large scale 

clinical assessment 

In this aim, I conducted a large scale validation study at Children’s Healthcare of Atlanta 

(CHOA), to evaluate the accuracy of the Hgb measurement algorithm. Multi-linear regression 

was used to correlate image parameters of subject’s fingernail beds with gold-standard measured 

Hgb. Once an algorithm that accurately predicts Hgb values was developed, the algorithm was 

validated in a large scale clinical assessment. This involved taking images of hospitalized 

patient’s fingernail beds, and comparing the Hgb results of the prediction algorithm with results 

from the gold standard obtained during the course of the patient’s standard treatment protocol.  

Additionally, chronically anemic patients whose Hgb levels fluctuate were monitored over time 

to assess the utility of this prediction algorithm as a self-monitoring tool that can be tailored to an 

individual’s physical characteristics. Data collected from this clinical study was then used to 

iteratively improve the prediction algorithm 

1.2.3 Perform usability testing and incorporate this algorithm into a translational, easy 

to use, and inexpensive smartphone application 

In this aim, I incorporated the Hgb measurement algorithm in smartphone apps running 

on both the iOS and Android operating systems. Testing was conducted to determine the testing 

conditions under which the app will work. This was done by comparing the accuracy of the app 

when testing was conducted using multiple different smartphones as well as varying background 

lighting condition of the imaging location.  
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1.3 Significance 

Anemia, characterized by low blood Hgb levels, is the world’s most common 

blood disorder, afflicting nearly two billion people worldwide1. Due to numerous causes 

including malnutrition (e.g. iron deficiency), genetic diseases (e.g. sickle cell disease and 

β-thalassemia), infections/inflammatory disorders, cancer chemotherapy, and renal 

failure, anemia can be chronic and potentially life-threatening2,18-22. Therefore, at-risk 

individuals, especially those with chronic anemia, require frequent Hgb level 

measurements to monitor their disease and dictate their treatment plan. For example, 

sickle cell disease, β-thalassemia, and marrow failure often require chronic transfusions, 

the amount and timing of which are determined by Hgb levels. Also, patients with 

autoimmune anemia require frequent Hgb measurements to determine their medication 

type and dosage. Currently, the gold-standard Hgb diagnostic is the CBC4, which requires 

a costly patient visit to a clinic/hospital or commercial lab, expensive analytical 

equipment, as well as trained phlebotomists/technicians. Often the transportation logistics 

alone to obtain these labs are cost-prohibitive to patients, especially those who are 

members of underserved populations, and the necessary invasive blood sampling to 

measure Hgb levels causes discomfort and trauma in younger pediatric patients, a known 

demographic at risk for anemia23. Due to the inconvenience, invasiveness, lack of 

accessibility, and cost associated with CBCs, POC Hgb diagnostics have been developed 

to address some of these issues, but current systems all suffer from some combination of 

high-cost (handheld Hgb meters cost USD $30-$1000), inaccuracy, the need for blood 

sampling, and incompatibility with patient self-testing at home5,7,24,25. Therefore, a 

noninvasive, inexpensive, easily accessible (i.e. using only the native hardware of the 
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phone without the need for additional equipment) anemia diagnostic that accurately 

measures a patient’s Hgb levels, especially as a patient self-test, can vastly improve the 

quality of life of chronic anemia patients. Furthermore, chronic anemia conditions such as 

sickle cell disease and β-thalassemia primarily affect underserved populations, further 

necessitating the need for such an inexpensive technology.  

Towards that end, smartphone-based mobile health (mHealth) is steadily 

transforming the delivery of medical care worldwide, moving diagnosis of disease from 

the clinic to the home to potentially anywhere in the globe and facilitating enhanced 

patient-provider communication26. As examples, smartphone images of the skin, ears, and 

eyes have recently been used by physicians to remotely diagnose melanoma, ear 

infections, and corneal abrasions, respectively10,11,27. However, smartphone mHealth 

approaches have yet to non-invasively replace blood-based testing, which remains a 

major cornerstone of disease diagnosis in modern medicine. While the addition of 

specialized smartphone attachments and supplemental calibration tools may enable POC 

diagnosis and analysis of tissue and bodily fluid samples12, the additional burden of blood 

and/or tissue sample collections combined with the additional cost and inconvenience 

associated with acquisition of the additional equipment prevents worldwide use of these 

potentially disruptive approaches. Therefore, the smartphone-based, patient-operated Hgb 

measurement system that I have developed, which requires nothing other than the native 

technology of the smartphone itself and is potentially capable of non-invasively replacing 

blood-based diagnostics, would transform the very nature of mHealth and delivery of 

healthcare worldwide. To that end, this technology will fundamentally shift the treatment 

paradigm and improve the quality of life of chronic anemia patients. 
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More broadly, by moving Hgb measurement from the clinic to the bedside, any 

patient in any location, at any time, now has access to an important health metric and may 

seek care accordingly. This technology has the potential to significantly impact 

individuals with chronic anemia, which disproportionately impacts underserved 

populations. For example, each year in the United States, approximately 2.25 million 

units of blood are transfused to 750,000 hematology/oncology patients, the majority of 

whom suffer from chronic anemia28. A Hgb measurement is taken prior to administration 

(typically using a CBC) of each blood transfusion to determine eligibility for a 

transfusion. Using this technology, these patients could monitor their anemia from the 

comfort of their own home, sending results directly to a physician to remotely assess their 

need for a transfusion, rather than through inconvenient, recurring, and costly clinic 

visits. In addition, patients with sickle cell disease, milder forms of thalassemia, and 

cancer patients undergoing chemotherapy, all of whom are already chronically anemic, 

may experience dangerous and precipitous drops in their Hgb levels from issues as 

benign as an upper respiratory viral infection and therefore require frequent Hgb 

monitoring2. The ability to self-test at home may save the patient from unnecessary clinic 

visits, as well as more quickly detect severe Hgb level drops. Moreover, this technology 

has far reaching global health applications as healthcare officials in low resource settings 

may use this technology to inform allocation of limited healthcare resources (e.g. 

transfusions, high-risk obstetrical services, etc.) for the patients with the most severe 

anemia. Furthermore, while this algorithm is currently focused on anemia, this approach 

can potentially be easily adapted to quantify other conditions that manifest in physical 
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exam findings and currently require blood tests (i.e. jaundice and cyanosis), 

demonstrating the versatility of this system and approach29,30 

1.4 Innovation 

Given the need for patient-operated, solely smartphone-based approaches that can 

non-invasively replace blood-based diagnostics, I have developed a smartphone app that 

quantitatively analyzes patient-sourced photos to enable a noninvasive, accurate, and 

accessible anemia diagnostic that requires only the patient’s smartphone without the need 

for any additional equipment (i.e. smartphone attachments or calibration tools) or blood 

sampling. Here, a patient simply takes a picture of their fingernail beds, and the image 

analysis algorithm analyzes color data and image metadata to measure the corresponding 

Hgb level. This technology leverages the sophisticated imaging capabilities of existing 

smartphones to remotely diagnose and screen for diseases and encompasses several key 

innovations: 

1.4.1 This algorithm “learns” and improves the accuracy of Hgb level measurements 

as more data is collected. 

 As images are obtained and matched with gold-standard level Hgb levels, as is 

necessary for personally calibrated algorithms, the dataset used to generate and “train” 

the Hgb measurement algorithm expands. Increasing the size of the image dataset ensures 

that a more representative sample of the general population is utilized to develop the 

algorithm, improving the overall accuracy of the proposed technique. Furthermore, as 

more images are added to the dataset, more sophisticated algorithms are applied to 
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facilitate this improvement. Thus, this innovative Hgb measurement method “learns” as 

the sample size increases. 

1.4.2 Smartphone incorporation facilitates patient-operated Hgb measurement. 

 Current technology used to measure Hgb levels requires a trained healthcare 

professional to operate. Existing POC technologies, designed to bring Hgb measurement 

from a clinical laboratory directly to the patient, are designed for  healthcare providers 

and none of these technologies are designed to be used at home by the patient as a self-

test. The technology I have developed leverages the ubiquitous worldwide ownership of 

smartphones with the user friendliness and familiarity of smartphone apps to develop a 

system that allows patients to conduct sophisticated blood testing themselves, without 

requiring a costly, inconvenient, and potentially cost-prohibitive clinic visit. Bringing 

anemia screening and monitoring from the clinic directly to the patient has the potential 

to fundamentally shift the treatment paradigm for those suffering from, or those at-risk 

for, anemia.  

1.4.3 Leveraging the sophisticated imaging capabilities of smartphones enables truly 

noninvasive Hgb measurement obviating the need for additional diagnostic 

equipment.  

Physical examinations of clinical pallor have long been used as a qualitative 

metric for diagnosing anemia. Various studies conducted in low resource settings have 

attempted to semi-quantitatively assess anemia by correlating physician assessment of 

clinical pallor with presence of anemia (defined at various blood Hgb level cut-offs)13-17. 

The system described in this thesis utilizes robust multi-linear regression to correlate 
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color and image metadata from smartphone images of fingernail data to specific Hgb 

levels, representing the first case of quantitative Hgb level measurement using only 

images, let alone smartphone images.  

1.4.4 Furthermore, personalized algorithm calibration allows for highly accurate 

monitoring of Hgb levels in those with chronic anemia conditions.  

Imaging a single patient over time in conjunction with CBC Hgb levels enabled 

this technology to establish personalized correlations between that individual’s fingernail 

bed color patterns and fluctuations and their Hgb levels. In this thesis, I present a method 

that will allow individuals suffering from chronic anemia to accurately monitor their 

anemia from the comfort of their home, potentially reducing costly clinic visits. This was 

accomplished by applying a personalized training scheme within algorithm development 

to improve accuracy. 

1.4.5 This work enables Hgb measurement to be conducted on and by anyone, 

anywhere in the world, at any time, using only a smartphone.  

The increasingly sophisticated imaging capabilities of smartphones coupled with 

their ever increasing worldwide ownership enables a powerful platform for image-based 

diagnostics. As no other software or hardware is needed, the system that I have developed 

obviates the need to visit a clinical setting to conduct testing. This fundamentally changes 

the treatment paradigm for individual’s suffering from anemia, and serves as a starting 

point to address the treatment of other conditions which manifest in physical signs and 

can thus be potentially diagnosed by imaging alone. Overall, these points highlight the 
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novelty and significant technical innovation of this work, and demonstrate the 

improvement of this technology over traditional anemia testing. 
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

2.1 Anemia 

2.1.1 Anemia Biology 

Anemia, characterized by low red blood cell (RBC) and blood Hgb concentrations, 

is the world’s most common blood disorder, afflicting nearly one-third of the world’s 

population, especially young children, the elderly, and women of childbearing age1,31,32. 

Due to numerous etiologies, including malnutrition, genetic hematologic diseases (e.g. 

sickle cell disease, beta-thalassemia), infections/inflammatory disorders (e.g., HIV, 

rheumatoid arthritis), cancer chemotherapy, and renal failure, anemia can become chronic 

and severe2,19-22. Left untreated, individuals suffering from anemia can suffer fatigue, 

weakness, cognitive disorders, and life threatening cardiovascular collapse in severe 

cases18. At-risk individuals, especially those with chronic conditions, therefore need to be 

regularly tested to prevent these symptoms and guide treatment strategies.  

Causes of anemia can be broadly grouped into the following categories: 

2.1.1.1 Impaired production of RBCs 

A primary cause of anemia is the inability of the body to produce sufficient levels 

of hemoglobin33. The most common cause of this inability to produce sufficient levels of 

hemoglobin is iron deficiency34,35. As iron is a key component to the production of red 

blood cells (erythropoiesis), a deficiency of iron can lead to the inability of the body to 

produce functional RBCs and, thus, hemoglobin36. The primary cause of iron deficient 
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anemia is poverty, malnutrition, and famine37. In these cases, patients are not able to 

absorb sufficient iron from their diet, inhibiting erythropoiesis. These problems are 

common in low-resource settings, and are the primary cause for the significant 

correlation between anemia and low resource settings. Furthermore, these issues with 

iron deficiency can also be caused by vegetarian diets, issues with absorption, and 

chronic blood loss due to menstruation, issues that impact developed countries in addition 

to low resource settings37. Once discovered, iron deficient anemia can be easily and 

relatively cost-effectively treated via dietary or intravenous supplementation, even in low 

resource settings38-41. This highlights the importance of knowing ones hemoglobin level, 

as small dietary alterations can lead to significant improvements in quality of life.  

 Furthermore, anemia related to insufficient production of RBCs can be caused by 

multiple hematological diseases, some of which can be chronic and severe. One example 

of such a disease is beta thalassemia major, a blood condition caused by a mutation in the 

hemoglobin molecule, preventing its synthesis2. This leads to inefficient production of 

RBCs. Individuals with this disorder require regular blood transfusions to treat their 

disease. This allows patients to replace their insufficient RBC production with the 

transfused RBCs. These patients require frequent monitoring in order monitor their Hgb 

levels to ensure their treatment strategies are working properly and to ensure that their 

hemoglobin levels do not drop below clinically significant levels. 

2.1.1.2 Increased Destruction of RBCs 

While inefficient production of RBCs can be responsible for anemia, the opposite 

is also true. Increased destruction of RBCs can also lead to anemia. Destruction of RBCs, 
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known as hemolysis, can be caused by a variety of disorders. The two most common 

mechanisms of hemolysis are intravascular and extravascular hemolysis. In intravascular 

hemolysis, RBCs are destroyed within blood vessels due to mechanical trauma caused by 

interactions with the vessel wall, complement fixation, and infectious agents42. The more 

common method, extravascular hemolysis occurs when RBCs are marked for destruction 

and destroyed in the vasculature of the spleen43. Disorders that can lead to hemolytic 

anemia include; hemoglobinopathies such as sickle cell anemia; immune disorders such 

as transfusion reaction due to ABO-incompatible transfused RBCs; drug induced 

hemolysis caused by drug coating RBCs and provoking an immune response; and 

infection such as when the malaria parasite leads to the weakening of the RBC 

membrane3,44-49. In all cases, premature destruction of RBCs leads to lower levels of 

usable hemoglobin, as the hemoglobin can no longer functionally carry oxygen within the 

vasculature after it has been expelled from the RBC50. It is very important for patients to 

understand track their hemoglobin levels when hemolysis is confirmed, as some of these 

conditions may lead to sudden severe drops in Hgb level that can lead to life threatening 

complications 

2.1.1.3 Bleeding 

The final, and most intuitive, cause of anemia is simply bleeding 51. In these 

cases, hemoglobin is simply being lost due to blood loss. Bleeding related anemia can be 

caused by either chronic or acute blood loss. Acute blood loss can occur for a variety of 

reasons, including injury, accidents, and surgery52. In these cases, it is important that 

patients monitor their hemoglobin levels after one of these events, as these events can 

lead to rapid, precipitous drops in hemoglobin that that can occur before a patient can get 



 15 

to a clinic and have their Hgb levels measured. Chronic bleeding-related anemia can be 

caused by a variety of disorders, such as Von Willebrand disease, hemophilia, and 

gastrointestinal bleeding53-55. When bleeding is chronic, hemoglobin levels can gradually 

decrease overtime, and thus need to be monitored.   

2.1.2 Anemia Monitoring 

As a significant percentage of the world’s population is anemic, and each of these 

affected individuals requires anemia testing/monitoring, a number of methods have been 

developed to measure Hgb levels. 

2.1.2.1 Gold-standard anemia diagnosis 

Table 1: Noninvasive Hgb measurement compares favorably with currently-used 
anemia monitoring technology. 

Device Noninvasive External Device Free Inexpensive Accurate 
Complete 

Blood Count4 X X X  

Hemocue56 X X X  
Anemocheck6 X X   
HemaApp57  X  X 
Masimo Co-
Oximetry58  X X X 

Conjunctival 
Analysis24  X  X 

WHO Color 
Scale59  X  X 

Smartphone 
App     

The current gold-standard diagnostic test for anemia is the complete blood count 

(CBC), conducted via a clinical hematology analyzer4. The clinical hematology analyzer 

is extremely cost prohibitive, especially in resource poor settings, where anemia is the 

most prevalent worldwide. In order to conduct a CBC on a clinical hematology analyzer, 
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one must first purchase the machine and rent facilities to house and power it. A trained 

laboratory technician must be employed to run each test, which consumes reagents that 

must be purchased. Additionally, a complete blood count requires a venous blood draw 

from the patient, which requires employment of a second trained technician to administer, 

and can cause discomfort in patients, especially younger patients23.  

2.1.2.2 Point of care anemia diagnosis 

Due to the expense associated with the clinical hematology analyzer, point-of-care 

devices (i.e. devices that can be used at the time and place of patient care) have been 

developed to decrease costs and increase accessibility, particularly to resource-poor 

settings. These point-of-care devices, while more cost effective, bring about their own 

challenges. Photometry and colorimetry-based Hgb prediction methods, used in products 

such as the Hemocue and Anemocheck, typically require costly additional measurement 

tools to measure absorbance of various chemical reactions involving Hgb, in addition to 

requiring venous blood draws or finger sticks5,6. Hgb color scale methods such as the 

World Health Organization color scale are generally very cost-effective, but rely on 

human interpretation of color comparisons of a droplet of blood on paper to a printed 

color scale to estimate Hgb, leading to inaccurate Hgb estimations60. More sophisticated, 

non-invasive, spectrophotometric Hgb estimation techniques such as the Masimo Pulse 

Co-Oximeters, can accurately estimate Hgb, but these techniques are also cost-

prohibitive7. Digital imaging based technologies, including techniques utilizing 

smartphones, have been explored as a simple alternative, but results have been 

insufficient to replace blood-based testing25,57. These technologies and their associated 

drawbacks are summarized in Figure 2 and Table 1. 
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Figure 2: Current anemia monitoring technology. Traditionally, anemia is monitored via 
blood-based technologies in clinical settings. The gold standard anemia test is the complete 
blood count (top row), which requires a venous blood draw. Other calorimetric 
technologies have been developed that require less blood and may be used in POC 
applications, such as the Hemocue, WHO color scale, and Anemocheck (middle row). 
Other noninvasive technologies have also been developed that measure hemoglobin via 
light absorption or reflection off body regions, such as the HemaApp, Masimo Pronto, and 
conjunctival analysis in digital photographs (bottom row). 
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2.1.2.3 Qualitative anemia diagnosis 

 While the gold-standard anemia diagnostic test is an extremely useful tool in 

determining a patient’s treatment needs, physical examinations alone have long been used 

to aid in Hgb estimation. Multiple studies in low resource settings, where the gold 

standard anemia diagnostic tool is extremely cost prohibitive, have attempted to semi-

quantitatively estimate Hgb in patients using results from physical examinations13-17,61-65. 

Skin color is determined by the 3 major pigments; melanin, by far the most impactful; 

carotenoids, the least impactful; and Hgb66. In specific regions of the body, such as the 

fingernail beds, conjunctiva, and palmar creases, melanocytes (cells that lie within the 

epidermis and produce melanin) lie dormant67,68. This causes the blood Hgb levels to 

have the greatest impact on skin tone in these regions. Pallor in these regions generally 

corresponds to a lack of Hgb in the blood vessels near the epidermal surface, providing a 

pseudo-anemia diagnosis. In the previously mentioned studies, pallor of the conjunctiva, 

fingernail beds, and palmar creases was assessed by physicians, who then characterized 

patients as “anemic” (defined by varying Hgb concentration ranges from study to study) 

or not. These characterizations were compared with Hgb levels measured using the gold 

standard. Quantitative data (sensitivity and specificity) were reported based on the 

accuracy of the physician’s characterizations of anemia. While these findings were not 

able to accurately predict blood Hgb levels, they were successful enough to establish a 

correlation between clinical pallor and anemia and introduce physical examinations as a 

viable means to generally estimate Hgb. 
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2.2 mHealth diagnostic tools 

The utility of physical examinations in estimating Hgb facilitates remote imaging 

as a means for anemia diagnosis. Mobile phone ownership is increasing worldwide. 

Currently, there are approximately 4 billion unique mobile phone subscribers worldwide, 

representing over half of the world’s population9. In fact, there are more mobile phones in 

use than there are people worldwide, and half of those mobile phones are “smartphones”. 

The fastest growing market for mobile phone subscribers is in low resource settings, 

where anemia is most prevalent. These smartphones incorporate sophisticated imaging 

software into their design, which can potentially be utilized by medical apps.  

In fact, smartphones have been used in a variety of mHealth applications69. These 

apps can be classified into 3 major classes of devices or systems. 1) Apps that track 

medical record information and promote the maintenance of a healthy lifestyle, or 

facilitate patient-physician interaction and assist physicians with making a clinical 

decision; 2) apps that interface with an additional medical device and analyzes data or 

interprets a result; and 3) apps that use technology and computing power found on 

modern smartphones to turn the smartphone into a standalone medical device.  

Apps that track medical data and promote healthy lifestyle maintenance are the 

most common mHealth apps. A classic example of an app that promotes maintaining a 

healthy lifestyle includes diet apps which track the user’s body weight over time in order 

to assist the user in their goal of losing weight. These apps are also often used to gather 

and record sensitive medical data for the patient and physician. Examples of this include 

diabetes apps such as Daily Carb, which tracks key metrics for managing diabetes such as 
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meal times and readings for carbs, fiber, fat, and glucose which can then be shared with a 

physician70. Apps in this category can also serve to augment the patient-physician 

interface by simply offering the ability to search for doctors based on symptoms or triage 

diseases based on a list of symptoms, such as with the services ZocDoc and WebMD71,72. 

These apps can also be used to improve patient compliance to medication usage as well 

as refill prescriptions. These applications have presented a challenge to the medical 

device regulatory body of the United States of America, The Food and Drug 

Administration (FDA), as technology to assist with these issues has traditionally fallen 

into the realm of medical devices, and the market has become flooded with these 

technologies73. The FDA has responded by allowing exemptions to regulatory oversite 

for applications that pose no significant risk to patients should they fail and that fall into 

the categories of physician support or healthy lifestyle maintenance software. 

Mobile app software that interfaces with external medical devices is another 

common mHealth modality. In fact, the majority of revenue generated by mHealth 

companies is driven by external device sales rather than in-app purchases74. A wide 

variety of technologies have been adapted to interface with smartphones, including such 

staple, sophisticated medical technologies such as echocardiograms, otoscopes, and 

pulse-oximeters. This enables direct collection, storage and transmission/communication 

of patient medical data directly to the patient’s electronic medical records (EMR) as well 

as the physician. Furthermore, these systems potentially empower patients to control their 

own healthcare, as some of these systems may make available sophisticated medical tests 

that are not traditionally available in POC settings. These systems may also be used to 

enable new diagnostics and research tools. For example, microscopes that interface with 
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mobile phones enable analysis of patient samples remotely to look for conditions such as 

malaria. Also, microfluidic POC tests have been developed that interface with the camera 

on mobile phones to generate a readout, enabling remote and POC diagnosis of a variety 

of diseases. 

Finally, the third classification of mobile medical apps is the least common, yet it 

forms the basis of the technology presented in this thesis. Very few technologies exist 

that can usejust the features and computing power of mobile phones themselves to turn 

the phones into a standalone medical device. The most prominent example of such a 

system is smartphone apps that are used to treat and monitor skin lesions in the context of 

skin cancer. In these cases, apps utilize the standard smartphone camera to monitor and 

characterize skin lesions based on a number of attributes in order to determine the 

likelihood that the skin lesion is malignant75. These systems represent major advantages 

over the other categories of mHealth apps. Unlike healthy lifestyle maintenance apps, 

they have the capability to accurately perform a diagnosis of a disease based on real-time, 

patient collected data that did not require a clinic visit or in some cases, even a trained 

medical professional. Unlike apps which interface with external medical equipment, these 

systems do not require that the user purchase an expensive piece of equipment in order to 

conduct testing. In this thesis, I have leveraged the imaging capabilities and the 

ubiquitous worldwide ownership of mobile phones with the diagnostic capability of 

physical examinations alone to develop a novel, non-invasive, easy-to-use, external 

device-free, smartphone application for diagnosing anemiawith the smartphone functions 

as a standalone medical device.  
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2.3 Image analysis in mobile medical devices  

Traditionally, medical image analysis has been conducted by trained medical 

professionals using the human eye. The invention and improvement of sophisticated 

imaging modalities such as standard photography, magnetic resonance imaging (MRI), 

and computed tomography (CT), have enhanced the need for medical image analysis in 

the diagnosis and prevention of disease76. However, the large physical variability of 

various pathologies as well of the fallibility and potential fatigue of the human eye of 

medical experts necessitates automated image analysis via computation for more accurate 

diagnosis and classification of medical images. To that end, advances in central 

processing units (CPU) and graphics processing units (GPU) have enabled for complex, 

sophisticated computational image analysis, which has been able to pick up features in 

medical images that are missed by medical professionals. In some cases, knowing which 

features to look for is no longer a barrier to constructing a computational image analysis 

algorithm to extract features in medical images, as deep machine learning algorithms 

eliminate this need via automated algorithm training77,78. The only downside of these 

methods is that large datasets are typically required to validate that the algorithms truly 

work on all disease cases as opposed to overfitting to the limited cases they have been 

exposed to. Anemia represents an excellent case study in this field, as diagnosis of 

anemia may be conducted visually by looking for clinical pallor. Now, as camera 

technology has increased, image analysis of clinical pallor in medical images can be 

utilized to diagnose anemia from image. This method has led to the technology I present 

in this thesis in which sophisticated regression algorithms are incorporated into modern 

smartphones to diagnose anemia remotely using only a smartphone. 
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2.4 Patient populations requiring noninvasive anemia monitoring 

Anemia afflicts a large percentage of the world’s population, and instances of 

anemia are projected to increase. Anemia has many different causes that require different 

treatment approaches. Each distinctive cause of anemia can therefore lead to unique, 

innovative applications for this anemia diagnostic tool. Take, for example, resource-poor 

settings, where malnutrition is a major driver of anemia (Table 2)1,79. The lack of quality 

healthcare facilities in these low-resource settings makes field-accessible devices to 

perform analysis and diagnosis a necessity, indicating key beneficiaries of this 

technology80.  

Healthcare officials in low resource settings can use this Hgb level measurement 

technique as a means to inform the allocation of limited healthcare resources (Figure 3A). 

Healthcare workers will be sent out to areas where anemia is prevalent and screen the 

general population. This will allow patients suffering from anemia to be discovered who 

otherwise would not have been diagnosed due to lack of available resources, such as 

access to clinical hematology analyzers.  

Table 1: Anemia affects a significant percentage of the world’s population 
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Individuals at-risk for anemia in the general population can use this method as a 

general screening tool (Figure 3B). An at-risk individual could use this image analysis 

algorithm to screen themselves for anemia and seek medical treatment if necessary, rather 

than wasting time and incurring expense due to unnecessary hospital trips. As children 

are all screened for anemia at around 2 years of age, an image-based, non-invasive test 

would allow parents to self-screen their children, eliminating unnecessary clinic visits 

and painful blood tests81. Chronic lead poisoning in children, an issue causing profound 

developmental delays and currently making national headlines, also leads to anemia. This 

algorithm could theoretically be used to monitor the health of children in areas with 

tainted water supplies82.  

Figure 3: The non-invasive, image-based smartphone app for diagnosing anemia 
facilitates a wide range of use models. This Hgb estimation technique can 
potentially be used as a healthcare resource allocation tool in low resource settings 
(A), a screening tool for anemia in general population at risk for anemia (B), and as a 
monitoring tool for chronic anemia patients (C). 

Patient takes images 
on Smartphone 
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Finally, In the case of a chronically anemic patient suffering from a hematologic 

disease in a developed nation, this tool could be used to self-monitor and allow the 

patient and physician to track the efficacy of drug and diet therapies (Figure 3C). A 

patient could potentially take multiple images, and compare the results with gold 

standard-measured Hgb levels to calibrate the smartphone app to their specific fingernail 

characteristics. This calibration would allow for much more accurate Hgb level 

estimation, which would permit an individual suffering from a disease casing anemia as 

well as the physician treating them, to accurately monitor disease progression and 

treatment efficacy remotely.  The results of these tests could be used by the physician to 

remotely alter treatment regimens as necessary, without having to see the patient. A 

simple, non-invasive, inexpensive test for estimating Hgb levels has the potential to be 

used as a screening tool that has the capability to reach multiple user groups and improve 

the lives of patients suffering from a myriad of diseases.   
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CHAPTER 3. DETERMINE THE FEASIBILITY OF 

DEVELOPING AN IMAGE ANALYSIS ALGORITHM THAT 

CAN ACCURATELY PREDICT HGB VALUES FROM 

SMARTPHONE IMAGES OF SUBJECTS FINGERNAILS 

3.1 Introduction  

Physical examination alone has long been implicated in anemia diagnosis. 

Physicians have a long history of using physical examination of clinical pallor in a 

number of body regions including the conjunctiva, palmar creases, and the fingernail 

beds to qualitatively diagnose anemia15,63,83. These regions provide excellent anemia 

diagnostic capabilities becauset they do not contain melanocytes, the skin cells 

responsible for production of the pigment melanin and, thus, the skin tone of the 

individual67. As such, the primary contributor of skin color in these regions is Hgb (i.e. 

the molecule which gives blood its hallmark red color) of the blood flowing through the 

underlying vasculature. Thus, low Hgb levels lead to clinically observable pallor. 

Furthermore, as pallor is purely a color based phenomena, I and others have hypothesized 

that image analysis would be able to distinguish minute color variabilities related to Hgb 

fluctuations, such that Hgb level could be correlated with pallor57. Furthermore, I 

hypothesized that smartphone camera technology had become sufficiently advanced such 

that this correlation could be generated via smartphone images, leading to remote 

assessment of Hgb levels via a smartphone.  
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In this aim, I investigated the possibility of using the conjunctiva, fingernail beds, 

and palmar creases for assessing anemia via smartphone images, and determined the most 

appropriate body regions for conducting pallor-based Hgb analysis. In doing this, I took 

into consideration accuracy of results, ease of access to the body region, ability of an 

individual to self-image, and the computing power and user input necessary to identify 

the correct body regions of interest for analysis. Furthermore, in the process of 

identifying the optimal region of interest for correlating Hgb to pallor, I discovered a 

methodology for developing image analysis algorithms that can measure Hgb level based 

on color data from smartphone images of fingernails. In this chapter I report the 

reasoning behind choosing fingernail beds as the body region of choice for assessing 

anemia via smartphone images, the methodology for arriving at this choice, and the 

algorithm used to correlate fingernail color to Hgb level. 

3.2 Materials and methods 

3.2.1 Choosing a body region of interest 

In order to choose the best region of interest on the body to be used to relate 

clinical pallor to Hgb level, images were taken of three body regions commonly used to 

diagnose anemia via physical examination. The regions of interest used were the 

fingernail beds, the conjunctiva, and the palmar creases. In order to take images of the 

fingernail beds, subjects were instructed to curl their fingers inward in order to control for 

blood flow alterations caused by hand position. Images of the conjunctiva were taken by 

requesting that subjects use their index finger to pull down their eyelids to expose the 

conjunctive. Images of the palmar creases were taken by asking subjects to flex their 
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hand outward, exposing their palms. All images were taken at a distance of 

approximately 0.5 m from the body region of interest. Red, green, and blue (RGB) pixel 

intensity color data was extracted from each regions of interest (ROI) within each image 

(corresponding to the body region of interest) and correlated with the gold standard-

measured Hgb level of the subject. All images were taken with an Apple iPhone 5s 

(Apple, Cupertino, CA) using all default imaging settings. 

3.2.2 Algorithm Development 

In order to develop the Hgb estimation algorithm, average RGB pixel intensity 

data from ROIs within a single patient’s fingernail beds were extracted from the 

smartphone images via a custom generated MATLAB (Mathworks, Natick, 

Massachusetts) function. This patient suffered from β-thalassemia, causing well defined 

fluctuations in Hgb level that could be used to correlate with pallor. Average pixel 

intensity values from the 3 color channels (RGB channels) were correlated with the gold-

standard measured Hgb levels. I served as the initial patient in this proof of concept 

study, as my hemoglobin levels fluctuate rapidly and predictably due to a genetic blood 

condition that I am afflicted with (β-thalassemia major).  

3.3 Results and Discussion 

3.3.1 Fingernail beds are the optimal region of interest on the body for relating clinical 

pallor to presence of anemia. 

In order to develop an image analysis algorithm that measures Hgb based on 

clinical pallor, an appropriate body region must be selected. This region must be known 
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to exhibit pallor when an individual is anemic, and must be easy to image. Three 

candidate body regions were chosen for this study, corresponding to an individual’s 

conjunctiva, palmar creases, and fingernail beds (Figure 4). The conjunctiva was the first 

body region studied, as it is commonly used to diagnose anemia via a physical 

examination. During imaging and data collection, it was difficult to collect RGB color 

data from the regions of interest for a number of reasons. First, it was difficult to explain 

to a subject exactly how far they need to pull their eyelid down in order to expose the 

conjunctiva. Furthermore, every individual tested pulled down their eyelid with different 

force, exposing different amounts of conjunctiva. This variability among individuals 

makes data extraction difficult as the region of interest changes drastically from person to 

Figure 4: Images of various body regions associated with anemia. Images were taken 
of the A) conjunctiva, B) palmar creases, and C) fingernail beds in order to correlate 
pallor with Hgb level. A-B) These images highlight the issues with self-imaging of the 
conjunctiva, as well as the variability of the palmar creases. C) Furthermore, these 
images highlight the well-defined viewing window provided by the fingernail beds.  

A B 

C 
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person. Also, looking towards implementation in a standalone smartphone app self-test, it 

is quite difficult for an individual to expose their conjunctiva and simultaneously take an 

image of it. For these reasons, the conjunctiva was ruled out as a region of interest for 

hemoglobin measurement. The next region of interest studied was the palmar crease. The 

palmar creases were difficult to analyze due to the fact that each individual had a 

different pattern of creases in their palms84. This would necessitate the development of a 

custom algorithm to identify each subject’s palmar creases in order extract data from, a 

fact which immediately disqualified its use for anemia measurement. Finally, the 

fingernail beds were investigated as a region of interest for Hgb level measurement. 

While finger physiology varies slightly between individuals, the fingernails provide a 

consistent imaging window for the most part. These imaging windows are relatively 

large, facilitating simple RGB color data extraction from them. Furthermore, it would 

potentially be very easy for a user to use one hand to hold a smartphone and take an 

image of the fingernail beds on the other hand. For these reasons, the fingernail beds 

were ultimately chosen as the body region of interest for relating clinical pallor to 

anemia.  

3.3.2 A Proof of concept study reveals that fingernail color is correlated to Hgb level in 

a chronically anemic and transfused β-thalassemia patient. 

The proof of concept study for this project involved observing the fingernail bed 

color of a patient with a chronic hemolytic anemia disorder (β-thalassemia major) 

requiring RBC transfusion therapy.  β-thalassemia is a chronic genetic disease caused by 

a mutation hindering or preventing synthesis of the β chain of Hgb, the blood’s oxygen 

transporting molecule2. This inhibited Hgb synthesis leads to insufficient oxygen 
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transport in the patient’s body. Treatment for this condition requires RBC transfusions to 

make up for the patient’s insufficient Hgb production2. Over time, as the donated red 

blood cells are naturally destroyed by the body, the patient’s blood Hgb levels drop. This 

drop continues until the patient’s blood Hgb levels reach a clinically significant threshold 

(~10 g/dL), at which time the patient must receive another transfusion to avoid the 

manifestation of anemia symptoms. A patient suffering from β-thalassemia major 

represents an ideal test case for the hypothesis that Hgb levels can be accurately predicted 

using a strictly physical examination-based method due to the fact that their Hgb levels 

fluctuate very predictably through a wide concentration range over a relatively short 

period of time.  

In this proof-of-concept study, images were taken on a smartphone of the 

patient’s fingernail beds (Figure 5A) over the course of 3 weeks (corresponding to 1 

Figure 5: A non-invasive, image-based algorithm accurately predicts blood Hgb 
concentrations of chronically anemic patients. A) Representative patient image used 
to predict anemia. B) The predicted Hgb levels strongly correlate with Hgb levels 
determined by a clinical hematology analyzer (r2 = .995) in a chronically anemic beta 
thalassemia patient over the course of several weeks after receiving a red blood cell 
transfusion.  
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transfusion cycle) and blood Hgb levels were estimated by correlating the “blue” channel 

pixel intensity to the patient’s actual blood Hgb levels. These estimations were compared 

to blood Hgb levels measured via the gold standard blood test. Images and blood samples 

were taken 1 day post-transfusion (week 0), 1 week post-transfusion, 2 weeks post-

transfusion, and 3 weeks post-transfusion (1 before the next transfusion cycle began). 

Hgb level estimates were able to be strongly correlated (r2 = 0.995) with gold standard-

measured Hgb levels (Figure 5B). The results from this study indicate that this technique 

can be used to successfully and accurately measure a single patient’s hemoglobin levels. 

This proof-of-concept result served to legitimize my hypothesis that imaging fingernails 

alone is sufficient to measure blood Hgb concentration and opened the door of the future 

validation experiments presented in this thesis. 

3.4 Conclusions and alternative approaches 

Practical reasons presented in this chapter highlight the reasoning behind 

choosing the fingernail beds as the optimal region of interest on the body for relating 

clinical pallor to anemia. In addition to practical reasons relating to data extraction, the 

intended use of this technology was considered to exclude regions that are difficult to be 

self-imaged by an individual. Furthermore, quantitative data regarding the correlation 

between color data and gold standard-measured Hgb level presented in this proof-of-

concept study showed that Hgb levels could be successfully estimated using only 

smartphone images taken of fingernail beds. Linear regression was used to relate blue 

pixel intensity value to gold-standard measured Hgb level.  However, a major 

disadvantage of this proof-of-study is that the study was conducted on 1 subject. While I 

showed that Hgb levels could be accurately predicted, this study neglected many possible 
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confounding variables between different individuals that could affect Hgb estimation 

such as, imaging variability (e.g.  imaging parameters such as the angle at which an 

image was taken, the distance from the subject, and the type of camera used to take the 

image), skin tone, background lighting, and nail size. These potential sources of 

variability are addressed in the following chapter, where a large scale clinical study was 

conducted to collect more data that encompassed a better representation of the anemic 

population who could potentially benefit from this tool. However, the data presented in 

this chapter proves that this is a viable technique for measuring Hgb levels. 
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CHAPTER 4. VALIDATE AND IMPROVE THE ANEMIA 

MONITORING ALGORITHM WITH A LARGE SCALE 

CLINICAL ASSESSMENT 

4.1 Introduction 

In order to validate the image analysis algorithm that relates fingernail color to 

Hgb level, more data needed to be collected from many different individuals in order to 

account for variability between individuals. Fingernail color can vary between 

individuals for a number of reasons, including thickness of the fingernail, abnormal 

discolorations (e.g. leukonychia, melanonychia, and bruising), and lighting conditions 

under which fingernail images are taken85. As proof of concept studies used to develop 

the algorithm relied on data collected from a single individual, parameters related to 

variability could not be included in the model. This caused a situation known as 

overfitting, where the model describes a given situation perfectly, but inadequately 

describes alternate situations. In this case, the image analysis algorithm developed in the 

proof of concept study was able to accurately measure Hgb in the single individual, but 

would be likely less successful if applied to a wider population exhibiting fingernail 

variability. In addition to being able to accurately account for variability within a 

population, increasing sample size enabled the usage of more sophisticated correlation 

algorithm, including multi-linear regression and machine learning techniques such as 

neural networks.  
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In this chapter, I detail a clinical validation study in which I increased the sample 

size of the dataset used to correlate fingernail color with Hgb. In addition to increasing 

the dataset, I discuss the techniques used to improve the algorithm to fit the larger sample 

size, and I discuss the ability of the algorithm to account for many common sources of 

variability in images of fingernail beds. 

4.2 Materials and methods 

4.2.1 Clinical Assessment of Noninvasive Technique for Estimating Hgb Level  

A clinical assessment was conducted at Children’s Healthcare of Atlanta, Emory 

University of School of Medicine, and Georgia Institute of Technology to relate 

fingernail bed color to Hgb levels. Patients with various anemia etiologies scheduled to 

have their Hgb levels measured via a CBC as part of their clinical care were recruited to 

this study (n = 265). Subjects were excluded by quality control measures if their images 

showed fingernail beds that were obscured or discolored due to leukonychia, nailbed 

injury, nail polish, darkening due to medication86, etc. Exclusions were conducted to 

eliminate unnecessary variables that could obfuscate algorithm development. All CBC’s 

were conducted using blood samples collected via venous blood draw. Verbal and written 

consent and assent were obtained from subjects and their parents (age permitting) in 

accordance with the Emory University Institutional Review Board (IRB) (00081226) and 

the Health Insurance Portability and Accountability Act (HIPAA) regulations prior to 

partaking in the study. After samples of patients’ blood were collected to conduct their 

CBCs, two images were taken of those patients’ fingernail beds. Smartphone pictures 

were obtained with the camera flash both on and off. All images were taken with an 
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Apple iPhone 5s using all default imaging settings. Prior to imaging, the auto-focus and 

brightness adjustment of the smartphone camera was activated by tapping the screen in 

the region of interest (i.e. the fingernail beds) in order to focus on the nailbed. To ensure 

consistent images, each image was taken with the smartphone at a distance of 

approximately 0.5 m from the subjects’ fingernail beds. Subjects were instructed to curl 

their fingers inwards with their palms facing upwards to control for possible alterations in 

blood flow caused by hand and finger positioning that could potentially affect the 

underlying color of the fingernail beds. Images were taken in clinic examination rooms, 

Figure 6: Hgb level and skin tone distribution of the study population. A) Subject’s 
Hgb levels ranged between 5.9 g/dL and 16.8 g/dL. B) Subject skin tone was normally 
distributed.   n = 337 subjects. 
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where lighting conditions and room illuminants were relatively consistent. A digital light 

meter (Hisgadget, Union City, CA) was placed next to the subjects’ fingernail beds to 

further ensure consistent background lighting conditions. Measurements taken from this 

external digital light meter were recorded to monitor background lighting conditions but 

were not incorporated into the Hgb level calculation. An additional 72 healthy subjects 

from Emory University and the Georgia Institute of Technology were tested using an 

identical protocol in order to ensure the Hgb level distribution of the study population 

better reflected the general population. CBCs were conducted on each subject prior to 

imaging and were analyzed via the same clinical hematology analyzer (Advia 2120i, 

Siemens, Berlin, Germany) used in the clinical study. All imaging was conducted in a 

room with similar lighting conditions to the clinic exam rooms, which was confirmed via 

digital light meter. Fingernail bed images and blood Hgb levels were analyzed in a total 

of 337 subjects. These subjects’ blood Hgb levels ranged between 5.9 g/dL and 16.8 

g/dL, (Figure 6A). Subjects’ ages ranged between 1 and 60 years old. 167 female subjects 

and 170 male subjects were enrolled in this study. In 6 cases, fingernail polish was 

discovered after informed consent had been obtained, and these subjects were excluded 

from testing after study enrollment. In 1 case, an image labeled as having been taken with 

the camera flash on was discovered to have been taken with the flash off, resulting in this 

subject’s data being excluded.  
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4.2.2 Algorithm Development/Image Processing  

Smartphone images were transferred or transmitted from the smartphone used in 

the study to a computer. Fingernail data, skin color data, and image metadata (i.e. data 

describing the camera settings at the time the image was taken) were extracted from 

fingernail bed smartphone images via MATLAB (Mathworks, Natick, MA). ROIs from 

which fingernail and skin color data were extracted were manually selected to ensure that 

fingernail irregularities were excluded from analysis. These ROI were selected from each 

finger excluding the thumb, and were 900 pixels2, corresponding to approximately 10 

Figure 7: Color variability of fingernail beds is minimal across different fingers in 
the same individual. Color values in the red, green and blue channels were normalized 
to the second finger in each subject in order to compare color values from different 
subjects which were different due to variability within the study population. Fingers 3, 
4, and 5 (the thumb was excluded from Hgb measurement) show little difference 
compared to finger 2. No statistically significant difference between color values across 
different fingers was found (p > 0.30 in all cases). Statistical significance was 
determined via two-tailed Student’s t-test assuming unequal variance.  n = 10. 
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mm2 on the fingernail. The thumb was excluded due to the awkward hand position 

required to include the thumb in pictures. Color data was extracted from each region and 

averaged together across fingers for each subject. This was shown to be an acceptable 

method due to the low color variability between different fingers (Figure 7). An 

algorithm was then written in MATLAB utilizing robust multi-linear regression with a 

bisquare weighting algorithm to relate the image parameter data to CBC Hgb levels for 

each patient87.  

A uniform bias adjustment factor was also added to address the inherent 

variability in fingernail measurement. Two distinct use models and algorithms were 

applied for this Hgb measurement method: 1) a noninvasive, smartphone-based anemia 

screening test that does not require calibration with CBC Hgb levels, and 2) a 

noninvasive, smartphone-based, quantitative Hgb level diagnostic requiring calibration 

with CBC Hgb levels that enables chronic anemia patients to self-monitor their Hgb 

levels. Sampling strategies were used to generate the algorithm depending on the specific 

application. 

4.2.2.1 Anemia Screening among the General Population 

To develop the algorithm as a tool to screen for anemia, the entire study 

population (337 subjects) was randomly split into a “training” group (237 subjects) and a 

“testing” group (100 subjects). The training group was used to establish the relationship 

between image parameters and Hgb levels via robust multi-linear regression, much like 

the calibration phase of the personalized calibration study. A testing group of 100 

subjects was used to validate the resultant algorithm. Validation was performed by 
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applying the smartphone algorithm to each testing image and comparing the algorithm 

generated Hgb result with the CBC Hgb result (i.e. determining the residual of the 

algorithm-based method). This process was iterated 1000 times with different randomly-

selected without replacement training/testing groups to minimize residual error, thereby 

optimizing the parameters of the algorithm for anemia screening. Hgb measurements 

taken from the previously described personalized calibration study were not included in 

this anemia screening study. 

4.2.2.2 Personalized Calibration of Smartphone Processing System 

A personalized calibration approach was tested in two β-thalassemia major 

patients with chronic anemia currently undergoing chronic transfusion therapy, a healthy 

female subject with Hgb levels that fluctuated during her menstrual cycle, and a healthy 

male subject with consistent Hgb levels over an identical timeframe to assess the 

algorithm’s capability to be accurately personalized and calibrated to that individual, 

regardless of their diagnosis or Hgb levels. Treatment for β-thalassemia major currently 

comprises of red blood cell transfusions to compensate for the patient’s ineffective 

erythropoiesis2. Hgb levels in the chronic anemia patients fall throughout a 4 week 

transfusion cycle which was chosen as an appropriate time interval for this study. Prior to 

each imaging session, CBC Hgb levels were obtained from each subject via venipuncture.  

Color data and phone metadata were compiled, and a relationship between image data 

and CBC Hgb levels was established via robust multi-linear regression. This process was 

repeated for each individual using data from the 4 weeks of images to create a unique 

calibration curve personalized for that individual. This initial 4 week period is analogous 

to the “training” phase of the general population study, in which a personalized algorithm 
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is trained for each subject. Image parameter changes associated with Hgb level 

fluctuations specific to each person were related to perform algorithm calibration specific 

to each subject, thus improving the accuracy of Hgb level estimation. After the 

smartphone image analysis system was calibrated for each subject, Hgb levels were 

measured weekly over the next 4 weeks using the newly personalized algorithm. These 

Hgb level measurements were then compared to the CBC Hgb levels obtained at the same 

time to assess accuracy. This second 4 week interval corresponds to the testing phase of 

the general population study. This personalized calibration occurred over a total of 8 

weeks. 

4.2.3 Statistical Analysis 

Statistical significance (p < 0.05) was determined via two-tailed Student’s t-test 

assuming unequal variance. All statistical tests (calculation of regression correlation 

coefficients and Student’s t-tests) were conducted using Origin Pro 2017 student version 

(OriginLab Corporation, Northampton, MA).  

4.2.4 Study Approval 

The clinical study regarding the application of the Hgb measurement algorithm 

was approved by the Emory University IRB (approval number 00081226). The study 

regarding the relation of finger temperature and exercise to measurement error was 

approved by the Georgia Institute of Technology IRB (approval number H17118) 
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4.3 Results and Discussion 

4.3.1 Variation between images of multiple individuals inhibits Hgb estimation based 

simply on one parameter.  

The previously described method using linear correlation to relate blue channel 

pixel intensity to Hgb obtained in the β-thalassemia major patient study was applied to 

fingernail bed data from a group of healthy individuals (Figure 8A) in order to estimate 

their Hgb levels. These results did not show any significant correlation between blue 

pixel intensity and gold standard measured Hgb, indicating the presence of confounding 

variables within the experiment introduced by observing a larger population (Figure 8B). 

I hypothesized that these variables could potentially have arisen from the differences in 

skin tone between the individuals, differences in the fingernail physiology of each 

individual (such as fingernail thickness), and subtle differences in the lighting conditions 
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Figure 8: Variabilities within the tested population obscures Hgb level estimation. 
A) Images of the fingernail beds of a random sample of study subjects. Each image was 
taken using the same imaging conditions. However, lighting conditions and subjects’ 
skin tones vary substantially between each image. B) When including a larger, more 
diverse sample population, blue channel pixel intensities show no correlation to 
goldstandard measured Hgb levels. 
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present at the time the images were taken. This prompted future experiments 

investigating the impact that skin tone has on Hgb level measurement, detailed in the next 

chapter. 

4.3.2 Blood Hgb levels were accurately estimated in a group of healthy individuals and 

anemic patients at Children’s Healthcare of Atlanta (CHOA) and the Georgia 

Institute of Technology.  

Given my initial failure to correlate the average pixel intensity of a single color 

channel to blood Hgb levels in a larger, more diverse, population I decided to extract and 

explore other parameters from images of fingernails. To test this hypothesis that 

differences in skin tone and lighting conditions between diverse populations, I explored 

parameters related to these issues. In addition to looking at just RGB color data within the 

fingernail beds, I incorporated RGB color data from a control patch of skin located 

between the first and second knuckles on the middle finger.  

This introduced skin tone as a variable in the model, allowing the algorithm to 

normalize for different skin tones. I believed that this a valuable model parameter due to 

the fact that different skin tones can relate to different pigmentation levels within 

fingernail beds.  For example, melanocytes, which typically lie dormant within the 

fingernail beds, are more likely to actively produce melanin in individuals with darker 

skin tones68. In order to normalize for differences in lighting and imaging conditions 

between each image, metadata was extracted from each individual image file. Parameters 

extracted from the image metadata are used by the algorithm to correct for differences in 

external lighting conditions.  
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Adding additional parameters to the model increased the model’s complexity. 

This increased complexity, while computationally expensive, had the potential to 

decrease the error (defined as the difference between the estimated Hgb level and the 

gold standard-measured Hgb level) in the Hgb measurement algorithm, as it encompassed 

more variables related to fingernail pallor in the general population. However, increasing 

the complexity of the model also increased the likelihood of overfitting the data, 

potentially leading to inaccurate Hgb level estimation. Overfitting occurs when ratio of 

model parameters relative to the number of observations is too high88. A perfect fit could 

potentially have been generated to the study subjects available. If applied to a larger 

population, however, the fit that worked well for the study size may not have accurately 

represented the larger population.  In order to obtain a sufficient sample size of subjects 

to prevent overfitting due to the addition of multiple parameters to this image analysis 

algorithm89, I conducted a large-scale clinical study at Children’s Healthcare of Atlanta 

(CHOA).  

4.3.3 Multiple linear regression was used to relate parameters extracted from clinical 

study-derived images of fingernail beds to blood Hgb levels. These relationships 

were used to develop a prediction algorithm for estimating anemia. 

  Multiple linear regression was used to model the relationship between the 

previously described parameters (independent variables) and blood Hgb concentrations 

(dependent variable)90. The ordinary least squares method was used to estimate this 

relationship91. This method finds coefficients that, when multiplied by each unique 

parameter and linearly combined, minimize the difference between the estimated variable 

and the observed variable determined via gold standard Hgb estimation (1). A bisquare 



 45 

weighting algorithm was used to dampen the effects outliers have on the model, using a 

technique known as robust linear regression (2)87. Testing this method required splitting 

up the subject pool into randomized “training” and “testing” subject groups. The data 

from the training subject pool was used to model the relationship between the image 

parameters and Hgb concentrations as previously described. Once the relationship was 

established and a prediction algorithm determined, the relationship was applied to the 

testing subject group to attempt to predict their Hgb levels without using the gold 

Figure 9: Increasing the size of the “testing” sample pool relative to the “training” 
pool increases error and bias in the prediction algorithm. A) 10, B) 20, C) 50, and D) 
150 images were randomly selected and held aside from images of n = 273 subjects taken 
with the camera flash on. The prediction algorithm was trained with the remaining 
samples and the fit was tested on the held aside sample images. This process was 
repeated 1000 times and the best-case-scenario is shown. Average error of 1000 trials = 
~1.5 g/dL in all cases. Solid line represents ideal prediction of predicted Hgb level = 
measured Hgb level. Dashed line indicated linear fit of the data. Decrease in slope of 
linear fit from ideal fit indicates experimental bias. 
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standard data. The data presented here shows the predicted Hgb values of the testing 

group plotted against the gold standard-estimated values (Figure 9). This process was 

repeated 1000 times to ensure that luck did not play a factor in “guessing” random 

images that happened to correlate better than others due to inadvertent experimental 

variability. In the best-case scenario, the prediction algorithm can estimate the blood Hgb 

concentration of 10 patients to within 0.52 g/dL (Figure 9A). Increasing the size of the 

training subject pool relative to the testing subject pool leads to an increase in the error of 

the best-case scenario observation, leaving the accuracy of the average of 1000 random 

iterations nearly identical at ~1.5 g/dL (Figure 9A-D). This indicates that the clinical 

study was of a sufficient sample size due to the fact that increasing the number of trained 

observations had little impact on the overall accuracy. As I increased the size of the 

testing pool relative to the training pool, the error in the best case scenario increased. 

However, with a sample size of n = 150, representing >50% of the total number of 

subjects, it was possible for the algorithm to predict Hgb levels to within 1.3 g/dL, a level 

of accuracy approaching that of similar, more expensive devices (Figure 9D)92. In 

addition to observing an increase in the error of the best-case-scenario as size of the 

testing pool relative to the training pool is increased, I observed a decreased slope in the 

linear fit. The practical implication of this observation is that subjects who have very high 

or very low Hgb levels are being predicted closer to the population’s mean Hgb level 

than they should be. This indicates the presence of bias in the experiment.   

 
𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  �𝐶𝑃 ∗  𝑃𝑃

𝑃

𝑃=1

  (1) 
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Where n is the number of parameters in the model, Pi…Pn represents each 

parameter in the model, and Ci,…  Cn represents the coefficient relating each parameter to 

the gold standard Hgb estimation.  

Figure 10 Correction factors reduce the impact of experimental bias on the Hgb 
prediction algorithm. A - Top) Predicted Hgb levels of 150 subjects were reported. A-
Bottom) The slope of the linear fit of the data points in the Bland-Altman plot (bottom) is 
positive, indicating presence of experimental bias. B-C Top) Correction algorithms do not 
significantly alter error in the prediction algorithm. B-C Bottom) Correction algorithms 
reduce slope in the bland Altman plots, indicating mitigation of experimental bias. Top) 
Solid lines indicate ideal fit of measured Hgb level equals predicted Hgb level. Dashed 
lines indicate actual linear fit. Bottom) Hgb level difference is defined as the difference 
between predicted Hgb level and measured Hgb level of a subject. Mean Hgb level is the 
average of the predicted and measured Hgb levels for a subject. Solid black lines indicate 
95% limits of agreement (1.96 x Standard deviation of the Hgb difference). Solid red lines 
indicate mean Hgb level difference.  Dashed lines indicate actual linear fit. 
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 𝑤𝑤𝑤𝑤ℎ𝑡 = ( 𝑎𝑎𝑎(𝑟) < 1) ∗ (1 − 𝑟2)2          

𝑊ℎ𝑤𝑟𝑤 𝑟 =  
𝑤𝑟𝑟𝑒𝑟

𝑡𝑡𝑡𝑤 ∗ 𝑎 ∗ √1 − ℎ
 

(2) 

Where error is the difference between the predicted Hgb level and the gold 

standard estimated Hgb level, h represents leverage values from a least-squares fit, tune is 

the default tuning constant, and s is the standard deviation of the error.  

4.3.4 Transforming the prediction algorithm data partially corrects for the 

experimental bias without sacrificing accuracy 

In order to address the observation that subjects with Hgb levels near the 

boundary of the population’s Hgb range tend to be predicted closer to the mean (i.e. 

predicted too high near the low end of the range and too low near the high end of the 

range), I applied transformations to the original Hgb measurement data (Figure 10A) in 

an attempt to accurately predict Hgb levels across the entire range of Hgb levels. A linear 

(3) (Figure 10B) and sigmoidal (4) (Figure 10C) correction algorithm based on the 

predicted Hgb level distance from the population mean was applied to the results from 

the prediction algorithm on 150 subjects. Both correction factors reduced the bias, as 

shown by the reduction of slope in the Bland – Altman plots (a plot primarily used to 

illustrate compare the performance of a new method to the gold standard), while 

preserving the error (Figure 10Bottom)93. While this represented an improvement in the 

prediction algorithm, this correction did little to address the cause of the bias in the data.  
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 𝐻𝐻𝐻𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  (𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐻𝐻𝐻𝑀𝑃𝑀𝑃) (3) 

 𝐻𝐻𝐻𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  �
𝑡

1 + 𝑤−𝑥
� (4) 

Where n = max value of transformation, and 𝑥 =  𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐻𝐻𝐻𝑀𝑃𝑀𝑀𝑀𝑃𝑃𝑃 

4.3.5 Altering the testing and training protocol to account for Hgb level distribution 

decreases error and reduces experimental bias. 

I hypothesized that the experimental bias leading to large error at the boundary of 

the study population’s Hgb level range could be due to the Hgb level distribution in the 

study population. Due to the nature of their conditions requiring treatment at CHOA, the 

majority of the study subjects were mildly anemic. Training populations were randomly 

selected from the study population to develop the prediction algorithm; therefore, the 

prediction algorithm was trained based on data that had a clear anemic majority. I 

believed that the least squares algorithm was being solved in a way that fits the 

predictions to the training data set. In other words, Hgb measurement data was flawed 

due to the flawed Hgb level distribution of the training data. I amended the protocol for 

selecting training samples from the study population to investigate this hypothesis. The 

study population was broken up into 3 groups based on gold standard-measured Hgb 

level (<9 g/dL, 9 – 12 g/dL, and >12 g/dL). An equal number of subjects from each group 

was randomly chosen to train the algorithm using the previously described method. This 

ensured a constant Hgb level distribution among the training population. The resulting 

prediction algorithm was applied to the remaining subjects. This training method was 
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successful, resulting in an average error of 0.89 g/dL in 100 patients and a reduction in 

bias (Figure 11). 

Figure 11: Training population Hgb level distribution affects accuracy of the Hgb 
prediction algorithm. A) Hgb level predictions of 100 subjects tested using a prediction 
algorithm trained with a subject group possessing normally distributed Hgb levels 
(Top). The slope in the Bland-Altman plot (Bottom) indicates experimental bias. B) 
Hgb level prediction of 100 subjects tested using a prediction algorithm trained with a 
subject group possessing uniformly distributed Hgb levels (Top). When trained with a 
population possessing a uniform Hgb level distribution, average error decreases (Top), 
and bias is reduced (Bottom) relative to a normally distributed training population. Top) 
Solid lines indicate ideal fit of measured Hgb level equals predicted Hgb level. Dashed 
lines indicate actual linear fit. Bottom) Hgb level difference is defined as the difference 
between measured Hgb level and predicted Hgb level of a subject. Mean Hgb level is the 
average of the predicted and measured Hgb levels for a subject. Solid black lines 
indicate 95% limits of agreement (1.96 x Standard deviation of the Hgb difference). 
Solid red lines indicate mean Hgb level difference.  Dashed lines indicate actual linear 
fit. N = 100. 
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4.3.6 Skin tone has little impact on error in Hgb level estimation 

I hypothesized that another potential cause of the observed experimental bias 

stems from the fact that individuals with darker skin tones are more likely to have 

abnormally pigmented fingernail beds68.  I employed automated analysis of skin tone to 

account for this. The CIELAB color space was designed as a device independent color 

space capable of approximating human vision94. Much like the human brain, this color 

space distinguishes between light and dark (“L” value), between red and green (“A” 

Figure 12: Skin tone has negligible impact on Hgb estimation error. A) Difference 
and B) absolute difference of Hgb levels show a weakly positive correlation to skin tone 
(shown on a 0 to 100 scale with 0 being absolute dark skin tone and 100 being absolute 
light skin tone. Hgb estimation algorithms trained with subjects possessing C) dark or D) 
light skin tones show minor difference in error. Dashed lines indicate linear fit. Solid 
lines indicate ideal fit of predicted Hgb level equal to measured Hgb value. 
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value), and between blue and yellow (“B” value), by using a transformation on the RGB 

values in each image based on the illumination source of the image. The lightness, or “L” 

value, most accurately represents human perception of skin color and serves as an ideal 

variable linearly modeling skin tones in a population95. Using these non-biased skin tone 

values, I investigated whether a subject’s skin tone had any correlation with the error 

associated with the Hgb level prediction for that subject. I found that the “L” value of a 

subject’s control patch of skin, in which a higher value correlates to lighter skin tone, had 

little impact on the absolute Hgb level difference with a weakly positive correlation 

between lighter skin and greater Hgb level and absolute Hgb level difference (Figure 

12A-B). I also amended the training group selection procedure once more to determine if 

grouping subjects by skin tone could lead to more accurate predictions algorithms based 

on skin tones. Subjects with light skin tones and dark skin tones were grouped together 

and the previously described training/testing procedure was conducted on each group. 

Here I show that the error associated with the algorithm trained with individuals with 

dark skin tones was nearly identical to the error associated with the algorithm trained 

with individuals with light skin tones (Figure 12C-D). These results indicate that 

melanocyte activity and subsequent pigmentation of the fingernail beds and, thus, skin 

tone did not play a significant role in the observed experimental bias in this Hgb level 

estimation procedure. 

4.3.7 Machine learning techniques do not improve Hgb level measurement accuracy 

given the current sample size of the study population. 

While the accuracy of Hgb measurement that I have reported is within clinically 

acceptable levels for a POC device, more sophisticated regression methods were 
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investigated in an attempt to improve Hgb measurement. In order to assess the viability 

of more sophisticated Hgb measurement models, Hgb measurement was conducted using 

2 methods of machine learning that are capable of determining unanticipated non-linear 

relationships between fingernail data and Hgb levels. Neural Network regression utilizes 

a network of hidden nodes that can approximate nonlinear relationships between a set of 

input parameters96. Using a training set of inputs (fingernail bed image parameter data) 

and outputs (gold standard measured Hgb levels), a “learning” algorithm utilizing 

Levenberg – Marquardt backpropagation and implemented in MATLAB was used to 

model the relationship between fingernail bed image parameters and gold standard-

measured Hgb levels. This relationship was tested on a group of 100 images to estimate 

their Hgb levels, similar to the training and testing procedure outlined previously in this 

aim using linear regression. Using this method, the Hgb estimation error increases to 

1.6g/dL as compared to robust multi-linear regression (Figure 13A-B). Bagged decision 

tree ensemble regression utilizes multiple decision trees corresponding to different 

subsets of features (fingernail bed parameters in this case) trained on small random 

groups of the overall training set (i.e. the image pool), a technique known as bootstrap 

aggregation, and averaging the regression results of the different trees in order to reduce 

overfitting97. When this method was applied to a testing image group, the Hgb estimation 

error increased to 1.26g/dL compared to the robust multi-linear regression case (Figure 

13A,C). This indicates that neither method has improved upon the success of the simple 

robust linear regression model. However, the Hgb level distribution of the training group 

in all three cases was normally distributed, which I have shown to be less effective than a 

uniformly distributed Hgb level distribution.   
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4.3.8 Anemia Screening Using the Smartphone Image-based Algorithm when additional 

subjects are included to normalize Hgb level distribution 

This system has the capacity to serve as a noninvasive anemia self-screening tool 

for use by the general population or at risk populations. With a single smartphone image 

and no personalized calibration step, smartphone Hgb levels were measured to within 

±2.6 g/dL with a bias of 0.0 g/dL of CBC Hgb levels in 100 patients mixed with healthy 

subjects (Figure 14A, r = 0.79; Figure 16, Table 3), defined as the 95% limits of 

agreement. This noninvasive approach represents a greater degree of accuracy than 

reported accuracy levels of existing invasive anemia screening methods used in low 

resource settings such as the World Health Organization (WHO) color scale60.  

Figure 13: More sophisticate methods of regression seem to have little impact on 
Hgb estimation accuracy. Hgb estimation conducted via (B) neural network 
regression (Error = 1.6g/dL) or (C) random forest ensemble regression (Error = 
1.26g/dL) fail to improve upon Hgb estimation using (A) robust multi linear regression 
(Error = 1.17g/dL). n = 100 subjects. 
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Figure 14: The smartphone-based image analysis algorithm accurately measures 
Hgb levels. A) The smartphone image analysis algorithm measures blood Hgb levels to 
within ±1 g/dL of the CBC Hgb level (r = 0.79). The solid line represents the ideal result 
where smartphone Hgb level is equal to the CBC Hgb level whereas the dashed line 
represents the actual data fit. Inset images illustrate example patient-sourced photos that 
were used to calculate Hgb level measurements. B) The Receiver Operating 
Characteristic (ROC) analysis graphically illustrates the algorithm’s diagnostic 
performance against a random chance diagnosis (red line), with an area under the curve 
of 0.5, and a perfect diagnostic (green lines), with an area under the curve of 1. In the 
case of this noninvasive smartphone app Hgb measurement system (black line), the area 
under the curve of 0.87 suggests viable diagnostic performance of this algorithm. When 
using the WHO Hgb level cutoff of < 12.5 g/dL, the sensitivity of the test is 94% (95% 
CI, 89% – 100%), n = 100 patients. C) Bland-Altman analysis reveals minimal 
experimental bias with zero average error, indicating that Hgb measurement is not biased 
in any direction. The dashed line represents the relationship between the residual and the 
average of Hgb level measurements obtained from the CBC and the algorithm (r = 0.22). 
The solid red lines represent 95% limits of agreement (2.6 g/dL). n = 100 
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Table 3: Diagnosis profile of clinical assessment subjects. This study enrolled 337 
individuals with a wide variety of diagnoses.  Study subjects enrolled consisted of 162 
patients with Sickle Cell disease (e.g. type SS, SC, Beta+, Beta 0), 34 patients various 
other anemias (e.g. Beta Thalassemia major and minor, Microcytic, macrocytic, 
normocytic, aplastic, iron deficient, and general anemia), 54 instances of several 
malignancies (e.g. Leukemia, Lymphoma, Sarcoma, Neuroblastoma, Germ Cell Tumor), 
as well as 15 patients suffering from various other blood conditions (e.g. Deep Vein 
Thrombosis, hyperbilirubinemia, Hypogammaglobulinemia, idiopathic thrombocytopenic 
purpura, Purpura fulminans, Pulmonary embolism, Neutropenia, Spherocytosis, 
Thrombocytopenia, Von Willebrand disease). Additionally, 72 healthy control subjects 
were enrolled in the study to ensure that a wide range of Hgb levels were represented. 

Disorder Number of Patients  

 
Hematologic Diseases 
Sickle cell disease 
  Hgb SS 
  Hgb SC 
  Hgb Sβ+ 
  Hgb Sβ0 
Beta thalassemia 
  Major 
  Minor 
Thrombocytopenia 
Aplastic anemia 
Deep vein thrombosis 
Hemophilia 
Microcytic anemia 
Neutropenia 
Pulmonary embolism 
Anemia (unspecified) 
Diamond blackfan anemia 
Hemolytic anemia due to 
immunosuppression 
Hyperbilirubinemia 
Hypogammaglobulinemia 
Iron deficient anemia 
Macrocytic anemia 
Normocytic anemia 
Pancytopenia 
Paroxysmal nocturnal Hgburia (PNH) 
Purpura fulminans 
Spherocytosis 
Von Willebrand disease 

 
211 
162 
126 
21 
8 
5 
17 
12 
5 
6 
2 
2 
2 
2 
3 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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Table 3 continued… 
 
Oncologic Diseases 
Acute lymphoblastic leukemia 
Hodgkin’s lymphoma 
Acute myeloid leukemia  
Diffuse large B cell lymphoma 
Neuroblastoma 
Osteosarcoma 
Anaplastic ALK-positive large cell 
lymphoma 
Burkitt’s lymphoma 
Chronic myeloid leukemia 
Ewing’s sarcoma 
Extragonadal germ cell tumor of 
mediastinum 
Germ cell neoplasm of the left testicle 
Hepatoblastoma 
Lymphoma (unspecified) 
Rhabdomyosarcoma 
Sacrococcygeal germ cell tumor 
Spindle cell sarcoma 
Synovial cell sarcoma 
T lymphoblastic lymphoma 
Wilm’s tumor 
 
Healthy Control 

 
 

54 
29 
6 
5 
4 
3 
2 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
 
 
 

72 
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 Moreover, receiver operating characteristic analysis revealed that this test 

Figure 15: STARD diagram for the general population study when defining a 
positive test for anemia as < 11.0 g/dL 

Figure 16: Diagnosis profile of Hgb measurement subjects. Subjects with hemolytic 
anemia, healthy controls, cancer, other anemia (e.g. aplastic anemia), as well as various 
other blood disorders (e.g. such as thrombocytopenia, deep vein thrombosis, and 
hemophilia) participated in the study. These data represent the diagnosis profiles of the 
subjects shown in Fig. 2. n = 100. 
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achieves a strong diagnostic performance with an area under the curve of 0.87 (Figure 

14B) and highlights the accuracy of this technology throughout the entire range of tested 

Hgb levels. Additionally, there was minimal correlation between patient Hgb levels and 

smartphone-measured residual (r = 0.23), indicating that the algorithm performance 

remained consistent throughout range of tested Hgb levels (Figure 14C). Notably, when 

using a cutoff of <11.0 g/dL to define anemia, a well-established Hgb level threshold 

(Figure 14B, Figure 15),16 the sensitivity and specificity of the system to detect anemia 

was 90% (95% CI, 82% – 98%) and 82% (95% CI, 71% – 93%), respectively. Using the 

WHO Hgb level cutoff for anemia of 12.5 g/dL, the sensitivity of the test improves to 

94% (95% CI, 89% – 100%), indicating the potential for this test to serve as a 

noninvasive screening tool for anemia (Figure 17)98. 

Figure 17: STARD diagram for the general population study when defining a 
positive test for anemia as < 12.5 g/dL 



 60 

 

Figure 18: Adding a personalized calibration step to generate a patient-specific 
algorithm further improves the accuracy of Hgb levels measurement and is ideal for 
chronic anemia patients. A) Healthy and chronically transfused anemic patients were 
monitored over four weeks (i.e. over the course of a therapeutic blood transfusion cycle). 
CBC Hgb levels (white text) were used in conjunction with the images to generate a 
personalized algorithm for each individual. B) The patient-specific algorithms were used 
to measure Hgb levels over a subsequent blood transfusion cycle. This patient-specific 
calibration improved the average error of Hgb level measurements to within 0.35 g/dL of 
the CBC Hgb level. Bland-Altman analysis shows negligible experimental bias in the data. 
The zero average error (solid black line) indicates the Hgb measurement of the 
smartphone app is not biased towards any direction. The dashed line represents the 
correlation (r = 0.02) between the residual error and the average of Hgb level 
measurements obtained from the CBC and the algorithm. The solid red lines represent 
95% limits of agreement (0.9 g/dL). n = 4 patients, 4 measurements per patient. 
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4.3.9 Personalized Hgb Level Measurements Using the Smartphone Image-based 

Algorithm 

Furthermore, the smartphone-based algorithm was calibrated for each subject (4 

subjects total) over the course of 4 weeks and achieved personalized and accurate Hgb 

level measurements, enabling long-term serial monitoring of Hgb levels (Fig. 4A, Figure 

18, Figure 19). Overall, when used in this manner, this system achieved a level of 

Figure 19: Patient-specific Hgb level measurements are in agreement with CBC 
measurements in the study population throughout a physiologic range of Hgb levels. 
This patient-specific calibration improved the accuracy of Hgb level measurements to 
within 0.35 g/dL of the CBC Hgb level (r = 0.95). The solid line represents the ideal 
result where smartphone Hgb level is equal to the CBC Hgb level. The dashed line 
represents the actual data fit.  n = 4 patients, 4 measurements per patient. 
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accuracy of ± 0.90 g/dL with a bias of 0.0 g/dL compared to CBC Hgb levels (Figure 20), 

again, defined by the 95% limits of agreement (i.e. the Hgb level difference from the gold 

standard that 95% of smartphone measurements will fall between), representing an 

improvement on the reported accuracy of current invasive, point-of-care Hgb tests, such 

as Hemocue7, and clinically-used noninvasive methods such as the Masimo Radical 792.  

Additionally, the smartphone Hgb level measurement residual did not correlate 

with the average between each patient’s CBC Hgb level and smartphone Hgb level with 

(r = 0.02), indicating that residuals were not biased for any specific range of Hgb levels 

Figure 20: STARD Diagram for the personalized calibration study when defining 
a positive test for anemia as < 11.0 g/dL 
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(i.e. algorithm performance remained fairly constant throughout the entire physiologic 

range of tested Hgb levels). Furthermore, this degree of accuracy falls below a clinically 

significant threshold of ±1 g/dL,60,99,100 suggesting that this system can potentially be 

considered interchangeable with the CBC Hgb level given further study101. Furthermore, 

88% of measurements fall within Clinical Laboratory Improvement Amendment (CLIA) 

allowable total error of ±7%102, indicating that upon further refinement and completion of 

additional testing, this technology may potentially be viable for at-home and clinical use.  

4.4 Conclusions and alternative approaches 

There are possible potential sources of error introduced by the design of this 

clinical study. Given the medical histories of the patients visiting the 

hematology/oncology clinic, many of the subjects in the clinical study had low blood Hgb 

levels. If the majority of patients used to train the algorithm had low blood Hgb levels, 

this could potentially cause the algorithm to artificially lower blood Hgb estimates of 

future healthy patients. Also, due to regional demographics, the majority of patients 

enrolled in the study was African-American and possessed relatively dark skin tones. 

Additionally, the majority of these patients with dark skin tones were suffering from 

diseases whose symptoms include low blood Hgb levels. Since these patients were used 

to “train” the algorithm, it is possible that future patients with dark skin tones will have 

artificially low measured Hgb levels. Finally, this experimental design relies on the 

smartphone’s ability to normalize for the different imaging conditions mentioned 

previously (e.g. automatic white balancing, auto-exposure, auto-focus), rather than using 

a color normalization feature located within the image (e.g. a color/whiteness standard). 

However, these automatic normalization functions are not perfect, which could 
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potentially lead to small variations in fingernail color and skin tone unrelated to the blood 

Hgb concentration. Additionally, some of the participants in the clinical study were on 

therapeutic drugs that have been shown to affect fingernail color. While subjects were 

typically excluded if they had nailbed discolorations or abnormalities, it is possible that a 

subject was included that had a very subtle discoloration due to medications.  

A possible source of the experimental bias I have identified is the distribution of 

Hgb levels in the study population. I have attempted to engineer the training data set such 

that Hgb levels in the training population are uniformly distributed, in order to ensure the 

prediction algorithm is not biased towards any Hgb level. However, because so many 

subjects were used in the training population, the left-over testing population still had a 

Hgb level distribution heavily influenced by anemic Hgb levels. In order to ensure that 

both the training and testing subject groups have uniform Hgb distributions, as well as 

enough subjects to prove the algorithms utility as a Hgb screening tool, I will begin 

seeking out healthy subjects with Hgb levels in the normal range to take part in future 

iterations of this study. The previously mentioned techniques will be used to generate 

new prediction algorithms based on the new study populations. It is possible that this 

method of Hgb estimation will not achieve the accuracy necessary to be a clinically 

valuable diagnostic tool. This could occur either due to the inability to account for 

experimental bias or that pallor variability between patients is simply too great for this 

method of Hgb estimation to account for. If this is the case, I will investigate more 

sophisticated modeling methods to generate the prediction algorithm in greater depth. 

One such modeling technique involves the use of machine learning and neural networks, 

as discussed previously, which takes advantage of the ability of computers to iteratively 
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learn more complicated models and extract features and parameters within images of 

fingernail beds that are not readily apparent to the human eye103. While these techniques 

did not improve Hgb measurement accuracy when applied to the study population 

presented in this chapter, it is possible that the more sophisticated, machine learning-

based Hgb estimation methods will improve when trained with a much larger patient 

sample size encompassing a uniformly distributed Hgb level distribution. These 

techniques have shown great promise in diagnosing a variety of medical problems from 

diabetic neuropathy to skin cancer77,78. By inserting a regression layer on top of the deep 

neural network, covariates (such as age, anemia etiology, camera type, etc.) can easily be 

factored in to the regression to optimize the algorithm. Although it is traditionally 

expected that thousands of patients are needed for deep learning to bear fruit, researchers 

have seen improvements over state of the art algorithm just using hundreds of patients104. 

Therefore, the use of more subjects representing numerous etiologies, as well as healthy 

controls (50% male/50% female) will ensure the scientific rigor of this approach. 

Moreover, multiple recordings per patient, which has not been implemented in the current 

testing protocol, have the capability to enhance such algorithms, while cross validation 

ensures that I will not over-train on a given population. This will be attempted once 

additional subjects with healthy Hgb levels are enrolled in the study and the study 

population contains a more uniformly-distributed Hgb level distribution. I will utilize the 

vast amount of computing power at my disposal at the Georgia Institute of Technology 

and Emory University to develop these complicated models to solve the regression 

problem this project presents. Overall, these data highlight the ability of clinical pallor to 

be correlated quantitatively with blood Hgb levels in subject’s who are both healthy and 
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suffer from a wide range of disorders. These results indicate that this method may be used 

to noninvasively measure Hgb and diagnose anemia and that future studies may improve 

Hgb measurement accuracy such that this technology may one day replace blood-based 

testing. 
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CHAPTER 5. PERFORM USABILITY TESTING AND 

INCORPORATE THIS ALGORITHM INTO A 

TRANSLATIONAL, EASY TO USE, AND INEXPENSIVE 

SMARTPHONE APPLICATION. 

5.1 Introduction 

In order to achieve its potential as a noninvasive diagnostic tool capable of 

remotely screening for anemia, this image analysis algorithm must be incorporated into a 

medical device that patients and healthcare providers can use. Smartphone ownership is 

increasing worldwide, and many medical devices have been designed that are 

incorporated into smartphones, or interface with mobile technology. As this image 

analysis algorithm for measuring Hgb levels utilizes only smartphone images of a 

subject’s fingernail beds without the use of any external equipment, incorporation into a 

mobile app was a natural fit to allow for noninvasive self-diagnosis of anemia. The 

ability to function using a smartphone alone represents a substantial benefit to a user as 

they already have the medical device (the smartphone) in many cases and must only 

download an app to unlock this additional capability of their smartphone. 

In this chapter, I discuss the integration of this image analysis algorithm into a 

fully functioning standalone smartphone app as well as the diagnostic accuracy of this 

app compared to the accuracy of a physical examination by a physician. I also discuss the 

user interface considerations that went into app development, as well as the incorporation 

of the app in multiple operating systems. I conclude with a discussion of the challenges 
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that come along with using multiple smartphone models that contain different camera 

hardware and the challenges of accounting for this hardware variability. 

5.2 Materials and Methods 

5.2.1 App Development 

5.2.1.1 Software 

The Hgb level measurement algorithm was incorporated into mobile apps. The 

open source integrated development environment (IDE) Android Studio (Google, 

Mountain View, CA) was used to develop a beta version of the Hgb measurement app in 

the Android operating system. The proprietary IDE Xcode (Apple, Cupertino, CA) was 

used to develop a beta version of the app in the iOS operating system. 

5.2.1.2 Beta Testing 

Design consideration that ultimately led to the process flow described below were 

determined by assessing the functional and technical requirements of a Hgb measurement 

app, as well as convenience and usability requirements determined via beta testing. Beta 

testing was conducted on a group of individuals who were comfortable with use of a 

smartphone but had no knowledge of application or software development. Users were 

given basic instruction on how to use the app and asked to provide feedback regarding 

usability of the app. This process was used to generate iterative improvements to the 

process flow of the app. The primary outcomes of this preliminary beta testfocused on 

how information was displayed and how instructions were presented to the user. In 

response to beta testing feedback, each set of instructions presented in the app process 
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flow is now presented to the user in a large, easy-to-see text box on the smartphone 

display. In some cases, images are included with these instructions that visually 

demonstrate the actions a user must take. For instance, the hand position that was used in 

the clinical study is demonstrated to the user to facilitate mimicking of the correct hand 

position to obtain accurate Hgb measurement.  

5.2.1.3 Process Flow 

The process flow for the apps that I have developed on both iOS and Android 

platforms is as follows and can be summarized by Figure 21:  

1. The user is prompted to enter a patient ID, which allows patient data to be 

stored and collected for future analysis based on a deidentified number. 

This number prevents the subject’s personal information such as name, 

date-of-birth, sex, etc. to be linked to data collection in any way. 

2. The user is prompted to take an image with the camera flash on. The 

smartphone’s default camera app is opened which allows the user to take 

an image, view the image, and choose whether or not to use said image. 

The image is then transferred back to the app where the user yet again has 

the option to choose retake the image. 

3. The user is then prompted to manually choose ROI within the image. The 

user must then tap the image on each ROI (i.e. the patients 4 fingernails in 

the image excluding the thumb). This will trigger green boxes to be drawn 

around each region of interest.  
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4. The user will then be prompted to check and make sure the image looks is 

adequate for Hgb measurement. The user must check to make sure that 

fingernails are present in the image, fingernail beds are clearly visible (e.g. 

no glare/flash reflection, imaging artifacts, etc.), and the boxes are 

completely contained within the fingernail beds. If the image is 

determined to be unsatisfactory, the user has the option to retake the image 

or to redraw the boxes and reselect the regions of interest corresponding to 

the fingernail beds. 

5. The user is prompted to measure the Hgb level of the fingernail image. 

This data can be recorded by the user. 

After conducting the Hgb measurement using the app, the app stores the data for 

future analysis. The color data, image metadata, and the Hgb result are stored in a text 

file on the internal storage of the smartphone. The image taken by the user is also saved 

on the internal storage of the smartphone for future reference. 
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Figure 21: Smartphone app for diagnosing anemia process flow 
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5.2.2 Skin Tone and Lighting Condition Analysis 

Automated analysis of skin tone was employed to measure the effect that a 

subject’s skin tone had in the algorithm’s ability to accurately measure Hgb levels. The 

Figure 22: Example implementation of the smartphone image analysis system into a 
smartphone app enables non-invasive, patient-based measurement of blood Hgb  
levels via patient-sourced photos using only native hardware of the smartphone 
itself. A-C) proposed implementation of this system integrated into a smartphone app. A 
i-ii) As a patient obtains a smartphone photo of his/her fingernail beds, and without the 
need for any blood sampling or additional smartphone attachments or external calibration 
tools, B) the smartphone image analysis app quantitatively measures blood Hgb levels. C 
i) As smartphone images with fingernail irregularities such as camera flash reflections or 
leukonychia may affect Hgb level measurements, quality control measures of the Hgb 
measurement app detects and omits those irregularities to preserve measurement integrity 
and accuracy. C ii) To that end, the app randomly selects regions of interest from within 
the fingernail image, C iii) and any color values that fall outside of expected color ranges 
are excluded from Hgb measurement. In this example, when the quality control system 
was implemented to exclude the fingernail bed irregularities, Hgb level was measured to 
be 14.7 g/dL, comparable to the patient’s CBC Hgb level of 15.3 g/dL. When the quality 
control was not implemented, Hgb level was measured at 12.8 g/dL. The quality control 
algorithm therefore resulted in a 76% reduction in error. Note that as the smartphone 
image-based algorithm is device-agnostic, the analysis of the smartphone images could 
also be transmitted to another device (e.g. laptop, cloud-based server) for remote analysis. 
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CIELAB color space was designed as a device-independent color space capable of 

approximating human vision94. Much like the human brain, this color space distinguishes 

between light and dark (“L” value), between red and green (“A” value), and between blue 

and yellow (“B” value). A patch of skin on the middle finger was selected from each 

image, and the RGB color values in this region were transformed into the CIELAB 

colorspace. The lightness, or “L*”, value most accurately represents human perception of 

skin color and serves as a n ideal variable linearly modeling skin tones in a population on 

a scale of dark skin to light skin95. The average “L*” value was found within the skin 

patch via a custom MATLAB script and compared with the residual for each image to 

establish the effect that skin tone (dark vs light) has on Hgb measurement accuracy (Fig. 

S2B). Furthermore, the impact of background lighting conditions was analyzed by 

recording background brightness via a digital light meter. Impact of background 

brightness on Hgb measurement was determined by comparison of background 

brightness with residuals.  

5.2.3 Phone parameter analysis 

A single subject’s fingernail beds were imaged using multiple makes and models 

of smartphones (Apple, Cupertino, CA; Motorola, Schaumburg, IL). Each image was 

taken in the same location in rapid succession (~15 sec between images) in order to 

minimize fluctuations due to Hgb variation over time and background lighting condition. 

Color pixel intensity data was recorded for each smartphone model.   
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5.2.4 Quality Control 

5.2.4.1 Fingernail irregularity exclusion 

Preliminary experiments were completed to develop image analysis algorithms 

capable of performing quality control on the images, allowing me to minimize the impact 

of fingernail or image irregularities. A sample image of an individual with leukonychia 

(also known as white nails) was taken, producing a camera flash reflection on some nails. 

ROIs were chosen to contain these imaging and fingernail irregularities, and software 

was written in MATLAB to exclude them. Color values in the ROI were excluded if they 

fell outside of the expected color range of fingernail beds. The expected color range was 

calculated as the standard deviation of the average pixel intensity color values for the 

study population.  

5.2.4.2 Detecting Presence of fingernails  

In addition to excluding irregularities, I was able to determine the presence of 

fingernails using the Vision application programming interface (API) (Google, Mountain 

View, CA). A script was written in Python using the IDLE IDE that sends images to the 

Google platform, makes requests of the cloud service, and receives and interprets results 

from the server. Initially, images of fingernail beds are sent to the server with a request. 

The request asks the server via the Vision API to characterize or label the images that it 

receives. Machine learning algorithms are used in conjunction with Google’s vast 

repository of images to label the image based on the content of that image. The custom 

Python script receives, interprets, and then characterizes the result. The response from the 

server is typically a series of 5 labels, along with corresponding data regarding the degree 
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of confidence in that label being correct. This quality control looks for the label “finger” 

or “fingernail” and records its confidence, allowing me to determine whether or not a 

user has indeed taken an image of a fingernail bed. Incorrect labels and responses are also 

categorized.  

5.2.5 Blood flow interference 

Table 4: Hgb level measurement experiences little variation when subjects are 
subjected to increased heart rate or changes in hand temperature. When heart rate 
increased due to moderate and heavy exercise, Hgb level measurement increased by 0.19 
g/dL and 0.78 g/dL relative to resting heart rate (75BPM) Hgb level measurement, 
respectively. When hand temperatures corresponding to exposure to ambient 
temperatures of 4oC and 39oC, Hgb level measurement increased by 0.62 g/dL and 
0.52g/dL, respectively, relative to room temperature (24oC) Hgb level measurement. n = 
4 per case (resting heart rate, room temperature, etc.).  In each case, this change is 
clinically insignificant. Throughout the course of this entire study, regardless of the 
conditions, the mean |error| = 1.08 g/dL, n = 24 measurements, which is nearly the same 
as the mean |error| of the large scale clinical study (± 1.04 g/dL). 

 Mean Heart Rate  Ambient Temperature 

100 BPM 149 BPM  4oC 39oC 

Mean Hgb 
Level Change 
From Baseline 
(smartphone) 

 0.19 g/dL  0.78 g/dL  0.62 g/dL  0.52 g/dL 

The impacts of increases in heart rate as well as fluctuations in hand temperature 

were examined, as  both conditions alter blood flow and fluctuations in blood flow to the 

fingernail beds may potentially affect Hgb measurement105,106. Even when heart rate 

increased significantly due to moderate or heavy exercise (100 BPM and 149 BPM, 

respectively) Hgb measurements only slightly increased by 0.19 g/dL and 0.78 g/dL 

when compared to Hgb measurement at resting heart rate (75BPM). When hand 
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temperature fluctuated between -4C or +3C of room temperature levels, corresponding to 

exposure to ambient temperatures of 4oC and 39oC, Hgb measurements increased by 0.62 

g/dL and 0.52 g/dL, respectively, relative to Hgb measurement at room temperature 

(24oC). However, in either case, the increase was not clinically significant (Table 4).  

5.2.6 Heart Rate interference 

Additional subjects’ (n = 4) resting heart rates were measured and their fingernail 

beds were imaged at resting heart rate. Subjects were then instructed to conduct mild 

exercise (walking) and, subsequently, heavy exercise (jumping jacks) for one minute in 

order to increase and record heart rate. Fingernail beds were imaged after mild and heavy 

exercise. A blood draw was conducted and Hgb levels were determined with a CBC.  

Images from each activity state were used to measure Hgb via the image analysis 

algorithm and to measure the impact that heart rate has on smartphone Hgb measurement.  

5.2.7 Skin Temperature Interference 

Additional subjects’ (n = 4) hands were dipped in cooled or heated water until a 

temperature change of -4oC or +3oC was recorded, respectively. Fingernail beds were 

imaged after each condition, as well as prior to temperature change, to establish a 

baseline. A blood draw was conducted, and Hgb levels were determined with a CBC. 

Images from each hand temperature condition were used to measure Hgb via the image 

analysis algorithm and determine the impact that skin temperature has on smartphone 

Hgb measurements.  
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5.2.8 Repeatability 

Ten images were taken of an individual’s fingernails, and Hgb was measured via 

the image analysis algorithm on each image. Repeatability was reported as the standard 

deviation of the measured Hgb levels. 

5.2.9  Camera color calibration 

5.2.9.1 Color calibration scheme 

Camera calibration was used in order to facilitate agreement between the Hgb 

readouts between multiple models of smartphones, as different phones use different 

cameras. Images of the same subject matter (Figure 23) were taken under identical 

conditions and on multiple different models of smartphones including the iPhone 5S, 

iPhone 7 (Apple, Cupertino CA), and Samsung Galaxy S7 (Samsung, Seoul, South 

Korea). The subject matter in these images consisted of a collage of paint swatches (The 

Home Depot, Atlanta GA) arranged in a grid containing different colors spanning the 

entire RGB color space. RGB data was extracted from regions within each of these grids 

on each image from the multiple smartphone models. Since the Hgb measurement 

algorithm was developed using images taken from an iPhone 5S, color data from images 

taken with the other smartphone models was compared to the color data taken from the 

iPhone 5S in order to develop a color transformation that relates RGB information of the 

desired smartphone to RGB information of the original smartphone.  
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5.2.9.2 RGB transform 

The RGB transform function was developed by first collecting RGB data from 

each colored region in the color calibration card within images taken on each camera 

type. For each color (R, G, B) linear regression was used with the RGB values from 

iPhone 5S (the original phone the algorithm was developed on) as the independent 

variables and the RGB values from the other phones as the dependent variables (Figure 

24). The equation of the resulting regression lines were used to transform RGB values of 

the images taken on new phones so that they matched the RGB values of the original 

phone. Linear regression and r2 values were calculated with Microsoft Excel (Microsoft, 

Redmond, WA). 

 

Figure 23: Color calibration card design. Images of the above color calibration card 
were taken using multiple smartphone models, and the differences in RGB color data 
from each color region within the image were used to develop an RGB calibration 
transformation for each smartphone model. 
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5.2.10 Physician vs app performance comparison 

Testing was conducted to compare the diagnostic power of physicians against the 

diagnostic power of the hemoglobin measurement app. A panel of 5 trained and board-

certified hematologists from CHOA, Emory University, and Grady Hospital measured 

Hgb levels and their diagnostic accuracy was compared against that of the app. Accuracy 

testing was conducted in two phases: 1) measuring Hgb using images of subjects’ 

fingernails, and 2) using Hgb measurements from in-person physical examinations of 

subjects’ clinical pallor. Diagnostic accuracy for comparison was determined by CBC 

testing. Each subject had a blood venous draw and a CBC was conducted using a clinical 

hematology analyzer (Advia 2120i, Siemens, Berlin, Germany). 

Figure 24: Linear regression was used to correlate RGB values extracted from 
images taken by multiple smartphones to RGB values taken from iPhone 5S images. 
Red (A), Green (B), and Blue (C) pixel intensity values were extracted from each box in 
the color calibration card. Each data point represents the RGB value taken from a single 
square on a given phone. Values derived from the iPhone 5S (the original phone the Hgb 
measurement algorithm was developed on) are plotted on the X-axis and values derived 
from new, prospective phones are plotted on the Y-axis. Linear regressions were 
calculated for each prospective phone against the iPhone 5S and the resulting equation 
displayed relates RGB values from each new phone (iPhone 7 – Top, Galaxy S7 - 
Bottom) to RGB values of the original phone.  
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5.2.10.1 Hemoglobin measurement via physical examination 

These physicians were told to inspect the fingernails of 22 subjects and measure 

their hemoglobin levels. A research associate then used the app to measure these subjects 

Hgb levels. These subjects’ ages ranged from 25 to 62 years old. In order to minimize the 

possibility of other physical factors subconsciously influencing the analysis of the 

physicians, a second study was conducted using image of subjects’ fingernails. 

5.2.10.2 Hemoglobin measurement from images of fingernails 

Images were taken of 50 subjects fingernails from the previously described 

clinical study. These subjects’ ages ranged from 1 to 62 years old. Physicians were 

instructed to analyze each image and measure Hgb levels. For comparison, images were 

loaded into the app, and the Hgb measurement protocol was performed on these images. 

All images and analysis were taken using an iPhone 5S. It is important to note that these 

images were not used in the development of the underlying image analysis algorithm. 

5.2.11 Study Approval 

The study regarding the relation of finger temperature and exercise to 

measurement error was approved by the Georgia Institute of Technology IRB (approval 

number H17118) 
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5.3 Results and Discussion 

5.3.1 Quality control measures eliminate error caused by fingernail irregularities and 

ensure presence of fingernails in each image taken. 

I have implemented quality control measures into the app to enable the app to 

perform better when presented with challenges such as irregular fingernail beds and user 

error. Quality control software has the ability to exclude common fingernail irregularities 

from Hgb calculation. This is done by excluding fingernail regions that are significantly 

lighter or significantly darker than the average fingernail bed. These abnormally light or 

dark regions correspond to nailbed irregularities such as bruising due to injury, 

leukonychia, melanonychia, camera flash and external light reflection, or side effects of 

certain medications (e.g. chemotherapy drug treatments can lead to irregular striping of 

the nailbed107). Preliminary results are promising, indicating that Hgb level measurement 

improves to 14.7 g/dL up from 12.8 g/dL (CBC Hgb = 15.3 g/dL) in a single patient 

when quality control software is used (Figure 22C). I hypothesize that the subject’s 

leukonychia and camera flash reflection off the surface of the fingernail are incorrectly 

being interpreted as clinical pallor by the algorithm, leading to artificially low Hgb level 

measurement. The impact of these irregularities seems to be mitigated by quality control 

software, indicating that quality control is essential to ensuring that true Hgb level 

measurements are obtained. Furthermore, quality control characterization utilizing 

Google’s cloud computing service and Vision API is able to effectively and efficiently 

characterize fingernail images by quickly determining the presence of fingernails in an 

image. For this technology to achieve its full potential, it will need to be implemented 

into a smartphone app that patients can download and use at home, and this home-based 
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use model will likely introduce some user error that was not seen when testing was 

conducted by an expert user of this technology. I pre-emptively addressed the most basic 

usability concern by determining whether a fingernail was present at all within an image. 

Each image taken during the clinical study was process by the Google Vision API via the 

Google cloud service. 332 of 337 images analyzed were characterized as containing a 

“finger” or “fingernail” (Figure 25). Furthermore, approximately 97% of images analyzed 

were characterized as containing these objects with a degree of certainty of greater than 

85%.  If implemented into the app, this result will enable the app to ensure that a user has 

indeed captured an image of their fingernails sufficient to conduct Hgb measurement, 

eliminating a major potential source of user error. This should significantly improve app 

performance when used at home.  

Figure 25: Degree of certainty that a fingernail is present in clinical study 
photos. Each response from Google Vision API containing the word “finger” or 
“fingernail” was recorded. All but 5 clinical study images returned one of these 
words. ~97% of responses were characterized as containing a finger or fingernail 
with a degree of certainty of > 0.85. N = 337 images  
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5.3.2 Images taken of subjects’ fingernail beds are consistent amongst smartphone 

images taken with different makes and models of smartphones when color 

calibration strategies are utilized.  

This algorithm must be easily accessible by the smartphones used to image subjects’ 

fingernails in order to maximize the impact that this image analysis anemia prediction 

algorithm can make. This can best be accomplished in the form of an on-board 

smartphone application. The smartphone market is large and diverse. An application 

relying on data extracted from images taken by a smartphone must be camera-agnostic to 

ensure that the same readings are given regardless of the make or model of the camera 

used to take pictures. Preliminary studies have been conducted to ensure cameras from 

different mobile phones produce similar images of subjects’ fingernails. Images of a 

Figure 26: The image analysis algorithm is camera-agnostic. A) RGB values of both 
fingernails and the skin of within a sample image taken with different models of 
smartphones remain consistent. n = 10 phones. B) There was no statistically significant 
difference between two different smartphone models developed by the same 
manufacturer (P > 0.05). Statistical analysis was performed with a student’s t-test 
assuming unequal variance. n = 3 phones/model. Error bar reported as standard deviation 



 84 

single subject’s fingernail beds were taken under identical imaging conditions using 

multiple smartphone models and the results were compared. Images were taken using 

phones made from different manufactures, including Apple and Motorola, as well as 

different models of phones made by the same manufacturer (i.e. Apple iPhone 4, 5, 5s, 6, 

6s+). I have shown that RGB pixel intensity values of the subject’s fingernail beds and a 

control patch of skin are remarkably similar between images taken with different 

smartphones (Figure 26A). Additionally, I show no statistically significant difference (p 

> 0.05) between pixel intensity values of images of fingernail beds taken by two different 

models of Apple iPhones (Figure 26B), with  the exception of the r channel pixel 

intensity value of the fingernail bed (p = 0.03). However, this difference is very small (~4 

A.U.), contributing to a difference in Hgb level estimation of approximately 0.2g/dL).   

However, further studies show that this pixel intensity agreement not the case 

Figure 27: Color calibration facilitates agreement between alternate smartphone 
models. When the color calibration protocol is used, alternate models of smartphones 
(iPhone 7 and Samsung Galaxy S7) display similar results. The app was tested on the 
same group of subjects in each case. An offset from the ideal result is present (N = 11).  
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with newer models of Samsung and Apple phones. Thus, color calibration was necessary 

to facilitate pixel intensity agreement between images taken on the different models of 

smartphones. Taking images of color arrays with the different smartphone models 

allowed me to develop a pixel intensity value transformation to relate the data from each 

smartphone to ensure Hgb measurement accuracy (Figure 23, Figure 24). Implementation 

of this transformation facilitates agreement between the alternate smartphone models 

(iPhone 7 and Samsung Galaxy S7), however, some experimental bias has been 

introduced that causes a slight offset from the iPhone 5S Hgb measurement baseline that 

must be corrected (Figure 27). 

5.3.3 Smartphone Image-based Algorithm Performance to Potential Sources of 

Interference and Variability 

Use of fingernail beds as the imaging area is ideal due to the fact that fingernail 

beds contain minimal amounts of melanin compared to other parts of the skin67,68, 

theoretically enabling this technique to be insensitive to subject skin tone. Preliminary 

results presented earlier seem to support this hypothesis (Figure 12). To further address 

this experimentally using the most accurate Hgb measurement algorithm, images were 

converted into the CIELAB color space, a commonly used color quantification system 

that quantifies color as perceived by the human eye67. In particular, the L* value in this 

color space has been shown to serve as a linear indicator of skin tone67. The relationship 

between the subjects’ skin tones and Hgb measurement residuals was determined by 

measuring the L* value of a patch of skin adjacent to the fingernail. L* did not correlate 

(r = 0.17) with Hgb measurement residual, indicating that subject skin tone has little 

impact on the ability of this system to measure Hgb levels (Figure 28A).  
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For accessibility in dynamic clinical settings, the smartphone Hgb level 

estimation technology must function under a wide variety of background lighting 

conditions. To that end, using luminous flux readings on a digital light meter, no 

correlation (r = 0.004) was found between room brightness and Hgb measurement 

residual, indicating that this method can be used in a wide variety of settings and lighting 

conditions (Figure 28B). Use of the camera flash resulted in the most accurate Hgb level 

measurement, likely due to the normalization of background lighting conditions provided 

by the camera flash (Figure 29). Furthermore, ensuring that the technology is agnostic to 

the smartphone make and model, RGB pixel intensity values of the subject’s fingernail 

beds and a control patch of skin were found to be similar between images taken with 

smartphones made from different manufacturers and models (Figure 26A). Additionally, 

  

 

     

       

 

Figure 28: Background lighting and subject skin tone have minimal effect on Hgb 
measurement accuracy. Plotting measurement error against (A) skin tone and (B) 
background lighting reveals low and negligible correlation (r = 0.17 and r = 0.004 
respectively) in either case. Dashed lines indicate linear fit between the measurement 
error and the tested parameter (skin tone and background lighting respectively). Inset 
images highlight a representative range of measured background skin tones and lighting 
conditions. n = 100 patients. 



 87 

no statistically significant difference existed between pixel intensity values of fingernail 

bed images obtained by two different smartphone (Figure 26B). Finally, the precision of 

Hgb level measurements using this technology was found to be ±0.17 g/dL when tested 

on multiple images of the same individual’s fingernails.  

5.3.4 Color calibration facilitates agreement in Hgb measurement between different 

smartphone models  

While preliminary data showed that there is little variability between smartphone 

images, the limited variability is sufficient to cause disagreement in Hgb measurement 

between different smartphone models when the image analysis algorithm is integrated 

into smartphone apps. In order to resolve this disagreement, I developed a color 

calibration protocol. In this protocol, images are taken of multiple standardized colors 

and the RGB color data is compared between the different phones. Using the iPhone 5S 

as the standard and independent variable in linear regression analysis, an equation is 

developed that can be used to transform RGB values of other smartphone models to fit 

the Hgb measurement model designed using iPhone 5S images (Figure 27). This protocol 

can be adapted to conduct color calibration on any future smartphone models that become 

available and in which compatibility with this app is desired. 
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5.3.5 The app outperforms trained hematologists’s ability to measure Hgb levels via 

physical examination. 

Hematologists were challenged to measure Hgb levels in patients via physical 

examination of the fingernails as well as inspection of images of fingernails. When 

Figure 29: Camera flash improves performance of the Hgb measurement algorithm. 
Use of the camera flash (A-B) leads to a decrease in the Hgb measurement error, as well 
as an increase in the correlation between the smartphone and CBC measurements, 
compared to when no camera flash is used (Flash on: r = 0.23 Flash off: r = 0.35) (C-D). 
Bland-Altman analysis shows a slight decrease in the correlation between the residual 
and the average Hgb level between the two tests when the camera flash is used. This 
indicates the presence of some experimental bias that is mitigated by use of the camera 
flash.  n = 100 
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physical exams were conducted, there was no difference between the diagnostic 

performance of trained haematologists (1.76 g/dL average error) vs the app (1.83 g/dL 

average error) in this preliminary study. I hypothesize that this could have been the case 

due to the Hgb distribution of the study subject pool. In the subject pool for physical 

examinations (n = 22), Hgb levels ranged from 10.7 g/dL to 16.9 g/dL. Thus, none of the 

Figure 30: Smartphone app outperforms hematologist estimations when diagnosing 
Hgb using images of fingernails. A) Pooled results of 5 trained hematologist’s Hgb 
measurements after inspection of fingernail images. Measurements were accurate to 
within ± 4.5 g/dL (95% CI, r2 = 0.13, n = 50 subjects, N = 5 hematologists). B) Results of 
Hgb measurement via the app. Measurements were accurate to within ± 1.0 g/dL (95% 
CI, r2 = 0.91, n = 50 subjects). C, D) ROC curves of the haematologist response (AUC = 
0.63) are much closer than the app responses (AUC = 0.94) to the random chance line, 
indicating that the App has a greater diagnostic accuracy than trained haematologists. 
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subjects were anemic, leading to the app and physicians to measure similar Hgb levels. 

Furthermore, it is likely that the physicians displayed some bias when measuring Hgb, as 

they had no reason to expect that these subjects were anemic (the subjects were identified 

and consented from a research lab at the Georgia Institute of Technology rather than a 

clinical setting. This could have potentially led to artificially high Hgb results.  

 In order to account for physician bias and include a wider range of Hgb levels to 

more accurately reflect the general population who could potentially use this app, images 

of patients were used for comparison of the diagnostic capabilities of physicians and the 

app. When looking at images of fingernail beds, the hematologists measured Hgb levels 

to within ± 4.5 g/dL (95% CI, r2 = 0.13, n = 50, Figure 30A). When the app was used to 

measure Hgb on the same images, the app was able to measure Hgb to within ± 1 g/dL 

(95% CI, r2 = 0.91, n = 50, Figure 30B). This represents a significant improvement and 

proves that the image analysis algorithm translates well upon integration into a 

smartphone app. In fact, there is an increase in diagnostic accuracy when the app is used, 

likely due to the quality control software that has been implemented.  

5.4 Conclusions and Future Approaches 

It is possible that this Hgb estimation technique will not work under extreme 

lighting conditions. It is necessary to conduct experiments to determine the lighting 

condition boundaries under which the algorithm successfully determines Hgb levels. This 

will be done by measuring the error in Hgb level estimation of the same subject in 

various lighting conditions exceeding the conditions typically found in clinical settings. 

These settings represent potential field use of this technology. This is an important 
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experiment to conduct, as the primary value proposition of this technology to the user is 

based on the ability to conduct Hgb testing away from clinical settings.  

In order to develop a truly POC diagnostic tool, the Hgb estimation algorithm 

must be incorporated into a mobile platform and used by individuals with, or at risk for, 

anemia. In order to ensure that this diverse user base can accurately measure their Hgb 

levels, a “quality control” system must be in place to ensure that the images being taken 

by these users are of sufficient quality to generate accurate Hgb level results. While 

preliminary quality control systems have already been developed, further algorithms will 

be develop which account for other common irregularities in images of fingernails will be 

developed. In addition to the abnormalities studied, image irregularities that could lead to 

inaccurate Hgb level estimation include presence of abnormal fingernail bed 

pigmentation, abnormal imaging brightness, and lack of image focus. These algorithms 

will serve as an extension of the preliminary quality control algorithms already 

developed. Convolution of fingernail bed images with edge detection kernels108 will be 

used to detect edges within the fingernail beds corresponding to abrupt color changes 

caused by abnormal fingernail bed pigmentation for each finger. Data from fingernail 

beds with irregular pigments and irregularities will be removed from consideration during 

Hgb level measurement. An acceptable range of background brightness will be 

established using images taken as part of the clinical study which have been shown to 

allow for accurate Hgb estimation. The quality control algorithm will simply compare the 

background brightness to the reference standard to determine whether or not to reject the 

image. The quality control algorithm will reject out-of-focus images as well. 

Determination of the “sharpness” of image focus can be determined in conjunction with 
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the edge detection function previously described. The intensity of edges will determine 

how sharp, or in focus, they are. A sharpness of edges metric will be determined using 

images that have been shown to yield an accurate Hgb level estimation. This metric will 

be used to determine rejection criteria for image focus. This “quality control” algorithm 

will be used to reject images that could potentially yield inaccurate Hgb estimation 

results and will prompt the user to take higher quality images. 

As I have presented in this chapter, there are significant differences in how 

images are interpreted across different models and manufacturers of smartphone. The 

color correction protocol must serve as a blueprint for enabling the app to function 

properly on smartphones that have not currently been tested. Further testing must be 

conducted to optimize this protocol, as there exists some disagreement in Hgb levels 

measured on more advanced smartphone models compared to the model used to 

originally develop the Hgb measurement algorithm. Furthermore it is possible that 

requiring subjects to manually select regions of interest within images of their fingernail 

beds will prove difficult, causing inaccurate Hgb estimation. If this is the case, it may be 

necessary to build in an image analysis feature that extracts regions of interest 

automatically, which is an option that I have explored via utilization of convolutional 

neural networks that have been used in computer vision. Overall, I am able to report 

successful preliminary implementation of this image analysis algorithm into multiple 

mobile platforms across different smartphone manufacturers. As this technology in its 

current form is capable of outperforming trained hematologists in anemia diagnosis from 

physical examinations of fingernail bed images, this app represents a major step in the 



 93 

development of a truly translational, noninvasive, convenient, and inexpensive diagnostic 

tool for anemia.  
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CHAPTER 6. CONCLUDING REMARKS AND FUTURE 

DIRECTIONS 

Given the performance of this technology in the general population, this 

completely noninvasive technology that requires only photos obtained from smartphones 

has significant implications as a screening tool in the general population, as anemia is 

prevalent worldwide, afflicting nearly two billion people, especially young children, the 

elderly, and pregnant women. The ability to inexpensively diagnose anemia with high 

sensitivity, completely noninvasively, and without the need for any external smartphone 

attachments or calibration equipment represents a significant improvement over current 

POC anemia screening. Optimizing sensitivity is of paramount importance for a 

screening tool, due to the ability to correctly identify a high percentage of anemia cases 

even if this negatively impacts specificity. In its current form, this technology requires 

the user to simply obtain a fingernail image, which can then be analyzed with an on-

board smartphone app that comprises a novel image analysis algorithm to output the Hgb 

level measurement or be transmitted remotely to another device (e.g. laptop, desktop 

computer, or cloud-based server with my algorithm embedded into their systems) for 

remote analysis, the results of which can be immediately transmitted back to the user. 

After identifying subjects that may possibly be anemic, either type of system can 

recommend confirmatory Hgb level testing with a CBC, allowing any false positives to 

avoid unnecessary treatment. Given the ever-increasing rate and near ubiquity of 

smartphone ownership worldwide9, this noninvasive, inexpensive, patient-operated Hgb 

measurement algorithm allows those at risk of anemia to monitor their conditions using 
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only the native hardware included with their own smartphone. This is particularly 

pertinent in low resource settings where, contradictory to the relative lack of medical 

infrastructure, mobile phone networks are quite extensive and have “leapfrogged” 

landlines109.  

Additionally, this system has the potential to fundamentally alter the management 

of patients with chronic anemia. During the course of several weeks, a patient may take 

images of their fingernail beds and enter their CBC-measured Hgb levels that were 

obtained as part of their regular outpatient clinical care. Results suggest that these images 

and Hgb levels may be used to “teach” the smartphone phone to develop a “calibration” 

personalized and tailored to each individual patient. In times of clinical stress, these 

patients, such as those with genetic causes of anemia or with cancer and are undergoing 

chemotherapy, may experience rapid, life-threatening, precipitous drops in Hgb and 

require constant monitoring to determine their need for transfusions. Using this 

technology, patients could potentially self-monitor their anemia from the comfort of their 

own home, rather than through inconvenient and recurring clinic visits. In addition, some 

patients with chronic anemia due to a genetic etiology require chronic transfusions to 

survive. These scheduled transfusions are currently administered at convenient and 

regular intervals, and not based on clinical need110. Hence, a patient may be transfused 

too early, exposing them to unnecessary transfusion-related effects (i.e. iron overload, 

risk of infection), while patients transfused too late may require urgent hospitalization if 

they develop symptomatic anemia or their Hgb levels decrease to a dangerous level. By 

enabling continuous and simple monitoring, this technique may empower patients and 

lead to better allocation of blood bank resources. Moreover, further data collection will 
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increase the size of the patient image pool, facilitating the incorporation of deep machine 

learning “Big Data” techniques to further refine the Hgb measurement algorithm111.   

Overall, this CBC-validated, smartphone image-based Hgb measurement 

technology has the potential to dramatically improve upon the accuracy, cost, and 

convenience of current Hgb measurement devices while also eliminating the need for 

anything other than a smartphone, representing a significant improvement over other 

POC Hgb measurement technologies5,6,24,25,57,112,113. With this smartphone image-based 

Hgb measurement system, any person – healthy or ill - in any location, at any time, now 

has access to an important health metric and may seek care accordingly. Moreover, 

healthcare officials in low resource settings may use this technology to  efficiently and 

effectively allocate limited healthcare resources (e.g. transfusions, high-risk obstetrical 

services) and medications (e.g. nutritional supplementation such as iron, folate, or 

vitamin B12)114 for the patients with the most severe anemia. This completely 

noninvasive, algorithm-based approach represents a paradigm shift in the way anemia can 

be screened, diagnosed, and monitored globally. As the system requires no reagents or 

equipment, the healthcare cost savings could also be significant.  

Going forward, the potential for user error as well as inter/intra-smartphone 

variability leading to Hgb measurement error will be addressed in the form of a full 

clinical assessment, and I will also investigate the efficacy of the smartphone image-

based algorithm in which patients will use this app as a self-test using multiple models 

and manufacturers of smartphones. This study will also evaluate and improve upon the 

quality control measures that I have implemented thus far. Overall, this system represents 

the first noninvasive system that can potentially replace blood-based testing without 
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requiring any additional medical equipment. While the current algorithm and app 

development focused specifically on anemia, this approach can potentially be adapted to 

quantitatively diagnose other conditions that manifest in physical exam abnormalities (i.e. 

jaundice and cyanosis)29,30. This technology has the capability to completely shift the 

treatment paradigm for anemia and other disorders that manifest in physical changes. 
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