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Abstract— This paper presents a formal framework for
collision avoidance in multi-robot systems, wherein an existing
controller is modified in a minimally invasive fashion to ensure
safety. We build this framework through the use of control
barrier functions (CBFs) which guarantee forward invariance
of a safe set; these yield safety barrier certificates in the
context of heterogeneous robot dynamics subject to acceleration
bounds. Moreover, safety barrier certificates are extended to
a distributed control framework, wherein neighboring agent
dynamics are unknown, through local parameter identification.
The end result is an optimization-based controller that formally
guarantees collision free behavior in heterogeneous multi-agent
systems by minimally modifying the desired controller via safety
barrier constraints. This formal result is verified in simulation
on a multi-robot system consisting of both “sluggish” and
“agile” robots.

I. INTRODUCTION

When designing coordinated controllers for teams of mo-

bile robots, the primary control objective tends to drive the

behavior of the team so as to realize tasks such as achieving

and maintaining formations, covering areas, or collective

transport [6], [8]. Safety, in terms of collision-avoidance, is

oftentimes added as a secondary controller that overrides the

existing controllers on individual robots if they are about to

collide, e.g., following the behavior-based control paradigm

[4]. As a result, what is actually deployed is not always

what the design calls for, and as the robot density increases,

the team spends more and more time avoiding collisions as

opposed to progressing toward the primary design objective.

One remedy to this problem is to make collision-avoidance

an explicit part of the design. This, however, means that

many of the already established, coordinated multi-robot

controllers in the literature [6], [8], [11] are no longer valid

and must be revised. An alternative view, as is for example

pursued in [12] for two aircrafts performing optimal evasive

maneuvers, is to introduce a minimally invasive collision-

avoidance controller, i.e., a controller that only changes the

original control program when it is absolutely necessary.

But the heavy computation associated with solving the

Hamilton-Jacobian-Bellman Equations prohibits the applica-

bility of [12] to large-scale mutli-robot systems. Similarly,

the concept of “velocity obstacle” was developed in [13]

to generate collision free trajectory in cluttered multi-agent
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workspace, while the constant velocity assumption severely

limits available control options. This approach was further

pursued in [5], where the main idea is to let the actual control

input associated with Robot i, ui, be as close to the designed

control input ûi in a least-squares sense, subject to safety

contstraints.

The way that safety constraints were encoded in [5] was

using distributed barrier functions that prevented the robots

from entering unsafe states. This line of inquiry is continued

in this paper, but in the context of heterogeneous robot teams.

In particular, the barrier functions in [5] were symmetric in

the sense that the responsibility for avoiding collisions was

shared in an equitable manner among the robots. But, in a

heterogeneous multi-robot system, not all agents are equally

nimble and can respond to potential collisions in the same

way, due to such factors as different maximal accelerations.

In this paper, we pursue this question and we show how

barrier functions can be used also for teams of heterogeneous

networks, even when the robots are unaware of which class

neighboring robots belong.

The reason why heterogeneous multi-agent systems are of

importance is that they, through the robots’ diverse set of

capabilities, can solve some tasks more effectively than their

homogeneous counter parts, i.e., [1]. Moreover, heterogene-

ity already exists in many systems, such as transportation

systems with automobiles and trucks [3], multirobot systems

with ground and aerial robots [7], mobile sensor network

with nodes with varying locomotion and sensing capabilities

[10], just to name a few. As such, collision-avoidance algo-

rithms must be extended also to heterogeneous systems. Yet,

such an extension is not straightforward in that agents with

“aggressive”, “neutral” or even “timid” behaviors must be

able to respond to possible collisions in dramatically different

manners.

Motivated by these considerations, this paper extends

previous work on safety barrier certificates in [5] in two

important directions. First, we propose a provably safe way

to decentralize the barrier certificates that explicitly takes

the agents’ heterogeneous dynamics into account. In this

paper, the robotic swarm is heterogeneous in the sense that

agents have different acceleration limits (agile or sluggish),

and use different barrier certificate parameters (aggressive,

neutral or conservative). Second, we formally ensure safety

of the robotic swarm when no prior information about

neighboring agents’ dynamical properties is provided. To

achieve this, the agents will have to estimate the dynamical

properties of neighboring agents with local measurements,

and update online their barrier certificate parameters to

generate more reasonable evasive maneuvers. The enabling



technique for this heterogeneous safety barrier certificates is

Control Barrier Function [2], [14]. Control Barrier Function

is similar to Control Lyapunov Function in that it provides

a way to guarantee the forward invariance of the safety set

without computing the system’s reachable set. A Quadratic

Program (QP) based controller with safety barrier constraints

is developed to check the safety of the pre-designed control

strategy, and generate minimally-invasive and collision-free

control actions.

The remainder of this paper is organized as follows.

Section II revisits the concepts of (zeroing) control barrier

functions, which are incorporated into the optimization based

controller as safety barrier constraints. Heterogeneous safety

barrier certificates are then constructed in Section III to

generate collision free behaviors for agents’ with different

dynamical capabilities. Incorporating unknown parameters

into heterogeneous barrier certificates without losing safety

guarantee is the topic of Section IV. Simulation results for

heterogeneous barrier certificates are presented in Section

V. At last, we conclude the paper with a summary and

discussion of future work in Section VI.

II. BACKGROUND: CONTROL BARRIER FUNCTIONS

In this section, we will review the fundamentals of Control

Barrier Functions (CBFs), which is employed as a means

to ensure that the robots execute collision-free trajectories.

CBFs are conceptually similar to Control Lyapunov Func-

tions (CLFs) in that they can be used to guarantee desired

system properties without explicitly having to compute the

forward reachable set. Analogously to CLFs, by constraining

the time derivative of the CBFs within prescribed bounds,

CBFs can formally guarantee the forward invariance of a

desired set, e.g., safe set.

The fundamental idea behind CBFs is thus to design

them in such a way that the agents always remain in the

safe set. We are particularly interested in control affine

dynamic systems because they result in affine safety barrier

constraints, which can be incorporated into simple QP based

controllers. Even though the main focus of this paper is on

double integrator dynamics, we start the exposition with the

general control affine case. In particular, consider a nonlinear

control system in affine form

ẋ = f (x)+ g(x)u, (1)

where x ∈R
n and u∈U ⊂R

m, with f and g locally Lipschitz

continuous. Note that, for the sake of simplicity, we will

assume that (1) is forward complete, i.e. solutions x(t) are

defined for all t ≥ 0.

Suppose now that we have a set C ⊂ R
n where we wish

the state of all robots to remain. The goal is thus to design

a controller u that guarantees the forward invariance of C ,

i.e., solutions to (1) that start in C , stay in C for all time.

We will assume that the set C can be defined as the level

set to a particular function h(x),

C = {x ∈R
n | h(x)≥ 0}, (2)

and we have the following definition that allows us to be

precise about what safety entails, as was done in [14],

Definition 1: Given a dynamical system (1) and the set

C defined by (2) for a continuously differentiable function

h : Rn → R, if there exist a locally Lipschitz extended class

K function α (strictly increasing and α(0) = 0) and a set

C ⊆ D ⊂ R
n such that, for all x ∈ D ,

sup
u∈U

[
L f h(x)+Lgh(x)u+α(h(x))

]
≥ 0, (3)

then the function h is called a Zeroing Control Barrier

Function (ZCBF) defined on D .

Note that the Lie derivative formulation comes from

ḣ(x) =
∂h

∂x
( f (x)+ g(x)u) = L f h(x)+Lgh(x)u.

Now, given a ZCBF h, the set of feasible control inputs is

K(x) =
{

u ∈U | L f h(x)+Lgh(x)u+α(h(x))≥ 0
}
,

and in [14], the following key result was obtained;

Theorem [14]: Given a set C ⊂ R
n defined by (2) and

a ZCBF h defined on D with C ⊆ D ⊂ R
n, any Lipschitz

continuous controller u : D → R such that u ∈ K(x) for the

system (1) renders the set C forward invariant.

ZCBFs also imply asymptotic stability of the set C , which

provides robustness to different perturbations [14].

III. HETEROGENEOUS SAFETY BARRIER CERTIFICATES

This section focuses on constructing the decentralized

heterogeneous safety barrier certificates that take into ac-

count the heterogeneity in agents’ dynamical properties.

Importantly, in an effort to reduce the amount of information

required when executing barrier certificates, we will explore

safety guarantees subject to unknown parameters of neigbor-

ing agents in Section IV.

A. Problem Formulation

Consider a heterogeneous robotic swarm containing N

mobile agents with index set M = {1,2, . . . ,N}, the robot

agent i ∈ M is modelled with double integrator dynamics.

Agents in the robotic swarm are heterogeneous in the sense

that each of them has different dynamical capability, which

is modelled with different speed and acceleration limits,
[

ṗi

v̇i

]

=

[

0 I2×2

0 0

][

pi

vi

]

+

[

0

I2×2

]

ui, (4)

where pi ∈R
2, vi ∈R

2, and ui ∈R
2 are the position, velocity,

and acceleration of agent i respectively. The ensemble form

is p∈R
2N , v∈R

2N , and u∈R
2N . The speed and acceleration

limits of agent i are ‖vi‖∞ ≤ βi and ‖ui‖∞ ≤ αi. The relative

position and relative velocity between agent i and j are

denoted as ∆pi j = pi −p j and ∆vi j = vi − v j.

Next, we need to formulate an appropriate safe set C

that characterizes the safety of the robotic swarm, which

ensures that all pairwise collisions are excluded from the safe

set. To meet this requirement, a pairwise safety constraint

is formulated to ensure that all agents will always keep a

safety distance Ds away from each other when the maximum



braking force is applied. As illustrated in Fig 1, the normal

component of the relative velocity (∆v̄=
∆pT

i j

‖∆pi j‖∆vi j) between

agent i and j is the component that might lead to collision,

while the tangent component only leads to rotation around

each other. Therefore, the pairwise safety constraint can be

derived by regulating the normal component of the relative

velocity ∆v̄ such that the maximum braking acceleration

(αi +α j) can prevent imminent collisions,

‖∆pi j‖−
(∆v̄)2

2(αi +α j)
≥ Ds, ∀i 6= j. (5)

Fig. 1: Relative position and velocity between agent i, j

Note that when two agents are moving closer to each

other (∆v̄ ≤ 0), (5) regulates how fast the approaching speed

could be; when they are moving away from each other

(∆v̄ > 0), no constraint is enforced because safety is not

endangered. Combining these observations, we can derive

the safety constraints and formally define the safe set C as

Ci j = {(pi,vi)|hi j =
√

2(αi +α j)(‖∆pi j‖−Ds)

+
∆pT

i j

‖∆pi j‖
∆vi j ≥ 0}, j 6= i, (6)

C = ∏
i∈M







⋂

j∈M

j 6=i

Ci j







, (7)

where hi j, short for hi j(∆pi j,∆vi j), is also a ZCBF candidate

for Ci j. ∏
i∈M

is the Cartesian product over the states of all

agents in the set of robots.

Definition 2: The robotic swarm with index set M with

dynamics given in (4) is defined to be safe if the state (p,v)
of the system stays in C for all time.

According to Definition 2, the robotic swarm needs to

simultaneously satisfy all the pairwise safety constraints to

ensure safety. ZCBF constraints are constructed to guarantee

the forward invariance of the safe set C , i.e. there are the

following pairwise CBF constraints

L f hi j +Lghi ju+ γh3
i j ≥ 0,∀i 6= j. (8)

Theorem 3.1: The robotic swarm represented with M is

safe, if the control variable u satisfies all the pairwise ZCBF

constraints in (8).

Proof: If the control variable u satisfies the pairwise

ZCBF constraints in (8), then hi j is a valid ZCBF for Ci j with

α(x) = γx3 according to Definition 1. Following Theorem

[14], the forward invariance of C is guaranteed, which means

the robotic swarm with index set M is safe.

Combining (6) with (8) gives the ZCBF constraint,

−∆pT
i j∆ui j ≤ γh3

i j‖∆pi j‖−
(∆vT

i j∆pi j)
2

‖∆pi j‖2

+ ‖∆vi j‖2 +
(αi +α j)∆vT

i j∆pi j
√

2(αi +α j)(‖∆pi j‖−Ds)
, ∀i 6= j. (9)

This safety barrier constraint can be represented as linear

constraints on the control variable u as Ai ju ≤ bi j, where

Ai j = [0, ...,−∆pT
i j

︸ ︷︷ ︸

agent i

, ..., ∆pT
i j

︸︷︷︸

agent j

, ...,0],

and bi j is the right side of (9).

The safety barrier constraints assembled together, termed

the safety barrier certificates, defines the space of permissi-

ble controls. The objective of the safety barrier certificates is

to validate the safety of pre-designed control strategy û, and

interfere with minimal impact to the desired strategy when

collision is truly imminent. The goals of collision avoidance

and minimal interference are combined together using QP,

u∗ = argmin
u

J(u) =
N

∑
i=1

‖ui − ûi‖2

s.t. Ai ju ≤ bi j, ∀i 6= j,

‖ui‖∞ ≤ αi, ∀i ∈ M .

(10)

This QP based controller follows pre-designed control strat-

egy û when the system is safe; takes over and computes

the closest permissible control in a least-squares sense when

collision is about to happen. Note that this QP-based con-

troller is a centralized controller, demanding centralized com-

putation, which provides a starting point for decentralized

heterogeneous barrier certificates.

B. Decentralized Heterogeneous Barrier Certificates

Centralized safety barrier certificates face significantly

increased communication and computation burden when the

size of the robotic swarm grows. It is desirable to have

decentralized barrier certificates that act only based on local

information, while safety is still guaranteed. Thus we pro-

pose two different strategies to distribute the safety barrier

certificates to each agent based on their acceleration limits.

Motivated by the fact that agents with higher acceleration

limits are more agile, these agile agents are assigned with

larger portion of the admissible control space.

1) Strategy A distributes bi j to two robot agents.

−∆pT
i jui ≤

αi

αi +α j

bi j,

∆pT
i ju j ≤

α j

αi +α j

bi j.



2) Strategy B partitions the terms containing acceleration

limits in (9) and distributes other terms appropriately.

−∆pT
i jui +

∆pT
i j∆vi j

‖∆pi j‖2 ∆pT
i jvi −∆vT

i jvi

≤ αi

αi+α j
(γh3

i j‖∆pi j‖+
√

αi+α j∆pT
i j∆vi j√

2(‖∆pi j‖−Ds)
), (11)

∆pT
i ju j −

∆pT
i j∆vi j

‖∆pi j‖2 ∆pT
i jv j +∆vT

i jv j

≤ α j

αi+α j
(γh3

i j‖∆pi j‖+
√

αi+α j∆pT
i j∆vi j√

2(‖∆pi j‖−Ds)
). (12)

These two decentralization strategies differ in the required

amount of information to implement the safety barrier cer-

tificates as shown in TABLE I. The self known parameters

and sensing data can be easily attained by the controller.

Meanwhile, obtaining neighboring agents’ parameters, e.g.,

acceleration limit α j, requires identity recognition or com-

munication. In terms of required information, strategy B sur-

passes A by not requiring neighbors’ parameters. Handling

unknown neighboring agents’ safety barrier parameters using

strategy B is the topic of Section IV.

TABLE I: Comparison of required information

Strategy Self params Sensing data Neighbors’ params

A αi,γ ∆pi j,∆vi j α j

B αi,γ ∆pi j,∆vi j ,vi,

Both decentralization strategies guarantees safety, because

the safety barrier constraint (9) still holds with the partitions.

With strategy B, we can come up with a decentralized

QP-based controller that is minimally invasive to the pre-

designed controller and provably safe.

u∗
i = argmin

ui

J(ui) = ‖ui − ûi‖

s.t. Āi jui ≤ b̄i j, ∀ j 6= i,

‖ui‖∞ ≤ αi,

(13)

where Āi j = −∆pT
i j, b̄i j = −∆pT

i j∆vi j

‖∆pi j‖2 ∆pT
i jvi + ∆vT

i jvi +

αi
αi+α j

(γh3
i j‖∆pi j‖+

√
αi+α j∆pT

i j∆vi j√
2(‖∆pi j‖−Ds)

).

IV. BARRIER CERTIFICATES WITH UNKNOWN

PARAMETERS

Heterogeneity in agents’ dynamical capabilities brings

extra challenge to collision avoidance. Agents need to first

assess how effective other agents can respond to safety

threats before making decisions for collision avoidance.

Meanwhile, swarm robots are often designed to be simple

and therefore lack the ability to obtain other agents’ pa-

rameters. This section addresses scenarios that agents need

to ensure safety when some dynamical parameters of other

agents are unknown.

A. Barrier Certificates with Different γ

The safety barrier parameter γ determines how fast the

agents’ states can approach the boundary of the safe set

C . Agents with different γ are still safe when running the

decentralized barrier certificates.

Lemma 4.1: Two heterogeneous agents i, j ∈M regulated

by safety barrier certificates (13) with different parameters

γi,γ j are guaranteed to be safe.

Proof: Agent i and j follow the safety barrier constriant

given in (11) and (12) with different parameters γi,γ j. Adding

these two safety barrier constraints together gives

−∆pT
i j∆ui j ≤

γ ′

Bi j

h2
i j‖∆pi j‖−

(∆vT
i j∆pi j)

2

‖∆pi j‖2

+‖∆vi j‖2 +
(αi +α j)∆vT

i j∆pi j
√

2(αi +α j)(‖∆pi j‖−Ds)
, (14)

where γ ′ =
αiγi+α jγ j

αi+α j
. This inequality can be rewritten as

−ḣi j ≤ γ ′h3
i j, which guarantees safety as if a weighted version

of γ is used in the safety barrier certificates.

This lemma provides the freedom for heterogeneous agents

to choose their own γ without endangering safety. γ can be

selected appropriately to prioritize certain agents over others,

which resembles the real life case of the ambulance granted

higher priority to go through the traffic flow.

Fig. 2 demonstrates how heterogeneous γ in safety barrier

certificates can be used to coordinate conflicting agents. Two

agents executing goal-to-goal controllers regulated by hetero-

geneous barrier certificates are simulated in three different

scenarios. The case that both agents adopt the same γ is

used as a benchmark in Fig. 2a. When the left agent uses

larger γ , it moves straightly to its goal, while the other agent

moves around it (Fig. 2b). When the left agent is assigned

with smaller γ , it gives way to the other agent (Fig. 2c).
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(a) Both agents are neutral
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(c) Left agent conservative

Fig. 2: Trajectories of two agents regulated by safety barrier

certificates with different parameter γ



With heterogeneous safety barrier certificates, we can

define the notion of neighborhood to reduce the pairs of

necessary safety barrier constraints,

Ni = { j ∈ M | ‖∆pi j‖ ≤ Di
N , j 6= i}, (15)

where Di
N

= Ds +
1

2(αi+αmin)
( 3

√
2(αi+αmax)

γi
+ βi + βmax)

2,

αmax = max
j∈M

{α j} and αmin = min
j∈M

{α j} are the upper and

lower bounds of acceleration limits of all agents, βmax =
max
j∈M

{β j} is the upper bound of speed limit of all agents. The

neighborhood notion is helpful in reducing computation in-

tensity and sensing requirement. This notion is valid because

there is no threat of collision when agents are sufficiently far

away from each other.

Theorem 4.2: Any agent i ∈ M is guaranteed to be safe

if it only forms ZCBFs with its heterogeneous neighbors

defined by (15).

Proof: Heterogeneous agents each possesses a safety

neighbor disk with different radius. Thus there are gen-

erally three scenarios considering ∀ j ∈ M , j 6= i, i.e.

‖∆pi j‖ > max{Di
N
,D j

N
}, max{Di

N
,D j

N
} ≥ ‖∆pi j‖ ≥

min{Di
N
,D

j

N
} or ‖∆pi j‖< min{Di

N
,D

j

N
}.

Agent i

Agent j

D
j

N

Di
N

∆pi j

Fig. 3: Two agents with different safety neighborhood disks

In all of the three cases, it can be proved that −ḣi j ≤
max{γi,γ j}h3

i j following similar reasoning of Theorem [5]

and Lemma 4.1 by considering the worst-case scenario.

Therefore, safety is guaranteed in all three cases. Heteroge-

neous agents only needs to form ZCBFs with their neighbors

to guarantee safety.

B. Barrier Certificates with Unknown Acceleration Limits

The acceleration limits of neighboring agents might not

be known prior. It can be proved that safety is still guaran-

teed when conservative estimates of neighbors’ acceleration

limits are used. With the estimated parameters, the safe set

definition will be slightly different for different agents. Let

αi and αi j be agent i’s acceleration limit and estimate of

agent j’s acceleration limit. The pairwise safe set C̄i j is

C̄i j = {(pi,vi) | hi j(αi +αi j) =
∆pT

i j

‖∆pi j‖
∆vi j

+
√

2(αi +αi j)(‖∆pi j‖−Ds)≥ 0}, j 6= i.

The corresponding safety barrier constraint of agent i is

−∆pT
i jui +

∆pT
i j∆vi j

‖∆pi j‖2
∆pT

i jvi −∆vT
i jvi ≤

αi

αi +αi j

(γih
3
i j(αi +αi j)‖∆pi j‖+

√
αi +αi j∆pT

i j∆vi j
√

2(‖∆pi j‖−Ds)
). (16)

In order to guarantee safety with inaccurate parameters, it

is desirable to ensure that C̄i j is always subset of Ci j . Notice

that when α ji ≤ αi,αi j ≤ α j, we have C̄i j ⊆ Ci j . It can be

shown that agents are safe if conservative estimates of neigh-

boring agents’ acceleration limits are used for decentralized

heterogeneous barrier certificates.

Lemma 4.3: If α ji ≤ αi,αi j ≤ α j and the safety barrier

constraints (16) is satisfied, safety is still guaranteed.

Proof: When agents i and j use their own estimates of

acceleration limits based on (16), we can get

−∆pT
i j∆ui j +

(∆pT
i j∆vi j)

2

‖∆pi j‖2
−∆vT

i j∆vi j

≤
αiγih

3
i j(αi +αi j)

αi +αi j

‖∆pi j‖+
α jγ jh

3
ji(α j +α ji)

α j +α ji

‖∆pi j‖

+(
αi√

αi +αi j

+
α j√

α j +α ji

)
∆pT

i j∆vi j
√

2(‖∆pi j‖−Ds)
. (17)

Next, we will discuss about two scenarios where two agents

are moving closer or further away from each other.

1) when ∆pT
i j∆vi j ≤ 0, agents i and j are moving closer to

each other. With α ji ≤αi,αi j ≤α j, we have αi√
αi+αi j

+
α j√

α j+α ji
≥√

αi +α j. Thus

−∆pT
i j∆ui j +

(∆pT
i j∆vi j)

2

‖∆pi j‖2 −∆vT
i j∆vi j

≤ γ̄h3
i j(αi +α j)‖∆pi j‖+

√
αi+α j∆pT

i j∆vi j√
2(‖∆pi j‖−Ds)

, (18)

where γ̄ = αiγi

αi+αi j
+

α jγ j

α j+α ji
. Compared with (9), this

inequality can be rewritten as −ḣi j(αi + α j) ≤
γ̄hi j(αi +α j)

3, which guarantees safety as if a

weighted version of γ is adopted. This means that, if

∆pT
i j∆vi j ≤ 0, the forward invariance of the nominal

safe set C is guaranteed.

2) when ∆pT
i j∆vi j > 0 (agents are moving away from each

other), it is guaranteed to have hi j(αi +α j)≥ 0. Thus

agents always stay in the nominal safe set C in this

scenario.

It can be shown that safety is still guaranteed if agents

switch back and forth between these two cases. In case (1),

the forward set invariance requires agent i to always start in

C after each switching. Due to the second order dynamical

model used for barrier certificates, ∆pT
i j∆vi j is continuous

with respect to time. Thus the switching between two cases

always occurs at ∆pT
i j∆vi j = 0, where hi j(αi +α j)≥ 0.

Combining these two scenarios with the safe switching

condition, agent i is guaranteed to be safe with respect to

the nominal safe set C .

With the local sensor measurements of neighboring agents,

we can construct a distributed least squares estimator or

Kalman filter [8] to estimate the current acceleration ‖ū j‖
of agent j. Agent i’s estimate of agent j’s acceleration limit

ᾱi j can be updated with ˙̄αi j = max{ᾱi j,‖ū j‖}− ᾱi j.

This strategy will ensure that parameter estimation satisfies

ᾱ ji ≤ αi, ᾱi j ≤ α j. Thus safety is still guaranteed using the

estimated parameters due to lemma 4.3. With this estimation



strategy, agents do not need to know the acceleration limits of

neighboring agents. They can start with conservative initial

guesses, and gradually improve their knowledge with local

observations without endangering safety.

V. SIMULATION RESULTS

A multi-robot system with six heterogeneous agents is

simulated with MATLAB. Each agent is modelled with

double integrator dynamics and executes a goal-to-goal con-

troller without considering collision avoidance. This system

contains two types of agents: small agile agents (αs =
1.2 m/s2, safety radius is 0.2 m); large sluggish agent (αl =
0.6 m/s2, safety radius is 0.4 m). As illustrated in Fig.4, the

objective of the pre-designed controller is to make all agents

swap position with the agents on the opposite side. Without

collision avoidance strategy, the goal-to-goal controller will

lead to collision of all agents in the middle.

The heterogeneous safety barrier certificates were wrapped

around the pre-designed control strategy. All agents started

heading towards the center following the goal-to-goal con-

troller (Fig. 4a). As they moved closer to each other, the

safety barrier certificates were activated and kept all agents

with enough safety distance away from each other (Fig. 4b).

The small agents are more agile and deviated from their

original paths to avoid collisions, while the sluggish agent

continued its own path because of inertia (Fig. 4c). After

the large agent reached its destination, other small agents

were safe to pursue their own goals without worrying about

colliding with the large agent (Fig. 4d). At last, all agents

successfully navigated out of the “crowded” scenarios and

achieved their objectives.

VI. CONCLUSIONS

The heterogeneous safety barrier certificates proposed in

this paper provides a provable way to address the challenges

in collision avoidance brought by heterogeneity in robots’

dynamical capabilities. The simulation results validate the

effectiveness of the proposed approach. While studying those

results, several interesting future research directions also

arise. When the objectives of several agents conflict with

each other, the agents sometimes get into a deadlock. It

is important to design a strategy that breaks deadlock to

ensure task completion. In some high density situations,

the optimization-based controller might become infeasible.

Safety barrier certificates with guaranteed feasibility need to

be synthesized for those safety critical systems.
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