
Montage: An X-Based Multimedia
Electronic Mail System

W. Keith Edwards

Graphics, Visualization, & Usability Center - Multimedia Computing Group
Georgia Institute of Technology

Atlanta, GA 30332-0280
keith@cc.gatech.edu

ABSTRACT
This paper describes an extensible multimedia electronic
mail system called Montage which is based on the X Win-
dow System. Montage supports the composition, transmis-
sion, and viewing of structured documents consisting of
virtually any type of medium. Further, users can at runtime
extend the system easily to support new document types,
including text, images, audio, video, executable programs,
and commercial file formats.

KEYWORDS: Multimedia, electronic mail, X Window
System.

INTRODUCTION: WHY MULTIMEDIA MAIL?
In the past decade, the proliferation of fast, inexpensive,
networked computer workstations has produced an explo-
sion in the use of electronic mail. Electronic mail systems
have traditionally been limited to the transmission of sim-
ple textual information.

More recently however, as computer workstations have
increased dramatically in power and as the use of window-
ing interfaces becomes more widespread and standardized,
the capabilities have emerged for the composition, trans-
mission, and reception of complex multimedia electronic
mail messages consisting of voice, imaged, video, and
other media (in addition to plain text of course).

The chief advantage of a multimedia electronic mail sys-
tem is the increased bandwidth between the users of the
system. Research indicates that some concepts may be
most appropriately expressed in certain media. [7, 8, 10] A
good multimedia mail system should allow people to com-
municate with one another as freely and without restriction
as conventional “paper” mail systems do. With paper mail,
users can compose documents, jot notes onto them, and
then seal them along with any other enclosures into an
envelope and expect prompt delivery. Multimedia mail
systems would offer similar flexibility.

Furthermore, since the most basic goal of any electronic
mail system is to expedite and enhance the communication
between people, care should be taken to conform to mail
transport standards. An electronic mail system which does

not interoperate with a broad range of systems denies its
users communication with those systems.

This paper presents a multimedia electronic mail system
calledMontage which has been developed at the Georgia
Tech Multimedia Computing Group (a part of the Graph-
ics, Visualization, and Usability Center under the direction
of Dr. James Foley) [6]. We believe that this system pro-
vides a flexible and convenient means to send and receive
complex multimedia documents. This system is built
strictly on top of lower-level mail transport standard and
thus should be portable to and interoperate with many sys-
tems. Our current implementation is on the Unix operating
system and X11, specifically Motif 1.1.

DESIGN GOALS AND HISTORY
When work was started on this project late in 1990 [5], we
began with several principles that we hoped would lead to
a powerful and flexible system. This section describes our
three major design goals.

Extensibility
First, and perhaps most importantly, we wanted to build a
system that would not be a “closed box.” That is, we
wanted a system which could be easily extended by its
users at runtime to support arbitrary media. Too many
email systems support only a restricted range of media.
However complex these media may be, there is still no
provision for extending the system.

At the time we began our work, there were several multi-
media mail systems already available for Unix systems,
the best-known of these being BBN Slate, the Andrew
Message System, and NeXTmail. Each of these suffers
from its own set of problems. For example, the BBN Slate
system provides users with a number of tools for compos-
ing complex mail messages. BBN Slate messages can
even contain spreadsheet data, but users are restricted to
working with the built-in, integrated Slate spreadsheet
rather than the tools there are most used to.

Another system, the CMU Andrew Message System, was
built using the Andrew tools provided by CMU [1]. This
mail system can send any type of construction which can
be expressed by the objects in the Andrew environment.
Thus, the system is extensible but it can not interoperate
well with systems not built with Andrew.

A third system, NeXTmail, bundled with all NeXT com-
puters, could compose and send fairly complex documents
consisting of formatted (rich) text, images, sounds, and
typed files. There were (and are) a number of problems
with the NeXT mail system though. First, the system is
built to a large extent on primitives provided by the Next-
Step environment which are not likely to be found on
other systems. Second, the specification for the mail
encoding format (specifically the header lines used and
required by the system) is not publicly available.

Mail Transport Protocols
In addition to our goal of extensibility, we wanted to con-
struct a system which was built on top of existing stan-
dards. For our platform, this meant the Simple Mail
Transport Protocol (SMTP) as a base [4, 11]. SMTP is
widespread among the Unix community. As long as our
mailer spoke SMTP its messages would be transmittable
by the large number of mail transport agents in the world
that speak SMTP.

One of the limitations of SMTP is that it only supports the
transfer of non-binary data. Thus, Montage must perform a
“packing” and “unpacking” process to convert the mes-
sage body data to a form which can be transmitted via
SMTP.

We will discuss our approaches to the problems of mail
transport protocols and packing formats shortly.

Message Presentation Format
A third requirement of our system was that it should
present its messages in an intuitive and easy-to-understand
format. It was our belief that, unlike more general hyper-
media documents, mail messages are typically generated
by their authors to convey some small number of impor-
tant ideas or data. Thus, whereas hypermedia documents
which are reader-driven[9], mail messages are typically
author-driven. We reasoned that a hypertext-like presenta-
tion format may not be the most useful or intuitive for a
mail system.

While we did not want our messages to be full-blown
hypermedia documents, we did acknowledge that there
was a need for some interactiveness within a message.
One common example of this may be a document which is
being distributed for review by a number of commentors
or coauthors. One would like to be able to view the origi-
nal document as well as selectively viewing annotations
by the various reviewers. We felt that some degree of
interactivity would empower the mail system and its users.

As we shall discuss later, we feel that the restriction
against generalized hypertext has had a simplifying effect
on the design and implementation of the mail system. We
also feel that the interactiveness provides a great deal of
the system’s power.

The next three sections address our solutions to these goals
as they are currently embodied in Montage.

A MODEL FOR MULTIMEDIA MESSAGES
We mentioned that one of our design goals was to develop
a presentation format for multimedia messages that was
(1) somewhat more restricted than hypermedia systems to
facilitate the type of communication common in electronic
mail, and (2) allowed some degree of interactivity, espe-
cially in support of annotations.

Our model for multimedia mail messages essentially con-
sists of two parts. First, all messages consist of a main
body (called theprimary part). The primary part consists
of any number of components (calledchapters) which
may themselves be of any media type. All of the chapters
of the primary part appear in linear order, just like a single
paper document. Montage presents the primary part in a
scollable window.

In addition to the primary part, a Montage message may
also have zero or moreattachments. Attachments are anal-
ogous to margin notes or “Post-It” notes in a paper docu-
ment. They allow the author to attach supplemental
information which refers to or supports the original docu-
ment. In Montage, attachments appear as small icons on
the border of the primary part. The image in the icon
denotes the type of medium in the attachment; the attach-
ment is activated or opened by clicking on it with the
mouse. At composition time the author chooses the spatial
location of the attachment so that, for example, comments
to a document can be located across from the portion of
the document they refer to. As the main body of the mes-
sage is scrolled, the attachments scroll so that they keep
their relative position to the part of the main body they
refer to. Just like chapters in the primary part, attachments
can be of any media type. Figure 1 shows a sample Mon-
tage mail message in the system mail viewer. The text and
graphics compose the primary part of the message. The
small phonograph icon denotes an audio attachment which
is spatially located across from the charts.

There are a great number of uses for this scheme of attach-
ments to messages. One of the canonical examples which
we have already referred to is coauthoring and comment-
ing of written documents. In Montage, a document could
be exchanged in mail as the primary part of a message.
Various authors can then attach comments, rewrites,
graphics, audio annotations, or even video clips to the doc-
ument at appropriate points. Research supports the fact
that some types of revisions are most appropriate in non-
textual media [9].

Also, since attachments provide a means of having an
active message which can interact with the user, several
uses for this model which are not based on simply annota-
tion of documents come to mind. For example, a mail
message may contain a large number of spreadsheets, say,
one for every operating month of a company’s history. The
recipient of this mail message may not want to view data
from every month, so the preferred format may be a mes-
sage with an attachment for every spreadsheet which may
then be opened at the reader’s discretion.

Another example may be an attachment which consists of
a shell script to upgrade some software package on the
user’s machine. The main body may have the message
“Click here to upgrade to release 2.0.” Across from that is
the attachment which will perform the upgrade when
clicked. (We are ignoring the security problems involved
in sending actual executable programs through the mail for
now. Obviously you would not want to execute a program
sent to you through the mail unless you trusted the source
of the message and could verify that indeed the message
had come from that source).

The important thing is that the author has the choice at
composition time to decide on the layout of the message.
We feel that this format gives us a substantial amount of
power in a relatively easy to express (and implement)
fashion.

FIGURE 1. An example Montage message

EXTENSIBILITY AND CONFIGURABILITY
Ideally, a multimedia mail system should be able to trans-
port virtuallyanymedium. This includes not only text and
graphics, but also various dynamic media (such as audio,
video, animation, and even executable programs), and var-
ious commercial file formats (used by spreadsheets, desk-
top publishing packages, and so on).

Obviously it is not feasible for the builders of the mail sys-
tem to have to compile support for these media into the
mailer itself. This requires a great deal of work on the part
of the system builders to maintain support for all of these
various formats, and also means that if the system builders
don’t choose to support a given format, the users of that
format will be out of luck. Further, the mail system is
always a “step behind” the rest of the applications world:
the mail system builders are continually playing “catch
up” to build in support for new formats as they become
available.

Perhaps the best solution to the extensibility problem is to
have a computing environment in which applications can
communicate with one another, and application objects
can be shared among and embedded in different applica-
tions. Some strongly object-oriented environments
(NeXTstep comes to mind) do support this type of behav-
ior, but it is not available yet in the X world.

Since this solution wasn’t available to us, we had to take
another approach to solving the extensibility problem. Our
solution is to externalize as much of the work of interpret-
ing and handling the various media outside the mail sys-
tem as possible. We use external programs (called
handlers) that “understand” the various media to display
and edit them. In the Montage model, the mailer itself is
very simple; it is basically just a framework which has the
responsibility of parsing the mail messages, providing the
basic mailer functionality (folders, aliases, and so on),
invoking the external handlers, and creating a nice presen-
tation for the overall message. The work of understanding
what a particular medium “means” and then doing the
right thing with it is solely the responsibility of the exter-
nal handlers.

Media types are identified bytags which are simple ASCII
strings that are sent along with the message components
when it is transmitted (see the section Transport Protocols
and Packing Formats). Montage itself associates no mean-
ing with the media tags; instead it decides which handler
to invoke on a particular component by looking up its tag
in a per-user database which maps tags to handler pro-
grams chosen by the user.

This design has several benefits. First, users can make use
of the applications most familiar to them to view and edit
message components. Vi and Emacs users will be able to
choose their favorite editor to compose text components.
Secondly, if a work group begins to use a new application
for its work, it is easy to enable support for the new appli-

cation’s data format by simply assigning it a tag and put-
ting an entry in the database that specifies the program the
be run when a message component with this tag is encoun-
tered.

Because of the presentation format we are using
(described in the previous section), message components
belonging to the primary part of the message are presented
“in-line” (that is, they visually and structurally form a sin-
gle document, rather than being presented in different win-
dows), while attachment components are presented
outside the main body of the message in their own win-
dows when they are activated.

The different requirements of displaying message compo-
nents in-line and outside of the main flow of the document
require us to have the notion of several classes of handlers.
The basic handlers are:

• Editor The program which will be invoked when the
user wishes to compose a message component of a
given type.

• Renderer The program which will be invoked when a
message component needs to be displayed in-line to a
message.

• Viewer The program which will be invoked when a
message component needs to be displayed outside of a
document.

The editor and viewer handlers operate as expected. They
are the normal applications found on a system which are
used to display and edit application-specific data (such as
Lotus 1-2-3 or FrameMaker or a paint program). These
applications, by default, create their own windows as chil-
dren of the X root window. Thus, when invoked by Mon-
tage they will start up and appear as top-level windows
“outside” the message itself. Thus, the viewer handler is
the program which will be invoked whenever an attach-
ment is opened.

But what about message components which should be dis-
played in the main body of the message? By default, most
any applications will create their own top-level windows
when they start up. We need to be able to display message
data inside the main body of the message as well as in sep-
arate windows. Our solution to this is the notion of render-
ers. Renderers are programs which know how to draw (or
“render”) the media typeinside the main body of the mes-
sage.

Since this is a rather unusual requirement, most systems
will not have renderers already on them waiting to be used
(as is the case with viewers and editors, which are conven-
tional off-the-shelf applications). We are working to build
several renderers for common formats, and hope that if
Montage ever reaches some degree of popularity there will
be no shortage of publicly-available renderers.

The mechanics of how a renderer performs its job, that is,
how it draws inside the main body of the mail message,
are somewhat difficult. We have investigated two possible
solutions. In the first potential solution, the renderer draws
the medium into a pixmap and then returns the identifier of
the pixmap to Montage which determines the geometry of
the pixmap and copies it into the message display area.
This effectively disallows any type of dynamic medium in
which the contents of the displayed are subject to change.

In the second solution, which is the one we are currently
working with, Montage launches renderers with a com-
mand line argument which is the window ID into which
the renderer should draw. This allows fully dynamic
media, but has several drawbacks. One is that the renderer
must continue running as long as the message is displayed
even if it is rendering a static medium. This is so that it can
handle exposures in the window. Another drawback is that
most existing widgets don’t perform well when their win-
dows are resized from some external controlling process.
We are investigating writing a new widget which exhibits
the proper behavior.

Note that if the X Toolkit provided support for forcing an
application’s top-level window to be specified on the com-
mand line or via some other mechanism, then we could
actually embed running applications in the mail message
itself. Unfortunately no X toolkit that we are familiar with
provides this capability.

While the invocation of an external program for every type
of media provides a great deal of flexibility, it is not the
most efficient way to work with very common media
which will be used on a day-to-day basis. For this reason,
Montage has a few very simple handlers built in to it.
Users can specify “PrimaryTextRenderer” in the configu-
ration database to tell Montage that a tag represents simple
text and that the system should use its own internal text
renderer to display it. There is also a “PrimaryImageRen-
derer” built-in handler that can understand and display a
good number of image formats internally (including Sun
raster images, PBM, PPM, PGM, Gif, Faces, XWD,
Group 3 FAX, MacPaint, XPM, XBM and a few others).
Similarly, there is a “PrimaryTextEditor” which tells the
system to use its built-in-line text editor so that users will
not have to open another window to simply compose a text
message.

These built-in handlers provide a certain common ground
of media types that Montage can handler “out of the box”
without requiring any sort of external mechanisms. Essen-
tially they are an escape hatch around the requirement that
users must have external handlers for all the media types
that they wish to mail or view.

TRANSPORT PROTOCOLS AND PACKING FORMATS
As we mentioned, at the time we began work on Montage
there were widely accepted standards for multipart multi-

media mail transport. We knew that we must base our
system on SMTP to allow interoperation with the
majority of existing Unix mail agents, but beyond that
there were few accepted standards. The current imple-
mentation of Montage uses a message transport format
developed in-house to support our model of multimedia
mail messages. In the past year, however, a format called
MIME [2] (Multipurpose Internet Mail Extensions) has
gained considerable acceptance and generated quite a bit
of interest. We shall describe each of these formats in
turn.

The MIME format is quite similar in many regards to the
current Montage format and so we plan to convert the
system over to MIME in the near future.

Current Format
To support the message format we wanted, we developed
our own transport format based on SMTP. In this format,
each individual message component was compressed,
bundled, and converted to ASCII (since SMTP doesn’t
support binary message transmission). The conversion of
the individual message components into a single transmit-
table block of data is calledpacking. This block of data
then was transmitted as the body of a message, with the
appropriate SMTP headers placed on the front of the
message. Along with the message components them-
selves we transmit aTable of Contents (or TOC) which
describes how tounpackthe message body into its indi-
vidual components, and the relationship of those
components to one another.

In the current implementation of Montage, the TOC is a
simple ASCII file which has a single line per component,
and specifies the component name, whether it is a
primary or attachment component, the relative position of
the component in the mail message, the medium type,
and compression type. The system packs and unpacks
messages transparently to the user.

MIME
In many regards the MIME format is quite similar to the
current Montage format and, since it will be supported on
many more platforms than the current Montage format,
we plan to convert the system to MIME in the near future.

MIME provides support for multipart messages in which
each part contains the data for that part and specifies the
type and encoding format for the data. The information in
the MIME subparts is sufficient to allow for unencoding
and decompressing Montage components, but there is no
provision in MIME to specify any type of structural infor-
mation about messages, such as component layout.
Therefore we will transmit the Montage TOC as a sepa-
rate MIME subpart so that Montage mailers can display
the messages with all their structural connections, while

other MIME-compliant mailers will display Montage
messages in a linear layout.

IMPLEMENTATION NOTES AND STATUS
The current version of Montage is implemented using
X11R4 and Motif 1.1. The code is approximately 40,000
lines of ANSI C.

This project was begun in late 1990 and resulted in a pro-
totype implementation (based on the HP Widget Set) that
demonstrated the basic concepts of the system (extensibil-
ity, external handlers, and so on) but was somewhat lack-
ing in the features necessary to convince users to use the
system on a day to day basis. In September of 1990 we
began a reimplementation of the system based on Motif
1.1 and added a number of useful features.

Most of the features found in Montage are, of course,
those found in any conventional non-multimedia mail sys-
tem, such as folders, support for aliases, saving messages,
replying to messages, and so on.

There are several other features specific to Montage have
were incorporated into the Motif version though. Perhaps
most important is the on-line configuration system. The
prototype version of Montage used the X Resource Data-
base to define media tags and map them to handlers. We
wanted to separate the configuration of the system into
appearance customizations (which would be handled by
the X Resource Database mechanisms) and the more Mon-
tage-specific tag/handler mappings. One of the primary
reasons for this was that we wanted users to be able to
establish new mappings between tags and handlers with-
out having to modify their X resource defaults.

Thus, we defined a format for Montage configuration files
that contains information about tag-handler mappings.
One side benefit of this choice is that we can provide a
function in Montage to automatically rewrite the configu-
ration file; this would have been awkward had we contin-
ued to use the X Resource Database because rewriting
resource files would have lost any comments contained in
the files (and thus customizing Montage would have
erased comments on other applications’ defaults).

Figure2 shows a Montage configuration panel for chang-
ing tag-handler mappings. Clicking the Accept button
changed the preferences for the current session only.
Clicking Save causes Montage to rewrite its own configu-
ration file. These configuration files are, by the way, sim-
ple ASCII files and are very human-readable. The
automatic configuration mechanisms simply provide an
easy-to-use tool for customization by novice users.

In addition to the basic handlers mentioned earlier (editor,
viewer, and renderer), Montage also keeps some other

information in its configuration database on a per-tag
basis. These include:

• Compressor Denotes the type of compression used on
the tag in question (for example, LZW for text compo-
nents, JPEG for images).

• Icon The file to use for the icon image when a medium
of the specified tag is used as an attachment.

• Printer A handler for printing the specified medium.

• Filter A handler for filtering the medium into text for
display on a dumb terminal.

• ConvertTo The name of a tag to try to convert this
medium into whenever it is encountered.

• Converter A handler which is used to perform the
conversion to the new media type.

This information allows users to change the behavior of
Montage in a number of ways. The method of compres-
sion can be changed to suit the particular medium being
sent, icons can be chosen on a per-medium basis, handlers
can be specified for printing and filtering, and so on.

A note on the converter mechanisms. Some media which
are received may not be in a format which the reader can
view. The converter mechanisms provides a means for
Montage to automatically perform type conversions to a
new medium which can be viewed (that is, for which a

FIGURE 2. The Media Configuration Panel

renderer or viewer is defined). Converters can be chained
to any arbitrary level, and Montage can detect and break
cycles in the converter graph.

CONCLUSIONS, CAVEATS, AND FUTURE DIRECTIONS
We feel that the current implementation of Montage serves
to illustrate some useful concepts that are important for
generalizable, flexible electronic mail systems. We view
the current system as an “advanced prototype;” that is, the
system implements a number of nice features but it is not
commercial-quality software.

Currently, Georgia Tech is involved with licensing negoti-
ations with several companies which wish to take Montage
and turn it into a commercializable product. These compa-
nies are interested in adding features (such as security)
which we are ill-equipped to do because of time and
money constraints. Nevertheless, we would like to see
Montage released into the community as freely distribut-
able software even if the negotiations succeed.

In the area of future directions, we have several goals for
Montage. The most important goal is support for the
MIME standard for Internet multipart mail messages. We
are also interested in exploring the domain of dynamic
mail messages to a greater degree. In the current system,
attachments are spatially collocated with the primary com-
ponents they reference. We are interested in possibly
exploring a time-based connection in which the main mes-
sage body would be a dynamic component, such as video,
and the attachments would be tied to a certain time point
in the video and would scroll by at appropriate times.

While the concept of renderers provides a powerful exten-
sibility mechanism, the current implementation leaves
much to be desired, both in terms of flexibility and ease
of implementation. We would like to experiment with
more complex Montage-to-renderer protocols, perhaps
using some sort of RPC-based mechanism. This would
provide a greater degree of renderer control from within
Montage (to support, for example, VCR-style controls on
a video component).

We are also interested in the use of extension languages
which could be bundled with Montage to give it even
greater power. Such a system would allow high-level
interpretted components to be sent as message compo-
nents.

ACKNOWLEDGEMENTS
Thanks to our sponsors for this work, BellSouth and the
Georgia Tech Advanced Technology Development Center.
This work would not have been possible without their gen-
erous support.

I would also like to thank Tom Rodriguez and Jens Kilian
for the significant amounts of time and energy they have
devoted to the development of this system.

REFERENCES

[1] Nathaniel Borenstein. A Multimedia Message System
for Andrew, inProceedings of USENIX Winter Con-
ference, February 1988.

[2] Nathaniel Borenstein, and Ned Freed.MIME: Mecha-
nisms for Specifying and Describing the Format of
Internet Message Bodies, Internet Draft.

[3] Barbara Chalfonte, Robert Fish, and Robert Kraut.
Expressive Richness: A Comparison of Speech and
Text as Media for Revision, inProceedings of ACM
SIGCHI Conference, 1991.

[4] David Crocker.Standard for the Format of ARPA
Internet Text Messages, Internet Request for Com-
ment (RFC) 822, August 13, 1982.

[5] Keith Edwards,The Design and Implementation of
the Montage Multimedia Mail System, Technical
Report GIT-SERC-90/04, April, 1990.

[6] Keith Edwards, The Design and Implementation of
the Montage Multimedia Mail System, inProceed-
ings of IEEE Conference on Communication Soft-
ware (TriComm), April 1991.

[7] S. Guastello, M. Traut, and G. Korienek. Verbal Ver-
sus Pictorial Representations of Objects in a Human-
Computer Interface, inInternational Journal of Man-
Machine Studies, July 1989.

[8] Brenda Laurel, Tim Oren, and Abbe Don. Issues in
Multimedia Interface Design: Media Integration and
Interface Agents, inACM SIGCHI Proceedings,
1990.

[9] Jakob Nielsen.Hypertext and Hypermedia, Academic
Press Inc., 1990

[10] G. Rohr. Using Visual Concepts, inVisual Lan-
guages, S. Chang, T. Ichikawa, and P. Ligomenides,
eds., Plenum Press, 1986.

[11] W. Stallings.Handbook of Computer Communica-
tions Standards, Volume 3: Department of Defense
(DoD) Protocol Standards. Macmillan, 1987.

