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NOMENCLATURE

length of beam or plate
area
width of beam or plate

Young's modulus of elastic (metal)
beam material

complex modulus of visceelastic material
(see Egquations.7 and 17)

dynamic (less) modulus of viscoelastic
material

Young's medulus of elastic (metal)
plate material

Young's (static) modulus of viscoelastic
material

characteristic beam function
acceleration of-gravity

characteristic beam functien
' i

thﬂckness of viscoelastic coating!

enérgyfdis$ipated-

f .
thickness of elastic {metal) beam or
plate material

kinetic energy

2

displacemeﬁt of a point of the system in.the

X;¥,2 directions, respectively

Units
in.
in.

in.
psi
psi
psi
psi

psi

in./séc.2

in,

in.-lb.

in,

inn-lbo

in.
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Y

<o e g o

Xa¥s2

displacement of neutral axis in the x,y,z

directiens, respectively

undetermined coefficients of the
deflections

strain (potential) energy
Cartesian ceordinates

distance of neutral axis from the
interface of coating and metal

(see Figure 7)

distances of coating and metal surfaces
from the neutral axis (see Figure 7).

exponential damping censtant-

censtants depending on mede and end
conditions

weight per unit velume

logarithmic .decrement

strain

.qi:'. I . ..1‘
loss facter RED !
Poisson's ratie
mass per unit avea
stress
time

damping coefficient
undamped natural frequency

damped natural frequency

Units

in.

in . '_lb .

in.

in.

1l/sec.

-,1/in. )
£

lb./in;?

™ in./in.

lbo_sec.2/in-3

psi
sec.,
psi-sec.

rad. /sec,

rad./sec.
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Subscripts

elastic (metal) beam material
viscoelastic material -

mede numbers

elastic (metal) plate material
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SUMMARY

It has been feund that a number of materials, such as plastics,
resins, adhesives, and rubbers have the ability te dissipate energy in.
a mechanical syétem by converting energy of metien into heat energy.

These materials exhibit both viscous and elastic behavior and are con-

S N

sequently termed viscoelastic materials. Incorporation of such a
material with an elastic structure is often beneficial in abating
troublesome vibration. However, a designer needs seme criteria for
determining the damping effects that a given ameunt of viscoelastie

coating produces other than pure guesswork.

The primary objective of this investigation is to relate the.
damping produced by an unconstrained layer of visceelastic material
(in terms of logarithmic decrement) to the thickness of the visco-

J‘:ﬁ
elastic layer applied to. a beam or plate and teo the_propertiesgand
" ¥ . 3

I|'i

dimensi@?s of the' two materials. It is of primary importance to present 4

.this relation ?ﬁ the'?orm'ef:equatiens br curweﬁ%quérﬁhigh deéign data
may be easily %ﬁtaimed. This had previeusly beénidé%e for Beams subject
to "light“-d;mging; however, the problem is‘her;;%ﬁpéoached using a.
different methéd in erder to.consider not only bé%mé?but alse plates in
addition to considering damping of higher-magniféde#l

Other considerations are: (1) further inéestigation concerning

the existence of an optimum thickness ratio beyond which addition of.

AT e . Gl .o

viscoelastic material results in a decrease in démping; (2) relation of




damping teuthe:"visceelasticity" of a material, (3) comparisen of
coatings on one side only with two symmetric.coatings. The investiga-
tion is limited to a study of the free vibratien (in the fundamental
mode) of beams and plates with ne censtraints. The effects of rotary
inertia and vertical shear are neglected; and thin beam and plate theory
applies in the deprivatiens.

The analytical selutien is formilated using an energy method
which is quite similar to:Rayleighﬁs-method:for'determining the natural
frequencies of vibratien of homogeneous, undamped beams. However, in
this case, the beams (and plates) are nonhomogeneous and damped. (It is

| assumed that the damping is linear.) An expression is developed which
accounts for the energy dissipated by the coating, then the principle of
conservation of energy is applied. This results in a relationship
betweasn the exponential damping censtant and the dimensions and proper-

ties of the beam (er plate) and,.therefofe, the solution desired.

j"(_"

¢+, The selutions developed include: 'ﬁ ¥

i (1) Computer solutions. The legarithmic decrement and damped
1 p T

-natural frequeney of ‘a given composite beam.cr;platqjmay be calculated

for light or heayy damping and for coatings on.oneyeﬁ_both §ides.

4,

{2 Curvéé,'gﬂn approximate value of the_l@gé#ithmic decrement -
may be obtained fer}a given composite beam or plate-%;th light er heavy
damping and for coatings on one or both sides.. ;:

(3) Approximate soluticns. The legarithmic éécrement-and-
natural frequency of a given composite beam or platqlsubject to "light":

damping may be calculated fer ceoatings en one or both sides.




Experimental measurement of the natural frequencies and
legarithmic decrements of a number of different compesite beams and
plates verifies that the relations developed allew one to predict both’
quantities accurately knowing the properties and dimensions of the
materials employed. |

It was also found that an optimum thickness ratio actually
exists. If additional coating material is applied above this peint,
damping decreases rather than increases. (This results because of the
shift of the neutral axis.) The value of the optimum thickness ratio
may be found analytically for beams and plates with ceatings on one.
3ide only (for light damping); however, no eptimum thickness ratio
exists for beams and plates with symmetric ceatings.

The damping of a beam compesed of twe given materials and having
a given ratio of .coating thickness to metal thickness is comparable in
magnitude te that of a plate composed of the same twe materials and
having the same fﬁickness ratio,

- Fer smallﬁtand moderate)-thicknéss ratics, it is more efficient

o

to employ all the vzsceelastic coating on one side{f? a beam or plate

F
m@qually between the two. 51des. Hewever for large

:

&:—-*mb'—x

rather than%s

thickness rat it is sometimes more effective t0|u$e two symmetric.
coatings. |

Damping depends directly upen only three diﬁe%sionless raties:.
ceﬁting thickness divided by metal thickness, loss modulus of the.
viscoelastic coating divided by the Young's mmdulus of the coating,

Young's modulus of the coating divided by Young's modulus of the

metal,

P

o Er watT
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The results of this investigation can be extended to consider

higher modes and other end conditions with very little effort.
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CHAPTER I

INTRODUCTIGN

Backggound

Mechénical vibration deals with the oscillatory metion of a
physical sysfem and is determined by three properties: the mass,
stiffness, and damping of the system. At certain frequencies the
restoring forces (stiffness) and inertia forces (mass) balance each
other and the sYstém is said to be in rescnance. In many structures,
such as-those in airplanes and guided missiles, undesirable vibrations
are transmitted from the jet engine or from the turbulence of the air
to the parts of the device carrying sensitive electronic instruments.
Raturally, such vibration must be minimized to as great a degree as
pessible.

There are three general methods which may be used in.the design

_ . _ o, .
of a system to avoid or contrel resonant response: - i

(a} The system may be detuned by designiag*%hé_components in

such a way that the fiatural frequencies of.adjacentiélements-différ by

as large a magnitude as possible. q ??f

(b) The system may be strengthened by incréaéing the stiffness
at critical peints.
(c) The system may be damped by converting seme of the

mechanical .energy to heat energy.

S-S S N
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The use of structural damping (c) offers a greater degree of flexi-

bility in the contrel of resonant response when vibrations in.a struec- ?

ture are random in amplitude and frequency. _ B

The increased need for reducing vibrations in structural members

produced by broad-band seurces, such as the response of aircraft and

gl et ek s

miszile framgg to rocket excitation, has led to the employment of viséo— i3 i
elastic coatings. Such coatings serve to damp out the induced motion 2 |
helping to prevent fatigue and eliminate_annoyance.while making littlei |
contribution to the weight of the structure. A clear understanding of%

the dynamic behavier of such a system is, of course, necessary for its ' 5-

proper application.

There are twe methods of empleying viscoelastic materials to

dissipate energy—unconstrained and constrained layer damping. The
unconstrained system (Figure 1) consists of a base member, used for its
structural characteristics; and a viscoeléstic layer, used for its
damping ability. When the base undergoes flexure, dissipation of
eneréy is preduced by the .extension and compressien of Ehe_damping
layer, The constrained-layer system or so-called "séhdwich".(Figure 2)
consists of twe g;%fﬁ menbers separated by a viscoelastic layer.
Relative motion ﬁééﬁeen the two stiff layers causes shearing of the
viscoelastic material dissipating some of the vibraticnal. energy of the
system. C@nstraineq—layer damping is actually mere efficient than.
uncenstrained. Howéver, there are reasens for interest in the latter:
(a) 1In practical applications a single layer is much simpler

to apply, especially when net a step in the original censtruction,
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Figure 1. Unconstrained Viscoelastic Coating
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(b) Deflected beam

=

(c) Deflected element

Figure 2. Constrained Viscoelastic Coating




(b) Excessive weight is a most undesirable burden in the

majority of cases.

This investigation involves only the case of uncomstrained viscoelastic

layers.

Review of Literature

There have been a number of investigatiens to determine the
damping effgqts.preduced by visceelastic materials fer beth the con-
strained andzunconstrained cases. The majority are concerned with .
beams only aﬁd experimeﬁtal_results, in comparison to analytical, have
not been conﬁincing in most cases.

Censtrained Case

Prebably the most significant work in this area is that of Kerwin
(l)* vwho studied the damping effectiveness_or loss factor, n, of a
gingle constrained viscoelastic layer. (Loss factor is one of the most
common measwres of damping. When multiplied by ﬂfét is equivalent to
logarithmic decrement or § as it is often denoted;s. The definition of

- s o lg‘ .
n in terms of the fractienal decay rate in space-.ofigthe bending-wave

power was the b?ggﬁufér the energy appreoach usediﬁﬁéﬁ expression was
developed for décéy-rate of power based on the dis%ﬁ%ation ef power
through the shear motion of the damping layer. Th?n loss factor was
related to the dimeﬁsions and properties of the tﬂgé; layers making up
the bar. Kerwin andhether investigators made the_féllewing assumptions

(unless otherwise specified) which are of special %ﬁportance in the area

* .
Numbers in parentheses refer to references:in Literature Cited.
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of viscoelastic damping:

{a) The viscoeelasticity may be represented by a complex medulus,
i.e., Ed = Es_+ iEd.

(b) E; is much smaller than E_, i.e., n, $ 0.1,

Ungar and Ross (2) extended this werk by considering multiple constrained
layers of damping tapes rather than a single one. It was found that a
single tape covered by a thick constraining layer is more effective than
several thin layers invelving the same amount of material, The results
of neither investigation are easily applied by a designer.

Whittier (3) investigated a single constrained layer separated
from the base by a spacing layer, the purpese of the spacer being to
increase the,exfension of the viscoelastic material. The analysis
involved setting up and selving a fifth order differential equation.

Experimental and analytical values were not in goed accord.

The damping of .an aluminum heneycomb beam was evaluated by

Mead (4). An energy approach showed that damping in the core arises

not only by virtue of the shearing strains but alse Qy virtue of the

2

ey

bending strainq;

Thorn's centributien (5) was to take the theafy developed by
Kerwin (1) and discuss in detail the application of this to the design
of typical structures. It wés_assumedfthat the theory was wvalid for
both beams and plates.

Free vibration of sandwich beams with butyl rubber and polyvinyl
chloride cores was evaluated by Jenes, .Salerno, and Savacchie (6).

Hamilton's Principle was employed to derive the equations of motien.
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These were sclved by assuming n, was small (a common assumption mentioned
previously). Experimental and apalytical results showed fair agreement.
These men are presently investigating plates of the gsame cempesition.

DiTaranto (7) also used a differential equations approach, but -
assumed a finite series scolution. This led tec an expression for com-
posite loss factor, m. It was found that n is independent of end condi-
tions and mode shapes.

Unconstrained Case

(a) Beams. The most impressive work done related to the subject
of viscoelastic damping has been Oberst's study (8) of the bending
vibraticns of thin beams covered on one side by a layer of damping
material. Experimental and analytical results were in excellent agree-
ment and the results were presented in a form ?eadily usable by a
designer. Simple flexure theory was used and??t was assumed that damp-
ing was small (nc < 0.1}, This led te an exp%%ssion for loss factor as
a functiocn of-fhe-properties and ‘dimensiens of the beam. Thecretically,
an optimum qpating thickness was shown ‘to exist. Howevgpa_this was not
verified by ;xperimenf. i

An energy approach by Lienard (9) investigated both linear and
non-linear damping; however, it vielded little of design value.

An analysis of round bars coated with a viscoelastic material was
formilated by Plass (10). The differential equatien of motion of the

system was .combined with the equation describing the viscoelastic

behavior yielding a third order differential equation., A solution was

assumed which led to a third pewer pelynomial in o, the damping constant .

of ‘the system, upon substitution in the differential equation. Solutien
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of this gave the amount of damping which results.  Plass compared his.
theoretical results with the experimental results of another investi-
gator and found agreement te be fair. A unique feature of this investi-
gatien was the use ef a'combination Kelvin-Maxwell model to describe
viscoelastic behavioer.

Lal (11) attempted to extend Plass' wark.by accounting for the

effects of rotary inertia and transverse shear in the beam. In this
case, a fifth order differential equation resulted; this was solved.byg
finite Fourier transferms. | ?

(b) Plates. A purely experimental investigation of the damping
of steel plates coated with a layer of bitumen emulsion containing schist
powder cor similar products was conducéed by Varn Itterbeek and Myncke
(12). This was limited to ceatings which were thin in relation to the
thickness of the metal plate.

Another experimental investigation by Giddens (13) probed the
effect of damping materials on dynamic stresses in flat panels. The
stresses a;:?arious‘points in the plates were measured fpf.different
thicknesses20f;gis¢o§%astic coatings and over a.wide range of frequen-
cles. It was féﬁndu%%at; generally, the stresses were reduced signifi-
cantly with the-addi@iqn of viscoelastic materials.

i
Hertelendy an%?Geldsmith-(lu) presented a purely analytical-
investigation for a éﬂate,with-symmetrical coatings (Figure 3). In this
investigation three é%proaches were employed:

(a) An exact solution by the Rayleigh-lamb equations;

{b). an approﬁimate selution by .the Timeshenke beam equation;

s
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(c) an appreoximation by a perturbation solution assuming the

coating to be a membrane.

L—Coating
/_L/-/.(_I_/I////'I/II_IIII//
-=—v Base
/l/'[llll///l/l'lllf/_l! - Coating

Figure 3. Symmetrical Coatings

The three methods were found to agree for low wave number (ratio of
thickness of plate to wavelength}, but there was no experimental veri-
fication.

A number of other references related to viscoelastic damping in
general are available concerning such subjects as properties of visco-
elastic materials, damping with partial coverage, and damping at joints
and supports. It is believed that those of primary concern to the
problem at hand have been mentioned; therefore, the remainder will not

be discussed, but are included at the end of the thesis.under_thé head-

‘f‘; FI -.\T,:{\

ing Other References.

Objectives and Scope-

The main objective of this investigation is te relate the damp-
ing produced by an unconstrainéd layer of viscoelastic materiazl (in
terms of logarithmic decrement) to the thicknéss of the viscoelastic
layer applied to a metal beam or plate and to the dimensions and
properties of the two materials, - It is of prime concern to present
this relation in the form of equations or curves from which design data

is readily attainable. {(Much of the werk in previous investigations is




not easily interpreted.) For the case of beams with small damping (loss
factor of the viscoelastic material less than or.equal to O.l),_Obergt
(8) has accomplished this .quite well using simple flexure theory. The
results of the energy method used here will be compared with Oberst's
for small damping. Large damping (nc > 0,1) will also be considered for
beth beams and plates. In the case of plates coated with viscoelastic

materials, there is a lack of reference literature; it is believed.that

work in this area is original,

Several. other important considerations will be investigated. One
of these is the determination of the ratio of coating thickness to base
thickness which produces maximum damping. Several of the previous
investigations indicate that, theoretically, an optimum amount of damp-
ing is attained when the coating thickness reaches a certain value.
However, none verified experimentally that-this=is, in fact, the case.
Therefore, the question is investigated further. In addition, the
design data is tabulated not only to relate damping to the thickgess.of
the coatiqg;ﬁbut;also_to-the visceelasticity index or lo§§ factor, N>
of the géatihg.; Finaﬁly, beams and-plates=withwsym@etriq coatings are:
to be considered and %he.effectiveness of these.céﬁpared.to that of
coatings applied to.oée.side:enly. |

The investigation is restricted to free vibratiens of beams. and
rectangular plates with no end or edge constraints. As the first or
fundamental mode is usually of greatest con?ern; the study is also
limited to this .mode although-it ceuld easily be extended to include

other modes as well as other end cenditioens.
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CHAPTER IT -
VISCOELASTIC BEHAVIOR .

The dynamic behavier of .viscoelastic materials differs distinctly
from that of ordinary elastic materials. In classical theory of elas-
ticity it is always assumed.that the stress-strain relations are linear
and independent of time, i.e., ¢ = Ee. However, it has been discovered.
that a number of materials—plastics, resins, adhesives, and rubbers—
have time dependent properties alse. This is accounted for by consider-
ing the material as a combination of twe media: one which is perfectly-
elastic, the other having the properties of a viscous fluid (hence the
name "viscoelastic" material). The term viscoelastic is restricted in
this investigation to those-matefials_whose response to stress obeys the
superposition principle. In other words, the material proparties can.

be represented by a model constructed from elements which obey Hooke's

elasticegaﬁ'%nd_elements which ebey-Néﬁ%on{s-viscosity law (15).

A_systemféf-sﬁrings and-daahpetS'must3be:chesen to describe the
behavior of each partic¢ular material. There are two basic models from-
which any number of others may be fashioned through the incorperation
of additional elements. These twe models are the Maxwell or liquid.
model (Figure 4(a) and Equation 1) and the Veigt or solid medel (Figure
4(b) and Equation 2), From Figure u4(a),

Espring * Edashpot
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(a} Maxwell model (b) Voigt or Kelvin model

Figure 4. Viscoelastic Models

it iredy

Figure 5. Maxwell-Veigt Combination Model
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Thus.

= JE_ ¢ 39
c=9 E_ 3t (1)
S
From Figure 4(b),

= . -+ -
gsprmg Udashpet

Therefore,

- e '
g = Esa té a0 (2)

The Voigt model is applicable in this investigation since it
concerns solid materials. It is found, however, that.the spring con-

stant, Es’ and the damping coefficient, ¢, of this model are not

e maaban oL
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actually constant for most materials. Both are functions of temperature
and frequency as .shewn by Nelle (16). (Temperature change is not con-.
sidered in this investigation, but frequency variation is an impertant
consideration.) This.suggests the use of a more cemplex model than the
Voigt, for example, a Maxwell-Voigt combination (Figure 5 and Equation

3). From Figure 5,

9 = E1%;
From Equation 1,
e e
2 ot . E, ot.
e 2
Therefore, 8 ety |
. " ;ﬂl;@l"
e+ 2 (p % ¢ 30
Ele + E2 (E1+E2) 37 E2 3T (3)

Actuglly,‘usigg a Voigt model in conjunctien with a medulus vs.
frequency curve is eﬁéivalent to using a more complex model. For
example,.suppose.thef&urves of Figure & describe the dynamic properties
of a material. (qu:any particular value of frequency, the moduli are .

constants and the Veigt model is wvalid.) Let the system of Figure u4(b)

LT M | e




L meEie e

[

1 af il

o b ke T ottt

e e

e e

I PR

LS

i s s o e ke S P et i o e

be given a sinuseidal motion, i.e.,

€ = e_ sin wr
0 .

E = Aw + B
s .

BE(psi)

Ed3= Cm2 + Dw + F

® (c.p;s.)

Figure 6. Modulus vs. Frequency Curves.

Substitutiﬁé the medull of Figure 6 iﬁfé-ﬁqpation 2 yields
AR

0.5 Awe + Be + Cu B_e._+ D 3_e+ F 3¢
i at 3T w 3T
From Equation 4
ke = —w’e
812'

Differentiating Equatien 2 with respect to time,

FE

(4}

(5)

&
.
o




et T R LT G
T [

g

15 .
3T _ e
at -Edm€'+ Es 3T
Ed Es E
Letting A =5 D= - T and G ='E73 Equatien 5 becomes
- 9  F9e 139
d = Be + Cuw Y + % 3t g 3t
Ea
Letting B =E, C=0, and' F = —f-(El+E2),
2
R & _ 9.3
o =Epe *'}32 (Ey*E,)) o7 E, o (6)

Equations 3 and 6 are identical. Therefere, it is seen that if the.
modulus vs. frequency curves have the form.of these of Figure 6 (with
A, B, C, D, and F as given. abeve), they reprg%%nt the behavior of a’
Maxwell-Voigt combination model when used in %%njunction with the Voigt
model. (If the curves of:Figune_G had' taken 5 mere.complex form they
would represent anether medel more cemplex in nature than the Maxwell-
Voigt_cembiﬁation.) Consequently, it has been shown that the simple
mathematics of the_véigt model may be:utiliéed wifhout.sacrifice of
accuracy in describing the behavior of the system.

It should alse be noted that using the Voigt medel is equivalent

to using a complex modulus, i.e.,
g, = Ege = (Es+;E&)e (7)

Frem Equation 4, .
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3 _ - :
== we_cos wt = iwe .
at o,

Therefore, Equatiens .2 and 7 are identical.
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CHAPTER III
BEAM ANALYSIS

An energy methed:.similar to Rayleigh's method is the basis for-
determining the amount of energy lest by a system compesed of both
elastic and viscoelastic materials. Rayleigh's method simply employs:
the principle of conservatien of energy and is used to approximate the
natural frequencies of a conservative system, Feor a cengervative
system, the total energy of the system at anyxparticular time is the
same as at any other instant of time. For a nonconservative system this
is not true; over a given interval of time, a certain amount of energy
loss occurs. The amount of energy in a nenconservative system at a
particular instant of time is equal to the amount of energy remaining
in the system at a later instant of time plus the amount of energy

digsipated during that interval. In symbolic form:
E. = E,. + L ' (8)

These energy termsnmaf be dé%ived\in terms of the dimensions and proper-
ties of the system an&-the;damping constant of the system.. Knowing the
properties and dimen?ions, ene can, determine the damping for that par-
ticular case. The procedure for this derivation will now be explained

further.
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In this analysis:small'deflection of both beams and plates is
assumed as well as the usual assumptions which accompany it. These
aret

(a) Strain in the middle plane may be neglected.

(b) Planes remain plane during deflectien,

(c)  Vertical shear dees not:affect deflection.

(d) The slope of the deflected plate in any direction is

small; thus, its square may be neglected in comparison with unity. i

Other assumptions are:

(1) The base beam or plate as well as the coating is homogeneous
and isotrepic.

(2) . There -is ne slip at the interface of the base and the
coating.

{3) Strain energy includes pure extenéiénal {membrane) and:
bending strain of both the base and the coating. The effects of vertical
shear are neglected,

(4) The kinetic energy includes only the effects of transverse

inertia. The effects of rotary ipertia are neglected.

Beam with Single Uncenstrained Coating

The.natural frequency of the system must be determined before.
solving for the damping censtant of the system. In addition, the
derivation for natural -frequency lends te a better understanding of the
damping solutiecn; tﬁefefere, it is presented first. The solution pre-

sented for this case applies te the free-free beam of Figure 7.
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Derivation of Natural. Freguency

The .Rayleigh methed is normally used only for homegeneous,
elastic beams; However, it has been sheown by Kimel, Kirmser, Patel,
and Raville (17) that a method ‘similar to this may be used to predict
the natural frequencies_éf-nenhomegeneeus.(three-layer), undamped ,
sandwich beams. This approach is now applied to a two-layer, damped
beam.

Undamped Natural Frequency. It is assumed, initially, that the

composite beam of Figure 7 is undamped. The beam deflections for the

mode of interest, m, are then assumed -tc be

o
n

1 L] .
UmFm(x) sin w_t (9)

=
L]

Wth(x) sin mmr . _ (10?

(Note: - Subscripts refer to mode number, not to summation notation.).:

um,wm - undetermined coefficients of deflection for mth mede,
I - displacement of neutral axis in x-direction.
W - displacement of .neutral axis in z-direction.
Fm(x) - characteristic beam function (reference 18).
Fm(x) = {cosh B X-cos Bmx)-— am(31nh Bm§-51n Bmx).
am,Bm - constants depending on mode and end conditicns,
w - undamped natural frequency. for mth mode (rad/sec).
' 3 .
and Fm(x) = d/dx(Fm(x)).
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a ! *

(a) TFree-free beam

- 0]
i .
1 \:::£;§F£S§§ Neutral axis
Z= 22 k / X |
0 -— -
24 w F.
* z U o

(b) Small element in initial and displaced position

Figure 7. Free-free Beam with Single Unconstrained Coating
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Now

and

wu=u =u =a-z&
b e Ix

where the subseripts b and ¢ refer to the base beam (metal) and coating,
respectively. It is seen that displacement in the x-direction occurs as
a result of both extensional (u) and bending effects (-z %EJ.
The straine may be written in terms of the assumed deflections.
Thus, the extensional strains in the beam and coating are from theory
of elasticity (19)
* du

= 21 . " .
€ob = ec - 3x UmFm(x) sin w t (11)

The bending strains are
= =9,y .
" Ebb = €. % 3% ( 2 Bx] . szFm(x) sin w_t (12)
The shear strain is
Y, 2wtz - —=—7=0 (13)

The strain (potential) energy, V, is now determined. The

&
The first subscript refers to type strain, the second to layer.

Ea

TR e L T e

T




Figure 8. Force-Displacement

Model of Spring

materi§l§%under-consideratien
ELS B

placed under.lead. Thus,

X x
V=J‘2Fdx=[2kx-dx._
¥y *
or
3 € €
av (%2 [%2
m-[ GdE-JE Ee de
1 1
The strain energy density for a beam . is:
v 1
- dxdydz ~ 2

The extensional strain energies of the base and coating are derived as

follows:

22

LA

—]Fs-

o]

Figure 9. _
' of Spring

are assumed to obey Hocke's law when

kx (Figure 8)

0]
LT o

%¥E92 {(Figure 9)

then

o€ (1)

Stress-Strain Medel.
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a3y E E
eb . b 2 _ b 2n 2 2 .
Tdydz - 2 Cep © 3 Uplfp(®)1T sintur
E. 2z, b ra
__b 3 24t 2 _..2.
Vop 32 J J [ Um[Fm(X)] sin“w T dxdydz
Z, ‘0 40
2
Where-ZQ_and z, are distances of base surfaces from the neutral axis
(see Figure 7 and Appendix A).
q . n .2 4
J [F"(x)]° dx = aB’ (Reference 20)
o ™ m
Bm -~ constant depending on end cendi;ioﬁs.
Therefore,
Eb(z -z,) _
- 372 y 2 ., 2
Veb = —— abB mqm31n Wt (15)
Similarly,
E (z,-2,) '
- e LU S .
Voo = 5 abB“pnﬁln Wt {16)
From Equatien 7,. ;
¥
E = ES + lEd
Therefore,
2 _ 2. 2
E, = Es + Ey (17)
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The bending strain energies are
T N
dxdydz R N wm[Fm(x)] S et
3 3
E (z,-2,)
_ "p%3 7%’ B2 . 2
vbb = 5 ameWm sin®w T (18) .
and
3.3
E (z -z.) .
et % w2, 2
Vie = — g —abB ¥ sin T (19)
The total elastic strain energy ef the system is then
V= véb_+ vec f Vbb=f vbc : (20)

The kinetic energy, T, arising frem transverse inertia is from

Timocshenko (21)

1- W 2
T=z0f, (57 aa (21)
Eﬁ-zwm.w F (%) cos w T
3T mmm Coome

b ra .
1 * 0. 2.2 2
T = 5P I Jo mmePm(x) cos’w T dxdy

a
J 'F;(x) dx = a {Reference .20)

Therefere,

it — e - = e r———— — . e ————
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— 2:.2, 2
T = P abmme cos“w T (22)

ST

The total amount eof energy in this.conservative system at any

time T is equal to the energy at any later time T,» OF

E. = E | (23)
where

E=T+V

For cenvenience, the times-tl = 0 and 1, =:ﬂ/2mm are chosen (reference

22) and Equatien 23 becomes

Tmax = vmax (24)f
Substitution yields .

E (z,-2,) E-(z,-z.)

1 2 _ “p%37%p T S i M 4 2.

6 abw W = 3 aanPm + > abg U '+ (25)

3 3 3..3
E (2 -z.) E. (z.-27)

R e LU Sk B LR

B m m m.m

Employing the principle of virtual work (as dene in reference 17) leads

to the following equatiens:

3.3 3 3
E.(z -22) E (z,-27)
1 2 _ "b %% T N 4
3 abwm__-— A ame_+ — ame (26)
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E . (z.-2.)
 psBg s m
0 = ———75—-——ab8m +

E (z.-2.)
g L. abgt (27)

2 m
Equation 26 yields a relationship for W in terms of the properties
and dimensions of the beam, i.e.,
3 3 4 3 3.,k
Eb(ZB_ZQ)Bm ECCZQ—zl)Bm

wo = 3 + 3 (28)

The undamped fundamental frequency for the free-free, two layer beam

of Figure 7 is then

3 3.4 -
2 bzl Eolzym))8y iah
1 3p 3p
where
Sl = 4.730/a

Damped Natural Frequency. At this point it is usually assumed

that damping is "light"; thus, damped and undamped frequencies are
equal. However, this is not always the case; thus, a general system
with "heavy" damping is considered.

It has been assumed that the behavior of the viscoelastic
material is described by the Voigt model (Figure 10), not Hocke's law
(Figure 8). The equation of motion for the single degree of freedom

system of Figure 10 is given by Hansen and Chenea (23) as



H 27

L .
L3 .
A b
te .
Ee

x" + %I-x‘ +wx=0 (30)

where

x' = — and q =.k/c j;

s dt .
LLLLLILLLL L L0
X g L] < g
' | | 0 5
, m
H ix B
;f Figure 10. TForce-displacement Representation of Veigt Model fé
3 The familiar solution is 3
o J'

2
1]
1 (31)

® = (Qices Wt + 02 sin wt)e

!
¥
s &
I

where

(32

Lii i S
T Pt gt
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and © = damped natural frequency. 5%

In the analysis of a beam with damping, the deflection for the mode of

¢
it
i
b

interest, m, is assumed to be
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This correspends to Egquatien 31; however, C
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T

w = WmFm(x) sin T e (33)

=0,C, = mem(x), and

1 2

a = m2/2q. Rewriting Equatien 32 using the notatien of Equatien 33
|

yields

or
=@ - {(34)
The undamped natural frequency, w, is known {(Equation 29); therefore,

the damped natural frequency, w, of the system may be determined if the

exponential damping censtant, @, is known. Of course, finding a is the

crux of.the problem since it is directly related to. the damping loss of .

the system (Equatien 50). It should be noted that when damping is

small, undamped and damped natural frequency are approximately the same..

Derivation ef the Damping Equatioen

If it is assumed=that-the composite beam of Figure 7 is linearly.

damped, the transverse deflection is net given by Equation 10, but is

instead

ot

W =.WmFm(x) sin mmT e {35)

The deflection is seen to diminish with time and is ef a form which-

satisfies the differential equation of motion.
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It was seen in the derivation ef undamped natural freQuency that

consideration of pure extensien in the beam makes no centribution to

the -selutien; therefore, only bending effects are considered here in-

order to simplify the derivation.

The bending strains of the beam and coating are

oWy " = -aT
) = szFm(x) sinw T e

5
®bb ~ Fbe T I (-2 5

The strain energy density is .(Equation 14)

v 12
dxdydz 2

Thus, the bending strain energies of the.base,.vbb, and ceating,

are: .

2 20T

_ L2 2t 2 - -
= =z WmFFm(x)] sin w, T e

y 2 2= -
amewm sin wmr e

20T

)

' abBuW2 sin25 T e_QaT'
mm m

v

(36)

be?

37

(38)

(3¢9)
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1 s 2
o T=30¢ f (31] dA .
H 2_“__ - - -oT s -aT ;
3 - memFm(x).ces w,t e awmfm(x) sinw T e ) !ﬁ
1 lﬁ
T = E—p abi? |52 cos?@. T - 28 & sine T cosw T + a2 8inZp T.e-zaT {(40) fﬁ
2 mlm m. “Tm m m m | %
In this-_case,-(damped), there is energy of ancther form—energy . "
dissipated by the coating, L. Equation 38 accounts for the .energy
associated with the spring of Figure 10. The energy associated with the:
dashpot is
%y %2
L = Werk = [ F dx. = [' cx'dx (Figure 11)
"1 %1
{
ISR RNT SN ISR NNy, :
1. E:f
d
L] e - - 4] ¢ = 2
o, . w
+: . : 1
| i Ie
g = de!
Pigure 11. Force-Disp'lacement Fig‘urié 12, Stress-Strain
Model of Dashpot - Model of Dashpot
-
dx = ax dr = x'dr
dr




de,

be " - — S, .

iz oW F (x)lw cos @'t -,a8in
dat . m m( X m m- .

Substituting in Equat'ih 42 and integrating with

(with the help of tables (2u))

g 2.2 —2aT~2
' daL' s Edz.wm_[F"(X)J2 52 . E*——Ffm~— +. (43)
dxdyd? N m m ua(u2+5;)

i‘ .
T

. L= J 2 C(x')gdr

B!
or for an element
3, € E, . .
dxgygz - I ? ode = J 2 ¢etde (Figure 12)
. El-_ gl
= d_E = =1
de = aT dr s'dr
; 3 ]
| dxi 3 ='[ 2 ¢(5')2d7' (41)
b wdydz. .
. 3
_! For the beam of Figure 7, Equatien Y41 becomes.
3 1. E, 4
d°L _ ['2 74 €hay 2
IRayaz - [ = (79 ar (42)
| i T, W
i l™m

F

w 117" fxé
m‘ . 4

respect to . time yields
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As stated previocusly the total energy, E;, in the system at any
particular time, rl,.isVequal to the amount of energy, Ey» remaining in
the system at-.a later time, Tys plus the ameunt of energy dissipated,

L, over the interval of time T, te T,, Or

El = E2 + Ll+2

Thus

T, + V, = T2 + V

1t + L - (ws)

2 12

It now remains enly to choose the times Ty and Tys substitute these into.
Equations 3%, 40, and 44 to obtain Tl, T2, Vl, Vz, ané L, and in turn
substitute the latter intc Equation 45. An infinite number of choices
of 1, and T, may be made; however, each cheice will lead to the same

1
solution (though not the same equation). For convenience, one might

choose

) A )
o Ui e x - .
Thus, the system lsﬁcén51dered in. its initial position and again one

full cycle later. (See Appendix B for other soluticns.) Upon substi-
tuticn, Equation 45 becomes

1 ~lro /o

1. =22 . L ~2.,2 m .
5 pabul, mi+ 0 =3 pabwmwm;e +0 + (u6)
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Dividing by 3 pab¥_, collecting terms, and dividing by (1l-e ) 7

yields
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P 2a(u2+ﬁ;) 2(u2+ailj. . 3

Dividing by 26; and rearranging terms,
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For the first mede (m=1), the result (damping Equation 1) is
3.3, .4 3 3.4
1 3 BqlzpmzdBy 5 Eq(2)-2, 08
—a - 5T fue - ————== 0. (u49)
w 6p @ 1 be
1 1l
where
z, = -(h+z) z, = -2 24 = t -z
. Et? -En |
2% TR T (See Appendix A) ,
b™ e i
p = (th+Ych)/g Bl = 4.730/a

Determination of the Damping of the System

Equation 49 is a polynemial which may be solved for a, the damp-

ing cons