
In presenting the dissertation as a partial fulfillment of 
the requirements for an advanced degree from the Georgia 
Institute of Technology, I agree that the Library of the 
Institute shall make it available for inspection and 
circulation in accordance with its regulations governing 
materials of this type. I agree that permission to copy 
from, or to publish from, this dissertation may be granted 
by the professor under whose direction it was written, or, 
in his absence, by the Dean of the Graduate Division when 
such copying or publication is solely for scholarly purposes 
and does not involve potential financial gain. It is under­
stood that any copying from, or publication of, this dis­
sertation which involves potential financial gain will not 
be allowed without written permission. 

) ' •:\t!
v" " 

7/25/68 

s. 



THE DAMPING^fFFECTS OF VISCOELASTIC MATERIALS ON 

THE TRANSVERSE VIBRATIONS OF BEAMS AND PLATES 

A THESIS 

Presented to, i 

The Faculty of the Graduate Division 

by 

Britt Kendall Pearce 

In Partial''1 Fulfillment 

" of the Requirements for' the -Degree,* ' 
- ̂, t r 

Doctor of Philosophy ' 'r 

-?k- • i" 
in the School of Mechanical Engineering 

Georgia Institute of Technology 

February, 1969 



THE DAMPING EFFECTS OF VISCOELASTIC MATERIALS ON 

THE TRANSVERSE VIBRATIONS OF BEAMS AND PLATES 

'Jt 
vK 

n' 
*J Hi 

~%ifafltt 
oved : 

fj'Wr i 

-*«- 55S /*S 

IT 7 I 
-CI"— 

Date approved by Chairman r V ^ S b <S£> ̂  \ -S>-fc& 



This thesis is dedicated to my parents 

and my devoted wife, Carey. 

. /" 

% 

%Yt*rt\ FJ&. 

A • \ m 

* ^ 

if-w> 



Ill 

ACKNOWLEDGMENTS 

Special thanks- go to the thesis advisor, Dr. Joseph R. 

Baumgarten, without,whose encouragement, enthusiasm, generous contribu­

tion of time, and competent advice this thesis would not have been 

possible. Thanks are also due the other members of the reading com­

mittee: Dr..Edward R.. Wood, Dr. John H. Murphy, Dr. W. M. Williams, 

and Dr. H. L. Johnson., 

The author is ;grateful to the School of Mechanical Engineering 

of Georgia Institute of Technology for the support given him in the 

form of«(1) a three-year NASA Traineeship, (2) a one-year NDEA Fellow- / 

ship, and (3) a NASA Research Grant NsG657 Project B 1104. |J 

if 
Thanks are also expressed for the encouragement and support given 

$ • • ' ' ' • ' 

by the author's wife and parents. /" 

Ph % 

>>-^ j^r*~-+*i 



iv 

! i! TABLE OF CONTENTS 

'. \\ P a e e 

ACKNOWLEDGMENTS, . . ij. . . . . . . . . . . . . . . . . . . . . . iii 

LIST OF TABLES . . . I; . . . . . . vi 

LIST OF ILLUSTRATIONS;] . . . . viii 

NOMENCLATURE . . . . i . . . . . xi 

SUMMARY . •;< . . xiv 

Chapter . 

I. INTRODUCTION. ;! . . . . . . . 1 

Background <\ 
Literature Review 
Objectives and|Scope * 

• i ' w 

II. VISCOELASTIC BEHAVIOR . . . . . . . . . . . . . . 1& 

III. BEAM ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . ̂ -17 

Beam with Single Unconstrained Coating ,(?'.'" 
Beam with Two Symmetric Coatings I 

;• IV/-PLATE ANALYSIS, .f ̂f,. . . .* . / :i. . . . . 44 
4 &?^\v-<0 ''®r>, *•* ~ t 

RectatngulBa^^Plate withr;Single Unconstrained Coating 
Rectangular Plate with Two Symmetric.. Coatings' $'*' 

V. EXPERIMENTAL INVESTIGATION 56 

Construction of Models 
Instrumentation and Equipment 
Measurement of Damping and,Frequency 
Determination of.Material Properties 

VI. DISCUSSION OF THE RESULTS . . . i . . . . . . . . 70 

Comparison of the Theoretical and Experimental Values of 
Frequency and Logarithmic.Decrement 

Comparison of Beam and.Plate Damping 
Comparison of Symmetric and Unsymmetrie Coatings 



Chapter Page 

VI. DISCUSSION OF THE RESULTS (Continued) 

Optimum Thicjjqiess Ratio 
Higher Modes! j 
Other End Conditions 

VII. CONCLUSIONS;!. 92 

VIII. RECOMMENDATIpNS . . . » „ . . . . 95 

APPENDIX 

A0 DETERMINATION OF THE POSITION OF.THE NEUTRAL AXIS . . . . 97 

B. OTHER DAMPING EQUATIONS 99 

C0 COMPUTER-PROGRAMS . . . . . . . . . 101 

D. DAMPING RELATIONS . . . . . . . . . . . . . . 105 
• i i •, 

E. DIMENSIONAL ANALYSIS. . . . . . . . . . . . . . . . . . . 107 
€• 

F. DESIGN CURVES v. H3J 

G. SAMPLE CALCULATIONS 120i 

H. ENERGY DISSIPATION EXPRESSION FOR TWO DIMENSIONS. . . . . ... ^125 

I. DYNAMIC PROPERTIES OF VISCOELASTIC MATERIALS:;, . . . . . I;. 126 

%M J. "DETERMINATION OF fPTIMUM THICKNESS RATIO ;. 131 

LITERATURE CITED^^. . '. . ,."T". . . . . > ,„ ;.̂ a . ,.fJi:
 :. . . .-. 136 

OTHER.REFERENCES . . . . . . . . . . . . . . . . . . . 139 

VITA . . . . o o . . . . . . - . . . . ! . ; I ^O 



LIST OF TABLES 

Page 

Comparison of Solutions . . . . 37 

Comparison of Complete and Approximate Solutions . 41 

Dimensions of Experimental Models . . . . . . . 57 

Equipment for Testing 58 

Metal Propertiesc . . . . . . . . . 65 

Viscoelastic Properties . . . . . . . . . . . . . . . . . . 65 

Experimental Data for Determination of 
Buna-N Properties . . . . . . . . . . . . j.; 69 

i ] 

Calculated and Experimental Values of Dampdd Natural 
Frequency and Logarithmic Decrement for Bea!ms with 
Coatings on One Side Only . . . . . . . . |.| 71-

Calculatedjjand Experimental Values of Damped Natural 
Frequency and Logarithmic Decrement for Plates with 
Coatings on One Side Only . •. • 72 

Calculated ̂ and^Experimental Values of Damped 
Natural Frequency and Logarithmic Decrement: - ir 
for'learns with Two ̂ Symmetric Coatings, 72 

Comparison of Beam Solution with ©berstls Solution 
for Beams with Coatings on One Side Qnlyj | . 
n = OclO, and E /E, = 1.5(10)"2.f. .: . . .. I >, '' 85 
c ' s b .. 

Comparison of "Damping Ratios of Beams and Platles 
With Coatings on One Side Only for •' 
n = 1.0 and E/E, = (lO)"4 .' 86 
C S . D 

Comparison of the Effectiveness of Symmetric 
Coatings and Coatings on One Side Only for 
Beams with n = -1.0. and E /E. = (10)"2. ...:.' 87 

c s b 
Variation of Log Decrement with Length for i 
Large Damping of Plates with Coatings on One 
Side, n = loO, and E /E, = (10)"^. ......' HO 

C S D 



Vll 

Table Page 

15. Variation of Log.-Decrement with Density for 
Large Damping of Plates with Coatings on One 
Side, n =1.0, and E. /E, = (10)"4. . Ill 

C S D . 

16o Variation of Log Decrement with Poisson's 
Ratio for Large Damping of Plates with 
Coatings on One Side, nc = 1.0, and E-./E = (10)~4 112 



Vlll 

LIST OF ILLUSTRATIONS 

Figure. Page. 

1. Unconstrained Viscoelastic Coating. . . . . 3 

2. Constrained Viscoelastic Coating. . . . . . . . . . . . . . 3 

3. Symmetrical Coatings . 8 

4. Viscoelastic Models 11 

5. Maxwell-Voigt Combination Model . . . . . . . . . 11 

6 o Modulus vs. Frequency Curves 14 

7. Free-Free Beam with Single Unconstrained Coating 20 

8. Force-Displacement Model of Spring. 22 

9o Stress-Strain Model of Spring . 22 

10 „ Force-Displacement Representation of Voigt Model 27 

11. Force-Displacement Model of Dashp.ot .30 

12. Stress-Strain Model of Dashpot . . . . . . . , - . 30 

13.- Damping Ratio vs. Thickness Ratio for Free-Free 
Beams with Coatings on One Side* .Qnly and r\ =1.0 38 
'• '!-; ' c r J 

14o Beam with Two Symmetric Coatings.. . ......̂  • ; . '• 40: 

15. Damping Rati'©;,vs. Thickness Ratio for-Free-Fre;e 
Beams with Two Symmetric Coatings and n = -i.0|;. . . . . . . 43 

16. Free Plate with Single Unconstrained Coating. . . . . . . . 45 

17. Damping Ratio vs. Thickness Ratio for Free Plates with 
Coatings on One Side Only and r\ =1.0. . . . :. 54 

18a Schematic Diagram of the Experimental Apparatus . . . . . . 59 

19o Photograph of.Decaying Vibration. 61 

20. Position of Nodes for Free^Free Beam in First Mode. . . . . 61 . 



Fundamental Plate Mode. . . . . . . . . . . . 

Static and Dynamic Moduli of 1/4" 
Thick Specimen of Buna-N Rubber . 

Experimental vs. Theoretical Values 
of Damping for Free-Free Steel Beams 
with Buna-N Coatings on One Side Only . . . . . 

Experimental vs. Theoretical Values of Damping for 
Free-Free Aluminum Beams with Buna-N 
Coatings on One Side Only . . 

Experimental vs. Theoretical Values of 
Damping for Free-Free Steel Beams with 
Plexiglas Coatings on One Side Only . . . 

Experimental vs. Theoretical Values of Damping 
for Free-Free Aluminum Beams with Plexiglas 
Coatings.on One Side Only . . . . 

Experimental vs. Theoretical Values of 
Damping for Free^Free Steel Beams with 
Styrofoam Coatings on One Side Only . . 

Experimental vs. Theoretical Values of 
Damping for Free-Free Aluminum Beams with 
Styrofoam Coatings on One Side Only . . . 

Experimental vs. Theoretical Values of 
Damping for Free Aluminum Plates, with ffii 

Buna-N Coatings on One Side Only. . . . . . . .." .' . . . . . 

Experimental vs. Theoretical Values of;.' f. 
Damping f or ̂ pee Aluminum Plates witli 
Plexiglas Cdaiings on One Side Only 

Experimental vs. Theoretical Values of 
Damping for Free ..Aluminum Plates with 
Styrofoam Coatings on One Side Only, 

Experimental vs. Theoretical Values of 
Damping for Free-Free Aluminum Beams 
with Two Symmetric Buna-N Coatings 



X 

Figure Page 

33. Experimental (©berst's) vs. Theoretical Values of 
Damping for Free-Free Beams with Coatings on.One 
Side Only 83 

340 Optimum Thickness Ratios. . . . 90 

35. Beam Cross Sections . . . . » 97 

36. Damping Ratio vs. Thickness Ratio for 
Free-Free Beams and Plates with Coatings 
on One Side Only and n = ,0.10 114 

c 
370 Damping Ratio vs. Thickness Ratio for 

Free-Free Beams and Plates, with Coatings 
on One Side Only and n =0.50 115 

38. Damping Ratio ys. Thickness Ratio for 
Free-Free Beams and Plates with Coatings 
on One Side Only and n =0.80 116 

39o Damping Ratio vs. Thickness Ratio for 
Free-Free Beams and Plates with Two 
Symmetric Coatings and.n =0.10 117 

40. Damping Ratio vs. Thickness Ratio for 
Free-Free Beams and Plates with Two 
Symmetric Coatings and n =0.50 '118 

41. , Damping Ratio vs. Thickness Ratio for Free-Free Beams 
'•[ and Plates with Two Symmetric Coatings and n = 0.80. . . . 119 

;"k 

42o Static and Dynamic Moduli of Buna-N Rubber Specimens. . . . 127 
-*»•* <!'(.• • 

43. Static and Dynamic Moduli of 1/8" Thick 
Specimen of ,PJ_exiglas . . . 1 . 128 

44. Static and Dynamic Moduli of 1/4" Thick 
Specimen of Plexiglas i 129 

45. Static and Dynamic Moduli of Styrofoam. . . : . . . . . . . 130 



NOMENCLATURE 

English 
Symbols Unit 

a length of beam or plate in. 

A area m . 

b width of beam or plate in. 

E Young's modulus of elastic (metal) 
beam material psi 

E complex modulus of viscoelastic material 
(see Equations 7 and 17) psi 

E dynamic (loss) modulus of viscoelastic 
material psi 

E Young's modulus of elastic (metal) 
plate material psi 

E Young's (static) modulus of viscoelastic 
material psi 

F (x) characteristic beam function 
m 

.A ' 

g: acceleration of gravity in./sec. 

G (x) characteristic beam function * 
m • • • • ' • : • 

; " .-• J ttf*^ 

h thilckness of v i s c o e l a s t i c coa t ing ;: 

L energy d i s s i p a t e d 
I : 

t thickness of elastic (metal) beam or 
plate material 

T kinetic energy 

i 
u,v,w displacement of a point of the system in,the 

Xjy,z directions, respectively in. 

i n . 

i n . - l b . 

i n . 

i n . - l b . 



English 
Symbols Units 

u,v,w 

U ,V ,W. 
m m m 

V 

x,y,z 

z1,z2,z3 

displacement of neutral axis in the x,y,z 
directions, respectively 

undetermined coefficients of the 
deflections 

strain (potential) energy 

Cartesian coordinates 

distance of neutral axis from the 
interface of coating and.metal 
(see Figure 7) 

distances of coating and metal surfaces 
from the neutral axis (see Figure 7) 

m . 

i n . - l b 

i n . 

i n . 

Greek 
Symbols 

exponen t ia l damping cons tan t 1/sec. 

a ,3 m m constants depending on mod 
conditions 

Y weight per unit volume 

A* ' 

6 ' logarithmic:decrement 

£ :j strain 

n loss/"factor 

V Poisson's ;ratio 

p mass per unit area 

a stress 

T time 

-e- damping coefficient 

0) undamped natural frequency 

0) damped natural frequency 

- , 1 / i n . 

l b . / i n , 3 

i n . / i n , 

l b . - s ec . / in , 

psi 

sec. 

ps i - sec . 

r a d . / s e c . 

r a d . / s e c . 
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Subscripts 

b elastic (metal) beam material 

c viscoelastic material 

m,n mode numbers 

p elastic (metal) plate material 
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SUMMARY 

It has been found that a number of materials, such as plastics, 

resins, adhesives, and rubbers have the ability to dissipate energy in. 

a mechanical system by converting energy of motion into heat energy. 

These materials exhibit both viscous and elastic behavior and are con­

sequently termed viscoelastic materials. Incorporation of such a 

material with an elastic structure is often beneficial in abating 

troublesome vibration. However, a designer needs some criteria for 

determining the damping effects that a given amount of viscoelastic 

coating produces other than pure guesswork. 

The primary objective of this investigation is to relate the, 

damping produced by an unconstrained layer of viscoelastic material 

(in terms of logarithmic decrement) to the thickness of the visco-

elastic layer applied to a beam or plate.and to the properties^and 

dimensions of the- two materials. It is of primary importance to present 

.this relation in the form of equations or curves from which design data 

may be easily Obtained. This had previously been/ done for beams subject 

to "light" damping; however, the problem is here Approached using a. 
". . !j 1; 

different method in order to consider not only bejams;but also plates in 
ii 

addition to considering damping of higher magnitude. 

Other considerations are: (1) further investigation concerning 

the existence of an optimum thickness ratio beyond which addition of. 

viscoelastic material results in a decrease in damping, (2) relation of 
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damping to the "viscoelasticity" of a material, (3) comparison of 

coatings on one,side only with two symmetric coatings. The investiga­

tion is limited to a study of the free vibration (in the fundamental 

mode) of beams and plates with no constraints. The effects of rotary 

inertia and vertical shear are neglected, and thin beam and plate theory 

applies in the derivations„ 

The analytical solution is formulated using an energy method 

which is quite similar to Rayleigh's method for determining the natural 

frequencies of vibration of homogeneous, undamped beams. However, in 

this case, the beams (and plates) are nonhomogeneous and damped. (It is 

assumed that the damping is linear.) An expression is developed which 

accounts for the energy dissipated by the coating, then the principle of 

conservation of energy is applied. This results in a relationship 

between the exponential damping constant and the dimensions and proper­

ties of the beam (or plate) and, therefore, the solution desired. 

r ,, The solutions developed include: $•'' 

(1) Computer solutions. The logarithmic decrement and damped 

natural frequency of a given composite beam or .plate J may be calculated 

for light or .heavy damping and for coatings on one.:'or both sides. 

(2) Curves. ; An approximate value of the logarithmic decrement 

may be obtained for;a given composite beam or plate with light or heavy 

damping and for coatings on one or both sides. 

(3) Approximate solutions. The logarithmic ̂ decrement and 

natural frequency of a given composite beam or plate subject to "light" 

damping may be calculated for coatings on one or both sides. 
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Experimental measurement of the natural frequencies and 

logarithmic decrements of a number of different composite beams and 

plates verifies that the relations developed allow one to predict both 

quantities accurately knowing the properties and dimensions of the 

materials employed. 

It was also found that an optimum thickness ratio actually 

exists. If additional coating material is applied above this point, 

damping decreases rather than increases. (This results because of the 

shift of the neutral axis„) The value of the optimum thickness ratio 

may be found analytically for beams and plates with coatings on one 

side only (for light damping); however, no optimum thickness ratio 

exists for beams and plates with symmetric coatings. 

The damping of a beam composed of two given materials and having 

a given ratio of coating thickness to metal thickness is comparable in 

magnitude to that of a,plate composed of the same two materials and 

having the same thickness ratio. 

For small:! (and moderate) thickness ratios, it is more efficient 

to employ all the viscoelastic coating on one sidê 'pf a beam or plate 

rather than,jsplit it„equally between the two,sides. However, for large 
" i ' ' 

thickness ratios it is sometimes more effective to ''use two symmetric. 

coatings. 

Damping depends directly upon only three dimensionless ratios:, 

coating thickness divided by metal thickness, losslmodulus of the 

viscoelastic coating divided by the Young's modulus of the coating, 

Young's modulus of the coating divided by Young's modulus of the 

metal. 
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i 
The results of this investigation can be extended to consider 

higher modes and other end conditions with very little effort. 



CHAPTER I 

INTRODUCTION 

Background 

Mechanical vibration deals with the oscillatory motion of a 

physical system and is determined by three properties: the mass, 

stiffness, and damping of the system. At certain frequencies the 

restoring forces (stiffness) and inertia forces (mass) balance each 

other and the system is said to be in resonance. In many structures, 

such as those in airplanes and guided missiles, undesirable vibrations 

are transmitted from the jet engine or from the turbulence of the air 

to the parts of the device carrying sensitive electronic instruments. 

Naturally, such vibration must be minimized to as great a degree as 

possiblea 

There are three general methods which may be used in the design 
.''Hi. 

of a system to avoid or control resonant response: 

(a) The system may be detuned by designing the components in 

such a way that; the 'natural frequencies of adjacentj elements differ by 

as large a magnitude as possible. ! .;. 
; • i 

! ii I 

(b) The system may be strengthened by increasing the stiffness 

at critical points. 

(c) The system may be damped by converting some of the 

mechanical energy to heat energy. 
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The use of structural damping (c) offers a greater degree of flexi­

bility in the control of resonant response when vibrations in a struc­

ture are random in amplitude and frequency. 

The increased need for reducing vibrations in structural members 

produced by broad-band sources, such as the response of aircraft and 

missile frames to rocket excitation, has led to the employment of visco 

elastic coatings. Such coatings serve to damp out the induced motion 

helping to prevent fatigue and eliminate,annoyance while making little; 
j 

contribution to the weight of the structure<> A clear understanding of; 

the dynamic behavior of such a system is, of course, necessary for its 

proper application. 

There are two methods of employing viscoelastic materials to 

dissipate energy—-unconstrained and cons trained layer damping. The 

unconstrained system (Figure 1) consists of a base member, used for its 

structural characteristics, and a viscoelastic layer, used for its 

damping ability. When the base undergoes flexure, dissipation of 

energy is produced by the extension and compression of the damping 
j ' 

layer. The constrained-layer system or so-called "sandwich" (Figure 2) 

consists of two stiff members separated by a viscoelastic layer. 

Relative motion between the.two stiff layers causes shearing of the 

viscoelastic material dissipating some of the vibrational,energy of the 

system. Constrained-layer damping is actually more, efficient than 

unconstrained. However, there are reasons for interest in the latter: 

(a) In practical applications a single layer is much simpler 

to apply, especially when not a step in the original construction. 
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K^VVVVVV\\V\V\\VVV\\V\\V^ 
Coating 

Base 
(a) Undeflected beam 

^\v\v\V\^ 

(b) Deflected beam 

(c) Deflected element 

Figure 1. Unconstrained Viscoelastic Coating 

k\\\̂ \\\\̂ \̂ ^̂ ^ Coating 

Cover 

Base 
(a) Undeflected beam 

.ww^ww^ 
(b) Deflected beam 

(c) Deflected element 

Figure 2. Constrained Viscoelastic Coating 
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(b) Excessive weight is a most undesirable burden in the 

majority of cases. 

This investigation involves only the case of unconstrained viscoelastic 

layers. 

Review of Literature 

There have been a number of investigations to determine the 

damping effects produced by viscoelastic materials for both the con­

strained and ̂ unconstrained cases. The majority are concerned with ; 

beams only and experimental results, in comparison to analytical, have 

not been convincing in most cases. 

Constrained Case 

Probably the most significant work in this area is that of Kerwin 

(1) who studied the damping effectiveness or loss factor, n, of a 

single constrained viscoelastic layer. (Loss factor is one of the most 

common measures of dampingo When multiplied by TT it is equivalent to 

logarithmic decrement or 5 as it is often denoted.) The definition of 
< 

r\ in terms of the fractional decay rate in space of-Jthe bending-wave 

power was the blasts for the energy approach used. .An expression was 

developed for decay rate of power based on the dissipation of .power 

through the shear motion of the damping layer. Then loss factor was 

related to the dimensions and properties of the three layers making up 

the bar0 Kerwin and other investigators made the following assumptions 
••••' i ;-

(unless otherwise specified) which are of special importance in the area 

A 
*•» 

Numbers in parentheses refer to references;in Literature Cited. 
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of viscoelastic damping: 

(a) The viscoelasticity may be represented by a complex modulus, 

i.e., E = E + iE,. 
c s d 

(b) E, is much smaller than E , i.e., n < 0.1. 
d s c 

Ungar and Ross (2) extended this work by considering multiple, constrained 

layers of damping tapes rather than a single one. It was found that a 

single tape covered by a thick constraining layer is more effective than 

several thin layers involving the same amount of material. The results 

of neither investigation are easily applied by a designer. 

Whittier (3) investigated a single constrained layer separated 

from the base by a spacing layer, the purpose of the spacer being to. 

increase the extension of the viscoelastic material. The analysis 

involved setting up and solving a fifth order differential equation. 

Experimental and analytical values were not in good accord„ 

The damping of an aluminum honeycomb beam was evaluated by 

Mead (4). An energy approach showed that damping in the core arises 

not only by virtue of the_ shearing strains but also by virtue of the ; 

bending strains.. 

Thorn's contribution (5) was to take the theory developed by 

Kerwin (1) and discuss in detail the application of this to the design 

of typical structures. It was. assumed that the theory was valid for 

both beams and plates. 

Free vibration of sandwich beams with butyl rubber and polyvinyl 

chloride cores was evaluated by Jones, Salerno, and Savacchio (6). 

Hamilton's Principle was employed to derive the equations of motion. 
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These were solved by assuming n was small (a common assumption mentioned 

previously). Experimental and analytical results showed fair agreement. 

These men are presently investigating plates of the same composition. 

DiTaranto (7.) also used a differential equations approach, but 

assumed a finite series solution. This led to an expression for com­

posite loss factor, n. It was found that r\ is, independent of end condi­

tions and mode shapes. 

Unconstrained Case 

(a) Beams. The most impressive work done related to the subject 

of viscoelastic damping has been Oberst's study (8) of the bending 

vibrations of thin beams covered on one side by a layer of damping 

material. Experimental and analytical results were in excellent agree­

ment and the results were presented in a form readily usable by a 

designer. Simple flexure theory was used and; jit was assumed that damp­

ing was small (n < ,0.1). This led to an expression for loss factor as 

a function of the properties and dimensions of the beam. Theoretically, 

an optimum coating thickness was shown'to. exist. However, this was not 

verified by experiment. 

An energy approach by Lienard (9) investigated both linear and 

non-linear damping; however, it yielded little of design value. 

An analysis of round bars coated with a viscoelastic material was 

formulated by Plass (10). The differential equation of motion of the 

system was .combined with the equation describing the viscoelastic 

behavior yielding a third order differential equation. A solution was 

assumed which led to a third power polynomial in a, the damping constant 

of the system, upon substitution in the differential equation. Solution 
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of this gave, the amount of damping which results. , Plass compared his 

theoretical results with the experimental results of another investi­

gator and found agreement to be fair. A unique feature of this investi­

gation was the use of a combination Kelvin-Maxwell model to describe 

viscoelastic behavior. 

Lai (11) attempted to extend PlassV work by accounting for the 

effects of rotary inertia and transverse shear in the beam. In this 

case, a fifth order differential equation resulted; this was solved by \ 
f 

finite Fourier transforms. 

(b) Plates. A purely experimental investigation of the damping 

of steel plates coated with a layer of bitumen emulsion containing schist 

powder or similar products was conducted by Van Itterbeek and Myncke 

(12). This was limited to coatings which were thin in relation to the 

thickness of the metal plate. 

Another experimental investigation by Giddens (13) probed the 

effect of damping materials on dynamic stresses in flat panels. _, The 

stresses at .various points in the plates were, measured for different 

thicknesses of yisco||iastic coatings and over a-wide range of frequen­

cies. It was found fhat, generally, the stresses were reduced signifi­

cantly with the addition of viscoelastic materials. 

ifp: 
Hertelendy anc|;;Goldsmith (1M-) presented a purely analytical 

investigation for a pilate with symmetrical coatings (Figure 3). In this 

investigation three approaches were employed: 

(a) An exact solution by the Rayleigh-Lamb equations; 

(b). an approximate solution by the Timoshenko beam equation; 
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(c) an approximation by a perturbation solution assuming the 

coating to be a membrane. 

~s—Coating 

/ / / j / / / / / / / / / / / / / / / / / / / 

•Base 

•Coating 

Figure 3. Symmetrical Coatings 

The three methods were found to agree for low wave number (ratio of 

thickness of plate to wavelength), but there was no experimental veri­

fication . 

A number of other references related to viscoelastic damping in 

general are available concerning such subjects as properties of visco­

elastic materials, damping with partial coverage, and damping at joints 

and supports. It is believed that those of primary concern to the 

problem at hand have been mentioned; therefore, the remainder will not 

be discussed, but are included at the end of the thesis under the head­

ing Other References. 

Objectives and Scope 

The main objective of this investigation is to relate the damp­

ing produced by an unconstrained layer of viscoelastic material (in 

terms of logarithmic decrement) to the thickness of the viscoelastic 

layer applied to a metal beam or plate and to the dimensions and 

properties of the two materials. It is of prime concern to present 

this relation in the form of equations or curves from which design data 

is readily attainable. (Much of the work in previous investigations is 
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not easily interpreted.) For the case of beams with small damping (loss 

factor of the viscoelastic material less than or.equal to 0.1), dberst 

(8) has accomplished this quite well using simple flexure theory. The 

results of the energy method used here will be compared with Oberst's 

for small damping. Large damping (n > 0.1) will also be considered for 

both beams and plates0 In the case of plates coated with .viscoelastic 

materials, there is a lack of reference literature; it is believed that 

work in this area is original. 

Several other important considerations will be investigated. One 

of these is the determination of the ratio of coating thickness to base 

thickness which produces maximum damping. Several of the previous 

investigations indicate that,, theoretically, an optimum amount of damp­

ing is attained when the coating thickness reaches a certain value-

However, none verified experimentally that this is, in fact, the case. 

Therefore, the question is investigated further. In addition, the 

design data is tabulated not only to relate damping to the thickness of 

the coatings.but also to the viscoelasticity index or loss factor, n , 

of the coating. , Finally, beams and plates ,with#,symmetric coatings are 

to be considered and the effectiveness of these compared to that of 

coatings applied to one side only. 

The investigation is restricted to free vibrations of beams and 

rectangular plates with no end or edge constraints. As the first or 

fundamental mode is usually of greatest concern, the study is also 

limited to this mode although it could easily be extended to include 

other modes as well as other end conditions. 
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CHAPTER II ; 

VISCOELASTIC BEHAVIOR 

The dynamic behavior of viscoelastic materials. differs distinctly 

from that of ordinary elastic materials. In classical theory of elas­

ticity it, is always assumed that the stress-strain relations are linear 

and independent of time, i.e., a = Ee. However, it has been discovered 

that a number of materials—plastics,, resins, adhesives, and rubbers-

have time dependent properties also. This is accounted for by consider­

ing the material as a combination of two media: one which is perfectly 

elastic, the other having the ,properties of a viscous fluid (hence the 

name "viscoelastic" material). The term viscoelastic is restricted in 

this investigation to those materials whose response to stress.obeys the 

superposition principle. In other words, the material properties can 

be represented by a model constructed from elements which obey Hooke's 

3 r . '"tj; :" 'ft' 

elastic JLaw 'and. elements which obey NewtonVs viscosity law (15). 

A system of springs and dashpots must be chosen to describe the 

behavior of each particular material. There are two basic models from 

which any number of others may be fashioned through the incorporation 

of additional,elements. These two models are the Maxwell or liquid 

model (Figure 4(a) and Equation 1) and the Voigt or solid model (Figure 

4(b) and Equation 2). From Figure 4(a), 

spring dashpot 
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iiinijtdiii 

n T 
( a ) Maxwell model 

Figure 4 

l l i l l l l l l l l l l l l l l till 

(b) Voigt or Kelvin model 

Viscoelastic Models 

Figure 5. Maxwell-Voigt Combination Model 
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8£d 
a = .E e (7, = <|> -r— 
s s s d 9T : 

a = a = a, 
s d 

3e _ s_ d_ _ 1 3g 1 
3T " 3T 3T .. E 3T <f> 0 s Y 

Thus, 

. 3e j_3g ,_. 
0 = *^"E^37 (1) 

From Figure M-(b), 

spring dashpot 

0 • = E e a, = 

3e 
d 

s s s d 3T 

e = e = e , 
s d 

Therefore, 

0 • V + * IT (2) 

The Voigt model is applicable in this investigation since it 

concerns solid materials. It is found, however, that the spring con­

stant, E , and the .damping coefficient, <|>, of this model, are not 
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actually constant for most materials. Both are functions of temperature 

and frequency as shown by Nolle (16). (Temperature change is not con­

sidered in this investigation, but frequency variation is an important 

consideration.) This suggests the use of a more complex model than the 

Voigt, for example, a Maxwell-Voigt combination (Figure 5 and Equation 

3), From.Figure 5, 

a =•<»! + « 2 

e = ̂  = e2 

°i= Vi 

From Equation 1, 

<*o = <f> 
8ejL_i_!!i 

2 Y
 3T, E2 3T 

m? 
& ' • ' - ' • 

Therefore, 

a = E l £+£(W |L-jLfl ( 3 ) 

Actually, using a Voigt model in conjunction with a modulus vs. 

frequency.curve is equivalent to using a more complex model. For 

example, suppose the 

of a material. (For 

curves of Figure 6 describe the dynamic properties 

any particular value of frequency, the moduli are 

constants and the Voigt model is valid.) Let the system of Figure 4(b) 
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be given a . s i n u s o i d a l motion, i . e . , 

e = e s i n COT o M 

E ( p s i ) 

to ( c . p . s . ) 

Figure 6. Modulus vs. Frequency Curyes 

Substituting the moduli of Figure 6 into Equation 2 yields 

'II 

a = Awe + Be + Cu IS-"* .D !*•+ ̂  |£-
8T 8T to 8T 

(5) 

From Equation 4 

3 e 2 
— - = -u £ 
3T 

Differentiating Equation 2 with respect to time, 
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Sr- -V*+ Es £ 
Ed Es E2 

Letting A = -̂ -, D = - -=-9 and G =.-r—» Equation 5 becomes 
(a b (p 

a = Be .+ Co) T— + — T— - T T T ~ 
9T U 9T G 9T 

E d 
L e t t i n g B = E.,, C ,= 0 , and F = g— (E +E ) , 

. - E l . t . i ( E i + E 2 ) | t - ^ ^ (6) 

Equations 3 and 6 are identical. Therefore, it is seen that if the , 

modulus vs. frequency curves have the form,of those of Figure 6 (with 

A, B, C, D, and.F as given above), they represent the behavior of a 

Maxwell-Voigt combination model when used in conjunction with the Voigt 

modelo (If the curves of Figure 6 had taken a more,complex form they 

would represent another model more complex in nature than the Maxwell-

Voigt combination.) Consequently, it has been shown that the simple 

mathematics of the Voigt model may be utilized without.sacrifice of 

accuracy in describing the behavior of the system. 

It should also be,noted that using the Voigt model is equivalent 

to using a complex modulus, i.e., 

a = E e = (E +iE,.)e (7) 
c c s d 

From Equation 4,, 
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3e 
-r— = (oe cos WT . = IWE 
3T o, 

Therefore, Equations 2 and 7 are identical. 

X i J.i ii i _ . i n i, sti 
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CHAPTER III 

BEAM ANALYSIS 

An energy method:similar to Rayleigh's method is the basis for 

determining the amount of energy lost by a system composed of both 

elastic and viscoelastic materials. Rayleigh's method simply employs 

the principle of conservation of energy and is used to approximate the 

natural frequencies of a conservative system. For a conservative 

system, the total energy of the system at any particular time is the 

same as at any other instant of-time. For a nonconservative system this 

is not true; over a given interval of time, a certain amount of energy 

loss occurs. The amount of energy in a nonconservative system at a 

particular instant of time is equal to the amount of energy remaining 

in the system at a,later instant of time plus the amount of energy 

dissipated during that interval. In symbolic form: 

El = E2 + Ll+2 ( 8 ) 

These energy terms may be derived in terms of the dimensions and proper­

ties of the system and the; damping constant of the system. Knowing the 

properties and dimensions, one can,determine the damping for that par­

ticular case. The procedure for this derivation will now be explained 

further. 
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In this analysis small deflection of both beams and plates is 

assumed as well as the usual assumptions which accompany it. These 

are: 

(a) Strain in the middle plane may be neglected. 

(b) Planes remain plane during deflection. 

(c) Vertical shear does not affect deflection. 

(d) The slope of the deflected plate in any direction is 

small; thus, its square may be neglected in comparison with unity. 

Other assumptions are: 

(1) The base beam or plate as well as the coating is homogeneous 

and isotropic. 

(2) . There is no slip at the interface of the base and the 

coating. 

(3) Strain energy includes pure extensional (membrane) and 

bending strain of both the ;base and the coating. The effects.of vertical 

shear are neglected. 

(4) The kinetic energy includes only the effects of transverse 

inertia. The effects of rotary inertia are neglected. 

Beam with Single Unconstrained Coating 

The.natural frequency of the system must be determined before 

solving for the damping constant of the system.. In addition, the 

derivation for natural frequency lends,to a better understanding of the 

damping solution; therefore, it is presented first. The solution pre-̂  

sented for this case applies to the free-free beam of Figure 7. 
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Derivation of Natural Frequency 

The.Rayleigh method is normally used only for homogeneous, 

elastic beams. However, it has been shown by Kimel, Kirmser, Patel, 

and Raville (17) that a method similar to this; may be used to predict 

the natural frequencies of nonhomogeneous (three-layer), undamped, 

sandwich beams. This approach is now applied to a two-layer, damped 

beam. 

Undamped Natural Frequency. It is assumed, initially, that the 

composite beam of Figure 7 is undamped. The beam deflections for the 

mode of interest, m, are then assumed to be 

u = U F-V(x) sin a) T (9) 
m m m 

w = W F (x) sin a) x (10) 
m m m • 

(Note: Subscripts refer to. mode number, not to summation notation.) 

U ,W. - undetermined coefficients of deflection for mth mode. m m 

u - displacement of neutral axis in x-direction. 

w - displacement of neutral axis in z-direction. 

F (x) - characteristic beam function (reference 18). 
m 

F (x) = (cosh 8 x-cos 8 x) - a (sinh 8 x-sin 8 x). m m m m m m 

a ,8 - constants depending on mode and end conditions. m m , 

a) - undamped natural frequency,for mth mode (rad/sec). 

and Ff(x) = d/dx(F (x)). m m 
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Coating Neutral axis 

(a) Free-free beam 

(b) Small element in initial and displaced position 

Figure 7. Free-free Beam with Single Unconstrained Coating 
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Now 

w = w, = w = w 
b c 

and 

3w 
U = • U, = U • = U - Z -r— 

b e 3x 

where the subscripts b and c refer to the base beam (metal) and coating, 

respectively. It is seen that displacement in the x-direction occurs as 

a result of both extensional (u) and bending effects (-z 7—) . 

The strains may be written in terms of the assumed deflections. 

Thus, the extensional strains in the beam and coating are from theory 

of elasticity (19) 

e"v = e = -jr- = U FM(x) sin W.T (11) 
eb ec ax m m m 

The bending strains are 

£,, = ev = T — f-z — ) = -zW FM(x) sin co T (12) 
bb be 9x v dxJ m m m 

The shear strain is 

,Ju 9w = 3w _ 3w ( } 
Yxz v-^ ax ax ax u Ud; 

The strain (potential) energy, V, is now determined. The 

* 
The first subscript refers.to type strain, the ,second to layer 
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ttiiiiiu 

F = kx 

3 T X 

till IJIIUI 

^ E 

3_f 
G 

a = EE 

Figure 8. Force-Displacement 
Model of Spring 

Figure 9. Stress-Strain Model 
of Spring 

materials,under consideration are assumed to obey Hooke's law when 

placed under load.. Thus, 

'X2 fX2 1 2 
V = | F-dx = kx dx = y-kx (Figure 8) 

Xl Xl 

or 

d3V fe2 fe2 1 2 
, . , =.., ade = EE d£ = i-'Ee (Figure .9) 
dxdydz J J 2 o 

The strain energy density for a beam is then 

d V 1 
= 7T oe dxdydz 2 

(14) 

The extensional strain energies of the base and coating are derived as 

follows: 
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3 
d V e b E b 2 E b TT2rr,tt, s-,2 . 2 
v •,•', = -r- e v = -7T- U [F (x)] sm w T 
dxdydz 2 eb 2 m m m 

Eb 3 T12p„n, ,-,2 .2 . ... 
V = — U [F (x ] s m w T dxdydz 
eb 2 Jz Jo Jo

 m m m 

where z0 and zq are distances of base surfaces from the neutral axis Z. o 

(see Figure 7 and Appendix A). 

ra M 2 4 
[F (x)] dx = a3 (Reference 20) 
0 m m 

3 - constant depending on end conditions. 

Therefore, 

Similarly, 

E h ^ z 3 ~ z 9 ^ u 9 9 
V . = * * ^ ab3 U2sin2(o T (15) 

eb 2 mm m. 

E c ( z 2 " Z l ) 4 2 2 
V =.——=—— ab6 U s i n u x • (16) 

ec 2 m m m 

From Equation 7, 

E = E + iE„ 
c s d 

Therefore, 

2 2 2 
E = E + Z, (17) 
c s d 
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The bending strain energies are 

and 

3 
d V b b E b 2 _ E b •• 2TT2r_tt. ,-,2 . 2 
j—a—a = -7T- £Vv

 = ~7T~ z W LF • (X) J Sin U) T 

dxdydz 2 bb 2 m m m 

Eb(z3"Z2} ^Q4TT2^ .2 ,_., 
V = -— ab3 W sin oo T (18) 

DD b m m m 

v^ = "° 2
g
 1 abg\2 sin20D T (19) 

be b m m m 

The total elastic strain energy of the system is then 

V = V-, + V + Vv, + V, (2Q) 
eb ec • bb be 

The kinetic energy, T, arising from transverse inertia is from 

Timoshenko (21) 

T = fp/ A(|f-)
2dA <21> 

— = ii;0) W F (x) COS U) T 

a T • m m m m 

T = •— p w W F (x) cos A T dxdy 2 J ^ l . m m m m 

fd 2 
F (x) dx = a (Reference 20) 

o m 

Therefore, 
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T .= — p aboo W cos w T (22) 
2 m m m 

The total amount of energy in this conservative system at any 

time T- is equal-to the energy at any later time x , or 

E1 = E2 (23) 

where 

E = T + V 

For convenience, the times x. = 0 and T_ = , TT/2U) are chosen, (reference ' 1 2 m 

22) and Equation 23 becomes 

T = V (24) 
max max 

S u b s t i t u t i o n y i e l d s 

1 . 2T72
 E b ( Z 3 Z 2 }

 vn4T,2 , E c ( z 2 " Z l )
 V Q 4 n 2 _ , „ - . 

2 P a b WmWm = 2 ~ ab3mUm + 2 ^ ~ ab3mUm + ( 2 5 ) 

V - V ' ^ K A T 2 , Ec(Z2"Zl}
 K f l V 

+ — 1 a b 3 m W m + g ab3mWm 

Employing the p r i n c i p l e of v i r t u a l work (as done in r e f e r ence 17) leads 

t o the fo l lowing e q u a t i o n s : 

1 2 E b ( z 3 " Z 2 } 4 E c ( z 2 " Z l } 4 
1 p a b a )

2
 = *> I 2 abS4 + ° ; -1 abS* (26) 

2 m 6 m 6 m 
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Eb(z3~Z2} 4 Ec(z2"Zl) 4 
0 = b * 2 abS^ + C i X ab3^ (27) 

2 m 2 m 

Equation 26 yields a relationship for GO in terms of the properties 

and dimensions of the beam, i.e., 

„ Kf.zl-zbe.'l Ejzl-zh&t 
us2 = b I 2 m + C \ l " ( 2 8 ) 

m 3p 3p 

The undamped fundamental frequency for the free-free, two layer beam 

of Figure 7 is then 

2 V V Z X Ec<VzX 
U l = 3^ " + 3^ ( 2 9 ) 

where 

3 = 4.730/a 

Damped Natural Frequency. At this point it is usually assumed 

that damping is "light"; thus, damped and undamped frequencies are 

equal. However, this is not always the case; thus, a general system 

with "heavy" damping is considered. 

It has been assumed that the behavior of the viscoelastic 

material is described by the Voigt model (Figure 10), not Hooke's law 

(Figure 8). The equation of motion for the single degree of freedom 

system of Figure 10 is given by Hansen and Chenea (23) as 
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xM • + — xf + a) x = 0 (3G) 

where 

x' = 
dx 
dT 

and q = k/c 

/////////////// 

Figure IG. Force-displacement Representation of Voigt Model 

The familiar solution is 

x = (C cos o)T.. + C sin a)T)e 2q (31) 

where 

-2 2 
0) = 0 ) 2q; (32) 

and a) = damped natural frequency 

In the analysis of a beam with damping, the deflection for the mode of 

interest9 m, is assumed to be 
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_ —(XT 

w = W.F-(x) sin to T e (33) 
m m m 

This corresponds to Equation 31; however, C. = 0 , C_ = W F (x), and r i 1 2 m m ' 
2 

a = to /2q. Rewriting Equation 32 using the notation of Equation 33 

yields 

- 2 2 
CO = CO 

•on 2 

co-

or 

- 2 2 2 , „ , . 
co = co - a ( 3 4 ) 

The undamped natural frequency, co, is known (Equation 29); therefore, 

the damped natural frequency, co, of the system may be determined if the 

exponential damping constant, a, is known. Of course, finding a is the 

crux of the problem since it is directly related to,the damping loss of 

the system (Equation 50). It should be noted that when damping is 

small, undamped and damped natural frequency are approximately the same, 

Derivation of the Damping Equation 

If it is assumed that the composite beam of Figure 7 is linearly 

damped, the transverse deflection is not given by Equation 10, but is 

instead 

w = W F (x) sin co T e (35) 
m m m, 

The deflection is seen to diminish with time and is of a form which 

satisfies the differential equation of motion. 
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It was seen in the derivation of undamped natural frequency that 

consideration of.pure extension in the beam makes no contribution to 

the solution; therefore, only bending effects are considered here in 

order to simplify the derivation. 

The bending strains of the beam.and coating are 

3 ( SW^i TT _ i i , N . - -GtT /n~\ 
evv = e, = TT— (-z —J = -zW F (x) sin-to T e (36) bb be 3x v 3x̂  m m m 

The strain energy density is (Equation 1M-) 

d3V . 1 . 2 
= TT Ee dxdydz 2 

Thus9 the bending strain energies of the base,. V , and coating, V , 

are: 

c\ V F 
bb b . 2T72r„»», . n 2 . 2 - -2aT 

, , , = -77- z ••VI LF ( x ) J s i n co T e 
dxdydz 2 m m m 

E (y3-y3) 

,. bK 3 *2J , _4T72 . 2 - -2ax , 
vv,x = —*5~E a lDS W. s i n -u T e ( 37 ) 

DD D m m m 

t ' 3 ' 3 
- F (y -y ) 

c > z 2 V , Q4T72 . 2 - -2aT , Q Q . 
V, = = ab3 W s i n (D T e (38 ) 

be b mm m 

V = V b b + V b c ( 3 9 ) 

The kinetic energy i s again (from Equation 21) 
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T = y p 
1 f c 8w; 2 

3T-lad ** 

8w _ - TT , v - - a x TT „ / v . - - a x 
T— = a> W F ( x ) c o s c o r e - a W F ( x ) s m u > x e 
8x m m m m m m m 

1 2 
T = =r p abWz 

2 m 

- 2 . 2 - 0 - . - - A 2 . 2 -
0) COS 03 T - 20) Gt S l I K l I T COSO) X + 0! S i n 0) T 

m m m m m m 

-2ax ,, ̂ N e (40) 

In this case (damped), there is energy of another form—energy 

dissipated by the coating, L. Equation 38 accounts for the.energy 

associated with the spring of Figure 10. The energy associated with the 

dashpot is 

rX2 fX2 
L = Work = | F dx = cx 'dx (Figure 11) 

Cl X l . . 

m tut n t 

T^ F = ex' 

(ttttt/Utt 

! ! ] • . £ 

a = <be 

Figure 11 Force-Displacement 
Model of Dashpot 

Figure 12 Stress-Strain 
Model of Dashpot 

A d X A 
dx = -— dx 

dx 
= x'dx 



L = 
2 2 
c(xf) dx 

or for an element 

d L te, f£ 

dxdydz 
ode -

2 
^e'de (Figure 12) 

de = -z— dx = e 'dx 
dx 

For the beam of Figure 7, Equation 41 becomes 

de 
—— = =,zw F (x)[o3 cos 03 x - ^ a s i n o) xje k 
dx ,. mm m m *. m *: 
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d3L « 
dxdydz 

= | 2 <|>(e» ) 2 d i (41) 

d~L fT2 Ed ,debc> 2 

dxdydz b^) *< 
T . • 0) • 

1 m 

dx 
(42) ̂ . 

',*,!;/ 

Substituting in Equation 42 and integrating with respect to time yields 

(with the help of tables (24)) 

d3L 
2 2 

E,z W 
d m ,-,-," -2 

dxdydz 
[F"(x)}C< 03. 
m 

m. 
m 

-2ax-2 
e a) 

m 
2 -2 

4a(a +0) ) 
m 

(43) 
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As stated previously the, total energy, E , in the system at any 

particular time, T , is equal to the.amount of,energy, E , remaining in 

th e system at a later time, T , plus the amount of energy dissipated, 

L, over the .interval of time T to T , or 

El = E2 + \*2 

Thus 

T 1 + V l = T 2 + V 2 + L 1 + 2 (45) 

It now remains only to choose the times T. and T 9, substitute these into 

Equations 39, 40, and 44 to obtain T , T_, V , V , and L, and in turn 

substitute the latter into Equation 45. An infinite number of choices 

of T1 and x_ may be made; however, each choice will lead to,the same 

solution (though not the same equation). For convenience, one, might 

choose 

T = 0 T = 2ir/o3m 
1 2. m 

Thus, the system is considered in,its initial position and again one 

full cycle later. (See Appendix B for other solutions.) Upon substi­

tution, Equation 45 becomes 

1 -2 2 1 -2 2 - ^ ^ m 
=- pabco W + 0 = =- pabu) W e + 0 + (46) 
2 m m 2 m m 



+ abg W 
6 mm 

-M- iTa /co 
m -

co a e co a 
J2 + _ E _ + 

2 . - 2 2 ^ - 2 
a + co a + OJ 

m m 

- i+TTa/co 
- 3 m . - o 
co e co co a e 

m m m 

-M- iTa/co 
m 

2 - 2 2 - 2 2 - 2 
2 a ( a +co ) 2a (a +co ) a + co 

m m m 

-M-iTa/co 

co a 
m 

co a e 
m 

m co a 
m 

9 - 9 9 - 9 9 - 9 
a + oo 2 ( a V ) 2(a +w ) 

m m m 

1 2 
Dividing by — pabW , c o l l e c t i n g t e r m s , and d i v i d i n g by (1-e 

y i e l d s 

r ( 3 3 ^ 
-2 E d ( V z l ) g m 

m 3p 

- 3 
co co a 

m m 9 - 9 9 - 9 
2a (a +oo ) 2 ( a +oo ) 

m m 

2 -2 
Mul t ip ly ing by 2a(a +co ) g ives 

3 3 4 

„ - 2 , ^ - 2 , . -Ed ( z2"Z l ) Pm v - 3 , - 2 , 
2aw (a V+w) •-,,-; o^ « A a ) 

m - m ,f >' • 3p m m 

= G 

_3 
Dividing by 2co and r e a r r a n g i n g t e r m s , 

m 

1 3 
— a 

m 

E d ( V Z X 2....... 
— a + co a 

- 2 . m 6p u) 

E d ( V z l ) g m 
6p 

= 0 

m 
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For the first mode (m=l), the result (damping Equation 1) is 

where 

— a a + u.a. = 0 (49) 
~ -l 1 op 

03 6 p CJ 

z. = -(h+z) z = -z z = t - z 

2 2 
Evt - E h 

~ D C 
z = 2(E t'+E h)' ^See APP e n d i x A) 

b c 

P = (YKt+y h)/g g. = 4.730/a 
b e 1 

Determination of the Damping of the System 

Equation 49 is a polynomial which may be solved for a, the damp­

ing constant, if all the other variables are known. However, this is a 
( 

difficult task if done by hand. Therefore, a computer program was 

written (see Appendix C) to calculate a from Equations 29, 34, and 49. 

Knowing a one may solve for the logarithmic.decrement, 6, or the loss 

factor,,n, of the composite beam since 

6 = TTD = (50) 

(Another familiar measure of damping is damping factor, £, which is 

equivalent to c/c and relates the damping of a single degree of freedom 

system to that necessary for critical damping of the system. See 
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Appendix D for the derivation of Equation 50 and a relationship between 

£ and 6.) 

A number of other solutions are also possible. For instance, 

any one of the equations of Appendix B may be solved by combining it 

with Equations 29, 34, and 50. In addition, any two of the four damping 

equations used in conjunction with Equations 29 and 50 results in a 

solution. Several of these combinations of equations were solved and 

compared in order to verify the fact that each solution is indeed the 

same. A sample of these results appears in Table 1. Since Equation 49 

is the simplest of the four damping equations all further calculations 

were performed using it in conjunction with Equations 29, 34, and 50. 

Because of the complexity of calculating the log decrement for a 

specific case, it was thought that a series of curves might be generated 

from which a designer could more easily obtain the information desired. 

It may be shown that damping—loss factor or logarithmic decrement—is 

a function of only three dimensionless constants (see Appendix E and ,?' 
k 

Equation 51). 

,v 6 =• „„ = F(|, J i Ji.) • (51) 
4;r;;: S b 

Ed "; 
Letting n = =— (see Equation 103 with t = 0), a series of curves, such 

c Jti s 
as those of Figure 13, may be drawn giving the values of damping as a 

function of the properties and dimensions of the composite beams. The 

ratio n/n (or 5/5 ::)is convenient to use since n need not have the 
c c c 

exact value as that for which a chart is drawn. For example, Figure 13 

applies when the loss factor of the viscoelastic material is 
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Table 1. Comparison of Solutions 

Beam constants: E^ = 30(10)5 psi E, = 30G0 psi E = 3000 psi 
b d s 

3 
a = 50 in. b = 2 in. t = 0.050 in. y = 0.284 lb/in 

Y = 0.046 lb/in3 n = 1.0 

VALUE OF LOGARITHMIC DECREMENT  

Solution 1 Solution 2 Solution 3 
h_ Equations 29, Equations 29, Equations 29, 
t 34, 49, and 50 34, 50, and 95 49, 50, and 95 

1.00 0.0041 0.0041 0.0041 
1.40 0.0084 0.0084 0.0084 
2.00 0.0193 0.0193 0.0193 
3.00 • 0.0524 0.0524 0.0524 
4.00 0.1087 0.1087 0.1087 
5.20 ;. 0.2105 0.2105 0.2107 
7.00 0.4293 0.4293 0.4312 
8.50 0.6544 0.6545 0.6482 

10.00 0.8948 0.8952 0.8866 
13.00 1.3493; 1.3495 1.3617 
16.00 1,7072 1.7080 1.6941 
20.00 2.0280 2.0304 2.0482 
25.00 2.2553 2.2603 2.2440 
30.00 2.3766 2.3837 2.4030 
40.00 ,2.4921 2.4933 2.5094 
50.00 2.5322 2.5336 2.5485 
60.00 2.5486 2.5500 2.5645 
70.00 • 2.5553 2.5567 2.536.8 
85.00 " 2.5576 * 2.5591 2.5393 

100.00 2.5560 2.5574 2.5376 

approximately equal to unity. Curves for n = 0.9 wcjuld not differ 

greatly from those of Figure 13. (Curves for other!values of n appear 

in Appendix F and may be compared to Figure 13. An example appears in 

Appendix G in which these curves are used to predict 6.) 
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Figure 13. Damping Ratio vs. Thickness Ratio for Free-Free Beams 
with Coatings on One Side Only and n =1.0 
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Approximate Solution 

If it is assumed;that damping is small (n < 0.1), which is the 

case for many materials, Equations.34 and 50 yield 

-2 2 -2 
CO = w - 0.0025 w 

or 

0J -a W 

Therefore, Equations 29, 49, and 50 yield an approximate solution for 

damping. It may also be shown that the higher order terms of Equation 

49 are small in comparison to the others; consequently, the following 

equation is a much simpler approximation and is valid if n < 0.1. 

r ( 3 3 ^ E (z -z )3 . 
d 2• 1 1 - /r^\ 

OJ a = 0 (52) 
1 6p 

where OJ.. is now given by Equation 29. 

Calculations were made using these approximations for a number of cases 

and the results were compared to those of the original solution. A 

sample of these results appears in Table 2 and shows that Equation 52 

may be used with confidence when damping is small. (A sample calcula­

tion employing Equation 52 appears in Appendix G.) 

Beam with Two Symmetric Coatings 

This case is illustrated by Figure 14 and its analysis is quite 

similar to that for a beam with only one side coated. The most 
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important difference is the fact that, in this case, the neutral axis 

always lies at the center of the beam. 

Figure 14. Beam with Two Symmetric Coatings 

Derivation of Natural Frequency 

Undamped Natural Frequency. Again Equations 9 and 10 are the 

assumed deflections. The strains are identical to Equations 11, 12, 

and 13; however, the strain energies of the coating are twice those 

given by Equations 16 and 19 since 

:4" 
i \ ":;i§: 

Z V " Z3 = Z2 - Zl 

3 3 3 3 
Z4 " Z3 = Z2 " Zl 

coating 
dV _ +. z dV 
coating j coating 

z3 zl 
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Table 2. Comparison of Complete and Approximate Solutions 

i Pt 

Beam constants: E, = 30(10) psi ••. E, = 3000 psi E = 30000 psi 
b r d r s r 

a =50 in. b = 2 in. t =0.050 in. yb = 0.284 lb/in
3 

Y = 0o 046 lb/in3 n: =0.10 
c c 

I. .j VALUE QF LOGARITHMIC,DECREMENT  
Solution; 11 Solution 4 Solution 5 Solution 6 

ĥ  Equations 219, Equations, 29, Equations 29, Qberstr s 
t 34,49, and |50 49, and 50 50, and 52 Solution 

0.25 0.0004 | 0.0004 
0o40 0.0008; 0.0008 
0.70 0.0020 0.0020 
lo00 0.0040 ; 0.0040 
1.40 0.0082 \ 0.0082 
2o00 0.0183 0,0183 
3.00 0.0456 i 0.0456 
4,00 0.0832 j 0.0832 
5.00 0.1245 0.1244 
6.00 0.1629 0.1628 
7.00 0.1953 0.1951 
8.50 0.2314 0.2311 
10.00 0.2554 0.2549 
13.00 0.2814 0.2808 
16.00 0.2930 0.2924 
20.00 0.2998 0.2991 
22.00 0.3014 0.3008 
28.00 0.3035 0.3028 
40o00 0.3030 ,0.3023 
70.00 0.2978 ••'"'0.2971 

100.00 0.2922 0.2915 

The kinetic energy is again given by Equation 22; therefore, the follow­

ing expression results 

0.0004 
0.0008 
0.0020 
0.0040 
0.0082 
0.0183 
0.0456 
0.0832 
0.1244 
0.1628 
0.1951 
0.2311 
0.2549 
0.2808 
0.2924 
0-2991 
0.3008^* 
0.3028 
0.3023 
0.2971 
0.2915 

0.0004 
0.0008 
0.0020 
0.0040 
0.0082 
0.0183 
0.0457 
0.0834 
0.1247 
0.1633 
0.1957 
0.2320 
0.2560 
0.2821 
0.2938 
0.3006 
0.3023 
0.3043 
0.3039 
0.2987 
0.2931 
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however, 

zl "•-£<«*> z
2 = - \ z

3 =J 

Damped Natural Frequency. Again, Equation 34 applies. 

Derivation of the Damping Equation 

This derivation is almost identical,to that of Equation 49; 

therefore, only the final equation is presented. 

1 3 V V ' X 2 - Ed(z2-Zl)6l „ 
— a -^ a + â a — = 0 (54) 
OJ 3p co 

Determination of the Damping of the System 

A computer program (Appendix C) was again formulated to obtain 

numerical results, this time employing Equations 34, 50, 53, and 54. 

Curves similar to those for beams with a coating on only one side were 

generated for this case, for instance, Figure 15. Other curves will be 

found in Appendix F. 

Approximate Solution :̂ 

If small da'mping is again assumed (n < 0.10), Equation 54 

simplifies to 

VZ2-Z1)61 
> V - \9 "--O (55) 

where u. is now given by Equation 53. 
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Figure 15. Damping Ratio vs. Thickness Ratio for Free-Free Beams 
with Two Symmetric Coatings and n =1.0. 
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CHAPTER IV 

PLATE ANALYSIS 

The same energy method employed to determine the damping of beams 

with viscoelastic coatings,can be extended to the two-dimensional case; 

however, the derivations,for plates are somewhat more involved. In 

this case, the deflection of the plate is assumed to be.the product of 

the mode shapes of two orthogonal beams. This is similar to; the approach 

used by Warburton (25) for homogeneous, undamped plates; however, in 

this case, the plate is nonhomogeneous and damped. The kinetic, strain, 

and loss energies are derived in terms of the deflections, and the 

principle of conservation of energy is again applied. The assumptions 

made in the beam analysis (small deflection, etc.) also apply here. 

Rectangular Plate with Single Unconstrained Coating 

The procedure followed in the analysis of the free-free-free-

free plate of Figure 16 is similar to that of a free-free beam. 

Derivation of Natural Frequency 

Undamped Natural Frequency. It is assumed initially that the 

plate of Figure 16 is undamped. The deflections for the mode of 

interest, mn, are 

x direction u, = U F (x) G.(y) sinou T 
mn m n mn 

y direction v = V F (x) G (y) sinco T (56) 
J mn m n J mn 
z direction w = W F (x) G (y) sina) T 

mn m n J mn 



45 

'' Z 

(a) Free Plate 

0 - Neutral Plane 

(b) Element 

Figure 16. Free Plate with Single Unconstrained Coating 

_,.. J^!^_ 



46 

where (from reference 18) 

F (x) = (cosh 3 x - cos 3 x) - a (sinh 3 x - sin 3 x) 
m m m m m m 

G (y) = (cosh 3 y - cos 3 y) - a (sinh B y - sin 3 y) n J vr nJ n rr n 

The strains existing in a small element of the plate are given 

by Timoshenko (21) as 

^2 * 2 ^2 

d W d W d W 
E„ = ~z — T E„ = ~z — T Y.„, = ~2z 3x2 y 3y2 'xy 3x3y 

where the subscripts x, y, and z refer to directions. (The extensional 

strains were seen to have no effect in the derivation of natural fre­

quency for the beam; consequently they are omitted here.) Therefore, 

the bending strains and shear strain of the plate and the coating are 

e = E = -zW F'(x) G (y) sinw T (57) 
xp xc mn m n mn 

E = E = -zW F (x) G (y) sinw T (58) 
yp yc mn m n mn 

Y = Y = ~2z W F'(x) G'(y) sinw T (59) 
xyp xyc mn m n J mn 

Stresses in a plate are much more involved than those in a beam. 

From Timoshenko (21), 



47 

x 2v N " x " "y 
(e +ve ) 

( l - v A ) 
0 = jr (e +ve ) 

y i 2 y x 
^ 1 - v J • 

(60) 

G = 0 T = GV 
z xy xy 

where G = 
2 ( l + v ) 

The strain energy density of t h e two l a y e r s , which a r e b o t h 

assumed t o b e , p e r f e c t l y e l a s t i c ( F i g u r e 9 ) h e r e , i s from Timoshenko (21 ) 

,3 .T e a e a Y T 
d V _ x x y y 'xy xy 

dxdydz " ' 2 2 2 
( 6 1 ) 

o r 

d3V 
dxdydz 

F 9 9 1 9 
(e +2ve e +e ) + ±- Gy 

2 ( l - v 2 ) X X y y 2 X y 
(62) 

For t h e m e t a l l a y e r , 

d3V 
-2_ = 

dxdydz 
p_ 2TT2 r _ n . , 2 2. v . 2 
f
 0- , z W [F ( x ) ] G ( y ) s i n u) T + 

2 . ( l - v 2 ) m n " m 

,.., p 
mn. 

( 6 3 ) 

2T72 , " , N • 2 + i\> z^z F ( x ) F " ( x ) G ( y ) G"(y) sin^u) T + 
>i p mn. m; m n J n J mn 

+ zfw2 F 2 ( x ) [ G " ( y ) ] 2 s in 2 a ) T + 
•;: mn m n J . mn 

+ .-Jf P z2W2 [ F , ( x ) ] 2 [ G r ( y ) ] 2 s in 2 ui T 
1 + v mn m n J mn 

For f r e e - f r e e end c o n d i t i o n s ( 2 0 ) , 



F (x) dx = a 
m 

[ F " ( x ) ] 2 dx = . a 3 ^ m m 

ra 

' o 

F (x) F"(x) dx = a 3 (2-a 3 a ) 
m m mm mm 

[ F ' ( X ) ] ^ dx = a 3 (a 3 a+6) m m m m m 

I n t e g r a t i n g over the volume, 

where 

+ ^i^p'VnVn'^V^^n^6' 

S i m i l a r l y , 

+ 2 ( l - v )a a 3 3 (a 3 a+6)(a 3_b+6) 
c m n m n mm, n n 

48 

V = 
E G (z^-z^W? p p 3 2 mn . I 

r r sm.a) T 
r-1 -i 2 v mn 
6 ( l - v ) 

P 

(©4) 

G = ab3U•+ 2v a a, 6 3 (2-a 3 ^ ) ( 2 - a 8 b) + ab3 + p m p m n m n mm n n n 
(65) 

E G (z^-z^wjv 9 

c c 2 1 mn . i 
V = —— s in u) T 

6 ( l - v 2 ) c 

(66) 

Gc = ab3^ + 2v c a m a n 3 m 3 n (2 -a m 3 m a) (2 -a n 3 n b) + ab3 n + (67) 
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The total strain energy is 

V = V + V (68) 
p c 

The kinetic energy is again given by Equation 21; thus, 

1 2 2 2 
T = 77 pabco W c o s co T (69 ) 

2 r mn mn mn 

Equation 24 also applies here. Hence, T = V . Substituting 
max max 6 

and simplifying yields the undamped natural frequency of the composite 

plate of Figure 16. 

E G (£-•£) E G Ul-zb 2. p p o I c c 2 1 , „ . . N 

V 2 ~ + ~ ~ 2~ ( 7 0 ) 

3pab(l-v ) 3pab(l-v ) 
p c 

The notation used here is the same used in Equations 49, 65, and 67. 

Damped Natural Frequency. Again Equation 34 applies. 

Derivation of the Damping Equation 

Assuming the .system of Figure 16 to be linearly damped, the 
.. • . ! ft; 

deflection for the mode at interest, mn, is 

w = W Fm(x) G ( y ) sin w. T e"
aT (71) 

mn m n mn 

(Extension will again be omitted as it was shown to make no contribu­

tion 0 ) . 

The bending and shear strains are 
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"/ \ / \ . ~ -OCT 
e = £• = -zW F (x) G (y) sin co T e 
xp xe mn m n J mn 

e = e = -zW F (x) GM(y) sin u T e"aT (72) 
yp yc mn m n J mn 

Y = y = -2zW F (x) G (y) sin co T e 
xyp xyc mn m n mn 

The stresses in the viscoelastic material are 

E * a-
a = a n + 0 _ = .— ^r- (e +v e ) + — , 7— (e +v e ) 
x xl x2 /, 2. x c y ,. 2. 3T x c y 

(1-v ) J (1-v ) J 

c c 

E c d) a-
a = 0 . + 0, _ = 7T- (e +v e ) + •—— __ (e +v e ) (73) 
y y l y 2 (1-v2) y c x (1-v2) 3T y C X 

c c 

3* 
0 = 0 T = T n + T _ = GY + <f> ^ ̂  
2 xy xyl xy2 xy 8T 

Stresses in the metal are again given by Equations 60. 

The strain energy is expressed by Equation 61. Substituting 

Equations ; 60, 72, and the elastic portions of stress from Equations. 73 

(0 ,0 ,T ) into Equation 61 and integrating yields 

v V p ^ a " 2 ^ T,2 . 2- -2ai 
V = r * W sin co T e 

p 6 (1-v2) mn im- r 
p 

v
 E c G c ( z 2 " z l ?

T . T 2 . 2- -2crr 
V = — W s m co T e 

c - , . 2N mn mn 
6(l-v ) c 
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where G. and G are defined by Equations 65 and 67 
p c 

V = V +...V 
P c 

(7i+) 

Substituting Equation 71 into Equation 21 yields the kinetic 

energy of the system. 

1 -2 2- - - -
T = — pab[co cos u> x - 2w asino) x cosoo T + 

2 mn mn mn mn mn 

(75) 

^ 2 . 2 - -,T72 -2ax 
+ a s m a) TJW e 

mn mn 

The energy dissipated by the coating, L, must now be,determined 

(see Appendix H). 

d3L 
dxdydz 

2 ( -L. ' -L. ' \ A 

x x2 y y2 xy xy2 
(76) 

or 

dV 
dxdydz .l-Wa) 

c mn ' T 

j 2 (e^2 + 2v„e V , + £.'.
2) dx 

c x y y 
(77) 

2(l+v )w. 

2 ' 2 A Y dx 
'xy 

c mn 1 

d3L 
dxdydz 

E, z 
d  

(l-v2)w 
c mn 

2 T72 -2otTrrr,", v-,2 J2, , , 
W ^ e t[F (x)] G (y) + 
mn m n (78) 
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+ 2v F" (X) F M(X) G (y) GM(y) .+ F2(x')[G"(y)]2 + 
c m m n n m n 

+ 2(l-v )[F'(x)]2CG,(y)]2}{w2 cos2w x + 
c m n mn mn 

_ _ - 2 2-
- 2O,(JO sin.ai x cos to. x + a sin to x}dx 

mn mn mn mn 

Integrating with respect.to time and volume, 

L = 
E,G (z^z?)W2 
d c 2 1 mn 

6(l-v2) 
c 

-2ax 
to e _ 
mn , 2-

— r — (-acos to x + 
, 2,-2 N mn 
(a +a) ) 

mn 

(79) 

+ to sin to x cos to x) 
mn mn mn 

-3 -2ax to e mn  
2 -2 2a(a +a) ) mn 

ae 
•2ax 

- — - — ( a s m 2a) x + to cos 2 to x) + , 2 , -2 A mn mn mn (a +to ) mn 

2 - 2 a x 
a e — — • — 

+ — S o ( ~W S i n W T C 0 S W T + 

, 2 - 2 >. mn mn mn 
to (a +to ) mn mn 

-2ax co a e . 2 - s mn 
- a s i n to T ) - T — 

mn r,, 2.-1 x 2(a +a) ) mn 

For convenience, t he t imes T, = 0 and T . = 2TT/LO. a r e again 
1 l mn 

chosen. (As in the case of a beam other.times could be,chosen; however, 

the final result is the same.) Substituting into Equation 45.and sim­

plifying as done in the derivation for the beam yields 
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. E,G Azl-zh 9 E.G Azl-zh 
1 3 d C 2 1 2 _, - d C 2 1 _ / r»«\ 

- — a 2 _ 2 a + 1 0 ^ . ^ — = 0 ( 8 0 ) 

a) 6pab( l -v )u) 6pab( l -v ) 

Determination of the Damping of the System 

The complete solution, for which a computer program was written 

(Appendix C), results from Equations 34, 50, 70, and 80.. Again several 

series of curves were plotted for a number of different cases and appear 

in Figure 17 and Appendix F. 

Approximate Solution 

If it is assumed, that damping is small (n < 0.1), then u> ?..(|>:as 

in the case of a beam, and an accurate approximation results from a 

solution combining Equations 50, 70, and 82. 

EGCzl-zh 
w a - ; -1 = 0 (82) 

6p(l-v )ab c 

Rectangular Plate with Two Symmetric Coatings 

The following equations apply in this case: 

0 E G ( Z
3 „ - z 3 J 2EGAzl-zb 

2 p p 3 2 , c c 2 1 _ . / 0_v 
a) = - t - c + — - — = 0 (83) 

3pab( l -v ) 3pab( l -v ) 
P c 

where 

Z]_ = - \ ( t+h) z 2 = - 1 z 3 = \ 



54 

1.0 

0.1 

n /n 

0.01 

0.001 

0.0001 

<> 
^ 
<> 
^ 
<> 
^ 

% 1 

£ \ V. 

/i n c = 1.0 

f t 

1 o* 
f t 

1 o* 
f t 

1 o* I *•» 

/ o 

V 

// 

o 

/wV" o ~ /wV" 

F i r s t 

1 
Mod le 

I 
0.1 

hA 
10 100 

Figure 17. Damping Rat io v s . Thickness Rat io for Free P l a t e s 
with Coatings on One Side Only and n = 1 . 0 



where G and G are given by Equations 65 and 67, and 

y, t + y n 

p = -= -2— an = 0.998 6, = 4.730/a 
£ 1 1 

Curves for this case appear in Appendix F. 

An approximate solution valid when n < 0.1 is 

55 

W l l = W l l " ^ ( 8 4 ) 

. q EAAzl-zh 0 E G ( Z
3 J ) 

1 3 d c 2 1 2 , - d c 2 1 A /r,e\ 
-— a - _ 2 a + w ^ a — = 0 ( 85 ) 
w.. 3pab(l-v )w.. 3pab(l-v ) 

E G ( z ^ ) 

La.lL2L=0 (86) 
3pab(l-v ) c 

where w. is given by Equation 83. 
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CHAPTER V 

EXPERIMENTAL INVESTIGATION 

In order to verify the authenticity of the analytical solutions 

of Chapters III and IV, a number of beam and plate models with visco-

elastic coatings were constructed and tested. (All tests were con-̂  

ducted at room temperature.) 

Construction of Models 

The models, used in these tests were composed of aluminum and 

steel bases coated with various thicknesses of buna-N rubber 

(butadiene-acrylonitrile copolymer), plexiglas (acrylic plastic), and 

styrofoam (see Table 3)„ Bonding materials used were: (a) Plastic 

rubber cement (Sears, Roebuck and Co.); (b): Epoxy cement (Sears, 

Roebuck and Co.). The surfaces of both the base and coating were cleaned 

thoroughly before being glued together insuring proper adhesion. In 

addition, adequate time was allowed for thorough drying of the adhesive 

prior to actual testing. Adhesive (a) was used with the buna-N coat­

ings since the two materials, have similar properties. A stronger adheT-

sive was needed for f-trhe .stiff er coatings, however. There was,little 

doubt that an adequate bond was achieved with the: epoxy. As a check 

for the efficacy of the plastic rubber, several tests were repeated 

using epoxy in.its place; the .results were the same. It should also be 

•I 

mentioned that the thickness of the bonding material was small in com-, 

parison to that of the coating. 
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Table 3. Dimensions of Experimental Models 

Base 
a(in.) b(in.) t(in.) 

Thickness of Coating (in.) 
Material a(in.) b(in.) t(in.) Buna-N Plexiglas Styrofoam 

Steel 

Steel 

Aluminum 

Aluminum 

Aluminum 

Aluminum 

Aluminum 

Aluminum 

Aluminum 

Aluminum 

Aluminum 

Aluminum 

8=1/16 

8-1/16 

8-1/16 

7-7/8 

8-1/16 

12 

12 

12 

8-1/16 

7-7/8 

8-1/16 

8-1/16 

2 

2 

2 

2 

2 

12 

12 

12 

2 

2 

2 

2 

0.030 

0.047 

0.032 

0.054 

0.062 

0.032 

0.047 

0.062 

0.062 

0.054 

0.047 

0.032 

0.073,0.114,0.264 

0.073,0.114,0.264 

0.073,0.114,0.264 

0.073,0.114,0.264 

0.073,0.114,0.264 

0.073,0.114,0.264 

0.073,0.114,0.264 

0.073,0.114,0.264 

Two 0.264 layers 

Two 0.114 layers 

Two 0.073 layers 

Two 0.114 layers, 
Two 0.264 layers 

0.129,0.227 

0.132,0.222 

0.126,0.226 

0.130,0.247 

0.135,0.222 

0.130,0.235 

0.130,0.235 

0.130,0.235 

17/32,15/16 

1/2,15/16 

1/2,15/16 

17/32,15/16 

17/32,15/16 

9/32,17/32 

1/2,15/16 

17/32,15/16 

Instrumentation and Equipment 

The equipment used to conduct the testing of the above models 

consisted of that lifted in Table 4, chemical stands-, and thin string. 

A schematic diagram of the experimental setups used is shown in Figure 

18. Strain gages were used almost exclusively with the. beam models, 

although several models were also tested using the accelerometer. (The 

same output was obtained•from each transducer.) However, in many cases, 

the magnitude of the plate deflections was not large enough to measure 
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Table 4. Equipment for Testing 

Item Manufacturer Specifications 

Strain gages 

Bridge-amplifier-
meter 

Oscilloscope, 

Oscilloscope camera 

Accelerometer 

Power amplifier . 

Electromagnetic 
shaker 

Baldwin-Lima-Hamilton 

Ellis Associates 

Tektronix 

Tektronix 

Bruel and Kjaer 

MB Electronics 

MB Electronics 

Frequency oscillator Hewlett-Packard 

SR-1+ Type A-l 120ohm. 
Gage factor - 2.05 

Model BAM-1 

Dual Beam Type 502A 

Polaroid Type C-12 

Type 4336 

Model 2125MB 

Model PM25 

Model 200GD 

the decay accurately (using strain gages). It was found that the type 

4336 accelerometer was much more sensitive ,than the strain gages on. 

hand and was light enough that it did not add significant weight to the 

system (2 grams); therefore, it was used with the plate models. (Strain 

gage and accelerometer outputs also proved to be the same for several 

plates which were tested using both transducers.) 

Beam models, were excited by impact with a small hammer and 

allowed to vibrate freely. Upon impact a beam begins vibrating in its 

fundamental mode with various higher modes superimposed. The higher 

modes die,out very quickly, however, and the decay and frequency of ,the 

fundamental mode may be measured from the trace of the motion on the 

oscilloscope. Photographs of the.traces for each model were taken in 
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Figure 18. Schematic Diagram of the Experimental Apparatus 
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order to make accurate measurementsi Figure 19 is an example of such 

a photograph. (The ordinate is displacement; the abscissa.is time.) 

This particular photograph shows the decay of a 5"x2"x0.062" aluminum 

beam with a 0.264" thick buna-N coating. Each division represents,one 

centimeter and the time scale is 5 milisec/cm. It should be noted that 

frequency does not vary with time, indicating that damping is linear 

(proportional to velocity). 

It was discovered that the fundamental plate mode can not be 

excited by impact. Instead, the phenomenon of beats is produced as 

two beam frequencies (corresponding to beams having lengths equal to 

the length and width of'the plate) are excited. In order to produce; 

the first plate mode, a dynamic shaker must be employed. Each plate 

model was .placed in its fundamental resonant mode, then the shaker was 

disengaged, and finally a photograph was taken of the decaying free 

vibration. (This same procedure was employed with several beams which 

had already been tested by the impact technique, and the results of 

the two methods were found to be the same.) By using the dynamic 

shaker, higher modes of both beams and platres could be studied,; however, 

this investigation is limited to the fundamental mode as mentioned 

previously. 

Measurement of Damping and Frequency 

Several methods of measuring damping are widely used as 

described by Van Santen (26). The most convenient and thorough method * 

considering available equipment, was the decaying vibration method which 

is described-in subsequent paragraphs. 
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Figure 19. Photograph of Decaying Vibration 

0.5a 

Node 

— 0.224 a 

Antinode 

0.5a 

Node 

|— 0.2 24a—--

Figure 20. Position of Nodes for Free-Free Beam in First Mode 
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Beams 

The beam of Figure 20 (free-free) has nodes and an,antinode at 

the positions shown according to Oberst (8) and others. The beam models 

were supported by thin string at the .nodes to insure freedom.of damping 

from the supports and were suspended.vertically so that the force of 

gravity had no influence on the motion. The strain gages (and acceler-

ometer) were positioned at the center of the beams in order to obtain 

the largest readings possible. Motion was induced as described in the 

previous section and a,photographic record made, such as Figure 19, for 

each of the beams of Table 3. 

Figure 19 will be used to illustrate how the desired measure­

ment s-r~damped natural frequency . and logarithmic decrement—were 

obtained. It is seen that approximately 6-1/2 cycles occur in 4 centi­

meters (time scale—5milisec/cm). 

Thus 

- _ 6.5 cycles  
V ~ (4.0 cm.)(0.005.sec.) " 6Z* C'P'S* 

Logarithmic decrement is 

6 = - ln(X/X ) (87) 
n n 

where X is the amplitude at any time, 

X is the amplitude n cycles later. 

The amplitude of Figurel9 decays.from 1.0 cm. to 0.5 cm. in 5-3/4 

cycles; therefore, 



63 

5 = -r^jr ln(1.0/0.5) = 0.1205 

Readings of log decrement were standardized by using the above proce­

dure, i.e., determining the number of cycles required to.decay half an 

amplitude (1.0 cm. to 0.5cm.), The results of these tests are dis­

cussed in Chapter VI and compared to theoretical predictions. 

Plates 

The plate models were suspended vertically just as the beams 

were; however, they could not be supported at the node (see Figure 21) 

M. LLL JM j i 

' I < I 

/ ^ Node \ 

'S ] 
r / 
\ / 

v. s 

Figure 21. Fundamental Plate Mode 

(It was.expected that the supports would have a slight effect on the 

damping of the plates, but the effect was found to be negligible. 

Frequency was affected slightly, however.) The fundamental plate mode 

was obtained by varying the frequency of the oscillator until the plate 
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went into resonance„ The existence of resonance was easily recog­

nizable as the output of the accelerometer (which was.placed at the 

center of the plate to obtain maximum output) increases greatly compared 

to its magnitude when the plate is not.in resonance. Then a check was 

made to see that the mode shape of Figure 21 was present. When this was 

obtained, the dynamic shaker was disengaged, and.a photograph (similar 

to Figure 19) was taken of the decaying vibration. Damped natural fre­

quency and logarithmic decrement were then measured as explained in the 

case of beams. The results of these tests are also discussed in 

Chapter VI. 

Determination of Material Properties 

In order to calculate the natural frequency and log decrement 

for a particular beam or plate (using the equations of Chapters III and 

IV), a number of material properties must be known in addition to the < 

dimensions.of the model. 

Metal Properties 

Since the metals used were common alloys, their properties were 

taken from handbooks, but were checked by calculating the. natural, 

frequencies of metal beams and comparing these values to the measured 

values for several cases. The properties pertinent to this problem 

are shown,in Table 5. After preliminary tests it was assumed, as done 

by Oberst (8), that the internal damping of the metals is small in com­

parison to that of the viscoelastic materials and can be neglected. 
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Table 5. Metal Properties 

Metal 
Young's Modulus 

E (psi) 
Density 
Y(lb/in3) 

Poisson's Ratio 
v(dimensionle ss) 

Steel 

Aluminum 

30(10) 

10 .6(10) ' 

0.284 

0.098 

0.292 

0.334 

Viscoelastic Properties 

The values of most of the properties of the viscoelastic 

materials used were not available from reference literature. Even 

though the damping characteristics of buna-N rubber were available 

from Nolle?s work (16), it was found (as stated by Preiss and Skinner 

(27)) that they were of no real value unless the composition of the 

compound•and the curing conditions,of the rubber are known. Therefore, 

the properties were determined experimentally. 

Density. This was obtained by simply weighing a sample of each 

i • 'v' v"' 
material. The values appear m Table 6. 

Table 6. Viscoelastic Properties 

Material 
Density 
Y(lb./in.3) 

Poisson's Ratio 
v(dimensionless) 

Buna-N Rubber (1/16") 
Buna-N Rubber (1/8") 
Buna-N Rubber (1/4") 

Plexiglas (1/8") 
Plexiglas (1/4") 

0.046 
0.052 
0.046 

0.043 
0.043 

0.50 
0.50 
0.50 

0.247 
0.247 

Styrofoam 0.00098 0.155 
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Poisson's Ratio. Values of this quantity were not available: 

from reference literature for plexiglas and styrofoam. The value for 

rubber is given by the Shook and Vibration Handbook (28) as 0.50. It 

was found that the exact value has no significant effect upon calculated 

values of oo and 6 (see Appendix E). An approximation of the values for 

plexiglas and styrofoam was obtained by employing Equations 34 and 70. 

Experiments were run to determine the frequencies of several models, 

leaving v as the only unknown quantity in the above equations. The 

values of,v determined from these tests appear in Table 6. 

Young's Modulus, E , and Dynamic Modulus, E, . These properties 

were measured for the three viscoelastic.coatings used by a method 

similar to that of Preiss and Skinner (27). A beam model consisting of 

a metal base with a viscoelastic coating was constructed and tested as 

described in the previous section to determine its damped natural fre­

quency and logarithmic decrement. This same model was then reduced in 

length and retested td determine these same quantities. (The lengths 

were varied so.asffccx;cover a frequency range of 5OTSOO cycles per 
M- : i', ' sfi vl ' "-" ^ ; 

-": f* s> i 

second.,,)̂  The relations, developed"*in Chapter III then yield the two 
t\> 

moduli according to the following procedure: 

(a) Calculate the undamped natural frequency. From Equation . 

50, 

w. 6 

Substituting in Equation 34, 
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2 -2 ^ 2 
a). =. w. + a (89) 

(b) Determine E from Equation 29 (assuming z = t/2) 

3p 
^ 3 3 ^ (z2-z1)31 

a), -
Eb ( z3- Z2^1 

3p 
(90) 

Now calculate z from Equation 93. If it differs significantly from t/2 

recalculate E using the new value of z. Repeat until.E is determined 

to the desired accuracy. 

(c) Determine E,. From Equations 49 and 88, 

E - 3P 
d , 3 3.Q4 

,, (Z2'Z1)31 

1 3 ^ _ 
— 2 + oona — 1 00, 

1 
1 

« 2
 + 

1 
-? « 2

 + ? 
'An, 

1 

(91) 

A A 
,(d*-) ...Calculate E . From Equation 17, 

S v - r\-

2 2 2 
E = E - E^ 
s c d 

(92) 

As an illustration of the results of the previous procedure, the 

measured values of natural frequency -and log decrement and the corre­

sponding calculated moduli of a specimen of buna-N rubber are presented 

in Table 7 and Figure 22. The dynamic properties of the other visco-

elastic materials used appear in Appendix I. It will be noted that 
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there are three sets of curves for buna-N rubber. Initially, only one 

thickness was tested and the others were assumed to have the.same 

properties. However, poor results were obtained in calculations for 

models made from the other, two thicknesses. When actually tested, 

specimens from the other thicknesses were found to,have much different 
i 

properties. Therefore, it must be concluded that unless the exact 
i 

composition and method of fabrication are known, each material must be 

tested firsthand in order to obtain an accurate measure of its dynamic 

properties. 

Table 7. Measurement of Buna-N Properties 

Base Coating a (in.-) aj.(cps) 

Aluminum Buna-N 12 2 0.062 0.264 56.6 0.0715 
Aluminum Buna-N 7 2 0.062 0.264 167 0.10,50 
Aluminum Buna-N 6 2 0...062 - 0.264 229 0.1067 
Aluminum Buna-N 5 2 0.062 0.264 329 :, ,0.1205 
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CHAPTER VI 

DISCUSSION OF THE RESULTS 

The numerical results of the theoretical analyses of Chapters 

III and IV and the experimental results of Chapter V will now be evalu­

ated and compared. 

Comparison of the Theoretical.and Experimental 
Values of Frequency and Logarithmic Decrement 

Of course, the main objective of the investigation is to relate 

damping to the amount of coating used (and the:properties and dimensions 

of the structure). It was found that damping also depends (indirectly) 

upon natural frequency which is itself a function of these same proper­

ties and dimensions, and whose value is always of, concern in a vibratory 

problem. Consequently, values of both damped natural frequency and log 

decrement were measured experimentally and calculated using the theory 

of Chapters ill and IV. The values obtained for each of %he (models of/ 

Table 3 appear in Tables 8, 9,'!andl0. Experimental and theoretical 

values of both frequency and log decrement may be seen to be in,fairly 

good agreement. 

Further comparison of experimental and theoretical values of 

damping is presented in Figures ,23-32. It will be noted that log 

decrement itself is not plotted as a function of thickness ratio, but 

instead ri/n (or 6/6 ) is plotted0l The loss factor of the coating, 
c c 

n (=Ev/E ), is a function of frequency (reference 16); therefore, r\ 
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Table .8. Calculated and Experimental Values of Damped 
Natural Frequency and Logarithmic Decrement 
for Beams with Coatings on One Side Only 

h_ Frequency Log Decrement 
Metal Coating t Cal. Exp. Cal. Exp. 

Steel Buna-N 1.55 134 135 0.00781 0.0069 
Steel Buna-N 2.43 128 125 0.01797 0.0174 
Steel Buna-N 2.43 81.8 80.0 0.02173 0.0192 
Steel Buna-N 3.80 77.1 72.5 0.05296 0.0390 
Steel Buna-N 5.62 116 116 0.06825 0.0703 
Steel Buna-N 8.80 74.1 72.5 0.17357 0.1440 

Aluminum Buna»N 1.18 • 161 155 0.01208 0.0110 
Aluminum Buna-N 1.35 144 140 0.01610 0.0182 
Aluminum Buna-N 1.84 148 140 0.02594 0.0231 
Aluminum Buna-N 2.11 132 120 0.03529 0.0240 
Aluminum, Buna-N 2.28 . 73.2 73.0 0.05075 0.0256 
Aluminum Buna-N 3.56 66.7 61.5 0.11750 0.0895 
Aluminum Buna-N 4.26 126 122 0.08822 0.0913 
Aluminum Buna-N 4.89 113 112 0.11713 0.133 
Aluminum Buna-N 8.25 67.1 64.5 0.28086 0.261 

Steel Plexiglas 2.87 262 275 0.12457 0.133 
Steel Flexiglas 4.57 257 267 0.14508 0.142 
Steel Plexiglas 4.83 431 440 0.13519 0.118 
Steel Plexiglas 7.73 450 465 0.13475 . 0.118 

Aluminum Plexiglas 2.27 347 356 0.12125 0.118 
Aluminum . Plexiglas 2.52 342 355 0.12,458 0.119 
Aluminum Plexiglas , 3.71 522 525 0.12.li5. 0.145 
Aluminum . '-Plexiglas 4.25 301 306 0.13320 0.138 
Aluminum Plexiglas 4.70 588 595 0.11491 0.111 
Aluminum, Plexiglas 7.34 497 500 0.11560 0.099-

Steel Styrofoam 10.64 176 180 0.01269 0.0139 
Steel Styrofoam 17.70 158 165 0.02744 0.0302 
Steel. Styrofoam 19.96 274 275 0.03149 0.0356 
Steel Styrofoam 31.27 295 300 0.04000 0.0407 

Aluminum Styrofoam 8*56 246 250 0.01686 0.0231 
Aluminum Styrofoam, 9.83 244 244 0.02102 0.0375 
Aluminum Styrofoam 15.13 • 376 384 0.03458 0.0322 
Aluminum Styrofoam 15.63 207 220 0.03350 0.0554 
Aluminum Styrofoam 17.37 398 400 0.03809 0.0386 
Aluminum Styrofoam 29.31 424 433 0.04432 0.0566 



72 

Table 9. Calculated and Experimental Values of Damped 
Natural Frequency and Logarithmic Decrement 
for Plates with Coatings on One Side Only. 

h_ Frequency Log Decrement 
Metal Coating t Cal. Exp-. Cal. Exp. 

Aluminum Buna-N 1.18 228 205 0.01234 0.00601 
Aluminum Buna-N 1.55 165 159 0o02186 0.01185, 
Aluminum Buna-N 1=84 204 186 0.02621 0.0250 
Aluminum Buna-N 2.28 104 98 0.05078 0.0233 
Aluminum Buna-N 2.43 145 141 0.04884 0.0356 
Aluminum Buna-N 3.56 94.0 83.4 0.11689 0.0925 
Aluminum Buna-N 4.26 178 165 0.09336. 0.0816 
Aluminum Buna-N 5.62 132 123 0.15717 0.1260 
Aluminum Buna-N 8o25 95.0 90.0 0.28831 0.2770 

Aluminum , Plexiglas 2.23 488 460 0.11614 0.111 
Aluminum Plexiglas 2.91 457 439 0.12420 0.124 
Aluminum Plexiglas 3,92 785 733 0.10948 0.111 
Aluminum. Plexiglas 4*31 436 408 0.12758 0.129 
Aluminum Plexiglas 5.17 761 720 0.10873 0.109 
Aluminum Plexiglas 7.59 732 684 0.10548 0.111 

Aluminum Styrofoam 8.56 350 318 0.01800 0.0170 
Aluminum Styrofoam • 8.78 186 160 0.01814 0.0272 
Aluminum Styrofoam 10.64 306 289 0.02464 0.0240 
Aluminum Styrofoam 15.13 • 5 35 472 0.03592 0.0250 
Aluminum Styrofoam 16,59 319 258 0.03589 0.0325 
Aluminum Styrofoam 19.96 553 478 0.04151 0.0304 

Table 10... Calculated and Experimental Values of Damped 
Natural Frequency and Logarithmic Decrement 
for Beams with Two Symmetric Coatings, 

h_, Frequency Log Decrement 
Metal Coating t Cal. Exp. Cal. Exp. 

Aluminum Buna-N 3.11 98.3 91.6 0.04141 0.0207 
Aluminum Buna-N • 4.22 104, 92.5 0.06713 0.0603 
Aluminum Buna-N ̂;i 7.13 54.7 « 48.5 0.21366 0.1387 
Aluminum Buna-N 8.52 104 100 0.146 77 0.1682 
Aluminum Buna-N 16.50 61.4 58.0 0.37079 0.420 
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Figure 23. Experimental v s . Theore t i ca l Values of Damping for 
Free-Free S tee l Beams with Buna-N Coatings on 
One Side Only 
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Figure 24. Experimental v s . Theore t i ca l Values of Damping 
for Free-Free Aluminum Beams with Buna-N 
Coatings on One Side Only 
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Figure 25. Experimental vs. Theoretical Values of Damping 
for Free-Free Steel Beams with Plexiglas 
Coatings on One Side Only 
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Figure 27. Experimental vs. Theoretical Values of 
Damping for Free-Free Steel Beams with 
Styrofoam Coatings on One Side Only 
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Figure 28. Experimental vs. Theoretical Values of 
Damping for Free-Free Aluminum Beams with 
Styrofoam Coatings on One Side Only 
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Figure 29. Experimental vs. Theoretical Values of Damping 
for Free Plates (Aluminum) with Buna-N 
Coatings on One Side Only 
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Figure 30. Experimental vs. Theoretical Values of Damping 
for Free Aluminum Plates with Plexiglas 
Coatings on One Side Only 
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Figure 32. Experimental vs. Theoretical Values of Damping 

for Free-Free Aluminum Beams with Two 
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—•- Oberst's Solution 

Solution of Chapter III 
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Figure 33. Experimental (Oberst's) vs. Theoretical Values of 

Damping for Free-Free Beams with Coatings on 
One Side Only 
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(hence,6) is a function of frequency. However, the ratio n/n is inde­

pendent of frequency and plots nicely. 

Comparison is also made with the theoretical and experimental 

results of another investigator. Figure 33 shows values of damping 

calculated from the solution of Chapter III and from Oberst's solution 

(8) as compared to Oberst's experimental values for a.number of cases, 

Agreement; with Oberst's values was quite good* Table 11 gives a more 

accurate comparison of the two solutions. 

Comparison of Beam and Plate Damping 

Comparison of Figures 13 and 17 shows that the damping ratio for 

a beam composed of la particular metal and coating and haying a par­

ticular thickness ^atio is approximately the, same as that for a plate. 

composed of the same materials and having the same thickness ratio. 

(A better comparison may be made by comparing the numerical results of 

Table 12.) Naturally, plate frequencies differ considerably from beam 

frequencies, and since n is a function of frequency the loss factor, n 

(hence 6), is not necessarily the same for beams and plates with the ; 

same coating to metal thickness ratio and composed of the same materials 

(n is the same if the beam and plate happen to have the same natural . 

frequency or if the loss factor of the coating does not change with 

frequency.) However, the magnitudes of the two values will be com­

parable . 
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Table 11. Comparison of Beam Solution and.Oberst*s 
Solution for Beams with Coatings on One 
Side Only, n = 0.10 and E /E = 1,5(10) 

LOGARITHMIC DECREMENT 
Solution 1 

h Equations 29, Oberst^s 
t" 34, 49, and 50 Solution 

0.50 0.0154 0.0155 
. 0.62 0.0220 0.0220 
::';0O74 - 0.0297 0.0297 
0,88 0.0401 0.0401 
lo00 0.0499 0.0500 
L 2 4 0.0718 0.0719 
1.50 0,0974 0.0975 
1,76 0.1229 0.1231 
2.00 0.1453 0.1456 
2.50 0=1852 0.1857 
3.00 0.2150 0.2156 
4.00 0.2506 0.2514 
5.00 0.2673 0.2681 
6,00 0.2749 0,2758 
8,00 0.2789 0,2799 

10 * 00 0.2776 0.2786 
15.00 0.2693 0.2703 
20,0©r 0.2605 0.2615 

Comparison of the Effectiveness of Symmetric, 
Coatings and Coatings Applied to One Side Only 

It may be seen .from Figures 13 and 15 and from Table 13 that for 

small (and moderate) thickness ratios it is much more efficient to 
> Si >' 

i 

employ all of the viscoelastic coating on one side rather than divide 

it between the two sides. However, when the thickness ratio becomes 

relatively large (depending upon the relative strengths of the metal 

and coating) the neutral axis is shifted significantly when the coating 

is applied to only one side and a point is reached (for instance, 

h/t = 7.0 in Table 13) beyond which it is more efficient to use two 
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Table 12 . Comparison of Damping Ratios of Beams 
and Plates with Coatings on One Side Only 
for r\ = 1.0 and E /Ev = E /E = (10)~4 

C S D S p 

h n/nc 
t Beam Plate 

0,10 OoOOOOH 0.00004 

0.20 0.00009 0.00009 
0.30 '. 0.00015 0.00015 
0.40 0.00024 0.00024 
0,70 0.00064 0.00064 
1.00 0o00130 0.00129 
1,40 0.00268 0.00267 
2c00 0.00614 0.00610 
2.50 0o01058 0.01052 
3.00 0.01669 0.01658 
4.00 0c03460 0.03439 
5.00 0.06077 0.06042 
6=00 0.09513 0.09460 
7.00 0.13664 0.13593 
8,00 0.18351 0.18263 
9.00 (' 0,23362 0.23259 

10.00 0.28482 0.28367 
13,00 0.42951 0,42825 
16.:00 0.54343 0.54229 
20.00 0.64552 0.64465 
22.00 0.68012 0.67938 
25=00 0.71788 0.71730 
28.00 0.74377 0.74331 
30.00 0.75649 0.75609 
40e 00 0,79326 0.79305 
50.00 .;;,, 0.&Q.&Q3 0.80589 
60.00 0.81127 0.81114 
70.00 0.81339 0.81328 
85.00 0.81413 0.81403 

100.00 }'• 0.81360 0.81350 
200.00 ji 0.80387 0.80372 
300 o0'6 ': 0.79311 0.79290 
500,00 0.77047 0.77015 



Table 13. Comparison of the Effectiveness of Symmetric 
Coatings and Coatings on One Side Only for 
Beams with -n =1.0 and E./E, = (10)-2 

C S D 

n/n 
C 

h , Two Symmetric Coating on 
t. Coatings One Side 

0.10 0.00329 0.00361 

0.20 0.00721 0.00857 

0.30 0.01177 0.01502 

0o40 0.01702 0.02311 

0.70 0,03709 0.05779 

1.00 0.06376 0.10752 

1.40 0.10887 0.19093 

2,00 0.19182 0.32678 

2,50 0.26760 0.42796 

3.00 '• 0.34294 0.50908 

4.00 0.47569 0.61457 

5.00 0.57589 0.66846 

6,00 0.64650 0.69457 

7.00 > 0.69512 0.70622 

8.00 0.72862 0.71021 

9.00 • 0.75200 0.70999 

10.00 0.76860 0.70741 

13,00 0.79895 0.69365 

16.00 0.81135 0.67743 

20,00 0.81892 0.65648 

25.00 0.82304 0.63313 
30.00 . 0.82493 0.61306 
40.00 0.82649 0.58114 
50.00 0.82706 0.55764 

60.00 0.82732 0.54022 
70.00 0.82745 0.52728 
85.00 0.82755 0.51397 

100.00 0.82760 0.50581 

200,00 0.82767 0.50673 
300.00- 0.82767 0.53313 

500.00 0.82768 0.58438 

1000.00 0,82768 0.66251 



88 

symmetric coatings rather than employ all of the material on one side.; 

For most practical cases, however, the use of coatings on one side :only 

is more efficient-0 

Optimum Thickness Ratio 

Another interesting observation from Figure 13 and 17 is that 

the theory predicts that beyond a certain thickness ratio, damping 

decveases with an increase in the amount of coating applied. This fact 

is substantiated by experiment as shown in Figures 25, 26, and 30 for 

both beams and plates coated on one side only0 It will.be noted in 

Figure 15 (beams coated with two symmetric layers), however, that no 

optimum thickness ratio exists„ Instead, damping values level off 

beyond a certain value of thickness ratio. The difference in the two 

cases is the fact that the neutral axis is shifted in the unsymmetrie 

case while it remains at the center of the composite symmetric struc­

ture o (The shift of this axis decreases the extension of the fibers 

of the coating.) 

In the design of a system, one would not want to use material 

and receive no damping in return; thus, the value of the optimum thick­

ness ratio is of concerno An approximation of this value may be 

obtained by examination of Figures 13 and 17 (and those of Appendix F)„ 

(Also to be considered is the leveling off which occurs just prior to 

the optimum value of damping. Even for the symmetric case of Figure 15 

there,is a leveling off point beyond which very little;profit is . 

received from investment of material.,) To obtain the value of optimum 

thickness ratio accurately, one must apply an optimization technique to 

will.be
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the theoretical relationship. This is done in Appendix J for the case 

of small damping, i.e»r n < 0.10. (The general case is so involved 

that nothing can be gleaned from it •>) It is first shown that no optimum 

thickness ratio exists for the symmetric case. Then an eighth order 

polynomial in h/t is derived for the unsymmetrical case which depends 

only upon the ratio E ;/E 0 A graphical solution appears in Figure 34 

which is valid for both beams and plates with n < 0.10. (The optimum 

thickness ratios of Figures 25, 26, and 30 substantiate these values.) 

Higher Modes 

As stated previously, this investigation is limited to a study 

of the fundamental mode only. However, higher modes may be considered 

with little additional efforto For instance, in the >solution for beams 

with coatings on one side (Equations 29, 34, 49, and 50), only 3 changes 

from mode to mode: 3n = 4.730/a* 3n = 7.8532/a, ..., 3 = (2mtl)/2a. 
1 I m 

(See reference 18„) It is shown in Appendix E that damping depends 

upon only three dimensionless ratios, none of which involves length, 

hence 3. Therefore, damping in higher modes is only affected by 

material properties as they change with frequency. (If the loss factor 

of a material increases with frequency, damping is greater as the mode. 

number increases or vice versa.) It should be noted that the effects 

of rotary inertia become increasingly significant at higher frequencies, 

however, and the assumptions upon which the theory is based will at 

some point lose their validity as this effect.becomes more dominant. 
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Other End Conditiqns 

This investigation is also limited to the case of free-free 

beams and plates; however, a number of other end conditions may easily 

be considered with the help of Felgar (20). The derivations are 

identical to those of Chapters III and IV except for the fact that under 

other constraints the values of a and $ as well as the integrals of 
m m 

the characteristic mode functions, F (x) and G (y), differ from those 
m n J 

for the free-free case. 
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CHAPTER VII 

CONCLUSIONS 

As a result of the investigation to determine the damping effects 

of unconstrained viscoelastic coatings on the transverse vibrations of 

beams and plates, the following conclusions may be drawn: 

The dynamic behavior of a viscoelastic material may be accurately 

described by a Voigt (Kelvin) model (spring and dashpot in parallel) 

used in conjunction with curves of the static and dynamic moduli of the 

material as they vary with frequency. Actually, using a Voigt model in 

conjunction with modulus vs. frequency curves is equivalent to using a 

more complex model. 

Curves describing the static and dynamic moduli of a viscoelastic 

material as they vary with frequency are of little value to the user 

unless the exact composition and method of fabrication of the material 

are also known. 

Incorporation of a viscoelastic material with an elastic struc­

ture not only adds damping to the system, but also alters the natural 

frequency of the system. The amount of damping produced by a given 

thickness of viscoelastic material and the natural frequency of the new 

composite structure can be predicted accurately for both beams and 

plates with coatings on one or both sides using the theory of Chapters 

III and IV. In general, the thicker the coating applied to a beam or 

plate, the greater the amount of damping produced; however, for the case 
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of coatings on one side only, there is an optimum thickness ratio 

beyond which addition of viscoelastic coating decreases the amount of 

damping because of the shift of the neutral axis. (This was verified 

experimentally in the plexiglas beam and plate tests.) Also, the 

higher the dynamic (loss) modulus, E,, of the viscoelastic material 

the greater the amount of damping for a given thickness ratio. 

The theoretical results for a beam coated on one side and 

restricted to light damping (n < 0.10) are almost identical to those 

of Oberst (8)„ In addition, the natural frequency of the structure is 

known,and the solution is not restricted to light damping, neither of 

which is the case with Oberst?s solution„ 

Damping depends directly upon only three dimensionless ratios, 

h/t, E,/E , E /E ; however, indirectly it also depends upon length.and 

density (and Poisson's ratio in the case of plates) since E, and E vary 

with frequency. If the static and dynamic moduli of a viscoelastic 

material do not vary with frequency, then damping is independent of 

length, density, Poisson's ratio, and frequency„ 

For small and moderate thickness ratios, it is/?more effective to 

employ a given amount of viscoelastic material on one side of the metal 

rather than divide it equally between the two sides; however, there is 

a thickness ratio beyond which it is more efficient to use two symmetric 

coatings rather than one. 

If a beam and plate are composed of the same materials and have 

the same coating to base thickness ratio, the damping of each will be 

of the same order of magnitude; it will be the same if the beam and 
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plate have the same natural frequency or if the moduli of the visco-

elastic material do not vary with frequency. 
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CHAPTER VIII 

RECOMMENDATIONS 

The following recommendations are made concerning possible: 

areas of future investigation: 

The case of a viscoelastic material constrained by an outer 

stiff layer ("sandwich"), which was mentioned in Chapter I, might also 

be attacked using this method in order to provide some more easily 

accessible design data concerning damping than that of Kerwin (1) and 

others„ 

Kimel, Kirmser, Patel, and Raville (1.8) found the frequencies 

of undamped, "sandwich" beams as mentioned earlier. Their work might 

be extended to determining the natural frequencies of "sandwich" "plates 

using the method of Chapter IV. 

In addition, it would be worthwhile to survey a broad range of 

materials comparing their relative advantages and disadvantages .as 

damping materials. This has been done within the family of rubber-like 

materials, but not for other categories of materials. 

Damping in higher modes.might also be studied to determine the 

validity of the assumptions in this region since the effects of rotary 

inertia become increasingly significant at higher frequencies„ 
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APPENDIX A 

DETERMINATION OF THE POSITION OF THE NEUTRAL AXIS 

Reference 

Neutral 
axis 

(a) Two layer beam (b) Equivalent metal beam 

Figure 35. Beam Cross Sections 

'The two layers,beam of Figure ; 35(a) is 'first transformed to an 

equivalent beam of only one material, but having the same bending stiff­

ness, Bo 

B = EI = 
E
 K

 3 

l^ b z 

Eb v3 
12.*1' 

C -KV,3 

12 b h 

E 
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Now the position of the neutral axis of the T-shaped cross section of 

Figure 35(b) may be easily determined. From elementary mechanics of 

materials, 

zZA = Zz A 
c 

Section z A z A 
c c 

t/2 bt (1/2)bt2 

II -h/2 hx = hb(E /E, ) -(l/2)bh2(E /E, ) 
c b cb 

Thus, 

E 9 E 
ZA = b(t+h.=£) Zz A = |<t -h2 — ) 

Eb C 2 Eb 

2 2 
. E, t - E h 

Z 2 E.t + E h l 9 d ; 

b c 

This is'1 the same'-'relation as. that derived;-.by Oberst ('8). 



APPENDIX B 

OTHER DAMPING EQUATIONS 

! Damping Equation 2 
I 

Choosing thej times T = 0 and x = TT/2W yields 

2 to a 
m 

5 2 E d ( z 
3 Sie1* 
2 - Z l ) 6 m 4 + , 

— a + 2 
3p 

Tra/o) 
- / - 2 , 2 N - 3 m 
to (a) +o) ) - to e 

m m m m 

_ f .3 3x Q 4-2 , -
E , ( z ^ - z n )S to ira/to . 

J _ d 2 1 m m f 0 m .-\ 2 _,_-
+ —~~37 ~ ^ ^a 

- 3 2 - 5 TO/a)m 
a) a) -to e 

m m . m a + 

E ( z - z )B u W t o 
, d 2 1 m - 4 f m . A _ 
+ _ - a) I e -11 = 0 

3p m v ; 

The- te%ponent ia l t e r m s c a n n o t be e l i m i n a t e d i n t h i s - c a s e . A 

e x p a n s i | n of t h e fo^m^shown,below may be s u b s t i t u t e d , i n Equ 

y i e l d a p o l y n o m i a l i n a which ^ s . s o l u b l e . 

ira/co 2 2 3 3 
m . , TO. , i a IT a 

= 1 + - + T ^ + ^ 3 - + •• 
to 2 to 6 to 

m m m 

Damping E q u a t i o n 3 

L e t t i n g T . = ...TT/2O) and i n = 5TT/2O) y i e l d s 
" • 1 m 2 m 



1G0 

m 

IP ( 3 3\a^ 2 ~ 2 

E , ( z 0 - z , ) 6 r a ,, w - co d 2 1 m 4 m m o 

3pco co 
K m m 

E d ( V 2 X 2 + 
1 T 2 — a + 

2pco 
m 

( 9 5 ) 

2 
0) 

. m 
+ — a 

CO 

V'hX 
6p 

= G 

m 

Damping Equation 4 

In the first three damping equations, one or several of the terms 

of Equations 39, 40, and 44 vanish for the values of time chosen. If 

T , = TT/8W and T = 17TT/8OO , h o w e v e r , none o f t h e t e r m s v a n i s h . Thus,, 
1 m 2 m 

the.influence of each is involved in the final expression which is 

0 .146 5 
— 7 i — - a 

m 

0.707 °"146 E d ( V 2 X 
CO 

m 
3pco. 

m 

4 J. a + (96 ) 

0 .146 co2 0 . 354 EAz^zh^ 
m • • d • 2 • 1 m 

m ,a rf m* 
o ~ 3 

3 pa).. m 

a 3
 + 

• ^ 

0 . 7 0 7 •+ 
0 .646 EAzl-zh'd* 

& i 2 1 m 

3pco 

a2
 + 0 .854 co + m 

0 .146 co' 

m 

0 .354 EAzl-zht* 
d 2 1 m 

3pco 
m 

EA*l-zh£ 
d 2 1 m 

6p 
= 0 



APPENDIX:C 

COMPUTER PROGRAMS 
(Burroughs B-5500 Computer) 

Beam with Single Unconstrained Coating 

7C0MPILE 
?DATA.. 

INTEGER 
REAL 

ARRAY 

FILE IN 
FILE OUT 
FORMAT OUT 

FORMAT OUT 

FORMAT OUT 

LABEL ••; • 

LIST 
LIST 1 
LIST 

LIST 

LI: 
L2 

XXXX/BEAM 1 ALGOL, .03S800015 PEARCE B K 

BEGIN 
I,J,K,N 
AL ,AL1,BETA ,C ,CO ,C1 ,~C2 ,C3,OMB,OMl,CPS ,D ,DEL ,E ,F, 
F1,0M,Q,R,R0,ZB,Z1,Z2 >Z3 ,EC,G,G1,NU,CPSB,NUC,S 

A[0:100] ,B[0:100],EB[0:100],ES[0:100] ,ED[0:100], 
GAB[0:100],GAC[0:100],H[0:100], 
T[0:10Q] 

FI(2,10) 
BKP 16(2,15) 
FMT1( XM-, "A" ,X7, "B" ,X7, "H" ,X6 , "T" ,X6 , MH/TM ,X6, "EB 

",X9,"ES",X9,MED",X8,"ES/EB",X5,"J",X6, 
"ALPHA", X5,"0MEGA",X4, "DELTA"/) 

FMT2(X1,F6.3,X2,F6.3,X2,F6.)+,X2,F5.3,X2,F6.2,X1, 
F10.1,X1,F10.1,X1,F10.1,X2,F9.7,X1,I3,X2, 
F8.2,X2,F8.2,X2,F8.5/> 

FMT3(X3,"K=",12,X3,"CPSB=",F8.2,X3,"NU-",F8.5, 

X3,"NU/NUC=",F8.5/) 
L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 7 , L 8 , L 9 , L 1 0 , L 1 1 „ L 1 2 , L 1 3 , 

METAL ,C,0MB (. t> ~'"'V 
L T l ( I ) . . / ""-,#-*, *.,- -:K 

LT2(F0R W-l STEP'1! UNTIL I DO [ A [ N ] , B [ N ] , E B t N ^ 
GAB[N],GAC[N],T[N],-HDN],ES[N],ED[N]]) 

LT3(A[N] ,B[N] ,H[N] ,T[N] ,R ,EB[N] ,ES[N] ,ED[N] ,Q , 
J,AL,CPS,DEL) 

LT.4(K,CPSB,NU,S) 
WRITE (BKP,FMT1) 
READ ( F I , / , LTD 
READ(FI , / ,LT2) 
N «- 1 • 
IF .N«-I THEN GO TO L6 ELSE GO TO L2 
R«-H[N]/T[N] 
BETA«-M-,730/A[N] 
RO«-((GAB[N]xT[N]) + (GAC[N]xH[N])) /386.0 
IF H [ N > 0 . 0 .THEN. GO TO METAL ELSE GO TO COMB 



Z2«- -T[N]/2 
Z3«- T[N]/2 
C <- (EB[N]x(Z3&3-Z2*3)x(BETA*4))/(3xR0) 
OM .<- SQRT(C) 
CPS•*- OM/6.283 
DEL <- 0.0 
Q -e .0.0 
J «- 0.0, 
AL -t- 0.0 
WRITE(BKP,FMT2,LT3) 
N <- N + ̂ f ." 
GO TO LI 
EG «- SQRT(ES[N]*2 + ED[N]*2) 
ZB «- ((EB-CN]x(TCN]*2))-(ECx(HCN]*2)i))/C2x(( 

EB[N]xT[N]) + (ECxH[N]))) 
Zl «---(H[N] t ZB) 
Z2 «- -ZB 
Z3 «- T[N] - ZB 
C •«- ((EB[N].)x(Z3*3-Z2*3)x(BETA*i+))/(3xRO) 
D «- (ECx(Z2*3-Zl*3)x(BETA*4))/(3xRO) 
OMB '«- SQRT(C + D) 
CPSB <- OMB/6.283 
Q «- ES[N]/EB[N] 
E «- (ED[N]x(Z2*3-Zl*3)x(BETA*4))/(3xRO) 
OM1> OMB 
K «- 1, 
CO -t- -0.50xE 
CI «- OM1 
C2 *- (-0.50xE)/(OMl*2) 
C3 -t- 1.0/OMI 
AL1 «- 1.0 
J •-*- 1 ..,,*•• 

F *• (C3x|ALl*3)) + (C2x(ALl*2)> +'(cixALl) + CO 
Fl •«- (3xC3xfALl*2)) + (2xC2xALl) + CI • 
AL *- AL1 - (F/Fl^ ^ "'" ' -.* 
IF ABS(AL-ALl) < O.ofo^THEN GO TO L5 ELSE GO TO L4 
AL1 -«- AL 
J ^ J + 1 
GO TO L3 
G «-.(OMl*2) + (AL*;2)-(OMB*2) 
Gl -«- 2xOMl 
OM «- OM1 - (G/Gl) 
IF ABS(OM/OM1)<0.990 THEN'GO;TO L9 ELSE GO TO L10 
OM1 -e OM . 
K «- K + 1 
GO TO L7 
CI '«- OM 
C2.«- (-0.50xE)/(OM*2) 



C2 «- .(-0.50xE)/(0M*2) 
C3 -e "l.O/OM 
AL1 «- 1.0 
J •«- 1 

Lll: F «-. (C.3x(ALl*3)) + (C2x(ALl*..2)). + (ClxALl). + CO 
Fl«-(3xC3x(ALl*2)) + (2xC2xALl) + CI 
AL «- AL1 - (F/Fl) 
IF ABS(AL-AL1)<0.01 THEN GO TO L13-ELSE GO TO L12 

L12 : AL1 «- AL 
J «- J ,+ 1 . 
GO TO Lll 

L13: CPS -*- OM/6.283 
DEL.«- ABS((6c283xAL)/0M) 

' NU •<- DEL/3.1416 
NUC + ED[N]/ES[N] 
S «- NU/NUC 
WRITE (BKP.,FMT2,LT3) 
WRITE(BKP,FMT3,LT4) 
N -«- N •+ 1:, 

GO TO LI 
L6: N'.t- N 

END. 

Data for this program must be fed in.on cards, the first•card 

bearing the number of beams for which calculations will be made, and 

the following cards carrying the data pertinent to each beam in the 

order given by LIST LT2„ For example, to run the program for only the 
v|: 

beam of Appendix G, the\f ollowing data is needed: *̂; v 

?DATA FI 
1, 
800625,2.0,30000000c0,0.284,0.046,0.047,0.264,4380.0,810.0, 

Beam with Two Symmetric Coatings 

The program for this case is identical to the previous one but 

for the following exceptions: 

Calculation of ZB. is omitted. 
Zl «- -0.5Ox(T[N] + H[N]) 
Z2 .«- -T[N]/2 
Z3 «- T[N]/2 
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OMB «- SQRT(C + 2xD) 
CO + -E -., 
C2 «-.-E/(0Ml*2) 
C2 .«- -E/(0M*2) 

Plate Programs 

These programs are quite similar to those for the beams. There 

are additional variables in this case; however, the procedure is 

identical to that in the previous cases and consequently will not be . 

repeated. 



APPENDIX D 

DAMPING RELATIONS 

Relation Between a and 6 

By definition, 

-ax 
X X e n 

S = ^ = M °_a(T+T)) 
n+1 ., n 

X e 
0 

where X - initial amplitude= 

X - amplitude at any time, T.. 
n v • • J n 

X . - amplitude one cycle,later. 

T(period) = .2TT/W. 

Therefore, 

aT 
<5 = ln(e ) = aT 

6 = — a 

Relation Between 6 and £ 

From Tse, Morse, and Hinkle (29), 

" 2 2 t i r 2 \ u = u (l-£ ) 

where £ = c/c . 
c 
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Substituting Equation 34 into Equation 98 yields 

£ = a/u) 

Obtaining a from Equation 97 and making use of Equation 98, Equation 

99 becomes 

5 = J L . « = A . ^ 2 , 1 / 2 
^ 2TT a) 2TT V ^ ; 

o r 

2 

£ = -^ -j (ioo) 
6 ^ + l+TT 

1 
iL_LJl 
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APPENDIX E 

DIMENSIONAL ANALYSIS 

In order to simplify this analysis, it is assumed that damping 

is small (n < 0.1); then /undamped and damped natural frequency are 

approximately equal, and the approximate solution (Equation 52) applies 

From Equations 50 and 52, : 

n w , 6oo 

«--r-^ (101) 

zAil-ihtf 
d , 2 1 1 (102) 

Equating Equations 101 and 102 and substituting from Equation 29 yields 

v4-3X 
3 p - (103) 

_ , 3 3,Q4 „ , 3 3.Q4 
E b ( 2 3 - Z 2 ) 3 l i

 E s ( V z l ) g l 
3p 3p 

where 

z. = -(h+z) z = -z z3 = t - z 



2 2 

E t - E V 
5 = 2(E t+E h)

 a n d Ec Z Es 
D C 

Since 3, and p cancel out, 

n = F(h,t,Ed,Es,Eb) 

Employing the techniques of dimensional analysis, 

_ a b ĉ d e 
n = K h t E ,E E, 

d s D 

where K is a dimensionless constant. 

h t E. E E, 
d s b 

0 0 1 1 1 

1 1 - 1 - 1 - 1 

0 0 -2 -2 -2 

Thus, 

(M - mass, L - length, T - time) 

c + d + e = 0 

a + b - c - d - e = 0 

-2c - 2d - 2e = 0 
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Equations 105 and 107 are dependent; therefore, 

N(No, of dimensionless constants) = 5 - 2 = 3 

Substituting Equation 105 into 106 yields b = -a. From Equation 105, 

d = -c *.e. Hence, Equation 104- becomes 

n = K hat"aE^E "C"eE?. d s b 

, a E, c E, e 
n = K(|) (g% (^} (108) 

s s 

Calculations for a number of cases show that variation of length 

and density do not affect the value of damping for the complete beam 

solution (Equations 29, 34, 49, and 50) even when damping is large. 

The plate solution also depends only upon the three dimensionless ratios 

of Equation 108 as may be shown by an analysis similar to that for the 

beam. In the case of large damping, log decrement is again independent 

of length and density (and Poissoh's ratio) as illustrated by Tables 

14, 15, and 16. 



Table 14. Variation of Log Decrement with Length for 
Large Damping of Plates with Coatings on 
One Side, n = 1.0, and E /E, = (10)~4 

C S . D 

LOGARITHMIC DECREMENT 
h_. a = 21 in. a = 24 in. a = 12 in. 
t b = 24 in. b = 12 in. b = 12 in. 

1,00 0.00406 0.00407 0.00406 
1.40 . 0.00840 0.00842. 0.00840 
2c00 0.01924 0.01927 0.01924 

: 3.00 0o05227 0.05235 0.05227 
!. 4.00 0.1083.9 0.10855 0.10839 
5.20 0.20996 0.21027 0.20996 
7.00 0.42824 0.42881 0.42824 
8.50 0.65302 0.65378 0.65302 

10.00 0.89315 0.89405 0.89315 
13.00 1.34754 1.34854 1.34754 
16*00 1.70562 1.70652 1.70562 
20.00 2.02672 2.02741 2.02672 
25.00 2.25446 2.25493 2.25446 
30.00 2=37601 2.37632 2.37601 
40.00 ' 2.49181 2.49198 2.49181 
50.00 2.53203 2.53214 2.53203 
60.00 2.54845 2.54853 2.54845 
70.00 2.55515 2.55522 2.55515 
85c00 2.55750 2.55757 2.55750 

100.00 2.55585 2.55592 2.55585 



Table,15o Variation of Log Decrement with Density for 
Large Damping of Plates with Coatings.on 
One Side, n = 1.0, and E /E, = ( 1 0 ^ 

C S D 

LOGARITHMIC DECREMENT  
- y =0.046 — =0.150 lb/in 
t c 'c 

1.00 0.00406 0.00406 
lb 40 0.00840 0.00840 
2.00 0.01924 0.01924 
3.00 0.05227 0.05227 
4.00 0.10839 . 0.10839 
5o20 0.20996 0.20996 
7o00 0.42824 0.42824 
8.50 0.65302 0.65302 

10.00 0.89315 0.89315 
13.00 1.34754 1.34754 
16.00 1.70562 1.70562 
20.00 2.02672 2.02672 
25.00 2.25446 2.25446 
30.00 2.37601 2.37601 
40.00 2.49181 2.49181 
50.00 2.53203 2.53203 
60.00 2.54845 2.54845 
70.00 2.55515 2.55515 
85.00 2.55750 2.55750 
100.00 2.55585 2.55585 
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APPENDIX F 

DESIGN CURVES 
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APPENDIX G 

SAMPLE CALCULATIONS 

Given: 8-1/16" x 2" x 0.047" steel beam with a 0.264" thick buna-N 

coating on one side„ 

Problem: Determine the natural frequency and logarithmic decrement for 

the composite structure in the fundamental mode of vibration. 

Note: Measured values for a model of the above dimensions are 

oo.. = 116 c=p.s. 

6 = 0.0703 

The properties which apply in this case are taken from Tables 5 

4?'< 
and 6',and from Figure 22. (Normally, frequency will not beffknown; 

therefore, a frequency value must be assumed, then the values of E, and 

E taken from Figure 22, and a calculation made to determine whether or 

not the assumption was correct6 This should be repeated until the two 

values correspond. Here it is assumed that w. = 116 c.p.s. since the 

value is known.) 

E, = 3 0 ( 1 0 ) 6 p s i . Yv = G - 2 8 I + l t>/ in 3 

b b 
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3 
E = 4380 psi EH = 810 psi Yc = 0.046 lb/in 

Also 

h = 0.264 in. t = 0.047 in. a = .8-1/16 in 

Natural Frequency, 

From Equation 17, E = 4450 psi. Using Equation 93, 

- _ i 30(10)6(QaQ47)
2 - 4450(0,264)2 = o # 0 2 3 4 i n < 

2 30(10)6(0.047) + 4450(0,264) 

Then 

and 

z1 - -(htz) = -0.2874 in 

z = -z = -0.0234 in, 2 

z = t .- z -= 0.0236 in 
o 

; = 4.730/a = 0.585 

0.284(0.047) - 0.046(0.264) _ . c 1 h M-ii 
= —386" : = 0-66K10) 

Substituting the above into Equation 29,yields 
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2 30(10) [(0.0236) -(-0.0234) ](0..585) ^ 
u = _ + 

3(0.661)(10) 

4450[(-0.0234)3-(-0.2874)3](0.585 ) 4 

+ : 
3(0.661)(10)~i+ 

b? = 52.92(10)4 

w = 728 rad/sec = 116 c.p.s. 

Since,n is rather small, damped and undamped values of frequency are 

probably about the same. However, this is checked below, 

Equation 50 gives 

<5OJ r\<n 

a " ~2TT
 = ~2~~ 

n a). 
max. 1 , ,. N 

a = ——~ , (n ; = . n ) 
max. 2 max. c 

F r o m , E q u a t i o n 3M-,-

- 2 2 2 2 -2 
1 ~ W l ~ a w i " ° - 0 0 8 6 0 w i 

1.003 oo = oj 

OJ = 115 .5 c . p . s . 
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Therefore, the value of damped natural frequency is essentially the 

same as undamped and agrees very well with the experimental value. 

Logarithmic Decrement 

From Design Curves 

E E 
n = ~ = 0.1850 ~ = 5.62 =̂ - = lo459(10)"

4 

c E t E, 
s b 

The value of n/n from Figure 13 at a thickness ratio of. .5.62 and a 
c 

V - 4 O . . 0 

E /E, ratio of 1.0(10) is 0.083. This value is a little lower than 
S D 

--I4. 

that for E /E = 1.459(10) , but should give a good estimate of the : 

actual value. Thus j 

n = 0.083(0.1850)-=-0.001537 

or 

6. = TTTI = 0,0483 

\ - • " . . . ^ " 

This value is, as expected, somewhat smaller than that actually 

measured (6 : = 0,0703), but is atfair approximation. 

By Calculation 

As r\ is relatively small, Equation 52 should be fairly accurate 

810[(-0.0234)3-(-0.2874)3](0.585)4 „ n„ 
a, - — =————= 7.90 

6(0.661)(10) (728) 

From Equation 50, 
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6 = ^ 0 1 = 0 . 0 6 8 1 

This value is in good agreement with that actually measured (6= 0.0703) 

and also with the value calculated, from the complete solution by com­

puter (6 = 0.06825). 

\ 
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APPENDIX H 

ENERGY DISSIPATION EXPRESSION FOR TWO DIMENSIONS 

An isotropic, Hookean material is defined by.Langhaar (30) in 

the following manner: the strain energy density of such a material may 

be represented by (neglecting thermal effects) 

3 3 3 

U <s ̂ 44") s H b„ e.e. (109) 
o dxdydz 2 > .fjj 13 i j ' 

In a viscoelastic material, stresses (hence energy) depend not.only.upon 

strain but also strain rate (see Equations 2 and 41). Therefore the. 

loss energy density of an isotropic viscoelastic material may be 

defined by the following expression. 

L" asjsr> * I ix j i«« '<*i d T T (I") 

As shown in Langhaar (30), determination of the constants be. in 
i] 

Equation 109 and simplification to the state of plane stress yields 

Equation 61. Similarly, Equation 110 leads to the expression for 

energy dissipated given by Equation 76. , 
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APPENDIX I 

DYNAMIC PROPERTIES OF VISCOELASTIC MATERIALS 
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APPENDIX J 

DETERMINATION GF OPTIMUM THICKNESS RATIO 

In order to obtain usable results, it is necessary to restrict 

this analysis to the case of small damping,.i.e., n < 0.10 and 

to = U ) , 

Beam with. Two Symmetric Coatings 

For this case, Equations 50, 53, and 55 apply; therefore, 

2 * V V z i ) 3 i 
6 - • d l X -1 (111) 

3po)1 

where 

z x = - ~ (t+h) z 2 =.-t/2 z 3 = t/2 

>Sk ....-n 4,,. ! / 
A' 

and a) is given by -Equation 53. 6 is. either a, maximum orfa minimum: 

when 

-4£- = G (112) 

d(£) 

Let 

f(|) = Zg-Zj = t V (113a) 



/IK _ 3 3 _ t ; ( - ) - Z 2 - Z l - - 3 -J.[3(|) + 3(|)a
 + (|)!l 

e ( - ) = p - - Yb
 + Y c ( t > 

Then 

f'ih = 
t 

d f ( | ) 
= 0 

g'(£> = x [ 3 + 6(l> + 3(^ 

v Y t 
t c n \ - c 

e ' (—) -
' t ' g 

Upon s u b s t i t u t i o n , Equation 112 becomes 

e a) 
2 , , 2 / 2vt _ 

g ' - ge 'w 1 - eg(w1) - 0 

L e t t i n g 

A = ^ i 3 ? and B.= | ' E B?, Equation 113 
3 . ib 1 • o c x 

becomes 

e g ' A- + B& e e -gei 
f z 

A- + BS-
e e 

. C e f ' . - f e 1 , p e g ' - g e 1 

eg A ^ + B 
e e 

= 0 



133 

Multiplying Equation 116 out and collecting terms yields 

Afg' = 0 

or 

A |i \* • 6(|) + 3(|)2" = 0 (117) 

The term.in brackets cannot be zero for any real positive value of h/t; 

nor can A be zero; therefore,, t must be zeroo Thus h/t r* °° or there is 

no value of h/t foriwhich 6 is a maximum (as suggested by Figure 15). 

The same is true in the case of a plate with two symmetric coatings. 

Beam with. Single Unconstrained Coating 

This case is much more involved than the. previous one. Equations 

29, 50, and 52 apply in this instance. Thus, 

6 =• d 2
2
 1 1 f'- (118) 

"': "*n\ \ f| J^' .-A 3po). 

where 

z = -(h+z) z2 = -z z3 = t - z 

z = 

2 2 
Evt - E h 
b c 
2(E. t+E h), b c 

and w is given by Equation 29. Equation 112 is again the criterion 

used to find the value of h/t for which 6 is an extremum. 
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Let 

f<£) = z, 
3 + 3 

Z2 = t - 3t* 
Eb - W 

t<Eb + Ec .?> 
+ 3t 

- .2 

Eb " Ec (F> 

^V^cl* 
(119a) 

:<|> = Z« - Z , = 
t 3 ( h 5 3 + 3 t 2 ( h ) 2 

Eb - Vi r> 

£<Eb + Ec T> 
(119b) 

+ 3 t ( | ) 
Eb * Ec<?> 

K'Vl' 

e(-) = p = j h 

VVt 
(119c) 

Equation 112 again y i e l d s Equation 115, however, e , f, g and t h e i r 

d e r i v a t i v e s now come from .Equations,119 and are. much more complex. 

S u b s t i t u t i n g in Equation 115 and s impl i fy ing y i e l d s *• 

m. 
fg» - f »g = 0 (120) 

As seen from Equation 119, f and g are rather complicated functions of 

h/t as are the derivatives f and g'. However, substitution of these 

functions into Equation 120 and much algebraic manipulation finally 

yields 



135 

0 E 4 , 8 E 4 , 7 

¥ $ <£> + 6 ^ > <£> + 

b b 

E 2 • E 3 E 4 
-6(=£) + 6 (=2-) + 6 ( = £ j 

E b L b b b 
c|> + (121) 

E 2 E 3 
-18 ( ^ ) + 12 ( ^ - ) 

b b 

, 5 E 2 4 
( | ) - 1 5 < ^ ) ( £ ) + 

b 

E E • 2 
12 (TT2-) - 18(=r-) 

E b b b 

. 3 
(|) + 

E E 2 
6 + 6(=£) - 6(=£) 

b b L b 
<|> 

+ 6 ( | ) + | = 0 

E E 
c s 

S ince n i s s m a l l , E ~ E and •=— - TT- f o r t h i s c a s e . 
c c s E, E, 

b b 

For a given coating and metal, the smallest positive real root of 

Equation ,121 is the thickness ratio for which an optimum amount of damp­

ing occurs. By use of a computer solution, results were obtained for a 

wide range of strength ratios and appear in Figure 34. These results 

apply only when damping is small. (It will be noted that • ttie values of 

h/t from Figure 34 are a little larger than those r,ead from the charts 

for large damping.) These results are applicable in the case of both. 

beams and plates with single unconstrained coatings. 
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