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initial, constant temperature of solid 

time dependent surface temperature 



t time 

t time melting first commences when H = H(t) 
m ^ 
t* time melting commences when H(t) = H 
m r ' 
v (T - T )/ I/TC (T - T ): dimensionless temperature 

o ' » m o 
v* steady state dimensionless temperature when H(t) = H 
x distance measured from position of exposed face at t = 0 

t/t : dimensionless time 
' m 
value of y when heat pulse begins during a cycle 

value of y when the heat pulse ends during a cycle 

t/t*: value of y when melting first commences if H = 

quasi-steady state values of y when melting commences 
during two successive heat pulses 

quasi-steady state values of y at the beginning of two 
successive heat pulses 

y,,, y«, quasi-steady state values of y at the end of two 
successive heat pulses 

z (x - s)//at : dimensionless distance 
' v m 

Greek Symbols 

a k/pc, thermal diffusivity of solid 

p. pL(ds/dt)/H*: dimensionless melting rate 

p.* steady state value of \L when H(t) = H 

p density of solid 

CJ pLs/H*t* : dimensionless thickness melted 
r ' m 

d value of 6 at y = y 
o o 

y 

y 0 

*1 

Ym 

\l> ym2 

yio» y 20 

value of 6 at y = y. 
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SUMMARY 

General equations were obtained for use in the solution of the 

problem of melting of a semi-infinite solid exposed to a heat flux which 

is a known function of time. Only one-dimensional heat conduction was 

considered, and thermophysical properties were assumed constant. The 

liquid melt was assumed to be removed, by some unspecified mechanism, 

immediately upon formation. The general equations were used to study 

the problem in detail when the heat flux is a square wave type, 

The temperature at the exposed face during the initial pre-melting 

stage and the time that melting first commences was determined for a 

square wave flux. It was found that the melting time for the case of a 

very small heating cycle period was four times greater than that of the 

case when the heat flux is constant for all times and equal to the peak 

of the cyclic heat flux, 

A numerical finite difference method was employed to solve the 

boundary value problem after melting first commenced. As was expected, 

the thickness of solid melted, during a given heating time, was found to 

decrease with decreasing heating cycle period. Its magnitude was found 

to be less than one half that melted when the heat flux is constant and 

equal to the peak cyclic flux. 

The numerical solution predicted that the rate of melting could 

exceed the steady-state rate attained when the heat flux, is constant for 

all times at the peak cyclic value, and could pass through a maximum dur

ing a heat pulse. These same characteristics of the melting rate must 
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occur if the system achieves a quasi-steady state where the temperatures 

are periodic with heating and steady-state conditions are approached in 

each cycle before a heat pulse ends. Since it appeared logical that 

the system may approach this quasi-steady state, the time that melting 

begins anew during a heat pulse and the thickness melted at the end of 

a pulse were determined for such a condition 
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CHAPTER I 

INTRODUCTION 

Transient heat-conduction problems involving phase changes are 

becoming increasingly important to modern technology. The melting or 

freezing of solids has applications in the thermal protection of high

speed vehicles, food processing, and casting of metals, to mention only 

a few, These problems are nonlinear, because they involve a moving 

boundary (the melting front) whose location is unknown« 

Generally, previously published work considers unidimensional 

heat-conduction, the melt either retained or removed immediately upon 

formation, and constant thermophysical properties in the solid and/or 

melt. Methods of solutions can be grouped into analytical solutions, 

complete numerical difference solutions, and "lumped parameter" solu

tions. For complete difference solutions, both the space and time vari

ables are written in difference form for solution either with a digital 

computer or by graphical methods0 In the lumped parameter solutions, the 

solid region is divided into discrete space lumps, while time is retained 

as a continuous variablee By doing this, the boundary value problem can 

be reduced to a set of coupled ordinary differential equations which can 

be conveniently solved on an analog computer*, 

Temperatures in the solid, before melting first commences, can be 

readily calculated [l]. Landau [2] and Masters [3] employed a numerical 

Numbers in brackets designate references cited in the Bibliographyo 
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method to solve the transient heat conduction problem after melting 

commences in a semi-infinite solid, and a slab, respectively. Both 

considered only the case where the heat flux to the exposed surface is 

large and constant and the thermophysical properties are constant0 

Landau assumed the melt to be removed immediately upon formation, and he 

obtained an analytical solution for the limiting case of infinite latent 

heato He also found the steady state solution*, Masters differed from 

Landau in obtaining the same steady state solution by simultaneously 

solving the heat and wave equations, instead of considering only the 

heat conduction equation0 Masters also studied the effect of a film of 

melt on the heat transfer across the melting frontc 

Few solutions have been obtained for cases where the heat flux at 

the exposed face varies with time0 Sunderland and Grosh [4] considered 

the melting of as semi-infinite solid heated by convection from a constant 

temperature environmento They presented both a numerical and a graphical 

method of solution of the transient process,, Both of these methods appear 

applicable to situations where the environment temperature varies with 

time0 Lotkin [5] derived difference equations for melting of an infinite 

slab (with variable thermophysical properties) that is heated by a flux 

which varies with time0 He used unequal subdivisions in both space and 

time variables^ Finally, Goodman [6, 7] defined a thermal layer which is 

analogous to the boundary layer in fluid flowc By utilizing this con

cept and employing techniques similar to those used by Karman and Pohlhousen 

in boundary-layer theory, he was able to develop approximate solutions for 

several different cases., His method of solution is applicable to cases 

where the heat flux varies with timec However, the method is complex 
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unless the heat flux is either monotonically increasing with time or 

constant, 

Murray and Landis [8] briefly reviewed current methods of solution 

of problems with melting or freezing. A more comprehensive survey of 

published literature on this subject was given by Sunderland and Grosh [9]. 

The problem considered in the present work is the melting of a 

semi-dnfinite solid exposed at its face to a heat flux of the square wave 

type» Melted material is assumed to be removed immediately upon forma-

tion0 This type of problem is encountered in environments of a cyclic 

nature0 For instance, the specific heat flux considered is related in a 

general way to the energy output of a lasera 
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CHAPTER II 

THE GENERAL PROBLEM OF MELTING OF 

A SEMI-INFINITE SOLID 

In this chapter, the problem considered is that of one-dimensional 

heat conduction in a semi-infinite solid that is exposed at its face to 

a time varying heat flux H(t). Initially the solid extends from x = 0 

to x = oo and is at a uniform temperature T . If heating continues long 

enough, the exposed face of the solid reaches the melting temperature T 

and melting commences. At some later time melting may stop if the heat 

flux becomes insufficient to sustain a surface temperature equal to T 

and then begin again if the heat flux rises sufficiently. The liquid melt 

is assumed to be removed immediately upon formation, so that the exposed 

face of the solid moves inward from a position at x = 0 initially to a 

position x = s(t) at time t. The thickness melted s(t) is a quantity 

of primary interest. This problem is the same as that considered by 

Landau, except that a different heat flux is considered. Landau assumed 

H to be constant and equal to H . 

If the density p, specific heat c, thermal conductivity k, 

and latent heat of fusion L of the solid are constant, the boundary 

value problem describing the process is 

2 
8T 6 T frr , \ 

at"0:-? » (II,1) 

8x 

T(x, 0) = T Q , (11*2) 
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lim T(x,t) = T , (II.3) 
X-*oo 

H(t) = -k (gl) + pL ~ • (II.4) 
5x x=s Y dt 

The last equation is an energy balance at the exposed surface, which 

equates the heat flux H(t) at the surface to the sum of the rate of 

heat conduction into the solid and the rate of latent energy absorption 

at the surface. This boundary condition is seen to hold true during both 

melting and non-melting if the conditions 

— > 0 when T(s,t) = T , (II.5) 
dt - ' m ' ' 

~ = 0 when T(s,t) < T (II.6) 
dt ' m 

are imposed, 

The solution of the boundary value problem is simplified by the 

introduction of the new dimensionless variables 

T - T 
v = v(z,y) = — 2 (II-7) 

fc (T - T ) v m o 

x - s til z = *—*UJ. t . ( I I # 8 ) 

(II.9) 

(11.10) 

» 

y « * 'm 

t 
t* 

m 
> 

" $ 
s 

7" ' 
m 
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/ v dd .# dd pL d s / . . v 

n = n(y) =T" = t •jr = ^ T r « ( I I » 1 1 ; 
r r 7 dy m dt H dt 

These variables are essentially the same as those used by Landau. The 

quantity t* is the time at which the surface temperature reaches the 

melting point when the heat flux at the exposed face is constant and 

equal to H*. According to Landau, 

*I "I-*" 5* (T™-TJ2 = «(1?r)2 (n-12) 

m 4 /H*\2 m o H 

2. L m o 
The relationships 

ax = ai a* + ai & (n.i4) 
at az at ay dt 

/^P- tTm V 9 z d t + t | J ay ' 

ai.aifls -£XT (T -T ) as , („.15) 
6x 9z ax a /at* m o' az ' 

d2! 9 , 6 T , 3z ** ( T m * T o ^ 82v , T T , , > 

~2 • aT fc > ol " — ^ ' 7 2 ' ( I I ° 1 6 ) 

ax ax
m az 

are now substituted into equations (II.1) through (II.6). The result, 

after simplification, is 

2 

9v _ a_v av , v 
ay " a? 9z ' 
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v(z, 0) = 0 , (11.18) 

lim v(z,y) = 0 , (II.19) 
Z -*oo 

Hp(y) - - 2(§* ) 2 = 0 + , , (n.20) 

\i > 0 when v(0,y) = — , (II.21) 

|i = 0 when v(0,y) < — . (11.22) 

fit. 

In these equations M is a dimensionless property parameter given by 

(II.13) and H (y) is a dimensionless heat flux defined by 

Hp(y) = ̂  . (11.23) 

Values of M for some metals are given in Table 1, page 8. 

The dimensionless form of the boundary value problem is convenient 

because only one property parameter occurs in the equations. With the 

equations in this form, it is clear that the melting problem is non-linear 

since y,, which occurs as a coefficient in the differential equation 

(II. 17), depends on the temperature gradient at the surface,, 

A complete solution of the problem cannot be obtained until H(t) 

is specified. However, the temperature distribution in the solid before 

melting first begins and the energy balance for the system can be found 

for any H(t). The energy balance can be written directly or derived by 

application of Gauss's theorem to the heat conduction equation (II.1) = 

The expression derived in Appendix A, page 36, is 



Mater ia l Ml 

Aluminum 2,15 

Beryllium 2.85 

Chromium 2.80 

Copper (pure) 2.29 

Iron (pure) 2.86 

Magnesium 2.04 

Manganese 2.50 

Molybdenum 2,57 

Nickel 2.31 

Platinum 2.34 

Silver 2.38 

Titanium 2.53 

Tungsten 2o78 
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t oo 
r H(t)dt = pc f (T-T )dx (11.24) 
Jo Js(t) ° 

+ p[L + c(T -T )] s . rL m o J 

This equation equates the total amount of heat that has reached the 

exposed surface at time t to the amount of energy that has passed 

through the surface and is stored in the remaining solid plus the amount 

of energy that was carried away by the liquid melt as latent heat and as 

increased energy content of the material which has melted. In many cases, 

the energy balance can be used to draw worthwhile conclusions about the 

melting process. 

Carslaw and Jaeger [l] have solved the boundary value problem for 

the temperature distribution for time t < t , where t is the time at r - m* m 

which melting commences for the first time after heating has begun. Their 

solution can be written as 

T - T = —- f1 H ( t , " /^ exp (- - * - ) d T , t < t . (II . 
o I—;— J 1/2 r 4aT * - m 

/ i tkpc o T ' 

25) 

Equation (II•12) is readily derived from (11.25) by substituting T = T , 

H(t - T ) = H* and t = t* into (II.25). ' m 

Written in dimensionless form, (11.24) and (II.25) become 

y °° { \ 
J Hr(y)dy-2j v(z,y)dz + **&- , (11.26) 

v = 

H (y)dy - 2 I v(z,y)dz + ^ 
u r Jo He 

i r y
 H

r<y--0 .2 

2 /it o J - S 7 2 - e x p ( ' ^ ) d T ' Y ^ y
m - (II-27) 
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In these equations \x* is the steady state value of \x for a system 

where H(t) = H* and is given by Landau as 

p.* = 1/(1 +24 ) , (11.28) 
6 A 

and y is defined as 7m 

ym • V v • ( I I-29) 

Landau reasoned that, if the heat flux is constant, the system will approach 

a steady state where \L is constant and v does not vary with time. He 

solved (11.17), (11,19), and (11.21) for the dimensionless temperature 

v# at this steady state. His resulting solution is 

v* = -L. e x p (_Ml» z) . (11.30) 
e fi 'e 

He obtained (11.28) by substituting (11.30) and H(y) = H* into (11.20). 

The equations given in this chapter apply to any melting process 

that is governed by (II. 1) through (II.6). These equations can also be 

applied to a freezing process if H(t) and L are taken to be negative 

quantities and the inequality in (II.5) is reversed. The dimensionless 

forms of the equations are convenient because the properties of the solid 

are lumped into one parameter M. The only other parameters that will be 

of concern are those needed to describe the heat flux H(t). For this 

reason the equations should be desirable for any number of problems 

where the net heat flux at the surface is a function of time only. For 

instance, if heating is due to convection and the surface temperature 

remains constant at the melting temperature 



11 

H(t) = h(t) [Tg(t) - Tm] , (11.31) 

where h(t) is the convective heat transfer coefficient and T (t) is 
y 

the temperature of the environment-, 
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CHAPTER III 

MELTING OF A SEMI-INFINITE SOLID EXPOSED TO 

A SQUARE WAVE TYPE HEAT FLUX 

The remainder of this work will be devoted to the solution of the 

boundary value problem of Chapter II for a cyclic heat flux of the square 

wave type shown in Figure 1, page 13. The period before melting first 

commences, the period of transient conditions, and a postulated quasi-

steady state condition will be investigatedo 

Pre-melting Period 

Before melting first commences the temperature distribution is 

given by (II.25). This equation has been integrated in Appendix B, page 

38, to obtain the surface temperature history, 

/Spc (T -Ta) 

2H* /A~ 

oo _ _ _ _ _ 

• I Ws
nibjf~n >****' {IllA 

n=0 

S (t/A) = 0 when 0 < t/A < n , (ill.2} 

= 1 when t/A > n , 

where T is the surface temperature and A is the time duration of a 

heat pulse or one half the period of the heating cycle0 

Equation (ill<» 1) has been plotted in Figure 2, page 14, for values 

of t/A to 51o For 50 < t/A < 100 the surface temperature at the begin

ning and end of the heat pulses have been plotted with straight lines 
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-— Cycle 

— Heat Pulse 

— A- A-

•p 

"w 

rA 

# 
W 

Figure 1. Surface Heating History 



Figure 2* Surface Temperature before Melting 



15 

drawn between these pointsa When T = T , 
r s nr 

fik^T (T - T ) £kpc (Tm - T ) /?" 
V S O V H m o /m ( I I I > 3 ) 

2H* /A" 2H* 7A" 

and i t i s seen tha t the time t tha t melting f i r s t commences i s a func-
m 3 

tion of t and Ao The value of t can be found from the curve as m m 

illustrated in Figure 2 by finding the value of t/A at which 

^ickpc (T - T )/2H \fk first becomes equal to /tw /A . 

When t / A is large the solution of (lll.l) is time-consuming 

since t /A is also large. An approximation for large values of t/A 

can be found by using (ill.1) to determine the difference in the tempera

ture T . at the end of a heat pulse and the temperature T « at the 

end of the same heating cycle. The result, after simplification, is 

y^p^si-y 2f^ ^si-y K 
v SL—*£- = _ I Si o_ _ /-«L. + 1 . (III.4) 

2H* JA 2H* y r v 

Calculations used to plot Figure 2 indicate that Jiiikpc (T , - T 2)/2H* /A~ 

converges to a value greater than 0.734 while Jnkpc (T , - T Q)/2H* ^A", 

where T ~ is the surface temperature at the beginning of the given heat 

pulse, converges to a value less than 00786o Since the surface temper

ature rise during a heat pulse must always be greater than or equal to 

the temperature decrease during the remaining part of the cycle, 

yfUkpc (T , - T «)/2H yX" must converge to some value between 0,734 and 

0o786» As a first approximation, îtkpc (T , - T ~)/2H fk will be 

ft / taken as 0o75„ Then for large t /A , noting from Figure 2 that, when 

t = t , T . ~ T 
ITT sl m » 
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«kpc <Tn - TQ) 

2H* Jk 
Y * (o»75 +yf + ljA. (III.5) 

Equation (ill.5) is plotted in Figure 2=> The good agreement with the 

numerical calculations suggests that (ill.5) can be used to obtain accurate 

values of t for It /A greater than 5040 Figure 2 shows that t /A 

is always nearly equal to an odd number such as 97, 99, or 101 for It /k 

greater than 504e Since this is true, (ill.5) can be used to predict a 

first approximation of t /A for large t /A , and the value of t /A 

can then be more accurately found by taking its value to be the next odd 

number that is greater than the value obtained from (ill.5). This method 

will yield more accurate results as t /A increases0 
7 m' 
It can be seen from (III.5) that, as t /A becomes very large, 

It TK -* 2 /t*/A or t -* 4t . Thus, when the period of the heating V m' v m m m ' r J 

cycle is very small, the time t that melting first commences with a 

heat input of a square wave type is approximately four times greater than 

the time t* that melting commences with a constant heat input H . 

The Period of Transient Conditions 

For a time after melting first commences, each succeeding heating 

cycle will affect the solid differently* During this period of time the 

boundary value problem is non-linear except for that portion of time dur

ing a heating cycle when the rate of melting ds/dt is zero0 A numerical 

finite difference solution of the transient boundary value problem was 

employed*, 

Numerical Solution 

Approximate Equations. In writing the finite difference equations 
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that approximate the boundary value problem equations, "i" and "j" are 

used as indices on the time and space mesh and are defined such that 

z = (i-1) Az , i = 1, 2, 3, oo. , (III.6) 

y = (j - 1) Ay , j = 1, 2, 3, ... , (ill.7) 

where Az and Ay are intervals in z and y. Shorthand notations 

such as v(i,j) in place of v(z,y) = v [(i-1) Az, (j-1) Ay] and p,(j) 

in place of n(y) = n[(j-l) Ay] are used0 

The differential equation was approximated by a first order for

ward difference ratio for the time derivative and by first order central 

difference ratios for the space derivatives, 

d - ^ J 1 * ± [v(i,j+D - v(i,J)] , (III.8) 

^ a H 1 * 2k [v<i+1>J> " v(i-i.j)] . d"-9) 

2 
9 V{i>^ « ~ S [ v ( i + l , j ) - 2v( i , j ) + v ( i - l , j ) ] ( III .10) 

dzZ (Az)Z 

so t h a t ( I I0 I8 ) i s approximated by the d i f f e r ence equat ion 

v ( i , j + l ) - v ( i , j ) = ^ ( v ( i + l , j ) - 2 v ( i , j ) + v ( i - l , j ) ( I I I . 1 1 ) 
Az k 

+ Mli(j) Y t v ( i + 1 » j ) " v ( i - l , j ) ] } . 

It is desirable to use a forward difference ratio of higher order 

than one for 3v/3z at z = 0 in (11.21) in order to approximate \L as 
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accurately as possible, A third order approximation for this derivative 

yielded negative values of \L during the solution because of the coarse

ness of the time and space grid used, For a finer grid than that used 

in this work, the third order approximation would be desirable. However, 

since the computer solution of this problem is long, the time and space 

grid was made as coarse as possible for reasonable accuracy and a second 

order approximation for 8v/8z at z = 0 was used, This approximation 

as derived in Appendix C, page 40, is 

($>) •flvlUl,. [3v(l 1J) -4v(2,j) + v ( 3 , J ) ] t ( m > 1 2 ) 
\az/ z = 0 6z L 2 Az J 

In solving differential equations by finite difference techniques, 

the time and space grid must be chosen so that the solution is stable, 

Stability of the solution means that numerical inaccuracies which occur 

during the process of solution, such as round-off errors, are damped out 

instead of being magnified. According to Sunderland and Grosh [9], the 

stability requirements for (ill.11) are 

—^ < 1/2 , (III.13) 
(Az)2 

[M|i(j)] . ^ < 1 o (III.14) 
L r \J / Jmaximum 2 - ' 

o 
In the solution, Ay/(Az) was taken as 1/2. The approximation of the 

2 
boundary value problem is, for Ay/(Az) = l/2 , 

v(i,j+l) -I/[i+!fclliA5]v(i+l,J) +[i.aiilU£]v(i-l,j)}, (III.15) 
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v ( i , l ) = 0 , ( I I I . 1 6 ) 

lim v ( i , j ) = 0 , ( I I I . 1 7 ) 
i -foo 

H(j) - H r ( j ) - [ 3 v ( l , j ) - 4 v ( 2 , j ) + v ( 3 , j ) ] / A z , ( I I I . 1 8 ) 

j i ( j ) > 0 for v ( l , j ) = 1/ fT , ( I I I . 1 9 ) 

j i ( j ) = 0 for v ( l , j ) < 1//5T . ( I I I . 2 0 ) 

An expression for the dimensionless melted thickness can be found 

by noting that, by virtue of its definition, equation (II.10), 

d(y) - f M y . (III.21) 
Jo 

Using an approximate numerical i n t e g r a t i o n , ( i l l . 2 1 ) becomes 

d ( j + D z d ( j ) + [ j i ( j+ l ) + J i ( j ) ] Ay/2 . ( I I I . 2 2 ) 

Method of Solution,, The computer program used in this solution 

is included in Appendix D, page 41, Values of 0o005 and 0.1 were used 

for Ay and Az9 respectively. The selection of this grid size was 

based on (ill.13) and (ill.14) and on an inspection of the temperature 

and melting rate gradients found by Landau for H(t) - const, = H . 

Landau's work was used as a criterion for selecting the grid sizes^ 

because the heat flux is constant during the first heat pulse, 

Computations were carried to values of i large enough to make 

/ \ -7 v(i,j) < 5 x 10 before going on to computations for j+lo The initial 

values v(i,l) = 0, |i(l) - 0, and d(l) = 0 were used to begin computations 
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and melting was assumed to begin at the time y = (j-1) Ay, if 

|v(l,j) - 1/ /iT | was less than both |v(l,j-l) - 1/ fit \ and 

i v ( i , j + n - 1 / y ^ r i . 

Results of Solution,, The results of the numerical solution are 

shown in Figures 3a through 7, pages 21 - 26» A check on the accuracy 

of the computer program was made by solving the boundary value problem 

for H(t) = H* and values of two and ten for M and comparing the 

results with those obtained by Landau,, Agreement between Landau' s 

results and those obtained here is generally good even at small values 

of melting rate where the difference is largest (Figure 3a and 3b), This 

close agreement supports the choice of the time and space grid used in this 

work, at least for conditions where H(t) is a continuous function. For 

periodic heat input functions such as that studied in this work, errors 

such as those at low melting rates may accumulate,, However, numerical 

predictions of the time that melting first commences, for the square wave 

type heat input, agreed with values obtained from Figure 2 within the 

accuracy of the ploto This indicates that the time and space grid chosen 

for this work is fine enough to yield results of adequate accuracy,, 

The predicted melted thickness d for M = 2»0 and values of 

A/t from 0o25 to 200 are shown in Figure 40 It was found that, for a 

given heating time, the dimensionless thickness melted decreased with 

decreasing A/t and appeared to approach a limit with A/t = 0o A 

comparison of the results in Figure 4 with those shown in Figure 3a shows 

that the thickness melted when H(t) is of the square wave type is always 

less than one half the thickness melted when H(t) = const0 = R '» The 

curves are plotted as straight lines during the times melting is occurring, 
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because the scale of the plot is too small to show the actual gradients 

that exist during this time. The actual gradients are shown in Figure 5 

which indicates that an increase in M increases the thickness melted, 

and that this increase becomes smaller as M increases, 

Figure 6 is a plot of the thickness melted during three heat 

pulses in the time from y = 4.0 to y = 14.0. Three successive pulses 

are shown for A/t = 2.0 and three pulses spaced approximately even in 

time are shown for A/t = 0.25. As time increases, the amount of melt-
' m ' 

ing during each pulse tends to become equal for successive pulses0 The 

tendency to approach this condition is greater as A/t decreases, 

although, at the end of the time range considered, the system appears 

closer to this condition when A/t = 2.0 than when A/t = 0.25. Inflec-
' m ' m 

tion points in the curves for two of the pulses indicate that the melting 

rate reached a maximum at these times. The melting rate curves for 

these two pulses are shown in Figure 7 where another seemingly peculiar 

result is indicated. During the heat pulse, the melting rate for these 

pulses and, although data is not shown, all except the first few of the 

pulses for all values of A/t exceeds the maximum rate attained when r ' m 

H(t) = const. = H [the steady state value given by (II.28)]. Figure 7 

also shows that the maximum melting rate occurs earlier in each successive 

pulse and that at the end of the pulse the rate is decreasing*, This indi

cates that for large enough times, the ratio \L/\L may approach a value 

of one near the end of the pulse, which seems physically reasonable. 

Period of Quasi-Steady Conditions 

The results of the numerical solution suggest that the system may 

eventually approach a state where the amount of melting during successive 
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pulses is equal and the temperatures and melting rate are periodic func

tions of time* This will be postulated to be the quasi-steady state that 

the system approaches„ 

In the investigation of this postulated state, the quantities 

defined in Figure 8, page 29, are usedo As indicated in the figure, y,Q 

and y«0 are the values of y at the beginning of two successive heat 

pulses, y,, and y«, are the values of y at the end of the same heat 

pulses, ym and ym are the values of y at the instant melting begins 

anew during the pulses, r is the fraction of the heat pulse that has 

occurred at time y, and f. and f~ are the values of r at the times 

Yml a n d Ym2 resPectivelY« 

Using (11.26), the increase in thickness melted during a cycle is 

a ( y2i ) - a ( W a<y2i> -"(yap) a ( y 2 i ) - " ^ ,TTT „„. 
* "~ * ~ # \111« £3) 

^e ^e ^e 

Y2i r 
= J Hr(y)dy - 2 r~v(z,y21)dz - P v ^ y ^ d z 

L o o y li 

A f00 
= pr" - 2 J [v(z,y21) - v(z,y11)j dz 

A 

'm w o 

But since the temperatures are periodic, this last integral is zero and, 

for any heat pulse occurring after quasi-steady conditions have been 

reached, 

o^ll' -o^ml* . A 
» - + . (III.24) 

The value of f2 can be found from (ll026) and the relation 
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6 (y ~) " d(vii) = °9 ^ h e r e s u lt, after substituting v(z,y,,) = v(z,y21), 

i s 

A f» CO 

f 2 t ^ = 2 J [ v ( z ' y m 2 } - v ( z ^ 2 1 ^ d z * (HI.25) 
m ° 

Then, since f» i s posi t ive or zero, 

I v(z>Yml)
 d z > | °° v ( z , y n ) dz . ( III .26) 

This is a seemingly peculiar characteristic, since the energy content of 

the solid is less at the end of a heat pulse than at the time melting 

began during the pulse. To investigate the situation further, consider 

the melting speed 

£ • ? % - l - 2 % / "v (z ,y )d« , y0<Y<y1 ( (n i .27) 
*e e 

obtained from (il.ll) and (ll.26)0 As melting begins in a heat pulse, 

H = 0 and, by (III.27), 

h r *« -1/2 d* -o 

As \i increases from zero, the derivative of the energy content begins 

to decrease and the energy content rises for a period of timee Since the 

energy content at the end of the pulse must be less than or equal to that 

at the time melting started, it must have a maximum value sometime during 

the pulse^ As the heat content passes through its maximum and decreases, 

p,/̂  becomes greater than unity as predicted by the numerical solution. 
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Although the postulated conditions of periodic temperatures and 

melting rates require that p/p.* be greater than unity sometime during 

a heat pulse? they do not by themselves require ji/p,* to be a maximum 

during any pulse0 Actually, the melting rate becomes a maximum only 

when the energy content passes through an inflection [equation (ill.27)] 

as it would if the temperatures in the solid approach steady values 

during the latter stage of the heat pulse0 It may be possible that the 

temperature distribution at the beginning of a heat pulse is such that 

the system will have time to approach a steady state before the pulse 

endSo If this happens, JI/JI* will approach unity according to (111,27), 

the temperatures will approach the steady state values 

v * = -^— exp (-MIL* z) (111,28) 
e J — r r e ' 

t^it 

found by Landau, and typical conditions during a cycle will be as shown 

in Figure 9, page 32» 

For a cycle such as that in Figure 9, the thickness melted at the 

end of the heat pulse can be found by substituting y = y01 and v = v* 

into (lI,26)o The result^ after integrating, is 

.* 
0(7,) Yi + A/t? 
— * - = -L-j—a - - — ^ - — . (111.29) 

M<e ,/n Mp,e 

Equation (lll„29) is valid only at times y.. at the end of heat pulsese 

Values computed from this equation have been plotted in Figure 4, and 

straight lines have been drawn through theme The values of 6 at the 

end of heat pulses should approach these lines asymptotically if the system 
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is approaching the quasi-steady state postulated here. The heat pulse end 

points may approach these lines in the actual case for large enough y. 

If the system achieves a quasi-steady state where the temperatures become 

periodic, but steady conditions are not approached at the end of the heat 

pulses; the asymptotes would be displaced either upward or downward, but 

the slopes would remain equal to p.V2. 

Equation (ill.28) can be used to obtain an implicit expression 

for the fraction f of the heat pulse that has expired at time y . The 

result, as derived in Appendix E, page 48, is 

1 = fr exp (1+f) 
A / t 

m 

J' exp <-

A/ t 
6 - m (1+f) 

'erfc(&)d& ( I I I . 3 0 ) 

J 

WT 

Equation (ill.30) was solved for values of A/t of 0.25, 0.5, 

loO, and 2«0 and the results were fitted with a second degree polynomial 

in A/t*. The resulting equation is, for 0.25 < A/t* < 2.0, 

f = 0.343 - 0.109 Ar + 0.0064 \ 
t t 
m m 

(III.31) 

Equation (ill.31) predicts values of f within 0„4 per cent of those 

calculated from (III.30). The values of f, as predicted by the numerical 

solution, decrease to a value slightly less than those predicted by 

(III.30). 



34 

CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

Primary conclusions reached in this study and recommendations for 

an extended study of the problem are: 

(1) The time and space grid size used in the numerical solution 

is fine enough to yield results of adequate accuracy, at least for the 

case where the heat flux is such that melting continues once it commences0 

If melting stops and then begins anew several times, errors in choosing 

the time that melting begins anew as the nearest indexed time on the grid 

may become cumulative if the time choice is not random0 A comparison of 

results obtained using a finer time and space grid with those obtained 

here should indicate whether the error is cumulative or not» 

(2) As was expected, the thickness melted when the heat flux is 

a square wave type was found to be always less than one half that melted 

when the heat flux is constant and equal to the peak of the square wave 

type flux0 

(3) Results of the numerical solution indicate that the system 

may approach a physically reasonable quasi-steady state where the melting 

rate and the temperatures are periodic and the amount of melting is the 

same for each cycle0 

(4) When periodic conditions exist in a solid exposed to a square 

wave type heat flux, the ratio p/p, must become greater than unity some

time during a heat pulseo 

(5) When periodic conditions exist and a steady state is approached 
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before a heat pulse ends, ji/V* must pass through a maximum sometime 

during a pulse. 

(6) The postulated quasi-steady state, where periodic conditions 

exist and where steady state conditions are approached before a heat pulse 

ends, appears logical since the numerical solution indicates that \L/\L* 

does become greater than unity and passes through a maximum. However, 

other conditions can possibly cause p/p.* to behave in this way8 For 

this reason, the results of the numerical solution should be extended to 

larger exposure times to determine if the system does approach the postu

lated quasi-steady state0 
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APPENDIX A 

DERIVATION OF ENERGY BALANCE 

According to Landau [2], Gauss' s theorem applied to the heat con

duction equation (ilol) gives 

>415 - Kl 
= J c Lkax 

dxdt (A. l ) 

d t + pcTdx = 0 , 

where D is any region in the x, t - plane to which the theorem applies, 

and C is its boundary,, When D is the semi-infinite region bounded by 

the lines t = 0 and t = t, and the curve x = s(t), (A.l) becomes 

t. 
1 k(j£) dt + lin. f k ( ^ ) dt 

a x x=s(t) a-*°° \ 9 x *=a 

+ lim 
a -*°° E s ( t x ) 

p c T ( x , t , )dx + P° "1 
p cT d x 

a ° J 

(A.2) 

+ J pcT ( s ( t ) , t ) ^ dt = 0 

The second integral is zero at all times, since the temperature of the 

solid is constant initially,. In the last integral ds/dt = 0 except 

when T(s(t),t) = T , and this integral, therefore, equals pcT s(t,). 

After simplification, (A.2) becomes 
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f H(t) dt = pc P (T(x,t) - T ) dx (A.3) 
Jo Js(t) ° 

+ p [L + c(Tm - TQ)] s(t) , 

where (II.4) has been used to evaluate the first integral in (A.2) and the 

subscript has been dropped from t,. 



38 

APPENDIX B 

SURFACE TEMPERATURE BEFORE INITIAL MELTING 

The surface temperature before melting first commences is given 

by (11.25) with x = 0 as 

T.-T0.-^/
tHfcj7iU, (B.1) 

y-rckpc o T ' 

where T = T(o,t) is the surface temperature. Using the convolution 
s 

of t " 1 ' 2 and H ( t ) , t ' 1 ' 2 * H ( t ) , for J T " 1 ' 2 H(t - T ) C!T, (B. l ) 

can be r e w r i t t e n as 

T . T_ t - 1 / 2 _ > _ H ( t ) 

^itkpc s o 
(B.2) 

The Laplace transform of (B.2) is 

[Ts - TO] ^ r t - 1 / 2 U [ H ( t ) i (B<3) 

/rckpc 

= &fi{fl*\l + exp(-As)] /s> 

/itkpc 

H * 1 

/kpc s3'2 [1 + exp(-As)] 

Using a Maclaurin series expansion for l/[l + exp(-As)] , (B.3) becomes 

* CO 

o^[T 6-T o]=-^ I (-l)»SaLlfl . (B.4) 
/kPc

 n=0
 s 
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Then, taking the inverse transform of (B.4), 

* » S (t) /TnA 
T - T =-%=- V ( - l ) n - D A _ J [ ? ( B - 5 ) 

fipc n^0 ro/2) 

where T(n) is the Gamma function and S (t) is the unit step func

tion defined by 

S A(t) = 0 when 0 < t < nA , 
nA ' 

= 1 when t > nA . 

Equation (B.5) can be made dimensionless by rearrangement to give 

Jikpc (Ts - TJ 

2H yr n 
n=0 

- = Z(-DnSn(t/*) Jf^ • (B.6) 
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APPENDIX C 

FORWARD DIFFERENCE APPROXIMATION 

The equation1 of an "n"*-"" order forward difference approximation 

of a first order derivative is given by Sunderland and Grosh [9] as 

6v 
dz z = iAz 

y=jAy 

= 77 l>i Az 
1 A2 J A3 
2 L Vk + 3 L Vk 

.. ± - A v. J , 
n kJ ' 

(C.l) 

where 

Avk = v(i+l,j) - v(i,j) , 

A vk = v(i+2,j) - 2v(i+l,j) + v(i,j) , 

A v k = v(i+3,j) - 3v(i+2,j) + 3v(i+l,j) - v(i,j) . 

Combining these terms for a second order approximation, 

^aH1 = h [- 2 v < i + 2 ' ^ + 2v(i+lf j) - § v(i,j)] , (C2) 

av 
dz z=0 

« dzlhll s . £ 3 v ( l , J ) - 4 v ( 2 t J ) + v ( 3 t J ) -| f ( c # 3 ) 
6z 2 Az 
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APPENDIX D 

COMPUTER PROGRAM 

The complete computer program used in this study is presented 

below in ALGOLo Symbols used and special characters employed for the 

computer program used for this work ares 

V dimensionless temperature v 

Z dimensionless distance z 

MU dimensionless rate of melting 

SIGMA dimensionless thickness melted 

ATM dimensionless heat pulse time A/t 

HR dimensionless heat flux H(t)/H 

VOM dimensionless melting temperature 

M property parameter M 

I distance subscript integer 

J time subscript integer 

K integer limit of I 

P integer limit of J 

N integer number of increments of time Ay in each heat pulse 

S integer number of increments of time Ay up to end of heat 

pulse in the cycle calculations are proceeding for 

R,T integers used to control print out 

$ indicates end of statement or used as a prefix in a command 

statement 

_7 
** indicates powers of ten (5»0**-7 = 5.0 x 10 ) 
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BAC-220 STANDARD VERSION 

COMMENT MELTING OF SEMI INFINITE SOLID, MELT REMOVED $ 

INTEGER I,J,K,N,P,R,S,T $ 

TRANS.. READ (^DATA) $ 

ARRAY V(K+5,3),MU(3),SIGMA(3),Z(K+5) $ 

FOR I=(1,1,K+1) $ 

V(I,1)=0.0 $ 

SIGMA(1)=0.0 f> 

WRITE (^TITLEl) $ 

WRITE (##ANS1,FMT1) f> 

WRITE (#?TITLE2) $ 

WRITE (££TITLE3) $ 

VOM=(1.0)/(SQRT(3.14159)) $ 

N=FIX((200.0)(ATM)) $ 

S=N $ 

T=l f> 

J=l $ 

L00P1.. 1=1 $ 

L00P2,. V(l+l,2)=(V(l+2,l)+V(l,l))/(2.0) $ 

IF V(I+1,2) GTR (5.0**-7) f> 

BEGIN 1=1+1 $ 

IF I LSS K $ 

GO TO LOOP2 $ 

WRITE (^TITLEA) $ 

GO TO TRANS END $ 



FOR I=(I+2,1,K+1) 

V( I ,2 )=0 .0 

IF J LEQ S 

HR=1.0 

IF J GTR S 

HR=0.0 

V(1 ,2 )=( (3 .0 ) (DZ) (HR)+(18 .0 ) (V(2 ,2 ) ) - (9 .0 ) (V(3 .2 ) ) 

+ ( 2 . 0 ) . ( V ( 4 , 2 ) ) ) / ( 1 1 . 0 ) 

IF J EQL (S+N) 

S=S+2N 

J=J+1 

IF J GTR P 

GO TO TRANS 

IF V( l ,2 ) LSS VOM 

BEGIN FOR I=(1,1,K+1) 

V(I ,1 )=V(I ,2 ) 

GO TO LOOP1 

ERRl=ABS(V(l, l)-VOM) 

ERR2=ABS(V(1,2)-V0M) 

IF ERR2 LSS ERR1 

BEGIN FOR I=(1,1,K+1) 

V(I,1)=V(I,2) 

IF (J-1) EQL S 

BEGIN Y=(DY)(FLOAT(J)-1.0) 

IF T EQL 1 



BEGIN T=2 

FOR I = ( l , l , K + l ) 

BEGIN Z ( I ) = ( D Z ) ( F L 0 A T ( I ) - 1 . 0 ) 

WRITE {^ANS2,FMT2) END 

WRITE (#f r lTLE4) 

WRITE (#(TITLE5) 

WRITE (# f r lTLE6) 

WRITE (# f r lTLE7) END 

I F T GTR 1 

WRITE (##ANS3,FMT3) 

GO TO L00P1 END 

MU(1)=0.0 END 

IF ERR2 GEQ ERR1 

BEGIN J = J - 1 

M U ( 1 ) = H R - ( ( 3 . 0 ) ( V ( 1 , 1 ) ) - ( 4 . 0 ) ( V ( 2 , 1 ) ) + V ( 3 > 1 ) ) / ( D Z ) 

Y=(DY)(FL0AT(J) -1 .0) 

I F T EQL 1 

BEGIN T=2 

FOR I = ( l , l , K + l ) 

BEGIN Z(I)=(DZ)(FL0AT(I)-1.0) 

WRITE (##ANS2,FMT2) END 

WRITE (£#TITLE4) 

WRITE (##TITLE5) 

WRITE (##TITLE6) 

WRITE ( ^ T I T L E 7 ) END 

I F T GTR 1 
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WRITE (#ANS3,FMT3) $ 

R=J i 

L00P3.. 1=1 $ 

L00P4.. V(l+l,2)=(0.5+((M)(MU(l))(DZ)/4.0)))(V(l+2,l))+(0.5-((M). 

(MU(1))(DZ)/(4.0)))(V(I,1)) f> 

V(l,2)=V(l,l) $ 

IF V(I+1,2) GTR (5.0**-7) $ 

BEGIN 1=1+1 $ 

IF I LSS K $ 

GO TO L00P4 f> 

WRITE (#TITLEA) $ 

GO TO TRANS END $ 

FOR I=(I+2,1,K+1) $ 

V(l,2)=0.0 $ 

MU(2)=HR-((3.0)(V(1,2))-(4.0)(V(2,2))+V(3,2))/(DZ) $ 

SIGMA(2)=SIGMA(1)+(MU(2)+MU(1))(DY)/(200) $ 

FOR I=(1,1,K+1) $ 

V(I,1)+V(I,2) $ 

MU(1)=MU(2) $ 

SIGMA(1)=SIGMA(2) f> 

J=J+1 $ 

EITHER IF (J-1) EQL S $ 

BEGIN Y=(DY)(FLOAT(J)-Io0) $ 

WRITE (##ANS4,FMT4) # 

GO TO LOOP1 END $ 

OR IF J EQL FIX((S+l+R)/(2)) $ 

BEGIN Y=(DY)(FLOAT(J)-100) # 
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WRITE ($ANS4,FMT4) f> 

R=R+10 END END $ 

EITHER IF MU(1) LSS 0.0 f> 

BEGIN WRITE (#TITLEB) # 

GO TO TRANS END # 

OR IF MU(2) LSS 0.0 # 

BEGIN WRITE ($TITLEB) $ 

GO TO TRANS END END $ 

IF J GTR P $ 

GO TO TRANS $ 

GO TO L00P3 f> 

INPUT DATA(K,M,P,ATM,DY,DZ) $ 

OUTPUT A N S I ( K , M , P , A T M , D Y , D Z ) $ 

OUTPUT A N S 2 ( Y , Z ( I ) , V ( I , 1 ) ) $ 

OUTPUT A N S 3 ( Y , V ( 1 , 1 ) ) $ 

OUTPUT A N S 4 ( Y , M U ( 1 ) , S I G M A ( 1 ) ) $ 

FORMAT T I T L E A ( B 3 1 , *I< TOO SMALL* , W 4 ) $ 

FORMAT . T I T L E B ( B 3 1 / N E G A T I V E MU* , " 4 ) # 

FORMAT T I T L E 1 ( B 1 9 , K , B 5 , M , B 5 , P , B 5 , ATM , B 5 , DY , B 5 , DZ , W 6 ) f> 

FORMAT T I T L E 2 ( B 2 6 , " I N I T I A L MELTING THRESHOLD*,W6) $ 

FORMAT TITLE3(B23, *Y*,B12,*Z*,B13,*V*,W2) $ 

FORMAT T I T L E 4 ( B 2 6 , * M E L T I N G THRESHOLD V A L U E S * , W 6 ) j> 

FORMAT TITLE5(B23,*Y*,B26,(V1*,W2) $ 

FORMAT T I T L E 6 ( B 2 8 , * V A L U E S DURING M E L T I N G * , W 6 ) $ 

FORMAT TITLE7(B16,*Y*,B20,*MU*,B18,*SIGMA*,W2) 0 
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FORMAT FMT1(B18,113,1X6.1,117,1X6,2,1X8.4,1X6.2,W2) i 

FORMAT FMT2(B20,1X6.4,1X12.2,1X17.8,WO) $ 

FORMAT FMT3(B20,1X6.3,1X29.8,W6) f> 

FORMAT FMT4(B12,1X7.4,1X22.6,1X22.6,W0) f> 

FINISH f> 
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APPENDIX E 

QUASI-STEADY STATE SOLUTION FOR MELTING 

TIME DURING A PULSE 

For the time interval y,, < y_ < y~0, the temperature distribu

tion as given by Carslaw and Jaeger [10] can be written as 

^--T^^'^bt^ (E,1) 

+ exp E ^ ] > -
where y, = y-y,, and v(z,y,,) = v* as given by (III.28). Equation 

(E.l) can be rearranged to give 

"-"•'-r^ftC-t-^-^l •"• 

• C - [- ̂  - T] «) • 
where P = l/M + 2/ Jn . Substituting z' = z + 2 7y u - 2yj ,p in the 

first integral and z* = - z + 2 Jyl u - 2y /p in the second, the solu

tion of (E.2) for yT = A/'t* is 

'I ' m 

•,•"«, = ̂ K^- ')*" t( '^-FM:) ( E•3 , 
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An expression for the temperature distribution for y _ < y < y _ 

can be found by combining equations from Carslaw and Jaeger [11] by the 

principle of superposition. If yTT = y - y~0 , the resulting equation 

is 

v ( z > y n ) = — - = z j v(z'>y2 0^ \ e x P 
2 /*yn ° ^ 

9" 
. (z-zM2 

4y I I J 
(E.4) 

+ exp [- '*&•¥ * & ierfc 
2 / y rn 

where ierfc is the notation for the integral of the error function com

plement, and 

-l/2 2 
ierfc(x) = -K ' exp(-x ) - x erfc(x) . (E.4) 

S u b s t i t u t i n g (E.3) i n t o (E.4) with z = 0 and y = f A / t g ives 
I I 2 "' m 

v (° j Ym2 ) = "7= = r- ; it I J 
m2 £" 2,,/y/PVo 

exp 
(z' ) 2 z l 

4f9A/t* " P 2. m 
( E . 5 ) 

Kfr£ 

P 2 J 
e r fc dz' 

y ^ 2 ,/A/t 

J CO 

exp 
" / o 2 . A/t*"* 

4f A / t ¥ P 
2 ' m P 2 . J 

er fc (-s 

+ 
2 [tfl 

dz' ^ + 

f 9 A A * 
z ' m 
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/ A/t*\ 
Substituting z' = -2 (^7^ 6 — J into the first integral and 

/ A/t^\ 
z1 = 2 ( .M/t* b —J into the second integral ahd dropping the sub

script on f„, (E.5) simplifies to 

1 = [< exp (1+f) 
A/t*^ 
' m 

fiT r 
jry* 

exp 

A/t; 
t (1+f) 

erfc(6^d6 (E.6) 

m 
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