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Prudius and Yetkin Íleri, with whom I had several stimulating and enjoyable conversations

about research, technology, and life. I would like to thank my dear friends Buǧra Gedik,
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SUMMARY

In this thesis, we address a number of operational challenges encountered in two

emerging types of practices in the procurement of truckload transportation services: col-

laboration and auctions. The main objective in these two types of procurement strategies

is identifying and exploiting synergies between the lanes of a carrier’s network. In shipper

collaboration, we take the perspective of a shipper who collaborates with other shippers to

seek synergy between his lanes and other participants’ lanes. On the other hand, in pro-

curement auctions, although we take the carriers’ perspective in our work, a shipper tries

to discover the carrier (or carriers) whose network has the most synergy with his lanes.

The first part of the thesis concerns the solution of optimization problems arising in col-

laborative transportation procurement networks where a group of shippers comes together

and jointly negotiates with carriers for the procurement of transportation services. In the

highly fragmented truckload transportation industry a substantial fraction of truck move-

ments involves empty trucks, i.e., involves moves that reposition trucks. However, reducing

the amount of truck repositioning is difficult, because the total repositioning movements of

a carrier depends on the interactions between the shippers the carrier is serving. Through

collaboration, shippers may be able to identify and submit sequences of continuous loaded

movements to carriers, reducing the carriers’ need for repositioning, and thus lowering the

carriers’ costs. A portion of the carriers’ cost savings may be returned to the shippers in

the form of lower prices. We discuss optimization technology that can be used to assist in

the identification of repeatable, dedicated truckload continuous move tours with little truck

repositioning. Timing considerations are critical to practical viability and are a key focus

of our efforts. We demonstrate the effectiveness of the algorithms developed on various

randomly generated instances as well as on instances derived from data obtained from a

strategic sourcing consortium for a $14 billion dollar sized US industry.

The second part of the thesis concerns the pricing of transportation services offered
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by the trucking companies (carriers). We look at the bid determination problem faced by

carriers in transportation procurement auctions where a shipper requests quotes from the

carriers and purchases the services of the lowest bidder. Determining the optimal bid values

for a carrier poses several challenging research questions. The specific problem being studied

is the bid valuation problem in the case where the carrier must place bids on multiple lanes

simultaneously. For each lane, the carrier’s bid must be high enough to make it profitable

for the carrier but low enough to give the carrier a good chance of winning that lane. The

difficulty is that the operating cost of the carrier depends on the set of lanes the carrier

wins which is not known until the end of the auction. We model the problem as a stochastic

optimization problem and propose a coordinate search algorithm for solving this problem.

Then, we conduct a simulation study to demonstrate the positive impact of the approach

on carrier profits.

In both problems considered in the thesis, the central issue is identifying and exploiting

synergies between the lanes of a carrier’s network.
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CHAPTER I

INTRODUCTION

Cost-effective transportation of goods is critical to the success of many of today’s man-

ufacturing and retail companies. A significant portion typically involves truckload trans-

portation, which is purchased from truckload carriers who charge their customers based

on the distance between the pickup and delivery locations of the load and the number of

truckloads to be transported. Intense competition has caused carriers to operate with low

profit margins. As a result, carriers constantly seek ways to reduce operating costs. A

substantial fraction of a truckload carrier’s operating costs comes from the repositioning

movements of its trucks (no revenue is generated as the truck moves empty, but costs are

incurred). Consequently, minimizing repositioning movements of trucks is one of the pri-

mary objectives of dispatchers of truckload carriers. Unfortunately, this is easier said than

done. Total operating cost of a carrier is a result of the carrier’s overall interaction with its

customers. The cost of serving a single lane depends not only on the distance between the

origin and destination of that lane but also its relation to other lanes served by the carrier

(since those impact the necessary repositioning movements). Therefore, identifying and ex-

ploiting synergies between the lanes of a carrier’s network is key to reducing transportation

related operating costs.

Recent developments in information and communication technologies are opening the

way for new opportunities for improving the current business practices. Transportation

procurement is no exception. Internet allows companies, both shippers and carriers, to

communicate in a much faster and more cost effective way than they used to. Recently,

transportation procurement using internet enabled logistics networks or exchanges has been

on the increase. In this thesis, we try to address a number of operational challenges en-

countered in two emerging classes of logistics networks with two separate but closely related
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principles: collaboration and auctions. The common focal point in these two classes pro-

curement practices is identifying and exploiting synergies between the lanes of a carrier’s

network. In collaborative logistics networks, e.g. run by Elogex, Nistevo, or Transplace, a

shipper seeks synergy between his lanes and other participants’ lanes. On the other hand,

in procurement auctions, a shipper tries to discover the carrier (or carriers) whose network

has the most synergy with his lanes.

The first part of the thesis concerns the solution of optimization problems arising in col-

laborative logistics networks where a group of shippers come together and jointly negotiate

with carriers on a long-term contract basis for the procurement of transportation services.

Collaboration, in a variety of forms, is a fairly recent business practice which is becoming

increasingly popular. The ever increasing pressure to operate more efficiently leads com-

panies to seek and adopt solutions beyond the boundaries of traditional business practices.

Instead of focusing on internal business processes, collaboration focuses on system-wide

performance and aims to take advantage of synergies with collaborative partners. In col-

laborative logistics networks, the members (shippers) try to identify dedicated, repeatable

continuous move routes for which carriers tend to offer lower prices. Due to the size of the

network and the constraints on the routes that can be formed, determining the best set of

collaborative continuous move routes presents a challenging optimization problem.

We are the first to study the problem of determining the optimal set of collaborative

continuous move routes. In this thesis, we introduce the resulting optimization problem,

namely the Lane Covering Problem (LCP), and a number of its constrained variants and

propose and analyze a variety of solution approaches. A key focus is on timing considerations

since they are critical to practical viability. We propose a solution approach utilizing greedy

construction heuristics and local improvement. We demonstrate the effectiveness of the

proposed solution approaches on various randomly generated instances that mimic real-life

supply chain structures, and on instances derived from real-life data.

The second part of the thesis concerns the pricing of transportation services offered by

the truckload carriers participating in transportation procurement auctions where a shipper

requests quotes from the carriers and purchases the services of the lowest bidder. Auctions

2



in transportation procurement have been mostly analyzed from the shipper’s perspective by

researchers and practitioners alike. The carriers participating in transportation procurement

auctions face significant challenges. Their bids must be high enough to make it profitable

for the carrier but low enough to give the carrier a good chance of winning the lane(s)

involved in the auction. The availability of effective tools and strategies to help the carriers

determine bids in procurement auctions is limited. Development of such tools and strategies

would help not only the carriers but also the shippers in terms of reduced transportation

costs, improved service, and so forth.

The specific problem studied is the bid pricing problem in the case where the carrier

must place bids in multiple independent single lane auctions simultaneously. The difficulty

is that the operating cost of the carrier depends on the set of lanes the carrier wins which

is not known until the end of the auction. We discuss carrier bidding models for a carrier

considering the risk of losing lanes to another carrier. The emphasis is on incorporating the

bidding behavior of the competitors in order to account for the uncertainty involved with

the set of lanes the carrier ends up winning.

We are the first to study simultaneous transportation procurement auctions from a car-

rier’s perspective. The existing literature on carrier bidding strategies has focused on either

combinatorial or sequential auction settings. We assume that the lowest price quoted by the

carrier’s competitors is a random variable and formulate a stochastic optimization problem

with the objective of maximizing the carrier’s expected profit. We devise and implement

an iterative optimization algorithm and demonstrate its efficiency and effectiveness as com-

pared to general purpose optimization algorithms on randomly generated instances. We

also show the positive impact of our algorithm on the carrier profits through a simulation

study.

The thesis is organized as follows. Chapter 2 covers shipper collaboration and Lane

Covering Problems. Section 2.3 discusses the solution of cardinality and length constrained

variants of LCP which ignore timing considerations. Section 2.4 extends the discussion

to the time constrained LCP which incorporates timing considerations into the problem.

3



Chapter 3 presents bidding algorithms for carriers participating in simultaneous transporta-

tion procurement auctions. Chapter 4 concludes the thesis with a summary of our findings

and possible future directions.
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CHAPTER II

SHIPPER COLLABORATION

2.1. Introduction

The growing interest in collaborative logistics is fueled by an ever increasing pressure on

companies to operate more efficiently, the realization that suppliers, consumers, and even

competitors, can be potential collaborative logistics partners, and the connectivity provided

by the Internet.

In the trucking industry, shippers and carriers are continuously facing pressures to op-

erate more efficiently. Traditionally shippers and carriers have focused their attention on

controlling and reducing their own costs to increase profitability, i.e., improving those busi-

ness processes that the organization controls independently. More recently, shippers and

carriers have focused their attention on controlling and reducing system wide costs and

sharing these cost savings to increase every one’s profit. A system wide focus, e.g., a col-

laborative focus, opens up cost saving opportunities that are impossible to achieve with an

internal company focus. A good example is asset repositioning. To execute shipments from

different shippers a carrier often has to reposition its assets, i.e., trucks. Shippers have no

insight in how the interaction between their various shipments affects a carrier’s asset repo-

sitioning costs. However, shippers are implicitly charged for these repositioning costs. No

single participant in the logistics system controls asset repositioning costs, so only through

collaborative logistics initiatives can these costs be controlled and reduced.

Collaborative transportation networks, such as those managed by Nistevo [61] and

Transplace [80], are examples of collaborative logistics initiatives focused on bringing to-

gether shippers and carriers to increase asset utilization and reduce logistics costs. Services

offered range from identifying continuous moves, i.e. consecutive loaded moves with little

or no repositioning in between, or collaborative continuous moves to identifying repeatable

dedicated continuous move tours to consolidation of in- and outbound transportation.

5



As an example of the value of collaboration, consider a repeatable dedicated 2,500-mile

continuous move tour set up for two of the members of the Nistevo network (See Figure

2.1). The tour visits distribution centers, production facilities, and retail outlets. The tour

has resulted in a 19% savings for both shippers (over the costs based on one-way rates). At

the same time, the carrier is experiencing higher margins through better asset utilization

and lower driver turnover through more regular driver schedules.

Figure 2.1: Collaborative continuous move example from Nistevo.

Unfortunately, identifying tours minimizing asset repositioning costs in a collaborative

logistics network is no simple task. When the number of members of the network, and thus

the number of truckload movements to consider, grows, the number of potential tours to

examine becomes prohibitively large. In that case, optimization technology is needed to

assist the analysts.

In this chapter, we discuss the development of optimization technology that can be

used to assist in the identification of repeatable, dedicated truckload tours. This setting is

relevant for companies that regularly send truckload shipments, say every day of the week,

and are looking for collaborative partners in similar situations.

The underlying optimization problem seeks to find a minimum cost set of tours covering

all lanes (regularly scheduled truckload movements) submitted by the member companies

of the collaborative logistics network. The problem can be easily formulated as a covering

6



problem on a directed graph, which we will call the Lane Covering Problem (LCP). LCP

can be solved efficiently as a minimum cost flow circulation problem.

In practice, there are, more often than not, restrictions limiting the set of acceptable

tours, e.g., a restriction on the maximum number of legs that can make up a tour or

a restriction on the maximum length or duration of a tour. Therefore, we investigate

constrained variants of LCP. Such restrictions make the optimization problem more difficult,

both theoretically and practically. We demonstrate that highly effective and extremely

efficient optimization-based heuristics can be designed and implemented for these variants

as well.

Minimizing asset repositioning is a key ingredient in other truckload transportation

procurement studies too. Much of the research reported in the literature, though, has

focused on truckload transportation procurement for a single shipper. In that setting, the

typical goal is to identify a set of carriers that can serve a shipper’s set of lanes at minimal

cost. Caplice and Sheffi [15] describe a combinatorial auction run by a shipper to determine

the minimum cost allocation of its lanes to carriers. Here it is assumed that the carriers

will form bundles of lanes and bid on these bundles given their internal cost structures and

the operational synergies the new lanes are creating with their existing network. Song and

Regan [70] consider a combinatorial auction model for a shipper procuring transportation

services and simulate such an auction to assess the benefits for both the shipper and the

carriers. Their study includes a simple model representing the way carriers identify tours

minimizing the cost of covering lanes. This model ignores temporal constraints, such as

dispatch windows, associated with lanes. Another related stream of research focuses on

truckload operations. The objective is to manage the fleet of trucks of a single carrier in

response to dynamic demand. For example, Powell et al. [64] develop a stochastic network

model for assigning loads to drivers and trucks taking into consideration a high level of

demand uncertainty. More recently, an online driver assignment model and the issues in

implementing such a model at a carrier are discussed by Powell et al. [83].
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2.2. Lane Covering Problems

The core optimization problem, called the lane covering problem (LCP), is stated as follows:

given a set of lanes, find a set of tours covering all lanes such that the total cost of the tours

is minimized. We define a lane as a regularly scheduled, e.g. daily or weekly, shipment from

an origin to a destination. An important assumption we make is that shipment schedules

can be adjusted so that the resulting tours can be executed in practice. We also assume

that the size of the shipment across each lane is fixed and always equal to a single truckload.

In addition, we ignore fleet capacity since the shippers may work with multiple carriers. If

all of the lanes in the collaboration, or even in a given tour, cannot be served by a carrier

due to fleet size limitations, we assume that the shippers can find additional carriers who

are willing to work with the collaborating shippers.

Mathematically, LCP can be stated as follows: given a directed Euclidean graph D =

(V,A) with node set V , arc set A, and lane set L ⊆ A, find a set of simple directed cycles

covering the lanes in L of minimum total length. Note that the cycles do not necessarily

have to be disjoint. Let lij denote the length of arc (i, j) and let xij be an integer variable

indicating how often arc (i, j) is traversed. Assume that arc lengths satisfy the triangle

inequality, i.e. lij + ljk ≤ lik for all arcs (i, j), (j, k) and (i, k). Then the solution to the

following minimum cost circulation problem can be decomposed into a set of simple directed

cycles covering all lanes with minimum total length:

min
∑

(i,j)∈A

lijxij

s.t.
∑

j∈N

xij −
∑

j∈N

xji = 0 ∀i ∈ N

xij ≥ 1 ∀(i, j) ∈ L

xij ≥ 0 ∀(i, j) ∈ A \ L.

In our problem definition, we have assumed that a single truckload has to be moved

across each lane. It is simple to handle shipments consisting of multiple truckloads. If vij
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denotes the number of shipments that has to be moved across lane (i, j) ∈ L, then all we

have to do is replace xij ≥ 1 ∀(i, j) ∈ L with xij ≥ vij ∀(i, j) ∈ L in the formulation above.

We have been unable to find any literature specifically dealing with LCP. However, there

does exist a body of research on a related covering problem. The cycle covering problem

(CCP) looks for a least cost cover of a graph with simple cycles, each containing at least

three different edges. This constrained version of the Chinese Postman Problem (CPP) was

shown to be NP-hard on general graphs by Thomassen [75] and to be equivalent to the CPP

on planar graphs by Guan and Fleischner [36] and Kesel’man [22]. Itai et al. [39] provided

an upper bound for CCP on 2-connected unweighted graphs and gave a polynomial time

algorithm which finds such a cover. Improvements to this bound were proposed by Bermond

et al. [8], Alon and Tarsi [2], Fraisse [33], Jackson [40], and Fan [30] , and a simple heuristic

was proposed and tested by Labbe et al. [46]. Most recently, Hochbaum and Olinick [37]

developed and tested heuristics for a constrained version of the CCP where no cycle in the

cover contains more than a prescribed number of edges.

2.3. Cardinality and Length Constrained Lane Covering Problems

In this section, we study two constrained variants of the lane covering problem: the cardi-

nality constrained lane covering problem (CCLCP), in which the number of arcs in a cycle

has to be less than or equal to a prespecified number K, and the length constrained lane

covering problem (LCLCP), in which the length of a cycle has to be less than or equal to

a pre-specified bound B. In both of these variants, we assume that the shipment schedules

are adjustable just like we assume in the basic LCP.

Theorem 2.1 LCLCP is NP-hard.

Proof: The proof is by reduction from 3-Partitioning.

3-Partitioning. Given a set S = {a1, a2, ..., a3n} with 1
4B < ai < 1

2B for i = 1, ..., 3n and

B =
∑3n

i=1 ai/n decide whether there exist a partitioning of S into distinct subsets Sk for

k = 1, ..., n such that
∑

i∈Sk
ai = B.

9



Construct a directed graph D = (V,A) as follows. For each element i create three arcs

ei
1, e

i
2, e

i
3 with length ai (the “element” arcs). The arcs are placed in three layers, L1, L2,

and L3. Every element arc ei
k is connected to element arc ej

(k mod 3)+1 for all j 6= i for

k = 1, 2, 3 by an arc of length K >> B (the “connection” arcs). Observe that:

• Any cycle with length less than B + 3K will have at most six arcs; three element arcs

and three connection arcs.

• Any cycle with at most six arcs can only contain a single element arc from among

{ei
1, e

i
2, e

i
3}.

• Any cycle with at most six arcs contains element arcs corresponding to three different

elements ai, aj , and ak.

• Any set {ai, aj , ak} can be covered by three “complementing” cycles, i.e., {ei
1, e

j
2, e

k
3},

{ej
1, e

k
2 , ei

3}, and {ek
1 , e

i
2, e

j
3}.

It follows easily from these observations that there exists a cycle cover of cost 3n(B+3K)

with cycles of length less than B + 3K if and only if the instance of 3-partitioning has a

feasible solution. �

Theorem 2.2 CCLCP is NP-hard.

Proof: This follows immediately from the previous proof by replacing each arc ek
i of length

ai by ai copies of length 1 and noticing that 3-Partition is strongly NP-complete. �

2.3.1 Solution Approaches

For the remainder of the section, we concentrate on the solution of CCLCP. However, all

the ideas and techniques presented can easily be extended for LCLCP.

We focus on developing highly effective but extremely efficient heuristics as instances

encountered in practice are expected to be large.

Let CK = {Ci, C2, ..., Cn} represent the set of all directed cycles in D of cardinality less

than or equal to K covering at least one lane. Let ci denote the cost of cycle Ci, let ai` be
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1 if lane ` is covered by cycle Ci and 0 otherwise, and let xi be a 0-1 variable indicating

whether or not cycle Ci is selected to be part of the cycle cover or not. Then CCLCP can

be formulated as a set covering problem as follows

min
∑

i

cixi

∑

i

ai`xi ≥ 1 ∀` ∈ L

xi ∈ {0, 1} ∀i.

Note that if a lane is covered by more than one cycle, then in all but one cycle the cor-

responding arc of the cycle represents empty repositioning (or deadheading). Consequently,

the desirability or value of each individual cycle can only be established after the set cover-

ing problem has been solved. This is an undesirable feature of the set covering formulation

because we plan to develop greedy heuristics for its solution. By explicitly defining the role

of an arc in a cycle, i.e., whether it covers a lane or whether it represents deadheading, we

can get around this issue at the expense of a larger set of cycles. For each cycle appearing

in the set covering formulation, we add all the cycles that can be obtained by replacing one

or more arcs covering a lane with arcs representing a deadhead as long as there remains

at least one arc covering a lane and there are no consecutive arcs representing deadheads.

The process is illustrated in Figure 2.2. If the cycle in Figure 2.2(a) represents one of the

original cycles, then the formulation should also include the cycles in Figure 2.2(b). With

Figure 2.2: Cycle generation example

the new set of cycles CCLCP can be formulated as a set partitioning problem as opposed to

a set covering problem. Furthermore, the desirability or value of each individual cycle can
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be established upfront, because we know precisely which arcs are used to cover lanes and

which arcs are used as deadheads. A natural way to represent the desirability of a cycle is

to look at the cover ratio, defined as the ratio of the length of the lanes covered by the cycle

and the total length of the cycle. Note that the cover ratio takes on values in (0,1] and a

higher value indicates a more desirable cycle.

Greedy heuristics

Rather than relying on integer programming technology to select a minimum cost set of

cycles covering all lanes, which is computationally prohibitive for most practical instances

as the number of cycles becomes too large, we implement several greedy selection heuristics.

Computational experiments demonstrate that these greedy heuristics are able to produce

high quality solutions very efficiently. All greedy selection heuristics are based on the cover

ratio, i.e.,

ρi =

∑

a∈Ci∩L la
∑

a∈Ci
la

.

The basic greedy heuristic iteratively selects a cycle with the highest cover ratio until

all lanes have been covered. Note that this heuristic can be implemented more efficiently

using the set of cycles generated for the set partitioning formulation than using the set of

cycles generated for the set covering formulation. For the former, we have to sort the set of

cycles and, after selecting a cycle, we have to delete all cycles that cover one or more lanes

of the selected cycle. For the latter, we have to sort the set of cycles and, after selecting

a cycle, we have to update the cover ratio of all cycles that cover one or more lanes in the

selected cycle and resort the set of cycles. Given that the set of cycles is likely to be huge,

we want to avoid sorting the set of cycles in every iteration.

The basic greedy heuristic selects the cycle with the highest cover ratio regardless of the

number of lanes in the cycle. However, we observed that in optimal solutions (to either the

set covering or set partitioning problem) cycles covering only a few lanes were dominant.

A possible explanation for this phenomenon is that selecting a cycle covering many lanes

may cause many other desirable cycles to become less desirable, which, in turn, may lead

to some lanes being covered only by undesirable cycles, i.e., cycles with a low cover ratio.
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Therefore, we implemented a variant of the basic greedy heuristic in which a modified cover

ratio is used to select cycles. Let ki denote the cardinality of cycle Ci and let di denote the

number of deadheads in cycle Ci. Then, the modified cover ratio of cycle Ci is defined as

ρi +
ρi − 0.5

ki − di
.

Note that the modified cover ratio favors cycles with high cover ratios and few lanes. We

perturb the cover ratio, ρi, of each cycle Ci by adding a positive amount which is inversely

proportional to the number of lanes, ki − di, the cycle covers. This way, a cycle with a few

lanes may have a higher modified ratio than a cycle with more lanes even though the cycle

with more lanes has the higher ratio. Subtracting 0.5 from the cover ratio ensures that

cycles covering a single lane are selected last. Without subtracting 0.5, these undesirable

cycles would have the highest possible value of the perturbation amount.

We have observed that there can be a large disparity between the number of cycles

with high cover ratio covering a lane. In other words, for some lanes there are many cycles

with a high cover ratio covering the lane, whereas for other lanes there are few, if any,

cycles with a high cover ratio covering the lane. Selecting the cycle with highest cover ratio

among all possible cycles may result in the deletion of the cycles with highest cover ratio

covering some other lanes. These lanes then have to be covered by cycles with low cover

ratio. Therefore, we implemented a variant of the basic greedy heuristic using a maximum

regret selection criterion. The regret value for a lane ` is defined as follows. Let ρ1
` , be the

cover ratio of the cycle covering ` with the highest cover ratio and let ρ2
` be the cover ratio

of the cycle covering ` with the second highest cover ratio. The regret value is set to ρ1
`−ρ2

` .

The heuristic first selects the lane that is covered next, i.e., the one with the highest regret

value, and then selects the cycle with the highest cover ratio covering that lane.

Speed-ups

A possibility to reduce the computational requirements is to limit the number of cycles

generated. Intuitively, cycles with a few arcs representing deadheads are more desirable

than cycles with many arcs representing deadheads. Therefore, a simple scheme to generate

only a limited number of desirable cycles is to restrict the number of arcs representing a
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deadhead in a cycle to some number d ≥ 0. Note that with d = bK2 c we obtain all cycles

since it is never beneficial to have two consecutive arcs representing deadheads. As we will

see in Section 2.3.2, cycles with at most one arc representing a deadhead can be generated

extremely efficiently, but, as expected, the quality of a cycle cover consisting only of cycles

with at most one arc representing a deadhead is relatively weak. To obtain a lower cost

cycle without having to generate all cycles with two or more arcs representing deadheads,

we have developed a powerful iterative improvement scheme that merges cycles from a cycle

cover consisting only of cycles with at most one arc representing a deadhead (resulting in

cycles with two deadheads).

Note that cycle C with one arc representing a deadhead is the union of a path, P , consist-

ing of all lane arcs, with a deadhead arc connecting head of P with its tail. Given two cycles

C1 = P1 ∪ (head(P1), tail(P1)) and C2 = P2 ∪ (head(P2), tail(P2)), each with a single dead-

head, we construct a new cycle C12 with two deadheads by deleting arcs (head(P1), tail(P1))

and (head(P2), tail(P2)) and adding arcs (head(P1), tail(P2)) and (head(P2), tail(P1)) (see

Figure 2.3).

Figure 2.3: Example of merging two single deadhead cycles

Such a merge reduces the cost of the current cycle cover if c1 + c2 > c12. Given an

initial cycle cover C = {C1, C2, . . . , CN}, the optimal set of cycle merges can be obtained by

finding a minimum cost matching on the digraph DC = (VC , AC) where VC = {1, 2, ..., N},

AC = {(i, j) : ci+cj > cij} with arc weights wij = cij−(ci+cj) for (i, j) ∈ AC . Unfortunately,

finding an optimal matching on DC becomes computationally expensive when DC gets larger.

Hence, we have also developed an effective and efficient greedy merge heuristic.
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It is straightforward to develop a local search heuristic for solving a minimum cost

matching problem. One possibility is to examine, in some order, all possible cycle merges

until an improving cycle merge is found, implement that cycle merge and set the new cycle

aside, and continue. This heuristic examines each possible combination of cycles at most

once, and is thus very efficient, but may not lead to a significant cost reduction. Our greedy

merge heuristic first identifies all beneficial cycle merges, finds the most improving cycle

merge, implements that cycle merge, sets the resulting cycle aside, and then repeats.

The efficiency of the greedy merge heuristic is further improved by exploiting the fol-

lowing claim.

Claim 2.3 If merging cycles C1 and C2 leads to a cost reduction, then at least one of the

following two inequalities holds:

1. `(head(P1),tail(P1)) > `(head(P1),tail(P2))

2. `(head(P2),tail(P2)) > `(head(P2),tail(P1)).

Proof: Assume that neither of the inequalities holds. If c1 + c2 > c12, then

`(head(P1),tail(P1)) + `(head(P2),tail(P2)) > `(head(P1),tail(P2)) + `(head(P2),tail(P1)),

which gives a contradiction. �

Hence the number of cycle merges that needed to be examined for identifying the set of

beneficial ones may be significantly reduced.

2.3.2 Implementation

2.3.2.1 Cycle Generation

Given a directed Euclidean graph D = (V,A) with node set V , arc set A, and lane set

L ⊆ A, we have to generate all possible simple cycles with K or fewer arcs covering at least

one lane. Two consecutive arcs representing deadheads are not allowed because they can

be replaced by a single arc representing a shorter (or at least no longer) deadhead.

To be able to control the number of cycles that are generated, we impose an additional

limit d on the number of arcs representing deadheads in a cycle. Limiting the number of
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arcs representing deadheads provides a simple mechanism to generate only cycles that are

likely to be of high quality.

Generating cycles with at most one arc representing a deadhead

Observe that any cycle of cardinality k with a single arc representing a deadhead contains a

simple path of cardinality k− 1 consisting only of arcs covering lanes. The single arc repre-

senting the deadhead connects the end of the path covering lanes with the beginning of that

path. Consequently, generating cycles with one arc representing a deadhead is equivalent

to generating paths in the subgraph defined by the lanes set (the so-called lane graph) and

connecting the end of the path to the start of the path by a deadhead. Generating paths

in the lane graph is simple if the lane graph is stored using a forward and reverse star rep-

resentation. The other issue that needs to be resolved is how to avoid generating duplicate

cycles. Generating multiple copies of a cycle is a waste of memory and computational effort

since at most one of the copies can appear in the final solution. We have experimented with

two schemes that avoid the generation of duplicate cycles:

1. Generate all cycles containing the arc that covers a specific lane, delete the lane from

the lane graph and repeat until the lane graph is empty.

2. Generate all cycles containing the arc that covers a specific lane as the first arc of the

path consisting of arcs covering lanes. Repeat for all lanes in the lane graph.

Both schemes can easily and efficiently be implemented using recursive procedures

SearchForward and SearchBackward working on the lane graph. The first scheme is

described in more detail below (the second scheme follows easily).

SearchForward receives as input a base path of length less than or equal to K − 1.

SearchForward starts by creating the cycle consisting of the base path and a single

deadhead connecting the end of the base path with its beginning. Next, if the base path

has length strictly less than K − 1, then we consider expanding the base path by adding

arcs at its end, i.e., arcs with tail node equal to the head of the base path (which can be

done efficiently using the forward star representation of the lane graph). If the head of the

arc being consider for addition to the base path is some other node on the base path, then
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that arc is ignored. For all other arcs, the base path is expanded and SearchForward is

called recursively.

Algorithm 2.1 SearchForward(P )

Create cycle with deadhead: P ∪ (head(P ), tail(P ))
if length(P ) < K − 1 then

for all arcs a in forward star(head(P )) do
if head(a) /∈ nodes(P ) then

SearchForward(P ∪ a)
end if

end for
end if

SearchBackward receives as input a base path of length less than or equal to K − 1.

We consider expanding the base path by adding arcs at its beginning, i.e., arcs with head

node equal to the tail of the base path (which can be done efficiently using the reverse star

representation of the lane graph). If the tail of the arc being considered for addition to the

base path is equal to the head of the base path, then we have identified a cycle without

deadheads. If the tail of the arc being considered for addition to the base path is some

other node on the base path, then that arc is ignored. For all other arcs, if the length of

the base path is strictly less than K − 1, the base path is expanded and SearchForward

is called followed by a recursive call to SearchBackward.

Algorithm 2.2 SearchBackward(P )

for all arcs a in reverse star(tail(P )) do
if tail(a) = head(P ) then

Create cycle without deadhead: (tail(a), head(P )) ∪ P
end if
if length(P ) < K − 1 and tail(a) /∈ nodes(P ) then

SearchForward(a ∪ P )
SearchBackward(a ∪ P )

end if
end for

Given procedures SearchForward and SearchBackward all cycles of cardinality

less than or equal to K with at most one arc representing a deadhead can be generated

using Algorithm 2.3.

Generating cycles with more than one arc representing a deadhead
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Algorithm 2.3 Cycle generation

for ` ∈ L do
SearchForward(`)
SearchBackward(`)
Delete ` from the lane graph

end for

Generating cycles with more than one arc representing a deadhead proceeds along the

same lines. However, since the maximum number of arcs representing deadheads d in a cycle

is greater than one, the base path may contain up to d− 1 arcs representing deadheads. In

the case where at most one arc representing a deadhead was allowed, both the forward and

the backward search procedures expanded the base path using only arcs representing lanes

that were incident to an endpoint of the path. When more arcs representing deadheads

are allowed, the base path is also expanded with arcs representing lanes whose endpoints

are not incident to an endpoint of the base path. When an arc representing a deadhead is

introduced in the base path, we go through all the nodes in the graph that are not part of

the base path and expand the base path using arcs from the lane graph incident to those

nodes. Note that by doing so, we increase the length of the base path by two arcs and that

the expanded base path has one more arc representing a deadhead than the base path. It

is only necessary to allow incorporation of arcs representing deadheads in the base path

in one of the procedures SearchForward and SearchBackward. We chose to allow

deadhead-increasing path expansions in the forward search only.

It should be clear that because we cannot work exclusively on the lane graph when

constructing paths, generating cycles with more than one arc representing deadheads is not

as efficient as generating cycles with at most one arc representing deadheads.

2.3.2.2 Greedy Heuristics

The crucial and most time consuming step of the basic greedy heuristic is “sorting” the

cycles in order of their cover ratio. In fact, it is not necessary to sort the cycles, because

we only need to be able to identify the cycle with the highest cover ratio. Therefore, we

maintain a binary heap of the cycles with the cover ratio as the key. The greedy heuristic

repeatedly takes the top element off the heap until the top element corresponds to a cycle
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which has not yet been deleted (has not yet been marked as deleted, to be more precise).

The selected cycle is added to the solution and all other cycles covering any of its lanes are

deleted. This process is repeated until all lanes are covered.

The implementation of the maximum regret variant of the greedy heuristic requires the

use of more than one heap. For each lane, we maintain a heap of the cycles covering that

lane with the cover ratio as the key. These heaps are used to find the best (highest cover

ratio) and the second best (second highest cover ratio) cycles covering the lanes. The lanes

themselves are also kept in heap with their regret value, i.e., the difference between the cover

ratio of the best and the second best cycle, as the key. The greedy heuristic repeatedly takes

the top element of the lane heap. The best cycle for that lane is selected to be part of the

solution. Each cycle selection is again followed by the deletion of cycles covering any of its

lanes. The set of deleted cycles may include the best or the second best cycle of some of

the as of yet uncovered lanes. In that case, the regret values for these lanes change and the

lane heap needs to be updated. In order to be able to update the heap, we maintain a set

of pointers linking lanes to the heap elements corresponding to these lanes.

2.3.2.3 Greedy Merge Heuristic

The greedy merge heuristic starts with a cycle cover consisting of cycles with at most

one arc representing a deadhead and goes through these cycles in some arbitrary order,

identifying all the beneficial merge opportunities for the cycle in hand. We will refer to

the cycle in hand as the base cycle and will denote it by Cb. The algorithm only evaluates

merging the base cycle with cycles Cj for which tail(Pj) is within distance `(head(Pb),tail(Pb))

of head(Pb). If merging Cb with Cj is beneficial then (b, j) is stored in a heap data structure,

ImprovementHeap, with cbj−(cb +cj) as key. Then iteratively the best merge opportunity

is popped up from ImprovementHeap. If the cycles involved are not marked as already

merged, then they are merged and marked as merged.(See Algorithm 2.4 for a detailed

description.)

We have shown that restricting the distance between the first node of the path of a

candidate cycle and the last node of the path of the base cycle is sufficient to find all the
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Algorithm 2.4 GreedyMergeHeuristic(Ĉ)

for all cycles Ci in Ĉ do
for all cycles Cj in Ĉ with `(head(Pi),tail(Pi)) > `(head(Pi),tail(Pj)) do

if cij < ci + cj then
Insert((i, j), ImprovementHeap)

end if
end for

end for
while ImprovementHeap 6= ∅ do

(k, l) := Pop(ImprovementHeap)
if cycles Ck and Cl are not marked as merged then

merge Ck with Cl and mark them as merged
end if

end while

improving merges. A geometric data structure, the k-d tree, allows for efficiently performing

such queries. See Bentley [7] for more information on k-d tree trees.

2.3.3 Computational Experiments

The goal of the computational study reported on in this section was to demonstrate the

effectiveness and efficiency of the algorithms presented above.

The algorithms have been tested on randomly generated Euclidean instances. Instance

generation is controlled by the following parameters: the number of points, the number

of lanes, and the number of clusters. Clusters are introduced to represent geographical

concentrations of points, such as metropolitan areas. First, the appropriate number of

points is randomly generated within a 2, 000 × 2, 000 square and the complete digraph

defined by these points is formed. Next, the desired number of lanes is randomly selected

from among the arcs of the complete digraph ensuring that each point has at least one lane

incident to it.

To properly analyze the performance of the algorithms, we have generated instances for

several different parameter settings. We have varied the number of points, the number of

lanes, and the number of clusters. More specifically, we generated instances with 100, 200,

300, 400 and 500 points, with an average number of lanes incident to a point of two or five,

and with no clusters or five clusters. A summary of the different parameters settings used

to create the instances is given in Table 2.1.
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Table 2.1: Parameter settings for the instances.

Instance #Points #Lanes #Clusters

1 100 200 0
2 100 200 5
3 200 400 0
4 200 400 5
5 300 600 0
6 300 600 5
7 400 800 0
8 400 800 5
9 500 1000 0
10 500 1000 5
11 100 500 0
12 100 500 5
13 200 1000 0
14 200 1000 5
15 300 1500 0
16 300 1500 5
17 400 2000 0
18 400 2000 5
19 500 2500 0
20 500 2500 5

For each parameter setting we generated five instances. As the computational behavior

varied little for instances generated with the same parameter settings, we present the com-

putational results for actual instances (for the first out of the five) rather than averages over

all five instances. In all our experiments we restricted the cardinality of a cycle to at most

five. Therefore, by generating all cycles with at most two arcs representing repositioning

we generate all cycles, since the underlying digraph is Euclidean and complete. All compu-

tational experiments were performed on a computer with a 2.4 GHz Intel Xeon processor,

2 GB of memory, and running Linux operating system kernel version 2.4.18-24.8.0. All

integer programs were solved using Xpress-Optimizer version 14.27.

The first set of experiments focuses on the quality of the solutions produced by the

greedy heuristics. We compare the values of the solutions produced by the greedy heuristics

for a given set of cycles to the value of the optimal solution produced by solving the set

partitioning formulation over the same set of cycles. The results can be found in Table 2.2,

where we present for each instance the number of cycles generated (#Cycles), the optimal

value (IP cost), and for each of the greedy heuristics the percentage increase in solution

value over the optimal value (Greedy, Modified, and Regret, respectively). Table 2.2(a)
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contains the results for the experiments with cycles with at most one deadhead arc, and

Table 2.2(b) contains the results for the experiments with all cycles.

Several observations can be made when analyzing the results of this experiment. First,

as expected, the number of cycles grows rapidly with the number of lanes, especially when

the number of arcs allowed to represent repositioning increases (with at most one deadhead

arc allowed the number of cycles remains manageable, but with more than one deadhead arc

allowed the number of cycles becomes prohibitively large quickly). Second, we observe that

the different variants of greedy perform similarly, with a slight edge for the regret variant

when we consider cycles with at most one deadhead arc and with a slight edge for basic

greedy when we consider all cycles. More interesting may be the fact that when we consider

cycles with at most one deadhead arc the percentage increase over the optimal value is more

than 10%, whereas when we consider all cycles the percentage increase over the optimal

value is less than 3%, with the basic greedy heuristic even less than 2%. Finally, we observe

that the optimal value increases by 5% on average when cycles with at most one deadhead

are considered (as opposed to considering all cycles).

Table 2.3 shows the computation times (in CPU seconds) for the first set of experiments,

i.e., the experiments for which results were reported in Table 2.2.

We observe that optimization, in the form of solving the set partition formulation,

is computationally prohibitive, even when we limit ourselves to cycles with at most one

deadhead arc. For the instances with 500 points and 2500 lanes, the solution of the integer

program takes about two days of CPU time. On the other hand, the greedy heuristics are

very efficient. When considering cycles with at most one deadhead all variants solved all

instances in less than one second. When considering all cycles computation times start to

increase (as the number of cycles increases dramatically), but are still well within acceptable

limits with about 60 seconds for instances with 400 points and 2000 lanes. Among the

heuristics, the regret variant requires the least amount of computation time. The difference

in the computation time is due to the fact that basic greedy and modified greedy maintain

a heap of all cycles, which has to be updated each time the top element is removed, whereas

the regret variant maintains several heaps of smaller size and only a subset of these heaps
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Table 2.2: Quality of solutions produced by the greedy heuristics.

(a) Cycles with at most one deadhead.

Instance #Cycles Greedy Modified Regret IP Cost

1 2,575 9.39 10.24 8.34 414,070
2 2,834 7.56 12.68 9.64 72,263
3 5,088 9.27 9.38 8.39 858,564
4 5,364 14.72 15.02 10.37 145,516
5 8,849 9.44 10.57 8.27 1,241,191
6 9,299 11.63 14.24 9.02 206,970
7 12,365 9.82 9.98 10.69 1,665,048
8 10,401 10.13 10.22 10.20 301,751
9 14,957 9.89 11.14 9.49 2,108,771

10 13,998 15.44 13.84 9.74 367,076
11 63,306 10.92 11.40 9.01 917,229
12 73,293 11.26 6.38 8.84 162,233
13 133,528 13.00 12.85 10.92 1,920,295
14 139,088 15.69 10.84 12.25 341,879
15 204,547 12.93 12.94 9.75 2,902,527
16 213,813 14.86 11.72 10.40 509,450
17 288,084 13.57 12.75 11.47 3,842,429
18 275,473 14.55 11.36 11.85 691,733
19 348,581 13.25 12.60 10.49 4,811,773
20 342,551 15.52 11.58 12.84 844,007

Average 12.14 11.59 10.10

(b) All cycles.

Instance #Cycles Greedy Modified Regret IP Cost

1 68,411 3.24 4.13 5.81 389,623
2 71,392 0.52 2.01 1.93 71,368
3 299,544 3.34 4.22 3.68 808,845
4 292,370 0.56 1.64 1.44 139,728
5 708,160 3.10 4.59 4.33 1,153,373
6 704,910 0.43 1.41 1.22 197,536
7 1,265,106 2.88 4.52 4.67 1,542,209
8 1,158,255 0.35 1.23 2.28 282,988
9 1,993,848 2.74 4.44 3.40 1,948,477

10 1,958,168 0.46 1.12 1.93 347,562
11 1,024,911 2.20 3.44 3.35 916,591
12 1,062,377 0.30 1.86 1.82 162,187
13 4,382,831 2.30 4.21 2.93 1,903,768
14 4,320,643 0.25 1.19 0.92 341,660
15 9,971,238 IP solver out of memory
16 9,847,572 IP solver out of memory
17 17,887,918 IP solver out of memory
18 17,272,007 IP solver out of memory
19 27, 959, 929a Cycle generation out of memory
20 27, 244, 261a Cycle generation out of memory

Average 1.62 2.86 2.84
a: Number of cycles generated at the time memory ran out.
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Table 2.3: Computation times of the greedy heuristics.

(a) Cycles with at most one deadhead.

Cycle
Instance Generation Greedy Modified Regret IP

1 0.00 0.00 0.01 0.00 0
2 0.00 0.00 0.00 0.01 0
3 0.00 0.00 0.00 0.01 0
4 0.00 0.01 0.01 0.01 0
5 0.00 0.01 0.01 0.01 6
6 0.00 0.01 0.02 0.01 8
7 0.00 0.02 0.01 0.02 19
8 0.01 0.01 0.01 0.01 0
9 0.00 0.02 0.02 0.02 11

10 0.01 0.02 0.02 0.01 1
11 0.02 0.11 0.10 0.07 898
12 0.03 0.12 0.12 0.10 1,453
13 0.05 0.26 0.26 0.17 7,286
14 0.06 0.26 0.26 0.18 8,764
15 0.08 0.44 0.43 0.29 26,656
16 0.08 0.45 0.45 0.30 30,844
17 0.12 0.66 0.65 0.45 79,707
18 0.11 0.61 0.61 0.41 73,200
19 0.14 0.83 0.82 0.56 171,587
20 0.15 0.79 0.80 0.55 164,039

(b) All cycles.

Cycle
Instance Generation Greedy Modified Regret IP

1 0.04 0.10 0.10 0.06 115
2 0.04 0.11 0.11 0.05 83
3 0.19 0.63 0.62 0.26 2,336
4 0.19 0.58 0.59 0.24 1,494
5 0.45 1.69 1.72 0.70 10,445
6 0.45 1.66 1.68 0.68 9,692
7 0.82 3.31 3.33 1.32 39,538
8 0.76 2.93 2.96 1.21 26,906
9 1.30 5.63 5.66 2.20 82,547

10 1.27 5.45 5.46 2.13 125,904
11 0.65 2.59 2.63 1.05 26,715
12 0.67 2.67 2.70 1.05 20,382
13 2.73 13.78 13.85 4.91 87,739
14 2.76 13.34 13.51 4.95 121,149
15 6.31 35.54 35.92 13.10 –
16 6.31 34.31 34.75 12.70 –
17 11.49 68.02 68.67 24.68 –
18 11.25 63.51 64.71 24.21 –
19 17.97 – – – –
20 17.63 – – – –

24



has to be updated at each iteration.

The previous experiments have clearly shown that the considered set of cycles impacts

both the quality of the solution as well as the efficiency with which a solution can be

obtained. The mechanism used to control the set of cycles is the maximum number of

arcs allowed to represent repositioning. We have seen that we can generate cycles with at

most one deadhead arc very efficiently. We have also seen that allowing more than one

deadhead arc in a cycle results in higher quality solutions, but at the expense of sometimes

prohibitively large time and memory requirements as the numbers of cycles being generated

explodes. In order to take advantage of the efficiency of generating cycles with at most one

deadhead, we first create a solution consisting of cycles with at most one deadhead arc and

then improving the resulting cycle cover by merging cycles.

The second set of experiments investigates the merits of the Greedy Merge heuristic,

which can be started from any feasible cycle cover. Initial experimentation revealed that

the quality of the cycle cover produced by the Greedy Merge heuristic when started from

the cycle covers produced by the three greedy selection heuristics was about the same, with

slightly better results when the basic greedy selection heuristic was used. (Note that the

quality of the cycle covers produced by the basic greedy selection heuristic when consider-

ing only cycles with at most one deadhead was slightly worse than the quality of the cycle

covers produced by the two other variants.) Table 2.4 presents the percentage improve-

ment obtained by the Greedy Merge heuristic as well as the maximum possible percentage

improvement computed by solving a weighted matching problem on the complete graph

with vertices corresponding to the cycles in the initial cycle cover and edge weights corre-

sponding to the value of merging the two cycles represented by the incident vertices. More

precisely, we report for each instance the number of cycles with at most one deadhead

(#Cycles Generated), the number of cycles selected by the greedy heuristic to form the

initial cycle cover (#Cycles Selected), the number of evaluated cycle merges (#Merges

Evaluated), and the number of improving cycle merges found among the evaluated cycle

merges (#Improving Merges), followed by the time required (Time), the percentage im-

provement (%Improve), and the number of cycles in the resulting cycle cover (#Cycles)

25



for both the Greedy Merge heuristic and the weighted matching based algorithm. Note that

the number of evaluated cycle merges is less than the total number of cycle pairs as we use

Claim 2.3 to reduce the number of cycle pairs to evaluate.

Several observations can be made when analyzing the results of this experiment. First,

the Greedy Merge heuristic is very effective as the improvements obtained are close to the

maximum possible improvements. Furthermore, the actual improvements are significant; on

average more than 11%. Second, the Greedy Merge heuristic is very efficient as it required

less than 1 second for all instances. (For the considered instances solving a matching

problem is still computationally feasible, although we see that the computational effort

starts to increase for the larger instances.) Finally, we observe that the use of Claim 2.3

substantially reduces the number of cycle pairs evaluated (by more than half), and thus, in

conjunction with the use of k-d trees, the solution time.

When we refer to the Greedy Merge heuristic in our discussion of the results presented

in Table 2.5, we refer to the algorithm that generates all cycles with at most one deadhead

arc, uses the basic greedy heuristic to construct an initial cycle cover, and then uses the

Greedy Merge heuristic to improve the initial cycle cover by greedily merging cycles. Table

2.5 presents maybe even more important results concerning the Greedy Merge heuristic

as it compares the values of the cycle covers obtained with the Greedy Merge heuristic

to the values of the cycle covers obtained with the basic greedy heuristic when all cycles

are considered. Table 2.5 presents for each instance the solution time (Time), the cost of

the cycle cover produced (Cost), and the cover ratio (Ratio), for both the basic greedy

heuristic and the Greedy Merge heuristic. The cover ratio of a solution (Ratio) is computed

by dividing the sum of the lengths of the lanes by the cost of the cycle cover produced (Cost).

The results clearly demonstrate that the Greedy Merge heuristic is able to construct high

quality solutions in a short amount of time; all cycle covers were computed in less than 2

seconds. Also, for the instances for which we were able to obtain optimal solutions, the

values of the solutions produced by the Greedy Merge heuristic were never more than 2.5%

higher.

These results suggest that the Greedy Merge heuristic can be used to solve much larger
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Table 2.4: Improvements by merging cycles.

#Cycles #Cycles #Merges #Improving Greedy Merge Matching Merge
Instance Generated Selected Evaluated Merges Time %Improve #Cycles Time %Improve #Cycles

1 2,575 95 2,750 699 0 10.24 69 0 10.63 68
2 2,834 83 1,690 272 0 7.30 65 0 7.31 65
3 5,088 185 10,184 2,386 0 10.39 132 0 10.79 132
4 5,364 194 11,182 2,732 0 15.01 137 0 15.11 136
5 8,849 284 22,877 5,990 0 11.51 200 0 12.08 199
6 9,299 266 19,042 4,214 0 13.33 197 0 13.42 195
7 12,365 368 39,343 9,469 0 12.39 265 0.2 12.94 259
8 10,401 370 42,592 10,117 0 14.04 263 0.2 14.13 264
9 14,957 452 62,447 14,630 0 11.99 328 0.3 12.40 324

10 13,998 472 65,749 16,226 0 16.60 336 0.4 16.72 334
11 63,306 202 7,067 1,833 0 7.91 155 0 8.12 156
12 73,293 197 6,489 1,611 0 9.40 152 0 9.47 154
13 133,528 403 29,716 8,972 0 10.08 301 0.2 10.42 296
14 139,088 412 36,017 10,696 0 13.23 304 0.2 13.27 302
15 204,547 597 71,727 20,453 0 9.88 445 0.6 10.35 443
16 213,813 606 73,859 20,714 0 12.30 450 0.6 12.49 448
17 288,084 800 128,555 34,811 0.1 10.99 600 1.5 11.36 593
18 275,473 812 142,850 38,156 0.1 12.05 605 1.9 12.10 601
19 348,581 978 205,385 53,539 0.1 10.75 735 2.9 11.15 733
20 342,551 1,019 202,834 57,064 0.1 13.18 749 4 13.22 749
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Table 2.5: Greedy heuristic with all cycles vs. Greedy Merge heuristic.

Greedy with all cycles Greedy Merge
Instance Time Cost Ratio Time Cost Ratio

1 0.14 402,265.75 0.84 0.00 406,594.24 0.83
2 0.15 71,736.42 0.88 0.00 72,047.59 0.88
3 0.82 835,887.82 0.86 0.00 840,684.59 0.86
4 0.77 140,510.54 0.92 0.01 141,881.13 0.91
5 2.14 1,189,171.30 0.88 0.01 1,201,909.66 0.87
6 2.11 198,389.42 0.93 0.01 200,233.67 0.92
7 4.13 1,586,598.80 0.88 0.02 1,601,973.50 0.87
8 3.69 283,991.39 0.92 0.02 285,668.71 0.91
9 6.93 2,001,826.06 0.90 0.02 2,039,424.24 0.88
10 6.72 349,176.35 0.97 0.03 353,386.76 0.96
11 3.24 936,785.41 0.90 0.13 936,978.73 0.90
12 3.34 162,675.18 0.95 0.15 163,522.71 0.95
13 16.51 1,947,611.69 0.91 0.31 1,951,098.51 0.91
14 16.10 342,510.00 0.95 0.32 343,202.71 0.95
15 41.85 2,941,736.22 0.91 0.52 2,954,008.48 0.91
16 40.62 510,102.46 0.97 0.53 513,159.91 0.96
17 79.51 3,859,155.52 0.93 0.88 3,884,093.05 0.92
18 74.76 692,772.21 0.95 0.82 696,940.84 0.94
19 – – – 1.07 4,863,680.25 0.93
20 – – – 1.04 846,437.07 0.98

instances. To get a better sense of the sizes of instance that can be handled comfortably, we

used the Greedy Merge heuristic to solve instances with 7,500 points and 15,000 and 37,500

lanes. The results can be found in Table 2.6. The top portion of Table 2.6 shows the instance

characteristics (#Points, #Lanes, #Clusters), the number of cycles with at most one

deadhead generated (#Cycles Generated), the number of cycles selected to form the

initial cycle cover (#Cycles Selected), the cover ratio (Ratio), and the time required to

produce the initial cycle cover, including cycle generation time (Time). The bottom portion

of Table 2.6 shows the number of merges evaluated (#Merges Evaluated), the number of

improving merges identified (#Improving Merges), followed by the solution time (Time),

the cover ratio (Ratio), and the number of cycles in the final cycle cover (#Cycles) for

both the Greedy Merge heuristic and the weighted matching based algorithm.

The results in Table 2.6 demonstrate once more that the Greedy Merge heuristic pro-

duces high quality solutions with little computational effort even for large instances. Fur-

thermore, it is clear that for instances of this size the weighted matching based approach is

no longer viable as computation times reach more than 6 hours.

The final set of computational experiments focuses on a completely different approach

28



Table 2.6: Greedy Merge heuristic on large instances.

#Cycles #Cycles
#Points #Lanes #Clusters Generated Selected Ratio Time

7,500 15,000 0 218,041 7,044 0.76 0.64
7,500 15,000 5 216,018 7,074 0.79 0.62
7,500 37,500 0 5,376,238 15,054 0.82 26.15
7,500 37,500 5 5,332,869 15,073 0.86 25.64

#Merges #Improving Greedy Merge Matching Merge
Evaluated Merges Time* Ratio #Cycles Time* Ratio #Cycles

15,864,235 3,835,394 38.7 0.91 4,912 4,026 0.92 4,858
14,554,221 3,512,656 35.2 0.97 4,922 3,713 0.97 4,915
54,290,635 11,222,305 152.6 0.95 11,328 24,561 0.95 11,250
48,361,955 10,313,981 137.4 0.99 11,301 22,360 0.99 11,299
∗: Time to find the initial solution not included

to limiting the number of cycles to consider and manipulate. Instead of blindly generating

all cycles and using basic greedy to select cycles to form a cycle cover, we generate all cycles,

but only keep “good” cycles and use basic greedy to select cycles to form a cycle cover from

among these good cycles. The cover ratio is used to determine whether a cycle is a “good”

cycle or not. All cycles with a cover ratio below a certain threshold are discarded. To

ensure the existence of a feasible cycle cover, we always keep the trivial out-and-back cycles

covering a single lane. (The number of such cycles is small as it is equal to the number

of lanes.) In the computational experiments we used threshold values of 0.6, 0.7, and 0.8.

(Note that a threshold of 0.5 would result in the generation of all the cycles.) The results

are divided over Tables 2.7, 2.8, and 2.9. Table 2.7 lists the number of cycles generated,

Table 2.8 shows the percentage increase in cost over the solution produced by the basic

greedy heuristic when considering all cycles, and Table 2.9 reports the computation times.

Several observations can be made when analyzing the results of this experiment. First,

we see that the use of thresholds results in a substantial reduction in the number of cycles

generated (even for threshold value 0.6), although the number of generated cycles is still

significantly larger than the number of cycles with at most one deadhead. Second, we see

that the quality of the solutions produced by the Greedy Merge heuristic is comparable or

better than the quality of the solutions produced when using thresholds to limit the number

of cycles (even for a threshold value of 0.6). Finally, we note that even though filtering out
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Table 2.7: Number of cycles generated for different thresholds.

#Cycles #Cycles Threshold
Instance (Single Deadhead) (All) 0.6 0.7 0.8

1 2,575 68,411 34,869 12,160 2,969
2 2,834 71,392 31,376 19,429 10,400
3 5,088 299,544 163,371 54,426 10,226
4 5,364 292,370 131,272 79,811 42,858
5 8,849 708,160 381,357 127,021 23,024
6 9,299 704,910 325,763 187,505 93,663
7 12,365 1,265,106 668,545 215,131 36,371
8 10,401 1,158,255 517,368 318,853 174,089
9 14,957 1,993,848 1,077,048 350,255 58,774

10 13,998 1,958,168 908,360 556,159 290,268
11 63,306 1,024,911 563,839 210,961 55,886
12 73,293 1,062,377 506,657 319,196 172,956
13 133,528 4,382,831 2,467,449 855,757 180,055
14 139,088 4,320,643 2,055,495 1,278,280 686,713
15 204,547 9,971,238 5,604,130 1,953,037 381,166
16 213,813 9,847,572 4,698,448 2,913,706 1,565,409
17 288,084 17,887,918 10,105,878 3,445,337 643,667
18 275,473 17,272,007 8,156,622 4,986,126 2,661,502
19 348,581 27, 959, 929b 15,781,163 5,316,436 959,017

20 342,551 27, 244, 261b 13,077,520 8,137,303 4,257,479
b: Number of cycles generated at the time memory ran out

cycles with low cover ratio reduces the memory requirements, all the cycles must still be

generated, and, as a result, the Greedy Merge heuristic is much more efficient, requiring

only a small fraction of the computation time required by the filtering based approaches.

2.4. Time Constrained Lane Covering Problem

In this section, timing considerations are a key focus of our efforts which are critical to

practical viability. We show that a highly effective and extremely efficient heuristic can

be designed and implemented. The heuristic incorporates, among others, fast routines

for checking time feasibility of a tour in the presence of dispatch time windows and for

minimizing the waiting along a tour by appropriately selecting a starting location and

departure time. We demonstrate the effectiveness of the algorithms developed on various

randomly generated instances simulating real-life supply chain structures, and on instances

derived from data obtained from a strategic sourcing consortium for a $14 billion dollar

sized US industry.

As mentioned in the introduction of this chapter, we focus on developing technology
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Table 2.8: Percentage increase for different thresholds.

Threshold Greedy
Instance 0.6 0.7 0.8 Merge

1 0.80 3.03 9.04 1.08
2 1.72 3.15 2.99 0.43
3 0.76 3.17 5.43 0.57
4 0.45 0.73 0.74 0.98
5 0.61 1.53 6.24 1.07
6 0.36 0.99 1.03 0.93
7 0.43 2.58 6.33 0.97
8 0.20 0.30 0.59 0.59
9 0.21 1.66 6.63 1.88

10 0.23 0.33 0.68 1.21
11 0.68 2.18 5.50 0.02
12 0.10 0.75 1.09 0.52
13 0.48 1.84 5.34 0.18
14 0.37 0.89 1.13 0.20
15 0.49 1.49 5.50 0.42
16 0.18 0.53 0.90 0.60
17 0.13 1.14 4.25 0.65
18 0.47 0.52 0.92 0.60

Average 0.48 1.49 3.57 0.72

Table 2.9: Solution times for different thresholds.

#Cycles Threshold #Cycles
Instance (All) 0.6 0.7 0.8 (Single Deadhead)

1 0.14 0.08 0.04 0.03 0.00
2 0.15 0.07 0.05 0.03 0.00
3 0.82 0.46 0.20 0.13 0.00
4 0.77 0.37 0.25 0.19 0.01
5 2.14 1.22 0.55 0.33 0.01
6 2.11 1.06 0.70 0.47 0.01
7 4.13 2.33 1.04 0.61 0.02
8 3.69 1.85 1.26 0.88 0.02
9 6.93 3.93 1.75 0.99 0.02

10 6.72 3.42 2.29 1.54 0.03
11 3.24 1.89 0.91 0.53 0.13
12 3.34 1.74 1.19 0.81 0.15
13 16.51 9.71 4.38 2.45 0.31
14 16.1 8.21 5.64 3.88 0.32
15 41.85 24.49 10.88 5.85 0.52
16 40.62 21.00 14.70 9.51 0.53
17 79.51 46.42 20.57 10.88 0.88
18 74.76 38.90 26.23 17.40 0.82
19 17.97c 75.13 33.52 17.40 1.07
20 17.63c 64.54 44.17 28.86 1.04

c: Time until memory runs out
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for identifying repeatable, dedicated truckload continuous move tours for companies that

regularly send truckload shipments and are looking for collaborative partners. Properly

incorporating timing considerations in this technology is of critical importance to the prac-

tical viability. There are two sources of temporal constraints: dispatch time windows on the

loads to be transported and U.S. Department of Transportation (DOT) Hours of Service

regulations. Regularly scheduled truckload movements are usually referred to as lanes and

are specified by an origin, a destination, and a dispatch window. The dispatch window

indicates the time interval in which the load to be moved should be dispatched, for example

Mondays between 8am and 2pm. A dispatch window incorporates information on the time

at which the load to be moved is ready as well as information on the time at which the load

needs to depart to ensure it will reach its destination on time. U.S. DOT Hours of Service

regulations limit driving and duty hours of truck drivers. Truck drivers may not drive more

than 11 hours following 10 hours off-duty, may not drive beyond the 14th hour after coming

on-duty, and may not drive after 60/70 hours on-duty in 7/8 consecutive days. From an

algorithmic perspective, dispatch windows pose more interesting challenges.

Consequently, we focus on the Time-Constrained Lane Covering Problem (TCLCP),

which we define as follows. For a given set of lanes, find a set of tours covering all lanes such

that the total duration of the tours is minimized and the dispatch windows are respected.

It is important to note that we do not consider U.S. DOT regulations in TCLCP. A more

formal description of TCLCP is as follows: given a complete bi-directed Euclidean graph

D = (V,A) with node set V , arc set A, and travel time ta for each a ∈ A, a period length

T , and a lane set L, where each lane l ∈ L is specified by an arc a ∈ A and a dispatch

window [el, ll] (el, ll ≤ T ), find a set of time-feasible directed cycles covering the lanes in L

of minimum total duration. Note that TCLCP is NP-Hard by Theorem 2.1 of Section 2.3.

A directed cycle C is time-feasible if we can identify a first arc in the cycle and we can

assign a departure time da to the origin of each arc a ∈ C in such a way that da+ta ≤ dsuc(a)

for all arcs in the cycle except for the last arc, where suc(a) denotes the immediate successor

of arc a in the cycle, and el ≤ da ≤ ll or el + T ≤ da ≤ ll + T if arc a is used to cover lane

l, and such that the duration of the cycle is less than or equal to T , i.e., the time elapsed
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between the departure at the origin of the first arc and the return to the origin of the first

arc is less than or equal to T . The latter condition ensures that the cycle can be repeated

every period.

Observe that if a cycle is time-feasible, then it is time-feasible regardless of the arc

chosen as the first arc. To see this, suppose there exists an arc and a departure time at the

origin of that arc that results in a duration of the cycle of less than or equal to T . Since

a single driver can complete the entire cycle in a single period, that driver can serve the

same cycle every period. The driver visits each of the points (origins and destinations of

the arcs) once in every period. In other words, the driver returns to each of the points of

the cycle within at most time T from the departure from that point. But that means, that

the cycle is time-feasible regardless of the arc chosen as first arc.

2.4.1 Solution Approaches

We focus on developing an effective and efficient heuristic for TCLCP as instances encoun-

tered in practice are expected to be large.

We have implemented a greedy heuristic that generates a large number of time-feasible

cycles (potentially all) and greedily select a subset of those cycles to cover the lanes based

on some criterion measuring the desirability or attractiveness of a cycle. After all lanes are

covered we perform a local search step to improve the solution.

Note that a lane may be covered by more than one cycle, but that in all but one

cycle the corresponding arc of the cycle represents asset repositioning (or deadheading).

Consequently, the desirability or attractiveness of a cycle may change during the execution

of the selection phase of the heuristic. By explicitly defining, in advance, the role of an arc

in a cycle, i.e., whether it covers a lane or whether it represents repositioning, we can get

around this issue at the expense of a larger set of cycles. For each cycle, we can generate its

“siblings” by replacing one or more arcs covering lanes with arcs representing repositioning,

ensuring that we never replace two consecutive arcs. The process is illustrated in Figure

2.2. If the cycle in Figure 2.2(a) represents the original cycle, then the cycles in Figure

2.2(b) represent its siblings (dashed lines represent asset repositioning).
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The desirability or attractiveness of each cycle can now be established upfront, because

we know precisely which arcs are used to cover lanes and which arcs are used for reposi-

tioning.

A natural way to capture the desirability of a cycle is through the ratio of the sum of

the travel times of the lanes covered by the cycle and the duration of the cycle (the sum

of travel and waiting time). This cover ratio takes on values in (0,1] and a higher value

indicates a more desirable cycle.

The basic greedy heuristic iteratively selects a cycle with the highest cover ratio until all

lanes have been covered. This involves sorting the set of cycles and, after selecting a cycle,

deleting all cycles that cover one or more lanes of the selected cycle. These operations can

efficiently be implemented using heaps and reference lists.

2.4.1.1 Cycle Generation

We generate time-feasible cycles using a recursive procedure. For each lane ` ∈ L, we

construct all simple paths starting with ` and ending with a lane arc and consisting of

lane and repositioning arcs. We then connect the endpoints of the constructed path, if

necessary, with the appropriate repositioning arc to convert the path into a cycle. To

control the number of cycles generated, we restrict the travel time of the repositioning arcs

on the path to be smaller than a predefined value R. (There is no restriction on the travel

time of the repositioning arc connecting the endpoints of the path.) Sometimes, we will also

limit the number of cycles generated by restricting the number of lanes in a cycle. Each

recursion starts with a base path, initially just the lane arc `. Then, to enforce the limit on

the travel time of the repositioning arc, we find the lane arcs with an origin at travel time

less than or equal to R from the destination of the last lane arc on the base path. For all

such lane arcs ˆ̀, we check if the cycle consisting of the base path, a repositioning arc (if

any) to the origin of lane arc ˆ̀, the lane arc ˆ̀, and the return repositioning arc (if any) to

the origin of the first lane arc of base path is time-feasible. If so, we add the cycle to the

list of generated time-feasible cycles and invoke a new recursion where the base path is the

newly generated cycle without the final repositioning arc, i.e., lane arc ˆ̀ is the last arc on
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the extended base path.

For a cycle to be time-feasible, it must respect the dispatch windows and its duration

has to be less than the period length. Because of the dispatch windows, the duration of a

cycle may include waiting time. The waiting time on a cycle depends on the lane arc chosen

to be the first arc of the cycle and the departure times at each of the lane arcs in the cycle.

Therefore, the first arc of the cycle and the departure times at each of the lane arcs in the

cycle should be chosen in such a way that the total waiting time along the cycle is minimum.

Note that the set of departure times resulting in the minimum total waiting along a cycle

is not unique. We set the departure time at the origin of the first arc to be the earliest

time which results in the minimum total waiting time along the cycle and the departure

times of the remaining lane arcs in the cycle to the earliest feasible departure time. This

set of departure times yields the earliest departure time at the last lane arc in the cycle

given that the waiting time along the cycle is minimum. Throughout the construction of

time-feasible cycles we monitor and update, if necessary, the departure times on the active

path to maintain this (invariant) property.

There may be flexibility with respect to the departure time at the origin of the first arc

in the path, in the sense that departing a little later may not affect the total waiting time

along the path. We define the difference between the latest and the earliest departure time

at the origin of the first arc in the path resulting in minimum total waiting time along the

path as the flexibility of the path denoted φP . Figure 2.4 illustrates the flexibility of a path

with two lane arcs.
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Figure 2.4: Flexibility of a path
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Let σp denote the departure time at the first node of a path p and let τp denote the time

required to traverse a path p. Let ˆ̀ be a candidate lane arc for expanding the base path P

and let δˆ̀ denote the width of the dispatch window of lane ˆ̀. Furthermore, let P̄ denote

the base path P extended with the repositioning arc required to reach the origin of lane arc

ˆ̀, i.e., P̄ = P ∪ (head(P ), tail(ˆ̀). The required time to traverse the cycle that forms when ˆ̀

is added to the base path is computed as follows. First, we compute the beginning and end

of the dispatch window of ˆ̀ relative to σP , say t1 and t2 respectively. That is t2 = lˆ̀− σP

if σP + τP ≤ lˆ̀ or lˆ̀ + T − σP if σP + τP > lˆ̀ and t1 = t2 − δˆ̀. Then, the departure

time of êll relative to σP , dˆ̀, is equal to max{τP̄ , t1}. If t1 is strictly greater than τP̄ , then

there will potentially be a waiting time at ˆ̀. Let wˆ̀ denote this potential waiting. However,

some or all of this waiting time may be eliminated by departing later at the origin of the

first lane arc of the base path. The departure time at the origin of the first lane arc of the

base path can be delayed by at most φP , the flexibility of the base path. So the minimum

waiting time at lane ˆ̀ is w̄ˆ̀ = max{wˆ̀− φP , 0}. Note that the waiting time along the base

path does not change and that the waiting time along the new path Pnew (Pnew = P̄ ∪ ˆ̀) is

equal to the waiting time along the base path plus w̄ˆ̀. We now have all the information we

need to compute the duration of new cycle, and, if necessary, the duration, departure, and

flexibility of the extended base path:

τPnew = τP̄ + w̄ˆ̀+ tˆ̀

τCnew = τPnew + t(head(Pnew),tail(Pnew))

σPnew = σP + (wˆ̀− w̄ˆ̀)

φPnew = min{φP − (wˆ̀− w̄ˆ̀), t2 − dˆ̀}.

The above arguments show that we can handle lane dispatch windows during cycle gen-

eration without increasing the time complexity, because testing feasibility and maintaining

path information takes constant time.
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2.4.1.2 Cycle Duration Minimization

Recall that if a cycle is time-feasible, then it is time-feasible regardless of the lane arc

chosen as the first arc of the cycle. Therefore, the first arc of a time-feasible cycle should

be chosen such that the cycle has minimum duration. This is equivalent to choosing the

first arc of a time-feasible cycle in such a way that the difference between the return to

the origin of the first arc and the departure from the origin of the first arc in the next

period is the maximum possible. The origin of the first arc of a cycle may be used as the

domicile of the driver serving that cycle. By choosing the arc that results in minimum cycle

duration as the first arc, we minimize the time the driver and the truck spends in waiting

away from his domicile. Thus, we maximize asset utilization within the cycle. The cycle

generation procedure described above does not necessarily result in an ordering of the arcs

that results in the minimum cycle duration. To illustrate this, consider the instance shown

in Figure 2.5. The two lanes L1 = (1, 2) and L2 = (2, 3) have dispatch windows [e1, l1] and

[e2, l2] (0 < e1 < l1 < e2 < l2 < T ), respectively. The cycle generation procedure would

produce the time-feasible cycle (L1, L2, (3, 1)) with a departure time at the origin of L1 at

l1. However, it is easy to see that a shorter duration is obtained if L2 is chosen as the first

arc of the cycle with a departure time at the origin of L2 at e2, see Figure 2.6.
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Figure 2.5: Constructed cycle with lane L1 as first lane arc

Consequently, for each generated time-feasible cycle, we have to determine the lane arc

that results in the minimum cycle duration when chosen as the first arc of the cycle. A

relatively simple O(n2) algorithm, where n is the number of lane arcs in the cycle, simply
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Figure 2.6: Constructed cycle with lane L2 as first lane arc

traverses the cycle starting from each lane arc in the cycle, computes the duration, and in

the end selects the lane arc that resulted in the minimum duration. A more efficient linear

time algorithm exists, which is presented below. As the number of time-feasible cycles

generated may be large, an efficient algorithm to identify the lane arc that results in the

minimum cycle duration when chosen as the first arc is of utmost importance.

The linear-time algorithm first determines the earliest possible return time at a lane arc

and then determines the latest possible departure at that lane arc in the next period ensuring

minimum waiting time along the cycle. Consider time-feasible cycle C = (1, 2, ..., k, 1), i.e.,

cycle C consists of k lane arcs labelled, without loss of generality, 1, 2, ..., k. The cycle

generation procedure has already provided the duration with lane 1 as the first arc of

the cycle. Let Ci represent the same cycle, but with lane i chosen as the first arc, i.e.,

(i, i + 1, ..., k, 1, 2, ..., i − 1, i). The algorithm makes one forward and one backward pass

through the cycle. In the forward pass, we determine for each lane i ∈ {2, ..., k} the earliest

arrival time ai
i at the origin of i and the associated departure time di

1 at the origin of 1 that

ensures minimum waiting time along the path (1, ..., i), see Algorithm 2.5. In the backward

pass, we determine for each lane i ∈ {2, ..., k} the latest departure time di
i at the origin

of i and the associated arrival time ai
1 at the origin of 1 ensuring minimum waiting time

along the path (i, ..., k, 1), see Algorithm 2.6. The difference ∆i between departure time

and arrival (return) time at i can now be computed as:

∆i = di
i − ai

i − (ai
1 − (di

1 + T )).

The last term ensures that we arrive at the origin of 1 at or before the time of the departure
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Algorithm 2.5 Forward Pass

d← e1

s̄← l1 − e1

s← 0
for i = 2, ..., k do

d← d + ti−1,i

if d < ei then
si ← min(ei − d, s̄)
s̄← min(li − ei, s̄− si)
s← s + si

d← ei

end if
di
1 = e1 + s

ai
i = d + si

end for

Algorithm 2.6 Backward Pass

d← l1 + T
s← 0
for i = k, ..., 2 do

d← d− ti−1,i

if d > li then
si ← (d− li)
s← s + si

d← li
end if
di

i = d
ai

1 = l1 + T − s
end for

in the next period. The duration of Ci is equal to T −∆i, therefore the lane that results in

the largest value of ∆i should be chosen as the first arc of the cycle.

Because the algorithm makes two passes through the cycle it has a linear time complex-

ity.

2.4.1.3 Local Improvement

By adjusting the limit on the travel time of the repositioning arcs on the base path and

the number of lanes in a cycle, we have control over the number of cycles produced during

cycle generation. With a smaller travel time limit and number of lanes fewer cycles are

generated. However, with fewer cycles to choose from, greedy selection may not produce

high quality lane covers.
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Therefore, we have developed a local improvement scheme that merges cycles from a

cycle cover by removing the longest repositioning arcs from each cycle and by optimally

reconnecting the two resulting directed paths to form another cycle. An example of a cycle

merge is shown in Figure 2.3.

In this example, each of the two cycles consists of two lane arcs plus a single repositioning

arc. In the merged cycle, the two repositing arcs have been deleted and replaced by two

shorter repositing arcs.

Such a merge improves the current cycle cover if the sum of the durations of the initial

cycles C1 and C2 is more than the duration of the merged cycle C12. Given an initial cycle

cover C = {C1, C2, . . . , CN}, the optimal set of cycle merges can be obtained by finding

a minimum cost matching on the digraph DC = (VC , AC) where VC = {1, 2, ..., N}, AC =

{(i, j) : Cij is time-feasible and τCi
+τCi

> τCij
} with arc weights wij = τCij

−(τCi
+τCi

) for

(i, j) ∈ AC . Unfortunately, finding an optimal matching on DC becomes computationally

expensive when DC gets large. Hence, we have also developed a greedy merge heuristic.

Our greedy merge heuristic identifies all feasible and beneficial cycle merges, finds the

most improving cycle merge, implements that cycle merge, sets the resulting cycle aside,

and then repeats. (See Algorithm 2.7 for a detailed description.)

Algorithm 2.7 GreedyMergeHeuristic(C)

for all cycles Ci in C do
if Cij is time-feasible and τCij

< τCi
+ τCj

then
Insert((i, j), τCij

− (τCi
+ τCi

), ImprovementHeap)
end if

end for
while ImprovementHeap 6= ∅ do

(k, l) := Pop(ImprovementHeap)
if cycles Ck and Cl are not marked as merged then

merge Ck with Cl and mark them as merged
end if

end while

2.4.2 Computational Experiments

We have conducted a set of computational experiments to assess the overall effectiveness of

the algorithms proposed and to analyze the impact of instance size (number of points and
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number of lanes) and instance characteristics (presence of clusters, supply chain structure,

and dispatch time window width) on the performance of the proposed algorithms in terms

of quality and efficiency.

We have evaluated the algorithms on randomly generated Euclidean instances. Ran-

dom instance generation is controlled by the following parameters: the number of points,

the fraction of points in clusters, the number of points per cluster, and the number of

lanes. Clusters are introduced to represent geographical concentrations of points, such as

metropolitan areas. For a set of instances we also impose a supply chain structure by di-

viding the set of points into three classes representing: suppliers, plants and distribution

centers, and customers. The fraction of points belonging to each class and the fraction of

lanes between points in any two classes are given. These instances will be referred to as

supply chain instances (SC-instances). Given the number of points, the fraction of points

in clusters, and the number points per cluster, the number of clusters and a cluster radius

are determined. As the number of points in an instance increases, we let the cluster ra-

dius decrease in order to avoid overlapping clusters. Next, the centers of the clusters are

determined uniformly at random within a 1, 800 × 1, 800 miles square region. The points

within each cluster are generated by randomly determining their coordinates using a Nor-

mal distribution, N(0, 1), and the cluster radius. Finally, the points that are not in clusters

are generated by determining their coordinates uniformly at random within the square re-

gion. If the instance being generated is a SC-instance, then each point generated is assigned

to type: suppliers, plants and distribution centers, or customers with probability 0.2, 0.1,

or 0.7, respectively. Once all the points are generated the complete bi-directed Euclidean

graph defined by these points is formed. Next, the desired number of lanes are randomly

selected from among the arcs of the complete bi-directed graph ensuring that each point

has at least one lane incident to it and there are no lanes with an origin and a destination

in the same cluster. For the SC-instances, we only allow lanes between suppliers and plants

and distribution centers, among plants and distribution centers, and between plants and

distribution centers and customers. Furthermore, we ensure that each supplier has at least

one outgoing lane, each plant and distribution center has at least one incoming and one
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outgoing lane, and each customer has at least one incoming lane. Finally, after all the lanes

are generated we determine the dispatch time window for each lane. Given a lane, first a

day of the week is chosen randomly as the dispatch day. Once the dispatch day is set, the

start time and width of the dispatch window are determined.

To properly analyze the performance of the algorithms, we have generated instances for

several different parameter settings. We have varied the number of points, the fraction of

points in clusters, the number of points per cluster, the number of lanes, and the width

of the dispatch windows. More specifically, we generated instances with 300, 400, and 500

points, with a fraction of points in clusters of 0.5, 0.6, 0.7, and 0.8, and with an average

number of 10 customers per cluster. The density of the instance is controlled by the lane-

to-point ratio (ratio of the number of lanes and the number of points) with values 2 and

5.

2.4.2.1 Analysis of Algorithm Performance

With the first experiment, we aim to better understand the impact of the algorithm pa-

rameters that affect the construction of an initial solution, i.e., the generation and selection

of time feasible cycles. Recall that to control the number of cycles generated (to reduce

memory usage and computing time), we restrict the travel time of all but one of the repo-

sitioning arcs on the cycle to be smaller than a predefined value R. Table 2.10 presents the

results for R = 1, 10, 25, and 50 miles. We limit the number of lanes in a cycle to at most

six. Initial computational experiments revealed that cycles with a large number of lanes

are rarely selected and limiting the number of lanes in a cycle, allows us to solve large scale

problems without running into memory problems. The value of a solution, i.e., the sum of

the durations of the cycles selected, is presented as a percentage over the lower bound ob-

tained by solving the unconstrained lane covering problem (LCP). In this first experiment,

we have used 48 randomly generated instances grouped into 6 sets based on their size (i.e.,

number of points and number of lanes). In each set, there are instances with and without

a supply chain structure and with different cluster characteristics. Furthermore, we assume

that all lanes have a 12 hour dispatch window which starts at 8am in the morning. The
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number of cycles generated and the CPU times required for constructing the solutions are

presented in Table 2.11 and Table 2.12, respectively

Table 2.10: Percent deviation from the lower bound for the greedy construction heuristic.

#points #lanes R = 1 R = 10 R = 25 R = 50

300 600 51.90 41.55 28.96 25.55
300 1500 47.08 34.83 23.00 20.18
400 800 53.88 40.20 28.23 25.17
400 2000 48.14 33.13 22.45 19.91
500 1000 54.97 39.94 28.63 25.92
500 2500 49.79 32.73 22.86 20.65

Table 2.11: Number of cycles created by the greedy construction heuristic.

#points #lanes R = 1 R = 10 R = 25 R = 50

300 600 1,163 2,411 14,086 33,987
300 1500 5,501 29,754 733,299 2,946,147
400 800 1,578 4,047 24,882 50,374
400 2000 7,379 54,609 1,252,090 3,487,056
500 1000 1,996 6,730 57,276 128,566
500 2500 9,473 117,403 2,479,371 5,334,276

Table 2.12: CPU times in seconds for the greedy construction heuristic.

#points #lanes R = 1 R = 10 R = 25 R = 50

300 600 0.01 0.03 0.23 0.68
300 1500 0.05 0.44 16.86 79.70
400 800 0.01 0.04 0.44 1.06
400 2000 0.07 0.88 30.46 95.53
500 1000 0.01 0.08 1.20 3.11
500 2500 0.09 2.19 66.32 155.97

We observe that the solution quality increases steadily as the value of R increases, but

that, at the same time, the number of cycles created and the run times increase exponen-

tially. We also observe that the gap between the solution value and the lower bound value is

about 5% smaller for instances with the higher lane-to-point ratio 5. This is most likely the

result of the fact the number of opportunities for time-feasible continuous moves increases

when the number of incoming and outgoing arcs at a point increases. Finally, we point out

that searching for continuous moves can have substantial benefits as the non-collaborative

solutions are significantly worse.

Next, we analyze the effect of limiting the number of lanes in a cycle during the cycle
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generation phase to at most K, for K = 3, 4, 5, and 6. We restrict the travel time of all

but one of the repositioning arcs on the cycle to be smaller than 25, i.e., R = 25, and use

the same randomly generated instances as before with 12 hour dispatch windows starting

at 8am. The results can be found in Table 2.13.

Table 2.13: Percentage deviations from the lower bound for the construction heuristic with
varying limits on the number of lanes in a cycle.

#points #lanes K = 3 K = 4 K = 5 K = 6

300 600 28.94 28.94 28.96 28.96
300 1500 22.83 22.94 23.00 23.00
400 800 28.37 28.25 28.23 28.23
400 2000 22.28 22.42 22.47 22.45
500 1000 28.54 28.59 28.61 28.63
500 2500 22.34 22.52 22.52 22.86

We see that the quality of the solutions is almost identical for all values of K. This

suggests that high quality solutions typically involve only a small number of lanes. This

may be a consequence of the chosen criterion for choosing cycles, i.e., the cover ratio. The

cover ratio, i.e., the sum of the travel times of the lanes covered by a cycle and the duration

of that cycle, favors cycles with little empty repositioning and waiting time. It is more likely

to find cycles with a high cover ratio among cycles with only a few lanes. Therefore, the

results may be different when other criteria are used for cycle selection. On the other hand,

cycles with only a few lanes are preferred in practice as the chance for failed continuous

moves is smaller in cycles with only a few lanes.

Next, we investigate the effectiveness of local search and the impact of using the greedy

merge heuristic (GMH) as opposed to solving the matching problems optimally (OM). Our

computational experiments revealed that the initial solution characteristics did not change

the comparative performance of GMH and OM. Therefore, we compare the performance

of the two methods starting from an initial solution consisting of only the trivial 2-cycles.

We use the same instances as before. Note that local search is applied iteratively. After

a set of cycle merges has been identified and implemented, we continue the search for

improved solutions by setting up and solving another matching problem with time-feasible

and beneficial cycle merges. The result can be found in Table 2.14, where we present
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the value of the solution obtained by the greedy merge heuristic (GMH) and the value

obtained when the matching problem is solved to optimally (OM). For completeness sake

and anticipating its use in later computational experiments, we also present the value of

the non-collaborative solution. The value of the non-collaborative solution is calculated

by assuming that each lane is covered by a simple 2-cycle containing the lane arc and its

reversal.

Table 2.14: Percentage deviations from the lower bound and CPU times in seconds for the
two local improvement heuristics.

% deviation % deviation CPU seconds
#points #lanes 2-cycle GMH OM GMH OM

300 600 78.39 15.11 13.10 0.10 1.40
300 1500 77.83 10.01 8.09 0.58 11.18
400 800 80.24 14.76 12.79 0.17 2.60
400 2000 79.30 9.76 7.91 1.03 22.82
500 1000 81.43 14.58 12.68 0.26 4.57
500 2500 80.96 9.60 7.79 1.65 36.53

First, we observe that local improvement is very effective. Starting from solutions with

deviations close to 80% from the lower bound, solutions with less than 15% deviations are

obtained. Second, we see that the percentage deviations of the solutions obtained by the

optimal matching are about 2% less than those obtained by the greedy merge. However,

solving the matchings to optimality substantially increases the running time, particularly

for the larger instances. As in the previous experiment, we observe that for the dense

instances, with lane-to-point ratio 5, the solutions obtained are closer to the lower bound,

but that the running time is an order of magnitude larger. This is due to the fact that the

number of time-feasible and beneficial cycle merges is significantly larger. In the rest of the

section, we use the greedy merge heuristic as our local improvement algorithm due to its

computational efficiency.

The difference between the value of the solutions obtained and the value of the solutions

to the unconstrained lane covering problem (the lower bound) can be attributed to two

factors: (1) dispatch windows on the lanes, which render certain continuous moves infeasible,

and (2) solving the problem heuristically. To get a sense of what portion of the difference can

be attributed to the presence of dispatch windows, we first ran the greedy merge heuristic
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starting from the trivial 2-cycle cover ignoring any dispatch windows and then starting from

the trivial 2-cycle cover respecting the dispatch windows. The results can be found in Table

2.15.

Table 2.15: Percent deviation from the lower bound with and without taking dispatch
windows into account.

#points #lanes 2-cycle solution without 2-cycle solution with
dispatch windows dispatch windows

300 600 7.60 15.11
300 1500 5.24 10.01
400 800 7.20 14.76
400 2000 4.93 9.76
500 1000 7.70 14.58
500 2500 4.65 9.60

We see that about half of the difference can be attributed to the presence of dispatch

windows whereas the other half is due to the use of a heuristic solution approach.

2.4.2.2 Analysis of the Value of Collaboration

The next sets of experiments are aimed at assessing the value of collaboration and the impact

of dispatch windows on the opportunities for collaboration. In Table 2.16, we present the

percentage deviations from the lower bound for the values of the solutions produced by the

greedy heuristic followed by the greedy merge heuristic (for different values of R) and the

values of the solutions produced by the greedy merge heuristic when started from 2-cycle

solutions.

Table 2.16: Percentage deviations from the lower bound for the construction and improve-
ment heuristics combined.

non-collaborative collaborative

#points #lanes R = 1 R = 10 R = 25 R = 50 2-cycle

300 600 78.39 21.25 20.91 18.41 17.52 15.11
300 1500 77.83 14.52 13.79 12.24 11.74 10.01
400 800 80.24 20.99 20.09 18.08 17.38 14.76
400 2000 79.30 14.46 13.24 11.67 11.31 9.76
500 1000 81.43 20.87 20.05 17.90 17.38 14.58
500 2500 80.96 14.49 13.14 11.49 11.18 9.60

We can make the following observations regarding the results in Table 2.16. First and

foremost that collaboration significantly reduces empty repositioning. Furthermore, we see
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again that local search is very effective. The solutions obtained for R = 1, 10, 25, and 50,

are substantially better than those reported in Table 2.10. An additional 7-8 percent is

shaved off from even the best solutions obtained using the greedy construction heuristic by

itself. This indicates that to obtain high quality continuous move tours it is necessary to

include several relatively long asset reposition moves. This is a valuable observation, because

planners and analysts without access to decision support technology may not naturally

consider such solutions. The presence of dispatch windows most likely increases the need to

include relatively long asset repositioning moves in high quality continuous move tours as

dispatch windows may invalidate connections that appear to be attractive geographically.

Second, that the quality of the starting solution does not appear to have a major impact.

Even starting from a trivial 2-cycle solution results in high quality solution. In fact, the best

solutions are obtained when starting from a 2-cycle solution. As before the deviations from

the lower bounds are about 5% smaller for the dense instances. The increase in running

times as a result of local search is negligible (at most 2 seconds).

Next, we analyze the effect of the width of the dispatch windows on the number of time

feasible cycles and the solution quality. For these experiments, we start the greedy merge

heuristic from an initial solution generated by the greedy heuristic with R = 25 and from

the trivial 2-cycle covers. We use the same randomly generated instances as before except

for the dispatch window widths. We use dispatch window widths of 2, 4, 6, and 12 hours

and choose the start of the dispatch windows randomly for instances with dispatch window

widths less than 12 hours. Once chosen, the start of the dispatch windows for each lane is

kept constant for all instances. The results are presented in Tables 2.17 and 2.18.

Table 2.17: Percentage deviations from the lower bound for the construction and improve-
ment heuristics combined, with varying dispatch window widths.

width = 2hrs width = 4hrs width = 6hrs width = 12hrs
#points #lanes GH 2-cycle GH 2-cycle GH 2-cycle GH 2-cycle

300 600 31.45 26.16 27.38 22.27 24.13 19.47 18.41 15.11
300 1500 22.19 18.00 18.61 14.82 16.15 12.79 12.24 10.01
400 800 30.73 25.53 26.33 21.68 23.55 18.98 18.08 14.76
400 2000 21.40 17.57 17.86 14.50 15.49 12.51 11.67 9.76
500 1000 30.30 25.03 26.30 21.11 23.27 18.54 17.90 14.58
500 2500 21.30 17.36 17.67 14.22 15.09 12.24 11.49 9.60
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Table 2.18: Number of cycles generated by the construction heuristic with varying time
window widths.

#points #lanes width = 2hrs width = 4hrs width = 6hrs width = 12hrs

300 600 3,917 5,256 6,780 14,086
300 1500 84,493 138,524 218,569 733,299
400 800 6,513 8,788 11,641 24,882
400 2000 145,007 240,355 376,604 1,252,090
500 1000 10,863 15,733 22,254 57,276
500 2500 289,811 513,722 857,076 2,479,371

As expected, we observe that as the dispatch window widths get narrower the quality

of the solutions decreases substantially. In fact, the percentage deviations of the solutions

from the lower bound with 2 hour dispatch windows are about 10% higher for low density

instances and about 8% higher for high density instances than those with 12 hour dispatch

windows. We see again that the impact of changes, in this case dispatch window width,

is less severe for high density instances where the number of opportunities for beneficial

continuous moves is larger. We also observe that as the dispatch window width increases

the number of cycles generated by the greedy heuristic increases and so does the number

of cycles that can be merged (not presented in the tables). Finally, we note that for all

dispatch window widths starting the local improvement from the 2-cycle solution, as opposed

to starting from the solution generated by the greedy algorithm, performs best.

Next, we analyze the effects of geographical instance characteristics on the value of

collaboration. Instances are characterized by the number of points, the fraction of points in

clusters, the number of points in a cluster, the number of lanes, and whether or not there is

a supply chain structure. In Tables 2.19 and 2.20 we present results for instances grouped

by whether or not a supply chain structure is present (y/n), their density (i.e., the ratio of

number of lanes to number of points (2 or 5)), and the fraction of points in a cluster (0.5,

0.6, 0.7, or 0.8). Each of these 16 groups has three members with 300, 400, and 500 points.

The dispatch window widths are set to 12 hours starting at 8am.

Table 2.19 shows that when a supply chain structure is present in instances, the solutions

obtained are closer to the lower bound. We believe this suggests that when a supply

chain structure is present an increase in reposition miles is inevitable, and hence the lower
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Table 2.19: Effect of instance characteristics on the solution quality.

Group SC Density Frac in Clst R=1 R=10 R=25 R=50 2-cycle

1 Yes 2 0.5 15.23 15.90 15.23 14.92 12.65
2 Yes 2 0.6 14.94 15.42 14.89 14.52 12.15
3 Yes 2 0.7 14.67 15.39 14.81 14.14 11.55
4 Yes 2 0.8 14.66 15.29 14.40 13.86 11.77
5 Yes 5 0.5 8.23 9.23 9.14 9.18 7.60
6 Yes 5 0.6 8.28 9.25 9.30 9.30 7.49
7 Yes 5 0.7 8.04 9.02 8.85 8.72 7.31
8 Yes 5 0.8 7.83 9.25 9.16 9.03 7.11
9 No 2 0.5 28.21 26.60 22.61 21.58 18.07
10 No 2 0.6 27.26 25.58 22.68 21.59 18.01
11 No 2 0.7 26.22 23.96 20.26 19.67 17.09
12 No 2 0.8 27.11 24.67 20.17 19.15 17.23
13 No 5 0.5 21.13 18.67 15.96 15.37 12.73
14 No 5 0.6 20.86 17.60 14.80 14.08 12.30
15 No 5 0.7 20.96 17.28 13.93 13.17 12.07
16 No 5 0.8 20.58 16.82 13.02 12.30 11.73

bound is tighter. The reason for the increase in reposition miles is the fact that a large

fraction of the points has no incoming arcs (points representing suppliers) and an even larger

fraction of the points has no outgoing arcs (points representing customers). Therefore, fewer

natural connections are present. This view is supported to some extend by the results in

Table 2.20, which show that the number of cycles generated in the construction phase is

smaller for instances with a supply chain structure. The number of cycles generated in

the construction phase also suggests an explanation for the smaller gaps we have observed

for high density instances. The presence of dispatch windows invalidates many continuous

moves that look good from a geographical perspective, i.e., involve only a short repositioning

move. Relatively speaking, this happens less frequently in high density instances because

the in- and out-degree of the points are higher. This is reflected in the number of time-

feasible cycles generated. When the density is high, the number of cycles generated is much

higher. Furthermore, we need to keep in mind that the lower bound computation completely

ignores dispatch windows. Combined these observations clarify the differences in gap sizes

between low and high density instances.
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Table 2.20: Effect of instance characteristics on number of cycles generated during the
construction phase.

Group SC Density Frac in Clst R=1 R=10 R=25 R=50

1 Yes 2 0.5 1,596 3,602 12,974 23,811
2 Yes 2 0.6 1,551 4,097 28,656 57,194
3 Yes 2 0.7 1,610 4,901 34,226 69,579
4 Yes 2 0.8 1,602 5,932 77,522 193,433
5 Yes 5 0.5 4,901 29,301 368,195 1,041,817
6 Yes 5 0.6 4,729 37,888 1,100,413 2,742,038
7 Yes 5 0.7 4,937 57,204 1,418,979 4,404,726
8 Yes 5 0.8 4,953 92,221 1,974,056 4,926,831
9 No 2 0.5 1,540 3,250 13,819 25,873
10 No 2 0.6 1,568 3,915 21,916 50,602
11 No 2 0.7 1,573 4,367 27,645 60,103
12 No 2 0.8 1,592 5,103 39,895 87,211
13 No 5 0.5 9,591 47,051 563,984 1,533,128
14 No 5 0.6 10,118 70,509 1,273,310 4,046,833
15 No 5 0.7 10,060 90,686 1,983,492 5,783,194
16 No 5 0.8 10,314 113,183 3,167,453 7,046,333

2.4.3 A Real-World Case Study

Group purchasing organizations have become common place in the modern business world.

A group purchasing organization seeks to achieve cost reductions by combining purchasing

power to negotiate discounts. Their success in the area of product procurement, e.g., raw

materials, has lead to companies to explore whether a group purchasing organization may

also be effective when it comes to procuring services, e.g., truckload transportation.

To assess the potential value of collaborative purchasing of truckload transportation

services and to prepare itself for negotiations with truckload carriers a group purchasing

organization has to solve a time-constrained lane covering problem.

We have conducted a study for one such organization in which we assessed the poten-

tial value of collaborative transportation procurement for individual member companies,

by coordinating purchasing of inbound and outbound truckload transportation services,

and across member companies, by collaboratively purchasing all truckload transportation

services.

To estimate the savings associated with offering collaborative continuous moves to a

carrier, a carrier pricing model had to be developed. The carrier pricing model we developed

takes as input a continuous move path (instead of a cycle) with an origin, a destination,
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the distance traveled between the origin and the destination, and the time elapsed between

departing from the origin and arriving at the destination, and computes the associated

charge. The charge is computed as the sum of a fixed cost component, based on the

time elapsed between origin and destination, and a variable cost component, based on

the distance traveled between origin and destination. The fixed cost per week, set at

$1,600, covers tractor and trailer depreciation and interest, driver compensation and fringes,

insurance, tags, taxes, and licenses. The fixed cost of a path is computed by multiplying

$1,600 by the fraction of the week used by the path. The variable operating cost per mile,

set at $0.45, covers fuel and oil, tractor and trailer maintenance, and tractor and trailer

tires.

In addition to the incurred direct costs, it is assumed that the carrier accounts for

potential asset reposition to the next pickup location and for potential delay at the next

pickup location. Asset repositioning and delay depend on many factors, such as the location

of the destination, the time of arrival at this location, and the carriers demand patterns. For

the study, asset reposition of a 100 miles and a delay of 8 hours are assumed, i.e., 100 miles

are added to the distance traveled between origin and destination and 10 hours are added

to the time elapsed between departing from the origin and arriving at the destination (8

hours plus two hours for traveling the additional 100 miles). Finally, the carrier is assumed

to charge overhead and profit as a percentage of revenue, set at 15% and 10% respectively.

Consequently, the formula for computing the charge for a path P , cP , to a shipper is

cp =
4

3

(

1600

(
duration(P ) + 10

168

)

+ 0.45 (mileage(P ) + 100)

)

. (2.1)

Given the carrier pricing model, the savings associated with a collaborative continuous

move path are estimated as the difference between the sum of the charges for the lanes on

the path and the charge for the path. The savings represent (are the result of) elimination

of some of the carrier’s charges in anticipation of asset repositioning and delay.

In addition to using the carrier pricing model developed in the above section, to provide

realistic estimates of time elapsed between departure at the origin and arrival at the desti-

nation, we properly account for the Hours of Service regulations (those in effect in 2004),
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i.e., a mandatory rest of 8 hours after driving for 10 hours or being on duty for 15 hours. As

a result, the travel time between two locations is no longer a constant because it depends on

the history of the driver. We also include a one hour rest after every four hours of driving.

In addition, each location has a time window specifying a period of the day during which

a pickup or delivery could take place. Furthermore, some locations require life loading

whereas other locations used spot trailers (when spot trailers are used loading or unloading

is fast as it only involves a change of trailers; when life loading is required no change of

trailers takes place and a driver has to wait until loading or unloading is completed).

A typical all-member instance for a single week involves about 750 locations and 5500

lanes. The potential savings due to continuous moves were estimated to be in the order of

9-10%. (Due to confidentiality agreements, we are unable to provide more details.)

Since we are unable to present detailed results for the instances of the real-world case

study, we have conducted a set of computational experiments on slightly simplified instances,

in which we do not account for loading and unloading times, and where we use a version of

the algorithm that ignores Hours of Service regulations.

In the first experiment, we investigate the potential savings and whether the obtained

savings are sensitive to the algorithm settings for the construction phase (local search is

applied in all variants tested). The results can be found in Table 2.21, where the savings

are computed as
one-way charges - continous move charges

one-way charges
× 100 percent.

Table 2.21: Savings from continuous moves.

Instance #locations #lanes R = 1 R = 10 R = 25 R = 50 2-cycle

i1 103 1078 5.39% 5.36% 5.44% 5.34% 4.24%
i2 65 140 6.97% 7.28% 6.94% 6.99% 6.81%
i3 215 2346 9.66% 10.02% 10.04% 10.10% 8.81%
i4 404 2074 12.42% 12.20% 12.45% 12.71% 11.58%
i5 737 5445 11.87% 12.04% 12.02% - 11.33%
i6 244 2889 10.47% 10.51% 10.65% 10.66% 9.58%
i7 427 2524 13.04% 12.92% 13.24% 13.58% 12.17%
i8 240 2828 10.23% 10.52% 10.73% 10.68% 9.24%
i9 215 2346 9.66% 10.02% 10.04% 10.10% 8.81%

i10 244 2889 10.47% 10.51% 10.65% 10.66% 9.58%
i11 240 2828 10.23% 10.52% 10.73% 10.68% 9.24%
i12 236 2352 8.69% 8.83% 8.90% 8.92% 7.93%
i13 130 1503 5.03% 5.31% 5.24% 5.28% 4.49%

We see that the savings range from about 5.5 percent to a little over 13 percent, where
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Table 2.22: Savings from continuous moves for different dispatch window widths.

width = 2hrs width = 4hrs width = 6hrs width = 12hrs
Instance GH 2-cycle GH 2-cycle GH 2-cycle GH 2-cycle

i1 4.15% 3.02% 4.57% 3.33% 4.89% 3.56% 5.44% 4.24%
i2 5.12% 4.74% 6.85% 6.15% 6.79% 6.69% 6.94% 6.81%
i3 7.61% 6.85% 8.50% 7.63% 8.96% 8.18% 10.04% 8.81%
i4 10.23% 9.77% 11.48% 10.77% 11.86% 11.21% 12.45% 11.58%
i5 9.42% 9.28% 10.51% 10.25% 11.26% 10.78% 12.02% 11.33%
i6 7.84% 7.44% 9.01% 8.27% 9.64% 8.93% 10.65% 9.58%
i7 10.77% 10.26% 11.86% 11.35% 12.63% 11.72% 13.24% 12.17%
i8 7.79% 7.09% 8.81% 7.99% 9.34% 8.61% 10.73% 9.24%
i9 7.61% 6.85% 8.50% 7.63% 8.96% 8.18% 10.04% 8.81%

i10 7.84% 7.44% 9.01% 8.27% 9.64% 8.93% 10.65% 9.58%
i11 7.79% 7.09% 8.81% 7.99% 9.34% 8.61% 10.73% 9.24%
i12 6.78% 6.05% 7.66% 6.89% 8.27% 7.36% 8.90% 7.93%
i13 4.27% 3.51% 4.75% 3.94% 5.08% 4.23% 5.24% 4.49%

the savings tend to be larger when the size of the instance is larger. It also appears that for

these instances the quality of the initial tour has an impact on the quality of the final tour.

The quality of the tour obtained after local search when starting from the trivial 2-cycles

is universally worse than the quality of the tour obtained after local search when starting

from a tour constructed with our greedy heuristic. One instance could not be solved for

R=50 because the number of tours generated was too large to fit into memory.

Next, we investigate the impact of the size of the dispatch windows at the locations on

the quality of the tour. The results when the initial solutions are obtained by the greedy

construction heuristic with R = 25 and the trivial 2-cycles can be found in Table 2.22.

As expected, we see that the width of the dispatch windows has an impact on the

savings that can result from the use of continuous moves. The smaller the dispatch window

width the smaller the savings. This is due to the increased chance of waiting time between

two consecutive moves. A large waiting time between two consecutive moves renders a

continuous move path unprofitable.

Finally, we investigate the impact of a limit on the number of lanes in a continuous

move path. In practice, the chance for breaking a continuous move, i.e., being unable to

execute the complete sequence of moves as planned, increases when the number of lanes in

a continuous move path is large. Therefore, in practice it is preferable to achieve the bulk

of the savings from continuous move paths with a relatively small number of lanes. We
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limited the number of lanes allowed in a continuous move path to 3, 4, and 5 respectively.

The results when the initial solutions are obtained by the greedy construction heuristic with

R = 25 and the trivial 2-cycles can be found in Table 2.23.

Table 2.23: Savings from continuous moves for different limits on the number of lanes in
the path.

K=3 K=4 K=5
Instance GH 2-cycle GH 2-cycle GH 2-cycle

i1 5.38% 4.17% 5.44% 4.24% 5.45% 4.25%
i2 6.94% 6.74% 6.94% 6.81% 6.94% 6.81%
i3 9.74% 8.45% 10.04% 8.81% 10.13% 8.87%
i4 11.89% 10.52% 12.45% 11.58% - 11.72%
i5 11.52% 10.34% 12.02% 11.33% - 11.46%
i6 10.30% 9.21% 10.65% 9.58% 10.66% 9.65%
i7 12.66% 11.16% 13.24% 12.17% - 12.27%
i8 10.33% 8.93% 10.73% 9.24% 10.62% 9.33%
i9 9.74% 8.45% 10.04% 8.81% 10.13% 8.87%

i10 10.30% 9.21% 10.65% 9.58% 10.66% 9.65%
i11 10.33% 8.93% 10.73% 9.24% 10.62% 9.33%
i12 8.69% 7.71% 8.90% 7.93% 8.96% 7.95%
i13 5.24% 4.41% 5.24% 4.49% 5.29% 4.49%

We see that limiting the number of lanes in a continuous move path has little impact on

the savings. Allowing at most three lanes in a continuous move results in savings that are

about 0.5 percent less than when at most four lanes are allowed. The decrease in savings

is even smaller when we compare allowing at most four lanes to at most five lanes in a

continuous move path, less than 0.1 percent (for all instances that could be solved).
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CHAPTER III

BIDDING IN SIMULTANEOUS TRANSPORTATION

PROCUREMENT AUCTIONS

3.1. Introduction

This chapter is devoted to the design and analysis of bidding strategies for a carrier par-

ticipating in multiple simultaneous single-lane auctions. The challenge for the carrier is

to determine bid prices, and thus potential revenues, while operating costs are uncertain

as they depend on the lanes won, which is not known until the end of the auctions. In

determining bid prices the carrier has to consider potential revenues, probable costs, and

possible competitors’ bids, which all have an impact on the carrier’s profit. The focus is on

incorporating anticipated bidding behavior of competitors when determining bid prices, as

competitors’ bids greatly affect the outcome of the auctions and therefore the set of lanes

the carrier ends up winning, which in turn determines the carrier’s operating cost. A bid

price optimization problem with an objective of maximizing a carrier’s expected profit is

formulated and algorithms for its solution are designed and implemented. The value of

bid price optimization for carriers is empirically evaluated on randomly generated instances

simulating a real-life environment.

The contributions of the research presented in this chapter can be summarized as follows:

• It provides optimization based bidding (or dynamic pricing) algorithms for carriers

participating in multiple simultaneous truckload procurement auctions. We are the

first to study simultaneous truckload procurement auctions from a carrier’s perspec-

tive. Most of the literature has focused on the design or the selection of auction mech-

anisms with desirable properties or on the characterization of equilibrium strategies

for carriers. The literature that does study transportation procurement auctions from

a carrier’s perspective has focused on combinatorial or sequential auction settings.
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• A stochastic bid price optimization problem, with the objective of maximizing a car-

rier’s expected profit, has been formulated and an iterative coordinate search algo-

rithm for its solution has been developed. The coordinate search algorithm produces

optimal or close to optimal solutions for small to medium size practical instances in

a short amount of time.

• A simulation study has been conducted that demonstrates the value of using bid price

optimization. A carrier relying on the bid price optimization outperforms the compe-

tition, in terms of profit, especially in situations where exploiting network synergies

is critical.

Before formally introducing the bid price optimization problem, we present an overview

of transportation procurement and a review of relevant literature.

3.2. Transportation Procurement Overview

Traditionally, firms interested in shipping goods buy transportation services using requests

for proposals (RFPs), leading to contract prices that are typically in effect for one to

two years [68]. The traditional RFP process that most large shippers used until the late

1990s, and many still use today, typically begins by estimating the freight the shipper will

need to ship in the coming year, usually by compiling the prior years movements [32].

Advertisements are placed in local or national media to transmit information to the carriers

as a list of lanes on which the shippers expect the carriers to bid. Carriers then quote the

prices at which they are willing to haul the loads. The shipper evaluates the bids lane by

lane, using a single criterion, usually price, to select the winner. This process is nothing

but a first-price sealed-bid auction. Since there are multiple lanes on auction, this process

is in fact a simultaneous multiple-unit auction [44]. However, most shippers look at it as a

set of individual auctions, one for each lane, ignoring lane interdependencies which play an

important role in truckload (TL) carriers’ operating costs.

The developments in information and communication technologies, especially wide-

spread availability and use of the internet, facilitate quick, convenient, and cost-effective

transactions between shippers and carriers. Many shippers form private transportation
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exchanges (or marketplaces) to procure transportation services where only a few carriers

selected by the shipper compete for the lanes of the shipper. These private marketplaces

enable shippers to work with a few trusted carriers, and thus are predominantly used for

procurement of long term contracts. Alternatively, the shippers can procure transportation

services using public exchanges such as www.freemarkets.com, where many shippers and

many carriers are involved. Mostly, these public exchanges act as a spot market enabling

the shippers to satisfy immediate and short term transportation needs resulting from fluc-

tuations in shipment volume in a cost effective way. Regan and Nandiraju [59] provide a

review of transportation marketplaces and their characteristics.

A carrier participating in procurement auctions has to take several factors into account

when deciding on a bid for a given lane. Namely, (1) Type of auction mechanism in place,

(2) Carrier’s own cost structure, (3) Competitors’ bidding strategies.

Note that the carrier’s price must be high enough to make serving the shipper profitable

but low enough to beat the competitors’ prices. The revenue generated from an auctioned

lane the carrier wins is determined by the type of auction run by the shipper. In a first-price

sealed-bid auction, the carrier’s revenue is equal to the carrier’s own bid. In a second-price

sealed-bid auction, the carrier’s revenue is equal to the second highest bid, which the carrier

does not know when he places his bid. In sealed-bid auctions, the carrier cannot change his

bid once he places it, so the carrier must predict the competitors’ bids and carefully place

his bid. In descending procurement auctions, the bidders are allowed to decrease their bids.

So, a carrier may start by placing a high bid and revise it as competitors’ bids are revealed.

In order to assess the profitability of serving a customer request at a given price, the

carrier must estimate the incremental cost of serving that customer request. A TL Car-

rier’s operating costs is determined by his vehicle routing and fleet management technology

and the interaction between the lanes to be served by that carrier. The set of lanes the

carrier ends up serving is uncertain due to the participation of other carriers in the auc-

tion. The probability that a carrier wins a certain lane depends on the carrier’s bid and

the competitors’ bids. In simultaneous transportation procurement auctions, the bidders

are susceptible to the so called “exposure problem”. That is, the carrier may fail to win
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one of the lanes which has strong synergies with the lanes he wins, leading to an unprof-

itable outcome for the carrier. In this setting, it is critical that the carrier incorporates his

competitors’ bidding strategies.

Recently, several large shippers and third-party-logistics (3PL) providers have turned to

combinatorial auction mechanisms to procure transportation services. Combinatorial auc-

tions enable the carriers to bid more aggressively without running into exposure problems

by allowing conditional bids on bundles of lanes. When bidding on bundles, each carrier

may submit multiple quotes for a single lane, because each lane can be a part of many

packages. The shipper may therefore receive many more bids than the number of lanes,

with overlapping lane quotes, making evaluating these quotes much more difficult than eval-

uating individual lane quotes. The shipper must solve the winner determination problem,

which is a challenging combinatorial optimization problem [15]. Not every shipper has the

sophisticated technology to run combinatorial auctions and it is natural that a carrier inter-

acts with multiple shippers. Thus, bidding in multiple simultaneous procurement auctions

is still a real challenge faced by carriers.

3.3. Literature Review

3.3.1 Auction Theory

Auctions have been used by people for thousands of years as market mechanisms. Greek

historian Herodotus described the sale of women to be wives in Babylonia around the fifth

century B.C. The auction of plundered bounty was common during the closing years of the

Roman Empire. In China, the personal belongings of the deceased monks were auctioned

off as early as the seventh century A.D. [17] [69]

Today, auctions account for an enormous amount of economic activity. Governments

use auctions to sell treasury bills, radio frequency spectrums, foreign exchange, mineral

rights including oil fields, and other assets such as firms to be privatized. Government

contracts are usually awarded using procurement auctions. Firms seeking to buy inputs

or subcontracting work also use procurement auctions. Houses, cars, antiques, artwork,

agricultural produce and livestock are commonly sold through auctions. Internet auction
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web-sites such as Ebay and Yahoo are used to sell almost anything. Furthermore, economic

transactions such as take over battles are auctions in effect if not in name.

Auctions are simple but useful and practical price discovery mechanisms to extract

buyers’ or sellers’ valuations, especially when there is uncertainty about the value of an

object or service. If there were no uncertainty, the seller/buyer would just transact with

the buyer/seller that had the highest valuation. The term “auction” usually refers to the

case that involves a seller and several buyers. Note that procurement auctions are of type

“reverse” auctions because sellers (carriers) bid instead of buyers (shippers); prices are

bid down instead of up. In “reverse auctions” sellers have a production or service costs,

while in “forward auctions” buyers have a valuation of the object/service to be purchased.

Most of the auctions studied in literature are forward auctions. On the other hand, models

and intuition derived for most “auctions” can be easily reversed and applied to “reverse

auctions” and vice versa [66].

Auction analysis is one of the most successful applications of game theory, because

game theory formulations of auctions formally capture market competition and strategic

interactions. Auctions are modeled as non-cooperative strategic games in which the players

are the bidders and the seller(s). The bidders decide how much to bid, the seller decides

the auction format and rules (the auction design). Payoffs depend on the design of the

auction and the bids, but typically the surplus from the trade is split in some way between

the winning bidder and the seller. Objectives of the game theoretic study of auctions are

to understand: (1) how bidders decide how much to bid, (2) the consequences of the buyers

bidding strategies for the expected price that the seller receives (3) the consequences of the

sellers choices regarding auction design for the expected price that the seller receives (4) the

circumstances in which auctions are an efficient mechanism (the item goes to the bidder

who values it the most) for allocating scarce resources.

Single-item auctions are well understood, since they have been studied in economics as

games of incomplete information for more than 40 years [81]. Several models for the auction

of a discrete item with varying assumptions on the behavior of bidders have been studied.

These models vary according to the amount of information available to each bidder, whether
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each bidder knows his own valuation for certain or bases his value somewhat on what others

think, and the amount of affiliation or correlation among the values of bidders.

Auction theorists have studied in detail the four standard auction types: English (ascend

the price until only a single bidder remains), Dutch (descend the price until the first bidder

bids and wins the item), first-price sealed-bid (each bidder submits a price for the item in

question unknown to the rest of the bidders, the winner pays the price he submitted), second-

price sealed-bid (same as first-price sealed-bid except, the winner pays the second highest

price). English (ascending) auction is shown to be both incentive compatible (truth telling

is the best strategy) and efficient. The second-price sealed-bid auction displays incentive

compatibility. Under an assumption that a bidders valuation does not depend on the

valuation information revealed by her opponents, the second-price sealed-bid is strategically

equivalent to the English auction. Auction theorists show that under mild assumptions, the

Dutch and the first-price sealed-bid auction are strategically equivalent [44].

The conclusions reached in theoretical work regarding the standard auctions no longer

hold when the simplifying assumptions is removed and the model is extended to describe

the real world more accurately. For instance, the equivalence between the English and

second-price auctions breaks down when bidders utility is governed by affiliated signals

[56]. In this setting the English auction has higher expected revenue, because bidders

in the English auction learn as the auction progresses and can bid more competitively

with better information. On the other hand, lack of information about the value of the

item induces conservative bidding in the second-price auction. The complete result for

single-item auctions is that in terms of maximizing auctioneer revenue, the English auction

outperforms the second-price auction, which in turn outperforms the first-price auction [44].

Also, a recent paper [16] shows that slow Dutch auctions (in which the price drops slowly

over the course of a few days in an Internet auction) may produce more revenue than the

first-price auction (see also the work by Lucking-Reiley [51]). Here, the value of time must

be included as a transaction cost in models of Dutch auctions, and failure to capture all

costs in an auction model may skew an auctioneer’s decision-making criteria when selecting

a particular auction.
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The ranking of revenues across various auction mechanisms, given the problem of asym-

metric bidders, has not yet been established. There are, however, a number of studies

examining the ranking of revenues in the single unit case when bidders are asymmetric ex

ante; the reader is referred to Klemperer [42] discussing the ”wallet game” and Maskin

and Riley [53] who compare revenues under a first-price sealed bid mechanism with those

yielded by an English auction, assuming private values.

In recent years, the design and analysis of multi-item auctions with multi-item demand

have received greater attention than single-item auctions. One stream of research, inspired

by the U.S. spectrum auctions, has analyzed the case when items are heterogeneous [19, 55].

Some studies characterize equilibria in different auction mechanisms and compare revenue

and efficiency when there exist synergies between the items for the bidders [34, 45, 9, 10, 11,

1, 43]. Assuming simple private value models, the studies show that a combinatorial auction

is the most efficient mechanism, followed by the simultaneous multiple round auction. For a

study of a multi-item auction with common values and synergies, see Rosenthal and Wang

[65]. The simultaneous sealed-bid auction seems to be less efficient but it generates higher

revenue than both the simultaneous multiple round and the combinatorial auction. The

reason is that bidders bid more aggressively in the simultaneous sealed-bid auction than

in the other mechanisms. The bidder submits bids on separate items that are above his

valuation for each separate item, facing a possible loss, i.e. exposure problem, in case he wins

only a fraction of the items. This risk of a negative profit is compensated by the bidder’s

potential gain in case of winning all items.

Combinatorial bidding can be used in both simultaneous one-shot (bidders may bid

on any package of units they choose) and multiple round auctions (bidders may add new

packages during the course of the auction). However, allowing for combinatorial bids may

give rise to a free-rider (sometimes referred to as a threshold) problem, thereby introducing

inefficient equilibrium outcomes that would be avoided in an auction without combinatorial

bidding [55].

Due to the lack of theoretical results, laboratory experiments have been designed to test

the revenue and efficiency ranking of multi-item auction mechanisms when bidders have

61



synergies. It is demonstrated that a simultaneous multiple round (SMR) auction allowing

for combinatorial bids dominates other mechanisms, both in terms of revenue and efficiency

[49] [12]. In another work, it is reported that a SMR auction allowing combinatorial bids

generates higher efficiency but lower revenues than a SMR auction without package bids,

the reason being that bidders in the latter auction make losses because of failed contract

aggregations [20]. In these lab experiments with combinatorial auctions, the occurrence

of a free-rider was not observed. Further, real-life applications of procurement auctions

where suppliers have had the option to submit combinatorial bids on bundles of contracts

have generated substantial savings in procurement costs of transportation services [48] [15]

[68] and wooden packaging material [78]. On the other hand, allowing combinatorial bids

in procurement auctions may make it easier for a large firm to win a large number of

contracts jeopardizing the competitiveness of the market. Data from a test of combinatorial

procurement auctions for road markings in Sweden confirm this risk, especially if there are

only a few large bidders [52].

In multi-item settings where bidders have diseconomy in the number of items that they

are awarded, a few studies analyze bidding behavior in simultaneous auctions. When mak-

ing multiple bids, bidders randomize over a set of available bids in a way that generates

inefficient outcomes [26, 47]. In a simultaneous two-contract procurement auction model,

where the designated winner is allowed to withdraw his bid, it is shown that if the incre-

mental cost of winning an additional item is relatively high, it is more profitable to keep

only one contract even if one were to win both [82]. Bidding then becomes more compet-

itive on both contracts, lowering the procurer’s cost. An analytical problem that arises in

a sequential auction when bidders have interrelated values for units is that bidders’ beliefs

will become asymmetric during the course of auction even if beliefs are symmetric ex ante.

After the first round, bidders update their beliefs about the values of the losing bidders and

the value of the winning bidder, thereby creating the asymmetry. The sequence of second-

price auctions result in an efficient allocation when two units are sold [41]. When more

than two items are sold in a multi-item demand sequential auction (first-price or second-

price auction) with diminishing valuations, the extent of inefficiencies created by the bidder
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asymmetries is unclear.

3.3.2 Procurement in Logistics & Transportation

Procurement auctions existed in the logistics and transportation industry in the form of Re-

quest for Proposals (RFPs) or Request for Quotations (RFQs). With the advent of internet

technologies and their widespread adoption, internet emerged as a platform for facilitating

business transactions such as buying and selling of goods, integrating supply chains, and

interacting with partners and employees. Following the success stories of the early adopters,

firms are investing billions of dollars in electronic procurement (e-procurement) technologies

(e-markets) to achieve greater efficiency. See Elmaghraby [23] for a review of the current

state of procurement in the industry.

The strategic significance and practical implications of using e-procurement attracted

significant research efforts from the operations research and management science commu-

nity. It is important to note that most researchers take the perspective of the buyer (or

auctioneer), focusing on the design of new auction mechanisms or analyzing existing ones

[4, 57] . To the best of the author’s knowledge, relatively little research literature exists

about bidding strategies in procurement auctions [85]. Particular attention has been paid to

combinatorial procurement auctions which allow the suppliers (bidders) to express volume

discounts, incompatible products/services, and complementary products/services. These

auctions are preferred on the premise of allowing the buyer to benefit from increased price

competition and the ability to specify product quality, delivery time, and other non-price at-

tributes, while alleviating the strategic, logistical, and scaling problems of suppliers [4]. The

buyer running the combinatorial auction must solve an NP-Hard optimization problem to

determine to which supplier each contract would be awarded. Elmaghraby and Keskinocak

[24, 25] provide an overview of the state-of-the-art in combinatorial procurement auctions.

Because of inherent significance of synergies between shipping lanes for transportation

carrier operations, the use of combinatorial auctions has been proposed for procurement of

transportation services. Again, these auctions have mostly been analyzed from the shippers’

perspective by researchers and practitioners alike. Moore et al. [58] describe the formulation
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of an optimization-based bidding approach for Reynolds Metals which was not fully imple-

mented in practice due to limited computer capabilities available at the time. Ledyard et al.

[48] describe the use of a “combined value” auction for purchasing transportation services

for Sears Logistics Services in the early 1990s. Elmaghraby and Keskinocak [24] discuss

how several companies, including Home Depot, Wal-Mart Stores, Compaq Computer Co.,

Staples Inc., the Limited Inc., and others, utilized optimization- based procurement tools to

procure transportation services. Sheffi [68] provides a survey of the literature and practical

results on the use of combinatorial auctions in procurement of truckload transportation

services.

On the other hand, determining the optimal bid values for a carrier poses several chal-

lenging research questions. In essence, the problem that the carrier faces in this context

is a pricing problem. Most of the literature on carrier operations treated pricing and cost

minimization problems separately, and focused solely on minimizing the cost of serving the

customers by solving fleet management and vehicle routing problems (VRP). See Crainic

and Laporte [18] for a review of fleet management problems and Toth and Vigo [77] for

a survey of VRP and its variants. Some of the past work considers the problem of how

much the total profit would change when an additional load is introduced into a dynamic

fleet management system ( Powell [62, 63], Powell et al. [64], Topaloglu and Powell [76]

). Although these works certainly are valuable, today’s market conditions call for a more

direct and integrated approach, especially in the case of auctions. Recently, the study of

transportation procurement auctions from the carrier perspective has received some at-

tention. In combinatorial auctions, Song and Regan [70, 71] propose optimization based

bid construction strategies for carriers. An et al. [3] propose a generic synergy model for

constructing combinatorial bids. In these studies, the lane bundles are formed based on

anticipated cost of serving each of the bundles and then the bid on each bundle is obtained

by adding a fixed markup to this anticipated cost. They ignore the interactions of the

carrier with other shippers and competing carriers.

Also receiving attention is bidding strategies in sequential transportation procurement

auctions where multiple auctions take place in sequence, i.e. one at a time ruling out the
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possibility of having to bid on two or more auctions simultaneously. In this setting, the car-

rier must incorporate pricing decisions into dynamic fleet management decisions. Figliozzi

[31] in his thesis studies the impact of different dynamic pricing and fleet management tech-

nologies on the revenues and operating costs of a carrier in a spot truckload procurement

market. Mes et al. [54] consider a real-time dynamic pickup and delivery problem and pro-

pose a pricing strategy based on dynamic programming where the impact of a job insertion

on future opportunities is taken into account. Douma et al. [21] consider a multi-company,

less-than-truckload, dynamic VRP and use revenue management concepts to price the loads

dynamically under capacity restrictions and taking into account possible future revenues.

3.3.3 Autonomous Agents

Another relevant line of research is the design of autonomous agents. Autonomous agent

technology first emerged in the mid to late 1980’s in the field of Artificial Intelligence and

has since received attention from several researchers in many fields [84]. Particularly of

interest is the design of intelligence, in the form of algorithms, of automated bidding and

trading agents.

In this realm, there are a number of papers studying bidding algorithms for simultaneous

auctions. An interesting feature of these papers is that the algorithms designed and tested

target the auction settings in an annual (since 2000) international research competition,

namely the Trading Agent Competition (TAC) [79] [73]. TAC invites researchers to design

autonomous trading agents and compete under two scenarios “TAC Classic” and “TAC

SCM”. TAC Classic is a “travel agent” scenario based on complex procurement on multiple

simultaneous forward auctions. TAC SCM is a PC manufacturer scenario, involving both

forward and reverse auctions, based on sourcing of components, manufacturing of PC’s

and sales to customers. At a high-level, the design of many successful TAC agents can be

summarized as: (i) predict: build a model of the auctions clearing prices, and (ii) optimize:

solve for an (approximately) optimal set of bids, given this model. Under the settings of

TAC Classic, Greenwald and Boyan [35] formulate the problem of bidding in simultaneous

auctions as a stochastic program and solve it using sample average approximation. Candale
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and Sen [14] compare the performance of a multi-start local search heuristic, based on

iteratively updating the bids for each of the items on auction [13], to the top performing

algorithms in TAC Classic. Greenwald et al. [6] describe a finalist in the 2003 TAC SCM

which uses a similar multi-start local search heuristic as a bidding algorithm. More papers

describing the competition and agents can be found on the TAC website [79].

Note also that, some of the research mentioned in the area of transportation procurement

auctions are highly relevant to autonomous agent design. The research by Figliozzi [31],

Mes et al. [54], and Douma et al. [21] are very good examples.

3.4. A Bid Price Optimization Problem

We study simultaneous transportation procurement auctions from a truckload carrier’s per-

spective. Our goal is neither to design simultaneous auction mechanisms with desirable

properties, nor to investigate if the auction mechanisms in place have such properties, nor

to characterize equilibrium strategies of carriers in such auctions. Our goal is to develop bid-

ding algorithms for a carrier incorporating anticipated bidding behavior of his competitors.

Our approach is similar to the literature discussed in Section 3.3.3 in that the algorithms

we develop can be the basis of the intelligence of agent-based transportation management

systems.

We take the perspective of a carrier who we assume to have a network which consists

of long term contracts. We assume that the carrier wants to complement his network with

short term contracts from an auction based spot procurement market in order to recover

some of his repositioning costs. In this spot procurement market, the carrier must place bids

in multiple independent single lane auctions, i.e. no combinatorial bids, which are run in

parallel. These auctions take place at the beginning of every period (e.g. week, month, etc),

and involve lanes which must be served in the period(s) that follow . Each of the auctions is

a single-round, sealed-bid, first-price auction. We assume that the lanes obtained from the

auctions are executed for only a single period, and that the carrier has sufficient capacity

to handle all the lanes he gets from the auctions. Another assumption we make is that the

cost of traveling between two points is directly proportional to the distance traveled. We

66



also assume that the distances are symmetric and satisfy the triangle inequality.

Without loss of generality, we assume that there is a single auctioneer running all the

auctions. The auctioneer may be a single shipper or a third party facilitating the communi-

cation between the shippers and the carriers. The following stages take place in sequence:

1. The auctioneer announces which lanes are going to be auctioned.

2. Carriers place bids on the lanes being auctioned.

3. The auctioneer receives the bids and determines which carrier will be given the right

to serve each of the lanes.

4. The carrier routes his vehicles to serve the lanes he won

The carrier makes decisions in Stages 2 and 4. The decisions in Stage 2 affects the

carrier’s revenue while the decisions in Stage 4 affects the carrier’s costs. The stochastic

optimization model is designed to determine optimal bids in Stage 2 taking into account

potential outcomes and thus costs in Stage 4. In order to account for the uncertainty

regarding the outcomes of the auctions, the lowest bid of the competing carriers for each lane

is modeled as an independent continuous random variable which is uniformly distributed

on an interval. We make this simplifying assumption because it is easier for a carrier

to determine the range of values of his competitors’ bids than to characterize the actual

distribution of such bids. In addition, as will be seen later, it is a trivial task to incorporate

other probability distributions into our solution approach (see proof of Proposition 3.3).

Let L0 denote the set of lanes representing the carrier’s network. Let L = {1, 2, . . . ,m}

denote the set of lanes being auctioned. For each lane i, the random variable representing

the lowest bid of the competing carriers on lane i is denoted by Xi which is uniformly

distributed on the interval [`i, ui].

The expected profit of the carrier is a function of his bids on the lanes being auctioned.

Note that since the carrier knows the lowest (`i) and highest (ui) possible values of Xi, it

is not necessary for the carrier to bid outside the interval [`i, ui] for each of the lanes. Since

bidding `i on lane i guarantees winning the lane, the carrier need not bid lower than `i.
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Similarly, since bidding ui on lane i guarantees losing the lane, the carrier does not need to

consider bidding higher than ui. So, we restrict the carrier’s bids to the values within the

interval [`i, ui]. Therefore, the optimization problem has the following form:

max π(b) =
∑

S⊆L

{

P (S, b) Q(L− S, b)
[
R(S, b)− C(S)

]}

subject to bi ∈ [`i, ui] ∀i ∈ L

where

b = Vector of bids for the lanes (decision variables

P (S, b) = Probability of winning the set of lanes S with bids b

Q(L− S, b) = Probability of losing the set of lanes L− S with bids b

R(S, b) = Revenue obtained from the set of lanes S with bids b

C(S) = Incremental cost of serving the set of lanes S

Note in the above formulation that the product P (S, b)Q(L−S, b) gives the probability

of winning exactly the set of lanes S with a given vector of bids b for the carrier. Since the

carrier wins a lane if his bid is lower than the competitor’s bid and the competitor’s bids

are uniformly and independently distributed, we have

P (S, b) =
∏

i∈S

P{Xi > bi} =
∏

i∈S

(
ui − bi

ui − `i

)

. (3.1)

Similarly, since the carrier loses a lane if his bid is higher than the competitor’s bid, we

have:

Q(L− S, b) =
∏

i∈L−S

P{Xi 6 bi} =
∏

i∈L−S

(
bi − `i

ui − `i

)

. (3.2)

Since the auctions are assumed to be first price, the revenue that can be obtained from a

given set of lanes S with a given vector of bids b is given by:

R(S, b) =
∑

i∈S

bi. (3.3)
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Note that the incremental cost of serving the set of lanes in S, denoted by C(S), is

independent of the vector of bids b. It however depends on the way the carrier routes his

trucks over his existing network and the set of lanes S. In other words, the carrier must

solve a routing problem to determine his costs. It is assumed that the carrier solves the

aforementioned Lane Covering Problem (LCP) which can be solved in polynomial time (see

Section 2.2 of this thesis). We make this assumption in order to avoid having to solve

an NP-Complete routing problem and to concentrate our efforts on solving the pricing

problem. Also, based on our research on shipper collaboration problem, LCP provides a

good approximation of a truckload carrier’s costs.

3.5. A Bid Price Optimization Algorithm

The objective function in the formulation given in the previous section involves the enumera-

tion of all possible outcomes of the auctions, i.e. ∀S ⊆ L. The number of potential outcomes

grows exponentially as number of lanes increases, which makes the problem difficult to solve.

Even evaluating the objective function may become computationally prohibitive for large

number of lanes let alone solving the bid price optimization problem. Therefore, we focus

on designing effective and efficient heuristic algorithms.

The proposed algorithm is based on coordinate search and can be described as follows.

Given a vector of bids (with some arbitrary feasible values), the algorithm cycles through

the coordinates of the vector. Each component (or coordinate) of the vector is updated,

keeping the other components fixed, in a way that results in the maximum improvement

in the objective function. This process is repeated until none of the components of the bid

vector can be changed by more than a pre-specified value. A more formal description is

presented in Algorithm 3.1.

Note that the coordinate search algorithm involves solving the optimization problem

max
{

π(b) : bi ∈ [`i, ui], bj = bk
j ∀j ∈ L− {i}

}

for a given feasible bid vector bk and a co-

ordinate i. If this componentwise optimization problem always has a unique solution, then

the coordinate search algorithm increases the objective function value each time it moves

from one solution to another. Thus, the algorithm never visits the same solution more than
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Algorithm 3.1 Coordinate search algorithm.

Given: Lane set L = {1, 2, .., n}, intervals [`i, ui] ∀i ∈ L, an initial feasible solution
vector b0 (e.g. b0

i = ui ∀i ∈ L), and ε > 0.

k ← 0
repeat

γ ← false
for all i ∈ L do

b← arg max
{

π(b) : bi ∈ [`i, ui], bj = bk
j ∀j ∈ L− {i}

}

if |bi − bk
i | > ε then

γ ← true
k ← k + 1
bk
i ← bi

for all j ∈ L− {i} do
bk
j ← bk−1

j

end for
end if

end for
until γ = false

once, i.e. it does not cycle. Note also that the coordinate search algorithm is a hill-climbing

algorithm, which only utilizes local information about the objective function. Therefore, it

does not guarantee finding a global optimum solution when the objective function is not

concave.

In Section 3.6, we analyze the bid price optimization problem to identify properties of its

objective function and its optimal solutions. We first analyze the optimization problem to

investigate concavity and other properties of the objective function. Our analysis shows that

the objective function is not concave in general but it is concave under certain conditions.

Since coordinate search is applicable only if we can maximize the objective function with

respect to a single component of the bid vector, we also derive the expression for maximizing

the objective function with respect to an arbitrary component of the bid vector. We then

use this expression to derive an upper bound on the optimal solutions which may be used

in fine tuning of the solution algorithms.

3.6. Analysis

First, we analyze the problem when there are only a small number of lanes on auction since

this is expected to be easier than analyzing the problem for an arbitrarily large number of

70



lanes. We then use the obtained results to identify the properties of the problem in general.

3.6.1 Single Lane

Suppose the carrier is bidding on a single lane only, i.e. L = {1}. There are two possible

outcomes. The carrier either wins the lane or loses it. If the carrier loses the auction, he

incurs zero additional cost and earns zero additional revenue. If he wins the auction, his

additional revenue is equal to his bid b1.

In this case, the optimization problem to be solved is:

max

(
u1 − b1

u1 − `1

)

(b1 − C({1}))

subject to `1 ≤ b1 ≤ u1

Note that π is concave in this case. In fact, it is a second degree polynomial with a

negative second derivative and roots u1 and C({1}).

π(b) =

(
u1 − b1

u1 − `1

)

(b1 − C({1}))

= −
1

u1 − `1
(b1 − u1)(b1 − C({1}))

The optimal solution can easily be computed in this case:

b∗1 =







u1+C({1})
2

u1+C({1})
2 ∈ [`1, u1]

`1
u1+C({1})

2 < `1

u1
u1+C({1})

2 > u1

(3.4)

See figures 3.1(a), 3.1(b) and 3.1(c) for illustrations.

3.6.2 Two Lanes

Here, it is necessary to assume that

C({1, 2}) < C({1}) + C({2}),

since otherwise the auctions for the two lanes can be analyzed separately as two independent

single lane auctions. Let ∆ = C({1}) + C({2}) − C({1, 2}). In this case, the objective

function is a quadratic function which can be written in the form:

π(b) =
1

2
bT Hb + bT f + g (3.5)
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b1

π(b1)

C({1}) u1`1

u1+C({1})
2

(a) The peak falls in the middle of the interval.

b1

π(b1)

u1+C({1})
2

`1 u1C({1})

(b) The peak falls to the left of the interval.

b1

π(b1)

C({1})u1`1

u1+C({1})
2

(c) The peak falls to the right of the interval.

Figure 3.1: Optimal solutions in the single lane case.
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where

H =
1

(u1 − `1)(u2 − `2)






−2(u2 − `2) ∆

∆ −2(u1 − `1)






which is, in fact, the Hessian of π(b), and

f =
1

(u1 − `1)(u2 − `2)






(u2 − `2)C({1}) + u2(u1 −∆)

(u1 − `1)C({2}) + u1(u2 −∆)






g =
u1`2C({1}) + `1u2C({2}) − u1u2C({1, 2})

(u1 − `1)(u2 − `2)

Theorem 3.1 Let L = {1, 2} and ∆ = C({1}) + C({2}) − C({1, 2}). Then, π(b) given by

(3.5) is concave if and only if

4(u1 − `1)(u2 − `2)−∆2
> 0 (3.6)

Proof: It is well known that a real valued function is concave if and only if its Hessian

is negative semi-definite. Thus, the function π(b) is concave if and only if H is a negative

semi-definite matrix. Note that H is a symmetric real-valued square matrix. We are going

to make use of the following1:

Lemma 3.2 Let A be a symmetric real n× n matrix, and let

χ(λ) = det(λI−A) = λn + an−1λ
n−1 + an−2λ

n−2 + · · ·+ a1λ + a0.

Then

1. A is positive definite ⇐⇒ all the ai satisfy ai(−1)n−i > 0.

2. A is positive semidefinite ⇐⇒ all the ai satisfy ai(−1)n−i ≥ 0.

3. A is negative definite ⇐⇒ all the ai > 0.

4. A is negative semidefinite ⇐⇒ all the ai ≥ 0.

5. A is indefinite ⇐⇒ none of the previous four conditions on the ai holds.

1 Proof can be found in Sydsaeter and Hammond [72], and Loftin [50].
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For H,

χ(λ) = det(λI−H)

= det











λ + 2
u1−`1

∆
(u1−`1)(u2−`2)

∆
(u1−`1)(u2−`2)

λ + 2
u2−`2











= λ2 + 2

(
1

u1 − `1
+

1

u2 − `2

)

λ +
4

(u1 − `1)(u2 − `2)
−

(
∆

(u1 − `1)(u2 − `2)

)2

= λ2 + 2

(
1

u1 − `1
+

1

u2 − `2

)

︸ ︷︷ ︸

≥ 0

λ +
4(u1 − `1)(u2 − `2)−∆2

(u1 − `1)2(u2 − `2)2
︸ ︷︷ ︸

?

It follows that H is negative semidefinite ⇔ 4(u1 − `1)(u2 − `2)−∆2 ≥ 0.

�

If (3.6) does not hold, then H is indefinite which means that π(b) is saddle shaped. If

π(b) is concave, the optimal solution may be in the interior of the feasible region. If π(b)

is saddle shaped, then the optimal solution is certainly on the boundary of the feasible

region. Also, when π(b) is concave, the coordinate search algorithm is guaranteed to find

the optimal solution. Otherwise, coordinate search may get stuck in a local optimum failing

to find the global optimum.

3.6.3 Componentwise Optimization with Arbitrary Number of Lanes

In order for the coordinate search to work, we need to be able to change a given component

of the bid vector, keeping all other component fixed, such that the increase in the objective

function is maximized. In other words, for each ithcomponent of b we treat π(b) as if it is

only a function of bi and maximize it with respect to bi. We first write π(b) as a function

of a single bid to see if we can easily maximize it with respect to that bid.

Proposition 3.3 If the objective function π(b) is written as a function of a single bid bi,

we get:

πi(b) =

(
ui − bi

ui − `i

)







bi −
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) (C(V + {i}) − C(V )))







+
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b)[R(V, b) − C(V )]

(3.7)
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Proof:

Recall that

P (S, b) =
∏

i∈S

P{Xi > bi} =
∏

i∈S

(
ui − bi

ui − `i

)

Q(L− S, b) =
∏

i∈L−S

P{Xi 6 bi} =
∏

i∈L−S

(
bi − `i

ui − `i

)

R(S, b) =
∑

i∈S

bi

Then,

π(b) =
∑

S⊆L

P (S, b) Q(L− S, b) [R(S, b)− C(S)]

=
∑

U⊆L
i∈U

P (U, b) Q(L− U, b) [R(U, b) −C(U)]

+
∑

V ⊆L
i/∈V

P (V, b) Q(L− V, b) [R(V, b) − C(V )]

= P ({i}, b)
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V + {i}, b) − C(V + {i})]

+ Q({i}, b)
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V, b)− C(V )]

= P ({i}, b)
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V + {i}, b) − C(V + {i})]

+ [1− P ({i}, b)]
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V, b)− C(V )]

= P ({i}, b)
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [bi + R(V, b)− C(V + {i}) + C(V )− C(V )]

+ [1− P ({i}, b)]
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V, b)− C(V )]

= P ({i}, b)
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [bi − C(V + {i}) + C(V )]

+ P ({i}, b)
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V, b)− C(V )]
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+ [1− P ({i}, b)]
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V, b)− C(V )]

= P ({i}, b)
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [bi − C(V + {i}) + C(V )]

+
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V, b)− C(V )]

= P ({i}, b)











bi

∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b)

︸ ︷︷ ︸

=1

−
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [C(V + {i}) − C(V )]









+
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) [R(V, b)− C(V )]

= P ({i}, b)







bi −
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) (C(V + {i}) − C(V )))







+
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b)[R(V, b) − C(V )]

Since in our case P ({i}, b) = ui−bi

ui−`i
we get:

πi(b) =

(
ui − bi

ui − `i

)







bi −
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) (C(V + {i})− C(V )))







+
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b)[R(V, b) − C(V )]

�

Let

σi(b) =
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) (C(V + {i}) − C(V ))) (3.8)
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Note that πi(b) is equal to the sum of a constant and a second degree concave polynomial

with roots ui and σi(b). Then, given an arbitrary feasible vector of bids b and an index

i, the best improvement in the objective function is achieved, keeping all the other bids

constant, when we set bi to:

bi =







u1+σi(b)
2

u1+σi(b)
2 ∈ [`i, ui]

`i
u1+σi(b)

2 < `i

ui
u1+σi(b)

2 > ui

(3.9)

It is important to note that bi is the unique maximizer of πi(b) on [`i, ui]. Because of the

uniqueness of the componentwise maximizer, the coordinate search algorithm moves from

one solution to another if and only if the objective function value increases as a result of

that move. Therefore, the algorithm never cycles.

Note that σi(b) is a measure of synergy between lane i and the rest of the lanes. It is

equal to the expected increase in the cost of the carrier if the carrier wins lane i given his

bids on the other lanes. It can also be used to find an upper bound on the value of the

optimal bids. The worst scenario when lane i is added to a given set V of lanes is that it

cannot be put in a cycle with any of the other lanes and thus has to be served by itself,

i.e. in a cycle which consists of a loaded move along the lane and an empty move in the

opposite direction. Let ci be the cost of traveling one-way along the lane. So, the worst

case incremental cost of serving the lane if the carrier wins the auction is equal to 2ci.

Mathematically, this means that:

C(V + {i}) − C(V ) 6 2ci

Then,

σi(b) 6
∑

V ⊆L
i/∈V

P (V, b) Q(L− V − {i}, b) 2ci = 2ci

and

bi =
ui + σi(b)

2
6

ui + 2ci

2

Therefore, an upper bound for the optimal bid is identified. Note that the cost of serving

a single lane when the carrier does not have an existing network is also equal to 2ci. This
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information can be useful for speeding up the algorithm in the following way. For each

lane, the initial bid value can be obtained by replacing C({i}) with 2ci in (3.4). Then, the

coordinate search can be performed ignoring the coordinates for which the initial values are

equal to their lower bounds.

3.7. Algorithm Implementation

Coordinate search starts with a feasible solution and iteratively obtains better solutions by

setting the bid for each lane i, denoted bi, to bi given by (3.9) which requires the computation

of σi(b) as in (3.8). The algorithm makes use of the cost of serving each and every subset of

L over and over again. Therefore, given a feasible solution b̂ and lane i, in order to compute

σi(b̂) efficiently, we need a method to obtain quickly the service cost of each subset of L. We

also need to be able to identify the subsets of L to which lane i belongs and the subsets of L

to which lane i does not belong. Such a method is also needed for evaluating the objective

function of the bid price optimization problem.

The remedy we propose is solving LCP on every subset of L and storing the values we

obtain in a one-dimensional array. However, we cannot store the values in the array in an

arbitrary order. We need to map each subset of L to a location in the array, so that we can

access the solution of LCP on a given subset of L in an efficient manner. We can achieve

this by using a hash function defined as follows.

• To each lane i ∈ {1, 2, ..., n}, assign a hash value of 2i−1.

• Then, the hash value of a subset S of L is the sum of the hash values of lanes in that

subset. The location of C(S) in the array is equal to the hash value of S.

Note in this scheme that no two subsets of L have the same hash value and all the hash

values between 1 and 2n correspond to a subset of L. In order words, we have a 1-to-1

mapping of subsets of L to locations in the array. The hash value of a subset provides

an intuitive and extremely efficient way of determining which lanes belong to that subset.

Consider the binary equivalent of the hash value of an arbitrary subset S of L. Then, i ∈ S

if the ith digit of the binary equivalent is equal to 1 and i /∈ S if the ith digit of the binary
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equivalent is equal to 0. This structure facilitates the computation of P (S, b),Q(L − S, b),

and R(S, b) given by (3.1),(3.2), and (3.3), respectively.

In addition, the ordering of the subsets in the array follows a pattern which makes it

easy, for a given lane, to identify the subsets which include that lane and the subsets which

do not include that lane. For instance, Lane 1 is included in subsets with hash values 1, 3,

5, 7,... and not included in subsets with hash values 2, 4, 6, 8,... . Lane 2 is included in

subsets with hash values 2, 3, 6, 7, 10, 11,... and not included in subsets with hash values

1, 4, 5, 8, 9, 12, 13,... . In general,

• i /∈ S if hash(S) ∈ {s ∈ Z | 2k · 2i−1 6 s < (2k + 1) · 2i−1 for k = 0, 1, 2, 3, .., 2|L|−i−1}

• i ∈ S if hash(S) ∈ {s ∈ Z | (2k + 1) · 2i−1 6 s < (2k + 2) · 2i−1 for k =

0, 1, 2, 3, .., 2|L|−i−1}

The hash function scheme we discussed above enables us to design an efficient implemen-

tation of the coordinate search algorithm. In the next section, we discuss the performance

of our algorithm and its impact on carrier profits.

3.8. Computational Experiments

3.8.1 Performance of Coordinate Search Algorithm

We have shown that the objective function π(b) of our optimization problem is not concave

in general and therefore may have multiple local optima. Our coordinate search based

optimization algorithm may get stuck at a local optimum failing to find the global optimal

solution of our optimization problem.

In order to measure the effectiveness of our algorithm, we set up computational experi-

ments to compare the quality of its solutions with the solutions obtained by a well known

global optimization solver BARON [74, 67]. BARON stands for “Branch And Reduce Op-

timization Navigator”. It “combines constraint propagation, interval analysis, and duality

in its reduce arsenal with enhanced branch and bound concepts as it winds its way through

the hills and valleys of complex optimization problems in search of global solutions [5].” We

ran BARON through the NEOS server for optimization [60] where it is publicly available.
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We used 50 randomly generated Euclidean problem instances inside a 300× 300 region

for the experiment. In each of these instances, the number of lanes being auctioned was

equal to 10 and the carrier did not have an existing network. The bounds of the interval

used in the optimization problem were randomly determined such that [`i, ui] ⊆ [0, 4ci] for

each lane i. BARON was set to run with default parameter settings, e.g. it was set to

terminate after 1000 CPU seconds, or when the optimality gap was smaller than 10%. Our

algorithm started with bi = ui for all i and was set to terminate when it no longer could

move more than a distance of 1× 10−6 from the current solution.

In all of the instances, BARON terminated after 1000 CPU seconds and returned the

solution it computed during its preprocessing phase as the best solution found. Our algo-

rithm returned the same solutions as BARON in all of the instances with CPU times of

under 5 seconds, including instance generation and solving LCPs for all possible subsets

and writing input files to be used by BARON, where the coordinate search portion takes

negligible CPU time. It is important to note that the final optimality gaps in BARON’s

branch and bound trees were huge. These huge gaps despite intensive computational efforts

demonstrate the inherent difficulty in computing verifiably global optimal solutions to our

problem. On the other hand, the fact that our algorithm returned the same solution as

BARON is an indication that our algorithm is an efficient way of computing good if not

optimal solutions to the problem.

3.8.2 Simulation Study

In order to examine the impact of using our optimization based simultaneous bidding al-

gorithm, we simulated a transportation procurement marketplace over 52 periods under

different settings. This simulated marketplace has the following properties.

1. Origin-destination pairs come from 270 fixed points which are randomly determined

in a 1.0× 1.0 square region at the beginning of the simulation.

2. Each point has two coordinates and the distance between any two points is computed

using the Euclidean metric.
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3. The entire square region is divided into 9 (3 by 3) equal sized squares. The regions

are referred to as South West (SW), South (S), South East (SE), West (W), Central

(C), East (E), North West (NW), North (N), North East (NE).

4. There is a single auctioneer who runs 10 simultaneous independent single-lane auctions

in each period.

5. Each of these auctions:

(a) is for a contract of length equal to one period.

(b) has no reserve price.

6. There are two carriers competing for the contracts.

(a) One of the carriers uses our algorithm to determine his bids and will be referred

to as SB (smart bidder) from this point on. For each lane i, SB assumes that the

other carrier’s bid is uniformly distributed on the interval [`i, ui]. The bounds of

the interval are such that `i

ci
∈ {0.5, 1.0} and ui

ci
∈ {1.5, 2.0, 2.5} where ci is the

one-way cost of traversing lane i.

(b) The other carrier computes the marginal, i.e. insertion, cost of a lane and always

adds a 40% markup to the marginal cost to determine his bid on that lane. We

will refer to this carrier as MM.

(c) Both carriers have existing networks consisting of long term contracts. The size

of a carrier’s network is equal to either 30, 45, or 90 lanes.

(d) The carriers’ networks may be concentrated in a certain region. In order to

control this, the networks are generated based on given probabilities of having

an origin or destination in each region.

(e) For both carriers, the revenue from each lane in the existing network is set to

the cost of the network divided by the network size so that the net profit at the

beginning of the simulation is equal to zero. Therefore, the profits reported in

the tables below come from the lanes won in the auctions.
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(f) Both carriers place bids on every lane being auctioned in the marketplace.

(g) Both carriers compute operating costs using LCP.

(h) Both carriers refrain from combining lanes obtained in different periods, i.e. LCP

is solved on the carriers network and the lanes coming from a single period’s

auctions.

The markup percentage we use for determining MM’s bids, and the network sizes of the

carriers are based on our experiences in practical settings. Even though we assumed that

there is only a single competitor of SB in the market, MM sufficiently represents several

competitors from SB’s perspective. In the simulation setting, the competitor MM is not

completely naive. The assumption that MM uses LCP to compute operating costs attributes

a degree of sophistication to MM. In practice, it is not unusual to encounter carriers with

less sophisticated vehicle routing technologies.

Three sets of experiments, which combine the settings mentioned above, have been

conducted. These are:

E1. Similar carrier networks: Each carrier may have an origin or destination with

equal probability in each of the regions. So may the auction contracts.

E2. Disjoint regional carrier networks: SB’s origin-destination pairs come only from

regions SW, S and W (with equal probability). MM’s origin-destination pairs come

only from regions E, N, and NE (with equal probability). For the lanes being auc-

tioned, the probability of an origin or destination is (arbitrarily) set to 68% for region

C and 4% for each of the rest of the regions. Note that the carrier networks do not

overlap.

E3. Partially overlapping regional carrier networks: SB’s origin-destination pairs

come only from regions SW, S, W, C (with equal probability). MM’s origin-destination

pairs come only from regions C, E, N, and NE. For the lanes being auctioned, the

probability of an origin or destination is 68% for region C and 4% for each of the rest

of the regions. Note that the carrier networks overlap in region C.
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(a) E1: Similar carrier net-
works.

(b) E2: Disjoint regional car-
rier networks.

(c) E3: Partially overlapping
regional carrier networks.

Figure 3.2: Concentrations of carrier networks and auctioned lanes for the simulation study.

Figure 3.2 illustrates the concentrations of carrier networks and auctioned lanes in the

experiments. The summarized results of the experiments are listed in Tables 3.1, 3.2, and

3.3. The statistics reported are average carrier profits, average carrier profit margins, and

average number of auctions won by the carriers. The profit amounts reported are the sums

of the differences between the revenues and the costs of the carriers over all periods. Note

that since we set the carriers’ revenues from their existing networks equal to the costs of

their networks, they incur zero profit without the lanes from the auctions. So, the profit

amounts reported come solely from the lanes being auctioned. The profit margin of a

carrier is computed by dividing the total profit by the total cost, both accumulated during

the course of the simulation. Because of the way we initialize carrier profits and the way

we compute the profit margin, the profit margin of a carrier decreases as his networks size

increases. This is natural since a carrier with a larger network needs more lanes to recover

his repositioning costs than a carrier with a smaller network.

Each of the Tables 3.1, 3.2, and 3.3 consists of two parts. In the first part, the averages

are taken over different carrier network size combinations. In the second part, the averages

are taken over different uniform distribution intervals. In what follows, we analyze and

interpret these tables.
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3.8.2.1 Similar Carrier Networks (E1)

In this experiment, both carriers’ networks are evenly distributed over all of the regions.

That is, the carrier networks are randomly generated using equal probability of having an

origin or destination in each of the regions. Also, the origins and destinations of the lanes

being auctioned are equally likely to be in any of the regions.

The results are summarized in Table 3.1, which is composed of two parts. Table (a)

contains average values of carrier profits, carrier profit margins, and the number of auctions

won by each carrier computed over different distribution intervals. We observe that SB

almost always outperforms MM in terms of profit margin. SB also achieves higher profits

and wins more auctions when his network is not smaller than MM’s network. SB has an

advantage over MM because our algorithm allows him to effectively exploit potential syn-

ergies between his network and the lanes being auctioned. However, having larger network

enables MM to overcome the advantage of SB over MM. In this case, we conclude that

economies of scale is more important than economies of scope.

Table 3.1(b) demonstrates the effect of the bounds of the interval used by SB on the

carriers’ profits. Recall that for each lane i ∈ L, the lower bound `i and the upper bound

ui of the interval is determined such that LBfactor= `i

ci
∈ {0.5, 1.0} and UBfactor= ui

ci
∈

{1.5, 2.0, 2.5}, respectively. The first thing to note here is that the difference between

LBfactor between 0.5 and 1.0 is negligible. On the other hand, we observe that the use of

a smaller UBfactor enables SB to win more auctions than MM, but leads to a decrease in

the profits and profit margins of both carriers. This is an interesting and counter-intuitive

observation. Since SB and MM are competing carriers in the same market, one would

expect to see an increase in MM’s profits if SB’s decisions cause his profits to decrease,

and vice versa. However, we see that the carriers’ strategies impact the whole market. By

using a smaller UBfactor, SM is bidding more aggressively and increasing his chances of

winning auctions while forgoing some of the profits. This situation is analogous to a price

cut initiated by SB to increase his market share. In the end, SB increases his market share

but ends up with less profit because of disproportionate increase in his costs. Meanwhile,

the shippers benefit from increased competition because they spend less on transportation
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Table 3.1: E1: Similar carrier networks.

(a) Network size.

Network Size Profit Margin #Auctions won

SB MM SB MM diff SB MM diff SB MM diff

30 30 $46.53 $32.17 $14.36 3.83% 2.65% 1.19% 296.2 223.8 72.3
30 45 $48.81 $51.00 -$2.19 4.09% 2.94% 1.15% 274.0 246.0 28.0
30 90 $50.66 $53.15 -$2.50 4.29% 1.69% 2.61% 259.7 260.3 - 0.7
45 30 $59.55 $37.52 $22.03 3.47% 3.17% 0.30% 308.5 211.5 97.0
45 45 $47.30 $39.39 $7.91 2.81% 2.36% 0.45% 247.0 273.0 - 26.0
45 90 $41.60 $50.10 -$8.50 2.49% 1.56% 0.93% 232.7 287.3 - 54.7
90 30 $68.70 $32.03 $36.67 2.25% 2.49% -0.24% 306.3 213.7 92.7
90 45 $65.37 $30.61 $34.76 2.15% 1.67% 0.48% 285.5 234.5 51.0
90 90 $63.26 $34.17 $29.09 2.08% 1.06% 1.02% 273.0 247.0 26.0

(b) Uniform distribution interval.

Interval Profit Margin #Auctions won

LBfactor UBfactor SB MM diff SB MM diff SB MM diff

0.5 1.5 $34.50 $20.42 $14.08 1.87% 1.14% 0.73% 358.8 161.2 197.6
0.5 2.0 $62.70 $38.28 $24.43 3.54% 2.08% 1.45% 275.6 244.4 031.1
0.5 2.5 $66.18 $62.14 $ 4.03 3.73% 3.35% 0.38% 191.7 328.3 - 136.7
1.0 1.5 $34.66 $19.94 $14.72 1.86% 1.11% 0.75% 360.2 159.8 200.4
1.0 2.0 $63.17 $37.76 $25.41 3.56% 2.06% 1.50% 276.6 243.4 033.1
1.0 2.5 $66.62 $61.55 $ 5.08 3.75% 3.31% 0.44% 192.4 327.6 - 135.1
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services.

3.8.2.2 Disjoint Regional Carrier Networks (E2)

In this experiment, the carriers have disjoint regional networks. The origins and destinations

of SB’s network lanes are all located in regions SW, S, or W. The origins and destinations of

MM’s network lanes are all located in regions E, N, or NE. In the simulation, the networks

of the carriers are randomly generated such that SB’s network has an origin or destination

in any of the regions SW, S or W with probability 1
3 and MM’s network has an origin

or destination in any of the regions E,N, or NE with probability 1
3 . For the lanes being

auctioned, the probability of an origin or destination is 68% for region C and 4% for each

of the rest of the regions. Hence, most of auctions come from the central region and

complement both carriers’ networks.

In this case, we expect the carriers to compete more fiercely than in the case of E1

for the lanes being auctioned. Since the lanes being auctioned complement the carriers’

networks, we also expect the ability to exploit synergies to be critical. In other words, we

expect SB to perform much better than MM under this configuration.

The results presented in Table 3.2 confirm our expectations. There is a significant

difference between the performance of SB and MM. SB outperforms MM in terms of all

three statistics, i.e. profit, profit margin, and the number of auctions won, regardless of

network size, even when SB has a network of 30 lanes and MM has a network of 90 lanes.

There is also an increase in SB’s profit margins compared to E1 (see Table 3.1).

Note that the bounds of the interval used by SB has similar effects on carriers’ statistics.

Again, note that varying LBfactor between 0.5 and 1.0 makes an insignificant difference.

Similarly, observe also that the use of a smaller UBfactor enables SM to win more auctions

than MM, but leads to a decrease in the profits and profit margins of both carriers. However,

UBfactor has a greater impact on SB’s profits. Due to the characteristics of carrier networks

and the lanes being auctioned, the carriers must carefully choose which lanes they want and

which lanes they do not want. If SB bids too aggressively (by using a small UBfactor), he

ends up with lanes he should not have won because they have little synergies with his
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Table 3.2: E2: Disjoint regional carrier networks.

(a) Effect of carrier network size

Network Size Profit Margin #Auctions won

SB MM SB MM diff SB MM diff SB MM diff

30 30 $47.20 $10.70 $36.49 5.47% 1.58% 3.89% 467.3 52.7 414.7
30 45 $39.25 $16.39 $22.87 4.74% 1.74% 2.99% 419.5 100.5 319.0
30 90 $40.39 $18.13 $22.26 4.87% 0.97% 3.89% 416.2 103.8 312.3
45 30 $45.29 $12.38 $32.91 4.00% 2.01% 1.99% 452.7 67.3 385.3
45 45 $47.39 $11.02 $36.37 4.17% 1.24% 2.93% 459.2 60.8 398.3
45 90 $43.73 $15.75 $27.99 3.92% 0.86% 3.06% 425.8 94.2 331.7
90 30 $47.52 $11.61 $35.91 2.33% 1.56% 0.78% 447.8 72.2 375.7
90 45 $45.35 $13.16 $32.19 2.24% 1.27% 0.97% 445.0 75.0 370.0
90 90 $49.48 $ 9.12 $40.36 2.41% 0.50% 1.91% 472.8 47.2 425.7

(b) Effect of uniform distribution interval

Interval Profit Margin #Auctions won

LBfactor UBfactor SB MM diff SB MM diff SB MM diff

0.5 1.5 $10.12 $4.23 $5.90 0.79% 0.41% 0.38% 485.9 34.1 451.8
0.5 2.0 $51.89 $14.02 $37.87 4.34% 1.41% 2.93% 438.4 81.6 356.9
0.5 2.5 $75.27 $22.86 $52.41 6.43% 2.26% 4.17% 404.7 115.3 289.3
1.0 1.5 $9.33 $4.21 $5.13 0.74% 0.41% 0.33% 486.0 34.0 452.0
1.0 2.0 $49.14 $12.27 $36.87 4.12% 1.22% 2.89% 445.6 74.4 371.1
1.0 2.5 $74.64 $21.26 $53.39 6.36% 2.10% 4.25% 410.3 109.7 300.7
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existing network.

3.8.2.3 Partially Overlapping Regional Carrier Networks (E3)

In this experiment, the origins and destinations of SB’s network lanes are all located in

regions SW, S, W, or C while the origins and destinations of MM’s network lanes are

all located in regions C, E, N, and NE. In the simulation, the networks of the carriers

are randomly generated such that SB’s network has an origin or destination in any of the

regions SW, S, W or C with probability 1
4 and MM’s network has an origin or destination in

any of the regions C, E, N, or NE with probability 1
4 . A lane begin auctioned has an origin

or destination in region C with probability 64% and in the other regions with probability

4% each.

Note that this configuration is a crossover between the configurations of the experiments

E1 and E2. Therefore, we expect the results to be somewhere between the results of the

two previously discussed experiments.

Once again, the results summarized in Table 3.3 confirm our expectations. SB outper-

forms MM regardless of network size, however the difference between the two carriers is not

as great as in E2. The ability to exploit synergies is still significant but not as critical as in

E2.

The bounds of the interval used by SB has similar effects on carriers’ statistics (see

Table 3.3(b)). We again observe that varying LBfactor between 0.5 and 1.0 makes little

difference. Meanwhile, the use of a smaller UBfactor enables SB to win more auctions than

MM, but leads to a decrease in the profits and profit margins of both carriers.

The overall results of our simulation experiments indicate that our method gives SB an

advantage in terms of achieving economies of scope by exploiting synergies between lanes.

The performance of SB, who uses our algorithm, is affected by his existing network, the lanes

being auctioned, and MM’s existing network. In general, the larger the existing network

of MM, the better he performs against SB. Thus, MM can outperform SB if his network

is sufficiently larger than SB’s. The difference between the two networks does not have

to be too large if the lanes being auctioned are in the area where MM’s existing network
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Table 3.3: E3: Partially overlapping regional carrier networks

(a) Effect of network size.

Network Size Profit Margin #Auctions Won

SB MM SB MM diff SB MM diff SB MM diff

30 30 $30.46 $23.96 $6.51 3.86% 2.98% 0.88% 299.8 220.2 79.7
30 45 $27.37 $25.10 $2.27 3.52% 2.15% 1.37% 276.2 243.8 32.3
30 90 $27.43 $25.65 $1.79 3.51% 1.25% 2.26% 277.2 242.8 34.3
45 30 $32.54 $21.21 $11.33 2.98% 2.56% 0.42% 290.7 229.3 61.3
45 45 $32.01 $25.14 $6.87 2.95% 2.20% 0.75% 287.2 232.8 54.3
45 90 $34.89 $21.35 $13.54 3.19% 1.07% 2.11% 305.5 214.5 91.0
90 30 $42.33 $11.02 $31.32 2.12% 1.45% 0.66% 350.5 169.5 181.0
90 45 $34.56 $12.44 $22.11 1.72% 1.18% 0.54% 354.0 166.0 188.0
90 90 $36.87 $17.28 $19.59 1.84% 0.89% 0.95% 365.0 155.0 210.0

(b) Effect of distribution interval

Interval Profit Margin #Auctions won

LBfactor UBfactor SB MM diff SB MM diff SB MM diff

0.5 1.5 $10.79 $11.02 -$0.23 0.85% 0.98% -0.14% 366.9 153.1 213.8
0.5 2.0 $39.44 $20.27 $19.17 3.34% 1.76% 1.59% 308.8 211.2 97.6
0.5 2.5 $52.70 $31.80 $20.89 4.56% 2.65% 1.91% 249.6 270.4 -20.9
1.0 1.5 $10.69 $10.92 -$0.24 0.84% 0.97% -0.13% 366.8 153.2 213.6
1.0 2.0 $38.63 $19.69 $18.94 3.27% 1.71% 1.56% 310.8 209.2 101.6
1.0 2.5 $49.89 $32.26 $17.63 4.96% 2.81% 2.15% 241.7 278.3 -36.6
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is concentrated. Our results also indicate that the pricing decisions of a carrier may have

system-wide effects. A carrier with an overly aggressive bidding strategy risks degrading the

profitability of not only himself but also the other carriers in the market. We observed that

the upper bound of the uniform distribution interval determines the level of aggressiveness

of SB. The lower the upper bound, the more aggressive is SB. Therefore, choosing the right

interval is of critical importance for the performance of the method. Note that the interval

represents SB’s prediction of his competitor MM’s behavior. Thus, the effectiveness of the

method depends on how well SB can predict MM’s behavior. The carrier should make sure

sufficient prediction technology is in place to get the most out of the bid price optimization

approach we propose.
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CHAPTER IV

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we study research problems arising from collaboration and simultaneous auc-

tions in the procurement of truckload transportation services. We study collaboration from

the shippers’ perspective whereas we study simultaneous auctions from the carriers’ per-

spective. In both cases, our approach is formulating optimization problems and developing

efficient and effective solution algorithms for solving these problems. We then demonstrate

the positive impact of our methods through case studies and/or computational experiments.

In the problems we study, the central issue is identifying and exploiting synergies between

the lanes of a carrier’s network.

4.1. Shipper Collaboration

In Chapter 2, we study collaboration in the procurement of truckload transportation services

from the shipper’s perspective. Collaborating shippers extend their focus beyond traditional

corporate boundaries and consider the system-wide effects of their operations. The key to

the success of collaborative transportation procurement is understanding what drives the

carriers costs and working jointly towards eliminating them. In effect, shippers solve a

problem of the carrier by collaborating and expect to receive better rates in return. Our

research introduces the resulting optimization problem (LCP) and show that it can be

solved in polynomial time. We also show that the length, cardinality, and time constrained

variants of LCP are NP-Complete. We develop fast solution algorithms which combines

cycle generation and greedy construction heuristics with local improvement and returns

high quality solutions. A real-world case study shows that our algorithms can be used in

reducing truckload transportation costs of real-world companies.

In general, we have assumed that either minimizing the duration for covering lanes is a

good determinant on the goodness of a solution or used an explicit carrier pricing model.

In the auction models used in truckload transportation services procurement, it is assumed
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that the carriers will price bundle of lanes externally. The optimization technology we have

developed here can be used by the shippers to create these bundles for such a procurement

auction, used as a tool when negotiating contracts with carriers or evaluating the value of

collaboration.

In our description of LCP and its variants, we require all of the lanes to be covered by

cycles of minimum total length. By doing so, we implicitly assume that the non-collaborative

solution is just a direct loaded move with an empty backhaul. Practically, the move would

be handled by a contract carrier as a one-way move. Consequently, it may not be the best

option to cover all the lanes by cycles, especially if some of the lanes have very good one-way

rates. Thus, the shippers must carefully decide which lanes should be covered by cycles.

The problem of deciding which lanes should go into collaboration can easily be integrated

into our formulation of CCLCP, LCLCP, and TCLCP by simply setting the cost of each

cycle with a single lane equal to the one-way rate quoted by the contract carrier.

Even though our solution approach addresses many practical considerations, it does not

address all of them. An interesting variant of LCP arises if each shipper has a certain limit

on the number of shippers he wants to collaborate with. In that case, we need to come up

with a different formulation, which is not trivial. It is also not trivial to modify our algorithm

in a way that ensures feasibility of the solutions found. In defining LCP and its variants, we

ignored the U.S. Department of Transportation’s Hours of Service regulations for drivers,

which is common practice, however unfortunate, among academics. An interesting and very

challenging question is whether we could alter our algorithms to properly account for those

regulations, especially when time windows are present.

For a shipper network to survive, given a price for a bundle of lanes (created either

by the shippers or the carriers), mechanisms for allocating the cost among the shippers

and membership rules managing the collaboration must be established. The existence

of desirable cost allocation mechanisms is well studied in the cooperative game theory

literature. However, there is no one-size-fits-all recipe to determine the existence of such

allocation mechanisms. In addition, we need to go one step beyond the existence question

and design mechanisms which can be used by the shippers [29].
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4.2. Bidding in Simultaneous Transportation Procurement Auctions

In Chapter 3, we study simultaneous transportation procurement auctions from a carrier’s

perspective. The shippers use auctions for transportation procurement to discover carrier(s)

whose network has the most synergy with his lane(s). A carrier participating in these

auctions must make dynamic pricing decisions taking into account his current network,

the lanes being auctioned, and his competitors’ bids. The main challenges stem from the

uncertainty involved with the set of lanes the carrier will be serving after the auctions. In

order to account for the uncertainty, we assume a that the competitors’ lowest bid on each

lane is an independent uniform random variable. Based on this assumption, we formulate

a stochastic optimization problem and propose a coordinate search algorithm for solving

it. Our computational experiments indicate that the coordinate search algorithm produces

good solutions to our problem. We observe that our bidding algorithm helps the carrier

outperform his competitors, especially in situations where exploiting synergies is critical.

We also observe that a carrier’s bidding strategy may have system-wide effects.

In our problem description, we ignored the capacity considerations of the carrier in terms

of the number of lanes that he can handle with his existing fleet. If the carrier wins too

many auctions, the carrier may fail to serve all of his contracts with his existing fleet and

incur additional costs. For instance, the carrier may have to abandon some of his contracts,

which may cost the carrier in penalty fees or customer good will. Alternatively, the carrier

may have to subcontract some of his lanes. In other words, for any subset of C ⊆ L which

the carriers fails to serve with his existing fleet, the cost of serving S, C(S), is no longer

equal to the solution of LCP on that subset. However, we can easily incorporate additional

costs incurred by the carrier as a result of exceeding capacity in our formulation. Let S

be the set of subsets of L which cannot be served entirely using only the existing fleet of

the carrier. Then, after solving LCP on every subset S of L and determining fleet capacity

requirements, we add the relevant costs on top of the LCP cost for all S ∈ S to get the

right values of C(S).

The carrier may want to limit the possibility of his fleet capacity falling short in fulfilling

his contracts, because of excessive penalty fees or subcontracting costs. More importantly,
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the carrier may not be allowed to subcontract or subcontracting may ruin the carrier’s

reputation. In order address capacity considerations, in addition to the cost modifications

we discussed above, we can add a chance constraint to our optimization problem. Based

on the assumption that the lowest bids on the auctions are independently distributed, this

chance constraint has the following form:

∑

S∈S

P (S, b) ·Q(L− S, b) ≤ α

where α ∈ [0, 1] is a parameter determined by the carrier. The value of α is expected to

be close to 0, e.g. 0.2, 0.1, 0.05, 0.02, etc. Since the value of α depends on difficult to

quantify factors such as carrier preferences and loss of customer good will, determining the

right value of α is more of an art than science and is not trivial.

Our optimization problem is built on the assumption that the probability distribution

of the lowest bid placed by the competitors on each lane is an independent uniform random

variable. In other words, we are given the lower and upper bounds of competitors’ bids

and any value in between is equally likely. In practice, the carrier may not have that

information, so we may need a way to compute the bounds. Therefore, a possible extension

of research is how the carrier can use past information to predict the bounds. Since the

carrier knows only of his bid in a sealed-bid auction, computing the bounds requires the

design of sophisticated algorithms. Naturally, there will be learning effects which influence

the performance of the bidding strategies.

Another possible extension is studying our stochastic optimization problem under dif-

ferent probability distributions, e.g. piecewise-uniform or triangular. Furthermore, we may

have to estimate the parameters of these distributions with the information revealed over

time. Also, in practice, the carriers may bid more aggressively on certain subsets of lanes

than others in the hope of winning certain bundles of lanes together. In this case, we have

to relax the assumption that the competitors’ bids for the lanes are independent. We can

no longer compute the probability of winning exactly the set S as P (S, b) ·Q(L−S, b), where

P (S, b) and Q(L− S, b) are given by Equations (3.1) and (3.2).

Notice that our implementation of the coordinate search algorithm is in essence a brute
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force implementation. As the number of lanes in the instance becomes larger, the brute

force implementation is expected to become less and less effective. The number of subsets

of L will eventually explode, making the exact evaluation of the objective function difficult.

In addition, performing the coordinate search exactly becomes difficult because it also relies

on enumeration of the subsets of L which do not include a given lane. Adjustments to the

coordinate search algorithm are needed to handle problem instances with a large number

of lanes.

A way of dealing with a problem instance with a large number of lanes is decomposing the

problem into smaller subproblems and solving each subproblem separately. For instance, the

decomposition may be based on the clustering of the lanes in the instance. The subproblems

may be solved sequentially one by one on a single processor or they may be solved in parallel

on multiple processors.

Another way of dealing with a problem instance with a large number of lanes is ap-

proximating the value of the objective function and the coordinate search steps through

sampling methods. An important issue here is the sample size to be used. Increasing the

sample size results in better approximations but increases computational requirements.

Since the problem we are dealing with is a non-concave maximization problem, an algo-

rithm based purely on coordinate search may not always find the global optimal solution.

It may be worthwhile studying global optimization methods. One possibility is a multilevel

coordinate search approach proposed by Huyer and Neumaier [38], which is based on iter-

atively dividing the feasible region into smaller regions and using coordinate search to find

locally optimal solutions in these smaller regions. The resulting algorithm is guaranteed to

converge if the objective function is continuous in the neighborhood of a global maximizer.

Our assumption that the lanes being auctioned have single period contracts enable us

to analyze a given period’s auctions independent of the auctions in other periods. If the

contracts are for multiple periods while the auctions take place every period, we end up

with an auction setting which is a hybrid of sequential and simultaneous auction settings.

Under this scenario, the carrier must consider contracts expiring in the subsequent periods

and possible contracts arriving in the future periods.
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