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Abstract

Combinatorial problems such as those from graph theory pose serious challenges for

parallel machines due to non-contiguous, concurrent accesses to global data structures

with low degrees of locality. The hierarchical memory systems of symmetric multi-

processor (SMP) clusters optimize for local, contiguous memory accesses, and so are

ineÆcient platforms for such algorithms. Few parallel graph algorithms outperform

their best sequential implementation on SMP clusters due to long memory latencies

and high synchronization costs. In this paper, we consider the performance and scala-

bility of two graph algorithms, list ranking and connected components, on two classes

of shared-memory computers: symmetric multiprocessors such as the Sun Enterprise

servers and multithreaded architectures (MTA) such as the Cray MTA-2. While pre-

vious studies have shown that parallel graph algorithms can speedup on SMPs, the

systems' reliance on cache microprocessors limits performance. The MTA's latency

tolerant processors and hardware support for �ne-grain synchronization makes perfor-

mance a function of parallelism. Since parallel graph algorithms have an abundance

of parallelism, they perform and scale signi�cantly better on the MTA. We describe

and give a performance model for each architecture. We analyze the performance of

the two algorithms and discuss how the features of each architecture a�ects algorithm

development, ease of programming, performance, and scalability.
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Multithreading.
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1 Introduction

The enormous increase in processor speed over the last decade from approximately 300 MHz

to over 3 GHz has far out-paced the speed of the hardware components responsible for

delivering data to processors. For many large-scale applications, performance is no longer

a function of how many operations a processor can perform per second, but rather the

rate at which the memory system can deliver bytes of data. The conventional approach

to ameliorating the memory bottleneck is to build hierarchical memory systems consisting

of several levels of cache and local and remote memory modules. The �rst level cache can

usually keep pace with the processor; but, fetching data from more remote memory causes

the processor to stall. Since data is moved to the L1 cache in lines, reading data in sequence

(i.e., with spatial locality) maximizes performance.

Combinatorial problems such as those from graph theory pose serious challenges for

parallel machines due to non-contiguous, concurrent accesses to global data structures with

low degrees of locality. The hierarchical memory systems of clusters are ineÆcient platforms

for such algorithms. In fact, few parallel graph algorithms outperform their best sequential

implementation on clusters due to long memory latencies and high synchronization costs.

A parallel, shared memory system is a more supportive platform. These systems typically

have higher-bandwidth, lower-latency networks than clusters, and direct access to all memory

locations avoids the overhead of message passing. Fast parallel algorithms for graph problems

have been developed for such systems. List ranking [11, 31, 32, 23] is a key technique

often needed in eÆcient parallel algorithms for solving many graph-theoretic problems; for

example, computing the centroid of a tree, expression evaluation, minimum spanning forest,



connected components, and planarity testing. Helman and J�aJ�a [19, 20] present an eÆcient

list ranking algorithm with implementation on SMP servers that achieves signi�cant parallel

speedup. Using this implementation of list ranking, Bader et al. have designed fast parallel

algorithms and demonstrated speedups compared with the best sequential implementation

for graph-theoretic problems such as ear decomposition [5], tree contraction and expression

evaluation [6], spanning tree [2], rooted spanning tree [13], and minimum spanning forest [3].

Many of these algorithms achieve good speedups due to algorithmic techniques for eÆcient

design and better cache performance. For some of the instances, e.g., arbitrary, sparse

graphs, while we may be able to improve the cache performance to a certain degree, there

are no known general techniques for cache performance optimization because the memory

access pattern is largely determined by the structure of the graph.

In this paper, we discuss the architectural features necessary for eÆcient execution of

graph algorithms by investigating the performance of two graph algorithms, list ranking

and connected components, on two classes of shared memory systems: symmetric multipro-

cessors (SMP) such as the Sun Enterprise servers and multithreaded architectures (MTA)

such as the Cray MTA-2. While our SMP results con�rm the results of previous studies,

we �nd the systems' reliance on cache microprocessors limits performance. For the MTA,

we �nd its latency tolerant processors and hardware support for �ne-grain synchronization

make performance primarily a function of parallelism. Since graph algorithms often have

an abundance of parallelism, these architectural features lead to superior performance and

scalability.

The next section presents a brief overview of SMPs and a detailed description of the



Cray MTA-2. We give a performance cost model for each machine. Sections 3 and 4 present

SMP and MTA algorithms for list ranking and connected components, respectively. The

SMP algorithms minimize non-contiguous memory accesses, whereas, the MTA algorithms

maximize concurrent operations. Section 5 compares the performance and scalability of

the implementations. In the �nal section, we present our conclusions and ideas for future

work. In particular, we summarize how di�erent architectural features a�ect algorithmic

development, ease of programming, performance, and scalability.

2 Shared-Memory Architectures

In this section, we give a brief overview of two types of modern shared-memory architectures:

symmetric multiprocessors and multithreaded architectures. While both allow parallel pro-

grams to access large globally-shared memories, they di�er in signi�cant ways as we discuss

next.

2.1 Symmetric Multiprocessors (SMPs)

Symmetric multiprocessor (SMP) architectures, in which several processors operate in a

true, hardware-based, shared-memory environment and are packaged as a single machine,

are commonplace in scienti�c computing. Indeed, most high-performance computers are

clusters of SMPs having from 2 to over 100 processors per node. Moreover, as supercomputers

increasingly use SMP clusters, SMP computations play a signi�cant and increasing role in

supercomputing and computational science.

The generic SMP processor is a four-way super-scalar microprocessor, 32 to 64 hardware



registers, and two levels of cache. The L1 cache is small (64 to 128 KB) and on chip. It can

issue as many words per cycle as the processor can fetch and latency is a few cycles. The

size of the L2 cache can vary widely from 256 KB to 8 MB. Bandwidth to the processor is

typically 8 to 12 GB per second and latency is 20 to 30 cycles. The processors are connected

to a large shared memory (4 to 8 GB per processor) by a high-speed bus, crossbar, or a

low-degree network. The bandwidth to main memory falls o� to 1 to 2 GB per second and

latency increases to hundreds of cycles.

Caching and prefetching are two hardware techniques often used to hide memory latency.

Caching takes advantage of spatial and temporal locality, while prefetching mechanisms use

data address history to predict memory access patterns and perform reads early. If a high

percentage of read/write operations are to L1 cache, the processor stays busy sustaining a

high execution rate; otherwise, it starves for data. Prefetching may substantially increase

the memory bandwidth used, and shows limited or no improvement in cache hits for ir-

regular codes where the access patterns cannot be predicted, as is often the case in graph

algorithms. Moreover, there is no hardware support for synchronization operations. Locks

and barriers are typically implemented in software either by the user or via system calls.

(Some newer systems do provide atomic memory operations such as compare-and-swap that

may be used to build these features.) While an SMP is a shared-memory architecture, it

is by no means the PRAM used in theoretical work | synchronization cannot be taken for

granted, memory bandwidth is limited, and performance requires a high degree of locality.

The signi�cant features of SMPs are that the input can be held in the shared memory with-

out having to be partitioned and they provide much faster access to their shared-memory



(an order of magnitude or more) than an equivalent message-based architecture. As such

SMPs provide a reasonable execution platform for graph algorithms. As noted above, par-

allel graph algorithms that execute faster than sequential algorithms do exist for this class

of architecture.

To analyze SMP performance, we use a complexity model similar to that of Helman

and J�aJ�a [20] which has been shown to provide a good cost model for shared-memory al-

gorithms on current symmetric multiprocessors [19, 20, 5, 6]. The model uses two param-

eters: the problem's input size n, and the number p of processors. For instance, for list

ranking, n is the number of elements in the list, and for connected components, n is the

number of vertices in the input graph. Running time T (n; p) is measured by the triplet

hTM(n; p) ; TC(n; p) ; B(n; p)i , where TM(n; p) is the maximum number of non-contiguous

main memory accesses required by any processor, TC(n; p) is an upper bound on the maxi-

mum local computational complexity of any of the processors, and B(n; p) is the number of

barrier synchronizations. This model, unlike the idealistic PRAM, is more realistic in that it

penalizes algorithms with non-contiguous memory accesses that often result in cache misses

and algorithms with more synchronization events.

We tested our SMP implementations in this paper on the Sun E4500, a uniform-memory-

access (UMA) shared memory parallel machine with 14 UltraSPARC II 400MHz processors

and 14 GB of memory. Each processor has 16 Kbytes of direct-mapped data (L1) cache and

4 Mbytes of external (L2) cache. We implement the algorithms using POSIX threads and

software-based barriers.



2.2 Multithreaded Architectures (MTAs)

The Cray MTA is a 
at, shared-memory multiprocessor system. All memory is accessible and

equidistant from all processors. There is no local memory and no data caches. Parallelism,

and not caches, is used to tolerate memory and synchronization latencies.

An MTA processor consists of 128 hardware streams and one instruction pipeline. The

processor speed is 220 MHz. A stream is a set of 32 registers, a status word, and space in the

instruction cache. An instruction is three-wide: a memory operation, a fused multiply-add,

and a 
oating point add or control operation. Each stream can have up to 8 outstanding

memory operations. Threads from the same or di�erent programs are mapped to the streams

by the runtime system. A processor switches among its streams every cycle, executing

instructions from non-blocked streams in a fair manner. As long as one stream has a ready

instruction, the processor remains fully utilized.

The interconnection network is a partially connected 3-D torus capable of delivering one

word per processor per cycle. The system has 4 GBytes of memory per processor. Logical

memory addresses are hashed across physical memory to avoid stride-induced hotspots. Each

memory word is 68 bits: 64 data bits and 4 tag bits. One tag bit (the full-and-empty bit) is

used to implement synchronous load/store operations. A synchronous load/store operation

retries until it succeeds or traps. The thread that issued the load or store remains blocked

until the operation completes; but the processor that issued the operation continues to issue

instructions from non-blocked streams.

Since the MTA is a shared-memory system with no data cache and no local memory,

it is comparable to an SMP where all memory reference are remote. Thus, the cost model



presented in the previous section can be applied to the MTA with the di�erence that the

magnitudes of TM(n; p) and B(n; p) are reduced via multithreading. In fact, if suÆcient

parallelism exists, these costs are reduced to zero and performance is a function of only

TC(n; p). Execution time is then a product of the number of instructions and the cycle time.

The number of threads needed to reduce TM (n; p) to zero is a function of the memory

latency of the machine, about 100 cycles. Usually a thread can issue two or three instructions

before it must wait for a previous memory operation to complete; thus, 40 to 80 threads per

processor are usually suÆcient to reduce TM (n; p) to zero. The number of threads needed

to reduce B(n; p) to zero is a function of intra-thread synchronization. Typically, it is zero

and no additional threads are needed; however, hotspots can occur. Usually these can be

worked around in software, but they do occasionally impact performance.

The MTA is close to a theoretical PRAM machine. Its latency tolerant processors, high

bandwidth network, and shared memory, enable any processor to execute any operation and

access any word. Execution time can reduce to the product of the number of instructions and

the machine's cycle time. Since the MTA uses parallelism to tolerate latency, algorithms must

often be parallelized at very �ne levels to expose suÆcient parallelism to hide the latencies.

Fine levels of parallelism require �ne grain synchronization that would cripple performance

without some near zero-cost synchronization mechanism, such as the MTA's full-and-empty

bits.



3 List Ranking

List ranking and other pre�x computations on linked lists are basic operations that occur

in many graph-based algorithms. The operations are diÆcult to parallelize because of the

non-contiguous structure of lists and asynchronous access of shared data by concurrent tasks.

Unlike arrays, there is no obvious way to divide the list into even, disjoint, continuous sublists

without �rst computing the rank of each node. Moreover, concurrent tasks may visit or pass

through the same node by di�erent paths, requiring synchronization to ensure correctness.

List ranking is an instance of the more general pre�x problem. Let X be an array of

n elements stored in arbitrary order. For each element i, let X(i):value be its value and

X(i):next be the index of its successor. Then for any binary associative operator �, com-

pute X(i):pre�x such that X(head):pre�x = X(head):value and X(i):pre�x = X(i):value �

X(predecessor):pre�x , where head is the �rst element of the list, i is not equal to head, and

predecessor is the node preceding i in the list. If all values are 1 and the associative operation

is addition, then pre�x reduces to list ranking.

Our SMP implementation uses the Helman and J�aJ�a list ranking algorithm [19] that

performs the following main steps:

1. Find the head h of the list which is given by h = (n(n� 1)=2�Z) where Z is the sum

of successor indices of all the nodes in the list and n is the number of elements in the

list.

2. Partition the input list into s sublists by randomly choosing one node from each mem-

ory block of n=(s� 1) nodes, where s is 
(p logn) and p is the number of processors.



Create the array Sublists of size s. (Our implementation uses s = 8p.)

3. Traverse each sublist computing the pre�x sum of each node within the sublists. Each

node records its sublist index. The input value of a node in the Sublists array is the

sublist pre�x sum of the last node in the previous Sublists.

4. The pre�x sums of the records in the Sublists array are then calculated.

5. Each node adds its current pre�x sum value (value of a node within a sublist) and the

pre�x sum of its corresponding Sublists record to get its �nal pre�x sums value. This

pre�x sum value is the required label of the leaves.

For n > p2 lnn, we would expect in practice the SMP list ranking to take

T (n; p) = (MM(n; p);TC(n; p)) =
�
n

p
;O

�
n

p

��
. For a detailed description of the above steps

refer to [19].

Our MTA implementation (described in high-level in the following four steps and also

given in detail in Alg. 1) is similar to the Helman and J�aJ�a algorithm.

1. Choose NWALK nodes (including the head node) and mark them. This step divides

the list into NWALK sublists and is similar to steps 1 and 2 of the SMP algorithm.

2. Traverse each sublist computing the pre�x sum of each node within the sublist (similar

to step 3 of the SMP algorithm).

3. Compute the rank of each marked node (similar to step 4 of the SMP algorithm).

4. Re-traverse the sublists incrementing the local rank of each node by the rank of the

marked node at the head of the sublist (similar to step 5 of the SMP algorithm).



int list[NLIST+1], rank[NLIST+1];

void RankList(list, rank)

int *list, *rank;

{ int i, first;

int tmp1[NWALK+1], tmp2[NWALK+1];

int head[NWALK+1], tail[NWALK+1], lnth[NWALK+1], next[NWALK+1];

#pragma mta assert noalias *rank, head, tail, lnth, next, tmp1, tmp2

first = 0;

#pragma mta use 100 streams

for (i = 1; i <= NLIST; i++) first += list[i];

first = ((NLIST * NLIST + NLIST) / 2) - first;

head[0] = 0; head[1] = first;

tail[0] = 0; tail[1] = 0;

lnth[0] = 0; lnth[1] = 0;

rank[0] = 0; rank[first] = 1;

for (i = 2; i <= NWALK; i++) {

int node = i * (NLIST / NWALK);

head[i] = node;

tail[i] = 0;

lnth[i] = 0;

rank[node] = i;

}

#pragma mta use 100 streams

#pragma mta assert no dependence lnth

for (i = 1; i <= NWALK; i++) {

int j, count, next_walk;

count = 0;

j = head[i];

do {count++; j = list[j];} while (rank[j] == -1);

next_walk = rank[j];

tail[i] = j;

lnth[next_walk] = count;

next[i] = next_walk;

}

while (next[1] != 0) {

#pragma mta assert no dependence tmp1

for (i = 1; i <= NWALK; i++) {

int n = next[i];

tmp1[n] = lnth[i];

tmp2[i] = next[n];

}

for (i = 1; i <= NWALK; i++) {

lnth[i] += tmp1[i];

next[i] = tmp2[i];

tmp1[i] = 0;

} }

#pragma mta use 100 streams

#pragma mta assert no dependence *rank

for (i = 1; i <= NWALK; i++) {

int j, k, count;

j = head[i];

k = tail[i];

count = NLIST - lnth[i];

while (j != k) {

rank[j] = count; count--; j = list[j];

}

}

}

Algorithm 1: The MTA list ranking code.



The �rst and third steps are O(n). They consist of an outer loop of O(NWALK) and

an inner loop of O(length of the sublist). Since the lengths of the local walks can vary, the

work done by each thread will vary. We discuss load balancing issues below. The second

step is also O(NWALKS) and can be parallelized using any one of the many parallel array

pre�x methods. In summary, the MTA algorithm has three parallel steps with NWALKS

parallelism. Our studies show that by using 100 streams per processor and approximately

10 list nodes per walk, we achieve almost 100% utilization|so a linked list of length 1000p

fully utilizes an MTA system with p processors.

Since the lengths of the walks are di�erent, the amount of work done by each thread

is di�erent. If threads are assigned to streams in blocks, the work per stream will not

be balanced. Since the MTA is a shared memory machine, any stream can access any

memory location in equal time; thus, it is irrelevant which stream executes which walk. To

avoid load imbalances, we instruct the compiler via a pragma to dynamically schedule the

iterations of the outer loop. Each stream gets one walk at a time; when it �nishes its current

walk, it increments the loop counter and executes the next walk. A machine instruction,

int fetch add, is used to increment the shared loop counter. The instruction adds one to a

counter in memory and returns the old value. The instruction takes one cycle.

Alg. 1 gives our new source code for the MTA list ranking algorithm. The fully-

documented source codes for the SMP and MTA implementations of list ranking

are freely-available from the web by visiting Bader's web page and clicking on

the Software tab.



4 Connected Components

Let G = (V;E) be an undirected graph with jV j = n and jEj = m. Two vertices u and v

are connected if there exists a path between u and v in G. This is an equivalence relation

on V and partitions V into equivalence classes, i.e., connected components. Connectivity

is a fundamental graph problem with a range of applications and can be building blocks

for higher-level algorithms. The research community has produced a rich collection of the-

oretic deterministic [28, 21, 30, 26, 9, 8, 7, 18, 24, 34, 1, 12, 14] and randomized [17, 29]

parallel algorithms for connected components. Yet for implementations and experimental

studies, although several fast PRAM algorithms exist, to our knowledge there is no parallel

implementation of connected components (other than our own [2, 4]) that achieves signi�-

cant parallel speedup on sparse, irregular graphs when compared against the best sequential

implementation.

Prior experimental studies of connected components implement the Shiloach-Vishkin al-

gorithm [16, 22, 25, 15] due to its simplicity and eÆciency. However, these parallel implemen-

tations of the Shiloach-Vishkin algorithm do not achieve any parallel speedups over arbitrary,

sparse graphs against the best sequential implementation. Greiner [16] implemented several

connected components algorithms (Shiloach-Vishkin, Awerbuch-Shiloach, \random-mating"

based on the work of Reif [33] and Phillips [30], and a hybrid of the previous three) using

NESL on the Cray Y-MP/C90 and TMC CM-2. On random graphs Greiner reports a maxi-

mum speedup of 3.5 using the hybrid algorithm when compared with a depth-�rst search on

a DEC Alpha processor. Hsu, Ramachandran, and Dean [22] also implemented several paral-

lel algorithms for connected components. They report that their parallel code runs 30 times



slower on a MasPar MP-1 than Greiner's results on the Cray, but Hsu et al.'s implementa-

tion uses one-fourth of the total memory used by Greiner's hybrid approach. Krishnamurthy

et al. [25] implemented a connected components algorithm (based on Shiloach-Vishkin) for

distributed memory machines. Their code achieved a speedup of 20 using a 32-processor

TMC CM-5 on graphs with underlying 2D and 3D regular mesh topologies, but virtually

no speedup on sparse random graphs. Goddard, Kumar, and Prins [15] implemented a con-

nected components algorithm (motived by Shiloach-Vishkin) for a mesh-connected SIMD

parallel computer, the 8192-processor MasPar MP-1. They achieve a maximum parallel

speedup of less than two on a random graph with 4096 vertices and about one-million edges.

For a random graph with 4096 vertices and fewer than a half-million edges, the parallel

implementation was slower than the sequential code.

Input: 1. A set of m edges (i; j) given in arbitrary order

2. Array D[1::n] with D[i] = i

Output: Array D[1::n] with D[i] being the component to which vertex i belongs

begin

while true do

1.for (i; j) 2 E in parallel do

if D[i]=D[D[i]] and D[j]<D[i] then D[D[i]] = D[j];

2.for (i; j) 2 E in parallel do

if i belongs to a star and D[j]6=D[i] then D[D[i]] = D[j];

3.if all vertices are in rooted stars then exit;

for all i in parallel do

D[i] = D[D[i]]

end

Algorithm 2: The Shiloach-Vishkin algorithm for connected components.

In this paper, we compare implementations of Shiloach-Vishkin's connected components

algorithm (denoted as SV) on both SMP and MTA systems. We chose this algorithm because

it is representative of the memory access patterns and data structures in graph-theoretic



problems. SV starts with n isolated vertices and m PRAM processors. Each processor Pi

(for 1 � i � m) grafts a tree rooted at vertex vi (represented by vi, in the beginning, the

tree contains only a single vertex) to the tree that contains one of its neighbors u under

the constraints u < vi or the tree represented by vi is only one level deep. Grafting creates

k � 1 connected subgraphs, and each of the k subgraphs is then shortcut so that the depth

of the trees reduce at least by half. The approach continues to graft and shortcut on the

reduced graphs until no more grafting is possible. As a result, each supervertex represents

a connected graph. SV runs on an arbitrary CRCW PRAM in O(logn) time with O(m)

processors. The formal description of SV can be found in Alg. 2.

SV can be implemented on SMPs and MTA, and the two implementations have very dif-

ferent performance characteristics on the two architectures, demonstrating that algorithms

should be designed with the target architecture in consideration. For SMPs, we use ap-

propriate optimizations described by Greiner [16], Chung and Condon [10], Krishnamurthy

et al. [25], and Hsu et al. [22]. SV is sensitive to the labeling of vertices. For the same

graph, di�erent labeling of vertices may incur di�erent numbers of iterations to terminate

the algorithm. For the best case, one iteration of the algorithm may be suÆcient, and the

running time of the algorithm will be O(logn). Whereas for an arbitrary labeling of the

same graph, the number of iterations needed will be from one to logn. We refer the reader

to our previous work [2] for more details on the SMP connectivity algorithm and its analysis

(presented next).

In the �rst \graft-and-shortcut" step of SV, there are two non-contiguous memory ac-

cesses per edge, for readingD[j] andD[D[i]]. Thus, �rst step costs T (n; p) = hTM(n; p) ; TC(n; p) ; B(n; p)i



D
2m
p
+ 1 ; O

�
n+m

p

�
; 1

E
: In the second step, the grafting is performed and requires one non-

contiguous access per edge to set the parent, with cost T (n; p) =
D
m

p
+ 1 ; O

�
n+m

p

�
; 1

E
: The

�nal step of each iteration runs pointer jumping to form rooted stars to ensure that a tree is

not grafted onto itself, with cost T (n; p) =
D
n log n

p
; O

�
n log n

p

�
; 1

E
: In general, SV needs mul-

tiple iterations to terminate. Assuming the worst-case of logn iterations, the total complexity

for SV is T (n; p) = hTM(n; p) ; TC(n; p) ; B(n; p)i �
D
n log2 n

p
+
�
3m
p
+ 2

�
logn ; O

�
n log2 n+m log n

p

�
; 4 logn

E
:

while (graft) {

graft = 0;

#pragma mta assert parallel

1. for (i=0; i<2*m; i++) {

u = E[i].v1;

v = E[i].v2;

if (D[u]<D[v] && D[v]==D[D[v]]) {

D[D[v]] = D[u];

graft = 1;

}

}

#pragma mta assert parallel

2. for(i=0; i<n; i++)

while (D[i] != D[D[i]]) D[i]=D[D[i]];

}

Algorithm 3: SV on MTA. E is the edge list, with each element having two �elds, v1 and v2,

representing the two endpoints.

On the other hand, programming the MTA is unlike programming for SMPs, and code

for the MTA looks much closer to the original PRAM algorithm. The programmer no longer

speci�es which processor works on which data partitions, instead, his/her job is to discover

the �nest grain of parallelism of the program and pass the information to the compiler using

directives. Otherwise the compiler relies on the information from dependence analysis to

parallelize the program. The implementation of SV on MTA is a direct translation of the



PRAM algorithm, and the C source code is shown in Alg. 3. Alg. 3 is slightly di�erent from

the description of SV given in Alg. 2. In Alg. 3 the trees are shortcut into supervertices in

each iteration, so that step 2 of Alg. 2 can be eliminated, and we no longer need to check

whether a vertex belongs to a star which involves a signi�cant amount of computation and

memory accesses. Alg. 3 runs in O
�
log2 n

�
, and the bound is not tight. The directives in

Alg. 3 are self-explanatory, and they are crucial for the compiler to parallelize the program

as there is obvious data dependence in each step of the program.

5 Performance Results and Analysis

This section summarizes the experimental results of our implementations for list ranking and

connected components on the SMP and MTA shared-memory systems.

For list ranking, we use two classes of list to test our algorithms: Ordered andRandom.

Ordered places each element in the array according to its rank; thus, node i is the ith

position of the array and its successor is the node at position (i + 1). Random places

successive elements randomly in the array. Since the MTA maps contiguous logical addresses

to random physical addresses the layout in physical memory for both classes is similar. We

expect, and in fact see, that performance on the MTA is independent of order. This is in

sharp contrast to SMP machines which rank Ordered lists much faster than Random lists.

The running times for list ranking on the SMP and MTA are given in Fig. 1. First, all of the

implementations scaled well with problem size and number of processors. In all cases, the

running times decreased proportionally with the number of processors, quite a remarkable

result on a problem such as list ranking whose eÆcient implementation has been considered



Figure 1: Running Times for List Ranking on the Cray MTA (left) and Sun SMP (right) for

p = 1; 2; 4 and 8 processors.



a \holy grail" of parallel computing. On the Cray MTA, the performance is nearly identical

for random or ordered lists, demonstrating that locality of memory accesses is a non-issue;

�rst, since memory latency is tolerated, and second, since the logical addresses are randomly

assigned to the physical memory. On the SMP, there is a factor of 3 to 4 di�erence in

performance between the best case (an ordered list) and the worst case (a randomly-ordered

list). On the ordered lists, the MTA is an order of magnitude faster than this SMP, while

on the random list, the MTA is approximately 35 times faster.

Figure 2: Running Times for Connected Components on the Cray MTA (left) and Sun SMP

(right) for p = 1; 2; 4 and 8 processors.

For connected components, we create a random graph of n vertices and m edges by

randomly adding m unique edges to the vertex set. Several software packages generate

random graphs this way, including LEDA [27]. The running times for connected components

on the SMP and MTA are given in Fig. 2 for a random graph with n = 1M vertices and

from m = 4M to 20M edges. (Note that throughout this paper M = 220.) Similar to

the list ranking results, we see that both shared-memory systems scale with problem size

and number of processors for �nding the connected components of a sparse, random graph.



This is also a truly remarkable result noting that no previous parallel implementations have

exhibited parallel speedup on arbitrary, sparse graphs for the connected components problem.

(Note that we give speedup results for the SMP approach in [2, 4].) In comparison, the

MTA implementation is 5 to 6 times faster than the SMP implementation of SV connected

components, and the code for the MTA is quite simple and similar to the PRAM algorithm,

unlike the more complex code required for the SMP to achieve this performance.

Number of List Ranking Connected

Processors Random List Ordered List Components

1 98% 97% 99%

4 90% 85% 93%

8 82% 80% 91%

Table 1: Processor Utilization for List Ranking and Connected Components on the Cray

MTA.

On the Cray MTA, we achieve high-percentages of processor utilization. In Table 1

we give the utilizations achieved for the MTA on List Ranking of a 20M -node list, and

Connected Components with n = 1M vertices and m = 20M(� n logn) edges.

6 Conclusions

In summary, we show that fast, parallel implementations of graph-theoretic problems such

as list ranking and connected components are well-suited to shared-memory computer sys-

tems. We con�rm the results of previous SMP studies and present the �rst results for

multithreaded architectures. The latter highlights the bene�ts of latency-tolerant processors

and hardware support for synchronization. In our experiments, the Cray MTA achieved high

utilization rates for performing both list ranking and connected components. In addition,



the MTA, because of its randomization between logical and physical memory addresses, and

its multithreaded execution techniques for latency hiding, performed extremely well on the

list ranking problem, no matter the spatial locality of the list.

Although both are shared memory machines, the programming model presented to the

user by the two machines is di�erent. The Cray MTA allows the programmer to focus on

the concurrency in the problem, while the SMP server forces the programmer to optimize

for locality and cache. We �nd the latter results in longer, more complex programs that

embody both parallelism and locality.

We are currently developing additional graph algorithms for the MTA. In particularly,

we are investigating whether the technique used in the list ranking program is a general

technique. In that program, we �rst compacted the list to a list of super nodes, performed

list ranking on the compacted list, and then expanded the super nodes to compute the rank

of the original nodes. The compaction and expansion steps are parallel, O(n), and require

little synchronization; thus, they increase parallelism while decreasing overhead.

In 2005, Cray will build a third generation multithreaded architecture. To reduce costs,

this system will incorporate commodity parts. In particular, the memory system will not be

as 
at as in the MTA-2. We will reconduct our studies on this architecture as soon as it is

available.
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