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SUMMARY 

The purpose of this research is to model a synchronous generator, 

using statistical estimation theory to determine the parameters of the 

model from experimental data. An ideal generator model is reduced to a 

state-space formulation, and the method of quasilinearization is used 

to develop an optimal parameter estimation algorithm, implemented on a 

small digital computer. 

The experiment to produce data for the parameter estimator is 

designed with the aid of a computer simulation of the experimental 

setup. The simulation includes a model of a typical generator with a 

switched load. The objectives of the design of the experiment are to 

produce sufficient data to permit the estimator to work well, while 

recognizing economic constraints on equipment and computer time. 

The experiment thus designed, is implemented on a real synch

ronous generator with data recorded and digitized off-line. The data 

is then stored on a magnetic disk cartridge in a form suitable for 

use by the digital computer. The parameter estimates enable the 

generator to be modeled. The adequacy of the model is validated by 

predicting response of the generator to a larger change in load. The 

predicted response matches the actual response within the variance 

of the measurement noise. 

The standard methods of machine parameter estimation are crude, 

requiring simplifying assumptions, and do not account for measurement 



noise and inaccuracies. This dissertation, however, presents a method 

of estimating the generator model parameters from switched-load test 

data corrupted by considerable measurement noise. 



CHAPTER I 

INTRODUCTION 

Motivation 

A central problem facing power system analysts is the prediction 

of the dynamic behavior of the electric machinery connected to the 

system. The synchronous generators, which are universally used t6 

convert mechanical energy to electrical energy in power plants, are 

of particular interest. Such machines can be simulated using digital 

computers if the parameters of mathematical models of the machines 

are known. Therefore, a problem of great practical importance to the 

electric power industry is the determination of the parameters of 

models of synchronous generators. 

The parameters of an electrical machine can be calculated, at 

least in principle, if the internal geometry and material properties 

are known. However, such detailed information is often riot available 

to the analyst. In this case, qne must subject the machine to tests, 

recording data from measurements at the terminals. This data is 

invariably corrupted with noise during recording and processing. 

Therefore, the basic problem of determining machine parameters from 

tests is to develop an estimation algorithm to extract the parameters 

from noisy data and to design an experiment that produces sufficient 

data for this algorithm to work accurately. 



Review of Past Approaches 

A coupled circuit model of a three-phase synchronous generator 

derived by Park [1] is in general used by power system analysts. This 

model is obtained from a linear lumped-parameter model by transforming 

the armature quantities onto a two-axis coordinate frame that rotates 

with the rotor. Rotor circuits consisting of a field winding and two 

damper windings are invariant under the transformation. The result of 

Park's transformation is a set of stationary differential equations in 

the two-axis coordinate frame, related to the terminal voltages and 

currents by a set of time-varying measurement equations. The parameters 

of this model are the inductances and resistances of the two-axis 

circuits. 

Since these parameters include mutual inductance between rotor 

and stator circuits and inductances of rotor circuits which are not 
• - i • • 

accessible, a simplified parameter set is often used [2,3], The 

simplified parameters can be determined from results of relatively 

simple tests [4]. An approximate analysis is carried out by assuming 

that a transient in the armature current initially affects the damper 

windings and then later affects the field winding. Also, the time 

constants of the dampers are assumed to be much shorter than the time 

constant of the field. These, assumptions are generally accepted but 

tend to force the characteristics of a standard machine on all 

machines [2]. 

Several attempts to overcome the drawbacks of this simplified 

analysis have been published recently. Canay [5] added a parameter to 



account for a different coupling between the various rotor and armature 

circuits. The results predicted rotor quantities with greater accuracy. 

Yu and Moussa [6] then described several approaches for determining 

Canay's reactance from tests. Transfer functions for synchronous 

generators have been determined from sinusoidal perturbations about an 

operating point which are introduced by a fast-response static exciter 

[7] and from low-voltage measurements with the rotor at standstill [8]. 

The first method requires a source of field current (an exciter) which 

has a very fast response time while the second requires a variable 

frequency source of rather large current. In these frequency response 

tests, Bode plot construction techniques were used. This method re

quires judgement of the analyst in locating the breakpoint, since it is 

essentially a graphical method. No treatment of errors was given. 

Stanton [9] presented a statistical treatment of estimating a transfer 

function that was an empirical relation between rotor speed and electric 

power output. The result is not directly applicable to determining 

the parameters of a physical model. Lee and Tan [10] recently imple

mented a least-squares algorithm to estimate the parameters of the 

simplified analysis plus Canay's reactance. This approach assumed 

that the generator was subjected to a sudden three-phase short circuit 

test. The resulting estimator was tested on simulated data without 

the effects of measurement noise. 

Definition of the Problem 

The problem considered in this research is the estimation of 

the inductance and resistance parameters of Park's model of a synchronous 



4 

generator. No intermediate parameter set requiring additional assump

tions about the machine characteristics is imposed. Data is taken 

from the terminals of a synchronous generator under a resistive load. 

A transient is induced by a sudden switching of the load resistance to 

a smaller value. A statistical formulation of a parameter estimation 

algorithm is studied to enable an assessment of the effect of measure

ment noise upon the experiment. This approach overcomes many of the 

objections to previous approaches by applying estimation theory in a 

simple experiment to determine the parameters of a synchronous 

generator model directly. 

A state-space approach is taken by casting the model in the form 

dx 
H = f(x,y,u,t) (1) 

z = h(x,y,t,t) + w , (2) 

where x is the state vector, u is the input vector, y is the parameter 

vector, z is the measurement vector and w is an additive noise term. 

The problem is to estimate y based on measurements z. 

The first step is to derive a parameter estimator. This is an 

algorithm implemented on a digital computer for recursively computing 

estimates of the model parameters. A weighted least-squares approach 

is taken to minimize an error criterion that is the weighted sum of the 

square of the error. The error is defined as the difference between the 

observed output and the output computed from the model using the 

current parameter estimates. An optimal estimator is derived from this 



formulation by choosing the weighting matrix as the inverse of the 

noise covariance matrix. 

The second step is to design an experiment which produces suf

ficient data to permit the estimator to work effectively. The success 

of the parameter estimator is directly dependent upon the experimental 

conditions. In particular, the load and excitation as well as the 

data sampling rate must be adequately chosen. To approach this problem, 

an experiment was designed with the aid of computer simulations. That 

is, a simulation of a generator with nominal parameters is used to 

produce data for the parameter estimator. This enabled the experimental 

conditions to be designed with maximum flexibility. 

Finally, an experiment was implemented on an actual generator. 

Data recorded on an FM instrumentation tape recorder, was digitized and 

put into a form suitable for use by the estimation algorithm. The 

parameter estimator was then used to estimate the generator parameters. 

These estimates were used to predict the response of the generator to a 

larger change in load resistance. This final step validated the 

results and enabled the overall procedure to be evaluated. 



CHAPTER II 

DEVELOPMENT OF THE ESTIMATOR 

Introduction 

The object of this chapter is to develop the mathematical 

models needed to estimate the parameters of a synchronous generator. 

The approach taken is to model the generator, use this model to pre

dict outputs based on the current parameter estimates, and then to 

adjust the parameter estimates systematically to minimize the weighted 

square of the difference between the measured outputs of the generator 

and the model outputs. This is the essence of a weighted least-squares 

estimation algorithm. Furthermore, incorporating the statistics of 

the noise which inevitably corrupts the measurements into the estimation 

algorithm leads to the maximum a posteriori probability estimator. 

This chapter is divided into two main sections. The first 

presents the model of the generator in a form suitable for digital 

computer simulation. These equations are cast into a state-space 

notation for convenience. The second section develops weighted 

least-squares estimation algorithm by the method of quasi linearization. 

The statistics of the noise are used to derive an optimal estimator, 

which is the maximum a posteriori probability estimator. This 

formulation is a special case of weighted least-squares estimation 

with the weighting matrices determined from noise statistics and 

a priori information about parameter error statistics. 



Generator Model 

A typical three-phase, alternating-current generator consists 

of three armature windings placed symmetrically on the stator sur

rounding a rotor that is driven externally. The rotor consists of an 

iron core with a field winding excited by direct current. Additional 

rotor circuits called damper windings, consisting of short-circuited 

bars, are often imbedded in the rotor surface. Such a machine, 

considered here, is drawn schematically in Figure 1(a). 

Due to the effect of the iron rotor, the armature inductances 

have components that vary with the rotor angle. By assuming symmetry 

of the rotor about the pole axis, or direct axis, and about the inter-

pole axis (or quadrature axis) and by assuming sinusoidally distributed 

armature windings along the air gap, the fundamental component of the 

air gap flux linking the armature is proportional to A + Bcos28 [1]. 

As a result, the armature self and mutual inductances are 

La " La0 + Lalcos29 (3) 

L a b = - [ L a b O + L a l c o s 2 ( e + ? ) ] " ( 4 ) 

By projecting the armature circuit quantities onto the d-q coordinate 

frame, which is fixed in the rotor, Park [1] obtained a set of differen

tial equations with constant coefficients. Fictitious windings along 

the d and q axes have constant inductances since the paths of flux have 

constant permeance. The self inductances of the model are 



Figure la. Schematic Cross-Section of a Synchronous Generator; 
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L„ = L' + .L" •+ - L n ( 5 ) 

D aO abO 2 a l 

L ' - L n ••+ L ,_rt - — L ••, • (6 ) 
Q aO abO 2 a l 

D e f i n i n g 

L • 4 L n + L , . • . (7) 
1 — aO abO 

a n d 

L2 A | v - (8) 

t h e n L a n d L a r e c o m p u t e d f r o m 

L = L . + L (9) 
D 1 2 

L c = Li - V (10 ) 

The net result of the preceding is the circuit model illustrated 

in Figure 1(b). .It is described by a set of time-invariant, linear 

differential equations and a set of time-varying measurement equations. 

These are given by Equation (11) and Equation (12), respectively. 

1^- = -(RlT 1 + fl)if>(t) + v(t) (11) 

z(t) = T(t)L""1\l)(t) (12) 
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_lkq Rk 

*D 

Figure lb. Circuit Model of Synchronous Generator Due to Park. 
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the flux linkage vector 

the voltage vector 

the current vector 

LD LDF LDKD 0 0 ~ 

LDF -LF LFKD 
0 0 

LDKD FKD LKD 0 0 

0 o 0 LQ LQKQ 

0 0 0 LQKQ LKQ 

, the inductance matrix 

r** 
\ 

\ D 

Rv 

R. KQ 

, the resistance matri: 

0 0 0 -co "o" 

0 0 0 0 0 

0 0 0 0 0 

CO 0 0 0 0 

0 0 0 0 0 



T= / — 

cos 6 

cos (6 - -^) 

cos(e + ^-) 

o -sine 

2TT, 
0 -sin (6 ---3-) 0 

0 -sin(6 + ^-) 0 

and 6 = o)t + 6 . The measurement equations correspond to a transfor

mation of coordinates from the D-Q reference frame to the three-phase 

armature reference frame, denoted by the subscripts A, B, and C. The 

rotor circuit quantities, denoted by subscript F for the field and 

by the subscripts KD and KQ for the damper windings, are invariant 

under this transformation. 

These equations are not the same as those derived by Park [1] 

but have been modified as suggested by Lewis [11]. The result is that 

the transformation is unitary,, that is the inverse of T is just the 

T transpose T . The virtue of this particular transformation is that 

the mutual reactances are always reciprocal. This is not true of 

Park's original equations. 

These equations are valid for balanced three-phase operation of 

the machine. If an unbalanced load is connected, a zero-sequence 

circuit must be added to the D and Q circuits to represent the armature 

circuits. The zero-sequence equations aire defined by Equations (13), 

(14), and (15). 
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v .= I(v + V, + V ) (13) 
0 3 a b c 

0 3 a b c 

*0 =l (*a + *b + V (15) 

The zero-sequence variables are uncoupled from the rest of the equations, 

as shown by Equation (16). 

dip R 

—£. = _ _° ̂  4. v (16) 
dt L o o 

o 

Since the analysis and experiments will be carried out under balanced 

conditions, the zero-sequence equation is not considered further. 

Generator parameters are usually expressed in per unit, that is 

in dimensionless ratios to base values. The base values are ordinarily 

chosen to be the rated values to facilitate comparison of machines of 

different sizes and ratings. Although Equations (11) and (12) are 

valid in any consistent set of units, such as the MKS system, a per 

unit system is used subsequently to simplify the computations and to 

be consistent with accepted practices. 

( - 1 ' d " • • ' • • • . Since i = L .ip and p = -r- , the direct axis part of Equation 

(11) can be rewritten in operational form 



" • — 

V 
D 

V F 
= 

0 
«. 

L _ L 

RD + V LDF̂  W 

L p 
DFP 

L p 
DKDF 

R„ + L p L p 
F F^ FKJT 

LFKDP V 3 

"" — 

- % i 
D - % 

> F + 0 

_1KD_ 0 

(17) 

Dividing each row by the corresponding base voltage and dividing and 

multiplying each column by the corresponding base current yields the 

equations in per unit. 

v, 

B PR 
(R +L D) —^-(L p) 

V R D Er' V R
V DFP; 

"KDB (W» 

FB 

FB, % 

(R +L p) 
v F F^ 
FB 

"KDB 
V7(LFKDP) 
FB 

KDB 
• ( w > 

"FB 
v "F KDB 

(SCDP> 
"KDB 

(R.^+L^) 
V K D B • • • * D " ~ * 

-bity 

kd 

where 

(18) 

v • . i 

D . D 

V = i = — 

d v ' 1
d i 

B B 

* =-2 
q vB 

v 
v_ = i _ = f v "f - i 

FB r
 ^-FB 

, and i "KD 
kd i 

"KDB 
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Base current and voltage for the armature circuits are the rated values. 

Base field current is chosen to be the value of current which causes 

rated open-circuit armature voltage. Two constraints are placed on 

the three remaining arbitrary rotor base quantities, 

v i = v i = v i . (19) 
KDB KDB FB FB B B K ' 

These relations imply that the base power is the same on all circuits 

and that the per unit inductance matrix is reciprocal. One more 

constraint will be placed on the base quantities of the damper winding 

circuit. Choosing 

L D K D . ••• x 

^ s : T " XB
 (20) 

KD 

results in 

L L 
DKD . _ KD .. 
v B ~ v 1KDB KDB KDB 

or 

L,, A = L, , , (21) 
dkd kd 

in per unit. By similar reasoning, choice of v i = v_i. results 
KQB KQB B B 

in a reciprocal quadrature axis inductance matrix and choice 

^QKQ • '• . ^-Lr^r, = T — J-r, results in L . = L, , in per unit. As a result, KQB L B qkq Tcq ^ 
Ky 

Equations (11) and (12) are valid with the following per-unit quantities: 



L i L i L i 
D B _ F FB _ DF FB 

L , — i L_ — , Ljir — i 
d Vr. f V^T. d f Vr^ 

B FB B 

LKD1KDB LDKD1B 

kd v. KDB KDB 

L i 
FKD KDB 

fkd v FB 

L i 
L = ^ 
q VB 

L i i 
= KQ KQB = B. 

kq v QKQ v 
H KQB * * KQB 

R i« 
R = ^ 
•d V B 

•v 1 

f V. 
FB _ _ \DiKDB . VKgB 
FB ^ d VKDB ^ q VKQB 

L = 

L, L__ L. 0 0 
d df kd 

L,_ L_ L_, 0 0 
df f fkd 

KA L^A KA ° ° 
kd fkd kd 

0 0 0 L L, • q kq 

0 0 0 kq Jcq 

R = 

R. 

Rf 0 

\< 

\< 

*q = t ' *d = ~ ' *f = 7T 
^ B B FB kd 

KD 

KDB 

- KQ 
kq v 

KQB 

Equation (17) has two more parameters than the per unit equations 

since the damper winding currents are scaled by a factor containing a 

ratio of damper winding inductances. This choice of base currents 

results in a reduction in the number of inductance parameters and the 

addition of an equal number of parameters in the base rotor quantities. 

The object of this model is to represent the generator by a circuit 

equivalent at the terminals. Since the damper windings are inaccessible 

short-circuited turns imbedded in the rotor, the current in them does 

file:///DiKDB


not need to be determined absolutely to model the generator at the 

terminals. The net result of this particular per unit representation 

is that two parameters are not determined but the resulting circuit is 

still equivalent at the armature and field terminals. 

Since the experiment was conducted with the generator under a 

balanced resistive load, as described in Chapter III, this special 

case is now considered. The field is excited by a regulated voltage 

source providing a constant v . The components of the armature 

voltage are proportional to the corresponding currents. 

vd"-VcC 

V - - * L V (23) 
q XJ q 

Therefore, Equation (11) still holds if R, is replaced by R, + R. 
d d L 

and if v = (0 v 0 0 0) T. 

For convenience in the following derivation, the model 

Equations (11) and (12) are written in more general notation. 

dx 
— = f(x,y,v) = F(y)x + v; x(0)=x (24) 
at o 

z(t) = h(x,y,6 t) (25) 
o 

where 

x = x(x ,y,v,t) = state vector (flux linkages) o 

y = parameter vector 
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v = input vector (field voltage) 

t = time 

0 = 9 (x ) = initial rotor angle 
o o o 

x = x (y) = initial state vector 
o o 

z = measurement vector (terminal currents) 

The matrix F = -(RL + ft) and the parameter vector is 

Y = ( L i Ldf Lkd L f L
f t a

 L2 Lkq
 Rd Rf *kd V ( 2 6 ) 

where 

L d = L l + L 2 -• 

Lq = Ll " L 2 (27) 

These equations assume the generator is in steady state at time 

t=0. Therefore, the initial state vector x and the initial rotor 
o 

angle 9 are computed from the parameters by the relations 

x(6) = x (y) = -F(y)"1v (28) 
o 

and 

. wL 
(x ) = arctan (-— 

o o o lq 
>' = arctan (^zf—) . <29) 

Rd+RL 
t=0 

For t>0, a transient is induced by a step change in load resistance 

and the state vector is found by numerical solution of Equation (24). 



Equations (24), and (25) describe a continuous-time, deterministic 

state-space model of the generator. Since a digital computer estimation 

algorithm is developed in the sequel, consider the measurement Equation 

(25) to be a function of t for k = 1,2, . . . ,k , a set of discrete 

time points. Finally, since inaccuracies and noise inevitably corrupt 

the measurement process, a term representing an additive measurement 

noise sequence is included. The result is expressed in Equation (30). 

z(tR) = h(x,y,e',t ) + wk , k = 1,2, . . . ,kf (30) 

where t is the k discrete time point, and w, is the k discrete 
J C • K. 

noise sample. 

Weighted Least-Squares Estimation 

Consider a parameter estimator, an algorithm not yet specified, 

which recursively generates an estimate of the parameter vector. If 

the current parameter estimate is denoted by y, then the output from a 

model of the generator is h(x,y,6 ,t, ) , where x is the state vector 
o k 

e s t ima te computed from numerical s o l u t i o n of t he model Equation (24) 

us ing y . I f the measured pulzput of the a c t u a l g e n e r a t o r i s z ( t , ) , 

then the weighted l e a s t - s q u a r e s e r r o r c r i t e r i o n i s given by 

k f 
J = \ . I { [ z ( t t ) - h ( x , y , e ^ , t u ) ] T Q [ z ( t u ) - h ( x , y , e ^ , t u ) ] } . (31) 

k=l 

Here Q i s a non-nega t ive d e f i n i t e weight ing m a t r i x . The i n t e r p r e t a t i o n 

of t h i s e r r o r c r i t e r i o n i s t h a t minimizing J a l s o minimizes the weighted 



squares of the error between the observed output and the modeled output. 

In the estimation algorithm, the method of quasilinearization 

[12,13] will be applied. ! Let the current parameter estimate y be 

updated to produce the new estimate 

y = y + Ay . (32) 
new 

Expanding equa t ion (30) i n a Taylor s e r i e s about y and r e t a i n i n g only 

the f i r s t two terms g ives the l i n e a r approximation 

where 

and 

. dh 
2 V =V+liy-A* + W k (33) 

h k = h ( x , y , e o , t k ) 

dh dh (x ,y ,6 , t ) 
k o k 

dy dy 
x,y_ 

Repeated a p p l i c a t i o n of the chain r u l e for p a r t i a l d e r i v a t i v e s give 

dh _ _9h_ + ih_,ix 8x o_. 8h. o Xo ( .. 
dy 8y 8xl8y 8x dy 86 dx dy 

-o J o o 

Differentiating Equation (24) with respect to y and x results in the 
o 



sensitivity matrix differential equations (35) and (36) 

21 

dt(8y} 8x 8y 8y ' dy 
t=0 

9x 
c 

9y 
(35) 

d 8x . _ _9f_ 8x 
dt 9x 8x 9x 

o o 

8x 
8x = I 

t=0 
(36) 

The solutions to (35) and (36) are the sensitivity matrices 

9x ., 8x 
— and — 
dy 9x 

(37) 

A necessary condition for minimizing J is that its gradient 

with respect to y vanish. Evaluating the gradient at the new 

parameter estimate y + Ay results in 

dJ 
dy 

V'^k T ~ dhk 
= 0 = - I (—̂  Q{z(t.) - [h. •+ —f- Ay]}) 

• A ' i -i d Y • k k dy 
y+Ay k=l J * 

(38) 

Solving for Ay gives 

k.f dh, T dh , k f dh 

Ay - •[ I -±Q - ^ r 1 r r 
k = l 

dy dy 
k = l 

— Q [ z ( t ) - h i } 
dy k k J (39) 

Setting the new estimate equal to y + A y completes the recursive 

algorithm for computing the parameter estimates. 

In summary, the algorithm consists of solving the differential 

Equations (24), (35) and (36) numerically, computing sensitivity 

matrices and solving the system of linear algebraic Equations (39). 



This recursive algorithm is ideally suited for implementation on a 

digital computer. 

Statistical Estimation Theory 

The least-squares approach of the previous section ignores the 

statistical nature of the estimation problem. If information about 

the statistics of the noise is available, the estimation process can 

be improved. This section presents a derivation and discussion of 

relevant aspects of stochastic parameter estimation theory. 

Bayesian Approach 

Consider an error defined to be 

y - y(z) (40) 

where y(z) is some estimate based on measuring z. Let C(y-y(z)) be 

the cost function describing the penalty for making that error. The 

Bayesian risk [14,15] is defined as the conditional mean of the error 

R = E{C(y - y)Iz} = c(y - y)p(y z)dy (41) 

For the case of the uniform cost function, 

'Q(y-y) = 

- if I|y-y|| ^ e 

0 otherwise 

(42) 

Consider the limit of the cost function as e-K), 
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N . 
C(y - y) = - n 6(y. - y.) . (43) 

j=l 3 3 

As a result 

R = -p(y(z)|z) . (44) 

Minimizing the Bayesian risk is equivalent to maximizing the posterior 

probability density. 

Maximum A Posteriori Probability Estimator 

Denote the set of all measurement vectors in the sequence by 

Z = {z(t ),z(t ), . . . ,z(t )}. If the measurement noise is represented 

as a vector stochastic process and the parameter vector as a random 

vector, the posterior probability density is given by Bayes' rule as 

p(y|2)= PiMzlEk) ... (45) 

Since p(Z) is hot dependent on y, maximizing (45) by choice of y is 

equivalent to maximizing p(z|y)p(y). 

If the measurement noise is normally distributed with zero mean 

4-Vv ' 

and covariance matrix V , the conditional probability of the k 

measurement vector is given by 

p[z(t, ) |y] = [(2TT)mdet(V )] 
•K W 

exp{-^[z(tk) - h(x,y,tk)]V
1[z(tk)-h(x,y,tk])} 

(46) 



If the noise samples are uncorrelated with each other, that is from a 

white noise sequence, the probability of observing the entire sequence 

Z is simply the product of k_ terms like the right side of Equation 

(46). 

~V2 
p[z|y] = [(2TT)mdet(V )] 1 w 

kf 
• exp{-h I [z(tk)-h(x,y,tk)]

TV^1[z(tk)-h(x/y/tk)]} 
k=l 

(47) 

If the random parameter vector y is now assumed to be normally 

distributed with mean M and variance V , then 
y y • 

p(y) = [(2TT) |V |] ̂ exp[-Ja(y-M ) V (y-M )] . (48) 

Since the exponential function is monotonic in its argument and 

since the functions multiplying the exponentials in Equation (47) and 

(48) do not contain y, maximizing.p(Z|y)p(y) is equivalent to 

minimizing the error criterion 

> f ': • 

J = h I [z(tk)-h(x,y,tk)]V
1[z(tk)-h(x/y/tk)i 

k=l 

+ ^(y-M )TV_1(y-M ) , (49) 
y y y 

resulting in 



k f dh T dh , _ k f dh T , . 
Ay = f I <-TT- V~ "r^+V X] X{ £ [-—V (z(t )-h )]-V X(y-M )} . (50) ^ dy w dy y ~ dy w k k y y 

JC~~X JC X 

Thus the maximum a posteriori probability estimator can be 

considered a special case of a least-squares estimator, including prior 

information about the parameter vector, if the weighting matrices are 

chosen equal to the inverse of the error covariance matrices. 

Lower Bound on the Error Covariance 

A lower bound on the error covariance of the estimator 

derived is easily obtained from a generalization of Fisher's information 

matrix [15,16]. 

k " T 
' A _ f dh, dh, 

E[(y-y) (y-y)T] < { I [-r- V"1 ~~-] + v"1}"1 (51) 
•.'',. dy w . dy y k=l 

The derivation of this bound is presented in Appendix A. This lower 

bound is computationally inexpensive since the right side of Equation 

(51) is already computed in the estimation algorithm, Equation (50). 

Summary 
! ' " • ' • ' . • • . . . • ' -

The derivation of an algorithm suitable for estimating synch

ronous generator parameters is approached from the point of view of 

weighted least-squares estimation theory. First, the equation des

cribing the generator are cast into a state-variable form. Next, 

the method of quasilinearization is used to derive a least-squares 

estimation algorithm. By considering a stochastic formulation, the 

maximum a posteriori probability estimator is shown to be a special 



case of the weighted least-squares algorithm with correct choice of 

the weighting matrices. 

While the direct implementation of the weighted least squares 

algorithm results from weights chosen arbitrarily or by physical 

intuition, the optimal estimator improves the quality of the estimates 

by using the prior error statistics to choose the proper weights. 

Unfortunately, the exact statistics of the noise are not known. The 

approach taken here is to study the effect of incorrect prior 

statistics using a computer simulation. Then, when processing data 

from the actual generator, estimates of the relative magnitudes of 

error variances can be made to enable intelligent choice of weights. 

If these estimates of the prior statistics are correct, the result 

should approach the performance of the optimal estimator. If the 

statistics are in error, at least the resulting suboptimal estimate 

satisfies the least-squares error criterion. In any case, the 

algorithm minimizes the weighted square of the output error. 



CHAPTER III 

DESIGN OF THE EXPERIMENT 

Introduction 

The success of an iterative parameter estimation algorithm, such 

as the one previously described, depends on the quality of the input 

data. In other words, the experiment that produces this data must be 

designed with the criterion as the performance of the estimator. In 

this research the experiment was designed with the aid of computer 

simulations. This enabled various experimental conditions to be 

tested with maximum flexibility. 

First, certain constraints on available equipment and on com

puting and processing time must be recognized. These are primarily 

economic limitations. The experiment was designed within these con

straints by selecting such factors as machine load and excitation, 

data sampling rate and overall data record length. To choose these 

conditions intelligently, a computer simulation of a typical generator 

was used to model the experimental setup. The resulting test data 

was used to assess the performance of the estimator. Therefore, the 

effect of the undetermined experimental condition was easily established 

and the experiment thereby designed. 

Equipment Constraints 

The test generator was a three-phase, four-pole, alternating 

current, synchronous machine rated at 3 KVA and 230 volts at 40 hertz. 



The drive motor was a 15 horsepower direct current machine rated at 

1200 revolutions per minute. The dc supply, from a large motor-

generator set, had only open-loop control. As a result, the speed 

of the drive motor was manually adjustable with no provision for 

automatic regulation. 

The load bank consisted of three power resistors connected in 

wye with an additional resistor suddenly switched in parallel with 

each leg to induce a transient. This arrangement is illustrated in 

Figure 2. The closing of the three-pole switch, labeled S, causes 
R1R2 

the load resistance to suddenly decrease from R-.+R-, to ———- + R . 
x -i R_ "̂ R~ -3 

Resistors R are current shunts used to obtain voltage signals pro

portional to the load current in each leg. These signals, along 

with a similar one proportional to field current, were recorded and 

processed as described in the next chapter. 

Excitation of the field was supplied by a regulated electronic 

dc power supply rated at 0.5 amp and 500 volts. This was adequate to 

supply up to the rated field current of .525 amps at the rated field 

voltage of 125 volts. 

The main constraint posed by the available equipment was to 

limit armature current to values within the generator ratings to pre

vent damage to the windings. The second constraint was a limit on 

the maximum change in armature current during the test. To insure 

that these constraints were met, the field voltage was reduced below 

its rated value, reducing the magnitude of the load currents. 
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Figure 2. Schematic Diagram of Load Bank, 



Simulation Using Nominal Parameters 

Within the constraints already posed, several experimental 

conditions remain to be selected. First, the magnitude of the step 

load change must be selected large enough to enable all the parameters 

to be estimated. Some parameters, notably the damper circuit reactan

ces and resistances, affect the terminal currents only during 

transients. Thus a significant transient must be introduced by the 

sudden load changes. Second, the data sampling rate must be chosen 

fast enough to accurately represent the terminal current waveforms. 

The well-known sampling theorem states that the minimum rate is twice 

the highest frequency component of the waveform. Experience shows that 

the practical minimum is somewhat faster than the theoretical limit. 

A balancing constraint is the limitation of the total amount of data 

storage space available. Finally, the length of the data record and 

the number of load switchings must be determined. 

To determine these conditions so that the experiment would be 

successful, the experimental setup was modeled with a computer simula

tion. The machine was modeled with Equations (24) through (30) solved 

numerically using a modified Runge-Kutta method [17]. The modification 

due to Merson [18], allowed an estimate of the roundoff error to be 

computed to insure the step size was small enough. A multiplicative 

type pseudo-random noise generator [19] simulated additive measurement 

noise. The simulation, implemented on a small digital computer with a 

magnetic disk operating system, provided test outputs to allow assess

ment of the effect of the experimental conditions on the parameter 

estimator. This information allows the experiment to be designed. 



To implement the numerical solution of the machine model, a set 

of typical parameters was determined from nameplate data, a few simple 

tests, and a list of typical machine constants [3]. The parameters 

X}' X,^, R,, and R^ were measured by simple ac and dc steady-state 

tests. The remaining parameters were roughly estimated from the 

typical parameter list. The results of this nominal parameter compu

tation are given in Table 1. The results of the steady-state tests 

and the details of the calculation are presented in Appendix B. It 

should be emphasized that the nominal-parameter model of the machine 

is not an accurate representation of this generator but is similar to 

a typical generator. 

The first run of the simulation modeled the generator during a 

sudden three-phase short circuit on the armature terminals. The main 

purpose of this run was to test the operation of the estimator. No 

measurement noise was added and the measurements were weighted equally. 

The step size was 2 msec, and the field voltage was the rated value. 

The parameter estimates converged rapidly as shown in Figure 3(a) and 

(b), which are plots of the measured relative error versus iteration. 

The relative error is defined as 

e = ̂  (52) 

where y is the parameter estimate, and y is the actual parameter value. 

Figure 3(c) shows the current in phase a and in the field versus time. 

The outputs based on the parameter estimates match the data within 

graphical error. 
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Table 1. Nominal Parameters in Per Unit 

L
d = 3.25xl0~3 

Lkd = 2« .20x10"3. 

Lfkd = 4.01X10"3 

\ q = 1.17xl0"3 

Rf = 2.31xlO~2 

Ldf = 4-87xl0"3 

Lf = 10.8xl0"3 

Lq = 2.12xl0"3 

Rd = .'1.4.2x10" 2 

\ d V 7-59x10 -2 

nil 



Parameter Error for Sudden Short-Circuit, 
Parameters 1-5. 
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Figure 3b. Parameter Error for Sudden Short-circuit, Test One, 
Parameters 6-11. 
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Figure 3c. Armature and Field Current for Sudden Short-Circuit. 



The second test is similar to the first; however, a transient 

was induced by switching load resistance rather than a sudden short 

circuit. The switched load test is a more realistic simulation of 

the actual experimental setup. With the machine initially in steady 

state, the load resistance was suddenly switched from 1.0 to 0.25 per 

unit. The load was switched back to one per unit, 400 milliseconds later. 

Convergence of the estimator was somewhat slower than in the 

previous test, as shown in Figure 4(a) and (b). Figure 4(c) shows the 

terminal currents computed with the parameter estimates after ten 

iterations to be quite close to the correct values. The errors 

remaining in the estimates, then, have small effect on the terminal 

currents. 

Tests run with switched loads of differing magnitudes show that 

smaller resistances, approaching the short-circuit test in the limit, 

produce results closer to those obtained in test one. On the other 

hand, resistances approaching 1.0 lead to smaller transients and 

poorer results. 

Tests in which one transient is induced by load switching show 

poorer results than the previous test with two transients. Two load 

switchings, from normal load to small load to normal load, provide 

redundant information. This aids the operation of the estimator, 

particularly in the presence of noise. More than two load switchings 

are not considered, because more than two quick operations of the 

three-pole switch are not practical. The experiment then was 

constrained to two load resistance switchings. 

Further tests with different switching times showed essentially 
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Figure 4a. Parameter Error for Switched Resistive Load, 
Test Two, Parameters 1-5. 
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Figure 4b. Parameter Error for Switched Resistive Load, 
Test Two, Parameters 6-11. 
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Figure 4c. Armature and Field Current for Switched Resistive 
Load, Test Two. 



the same behavior. The minimum time for operating the switch prohibited 

very short durations, and the limitations on overall data record length 

prohibited very long durations. For manual operation of the switch, a 

duration of several hundred milliseconds is reasonable. 

The next test, illustrated in Figure 5, shows the effects of 

ten percent errors in the initial parameter guesses and measurement 

-2 
noise with zero mean and standard deviation 1x10 . All measurements 

and parameters were weighted equally. 

The effect of increasing measurement noise is to degrade the 

performance of the estimator. At noise of standard deviation greater 

than 1.0, the estimator does not converge. With noise of standard 

deviation of 0.1, the estimator converged very slowly, but large 

errors in some parameters show that they tend to track the noise. 

The final test with simulated data, shown in Figure 6, was the 

same as the preceeding test; however, the weighting matrices were 

chosen as the inverse covariance matrices. This is an implementation 

of the maximum a posteriori probability estimator. The results show 

only minor improvements on the preceeding weighted least-squares 

approach, shown in Figure 5. 

The results of the simulated experiment show that the estimator 

will work satisfactorily with a resistive load switched from 1.0 to 

0.25 to 1.0 per unit, with practical switching periods, in the 

presence of moderate initial parameter errors and measurement noise. 

This experiment was consistent with the limitations imposed by 

available equipment. The implementation of this experiment is 

discussed in the next chapter. 
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5-y 

Figure 5a. Parameter Error Versus Iteration for Test Three, 
Parameters 1-5. 
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Figure 5b. Parameter Error Versus Iteration for Test Three, 
Parameters 6-11. 
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X. = input data 
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Figure 6a. Parameter Error Versus Iteration for Test Four, 
Parameters 1-5. 
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CHAPTER IV 

IMPLEMENTATION OF THE EXPERIMENT 

Introduction 

This chapter describes the experiment to measure the parameter 

of the synchronous generator in the laboratory. Terminal current 

measurements are recorded, stored in digitized form, and fed off-line 

into the parameter estimation algorithm. The resulting parameter 

estimates are used to predict new results, which are compared to actual 

measurements to validate the model. 

The three main thrusts of this part of the research are reported 

in the remainder of this chapter. First the data collection, proces

sing and storage methods are described in detail. Next, the results of 

the experiment, the parameter estimates, are presented. Finally, the 

adequacy of the results is assessed by using the parameter estimates in 

a computer simulation to predict the generator response to a relatively 

large change in load. This prediction is compared to actual measurements 

under the same conditions. 

Data Processing Methods 

Analog signals proportional to the four terminal currents are 

produced by current shunts in the four generator terminal circuits. 

These signals are recorded on separate channels of an FM instrumentation 

tape recorder. A typical channel is shown schematically in Figure 7. 
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Figure 7. Schematic Diagram of Instrumentation for, Channel i , 
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Figure 8. Four Channels of Data Digitized and Written 
to Disk Serially. 
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Since the parameter estimator is implemented on a digital 

computer, the four channels of analog data are digitized off-line 

and stored in serial form on a magnetic disk cartridge. Figure 8 

is a schematic diagram of the analog-to-digital (A/D) conversion and 

the multiplexing of the four digital data channels into one serial 

record on the disk. The A/D converters provide sampled-data output in 

12 bit two's complement binary numbers. The A/D driver software writes 

these numbers to the disk serially. The stream of data to disk contains 

sample one of channel one, then sample one of channel two and so forth. 

Sample two of channel one follows sample one from the last channel. 

This process of multiplexing data to the disk is illustrated for two 

channels of triangular waveform data in Figure 9. 

Thus the data stored on the disk forms a time series 

I*, s i*. _*. ATv a. _,_ 2AT, ... • 3AT, 
Z1 (V' Z2(tk + T } ' Z3(tk + — } ' Z4(tk + "I">' 

AT 
^ ^ k + l 1 ' Z2(tk+1 + T") W 

Here AT is the overall time step and t, ., = t, +• AT. Data in this 
• _• k + 1 k 

serial multiplexed format is used directly in a weighted least-squares 

algorithm by updating the state vector and the sensitivity matrices at 

all the time points 

AT 2AT 3AT 
V fck + 4 ' fck + 4'' fck + 4 •' ̂ k+l' * * * fti 

The error between observed and computed outputs is defined as 
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Figure 9. Reduction of Two Channels of Digitized Data to One 
Serial Record, (a) Two Channels of Data. Sampled 
Alternately, (b) Multiplexed Serial Data. 



h 1 [x ( t k ) / y, \ 1 • 

AT A AT 
h2[X(tk + T ) , y, tk + T ] 

,_ r , 2AT, * ' , 2AT, 
h 3 [ x ( t k + — >' Y' \ +—] 

i_ r ' / 3AT, " . ^ , 3ATn 
h 4 [ x ( t k + — J ' y' fck + — ] 

(53) 

This new definition is used to implement the estimator directly from 

the data on disk. 

Instrumentation 

The instrumentation used in this research includes an ac ammeter, 

an ac voltmeter, and a digital multimeter for dc measurements. These 

meters are listed with model numbers and manufacturers in Table 2. In 

addition to these instruments for steady-state measurements, a Honeywell 

model 5600 instrumentation FM tape recorder was used to record transient 

data. Analog-to-digital conversion and data processing, described 

previously, were implemented on a Data General NOVA small computer. 

Result of the Experiment 

After operating the generator at*normal load for fifteen minutes 

to minimize variations due to temperature changes, the load resistance 

was measured as 0.98 per unit. The additional load resistor bank was 

switched in parallel to this load, and the resistance of the combination 

measured as 0.23 per unit. Then the load was returned to normal, and 

z(k) A 

z i ( V 

ATX zjt + — ) 2 k 4 

2AT, 
Z 3 ( V + — ' 

3AT, 
Z4 (tk + "I"' 



Table 2. Parameter Error Weights 
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ITERATION PARAMETERS WEIGHT 

1-13 

1-3 

4-13 

4-13 

Y -Y 
1 7 

Y -Y 
8 11 

VY9 

Yio'Yii 

1x10 

1x10 

1x10" 

1x10 



the rotor speed measured as 252 radians per second. The first test was 

performed under these conditions. The resulting data, recorded and 

processed as previously described, was sampled at a rate of 500 Hertz 

per channel or an overall rate of 2KHz for all four channels. 

To determine a priori information about the measurement noise, 

the recorder was run with the inputs shorted to ground. After digiti

zing, this data indicated approximately equal noise variances in all 

four channels. As a result the weights for the measurements were 

selected as unity. Due to lack of good a priori information on the 

initial parameter error variances, these weights were adjusted 

empirically to obtain good results from the estimator. By weighting 

the parameters heavily at first, estimates were prevented from large 

excursions on the first few iterations, enhancing the stability of the 

estimator. The weights chosen are summarized in Table 3, while the 

parameter estimates are plotted versus iteration number in Figure 10. 

Figure 11 shows a comparison of the phase A current and the 

field current predicted from the parameter estimates to the correspond

ing data from the experiment. First, in Figure 11(a), the results of 

the initial parameter estimates are compared to the experimental data. 

Then Figure 11(b) shows the results of the final parameter estimates 

compared to the data. The final results follow the data quite well. 

This indicates that the model fits the data well at these particular 
( • • ' ' • 

operating conditions. 

To test these results under another condition and to assess the 

validity of the model, a second test was run with load resistance 

switched from 0.99 per unit to 0.175 per unit. This test was first 



Table 3. List of Instruments Used 
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Description Number Manufacturer 

AC ammeter AA-10 

AC voltmeter AV-12 

Digital multimeter 3476B 

General Electric 

General Electric 

Hewlett-Packard 
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simulated on the digital computer using the parameter estimates from 

the first test, then implemented in the laboratory. Figure 12 shows 

the comparison of the simulated results to the experimental results. 

The reasonable agreement of these results indicates the success of 

the model of the synchronous generator at similar operating condi

tions. This does not, however, guarantee validity of this model over 

much larger changes in operating conditions. In fact, a synchronous 

generator exhibits nonlinearities; therefore, this linearized repre

sentation is probably somewhat inaccurate for very large perturbations 

The model is valid, though, about the conditions of the'tests. 
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CHAPTER V 

CONCLUSIONS 

Summary of Results 

This work is a new approach to an old problem: system identifi

cation theory applied to the experimental determination of synchronous 

generator parameters. The power of this statistical identification 

technique allows the parameters of Park's equations, cast in a state-

variable formulation, to be determined directly from terminal current 

measurements. 

Considering the identification problem as a multipoint boundary-

value problem and applying the method of quasilinearization leads to a 

weighted least-squares parameter estimator. Including additive noise 

corrupting the measurement process, a statistical analysis proves the 

maximum a posteriori probability estimator is achieved by selecting the 

weighting matrices as the inverse noise and parameter error covariance 

matrices. This estimator is the optimal estimator in the sense of 

minimizing the Bayesian risk. If the error covariances are incorrect, 

the estimator is no longer optimal but is still a good implementation 

of a least-squares estimator. 

Before the experiment was implemented, several experimental 

conditions, such as the magnitude and duration of the transient and the 

data sampling rate and duration, needed to be selected. Also a set of 

constraints, mainly economic in nature, were recognized. Within these 
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constraints the experiment was designed with the aid of a digital 

computer simulation. That is, a numerical solution of the mathematical 

model of a typical synchronous generator under a switched resistive 

load, was used to test various experimental conditions. The results 

show that a sufficient amount of data is produced by a load resistance 

switched from full load value to 0.25 per unit then switched back to 

full load value. The duration of the transient was consistent with 

manual operation of a three-pole switch. The resulting experiment 

provided sufficient data at a sampling rate which could be handled by the 

data recording and processing facilities available, while being 

implemented on available laboratory equipment. 

Implementing this experiment in the laboratory, recording the 

terminal current data, and digitizing this data for input to the off

line parameter estimator led to estimates of the parameters of the 

mathematical model of the generator. These parameter estimates provide 

a linearized model of the generator which is valid over a range of 

operating conditions near the experimental conditions. The results of 

predicting the generator response to a larger step change in load 

resistance compare favorably to the actual measured response under 

those conditions. This favorable comparison validates the results, 

showing that the model can indeed predict the generator behavior under 

similar load conditions. 

Significance of Results 

In fact/ the synchronous generator is a nonlinear device, exhibit

ing saturation and other deviations from the assumed linear model. By 
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assuming this linear model structure and using an iterative estimation 

algorithm to calculate parameters, the results are effectively lineari

zed about the test conditions. That is, the estimator fits the best 

linear model to the data. This, of course, presents a limitation to 

modeling drastically different operating conditions. For relatively 

small perturbations in conditions, however, a simple valid solution 

has been achieved. It should be emphasized that the approach used here 

is an imprbvement over methods which assume linearity of the model over 

large changes in operating condition. For example, estimates of X,, the 

synchronous reactance, can be obtained from combining results of open-

circuit, unsaturated, armature voltage and of short-circuit armature 

current. However, such tests assume that results of two tests at 

drastically different points can be combined to model the generator 

under still different conditions, such as at unity power factor and 

full load. This implies that the generator model is linear to large 

perturbations. Thus, the present work should be viewed as a step 

toward proper modeling of a nonlinear device by a linear model valid 

over a small operating region. 

The assumption of a linear model was made primarily for simplicity. 

The estimation of parameters of a dynamical system, such as the generator, 

can be viewed as ah inherently nonlinear problem, even when the model 

itself is linear. Augment the state vector x with the parameter 

vector y, 

x = [--] . (54) 
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Now, in the linear model used, the parameters are multiplied by the 

states in the right side of equation (24). As a result, this can be 

rewritten as a nonlinear dynamical system in equation (55) . 

f|=f<x> (55) 

The problem can now be formulated as a nonlinear state estimation 

problem. As a result of this view of the problem, any nonlinearity 

that can be formulated can be included by this approach. 

Therefore, a general method for determination of synchronous 

generator parameters from the results of test data has been presented. 

The particular model used here is Parkrs linear circuit model of an 

ideal generator. A solution, using available equipment, shows 

favorable results. 

Recommendations for Future Research 

Inclusion of nonlinearities, especially saturation, in the 

generator model deserves additional research. The preceding section 

shows that nonlinear differential equations are easily handled by this 

algorithm. Consequently, future research should concentrate on finding 

a suitable parameterization of the nonlinearities. Once this is done, 

the extension of the present algorithm to include estimating the para

meters that describe the nonlinearities is trivial. 



APPENDIX A 

LOWER BOUND ON ERROR COVARIANCE 

The inverse of Fisher's information matrix provides a lower 

bound on the error covariance of the maximum likelihood estimate 

[16,13]. A similar approach results in a lower bound on the error 

covariance of the maximum a posteriori estimate [15]. These bounds 

are generalizations of the Cramer-Rao bound. This appendix outlines 

derivation of this bound for the estimator used in this research. 

If the estimator were to converge exactly to a parameter 

estimate y, then 

*f d h ( t k r 

k=i d y 

.-I,' ;; v , , ~ . .,1 -1 I ( - .v'-'izit.) - h(x,y,t,)]} - v""x(y-m ) = 0 . (A.l) 
w k k y y 

y 

In words, the model output h(x,y,t, ) would exactly equal the observed 

output z(t )V This condition is the theoretical best estimate of the 

parameter vector, but is never achieved in the presence of measurement 

noise. It is reasonable to use this theoretical performance limit to 

obtain a lower bound on the error covariance. Linearizing h(x,y,t) 
•K 

about the true parameter vector, y, gives equation (A.2) 

k m 

f dh(t ) 

I l—ZT-ly V.[2<V - h(x,y,tk) - — „(?-y)]} k=l d y 

y 

-Vy (y-y) -'v'1(y-m) = o . (A.2) 



Solving for (y-y) gives Equation (A.3). 
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k T 
f dh(t ) 

(y-y) = R { I A„ „ VM (wj] - v ^ y - m j } 
k=l 

dy w ' k' y y 
(A.3) 

where 

, ^ d h ( t
k
) T --, d h ( V -1 

R = { I ... _. v 1 — ^ : — _.] + v._1} 
k=l dy w dy 

(A.4) 

and 

w k = z(t.) - h(x,y,tk) 

Squaring and taking expected value yields the desired error covariance, 

Equation (A.5). 

k f k f d h ( t k )
T dh(t.) 

coviv-v) = R 1 { y y —:—- v E(W,w!)v 1 — 3 -(?-y) = R"1! I I 
k=l j=l dy w k j w dy 

pf dh(t ) _ _ . 
~2 I —TJL" v•• Etw. (y-m ) ]V x +: v 1}R ^ . dy. ...~ w. k y y y 

(A. 5) 

Now the noise samples are assumed independent 

V if k=j 
w 

E (w w .) = 
k 3 

.0 if k^j 

(A. 6) 
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and E[w, (y-m) ] is assumed to be zero, i.e. the noise is assumed uncor-
k 

related with the random parameter vector. As a result, the desired 

bound is simply 

cov(y-y) = R~ RR = R (A.7) 
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APPENDIX B 

NOMINAL PARAMETERS FOR SIMULATION 

The nominal parameters used in the simulated experiment of 

Chapter II were approximations derived from nameplate data, steady-

state measurements, and a list of typical machine parameters [3]. 

From the generator nameplate the rated values of armature 

voltage and current were 

230 
v„ = = 132.79 volts, line to neutral (B.l) 
B £ 

and 

1000 
iB = 132.79 = 7' 5 3 1 ^ * (B/2) 

The angular speed of the equivalent two-pole machine is 

2TT 
a) = I2OOX777 x 2 = 251.33 radians/second . (B.3) 
O 60 

The results of steady-state open-circuit and short-circuit tests 

are plotted in Figure .(B:*l). The rated value of open-circuit armature 

voltage corresponds to 

i = .31 amps, (B.4) 
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sc 
(amps) 

Figure Bl. Open-Circuit Voltage and Short-Circuit 
Current Versus Field Current. 



neglecting saturation. Thus, 

yB1B 
v _ = — = 3226 volts 
F B I^T, FB 

and 

L -~ 4.87x10 per unit 
dr — 

Rated short-circuit current corresponds to 

i„s = .253 amps ; 

therefore, 

FS 1 -3 
L, ~ = 3. 25x10 per unit d = i™, w FB o 

A typical value of transient reactance is 

X' = .322 X, 
d d 

Therefore, from the definition of transient reactance, 

2 

xd ~ xd " x ,' 

and 
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Ldf 3 
L* - rnar = 10-73x10 per unit . (B.ll) 
f .678L_ d 

The remaining d-axis parameters are roughly approximated by assuming 

equal coupling from stator to all rotor circuits. 

L . = k2L = .678x3.25xl0"3= 2.20x10 3 p,u. (B.12) 

L_ , = A:2L_L , = »42L2 =.kL,_ = 4 ,01x l0~ 3 p . u . (B.13) 
fkd f led df df * • 

Typica l q - a x i s parameters g ive 

L ~ .652L. = 2 .12xl0~ 3 p e r u n i t (B.14) 
q = d 

and 

L, = L -L" = .55x2.12x10~3 = 1.17xl0~3 per unit (B.15) 
kq q q 

With the rotor at standstillt direct current measurements give 

R = .25ft and R = 240ft , (B.16) 
D F ' 

or 

- 2 • ' • " • • ' - 2 

Rd = 1.418x10 p.u. and R = 2.306x10 p.u. (B.17) 

The damper resistances are not measurable; however, typical time constants 
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The result is 

For lack of better information/ we assume 
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are 
T, ' = — = .467 sec 
do R 

(B.18) 

T, " ~ .02 TJ:'• = .00935 sec, do = do 
(B.19) 

T fkd 
^d" ~TT 

\d = 
= .0759 p.u. 

"do 
(B.20) 

V = \d ' (B.21) 
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